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Abstract

The aim of this thesis is to present a framework for the application of micro-modeling techniques
for the analysis of unreinforced masonry structures.

Finite element analyses of case studies from the literature are carried out in order to establish
their capacity to predict the compressive strength of masonry. A critical review of the experi-
mental inventory is carried out in parallel.

An experimental campaign involving masonry materials common in historical structures is
presented. A parametric study on themodeling technique and the influence ofmaterial properties
is also performed based on the finite element framework already presented.

A series of shear wall experiments are simulated using finite element models. The shear
tests have been performed under a wide range of vertical prestress levels. The influence of the
modeling technique is again investigated.

A micro-mechanical model for the analysis of masonry periodic unit cells is developed and
presented, based on a critical analysis of the results of the preceding finite element analyses.
The model may be used for the derivation of the linear and nonlinear elastic properties of ma-
sonry walls ans pillars of a wide variety of typologies. The results of the model are compared
against experimental results, finite element analysis benchmarks and closed form expressions.
Themodel also forms the basis for the development of a closed form expression for the prediction
of the compressive strength of masonry.

A complex masonry pillar is tested in compression. Its constituent materials are extensively
characterized for the determination of their mechanical properties. The pillar test is simulated
using a finite element micro-model for the purpose of highlighting the effect of the properties of
its materials on its structural response. An analytical model for the prediction of the compressive
strength of multi-leaf masonry is also proposed.
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Resumen

El objetivo de esta tesis es presentar un esbozo de aplicación de técnicas de micro-modelado
para el análisis de estructuras de fábrica sin refuerzo.

Se han llevado a cabo análisis de elementos finitos de casos prácticos extraídos de la bibli-
ografía para establecer su capacidad de predecir la resistencia a compresión de las estructuras
de fábrica. Paralelamente se ha realizado una revisión crítica del inventario experimental.

Se expone una campaña experimental involucrando materiales de fábrica frecuentemente en-
contrado en estructuras históricas. Así mismo, se realiza un estudio paramétrico de las técnicas
de modelado y la influencia de las propiedades de los materiales basado en el esbozo de análisis
expuesto previamente.

Se ha simulado por medio de modelos de elementos finitos una serie de experimentos real-
izados en muros a cortante. Los ensayos a cortante se han realizado bajo la acción de un amplio
rango de niveles de pretensado vertical. La influencia de las técnicas demodelado es investigada.

Se desarrolla y expone un modelo micro-mecánico para analizar células de fábrica periódi-
cas, basado en un análisis crítico de los resultados obtenidos en los análisis de elementos finitos
previamente realizados. El modelo puede ser usado para la deducción de las propiedades lin-
eales y no lineales de una amplia variedad de tipologías tanto de muros y como de pilares de
fábrica. Los resultados del modelo son comparados con resultados experimentales, estándares
de comparación de análisis de elementos finitos y ecuaciónes analíticas. El modelo también
establece las bases para el desarrollo de una nueva ecuación analítica para la predicción de la
resistencia a compresión de estructuras de fábrica.

Se realiza un ensayo de un complejo pilar de fábrica. Los materiales que lo componen son
extensamente descritos para la definición de sus propiedades mecánicas. El ensayo del pilar
es así mismo simulado por medio de un micro-modelo de elementos finitos con el objetivo de
resaltar el efecto de las propiedades de los materiales en el comportamiento estructural. Se
expone unmodelo analítico para predecir la resistencia a compresión de fábrica de hoja múltiple.
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Chapter 1

Introduction

1.1 Historical Background

Masonry, defined as the building of structures by the arrangement of units bound together by
mortar or laid dry, is the oldest construction methodology still in wide-spread use. The majority
of the world’s population resides and works in masonry houses, this percentage being very high
in underdeveloped and developing countries.

A wide variety of materials has been employed in masonry construction, equally varied for
the basic building units and for their binding material. Units may be various types of stone,
brick or block. The binding materials used include lime mortar, mud, cement or clay. Additional
structural features commonly found in masonry include rubble infills and wooden or metallic tie
rods.

In addition to the wide variety of materials used in masonry, owing to its flexibility of appli-
cation, numerous structural typologies, geometrical interlocking bonds and structural members
have been conceived and used. Most commonly, masonry is arranged in wall-type members, in-
cluding single andmulti-leaf walls, with infills, cavities or constructed of solidmasonry. Vertical
pillars are also common, being composed of stacked or interlocked units or pillars with infill.
Masonry arches, vaults, domes and buttresses are other highly specialized and varied members
made of masonry, commonly found in major traditional building projects.

While vernacular construction is by far the most extensive, masonry has produced highly
regarded works of monumental architecture. It has been extensively used as a building method
for the construction of infrastructure works, mainly bridges, aqueducts and gravity dams, char-
acterized by their extremely long resilience and continued use, often since antiquity.

1.2 Use of Masonry in Construction

Due to its long and continued existence as a viable choice for durable construction, the inventory
of existing masonry buildings is massive. Furthermore, the number of historically, artistically,
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architecturally and culturally important buildings and aggregates made of masonry is extensive.
The need to preserve traditional and monumental architecture stems from both practical and
cultural considerations. The optimal course of action is for the preservation process to be carried
out by way of rational, effective and efficient techniques. In the context of a multi-disciplinary
approach this includes the determination of appropriate action using robust analysis and design
methods.

Traditional and empirical methods for the design of masonry structures were the norm well
after the adoption of more rational analysis and design approaches for industrially produced con-
struction materials, such as reinforced concrete and steel. The preservation of these traditional
methods has served well in understanding the design process of, especially, monumental ma-
sonry architecture, but has also resulted in the adoption of concepts for masonry materials and
composites initially developed for materials with vastly different properties and intended use.

Masonry remains a common structural typology inmodern construction. In addition to being
a major non-load-bearing element, used as infill panels in reinforced concrete and steel frames,
it is commonly used as the main structural system in buildings. Economic and technological
limitations in developing countries serves to maintain masonry, such as adobe or rammed earth,
a common choice for vernacular architecture.

Masonry presents several features which make it a viable, sustainable choice as a building
material. These include water, sound and heat insulation, fire protection, durability, low main-
tenance cost and aesthetically pleasing appearance. For these reasons, even after having been
largely replaced by other load-bearing systems, it remains in use as a secondary element in mod-
ern buildings.

Like all structures, masonry buildings, or masonry members used as secondary elements in
buildings, run several risks during their life-cycle. These include the risk of injury to individu-
als, the risk of property damage, including the structure itself, and the loss of use of the building
temporarily or permanently. Major sources of these risks include earthquake events, environ-
mental action, fire, improper use and long term loading. Most of the sources of risks mentioned
involve the mechanical straining of the main load-bearing and secondary structural members.

Traditional architecture, practically in its entirety, and modern construction, to an important
degree, makes use of structurally unreinforced masonry. This fact increases the potential risk to
life and property in the case of catastrophic events and accidents. Furthermore, industrial prac-
tice and standardization of the material production process and the execution of masonry works
has lagged behind its major competitors. Finally, university engineering curricula usually only
include courses on the structural analysis of masonry as elective courses or at the postgraduate
level.

On the other hand, the structural analysis of masonry has attracted increased research interest
in the recent few decades, owing to its close association with sustainable design, the conserva-
tion of architectural heritage, the tourism industry and the preservation of culture. The state of
the art of structural masonry is especially advancing in the fields of material study, including
traditional and innovative materials, structural analysis using advanced specialized methods and
intervention techniques. Finally, structural analysis of existing structures for the purpose of ca-



Scope and Goals 3

pacity evaluation and design of repair and strengthening interventions is now receiving more
focused attention in design codes. The contribution of infill walls in the structural behavior of
frame structures is stressed and advanced analysis models are often recommended. The com-
missioning of intervention projects, ranging from very small to very large in scale and scope,
is becoming more common in the construction industry, especially as an alternative to full re-
placement of an existing building.

1.3 Scope and Goals

A series of subjects will be addressed in this thesis. A number of them deal directly with the
application of micro-modeling techniques, while others are related to the conclusions derived
from employing them in practical and theoretical problems.

These subjects include:

• The practical implications for analysts in employing micro-modeling techniques for the
analysis of masonry, such as the computational cost and its application to various masonry
typologies under different loading types.

• The evaluation of the material properties which most strongly influence the compressive
strength of masonry composites. The compressive strength, being the main design param-
eter according to design codes, is by definition possibly the single most important property
of masonry.

• The state of modern masonry design codes. In particular concerning their capacity in
giving accurate predictions of the compressive strength and elastic moduli of masonry.
This issue includes the extent to which these codes take into account the various properties
of the individual masonry constituents for these predictions. In the same context, various
closed form expressions with the same function may be evaluated as well.

• The application of micro-modeling techniques to existing structures. Given that numerous
material parameters need to be determined for a proper micro-modeling analysis, several
obstacles are faced when dealing with existing structures.

• Providing detailed insight into the overall behavior and arising failure modes in masonry
members. The design and application of materials which improve the mechanical perfor-
mance of new masonry structures relies on understanding their true role in the composite.
This issue is also critical in the design of effective and efficient interventions on masonry
buildings.

Based on the treatment of the above subjects, a number of objectives have been pursued.
These include:

• The critical analysis of existing numerical modeling techniques.
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• The investigation of the influence of specific material parameters on the mechanical prop-
erties of masonry composites.

• The development of a micro-mechanical tool for the analysis of masonry structures.

• The proposal of an experimental approach for the testing of materials and assemblages
extracted from existing masonry structures and the application of the results in a micro-
modeling framework.

1.4 Structure of the Thesis

Chapter 2 presents a broad overview of subjects pertaining to the analysis of masonry structures
using micro-modeling techniques. Practical considerations, advantages and disadvantages and
application field are discussed. A short overview of the state of material testing and masonry
design standards are briefly developed. While each following chapter is accompanied by its
individual specialized state of the art, this general introduction serves at highlighting the impetus
behind the subjects treated in this thesis.

Chapter 3 presents a modeling framework for the analysis of masonry structures in compres-
sion using finite element models. The numerical results are compared to a compiled inventory of
experimental data from the literature. Comments on the initiation, development and repetition
of damage patterns are presented.

Chapter 4 includes the development of an experimental campaign centered around masonry
composed of materials used mostly in traditional architecture. The applicability of the frame-
work presented in Chapter 3 is tested against an experimental campaign developed in a controlled
laboratory environment. Parametric studies illustrated several points in the modeling of masonry
in compression.

Chapter 5 applies the finite element modeling framework to the simulation of masonry shear
wall experiments, in which the simulation of the compressive behavior is critical. Experimental,
numerical and closed form expression results are compared. Along with the findings from the
two previous chapters, a strong case is made for the use of three-dimensional modeling for the
simulation of masonry in compression.

Chapter 6 presents a method of analysis of masonry walls and pillars usingmicro-mechanical
models of periodic unit cells using analytical expressions. Employing detailed micro-modeling
techniques, the derivation of the orthotropic elastic properties of masonry composites are cal-
culated with minimal computational cost. The models are based on rational assumptions and
idealizations of the behavior of the masonry geometrical components in the composite. Com-
parison of the model results with experimental data and finite element calculations are favorable.

Chapter 7 expands the elastic analysis model for cells to calculate the nonlinear properties of
masonry in compression, tension and shear. The cell models are able to produce good predictions
of the compressive strength of various types of masonry and allow for the detailed studying of the
behavior of their individual parts. A parametric investigation of the influence of the properties
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of the masonry constituent materials on the compressive strength of masonry is conducted. This
is of particular importance given that several material parameters with a strong involvement in
the phenomena associated with masonry in compression are not given sufficient attention by
researchers and practitioners.

Chapter 8 deals with the compressive testing of a complex masonry pillar, the mechanical
characterization of its constituent materials and its numerical modeling. It demonstrates the
applicability of the finite element framework to the simulation of an existing structure. Further-
more, it serves as an example of micro-modeling of masonry shedding light on the complex
failure mode observed in a structural element.

Chapter 9 summarizes and unifies the conclusions reached to in the preceding chapters. Rec-
ommendations for future work are also given with the intention of applying the conclusions
reached and the tools developed in this thesis for further practical and research purposes.
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Chapter 2

State of the Art

2.1 Introduction

2.1.1 Background

Numerical models based on the finite element method consisting exclusively of continuum ele-
ments have been applied for the simulation of standard reinforced concrete and steel structures
due to the combined effect of the character of the structures as a whole (composition), the shape
of individual structural elements normally comprising such structures (form) and the salient fea-
tures of their behavior in local level (material). Material anisotropy is either essentially absent,
as in steel structures, or is attempted to be taken into account in the analysis using simple as-
sumptions and remedied in the actual structure by the use of, for example, reinforcement bars in
concrete. Structural elements of ordinary buildings largely fall within the beam-column group,
or are approximated as such, for the analysis of which simple geometrical models are mostly
sufficient. Global structural forms normally associated with such construction materials consist,
to a significant extent, of variants of frames.

Structural analysis for these cases can be fairly accurate without necessitating the use of elab-
orate computational tools and can be executed successfully with continuum analysis, catering to
the finer points of structural behavior by way of adequate material models. This is being mir-
rored in the widespread application of these structural types, the profound knowledge of, and
the continuing intense research on, the behavior of their constituent materials and, finally, on the
documentation of this collective knowledge and know-how in design oriented codes.

This has not been the case with masonry structures due to the coincidence of several condi-
tions. Structural elements composed of masonry usually assume shapes whose behavior cannot
be adequately approximated by simplified approaches, as is possible in the beam-column element
case. The study of the mechanical properties of the constituent materials, both independently
of one another and in their interactions in the structure, as well as their behavior in time, has
in general lagged behind in depth and extent compared to those on concrete and steel. In fact,
many of the material models used for the constituents of masonry are directly borrowed from
the selection of models developed specifically for concrete. Finally, the composite behavior of
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a masonry structural component or element consisting of materials with intrinsic weakness and
brittle behavior in tension further complicates matters, making simplified approaches hardly
sufficient.

A discontinuous approach in the structural modeling of masonry, based on the discrete sim-
ulation of existing and arising planes of weakness is more appropriate in the effort to achieve
accurate and complete results. The adoption of this approach is made attractive by its conceptu-
ally sound base, its range of applications in various analysis scenarios and its compliance with
localized physical phenomena. It can prove to be a valuable tool in the simulation of all types
of structural joints, discontinuities in computational rock mechanics, cracks in quasi-brittle ma-
terials, steel-concrete interfaces in reinforced and composite structures, the matrix-aggregate
interaction in concrete or in the analysis of discretized continua, to name a few.

2.1.2 Goal of the Micro-Modeling Approach

The micro-modeling of masonry was first implemented by Page several decades ago as means
of overcoming the shortcomings of simplified models in their capacity to numerically predict
the physical macroscopic phenomena in masonry and their association with dominant failure
modes [120]. Taking advantage of the versatility of the finite element method and the extensive
practical experience thereon, and infusing it with the concepts derived from damage and frac-
ture mechanics, plasticity theory coupled with nonlinear solution methods, constant increase
in computational power and the expansion of the state of the art concerning the mechanics of
masonry it has been made possible to create theoretically sound and practical numerical mod-
els which reproduce the intrinsic characteristics of the structural behavior of masonry. These
approaches derive their characteristics from a consideration of actual physical phenomena and
their simulation through both detailed and phenomenological methods.

Among the desirable results of a micro-modeling analysis are the numerical approximation
and visualization of damage and collapse mechanisms, the effect which geometrical charac-
teristics such as unit stacking types may have in the response and, in general, the numerical
representation of macroscopic phenomena associated with failure in masonry. In essence this
means the simulation of the global behavior of a masonry member by independent modeling of
its macroscopically discrete constituents.

2.2 Modeling Methods and Element Types

2.2.1 General Aspects

As in most types of finite element analysis requiring more than average structural detailing, the
geometrical aspects of masonry micro-modeling, though simple in principle, can be frustrating
in practice. It is highly recommended for simple parameterized meshing programs to be de-
veloped, as they can be prove to be particularly time and effort saving in the case of even the
simplest structural elements, such as single walls.
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2.2.2 Level of Detail

Several strategies have been proposed and experimented with concerning the micro-modeling of
masonry structures. The main aspect that sets these various approaches apart is the amount of
detail incorporated into the geometrical representation of the structure and, therefore, the degree
of structural idealization to be applied in the analysis.

In the detailed micro-modeling approach, four basic individual components are simulated:
the units in their actual dimensions using continuum elements, the mortar with its actual thick-
ness in the joints using continuum elements, the unit/mortar interface and the potential cracks,
both using discontinuous elements, as explained by Lourenço [96]. This configuration consti-
tutes the most detailed representation of the actual structure while, at the same time being the
most demanding in terms of model preparation effort and computational time consumption. It
does necessitate, however, the least amount of geometrical simplification and, therefore, the least
amount of assumptions concerningmaterial behavior. Essentially, this means that a structure can
be modeled with a minimum of phenomenological assumptions concerning material properties,
provided that the appropriate material models are used.

The simplified micro-model approach introduces an additional degree of homogenization
in the masonry. Unit elements dimensions are extended to cover half the width of the mortar
joint, thus eliminating the intervening layer of independently modeled mortar and allowed to
interact directly with each other through discontinuous elements representing the behavior of
the joints. Simplified micro-modeling reduces the geometrical complexity of the model as well
as the computational cost significantly without substantial loss of accuracy, thus offering a par-
ticularly attractive alternative to detailed micro-modeling when overall knowledge of structural
behavior is sought rather than of localized phenomena. It is no surprise that this approach ac-
counts for the majority of studies in the area of masonry micro-modeling analysis. The main
drawback of this approach is the necessity for a phenomenological approximation of joint be-
havior by not accounting for the actual stress state in the mortar or for the Poisson effect gener-
ated by the unit/mortar interaction in compression. Illustrated examples of the various types of
micro-models are shown in Figure 2.1.

It is possible to further increase the level of detail of a masonry micro-model by introducing
additional structural constituents in the model, such as grout, infill and embedded or externally
bonded reinforcement bars [13, 69, 128].

2.2.3 Simulation of Units and Mortar

The type of finite elements to be used for the simulation of the units depends on the geometrical
configuration of the model. In any case, continuum elements are used for the representation of
the units and the mortar.

For two dimensional problems plane stress elements are often used. Examples of applica-
tions include studies performed with 4-node quadrilaterals [65], 8-node quadrilaterals [96] and
3-node triangular elements [43, 141]. Geometrical simplicity and regularity of masonry bonds



10 State of the Art

(a) (b)

Unit/mortar
Interface

Unit MortarPerpend or head joint

Bed
joint

Unit (brick, block, etc)

(c) (d)

Composite“Unit” “Joint”

Figure 2.1Modeling strategies formasonry structures: (a)masonry sample; (b) detailedmicro-modeling;
(c) simplified micro-modeling; (d) macro-modeling [92].

normally allows for an accurate representation of the structure’s geometry using quadrilaterals.
The bulk of micro-modeling simulations has been performed on flat wall configurations in two-
dimensional problems, which has generally proven to be sufficient for the analysis of masonry
walls under in-plane loading. Apart from plane stress analyses, there have been analyses per-
formed using plane strain or generalized plane strain configurations to account for out-of-plane
stress effects and to compare these approaches [16].

For three-dimensional analyses 8-node and 20-node brick elements have generally been used
[3, 8], along with a small number of studies performed using 6-node wedge elements [108].
Three-dimensional analyses have been performed in both flat wall segments as well as curved
geometries [108]. Three-dimensional analysis is arguably the most accurate tool but is far from
practical when a parametric investigation or the analysis of a large structure is required. Out-
of-plane stresses may be considered by adopting an enhanced plane stress approach with only a
fraction of the cost of a full three-dimensional analysis [95].

Units may or may not feature the existence of potential cracks, normally intersecting the unit
at mid length. Potential cracks are further explained in the following segment dealingwithmicro-
model discontinuous elements, and the matter is further investigated in the segment concerning
material models and their capacity for simulation of failure modes of masonry structures.

2.2.4 Simulation of Joints and Potential Cracks

Given the fact that micro-modeling of masonry was initially conceived and developed as a tech-
nique to simulate the effect of joint discontinuities, accurate simulation of the interfaces in ma-
sonry is the cornerstone of an accurate micro-model simulation of problems with arising shear
and tensile stresses. Therefore, the simulation of masonry joints and potential cracks makes use
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of discontinuous elements which through their numerical formulation relate nodal displacements
to stresses instead of forces, as is the case for ordinary continuum elements.

Interface elements are used in micro-models in a variety of roles, depending on the desirable
level of detail. In detailed micro-models interfaces are used to model the interface (contact) of
the units with the mortar, therefore accounting for only part of the composite behavior observed
at the joints of masonry. Obviously, this is the most accurate but also most demanding approach
currently available; structural idealization is minimized. Additionally, it requires the greatest
effort in the mechanical characterization of the materials.

Elements used to prescribe a discontinuity in the stress and strain field of a continuum fall
generally into one of two categories: interface elements derived from degenerate continuum el-
ements with an ideally small thickness or interface elements derived from a penalty approach
formulation. Penalty approach elements may be of zero thickness, in which instance opposite
nodes coincide geometrically, or they may be prescribed with a dummy thickness for easier
graphical manipulation. As explained by Hohberg, zero thickness is usually prescribed to inter-
face elements derived from a penalty approach whereas non-zero thickness is given to interface
elements derived from continuum elements formulated with the ideally thin layer approach [75].
However, a non-zero physical thickness to penalty formulated interface elements should only be
prescribed in the case where strain gradients across the layer are expected. This is not the case
in unit/mortar interfaces in detailed micro-models but it could potentially be so in simplified
micro-models. Regardless, usually only a global representation of the structural role of the in-
terfaces is required, therefore zero thickness elements are sufficient, which have the additional
advantage of being formulated using concepts more attractive from an engineering point of view,
such as interface stiffness. The present literature review revealed a distinct prevalence of penalty
interface elements with zero thickness regardless of the application type. The derivation of the
two main families of interface elements is illustrated in Figure 2.2.

In simplified micro-models interfaces are used to account for the behavior of the joint in its
entirety, meaning that interface elements are used to model the complex interaction of the mor-
tar, unit/mortar interface and the portion of the unit involved in the behavior of the joint. This
approach is clearly more attractive in terms of computational cost than detailed micro-modeling,
but resorts to sacrificing part of the accuracy and completeness of the results. Additionally, this
approach, necessitating the approximation of the behavior of the joint, requires the definition
of interface element stiffness that does not conform with the values consistent with the penalty
approach but rather account for an approximation of the behavior in the vicinity of the mortar
joint. This results in quite visible interpenetration of continuum elements and negative interface
element volume under compression, [75]. While not strictly making sense in a physical man-
ner, such behavior may be assumed to provide a phenomenological representation of masonry
crushing, provided the material properties are appropriately calibrated.

In either of these cases, interface elements can be used to model potential cracks in units.
The inclusion of potential cracks serves to simulate the damage in units without resorting to the
use of nonlinear constitutive laws in the continuum. This approach may allow for the adoption
of a coarser mesh but has been generally replaced by the use of continuum plasticity and damage
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Figure 2.2 Degenerate continuum (left) and penalty method interface elements (right) [75].

models.

For two dimensional problems, discontinuities are modeled with interface elements which
simulate the normal and shear interaction between two sides of two different continuum ele-
ments. Examples of such elements are 4-node and 6-node structural interface elements [65, 96].
Nodal interfaces have also been used in a number of studies [62, 131], but line interfaces appear
to be more attractive from an engineering and conceptual point of view.

In three-dimensional problems, the geometrical formulation principle remains the same, ex-
cept that interface elements now simulate the interaction between two surfaces of two different
continuum elements. Common examples of such elements are 8-node and 16-node structural
interface elements [5].

2.2.5 Simulation of Additional Constituents

Masonry structures frequently incorporate additional structural constituents such as grout or
other injected materials, reinforcement bars and FRP strips. Their simulation is of particular
importance in the cases where they are used as a repair or strengthening measure [83, 128].

Whereas grout used in the construction of hollow masonry can be modeled using the same
philosophy as for the interaction between units andmortar, there has been very little research con-
cerning incorporating other materials in micro-modeling analyses. While unreinforced masonry
has been extensively investigated using this approach, research on strengthening techniques in
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masonry micro-models has lagged behind and presents an attractive field for future research.

2.2.6 Overall Meshing Strategy

The number of elements to be used for the simulation of a single complete masonry unit is a
matter of discussion. In the cases where this issue was actively investigated, simplified micro-
modeling analyses have exhibited significant mesh insensitivity, always within legitimate mar-
gins of mesh coarseness, in terms of capacity, load-displacement curves and even snap-back and
snap-through phenomena for nonlinear analyses with linear elastic units and material nonlinear-
ity lumped in the interfaces [96]. This is not, however, necessarily true when smeared cracking
concepts are applied in the units, in which case a finer mesh may yield better results as crack
bandwidth calculation is dependent on the size of the elements and may also provide increased
numerical stability [148].

While the fineness of the mesh as mirrored by the number of elements per masonry unit
is not necessarily crucial, the combination of element type with the appropriate interpolation
polynomial and integration scheme are important in order to avoid numerical phenomena such
as volumetric locking which can significantly lower the accuracy of a nonlinear analysis in terms
of capacity assessment. Still, the use of smeared cracking for the units appears to be a parameter
that challenges the possible limitations of a given micro-model mesh, and should therefore be
used prudently.

The simulation of the mortar in detailed micro-models generally follows the same rules that
apply to the units in terms of meshing. However, considering the geometrical peculiarities asso-
ciated with the existence of mortar modeled with continuum elements (large length to thickness
ratio), and the necessity of geometrical consistency of the mesh to accommodate the existence
of the interface elements, such an analysis may require a particularly fine mesh in order to avoid
continuum elements of inappropriate shape to simulate the mortar which could reduce the accu-
racy of the results. Local refinement in the mortar joints may be more practical on the condition
that mesh conformity is maintained.

In the past, a few progressive mesh refinement methods were proposed in order to account
for more accurate simulation of the propagation of yielding [10]. Additionally, analyses were
performed with initial local refinements in the mesh in targeted areas of interest in cases where,
for instance, concentrated loads were applied [11]. A number of these methods were proposed at
a time when computational power was particularly limited compared to modern standards. This
fact, coupled with the method’s apparent mesh insensitivity under certain conditions renders
these techniques largely unnecessary. Nevertheless, the instances in which the nature of the
problem at hand may be anticipated with reasonable certainty, the technique of limiting discrete
modeling to the areas of interest, while adopting a continuous approach for the remainder of
the structure, may yield adequate or even entirely accurate results with reduced computational
demands and structural complexity.

Concerning the generation of a micro-model mesh, it is important to use continuum and
discontinuum elements based on compatible interpolation. For instance the sides of quadratic
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plane stress elements for the units or the mortar should be connected with quadratic interface
elements. Incompatibility in that regard could potentially produce erroneous results.

As a final important note, a certain inconsistency in the terminology concerning micro-
modeling encountered in the literature should be mentioned. The term micro-model in the avail-
able literature includes the previously described detailed and simplified micro-models but also
models wherein units and mortar are individually modeled, as in detailed micro-models, but
without the inclusion of interface elements between them, thus considering a perfect bond be-
tween the constituents. The latter approach is also referred to as the meso-scale approach. In the
segment discussing possible application of detailed micro-models to numerical homogenization
techniques, a brief comparison between meso and micro approaches is presented.

2.3 Material Models

2.3.1 General Aspects / Simulation of Failure Modes

As the main focus of the micro-modeling approach is the numerical representation of damage
and failure, this segment primarily deals with the various nonlinear models that have been used.
Nonlinear material behavior is normally taken into account by adopting either a plasticity based
approach or a damage based approach.

The appropriateness of a material model should be judged on the basis of its capability to
simulate the failure modes associated with masonry structures. The plains of weakness in the
composite governed by the existence of mortar joints, coupled with the brittle behavior of the
units in tension, produce the following main failure modes: tensile cracking of the joint, shear
slipping at the joint, cracking of the unit under direct tension, diagonal tensile cracking of the
unit and crushing of the masonry composite. These modes may be simulated for masonry under
monotonic or cyclic loading. Additional models simulating creep and shrinkage have also been
developed.

2.3.2 Models for Units and Mortar

There is a variety of material models available for the elements comprising the units, as well as
the mortar in the case of detailed micro-models.

In its earliest and several of its following incarnations, the micro-modeling approach pre-
scribed a linear elastic behavior for the elements comprising the units, since material nonlin-
earity was taken into account solely in the interfaces, thus all nonlinear behavior of masonry
was lumped at the joints. Apart from elastic linearity, units were approximated considering zero
stiffness in tension, thus assuming a brittle behavior with zero tensile strength [148]. Further
progress in that regard was achieved when attempts to simulate the actual nonlinear behavior of
the units themselves in amasonry composite weremade. Initially, two approaches were proposed
and subsequently tested.
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The first approach relied on the salient feature shared by quasi-brittle materials like clay
brick, mortar, ceramics, rock or concrete to fail because of a process of progressive internal crack
growth. To simulate this process, a number of material models normally applied to concrete saw
use in themodeling ofmasonry units. Various incarnations of the smeared cracking concept have
been used in micro-modeling analyses such as a multi-directional fixed crack model and a total
strain model [69]. Smeared cracking had been already applied to simulate diffused cracking in
large scale reinforced concrete structures, and given the perceived similar quasi-brittle behavior
of masonry units it was extended in masonry analysis. Additionally, several plasticity models
have been used, such as the such as the Craft model [3] or others employing the Drucker-Prager
[95] or Lubliner criterion [33], which have also been used to model concrete structures. An
example of the failure mode obtained from the micro-model of a masonry periodic unit cell and
its macroscopic interpretation in the masonry composite is shown in Figure 2.3.

Figure 2.3 Detailed micro-model of periodic unit cell with damage model (left) and associated failure
mode in masonry (right) [101].

The second approach involved the interruption of the continuity of otherwise linear elastic
units by way of the inclusion of interface elements with dummy stiffness intersecting the units at
mid length in order to simulate potential cracks [47]. Potential cracks constitute a legitimate nu-
merical approximation of the tensile failure usually observed in masonry units, which manifests
as a localized phenomenon. It has also been shown that this geometrical formulation is capable
of predicting the occurrence of continuous linear cracks “jumping” across bed joints from unit
to unit [96].

As a further step, masonry units in micro-models have been simulated in a composite manner
by the combined application of potential cracks and smeared cracking. Additionally, the pattern
of potential cracks incorporated in the units has recently assumed new forms: by discretizing
units with triangular elements it is possible to introduce additional diagonal potential cracks
within the units, thus physically accounting for one more cracking pattern regularly encountered
in units failing under tension [22]. For these cases, numerical instability caused by the large
number of nonlinear interfaces could prove to be an issue.

Taking into consideration the nature of cracking failure observed in masonry units, the ap-
propriateness of smeared cracking has been the matter of debate. While particularly suited for
the modeling of cracking over large continuous elements, it has been argued that it may not be
suitable for the simulation of cracking in a discontinuous geometry characterized by limited ar-
eas of smeared crack propagation, whereas potential cracks may be more capable of accurately
representing the strongly brittle and localized failure of units in tension. It is arguable that this
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shortcoming of smeared cracking could be neutralized in the analysis of periodic masonry cells,
where each unit may be several elements across in all directions, thus potentially eliminating
problems associated with mesh coarseness.

As far as anisotropic behavior of the units is concerned, which could be caused by the exis-
tence of gaps in the case of hollow units, it could be taken into account by way of adoption of
an appropriate anisotropic material model in the case of simplified micro-models which do not
incorporate a detailed geometrical representation of the units.

The pressure dependent behavior of the mortar is crucial in simulating masonry in com-
pression using detailed micro-models. Since the compressive strength of the masonry is not a
prescribed analysis parameter, as in simplified micro-models, accurately simulating the com-
pressive behavior of mortar under multi-axial stress becomes a priority.

2.3.3 Models for Interfaces

The primary purpose of an interface material model is to be able to simulate the failure modes
already mentioned and, if possible, be able to unify them in a combined expression. Depending
on the adopted level of detail, the interfaces need to be able to simulate a certain number of
failure types. Worthy of note is the fact that even though units are often considered as linear
elastic, some sort of nonlinearity in the joints is practically always considered.

In general, interface elements should be able to simulate shearing behavior and failure of the
unit/mortar interface or of the entire joint. This can be achieved by employing Coulomb friction
models normally used in structural interface analysis. Dilatancymay or may not be considered in
the analysis, although it is usually ignored in simplifiedmicro-models by prescribing a zero value
for the dilatancy angle (shearing in the interface does not produce expansion or contraction), thus
assuming a non-associated plasticity formulation [47].

Tensile cracking in the joints is also a salient feature of masonry that should be modeled.
Cracking may be brittle or it may present itself with tension softening.

Crushing of the interface to simulate compressive failure in the joints is especially important
in the case of simplified micro-models, since mortar, and therefore its interaction with the units,
is not individually modeled. It is interesting to note that the compressive failure mode for inter-
face elements was possibly the last failure mode to be modeled. Initially the failure mode was
modeled by way of a compressive cap criterion in two dimensions, which was later expanded
into three dimensions [91].

In order to simulate the coupling of these failure modes, combined material models within
either a plasticity or damage framework have been proposed that account for all three of the
major failure types in interfaces. Plasticity based models appear to have seen wider application,
as can be deduced from the available literature (e.g. [90, 96, 118]).

A small number of damage and plasticitymodels have also been proposed for use in interfaces
which are appropriate for structures subjected to cyclic loading [119, 139].

While the elastic characteristics to be used for the units can be acquired in a straightforward
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manner, the elastic relation between forces and stresses to be used for the interface elements in
a simplified micro-model need to be estimated. This requires the definition of both normal and
shear stiffness for the interface elements. There have been a number of proposed methods for
defining these values, governed bymaterial properties of the constituent materials, the geometric
characteristics of the masonry bond, such as unit dimensions and joint thickness, and the overall
geometry of the structural element to be analyzed [47, 123, 134]. The interface elements used
for the description of potential cracks in units are prescribed a very high dummy stiffness in
order for the deformation of the potential crack before failure to be insignificant compared to the
deformation of the surrounding continuum and also to suppress element interpenetration [75].
The same approach is adopted in the case of detailed micro-models to model the unit/mortar
interface, where shear deformation in the joint is thus entirely due to the shear deformation of
the mortar, until shear sliding occurs in the unit/mortar interface.

2.3.4 Combining the Material Models

As long as legitimate assumptions are made concerning the choice of individual models for the
materials and the properties associated with them, there does not appear to be any practical
incompatibility between them. Accounting for compressive failure in the constitutive laws of
the interface is common in simplified micro-modeling and may alleviate the need for this mode
to be accounted for in the continuum parts of the model, particularly given the fact that the joints
have a compressive strength lower than that of the units. The global failure mode obtained from
a micro-model accounting for shear and tensile failure modes in the interfaces is shown in Figure
2.4.

Figure 2.4 Failure mechanism obtained from a simplified micro-model of a masonry shear wall [94].

2.3.5 Reflection on Material Properties for Micro-Models

An accurate micro-model analysis requires extensive knowledge of the mechanical properties of
the constituent materials ranging from standard elastic and strength parameters to fracture ener-
gies and a variety of other plasticity related values. This is especially true when determining the
properties of the unit/mortar interface or of mortar in triaxial state of stress. Acquiring all these
values from specimens demands the carrying out of a wide range of experiments, which is not
always realistic. Therefore, it is often necessary to adopt methods and material models through
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which a number of properties can be indirectly derived or to extract the necessary data from
assorted literature in the cases where the property values are more or less standard. Alterna-
tively, it would be advisable to utilize material models which employ a relatively small number
of parameters that can be derived through standard testing without sacrificing the accuracy or
the completeness of the results.

2.4 Analysis Types

2.4.1 Linear Elastic Analysis

Masonry micro-models are seldom used in linear elastic analysis as it is not generally compatible
to the purposes for which it was initially developed. Furthermore, linear elastic analysis fails to
simulate the nonlinear intricacies of masonry response to even low levels of stress. However, a
small number of linear elastic analyses have been performed for various reasons.

Linear elastic analyses of a continuum model with units and mortar modeled with contin-
uum elements and a simplified micro-model were executed to compare computational effort and
results obtained from the two approaches [92]. Through this comparison the efficiency and the
accuracy of the simplified micro-model was demonstrated. It is also arguable that this com-
parison illustrates the computational advantage of simplified over detailed micro-models with a
minimal sacrifice in accuracy. The continuum model in question is not a micro-model per se,
due to its being analyzed under linear elastic conditions.

Additionally, by adopting values for the maximum allowable tensile and compressive stress,
it is possible to make rudimentary safety assessments on masonry structures such as arches.
However, by neglecting material nonlinear phenomena, it is debatable whether this approach can
yield usable results, especially when compared to results obtained by, for example, nonlinear or
limit analysis [93]. Accurate analysis of masonry requires taking its highly nonlinear response
into account.

Finally, linear elastic analysis of masonry periodic unit cells using micro-models can be em-
ployed in the numerical determination of the elastic properties of masonry composites consisting
of components with know elastic properties.

2.4.2 Nonlinear Static Analysis

Up until now, the analysis of masonry micro-models has mostly revolved around a static non-
linear approach using monotonic concentrated loading to predict failure loads and to estimate
post-peak response. A relatively large number of examples of such works may be found in the
literature [8, 11, 64, 90].

Material nonlinearity lies in the core of the micro-modeling approach. It is not unusual
for geometrical nonlinearity to be included in the analysis, although the approach has generally
revolved around the development of methods for simulating material nonlinearity and damage.
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Nonlinear analysis requires a fair amount of competence in the areas of finite element plastic-
ity and iterative solution techniques if appropriate numerical results are to be obtained. Various
iterative solution methods, such as Newton-Raphson, using load or displacement control may be
employed. Additionally, arc-length methods in force control have also been used successfully.

2.4.3 Nonlinear Transient and Dynamic Analysis

The long term effects of masonry creep have been investigated by way of nonlinear transient
analysis, though the applications involving micro-modeling are very few and present significant
numerical challenges [153].

For the types of structures the micro-modeling approach is aimed at, which mainly consist of
individual structural elements, modal analysis is largely unnecessary. However, dynamic tran-
sient analysis of these structures could prove to be particularly interesting in assessing the risk
of earthquake induced damage, though the numerical aspects of it might be discouraging. At-
tempts at analyzing masonry micro-models have been made, but due to the numerical obstacles
posed by this approach, elastic-perfectly plastic material behavior was assumed in order to me-
diate computation times and to avoid difficulties with convergence. The fact that very few such
experimental records are available further compounds the problem of transient dynamic analysis
[5, 75, 149]. Modal analysis of entire masonry structures can be quite demanding but research
in this area still exists to a limited extent [12].

2.5 Practical Aspects of Micro-Modeling

2.5.1 General

Having acquired a fair amount of familiarity with the theoretical components from which the
micro-modeling approach draws, there are still several practical issues to be considered for an
analysis. Most of these issues stem from the intrinsic nature of the micro-modeling approach
and are thus inherent in practically all such analysis projects. It is possible for some of them
to be mediated or even avoided by the appropriate modeling approach. Finally, a few of these
issues are worthy of consideration for future developments in the method.

2.5.2 Modeling and Computational Effort

As was mentioned in the segment discussing modeling methods, the geometrical description
of the model may present some difficulty and normally demands more involvement than the
description of continuum models for similar structures in terms of manual generation or veri-
fication of the mesh. It is possible for case specific meshing algorithms to be developed, but
producing a generalized algorithm for anything other than simple structural elements may prove
to be unrealistic.
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Additionally, nonlinear analyses of moderate sized micro-models are usually computation-
ally demanding, even when element types, material models and solution procedures are carefully
considered. Currently, the extension of the application field of the method in realistic and prac-
tical terms relies to a significant extent on the increase of available computational power.

2.5.3 Parameter Definition and Control

The plasticity and damage models used in nonlinear analysis require the use of a particularly
large number of material properties. Apart from the fact that in the case of masonry constituents
they are not always readily available, the sheer number of possible combinations of items that
may warrant parametric investigation can make tackling such a task unwieldy. Furthermore,
model calibration in order to achieve conformity with, for instance, experimental data is one of
the challenges posed by this approach and should be limited in the adjustment of the most crucial
parameters. However, it could be argued that the potential for an increased scope of a possible
parametric investigation serves the attainment of a wider overview and a deeper understanding
of the phenomena examined in the analysis: the larger amount of material parameters allows a
wider investigation of their effect in the properties of the masonry composite.

During the course of a parametric investigation, it is likely for an indirect determination of
several parameters to be necessary, since experimental investigation for the determination of
all necessary material properties is unrealistic. Care should be taken in making legitimate and
compatible assumptions about unknown parameters, especially those associated with the behav-
ior of the interfaces and the properties governing material plasticity and damage. Nevertheless,
the direct determination of as many material properties as possible in integrated experimental-
analytical projects should be sought.

The parameter identification method could possibly serve to determine a number of missing
parameters numerically by fitting numerical to available experimental data. Such work directly
related to calibrating masonry micro-models has been developed [115].

2.5.4 Field of Application

Discontinuous methods, like the micro-modeling approach for masonry, share the characteristic
of being computationally demanding while simultaneously limiting structure idealization. This
usually renders them ill-suited for large-scale structures. They are, however, the ideal tool for the
analysis of small scale structures characterized by strong heterogeneity. This includes masonry
structures where the ratio between the structure’s overall size and the dimensions of the units is
small, such as periodic masonry cells. The relatively narrow focus of the method’s application
field has resulted in substantial theoretical and practical experience and a considerably large and
expanding body of work attempting to scrutinize and unify the finer points of the mechanics of
masonry, which still largely elude researchers.
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Figure 2.5 Detailed micro-model of irregular stone masonry [13].

2.5.5 Comparison with Other Modern Analysis Methods

Experience has shown that no one analysis method for masonry has a definite advantage over
the others for every possible analysis scenario. The variety of continuum and discontinuum
methods available for use provides solutions for all practical problems [132]. Micro-modeling
cannot currently realistically compete with continuum ormacro element methods for the analysis
of large scale structures. It is, however, interesting to compare it with other discrete methods for
masonry, namely limit analysis, discontinuous deformation analysis and the discrete element
method, which may also be referred to as micro-modeling approaches but are not the subject of
this review.

Limit analysis and the discrete element method have been used for the analysis of block
structures, such as dry stone masonry with a fair amount of success. Analyses performed using
these methods are normally done under, among others, the assumption of infinite compressive
strength for the blocks, which is legitimate for specific case studies but which cannot be extended
to structures made of, for example, adobe or dry brick masonry. Moreover, though there have
been efforts in infusing the discrete element method with damage models for the units, micro-
modeling based on the finite element method appears to be a more robust and straightforward
formulation and also one with a larger body of work supporting it. Nevertheless, in the area of
transient dynamic analysis of discontinuous masonry structures the discrete element method is
arguably the more attractive choice [48, 87].

2.6 Examples in Engineering Practice

2.6.1 Simulation of Structural Elements

A significant amount of analyses has been carried out with the purpose of testing of masonry
elements such as panels or walls of moderate size. These assemblages correspond to individual
structural elements which are normally encountered in standard buildings as primary or sec-
ondary load bearing elements, namely walls, deep beams and even arches. Wall elements have
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been simulated under horizontal loading under the influence of a vertical compression load and
also in a diagonal shear configuration similar to the one utilized in diagonal shear testing of
panels [128].

Until now, the micro-modeling approach has seen use in various research projects, often
accompanying experimental projects or using such experimental data as a frame of reference for
model calibration and result verification. The majority of these analyses involved the in-plane
behavior of masonry panels under concentrated loading. Static push-over analysis is usually
performed, although there have been a few attempts at performing cyclic tests incorporating
suitably modified material models.

There have also been a number of numerical investigations on the effect of masonry in the
lateral response of confining reinforced concrete frames, in which interface elements were used
in the description of the joints in the masonry but also for modeling the interaction between the
frame and the infill [9, 107, 141, 146].

The out-of-plane behavior of masonry panels has been also tested recently with this method.
Such investigations require three-dimensional models, which can be very demanding from a
computational standpoint, a fact which possibly explains the small number of such attempts
[98, 160].

A limited amount of research has been performed on masonry arches. The detailed micro-
modeling approach in a two-dimensional configuration was adopted for the testing of a new
interface element and the investigation included both plain and reinforced structures [62, 134].

Finally, the method has been used as a tool in the homogenization process for the analysis of
large scale structures using continuum methods [102]. Additionally, a form of detailed micro-
model has been used as a verification tool for the results of masonry homogenization attempts
[95, 100, 109].

2.6.2 Simulation of Masonry Tests

Significant work has been performed using numerical models of test specimens, a number of
which conforms to the provisions of specific material testing codes on simple masonry prisms.
This area is of particular interest because the small size of these specimens, which sets them
apart from the study on entire structural elements, implies a much smaller ratio between the size
of the structure and the dimension of the units. The coincidence of small specimen size and
the requirement for accuracy and detail presses the advantages of the approach over continuum
methods while minimizing the effects of its intrinsic shortcomings.

The analysis of the compressive behavior of prisms is a subject of importance; from a design
standpoint the compressive strength of masonry is the prime parameter considered, while most
of the remainder properties are derived directly from it. The CEN standard test is a common
procedure for the determination of the compressive strength of masonry through the testing of
wallettes and has been the subject of micro-modeling analysis in the context of verifying the
accuracy of the method [95, 131]. Non-standardized tests have been also performed on prisms
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for the study of the effect of compressive load eccentricity and the numerical investigation of
buckling. Various other concentric and eccentric compression tests on prisms and other small
assemblages are also presented in the available literature [3, 23].

Figure 2.6 Detailed micro-model of eccentrically loaded masonry prism [3].

Similar small assemblages have been incorporated in the simulation of the effects of creep
and shrinkage using detailed micro-models with special material models [153].

Overall, it should be stated that the execution of micro-modeling analyses as a complement
to experimental investigations of this nature presents an attractive means of expanding upon lab-
oratory results through considered parametric investigation and sensitivity studies. The large
number of influencing parameters provides researchers with a wide scope of possible investiga-
tion subjects.

2.6.3 Reflection on Application Field

As is made obvious in the preceding segments, the micro-modeling approach is a highly spe-
cialized tool with a relatively narrow field of application, considering the scope of theoretical
and practical background supporting it. This is a possible explanation for the fact that expansion
in the range of problems for which the method is a viable option remains limited. Deviations
from this trodden field require robust theoretical support followed by extensive validation and
evaluation of practicality.

Amajor obstacle is posed by the method’s computational demands and structural complexity
which make it unsuitable for large scale analysis projects and most applications in the construc-
tion industry.

2.7 Expanding the Micro-Modeling Approach

2.7.1 Recent Developments

The micro-modeling approach on masonry presents an attractive and challenging field for re-
search as is evident by the most recent developments directly related to the expansion of its
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theoretical and practical basis.

Expanding upon the plasticity models developed for the interfaces, the postulation of dam-
age based models followed suit in an effort to more accurately simulate cyclic loading effects.
Simultaneously, the existing plasticity models where expanded, or new ones where proposed,
for the simulation of cyclic loading, shrinkage and creep as has been mentioned earlier in this
chapter.

Interface elements are currently available in many commercial and open finite element soft-
ware packages. By use of user subroutines, the material models proposed for interface elements
can be used for analysis projects. It is noteworthy that a number of software packages offer such
models in their built-in material libraries.

The increase in the availability of computational power since the method began gaining
notice in the masonry research community led to efforts in modeling structural elements in
three-dimensional configurations, thus making it possible to study out-of-plane effects [60, 98].
A number of efforts have been also made in approximating three-dimensional effects in two-
dimensional analyses with the employment of a generalized plane strain model without, however,
employing interface elements in the meso-scale [103].

Analytical solutions for the stress and strain distribution in periodic unit cells have also been
developed over the recent years. The models are formulated based on a discretization of the
cell according to the geometric configuration of the units and the mortar, and may thus be seen
as a form of micro-modeling of masonry. These models may be used for the derivation of the
orthotropic elastic properties of masonry or form the basis for nonlinear multi-scale analysis of
large masonry members. Models along these lines have been proposed by Taliercio [143] and
Zucchini [162].

2.7.2 Possible Future Objectives

In seeking to expand the theoretical and practical aspects related to the micro-modeling ap-
proach, two different but complementary paths could be differentiated: one dealing with more
detailed material simulation and one dealing with overall behavior on a structural level, both of
which warrant further investigation.

Research on the material level could be focused on the refinement and expansion of the exist-
ing material models used in micro-modeling analysis. Even though the models for the interfaces
are of primary importance, further compatible continuum models for the units could also be the
matter of investigation. Possible examples include the approximation of the Poisson effect and
other micro-mechanical phenomena in the interfaces in two-dimensional simplified models and
the improvement of nonlinear models capable of simulating cyclic effects. The degree of success
in the development of new models is conditioned not only by the governing constitutive laws,
but also by the appropriateness of the solution methods employed in their application. Finally, it
should be stated that there is a distinct absence of a generally accepted method for determining
the appropriate values for the material properties, especially concerning the stiffness parameters
for the interface elements, especially in simplified models. This poses an interesting subject for
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investigation since it could assist in the establishment of rules of thumb for practical matters,
thus making the method more accessible.

Any progress made on the material level should definitely be tested on the structural level as
well. However, there are certain areas of interest concerning the expansion of the method that
are directly linked to general structural behavior and modeling. Given the fact that the method
cannot be realistically applied to expanded structures, discontinuous methods could be used in
the same large structure in conjunction with continuum methods, the former used for model-
ing locations of interest and the latter accounting for the bulk of the building. Additionally, the
method could prove useful in the study of certain structural details, such as wall intersections,
and the interaction with structural elements of other types, such as those used in strengthening.
Finally, there has been very little work done concerning the dynamic transient analysis of ma-
sonry micro-models due to numerical difficulties, necessitating the employment of simplified
nonlinear models.

In the middle ground between the material level and the structural level lies the area of the
simulation of tests on small masonry specimens, as described above. By performing detailed
analyses based on standardized tests, or even on devised setups, the method could be used as a
virtual laboratory dedicated to the study of masonry. Subjects, such as the behavior of hollow
units, the behavior of mortar or the validity of masonry design code provisions could be studied.
A closely related potential application is the effort to derive the elastic and strength character-
istics of a given masonry type through the detailed analysis of representative volume elements.
The capability of numerical models based on the finite element to reliably predict the compres-
sive strength of masonry composites remains an important goal and detailed micro-modeling
approaches could investigate this area of interest.

Figure 2.7Modeling of unit/mortar interaction in shear [27].

So far the application of the method has only tentatively been tried in full three-dimensional
analyses due to the high computational costs involved. It is not surprising that most such analyses
have been performed under plane stress or plane strain assumptions, the former usually underes-
timating and the latter overestimating overall capacity. Therefore, considering how out-of-plane
effects related to weak mortar confinement, transverse cracking of units and out-of-plane fail-
ure of units under high compression appear to be play an important role in masonry behavior, it
would be interesting to attempt to investigate such phenomena either through the use of full three-
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dimensional analysis or by taking out-of-plane effects into account indirectly. Possible choices
for the latter include performing analyses under generalized plane state or enhanced plane strain
assumptions, which, while being rough approximations of the actual three-dimensional stress
state, have produced interesting results [103].

Finally, the method could be used as a tool in a FEM based nonlinear homogenization or
multi-scale approach by simulating the behavior of small masonry cells, instead of performing
closed form calculations based on various assumptions. This approach offers the possibility to
minimize assumptions on the properties of the materials and their interaction and to simulate
the behavior of representative volume elements with increased accuracy. So far, mostly meso-
scale models, which assume perfect bond between units and mortar, have been used in FEM
based homogenization efforts. Interface modeling could possibly allow for coarser meshes for
the analysis of periodic unit cells, since interfaces can account for the discontinuities in the stress
and strain fields. The two obvious drawbacks in such an endeavor are the requirement for a very
detailed knowledge of the material properties of the constituents, the gathering of which may
not be feasible, and the steep computational cost. Currently, it is rather difficult for FEM based
homogenization to compete with other methods proposed for that purpose.

2.7.3 Application to Historical Structures

An area of great interest in the structural modeling of masonry is the study of historical masonry
structures. Historical structures are often characterized by a lack of geometrical andmaterial reg-
ularity, even within a single structural element, the existence of localized damage and the appli-
cation of structural interventions. Furthermore, localized or diffuse variation in the mechanical
properties of materials located in load-bearing elements in historical structures may adversely
effect their structural behavior. For these reasons, adopting a strict continuum approach may be
highly unsuitable. Therefore, micro-modeling should be considered as a possible analysis tool,
for which purpose a number of possible applications for the method are presented.

Historical structures frequently suffer from structural damage in the form of large concen-
trated cracks. The methods developed for micro-modeling analysis could be utilized in simulat-
ing the effect of such cracks in the local and global response. More specifically, micro-modeling
could simulate the opening, closing and development of such cracks under monotonic, cyclic or
dynamic loading or under the influence of creep. Additionally, it could be of interest to model
masonry fatigue in interfaces and applied to arched structures, such as bridges, in order to nu-
merically estimate the remaining service life of historical structures doubling as infrastructure
elements.

Multi-leaf and irregular masonry, both of which are extremely common in traditional and
monumental architecture, present another possible field of application for the micro-modeling
approach. In the case of multi-leaf masonry, the interaction of the wythes with the infill under
various loading conditions could be modeled using this approach, in addition to modeling the
wythes themselves through a simplified micro-model approach. In the case of irregular masonry,
micro-modeling presents a more accurate geometrical definition of the structure able to capture
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the structure’s behavior with arguably greater accuracy that macroscopic approaches. The ex-
perimental and numerical investigation of the compressive behavior of either of the above cases
offers a prime area of interest.

The extension of the method into full three-dimensional analysis could be attempted in the
analysis of structures and elements of particular typology. Masonry arches and vaults are a pos-
sible field of application, although the computational cost may prove to be unwieldy. Further-
more, masonry pillars, being slender elements with relatively small ratios of overall structural
dimensions to unit size, could be analyzed in segments with this method. A fact shared by the
above mentioned structural types is that they extend the application field normally associated
with micro-modeling analyses, which largely consists of shear walls.

Stone block masonry offers another possible field of application. Dry joints could be simu-
lated with simplified micro-modeling methods with potentially less loss of accuracy and com-
pleteness of results compared to the analysis of masonry with mortar joints. Modeling of dry
joints through interface elements could be formulated with a minimum of assumptions and ge-
ometrical and material simplifications, allowing for expansion into the area of cyclic behavior
and dynamic response. Micro-modeling can also prove to be an accurate tool in the simulation
of stone block masonry featuring stones with damage, such as cracks or missing parts that may
affect stability or cause localized separation of elements.

Finally, the study of historical structures concerns the design of structural interventions for
repair and strengthening. Micro-modeling could potentially provide a closer look into the effect
of such interventions, the design of which is often based on some sort of interfacial interaction
as well, on masonry structures as a whole and on the constituent materials. Micro-modeling
could provide detailed information on the mediation of particular failure mechanisms, such as
the propagation of cracks in the joints, by the application of different intervention techniques.

Figure 2.8 Deformed detailed micro-model of FRP reinforced masonry arch [134].
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2.8 Mechanical Characterization of Existing Structures’Ma-
terials

2.8.1 Introduction

This literature review deals with matters pertaining to coupled mechanical characterization of
masonry composites and constituents, The subject of compression is the focus of this review
and discusses the matters of the characterization of the units and the mortar accompanying ma-
sonry composite tests, the measurements taken during these masonry composite tests and the
existing codified provisions for such tests. Mention is given to the range of materials used for
the construction of the mortars in masonry.

2.8.2 Testing of Materials and Assemblages

Stack bond masonry in concentric compression has been extensively studied with varied results
[3, 20, 28, 64, 68, 71, 76, 78, 81, 106, 114, 119, 130, 136, 155, 159]. The number of concentric
compression tests on running or Flemish bond masonry walls with an accompanying adequate
characterization of the materials is more limited [25, 131]. The different combinations of ma-
terials present researchers with a wide range of possible choices for experimental study. How-
ever, reviewing the available inventory of experimental data, one finds a distinct predominance
of cement and lime/cement mortars in structural testing. While chemical, curing, mechanical
property and sustainability issues of modern pure lime mortars have been extensively studied
[32, 84–86], the investigation of their direct structural application has not enjoyed the same at-
tention despite its being extremely common in historical structures.

Measurement of the compressive and flexural strength of units andmortar is well documented
and even codified in design guidelines [39, 41, 42]. Further investigation of the research literature
and, especially, testing standards reveals a lack of commitment to the measuring of their Young’s
moduli. Design codes rely solely on the values of the compressive strength of the constituents for
the determination of the compressive strength of masonry, which, in turn, is the only parameter
for the determination of the masonry Young’s modulus [40]. Furthermore, there is a lack of
guidelines for the measurement of the Young’s modulus of both the units and, especially, the
mortar.

Published results on the Young’s modulus of units and mortar often do not explain in detail
the method used to obtain these results, while other studies present a detailed explanation of
such methods alongside their results [78, 106, 114, 119, 159]. In those cases where numeri-
cal simulation follows the experiments, these values are measured instead of estimated through
empirical means and expressions. This is true for both the materials and the finished masonry.

Measurements of the elastic properties of units are easier to perform and are, therefore, more
common. However, compressive tests performed on the unit beds are usually performed on
entire units [81, 106, 135]. The dimension ratios do not allow for size effects to be eliminated,
thus not allowing for the true uniaxial compressive strength of the material to be measured. By
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measuring cylindrical, cubic or cuboid samples extracted from bricks it has been intended to
limit or study these size effects or to simply form specimens with appropriate dimensions to
facilitate measurements [21, 119].

The issue of the difference between the properties of the mortars in freestanding samples and
in the composite remains open. Efforts have been made to measure isolated deformations of the
units and the mortar joints in masonry under compression [78, 155]. For other cases, the elastic
properties of the mortar in the joints are indirectly deduced by measurements in the units and in
the composite [11, 28, 120] or are not measured at all.

2.8.3 Material Characterization and the Prediction of the Compressive
Strength of Masonry

Standard material testing practice for masonry constituents is often shaped by demands effected
by masonry design codes, which offer closed form expressions for the determination of the com-
pressive strength of masonry. These expressions are often a function of only the compressive
strength of the units and themortar [2, 40]. Being intended for generally application, and in order
to be on the safe side from a design perspective, these expressions usually produce conservative
results andmay not be suitable for particular cases. Furthermore, the underlying theoretical basis
may not be entirely compatible with the effects encountered in masonry with highly deformable
mortars.

Other closed form expressions have been proposed which rely on the elastic properties of the
constituent materials or the tensile strength of the units (e.g. [73, 74, 117]). These expressions
have, in theory, a wider applicability spectrum than design code provisions. However, they may
produce spurious results for certain combinations of material properties.

Expressions for the prediction of the compressive strength of multi-leaf members rely on a
macroscopic determination of the compressive strength of the leaves and a quantification, using
numerical parameters, of their interaction under applied compression [57]. Other expressions
have a similar theoretical basis, but are mostly used for the determination of the effects of grout-
ing [151, 157].

2.9 Summary and Conclusions

The state of the art of themasonrymicro-modeling technique using the finite element method has
been investigated in the available related literature. The investigation includes the principles and
goals of the method, the theoretical body of work from which it draws and the practical aspects
of its application. The most recent developments in the field are presented, along with a number
of potential future work subjects which could enhance the practicality and application spectrum
of the method as well as its capability to simulate certain aspects of masonry behavior with
increased accuracy and completeness. Suggestions are also offered in terms of the coupling of
analytical procedures with experimental campaigns for the derivation of mechanical properties
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of the constituent materials of masonry, and especially their interaction, most relative to the
nature of analysis of structures with interfaces. Finally, several possible applications related to
historical structures are presented for consideration.

Masonry analysis through micro-modeling techniques presents a research field which could
potentially make significant contributions in understanding the structural behavior of masonry
on a structural level as well as from a localized perspective. Either through a phenomenologi-
cal or a physical approach towards simulating actual masonry behavior, it is possibly the most
appropriate tool for the numerical approximation of the intricacies of the structural character of
masonry.

Masonry compression tests are of special importance, considering the predominance of the
value for the compressive strength in design. Therefore, a fairly large inventory of experimental
results is available.

The majority of masonry compression tests which include detailed characterization of the
materials is followed by numerical reproductions of these experiments. These have been fairly
successful in predicting the compressive strength on a case-by-case basis. This trend, along with
the tendency of empirical relations to be inaccurate for a range of combinations, urges towards
adopting a stance of detailed material characterization duringmasonry test campaigns, including
the elastic properties of the materials.



Chapter 3

Finite Element Micro-Modeling of
Masonry under Compression

3.1 Introduction

Due to the large number of existing buildings composed of masonry structural members such as
load bearing walls, the numerical modeling and analysis of masonry structures are receiving at
present a growing amount of attention. Masonry buildings are found worldwide and encompass
not only a large building stock, still in use, but also valuable architectural heritage.

Given the importance of the seismic action and the potential seismic vulnerability of ma-
sonry structures, a significant part of this effort is being devoted to the numerical simulation of
masonry failure governed by tension and shear. In particular, the shear failure of masonry walls
has been modeled by means of simplified micro-modeling using interface elements to model
existing and arising planes of weakness, Lourenço & Rots [96]. Macro-models have also been
employed for this purpose, taking into account the orthotropic properties of masonry, Lourenço
et al [97], Syrmakezis & Asteris [142] and Pelà et al [126]. Instead, more limited attention has
been allocated to the detailed simulation of the masonry response and failure in compression.
However, an accurate characterization of the compressive strength of masonry is needed in or-
der to verify the capacity of masonry structures subject to both vertical and horizontal actions,
both of which activate compressive struts in masonry members. The main drawback of sim-
plified micro-models and macro-models, which is the assignment of a specified value for the
compressive strength of masonry, becomes crucial in such cases.

Several attempts of simulation of the compression behavior ofmasonry have been undertaken
using three-dimensional models with varying purposes and results. This behavior, governed by
the interaction of the units and the mortar, may be strongly affected by out-of-plane effects, as
analytical models have indicated, Hilsdorf [74]. One of the first numerical attempts involved
a set of elastic analyses on hollow concrete masonry under concentric compression, Hamid &
Chukwunenye [71]. A similar parametric analysis was conducted to study the influence of elastic
properties and joint dimensions on stress distribution and masonry elasticity, Reddy et al [130].
The differences between plane stress, generalized plane strain and three-dimensional modeling
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of masonry in terms of strength, elasticity and stress distribution have been discussed, Anthoine
[16].

Similar observations have been made using nonlinear models in order to comment on the
effects of model geometry on the predicted compressive strength of masonry, Berto et al [24],
Barbosa et al [23]. Finally, the general deficiencies of planemodels in accurately reproducing the
behavior of single- andmulti-leaf walls in numerical analyses have also been noted byMilani et al
[110, 111]. According the latter authors, three-dimensional effects need to be taken into account
for the correct derivation of the failure envelope of masonry under in-plane loads. Additionally,
other case studies include the simulation of concentric, Furtmüller &Adam [64], Schlegel [137],
Vyas & Reddy [159], and eccentric compression of masonry, Adam et al [3], Brencich et al [28].
Finally, three-dimensional periodic unit cells have been used for the verification of the results of
homogenization methods for masonry under triaxial normal and shear stress, Cecchi et al [36],
Zucchini & Lourenço [162].

Application of modeling approaches proposed for the study of masonry in compression has
been rather narrow in scope, normally extending to only a very small number of experimen-
tal cases each. This fact also narrows the capacity for comparison between the results of ex-
periments, empirical expressions and numerical results concerning the compressive strength of
differing types of masonry.

The purpose of the modeling strategy presented herein is found in the detailed simulation of
the failure of masonry under compressive loading by means of a general approach combining
versatility (the ability to analyze a variety of cases regarding geometry and material constituents)
and a moderate computer cost. The strategy is based on detailed micro-modeling where specific
constitutive equations are used separately for the material constituents (mortar and units) and
the unit/mortar interfaces.

The applicability of the method focused on masonry prisms and walls consisting of solid
bricks and mortar arranged in stack bond, running bond and Flemish bond walls and in English
bond pillars. In principle, this approach can be applied to any type of masonry bond, since
geometrical peculiarities are taken into account explicitly in the model geometry. Adopting a
detailed micro-modeling approach for the simulation of failure in masonry means that, in prin-
ciple, geometry and morphology of the structure should not be a limiting factor as long as the
phenomena affecting strength, elasticity and failure initiation and development are modeled ac-
curately.

The modeling approach has been tested against existing experimental data, focusing exclu-
sively on case studies where sufficient material characterization has been carried out. In this
research, a total of fifty different experiments have been simulated. Micro-modeling requires
knowledge of several elastic and strength parameters, many of which are usually not measured
in experimental campaigns, the Young’s moduli being a case in point. The analyses carried out
in this chapter and their comparison with the experimental data may contribute to the enrichment
of the inventory of numerical results on the analysis of masonry structures and provide a starting
point for further investigation through parametric and sensitivity analyses.

Most of the case studies encountered in the literature and actually adopted for the present
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research involve units stronger than the mortars. This leads to compressive failure modes gov-
erned by crushing of the mortar under multi-axial compression and cracking of the units un-
der combined compression and tension. The proposed numerical approach can be applied to
masonry with typical combinations of materials and structural arrangements, but is especially
suited for the analysis of traditional brick masonries composed of lime mortars of low com-
pressive strength. Modern brick masonries, built with cement mortar of a compressive strength
close or higher than that of the bricks may require a different approach. The applicability of the
method is further discussed in the presentation of the results. The numerical analyses have been
performed using the finite element program DIANA [144].

3.2 Material Models

3.2.1 General

The compressive strength of masonry is determined by, among other factors, the properties of
its constituent materials. According to empirical expressions, such as the one found in [40], it
is estimated by the compressive strength of both the units and the mortar, normally assuming
the former is higher than the latter. The resulting strength of the composite lies between the two
values, implying that the mortar fails under a stress level higher than its uniaxial compressive
strength.

Furthermore, the failure mode commonly encountered in masonry in compression, aside
from the crushing of the joints, is vertical cracking of the units, caused by the lateral expansion of
the mortar in the joints. Failure at the unit/mortar interface in horizontal, vertical and transversal
joints occurs by way of separation under tension, especially in the vertical and transversal joints,
and shear slipping.

Therefore, detailed micro-modeling approaches for the simulation of masonry need to be
able to model the nonlinear behavior of the units and the mortar in tension leading to cracking
and pressure dependent behavior under multi-axial compression. Tensile and shear failure at the
unit/mortar interface need to be modeled as well. Thus the failure of the structure in both arising
and macroscopically existing planes of weakness needs to be accounted for.

For the present research, the numerical analyses have been performed using a mixed pressure
dependent plasticity model in compression and a smeared cracking model in tension, organically
combined in a total strain nonlinear model with secant unloading [138, 144]. Therefore, it is
possible to simulate all failure modes normally expected to arise in masonry under compression.

Damage due to tensile cracking is modeled using a rotating crack model, in which stress-
strain relationships are evaluated in the principal directions of the strain vector. The direction
of the cracks may therefore change according to the direction of principal strain. Rotating crack
models, initially developed for concrete, have been used in applications involvingmasonry struc-
tures [90, 129].

Shear behavior is explicitly governed by a relationship between shear stress and shear strain,
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while six internal damage variables αk (assembled in the α vector), indicating the ratio of dam-
aged to effective stress, monitor the deterioration of the material, which is non-recoverable.

This constitutive law has been used in numerical simulations for concrete and masonry
macro-models. It may be considered an attractive choice for the simulation of masonry since
it is capable of modeling its behavior in compression, tension and the interaction of the failure
modes.

3.2.2 Tensile Behavior

The stress-strain relationship is elastic until the tensile strength is reached. The expression of
the tensile behavior in the post-peak using values for the tensile strength and the tensile fracture
energy is accomplished through the use of an exponential softening curve. For the post-peak of
the tensile stress-strain relation, the damaged stress is equal to:

σ (εcr) = fte
− εcr

εcr,u (3.1)

where E is the initial tangent Young’s modulus and εcr is the crack strain and εcr,u the ultimate
crack strain. To calculate εcr,u the softening is rewritten as:

σ (εcr) = fty
(

εcr

εcr,u

)
= fty(x) (3.2)

According to the definition of the tensile fracture energy:

GI
f = h

∫
εcr=∞

εcr=0
σ (εcr)dεcr = fth

(∫ x=∞

x=0
y(x)dx

)
εcr,u (3.3)

Therefore, the ultimate crack strain is:

εcr,u =
GI

f

fth
(3.4)

A crack bandwidth equal to a characteristic dimension given by h = 3
√

V is adopted, whereV
is the volume of the finite element. Snap-back is avoided if the absolute initial slope of the soft-
ening diagram for the given crack bandwidth is lower than the initial tangent Young’s modulus.
This holds for:

h≤
GI

f E

f 2
t

(3.5)

Finally, cracked directions subjected to tension are not affected by the Poisson effect, mean-
ing that such loading does not lead to contraction in the perpendicular directions. Therefore, an
orthotropic formulation has been adopted for the Poisson’s ratios, which are reduced at the same
rate as the secant modulus after cracking [138].
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3.2.3 Shear Behavior

Due to the rotating crack approach adopted, the direction of the crack always coincides with that
of the maximum principal strain. Therefore, the shear behavior across the crack need not be
taken into account.

3.2.4 Compressive Behavior

Uniaxial unconfined compressive behavior is modeled using a parabolic compression curve
based on fracture energy [61]. The curve is defined by three characteristic strain values: the
strain for which hardening is initiated at one third of the compressive strength, the strain for
which maximum stress is reached and the strain for which softening is terminated. For a uni-
axial compressive strength fc and an initial tangent modulus of E, the strain εc/3, at which one
third of the compressive strength has been reached, and is expressed as:

εc/3 =−1
3

fc

E
(3.6)

The strain εc, at which the maximum compressive strength is reached, and is expressed as:

εc =−
5
3

fc

E
= 5 εc/3 (3.7)

The ultimate strain εu, at which the material has terminated its softening in compression,
which is expressed as:

εu = εc−
3
2

Gc
f

h fc
(3.8)

where, in turn, Gc
f is the compressive fracture energy and h is the characteristic element

length. In addition to the mesh insensitivity of the model, strain localization and dissipation
of the compressive fracture energy is ensured by the geometry of the models themselves given
that compressive damage is normally expected to occur in the mortar joints. The parabolic
compression curve is defined for strain ε by the piecewise equation:

f =



− fc
1
3

ε

εc/3
for εc/3 < ε ≤ 0

− fc
1
3

(
1+4

(
ε−εc/3
εc−εc/3

)
−2
(

ε−εc/3
εc−εc/3

)2
)

for εc < ε ≤ εc/3

− fc

(
1−
(

ε−εc
εu−εc

)2
)

for εu < ε ≤ εc

0 for ε ≤ εu

(3.9)

Lateral pressure dependence, which accounts for increased strength under confining stress,
has been modeled using the four parameter Hsieh-Ting-Chen failure surface [77, 138], which is
defined as:
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f =C1
J2

f 2
c
+C2

√
J2

fc
+C3

σ1

fc
+C4

I1

fc
−1 = 0 (3.10)

where I1 and J2 are the stress invariants and σ1 is the maximum principal stress. The numer-
ical values of the material parameters C1, C2, C3 and C4 are determined by four experimental
tests: uniaxial compression, uniaxial tension, equal biaxial compression and triaxial compres-
sion. All the stresses in the criterion are normalized by the uniaxial compressive strength, im-
plying that the behavior described by the model may be applied to materials of different strength
but similar behavior. The stress fc3, a negative stress value which results in compressive failure,
is determined by scaling the linear elastic stress vector σc = sEεnst such that equation (3.10)
holds, where s is the scaling factor sought, E the tangent Young’s modulus and εnst the principal
strain vector. Thus, fc3 is defined as the minimum normal stress component of the stress vec-
tor. The confined compressive strength is expressed as fc f = − fc3 and its ratio to the uniaxial
compressive strength is expressed as fc f = Kσ fc. The peak strain factor, relating peak to initial
strain (εP = Kσ ε0) is equal to the ratio between confined and uniaxial compressive strength.

The peak stress is obtained by taking into account the influence of lateral cracking. This
influence on the compressive behavior is modeled using a reduction factor [154]. The reduction
factor, denoted as βσcr , is a function of the average lateral damage variable given by αlat =√

α2
l,1 +α2

l,2 vector in the two lateral to the compressive load directions, and is calculated by:

βσcr =
1

1+Kc
≤ 1 (3.11)

where:

Kc = 0.27
(
−αlat

ε0
−0.37

)
(3.12)

Finally, the peak stress is given by:

fP = βσcr · fc f (3.13)

The initial strain is given by the equation:

ε0 =−
n

n−1
fc

E
(3.14)

with:

n = 0.80+
fP
17

(3.15)

Increase in ductility due to lateral confinement is modeled according to the following stress-
strain expression:
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f =− fP

(
1− (1− r)

ε− εp

εU − εP

)
≤− fcr (3.16)

assuming a value for the ultimate strain:

εU =

(
fP

fc

)3

εP (3.17)

The residual compressive strength is expressed as:

fcr = fcr (3.18)

where:

r = 0.1
(

fP

fc

)3

(3.19)

A comparison of the basic parabolic curve for uniaxial compressive loading and its compar-
ison to a curve under lateral compression is presented in Figure 3.1.

fc

fc/3

εu εc εc/3

Gf/h

fP

fc

fc/3

fcr

εU εu εP εc εc/3

Unconfined
Confined

(a) (b)

Figure 3.1 (a) Uniaxial compression curve and (b) compression curve under lateral compression load.

3.2.5 Interface Behavior

Unit/mortar interface behavior is described using a discrete cracking model based on a total
deformation theory, in which interface tractions are expressed as a function of the total relative
displacements [144].

Elastic behavior is assumed until the traction reaches the assigned tensile strength and a
brittle behavior is assumed post-peak: normal stiffness is reduced to zero. Therefore, normal
tractions tn are expressed as:
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tn =

{
kn∆n if ∆n ≤ ft,i/kn

0 if ∆n > ft,i/kn
(3.20)

where kn is the normal interface stiffness, ft,i is the interface tensile strength and ∆n is the
interface relative displacement.

It is assumed that shear stiffness reduces to zero after the onset of cracking, by adopting a
shear retention factor of zero.

3.3 Modeling

3.3.1 Geometry

A body of work involving detailed modeling of masonry under in-plane loads, in which units and
mortar are modeled separately, has been produced [16, 23, 24]. In these cases, the unit/mortar in-
teraction results in out-of-plane stresses which may significantly alter the compressive behavior
of the masonry composite. This is especially true in cases where there is significant discrepancy
between the elastic characteristics of the two constituent materials, namely the Young’s modulus
and the Poisson’s ratio.

It is appealing from the point of view of computational cost andmodeling effort tomodel wall
structures, such as running or Flemish bond masonry using simple plane geometrical models,
such as plane stress or plane strain. However, the results obtained demonstrate some patterns of
divergence from experimentally observed behavior and obtained compressive strength. In-plane
stress analyses the units afford very low confinement to the mortar, while in-plane strain analyses
the confinement is excessive. The results of the under- and over-estimation of the effects of
unit/mortar interaction in these cases are, expectedly, too low compressive capacity in the former
and too high compressive capacity in the latter. The failure modes are also characteristic of these
modeling approaches, in plane stress more so than in plane strain, with the former leading to
excessive yielding in compression of the weakest material and with the latter usually leading to
excessive cracking of the strongest and stiffest. The issue of directly modeling the non-constant
geometry of, for example, Flemish bond walls and English bond columns raises further doubts
concerning the adequacy of plane methods. Figure 3.2. illustrates various masonry typologies
of different degrees of geometrical complexity.

The regular assumptions accompanying plane analysis methods are not sufficient due to the
geometrical layout of the masonry composite. The ratio of the thickness of the mortar joints,
which is of the order of 10mm, over the thickness of the masonry, which is of the order of 100mm,
invalidates the plane stress assumption of zero thickness. This dimension ratio results in out-of-
plane effects, and stresses, to become locally significant near failure even though the assumption
is conceptually sound on a global, structural level. Similarly, the assumption of infinite masonry
thickness certainly does not hold globally, though it may be a legitimate simplification for local
effects given the usual ratio of masonry thickness to mortar joint thickness. Generalized plane
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(a) (b) (c) (d)

Figure 3.2Model geometries: (a) stack bond prism, (b) running bond wall, (c) Flemish bond wall and
(d) English bond column.

strain, although maintaining some elements of phenomenological modeling, is usually a closer
approximation of the actual behavior and leads to better results for the simulation of local failure
[95, 103].

Overall, the more homogenous the composite is, implying units and mortar of similar prop-
erties, plane stress becomes more accurate, while plane strain becomes more accurate for in-
creasing property disparities between the two material phases. The two plane methods should
generally provide accurate results for extreme or particular cases, but their capacity to provide
accurate results for intermediate or general cases has not been demonstrated.

Three-dimensional micro-modeling, while computationally the most demanding approach,
has been shown to produce the consistently most accurate results in terms of capacity when
applied to a large number of different experimental cases. No geometrical assumptions are made
and, therefore, out-of-plane effects and stresses are taken into account organically, both on the
structural and on the local level, thus allowing the modeling of masonries with a variety of
different geometrical textures. Vertical and horizontal compressive strength values obtained
using this method fall between those obtained from plane stress and plane strain. Overall, the
comparison with available experimental data is favorable compared to that of plane methods.
Interestingly, all the above mentioned modeling approaches produce equal initial stiffness in
compression for the masonry composite.

Figure 3.3 illustrates examples of three-dimensional models, including the overall layout and
the distribution of stress under vertical loading. In this qualitative representation, of the stresses,
where the units are less deformable than the mortar, it can be observed that the distribution of all
stress components follows a repeating pattern across the surface of the wall. The bed joints are
under horizontal confinement, the units are in horizontal tension and the head joints are under
lower vertical compression than the units. Shear stresses concentrate in the cross joints and the
head joints are in horizontal tension.

In the present work the models are composed of 20-node isoparametric solid elements based
on quadratic interpolation and 3× 3× 3 Gauss integration scheme [144]. The fineness of the
mesh was adjusted accordingly as to include at least two elements along the thickness of each
joint. Symmetric loading of symmetric structures allows for three planes of symmetry to be
applied, thus greatly reducing the size of the models.
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(a) (b)

(c) (d)

Figure 3.3 Three-dimensional masonry model examples under vertical compressive load with planes of
symmetry indicated: (a) finite element mesh, (b) horizontal normal stress, (c) vertical normal
stress (d) in-plane shear stress.

The unit/mortar bond was modeled using a discrete cracking law applied on zero thickness
8+8 node plane quadrilateral interface elements, based on quadratic interpolation and a 4×4
Newton-Cotes integration scheme [144].

3.3.2 Solution Method and Loading

The analysis procedure for the solution of the physically nonlinear problem was the Modified
Newton-Raphson method. A Line Search algorithm was used to predict the iterative displace-
ment increment and to speed-up the convergence rate.

The loading was prescribed in displacement control. An energy based convergence crite-
rion was used for the convergence check, since displacement loading reduces the usefulness of
the displacement norm criterion and the, mostly, unrestrained lateral expansion of the models
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reduces the buildup of internal forces, thus making the force norm less useful. For the conver-
gence criterion a 0.5% energy norm was adopted. When significant interfacial nonlinearities
were encountered, the solution method was switched to a Secant-Crisfield method with a 0.1%
energy norm, as the Newton-Raphson faced convergence problems in those cases.

The finite element code DIANA, in which the above constitutive laws and element types are
implemented, was used for the analyses, employing a parallel direct sparse solver [144].

3.4 Inventory of Experimental Data

3.4.1 Overview

There is a relatively large inventory of existing experimental data on masonry compression.
However, the number of cases qualifying for a numerical reproduction using micro-models is
fairly limited. The cause of this is the lack of sufficient material characterization. Parametric
analysis performed in this research has indicated a clear, if rather strong, influence of the Young’s
modulus of both units and mortar on the compressive capacity and the failure mode observed.
Difficulties in measuring the Young’s moduli of small size specimens, coupled with the reliance
on empirical expressions for the determination of the strength of the composite based solely on
the compressive strength of the two constituents [40], have brought about a lack of motivation
for taking adequate measurements of it, especially in the case of mortars, despite observations
on the effect of the deformation properties of the masonry constituent materials on the behavior
of masonry composites [72, 122, 140]. Tensile strength measurements are also often neglected
in unit characterization, even though unit cracking is commonly observed in compression of
masonry.

Certainly, there exists a strong correlation between the compressive strength and the Young’s
modulus or the tensile strength, especially in modern types of units. However, the validity of
a direct correlation between the two values is less clear for masonries built with low strength
mortars (such as traditional lime mortars) where other factors, such as composition and aging,
may affect significantly on the resulting masonry stiffness.

In summary, the available candidate case studies for numerical simulation are few in number
and mostly concerning stack bond prisms [3, 8, 28, 56, 64, 68, 76, 81, 104, 106, 119, 124, 128,
130, 137, 156, 159]. Case studies of walls in running bond are not uncommon [68, 105, 120, 131,
156] but tests on walls in Flemish bond are rare [25] while a few suitable examples of English
bond pillars were also identified [64, 68]. The vast majority of these cases involve the character-
ization of clay brick masonry with a few exceptions involving stone block masonry [104, 137]
or compressed cement block masonry [159]. All mortars were either cement or lime/cement
mortars, with one exception where pure lime mortars were used [56].

The average ratio of Young’s modulus to compressive strength is 328 for the units, with
values ranging from 14 to 1265. The average for the mortars was 699, with values ranging from
22 to 2094. The average for the masonry was 356, with values ranging from 29 to 1903. The
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highest figure corresponds to the only case with a ratio above 1000 while the remaining values,
and their average, are much lower than 1000, which is the characteristic value recommended by
design codes (e.g. [40]).

3.4.2 Assumed Values

The dimensions, compressive strength and Young’s modulus of the units and mortar were re-
ported in all the examined cases, with the exception of one case in which the Young’s modulus
of the mortar was calculated in this study using the values given for the units and the masonry
composite.

In order to perform the analyses of the available case studies, it was necessary to assume
values for the missing parameters. The available literature overviewed in the present work offers
an adequate amount of information on which to base these assumptions.

The average value of the measured Poisson’s ratio in the set of case studies is 0.13 for the
units with values ranging from 0.07 to 0.24 while for the mortars it is equal to 0.15 with values
ranging from 0.07 to 0.2. In the cases where it was not reported, the Poisson’s ratio for the units
was chosen as being equal to 0.15 while a value between 0.15 and 0.25 was chosen depending on
the type of mortar. In [56, 124] a weak limemortar was used, so a value of 0.25 was adopted. For
[8, 68, 119, 120, 156], for which a cement/lime mortar was used, a value of 0.20 was adopted.
In [76, 81] Portland cement mortars were used and a value of 0.15 was used.

The average ratio of tensile to compressive strength for the units was 9% with values ranging
from 1.8% to 23.9%. For the mortar the average was 8.2% with values ranging from 5% to 26%.
For all the mortars a ratio of 10% was assumed for the missing values. In the case of the units the
ratio differed from case to case depending on the material used and the workmanship employed.
For [68] and [119] a ratio of 10% was used since they involved wire cut solid clay bricks. The
average value of all solid clay bricks in the inventory had an average ratio of 9.3%. This value is
similar to the 10% usually assumed for masonry units. In [81] a ratio of 5% was assumed since
the campaign was performed using hand molded bricks. This lower percentage was assumed in
order to reflect the poorer quality and consistency of hand-made bricks compared to machine
molded bricks. In [130] soil-cement blocks were constructed, therefore a 5% ratio was adopted.
For [104], which involved granite units, a ratio of 5% was chosen. According to [49] this is a
ratio that fits the available experimental data on granites well.

The plasticity and cracking models require values for the compressive and mode-I fracture
energies in order to describe the softening behavior of the materials. The current status of the
research on these values for clay bricks and, especially, lime mortars is quite limited. Only a
small number of the cases in the experimental inventory include values for the compressive and
tensile fracture energy of the units and/or the mortar. The values for the fracture energy of the
units and the mortar were determined using equations (3.21) and (3.22). The compressive frac-
ture energy of both the units and the mortar was calculated assuming a ductility index parameter
of 1mm, defined as
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d = Gc
f / fc (3.21)

while the tensile fracture energy was calculated according to the following equation:

GI
f = 0.025(2 ft)

2 (3.22)

which is based on the equation provided for the calculation of the tensile fracture energy by
CEB-FIP Model Code 1990 [34] adjusted to assume a ratio between tensile and compressive
strength of 5% and a maximum aggregate size of 8mm. The wide range of mortar and unit
materials used in masonry and the lack of information concerning the values for their fracture
energy necessitates the adoption of the above rather conservative values.

Very few of the experimental cases provide any measurement of the unit/mortar interface
properties. Furthermore, only a small number of works focused on these properties exists [15,
43] which can hardly be used as a general guideline in a study of this extent. Therefore, repre-
sentative values had to be assumed. Throughout the cases a tensile strength of 0.2N/mm2 was
considered, while zero Mode I fracture energy (brittle cracking) and zero shear retention after
the formation of the crack were assumed. Prior to failure the bond is considered perfect, there-
fore a large initial elastic stiffness was considered in the normal and perpendicular directions of
the interface, meaning that virtually all deformation in the interface is nonlinear.

The numerical parameters C1, C2, C3 and C4 were taken as being equal to 2.0108, 0.9714,
9.1412 and 0.2312 respectively. These values correspond to a tensile strength equal to 10% of
the compressive strength, a biaxial compression strength equal to 1.15 times the uniaxial and
a compressive strength under biaxial pressure equal to 80% of the compressive strength equal
to 4.2 times the uniaxial strength. All four tests necessary for the complete determination of
the four parameters are practically never available for mortars used in masonry. This problem
is compounded in the case of existing masonry structures, where material sampling for all four
tests is very difficult. The problem is less crucial in the case of masonry units, either clay or
stone, since the behavior of masonry is not influenced by the pressure dependent behavior of
the units in compression. Since the failure mode in tension is governed by the smeared cracking
model, the determination of the ratio of tensile to compressive strength is not crucial.

3.5 Results

The cases available for numerical analysis include thirty-one stack bond cases (S), nine running
bond masonry cases (R), three Flemish bond masonry cases (F) and seven English bond pillar
cases (P) for a total of fifty cases. The cases for each bond type have been sorted and numerically
named in ascending order according to their statistical fit with the experimental compressive
strength.

The material properties and dimensions for the models were taken as reported in the experi-
mental results and are shown in Tables 3.1 through 3.4. The values assumed as mentioned in the
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preceding paragraphs for unknown quantities are displayed in curly brackets. Examples include
several Poisson’s ratios and values for the tensile strength. The experimentally achieved values,
along with the numerical value for the compressive strength, are also shown in the same table.

Table 3.1 Stack bond prism cases. Comparison of experimental and analysis results. Assumed values in
curly brackets.

Case Ref.
Eu νu fcu ftu hu lu tu Em νm fcm ftm hm lm tm fc,exp fc,FEM Ec,exp Ec,FEM

[N/mm2] [-] [N/mm2] [N/mm2] [mm] [mm] [mm] [N/mm2] [-] [N/mm2] [N/mm2] [mm] [mm] [mm] [N/mm2] [N/mm2] [N/mm2] [N/mm2]
S1 [106] 9900 0.17 44.0 1.79 55 194 89 1750 0.16 6.20 0.62 7.5 - - 19.70 19.44 - 6456
S2 [56] 4200 0.16 23.0 3.10 45 290 135 125 {0.25} 1.25 0.19 10 - - 12.03 10.50 600 814
S3 [68] 976 {0.15} 5.7 {0.57} 75 230 105 1500 {0.20} 1.16 {0.12} 12 - - 1.67 2.21 467 1016
S4 [159] 14500 0.18 11.5 0.71 80 260 120 6450 0.16 3.50 {0.35} 10 - - 6.15 6.83 - 13017
S5 [68] 3370 {0.15} 23.00 {2.30} 75 230 105 8570 {0.20} 5.14 {0.51} 12 - - 6.70 7.40 2393 3525
S6 [8] 135 {0.15} 9.3 0.46 52 212 104 795 {0.20} 9.37 {0.94} 10 - - 7.22 7.94 207 154
S7 [56] 4200 0.16 23.00 3.10 45 290 135 250 {0.25} 1.90 0.40 10 - - 13.73 14.80 1100 1287
S8 [137] 5500 0.11 12.00 0.90 113 240 175 2770 0.07 4.60 {0.46} 30 - - 4.68 5.44 4200 4702
S9 [68] 3370 {0.15} 23.00 {2.30} 75 230 105 5450 {0.20} 4.36 {0.44} 12 - - 7.40 8.17 3135 3628
S10 [68] 976 {0.15} 5.70 {0.57} 75 230 105 238 {0.20} 0.60 {0.06} 12 - - 1.25 2.17 379 735
S11 [159] 14500 0.18 11.5 0.71 80 260 120 6450 0.16 3.50 {0.35} 7 - - 6.32 7.35 - 13464
S12 [159] 14500 0.18 11.5 0.71 80 260 120 6450 0.16 3.50 {0.35} 20 - - 5.01 6.21 - 10400
S13 [3] 2000 0.10 13.8 3.30 55 250 110 1700 0.20 9.20 2.40 10 - - 14.55 13.26 1936 1950
S14 [64] 7500 0.07 30.0 1.30 65 40 40 220 0.20 1.70 0.10 20 - - 4.50 3.14 878 1475
S15 [119] 12000 0.20 62.6 {6.26} 45 285 130 4200 {0.20} 6.20 {0.62} 10 - - 28.60 27.01 10000 9761
S16 [137] 5500 0.11 12.0 0.90 238 252 241 2770 0.07 4.60 {0.46} 12 - - 8.84 6.91 5517 5330
S17 [156] 16700 0.15 66.0 1.20 52 210 100 2100 0.22 3.00 0.22 13 - - 11.73 13.77 6800 8294
S18 [106] 9900 0.17 44.0 1.79 55 194 89 8600 0.13 21.00 2.10 7.5 - - 34.70 36.75 - 9724
S19 [124] 5760 {0.15} 19.8 2.46 55 125 120 5490 {0.20} 2.62 0.35 10 - - 8.24 10.31 2132 5906
S20 [106] 15000 0.13 58.9 2.74 57 200 98 11600 0.10 31.10 3.11 7.5 - - 48.20 50.59 - 14593
S21 [68] 976 {0.15} 5.7 {0.57} 75 230 105 8570 {0.20} 5.14 {0.51} 12 - - 1.83 4.63 365 1098
S22 [106] 15000 0.13 58.9 2.74 57 200 98 8600 0.13 21.00 2.10 7.5 - - 40.90 44.14 - 13788
S23 [130] 8000 0.08 8.3 {0.42} 100 305 143 6600 0.19 3.45 {0.35} 30 - - 3.10 6.57 5900 7013
S24 [64] 7500 0.07 30.0 1.30 65 40 40 220 0.20 1.70 0.10 10 - - 9.33 5.74 1938 2380
S25 [106] 9900 0.17 44.0 1.79 55 194 89 6600 0.14 15.20 1.52 7.5 - - 27.00 31.32 - 9342
S26 [68] 3370 {0.15} 23.0 {2.30} 75 230 105 7080 {0.20} 8.50 {0.85} 12 - - 10.00 14.38 3700 3585
S27 [106] 15000 0.13 58.9 2.74 57 200 98 6600 0.14 15.20 1.52 7.5 - - 32.50 37.12 - 13059
S28 [106] 9900 0.17 44.0 1.79 55 194 89 11600 0.10 31.10 3.11 7.5 - - 37.70 43.16 - 10633
S29 [81] 5300 {0.15} 17.7 {0.89} 75 230 110 545 {0.15} 3.10 {0.31} 10 - - 4.00 9.74 2239 3034
S30 [76] 12900 {0.15} 60.0 3.20 36 123 60 9590 {0.15} 12.00 0.97 7 - - 18.16 24.90 8000 12601
S31 [106] 15000 0.13 58.9 2.74 57 200 98 1750 0.16 6.20 0.62 7.5 - - 29.90 21.12 - 8063

Table 3.2 Running bond wall cases. Comparison of experimental and analysis results. Assumed values
in curly brackets.

Case Ref.
Eu νu fcu ftu hu lu tu Em νm fcm ftm hm lm tm fc,exp fc,FEM Ec,exp Ec,FEM

[N/mm2] [-] [N/mm2] [N/mm2] [mm] [mm] [mm] [N/mm2] [-] [N/mm2] [N/mm2] [mm] [mm] [mm] [N/mm2] [N/mm2] [N/mm2] [N/mm2]
R1 [68] 3372 {0.15} 23 {2.30} 75 230 105 5450 {0.20} 4.36 {0.44} 12 12 - 8.20 8.47 5232 3590
R2 [156] 4000 0.13 17 1.00 50 206 96 1650 {0.20} 6.90 {0.69} 12.5 10 - 13.60 14.21 3200 3095
R3 [68] 976 {0.15} 5.7 {0.57} 75 230 105 238 {0.20} 0.60 {0.06} 12 12 - 1.23 1.98 580 717
R4 [68] 976 {0.15} 5.7 {0.57} 75 230 105 1500 {0.20} 1.16 {0.12} 12 12 - 1.55 2.35 735 1033
R5 [68] 3372 {0.15} 23 {2.30} 75 230 105 7083 {0.20} 8.50 {0.85} 12 12 - 12.60 14.40 4824 3702
R6 [68] 3372 {0.15} 23 {2.30} 75 230 105 8568 {0.20} 5.14 {0.51} 12 12 - 9.60 7.24 5024 3782
R7 [120] 6740 0.167 36.52 {1.50} 35 110 50 970 {0.20} 3.20 {0.32} 5 5 - 8.60 11.30 3700 3949
R8 [68] 976 {0.15} 5.7 {0.57} 75 230 105 8568 {0.20} 5.14 {0.51} 12 12 - 1.18 4.46 400 1254
R9 [131] 22000 0.15 61 10.70 30 105 49 8880 0.2 12.30 1.58 5 5 - 30.14 37.81 - 18540

Computational effort remains substantial but not excessive: a single small or medium sized
wall may be analyzed in order to obtain the maximum load and part of the post-peak curve in two
to three hours using a conventional PC. The attainment of the full post-peak curve may cause
computational time to double.

3.5.1 Analysis of Results

With a few exceptions, the modeling strategy produced adequately accurate predictions of the
compressive strength throughout the group of cases, which includes a wide range of material
combinations. Certain experimental results may be regarded as dubious, such as S29 and S24,
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Table 3.3 Flemish bond wall cases. Comparison of experimental and analysis results.

Case Ref.
Eu νu fcu ftu hu lu tu Em νm fcm ftm hm lm tm fc,exp fc,FEM Ec,exp Ec,FEM

[N/mm2] [-] [N/mm2] [N/mm2] [mm] [mm] [mm] [N/mm2] [-] [N/mm2] [N/mm2] [mm] [mm] [mm] [N/mm2] [N/mm2] [N/mm2] [N/mm2]
F1 [25] 4865 0.09 26.90 4.90 55 250 120 1180 0.06 3.20 0.90 10 10 10 11.00 4.29 1651 3107
F2 [25] 4865 0.09 26.90 4.90 55 250 120 5650 0.09 12.70 3.90 10 10 10 14.50 16.70 3833 5002
F3 [25] 4865 0.09 26.90 4.90 55 250 120 17760 0.12 95.00 15.70 10 10 10 17.80 29.58 4567 6390

Table 3.4 English bond pillar cases. Comparison of experimental and analysis results. Assumed values
in curly brackets.

Case Ref.
Eu νu fcu ftu hu lu tu Em νm fcm ftm hm lm tm fc,exp fc,FEM Ec,exp Ec,FEM

[N/mm2] [-] [N/mm2] [N/mm2] [mm] [mm] [mm] [N/mm2] [-] [N/mm2] [N/mm2] [mm] [mm] [mm] [N/mm2] [N/mm2] [N/mm2] [N/mm2]
P1 [68] 3372 {0.15} 23.00 {2.30} 75 230 105 8568 {0.20} 5.14 {0.51} 12 20 20 6.70 6.65 3317 4005
P2 [68] 3372 {0.15} 23.00 {2.30} 75 230 105 5450 {0.20} 4.36 {0.44} 12 20 20 8.70 8.13 3789 3684
P3 [68] 976 {0.15} 5.70 {0.57} 75 230 105 238 {0.20} 0.60 {0.06} 12 20 20 1.46 2.07 377 690
P4 [68] 3372 {0.15} 23.00 {2.30} 75 230 105 7083 {0.20} 8.50 {0.85} 12 20 20 13.60 14.24 3677 3865
P5 [68] 976 {0.15} 5.70 {0.57} 75 230 105 1500 {0.20} 1.16 {0.12} 12 20 20 1.44 2.28 381 1056
P6 [68] 976 {0.15} 5.70 {0.57} 75 230 105 8568 {0.20} 5.14 {0.51} 12 20 20 1.38 4.13 376 1510
P7 [64] 7500 0.07 30.00 1.3 65 290 150 220 0.2 1.70 0.10 10 10 10 5.55 9.12 661 2007

where the compressive strength was too high and too low respectively, considering the strength
of the materials and the dimensions reported. Others, such as F3, were executed using extremely
strong and stiff mortar and should be seen as outside the intended scope of this modeling ap-
proach.

The accuracy of the method regarding the determination of the Young’s modulus of masonry
is comparably high. However, certain cases such as F1, F2 and F3 exhibited an experimental
Young’s modulus much lower than what would be expected considering the Young’s moduli
provided for the constituents.

Figure 3.4 illustrates the relation between numerical and experimental values of the compres-
sive strength, showing a good agreement between the experimental and the numerical results.
Throughout all cases the coefficient of determination was 0.969 for the numerical prediction.
Similarly, Figure 3.5 illustrates the relation between the numerical and experimental values of
the Young’s modulus of the masonry composite in vertical compression. Throughout the cases
the coefficient of determination was 0.892. The ratios of masonry Young’s modulus over the
compressive strength are roughly equal to the ones produced by the experimental results.

Concerning the comparison of the numerical and experimental results, certain comments
should be made regarding the applicability of the proposed method. As has been previously
stated, the method is intended to be applied in cases of units with higher compressive strength
and lower deformability than the mortar. All of the examined cases comply with this intention,
with the exception of the F3 case, involving a mortar that is three times as strong in compression
as the bricks, and the S6 case, in which the two components have equal strength.

Some remarks must be also made with regard to a few experimental measurements that do
not comply with the general trend of the full inventory of experimental cases considered. These
cases, labeled S6, S21, S23, R8, F3 and P6, are the only ones for which the compressive strength
of the composite is lower than that of both constituent materials (mortar and units). This low
compressive strength cannot be correctly predicted using this analysis method as can also not be
accounted for by usual models for predicting the compressive strength of masonry. Finally, the
Poisson’s ratio reported for the mortar in the F1 case, a pozzolana-lime mortar with low strength,
is very low compared to the average derived from the experimental inventory. A higher value
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Figure 3.4 Experimental vs. numerical compressive strength. Coefficient of determination R2 = 0.969.

for this parameter, which would increase the amount of confinement on the mortar layers, would
result in an increase in the numerically predicted masonry compressive strength. Disregard-
ing the above mentioned cases increases the coefficient of determination for the prediction of
compressive strength to 0.976.

The dominant failure mode obtained was a combination of mortar yielding in compression
and unit cracking for the majority of the cases. Secondary damage included some initial cracking
of the mortar at the unit/mortar interface near the outer faces of the masonry and unit yielding in
compression in the case of, comparatively to the units, very strong mortars. The observed failure
modes will be discussed in the following paragraphs, with some emphasis on their dependence
on material properties.

Great discrepancy between the elastic characteristics of the units and the mortar enhances the
confinement afforded on the mortar, resulting in a higher ratio between the masonry compressive
strength and the mortar compressive strength. Therefore, the relation between the compressive
strength of the constituents and the compressive strength of the composite is partly dependent
on the Young’s moduli as well, especially in cases where the global failure mode is governed by
mortar yielding in compression.

Compressive yielding mainly takes place in the mortar joints. Crushing failure of the mortar,
represented numerically by plastic strains, normally initiates near the face of the masonry, where
horizontal confinement is lowest, and develops towards the interior of the joint. In the running
bond and Flemish bondwall cases, this compressive yielding failure exhibited a repeating pattern
across the face of the structure, both in the horizontal and the vertical joints. Lateral expansion
of the crushed mortar causes cracking damage in the units at the interface near the free surface
of the masonry. The non-uniform development of compressive damage along the depth of the
horizontal joints indicates that plane methods, as already discussed, may be inadequate for an
accurate description of the phenomenon. The development of mortar yielding is illustrated in
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Figure 3.5 Experimental vs. numerical Young’s modulus. Coefficient of determination R2 = 0.884.

Figure 3.6, where it is represented by plastic strains.

(a) (b) (c)

Figure 3.6 Distribution of principal plastic strains in bed joint mortar for case S18 for increasing vertical
stress levels: (a) yielding near the edge at the pre-peak range , (b) yielding extended towards
the interior of the joint at peak load, (c) yielding of entire joint in the post-peak range.

Compressive yielding of the units to an extent that affects the global failure mode only occurs
in cases of very strong mortar. For mortars with compressive strength comparable to or higher
than that of the units, compressive yielding of the units may occur in the pre-peak range and
initiate overall failure.

Notable compressive yielding of the units may also take place after extensive cracking, cov-
ering nearly the entirety of the unit. This only happens far in the post-peak and does not affect
the stress-strain curve near the peak.

Cracking damage mainly takes place in the units and the head and transversal joints. The
appearance of extensive cracking in the units, represented numerically by crack strains, and its
influence on the global failure, are not directly dependent upon the ratio of the Young’s moduli.
For high ratios, lateral tension on the units increases but the onset of extensive unit cracking may
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not necessarily occur before the yielding of the mortar.

The amount of vertical confinement afforded on the mortar and the amount of vertical split-
ting on the units are directly dependent on the mismatch of elastic properties of the constituent
materials. The prevalence of one of the two failure modes over the other depends on both the
elastic and inelastic properties.

Overall, the numerically obtained failure mode is chiefly governed by mortar compressive
yielding which develops during the hardening of the structure. The compressive strength of the
units does not appear to play a direct role in the compressive strength of the composite for the
majority of the cases. Unit compressive yielding is not involved in the initiation of failure; con-
versely, tensile unit strength is more directly involved, especially in the post-peak. Cracking of
the units near the unit/mortar interface initiates in the outer surface of the masonry and remains
superficial without extending towards the interior of the masonry. The more critical vertical
cracks in the units may extend into the interior of the masonry in the post-peak, a further indi-
cation that plane analysis methods are inadequate. The development of cracking in the units is
illustrated in Figure 3.7.

(a) (b) (c)

Figure 3.7 Distribution of principal crack strains for case R9 for varying levels of vertical stress: (a)
initial cracking in the head joints in the pre-peak range, (b) vertical cracks in the units around
the bed joints at the peak load, (c) vertical cracks in the units at the post-peak range.

A comparison of experimentally and numerically derived stress-strain curves is presented in
Figure 3.8, covering a wide range of results in terms of compressive strength and elastic stiffness.
The graphs show the good agreement obtained between the initial Young’s modulus of masonry
Ec as measured in the experiments and that predicted by the numerical model. The numerical
post-peak curve is usually steeper, as in graphs (c) and (f). This is an indication that the values
assumed for the tensile fracture energy of the units and/or the compressive fracture energy of
the mortars is low. However, some of the experimental case studies were, indeed, characterized
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by such steep softening, a behavior which was well approximated in the numerical model, as
shown in graphs (a) and (f).

Concerning the missing material parameters, the absence of values for the tensile strength
of the mortar is of very small consequence for the determination of the compressive strength of
masonry. However, the tensile strength of the units plays amore substantial role, as demonstrated
by the cracking development near and after the load peak. The Poisson’s ratio of the mortars
with low Young’s modulus is also a strong influencing factor as it affects the lateral expansion
of the mortar under vertical compression and, therefore, the amount of horizontal confinement
afforded to it by the units. It can be thus concluded that the tensile strength of the units and the
Poisson’s ratio of the mortar are of importance in masonry in compression and their function is
linked.

In the majority of cases where a relatively high Poisson’s of 0.2 was assumed the model
exhibited a tendency to slightly overestimate the compressive strength of masonry. This is espe-
cially apparent in the cases from [68], [124] and [120]. A value of 0.15, which is closer to the
average of the experimental inventory, would have resulted in a slightly better estimation of the
compressive strength of masonry.

For comparison purposes, analyses of the running and Flemish bond cases were performed
without taking into account nonlinearities in the interface elements (meso-modeling). The re-
sulting compressive strength was identical to the one obtained from the detailed micro-models,
despite the fact that the meso-models could not take into account tensile failure of the interfaces
between the units and the head and transverse mortar joints simulated by the micro-models.

Similarly, the influence of tensile strength of the mortar was investigated in the F1 Flem-
ish bond case while at the same time neglecting interface nonlinearities. The existence of both
head and transversal mortar joints potentially maximizes the influence of this particular mate-
rial parameter. Cracking in the mortar occurs very early in the analysis, appearing in all vertical,
transversal and horizontal joints. In the former two cases the damage propagates through the
entirety of the joint, while in the latter the damage is limited to an area near the surface of the
masonry, which is also the first to fail in compression. However, in terms of overall behavior, the
strength and the elasticity of the masonry composite are not significantly altered by the modifi-
cation of the tensile strength of the mortar: using a value of 10% and 1% of the experimentally
derived value of the tensile strength of mortar caused a reduction of only 2.1% and 3.6% of the
compressive strength of masonry.

The sensitivity of the results on the fineness of the mesh was studied on the S1 experimen-
tal case [106]. Three meshes were employed, the defining parameter for refinement being the
number of elements along the thickness of the joint. In the main series of numerical analyses
performed in this chapter, two elements were used along the thickness of the joint. Two ad-
ditional meshes were tested: one with a single element and one with three elements along the
thickness. The aspect ratio of the resulting finite elements are 1 : 0.93 : 0.92, 1 : 0.62 : 0.92 and
1 : 0.41 : 0.92 for the three cases.

The results are presented in Figure 3.9. While the compressive strength and initial axial
stiffness was unaltered, there is a distinct influence of the fineness of the mesh in the post-peak.
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Figure 3.8 Experimental and numerical stress-strain diagram comparison. Numerical curves are shown
in tinted lines: (a): S17 & R2 [156], (b): S8 & S16 [137], (c): S2 &S7 [56], (d): S13 [3], (e):
S15 [119], (f): S6 [8].
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Figure 3.9 Effect of mesh refinement for S1 [106] number of elements long the joint thickness.

The model with a single element across the joint exhibits a more ductile behavior. The results
of the two and three element models exhibit similar post-peak behavior.

Overall, mesh refinement only affected the post-peak behavior but not the predicted capacity.
The coarser mesh resulted in a more ductile response. Despite the mesh-insensitivity exhibited
by fracture energy approaches, the response in the post-peak behavior did not exhibit mesh-
insensitivity. Finally, there was very little benefit in using three instead of two element along the
thickness of the joint.

3.5.2 Comparison with Closed Form Expressions

The numerical results are compared with a number of closed form and empirical expressions for
the prediction of the compressive strength of masonry and its Young’s modulus. These analytical
expressions are applied to those cases where themasonrymaterials are completely characterized,
with the occasional exception of the value of the tensile strength of the mortar, which does not
influence the results for any of the analytical models or for the FEM analyses.

The analytical models proposed by Hilsdorf [74], Khoo & Hendry [82], Francis [63], Ohler
[117] and Hendry [73] are used, as well as recommendations by ACI [2] and CEN [40] standards
for the characteristic strength of masonry. The Young’s modulus of the composite as derived
from a simple one-dimensional homogenization method [45] and the CEN European standard
are similarly compared to the experimental and numerical results.

The results for the compressive strength and the Young’s modulus are summarized in Ta-
ble 3.5 and Table 3.6 respectively. The numerical model provides the most accurate results
overall in terms of compressive strength. The Ohler, Hilsdorf and Francis models follow closely
in terms of accuracy while the Hendry and Khoo & Hendry equations appear to provide inaccu-
rate values for several cases. The equations provided by the design codes tend to underestimate
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the compressive strength, especially for masonry composites of higher strength, with the values
provided by CEN being slightly closer to the experimental results. The FEM model provides,
with a few exceptions, results for the Young’s modulus very similar to the analytical model. The
CEN code tends to greatly overestimate this parameter compared to the experimental results.

Table 3.5 Experimental results vs. numerical and closed form expression results: compressive strength.

Case Ref.
fc,exp fc,Hilsdor f fc,Francis fc,KhooHendry fc,Ohler fc,Hendry fc,ACI fc,CEN fc,FEM

[N/mm2 ]
S1 [106] 19.70 24.54 29.24 19.81 17.63 9.58 11.56 12.22 19.44
S4 [159] 6.15 8.03 9.61 7.16 6.44 3.75 5.05 4.01 6.83
S8 [137] 4.68 7.79 11.36 7.21 6.50 7.93 5.16 4.50 5.44
S11 [137] 6.32 8.56 10.10 7.67 6.94 3.80 5.05 4.01 7.35
S12 [159] 5.01 6.83 8.28 6.18 5.47 3.59 5.05 4.01 6.21
S13 [8] 14.55 11.89 12.44 12.04 11.78 27.94 5.52 6.11 13.26
S14 [64] 4.50 10.96 10.88 7.99 7.12 9.97 8.76 6.34 3.14
S16 [137] 8.84 9.96 11.87 9.46 8.84 8.13 5.16 4.50 6.91
S17 [156] 11.73 15.88 14.52 12.27 10.31 6.04 15.96 13.06 13.77
S18 [106] 34.70 30.59 47.22 29.05 28.46 10.66 11.56 17.62 36.75
S20 [106] 48.20 43.23 59.75 41.25 43.50 21.17 14.54 24.32 50.59
S22 [106] 40.90 39.48 49.90 35.75 35.50 20.03 14.54 21.61 44.14
S24 [64] 9.33 15.33 15.97 10.55 10.08 12.96 8.76 6.34 5.74
S25 [106] 27.00 28.22 39.86 25.75 24.37 10.33 11.56 15.99 31.32
S27 [106] 32.50 37.33 46.29 32.37 30.56 19.53 14.54 19.62 37.12
S28 [106] 37.70 34.72 71.27 34.98 40.74 11.34 11.56 19.83 43.16
S31 [106] 29.90 33.99 39.91 25.71 23.65 18.47 14.54 14.99 21.12
R9 [131] 30.14 47.12 52.33 40.76 39.08 62.29 14.96 18.87 37.81
F1 [25] 11.00 20.24 25.85 16.28 15.77 50.70 8.14 7.10 4.29
F2 [25] 14.50 21.93 27.34 20.99 20.06 55.80 8.14 10.74 16.70
F3 [25] 17.80 36.58 35.23 76.07 - 72.91 8.14 19.64 29.58
P7 [64] 5.55 15.33 15.97 10.55 10.08 12.96 8.76 6.34 9.12

3.6 Conclusions

A systematic numerical simulation of masonry compression tests has been performed on fifty
cases with available experimental results using a detailed micro-modeling technique. The main
purpose of the simulation has been the validation of the proposed micro-modeling technique
for the prediction of the compressive strength and Young’s modulus of masonry based on the
properties of the constituent materials.

The modeling method, resulting from the application of a combined plasticity and smeared
cracking material law in three-dimensional masonry models has been shown capable of produc-
ing reliable results in a wide range of combinations of masonry units and mortar. Its accuracy,
however, is strongly dependent on sufficient mechanical characterization of the individual ma-
terials and should be tested against carefully executed tests on the resulting masonry. Overall,
no distinct tendency to over- or underestimate the compressive strength and Young’s modulus
of the masonry was observed.

The range of applicability of the proposed technique is far greater than that of plane meth-
ods (such as plane strain or plane stress applications), as unit/mortar interaction and its out-of-
plane effects differ greatly for different ratios of Young’s moduli between the materials. Three-
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Table 3.6 Experimental results vs. numerical and closed form expression results: compressive strength.

Case Ref.
Ec,exp Ec,1D Ec,EC6 Ec,FEM

[N/mm2 ]
S1 [106] - 6351 12221 6456
S4 [159] - 12734 4014 13017
S8 [137] 4200 4555 4500 4702
S11 [159] - 13177 4014 13464
S12 [159] - 11604 4014 10400
S13 [8] - 1947 6110 1950
S14 [64] 1936 854 6340 1475
S16 [137] 5517 5251 4500 5330
S17 [156] 6800 6986 13055 8294
S18 [106] - 9724 17622 9724
S20 [106] - 14506 24315 14593
S22 [106] - 13805 21613 13788
S24 [64] 1938 1386 6340 2380
S25 [106] - 9340 15993 9342
S27 [106] - 13066 19616 13059
S28 [106] - 10077 19825 10633
S31 [106] - 7977 14989 8063
R9 [131] - 18166 18866 18540
F1 [25] 1651 3286 7101 3107
F2 [25] 3833 4971 10738 5002
F3 [25] 4567 6389 19639 6390
P7 [64] 661 1386 6340 2007

dimensional micro-models allow a more accurate and general simulation of the masonry com-
pressive effects due to the more realistic prediction of damage patterns and their development.

In summary, the simulation of phenomena associated with masonry compressive effects us-
ing micro-models is much more accurate and of wider applicability when using models of three-
dimensional geometry due to the more realistic prediction of damage patterns and their devel-
opment. Abiding to the principle aims of structural micro-modeling, which include the direct,
rather than the phenomenological, simulation of structural behavior and failure, and in an ef-
fort to establish a generally applicable modeling approach, three-dimensional micro-modeling
appears to be the most promising and advantageous method.

The numerical results have been compared with a number of closed form and empirical ex-
pressions for the estimation of the masonry compressive strength and Young’s modulus. Com-
pared to the closed form and empirical expression, the numerical model provides far more accu-
rate estimations. In fact, some of the expressions tested provide only fair estimations. A signifi-
cant discrepancy has been found between the equation proposed by CEN 2005 for the estimation
of the Young modulus and the experimental or numerically predicted results. According to the
comparison, the equation of CEN 2005 largely overestimates the Young’s modulus.

A particular application of the proposed numerical approach can be found in the estimation
of masonry average properties based on the knowledge of specific parameters of the material
constituents. These properties may be later used as input data for macro-models utilized in the
analysis of large structural parts or entire structures.
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Chapter 4

Compressive Strength and Elasticity of
Pure Lime Mortar Masonry

4.1 Introduction

The compressive strength of masonry is considered by design codes as the main design pa-
rameter, on which, additionally, the derivation of its mechanical properties is largely based.
For this reason, masonry in concentric compression has been extensively studied. Taking into
account the experimental investigations on masonry composites accompanied by a character-
ization of the masonry constituents, the instances in the literature become fewer in number.
A relatively large number of such experimental investigations has been performed on stack
bond prisms [23, 64, 68, 71, 76, 81, 106, 114, 119, 124, 130, 136, 156, 159]. Fewer inves-
tigations including concentric compression tests on larger members, such as walls in running
or Flemish bond or three-leaf samples and columns, have been documented in the literature
[14, 17, 25, 26, 29, 51, 58, 59, 67, 113, 116, 121, 131]. These tests are usually monotonic, but
cyclic tests have also been performed [116, 119].

The different combinations of materials present researchers with a wide range of possible
choices for experimental study. However, reviewing the available inventory of experimental data,
one finds a distinct predominance of cement and lime/cementmortars in structural testing. While
chemical, curing, mechanical property and sustainability issues of modern pure lime mortars
have been extensively studied [26, 32, 50, 53, 84–86], the investigation of their direct structural
application has not enjoyed the same attention [46] despite its common use as original material
or for restoration purposes in historical structures.

Measurement of the compressive and flexural strength of units andmortar is well documented
and even codified in guidelines [39, 40, 42]. However, no comparable effort has been devoted to
the characterization of the Young’s moduli of the material constituents and the masonry compos-
ite. Masonry codes [41] provide empirical relations for the estimation of the masonry Young’s
modulus using the compressive strength of masonry as the only parameter and hence neglect
the important influence of the parameters related to the constituent materials. Regarding exper-
imental procedures, there is a lack of guidelines for the measurement of the Young’s modulus
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of both the units and the mortar and limited information for the masonry composite.

Published results on the Young’s modulus of units and mortar often do not explain in detail
the method used to obtain these results. However, a few studies include a detailed explanation of
suchmeasurement methods and oftenmake use of themeasuredmoduli in numerical simulations
of the experimental processes [106, 114, 119, 124].

Measurements of the mechanical properties of units are easier to perform and are, therefore,
more common. However, compressive tests on the unit beds are usually performed on entire
units in the direction perpendicular to the unit bed [58, 81, 106]. Due to the dimensions of units,
it is foreseeable that this type of tests is significantly affected by both size and shape effects
and hence may not be offering a reliable measurement of the uniaxial compressive strength of
the material. By measuring cylindrical, cubic or cuboid samples extracted from bricks it has
been intended to limit or study these size effects or to simply form specimens with appropriate
dimensions to facilitate measurements [21, 51, 119].

The issue of the difference between the properties of the mortars in freestanding samples
and in the composite persists due to difficulties in obtaining deformation measurements from
both the joints, which are prohibitively thin, and from cast samples due to differences in curing
conditions. Efforts have been made to measure isolated deformations of the units and the mortar
joints in masonry under compression [51, 156]. For other cases, the elastic properties of the
mortar in the joints are indirectly derived by measurements in the units and in the composite
[121].

The main objective of the experimental campaign herein presented is to determine the com-
pressive strength and Young’s modulus of masonry composed of medium strength solid clay
bricks and two types of low strength lime/sand mortar with zero Portland cement content. The
intention is to establish whether this particular combination of materials can produce compos-
ites of adequate compressive strength and, simultaneously, sufficient deformability so as to be,
from a structural perspective, compatible with historical masonry for application in intervention
projects.

The tests performed and the measurements taken during their execution have been designed
so as to give as much information as possible on both the strength and the deformability charac-
teristics of the constituent materials.

A simulation of the experimental tests using the numerical method developed in the previous
chapter is also carried out. The numerical results will be evaluated in terms of the prediction
of the compressive strength of masonry and the reproduction of the experimental failure mode.
In addition to the basic analyses performed using the material properties as measured or esti-
mated in the campaign, a short parametric investigation is also performed. The objective of this
investigation is to evaluate the influence on the compressive strength of masonry of material
parameters which were indirectly measured or assumed in the experimental campaign.
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4.2 Description of the experimental campaign

For the mechanical characterization of the units, it was preferred to measure the uniaxial com-
pressive strength and the Young’s modulus of the material of which they are composed, using
appropriate brick cores, rather than measuring the strength of an entire brick in compression. As
mentioned above, the latter approach would involve significant size effects in the compression
tests. It was also intended to follow a sampling procedure which would allow a large number of
testable specimens to be extracted from a single brick. In the case of the application of destruc-
tive testing on historical materials this is advantageous for exerting minimum damage and loss
of original material in the structure.

The masonry was constructed in stack bond configuration. This geometrical setup allows for
a simple way of studying unit/mortar interaction in masonry under concentric compression.

Whenever possible, existing testing standards were consulted in order to compare the pa-
rameters in the performed tests and their results against a codified backdrop. It was intended to
establish whether the materials and the resulting masonry conform to the application spectrum
defined or implied in the corresponding standards.

4.2.1 Units

The units used in the campaign were solid clay bricks with nominal dimensions measuring
290×140×45mm3. The bricks were hand-molded, which resulted in the bricks having smaller
actual dimensions and rough, uneven surfaces and, often, slanted heads and faces. The more
pronounced scatter in the geometric measurements was obtained for the smaller dimensions of
the bricks, namely their height.

The bricks received surface treatment prior to testing. The beds were polished in order to
ensure smoothness and planarity and to remove surface fissures and other damage, whereupon
the bricks were reduced to a height of roughly 40mm. Following the surface treatment, cylindri-
cal core samples were extracted from the bricks in the direction perpendicular to the unit bed,
numbering six to seven from each unit, with a diameter of 45.25mm. The height to diameter
ratio in the samples was, therefore, roughly 1, which is not ideal for eliminating size effects in
compression tests or the confinement afforded on the sample by the loading platen, but provides
a significant improvement against the testing of full bricks. Furthermore, the very small height
of the bricks, and therefore the very small displacements to be measured, would compound the
uncertainty of the measurements. Coring also allows for the influence of local imperfections
to be directly measured or even entirely avoided, as internal cracks and voids become visible.
Finally, it allows for the clearer overview of the variation of the results, since it may now be de-
composed in the variation of the properties between the units as well as in the localized variation
of the area from which each sample was extracted. Examples of coring patterns are shown in
Figure 4.1. For these reasons, and in order to obtain some understanding of these size effects,
the cylindrical samples were tested in single, double and triple stacks. The surface treatment of
the unit beds facilitates this configuration.
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Figure 4.1 Sample extraction pattern: full bricks and half bricks obtained from flexural test.

The characterization of the tensile strength of the units was done using three-point bending
of three complete brick specimens, from which the uniaxial tensile strength may be indirectly
determined. There is no EN standard specific to the determination of the tensile or flexural
strength of clay units as there are for concrete blocks [40]. Following the aforementioned surface
treatment and before testing, the units were placed in a drying oven overnight at a temperature
of 105± 5◦C to remove existing moisture and to ensure equal moisture for all samples. The
units were left to cool for four hours prior to testing. The testing was performed using a load
cell with a 200kN capacity in a hinged configuration and displacement measurements were only
taken from the load cell readings. The load was applied in force control at a rate of 10N/sec.
The test was performed specifying a central span of 200mm, as illustrated in Figure 4.2.

Figure 4.2 Brick flexural test setup.

For the compressive tests on the cylindrical samples, a 200kN capacity load cell was used
in a hinged configuration. The load was applied in displacement control, in order to record the
softening branch with more ease, at a rate of 0.002mm/sec. Measurements were taken from
three LVDTs placed in the perimeter as shown in Figure 4.3, and from the load cell readings.
These devices were fixed on the loading plates, as the small height of the cylinders, even when
stacked, was not sufficient for the LVDTs to be properly attached directly on them. Overall,
eleven single samples, eight double samples and six triple samples were tested for a total of
twenty five compression tests. With the exception of one triple sample, the doubles and triples
were composed of cores from the same brick.
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(a)

(b) (c)

Figure 4.3 Test and measurement layout for compressive tests on brick cylinders: (a) single, (b) double
and (c) triple samples.

4.2.2 Mortar

Two types of mortar were employed in the construction of the masonry: aerial lime mortar
(ALM) and hydraulic lime mortar (HLM) combined with fine sand made of crushed limestone
and zero Portland cement content. The ALM mortar was produced in putty form obtained from
submersion of CL-90 calcium lime in water in a sealed plastic drum and the HLM directly from
NHL 3.5 natural hydraulic lime powder. The properties of the sand are presented in Figure 4.4
and Table 4.1. Both mortars were produced in a 1 : 3 lime-to-sand ratio and were hand-mixed
using a trowel. The methodology followed in the characterization of the mortars is described in
the EN 1015-11 European standard for mortar testing [39], which includes instructions for the
preparation and storing of the samples as well as the testing setups and procedures. However, due
to the composition of the mortars, it was immediately understood that this standard is mainly
applicable to mortars of higher strength. Nevertheless, it may still be, as it indeed has been,
consulted as a guideline for planning this and other similar campaigns.

In parallel with the construction of the prisms, mortar was poured and appropriately com-
pacted in steel 3-compartment molds lubricated with mineral oil to prevent adhesion of the mor-
tar to the mold walls. The mortar was poured in two layers, each of which was compacted with
25 strokes of the tamper. In total, 24 prismatic samples measuring at 160× 40× 40mm3 were
prepared for each mortar type. The molds were stored in lab conditions (22.5◦C, 70.2% humid-
ity) and the samples were extracted after 6 days for the aerial lime and 2 days for the hydraulic
lime samples, which were subsequently stored in the same lab conditions. The lack of free con-
tact with the air in the faces of the prisms adjacent to the steel walls of the mold, resulting in
very slow hardening, made it necessary to allow a longer period of time to pass before unmold-
ing the aerial lime mortar in order to avoid premature deformation and damage to the samples.
Inspection of the molds after removal of the mortar prisms did not reveal any sign of adhered
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Figure 4.4 Sand granulometry curve.

mortar.

The mortars were subjected to flexural and compressive tests. The mortar prismatic samples
were tested in three-point bending and the two resulting halves were tested in compression. A
10kN capacity press was used in force control at a rate of 10N/s for the bending tests and 50N/s
for the compression tests, both rates corresponding to the minimum standard specified values.
The test setups are shown in Figure 4.5 and the only quantitymeasuredwas the force against time.
The small dimensions and low strength of the mortars do not allow for accurate displacement
measurements to be easily taken. Tests were performed at 14, 28, 42 and 49 days for the ALM
and 7, 14, 28 and 49 days for the HLM in order to study the maturation of the mortars.

4.2.3 Masonry Composite

Six masonry wallettes were constructed, three for each mortar type. The EN 1052-1 standard for
the determination of the compressive strength of masonry was consulted as a guideline on the
preparation of the prisms, the curing and storage, the placement of the measuring instruments
and the determination of the loading rate during testing [38]. The masonry wallettes consisted of
five bricks and four mortar bed joints of 10mm thickness, resulting in overall nominal dimensions
equaling 265× 140× 290mm3. The bricks were submerged in water for 30 minutes prior to
construction, which took place on a flat surface. For each type of mortar, two prismswere capped
on both ends using a 3mm thick sulfur-silica sandmortar joint to ensure the flatness of the loading
surfaces, while one prism from each mortar case was capped on the top end with the sulfur-
silica sand mortar and a 1.5mm thick unbonded unreinforced neoprene sheet and with sulfur
mortar only on the lower end. Immediately following construction, the prisms were covered
with polyethylene sheets for three days in order to prevent premature drying. Subsequently, the
masonry was kept in laboratory conditions until it reached an age of 49 days.
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Table 4.1Mortar sand properties.

Sand Grain Size
Strainer Size [mm] Weight % Retained Cumulative Weight % Retained Weight % Pass

5 0.2 0.2 99.8
4 1.13 1.33 98.67
2 18.86 20.19 79.81
1 30.21 50.4 49.6
0.5 18.24 68.65 31.35
0.25 11.43 80.08 19.92
0.125 7.28 87.36 12.64
0.063 6.87 94.23 5.77
Tray 4.29 98.52 1.48

Sand Properties
Apparent Density [kg/m3] 1750
Particle Density [kg/m3] 2690
% Saturated Porosity 11.3

% Absorption 1.70

The machine used in the compression testing has a static load capacity of 2000kN. The
load cell was set in a hinge configuration to facilitate the adjustment of the load plate with the
masonry for uniform load distribution. The load cell was fitted with a short steel profile beam to
match the vertical cross section of the prisms. Finally, the masonry was centered between two
thick steel plates.

Displacement measurements were taken from 6 LVDTs placed on the masonry, as well as
from the readings of the load cell. The LVDTs were placed in such a manner as to measure the
vertical deformation of the masonry composite and of an individual unit. The LVDT supports
were attached to the masonry using a quick setting adhesive resin. The use of the resin offers
good adhesion with minimal disturbance to the surfaces of the units. Placement of the LVDTs
often required further surface treatment in the units and the joints in order to properly accom-
modate their supports and to allow free movement of the instruments. This would not have been
necessary in machine-cut bricks.

Due to the irregular heads and faces of the units, the placement of the LVDTs in the exact
desired spots was not always possible. For this reason, slight variations of the LVDT setups were
attempted, all of which had the same objective. The tests on the aerial lime mortar prisms were
performed with a horizontally placed LVDT on the mid height unit. The measured horizontal
deformation in the brick may be used in order to determine the Poisson’s ratio. Figure 4.6 shows
such vertical and horizontal LVDT arrangements on the prisms, while Figure 4.7 presents a
schematic view of the two basic LVDT arrangements used.

For the determination of the Young’s moduli, and to accommodate the adjustment of the
loading platens with the test sample, five initial loading cycles under force control were executed
with a final cycle maintained at the maximum load for 1 minute before unloading. The initial
cycles were performed with a maximum load of 60kN and the final cycle with a load of 90kN, all



62 Compressive Strength and Elasticity of Pure Lime Mortar Masonry

(a) (b)

(c) (d)

Figure 4.5Mortar testing setup: (a) flexural before and (b) after test, and (b) compression test before and
(d) after test.

at a load rate of 400N/s. The cyclic loading process is based on previous suggested procedures
for concrete samples [18] and has been applied on masonry prisms as well [119].

Three values of Young’s moduli were measured in the masonry: the initial loading modulus
measured in the first loading branch during the cyclic tests, the unloading/reloading modulus in
the cyclic tests and the final modulus in the monotonic compression test, which was determined
at roughly 40-60% of the compressive strength.

The loading to determine the compressive strength was conducted under displacement con-
trol in order to capture the post-peak response of the masonry. The load was applied at a rate of
0.003mm/sec. The LVDTs were removed from the structure before the peak in order to avoid
damage to the equipment, after which point the only displacement measured was that of the
stroke of the press. Therefore, information for the Young’s modulus could be obtained from this
set of tests as well. The test was stopped once the post-peak curve reached roughly 5-10% of the
obtained capacity.

Direct measurement of the Young’s modulus of the mortars was impractical both on free-
standing samples as on the masonry itself. Test samples were required to be of small size, other-
wise mortar hardening would not be achieved within a practical time limit, and therefore direct
placement of measuring equipment was not possible. As an alternative course of action, the
Young’s modulus of the mortars may be indirectly determined. This can be achieved following
the measurement of the Young’s modulus of the units and of the masonry composite by a simple,
one-dimensional homogenization process. This process idealizes the masonry composite as a
set of linear elastic springs in series. According to this, the Young’s modulus of the masonry
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(a) (b)

Figure 4.6 Typical layout of LVDTs: (a) vertical layout for displacement measurement in the unit and the
composite and (b) horizontal displacement for measurement of the Poisson’s ratio.

composite Ec is calculated by the following equation:

Ec =
1+hm/hu

1+hm ·Eu/(hu ·Em)
Eu (4.1)

where hm and hu are the thickness of the mortar bed joint and the height of the units respec-
tively and Em and Eu are the Young’s moduli of the mortar and the units. The model assumes
perfect normal and shear bond in the unit/mortar interface as well as neglecting Poisson effects,
which do not have a strong influence on vertical masonry stiffness for stack bond prisms.

4.3 Results

4.3.1 Units

The results of the bending tests on the bricks are presented in Table 4.2. Despite the small
number of tests, the results were consistent and showed very little scatter. The tensile strength
of the brick ftu is derived from the flexural strength f f lex by way of equation 4.2, where h is the
specimen height [35].

Table 4.2 Unit three-point bending test results.

Sample
Height Width f f lex ft
[mm] [mm] [N/mm2] [N/mm2]

I 39.25 135 7.71 3.39
II 42.00 134 7.06 3.18
III 42.25 134 7.11 3.21

Average 41.17 134.33 7.29 3.26
St. Dev. 1.66 0.58 0.295 0.110
C. o. V. 0.040 0.004 0.040 0.034

ft =
0.06 ·h0.7

1+0.06 ·h0.7 f f lex (4.2)
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Figure 4.7 Schematic of two LVDT placement arrangements: (a) vertical measurements only (HLM)
and (b) vertical and horizontal deformation measurement (ALM), where l is the length of the
prism, h is its height and hu is the height of the unit.

The compressive test results on the brick core samples are presented in two tables. The
results and dimensions of the samples, organized according to the number of cylinders in the
sample, are presented in Table 4.3. Similarly, Table 4.4 summarizes the same results according
to the brick from which the samples were extracted regardless of sample size. This distinction
allows to overview the variation of the results according to the parent brick and the sample size.
The bricks are again designated by roman numerals (it is reminded that I, II and III where the
ones tested in bending) and the extracted samples by ordinary numerals.

Table 4.3 Unit core compression results sorted according to sample size.

Single Height fcu Eu Double Height fcu Eu Triple Height fcu Eu

Samples [mm] [N/mm2] [N/mm2] Samples [mm] [N/mm2] [N/mm2] Samples [mm] [N/mm2] [N/mm2]
I1 39.5 28.5 3598 I2+I7 79 29.76 3795 IV3+V6+IV1 125.25 22.02 5854
I3 39.5 31.03 4054 II2+II7 85 21.87 4750 IV4+IV2+IV5 124 16.57 5317
I5 39.5 27.31 3872 II1+II4 84.75 23.38 4947 V3+V4+V5 127 26.18 5068
I6 39.5 22.56 2084 III1+III3 85.5 15.39 4389 VI3+VI7+VI1 121.25 27.24 6038
II3 42.25 21.86 3239 III2+III5 85.5 19.17 4801 VII4+VII6+VII1 115 22.01 5394
II6 42.25 24.41 4544 V1+V7 84.5 17.38 4863 VII5+VII2+VII3 113.5 25.21 5730
III4 42 22.69 2498 VI2+VI5 81.25 24.19 5057
III6 42.25 20.41 2181 VI4+VI6 81.25 19.22 4322
IV6 41.25 31.45 4488
V2 41.5 16.31 1304
VII7 38 26.54 5172

Average 40.68 24.83 3298 83.34 21.30 4653 121.00 23.21 5567
St. Dev. 1.51 4.64 1258 2.48 4.53 493 5.57 3.90 367
C.oV. 0.037 0.187 0.381 0.030 0.213 0.106 0.046 0.168 0.066

The failure mode of the samples may be seen in Figure 4.8. Vertical and diagonal cracks in
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Table 4.4 Unit core compression results sorted according to sampled brick.

Brick I II III IV V VI VII Total
No. of tests 5 4 4 2 3 3 3 24

fcu [N/mm2]
Average 27.83 22.88 19.42 24.01 19.96 23.55 24.59 23.18
St. Dev. 3.261 1.244 3.056 10.519 5.418 4.047 2.328 2.86
C.oV. 0.117 0.054 0.157 0.438 0.271 0.172 0.095 0.123

Eu [N/mm2]
Average 3481 3535 3467 4903 3745 5139 5432 4243
St. Dev. 798 1552 1319 586 2116 861 281 874
C.oV. 0.229 0.439 0.381 0.12 0.565 0.167 0.052 0.206

the stacked specimens jump across the polished interfaces, indicating good contact between the
samples. Continuity of spalling damage was also noticed.

(a)

(b) (c)

Figure 4.8 Brick cylinder samples after testing. (a) single, (b) double and (c) triple samples. Continuity
of the vertical cracks is visible in the stacked samples.

It was noticed that imperfections such as existing cracks did not have a strong influence on
the compressive strength or stiffness of the samples, as compared to undamaged samples from
the same brick. However, damage at the base or the top of the samples, mostly due to the coring
process, caused a notable reduction of the strength of the samples.

Examining the results of each brick separately, for example bricks II, III and IV, the com-
pressive strength showed a decreasing trend for an increase in sample height. On the contrary,
the Young’s modulus increased with the specimen height throughout all the cases and on a brick
by brick basis, despite the fact that the increase of the height of the specimens, which reduces
size effects, and the existence of horizontal joints normally result in a decrease of the axial stiff-
ness. Of further note is the fact that the scatter of the results for the Young’s modulus exhibited
a marked decrease for an increase in height, even though the number of tests was smaller for
larger heights. The scatter of the results on the compressive strength was also the lowest across
the triple sample cases.
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Moderate variation was discovered in the properties across the bricks, with units VI and VII
having a Young’s modulus significantly higher than the average and unit I having a compressive
strength higher than the average. These trends appear to have been partly influenced by the
properties of the individual bricks from which the samples were extracted. For example, half
of the triple stacked samples were performed using cores from units VI and VII, which had the
highest Young’s modulus. Finally, there was no correlation between the flexural strength of the
brick and the compressive strength of the samples extracted from it.

4.3.2 Mortars

The evolution of the strength of the two mortars presents a number of differences. This can be
attributed to the different maturation process between the binding agents in the two materials
considered, aerial and hydraulic lime. Figure 4.9 illustrates the evolution of the compressive
and flexural strength of the two mortars [145]. The evolution of these material properties has
been idealized using logarithmic curves.
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Figure 4.9 Evolution of mortar (a) compressive and (b) flexural strength for standard samples stored in
laboratory conditions.

The compressive strength of the ALM exhibited a low initial rate of increase, which tended
to decrease after 28 days. At 49 days the rate of increase was low but not zero. The HLM
exhibited significant strength at 7 days, compared to the one achieved at 49 days. However, the
rate of increase of strength was comparatively low in the remaining period until 49 days. The
difference in both cases between the values at 28 and 49 days is significant, however, and should
be considered in structural design.

It is unclear whether further maturation of the mortar would result in even higher compres-
sive strength values or how long it would take for a substantial increase. Evaluation of the
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tendency lines for the compressive strength seems to indicate that near maximum strength could
be reached at 49 days for the HLM, but ALM should be expected to increase further in strength,
as is evidenced by practical experience and the obtained development curve. Due to the scatter
obtained for the flexural strength of the ALM it is difficult to make a similar estimation, though
much higher strength should not be expected. However, the flexural strength of the HLM appears
to be increasing significantly even after the 49th day.

The results of the mortar bending tests at 49 days are presented in detail in Table 4.5, where
the dispersion of results in the case of the ALM is apparent, whereas the dispersion in the case
of the HLM was much smaller. Taking into consideration that the tensile strength of the mortar
is not significant in the study of the compressive strength of masonry, especially in stack bond
prisms, the scatter of the aerial lime results is of small consequence.

Table 4.5Mortar flexural strength results at 49 days.

Sample
f f lex Sample

f f lex

[N/mm2] [N/mm2]
ALM1 0.23 HLM1 0.82
ALM2 0.55 HLM2 0.93
ALM3 0.18 HLM3 0.90
ALM4 0.20 HLM4 0.92
ALM5 0.71 HLM5 0.80
ALM6 0.72 HLM6 0.70
Average 0.43 Average 0.84
St. Dev. 0.235 St. Dev. 0.082
C.oV. 0.545 C.oV. 0.096

The results obtained from the compressive tests at 49 days for bothmortar types are presented
in detail in Table 4.6. The samples are named after the mortar prisms tested in bending from
which they were produced with the added suffix a or b. Once again, only the actuator force in
time was measured. As was the case with the unit tests, no distinct relation between flexural and
compressive strength of samples from the same prism could be discerned. Overall, the scatter
of the results was quite low and much lower than for the bending tests.

According to the EN standard, mortar bending and compressive tests should be performed at
an age of 28 days unless retarding agents have been employed in the mix, which was not the case
in this campaign. Overviewing the results, it is apparent that the increase in strength in the period
between 28 and 49 days is significant compared to, for example, the corresponding increase for
concrete or masonry mortars based on Portland cement stored in laboratory conditions.

In addition to the destructive tests on samples stored in the lab, two masonry wallettes were
constructed and two sets of standard mortar prismatic samples were stored in an area exposed
to the environment. The prismatic samples were used for the standard mortar destructive tests
and the wallettes were used for carrying out pin penetration tests on the mortar joints. This
minor-destructive technique relates the hardness of a masonry mortar to its compressive strength
according to the specifications provided by the manufacturer of the instrument used [80]. The
objective of this investigation was to compare the effect of the curing conditions on the com-
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Table 4.6Mortar compression strength results at 49 days.

Sample
f f lex Sample

f f lex

[N/mm2] [N/mm2]
ALM1a 1.25 HLM1a 1.76
ALM1b 1.27 HLM1b 1.90
ALM2a 1.19 HLM2a 1.98
ALM2b 1.19 HLM2b 2.09
ALM3a 1.32 HLM3a 2.02
ALM3b 1.19 HLM3b 1.72
ALM4a 1.18 HLM4a 1.89
ALM4b 1.18 HLM4b 1.81
ALM5a 1.23 HLM5a 1.93
ALM15b 1.24 HLM5b 1.77
ALM6a 1.21 HLM6a 1.98
ALM6b 1.36 HLM6b 1.98
Average 1.23 Average 1.90
St. Dev. 0.061 St. Dev. 0.080
C.oV. 0.049 C.oV. 0.042

pressive strength of the mortars and to study the development of mortar strength in-situ over an
extended period of time.

The development of the compressive strength of the prismatic samples kept in environmental
conditions is shown in Figure 4.10a. It is immediately apparent that both mortars obtain a higher
compressive strength than the samples stored in lab conditions: 50% higher for the aerial lime
mortar and 57% higher for the hydraulic lime mortar at 28 days.

Penetration tests on the wallette mortar joints were performed until an age of 540 days. The
determined compressive strength, based on calibrations for extending the pin penetration test
results for low strength mortars [145], is illustrated in Figure 4.10b. The development of the
compressive strength has been idealized using logarithmic curves, which approximate well its
strength development near the end of the testing period.

4.3.3 Masonry

The cyclic loading of the prisms initially performed for each specimen revealed certain aspects of
the masonry’s response. The initial response in compression is highly nonlinear, as micro-cracks
in the unit/mortar interface and voids in the mortar are closed. Unloading, even when only a very
small load has been applied, has a far higher elastic modulus than the initial one in compression.
The compressive loading modulus eventually becomes equal to the unloading one, provided
sufficient load has been applied. This behavior is illustrated in Figure 4.11. Considering this
fact, it may be necessary to perform these loading cycles using a higher load in order to get
readings of the Young’s modulus after the closing of the voids. However, special care must be
taken in the case of weak component materials in order to limit the risk of premature damage in
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Figure 4.10 Evolution of the compressive strength of mortar stored in environmental conditions: (a)
Standard samples and (b) in-situ mortar in wallettes.

the masonry specimen.

Significant agreement was found between the values of the capacity obtained for the two
prisms with the sulfur mortar cap (prisms 1 and 3). The stress-displacement diagrams for the
ALM masonry prisms are shown in Figure 4.12 and the results are summarized in Table 4.7.
The failure mode was similar as well. The first visible cracks were observed at around 70%
of the load and they included diagonal cracks originating from near the edges of the top of the
prism and were mostly visible on the faces of the units. As cracking progressed, peripheral
superficial cracking developed which eventually outlined a mostly crack-free core of masonry
with its minimumwidth at mid height and spreading to the top and base units, which were almost
intact. The condition of the ALM masonry at the end of the test is shown in Figure 4.13.

Table 4.7 Masonry compressive strength results for ALM prisms. Neoprene sheet was used for prism 2.

Sample
Height fc Initial Ec Unloading Ec Final Ec

[mm] [N/mm2] [N/mm2] [N/mm2] [N/mm2]
Prism 1 273 12.30 360 2574 488
Prism 2 266 9.68 474 2643 501
Prism 3 265 11.75 - - 804
Average 268 11.24 417 2609 598
St. Dev. 4.36 1.38 80.61 48.79 178.8
C.o.V. 0.016 0.122 0.193 0.019 0.299

Average (sulfur mortar caps) - 12.03 - - -

The prism with the neoprene sheet as the top compensating layer exhibited a lower strength
value and a different failure mode. Whereas the sulfur mortar layer provides a certain degree of
confinement on the top and base units, as is demonstrated by the largely undamaged state they
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Figure 4.11 Cyclical loading response of masonry prisms.

are in at the end of the test, the neoprene layer affords the opposite effect. The lateral expansion
of the sheet causes major vertical cracks at mid length of all the faces of the top unit for a very
low load. Further load increase leads to the formation of new vertical cracks, in parallel with the
first central crack, as well as to the perimetrical spalling noticed in the sulfur cap cases. At the
end of the test the top unit was found to be significantly cracked, while the base unit was once
again free from extensive damage.

At the end of the test, the remaining masonry cores were inspected and manipulated and were
found to be very fragile, which is to be expected from the fact that the test was continued until a
very low level of residual strength. The sulfur mortar caps were also inspected, and, apart from
limited damage near the edges of the masonry where the perimetrical spalling had affected the
top and base units, they were found to be intact. The neoprene sheet did not show significant
damage.

In all three cases the mortar was found to be in a much deteriorated state due to crushing.
The smooth post-peak curve appears to indicate that the failure is governed by crushing, which
would account for the amount of energy release. Furthermore, examination of the samples after
testing revealed that the mortar had no residual strength and even completely lacked integrity,
especially near the edges of the masonry. Finally, the detached pieces of brick had hardly any
mortar adhering to the beds, indicating either a poor tensile and shear bond or simply complete
deterioration of the mortar due to crushing.

It is possible that the carbonation of the mortar near the center of the joints was incomplete
due to lack of free contact with the air. In this case, complete carbonation of the entire mass
of mortar would require a significant amount of time. This could account for the fragility and
instability of the remaining masonry core.

The initial and unloading/reloading Young’s moduli of the ALMmasonrymeasured from the
cyclic tests were lower and higher respectively than the final value registered in the monotonic
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Figure 4.13 ALM prisms after testing: (a) with sulfur mortar cap and (b) with neoprene sheet.

compression test. The average ratio of the final Young’s modulus in the monotonic test over the
compressive strength was 53.2.

The HLM prisms exhibited higher capacity and global stiffness and an apparent shift in
failure mode. Although the initiation and propagation of cracking was similar to the ALM case,
as was the fact that the top and base units remained mostly undamaged, there were a number
of noticeable differences. Firstly, the mortar retained its integrity to a higher degree, as was
evident by inspection of the mortar masses adhering to the broken off pieces of brick as well as
the existence of intact mortar pieces which, after manual manipulation, did not exhibit signs of
significant crushing. Furthermore, the mortar in the remaining core was not crushed. Hydraulic
lime should not normally experience problems with curing in areas not in free contact with air.

There appeared to be evidence of more extensive unit cracking than in the ALM case. The
broken off pieces of brick were generally of smaller size and there was noticeable presence of
unit dust, which was not present in the ALM samples. Due to the relatively high compressive
strength of the units, it seems unlikely that the unit dust is the result of unit crushing. Overall,
the above evidence appears to point towards a more prevalent influence of unit cracking in the
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failure mode. The condition of the HLM masonry after the test is shown in Figure 4.15.
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Figure 4.14 Stress displacement diagrams for hydraulic lime prisms. Neoprene sheet used for prism 3.
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Figure 4.15 HLM prisms after testing: (a) with sulfur mortar cap and (b) with neoprene sheet.

The HLM post-peak curves were also of a different overall shape, featuring steep, almost
vertical, decline in the resisting force. However, the remaining masonry core was more stable
than in the ALM cases and mostly intact due to the better condition the mortar was in at the end
of the test. The steeper post-peak curves corroborate the point of higher involvement of cracking
in the failure.

The HLM prism with the neoprene cap (prism 3) exhibited a lower compressive strength
than the corresponding ALM prism. The failure mode was again similar across both material
types, with extensive cracking at the top unit in the HLM case. The neoprene sheet itself was
torn at the end of the test, but it could not be determined whether the failure of the sheet was
responsible for the reduced apparent capacity of the masonry. The load displacement graphs for
the HLM masonry are shown in Figure 4.14.

Both the values of the initial and unloading reloading Young’s moduli measured in the cyclic
tests were higher than the value recorded during the monotonic compression tests. The average
ratio of the final Young’s modulus over the compressive strength was 89.81.
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The vertical deformation measurements, obtained by means of the LVDTs placed in this di-
rection, are presented in Table 4.7 and Table 4.8. The average value for the Young’s modulus of
the units measured directly in the masonry considering all six cases was 6031N/mm2, but the
coefficient of variation was 1.06. The results from the compressive strength tests on the units
should, for all intents and purposes, be considered more reliable for determining the Young’s
modulus of the units. However, it is worth noting that the average brick Young’s modulus mea-
sured in the masonry agrees with the one measured in the compressive tests carried out on three
stacked samples.

Table 4.8 Masonry compressive strength results for HLM prisms. Neoprene sheet was used for prism 3.

Sample
Height fc Initial Ec Unloading Ec Final Ec

[mm] [N/mm2] [N/mm2] [N/mm2] [N/mm2]
Prism 1 265 13.80 1153 2836 1021
Prism 2 268 13.66 1326 2488 1053
Prism 3 280 9.05 1928 3078 1204
Average 271 12.17 1469 2801 1093
St. Dev. 7.94 2.70 406.81 296.58 97.7
C.o.V. 0.029 0.222 0.277 0.106 0.089

Average (sulfur mortar caps) - 13.73 - - -

Having acquired the values of the Young’s modulus for the units and the two masonry com-
posites it is possible, through equation (1), to estimate the Young’s modulus of the mortars. The
resulting Young’s moduli for the ALM and HLM are 125N/mm2 and 225N/mm2 respectively.

The horizontal measurements in the central brickwere also successful. The average Poisson’s
coefficient over the three ALM cases was 0.162. These results could not be based on the cyclic
tests but on the monotonic tests for the determination of the masonry strength, as the horizontal
deformation in the former proved to be too low to be measured accurately.

The development of the cracks typically observed in the masonry is illustrated in Figure 4.16,
where the location and order of appearance of visible crack damage is shown for the two capping
methods used. Similar crack development was noted for both ALM and HLM masonry.

(1)

(2)(2) (3)

(3)

(4) (1) (2)

(3) (3)

(3) (3)
(4) (4)

(a) (b)

Figure 4.16 Crack development schematic in masonry: front and side view of prisms (a) with sulfur
mortar caps and (b) with neoprene top cap, the numbers indicating order of appearance.
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For both mortar types, the units and both masonry composites, the ratio between the Young’s
modulus and the compressive strength was significantly lower than the ratios reported in the
literature and particularly lower than the ratios provided as rough estimations in design codes,
such as Eurocode 6 [41].

Another major discrepancy between these experimental results and standard design code
provisions is in the prediction of the compressive strength of the masonry from that of the two
component materials. The Eurocode 6 equation for the characteristic compressive strength of
standard masonry composed of clay units and general purpose mortar, such as the ones used in
this campaign, reads:

fc = 0.5 fc,u
0.7 fc,m

0.3 (4.3)

Equation 4.3 results in a value of 4.7N/mm2 for the aerial limemortarmasonry and 5.4N/mm2

for the hydraulic lime masonry, which are much lower than the experimentally derived values.

In the present experiments, an increase of 50% in the compressive strength of mortar, as the
one between the two types of mortar tested, only resulted in a 14% increase in the compressive
strength of the composite, considering only the sulfur cap cases. This result is almost entirely
consistent with the exponent on themortar compressive strength which yields an increase of 13%
for the composite when the mortar strength increases by 50%. In terms of compressive strength
alone, the composite specimens were, in contrast with the mortars, more within the applicability
spectrum implied in the EN 1052-1 standard for masonry compression testing.

Throughout all the cases the failure mode remained consistent. It was mostly influenced
by the capping method, as was the compressive strength. The two capping materials did not
have a significant effect on the global stiffness of the test setup, due to their very low thickness,
with slightly lower global stiffness in the neoprene cases, as observed in the readings of the
stroke of the actuator. The LVDT readings are, however, independent of the capping, since they
were anchored on the masonry and not on the loading plates. The deformation of the composite
specimen accounted for almost the entire deformation of the setup.

Concerning the measurement instruments used, the removal of the LVDTs prior to the stress
peak may not have been entirely necessary, given the fact that the load is applied in displacement
control, thus eliminating the possibility of explosive failure and, therefore, of damage to the
instruments. Near the peak the vertical deformation is more uniform, which would allow for
better measurements to be obtained.

4.4 Numerical Analysis

4.4.1 Model Description and Initial Results

The numerical simulation of the experiments has been performed using the methodology de-
scribed in the chapter on finite element micro-modeling of masonry in compression. The prop-
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erties used for the analyses is indicated in Table 4.9.

Table 4.9 Constituent material properties for numerical analysis.

fc ft E ν

[N/mm2] [N/mm2] [N/mm2] [-]
Units 23.0 3.22 4200 0.16

Aerial Lime Mortar 1.25 0.19 125 0.25
Hydraulic Lime Mortar 1.9 0.37 225 0.25

The three-dimensional mesh used for the analysis, along with the planes of symmetry taken
into account, is shown in Figure 4.17a. Since the compressive load direction perpendicular to
the unit/mortar interface, perfect bond was considered between the twomaterial phases. Overall,
3213 20-node brick elements were used in the analysis.
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Figure 4.17 (a) FE mesh used for analysis and (b) Comparison of experimental and numerically derived
stress-strain curves for ALM and HLM masonry. FE results in tinted lines.

The stress-strain curves obtained from the analyses are shown in Figure 4.17b and are com-
pared to the curves obtained experimentally. The finite element models obtained a good esti-
mation of the compressive strength of masonry for both cases. The initial elastic stiffness was
slightly overestimated, resulting in a peak strain slightly lower than the one registered in the ex-
periments. Additionally, the finite element model of the ALM prism resulted in a more brittle
failure mode than the experimentally observed one. The more brittle post-peak behavior ob-
served for the HLM case was more accurately reproduced. The locking behavior obtained in
the numerical curves could be the result of the mortar joint behaving as an incompressible layer
under a large amount of lateral confinement.
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4.4.2 Parametric Investigation

A two-fold parametric investigation has been carried out using numerical modeling. Firstly,
the effect of the material properties of the mortar which were not directly measured has been
investigated: the Poisson’s ratio and the Young’s modulus. Secondly, the effect of the finite
element model was investigated by comparing the initial analysis results with results obtained
from plane stress and plane strain models.

The values of the Young’s modulus tested extended from half the original experimentally de-
rived values up to 1000 times the compressive strength of the mortar. This range covers nearly
the entirety of the range of values encountered when compiling the inventory of experimental
data in the chapter on finite element modeling of masonry in compression. The range of val-
ues for the Poisson’s ratios tested spanned from 0.15 to 0.3. This range too covers the values
encountered in the inventory. While the upper value appears high as an initial value for a lime
mortar, it has been experimentally shown that the Poisson’s ratio of mortar increases rapidly for
an increase in the applied load, starting from very early in the elastic range [106, 114].

The results of the material property parametric investigation are presented graphically in
Figure 4.18 and tabulated in Table 4.10. In the figure it is shown that an increase in the Poisson’s
ratio of the mortar results in an increase in the compressive strength of masonry. Similarly, a de-
crease in the Young’s modulus of the mortar results in an increase of strength as well, especially
for high values of the Poisson’s ratio of mortar. This behavior is noted for both types of mortar.
Increasing the deformability of the mortar increases the confinement afforded to it by the units,
resulting, finally, to an increase in the compressive strength of masonry. It is expected, however,
though not noticed in these numerical analyses, that an excessive increase in the confinement
of the mortar results in excessive horizontal and transversal tension of the bricks under vertical
compression. It is therefore demonstrated that very weak mortars coupled with sufficiently rigid
and strong units can produce masonry composites with a compressive strength far higher than
that predicted by design codes.

A second trend that has been noticed in this parametric investigation is the increase of the
Young’s modulus of masonry for an increase of the Poisson’s ratio of mortar. In the range of
Poisson’s ratios tested, this increase may be as much as 20% for mortars with low Young’s
moduli, with the increase being only 5% for mortars with a high Young’s modulus.

The effect of modeling strategy on the compressive strength and Young’s modulus of ma-
sonry is presented in Table 4.11. It is immediately apparent that plane stress models dramatically
underestimate the compressive strength ofmasonry. Three-dimensional models provide themost
accurate results and plane strain models tend to overestimate the compressive strength of ma-
sonry. Plane strain models result in a Young’s modulus for the masonry composite 10% higher
than the plane stress models, with three-dimensional models resulting in an intermediate value
for both cases.
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Figure 4.18 Influence of Em and νm on masonry compressive strength: (a) ALM, (b) HLM.

4.5 Conclusions

In the present work, a series of masonry materials frequently present in historical structures,
namely fired clay bricks, aerial calcium mortar and hydraulic calcium mortar, was characterized
mechanically. These materials were used in the construction of masonry prisms, which were
subsequently tested in compression. A number of conclusions were drawn from these experi-
ments.

Firstly, it has been established that relatively high masonry strength can be consistently
achieved using conventional lime mortars and moderately strong units. Specifically, it was pos-
sible to achieve masonry strength nearly ten times higher than the compressive strength of the
mortar. Additionally, it was observed that a significant amount of energy absorption is possible,
especially in failure modes dominated by mortar crushing. In order to achieve this high masonry
compressive strength the samples were tested at 49 days instead of the standard 28, a significant
increase in the compressive strength of the mortar being registered in the intervening time.

The lime mortars tested in this campaign appear to be situated slightly below the spectrum
of mortars covered by the EN 1015-11 standard, as was made apparent not only by their low
resulting strength but also by the length of time required for maturity and the very low loading
rates necessary for adequately controlled and, therefore, accurate testing.

The resulting masonry composites had a compressive strength much higher than the ones
predicted by the EN standard. However, the relative increase in the compressive strength of ma-
sonry for an increase in the compressive strength of the mortar was consistent with the increase
predicted by the EN standard, even though the prediction was incorrect in terms of absolute
values.

Lime mortar specimens present a number of difficulties during experimental testing due to
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Table 4.10 Results of parametric investigation: influence of mortar material properties on compressive
strength and elasticity of the masonry composite.

Em νm fc Ec Em νm fc Ec

[N/mm2] [-] [N/mm2] [N/mm2] [N/mm2] [-] [N/mm2] [N/mm2]
A
LM

M
as
on

ry

65

0.15 4.2 385

H
LM

M
as
on

ry

110

0.15 6.3 662
0.20 6.8 402 0.20 10.1 689
0.25 10.4 429 0.25 15.5 731
0.30 12.8 471 0.30 17.4 797

125

0.15 4.2 739

225

0.15 6.2 1185
0.20 6.6 768 0.20 9.7 1225
0.25 10.5 814 0.25 14.8 1288
0.30 13.6 885 0.30 17.8 1383

625

0.15 3.7 2296

950

0.15 5.5 3131
0.20 5.6 2342 0.20 8.2 2894
0.25 8.5 2413 0.25 12.4 2928
0.30 11.0 2519 0.30 16.0 3009

1250

0.15 3.5 3126

1900

0.15 5.1 3660
0.20 5.0 3157 0.20 6.9 3598
0.25 7.2 3208 0.25 9.7 3627
0.30 9.4 3285 0.30 12.1 3676

their low strength and curing characteristics. Due to their low strength, it may be inappropriate
to use modern testing standards for their characterization. Moreover, and due to the slow curing
process experienced by them, only small specimens can be reliably tested, especially for aerial
lime mortars. As far as the testing and measuring equipment is concerned, larger specimens,
such as cylinders, might provide more accurate measurements of the mechanical properties;
however, the proper curing throughout the specimen would not be achieved before a very long
time has elapsed.

Employing the coring method for extracting samples from the units, it was possible to obtain
sufficient specimens for one bending test and between two and six compressive strength/Young’s
modulus tests, depending on the number of cores in the compressed stack. Given sufficient brick
dimensions, several tests may be performed on a single brick, making the method an interesting
choice for historical brick testing.

Boundary conditions during masonry testing, as influenced by the capping method, can have
a pronounced effect on the estimation of masonry strength and the obtained failure mode. Sulfur
caps provide lateral confinement to the masonry and limit the initiation of failure in the mid-
height of the masonry. On the other hand, neoprene caps caused premature failure near the load
platen due to excessive lateral expansion of the neoprene sheet.

Numerical modeling of the experiments using micro-models, apart from resulting in an ad-
equate reproduction of the experiments, has highlighted a number of points concerning the in-
fluence of the elastic properties of the mortar. Increasing the deformability of the mortar by
lowering its Young’s modulus and increasing its Poisson’s ratio can result in a dramatic in-
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Table 4.11 Numerical results from plane stress (PS), three-dimensional (3D) and plane strain (PE) anal-
yses.

fc Ec

[N/mm2] [N/mm2]

ALM Masonry
PS 1.49 746
3D 10.46 814
PE 11.76 825

HLM Masonry
PS 2.22 1197
3D 14.77 1287
PE 15.77 1310

crease in the compressive strength of the masonry composite. The effect of modeling strategy
is also noted. Three-dimensional models provide the most accurate results in terms of predicted
strength. Underestimation of the confinement of mortar, as is the case when using plane stress
models, results in a large underestimation of the compressive strength of masonry. Additionally,
overestimation of this effect, as when plane strain models are used, can result in an overestima-
tion of the strength. The effect of the modeling method on the Young’s modulus of the masonry
composite has been noted, but is not as pronounced.
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Chapter 5

Simulation of Wall In-Plane Shear Tests

5.1 Introduction

Unreinforced masonry buildings are common in many seismic prone countries. In most cases
they were built before the development of comprehensive research and the proposal of rational
engineering procedures for their design. The careful observation of damages and collapses pro-
duced by recent earthquakes [127] has shown that the most vulnerable mechanisms are normally
the out-of-plane failures of walls, mainly due to presence of insufficient connections between
elements and lack of rigid horizontal diaphragms. Once such drawbacks are overcome by in-
troducing appropriate devices able to ensure the box behavior of the building, the shear walls
provide to the building the sufficient stability to lateral forces [99]. For this reason, numerous
research studies have been devoted to the interpretation of the in-plane failure modes observed in
the experimental tests of these structural members. The comprehensive experimental programs
available in the literature present both empirical and analytical approaches for the derivation
of the strength of masonry shear walls [66, 147, 161]. Nowadays, the advent of sophisticated
numerical approaches has produced different strategies for the simulation of the behavior of ma-
sonry structures [96, 126, 132]. In this context, it is considered that approaches combining both
experimental and numerical studies are necessary to consolidate the existing knowledge and to
obtain a better understanding of the complex behavior of masonry shear walls.

The numerical analysis of masonry walls subjected to in-plane shear is a problem often ad-
dressed using finite element macro-models. This simplified approach is made necessary by the
often insufficient characterization of the mechanical properties of the constituent materials and
the need to mitigate computational cost. Analytical expressions may also be employed for the
determination of the maximum shear resisted by the walls. Detailed micro-modeling allows for
a more in-depth analysis of the failure mode observed in shear walls under varying levels of
vertical stress and boundary conditions.

The current state of the art on the numerical simulation of masonry walls subjected to in-
plane shear using detailed micro-modeling methods is limited (e.g. [8, 64]). Macro-models and
simplified micro-models are far more common, but are faced with the same modeling uncertain-
ties and assumptions necessary to be made for carrying out numerical analyses.

81



82 Simulation of Wall In-Plane Shear Tests

In this chapter, several experimental tests involving masonry shear walls are reproduced us-
ing detailed micro-modeling techniques. The experimental campaigns involved several wall
geometries and boundary condition types, all of which are considered in the numerical investi-
gation. Furthermore, the effect of the finite element type used on the predicted shear strength of
the walls is investigated and discussed in terms of result accuracy and numerical efficiency.

5.2 Case Study

5.2.1 Overview

In the present research, a series of in-plane shear tests on fifteen scale walls, under different
levels of vertical stress, was considered [44, 88]. The walls were composed of solid clay bricks
and cement mortar arranged in single leaf running bond.

The bricks were scaled to 1:4 of the full brick dimensions and the mortar was produced using
M8 mortar with adjusted granulometry for the removal of the larger aggregates. As such, the
bricks measured 72.5×12.5×35mm3 and the joints were 2.5mm thick. The walls were capped
using a stiff reinforced concrete beam. The vertical pre-compression and the horizontal load
were applied on this beam. The experimental setup for the shear tests is shown in Figure 5.1.
The figure illustrates the positioning of the vertical and horizontal presses as well as the LVDTs
for measuring vertical and horizontal deformation, the former attached directly to the wall and
the latter measuring the movement of the beam.

(a) (b)

Figure 5.1 Experimental setup for wall shear tests: (a) main series and (b) walls with openings.

A number of different geometrical layouts were tested, all based on single leaf running bond
masonry walls, shown in Figure 5.2. The basic wall was subjected to the widest range of vertical
pre-compression levels and consists of sixteen courses in height and four units in length. The
remaining typologies were derived from the basic wall by varying the height and length of the
structure. These walls were subjected to a single value of vertical stress level. Finally, a wall
type with an opening was tested under six levels of vertical stress.
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In addition to the different geometrical typologies tested, the basic wall typology was tested
under different boundary conditions. One series of tests was performed allowing full freedom
of movement to the top bounding beam and one series with a beam restrained against rotation
but left free to move vertically.

(a) (b) (c)

(d) (e) (f)

Figure 5.2Wall types experimentally tested and numerically simulated: (a) basic wall, (b) & (c) with
variation in height, (d) & (e) with variation in length and (f) wall with opening.

A single wall was tested for each value of vertical stress in the main series (free and con-
strained beam), two walls for each of the alternative dimension walls and one for each level of
vertical stress for the walls with openings. Despite the use of a single data point for each vertical
stress level for most of the series, the continuity of the data sets alleviates the risk of outlying
results.

5.2.2 Material Properties

Extensive mechanical characterization has been performed on the units, the mortar and small
masonry samples composed of said materials. These properties are presented in Table 5.1. The
units and the mortar were tested in compression and three-point-bending. The unit/mortar inter-
face was tested through direct tension of couplets and shear tests on triplets. In the table, the term
f f lex refers to the flexural strength measured by means of the three-point test. In the absence of
direct tests, the uniaxial tensile strength is herein estimated from the flexural strength by using
an empirical correlation provided by the Model Code 2010 [35] applied to results obtained from
full scale bricks. By applying this correlation, a value of 3.4N/mm2 is obtained for the tensile
strength of the solid clay units. The resulting ratio of ftu/ fcu is equal to 9.7%, which is deemed
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realistic for clay masonry bricks according to the previously studied inventory of experimental
results. The same equation has been applied to the mortar, of which standard prismatic samples
were produced and tested [41] The obtained tensile strength is 1.36N/mm2. The wallettes were
constructed and tested according to the provisions of the relevant CEN standard [38].

Table 5.1 Mechanical properties of materials and small masonry assemblages.

fc f f lex E ν

[N/mm2] [N/mm2] [N/mm2] [-]
Units 35.0 15.2 4080 0.15
Mortar 8.34 3.08 3500 0.20

Prism Vertical 20.2 - - -
Wallette Vertical 15.2 - 4370 -

Wallette Horizontal 16.9 - - -
ft c0 ϕ

[N/mm2] [N/mm2] [-]
Interface 0.55 0.42 390

The Poisson’s ratios of the units were not directly measured, but were rather given standard
values. Several observations can be made by examining these experimental results. In particular
the influence of the existence of head joints in the behavior of masonry is apparent in the differ-
ence between the compressive strength of the running bond wallettes and the stack bond prism
in vertical compression. Additionally, the horizontal compressive strength of the running bond
wallette was higher than the one in the vertical direction. This fact reveals a good compaction
of the mortar in the head joints, to a degree that is often not achieved in brick masonry.

5.2.3 Wall Test Results

All experimental results are summarized in Table 5.2. The results include the Young’s modulus
of the walls as measured during the application of the vertical stress on the main series of walls
(free and constrained).

Comparing the maximum shear stress obtained from the free and constrained beam tests, it
is shown that the boundary conditions strongly affect the behavior of the walls under in-plane
shear. While for low levels of vertical stress the difference is not acute, the constrained walls
reach significantly higher maximum shear for vertical stresses higher than 1N/mm2. Of note is
the wide dispersion of the results of the vertical Young’s modulus of the walls within each series.
The overall average is 36% higher than the Young’s modulus measured in the wallette tests, but
with a high coefficient of variation of 0.45. The difference in the Young’s modulus for different
levels of applied stress could be attributable to the compaction of the bed joints under the effect
of vertical stress. For higher levels the wall stiffens due to this compaction, while for the highest
levels the drop in stiffness could be attributable to the beginning of hardening in compression.

The results of the walls with differing dimensions present a few interesting points for compar-
ison with the main series of results. A decrease in height results in a small increase in maximum
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shear. A decrease in length, however, results in a significant decrease of the maximum shear.
The walls with the openings tended to produce a slightly lower maximum shear than the main
series of walls with a free beam for the same vertical stress.

Table 5.2 Experimental results of vertical compression tests and combined vertical compression and in-
plane shear tests on scale walls.

Main Series - Free Beam Main Series - Constrained Beam

Sample
Height Length σ τmax Ey Sample

Height Length σ τmax Ey

[mm] [N/mm2] [mm] [N/mm2]
F_9_V_5 250 300 0.895 0.538 5246 C_3_V_2 250 300 0.286 0.251 4077
F_12_V_6 250 300 1.190 0.646 4143 C_6_V_4 250 300 0.571 0.427 4580
F_15_V_8 250 300 1.486 0.850 3666 C_9_V_5 250 300 0.895 0.518 4854
F_20_V_10 250 300 1.933 1.028 4769 C_15_V_9 250 300 1.486 0.941 3891
F_25_V_12 250 300 2.381 1.180 6515 C_25_V_16 250 300 2.381 1.544 8759
F_28_V_14 250 300 2.681 1.363 9346 C_31_V_17 250 300 2.981 1.705 9801
F_31_V_15 250 300 2.981 1.461 10239 C_40_V_18 250 300 3.867 1.774 10734
F_35_V_15 250 300 3.333 1.454 10874 C_50_V_20 250 300 4.762 2.031 9198
F_40_V_17 250 300 3.867 1.635 8707 C_62_V_27 250 300 5.952 2.584 4715
F_45_V_18 250 300 4.286 1.722 5277 C_75_V_36 250 300 7.143 3.482 5270
F_50_V_18 250 300 4.762 1.737 4643 C_90_V_31 250 300 8.571 3.106 3281
F_56_V_23 250 300 5.357 2.249 4538 C_95_V_30 250 300 9.048 2.864 2836
F_62_V_20 250 300 5.952 1.969 3020 C_105_V_24 250 300 10.000 2.333 2434
F_95_V_18 250 300 9.048 1.737 - C_115_V_7 250 300 10.952 0.716 -

Different Dimensions With Window

Sample
Height Length σ τmax Sample

Height Length σ τmax

[mm] [N/mm2] [mm] [N/mm2]
D_21_V_12 195 300 2.000 1.163 W_1_V_7 270 338 0.645 0.416
D_21_V_11 135 300 2.000 1.111 W_2_V_13 270 338 1.132 0.649
D_15_V_5 250 225 2.000 0.732 W_3_V_21 270 338 1.858 1.119
D_10_V_2 250 150 2.000 0.544 W_4_V_30 270 338 2.540 1.116

W_5_V_38 270 338 4.036 1.498

Examples of the experimentally derived failure modes are shown in Figure 5.3. For the main
series of walls for an increase in the vertical stress level the failure mode shifted from a rocking
mode dominated by opening of a flexural interface crack, to a shear sliding mode and finally to
a diagonal cracking mode accompanied by crushing of the compressed toe.

5.3 Modeling

5.3.1 Finite Element Models

The experimental tests will be simulated using the same modeling strategy presented for the
analysis of masonry in compression. With the expectation that correct estimation of the be-
havior of the masonry composite in compression will be critical in correctly reproducing these
experiments and predicting the maximum shear, three-dimensional models will be employed.
However, a limited investigation on the effect of the modeling method on the predicted maxi-
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(a) (b) (c)

Figure 5.3 Experimental failure modes: (a) main wall series, (b) alternate dimension series and (c) wall
with opening.

mum shear has been attempted by simulating a number of these experiments using plane stress
and plane strain models of the walls.

The finite element meshes of the shear walls are shown in Figure 5.4. The face of each
masonry unit was divided to 32× 6 elements. All mortar joints have 2 elements across their
thickness. Across the thickness of the wall 6 elements were used. For the main series of walls
101304 20-node solid brick elements were used for the units and the mortar and 26892 16-node
interface elements for the unit/mortar interfaces. Since the plane stress and plane strain models
used the same overall arrangement of finite elements, 16884 8-node surface and 4482 6-node
interface elements were used in those cases.

The vertical load is applied as a uniform stress at the top of thewalls, kept constant throughout
the analysis. The horizontal load is applied as a uniform displacement at the top, monotonically
increasing.

Having already stressed the importance of properly simulating the behavior of masonry in
compression in order to predict the shear strength of walls, it was deemed necessary to establish
this model’s capacity of predicting the compressive strength of this composite. This has been
accomplished by simulating the compressive tests on prisms and wallettes usingmicro-modeling
methods. In addition to estimating the accuracy of this method, the influence of the interface
nonlinearities on the predicted compressive strength has also been investigated by comparing
the results of the detailed micro-model to those of the meso-model. Finally, the results obtained
from the full wall models are compared to those of a single periodic unit cell. The prism model
has been elaborated as a meso-model, since the compressive load is applied in a direction normal
to the unit/mortar interface.

The FEmeshes used for the preliminary analyses on the compressive strength of masonry are
shown in Figure 5.5. For the prism model 3402 solid elements were used, for the wallette 20886
solid and 3582 interface elements and for the cell 3120 solid and 672 interface elements. The
compressive loads were applied as uniform displacements at the compressed face of the model.
For the cell model displacement conformity conditions were applied in order to ensure uniform
displacement of the faces.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4 Finite element meshes of shear walls: (a) basic wall, (b) & (c) with variation in height, (d) &
(e) with variation in length and (f) wall with opening.
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(a) (b)

(c)

Figure 5.5 Finite element meshes for compressive strength determination: (a) prism, (b) wallette and (c)
cell models. Symmetry planes at (a) and (b) shown in tinted lines.
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All analysis results are presented in Table 5.3. In terms of the predicted Young’s modulus
of masonry, the full wallettes and the cells give very similar results. As expected, no difference
was registered in the Young’s modulus of masonry due to interface nonlinearities. The prism in
vertical compression has the highest strength, followed by the wallette in vertical compression
and, finally, the wallette in horizontal compression. The influence of the interface nonlinearities
on the compressive strength of the wallettes is stronger in the horizontal direction, where a 10%
drop in the compressive strength was registered when they are taken into account. For the cell
models a 13% drop in the compressive strength was registered in the vertical direction. De-
spite this relatively small effect on the compressive strength of masonry, interface nonlinearities
should be taken into account when investigating the behavior of masonry in tension and shear.

Table 5.3 FE results for masonry in compression: simulation of prism andwallette tests using full models,
cell models and with/without interface nonlinearities.

Model
fc,x Ec,x fc,y Ec,y

[N/mm2]
Prism - - 18.90 3982

Wallette Meso-Model 16.92 3966 16.21 3917
Wallette Micro-Model 15.33 3966 16.08 3917
Cell Meso-Model 15.26 3928 16.9 3982
Cell Micro-Model 14.91 3928 14.74 3982

In general, the FEmodels give a good approximation of the experimentally derived compres-
sive strength and Young’s modulus. The cell models give results similar to the full wallettes. The
computational cost for an analysis using the wallette model is significantly higher than for the
cell model due to the smaller number of elements of the latter. Therefore, the analysis of ma-
sonry walls using cell models for the determination of their compressive strength can be seen as
an efficient alternative to full wallette model simulations for the determination of the in-plane
failure envelope of the masonry composite.

5.4 Analysis Results

5.4.1 Experimental Results vs. Numerical Analysis

As shown in Figure 5.6, the three-dimensional models are able to reproduce the experimental
results fairly accurately. In the case of the unrestrained wall there is nearly complete coincidence
of experimental and numerical results for the entire range. In the case of the restrained walls,
the radical change of trend in the experimental results for a vertical stress higher than 7.5N/mm2

was not registered, although a slight change of trend was indeed noticed for a vertical stress load
higher than 8.5N/mm2.

The plane stress model, although giving adequate results for low levels of vertical stress,
failed to accurately predict the maximum shear for the greatest part of the vertical stress range:
the numerical values in this case were greatly underestimated. The low confinement afforded on
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Figure 5.6Main wall series: comparison of experimental and numerical maximum shear stress: (a) un-
restrained top and (b) restrained top cases.

the mortar by the units in the plane stress models did not allow for a vertical pre-stress higher
than the uniaxial strength of the mortar to be applied on the walls. The plane strain model, how-
ever, provided very adequate results, with values very near those given by the three-dimensional
model. For the highest range of the spectrum of vertical pre-stress, the plane strain model tended
to slightly overestimate the maximum shear, while the three-dimensional model slightly under-
estimated it.

It has been already shown that plane strain models tend to provide values for the compressive
strength of masonry higher than those of three-dimensional models, while plane stress models
usually underestimate it [54]. Three-dimensional models normally provide results between the
two plane approaches. In the case of the shear wall experiments here considered, the plane stress
models again underestimate the experimental value of themaximum shear. The near coincidence
of the results provided by the three-dimensional and plane strain models indicates that in micro-
modeling of shear walls the confinement effects in mortar under compression are critical but are
not the only decisive factor for correctly predicting the shear capacity of masonry walls.

Overall, unlike the case ofmasonry under uniaxial compression, plane strainmodeling proves
practically equal to three-dimensional modeling for the purpose of predicting the capacity of
walls in shear, while simultaneously being advantageous in terms of computational efficiency.
Plane stress is an adequate choice for a very limited range of the spectrum of vertical stress levels
in this particular sample of cases.

Figure 5.7a shows the comparison of the maximum shear between the four walls with alter-
native dimensions and their numerical simulation. The agreement is good for two of the cases,
while some divergence is found for the remaining two. Figure 5.7b shows the comparison of
the experimental and numerical results for the series of walls with openings. The maximum
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Figure 5.7 Comparison of experimental and numerical results: (a) walls with different dimensions (σ =

2.0N/mm2) and (b) walls with opening.

shear predicted by the finite element model is generally in agreement for the greater extent of
the range of results, although the numerical model tends to underestimate the value for higher
vertical compression levels.

Examining the shear stress-displacement graphs of the main series, a change in the ductility
of the response of the walls is noted. For low levels of vertical stress, in which the failure is
dominated by a rocking mode, the response is highly ductile. As the vertical stress increases
there is a noted drop in ductility. This change of ductility is shown in Figure 5.8, where for low
levels of vertical stress the shear reaches a long plateau, whereas brittle behavior is noted for
higher levels of vertical stress.

The shift in failure mode is also evident in the deformation and damage patterns obtained
numerically for the same series of results. In Figure 5.9a, the rocking failure mode is clearly
shown by the opening of the bed joint interface at the lower-most course. Figure 5.9b shows
some opening of the bed joint interface in the same location. However, in addition, shear sliding
and cracking are also appearing. In Figure 5.9c there is no opening of the bed joint interface and
significant cracking takes place at the compressed foot, accompanied by yielding in compression.

5.4.2 Numerical Analysis vs. Closed Form Predictions

The experimental and the finite element analysis results, focusing on the series of walls with
unrestrained top, will be compared to the results obtained from closed form expressions and
modernmasonry design rules. These expressions, proposed for the solution of the same problem,
rely on the determination of different material parameters for the masonry composite: its shear,
tensile and compressive behavior.
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Figure 5.8 Numerically derived stress displacement graphs for main series of walls.

(a) (b) (c)

Figure 5.9 Numerically obtained failure modes: deformation profile and cracking patterns of main series
of walls with unrestrained top beam for (a) σ = 0.893N/mm2, (b) σ = 2.981N/mm2 and (c)
σ = 9.048N/mm2.

A model based on the Mohr-Coulomb criterion for shear under applied normal stress is pro-
posed by the EN standard for masonry design [40]. The maximum shear is equal to

τmax = c+0.4σ (5.1)

where c is the initial shear strength and σ the applied normal stress, taking compressive
values as positive. In this standard a value of 0.2N/mm2 may be prescribed for the initial shear
strength for this masonry typology, which is not very different from the value of 0.25 determined
experimentally. The 0.4 value in the equation corresponds to the tangent of the friction angle as
proposed in the standard for masonry in general, which is very different from the value of 0.81
determined in the experiments. In summary, this model is characterized by an apparent disregard
of failure types other than shear sliding, which may be encountered in masonry shear walls, and
the adoption of empirical values for the initial shear strength of masonry. Furthermore, the
expression is not dependent on the dimensions of the studied structural member.
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A flexural model for masonry in shear, based on in-plane equilibrium of the shear wall and
assuming a plastic distribution of compressive stresses in the compressed toe, has also been
formulated, proposed by the Italian Ministry of Infrastructure and Transport [79]. According to
this model the maximum shear is equal to

τmax =
σL
2H

(
1− σ

0.85 fc

)
(5.2)

where fc is the compressive strength of masonry, H is the height of shear wall and L is its
length. In this case the compressive strength of masonry will be taken as equal to the average of
the compressive strength determined in the running bond wallettes in the vertical and horizontal
direction: 16.05N/mm2.

Finally, a model using the tensile strength of the masonry composite has been proposed by
Turnšek & Cacovic [147]. It assumes the formation of diagonal cracks in the masonry wall. The
dimensions of the wall are not taken into account in the expression. According to this model the
maximum shear is equal to

τmax = ft

√
1+

σ

ft
(5.3)

In this study the tensile strength of masonry ft will be taken as equal to the tensile strength
of the unit/mortar interface. This value corresponds to 3.4% of the compressive strength of the
masonry composite. This assumption is deemed reasonable due to the predominantly flexural
response of the walls with an unrestrained top, which results in the opening of the bed joints.

The comparison of all the experiments and analysis approaches is shown in Figure 5.10.
According to the interaction diagram of applied normal stress vs. maximum shear it becomes
apparent that the finite element models produce the most accurate results. Among the three ana-
lytical expressions studied the flexural model based on compressive strength produces the most
accurate results, being behind in terms of accuracy only to the finite element model. However,
due to the formulation used in the model, the shear strength of the wall for zero vertical load is
zero as well. The EN standard expression, though based on a nominal friction angle and a pre-
scribed cohesion based on the masonry typology, produces good results in the range of vertical
stress between 0.5 and 3N/mm2. Its orientation as a design code makes it reasonably accurate in
its intended spectrum of application: vertical stresses higher than 3N/mm2 are unlikely to arise
in masonry walls under shear loading. However, its results diverge for higher levels of vertical
stress. Finally, the model based on the tensile strength of masonry does not produce consistently
satisfactory results for any part of the experimental range. Despite using a low value for the
tensile strength (that of the unit/mortar interface) the model overestimates the maximum shear
for a range of vertical stress between 0 and 3N/mm2.

Of the three analytical models investigated the one based on the compressive strength of ma-
sonry appears to provide the best overall results. This fact highlights the importance of properly
modeling and taking into account the compressive strength of masonry in shear walls. Three-
dimensional micro-models have already been proven to achieve good results in this regard, hence
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their good performance in simulating this series of experiments.
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Figure 5.10 Comparison between experimental results, numerical and analytical models predictions: in-
teraction diagrams for applied normal stress vs. maximum shear.

5.5 Conclusions

The analysis of masonry walls subjected to in-plane shear was attempted using detailed micro-
models. The resulting maximum shear was for the most part accurately predicted by the models
for a wide range of vertical pre-stress levels and different geometrical layouts.

The numerical analysis results proved able to provide far more accurate compared to closed
form expressions and design guidelines. While the latter group of methods for predicting the
maximum resisting force of shear walls provided good results for low levels of vertical pre-
stress, the numerical approach provided more consistently accurate predictions.

The three-dimensional models produced results very similar to the plane strain approach,
whereas the plane stress approach greatly underestimated the experimentally derived maximum
shear. The equal adequacy of the first two approaches makes plane strain an attractive choice for
the analysis of shear walls using detailed micro-modeling as its computational cost is far lower
than the cost of full three-dimensional analysis.

The observations concerning the influence of the out-of-plane stresses in masonry under in-
plane loading, highlighted by the inadequacy of plane stress models to accurately predict the
maximum shear obtained in the experiments, are critical concerning the numerical simulation
of such problems. The simulation of the confined mortar in the joints is shown to be important
not only in the simulation of masonry under pure compression but under in-plane shear as well.

Concerning the prediction of the compressive strength of masonry using micro-models, sig-
nificant agreement was found between the results obtained from the analysis of full wallettes



Conclusions 95

and periodic unit cells, in addition to the results being in good agreement with the experimen-
tal findings. The latter models have a much lower computational cost and and may serve as an
efficient alternative to full wall models for the determination of the failure envelope of masonry
wall structures. Finally, the influence of the nonlinearities of the unit/mortar interface on the
compressive strength of masonry was investigated using finite element micro-models and meso-
models. Only a small to moderate drop in the predicted compressive strength was found when
considering interface nonlinearities.
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Chapter 6

Micro-Mechanical Modeling of Masonry -
Linear Elastic Analysis

6.1 Introduction

6.1.1 State of the Art

Masonry walls and pillars in buildings constitute a large part of the existing built environment
and remain a common structural feature in modern construction, as main load-bearing elements
or as secondary features. The composite nature of their structure, which mostly consists of the
bonding of units, mortar and infill, makes their structural analysis a not so straightforward sub-
ject. The orthotropic behavior of masonry composites composed of largely isotropic materials
stems from the complexity of the geometric bond employed in the structural arrangement. Even
when the elastic properties of the constituent materials are known, it is difficult to derive the
elastic properties of the composite without resorting to sophisticated analysis tools. Further-
more, results for one masonry typology may not be readily suitable for the evaluation of the
properties of another. Therefore, the development of simple tools for the derivation of the or-
thotropic elastic properties of a variety of masonry typologies based on the elastic properties of
their constituent materials, while maintaining a single analysis methodology throughout, con-
stitutes a sound framework for the further development of analysis tools based on the detailed
micro-modeling approach.

Masonry structures composed of periodically repeating patternsmay be simplified in order to
facilitate their analysis. In this sense, it is possible to calculate the elastic and strength properties
of masonry structures through the analysis of a geometrically repeating part. This part may
be further simplified by taking into account symmetry arising from geometrical and loading
conditions.

A number of analytical, micro-mechanical and numerical models has been proposed for the
analysis of masonry periodic unit cells using a variety of methods. These have been employed
for the derivation of the elastic and inelastic properties of masonry composites as a result of the
interaction of their two phases: units and mortar. The cells are analyzed considering appropriate
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boundary conditions, kinematic compatibilities and stress equilibrium in order to derive the
strains and stress state in the cell for different loading conditions. Nonlinear properties may be
derived from the iterative solution of the problem under the assumptions of plasticity or damage
models for the behavior of the materials in the cell.

Methods for the analysis of masonry cells using micro-mechanical methods have been pro-
posed, mostly focusing on the analysis of stack bond and running bond masonry wall typologies
[30, 89, 122]. Finite element representations of masonry unit cells have also been proposed [101]
in which the interaction of the two phases, the resulting stress and strains in the cell and the non-
linear behavior of the materials may be accurately represented. This approach has also been
adopted for the verification of the accuracy of analytical and micro-mechanical models, such
as the ones already described, the production of in-plane strength domain curves for masonry
membranes and the execution of two-scale analyses. However, FE calculations may require time
for the creation of the models and high computational effort. A comparison of analytical model
and FE model results may be found in [37].

A micromechanical approach for the analysis of periodically reinforced composites, accord-
ing to which a repeating cell of the composite is discretized into sub-cells with different proper-
ties and arranged in a regular grid, has been proposed in the past [1]. Equilibrium and compati-
bility conditions are assembled in a set of closed form expressions and can be solved in a single
analysis step for the derivation of, for example, the average elastic properties of the composite.
The benefit of this approach is its computational efficiency and relative simplicity. Masonry pe-
riodic unit cells, seen as regular arrangements of square or cubic sub-cells with different material
properties, can be analyzed using the same approach. This method has been already applied for
the analysis of single leaf stack bond and running bond cells [143, 162].

Masonry analyzed in this manner is usually idealized as an infinitely thin or infinitely thick
membrane, these assumptions being accordingly equivalent to a plane stress and plane strain
approach. However, the existence of transversal joints, gaps or other discontinuities, which result
in non-constant geometric structure along the depth of the masonry, render these two approaches
fundamentally not accurate. Analysis of the unit cell taking into account these discontinuities
must consider the actual finite thickness and actual geometry of the masonry structure.

Computations on cells where the actual finite thickness of the masonry is considered allow
a more accurate representation of out-of-plane stresses, which, while only marginally affecting
the initial elastic stiffness, may strongly influence the compressive strength of the composite
[16]. However, since it is intended to apply the models proposed here in nonlinear analysis,
it is deemed necessary to include a realistic representation of the out-of-plane stresses using
three-dimensional models for linear elastic analysis as well. With this type of models, the true
thickness of the masonry may be easily taken into account in finite element calculations.

Through computations on periodic unit cells it is possible to make fairly accurate predictions
of the compressive and tensile strength and the elastic moduli of masonry. Such techniques may
be, therefore, used for two-scale modeling of masonry walls [4, 100, 102, 110, 163],
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6.1.2 Objectives

The purpose of this chapter is to present a simple micro-mechanical calculation method for the
derivation of the elastic characteristics of masonry structures. The method is based on the anal-
ysis of masonry periodic unit cells, the smallest repeating geometrical entity representative of
the overall masonry geometric pattern, in an attempt to derive masonry composite orthotropic
macro-properties from material and geometrical micro-properties. The micro-properties con-
sidered are those of the units, the mortar and the infill. Structural members allowing this type
of modeling include single- and multi-leaf walls and pillar-like structures. These properties are
to be determined for normal and shear loading. The models are formulated based on three-
dimensional elasticity in order to include the influence of out-of-plane stresses on the response.

These macro-properties may be used for the analysis of large walls and other structures in
full multi-scale models or may be used to provide the information needed for analysis with or-
thotropic material models, such as the Hill, Rankine-Hill or the Hoffmann criteria. Additionally,
periodic unit cells may be used for two-scale analysis of large masonry structures. The computa-
tional cost associated with this modeling strategy when combined with FE cells is still relatively
high, especially when the analyses are carried out on cells in a three-dimensional configura-
tion. Micro-mechanical models for the analysis of the cells present an advantageous, in terms of
computational cost, alternative. Finally, the low computational cost of such models makes the
production of large databases of results undemanding.

The verification of the model is performed through a comparison against a FE result bench-
mark following a parametric investigation. A comparison is also carried out with a range of
results from the existing inventory of experimental data.

This study includes the analysis of various masonry wall geometrical typologies: single leaf
stack bond, single-leaf running bond, double-leaf Flemish bond and three-leaf walls with a run-
ning bond outer leaf. In the last case, the infill constitutes a third material phase, with different
mechanical properties from the units and mortar normally considered in such analyses. These
masonry typologies, and especially the last three, represent a significant portion of existing and
new structures, with the available research focusing primarily, if not entirely, on running rather
than Flemish bond structures. Three-leaf walls with rubble infill are also commonly encoun-
tered both in large structures and common buildings. Stack bond pillars are commonly used
as specimens for experimental investigation, therefore a large body of experimental work exists
dealing with their elasticity and strength properties. English bond prisms are similarly used for
experimental investigation purposes as well as in structural practice. The study focuses on ma-
sonries characterized by units with an elastic stiffness higher than that of the mortar. However,
the applicability of the model is examined through an analysis of experimental case studies with
a wide range of properties. It has been noted that there is a lack of experimental results con-
cerning the horizontal and transversal Young’s moduli, the shear moduli and the Poisson’s ratios
of masonry in experimental cases which include also a detailed mechanical characterization of
the units and mortar. This lack of experimental results has been compensated by using finite
element results as benchmark cases.
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6.2 Overview of the Models

6.2.1 Derivation of Wall Periodic Unit Cells

The derivation of the periodic unit cell is accomplished through the identification of the repeating
pattern in the structure and its subsequent simplification due to symmetry conditions. The four
masonry typologies studied, in order of complexity, are stack bond, running bond, Flemish bond
and three-leaf masonry with a running bond outer leaf and infill. The derivation patterns for the
masonry wall typologies considered in this work are shown in Figure 6.1.

(a) (c)

(b) (d)

Figure 6.1 Derivation of wall cells: full wall, repeating pattern and cell derived from geometrical sym-
metry of repeating pattern. (a) Stack bond wall, (b) running bond wall, (c) Flemish bond wall
and (d) three-leaf wall with running bond outer leaf.

Stack bond and running bond walls are single leaf structures with no variation of the geom-
etry along the thickness. Flemish bond walls include a thin transversal joint and the units are
oriented as either header or stretcher blocks, meaning that for the largest portion of the wall the
geometry changes along the thickness. Three-leaf walls are composed of outer leaves of any
type and an interior leaf whose thickness may be larger than that of the outer leaves.

Increase in the geometrical complexity of the composite results in an increase in the size of
the repeating pattern and, therefore, of the unit cell. In stack bond and running bond masonry
the layout of the masonry does not change through the thickness and all units are identically
oriented, while in Flemish bond masonry the mid-thickness is characterized by a transversal
mortar joint and intersecting header units.

The anisotropic behavior of the masonry composite is the result of the geometrical arrange-
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ment of components, which are here considered isotropic, although the orthotropic behavior of
bricksmay be implementedwith onlyminor alterations in themodel. The infill is also considered
macroscopically isotropic and is normally more deformable than the outer leaf.

6.2.2 Derivation of Pillar Periodic Unit cells

The periodic unit cells for pillar-like structures are derived similarly to the wall typologies. Two
different structural types are considered: stack bond prisms and English bond pillars. The deriva-
tion of the cells is shown in Figure 6.2.

(a) (b)

Figure 6.2 Derivation of pillar cells: full wall, repeating pattern and cell derived from geometrical sym-
metry of repeating pattern. (a) stack bond pillar and, (b) English bond pillar.

6.2.3 Discretization of the Derived Cells

The micro-mechanical model for the analysis of masonry periodic unit cells is based on the dis-
cretization of the cell in structural parts, the modeling of their interaction in terms of deformation
and stress distribution and equilibrium under external loads. The modeling of the interaction is
accomplished using analytical expressions. The equilibrium problem will be primarily solved
for three normal stress components, σxx, σyy and σzz and six shear stress components, σxy, σxz,
σyx, σyz, σzx and σzy in order to obtain the elastic properties of the cells in the three orthogonal
directions dictated by the geometric arrangement of the masonry.

The discretization of the periodic unit cells is done as illustrated in Figure 6.3. It results in
each cell being discretized into cuboid parts of units, bed joints, head joints, transversal joints
and cross joints. Specifically: the stack bond cell is discretized into one stretcher unit, one
bed joint, one head joint and one cross joint part; the running bond cell is discretized into four
stretcher unit, one bed, two head and two cross joint parts; the Flemish bond cell is discretized
into four header unit, six stretcher unit, three bed joint, four head joint, seven cross joint and six
transversal joint parts; the three-leaf cell is discretized similarly to the way the running bond cell
with the addition of nine transversal joint parts representing the infill. The stack bond pillar is
discretized into a unit part and a mortar part arranged in a layered pattern and the English bond
pillar is discretized into four unit parts, one bed joint part two head joint parts and four cross
joint parts.
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(a) (b) (c)

(d) (e) (f)

Figure 6.3 Discretization of periodic unit cells: (a) stack bond wall, (b) running bond wall, (c) Flemish
bond wall, (d) three-leaf wall, (e) stack bond pillar and (f) English bond pillar.

The orthogonal discretization carried out separates the cell into parts allocated in an orthog-
onal grid, with each part belonging in one horizontal, one vertical and one transversal strip of
cuboid parts. As a result, the stack bond cell is divided into two horizontal, two vertical and two
transversal strips, the running bond cell into three horizontal, three vertical and six transversal
strips and the Flemish bond cell into six horizontal, ten vertical and fifteen transversal strips.
The type of the loading applied on the cell and its orientation compared to the orthogonal grid
dictates the assumptions made for the elastic analysis of the cell, which are based on the strains
to which each strip is subjected. The proposed discretization of mortar joints and units allows
for simplified assumptions in the formulations of the model. The final discretization scheme is
shown in Figure 6.3.

6.3 Development of the Micro-Mechanical Model

6.3.1 General Assumptions and Equations

The deformation of the cell faces, and, therefore, the total strain of the cell, depends on the
loading applied. Application of normal stress results only in normal global cell strains and the
application of shear stress results only in shear global cell strains. This means that under normal
stress the total deformation of all strips, or the average strain of each one, is equal in the three
principal directions.

Under the application of normal stress, either only normal or both normal and shear stresses
may arise in the cuboid parts. In turn, under the application of shear stress, only shear stresses of
the same geometrical orientation arise in the cuboid parts. All stresses and strains are assumed
constant in the cuboid parts. For linear elastic analysis, the units and the mortar are modeled as
three-dimensional isotropic continua. Perfect bond is considered at the unit/mortar interface for
the linear elastic computations performed here, so that all deformation of the cell is accounted
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for in the units, mortar and infill.

Isotropic linear elasticity stress-strain relations in three dimensions apply for every cuboid
component under normal and shear stress. This includes the units, the mortar and the infill.
These relations are expressed as:

εii,n = σii,n/E n−νn
(
σ j j,n +σkk,n

)
/En (6.1)

εi j,n = σi j,n (1+νn)/En (6.2)

where the sub-index n refers to the identifier of the cuboid, σii and εii are the applied normal
stress and calculated normal strain along axis i, σi j and εi j are the shear stress and strain in plane
i j, En is the Young’s modulus and νn is the Poisson’s ratio.

When a cuboid with dimensions Di and D j is subjected to a shear stress σi j, leading to a
shear strain equal to εi j in the i j plane, the contribution of the shear deformation of the cuboid
di j

i to its normal deformation in the direction i is taken as being half the displacement at its top
due to the shear stress. Therefore, it is defined as

di j
i = εi j,n

D j

2
(6.3)

This assumption, based on the deformation of a rectangular plane body supported at the
base and subjected to shear stress at the top, is made in order to take into account the shear
deformation of the bed joints in a masonry composite subjected to normal stress in the horizontal
direction. The contribution of the shear deformation to the total deformation of the cuboid is
essential in running bond and Flemish bond wall masonries under applied horizontal stress. The
interlocking pattern in both typologies restricts the normal deformation of the mortar in the bed
joint. Not accounting for this deformation in the compatibility relations in the computed cell
leads to excessive horizontal stiffness [162].

The three Young’s moduli for each cell configuration are calculated by use of the equation

Ec,i = σii/εii (6.4)

The Poisson’s ratios are determined by the equation

νc,i j =−ε j j/εii (6.5)

The three shear moduli for each cell configuration are calculated by use of the equation:

Gc,i j = σi j/
(
2εi j
)

(6.6)

The x, y and z axes in the model correspond to the horizontal, vertical and transversal di-
rections. The transversal direction is normal to the face of the walls and the vertical direction
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is parallel to the axis of the pillars. The total strain in each of the three directions and the three
resulting planes depends on the type of cell.

The cuboid parts are designated by a set of initials. Throughout all the cases these are: u for
units in general, s and d for stretcher and header units respectively where both are present (such as
the Flemish bond case), h for head joints, c for cross joints, b for bed joints and t for transversal
joints. Infill is designated as i. Dimensions are designated according to their orientation: l
corresponds to a horizontal length, h to a vertical height and t to a transversal thickness. The
dimension symbols are finally suffixed u, m or i for units, mortar and infill respectively, meaning
that hu is the unit height, hm is the thickness of the bed joint, lu is the unit length, lm is the
thickness of the head joint, tu is the width of the unit, tm is the thickness of the transversal joint
and ti is the transversal thickness of the infill.

Figure 6.4 illustrates the discretization of the single leaf wall cells along with the naming
convention for each component in detail. The discretization of the multi leaf walls is shown in
Figure 6.5 and that of the pillars in Figure 6.6.
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Figure 6.4 Discretization and component designation of single leaf wall periodic unit cells: (a) stack
bond and (b) running bond.

Normal stress equilibrium equations are formed according to

∑
n

σii,nAn−σiiA = 0 (6.7)

while shear stress equilibrium equations are formed according to

∑
n

σi j,nAn−σi jA = 0 (6.8)

where A is the total cross sectional area of the cell and An is the cross sectional area of cuboid
n in direction i.

All normal and shear stress equilibriums at the faces or cross sections of the cell assure global
equilibrium of internal and external stress. External stresses are averaged over the surface of the
cell, meaning that there may exist a mismatch between the external average stress and the stress
of an individual cuboid.
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Figure 6.5 Discretization and component designation of multi leaf wall periodic unit cells: (a) Flemish
bond and (b) three-leaf wall with running bond outer leaf.

6.3.2 Stack Bond Wall

Due to the simple geometrical layout of the cell, which does not include complex geometrical in-
terlocking of mortar joints and units, shear stress components are disregarded for applied normal
stress.

Normal strain conformity is assumed as follows:

εzz,h = εzz,u = εzz,c = εzz,b

εxx,h = εxx,c

εxx,u = εxx,b

εyy,h = εyy,u

εyy,c = εyy,b

(6.9)

These strain conformity relations assume equal out-of-plane strains for all cuboids and equal
in-plane strains for parallel cuboids in a given direction.

Horizontal normal stress equilibrium conditions at the right and left face of the cell are as
follows:

σxx (hu/2 +hm/2 ) = σxx,uhu/2 +σxx,bhm/2
σxx (hu/2 +hm/2 ) = σxx,hhu/2 +σxx,chm/2

(6.10)
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Figure 6.6 Discretization and component designation of pillar periodic unit cells: (a) stack bond pillar
and (b) English bond pillar.

Vertical normal stress equilibrium conditions at the top and lower faces of the cell are as
follows:

σyy (lm/2 + lu/2 ) = σyy,hlm/2 +σyy,ulu/2
σyy (lm/2 + lu/2 ) = σyy,clm/2 +σyy,blu/2

(6.11)

Transversal normal stress equilibrium at the front face of the cell is as follows:

σzz (lm/2 + lu/2 )(hm/2 +hu/2 ) =

σzz,hlm/2· hu/2 +σzz,ulu/2· hu/2 +σzz,clm/2· hm/2 +σzz,blu/2· hm/2
(6.12)

The normal strains of the entire cell along the three axes can be calculated as

εxx =
(
εxx,hlm/2 + εxx,ulu/2

)
/(lm/2 + lu/2 )

εyy =
(
εyy,hhu/2 + εyy,chm/2

)
/(hu/2 +hm/2 )

εzz = εzz,h

(6.13)

For xy shear it is assumed that

εxy,h = εxy,u

εxy,c = εxy,b
(6.14)

The shear stress equilibrium conditions at the top and right faces of the cell are as follows:
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σxy (lm/2+ lu/2 ) = σxy,hlm/2+ σxy,ulu/2
σxy (hu/2+hm/2 ) = σxy,uhu/2+ σxy,bhm/2

(6.15)

The cell shear strain can be calculated as

εxy =
(
εxy,chm/2 + εxy,hhu/2

)
/(hm/2 +hu/2 ) (6.16)

For xz shear it is assumed that

εxz,u = εxz,b

σxz,c = σxz,h = σxz
(6.17)

Shear stress equilibrium at the right face of the cell is as follows:

σxz (hm/2 +hu/2 ) = σxz,bhm/2 +σxz,uhu/2 (6.18)

The cell shear strain is equal to

εxz =
(
εxz,ulu/2 + εxz,hlm/2

)
/(lu/2 + lm/2 ) (6.19)

For yz strain it is assumed that

εyz,h = εyz,u

εyz,c = εyz,b
(6.20)

Shear stress equilibrium at the front and top faces of the cell is as follows:

σyz (lm/2 + lu/2 )(hm/2 +hu/2 ) =

σyz,hlm/2· hu/2 +σyz,ulu/2· hu/2 +σyz,clm/2· hm/2 +σyz,blu/2· hm/2

σyz (lm/2+ lu/2 ) = σyz,hlm/2+σyz,ulu/2

(6.21)

The cell shear strain is equal to:

εyz =
(
εyz,uhu/2 + εyz,bhm/2

)
/(hu/2 +hm/2 ) (6.22)

6.3.3 Running Bond Wall

The geometrical interlocking of the units and themortar requires to take into account the in-plane
shear stresses for normal stress loading conditions. Therefore, apart from the three components
of normal stress for each cuboid component, the xy shear stress and strains have also been in-
cluded for the formulation of the system of equations. In turn, the compatibility conditions take
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into account the shear deformation of the cuboids for applied loads in the horizontal direction.
The resulting shear stresses are negligible for loading in the vertical and transversal directions.

The horizontal normal stress equilibrium conditions at the left face and at a cross section
across the middle of the cell are expressed as follows:

σxx (hm +hu) = σxx,u2hu/2 +σxx,chm +σxx,hhu/2
σxx (hm +hu) = σxx,u1hu/2 +σxx,bhm +σxx,u1hu/2

(6.23)

The vertical normal stress equilibrium conditions at the top face and at a cross section across
the middle of the cell are as follows:

σyy (lm/2 + lu/2 ) = σyy,hlm/2 +σyy,u1 (lu/2− lm/2 )+σyy,u2lm/2
σyy (lm/2 + lu/2 ) = σyy,clm/2 +σyy,b (lu/2− lm/2 )+σyy,clm/2

(6.24)

The transversal normal stress equilibrium condition at the front face of the cell is as follows:

σzz (hm +hu)(lu/2 + lm/2 ) =

hu
(
σzz,hlm/2 +σzz,u1 (lu/2− lm/2 )+σzz,u2lm/2

)
+

hm
(
2σzz,clm/2+σzz,b (lu/2− lm/2 )

) (6.25)

The shear stress equilibrium conditions at the top face, at the left face and at a vertical cross
section at the middle of the cell are as follows:

σxy,hlm/2 +σxy,u1 (lu/2 − lm/2 )+σxy,u2lm/2 = 0
σxy,hhu/2 +σxy,chm +σxy,u2hu/2 = 0
σxy,u1hu/2 +σxy,b1hm +σxy,u1hu/2 = 0

(6.26)

Deformation compatibility of the cuboids, considering both normal and shear deformation
along the horizontal axis and only normal deformation along the vertical and transversal axis, is
as follows:

εzz,h = εzz,u1 = εzz,u2 = εzz,c = εzz,b

εyy,h = εyy,u1

εyy,c = εyy,b

εxx,h = εxx,c

εxx,u1 = εxx,b(
εxx,hlm/2 + εxx,u1 (lu/2− lm/2 )+ εxx,u2lm/2+

(
εxy,h + εxy,u1 + εxy,u2

)
hu/4

)
=(

2εxx,clm/2 + εxx,b (lu/2− lm/2 )+
(
2εxy,c + εxy,b

)
hm/2

)
εyy,hhu/2 + εyy,chm + εyy,u2hu/2 = εyy,u1hu/2 + εyy,bhm + εyy,u1hu/2

(6.27)

The following assumptions are made about the normal and shear stress distribution in the
cell:
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σxx,u1 = σxx,u2

σxy,u1 = σxy,h
(6.28)

The normal strains of the entire cell along the three axes are equal to

εxx =
(
εxx,hlm/2 + εxx,u1 (lu/2− lm/2 )+ εxx,u2lm/2+

(
εxy,h + εxy,u1 + εxy,u2

)
hu/4

)
/(lm/2 + lu/2 )

εyy =
(
εyy,hhu/2 + εyy,chm + εyy,u2hu/2

)
/(hu +hm)

εzz = εzz,h
(6.29)

For xy shear it is assumed that

εxy,h = εxy,u1 = εxy,u2

εxy,c = εxy,b
(6.30)

The shear stress equilibrium conditions at a horizontal cross section and a vertical cross
section at the middle of the cell are as follows:

σxy (lu/2+ lm/2 ) = σxy,clm/2 +σxy,b (lu/2− lm/2 )+σxy,clm/2
σxy (hu +hm) = σxy,u1hu/2 +σxy,bhm +σxy,u1hu/2

(6.31)

The cell shear strain is equal to

εxy =
(
εxy,hhu/2 + εxy,chm + εxy,u2hu/2

)
/(hu +hm) (6.32)

For xz shear it is assumed that

εxz,u1 = εxz,u2

εxz,u1 = εxz,b

σxz,c = σxz,u2

(6.33)

The stress equilibrium conditions at the front and left face and at a cross section at the center
of the cell are as follows:

σxz (hm +hu)(lu/2 + lm/2 ) =

hu
(
σxz,hlm/2 +σxz,u1 (lu/2− lm/2 )+σxz,u2lm/2

)
+hm

(
2σxz,clm/2+σxz,b (lu/2− lm/2 )

)
σxz (hm +hu) = σxz,hhu/2 +σxz,chm +σxz,u2hu/2
σxz (hm +hu) = σxz,u1hu/2 +σxz,bhm +σxz,u1hu/2

(6.34)

The cell shear strain is equal to

εxz =
(
εxy,hlm/2 + εxy,u1 (lu/2− lm/2 )+ εxy,u2lm/2

)
/(lu/2+ lm/2 ) (6.35)
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For yz shear it is assumed that

εyz,h = εyz,u1 = εyz,u2

εyz,c = εyz,b
(6.36)

Shear stress equilibriums at the top and front faces of the cell are as follows:

σyz (lu/2 + lm/2 ) = σyz,hlm/2 +σyz,u1 (lu/2 − lm/2 )+σyz,u2lm/2

σyz (hm +hu)(lu/2 + lm/2 ) =

hu
(
σyz,hlm/2 +σyz,u1 (lu/2− lm/2 )+σyz,u2lm/2

)
+hm

(
2σyz,clm/2+σyz,b (lu/2− lm/2 )

)
(6.37)

The cell shear strain is equal to

εyz =
(
εyz,hhu/2 + εyz,chm + εyz,u2hu/2

)
/(hu +hm) (6.38)

6.3.4 Flemish Bond Wall

As in the running bond cell model, the in-plane shear deformation of the cuboids is taken into
account for normal stress loading in the horizontal direction. The transfer of stress across the
transversal joint is also taken into account without, however, considering the effects of shear
stress in other planes. Additionally, as in the case of the running bond cell, arising shear stresses
are negligible for vertical and transversal applied normal stress.

The horizontal normal stress equilibrium conditions at the left face and at two cross sections
along the length of the cell are as follows:

σxx (hu +hm)(tu + tm/2 ) =(
σxx,d1hu/2+σxx,b1hm +σxx,s3hu/2

)
tu +

(
σxx,d2hu/2+σxx,c2hm +σxx,t3hu/2

)
tm/2

σxx (hu +hm)(tu + tm/2 ) =(
σxx,h1hu/2+σxx,c1hm +σxx,s2hu/2

)
tu +

(
σxx,h2hu/2+σxx,c3hm +σxx,t2hu/2

)
tm/2

σxx (hu +hm)(tu + tm/2 ) =(
σxx,s1hu/2+σxx,b2hm +σxx,s1hu/2

)
tu +(σxx,t1hu/2+σxx,c4hm +σxx,t1hu/2) tm/2

(6.39)

The vertical normal stress equilibrium conditions at the top face and at a cross section across
the middle of the cell are as follows:
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σyy (tu + tm/2 )(tu/2 + lm + lu/2 ) =(
σyy,d1tu/2 +σyy,h1lm +σyy,s1 (lu/2 − lm− tu/2 )+σyy,s2lm +σyy,s3tu/2

)
tu+(

σyy,d2tu/2 +σyy,h2lm +σyy,t1 (lu/2 − lm− tu/2 )+σyy,t2lm +σyy,t3tu/2
)

tm/2

σyy (tu + tm/2 )(tu/2 + lm + lu/2 ) =(
σyy,b1tu/2 +σyy,c1lm +σyy,b2 (lu/2 − lm− tu/2 )+σyy,c1lm +σyy,b1tu/2

)
tu+(

σyy,c2tu/2 +σyy,c3lm +σyy,c4 (lu/2 − lm− tu/2 )+σyy,c3lm +σyy,c2tu/2
)

tm/2

(6.40)

The transversal normal stress equilibrium conditions at the front face and at a cross section
across the middle of the cell are as follows:

σzz (hu +hm)(tu/2 + lm + lu/2 ) =(
σzz,d1tu/2 +σzz,h1lm +σzz,s1 (lu/2 − lm− tu/2 )+σzz,s2lm +σzz,s3tu/2

)
hu+(

σzz,b1tu +2σzz,c1lm +σzz,b2 (lu/2 − lm− tu/2 )
)

hm

σzz (hu +hm)(tu/2 + lm + lu/2 ) =(
σzz,d2tu/2 +σzz,h2lm +σzz,t1 (lu/2 − lm− tu/2 )+σzz,t2lm +σzz,t3tu/2

)
hu+

(σzz,c2tu +2σzz,c3lm +σzz,c4 (lu/2 − lm− tu/2 ))hm

(6.41)

The shear stress equilibrium conditions at the top face, at a horizontal cross section along
the middle of the cell, at the left face and at a vertical cross section along the middle of the cell
are as follows:

(
σxy,d1tu/2 +σxy,h1lm +σxy,s1 (lu/2 − lm− tu/2 )+σxy,s2lm +σxy,s3tu/2

)
tu+(

σxy,d2tu/2 +σxy,h2lm +σxy,t1 (lu/2 − lm− tu/2 )+σxy,t2lm +σxy,t3tu/2
)

tm/2 = 0

(
σxy,b1tu/2 +σxy,c1lm +σxy,b2 (lu/2 − lm− tu/2 )+σxy,c1lm +σxy,b1tu/2

)
tu+(

σxy,c2tu/2 +σxy,c3lm +σxy,c4 (lu/2 − lm− tu/2 )+σxy,c3lm +σxy,c2tu/2
)

tm/2 = 0

(
σxy,d1hu/2+σxy,b1hm +σxy,s3hu/2

)
tu +

(
σxy,d2hu/2+σxy,c2hm +σxy,t3hu/2

)
tm/2 = 0

(
σxx,h1hu/2+σxx,c1hm +σxx,s2hu/2

)
tu +

(
σxx,h2hu/2+σxx,c3hm +σxx,t2hu/2

)
tm/2 = 0

(6.42)

Deformation compatibility of the cuboids, considering both normal and shear deformation
along the horizontal axis and only normal deformation along the vertical and transversal axes,
is as follows:
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εxx,d1tu/2 + εxx,h1lm + εxx,s1 (lu/2 − lm− tu/2 )+ εxx,s2lm + εxx,s3tu/2 +(
εxy,d1 + εxy,h1 + εxy,s1 + εxy,s2 + εxy,s3

)
hu/4 =

εxx,d2tu/2 + εxx,h2lm + εxx,t1 (lu/2 − lm− tu/2 )+ εxx,t2lm + εxx,t3tu/2 +(
εxy,d2 + εxy,h2 + εxy,t1 + εxy,t2 + εxy,t3

)
hu/4

εxx,d1tu/2 + εxx,h1lm + εxx,s1 (lu/2 − lm− tu/2 )+ εxx,s2lm + εxx,s3tu/2 +(
εxy,d1 + εxy,h1 + εxy,s1 + εxy,s2 + εxy,s3

)
hu/4 =

εxx,b1tu/2 + εxx,c1lm + εxx,b2 (lu/2 − lm− tu/2 )+ εxx,c1lm + εxx,b1tu/2 +(
εxy,b1 + εxy,c1 + εxy,b2 + εxy,c1 + εxy,b1

)
hm/2

εxx,d1tu/2 + εxx,h1lm + εxx,s1 (lu/2 − lm− tu/2 )+ εxx,s2lm + εxx,s3tu/2 +(
εxy,d1 + εxy,h1 + εxy,s1 + εxy,s2 + εxy,s3

)
hu/4 =

εxx,c2tu/2 + εxx,c3lm + εxx,c4 (lu/2 − lm− tu/2 )+ εxx,c3lm + εxx,c2tu/2 +(
εxy,c2 + εxy,c3 + εxy,c4 + εxy,c3 + εxy,c2

)
hm/2

εzz,d1tu + εzz,d2tm/2 = εzz,b1tu + εzz,c2tm/2
εzz,d1tu + εzz,d2tm/2 = εzz,s3tu + εzz,t3tm/2
εzz,d1tu + εzz,d2tm/2 = εzz,h1tu + εzz,h2tm/2
εzz,d1tu + εzz,d2tm/2 = εzz,c1tu + εzz,c3tm/2
εzz,d1tu + εzz,d2tm/2 = εzz,s2tu + εzz,t2tm/2
εzz,d1tu + εzz,d2tm/2 = εzz,s1tu + εzz,t1tm/2
εzz,d1tu + εzz,d2tm/2 = εzz,b2tu + εzz,c4tm/2
εxx,b1 = εxx,c2 = εxx,d1

εxx,s3 = εxx,t3

εxx,c1 = εxx,c3 = εxx,h1 = εxx,h2

εxx,s2 = εxx,t2

εxx,s1 = εxx,t1 = εxx,b2

εxx,b2 = εxx,c4

εyy,d1 = εyy,h1 = εyy,s1 = εyy,s2 = εyy,s3 = εyy,d2 = εyy,h2 = εyy,t1 = εyy,t2 = εyy,t3

εyy,b1 = εyy,c1 = εyy,b2 = εyy,c2 = εyy,c3 = εyy,c4

εzz,s1 = εzz,s2 = εzz,s3

εzz,d1 = εzz,h1

εxy,d1 = εxy,d2

εxy,h1 = εxy,h2

εxy,s1 = εxy,t1

εxy,s2 = εxy,t2

εxy,s3 = εxy,t3

εxy,b1 = εxy,c2

εxy,c1 = εxy,c3

(6.43)

The following assumptions are made about the normal stress distribution in the cell:
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σzz,c1 = σzz,c3

σzz,b2 = σzz,c4

σzz,d1 = σzz,d2

σzz,s1 = σzz,t1

σzz,s2 = σzz,t2

σzz,s3 = σzz,t3

(6.44)

This set of equations assumes that the transversal normal stress is equal for the cuboids of the
two leaves of masonry, be they unit or mortar. They also, again, lead to equal effective stresses in
the different cuboids comprising a single brick. Damaged stresses in nonlinear analysis, however,
are different.

The assumptions concerning the shear stresses in the cuboids read:

σxy,s1 = σxy,s3 = σxy,h1

σxy,b1 = σxy,b2
(6.45)

The normal strains of the entire cell along the three axes are equal to:

εxx =
εxx,d1tu/2 +εxx,h1lm+εxx,s1(lu/2−lm−tu/2 )+εxx,s2lm+εxx,s3tu/2 +(εxy,d1+εxy,h1+εxy,s1+εxy,s2+εxy,s3)hu/4

(lu/2 +lm+tu/2 )

εyy =
(
εyy,d1hu/2 + εyy,b1hm + εyy,s3hu/2

)
/(hu +hm)

εzz =
(
εzz,d1tu + εzz,d2tm/2

)
/(tu + tm/2 )

(6.46)

For xy shear it is assumed that:

εxy,d1 = εxy,h1 = εxy,s1 = εxy,s2 = εxy,s3 = εxy,d2 = εxy,h2 = εxy,t1 = εxy,t2 = εxy,t3

εxy,b1 = εxy,c1 = εxy,b2 = εxy,c2 = εxy,c3 = εxy,c4
(6.47)

The shear stress equilibrium condition at the left face and at a cross-section along the mid
height of the cell are as follows:

σxy (tu + tm/2)(hu +hm) =(
σxy,d1hu/2 +σxy,b1hm +σxy,s3hu/2

)
tu +

(
σxy,d2hu/2 +σxy,c2hm +σxy,t3hu/2

)
tm/2

σxy (tu + tm/2 )(lu/2 + lm + tu/2 ) =(
σxy,b1tu/2 +σxy,c1lm +σxy,b2 (lu/2 − lm− tu/2 )+σxy,c1lm +σxy,b1tu/2

)
tu+(

σxy,c2tu/2 +σxy,c3lm +σxy,c4 (lu/2 − lm− tu/2 )+σxy,c3lm +σxy,c2tu/2
)

tm/2
(6.48)

The cell shear strain is equal to
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εxy =
(
εxy,d1hu/2 + εxy,b1hm + εxy,s3hu/2

)
/(hu +hm) (6.49)

For xz shear it is assumed that

εxz,d1 = εxz,s1 = εxz,s2 = εxz,s3 = εxz,b1 = εxz,c1 = εxz,b2

εxz,h2 = εxz,t1 = εxz,t2 = εxz,t3 = εxz,c2 = εxz,c3 = εxz,c4
(6.50)

The shear stress equilibrium conditions at the front face, transversal section at the middle,
the left face and a vertical section along the middle of the cell are as follows:

σxz (lu/2 + lm + tu/2 )(hu/2 +hm/2 ) =(
σxz,d1tu/2 +σxz,h1lm +σxz,s1 (lu/2 − lm− tu/2 )+σxz,s2lm +σxz,s3tu/2

)
hu/2 +(

σxz,b1tu/2 +σxz,c1lm +σxz,b2 (lu/2 − lm− tu/2 )+σxz,c1lm +σxz,b1tu/2
)

hm/2

σxz (lu/2 + lm + tu/2 )(hu/2 +hm/2 ) =(
σxz,d2tu/2 +σxz,h2lm +σxz,t1 (lu/2 − lm− tu/2 )+σxz,t2lm +σxz,t3tu/2

)
hu/2 +

(σxz,c2tu/2 +σxz,c3lm +σxz,c4 (lu/2 − lm− tu/2 )+σxz,c3lm +σxz,c2tu/2 )hm/2

σxz (tu + tm/2 )(hu +hm) =(
σxz,d1hu/2 +σxz,b1hm +σxz,s3hu/2

)
tu +

(
σxz,d2hu/2 +σxz,c2hm +σxz,t3hu/2

)
tm/2

σxz (tu + tm/2 )(hu +hm) =(
σxz,s1hu/2 +σxz,b2hm +σxz,s1hu/2

)
tu +(σxz,t1hu/2 +σxz,c4hm +σxz,t1hu/2 ) tm/2

(6.51)

The cell shear strain is equal to:

εxz =

(
εxz,d1tu/2 + εxz,h1lm + εxz,s1 (lu/2 − lm− tu/2 )+ εxz,s2lm + εxz,s3tu/2

)
(lu/2 + lm + tu/2 )

(6.52)

For yz shear it is assumed that:

εyz,d1 = εyz,h1 = εyz,s1 = εyz,s2 = εyz,s3 = εyz,d2 = εyz,h2 = εyz,t1 = εyz,t2 = εyz,t3

εyz,b1 = εyz,c1 = εyz,b2 = εyz,c2 = εyz,c3 = εyz,c4
(6.53)

The shear stress equilibrium conditions at the front and top faces of the cell are as follows:
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σyz (lu/2 + lm + tu/2 )(hu +hm) =(
σyz,d1tu/2 +σyz,h1lm +σyz,s1 (lu/2 − lm− tu/2 )+σyz,s2lm +σyz,s3tu/2

)
hu/2 +(

σyz,b1tu/2 +σyz,c1lm +σyz,s3 (lu/2 − lm− tu/2 )+σyz,c1lm +σyz,b1tu/2
)

hm+(
σyz,b1tu/2 +σyz,c1lm +σyz,s3 (lu/2 − lm− tu/2 )+σyz,c1lm +σyz,b1tu/2

)
hu/2

σyz (tu + tm/2 )(lu/2 + lm + tu/2 ) =(
σyz,d1tu/2 +σyz,h1lm +σyz,s1 (lu/2 − lm− tu/2 )+σyz,s2lm +σyz,s3tu/2

)
tu+(

σyz,d2tu/2 +σyz,h2lm +σyz,t1 (lu/2 − lm− tu/2 )+σyz,t2lm +σyz,t3tu/2
)

tm/2

(6.54)

The cell shear strain is equal to

εyz =
(
εyz,s3hu/2 + εyz,b1hm + εyz,d1hu/2

)
/(hu +hm) (6.55)

6.3.5 Three-Leaf Wall

The three-leaf-model retains the set of assumptions made for the running bond model, which
still apply to the outer masonry leaf. A number of further assumptions are made for the infill
and the stress equilibrium conditions are modified to accommodate the new geometrical entities.

The horizontal normal stress equilibrium conditions at the left face and at a cross section
across the middle of the cell are as follows:

σxx (hm +hu)(tu + ti/2 ) =(
σxx,u2hu/2 +σxx,chm +σxx,hhu/2

)
tu +(σxx,i3hu/2 +σxx,i4hm +σxx,i1hu/2 ) ti/2

σxx (hm +hu)(tu + ti/2 ) =(
σxx,u1hu/2 +σxx,bhm +σxx,u1hu/2

)
tu +

(
σxx,i2hu/2 +σxx,i5hm +σxx,i2hu/2

)
ti/2

(6.56)

The vertical normal stress equilibrium conditions at the top face and at a cross section across
the middle of the cell are as follows:

σyy (lm/2 + lu/2 )(tu + ti/2 ) =(
σyy,hlm/2 +σyy,u1 (lu/2− lm/2 )+σyy,u2lm/2

)
tu+(

σyy,i1lm/2 +σyy,i2 (lu/2− lm/2 )+σyy,i3lm/2
)

ti/2

σyy (lm/2 + lu/2 )(tu + ti/2 ) =(
σyy,clm/2 +σyy,b (lu/2− lm/2 )+σyy,clm/2

)
tu+(

σyy,i4lm/2 +σyy,i5 (lu/2− lm/2 )+σyy,i4lm/2
)

ti/2

(6.57)

The transversal normal stress equilibrium conditions at the back face of the cell are as follows:
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σzz (hm +hu)(lu/2 + lm/2 ) =

hu (σzz,i1lm/2 +σzz,i2 (lu/2− lm/2 )+σzz,i3lm/2 )+hm
(
2σzz,i4lm/2+σzz,i5 (lu/2− lm/2 )

)
(6.58)

Shear stress equilibriums are taken at the left face, a vertical cross section at the middle of
the cell and at the top face. These equilibriums lead to the following equations:

(
σxy,u2hu/2 +σxy,chm +σxy,hhu/2

)
tu +

(
σxy,i3hu/2 +σxy,i4hm +σxy,i1hu/2

)
ti/2 = 0

(
σxy,u1hu/2 +σxy,bhm +σxy,u1hu/2

)
tu +

(
σxy,i2hu/2 +σxy,i5hm +σxy,i2hu/2

)
ti/2 = 0

(
σxy,clm/2 +σxy,b (lu/2− lm/2 )+σxy,clm/2

)
tu+(

σxy,i4lm/2 +σxy,i5 (lu/2− lm/2 )+σxy,i4lm/2
)

ti/2 = 0
(6.59)

Constant normal stress is assumed in the infill, so that

σxx,i1 = σxx,i2 = σxx,i3 = σxx,i4 = σxx,i5

σyy,i1 = σyy,i2 = σyy,i3 = σyy,i4 = σyy,i5

σzz,i1 = σzz,i2 = σzz,i3 = σzz,i4 = σzz,i5

(6.60)

The following assumptions are made concerning the shear strains in the infill cuboids

εxy,i1 = εxy,i2 = εxy,i3 = εxy,u1

εxy,i4 = εxy,i5
(6.61)

Three additional equations imposing total deformation compatibility are introduced: two in
the horizontal direction and one in the vertical. They read as follows:

(
εxx,hlm/2 + εxx,u1 (lu/2− lm/2 )+ εxx,u2lm/2+

(
εxy,h + εxy,u1 + εxy,u2

)
hu/4

)
=(

εxx,i1lm/2 + εxx,i2 (lu/2− lm/2 )+ εxx,i3lm/2 +
(
εxy,i1 + εxy,i2 + εxy,i3

)
hm/2

)
(
εxx,hlm/2 + εxx,u1 (lu/2− lm/2 )+ εxx,u2lm/2+

(
εxy,h + εxy,u1 + εxy,u2

)
hu/4

)
=(

2εxx,i4lm/2 + εxx,i5 (lu/2− lm/2 )+
(
2εxy,i4 + εxy,5

)
hm/2

)
εyy,hhu/2 + εyy,chm + εyy,u2hu/2 = εyy,i1hu/2 + εyy,i4hm + εyy,i3hu/2

(6.62)

The total cell strain in the horizontal and vertical direction remains the same as in the running
bond case, since the total strain is equal in the two leaves. The strain in the transversal direction
is now defined as:

εzz =
(
εzz,htu + εzz,i2ti/2

)
/(tu + ti/2 ) (6.63)
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For xy shear the same assumptions as for the running bond cell apply, although several addi-
tional assumptions are needed. Based on these assumptions the equilibrium equations are again
adjusted.

Constant shear strain is assumed in the infill, so that

σxy,i1 = σxy,i2 = σxy,i3 = σxy,i4 = σxy,i5 (6.64)

The shear stress equilibrium conditions at the top face and at a horizontal cross-section across
the middle of the cell are expressed as

σxy (lm/2 + lu/2 )(tu + ti/2 ) =(
σxy,hlm/2 +σxy,u1 (lu/2− lm/2 )+σxy,u2lm/2

)
tu+(

σxy,i1lm/2 +σxy,i2 (lu/2− lm/2 )+σxy,i3lm/2
)

ti/2

σxy (lm/2 + lu/2 )(tu + ti/2 ) =(
σxy,clm/2 +σxy,b (lu/2− lm/2 )+σxy,clm/2

)
tu+(

σxy,i4lm/2 +σxy,i5 (lu/2− lm/2 )+σxy,i4lm/2
)

ti/2

(6.65)

Deformation conformity is assumed between the leaves, leading to

εxy,h1hu/2 + εxy,c1hm + εxy,u2hu/2 = εxy,i1hu/2 + εxy,i4hm + εxy,i3hu/2 (6.66)

The total shear strain of the cell in the xy plane remains unchanged compared to the running
bond case.

For xz shear the deformation of the cell is dominated by the deformation of the infill. There-
fore, the system of equations and the assumptions need to be adjusted.

The shear stress equilibrium conditions at the back of the cell and at a vertical cross-section
at the middle of the cell are as follows:

σxz (hm +hu)(lu/2 + lm/2 ) =

hu (σxz,i1lm/2 +σxz,i2 (lu/2− lm/2 )+σxz,i3lm/2 )+hm
(
2σxz,i4lm/2+σxz,i5 (lu/2− lm/2 )

)
σxz (hm +hu)(tu + ti/2 ) =(
σxz,u1hu/2 +σxz,bhm +σxz,u1hu/2

)
tu +

(
σxz,i2hu/2 +σxz,i5hm +σxz,i2hu/2

)
ti/2

(6.67)

The stress assumptions read:

σxz,i1 = σxz,i2 = σxz,i3 = σxz,i4 = σxz,i5 (6.68)

The strain assumptions read:
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εxz,h = εxz,u1 = εxz,u2 = εxz,c = εxz,b (6.69)

The total strain of the cell is defined as:

εxz =
(
εxz,htu + εxz,i1ti/2

)
/(tu + ti/2 ) (6.70)

For yz shear the deformation of the cell is again dominated by the deformation of the infill
when its Young’s modulus is low. However, the deformation profile changes for higher values
of the Young’s modulus of the infill since in this case the deformation of the outer leaf becomes
more significant. Overall, the deformation is still dominated by the different stiffness between
the outer and inner leaves.

The stress equilibrium conditions at the top, a horizontal cross section at mid height and at
the front of the cell are as follows:

σyz (lm/2 + lu/2 )(tu + ti/2 ) =(
σyz,hlm/2 +σyz,u1 (lu/2− lm/2 )+σyz,u2lm/2

)
tu+(

σyz,i1lm/2 +σyz,i2 (lu/2− lm/2 )+σyz,i3lm/2
)

ti/2

σyz (lm/2 + lu/2 )(tu + ti/2 ) =(
σyz,clm/2 +σyz,b (lu/2− lm/2 )+σyz,clm/2

)
tu+(

σyz,i4lm/2 +σyz,i5 (lu/2− lm/2 )+σyz,i4lm/2
)

ti/2

σyz (hm +hu)(lu/2 + lm/2 ) =

hu
(
σyz,hlm/2 +σyz,u1 (lu/2− lm/2 )+σyz,u2lm/2

)
+

hm
(
2σyz,clm/2+σyz,b (lu/2− lm/2 )

)

(6.71)

The stress assumptions read:

σyz,i1 = σyz,h

σyz,i2 = σyz,u1

σyz,i3 = σyz,u2

σyz,i4 = σyz,c

σyz,i5 = σyz,b

(6.72)

Deformation conformity conditions read:

εxz,htu + εxz,t1ti/2 = εxz,u2tu + εxz,t3ti/2
εxz,hhu/2 + εxz,chm + εxz,u2hu/2 = εxz,u1hu/2 + εxz,bhm + εxz,u1hu/2

(6.73)

Since deformation conformity is not rigidly imposed, the total strain of the cell is defined
according to the geometrical average of the cuboids participating in the total deformation of the
cell according to
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εyz =
((εyz,htu+εyz,i1ti/2 ) lm

2 +(εyz,u1tu+εyz,i2ti/2 ) lu−lm
2 +(εyz,u2tu+εyz,i3ti/2 ) lm

2 )
hu
2 +

(lu/2 +lm/2 )(hu/2 +hm/2 )(tu+ti/2 ) +

((εyz,ctu+εyz,i4ti/2 )lm+(εyz,btu+εyz,i5ti/2 ) lu−lm
2 ) hm

2
(lu/2 +lm/2 )(hu/2 +hm/2 )(tu+ti/2 )

(6.74)

6.3.6 Stack Bond Pillar

For the stack bond pillar model the system of equations developed by Haller for vertical normal
stress is used. According to Haller [70], the horizontal and transversal deformation equality of
the two components reads:

εxx,u = εxx,b

εzz,u = εzz,b
(6.75)

The horizontal and transversal stress equilibrium reads:

σxx (hm +hu) = σxx,uhu +σxx,bhm

σzz (hm +hu) = σzz,uhu +σzz,bhm
(6.76)

The vertical stress equilibrium demands that both components develop vertical stress equal
to the external load according to

σyy,u = σyy,b = σyy (6.77)

The total vertical strain of the cell is

εyy =
(
εyy,uhu/2 + εyy,bhm/2

)
/(hu/2 +hm/2 ) (6.78)

6.3.7 English Bond Pillar

Shear stresses in the components are disregarded for applied normal stress. Normal strain con-
formity in the cell is achieved by assuming

εxx,u1 = εxx,b1 = εxx,u3 = εxx,h2 = εxx,c2 = εxx,u4

εxx,u2 = εxx,c1 = εxx,h1 = εxx,c4 = εxx,c3 = εxx,c5

εyy,u3 = εyy,h1 = εyy,u4 = εyy,c5

εyy,b1 = εyy,c1 = εyy,c2 = εyy,c3

εyy,u2 = εyy,c4 = εyy,u1 = εyy,h2

εzz,u2 = εzz,c1 = εzz,h1 = εzz,u1 = εzz,b1 = εzz,u3

εzz,c4 = εzz,c3 = εzz,c5 = εzz,h2 = εzz,c2 = εzz,u4

(6.79)

Normal stress equilibrium in the horizontal, vertical and transversal directions is expressed
as
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σxx (hu +hm)(lu/2 ) =(
σxx,h1 (lu/2 − lm/2 )+σxx,c5tm/2

)
hu/2 +

(σxx,c1 (lu/2 − lm/2 )+σxx,c3tm/2 )hm +(σxx,u2 (lu/2 − lm/2 )+σxx,c4tm/2)hu/2

σxx (hu +hm)(lu/2 ) =

(σxx,u3 (lu/2 − lm/2 )+σxx,u4tm/2 )hu/2 +(
σxx,b1 (lu/2 − lm/2 )+σxx,c2tm/2

)
hm +

(
σxx,u1 (lu/2 − lm/2 )+σxx,h2tm/2

)
hu/2

σyy (lu/2 )(lu/2 ) =(
σyy,u3 (lu/2 − lm/2 )+σyy,h1tm/2

)
(lu/2 − lm/2 )+

(
σyy,c5lm/2 +σyy,u4 (lu/2 − lm/2 )

)
tm/2

σyy (lu/2 )(lu/2 ) =(
σyy,b1 (lu/2 − lm/2 )+σyy,c1tm/2

)
(lu/2 − lm/2 )+

(
σyy,c3lm/2 +σyy,c2 (lu/2 − lm/2 )

)
tm/2

σyy (lu/2 )(lu/2 ) =(
σyy,u1 (lu/2 − lm/2 )+σyy,u2tm/2

)
(lu/2 − lm/2 )+

(
σyy,c4lm/2 +σyy,h2 (lu/2 − lm/2 )

)
tm/2

σzz(hu +hm)(lu/2 ) =(
σzz,u3 (lu/2 − lm/2 )+σzz,h1lm/2

)
hu/2 +

(
σzz,b1 (lu/2 − lm/2 )+σzz,c1lm/2

)
hm+

(σzz,u1 (lu/2 − lm/2 )+σzz,u2lm/2 )hu/2

σzz(hu +hm)(lu/2 ) =(
σzz,u4 (lu/2 − lm/2 )+σzz,c5lm/2

)
hu/2 +(σzz,c2 (lu/2 − lm/2 )+σzz,c3lm/2 )hm+(

σzz,h2 (lu/2 − lm/2 )+σzz,c4lm/2
)

hu/2
(6.80)

The total vertical strain of the cell is

εyy =
(
εyy,u3hu/2 + εyy,b1hm + εyy,u1hu/2

)
/(hu/2 +hm +hu/2 ) (6.81)

6.4 Calculation

For linear elastic analysis the solution from which the elastic moduli of the cell are derived can
be accomplished in a single analysis step by solving the linear system of equations derived from
the above expressions. The systems need to be solved for the unknown normal stresses, shear
stresses (where considered), normal strains and shear strains. For normal stress loading, the
unknowns include three normal stresses, three normal strains, one shear stress and one shear
strain value for each cuboid. In total, the stack bond wall model consists of 26 unknowns, the
running bond wall of 40, for the Flemish bond wall 128, for the three-leaf wall 80, for the stack
bond pillar 12 and for the English bond pillar 72. For shear stress loading each cuboid has one
shear stress and one shear strain unknown components. The number of unknowns is: 8 for the
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stack bond wall, 10 for the running bond wall, 32 for the Flemish bond wall and 20 for the
three-leaf wall model.

Overall, obtaining closed form expressions for the stresses and strains in the cuboids, as well
as for the elastic moduli of the cells, under conditions of applied normal stress is extremely
difficult even for the simple case of stack bond masonry. Expressions for the shear moduli of
the cells are far easier to be obtained due to the much smaller number of unknowns. However,
the linear systems of equations can be solved with very little effort using simple linear algebra
or any basic symbolic math software.

6.5 Verification of the Model

The capacity of the model to predict the elastic properties of masonry cells under normal and
shear loading is initially evaluated through a comparison with the results obtained from FE anal-
yses. The meshes used for this verification are shown in Figure 6.7. Apart from the comparison
between the results obtained from the proposed model and the FE analyses, it is desirable to
compare the two approaches in terms of computational cost.

(a) (b) (c)

(d) (e) (f)

Figure 6.7 Finite element models of wall periodic unit cells: (a) stack bond wall, (b) running bond wall,
(c) Flemish bond wall, (d) three-leaf wall, (e) stack bond pillar and (f) English bond pillar cell.

The masonry unit cell is meant to represent a volume of masonry inside an extended com-
posite continuum. Therefore, boundary conditions assuring displacement conformity at the cell
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faces need to be applied. Stress distribution in the constituents of the composite is not uniform
but rather depends on the relative elasticity parameters of the involved components. The im-
posed boundary conditions ensure that the distribution of stress in the components is based on
strain and deformation compatibility under normal and shear loading.

Periodicity conditions for a cell shown in Figure 6.8a are imposed by tying the displacements
of nodes in opposite faces of the FE model. The tyings can be described as keeping the distance
between two pairs of nodes equal, specifying a number of controlling nodes p1, p2, p3, p4
and p5. These controlling nodes also serve to fully describe the deformations necessary for the
derivation of the elastic properties of the cell. Therefore the displacement of a node in face i2
or j2 for the application of a normal stress in the i direction or a shear stress in the i j plane can
be derived from the displacement of the node in the opposite face i1 or j1 and the displacement
of node p1, p2 and p3 as follows:

di2 = di1 +dp2−dp1 (6.82)

d j2 = d j1 +dp3−dp1 (6.83)

where dp1, dp2 and dp3 are the displacement vectors of nodes p1, p2 and p3 in the i j plane
and di1, di2, d j1 and d j2 are the displacement vectors of a node in faces i1, i2, j1 and j2 in the
i j plane. Equal displacements in the k direction are imposed at the nodes of each of the external
faces parallel to the i j plane for both applied normal and shear stress.

The elastic properties of the composite cell may be derived by registered displacements in
the above designated controlling nodes, where dpn,i is equal to the displacement of node n in
direction i. The total dimension of the cell in each principal direction i (horizontal, vertical and
transversal) is designated as Di. The Young’s moduli and the Poisson’s ratios of the cell may be
calculated from

Ec,i = σii/εii = σii/

(
di

Di

)
= σii/

(
dp2,i−dp1,i

Di

)
(6.84)

and

νc,i j =−ε j j/εii =−
(

d j
D j

)
/
(

di
Di

)
=−

(
dp3, j−dp1, j

D j

)
/
(

dp2,i−dp1,i
Di

)
νc,ik =−εkk/εii =−

(
dk
Dk

)
/
(

di
Di

)
=−

(
dp5,k−dp4,k

D j

)
/
(

dp2,i−dp1,i
Di

) (6.85)

where di, d j and dk are relative displacements between two opposing faces, which can be
expressed by the difference in displacement of opposing controlling nodes in a given direction.

The shear modulus of the cell is equal to

Gc,i j = σi j/2εi j = σi j/γi j = σi j/

(
dp4,i−dp1,i

D j
+

dp4, j−dp1, j

Di

)
(6.86)
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The deformation profile of the cell under normal and shear applied stress is shown in Figure
6.8b and 6.8c.

i2

j2

j1

i1

p2p1

i

j

k

p3 p4

p5

(a)

σ
ii

σ
ii

σij

σij

σij

σij

(b) (c)

Figure 6.8 (a) FE model faces and nodes for definition of periodicity conditions. (b) Deformation profile
of cell under uniaxial normal stress and (c) under pure shear stress.

A parametric investigation is conducted in order to verify the accuracy of the models for a
wide range of ratios of unit-to-mortar and mortar-to-infill Young’s modulus, as shown in Table
6.1. These properties and dimensions have been applied to all typologies of masonry under
study. The parametric investigation of the three-leaf wall is conducted by assuming a ratio of 30
for the unit-to-mortar Young’s modulus and altering the Young’s modulus of the infill ranging
from highly deformable to stiffer than the outer leaf. The wall models have been tested in all
normal and shear directions and the pillar models have been tested for vertical loading.

Finally, a comparison is made between the results obtained by the model and experimental
results drawn from the existing literature.
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Table 6.1Material properties and dimensions for linear elastic parametric analysis.

Eu νu Eu νm Ei νi hu lu tu hm lm tm ti
[N/mm2] [−] [N/mm2] [−] [N/mm2] [−] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

20, 33, 7, 11,
67, 200, 22, 67,

20000 0.15 333, 667, 0.15 111, 222, 0.20 52 210 100 10 10 10 150
2000, 3333, 667, 2000,
6667, 20000 4000, 6667

6.6 Results

6.6.1 Parametric Investigation

The micro-mechanical approach produced elastic results nearly identical to those obtained from
FE analysis for all models and for almost the entire range of material properties. The Young’s
moduli and the Poisson’s ratios of the masonry composites were calculated with great accuracy,
with the differences being restricted to a number of shear moduli in out-of-plane loading.

The computational cost of the micro-mechanical models is negligible, the results being pro-
duced practically instantaneously on an ordinary computer, even for the largest systems of equa-
tions. The FE models required a computational time ranging from several seconds to a few
minutes for the production of the results. The results of the parametric investigation and their
comparison with FEM calculations are illustrated in Figures 6.9 through 6.12.

The comparison of the Young’s modulus of walls as calculated by the models, in compar-
ison with the finite element analysis results, is presented in Figure 6.9 for loading in all three
orthogonal directions. The comparison for the pillars is shown in Figure 6.10 for loading in the
vertical direction only. The models are proven to be very accurate for the determination of the
Young’s modulus of masonry for all typologies and all directions of loading.

An interesting result is the tendency of the horizontal and vertical Young’s modulus of the
wall models to be drastically reduced for a reduction in the Young’s modulus of the mortar (as is
expected due to the existence of the continuous bed joint and the continuous or staggered head
joints) while the transversal Young’s modulus for stack and running bond walls remains largely
unaffected. For high values of the mortar modulus the three Young’s moduli are of the same
order of magnitude in all models, while for low values the transversal modulus is much higher in
the single leaf wall cases. Certain conclusions may be drawn from this observation concerning
the applicability of plane analysis methods for stack bond masonry structures. According to
the relative deformability in the in-plane and out-of-plane directions, plane stress analysis may
provide reasonable results for very rigid mortars and plane strain for very deformable mortars.

The transversal joint in the Flemish bond wall eliminates the distinct higher rigidity in the
transversal direction for highly deformable mortars noted in the stack bond and running bond
typologies. However, the complex geometry across the thickness of the structure would render
the plane stress and plane strain methods of analysis inappropriate by definition.
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The elastic stiffness of the infill marginally affects the global stiffness of the three-leaf wall in
the vertical and horizontal direction, but greatly affects its stiffness in the transversal direction.
The infill acts in a manner similar to that of the continuous bed joint in masonry under vertical
load.

 0.001

 0.01

 0.1

 1

 10

 1  10  100  1000

E
c,

i/E
u

Eu/Em

Ec,x,FEM

Ec,y,FEM

Ec,z,FEM

Ec,x,mm

Ec,y,mm

Ec,z,mm
 0.001

 0.01

 0.1

 1

 10

 1  10  100  1000

E
c,

i/E
u

Eu/Em

Ec,x,FEM

Ec,y,FEM

Ec,z,FEM

Ec,x,mm

Ec,y,mm

Ec,z,mm

(a) (c)

 0.001

 0.01

 0.1

 1

 10

 1  10  100  1000

E
c,

i/E
u

Eu/Em

Ec,x,FEM

Ec,y,FEM

Ec,z,FEM

Ec,x,mm

Ec,y,mm

Ec,z,mm
 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.1  1  10  100

E
c,

i/E
u

Em/Ei

Ec,x,FEM

Ec,y,FEM

Ec,z,FEM

Ec,x,mm

Ec,y,mm

Ec,z,mm

(b) (d)

Figure 6.9 Comparison Young’s modulus of masonry walls according to micro-mechanical model and
FEM results: (a) stack bond, (b) running bond, (c) Flemish bond and (d) three-leaf wall with
running bond outer leaf walls.

The micro-mechanical models for the stack bond and English bond pillar, shown in Figure
6.10, produced results identical to the ones obtained from FE analyses. The deformation of the
bed joint under vertical loading dominates the response in terms of global elastic stiffness and,
as such, the existence of head and cross joints in the English bond pillar case has very small
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influence on the final results.
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Figure 6.10 Comparison of Young’s modulus of masonry pillars according to micro-mechanical model
and FEM results: (a) stack bond and (b) English bond pillars.

Figure 6.11 presents the comparison of the micro-mechanically to the numerically derived
shear modulus of the wall typologies. Very good agreement is found between the results overall,
with the exception of the modulus in the xz planne for the running bond model, which is, for
Eu/Em = 1000, 18% lower than the numerically derived value.

The effect of the continuous bed joint is apparent in shear in the xy and yz planes for stack
bond, running bond and Flemish bond walls. The shear modulus in those planes is nearly equal
for every model investigated. Of interest is the shift in the deformation profile of the three-
leaf wall cell under yz shear as the Young’s modulus of the infill increases. For low values the
obtained shear modulus is equal to the modulus in the xz plane and for higher values it is equal to
the modulus in the xy plane. This is due to the deformability of the infill dominating the response
when its Young’s modulus is low.

The Poisson’s ratios derived from themodels are presented in Figure 6.12 for thewall models.
Overall, the accuracy of the model is very good, with the exception of the νc,xy in the stack bond
wall case, where the value is slightly underestimated by the model for Eu/Em greater than 70,
and the νc,zx in the Flemish bond model, which is slightly overestimated by the model for Eu/Em

greater than 100.

Noteworthy is the fact that the νc,zx remains equal to that of the two components (the units
and the mortar) regardless of the Young’s modulus of the mortar in the single leaf masonry
wall cases. The influence of the transversal joint in the Flemish bond wall and of the infill in the
three-leaf wall models is shown in Figure 6.12b and 6.12c respectively, with the value noticeably
dropping for a decrease of the Young’s modulus of the mortar or the infill.
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6.6.2 Case Studies

The modeling method has been applied to experimental cases consisting of stack bond, running
bond and Flemish bond masonry composites found after an extensive literature review on ma-
sonry in compression. The designation of the case studies is the same as the one used in the
chapter on finite element modeling of masonry in compression already presented. Only case
studies providing experimental values for the Young’s modulus of the constituents have been
considered. The cases and the analysis results are summarized in Table 6.2 through Table 6.5.
The cases selected represent wider range of material properties and dimensions that those con-
sidered in the parametric study. In a number of cases the Poisson’s ratio is not given in the cited
work and, therefore, a nominal value is used. In these cases, the value of the Poisson’s ratio is
indicated in curly brackets. The average value of the measured Poisson’s ratio in the set of case
studies is 0.13 for the units with values ranging from 0.07 to 0.24 while for the mortars it is
equal to 0.15 with values ranging from 0.07 to 0.2. In the cases where it was not reported, the
Poisson’s ratio for the units was chosen as being equal to 0.15 while a value between 0.15 and
0.25 was chosen depending on the type of mortar. In [56, 124] a weak lime mortar was used,
so a value of 0.25 was adopted. For [8, 68, 119, 120, 156], for which a cement/lime mortar was
used, a value of 0.20 was adopted. In [76, 81] Portland cement mortars were used and a value
of 0.15 was used.

Again, the case studies have also been analyzed using FE models for the sake of comparison
between the analysis methods.

Table 6.2 Stack bond prism cases. Comparison of experimental and analysis results. Assumed values in
curly brackets.

Case Ref.
Eu νu hu lu tu Em νm hm lm tm Ec,exp Ec,FEM Ec,mm

[N/mm2] [-] [mm] [mm] [mm] [N/mm2] [-] [mm] [mm] [mm] [N/mm2] [N/mm2] [N/mm2]
S2 [56] 4200 0.16 45 290 140 125 {0.25} 10 - - 600 814 705
S3 [68] 976 {0.15} 75 230 105 1500 {0.20} 12 - - 467 1016 1025
S5 [68] 3372 {0.15} 75 230 105 8568 {0.20} 12 - - 2393 3525 3692
S6 [8] 135 {0.15} 52 212 104 795 {0.20} 10 - - 207 154 154
S7 [56] 4200 0.16 45 290 140 225 {0.25} 10 - - 1100 1157 1138
S8 [137] 5500 0.11 113 240 175 2765 0.07 30 - - 4200 4702 4555
S9 [68] 3372 {0.15} 75 230 105 5450 {0.20} 12 - - 3135 3628 3560
S10 [68] 976 {0.15} 75 230 105 238 {0.20} 12 - - 379 735 701
S13 [3] 2000 0.1 55 250 110 1700 0.2 10 - - 1936 1950 1956
S14 [64] 7500 0.07 65 40 40 220 0.2 20 - - 878 1475 937
S15 [119] 12000 0.2 45 285 130 4200 {0.20} 10 - - 10000 9761 9110
S16 [137] 5500 0.11 238 252 241 2765 0.07 12 - - 5517 5330 5250
S17 [156] 16700 0.15 52 210 100 2100 0.22 13 - - 6800 8294 7486
S19 [124] 5756 {0.15} 55 125 120 5487 {0.25} 10 - - 2132 5906 5736
S21 [68] 976 {0.15} 75 230 105 8568 {0.20} 12 - - 365 1098 1137
S23 [130] 8000 0.08 100 305 143 6600 0.19 30 - - 5900 7013 7687
S24 [64] 7500 0.07 65 40 40 220 0.2 10 - - 1938 2380 1509
S26 [68] 3372 {0.15} 75 230 105 7083 {0.20} 12 - - 3700 3585 3641
S29 [81] 5300 {0.15} 75 230 110 545 {0.15} 10 - - 2239 3034 2679
S30 [76] 12930 {0.15} 36 123 60 9590 {0.15} 7 - - 8000 12601 12244

The micro-mechanical model gives values nearly identical to the values obtained through
FE analysis for the majority of the cases. The comparison with the experimental values shows
significant agreement as well, especially for the stack bond pillar and running bond wall cases.
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Table 6.3 Running bond wall cases. Comparison of experimental and analysis results. Assumed values
in curly brackets.

Case Ref.
Eu νu hu lu tu Em νm hm lm tm Ec,exp Ec,FEM Ec,mm

[N/mm2] [-] [mm] [mm] [mm] [N/mm2] [-] [mm] [mm] [mm] [N/mm2] [N/mm2] [N/mm2]
R1 [68] 3372 {0.15} 75 230 105 5450 {0.20} 12 12 - 5232 3590 3660
R2 [156] 4000 0.13 50 206 96 1650 {0.20} 12.5 10 - 3200 3095 3114
R3 [68] 976 {0.15} 75 230 105 238 {0.20} 12 12 - 580 717 685
R4 [68] 976 {0.15} 75 230 105 1500 {0.20} 12 12 - 735 1033 1050
R5 [68] 3372 {0.15} 75 230 105 7083 {0.20} 12 12 - 4824 3702 3825
R6 [68] 3372 {0.15} 75 230 105 8568 {0.20} 12 12 - 5024 3782 3863
R7 [120] 6740 0.167 35 110 50 970 {0.20} 5 5 - 3700 3949 3936
R8 [68] 976 {0.15} 75 230 105 8568 {0.20} 12 12 - 400 1254 1561

Table 6.4 Flemish bond wall cases. Comparison of experimental and analysis results. Assumed values
in curly brackets.

Case Ref.
Eu νu hu lu tu Em νm hm lm tm Ec,exp Ec,FEM Ec,mm

[N/mm2] [-] [mm] [mm] [mm] [N/mm2] [-] [mm] [mm] [mm] [N/mm2] [N/mm2] [N/mm2]
F1 [25] 4865 0.09 55 250 120 1180 0.06 10 10 10 1651 3107 3178
F2 [25] 4865 0.09 55 250 120 5650 0.09 10 10 10 3833 5002 5025
F3 [25] 4865 0.09 55 250 120 17760 0.12 10 10 10 4567 6390 6547

The largest differences were registered in cases S2, S14 and S24, which are characterized by
mortars with a very low Young’s modulus for the mortar. The locking effect, as shown in Figure
4.17 may have been involved. The results of the case studies are additionally illustrated in Figure
6.13.

6.7 Conclusions

Models for the derivation of elastic and inelastic properties of masonry composites using micro-
mechanical techniques for the analysis of masonry periodic unit cells are presented and tested
against results obtained from the analysis of corresponding FE cells and experimental results.
Themodel is capable of simulating the arising normal and shear stresses and strains in themacro-
scopic components of masonry composites, therefore conforming with the basic principles of
detailed micro-modeling.

The results on the elastic properties of several types of masonry composites for a wide range
of material combinations are well approximated using an micro-mechanical model based on
simple analytical calculations. Using FE calculations as a benchmark, the elastic anisotropic
behavior of masonry due to the interaction of isotropic components arranged in various typolo-
gies in a periodic structure is well simulated. Additionally, the comparison between the results
of the proposed model and the available experimental results is fair, the differences being lower
than the experimental scatter.

Finally, the use of micro-mechanical models based on analytical expressions is shown to
be very advantageous compared to FE calculations in terms of computational cost and model
preparation time. The means required to implement the models for the derivation of the elastic
properties of masonry only include simple linear algebra software and can be performed in a
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Table 6.5 English bond pillar cases. Comparison of experimental and analysis results.

Case Ref.
Eu νu hu lu tu Em νm hm lm tm Ec,exp Ec,FEM Ec,mm

[N/mm2] [-] [mm] [mm] [mm] [N/mm2] [-] [mm] [mm] [mm] [N/mm2] [N/mm2] [N/mm2]
P1 [68] 3372 {0.15} 75 230 105 8568 {0.20} 12 20 20 3317 4005 4157
P2 [68] 3372 {0.15} 75 230 105 5450 {0.20} 12 20 20 3789 3684 3736
P3 [68] 976 {0.15} 75 230 105 238 {0.20} 12 20 20 377 690 663
P4 [68] 3372 {0.15} 75 230 105 7083 {0.20} 12 20 20 3677 3865 3966
P5 [68] 976 {0.15} 75 230 105 1500 {0.20} 12 20 20 381 1056 1070
P6 [68] 976 {0.15} 75 230 105 8568 {0.20} 12 20 20 376 1510 1869
P7 [64] 7500 0.07 65 290 140 220 0.2 10 10 10 661 2007 1500

single analysis step. The extension of the modeling technique herein presented for the nonlinear
analysis of masonry walls and the prediction of their nonlinear properties will be presented in
the following chapter.
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Figure 6.11 Comparison of shear modulus of masonry walls according to micro-mechanical model and
FEM results: (a) stack bond, (b) running bond, (c) Flemish bond and (d) three-leaf wall with
running bond outer leaf walls.
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Figure 6.12 Comparison of Poisson’s ratio of masonry walls according to micro-mechanical model and
FEM results: (a) stack bond, (b) running bond, (c) Flemish bond and (d) three-leaf wall with
running bond outer leaf walls.
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Figure 6.13 Comparison of vertical stiffness according to (a) FEM and micro-mechanical results and
(b) experimental and micro-mechanical results. The dotted lines indicate the limits of 10%
deviation between the compared values.



Chapter 7

Micro-Mechanical Modeling of Masonry -
Nonlinear Analysis

7.1 Introduction

Micro-modeling techniques for the derivation of the orthotropic mechanical properties of ma-
sonry composites are a powerful computational tool. They are capable of providing the elastic
properties of masonry under normal and shear loads as well as its strength domain under uniaxial
and complex loading. The information obtained in terms of strength values, the evolution and
propagation of damage in each component and the influence of individual material parameters
on the response are highly important for the computational study of masonry structures and can
prove to be an incentive for guiding experimental studies on the determination of the critically
important mechanical properties of masonry materials.

Being composed of (at least) two macroscopically distinguishable material phases with dif-
ferent mechanical properties, generally arranged in a repeating pattern, masonry structures are
a suitable candidate for analysis using periodic unit cells. The analysis of these cells may be
performed using finite element computations [24, 103] or analytical expressions [30, 122, 162],
in order to derive the distribution of stress and strain in the volume of the cell. While the former
is capable of providing accurate results, its use is hindered by potentially high computational
cost. The latter choice is attractive due to its very low computational cost, but the validity of
the assumptions made in the formulation of the analytical expressions need to be rigorously
checked through conceptual reasoning, accurate calculations and comparison with the existing
experimental data.

It has been demonstrated that numerical modeling of masonry wall structures under in-plane-
loading needs to take into account the out-of-plane stresses [16, 95]. While this necessity is
straightforward in the case of multi-leaf walls or of pillars composed of interlocking masonry
units, where the accurate representation of the geometry of the structure demands its full three-
dimensional modeling, it is essential in the analysis of single leaf structures as well, since three-
dimensional effects are a governing factor in the behavior of mortar joints in masonry under
compression. While plane stress and plane strain finite element models may present significant

133
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computational cost advantages over full three-dimensional models they tend to under- or over-
estimate the confinement effect on mortar in the joints respectively. However, the adoption of
three-dimensional finite element models may prove to be very demanding in terms of computa-
tional cost.

Several models based on analytical expressions or micro-mechanical approaches have been
proposed for various types of masonry. These include early models of stack bond pillars [70]
and numerous works on running bond walls [31, 37, 112, 122, 162]. Other types of masonry,
such as Flemish bond walls, three-leaf walls with infill and English bond pillars have not been
the subject of much investigation.

Detailed micro-modeling requires extensive characterization of the mechanical properties of
the masonry units, mortar, infill and interfaces. Due to the large number of parameters involved,
coupled with inherent difficulties in determining these parameters from samples extracted from
existing structures and with the high scatter that often characterizes them, several of these pa-
rameters are routinely given standard values. The study of the sensitivity of the compressive
strength of masonry to some of these parameters is an interesting subject for investigation.

Closed form expressions for the determination of the compressive strength of masonry have
been proposed based on various analytical formulations [74, 117] and are in use inmodern design
codes [40]. Many of these expressions have a strong empirical aspect concerning the influence
of the material properties of the constituent materials of masonry. Other models in which the
majority of the elastic and strength properties of the constituent materials are directly input in the
expressions provide unstable results for certain ranges of elastic property combinations [63, 73].
A relatively simple closed formmodel based on the principles of detailed micro-modeling which
overcomes as much as possible empirical assumptions and result instability of other closed form
models could be proposed.

A number of objectives is attempted to be tackled through this investigation. A model for
computational modeling of masonry wall and pillar structures based on micro-modeling tech-
niques and performed through the analysis of periodic unit cells is proposed. The analysis of
the masonry cells is carried out using analytical expressions based on stress equilibrium, strain
conformity and rational assumptions concerning the behavior of masonry geometrical compo-
nents. By coupling with nonlinear constitutive laws these models are intended to be used for the
calculation of the nonlinear properties of masonry structures.

The formulation of the models using analytical expressions serves to critically reduce the
computational effort required for analysis. Being computationally advantageous to, for exam-
ple, finite element computations, the models of the cells are appropriate for two-scale analyses
of large structures, thus bridging the gap between the accuracy of detailed micro-modeling tech-
niques and the need to investigate the structural behavior of large masonry assemblages.

Several typologies of masonry walls and pillars are treated in this chapter. A number of
them, such as stack bond pillars, stack bond walls and running bond walls, have garnered the
almost complete attention of researchers so far. The present investigation includes analyses on
Flemish bond and three-leaf walls, as well as English bond pillars, which have not received the
research attention that their abundance in the built environment would warrant.
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The models have been employed in the study of the response of masonry under tensile and,
to a more significant extent, compressive loads. The evolution of stress and damage levels in
different parts of the masonry has been studied and commented upon. Differences between
different masonry typologies under the same loading conditions are also presented.

The models constitute a useful tool for the carrying out of quick but accurate calculations
in order for the nonlinear properties of masonry structures to be derived. In addition, they have
been here employed in a wide parametric investigation, which, taking advantage of their low
computational cost, provides insights on the sensitivity of the compressive strength of masonry
to several material and geometrical parameters over a wide spectrum of values.

Finally, a closed form expression for the determination of the compressive strength of ma-
sonry is proposed based on the micro-mechanical models investigated. A further simplification
of this expression is proposed based on empirical data. A number of experimental case studies
on the compressive strength of masonry are compared with the results of the micro-mechanical
model and the closed form expressions.

7.2 Nonlinear Analysis

7.2.1 Overview

The framework for the nonlinear analysis of the cells using the micro-mechanical model devel-
oped in the previous chapter firstly requires the definition of failure criteria for the components
under the different types of action to which they are subjected. Secondly, the simulation of dam-
age when the failure conditions are met are defined. This is accomplished by introducing a set
of integrity variables which modify the stresses in the analytical systems of equations so that the
“damaged” stresses may be determined. Finally, the analytical systems of equations needs to be
solved for the derivation of the stresses and strains in the cuboids.

7.2.2 Failure Criteria

The units, the mortar and the infill are modeled as three-dimensional isotropic continua. Perfect
bond is considered at the unit/mortar interface, therefore all deformation of the cell is accounted
for in the units and the mortar. The initiation of damage requires the definition of failure criteria
in compression, tension and shear.

For the mortar the Hsieh-Ting-Chen failure curve is adopted, while for the units two dif-
ferent failure criteria have been implemented: a Rankine criterion with a compression and a
tension cut-off, equal to the uniaxial compression and tensile strength of the unit respectively,
and a Mohr-Coulomb criterion. In the former criterion the interaction between tension and com-
pression is disregarded, while in the latter it is taken into account by reducing the compressive
strength of the unit when subjected to laterally applied tensile stress. All curves are presented
in Figure 7.1.
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Figure 7.1 Failure curves used for (a) mortar for various levels of out-of-plane stress, (b) units and (c)
interfaces.

The Hsieh-Ting-Chen failure surface shape is determined by four material tests: uniax-
ial compression, uniaxial tension, equibiaxial compression and compression under equibiaxial
compression. The mathematical expression of the curve has been presented in equation 3.10.
Figure 7.1 illustrates the effect of out-of-plane stresses in the in-plane strength domain of the
mortar. Similarly, Figure 7.1 illustrates the effect of lateral tensile stresses on the compressive
strength of the unit.

In shear, a Mohr-Coulomb friction failure criterion is adopted, which has the form

|τ|+σ tanϕ− c = 0 (7.1)

where τ is the failure shear stress, ϕ is the friction angle, σ the applied normal stress and c
the cohesion.

7.2.3 Simulation of Damage

Damage in the cuboids due to compression, tension and shear is accomplished by the use of
integrity variables. These variables are designated C, T and S for compression, tension and
shear respectively and range from 1 to 0. They represent the ratio between the actual stress and
the effective stress in the component. A value of 1 signifies that the material is undamaged and
a value of 0 signifies that the material is completely softened. The evolution of the integrity
variables is a function of the uniaxial strain and, in the case of compressive damage, the lateral
compressive stresses.

The determination of these integrity variables requires the description of the hardening and
softening behavior of thematerials in tension, compression and shear. For tension an exponential
softening law based on fracture energy is adopted. According to this assumption, the integrity
variables are:
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T (n) =

 1 0≤ σe f f (n)≤ ft
ft

σe f f (n)
exp
[
− fth

GI
f

(
ε (n)− ft

E

)]
ft < σe f f (n)

(7.2)

where ft is the tensile strength, E is the Young’s modulus, GI
f is the tensile fracture en-

ergy, h is the characteristic length and ε (n) is the total strain. This equation is evaluated in the
three principal directions for each cell component and the lowest integrity variable is chosen to
represent the isotropic damage.

The failure in tension in the interface may be taken into account by adjusting the tensile
properties of the mortar in the chosen direction. For this purpose the tensile strength and fracture
energy may be reduced in the horizontal direction for the head joints, the vertical direction for
the bed joints and the transversal direction for the transversal joints in order for these parameters
to correspond to the mechanical properties of the interface. For the softening of the interface in
tension the characteristic length as defined for the mortar joint is adopted.

For compression the integrity variables are:

C (n) =



1 f or 0 < ε(n)≤ εc/3

− fc
σe f f (n)

1
3

(
1+4

(
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f or εc < ε(n)≤ εu

0 f or εu < ε(n)

(7.3)

where fc is the uniaxial compressive strength, ε (n) the strain and σe f f (n) the effective stress.
The strain εc/3 , at which one third of the compressive strength is reached, is expressed as:

εc/3 =−1
3

fc

E
(7.4)

The strain εc, at which the maximum compressive strength is reached, is expressed as:

εc =−
5
3

fc

E
= 5 εc/3 (7.5)

The ultimate strain εu, at which the material has terminated its softening in compression,
which is expressed as:

εu = εc−
3
2

Gc
f

h fc
(7.6)

where, in turn, Gc
f is the compressive fracture energy and h is the characteristic element

length. The parabolic curve strain and stress values are scaled due to the application of lateral
compressive stress according to the ratio between the uniaxial compressive strength and the
compressive strength calculated using the Hsieh-Ting-Chen curve.
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The values of the compressive strength and the peak and maximum strain are modified ac-
cording to the lateral effective stress in order to simulate the pressure dependent behavior of the
mortar in certain directions. This pressure dependence is taken into account for compression
in the vertical direction for the bed joints, the horizontal direction for the head joints and the
transversal direction for the transversal joints. As in the case for tension, the compressive in-
tegrity variable is evaluated in three directions for each component, the lowest value being the
eventual isotropic integrity variable.

The expressions of the integrity variables for shear, assuming a Mohr-Coulomb failure cri-
terion and an exponential softening curve based on fracture energy for the cohesion are:

S (n) =

{
1 f or

∣∣τe f f (n)
∣∣≤ c0−σ(n) tanϕ0

−σ(n) tanϕ(n)+c(n)
|τe f f (n)| f or

∣∣τe f f (n)
∣∣> c0−σ(n) tanϕ0

(7.7)

where c0 is the initial cohesion, c(n) is the cohesion in the load step, tanϕ (n) the tangent of
the friction angle, σ (n) and τe f f (n) the applied normal and effective shear stress. The tangent
of the friction angle is assumed to develop according to

tanϕ (n) = tanϕ0 +(tanϕr− tanϕ0)
c0− c(n)

c0
(7.8)

where tanϕ0 and tanϕr are the initial and residual tangents of the friction angle. The cohesion
softens exponentially according to

c(n) = c0 exp

(
−c0h

GII
f

(
ε (n)− c0−σ (n) tanϕ0

2G

))
(7.9)

where G is the shear modulus, GII
f the shear fracture energy, h the characteristic length and

ε (n) the total strain.

As in the case for tension, shear failure of the bed joint interface may be taken into account
by assigning the shear strength and fracture energy of the interface to the mortar joint compo-
nents. Otherwise, the initial frictional characteristics for each component may be derived from
its uniaxial compressive and tensile strength.

All integrity variables increase monotonically, meaning that damage recovery is impossible.
Reduction of the applied strain in a damaged segment results in the integrity variables to stay
constant. Therefore, unloading and reloading take place along the damaged stress-strain path.

The characteristic length required by the laws presented here is calculated differently for each
damage type. In tension the characteristic length for cracking in a given direction is taken as be-
ing equal to the dimension of the cuboid in that direction. The physical interpretation of this
assumption is that the width of the crack band is equal to the length of the cuboid, meaning that
a single crack is formed along the length of the cuboid. In compression and shear it is calculated
as the cubic root of the volume of the cuboid, an approach usually adopted in finite element mod-
eling using solid elements. The physical meaning of the assumption for the characteristic length
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is that all of the material in the cuboid yields and is involved in the softening. Representative
hardening and softening curves in compression, tension and shear are presented in Figure 7.2.
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Figure 7.2 Hardening-softening curves for (a) compression: basic and scaled curve for an applied con-
fining stress, (b) tension and (c) shear under varying levels of applied normal stress.

7.2.4 Solution

For linear elastic analysis the solution fromwhich the elastic moduli of the cell are derived can be
accomplished in a single analysis step by solving the linear system of equations derived from the
stress and strain conformity expressions, as was presented in the previous chapter. The systems
need to be solved for the unknown normal stresses, shear stresses (where considered), normal
strains and shear strains. To each cuboid correspond three normal stress, three normal strain,
one shear stress and one shear strain value for normal stress loading.

Nonlinear elastic analysis requires the modification of these basic systems of equations.
Adopting the damage mechanics concepts of damaged and effective (undamaged) stress this
can be achieved by the use of integrity variables. The Hooke’s law equations remain unchanged,
however, since they describe the relation between strain and effective stress.

An isotropic damage concept is adopted, meaning that damage in one direction results in
damage and loss of stiffness in all directions. Overall, the actual damaged stress tensor in load
step n can be expressed as:

σ (n) = T (n)C (n)S (n)σe f f (n) (7.10)

The solution of the system of modified equations is accomplished through the adoption of
a multi-variate Newton-Raphson iterative process. As such, the variables in iteration i of each
load step are calculated as follows:

xi+1 = xi− J
(
xi)−1

F
(
xi) (7.11)

where x is the vector of variables and J is the Jacobian matrix of the vector of equations.
Since the equations are expressed analytically using simple expressions, the Jacobian may also
be calculated in closed form. The unknown variables for which the system of equations is solved
are the stresses and strains and all the integrity variables for each component. The additional
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equations needed to fill out the system of equations are defined as the difference between the
integrity variable assumed at the beginning of the iteration and a trial value which is calculated
based on the stresses and strains of the component in the iteration. The trial integrity variables
are assigned an initial value of 1 at the first iteration of the first load step.

7.3 Results

7.3.1 General Model Behavior

The results produced by the model will be, as a first step, evaluated qualitatively in terms of the
behavior in vertical compression and horizontal tension. The preliminary numerical analyses
were performed using the material properties and dimensions summarized in Table 7.1. These
properties correspond to a masonry composed of strong units, medium strength mortar and low
strength, highly deformable infill. The constitutive model for the units was used for the infill as
well.

Table 7.1 Material properties and component dimensions for preliminary numerical analysis.

Units
Eu νu fcu ftu

[N/mm2] [-] [N/mm2] [N/mm2]
20000 0.15 50 2.5

Mortar
Em νm fcm fm

[N/mm2] [-] [N/mm2] [N/mm2]
10000 0.15 6 0.6

Infill
Ei νi fci fti

[N/mm2] [-] [N/mm2] [N/mm2]
500 0.2 0.5 0.05

Interface
fti f c0 ϕ

[N/mm2] [N/mm2] [-]
0.2 0.3 450

Dimensions
lu hu tu lm, hm, tm ti

[mm] [mm] [mm] [mm] [mm]
210 52 100 10 150

Figure 7.3 presents the stress-strain curves obtained by the prism pillar and stack bond, run-
ning bond, Flemish bond and three-leaf wall models under horizontal tension and vertical com-
pression. In the horizontal tension case the stack bond wall produced the lowest tensile strength
of masonry due to the lack of interlocking between units and mortar. The running and Flem-
ish bond cases produced equal tensile strength of masonry but the latter exhibited a more rapid
softening. All stress-strain curves are linear until the peak stress, followed by an exponential
softening branch. The softening branch for the three-leaf masonry is divided into two separate
branches, as different parts of the masonry yield in tension.

Under vertical compression the prism pillar produced the highest strength, followed closely



Results 141

by the stack bond and the running bond walls. The softening curve of the running bond wall case
was interrupted by an abrupt drop of stress due to tensile damage in the head joint, which has been
assigned the properties of the interface. The Flemish bond wall model produced a noticeably
lower strength and a steep unloading caused by cracking in the middle of the stretcher unit. The
softening curves obtained for the prism pillar, the stack bond wall and the running bond wall are
generally characterized by a linear initial part, followed by a parabolic part until after the peak
load and followed by a final exponential softening part. Overall, the model is able to produce
realistic response curves for both applied tension and compression.
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Figure 7.3 Stress strain curves for two types of loading: (a) horizontal tension and (b) vertical compres-
sion.

The progression of damage in a Flemish bond wall cell under vertical loading is presented
in Figure 7.4. According to the predictions of the model compressive damage progresses nearly
steadily in the cross joint and the bed from near the beginning of the loading. The compressive
damage in the bed joint increases rapidly near the peak load. Compressive damage is also reg-
istered in the head and transversal joint, though not for low values of vertical stress: due to the
lower Young’s modulus of the mortar, these joints are less stressed than the neighboring unit
cuboids. Tensile damage appears in the last quarter of the loading before the peak and increases
rapidly thereafter. This type of damage is registered in the mid part of the stretcher unit in the
horizontal direction and in the transversal mortar joints in the transversal direction, the direction
in which the interface properties have been assigned. Unlike the running bond wall case, tensile
failure in the head joint was not registered.

The progression of normal stresses in the outer and inner masonry leaves will be examined
for the three-leaf masonry case. The stresses presented here have been averaged across the com-
ponents comprising the inner and outer leaf respectively in order to present a global comparison
of the stress state between the leaves. It should be noted, in any case, that the average stress in
the outer leaf closely approximates that of its units since the volume of masonry accounted for
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Figure 7.4 Damage progression curves for Flemish bond wall model under vertical compression. (a)
Compressive damage: b1 stands for a bed joint, c1 for a cross joint, h1 for a head joint and t1
for a transversal joint cuboid. (b) Tensile damage: s2 stands for a stretcher unit, and t1 and t2
for two separate transversal joint cuboids.

by the mortar in the joints is very small. As shown in Figure 7.5, the outer leaf is in horizontal
tension when the wall is subjected to vertical compression and the inner leaf is under horizon-
tal compression. Both leaves are under vertical compression. However, given the difference in
their Young’s modulus, the vertical compressive stresses in the inner leaf are much lower than
the ones in the outer leaf. The stress in the outer leaf reaches nearly the compressive capacity of
the running bond wall, which may be seen in Figure 7.3, but fails to do so before the compressive
yielding of the inner leaf when the vertical stress to which it is subjected reaches its compressive
strength.

In all the models tested here the dominating failure type for applied horizontal tension is that
of the head joint interface, which constitutes the weakest plane of weakness in this direction.
In vertical compression, the response is governed by the compressive yielding of the bed joint
mortar, which is in a state of triaxial compression for the properties here chosen.

Finally, the stack bond pillar and the running bond wall models are tested against the experi-
mental case study presented in the chapter on the modeling of masonry shear walls. The models
were used for predicting the compressive strength of masonry of vertically loaded stack prisms
and horizontally and vertically loaded running bond wallettes. Additionally, the effect of the
unit/mortar nonlinearities was again investigated.

As shown in the results presented in Table 7.2, the micro-mechanical models are able to
produce results in good agreement with the experimental findings, with the exception of the
stack prism, where the model slightly underestimates the compressive strength of masonry. As
a second note, the effect of the interface nonlinearities in the vertical compressive strength is
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Figure 7.5 Progression of stresses in components of three-leaf wall model under vertical compression:
(a) horizontal stress and (b) vertical stress.

Table 7.2 Micro-mechanical model results for the strength and elasticity of masonry wallettes and prisms
subjected to compressive loads.

Model
fc,x Ec,x fc,y Ec,y

[N/mm2]
Prism - - 16.08 3928

Wallette Meso-Model 15.56 3923 15.68 3969
Wallette Micro-Model 14.94 3923 15.62 3969

negligible, while they produce a 4% drop in the predicted compressive strength of masonry in
the horizontal direction. Overall, the influence of the nonlinearities of the interfaces on the
compressive strength of masonry appears to be low.

7.3.2 Case Studies

A number of experimental case studies were assembled from the relevant literature on masonry
under vertical compression. These cases were numerically reproduced using the proposed mod-
els in order to predict the compressive strength of masonry. For the sake of comparison, these
cases were also simulated using FE models of the full structures. The first eight columns of
Table 7.3 summarize the results. The final two columns concern results derived in Section 5 of
this chapter. The case studies follow the same naming convention as the one used in the chapter
of finite element modeling of masonry under compression.

In Figure 7.6 a comparison is made between the vertical compressive strength as predicted by
the FEM and micro-mechanical methods and the one obtained in the experimental case studies.
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Table 7.3 Case studies of masonry under vertical compression: comparison between experimental, FEM,
closed form, empirical and micro-mechanical model results. The coefficient of determination
with the experimental results is also presented.

Case Ref.
fc,exp fc,Ohler fc,Hilsdor f fc,CEN fc,FEM fc,mm fc,ClosedForm fc,Semi−empirical

[N/mm2]
S1 [106] 19.70 17.63 24.54 12.22 19.44 18.50 18.98 16.07
S4 [159] 6.15 6.44 8.03 4.01 6.83 3.75 6.91 5.94
S8 [137] 4.68 6.50 7.79 4.50 5.44 6.40 5.08 6.25
S11 [159] 6.32 6.94 8.56 4.01 7.35 3.75 6.98 6.02
S12 [159] 5.01 5.47 6.83 4.01 6.21 3.50 6.67 5.71
S13 [8] 14.55 11.78 11.89 6.11 13.26 13.80 12.62 9.20
S14 [64] 4.50 7.12 10.96 6.34 3.14 10.20 10.34 5.41
S16 [137] 8.84 8.84 9.96 4.50 6.91 6.50 5.13 6.60
S17 [156] 11.73 10.31 15.88 13.06 13.77 8.50 14.90 9.94
S18 [106] 34.70 28.46 30.59 17.62 36.75 34.00 21.00 23.90
S20 [106] 48.20 43.50 43.23 24.32 50.59 45.00 31.10 31.93
S22 [106] 40.90 35.50 39.48 21.61 44.14 42.00 32.52 31.38
S24 [64] 9.33 10.08 15.33 6.34 5.74 10.20 10.42 5.52
S25 [106] 27.00 24.37 28.22 15.99 31.32 29.50 18.64 23.29
S27 [106] 32.50 30.56 37.33 19.62 37.12 37.50 30.16 29.00
S28 [106] 37.70 40.74 34.72 19.83 43.16 35.50 31.10 31.10
S31 [106] 29.90 23.65 33.99 14.99 21.12 24.00 21.77 17.71
R9 [131] 30.14 39.08 47.12 18.87 37.81 25.30 42.27 26.86
F1 [25] 11.00 15.77 20.24 7.10 4.29 4.40 4.24 8.70
F2 [25] 14.50 20.06 21.93 10.74 16.70 16.00 12.70 14.53
F3 [25] 17.80 - 36.58 19.64 29.58 29.00 26.90 26.90
P7 [64] 5.55 10.08 15.33 6.34 9.12 9.84 10.42 4.19

R2 0.916 0.912 0.385 0.884 0.906 0.842 0.860

The two numericalmethods appear to produce equally good results compared to the experimental
values for a wide range of cases. The micro-mechanical model is able to achieve a coefficient
of determination with the experimental results of 0.906, which is slightly higher than the 0.884
achieved by the FEM approach. The inability of the otherwise accurate Ohler model to produce
results for masonry composed of mortars with a higher compressive strength than the units is
noted.

Additionally, the in-plane failure envelope of a running bond periodic unit cell subjected
to bilinear stress was produced. Existing biaxial experimental tests on masonry walls for the
derivation of the biaxial strength envelopes of the composite are scarce and are not accompanied
by sufficient material characterization [120]. The original case study does not include a sufficient
characterization of the mechanical properties of the materials. For this reason, the material
properties used in a relevant work simulating the same experimental campaign were used instead
[33]. The obtained failure envelope and its comparison to the experimental envelope is shown in
Figure 7.7. Themodel overall produces an adequate curve, which approximates well the behavior
of the masonry in biaxial tension and vertical compression, but tends to overestimate to a degree
the horizontal compressive strength. This could be attributable to inadequate compaction of the
mortar in the head joints.
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Figure 7.6 Comparison of vertical compressive strength according to (a) FEM and micro-mechanical
results and (b) experimental and micro-mechanical results. Dashed lines indicate 10% differ-
ence.

7.4 Parametric Investigation

7.4.1 Overview

A wide parametric investigation was performed, the low computational cost of the method al-
lowing for a very large number of analyses to be performed in a short time. The objective of
the investigation was to determine the sensitivity of the predicted vertical compressive strength
of masonry, as predicted by the micro-mechanical model, to various material properties and
component dimensions. The parameters taken into account for the analyses are summarized in
Table 7.4, and represent a very wide, but not unlikely, range of combinations [55]. In total 62208
combinations of material properties and dimensions were considered and were analyzed using
the simple stack bond pillar model.

Table 7.4 Material properties and dimensions for nonlinear elastic parametric analysis. “Standard” values
in bold.

fcu Eu/ fcu νu ftu/ fcu fcm Em/ fcm νm lu hu tu hm

[N/mm2] [-] [-] [-] [N/mm2] [-] [-] [mm] [mm] [mm] [mm]
12.5, 25, 75, 150, 0.05, 0.01, 0.05, 1, 5, 10 150, 350, 0.15, 0.20, 210 30, 52, 100 5, 10,

50 300, 0.10, 0.10, 0.20 700, 0.25, 0.30 70 20
1000 0.15 1500

Concerning these material properties, the Eu/ fcu ratio of 300, ftu/ fcu of 0.10, Em/ fcm of
700 are considered “standard values” as are νu of 0.15, νm of 0.2, hu of 52mm and hm of 10mm.
The numerical parameters for the Hsieh-Ting-Chen failure curve presented in equation 7.12 are
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Figure 7.7 In-plane failure envelope for masonry periodic unit cell: comparison of micro-mechanical
results with experimental envelope.

also considered “standard”

In addition to the material properties, the influence of the adopted failure surfaces was inves-
tigated as well. Two cases were considered for the failure criterion of the units and the mortar
alike. For the units the two failure curves presented in Figure 7.1b were used. In the Rankine
criterion no interaction is assumed to take place between the applied compressive stress on the
unit and the lateral tensile stresses that arise due to unit/mortar interaction. When the Mohr-
Coulomb criterion is adopted, the developed tensile stresses reduce the capacity of the unit in
compression. The two criteria as implemented in the model are identical in the tension-tension
and compression-compression range.

For the mortar the influence of the assumed biaxial and triaxial behavior of the material was
investigated. Initially, the standard values proposed in [77] were used, these being the values
shown in equation 7.12. These values are obtained by assuming a tensile strength equal to 10%
of the compressive strength, a biaxial strength equal to 1.15 times the uniaxial compressive
strength and a compressive strength equal to 4.2 times the uniaxial compressive strength under
a biaxial confinement equal to 0.8 times the uniaxial strength.

f = 2.0108
J2

f 2
c
+0.9714

√
J2

fc
+9.1412

σ1

fc
+0.2312

I1

fc
−1 = 0 (7.12)

A second case with a biaxial strength increase of 10% was assumed, maintaining the same
triaxial strength. In that case the derived numerical parameters are shown in equation 7.13. The
numerical parameters have not changed substantially by altering the biaxial strength alone.

f = 1.9862
J2

f 2
c
+0.8575

√
J2

fc
+9.2816

σ1

fc
+0.1571

I1

fc
−1 = 0 (7.13)
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Finally, a case with a compressive strength of 2.6 times the uniaxial strength under a bilateral
compression equal to 0.8 times the uniaxial compressive strength was considered. The behavior
of masonry under compression is particularly sensitive to the triaxial compressive behavior of
the mortar and the behavior of the units under tension. Therefore it was considered desirable
to investigate the influence of the adopted material laws on the predicted compressive strength.
The numerical parameters derived from these assumptions on the triaxial strength are shown in
equation 7.14. Adjusting the triaxial strength of the material has greatly changed the numerical
parameters, especially the parameter linked to the J2 stress invariant and its square root.

f = 9.8064
J2

f 2
c
−2.8545

√
J2

fc
+10.7004

σ1

fc
+0.6208

I1

fc
−1 = 0 (7.14)

7.4.2 Results

The large number of results produced by the parametric investigation makes their complete pre-
sentation unwieldy. Certain aspects of the parametric investigation results will be presented in
a general fashion, while others will be discussed more in-depth.

Assuming the Mohr-Coulomb criterion for the unit failure criterion moderately influenced
the results. On average the predicted value for the Mohr-Coulomb curve was 93% that of the
Rankine curve, the minimum value being 53% and the maximum being 100%, or equal to the
original value.

Decreasing the biaxial strength of the mortar produces results identical to those of the stan-
dard case. Given the fact that the failure surface is three-dimensional, this observation is rational.

The change in the triaxial strength results in very noticeable differences in the predicted com-
pressive strength. On average, for a lower triaxial strength the predicted compressive strength
of masonry was 60% that of the standard value, with the minimum value being 17% and the
maximum being 100%. The influence of the triaxial behavior of the material is therefore shown
to be the decisive factor for compression perpendicular to the bed joint as far as the modeling of
the behavior of the mortar is concerned.

The results of the model appear to be insensitive to the biaxial strength of the mortar and
heavily dependent on its behavior under triaxial compressive strength. This observation raises
questions concerning the adequacy of simple biaxial tests on mortars for the full characterization
in their behavior in masonry, given its trivial role in the compressive strength of the composite.
Triaxial tests appear to be far more relevant.

The results obtained from the analysis using the standard triaxial behavior of mortar and
Mohr-Coulomb failure surface for the units were compared to the predictions of the compressive
strength of masonry given by a modern masonry design code, the EC6 [40], and two closed form
expressions proposed by Ohler [117] and Hilsdorf [74]. The first expression depends only on the
compressive strength of the two material components (equation 4.3). The two latter equations
additionally depend on the tensile strength of the unit and the height of the unit and of the mortar
joint. The Ohler expression reads
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fc = fcm +
s fcu− fcm

1+ t
m

hm fcu
hu ftu

(7.15)

where s and t are parameters describing the failure envelope of the unit and with m being
the slope of the failure criterion adopted for the mortar. These parameters are defined according
to the specifications presented in Table 7.5. According to the formulation of the model, three
values for the compressive strength are calculated and a value is chosen among the three based
on its relation to the compressive strength of the unit. Furthermore, it is shown that the model
cannot account for masonry composites built using mortars with a compressive strength higher
than that of the unit.

Table 7.5 Determination of the s, t and m numerical parameters for Ohler’s model.

0 < fc/ fcu < 0.33 0.33 < fc/ fcu < 0.67 0.67 < fc/ fcu < 1.0
s 0.662 0.811 1.000
t 0.662 0.960 2.218

fcm [N/mm2] 31.6 21.4 15.4 6.4
m 5.3 3.6 2.4 2.1

The Hilsdorf expression reads:

fc =
ftu +α fcm

ftu +α fcu

fcu

U
(7.16)

where

α =
hm

4.1hu
(7.17)

and U is a safety factor taken as equal to 1.1.

Other closed form expressions have been proposed which are also functions of the elastic
properties of the constituent materials but which give divergent solutions for some of thematerial
combinations considered in this study [63, 70, 73].

The comparison is presented in Figure 7.8 in the form of a cumulative frequency distribu-
tion graph, the number of individual points being too numerous to illustrate. The graph depicts
the distribution of ratios between the micro-mechanical model result and the closed form ex-
pressions. All three closed form expressions may give results as much as ten times higher than
the micro-mechanical result. In turn, the micro-mechanical model can produce values almost
twice as much as the Ohler and Hilsdorf models and more than four times the value given by
the EC6 equation. Overall, for the parameters and dimensions considered in this study, the
micro-mechanical model of the stack bond prism produces results higher than the closed form
expressions more often than it produces lower.

The study of the influence of the material properties of the materials warrants a closer ex-
amination. While the number of parameters investigated is prohibitive for a complete overview
of the results in the context of this work, the sensitivity of the result to a number of individual
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Figure 7.8 Comparison of micro-mechanical results with design code and closed form expression results:
cumulative frequency distribution of analytical to micro-mechanical result ratio.

parameters may be easily studied. This sensitivity is investigated by altering a single parameter
and keeping the remaining parameters fixed to the already mentioned standard values. Figure
7.9 graphically illustrates the influence of three material properties on the predicted compressive
strength of masonry. According to the obtained results, an increase in the Poisson’s ratio of mor-
tar can dramatically increase the compressive strength of masonry composed of weak mortar
while it may decrease it in the case of strong mortars. An increase of the Young’s modulus of
the units always results in an increase in the predicted masonry compressive strength. Finally,
There appears to be little difference in the predicted compressive strength for units with a tensile
higher than 10% their compressive strength, while a moderate decrease is observed for units
with a tensile strength equal to 5% their tensile strength.

While understanding the influence of the tensile strength of the units on the compressive
strength of masonry is straightforward, a few clarifying comments on the effect of the elastic
properties of the materials on the compressive strength of masonry may be necessary, especially
given that the closed form expressions used for comparison do not take them into account. The
influence of the Poisson’s ratio of the mortar on the compressive strength of masonry is logical
in the sense that a higher ratio results in an increased tendency of the mortar to laterally expand
when subjected to vertical loads. The increased tendency results, in turn, to a higher lateral
confinement by the unit. Excessive expansion, however, may lead to premature cracking of the
brick and result in a decrease in the compressive strength of masonry, especially in the case of
weak units. This effect is illustrated in the discrepancies between Figures 7.9a and 7.9b. The
effect of the Young’s modulus of the units can be explained along the same lines: a higher
value results in smaller lateral deformation of the units and, therefore, an increase in the lateral
confinement on the mortar.

The apparent bias of the micro-mechanical model to produce results higher than the Ohler
or the EC6 model for the majority of the cases may be explained in light of the influence of the
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Figure 7.9 Influence of material properties on the compressive strength of masonry: (a) Poisson’s ratio of
mortar for ftu = 10% fcu, (5) Poisson’s ratio of mortar for ftu = 5% fcu, (c) Young’s modulus
of units and (d) tensile strength of units.

Poisson’s ratio of the mortar on the result. For the parametric investigation the values assigned
to this parameter generally moved above the average noted for masonry mortars. While mortars
may indeed be characterized by lower Poisson’s ratios in the linear elastic range, much higher
and rapidly increasing values are registered early in the nonlinear range or even before the onset
of any noticeable softening in the response of the mortar in compression [106, 114]. Therefore,
it was considered appropriate to investigate the effect of this material parameter above the usual
range.
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7.5 Closed Form Expression

7.5.1 Derivation of the Expression

A new closed form expression taking into account geometrical dimensions, elastic and inelastic
properties of the constituent materials is proposed based on the micro-mechanical models ex-
amined and the material constitutive laws adopted for analysis. The simple stress distribution
obtained from the stack bond pillar model is used for the analysis and a linear response of the
materials is assumed until failure. The Mohr-Coulomb failure surface is adopted for the units
and the Hsieh-Ting-Chen failure surface is adopted for the mortar. The closed form expression
is developed for masonry under compression perpendicular to the bed joint and does not include
the influence of head or transversal joints.

The closed form expression serves to create a model for the prediction of the compressive
strength of masonry taking into account the interaction of the failure modes most common in
masonry under compression but without requiring any computational resources. This expres-
sion, while based on simple algebraic equations, takes into account the geometrical and elastic
properties of the masonry components and quantifies the unit/mortar interaction in masonry
under compression. The range of activated failure modes in the components depends on this
quantification.

Four types of failure are identified: failure of the unit in compression (UC), failure of the
unit in combined compression/tension (UCT), failure of the mortar in multi-axial compression
(MC) and failure of the mortar in combined compression/tension (MCT).

The mortar fails under multi-axial compression (mode MC) when the Hsieh-Ting-Chen cri-
terion, as presented in equation 7.12, is satisfied. It is assumed that for mortar joints under com-
bined compression/tension (MCT) the joint fails for a vertical compression equal to the uniaxial
compressive strength of mortar.

According to the stack bond pillar model, the stresses in the components can be analyzed
into a vertical stress, equal in the unit and the mortar, the horizontal stress in the mortar and the
horizontal stress in the unit. The transversal stresses are equal to the horizontal stresses in either
component. The ratio of vertical to horizontal stress in the mortar may be expressed as

sb1 = σm,x/σy = σm,z/σy =
hu (Emvu−Euvm)

Euhu (vm−1)+Emhm (vu−1)
(7.18)

while in the units as

su1 = σu,x/σy = σu,z/σy =
hm (Euvm−Emvu)

Euhu (vm−1)+Emhm (vu−1)
=−sb1

hm

hu
(7.19)

These two parameters depend on the elastic and geometric characteristics of the two ma-
terials. When sb1 is positive, meaning that simultaneously su1 is negative, the mortar is under
triaxial compression and the unit is under vertical compression and horizontal and transversal
tension when the masonry is subjected to vertical compression. The higher the value is from
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1 the more significant the mismatch of the elastic properties and, therefore, the confining com-
pressive stress on the mortar. In the case of the existence of confining stresses in the mortar,
substituting sb1 in the Hsieh-Ting-Chen equation a rational function of σy is obtained whose
root is the vertical compression stress causing MC failure. Further dividing the function by
the uniaxial compressive strength of mortar allows for the failure criterion to be expressed in a
dimensionless manner.
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Figure 7.10 Relation between sb1 parameter and normalized strength for failure mode MC.

For the standard values of the Hsieh-Ting-Chen criterion the root of the rational function
normalized by division with the compressive strength of mortar is plotted in Figure 7.10. For
sb1 equal to 0 the horizontal and transversal stresses are 0 and the compressive strength of the
failure mode is equal to the compressive strength of mortar: the ordinate of the graph is equal
to −1. The part of the function with positive abscissae may be approximated nearly perfectly
through nonlinear regression analysis by the third order polynomial

fc,MC/ fcm =−228.83× sb1
3 +34.20× sb1

2−14.51× sb1−1 (7.20)

thus allowing for a closed form expression of the failure stress of mortar, which here is a
negative value, under confinement to be obtained. It is not considered necessary to approximate
the part of the graph with negative abscissae since the triaxial behavior of mortar is not critical
for that range of values. The numerical parameters of the polynomial depend on the numerical
parameters of the Hsieh-Ting-Chen criterion.

Failure mode UC is obtained when the vertical compressive stress equals the compressive
strength of the unit:

fc,UC =− fcu (7.21)

Failure mode UCT is obtained when
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−
fc,UCT

fcu
+

σu,x

ftu
= 1 (7.22)

Substituting sb1 in this equation and solving for the vertical failure stress one obtains

fc,UCT =
−1

1
fcu

+ sb1hm
ftuhu

(7.23)

For negative values of sb1 the unit is under triaxial compression and the mortar under vertical
compression and horizontal and transversal tension when the masonry is subjected to a vertical
compressive load. This corresponds to masonries composed of very stiff and strong mortar. In
this case the tensile failure of the mortar is disregarded, as is the triaxial behavior of brick, and
the failure of the masonry is governed by the crushing of the weaker of the two materials in
compression.

Summing up the failure modes, it may be stated that the (negative) compressive strength of
masonry is equal to

fc =

{
max(− fcm,− fcu) f or sb1 ≤ 0

max
(

fc,MC,− fcu, fc,UCT
)

f or sb1 ≥ 0
(7.24)

In summary, the model quantifies the mismatch of elastic properties between the units and
the mortar through the calculation of sb1. The failure mode activated depends on whether this
value is positive. For negative values, the unit is in triaxial confinement. It is assumed that the
mortar in the joint is not affected by lateral tension. For sb1 = 0 (no lateral stresses arise in
the mortar and the unit) the two branches of the piecewise equation converge. For sb1 ≤ 0 the
masonry fails due to uniaxial failure of either the mortar or the units, whichever has the lowest
compressive strength. For sb1 > 0 the mortar is in triaxial compression and the unit in uniaxial
compression and bilateral tension. In this case the masonry will fail either due to crushing of
the mortar, crushing of the unit or cracking of the unit.

7.5.2 Derivation of a Semi-Empirical Expression

The closed form analytical expression may be turned into a semi-empirical expression, in which
the only parameters considered are the compressive strength of the units and the mortar and the
height of the unit and mortar layers. In order to reach this semi-empirical expression the tensile
strength of the units and the elastic properties of the units and the mortar are given representative
values. These values have been estimated according to the review of the large number of case
studies presented in chapter 3 and are presented in Table 7.6.

In the absence of detailed material characterization, the semi-empirical expression attempts
to supply the same results as the closed form expression developed in this chapter (or other
similar expressions from the literature) but relying only on the compressive strength of the com-
ponents and their geometry. The theoretical background behind the closed form expression and
the semi-empirical expression is identical.
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Table 7.6 General material parameters adopted for semi-empirical model for the prediction of the com-
pressive strength of masonry.

Eu νu ftu Em νm

300× fcu 0.15 0.10× fcu 700× fcm 0.20

7.5.3 Results

The results obtained from the closed form expression and the semi-empirical model are shown
in absolute values at the last two columns of Table 7.3. A coefficient of determination of 0.842
between the closed form analytical and experimental values is achieved. The coefficient of deter-
mination is increased to 0.860 for the semi-empirical expression. No general tendency to under-
or overestimate the compressive strength was noted throughout the series of experimental re-
sults. The results of both the closed form analytical and the semi empirical model are illustrated
in Figure 7.11a, as compared to the experimental results. Additionally, Figure 7.12 illustrates the
comparison of the closed form and semi-empirical expression to the micro-mechanical model
for the parametric investigation cases using again a cumulative curve.
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Figure 7.11 (a) Comparison of closed form analytical and semi empirical models for the prediction of
the compressive strength of masonry with experimental results. (b) Contour plot of semi-
empirical expression results as a function of the compressive strength of the units and the
mortar.

Figure 7.11b presents a contour plot of the results obtained from the semi-empirical expres-
sion for a wide range of combinations of units andmortars of varying strengths. The compressive
strength iso-lines illustrate the interaction of the failure modes in masonry under compression.
The complexity of the contours does not allow for a simple regression model to approximate
well the obtained curve. Direct application of the equation 7.24 is preferable.

The correlation between the closed form and the semi-empirical model is good, as is their
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Figure 7.12 Comparison of micro-mechanical results with closed form expression and semi-empirical
model results: cumulative frequency distribution of micro-mechanical to analytical model
result ratio.

correlation with the experimental results here investigated. The derived semi-empirical model,
while not as accurate as other similar proposed models, such as [117], is more inclusive in terms
of application scope and is more straightforward in its application.

Neither of the two proposed models produces diverging values, regardless of the combina-
tion of material properties. The adequacy of these models may also be evaluated through a
comparison with the micro-mechanical model results using the parametric result database as a
benchmark. Comparing, again the results obtained using cumulative curves, it is shown that the
closed form expression is able to produce good results, with large over- and underestimations
accounting for a small percentage of the results. The semi-empirical expression is less accurate
in that regard, but it is comparable to the Ohler model.

7.6 Conclusions

A series of masonry models based on the analysis of periodic unit cells has been developed and
used for the prediction of the tensile and compressive strength of masonry using micro-modeling
techniques. The cells are analyzed according to closed form expressions for the determination
of the stress distribution in the cell coupled with an iterative nonlinear solution method for the
implementation of damage laws in the analysis.

The models are capable of making good predictions of the compressive strength of various
types of masonry pillar and wall structures. Several of the typologies investigated have received
very little attention in the existing literature. The computational cost for these analyses is very
low, thus forming the basis for the extension of the application of these models to two-scale
analysis of large masonry members.
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The parametric study conducted using these models has revealed a dependence of the com-
pressive strength of masonry to material parameters usually not taken into account in structural
design and often ignored in the mechanical characterization of masonry composites and mate-
rials, such as the Poisson’s ratio of the mortar. Furthermore, the study of the three-dimensional
pressure-dependent behavior of the mortar, as opposed to merely its biaxial strength, appears to
be crucial for its use in computational modeling of masonry.

Two closed form expressions for the prediction of the compressive strength of masonry are
proposed, based on the aforementioned micro-mechanical models: a closed form adaptation
of an micro-mechanical model fully based on detailed micro-modeling and a semi-empirical
adaptation relying on the compressive strength of the units and the mortar and their height in the
composite. Both approaches produce adequate results.



Chapter 8

Mechanical Characterization and
Modeling of a Masonry Pillar

8.1 Introduction

Compression tests on masonry pillars, especially ones extracted from historical structures, are
quite rare, but a number of them can be encountered in the existing literature, even if they deal
with reproductions of historical building pillars [6, 7, 14, 17, 151, 158]. The opportunity to
perform such a test on an original pillar arose during investigation and restoration of a building
in the Hospital Sant Pau complex in Barcelona. This particular test, as well as a number of other
material tests which have been performed in parallel, is aimed towards investigating the global
structural behavior of the pillar and the properties of its constituent materials. The outcome of
these tests are of special importance in addressing the concerns of structural designers involved
in the intervention projects being carried out in the complex. The mechanical characterization
of the materials and members encountered in the buildings of the hospital is a crucial parameter
in the estimation of their structural capacity against the prescribed design loads.

Given the fact that the structural typology and materials found in this building are encoun-
tered in several other parts of the hospital complex, the conclusions reached in this campaign
may prove useful, at least as a first estimation, concerning the structural behavior and capacity
of pillars in this and other buildings.

Micro-modeling techniques may be employed in the investigation of the structural behavior
of the pillar. In addition to detailed micro-modeling techniques, even simple models may pro-
vide critical information concerning the structural behavior of masonry elements with distinct
geometrical characteristics.

For proper application of micro-modeling and analytical techniques extensive mechanical
characterization of the individual masonry materials is required. The mechanical properties of
the masonry materials used in the construction of masonry samples and walls may be easily
characterized during execution of the works: fresh mortar can be sampled, molded and finally
subjected to standard or non-standard testing.

157
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Standard unit mechanical testing involves, primarily, the subjection of entire units to uniaxial
stress in compressive tests and, secondarily, the subjection of the units to three-point bending.

In the case of existing structures these experimental procedures present a number of difficul-
ties. Mortar may normally only be extracted from the joints, thusmaking the carrying out ofmost
standard mechanical tests impossible. Extraction of full units is possible, if somewhat difficult if
full unit samples are to be extracted. However, the results of compressive tests performed on full
units are not entirely appropriate for determining the uniaxial strength of the material compris-
ing the units, which would be the desirable value for a micro-model. Furthermore, three-point
bending tests usually exhibit high scatter of the results.

One final issue is that of efficient use of the available material for the carrying out of de-
structive tests. As many tests as possible should be performed on the available material. An
example of this approach is the portioning of bricks for the carrying out of several compression
or splitting tests from a single unit.

The experimental methodology described in this chapter presents a sampling and testing
framework that attempts to address, as best as possible, the highlighted problems. The pro-
cedures detailed here focus on destructive and minor-destructive tests, but a combination with
non-destructive tests could enhance the applicability of the method and the range of mechanical
properties it is able to characterize. It is primarily envisaged as a methodology for masonry
composed of solid bricks made of, for example, clay or adobe. The application of this method-
ology to the identification of the component mechanical properties of a brick masonry complex
structural member is also presented and discussed.

The list of properties measured in this methodology are: the compressive strength, Young’s
modulus, Poisson’s ratio and tensile strength of the units, the compressive strength, Young’s
modulus, Poisson’s ratio and tensile strength of the infill, the compressive strength and Young’s
modulus of masonry couplets and triplets and the compressive strength of the mortar. These
properties are essential for the determination of the compressive behavior of the masonry com-
posite but are also of interest for a variety of analysis purposes. Other properties that may be
measured using the samples produced with this methodology include the tensile strength, co-
hesion and friction angle of the unit/mortar interface and the compressive and tensile fracture
energy of the units and mortar. Knowledge of these properties is not crucial for the modeling
of the compressive strength of masonry, and thus these tests were not performed in the present
research, but are still of interest for the analysis of masonry structures.

Having obtained the mechanical properties of the constituent materials comprising the pillar,
a finite element simulation of the compressive test on the pillar is carried out using detailed
micro-modeling techniques. Analytical models based on the structural behavior of the pillar’s
macroscopic structural features are also carried out. The results of the simulation are compared
with the experimental findings in terms of predicted strength, elastic stiffness, failure mode and
post-peak behavior. The effect of the macroscopic damage on the pillar is investigated as well.
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8.2 Historical Information on the Building Complex

The Hospital de Sant Pau building complex was commissioned in 1901 as a replacement of the
older facilities located at the historical center of Barcelona. The Catalan modernist architect
Lluís Domènech i Montaner was commissioned for designing and supervising the execution of
the works, which stretched from 1901 to 1930. The supervision of the works was assumed by
his son, Pere Domènech i Roura, after 1920, when the second phase of the construction of the
complex was initiated. It was under his supervision that the building in question was completed
in a more moderate modernist style.

Pillar Position

(a) (b)

Figure 8.1 (a) Location of the building inside the hospital complex. Buildings of the first phase in regular
lines, of the second phase in tinted lines, with the toxicomania building grayed out. (b) Position
of the pillar inside the building (ground floor plan).

The project received significant support and funding. Innovative materials and structural
techniques were employed, which included sophisticated masonry vaulting systems, extensive
use of structural iron and cement based mortar. The building complex consists of individual
buildings (pavilions) which kept the administrative and various medical functions each in its
own space. The arrangement of the pavilions in the complex is shown in Figure 8.1a.

Due to shifting and increasing operational and administration needs of the hospital, several
pavilions underwent functional changes. Additionally, structural interventions, mostly in the
form of the addition of secondary elements or load bearing steel and timber beams or partition
walls, were carried out.

The entire complex constitutes an important landmark in Catalan Modernista architecture.
It was awarded UNESCO World Heritage Site status in 1997. This has increased the visibility
of and the public interest in the complex.

In 2008, shortly before the relocation of all medical facilities to a new neighboring building,
the master plan for the structural restoration of the complex was compiled, the execution of
which began the following year. The execution of the plan, as of 2014, has been almost entirely
completed and includes strengthening and complete replacement of members. However, limited
investigation has been carried out on the mechanical properties of structural members and their
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constituent materials.

8.3 Inspection and Preparation of the Pillar

8.3.1 Overview

The cylindrical pillar was initially located on the ground floor of the two-storey toxicomania
department building in the location indicated in Figure 8.1b. In its initial state, the building,
originally housing the kitchen facilities, was composed of a central nave and lateral aisles. At
some point in the structure’s history, steel profile columns were added at the center of the nave
as additional supports for the expansion of the first floor. The arrangement of the pillars in the
ground floor is a regular grid of similar masonry pillars and steel supporting columns. Therefore,
the tributary area supported by the pillar, as defined after the addition of the steel columns, is a
rectangular 4.67m×3.34m area.

The pillar supports a system of brick masonry arches and vaults. Before the beginning of
intervention works, a slender masonry wall partition intersected the pillar. This wall was subse-
quently removed.

Following the removal of a large portion of the pillar, it was placed in a protective steel
jacket padded with a neoprene sheet in order to facilitate moving and to avoid damage during
transportation.

The total height of the sample was 1600mm and had a diameter of 600mm. A portion with
a height of 1000mm was decided to be tested in compression and the remainder to be removed
for sample extraction and further material testing. The removal and sectioning of the 600mm
portion of the pillar was performed using a diamond thread. Limitations of the available space
between the load surfaces in the testing machine did not allow for a sample of a larger height to
be tested.

The central part of the pillar is composed of solid clay bricks and mortar. Its base is a solid
stone foot and it is capped by a solid stone capital. The outer structure of the pillar resembles a
Flemish bond arrangement of the bricks. Slight variations of the externally visible dimensions
of the bricks and the mortar joints are encountered. Being composed of 42 brick courses, the
portion of the pillar composed of brick and mortar masonry has a total height of roughly 3m.
Taken as arc lengths at the perimeter, the “stretcher” bricks have an average length of roughly
280mm, the “header” bricks 90mm and the “head” joints have a thickness of 5mm. The width of
the stretcher bricks, which roughly corresponds to the outer leaf of the pillar, is 140mm. The full
circumference of the pillar is composed of 5 “stretcher” and 5 “header” bricks. The bed joints
have a thickness of 7.5mm and the bricks have a height of 60mm. The portion of pillar tested
was composed of 16 brick courses and 15 bed joints (Figure 8.2).

While the exterior structure presents complete regularity of the Flemish bond pattern, in-
spection of the cross sections, made visible by the diamond thread cuts, revealed a somewhat
irregular internal structure, in which the “header” bricks are but a few centimeters thick. The
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“stretcher” bricks have more regular internal dimensions. The infill of the pillar is composed
of 5 bricks of moderate dimensions and smaller brick fragments resembling a rubble masonry
structure. The mortar, however, appears well compacted, although several voids were found.

The center of the pillar is vertically traversed by a drainage pipe with an external diameter
of 90mm. The pipe appeared heavily corroded. The gross cross sectional area of the pillar is
282743mm2 and the net area, due to the central opening to accommodate the drainage pipe is
276382mm2, only 2.25% smaller than the gross area.

(a) (b) (c)

Figure 8.2 (a) Image of structural layout of pillars, (b) its external and (c) its cross sectional geometry.

8.3.2 Inspection

Visual inspection of the exterior surface of the pillar and the cross sections (Figure 8.3) also
revealed several structural defects in the bricks, local loss of material caused by what appears
to be anchored timber elements, a large spalling area near the base, significant corrosion of
the drainage pipe located at the center of the pillar and, most importantly, three distinct verti-
cal cracks running along the entire height of the specimen and separating it in three segments.
Whether these vertical cracks are a result of the pipe corrosion, large sustained vertical loads
or the structural interaction with the masonry walls with which it was in prolonged contact is
unclear, although one of the cracks extended radially from a large vertical opening of the pipe.
It is also not clear whether the steel profile columns were added as a remedy to this cracking.
Additionally, while the exterior is composed of bricks of apparently the same type, several dif-
ferent types of bricks were identified in the interior, being recognized by a different color and
cut texture.
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Figure 8.3 Survey of existing damage on masonry pillar. Large vertical cracks and spalling area near the
base are visible.

8.3.3 Preparation

The bounding sections at the base and the top, which would serve as the load surfaces in the com-
pression test, were rough and non-parallel. In order to overcome these defects so that good con-
tact could be established with the load plates and in order to avoid premature localized damage
during the test, high strength concrete caps were cast directly on the load surfaces. Additionally,
5 mm thick neoprene sheets were applied between the concrete caps and the load plates.

The final configuration is shown in Figure 8.2b.

8.4 Loading and Instrumentation

A large number of several types of instruments were used for the monitoring of the compression
test. Given the rather uncommon nature of the test and the lack of an extensive literature on the
subject, it was deemed necessary to attempt to gather as much information as possible. Given the
large size, the irregular composition and damaged state of the structure, global measurements
of vertical and horizontal deformation were deemed appropriate. However, properly arranged
local measurements were not ruled out and may in fact provide insight into the global behavior
of the structure.

The global axial stiffness of the pillar was measured using three transducers measuring the
vertical displacement along a large portion of the height of the pillar: L1, L2 and L3. These
transducers were placed one each on every part created by the three large vertical cracks. There-
fore, they are not symmetrically distributed on the surface of the pillar. The instruments were
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attached using small diameter pins attached in drilled holes.

Local vertical displacements were measured using 9 displacement transducers. These were
arranged on three height levels and aligned horizontally where possible: T1, T2 and T3 near the
top; M1, M2 and M3 at mid-height; B1, B2 and B3 near the base of the pillar. The purpose of
this arrangement was the measurement of variation in local stiffness according to the position
along the height of the pillar. A representative measurement length including two half bricks
and one bed joint was adopted. These instruments were too attached on the surface of the pillar
using pins.

Four displacement transducers were used to measure horizontal movement in four points
along the perimeter at the mid height of the pillar. These points were located at 900 angle
intervals and their measurements could be used to approximate the global radial expansion of the
pillar under concentric compression. These instruments were fixed on a perimetric aluminum
frame and oriented in a direction normal to the surface of the pillar.

Three strain gaugeswere used in alignment with the long vertical LVDTs. Theywere attached
to the outer surfaces of three intact bricks using an adhesive resin. The intended purpose of the
strain gauges was the measurement of the deformation of a single brick in order to estimate its
modulus of elasticity.

The arrangement of the instruments is shown in Figure 8.4, along with the existing damage
documented through visual inspection. The distribution of the large vertical cracks and the
location of the spalling area divide the pillar in three uneven segments: one part consisting of
roughly half the pillar and two parts consisting of roughly a quarter of the pillar each. This fact,
along with the superficial damage, dictated the arrangement of the instrumentation.

L1 L2 L3

G1 G2

G3

H1 H2 H3 H4

M1

B1 B2 B3

T1 T2 T3

M2 M3

Figure 8.4 Instrument placement on pillar. L: large vertical transducers, H: small horizontal transducers,
T, M & B: small vertical transducers at the top, middle and base, G: strain gauges.
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Several load cycles were performed during the test. These consisted of two applications of
200kN at a load and unload rate of 0.2mm/min with the maximum load being maintained for 5
minutes. An application of 400kN at a rate of 0.3mm/min followed, the maximum load again
maintained for 5 minutes. Subsequently, a load of 400kN at a rate of 0.5mm/min was again
applied, held for 5 minutes at the maximum, and, finally, a steady load rate of 0.2mm/min was
applied until failure of the pillar. Following attainment of the peak the pillar was unloaded by
lifting the load cell.

Due to the height/diameter ratio of the pillar, equal to roughly 1.6, failure due to buckling can
be ruled out. The monolithic behavior of the pillar, however, cannot be easily ascertained due
to the presence of large vertical cracks which may, in effect, split the pillar in three independent
parts. The concrete caps may assist in preventing or mitigating such a mode of response, but
collapse should be governed by both local material failure and global failure mechanisms.

8.5 Pillar Test Results

The peak force attained was 1694kN, corresponding to 6.0N/mm2 of compressive stress tak-
ing into account the gross area of the pillar. The Young’s modulus of the pillar at 50% of the
maximum load was 6075N/mm2. Throughout the application of the load and before the attain-
ment of the maximum force, the variation of the Young’s modulus was very small, owing to the
good compaction of the concrete used in the joints. The force-axial strain response curve, the
strain having been calculated from the displacement measured at the large vertical transducers,
is presented in Figure 8.5a. Considering that the aspect ratio of height to diameter of the pillar
is lower than 2, which is deemed optimal for compressive testing, signifies that the actual com-
pressive strength of the pillars may be even lower. The fact that the pillars in the actual structure
are roughly 3 meters in height compounds the problem of comparing the compressive strength
obtained in the experiment to that of the original pillars remaining in the building.

Figure 8.5b illustrates the strain measurements from gauges G1, G2 and G3. According to
these readings, the Young’s modulus is equal to 7320N/mm2. Given the irregular structure of the
pillar and the very short measurement length, this value only serves as an indicativemeasurement
of the Young’s modulus of the pillar. Furthermore, it is not certain that the stress in the brick is
equal to the average vertical stress at the pillar, therefore it should not be considered indicative
of the Young’s modulus of the brick either.

The progression of damage was visually monitored during the test. At a load of 1000kN the
large preexisting vertical cracks had expanded into the concrete caps and new vertical cracks
had appeared on the surface. It is assumed that the preexisting cracks exhibited further opening.
Near the maximum load, limited superficial spalling of bricks was registered, while the already
large spalling area near the base had degraded, but not significantly.

Localized damage in the joints, such as vertical cracks in the head joints or crushed mortar
in the bed joints was not noticed at close visual inspection. Furthermore, superficial damage in
the bricks was mostly limited to “header” bricks, which are only a few centimeters thick at most
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Figure 8.5 Stress-axial strain curves: (a) transducers and (b) strain gauges.

points. Crushed material was not found to have fallen from the pillar in any significant amount
from either the bricks or the joints. No cracks or other damage appears to have originated from
the pins used for the anchoring of the measurement instruments. The concrete caps also did
not appear to bear significant damage except near the edges. Removal of the concrete caps also
revealed that no localized damage had been caused near the load surfaces.

This global failure appears to have developed mostly along the preexisting vertical cracks
and resulted in separation of the three pillar segments. The new damage identified at the end of
the test, along with the preexisting damage, is shown in Figure 8.6. It is clearly indicated that
most new vertical cracks originated near the anchor points of the old timber elements. These
too extended to the concrete caps. No evidence of crushing damage was discovered externally
in neither the bricks nor the joints and new vertical cracks were limited in number and expanse.

Whereas global axial stiffness, defined as the average stiffness derived from the large vertical
transducers, was steady until failure, different values of stiffness were registered in each of the
three masonry segments. Transducer L2 in particular showed a much smaller stiffness than L1
and L3, especially for low loads and for loads near failure, as can be seen in Figure 8.7. The L2
transducer was placed near the large spalling area which may account for this behavior.

Another discrepancy was found in the behavior registered at different heights by the small
vertical transducers, which is also illustrated in Figure 8.7. The base transducers recorded a
clearly nonlinear response near the peak, the middle transducers recorded an almost elastic un-
loading after the peak, as did top transducers following a sudden expansion after the unload-
ing process started. At 50% of the maximum load the top transducers registered a stiffness
of 13511N/mm2, the middle transducers 9196N/mm2 and the base transducers 6111N/mm2.
However, the transducers at each level did not register the same stiffness, especially at the top
part, where the maximum stiffness was 20252N/mm2 and the minimum was 7883N/mm2 at the
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Figure 8.6 Preexisting (solid lines) and new (dashed lines) damage at the end of the test.

T3 and T1 positions respectively. The variation was much smaller for the other two levels.

Horizontal expansion was uneven in the two directions designated by transducers H1-H3 and
H2-H4, as shown in Figure 8.8. Generally, the displacements were much larger in the H1-H3
direction. Considering the total radial expansion as the average produced by the two directions,
the Poisson’s ratio of the pillar reaches the value of 0.50 before 50% of the maximum load. The
initial ratio for a load level of 300kN is 0.22.

8.6 Sampling Methodology

8.6.1 Overview

The sampling methodology is based on the extraction of vertical cylindrical samples from the
masonry. These samples may be used for the formation of cylindrical masonry couplets (two
units and one intermediate mortar joint) and cylindrical infill samples. The former samples may
be used for the extraction of cylindrical brick samples and thin mortar layer samples. All of
these samples can be used for various types of destructive testing.

Extraction of masonry samples through drilling is only marginally disturbing to the masonry
when performed with a sufficiently low spinning and advance velocity. The small size and regu-
larity of the extracted samples alleviates the problems that may arise from attempting to extract
entire units, which may crack during removal.

Vertical coring requires access to the top of masonry members. This can be achieved in win-
dow openings, parapets or other members to which access can be achieved during strengthening,
reconstruction or demolition works. In the special, but common, case of single leaf walls, hor-
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Figure 8.7 (a) Force-displacement curves: (a) L1, L2 and L3 transducers and (b) average of top, middle
and base transducers.

izontal cores are arguably easier to extract. However, the interpretation of the results obtained
from this type of samples is more challenging. Vertical cores allow for an easier differentiation
of the behavior of the constituent materials of masonry.

8.6.2 Application

In the present case study a 600mm high portion of the tested pillar was available for sampling.
To facilitate the extraction of vertical cores, the pillar was cut into two segments using a dia-
mond thread. The two segments were roughly 5 courses high, and thus sufficiently small for the
extraction of the specimens. An additional portion with a height of 1000mm was also available,
originating from an adjacent pillar. This particular pillar was composed of the same materials
and the same overall arrangement of clearly distinct outer and inner leaf, but the exterior pattern
was that of a running bond typology. This too was cut to three 5 course segments for further
extraction of samples.

Several vertical cores were extracted from each segment. The pillar and the extraction pat-
tern may be seen in Figure 8.9. The cores from the exterior part were extracted so as to produce
cylinders composed of full brick and mortar strata. Cylinders were also extracted from the ir-
regular infill. A 75mm diameter drill was used for the coring. The infill samples were extracted
from both the Flemish bond and the running bond pillar and the couplet and triplet samples were
extracted from the running bond pillar alone, since the larger overlapping area of the latter allows
for a larger diameter drill to be used for the extraction. Couplets were also extracted from the
outer part of the Flemish bond pillar using a 45mm diameter drill. The smaller diameter was
necessarily used due to the smaller overlap of the bricks in that pillar. These couplet samples
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Figure 8.8 (a) Horizontal transducer readings and (b) mid height perimeter change history.

were not used in this campaign, though.

(a) (b)

Figure 8.9 Schematic of sample extraction patterns from pillar cross sections: (a) Running bond pillar
and (b) Flemish bond pillar.

A large number of cylindrical sampleswas produced, fromwhich several couplets and triplets
were obtained. Cylindrical samples of bricks were obtained by sawing from the long cylinders.
A large number of loose mortar samples was also obtained. These samples were for the most
part from the infill and from cavities in the exterior part which were filled in the pouring process
of the concrete during construction. Intact mortar samples from the joints were also produced,
despite the very small thickness of the mortar joints and the strong adherence of the cement to
the units. This was accomplished by way of removing the brick part of the couplets using a saw.
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8.7 Testing of Units

8.7.1 Compression Test

The cylindrical samples of brick with a diameter of 75.4mm obtained from the coring process
may be used, following some preparation, for compressive testing. Brick testing standards [42]
are oriented towards the testing of entire units. While such standards may be consulted as far
as sample preparation and loading are concerned, certain modifications are necessary if the
uniaxial compressive strength of the material is to be determined. Furthermore, it would have
been particularly difficult to obtain full brick specimens from the column in this particular case
study due to the strong unit/mortar bond.

LVDT 1

LVDT 2LVDT 3

Circumferential LVDT

(a) (b)

Figure 8.10 Test setup for brick cylinder compression: (a) plan view schematic and (b) actual setup.

Prior to testing, the load surfaces of the cylindrical samples were polished until smooth and
parallel. Following the polishing, the samples were of height to diameter ratio smaller than 1 : 1,
which is less than optimal for compressive tests but still better more appropriate for the pur-
pose of the test than testing of an entire brick. The test setup, shown in Figure 8.10, consists
of three LVDTs for the measurement of the vertical deformation of the sample and a circumfer-
ential LVDT for measuring the change in the diameter of the sample. The load was applied in
displacement control at a rate of 0.005mm/sec.

The test results are presented in Table 8.1 and the obtained stress-strain graphs are shown
in Figure 8.11. The circumferential LVDT did not function correctly for sample UC_1, while
the strength of sample UC_4 exceeded the capacity of the load cell used and is considered an
out-lier. The Poisson’s ratio was calculated by dividing the circumferential strain by the absolute
axial strain. Correction factors were applied to the results according to the EN standard for the
determination of the compressive strength of bricks and can also be seen in the table.

8.7.2 Splitting Test

The cylindrical shape of the unit samples and the difficulty in obtaining full brick samples makes
the splitting test in place of, for example, the three point bending test for the indirect determina-
tion of the tensile strength of the units a viable choice. The length to diameter dimension ratio
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Figure 8.11 Brick compression stress vs. strain graphs.

Table 8.1 Unit compression test results on 75.4mm diameter cylinders. Coefficient of variation in paren-
theses.

Sample
Height Height/Diameter Correction Factor Fmax fcu Eu νu

[mm] [-] [-] [kN] [N/mm2] [N/mm2] [-]
UC_1 50.0 0.663 0.85 65.6 12.5 820 -
UC_2 50.0 0.663 0.85 79.9 15.2 3411 0.032
UC_3 50.3 0.667 0.85 70.4 13.4 1725 0.117
UC_4 40.4 0.536 0.75 - - 3200 0.201
UC_5 38.7 0.513 0.75 77.8 14.8 3285 0.243
Average 45.9 0.609 73.4 14.0 (0.086) 2488 (0.465) 0.148 (0.635)

of the samples is still an issue, being lower than 1 : 1. Size effects present during splitting tests
may be alleviated through the use of sufficiently narrow plywood strips for the application of the
splitting force [133]. The diameter of the samples dictated that a plywood strip of 6mm in width
be used, or 8% of the specimen diameter. The height of the strip was 4mm, running across the
entire length of each sample. In addition to concentrating the splitting force and alleviating the
size effects involved, the plywood strips also assist in overcoming any surface irregularities of
the units.

The results of the splitting tests are presented in Table 8.2. Overall, the desirable failure
mode of a single splitting crack was achieved. Secondary cracks were formed after the peak
load. Typical response graphs of the samples are shown in Figure 8.13. While the scatter of the
results in terms of the derived tensile strength is only moderate, the response of the samples in
the post-peak is not entirely consistent across the samples. The formation of secondary cracks
results in the attainment of secondary load peaks and stress plateaus.

The tensile strength of the unit was derived from the splitting force according to the equation:
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Figure 8.12 Test setup for brick cylinder splitting: (a) schematic and (b) actual setup.
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Figure 8.13 Brick splitting stress vs. crack opening displacement graphs.

ftu =
2F

πLd
(8.1)

where F is the splitting force, L is the specimen length and d the diameter. The loading was
applied using crack opening displacement control. A very low rate was of 0.00003mm/sec used
initially, followed by an increased rate of 0.00015mm/sec after reaching the load peak.

According to the obtained results, the ratio of the compressive over the tensile strength of
the brick is 13.1%. This percentage is slightly higher than the average obtained in the inventory
of experimental results already presented in the chapter of finite element modeling of masonry
under compression, but well within the limits observed.
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Table 8.2 Unit splitting test results on 75.4mm diameter cylinders. Coefficient of variation in parentheses.

Sample
Length Length/Diameter Fmax ftu
[mm] [-] [kN] [N/mm2]

US_1 46.8 0.621 14.95 2.70
US_2 49.3 0.654 10.42 1.79
US_3 43.8 0.581 11.92 2.30
US_4 40.9 0.542 9.67 2.00
US_5 40.8 0.541 6.61 1.37
US_6 51.8 0.687 9.34 1.52
US_7 52 0.690 12.86 2.09
US_8 49.7 0.659 8.15 1.39
US_9 53.3 0.707 12.29 1.95
US_10 51.4 0.681 7.64 1.26
Average 44.32 0.636 10.39 1.84 (0.228)

8.8 Testing of Unit/Mortar Couplets

8.8.1 Compression Test

The compression test on unit/mortar couplets is meant to provide a mesoscopic measurement
of the strength and Young’s modulus of the outer leaves of the masonry pillar. It should not be
considered a representative measurement of the compressive strength of the masonry composite
or even of the outer leaf of the pillar.

The test setup was similar to the one used for the compressive testing of the units and is
shown in Figure 8.14a. The main difference is the absence of a circumferential LVDT. The load
was applied in displacement control at a rate of 0.001mm/sec. A total of six samples were tested.
Samples CC_1, CC_2 and CC_3 were tested monotonically and samples CC_4, CC_5 and CC_6
were subjected to 5 cycles of cyclic loading ranging from 5kN to 25kN.

LVDT 1

LVDT 2LVDT 3

(a) (b)

Figure 8.14 (a) Test setup for schematic for unit/mortar couplet compression and (b) couplets after testing.

The results are presented in Table 8.3. No correction factor was applied in this group of
results. The average compressive strength was slightly lower than the compressive strength of
the bricks as defined before the application of the correction factors on the latter tests. This fact
suggests that the failure of the couplets in compression is primarily governed by the compressive
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failure of the units. The average Young’s modulus of the couplets was higher than the average
value for the units. Three values, however, were lower than the average unit Young’s modulus.
The typical failure mode of the samples is shown in Figure 8.14b.
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Figure 8.15 Couplet compression stress vs. strain graphs.

Overall, the compressive strength of the samples did not exhibit significant scatter. The
Young’s modulus, however, presented a coefficient of variation of 49%. Whereas the samples
subjected to monotonic loading had equal compressive strength to the ones tested cyclically, the
latter group of samples exhibited a Young’s modulus lower by 25% on average but with lower
result dispersion.

With an average sample height of 102.5mm, the samples have an average aspect ratio of 1.36.
According to ASTMC42/C42M - 13 standard for the extraction and testing of extracted concrete
cores, this ratio requires the adjustment of the obtained compressive strength by multiplication
with a factor of 0.96 [19]. This may only be used as a very general estimation of the aspect ratio
effects on the compressive strength of the masonry couplets, due to them being a very different
material from concrete. It does, however, indicate that this aspect ratio has only a marginal
effect on the compressive strength. It has been, therefore, decided not to adjust the obtained
compressive strength of the couplets.

8.9 Testing of Infill

8.9.1 Compression Test

As in the case of the unit/mortar couplets, these tests are meant to provide a macroscopic mea-
surement of the strength and elasticity of the infill in compression. The same is true for the
splitting tests which are described in the following section.
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Table 8.3 Unit/mortar couplet compression test results on 75.4mm diameter cylinders. Coefficient of
variation in parentheses.

Sample
Height Fmax fcco Eco

[mm] [kN] [N/mm2] [N/mm2]
CC_1 103.0 82.6 18.5 6092
CC_2 102.0 58.9 13.2 1512
CC_3 102.0 72.8 16.3 4836
CC_4 103.0 71.0 15.9 4721
CC_5 103.0 67.9 15.2 2299
CC_6 102.0 66.1 14.8 2466
Average 102.5 15.7 (0.112) 3654 (0.494)

(a) (b)

Figure 8.16 Test setup for infill testing: (a) compression test and (b) splitting test.

Infill cylindrical samples were shaped out of long vertical cores so as to have a height to
diameter dimension ratio of 2 : 1, which is adequate for compression tests. The load surfaces of
the samples could not be polished without breaking the specimens. For this reason, the samples
were capped using a thin sulfur mortar layer. Three vertical LVDTs were placed on an externally
fixed module and a circumferential LVDT was placed at mid height (Figure 8.16).

The results are presented in Table 8.4. The obtained values exhibited a dispersion higher than
that achieved for the units or the unit/mortar couplets. Additionally, a very low value of 7N/mm2

was registered for one of the samples. Also of note is the high Young’s modulus of the infill,
which is higher than that of the unit/mortar couplets, even though the compressive strength was
noticeably lower. The high percentage of cement mortar in the infill could account for this high
stiffness. Additionally, the obtained Poisson’s ratio is lower than the values typically encountered
in clay bricks and cement mortar. A possible explanation is the high percentage of voids in the
volume of the infill samples, which act as macroscopically observable pores in the medium.
Finally, the post-peak behavior was scattered as well, with two of the samples exhibiting a very
brittle response.

8.9.2 Splitting Test

The splitting tests were performed with the same philosophy as in the case of the compressive
tests. The overall setup was similar to the one used in the unit splitting tests. The same plywood
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Figure 8.17 Infill compression stress vs. strain graphs: (a) Flemish bond pillar infill and (b) running bond
pillar infill.

strips were employed, even though the dimension ratios were adequate for the elimination of
size effects, and a load rate of 250N/sec was employed. Only Flemish bond pillar infill samples
were subjected to this test. The test results are presented in Table 8.5. The failure mode achieved
was again a splitting of the specimens originating from the strips.

8.10 Testing of Mortar

8.10.1 Non-Destructive Testing

The mortar was subjected to optical microscopic inspection and XRD tests. The optical mi-
croscopy revealed a well compacted and cohesive mortar containing small size aggregates and
the XRD analysis revealed that the binder is in fact Portland cement. The use of Portland cement
is common in the pillars of the Sant Pau building complex. It was meant to provide increased
strength to the pillars, which were meant to bear high compressive loads and to speed up the
construction process. Common lime mortar, however, was used in other structural members,
such as walls, which are subjected to lower and more distributed loads.

8.10.2 Minor-Destructive Testing

The mortar joints were also subjected to pin penetration tests, which allow for an indirect esti-
mation of the compressive strength [80, 145]. Two sets of penetration tests were performed: one
in-situ on an adjacent running bond pillar and one on the Flemish bond pillar at hand. In the
latter case the tests were performed at three height areas: near the base, near the center and near
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Table 8.4 Infill compression test results for Flemish and running bond pillars on 75.4mm diameter cylin-
ders. Coefficient of variation in parentheses.

Sample
Height Fmax fci Ei νi

[mm] [kN] [N/mm2] [N/mm2] [-]
IC_1 146.6 44.65 10.0 10579 0.077
IC_2 144.4 59.38 13.3 13888 0.126
IC_3 146.8 31.26 7.0 5241 0.130
IC_4 136.9 50.01 11.2 8621 0.182
IC_5 143.3 42.86 9.6 16702 0.013

Average 143.6 10.2 (0.225) 11006 (0.406) 0.106 (0.566)
IC_6 146.9 35.27 7.9 2819 -
IC_7 149.5 38.40 8.6 3890 -
IC_8 134.0 70.99 15.9 10610 -
IC_9 147.1 75.46 16.9 7926 -
IC_10 147.3 75.01 16.8 5668 -
IC_11 142 58.94 13.2 9990 -
Average 144.5 13.2 (0.311) 6817 (0.471) -

Table 8.5 Infill splitting test results on 75.4mm diameter cylinders. Coefficient of variation in parentheses.

Sample
Length Fmax fti
[mm] [kN] [N/mm2]

IS_1 146.78 21.45 1.23
IS_2 151.15 24.72 1.28
IS_3 142.58 18.63 1.10
IS_4 132.16 25.16 1.61
IS_5 113.22 27.38 2.04
IS_6 128.30 23.13 1.52

Average 135.70 1.48 (0.230)

the top.

The results of the penetration tests are presented in Table 8.6. The difference found between
the values obtained from the bed and the head joints was 10%, with the bed joints exhibiting the
higher value. However, disregarding the zero value from the head joints, the two sets produce
equal compressive strengths. Additionally, the average values obtained from the two pillars
were: 25.8N/mm2 for the running bond pillar and 29.8N/mm2 for the Flemish bond pillar, which
was tested in compression. However, a more noticeable difference was registered between the
different heights in the tested pillar: the values at the top are the highest, being 22% higher than
the ones measured at mid-height. The top part in the test sample corresponds to the lower part of
the pillar as it was situated in the structure, but it was flipped in the lab during the construction
of the concrete caps. Segmental pouring of the mortar at the level of every bed joint during the
vertical erection of the pillar could account for this difference, considering the lower execution
standards and less advanced concrete technology at the time of construction.

The results of the penetration test exhibited little scatter with only a single outlier measure-
ment. Among the advantages of the testing method employed are the limited interference with
the integrity of the structure and its speedy execution. It is still desirable, however, to have a
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Figure 8.18 Detail of mortar joint cross section.

Table 8.6 Penetration test results.

Penetration fcm Penetration fcm

[mm] [N/mm2] [mm] [N/mm2]

Bed Joints

5.055 23.1

Base

3.302 29.5
4.470 25.4 4.115 26.7
1.168 37.3 1.829 35
4.039 26.7 4.140 26.7
5.334 22.2 Average 29.5
4.521 24.9

Middle

3.759 27.7
2.997 30.4 3.962 27.2
3.886 27.2 5.410 22.2

Average 27.2 3.861 27.7

Head Joints

3.988 27.2 Average 26.2
10.947 0.0

Top

2.540 32.3
5.055 23.1 2.565 32.3
1.930 34.6 2.083 34.1
4.953 23.5 1.651 35.5
4.420 25.4 Average 33.6
2.743 31.3
3.175 30.0

Average 24.4

complete idea on the compressive strength of the mortar, which is possible to be achieved using
destructive testing on extracted samples.

8.10.3 Destructive Testing

During cutting of the column with the diamond thread, a large number of cubic mortar samples
was obtained. This material originated mostly from the infill or from loose masses of mortar
used to fill cavities in the outer brick leaf of the pillar. They were of varying size, several being
cubic samples of 30mm in length. These were subjected to compressive testing.

Additionally, a large number of mortar layer samples was extracted from the bed joints of
masonry couplets and triplets. The small thickness of these samplesmakes standard compressive
testing unwieldy. Therefore, these samples were subjected to compressive double punch tests.
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Both of the mentioned groups of samples are characterized by a high degree of shape and size
irregularity and imperfections due to existing damage or foreign material inclusions. Therefore,
the interpretation of the obtained results is challenging. Additionally, rather than belonging
to clearly discrete groups of a given thickness, the mortar layer samples covered a range of
thicknesses between 6mm and 20mm.

The mortar cubic samples were cut using a circular saw. They were tested after application
of a thin gypsum layer on both load surfaces in order to overcome surface irregularities and to
ensure full contact between the samples and the load plates. The load was applied in displace-
ment control at a rate of 0.015mm/s using a hinged load plate. The cubic samples were cut in
such a manner so as to have the maximum dimensions allowed by the loose mortar from which
they originated. This process resulted in, as for the layer samples, a collection of samples with
varying dimensions.
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Figure 8.19 (a) Cubic mortar samples compression stress vs. press displacement graphs and (b) com-
pressive strength vs. sample aspect ratio.

The results of the compression tests on the cubic samples are detailed in Table 8.7, while the
stress displacement diagrams obtained from the tests are presented in Figure 8.19a. In the results
table L1 and L2 represent the length of the two edges of the cubic mortar samples, which when
multiplied produce the nominal area of each sample. The actual area is restricted by the length
of the load plates of the testing machine, which is 40mm. The aspect ratio is defined as the ratio
between the height and the minimum edge length of the sample. The compressive strength has
been calculated by dividing the maximum force by the actual sample area and in turn dividing by
a correction factor relating the compressive strength of a sample with an a standard sample with
an aspect ratio different from 1. This factor is calculated as proposed by Drdácký for cement
mortar samples with varying aspects ratios [52] according to the expression
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fcm = Fmax/(H/L )−1.065 (8.2)

where H is the sample thickness and L its length.

Table 8.7 Cubic mortar samples compression results. Coefficient of variation in parentheses.

Sample
L1 L2 Nominal Area Actual Area Thickness Aspect Ratio Correction Factor Fmax fcm

[mm] [mm] [mm2] [mm2] [mm] [-] [-] [kN] [N/mm2]
MC_1 36 40 1679 1460 19.6 0.544 1.911 49.17 17.6
MC_2 30 35 1050 1050 21.0 0.701 1.460 18.51 12.1
MC_3 37 40 2014 1540 31.4 0.849 1.191 27.01 14.7
MC_4 33 40 1374 1340 22.2 0.672 1.527 45.05 22.0
MC_5 29 35 988 988 24.9 0.859 1.176 24.68 21.2
MC_6 40 40 1680 1600 17.5 0.438 2.408 68.20 17.7
MC_7 37 38 1406 1406 17.3 0.467 2.251 35.92 11.4
MC_8 37 40 1501 1501 25.3 0.682 1.502 17.19 7.6
MC_9 22 35 776 776 20.1 0.914 1.101 20.57 24.1
MC_10 28 39 1112 1112 28.3 1.009 0.990 13.32 12.1
MC_11 33 40 1374 1340 29.0 0.879 1.148 10.53 6.8
MC_12 38 32 914 914 28.2 1.007 0.992 20.46 22.6
MC_13 29 35 1015 1015 24.9 0.859 1.176 11.08 9.3
MC_14 27 39 1112 1112 17.5 0.647 1.59 19.88 11.3
MC_15 31 33 1056 1056 33.6 1.083 0.909 12.84 13.2
MC_16 26 30 770 770 19.2 0.738 1.381 11.30 10.6
Average 14.9 (0.377)

Nearly all samples had an aspect ratio of well below 1, the value considered adequate for
mortar compression tests. Even the samples with an aspect ratio near to 1 did not have the
dimensions prescribed in masonry mortar testing codes, which are oriented towards the testing
of mortars produced in molds [41]. The relation of compressive strength vs. the aspect ratio
obtained in the tests is shown in Figure 8.19b. Despite the scatter of the results, a trend of
decrease of the compressive strength for an increase of the aspect ratio is evident. Considering
all the results an average value of 14.9N/mm2 is obtained, with a coefficient of variation of 0.377.
The average value obtained is 50% lower than the one estimated from the minor-destructive tests
already presented. Given that the mortar cubes were originally located mostly in the infill and
not the joints, a difference between the results is expected due to the mortar in the infill not being
as well compacted as the one in the bed joints.

Several sets of recommendations have been compiled for the carrying out of double punch
tests on mortar layers [26, 79] and a number of applications has been recorded in the literature
[125, 150]. The mortar layer samples in this campaign were subjected to displacement control
loading at a rate of 0.015mm/sec. Gypsum layers were again placed on the load surfaces of
the samples. The gypsum layers were 1− 2mm thick. A 20mm diameter punch was used for
the tests employing a hinged setup for the punch heads (Figure 8.20). Two families of samples
were produced and tested: one composed of samples with a circular shape and a diameter of
75mm, which were extracted from the couplets without further processing, and one composed
of samples with a square shape and an edge length of 55mm, which were produced by sawing
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(a) (b)

Figure 8.20 Test setup for (a) mortar layer double punch test and (b) mortar cubic sample compression
test.

extracted circular samples.
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Figure 8.21 Mortar layer samples compression stress vs. press displacement graphs: (a) square samples
and (b) circular samples.

The summary of the results is given in Table 8.8. Both sample families produced roughly the
same average compressive strength, although again with a high standard deviation, owed mostly
to the wide range of sample thicknesses in the tests. A number of outliers were identified, such
as SL_6 and SL_9 among the square samples, having a compressive strength far above the trend,
and CL_2, CL_8 and CL_11 for the same reason among the circular samples.

The influence of the sample thickness on the compressive strength is shown in Figure 8.22,
which include the already mentioned outliers. The square samples exhibited a trend of reduction
of the compressive strength for an increase in the thickness. A similar trend was visible for the
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Table 8.8 Mortar layer double punch test results using 20mm diameter punch. Coefficient of variation in
parentheses.

Square Sample
Thickness Fmax fcm Circular Sample

Thickness Fmax fcm

[mm] [kN] [N/mm2] [mm] [kN] [N/mm2]
SL_1 8.1 14.63 46.6 CL_1 6.2 11.40 36.3
SL_2 8.3 15.23 48.5 CL_2 7.4 19.63 62.5
SL_3 6.2 11.15 35.5 CL_3 8.1 12.31 39.2
SL_4 9.4 17.58 56.0 CL_4 8.3 13.94 44.4
SL_5 10.7 11.46 36.5 CL_5 9.4 13.78 43.9
SL_6 9.6 30.43 96.9 CL_6 9.6 7.60 24.2
SL_7 9.8 15.83 50.4 CL_7 9.8 12.91 41.1
SL_8 19.4 8.04 25.6 CL_8 10.7 22.61 72.0
SL_9 7.4 22.73 72.4 CL_9 10.7 15.01 47.8
SL_10 10.7 10.39 33.1 CL_10 10.9 12.65 40.3
SL_11 15.4 9.64 30.7 CL_11 11.0 19.78 63.0
SL_12 10.9 13.63 43.4 CL_12 14.2 8.32 26.5
SL_13 11.0 19.59 62.4
SL_14 14.2 8.26 26.3
Average 47.4 (0.416) Average 45.1 (0.319)

circular samples, with the exception of two results that did not match the overall trend. The larger
size of the circular samples, and, therefore, the larger amount of material surrounding the punch
area, produce a stronger lateral confinement on the cross section of material under compression.
Therefore, size effects due to sample thickness are not as pronounced as in the square sample
case.

The results obtained from the double punch test produce results for the compressive strength
of the mortar that are much higher than those estimated by the minor-destructive testing and
from the compressive tests on the mortar cubic samples. For the interpretation of the results
the recommendations made by the International Union of Railways [79] have been consulted.
According to these recommendations the compressive strength of the mortar is evaluated from
samples of a thickness of 10−25mm. Considering these values from the present group of sam-
ples, excluding the outliers, an average compressive strength of 40N/mm2 is obtained for the
cement mortar. A very proximate value of 42N/mm2 is obtained when considering the samples
with a thickness lower than 10mm as well. The former value is 25% higher than the value ob-
tained from the nondestructive tests and 50% higher than the tests on the mortar cubes, the latter
being a difference higher than that between the mortar cubic samples and the layer samples.

The higher strength achieved by the double punch test compared to the cubic samples may
be attributed to several factors apart from the quality and origin of the samples themselves. The
small surface of the punch limits the effect of sample imperfection and damage. Furthermore,
it is easier to achieve good contact between the load plates and the samples, the use of gypsum
layers notwithstanding.
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Figure 8.22 Compressive strength vs. sample thickness: (a) square samples and (b) circular samples.

8.11 Discussion on the Results

The extraction of material samples using core drilling on an existing structure allows the acqui-
sition of test specimens of equal size for most tests. This includes unit and infill samples for
compressive and tensile testing, couplet samples for compressive testing and mortar layer sam-
ples for double punch testing. The uniformity of the test specimens for each category of testing
is beneficial for the carrying out of the tests themselves and for the interpretation of the results.

Wide scatter was registered concerning the Young’s modulus of the components. On the
other hand, their compressive and the tensile strength results were less scattered, although the
compressive strength of the infill also exhibited moderate scatter.

The two sets of double punching tests for the mortars produced proximate results, despite
the differences in the sample shape. Additionally, the mortar layer samples are relatively easy to
produce from couplets and triplets and the only varying dimension is the thickness. In regular
structures this dimension ought to not vary very widely. In addition, this thickness is the only
parameter used as a basis for the interpretation of the results obtained. The application of a
thin gypsum layer, which can be performed very easily, alleviates many of the problems faced
by load surface roughness and non-parallel orientation. On the other hand, obtaining cubic
samples was painstaking and resulted in samples with widely varying sizes. Control of the
regularity and planarity of the load surfaces was difficult, even with the application of gypsum
layers. Finally, despite its ease of execution, the penetration tests are limited to evaluating the
mortar near the surface of the structure. Overall, the double punch test on mortar layers appears
to be the optimal solution for an accurate measurement of the compressive strength of mortar in
an existing structure.

According to the material test results, all the material components (units, mortar and infill)
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had a compressive strength higher than that of the entire pillar. Even the lowest compressive
strength registered in the material tests was higher than the compressive strength of the pillar.
The interaction of thematerials, the complex geometrical interlocking, irregularities in geometry
and material properties and the existence of macroscopic damage appear to have a strong effect
on the compressive capacity of the pillar.

The effect of the scatter of the compressive strength of the infill samples is compoundedwhen
studying the macroscopic behavior of the infill as a whole. It may be assumed that areas of low
strength are present in the infill, which would lower the global compressive strength of the infill
part. Size effects lowering the apparent strength of the infill in comparison to the small samples
extracted and tested may also be involved. Of further note is the brittle behavior of parts of the
infill noted in the testing of the samples which could detrimentally influence its global response.
The differences in stiffness noted at different parts of the pillar during the compressive test on
the full structure constitute evidence of the varying properties of the materials involved.

The mechanical properties of the unit/mortar interface were not investigated in this study.
While its behavior in the pillar structure under concentric compressive loading is not expected
to play a major role, a methodology may be proposed for the determination of the mechanical
properties of the unit/mortar interface. Given that unit/mortar couplets may be extracted from
masonry walls using the same coring process employed here, it is an investigation worth un-
dertaking. Bond wrench tests on unit/mortar couplets can be executed with limited effort on
samples such as the ones tested in compression, thus characterizing the tensile strength of the
interface. Additionally, unit/mortar couplets and triplets can be employed for shear testing for
the determination of the frictional properties of the interface. This potentially requires more
arduous sample preparation and complicated testing setups due to the small size of the samples.

8.12 Numerical Model

8.12.1 Overview

Following the extensive material characterization described carried out and presented, a numer-
ical simulation of the compression test of the full pillar was carried out. A finite element model
based on detailed micro-modeling approach was developed. The individual parts of the model
are shown in Figure 8.23, along with a horizontal cross section of the pillar. Based on previous
studies that indicate that the existence of interface nonlinearities between units and mortar do not
affect the obtained compressive strength of masonry [55], only an interface between the outer
leaf and the infill was considered.

Overall, 36400 20-node brick and 15-nodewedge solid elements were used for the continuum
parts and 4032 16-node interface elements for the interface between the two leaves. The lead
pipe was not considered in the model as it is assumed that its corroded state does not allow it
any significant load bearing capacity.

Planes of symmetry were used to reduce the size of the model. Firstly, a horizontal plane
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(a) (b) (c) (d) (e)

Figure 8.23 Finite element model of pillar: (a) interfaces between outer leaf and infill, (b) units, (c)
mortar, (d) infill and (e) cross section of the pillar, with units, mortar and infill shown.

was used at the mid height of the pillar. Secondly, one-fifth of the cross section of the pillar
was used, since the entire cross section is composed of five repetitions of the same circular sec-
tor. Appropriate boundary conditions were applied on all planes of symmetry considered. Half
the pillar along the height was modeled. A single vertical plane of symmetry was considered.
Concerning the lateral boundary conditions, two cases were considered: one of an undamaged
pillar, for which both lateral sections were constrained and one with only a single lateral section
constrained. The latter case was conceived in order to attempt and simulate the effect of the large
vertical cracks in the masonry pillar, which nearly separate the pillar in three independent parts.

The mechanical properties of the material components as determined in the experiments
were used for the analysis. The properties of the infill were determined taking into account the
results of the infill cylinders extracted from the Flemish bond pillar alone. Conventional values
were used for unknownmaterial properties. For the Young’s modulus of the mortar a value equal
to 700 times the compressive strength was used, while a value of 0.20 was used for the Poisson’s
ratio. The tensile strength of the mortar was taken as equal to 10% of its compressive strength.
Similarly, the interface was given mechanical properties in tension and shear equal to values
encountered in the relevant literature [152]. All properties used for the analyses are presented in
Table 8.9. The values for the tensile fracture energy of all materials and the compressive fracture
energy of the mortar were determined according to the suggestions presented in the chapter on
finite element micro-modeling. The compressive fracture energy of the units, the infill and the
couplet was adjusted in order to fit the experimental curves. The compression curves of the units,
mortar and infill according to the material parameters applied are illustrated in Figure 8.25a.

While head and transversal joints commonly suffer from poor mortar compaction, or at the
very least poor compaction compared to the bed joints, which are further compacted by the self
weight of the member and the applied vertical loads, the same properties were used for the bed,
head and transversal mortar joints. The penetration test results presented indicate that the mortar
in the head joints has roughly the same compressive strength as the mortar in the bed joints. It
was, therefore, decided to use the same mortar properties throughout the model.

The model was subjected to a monotonic vertical displacement applied uniformly at the
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Table 8.9Mechanical properties for numerical analysis of the pillar.

fc ft E ν Gc
f GI

f

[N/mm2] [-] [N/mm]
Units 14 1.5 2500 0.15 10 0.053
Mortar 40 4.0 28000 0.20 40 0.107
Infill 10 1.3 11000 0.10 1 0.049

Couplet 16 - 3500 - 16 -
ft c0 ϕ GI

f GII
f

[N/mm2] [-] [N/mm2]
Interface 0.2 0.25 450 0.012 0.025

top. This leads to a non-uniform stress distribution between the outer leaf and the infill. The
overall vertical elastic stiffness of the former is higher than that of the latter, resulting in a higher
concentration of vertical stress in the infill.

8.12.2 Results

A preliminary linear elastic analysis was performed in order to evaluate the distribution of stress
in the pillar when subjected to a uniform vertical displacement load. A qualitative depiction of
the distribution of the minimum principal stress is shown in Figure 8.24, where a darker color
represents a lower minimum principal stress, therefore a higher compressive stress level. The
highest values are developed in the head joints and in the infill, especially near the central area
of the column and near the interlocking with the units. A decrease of the compressive stress
is noted in the infill near the contact area with the transversal mortar joint, which is situated
between two large stretcher brick units. In the area of the units the highest vertical compression
levels are registered in their central part.

Figure 8.24 Minimum principal stress in pillar cross sections for application of a uniform vertical dis-
placement. A darker shade of grey indicates a higher compressive stress.

In addition to the finite element modeling, a simple analytical macroscopic model may be
employed in order for the behavior of the pillar in vertical compression to be better understood.
The model is based on the assumption that under vertical compression the outer leaf and the
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infill function in perfect composite behavior and, therefore, are subjected to the same strain.
Disregarding tensile damage to the components, the effect of existing damage and the lateral
expansion of the leaves when yielding in compression the behavior of the pillar can be idealized
by assuming that a part of the cross section behaves like the outer leaf, a part of it as the infill
and a final part as the central void that does not bear any stress.

For the infill, the same behavior is assumed as in the finite element modeling. The outer leaf
is assumed to behave as the couplet. The global stress is calculated as the weighted average of
the components, contributing according to their cross section size compared to the gross cross
section of the pillar.

By assuming that 35% of the cross section to behave as the infill, 62% as the outer leaf
and 2% as voids and summing the contribution of each part to the global stress in the cross
section, the curve shown at Figure 8.25b is obtained. The initial elastic stiffness is identical to
the experimentally derived value. The global compressive stress reaches a local maximum of
7.7N/mm2 before reaching a secondary peak of 9.3N/mm2 at the strain coinciding with the peak
stress of the outer leaf.

The initial local maximum is remarkably close to the experimentally derived value, despite
the simplicity of the model. Several parameters not considered in this analysis could serve to
reduce the maximum stress. These include the existing damage and imperfections in the pillar,
tensile damage in the components, the interaction of the components after the onset of com-
pressive damage and the non-perfect bond between the outer leaf and the infill. However, the
same overall conclusion is reached as highlighted in the linear elastic results of the finite element
model: the combined effect of low strength, high stiffness and brittle post-peak behavior of the
infill may be detrimental to the global response of the pillar in compression.

Other analytical models for the prediction of the compressive strength of three-leaf masonry
have been proposed, mostly for the purpose of estimating the strength increase in injected mem-
bers [151, 157]. The model proposed by Egermann and Nuewald-Burg in particular could po-
tentially be applied in this case [57]. It is based on the compressive strength and the volume of
the two leaves, the compressive strength of the wall being

fc =

(
Vo

Vw

)
θo fco +

(
Vi

Vw

)
θi fci (8.3)

Vo,Vi andVw are the total volumes of the outer leaf, the infill and the member. The factors θi

and θo are constants which represent the interaction of the leaves. The former is equal to or larger
than 1 and indicates the increase in the compressive strength of the infill due to confinement.
The latter is equal to or lower than 1 and indicates the decrease in the strength of the outer
leaf due to the expansion of the infill. Both factors, in addition to being empirical, describe an
interaction process between an outer leaf much stronger and stiff than the infill. The expression
may, therefore, be considered ill-suited to the present case. It does however offer a qualitative
insight on the fact that failure of one component influences the bearing capacity of the other.
Under this light, it seems unlikely that the secondary peak registered in Figure 8.25b may be
indeed encountered in practice.
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Figure 8.25 (a) Curves for materials in compression used for finite element modeling and (b) curves in
compression for components used for analytical modeling.

In the present case, a value of 1 will be assumed for the θi factor: the high stiffness of the
infill does not allow it to be confined by the external leaf. For the θo factor a value of 0.67
will be assumed, as specified in [57], representing the decrease in the strength of the outer leaf
due to bending caused by lateral expansion of the infill. With these assumptions, the model
produces a value of 9.85N/mm2. This value is considerably higher than the value obtained from
the experiment.

The finite element model of the intact pillar produces a maximum compressive stress equal
to 8.4N/mm2, which is 30% higher than the experimental value. The model of the cracked
pillar produces a compressive strength of 7.6N/mm2, which is noticeably lower than the former
analysis result and closer to the experimental value. The moderate difference may be attributed
to the existing damage and irregularities existing in the structure and absent in the model. The
Young’s modulus obtained from the numerical analysis is equal to the experimentally derived
value. The initial Poisson’s ratio, as defined by the change of diameter at the mid-height of
the pillar, was 0.22, which is higher than the Poisson’s ratio of any of the constituent materials
but equal to the initial Poisson’s ratio measured in the experiment. The vertical stress has been
calculated on the gross circular cross section including the gap in the middle of the pillar.

Several observations can be made concerning the failure mode obtained from the numerical
model, especially for purposes of comparison with the experimentally derived mode. Very lim-
ited hardening was noted in the numerically obtained force-strain diagram, a behavior similar
to the one observed in the experiment, as shown in Figure 8.26, although the beginning of the
softening of the response was not as abrupt as in the case of the experiment.

The infill exhibited significant compressive yielding, which is to be expected given its higher
Young’s modulus and lower compressive strength compared to the outer leaf. Additionally,
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Figure 8.26 Pillar compression force-strain graphs: Comparison between experimental and numerical
results.

significant tensile damage was noted in the infill, particularly evident in the interlocking parts
with the clay bricks of the outer leaf. At the point of change of stiffness of the force-strain graph
the infill, almost in its entirety, has reached its peak compressive stress. This corresponds to the
point in which the maximum force was reached in the experiment.

Damage in the outer leaf consisted mainly of tensile damage in the mortar joints. Addition-
ally, limited vertical cracks were formed in the units propagating from the mortar in the head
joints. It is reminded that nearly all the visible damage in the outer leaf originated from areas of
existing damage or near the load caps.

The obtained damage patterns are illustrated in Figure 8.27. All damage patterns exhibited
periodicity along the height of the pillar. A single representative repeating volume of the pillar is
used for illustrating this damage in two cross sections of the pillar. The cracks in the infill at the
points of interlocking with the units is evident. These are the same locations at which, as shown
in Figure 8.24, the vertical compression stress is highest. The limited extent of cracking damage
on the external parts is also shown. Cracks in the units originating at the intersection with the
head joints are shown. Additionally, the distribution of minimum principal stress at the top of
the pillar is shown in the figure. The stress in the head and transversal mortar joints remains
high, as in the central part of the units as well. In both of these cases the minimum principal
stress is slightly lower than the compressive strength of these materials. The stress over large
parts of the infill is close to zero, the material having undergone almost complete softening. The
area of the infill near the transversal joint also presents a concentration of stress, which is the
opposite of what was noted in the linear elastic results presented in Figure 8.24.

Overall, the compressive strength obtained for the pillar was lower than the compressive
strength of any of the material components and the failure appears to be attributable to excessive
damage in the infill and limited damage in the outer leaf. The external leaf, especially the area
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Figure 8.27 Numerically obtained failure mode at peak vertical stress: (a) & (b) cracking patterns in
pillar cross sections and (c) distribution of minimum principal stress at the top of the pillar.

externally visible, exhibited limited damage. This is in general agreement with observations
made following the experiment concerning the strength and failure mode of the pillar.

8.13 Conclusions

A masonry pillar extracted from a historical building was tested in concentric compression.
Material extracted from the pillar was tested as well in a variety of mechanical tests. Further
non-destructive and minor-destructive tests provided valuable information on the construction
process and structural behavior of the pillar. A finite element model of the pillar was used for
the numerical simulation of the pillar compressive test.

Themajority of thematerial mechanical properties necessary for the execution of a numerical
analysis using micro-models was possible to be determined. Clay units, infill and cement mortar
were extensively tested using samples extracted through core drilling, while a number of non-
destructive and minor-destructive tests were performed as well.

The experimentally derived compressive strength of the pillar is lower than that of any of
its constituent materials. This may be attributable to the scatter of the compressive strength and
ductility of the materials (especially the infill), size effects and the effect of existing damage.

The finite element micro-model was able to accurately reproduce the experimental value of
the Young’s modulus of the masonry pillar and to give a fair approximation of its compressive
strength. The effect of the difference in the stiffness between the two leaves of the pillar was
highlighted: the high stiffness of the infill is detrimental to the global behavior of the pillar in
compression. Furthermore, the existing damage on and imperfections of the pillar appear to
strongly influence its compressive strength, as shown by altering the boundary conditions of the
pillar model and comparing the numerical outcomes.

In addition to the detailed finite element model, a simple analytical model was able to high-
light the main structural characteristics of the pillar which affect its behavior in compression.
The model is based on the stress-strain curves in compression of the main components of the
pillar and not only their peak stress.
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The material extraction and testing methodology followed is applicable to a variety of ma-
sonry structures and presents a sound basis for the structural evaluation of existing structures
and their simulation using micro-models.



Chapter 9

Summary and Conclusions

Detailed Micro-Modeling

A framework for the analysis of masonry walls and pillars using detailed micro-modeling tech-
niques has been presented. The framework has been applied to the simulation of masonry struc-
tures subjected to compression and has been shown to provide good estimations of the strength
and elastic stiffness of masonry.

A number of practical considerations have been provided for the analyst willing to employ
detailed micro-modeling of masonry. Based on a compiled inventory of experimental cases,
recommendations are given for the estimation of missing material parameters. The shortcom-
ings of plane stress and plane strain methods have been detailed, as well as the effects of mesh
refinement.

The accuracy of the finite element analysis results obtained have been contrasted with results
obtained from closed form expressions against the experimental data, indicating a consistently
better predictive behavior exhibited by the detailed methods.

Detailed micro-modeling using finite elements may prove to be computationally demanding
in the case of the analysis of large structures. The development of alternative/complementary
methods of analysis is deemed, for the time being, useful.

Application to Pure Lime Mortar Masonry Tests

An experimental campaign on the compressive strength of pure lime mortar masonry is carried
out. The materials used correspond to materials encountered in numerous historic structures.
Additionally, the campaign deals with the carrying out of tests for the determination of the ma-
terial properties needed for micro-modeling analysis. These tests are applicable both to new
materials and to materials extracted from existing structures.

The campaign was developed in a controlled laboratory environment. The produced ma-
sonry composites were characterized by a high compressive strength, despite the use of very
low strength mortars, and a low Young’s modulus.

191
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Using the framework developed for detailed micro-modeling, a good prediction of the com-
pressive strength of masonry was achieved. A parametric study of the influence of the properties
of the materials was performed. This study highlighted the importance of material properties
often seen as secondary in the prediction of the compressive strength: the Young’s modulus and
the Poisson’s ratio of the mortar. The study of the influence of the modeling method was also
investigated. The results are strongly in favor of adopting three dimensional modeling for the
prediction of the compressive strength of masonry.

Design code specifications failed to provide a good prediction of either the compressive
strength or the Young’s modulus of the mortar.

Application to Shear Wall Tests

The micro-modeling framework was applied to experimental tests involving shear walls. The
prediction of the maximum shear was good, as was the prediction of the failure mode.

The influence of the modeling method in the determination of the maximum shear is inves-
tigated. In the case of shear walls, three dimensional modeling was proven to be as accurate as
plane strain modeling, while plane stress was not able to produce good results. Computational
costs for three dimensional modeling are high. The influence of the behavior of masonry in com-
pression is shown to be critical for the case of shear walls and not just for masonry subjected to
pure compression.

Prediction of the Compressive Strength of Masonry

When over-viewing the typical dimensions of a wall or wallette, plane-stress analysis appears
conceptually sound due to the small thickness of the full member compared to its total height
and length. The confinement of the mortar in the joint, however, is a localized phenomenon,
and, therefore, the dimensions to be compared ought to be the thickness of the joint and the
transversal thickness of the wall. In this context, the effect of the local out-of-plane stresses
becomes significant and plane stress analysis is rendered ineffective. On the other hand, plane-
strain modeling appears to overestimate the confinement effect to an unrealistic degree.

Three-dimensional micro-modeling has consistently proven to be the most accurate method
to predict the compressive strength of masonry. It results in an intermediate amount of mortar
confinement, as produced by the material properties and the geometrical arrangement of the
masonry. Plane-stress and plane-strain modeling may provide accurate results under certain
conditions: the former when the units do not provide much confinement on the mortar and the
latter when the opposite is true.

Concerning the influence of certain material properties on the compressive strength of ma-
sonry, a strong connection was found between the predicted strength and some parameters which
have not been as deeply investigated as others and/or which are often difficult to determine. A
characteristic example of this fact is the Poisson’s ratio of the mortar.
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Micro-Mechanical Modeling

The accuracy of micro-modeling in simulating the behavior of masonry in compression has been
verified. The importance of three-dimensional modeling has been shown to be highly important.
This, however, raises the computational cost significantly when employed in finite element anal-
ysis. Furthermore, the influence of several material parameters has been demonstrated to be of
importance for the numerical determination of the compressive strength of masonry.

For these reasons, a modeling method combining the main features of the detailed micro-
modeling approach developed previously has been presented. A three-dimensionalmicro-mechanical
model for the analysis of masonry periodic unit cells is proposed, based on analytical expres-
sions. This model combines the accuracy of the detailed micro-modeling approach with the low
computational costs of analytical expressions.

Several different typologies of masonry walls and pillars are modeled, including Flemish
bond and three-leaf walls, which have not received significant attention in the literature. The
models are able to predict the elastic properties of masonry composites accurately and with a
computational cost negligible compared to finite element modeling. These models, especially
for the derivation of the elastic properties of masonry, can be implemented without resorting to
specialized software.

The compressive strength of masonry is also accurately predicted, as is indicated through
comparisons with experiments and finite element benchmark analyses. The behavior of the
masonry composite in tension has also been studied. The low computational cost allows for
a wide and deep parametric campaign to be performed in order to study the effect of material
and geometric properties of the materials on the compressive strength of masonry. Emphasis is
placed on the parameters identified in chapter 4, to which the sensitivity of the result appears to
be high.

Finally, analytical expressions for the prediction of the compressive strength of masonry are
proposed. These expressions are simplifications of the micro-mechanical models presented and
are able to provide good results.

Application to a Historical Structure

Detailed micro-modeling requires the determination of numerous material properties of all the
components of the masonry composite. The determination of these properties is challenging
even in a controlled laboratory environment. This problem is made more difficult in the study
of existing structures due to the need to extract material for testing.

Analysis using detailed methods can provide very useful information on the behavior of
masonry structural elements. In the context of preservation engineering, it can lead to better
evaluation of a structure and more efficient intervention design.

Considering the above, a detailed investigation of a masonry pillar extracted from a historic
structure is carried out. The investigation includes testing of the pillar in compression and de-
tailed micro-modeling simulation of the experiment.
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Material from the pillar is extracted and subjected to mechanical testing, leading to the de-
termination of the majority of the material properties necessary for a micro-modeling simula-
tion. The missing parameters were determined according to the conclusions of chapter 3. The
framework for extraction and testing of materials allows for a comprehensive characterization
of masonry materials, especially when coupled with the methods applied in the chapter of pure
lime mortar masonry. This framework is applicable for other masonry typologies as well.

Detailed micro-modeling of the compression test on the pillar provided good predictions
of the compressive strength, Young’s modulus and failure mode of the member. It especially
highlighted the influence of the mismatch in the Young’s modulus of the masonry leaves on the
failure mode.

An analytical model for the determination of the compressive strength of pillars or walls with
infill is proposed, based on the behavior of individual leaves in compression. Instead of relying
only on the peak stress of the leaves, the influence of the Young’s modulus is highlighted. The
modeling concept adopted for this analytical model is applicable to pillars with infill and to
three-leaf walls.

Suggestions for Future Work

The evolution of the Poisson’s ratio of mortar under increasing loads has already been inves-
tigated by a number of researchers. In the context of its behavior in joints in masonry more
attention needs to be paid by analysts. The development and application of models for the evo-
lution of the Poisson’s ratio of lime based and cement based mortars under compressive loads
appears to be an important parameter for detailed micro-modeling analyses.

The derived closed form expression for the prediction of the compressive strength ofmasonry
includes a quantification of the amount of confinement afforded on the mortar by the units. This
quantification, based on themismatch of the elastic properties of the twomaterials, could serve as
a guide in electing a plane-stress or plane-strain model instead of a full three-dimensional model
in order to benefit from the lower computational cost of plane methods in the cases where they
are capable of providing good results. Further development of the model could be attempted
in order to include the influence of head and/or transversal mortar joints on the compressive
strength of masonry. Additionally, the model could be refined to represent the ratio of lateral to
vertical stress beyond the elastic range of masonry more accurately.

A promising field of application for the developed micro-mechanical models is for use in
two-scale models of masonry walls and pillars. Their capacity to provide good estimates of
the compressive strength of masonry coupled with their low computational cost make them a
sound basis for the analysis of large masonry members or even buildings in a method that takes
advantage of detailed modeling methods for the analysis of extended systems. Members that can
be analyzed in this manner using the models developed here include membrane structures, such
as vaults and arches, in addition to pillars and walls.

Further developments are possible for the basic characteristics of the proposedmicro-mechanical
models. Anisotropic elasticity, as is often exhibited by clay bricks, is easy to implement. In ad-
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dition, the models may be applied to further masonry typologies, such as English bond walls.
Additional modifications to the model may be used to simulate the existence of reinforcement
elements, such as rebars and stirrups. Finally, the models can be used as a basis for the numerical
simulations of creep and shrinkage in masonry members.

The sampling/testing methodology based on masonry cores perpendicular to the bed joint
can be used for the determination of the properties of the unit/mortar interface properties in
existing structures.
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