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ABSTRACT 
 

This thesis can be divided into two (unrelated) parts. The main part (Chapters 1 and 2) 
focus on addiction models that entail departures from the classical discounting utility 
model of Individual Intertemporal Choice: Habit-Formation and Self-Control problems. 
The other part (Chapter 3) studies the famous p-Beauty Contest Game when we restrict 
the individual’s choices to integer numbers. 
In the first part, habit formation is the key feature for a product being addictive: a habit 
is created when past consumption of the product increases current desire for 
consumption. An addiction can be either beneficial (when past consumption increases 
current utility, e.g. jogging) or harmful (when past consumption decreases current 
utility, e.g. drug consumption). In general one could conceive of harmful addictions as 
habit-forming activities that imply an immediate reward but generate future costs 
(negative internalities) whereas beneficial addictions imply an immediate cost but 
generate future rewards (positive internalities). Self-control problems are understood in 
terms of time inconsistency: they arise when the individual cannot keep up with an 
intended intertemporal plan of consumption.  
In Chapter 1 we analyse a (harmful) addiction model proposed by O'Donoghue and 
Rabin (O&R) for which they obtain a counterintuitive result: full awareness of self-
control problems may exacerbate over-consumption. We show that this result arises 
from their particular equilibrium selection for the induced intrapersonal game. We 
provide dominating Markov Perfect equilibria where the paradox vanishes and that 
seem more ''natural'' since they capture behaviours often observed in the realm of 
addiction. We also address the issue of why a person could decide to start consuming 
and possibly develop an addiction: contrary to O&R, and according to the common 
intuition, we show that naiveté is at the essence.  
In Chapter 2 we obtain an isomorphism between harmful and beneficial addictions in a 
discrete-time binary choice context (the model of the first chapter being a particular 
case of this context). The equivalence thus established allows us to study both 
phenomena (harmful and beneficial addictions) as two sides of the same coin. Besides 
the theoretical insight it provides, this dualism is also useful: in particular, it permits to 
readily translate the results obtained in the first chapter to the domain of beneficial 
addictions. Once the dualism is established, we analyse addictions under both time-
consistent and time-inconsistent preferences. 
In Chapter 3, we provide a full characterization of the pure-strategy Nash Equilibria for 
the p-Beauty Contest Game when we restrict individual's choices to integer numbers. 
Opposed to the case of real number choices, equilibrium uniqueness may be lost 
depending on the value of p and the number of players: in particular, as p approaches 1 
any symmetric profile constitutes a Nash Equilibrium. We also show that any 
experimental p-Beauty Contest Game can be associated to a game with the integer 
restriction and thus multiplicity of equilibria becomes an issue. Finally, we show that in 
these games the iterated deletion of weakly dominated strategies may not lead to a 
single outcome while the iterated best-reply process always does (though the outcome 
obtained depends on the initial conditions).   
 



i

A mis padres y hermanas,

sin cuyo amor y apoyo esto no hubiese sido posible.



ii

Contents

1 Addiction and Self-Control: an Intrapersonal Game 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The O&R Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Time Consistent Individuals (TC) . . . . . . . . . . . . . . . . . . . 7
1.2.2 Individuals with Time Inconsistent Preferences (TI): Naifs and So-

phisticates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 The O&R Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 ORE and the Inevitability Condition (IC) . . . . . . . . . . . . . . . 14
1.4 MPE in Cuto¤ Strategies (CE) . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Non-cuto¤ Equilibria: some examples. . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 IC holds: �I won�t hit because if I do it I will do it forever�. . . . . . 20
1.5.2 �Take a walk on the wild side� . . . . . . . . . . . . . . . . . . . . . 21

1.6 Developing an Addiction: kHR > kOR = 0 . . . . . . . . . . . . . . . . . . . 24
1.7 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.8 Appendix - Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.8.1 Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.8.2 Claim used in Lemma 15 . . . . . . . . . . . . . . . . . . . . . . . . 33

1.9 Appendix - Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.9.1 An example where �wws fails to be an equilibrium. . . . . . . . . . . 34
1.9.2 An example satisfying 
kHR < kOR < k < 


�

kOR + 1

�
+ 1 and IC. 35

1.9.3 An example satisfying 
kHR < kOR < k < 

�

kOR + 1

�
+ 1 but not

IC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.9.4 t�naiveness: an example where the realized behavior path involves

hitting a �nite number of times. . . . . . . . . . . . . . . . . . . . . 36

Bibliography 38

2 Bene�cial and Harmful Addictions: Two sides of the same coin 41
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1 Binary Activity Choice Accumulation Problem (BACAP) . . . . . . 44
2.2.2 The DUAL of a BACAP. . . . . . . . . . . . . . . . . . . . . . . . . 45



iii

2.2.3 Some examples presenting Addiction. . . . . . . . . . . . . . . . . . 50
2.3 Bene�cial Addictions under Time Consistency . . . . . . . . . . . . . . . . . 53

2.3.1 	 and � convex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.2 	 and � concave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.3 Assuming Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Bene�cial Addictions under Time Inconsistency . . . . . . . . . . . . . . . . 59
2.4.1 Naif behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4.2 Sophisticated behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.3 Naiveté vs. sophistication . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.6.1 Example 1: a = 0:4; b = 9; c = 10; e = 1; � = 0:5; 
 = 0:8 . . . . . . . 68
2.6.2 Example 2: a = 0:4; b = 9; c = 10; e = 1; � = 0:5; 
 = 0:65 . . . . . . . 76

Bibliography 80

3 On p-Beauty Contest Integer Games 81
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Nash Equilibria of a p-BCIG . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3 Experimental Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4 Theoretical Predictions for the p-BCIG . . . . . . . . . . . . . . . . . . . . . 91
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 96



iv

Acknowledgments

I wish to thank my advisor, Fernando Vega-Redondo for his continuous support and encour-

agement during all these years. I am deeply indebted to him specially for the enthusiasm

and friendship he showed throughout this research.

I would also like to thank Antonio Cabrales and Xavier Calsamiglia for their en-

couragement and suggestions to improve this research as well as for �being there�whenever

needed. I am also grateful to Rosemarie Nagel for her dedicated supervision of the third

chapter of this thesis.

Helpful comments were made by Fabrizio Germano, Sjaak Hurkens, Matthew Ell-

man and seminar participants at Universitat Pompeu Fabra, Universitat d�Alacant and the

Central European University. For the time I spent at Barcelona and Alicante during the

completion of this project, I am grateful to the Economics Department of Universitat Pom-

peu Fabra and the FAE Department of Universitat d�Alacant for making me feel like at

home.

Special mention deserve my friends at Barcelona and Alicante that provided me

with love and shelter whenever needed during all these years. Finally, I would like to thank

my parents and my sisters for their unconditional love without which this simply would

have not been possible.



1

Chapter 1

Addiction and Self-Control: an

Intrapersonal Game

1.1 Introduction

Mr. XY goes to a party where he is offered a pill - call it Panacea - by Miss XX.

He knows for sure that if he takes it he will experience immediate pleasure but he is also

aware that some of his neuronal cells will pay for his decision. Since most humans, and

particularly XY, use but a small fraction of their brain capacity, he might as well give up

those neuronal cells without experiencing a significant loss. However, he is also aware that

pill would lead to some more which altogether will produce a certain brain clash. Should

I stay or should I go? XY asked to himself. As the indecision bothered him, he evaluated

whether the immediate pleasure offset the future brain damage and proceeded accordingly.

We may not know whether XY took Panacea or not, but we certainly know that
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he is a rational forward-looking person: when adopting his decision he knew the future con-

sequences of his choice. Mr. XY was perfectly aware of the two characteristics constituting

the crux of an addictive substance, namely, the habit-forming property (present pill raising

future consumption); and the negative internalities induced by consumption (present pill

reducing future well-being, via the brain clash).

In their famous work, Becker and Murphy (1988) modeled consumption of a good

presenting these two features as a rational process where addiction is understood as the

outcome of intended behavior (i.e., intertemporal utility maximization) under perfect fore-

sight. In particular, their Rational Addiction model implies that an addict does not regret

his previous decisions and perfectly forecasts his future consumption; two elements that

have largely been criticized (surveys of these critics are found in Chaloupka and Warner

1998 and Messinis 1999). On psychological grounds, addiction certainly entails planned

behavior but it also involves self-control problems that give rise to regret and misprediction

of future conduct. This is clearly illustrated by Heyman (1996):

Drug consumption is a goal oriented act. The behaviors are learned, not re�exive
or innate. It requires planning, e¤ort, and in some cases artfulness to secure drugs in
the amount necessary for maintaining an addiction. Yet, according to the diagnostic
manuals (e.g., DSM-III-R and ICD-10), the feature that de�nes addiction is drug use
which is �out of control� or �compulsive�. By these phrases, the manuals mean that
addicts �take more drug that they initially intended�, that drug use persists despite a
wide array of ensuing legal, medical, and social problems, and that after periods of
abstinence, however long, addicts relapse.

As Gruber and Koszegi (2001) point out, �The term �rational addiction�obscures

the fact that the Becker and Murphy model imposes two assumptions on consumer behav-

ior. The �rst is that of forward-looking decision-making, which is hard to impugn (...).

The second is the assumption that consumers are time consistent. Psychological evidence
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documents overwhelmingly that consumers are time inconsistent�(page 16).

Recently and in di¤erent contexts, many economists have studied self-control prob-

lems modeling them in terms of the time inconsistency derived from non-exponential dis-

counting1. Supported by empirical evidence showing that subjects exhibit declining discount

rates (e.g. Thaler (1991); Loewenstein and Prelec (1992)), most of these studies use hyper-

bolic discounting (for an excellent review on hyperbolic discounting and time preference see

Frederick, Loewenstein and O�Donoghue (2002)).

O�Donoghue and Rabin (2002) (from now on O&R) combine the Becker and Mur-

phy approach with hyperbolic discounting2 in their modeling of addiction. In their frame-

work, an in�nitely lived individual3 has to decide at each period whether to consume or not

a free addictive product; i.e. a product presenting the habit-forming and negative internali-

ties features. As in the Becker-Murphy model, the individual is perfectly aware of these two

features. But due to the time inconsistent preferences embodied in hyperbolic discounting

the individual may not be able to follow his optimal consumption path thus giving rise to

self-control problems. Concerning the awareness of these problems, they distinguish two

extreme types of individuals: naifs, who are totally unaware; and sophisticates, who are

1This approach to model self-control problems derives from the pioneering work by Strotz (1956) who
noted that when using a non-exponentional discount function intertemporal utility gives rise to time incon-
sistency in the sense that an optimal plan at some particular date may no longer be optimal at further dates.
However, self-control problems may also be modeled while maintaining time consistency (i.e. exponential
discounting). For instance, Laibson (2001) and Bernheim and Rangel (2003) model self-control problems
by introducing cue-conditioned behavior. In their models, environmental cues may trigger a "hot" mode in
which the individual consumes the addictive substance disregarding its future consequences (i.e. she "looses
control").

2The speci�c discounting functional form they use (which we formally present in Section 2) is not really
hyperbolic but it captures the essence of hyperbolic discounting, namely, present-biased preferences. It was
�rst introduced by Phelps and Pollack (1968) and because of its simplicity and tractability, it has been
widely used to model self-control problems since the work of Laibson (1994).

3They also treat the case of an individual with �nite horizon but mainly as a means to understand
the in�nite horizon case. Indeed, in the context of addiction, an in�nite horizon seems a much better
approximation of real behavior.
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perfectly aware. A naif believes that his future selves will follow his optimal consumption

path thus choosing his current action accordingly. But because of his time inconsistent

preferences, his future selves will often revise the optimal plan hence yielding a di¤erent

path from the one intended. As a consequence, a naïf usually falls in over-consumption

(note that this result captures Heyman�s description �addicts take more drug that they

initially intended�). A sophisticate knows that the optimal consumption path he is aiming

at may be revised by his future selves and thus may not be followed. Therefore he chooses

his current action according to the best path that can be pursued by his future selves. In

a sense, a sophisticate is playing an intrapersonal game: he plays against his future selves.

The solution concept they propose is that of perception-perfect strategy equilibrium4 (from

now on we will refer to it as the ORE). However, the ORE has the shortcoming of producing

a counterintuitive result: under some circumstances, sophisticates will consume always (i.e.

become addicted) while naifs might not. As they point out, this �contradicts the common

intuition that harmful addictions are caused by people naively slipping into an unplanned

addiction�. Following O&R we will refer to those circumstances as the inevitability condition

(IC from now on).

In the present chapter we show �rst that this conterintuitive result is obtained by

their particular equilibrium selection (ORE) and that there are more �natural�dominating

equilibria where the paradox vanishes; i.e. where sophisticates are less prone to become

addicted than naifs. Since in an intrapersonal game the players are just incarnations of

the same individual, coordination on a dominated equilibrium cannot be supported and

4In the induced game with a �nite horizon T, there is a unique subgame perfect equilibrium; call it
T-equilibrium. In the in�nite horizon case, a perception-perfect strategy equilibrium is simply the limit of
the sequence of T-equilibria as T becomes long.
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therefore we argue that the ORE is not the appropriate selection. Secondly, we address

the issue of developing an addiction, that is, we analyze the circumstances under which an

unnadicted person could decide to start consuming and whether she could become addicted

or not. In particular, we show that the ORE solution is of no use for studying this issue

since it implies that both naifs and sophisticates will slip into addiction. In contrast, by

considering our results, naifs will become addicted while sophisticates will not which is in

accordance to the common intuition cited above. Finally, we suggest a very clear-cut way

of modeling partial awareness of self-control problems.

The importance of our �ndings can be motivated in terms of policy implications.

Consider for example a public advertising campaign providing information on self-control

problems induced by drug consumption. What such a campaign would normally do is

a shift from naiveness to sophistication given that people become aware of their time-

inconsistency. Under our results such a campaign would be successful in reducing addiction

(since sophisticates are less prone to become addicted than naifs) while under the O&R

result it would produce the opposite e¤ect. Wide existence of such campaigns favors our

results.

The chapter proceeds as follows. In Sections 1.2 and 1.3 we formally present the

O&R model and their results, stating clearly under which circumstances the paradox is

obtained. In Section 1.4 we study equilibria in cuto¤ strategies by providing a complete

characterization: in particular, we state conditions under which the ORE generates the

paradox and yet there is a dominating cuto¤ equilibrium that solves it. But cuto¤ equilibria

may not exist or may not solve the paradox, therefore, in Section 1.5, we provide non-cuto¤
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dominating equilibria which solve it whenever generated. In Section 1.6 we address the

issue of developing an addiction and argue that the ORE solution fails to explain this issue

while our results prove to be in accordance to the common intuition. Section 1.7 concludes

and suggests a �natural�way of modeling partial awareness of self-control problems, a topic

that so far has received very little attention in the literature.

1.2 The O&R Model

An in�nitely lived individual decides at each period t, whether to consume (hit) or

not (refrain) a free addictive product. Let at be the binary variable re�ecting the individual�s

choice at time t: at = 1meaning he decides to hit whereas at = 0means he decides to refrain.

His period-t instantaneous utility is given by

8t; u (kt; at) =

8>><>>:
x+ f (kt) if

g (kt) if

at = 1

at = 0

(1.1)

where kt is the individual�s level of addiction which captures all the e¤ects of past consump-

tion on current instantaneous utility. The level of addiction is assumed to evolve according

to kt+1 = 
kt+at with 0 < 
 < 1. Therefore, there is a maximal addiction level kmax = 1
1�


. Note that instantaneous utility is stationary in the sense that it depends on the prevailing

level of addiction at period t but not on the particular period t. Addiction is modeled by

making the following assumptions on f; g and x :

Assumption 1: f 0; g0 < 0. This assumption introduces the feature of nega-
tive internalities since the more a person has consumed in the past (as captured
by his addiction level) the lower his current instantaneous utility. Without loss
of generality, it is assumed f (0) = g (0) = 0.
Assumption 2: f 0 � g0 > 0. This assumption introduces the habit-forming

feature. To see this, let h(k) = x + f(k) � g(k) be the temptation to hit (i.e.
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the marginal instantaneous utility of hitting). Then h0 (k) > 0 implies that
hitting is more desirable the higher the level of addiction; i.e. past consumption
of the product (as captured by the addiction level) increases current desire for
consumption.
Assumption 3: f 00; g00 � 0. In addition to negative internalities and habit-

forming, it is assumed that the more addicted a person becomes the less a given
increase in k hurts his instantaneous utility, and therefore less harm hitting
induces in future utility.
Assumption 4: x > 0. This assumption says that the temptation to hit is

positive even for an unaddicted person.

Self-control problems are modeled by assuming present-biased preferences as in

the Phelps and Pollak intertemporal utility function given by:

U (ut; ut+1; :::) = ut + �

1X
�=t+1

���tu� with � 2 (0; 1) (1.2)

where each u� is the period-� instantaneous utility given by (1.1). The parameter � intro-

duces the present bias.

Before stressing out the implications of (1.2) it is useful to consider the case of a

typical intertemporal utility function with exponential discounting, i.e. (1.2) with � = 1.

Following O&R we will refer to a rational forward-looking person having such preferences

as a time consistent individual (TC).

1.2.1 Time Consistent Individuals (TC)

A TC�s preferences are given by

U (ut; ut+1; :::) = ut +
1X

�=t+1

���tu� (1.3)

De�nition 1 A behavior path A = (a1; a2; :::) is an in�nite sequence of admissible actions;

i.e. 8i; ai 2 f0; 1g.
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Three particular behavior paths are of special interest and we will label them as

follows: the hitting path H = (1; 1; :::); the refraining path R = (0; 0; :::); and the hitting

once path O = (1; 0; 0; :::) . Let UAtc (kt) denote the intertemporal utility given in (1.3)

associated to following the behavior path A from an initial addiction level kt (the stationary

instantaneous utility function implies that the unique payo¤ relevant variable at any date

t is the prevailing addiction level). Being rational forward-looking amounts to saying that

at any given period t a TC solves

max
A2f0;1g1

UAtc (kt) (1.4)

and then chooses the �rst action corresponding to the solution path . We will refer to

such a solution as a desired behavior path (DBP). For a TC there is time consistency: for

any starting addiction level kt a DBP at some date t is still optimal at any further date.

Therefore a TC has no self-control problems since future selves have no incentives to deviate

from a DBP chosen by a previous self.

O&R show that under stationary instantaneous utility there exists a critical ad-

diction level ktc such that each self solves (1.4) by choosing to hit if and only if kt � ktc.

As a consequence, a TC�s DBP is either hitting always or refraining always. We state this

result as a proposition:

Proposition 2 9ktc 2 [0; kmax] such that the DBP for a TC with starting addiction level k

is H if k � ktcand R otherwise.

We turn now to study the consequences of the preferences given by (1.2).
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1.2.2 Individuals with Time Inconsistent Preferences (TI): Naifs and So-

phisticates

Let UA (kt) be the intertemporal utility given in (1.2) associated to following the

behavior path A from an initial addiction level kt . A rational forward-looking individual

with time inconsistent preferences aims at solving

max
A2f0;1g1

UA (kt) (1.5)

However, in this case there is time-inconsistency: a DBP (a behavior path solving (1.5)) at

date t may no longer be optimal at a further date, in the sense that future selves may have

incentives to deviate from it thus giving rise to self-control problems. O&R distinguish two

types of individuals with preferences induced by (1.2): Naifs, who are totally unaware of

their time-inconsistency; and Sophisticates who are fully aware of their time-inconsistency.

A Naif believes that he has no self control problems, that is, he believes that any optimal

plan he chooses will be followed by his future selves. Thus, at any given period, a naif simply

chooses his current action according to the path solving (1.5), but the chosen path may be

systematically revised at further periods. A Sophisticate is perfectly aware of his self-control

problems, he knows that the path he is aiming at may be revised by his future selves and

thus may not be followed. Therefore the best he can do is to maximize (1.5) subject to the

condition that the chosen path will be followed by his future selves. A sophisticate is thus

playing an intrapersonal game where his opponents are his future selves.

We turn now to study the DBP for a TI. First notice that a TI would like to

behave like a TC from next period on . Therefore, given Proposition 2, a TI�s DBP (i.e.

a path A solving (1.5)) must involve either hitting always or refraining always from next
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period on.

This leaves us with only four possibilities for the DBP, we discard one of them

with the following Lemma.

Lemma 3 A = (0; 1; 1; :::) cannot be the DBP for a TI.

Proof. Suppose 9k such that A is the respective DBP. Then it must be true that

k > 
k � ktc and therefore UHtc (k) > UAtc (k). But then

UHtc (k) = u (1; k) + �U
H
tc (
k + 1) > u (0; k) + �U

H
tc (
k) = U

A
tc (k)

which implies

u (0; k)� u (1; k) < �
�
UHtc (
k + 1)� UHtc (
k)

�
� ��

�
UHtc (
k + 1)� UHtc (
k)

�
where the last inequality follows from UHtc (
k + 1)� UHtc (
k) � 0: Therefore

UH (k) = u (1; k) + ��UHtc (
k + 1) > u (0; k) + ��U
H
tc (
k) = U

A (k)

A contradiction.

Lemma 3 implies the following proposition.

Proposition 4 For any given starting addiction level k, the DBP of a TI admits only one

of the following possibilities (we assume he hits when indi¤erent): H, R or O.

Proposition 5 Let A be any behavior path. Then

1. UA (k) is decreasing.

2. 8k; @U
H(k)
@k � @UA(k)

@k � @UR(k)
@k
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Part 1 follows directly from negative internalities while part 2 obtains mainly from

the habit-forming assumption (it also requires convexity of f and g or at least them being

not too much concave). Note that, in particular, part 2 implies @U
H(k)
@k � @UO(k)

@k � @UR(k)
@k

. The formal proofs are given in the appendix.

Following O&R, we will de�ne now three important levels of addiction:

� kHR: addiction level such that always hitting is preferred to always refrain if and only if

k � kHR. Formally, let ek be the solution to UH (k) = UR (k), then kHR = max h0; ek i
follows from Proposition 5, part 2.

� kOR: addiction level such that hitting once is preferred to always refrain if and only if

k � kOR. Formally, let ek be the solution to UO (k) = UR (k), then kOR = max h0; ek i
follows from Proposition 5, part 2.

� kHO: addiction level such that hitting always is preferred to hitting once if and only if

k � kHO. Formally, let ek be the solution to UH (k) = UO (k), then kHO = max h0; ek i
follows from Proposition 5, part 2

Remember that the law of motion of k implies a maximum addiction level kmax =

1
1�
 . According to the formal de�nitions of k

HR; kOR and kHO it could be the case that

some of them are above kmax. We will say that kHR; kOR and kHO exist if all of them are

below kmax. Because of Proposition 5, part 2, existence of kHR; kOR and kHO is equivalent

to requiring UH (kmax) � UO (kmax) � UR (kmax). We will assume throughout that this

condition holds.

As O&R point out, in general, kHR and kOR are not rankable so we will usually

distinguish two cases as shown in Figure 1.
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Figure 1: kHR and kOR are not rankable

From Propositions 4 and 5 we obtain

Proposition 6 a TI�s DBP is

1. R; for any k < min
�
kHR; kOR

�
2. H; for any k � max

�
kHR; kHO

�
3. O; for any k 2

�
kOR; kHO

�

1.3 The O&R Results

In the previous section we established the DBP for both TC and TI individuals.

We are interested now in determining the realized behavior path (RBP), that is, the path

actually followed for each type of individuals. This amounts to specifying the actions to

be undertaken by an individual in any particular situation. Because of the stationarity
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of utility functions and the in�nite horizon it seems natural to make those actions time-

independent: at a particular date, the action of an individual should depend only on the

prevailing addiction level since this is the only payo¤ relevant variable; the calendar time is

irrelevant. Since both a TC (correctly) and a Naif (wrongly) believe that they are able to

follow their respective DBP, O&R show that they implement cuto¤ actions. We state their

results in the following propositions.

Proposition 7 Let �tc (k) be the action taken by a TC when his addiction level is k. Then,

9ktc 2 [o; kmax] such that �tc (k) = 1() k � ktc. Therefore, the RBP of a TC is either H

or R.

Proposition 8 Let �n (k) be the action taken by a Naif when his addiction level is k. Then,

�n (k) = 1() k � min
�
kOR; kHR

	
= kn. Therefore, the RBP of a Naif is either H or R.

Proposition 7 comes directly from Proposition 2. Proposition 8 comes from the fact

that a naif, believing that he is going to be able to follow his DBP, will decide to hit if and

only if his DBP is either H or O. But this happens if and only if k � min
�
kHR; kOR

	
= kn.

O&R also show that kn � ktc, an intuitive result since a naif discounts the future at a higher

rate than a TC and therefore the future harm of hitting is lower for a naif than for a TC.

Let�s turn now to the sophisticate case. Because of his awareness of self-control

problems, a sophisticate is involved in strategic considerations. The natural solution concept

to be called upon for the sophisticate�s intrapersonal game is that of Markov Perfect Equi-

librium (MPE). Among the multiple MPE for the in�nite horizon case, O&R only consider

the one corresponding to the limit of the unique �nite-horizon MPE as the horizon becomes

long. From now on we will refer to this equilibrium as the ORE. The RBP generated by
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this particular equilibrium selection depends heavily on whether the following condition is

satis�ed or not.

1.3.1 ORE and the Inevitability Condition (IC)

We say that IC holds if and only if UH (0) � U (0;1;1;:::) (0). Let �s (t; k) denote

the strategy played by a sophisticated self-t in the ORE. Notice that we are allowing for

the strategy to depend on the particular period t. This is so because with a �nite horizon

the strategy usually depends on the prevailing period and nothing ensures us that when

taking the limit as the horizon becomes long we obtain a time-independent strategy. O&R

completely characterize the ORE when IC holds and partially when it is not satis�ed. We

state their results in the following proposition.

Proposition 9 Partial Characterization of the ORE.

1. If IC holds then 8t; k; �s (t; k) = 1 ; i.e. the sophisticate�s RBP in the ORE is H.

2. If IC is not satis�ed then

(a) If 
kOR + 1 � kHR then �s (t; k) = 1 if and only if k � kHR

(b) If 
kOR + 1 < kHR then �s (t; k) =

8>>>>>><>>>>>>:

0 if k < kOR

? if kOR � k < kHR

1 if k � kHR

Two striking features of the ORE are to be mentioned. Concerning part 1 notice

that when IC holds a sophisticate is more prone to become addicted than a naif since a

sophisticate will always hit while a naif might not (given Proposition 8, a naif will always



15

hit if and only if k � min
�
kHR; kOR

	
). As O&R point out, this �contradicts the common

intuition that harmful addictions are caused by people naively slipping into an unplanned

addiction�. However, we claim that this counterintuitive result is obtained by the particular

equilibrium selection proposed by O&R (i.e. the ORE) and that it vanishes when consid-

ering other type of MPE. Moreover, we claim that there are more �natural�MPE where a

sophisticate, even under IC, will never be more prone than a naif to develop an addiction.

We will address this issue in the following sections.

Concerning part 2, notice that the counterintuitive result vanishes: a sophisticate

will never be more prone than a naif to develop an addiction. However, the ORE is left

uncharacterized for k 2
�
kOR; kHR

�
. This characterization is a very complicated task:

as O&R point out, for this case �sophisticates�behavior can be quite complicated...In fact,

because of these complications sophisticates need not follow a stationary strategy or a cuto¤

strategy�. However, we will provide conditions under which a cuto¤ strategy is a MPE. We

also construct non-cuto¤ equilibria that seem very natural (even under IC).

Since IC plays such an important role in the O&R results, we close this section by

proving part 1 of Proposition 9 which in fact is an immediate consequence of the following

Lemma whose proof is provided in the appendix.

Lemma 10 IC implies 8k; UH (k) � U (0;1;1;:::;1) (k) for H and (0; 1; 1; :::; 1) paths of arbi-

trary length T .

To see that Lemma 10 implies 8t; k; �s (t; k) = 1, consider a �nite horizon T . In

period T a sophisticated will hit independently of his addiction level because the instan-

taneous utility from hitting is always bigger than the one from refraining and there are
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obviously no future costs of hitting. Self-T � 1, knowing that self-T will hit no matter what

he does, only has to choose between paths (1; 1) and (0; 1). But Lemma 10 says that (1; 1)

is preferred for any prevailing addiction level at period T � 1 and therefore self-T � 1 will

hit independently of his addiction level. Proceeding by backward induction we obtain that

a sophisticate will hit in every period. Since this holds for an arbitrarily path length T , in

the limit we obtain that a sophisticate will always hit; i.e. ORE generates path H.

Since the ORE solution proves to be unsatisfactory, we turn now to study other

sort of MPE. Because TCs and naifs follow cuto¤ actions, we begin by studying MPE in

cuto¤ strategies for sophisticates.

1.4 MPE in Cuto¤ Strategies (CE)

In this section we will characterize CE, i.e. MPE where all selves play the same

cuto¤ strategy

� (k) =

8>><>>:
0 if k < k

1 if k � k

Lemma 11 for k = 0, � (k) is a CE if and only if IC holds.

Proof. Suppose � (k) is a CE and consider an unaddicted self deviating to some

strategy prescribing � (0) = 0. The path generated by deviating is (0; 1; 1; :::) while the

path generated by sticking is H. For the deviation to be non-pro�table we need UH (0) �

U011::: (0), i.e. IC must hold. Now suppose IC holds. Then UH (0) � U011::: (0) which

implies 8k; UH (k) � U011::: (k) and therefore no deviation from � (k) is pro�table.
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Lemma 12 if kHR � kOR, � (k) with k = kHR is a CE and it dominates any other

equilibrium.

Proof. First note that 8k < kHR the DBP is R whereas 8k � kHR the DBP is

H. Therefore, by sticking to strategy � (k) each self follows his DBP which proves that it

is a dominating equilibrium.

Remark 13 Since in an intrapersonal game the players are di¤erent incarnations of the

same individual, we believe that equilibrium selection should be resolved, whenever possible,

by a Pareto criterion. If there is not a Pareto dominant equilibrium, at least it should be

obvious that a dominated equilibrium should not be played. In the case kHR � kOR, � (k)

with k = kHR pareto-dominates any other equilibrium so it would be quite unnatural to

propose any other solution to this game. However, when IC holds, the O&R solution yields

the hitting path : They argue that this is sustainable if each self has the pessimistic beliefs

that his future selves will hit no matter what his current action is, thus choosing to hit since

the path H yields a higher utility than (0; 1; 1; :::). But why should every self have those

pessimistic beliefs when they can coordinate on a dominating equilibrium? We believe this

is a major drawback of the ORE.

In a sense, Lemma 12 says that whenever kHR � kOR the are no self-control

problems since for any addiction level the DBP for a particular self will be followed by his

futures selves. As a consequence, awareness of time-inconsistency is immaterial: the paths

followed by a naif and a sophisticate are the same since the solution to (1.5) at any period

and for any addiction level is still optimal at further periods.
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We will now characterize CE when kHR > kOR (notice that this implies kHR > 0).

In what follows we will assume that every self is playing the same cuto¤ strategy �. We will

denote by V (� (k)) the utility obtained by a self with addiction level k when sticking to �,

whereas V (� (k)) will denote his utility when deviating to a particular strategy � while all

other selves stick to �. Throughout we will assume k > 0 since the case k = 0 has already

been covered in Lemma 11.

Claim 14 If � is a CE then k = kHR.

Proof. Suppose k > kHR and consider an addiction level k 2
�
kHR; kOR

�
.

Any strategy � prescribing � (k) = 1 is a pro�table deviation since V (� (k)) = UR (k) �

UH (k) = V (� (k)). Now suppose k < kHR and consider an addiction level k such that


k < k < k < kHR (such a k exists since k > 0). Any strategy � prescribing � (k) = 0 is a

pro�table deviation since V (� (k)) = UH (k) � UR (k) = V (� (k)).

Lemma 15 If kHR > kOR, strategy � (k) with k = kHR is a CE if and only if 
kOR + 1 �

kHR:

Proof. Take any k � kHR and consider deviating to a strategy � prescribing

� (k) = 0. The path generated by this deviation is either R or (0; 1; 1; :::). If R is generated,

the deviation is non pro�table since V (� (k)) = UR (k) � UH (k) = V (� (k)) . Now

consider (0; 1; 1; :::) being generated. In the appendix we prove that U (0;1;1;:::) (k) � UH (k)

for any k � kOR. Since this is the case we have V (� (k)) = U (0;1;1;:::) (k) � UH (k) =

V (� (k)) and therefore the deviation is non-pro�table.

For any k < kOR there is no pro�table deviation since sticking to strategy �

generates the DBP. So consider any k 2
�
kOR; kHR

�
. If 
kOR + 1 � kHR, a deviation
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to any strategy � prescribing � (k) = 1 generates path H thus being non pro�table since

V (� (k)) = UH (k) � UR (k) = V (� (k)). This proves 
kOR + 1 � kHR implies � is a CE.

Now suppose 
kOR+1 < kHR. Take any k 2
�
kOR; kHR

�
such that 
k+1 < kHR

and consider a deviation to a strategy � prescribing � (k) = 1. The deviation is pro�table

since it generates path O and V (� (k)) = UO (k) > UR (k) = V (� (k)).

Remark 16 Suppose IC does not hold and 
kOR + 1 < kHR. Under these circumstances

O&R claim that for k 2
�
kOR; kHR

�
�sophisticates need not follow a cuto¤ strategy� .

Here we go further since Lemma 11 and Lemma 15 imply that under these circumstances

sophisticates cannot follow a cuto¤ strategy because there is no CE. Also notice that if IC

holds and 
kOR+1 � kHR > kOR there are exactly two CE : the one with k = 0 and the one

with k = kHR. The latter clearly dominates the former so one would expect the di¤erent

selves to coordinate in the second equilibrium while O&R take as solution to the game the

�rst one.

We summarize our results concerning CE in the following Proposition.

Proposition 17 Characterization of CE and comparison with ORE.

1. If IC holds then

(a) If 
kOR + 1 � kHR then � (k) with k = kHR and ORE are the only CE.

� (k)dominates ORE.

(b) If 
kOR + 1 < kHR then ORE is the unique CE.

2. If IC does not hold then
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(a) If 
kOR + 1 � kHR then � (k) with k = kHR is the unique CE. � (k) and ORE

coincide.

(b) If 
kOR + 1 < kHR then there exists no CE.

If we are to restrict our attention to CE, the case 
kOR+1 < kHR is a problematic

one. If IC holds then we have the ORE solution which proved to be counterintuitive since

sophistication could exacerbate over-consumption. If IC doesn�t hold then we may have non-

existence of CE. This leads us to study non-cuto¤ equilibria which is done in the following

section.

1.5 Non-cuto¤ Equilibria: some examples.

In what follows, we still restrict ourselves to MPE where the strategies involved

are time-independent. We also focus on the case 
kOR + 1 < kHR since the opposite has

already been covered.

1.5.1 IC holds: �I won�t hit because if I do it I will do it forever�.

Here we go one step further in resolving IC since we provide a MPE that dominates

ORE whenever IC holds.

Lemma 18 strategy b� (k) =
8>><>>:
0 if k = 0

1 if k > 0

is a MPE.

Proof. For k = 0, sticking to b� generates path R while deviating generates path
H. Since 0 � kOR < kRH the deviation is non pro�table. For any k > 0 a deviation
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is neither pro�table since it generates path (0; 1; 1; :::) which is clearly dominated by H

(Lemma 10).

Remark 19 b� dominates the ORE though it does it strictly only for k = 0: when sticking
to b� an unaddicted sophisticate will never develop an addiction, moreover any self is strictly
better-o¤ by sticking to b� since it generates his DBP. However, b� has the shortcoming of
being non robust or fragile, since any small deviation by any self develops the addiction.

Nevertheless, we claim that this equilibrium deserves attention since it captures strategic

decisions often observed in the realm of harmful addictive drugs: Decisions of the sort �I

won�t do it because if I do it I will do it forever� (think of drugs such as heroin).

1.5.2 �Take a walk on the wild side�

We already know that a CE fails to exist if IC is not satis�ed and is equal to the

ORE otherwise (thus being dominated by naive behavior).

Let k = kHR�1

 , so that hitting with any k � k drives the addiction level above

kHR. Consider each self following strategy

�wws (k) =

8>>>>>>>>>><>>>>>>>>>>:

0 if k < kOR

1 if kOR � k < k

0 if k � k < kHR

1 if k � kHR

which tries to capture the following idea illustrated in Figure 2:
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Figure 2: The �Take a Walk on the Wild Side�strategy.

There is a wild side ( k � kOR) in which hitting is an e¤ective temptation (for k <

kOR hitting is not e¤ectively tempting because always refrain is the DBP) and therefore

the individual would like to hit (take a walk). In this wild side there is a zone of no-return

(k � kHR ) since once an individual falls in it he becomes irremediably addicted (he hits

forever after). Now notice that hitting leads to the zone of no-return if and only if k � k,

therefore k marks the point where a no-trespassing zone (k < k < kHR ) begins. With

strategy �wws the individual hits whenever on the wild side and outside the no-trespassing

zone, i.e. he takes a walk but knows when to stop.

Unfortunately, �wws does not always constitute an equilibrium. A counterexample

is given in the appendix (Example 1.9.1) . However, we will provide some conditions under

which �wws happens to be a MPE.

Lemma 20 if 
kHR < kOR < k < 

�

kOR + 1

�
+1 then �wws is a MPE. (This Lemma is

illustrated in Figure 3. In the appendix we provide examples satisfying the condition stated

with the IC holding, Example 1.9.2, and not holding, Example 1.9.3)

Proof. For any addiction level k such that k < kOR or k � kHR, �wws generates



23

the respective DBP so there is no pro�table deviation. For any k such that kOR � k < kHR,

by sticking to �wws the DBP is generated (and thus there is no pro�table deviation). To

see this �rst notice that the DBP is hitting once. Following �wws the individual hits and

then drives the addiction level above k but below kHR, therefore his immediate future self

will refrain and, since by doing so he drives the addiction level below kOR, all other future

selves will refrain as well. For any k such that k � k < kHR, �wws generates path R, while

any deviation generates path H. Since R is preferred to H we conclude that there is no

pro�table deviation.

We tackle now the case kHR � k < kHO. First notice that necessarily kHO =

ktc�1

 . Let k0 = kHO, de�ne k1 = k0�1


 and suppose the current self has addiction level

k 2 [k1; k0)\
�
kHR; k0

�
. Clearly, by sticking to �wws hitting with addiction level k generates

path H . A deviation, i.e. refraining with addiction level k, drives next-period�s addiction

level below 
k0 = ktc � 1 < ktc so from the current self�s perspective the best possible

behavior path following restraint is R (because he would like to behave like a TC from

next period on and a TC would like to refrain always for addiction levels below ktc). That

is, the best possible behavior path that could be generated by a deviation is R. Since for

addiction level k, H is preferred to R we conclude that there is no pro�table deviation.

But proceeding by induction, the same logic applies for any k 2 [ki+1; ki)\
�
kHR; k0

�
where

ki+1 =
ki�1

 (i = 0; 1; :::) so we �nally conclude that there is no pro�table deviation for any

k such that kHR � k � kHO.
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Figure 3: If 
kHR < kOR < k < 

�

kOR + 1

�
+ 1 then �wws is a MPE.

Remark 21 If IC does not hold (Example 1.9.3) we know that there is no cuto¤ equilibrium,

�wws proves existence of a non-cuto¤ MPE. If IC holds (Example 1.9.2), we know that the

unique cuto¤ equilibrium is hitting always, then �wws constitutes an equilibrium that clearly

dominates it, moreover, �wws also dominates the fragile equilibrium b� given in Lemma 18.

1.6 Developing an Addiction: kHR > kOR = 0

O&R state (page 4) �While Becker and Murphy (1988) argue it can be optimal

for a person to maintain a severely harmful addiction, their steady-state model provides no

formal analysis of why the person would choose to develop this harmful addiction in the �rst

place.�If we are to study why a person could choose to develop an addiction the pertinent

starting addiction level must be k = 0; i.e. we must focus on the behavior of an unaddicted

person. Suppose kOR > 0. If kHR � kOR we are in a situation as the one depicted in Figure

4.
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Figure 4: kHR � kOR

In this case the DBP for an unaddicted person is clearly R, and therefore the addiction will

never be developed since the addictive product is not �tempting�: no incarnation wants to

consume it. If kHR < kOR we should distinguish two cases; kHR > 0 and kHR = 0; which

are illustrated in Figure 5.

Figure 5: When kHR < kOR we distinguish two cases; kHR > 0 and kHR = 0

In Case 1 we also obtain the non-tempting condition that ensures that the addiction will

never be developed. In Case 2, the DBP for an unaddicted person is H and the addiction

is developed (every self will decide to hit). However, in this case there are no self-control
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problems: each self is following his DBP which amounts to saying that the person is a �happy

addict�in the sense that each incarnation behaves precisely as the previous selves desired;

each self wants to consume and wants his future selves to consume as well. Therefore, the

interesting case (the one presenting self-control problems) for studying the development of

an addiction must involve kHR > kOR = 0 as depicted in Figure 6. (the case kHR = kOR = 0

is similar to Case 2).

Figure 6: kHR > kOR = 0

In this case the unaddicted person would like to hit just once (his DBP is O). If the person

is a Naif, he will clearly develop the addiction. We turn now to study a sophisticate�s

behavior.

First notice that IC holds which implies that in the ORE a sophisticate will also

develop an addiction. Are there other equilibria in which a sophisticate does not develop

an addiction? The answer is yes since the strategy �I won�t hit because if I do it I will

do it forever�provided in the previous section is clearly a MPE that induces the refraining

path and therefore dominates the ORE. The following Lemma shows an equilibrium that
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dominates the ORE and generates the hitting once path.

Lemma 22 Suppose kHR � 1 and consider strategy

� (k) =

8>>>>>><>>>>>>:

1 if k = 0

0 if k = 
i for some i 2 f0; 1; 2; :::g

1 if otherwise

This strategy is a MPE that generates path O.

Proof. When k = 0, sticking to � (k) generates path O which is the DBP, therefore

there is no pro�table deviation. For any k = 
i with i 2 f0; 1; 2; :::g, sticking to � (k)

generates path R. Now �x i and notice that 

�

i
�
+ 1 > 
j for any j 2 f0; 1; 2; :::g,

therefore deviating from � (k) generates path H which is non-pro�table. For any other k

sticking to � (k) generates path H (because for any j 2 f0; 1; 2; :::g, 
k + 1 > 
j) while

deviating generates path (0; 1; 1; :::) (because if k 6= 
i for all i 2 f0; 1; 2; :::g, then 
k 6= 
j

for all j 2 f0; 1; 2; :::g) which is non-pro�table since IC holds.

This equilibrium dominates the ORE, but compared to the strategy �I won�t hit

because if I do it I will do it forever�the initial self (unaddicted person) is strictly better-o¤

while any future self is strictly worse-o¤.

1.7 Discussion.

The O&R set-up seems appropriate for modeling addiction since it incorporates

the two basic features of an addictive substance (habit-formation and negative internalities)

and it allows for self-control problems which have been largely documented in the psycho-

logical literature. This is an improvement with respect to the Becker-Murphy model of
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rational addiction in which self-control problems were inexistent. However, their particular

equilibrium selection (ORE) for the intrapersonal game induced by sophisticated behav-

ior has the shortcoming of producing a counterintuitive result: awareness of self-control

problems may exacerbate over-consumption.

We have shown that this paradox vanishes when considering other sort of equi-

libria that dominate the ORE and that seem more natural since they capture behaviors

often observed in the realm of addiction. Since in an intrapersonal game the players are

incarnations of the same individual, coordination on a dominated equilibrium is hard to

sustain5. This favors our equilibria over the ORE and therefore we readily obtain that naifs

are more prone to become addicted than sophisticates. The only cases where the ORE is

a dominating equilibrium (and therefore it is the appropriate solution concept to be called

upon) is when the desired behavior path is to consume always or when IC does not hold

and 
kOR + 1 � kHR:

Another advantage of the O&R set up over the Becker-Murphy model is that it

permits to explain why an unaddicted person could decide to consume and develop an

addiction. We have seen that for this to be possible consumption should be tempting (in

the sense that the desired behavior path cannot be refraining) in which case a naïf will

always become addicted. Regarding sophisticate behavior, we proved that when the DBP

is either hit always or hit once then the inevitability condition must hold and therefore

the ORE implies that a sophisticate will also become addicted. This makes sense only

5Carrillo and Mariotti (2000) obtain a similar conclusion. In their model the consumer is uncertain about
the degree of addictiveness of the product but may acquire free information which eventually reveals the true
degree. In the �nite-horizon version each self decides to acquire the information, therefore, when considering
the equilibrium of the in�nite horizon case that is the limit of the �nite case equilibrium, each self decides
to get fully informed. But there are other dominating equilibria (refered to as strategic ignorance equilibria)
where the selves decide not to get fully informed.
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when the DBP is hit always since in this case there are no self-control problems and thus

naïf and sophisticate behavior coincide. But when the DBP is hitting once, we provide

equilibria where a sophisticate will not become addicted which copes with the general view

that addiction is the outcome of naïve behavior.

Naiveness and sophistication are extreme degrees of awareness and one would ex-

pect that real-world behaviors lie somewhere in between. We want to conclude by suggesting

a way to model partial awareness. Very little has been done in this direction: O�Donoghue

and Rabin (2001a) formulate an approach to partial naivete in which a partially naïf agent

is simply a sophisticate who overestimates his present-biased parameter �. O�Donoghue and

Rabin (2001b) propose an approach to boundedly rational incomplete awareness in which

agents �don�t do all the rounds of backwards-induction. In other words, instead of starting

the backwards-induction logic in the last period, they might start the process, say, three

periods hence.�. We believe that the �rst approach is somehow ad-hoc while the second is

not applicable to the in�nite horizon case since it relies on the backwards-induction logic.

We suggest a very natural approach: people are initially naïf and as time elapses they be-

come aware of their self-control problems (i.e. they become sophisticates). This approach

is also suggested by Elster (1999): �reversal experiences can give rise to learning. Once the

person observes himself reversing his decisions time and again, he will come to know that

this is just the way he behaves under these circumstances. In the language of O�Donoghue

and Rabin, he is no longer naive, but sophisticated.�Obviously there would be persons that

become aware more quickly than others; to be more precise, we could de�ne an agent as

a t-naif when it takes him t periods to become aware of his time inconsistency. With this
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formulation, naifs and sophisticates are 1-naifs and 0-naifs respectively. This would allow

to observe behaviors which imply hitting for a �nite number of times: an example (Example

1.9.4) is provided in the appendix.

1.8 Appendix - Proofs

1.8.1 Proposition 5

Proof.

1. UA (k) is decreasing. Let kt (A; k) be the addiction level prevailing at time t con-

ditional on following path A with starting addiction level k; i.e. k1 (A; k) = k;

kt (A; k) = 

t�1k +

Pt�1
i=1 


t�i�1ai for t = 2; 3; ::: Then

UA (k) =

2664 a1 (x+ f (k))+
(1� a1) g (k)

3775+ � 1X
t=2

�t�1

2664 at (x+ f (kt (A; k)))+
(1� at) g (kt (A; k))

3775
and therefore

@UA (k)

@k
=

2664 a1f
0
(k)+

(1� a1) g
0
(k)

3775+ � 1X
t=2

�t�1

2664 at

t�1f

0
(kt (A; k))+

(1� at) 
t�1g
0
(kt (A; k))

3775
which is equal to2664 a1f

0
(k)+

(1� a1) g
0
(k)

3775+ �� 1X
t=1

�t�1
t

2664 at+1f
0 �

tk +

Pt
i=1 


t�iai
�
+

(1� at+1) g
0 �

tk +

Pt
i=1 


t�iai
�
3775 (1.6)

and because of negative internalities (Assumption 1: f
0
; g

0
< 0) we readily obtain

@UA(k)
@k � 0:
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2. 8k; @U
H(k)
@k � @UA(k)

@k � @UR(k)
@k . Since

UH (k) = x

�
1� � + ��
1� �

�
+ f (k) + ��

1X
t=1

�t�1f

 

tk +

t�1X
i=0


i

!

we have

@UH (k)

@k
= f

0
(k) + ��

1X
t=1

�t�1
tf
0

 

tk +

t�1X
i=0


i

!
(1.7)

from (1.6) and (1.7) we can express @U
H(k)
@k � @UA(k)

@k as the sum of the following terms

(1� a1)
�
f
0
(k)� g0 (k)

�
(1.8)

��

1X
t=1

�t�1
tat+1

2664 f
0
�

tk +

Pt�1
i=0 


i
�
�

f
0 �

tk +

Pt
i=1 


t�iai
�
3775 (1.9)

��

1X
t=1

�t�1
t (1� at+1)

2664 f
0
�

tk +

Pt�1
i=0 


i
�
�

g
0 �

tk +

Pt
i=1 


t�iai
�
3775 (1.10)

(1.8) is positive because of the habit-forming feature (Assumption 2: f 0 � g0 > 0);

(1.9) is positive because 
tk +
Pt�1
i=0 


i > 
tk +
Pt
i=1 


t�iai and f
00 � 0 (Assumption

3) imply

f
0

 

tk +

t�1X
i=0


i

!
� f 0

 

tk +

tX
i=1


t�iai

!
� 0 (1.11)

(1.10) is positive because (1.11) and f 0 � g0 > 0 imply

0 < f
0

 

tk +

tX
i=1


t�iai

!
� g0

 

tk +

tX
i=1


t�iai

!
�

f
0

 

tk +

t�1X
i=0


i

!
� g0

 

tk +

tX
i=1


t�iai

!

therefore we have

8k; @U
H (k)

@k
� @U

A (k)

@k
� 0 (1.12)
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Since UR (k) = g (k) + ��
P1
t=1 �

t�1g
�

tk
�
we have

@UR (k)

@k
= g

0
(k) + ��

1X
t=1

�t�1
tg
0 �

tk
�

(1.13)

from (1.6) and (1.13) we can express @U
A(k)
@k � @UR(k)

@k as the sum of the following terms

a1

�
f
0
(k)� g0 (k)

�
(1.14)

��

1X
t=1

�t�1
t (1� at+1)

2664 g
0 �

tk +

Pt
i=1 


t�iai
�
�

g
0 �

tk
�

3775 (1.15)

��

1X
t=1

�t�1
tat+1

2664 f
0 �

tk +

Pt
i=1 


t�iai
�

�g0
�

tk
�

3775 (1.16)

(1.14) is positive by the habit-forming feature; (1.15) is positive because


tk +

tX
i=1


t�iai � 
tk and g
00 � 0 (Assumption3)

imply

g
0

 

tk +

tX
i=1


t�iai

!
� g0

�

tk
�

(1.17)

and (1.16) is positive because (1.17) and f 0 � g0 > 0 imply

0 � g0
 

tk +

tX
i=1


t�iai

!
� g0

�

tk
�
� f 0

 

tk +

tX
i=1


t�iai

!
� g0

�

tk
�

(1.18)

therefore we have

8k; @U
A (k)

@k
� @U

R (k)

@k
� 0 (1.19)

combining (1.12) and (1.19) completes the proof.
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1.8.2 Claim used in Lemma 15

Claim 23 9k0 such that UH (k) � U (0;1;1;:::) (k), k � k0. Moreover, k0 � kOR.

Proof. If IC holds, we obtain trivially k
0
= 0 � kOR. So assume that IC doesn�t

hold, that is, UH (0) < U (0;1;1;:::) (0). De�ne �(k) = UH (k)� U (0;1;1;:::) (k) : Simple calcu-

lations yield

�(k) = x+ f (k)� g (k) + ��
1X
n=1

�n�1

2664 f
�

nk +

Pn�1
i=0 


i
�
�

f
�

nk +

Pn�2
i=0 


i
�
3775

Now notice that �(k) is continuous and increasing in k (by f
0 � g0 < 0 and convexity of

f). Since �(0) < 0 (because IC doesn�t hold) and �(kmax) � 0 such a k0 exists, and we

must have �
�
k
0
�
= 0 which can be rewritten as

x+ f
�
k
0
�
� g

�
k
0
�
= ��

1X
n=1

�n�1

2664 f
�

nk

0
+
Pn�2
i=0 


i
�
�

f
�

nk

0
+
Pn�1
i=0 


i
�
3775 (1.20)

Suppose now k
0
> kOR: By de�nition of kOR we must have UO

�
k
0
�
> UR

�
k
0
�
which is

equivalent to

x+ f
�
k
0
�
� g

�
k
0
�
> ��

1X
n=1

�n�1

2664 g
�

nk

0
�
�

g
�

nk

0
+ 
n�1

�
3775 (1.21)

Substracting (1.20) from (1.21) we obtain

0 > ��

1X
n=1

�n�1

2664 g
�

nk

0
�
� g

�

nk

0
+ 
n�1

�
+

f
�

nk

0
+
Pn�1
i=0 


i
�
� f

�

nk

0
+
Pn�2
i=0 


i
�
3775 (1.22)

by convexity of g we have

g
�

nk

0
�
� g

�

nk

0
+ 
n�1

�
� g

 

nk

0
+
n�2X
i=0


i

!
� g

 

nk

0
+
n�1X
i=0


i

!
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which together with (1.22) yields

0 > ��
1X
n=1

�n�1

2664 g
�

nk

0
+
Pn�2
i=0 


i
�
� g

�

nk

0
+
Pn�1
i=0 


i
�
+

f
�

nk

0
+
Pn�1
i=0 


i
�
� f

�

nk

0
+
Pn�2
i=0 


i
�
3775

which in turn can be rewritten as

0 > ��

1X
n=1

�n�1

"
h

 

nk

0
+

n�1X
i=0


i

!
� h

 

nk

0
+

n�2X
i=0


i

!#
(1.23)

where h = f � g. But this is a contradiction because h is increasing and therefore the RHS

of (1.23) is positive. This completes the proof.

1.9 Appendix - Examples

All the numeric examples that follow use the speci�c instantaneous utility function:

8t; u (kt; at) =

8>><>>:
x� �kt if

� (�+ �) kt if

at = 1

at = 0

with x; � and � positive, which clearly satis�es the conditions given in Section 1.2.

1.9.1 An example where �wws fails to be an equilibrium.

When kOR < 
kHR < k < 
kHO < kHR < 

�

kOR + 1

�
+1, a necessary condition

for �wws to be an equilibrium is U (0;1;0;:::)
�
kHR

�
� UH

�
kHR

�
. To see this, consider the

following �gure:
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In the �rst row we rank the paths R;H and O. In the second row we put the actions

prescribed by the strategy,. The third row establishes the path generated by sticking to the

strategy and the fourth establishes whether this path is the desired behavior path (DBP),

the best possible path (BPP) or none. The �fth row establishes the path generated by

deviating from the strategy proposed in the second row. Finally, the sixth row establishes

whether there is no pro�table deviation (NPD). Consider for example, an addiction level

k 2
h
kOR


 ; kHR
�
: For �wws to be an equilibrium, the path (0; 1; 0; :::) must be preferred

to H: But this occurs only if U (0;1;0;:::)
�
kHR

�
� UH

�
kHR

�
: Parameter values where this

doesn�t hold (and therefore �wws fails to be an equilibrium), are

� = 0:78 � = 0:9 � = 40:5 � = 20 
 = 0:8 x = 102

1.9.2 An example satisfying 
kHR < kOR < k < 

�

kOR + 1

�
+ 1 and IC.

� = 0:79 � = 0:9 � = 40 � = 20 
 = 0:8 x = 102
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1.9.3 An example satisfying 
kHR < kOR < k < 

�

kOR + 1

�
+1 but not IC.

� = 0:9 � = 0:9 � = 40 � = 20 
 = 0:9 x = 101

1.9.4 t�naiveness: an example where the realized behavior path involves

hitting a �nite number of times.

Let k0 = kOR and de�ne ki = 
ki�1+1 for i = 1; 2; :::. Let j = max
�
i : ki � kHR

	
so that j is the maximum number of consecutive hits, starting from kOR, that keep the

addiction level below kHR. Let k1 = kHR�1

 and de�ne ki =

ki�1�1

 for i = 1; 2; :::. Suppose

j is odd and UR
�
k2
�
� U1100:::

�
k2
�
, then the following strategy is a MPE:

� (k) =

8>>>>>>>>>><>>>>>>>>>>:

0 if k < kOR

1 if kOR � k < kj

0 if k2n+1 � k < k2n for 2n+ 1 < j

1 if k2n � k < k2n�1 for 2n < j

Starting from kOR, a sophisticate will hit once, a naif will hit forever and:

A 1-naif will hit once

A 2-naif and a 3-naif will hit 3 times

A 4-naif and a 5-naif will hit 5 times

...

A j-1-naif and a j-naif will hit j times

A n-naif for n bigger than j will hit forever.
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An example with j = 5 is given by

� = 0:9 � = 0:9 � = 43 � = 20 
 = 0:9 x = 106
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Chapter 2

Bene�cial and Harmful Addictions:

Two sides of the same coin

2.1 Introduction

Since the seminal work by Becker and Murphy (1988) there has been a grow-

ing body of literature devoted to the study of addiction. Even though the Becker-Murphy

model accounted for both harmful addictions (e.g. drug consumption) and bene�cial addic-

tions (e.g. jogging) most of the recent research has focused solely on the former. However

we believe that there is a variety of economic contexts where bene�cial addictions play an

important role. People might get addicted to sports, living standards, work, high levels of

human capital, etc... As we pointed out in the previous chapter, the key feature for a prod-

uct being addictive is that it generates habit formation1: past consumption of the product

increases current desire for consumption. In general one could conceive of harmful addic-

1Becker and Murphy refer to this feature as adjacent complementarities.
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tions as habit-forming activities that imply an immediate reward but generate future costs

(negative internalities) whereas bene�cial addictions imply an immediate cost but generate

future rewards (positive internalities). In the present chapter we establish an isomorphism

between harmful and bene�cial addictions which allows us to study both phenomena as two

sides of the same coin: any harmful addiction can be thought of as a bene�cial addiction

and vice-versa.

The above dualism holds for a speci�c context to which we refer as a binary

activity choice accumulation problem (BACAP). In a BACAP an individual faces at each

period the binary choice of undertaking or not an activity; and his (instantaneous) payo¤

depends on his current choice as well as on the history of past choices (which is captured

by a state variable)2. To illustrate the dualism consider the following harmful addiction

example. Suppose that the activity is "smoking one cigarette today" and that the history

of past smoking is captured by the individual�s "nicotine level". Negative internalities

are captured by assuming that smoking today produces immediate pleasure but generates

future costs (because it raises the nicotine level and therefore induces detrimental health

e¤ects). Habit formation is captured by assuming that higher nicotine levels induce higher

desire for current smoking. Now consider the choice problem for the same individual where

the activity is de�ned as "avoiding to smoke one cigarette today". This problem presents

positive internalities: by undertaking the activity, the individual renounces to the immediate

pleasure (and thus incurs an immediate cost) but generates future bene�ts by reducing his

addiction level. Moreover, this problem also has the habit-forming feature: the more the

individual has avoided smoking, the lower his nicotine level and therefore the higher the

2In particular, the model studied in the previous chapter is a BACAP.
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desire to keep avoiding smoking because its associated cost is lower. Therefore the original

harmful addiction problem may be seen as a bene�cial addiction one; in fact we show that

both problems are equivalent.

Besides the theoretical insight it provides, this equivalence result is appealing

because of its usefulness: it allows to obtain results for both realms of addiction by focusing

just on one. For instance, the results obtained in the previous chapter can be readily

translated to the domain of bene�cial addictions.

Once the dualism is established, we illustrate its attractiveness by analyzing bene-

�cial addictions under two settings: time-consistent preferences (i.e. when the intertemporal

utility presents exponential discounting) and time-inconsistent preferences (i.e. intertempo-

ral utility with hyperbolic discounting). Under the �rst setting we show that the individual�s

behavior depends crucially on the convexity of his instantaneous utility: when convexity

holds the individual either always undertakes the activity or always refrains; when convexity

fails we show that there might be other absorbing states. This result is worth mentioning

because previous research (on harmful addiction) has assumed convexity and yet we believe

that concavity might as well be of interest. Under the second setting, the individual can

either be aware (he is naïf ) or not (he is sophisticated) of his time inconsistency. When

he is aware he engages in an intrapersonal game. We show that the isomorphism pre-

serves the equilibria of the induced game and then we analyze the implications of naiveté

vs. sophistication. In particular, we show that the implications are the same whether we

have immediate costs and delayed rewards (bene�cial addictions) or immediate rewards

and delayed costs (harmful addictions). This contrasts with the implications of naiveté vs.
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sophistication in a context where the activity must be performed exactly once in a �nite

number of periods: as O�Donoghue and Rabin (1999) show, in the doing-it-once context

sophistication exacerbates misbehavior under immediate costs while it mitigates it under

immediate rewards. Our analysis shows that it would be misleading to extrapolate this

conclusion to a full-�edged model of intertemporal decision making, i.e. one where actions

are chosen repeatedly.

The chapter proceeds as follows. In Section 2.2 we formally de�ne a BACAP

and we establish the isomorphism which allows us to show that a BACAP is equivalent

to its dual. In Section 2.3 we consider addictions under time consistency and we show

that concavity of the utility function may yield richer patterns of behavior as opposed to

the cuto¤ rule implied by convexity. In Section 2.4 we consider addictions under time

inconsistency: we show that the isomorphism is equilibria-preserving and therefore the

implications of naiveté vs. sophistication are the same under both realms (bene�cial and

harmful) of addiction. Section 2.5 concludes.

2.2 The Model

We will restrict ourselves to the following class of problems:

2.2.1 Binary Activity Choice Accumulation Problem (BACAP)

In a BACAP an individual has to choose at each period t = 1; 2; :::; whether to

undertake (at = 1) or not (at = 0) an activity. The instantaneous per-period payo¤ ut

depends on the period´s action as well as on the history of past actions which is assumed to
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be captured by a state variable k that evolves according to kt+1 = 
kt+at; with 0 < 
 < 1:

Notice that there is a maximum value for the state variable kmax = 1
1�
 . The per-period

payo¤ ut is given by

ut = u (kt; at) =

8>><>>:
	(kt) if at = 1

� (kt) if at = 0

where 	 : [0; kmax] ! < and � : [0; kmax] ! <: At each period t; the individual aims at

maximizing the intertemporal utility given by

Ut = U (ut; ut+1; :::)

where U : <1 ! <: If k1 2 [0; kmax] is the initial condition for the state variable k,

a BACAP is completely characterized by [	;�; U; 
; k1] :The main result of the following

subsection is that for every BACAP B = [	;�; U; 
; k1] ; there is an equivalent BACAP

where the activity may be viewed as the negation of the activity in B.

2.2.2 The DUAL of a BACAP.

Given a BACAP B = [	;�; U; 
; k1] de�ne e	 : [0; kmax]! < and e� : [0; kmax]! <

as

e	�ek� = �
�
kmax � ek�

e��ek� = 	
�
kmax � ek�

so that e	 and e� are the re�ections of � and 	 with respect to kmax as illustrated in the

�gure.



46

m axk

Ψ

Ψ%

Γ%

Γ

k k%

m axk

Ψ

Ψ%

Γ%

Γ

k k%

Now consider a problem where at each period t = 1; 2; :::; an individual faces the

choice of undertaking (eat = 1) or not (eat = 0) an action and where the instantaneous payo¤
eut is given by

eut = eu�ekt;eat� =
8>><>>:
e	�ekt� if eat = 1
e��ekt� if eat = 0

where ek is assumed to evolve according to ekt+1 = 
ekt + eat: Suppose that at each period t;
the individual aims at maximizing the intertemporal utility

eUt = U (eut; eut+1; :::)
Then, for a given initial condition ek1, he	; e�; U; 
;ek1i de�nes a BACAP.
De�nition 24 Given a BACAP B = [	;�; U; 
; k1] ; its DUAL is the BACAP

D (B) =
he	; e�; U; 
; (kmax � k1)i

De�nition 25 We say that a BACAP B is equivalent to a BACAP B0 if

1. for any path A = fa1; a2; :::g 2 f0; 1g1 in B there is a path A0 = fa01; a02; :::g 2 f0; 1g
1

in B0 that yields the same payo¤; and
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2. for any path A0 = fa01; a02; :::g 2 f0; 1g
1 in B0there is a path A = fa1; a2; :::g 2 f0; 1g1

in B that yields the same payo¤.

Proposition 26 A BACAP B is equivalent to its dual D (B) :

Proof. Let (at; kt) and
�eat;ekt� denote period-t actions and states in B and D (B)

respectively. Consider the isomorphism � : f0; 1g � [0; kmax]! f0; 1g � [0; kmax] that maps

actions and states in B to actions and states in D (B) in the following way

� (a; k) = (1� a; kmax � k) =
�ea;ek�

Then, if at = 1 we have eat = 0 and
u (at; kt) = 	 (kt) = e��ekt� = eu�eat;ekt� = eu (� (at; kt))

and if at = 0 we have eat = 1 and
u (at; kt) = � (kt) = e	�ekt� = eu�eat;ekt� = eu (� (at; kt))

Thus the per-period utilities associated to (at; kt) and � (at; kt) are the same. Moreover,

according to the isomorphism the evolution of ekt is consistent with the evolution of kt:
ekt+1 = 
ekt + eat = 
 (kmax � kt) + 1� at

= (
kmax + 1)� (
kt + at) = kmax � kt+1 = �(kt+1)

Since ek1 = kmax�k1 = �(k1) so that the initial condition in D (B) is the image of the initial
condition of B under �; we conclude that any path A 2 f0; 1g1 in B is payo¤ equivalent

to path eA = � (A) in D (B) : This shows part 1 of De�nition 25. To see that part 2 is also
satis�ed just notice that D (D (B)) = B; i.e. �B is the dual of its dual�.
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De�nition 27 We say that a BACAP has Positive Internalities, if 	 and � are increasing

in k: That is, the more the activity has been undertaken in the past, the higher the present

well-being.

De�nition 28 We say that a BACAP has Negative Internalities, if 	 and � are decreasing

in k: That is, the more the activity has been undertaken in the past, the lower the present

well-being.

Proposition 29 If a BACAP B has Positive (Negative) Internalities its dual D (B) has

Negative (Positive) Internalities.

Proof. When 	 and � are increasing (decreasing), e	 and e� are decreasing (in-
creasing)

De�nition 30 We say that a BACAP has Habit-Formation, if 	(k)� � (k) is increasing

in k: That is, the more the activity has been undertaken in the past (as captured by k) the

higher the marginal instantaneous utility of undertaking it in the present.

Proposition 31 If a BACAP B has Habit-Formation its dual D (B) has Habit-Formation

Proof. if 	(k)� � (k) is increasing then e	(k)� e� (k) is increasing
De�nition 32 We say that a BACAP presents Harmful Addiction if it has Habit For-

mation and Negative Internalities. We say that a BACAP presents Bene�cial Addiction

if it has Habit Formation and Positive Internalities.

Proposition 33 If a BACAP B presents Harmful (Bene�cial) Addiction its dual

D (B) has Bene�cial (Harmful) Addiction.

Proof. Direct from Propositions 29 and 31
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Let � : [0; kmax] ! f0; 1g be a rule or strategy in a BACAP B, that is, for each

state level k, �(k) prescribes an admissible action. De�ne e� : [0; kmax]! f0; 1g as the rule

in D (B) given by

e��ek� = 1� ��kmax � ek� (2.1)

Proposition 34 If � induces path A in a BACAP B then e� induces path � (A) in D (B) :
Proof. Suppose that at some period t; state levels are kt and ekt = (kmax � kt)

in B and D (B) respectively. Then � prescribes in B action at = � (kt) and induces state

level kt+1 = 
kt + at; and e� prescribes in D (B) action eat = e��ekt� and induces state level
ekt+1 = 
ekt + eat:Now notice that

eat = e��ekt� = 1� ��kmax � ekt� = 1� �(kt) = 1� at = �(at)
and

ekt+1 = 
ekt + eat = 
 (kmax � kt) + 1� at = (
kmax + 1)� (
kt + at) = (kmax � kt+1)
Therefore the proposition follows by induction and the fact that ek1 = (kmax � k1) :

The above proposition shows that given a strategy � in a BACAP B, strategy

e� as given by (2.1) has the natural interpretation of being the strategy in D (B) induced
by applying the isomorphism � to �: Thus, with a slight abuse of notation we will refer to

it as � (�) :Notice that as it is shown in the proof of Proposition 26 path A in B is payo¤

equivalent to path � (A) in D (B) :Therefore, we readily obtain the following proposition.

Proposition 35 Strategies � and � (�) are payo¤ equivalent.

We close this section by giving examples that motivate the study of BACAP´s

presenting Addiction.
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2.2.3 Some examples presenting Addiction.

Drug consumption

Suppose the activity is "smoking one cigarette" and that k represents the individ-

ual�s addiction level. Let f(kt) be the utility associated to addiction level kt irrespective of

what the individual�s current choice is. Because of the detrimental e¤ects of past smoking

in current health it is natural to assume that f is decreasing in k: Suppose that x > 0

re�ects the intrinsec pleasure of smoking one cigarette and that w(kt) is the withdrawal

cost (which we assume increasing in kt because the more the person has smoked in the past

the harder for him to refrain current smoking). Then, the instantaneous per-period utility

is given by

u (kt; at) =

8>><>>:
	(kt) = x+ f (kt) if at = 1

� (kt) = f (kt)� w (kt) if at = 0

an the (harmful) addictive properties of smoking are re�ected by negative internalities (	

and � decreasing) and habit-formation (w increasing)3.

Jogging

Suppose the activity is �one hour of jogging�so that k represents the �tness level.

Let g (kt) be the utility derived from having �tness level kt: This is a utility the individual

enjoys at time t irrespective of what his current choice is; it includes the health bene�ts from

past exercising and therefore is increasing in kt. Let e > 0 be the e¤ort or cost associated

to �one hour of jogging�when the individual has never exercised before (i.e. k = 0). It

3Notice that this is precisely the kind of model proposed by O�Donoghue and Rabin (2002) which we
discussed in the previous chapter.
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seems natural to assume that this cost decreases as the �tness level grows. We capture this

by letting the cost be c (kt) = e � h (kt) with h (kt) increasing and h (0) = 0. Notice that

this allows for the jogging activity to even become �pleasurable� (i.e. when for some k;

h(k) > e). Then, the instantaneous per-period utility is given by

u (kt; at) =

8>><>>:
	(kt) = g (kt)� c (kt) = �e+ h (kt) + g (kt) if at = 1

� (kt) = g (kt) if at = 0

and the (bene�cial) addictive properties of jogging are re�ected by positive internalities (	

and � increasing) and habit-formation (h increasing).

Conspicuous consumption

Suppose that the main source of utility for an individual is his living standard (or

status) which we denote by k and that can only be raised by the activity of conspicuous

consumption (cf.Veblen). For instance, think of this activity (a = 1) as �o¤ering a Great-

Gatsby-type party�. Let g (k) be the utility associated to status k that the individual enjoys

irrespective of his current choice. O¤ering the party has an intrinsic instantaneous utility

but it also produces a positive internality because it raises the host´s status for next period.

Let v be the intrinsic utility of the party experienced by the host. We may assume that v

is increasing in k (for instance, people attending the party are kinder to the host the higher

his status is). If e > 0 represents the e¤ort or cost of o¤ering the party, the instantaneous

per-period utility is given by

u (kt; at) =

8>><>>:
	(kt) = �e+ v (kt) + g (kt) if at = 1

� (kt) = g (kt) if at = 0
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and the (bene�cial) addictive properties of conspicuous consumption are re�ected by positive

internalities (	 and � increasing) and habit-formation (v increasing).

Investment in Human Capital

Suppose that the individual has a unit of free time and a unit of working time

each period. The working time unit is exerted in a productive activity whose productivity

g (k) depends positively on the accumulated human capital k: The individual may use his

free time in either learning (a = 1), which might be interpreted as investment in human

capital and therefore increases his stock k, or in an alternative activity (a = 0), which may

be leisure or some other productive activity that does not a¤ect k. When he decides to

use his free time in the alternative activity, he obtains an instantaneous utility e > 0 which

can be thought of as the pleasure derived from leisure or the pro�ts from the alternative

productive activity. If he devotes his free time to learning he incurs in a cost c (k) which is

decreasing in k and may eventually become negative (i.e. the individual �enjoys�learning).

Therefore, the instantaneous per-period utility is given by

u (kt; at) =

8>><>>:
	(kt) = g (kt)� c (kt) if at = 1

� (kt) = g (kt) + e if at = 0

and the (bene�cial) addictive properties of investment in human capital are re�ected by

positive internalities (	 and � increasing) and habit-formation (�c increasing).
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2.3 Bene�cial Addictions under Time Consistency

Consider a BACAP B = [	;�; U; 
; k1] presenting bene�cial addiction and where

the functional U takes the speci�c form

U (ut; ut+1;:::) =
1X
�=t

���tut with 0 < � < 1 (2.2)

i.e. where we have time separability and exponential discounting. Let A 2 f0; 1g1 denote

a behaviour path, that is, an in�nite sequence of admissible actions. Keeping in mind the

jogging example of the previous section we will use E (from "exercising") to denote the

behaviour path where the individual always undertakes the activity, that is, E = (1; 1; :::);

and N (from "never exercising") will denote the behaviour path where the individual never

undertakes the activity, that is, N = (0; 0; :::):

We will see that the optimal decision rule and long-run behavior depend crucially

on the convexity of 	 and �:

2.3.1 	 and � convex

By the previous section we know that a BACAP B = [	;�; U; 
; k1] is equivalent to

its dual D (B) =
he	; e�; U; 
; (kmax � k1)i : By proposition 29 we know that D (�) presents

harmful addiction. Notice that e	 and e� are also convex. In O�Donoghue and Rabin (2002)
it is shown that in a BACAP as D (B) the optimal decision rule of the agent is of the cut-o¤

type. That is, there exists a critical state level ekc such that the optimal action is ea = 0 for
levels below ekc and ea = 1 for levels above ekc: Therefore the optimal decision rule takes the
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form

eat = e��ekt� =
8>><>>:
0 if ekt < ekc
1 if ekt � ekc

The reason for this is that the time consistency implied by the intertemporal utility (2.2)

allows for the use of a value function V
�ekt� that happens to be convex when e	 and e� are

convex. Therefore at any time t the agent chooses eat = 1 if and only if
e	�ekt�� e��ekt� � � hV �
ekt�� V �
ekt + 1�i (2.3)

i.e. if and only if the marginal instantaneous bene�ts e	�ekt� � e��ekt� o¤set the marginal
future costs �

h
V
�

ekt�� V �
ekt + 1�i of the action. Now, because of the Habit-Forming

feature, the LHS of (2.3) is increasing, while the convexity of the value function V implies

that the RHS of (2.3) is decreasing and therefore we get the existence of ekc:
Now, because of the equivalence between B and D (B) we readily obtain

Proposition 36 In a BACAP B = [	;�; U; 
; k1] presenting bene�cial addiction with 	

and � convex and intertemporal utility U given by (2.2), the optimal decision rule is of the

cuto¤ type. That is, there exists a critical state level kc 2 [0; kmax] such that

at = � (kt) =

8>><>>:
0 if kt < kc

1 if kt � kc

Remark 37 Notice that when 	 and � are convex, long-run behavior depends totally on

the initial condition k1 : if k1 < kc the individual will never undertake the activity ( his

realized behavior path is N) while when k1 � kc he will undertake it forever (his realized

behavior path is E). Therefore there are only two absorbing states: 0 (when k1 < kc) and

kmax (when k1 � kc). This changes dramatically if we relax the convexity assumption as

the following subsection shows.
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2.3.2 	 and � concave

Suppose now that 	 and � are concave. Even though we still may make use of a

value function by virtue of (2.2), this value function may not be convex nor concave. So

the type of analysis used in the previous subsection is of no use. We will show by means of

examples that the optimal decision rule may no longer be of the cuto¤ type, that long-run

behavior may be independent of initial conditions and that there might be other absorbing

states. For the examples we take 	 and � to be piece-linear with speci�c functional forms

	(k) =

8>><>>:
(a+ b+ e) k � e if k < 1

ak + b if k � 1

� (k) =

8>><>>:
ck if k < 1

c if k � 1

where all parameters are positive and c > a+ b as illustrated in the �gure

1

a b+

c

e−

maxkck

( )kΨ

( )kΓ

1

a b+

c

e−

maxkck

( )kΨ

( )kΓ

Notice that there is clearly bene�cial addiction: 	 and � are increasing (positive internali-

ties) and 	�� is increasing (habit formation). Also notice that the intersection between 	
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and � occurs at kc = c�b
a and thus for any level k > kc; the individual will always undertake

the activity because 	(k) > � (k). Therefore, the state kmax is locally absorbing. For levels

below kc the instantaneous utility of undertaking the activity is lower than the one from

refraining but the individual might choose to undertake it because by doing so he raises his

state level and therefore increases his future payo¤s.

We consider now two examples that di¤er only in the depreciation rate 
 of the

state. For both examples the other parameters take the speci�c values a = 0:4; b = 9; c =

10; e = 1; � = 0:5. In Example 1, we take 
 = 8
10 ; and in Example 2 we take 
 =

65
100 :In

the appendix we show that for both examples the optimal decision rule takes the non-cuto¤

form

at = � (kt) =

8>>>>>><>>>>>>:

1 if kt � kinf

0 if kinf < kt < ksup

1 if kt � ksup

(2.4)

where kinf and ksup di¤er for both examples but they satisfy 1 < kinf < ksup < kc as

illustrated in the �gure

1 10

maxk

( )kΨ

( )kΓ

supkinfk

( )kα

ck1

1 10

maxk

( )kΨ

( )kΓ

supkinfk

( )kα

ck1
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Claim 38 In Example 1 (
 = 8
10); the long-run behavior implies undertaking the activity

(i.e. kmax is the unique globally absorbing state). To see this it su¢ ces to show that by

following the rule �(k) for any initial state level k; we eventually reach a state above ksup

and therefore we keep undertaking the activity from then on. This is shown in the appendix.

Claim 39 In Example 2 (
 = 65
100); k

max is not globally absorbing and there are other

positive addiction levels that are locally absorbing. To see this consider levels k = 1
1�
2 and

k = 

1�
2 and notice that 
k = k and 
k+1 = k (i.e. undertaking the activity when the state

level is k yields level k and refraining when state level is k yields level k):Now, it happens

that in this example k < kinf < k < ksup and therefore �
�
k
�
= 0 and � (k) = 1 so that once

the individual reaches one of these states he keeps switching from one to another forever. In

particular for any initial level k 2
�
kinf ; ksup

�
the optimal behavior path is 010101:::. Hence

we have shown that concavity may yield other absorbing states. Also notice that since kmax

is locally absorbing the long-run behavior depends heavily on the initial condition.

As the above examples show allowing for concavity in the functions 	 and � may

yield richer patterns of behavior as opposed to 	 and � being convex where we obtain

a cuto¤ decision rule and therefore the behavior observed for a given initial state level is

either always undertaking the activity or always refraining. Of special interest is Example 2

because it may yield non-monotonic behavior by alternatively switching from undertaking

the activity to refraining.
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2.3.3 Assuming Convexity

As we have seen, characterization of behavior is very simple under the convexity

(of 	 and �) assumption while it may be a very complicated task when we relax it. As-

suming convexity is appealing because of its tractability but it may be unsatisfactory for

modeling some addictions. In essence, what the convexity assumption posits is that there

are increasing marginal returns in the state variable. However we believe that there are

some realms of addiction where the opposite would hold. Consider for instance the jog-

ging example provided in the previous section: perhaps the most reasonable assumption

is decreasing marginal returns to the �tness level (i.e. 	 and � concave). The same goes

for the investment in human capital example: the standard would be to assume decreas-

ing marginal returns to the accumulated human capital. In their harmful addiction model,

O�Donoghue and Rabin posit the convexity assumption arguing that �the more addicted the

person becomes, the less a given increase in k hurts his instantaneous utility, and therefore

the less harm hitting does to future utility�. This is debatable4: It could be a reasonable

assumption for some drugs, say "soft" drugs, but it may not be too realistic for "hard"

drugs such as heroin.

Since the concavity assumption may be appropriate for some addiction contexts

we believe that results such as the obtained in the previous two claims deserve attention.

4We believe that they are aware of this since they state that "most results hold even if 	 and � are a
little concave, and some do not rely at all on them being convex".
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2.4 Bene�cial Addictions under Time Inconsistency

Suppose now that the functional U takes the speci�c form5

U (ut; ut+1; :::) = ut + �

1X
�=t+1

���tu� with � 2 (0; 1) (2.5)

The present bias re�ected in the parameter � induces the time inconsistency: because of

the greater taste for immediate grati�cation an optimal behavior path at some date t may

no longer be optimal at a further date. Therefore, an optimal behavior path may not be

implementable because future selves may have incentives to deviate (here, of course, we

are not allowing for commitment possibilities). When the individual is fully unaware of his

time-inconsistency (i.e. he is naïf ) he chooses his action according to the behavior path

that maximizes (2.5) believing (wrongly) that his future selves will stick to it. When the

individual is fully aware of his time-inconsistency (i.e. he is sophisticated) he engages in

an intrapersonal game: he plays against his future selves by maximizing (2.5) subject to

the intended behavior path will be followed. In the in�nite horizon case this intrapersonal

game will normally present multiple Markov Perfect equilibria (which is the natural solution

concept to be called upon). In what follows it will be useful to distinguish between a desired

behavior path (DBP), that is, an in�nite sequence of actions solving (2.5); and a realized

behavior path (RBP), that is, a path actually followed by all selves.

The implications of naiveté vs. sophistication have been studied in O�Donoghue

and Rabin (2002) and in the previous chapter for a BACAP presenting harmful addiction

under time inconsistency as given by (2.5). We may now apply the duality established in

Subsection 2.2.2 to translate their results into BACAPs with bene�cial addictions. It is
5This functional form was �rst introduced by Phelps and Pollack (1968). Because of its simplicity and

tractability, it has been widely used to model self-control problems since the work of Laibson (1994).
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important to note that we will consider only the case where 	 and � are convex. We do so

because those studies presented this assumption.

2.4.1 Naif behavior

O�Donoghue and Rabin show that in a BACAP B presenting harmful addiction a

naif follows a cuto¤ rule �n, that is, there is a critical state level kn such that

�n (k) =

8>><>>:
0 if k < kn

1 if k � kn

Moreover, it happens that for levels below kn the DBP is R = 00000::: while for levels

above kn the DBP is either O = 1000::: or H = 1111:::: A naif has self-control problems (or

time inconsistency) whenever O is the DBP: Believing that he is able to follow it he will

undertake the activity but by doing so he raises his state level for next period and therefore

he does not stick to O: In fact, the RBP is either R (for any level below kn) or H (for any

level above kn).

Because of the equivalence between B and D (B) (in particular because of Propo-

sitions 34 and 35) strategy e�n = �(�n) describes naif behavior in D (B) :Therefore
e�n �ek� = 1� �n

�
kmax � ek�

= 1�

8>><>>:
0 if kmax � ek < kn
1 if kmax � ek � kn

=

8>><>>:
1 if kmax � kn < ek
0 if kmax � kn � ek
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so that we have

e�n �ek� =
8>><>>:
0 if ek < ekn
1 if ek � ekn where ekn = kmax � kn (2.6)

and the RBP of a naif in D (B) is either � (R) = 1111:::(for any level above ekn) or � (H) =
000:::: (for any level below ekn).

Since any BACAP presenting bene�cial addiction can be thought of as the dual

of some BACAP presenting harmful addiction, naif behavior for bene�cial addictions is

completely characterized by (2.6).

2.4.2 Sophisticated behavior

When there is MPE multiplicity (as it is normally the case with an in�nite horizon)

in the induced intrapersonal game, sophisticated behavior would depend on the particular

equilibrium selection. Rather than characterizing sophisticated behavior in a BACAP B

(this would imply characterization of MPE of the induced game and as O�Donoghue and

Rabin point out this can be a very complicated task) what we want to point out is that the

isomorphism � is equilibrium-preserving:

Proposition 40 If strategy � constitutes a MPE of a BACAP B, then strategy e� = �(�)
constitutes a MPE of D (B) :

Proof. Because of Propositions 34 and 35, if there were a pro�table deviation

from e� in D (B) then there would be a pro�table deviation from � in B: just apply the

isomorphism � to the deviation.
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Therefore the dualism also applies for sophisticated behavior: if some strategy

� describes sophisticated behavior in a BACAP B, then strategy e� = � (�) describes

sophisticated behavior inD (B) :We turn now to compare sophisticated versus naif behavior.

2.4.3 Naiveté vs. sophistication

We will use the following notation: For any strategy � : [0; kmax]! f0; 1g and any

level k 2 [0; kmax], let V (k;�) denote the value (i.e. the maximal intertemporal utility) of

following strategy � with starting state level k: For any behavior path A 2 f0; 1g1 and any

level k 2 [0; kmax], let V (k;A) denote the value of following path A with starting state level

k:

Suppose that strategy �s describes sophisticated behavior in a BACAP B (i.e.

�s is the selected MPE of the induced game). Then, for a given initial state level k a

sophisticated would be better o¤ than a naif if and only if

V (k;�s) � V (k;�n)

By the previous subsections we know that in D (B) naif and sophisticated behaviors are

described by strategies e�n = �(�n) and e�s = �(�s) respectively. Proposition 35 implies

that V (k;�s) = V
�ek; e�s� and V (k;�n) = V �ek; e�n� (where ek = kmax � k) and therefore

we obtain

Proposition 41 If for some level k a sophisticated is better o¤ than a naif in a BACAP

B, for level ek = kmax � k a sophisticated is better o¤ than a naif in D (B) :
De�nition 42 We say that sophistication mitigates (exacerbates) misbehavior in a

BACAP B, if



63

1. for all state levels a sophisticated is better o¤ (worse o¤ ) than a naif; and

2. there are state levels for which a sophisticated is strictly better o¤ (worse o¤ ) than a

naif.

The above proposition directly implies

Proposition 43 If sophistication mitigates (exacerbates) misbehavior in a BACAP

B it mitigates (exacerbates) misbehavior in D (B) :

Notice that the above proposition implies that the implications of sophistication

vs. naiveté are the same for harmful and bene�cial addictions since one may be seen as the

dual of the other.

We close this section by discussing a result obtained by O�Donoghue and Rabin

(2002), namely, there are BACAPs presenting harmful addiction where sophistication ex-

acerbates misbehavior. It is important to notice that this result depends not only on the

characteristics of the BACAP but also on the particular equilibrium selection describing

sophisticated behavior. Regarding the characteristics, the BACAP must satisfy a condition

which they refer to as the Inevitability Condition (IC). In Chapter 1 we showed that IC is

equivalent to

V (0;H) � V (0;A) for A = 011111::: (2.7)

that is, for an unnaddicted individual (k = 0) the value of always hitting is higher than the

value of refraining today and hitting from tomorrow ever after. We also show that (2.7)

implies

V (k;H) � V (k;A) for A = 011111::: 8k (2.8)
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The term Inevitability Condition is due to the following interpretation of (2.8): If sophis-

ticated individuals "perceive that addiction is inevitable in the sense that no matter what

they do today their future selves will hit forever after" they might as well start hitting

today.

Regarding the equilibrium selection, they propose the equilibrium corresponding

to the limit of the unique �nite-horizon MPE as the horizon becomes long (we will refer to

this equilibrium as the ORE). O&R show that when IC holds the ORE is characterized by

strategy

�ORE (k) = 1 8k

And therefore sophistication exacerbates misbehavior: A sophisticated is worse o¤ than a

naif for all state levels and strictly worse o¤ for any level below kn (the threshold level

characterizing naif behavior).

Proposition 43 directly implies the following:

Proposition 44 There are BACAPs presenting bene�cial addiction where sophistication

exacerbates misbehavior.

Proof. Just consider the dual of a BACAP satisfying (2.8) and as the selected

equilibrium describing sophisticated behavior strategy �
�
�ORE

�
.

We believe that the above result is worth mentioning at least for two reasons.

First, it challenges the general view that sophistication mitigates misbehavior when costs are

immediate and rewards are delayed (as it is the case of bene�cial addictions). O�Donoghue

and Rabin (1999) show that this view is correct in a context where the activity has to be

undertaken exactly once and there is a �nite number of periods where the individual can
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do it. However Proposition 44 shows that extrapolating it to the domain of BACAPs (where

the activity may be repeated over time) is misleading.

Second, it relies on the selected equilibrium being the ORE, that is, the limit of

the unique �nite-horizon MPE as the horizon becomes long. In Chapter 1 we provided other

MPE such that, for BACAPs presenting harmful addiction and satisfying IC, sophistication

mitigates misbehavior.

2.5 Concluding remarks

We have constructed an isomorphism that establishes a dualism between harmful

and bene�cial addictions: both phenomena are just two sides of the same coin. The dualism

holds for the context of BACAPs, where an individual faces at each period the binary choice

of undertaking or not an activity; and his payo¤ depends on his current choice as well as

on the history of past behavior.

From a theoretical perspective the dualism is appealing because it allows to give

insights for both realms of addiction by analizing either one. We have shown that in a time

consistent setting (i.e. when the intertemporal utility exhibits exponential discounting)

whether the instantaneous utility function is convex or concave has very di¤erent implica-

tions: While under convexity the individual follows a cuto¤ rule, and therefore for a given

initial state either always undertakes the activity or always refrains, assuming concavity

may yield richer patterns of behavior. Since for some addiction contexts concavity might

be the appropriate assumption, we believe that our results deserve attention and motivate

further research.
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We have also considered a time inconsistent setting (where the intertemporal util-

ity function exhibits hyperbolic discounting) to study the implications of sophistication

(i.e. when the individual is fully aware of his time inconsistent preferences) versus naiveté

(i.e. when the individual is unaware of his time inconsistency). The isomorphism allows

us to state that whether sophistication hurts or bene�ts the individual does not depend

on whether costs are immediate an rewards delayed (bene�cial addicition) or rewards are

immediate and costs delayed (harmful addiction). This is worth mentioning because in a

doing-it-once context (where the activity must be performed exactly once in a �nite num-

ber of periods) sophistication bene�ts the individual in the former while it hurts him in

the latter case (as has been shown by O´Donoghue and Rabin (1999)). Therefore, extrap-

olating this result to the domain of addictions would be misleading. To illustrate this, we

make use of the dualism to show that there are BACAPs presenting bene�cial addiction

where sophistication hurts the individual. Nevertheless, we also point out that to obtain

this result (which in fact is a translation of a result obtained by O�Donoghue and Rabin

(2002) for harmful addictions) the particular equilibrium selection for the sophisticated�s

intrapersonal game plays a crucial role. If we allow other dominating MPE (as the ones

provided in Sections 1.4 and 1.5 of the �rst chapter ) then sophistication would mitigate

misbehavior under both harmful and bene�cial addictions.

Finally, we would like to point out that the isomorphism holds for arbitrary in-

stantaneous payo¤ functions (	 and �) and arbitrary intertemporal utility function (U);

however, the speci�c evolution of the state variable we have assumed in a BACAP (i.e.

kt+1 = 
kt+at) plays an important role in establishing it. Therefore it would be of interest
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to consider whether the dualism still holds under more general conditions for the evolution

of the state variable.

2.6 Appendix

In this appendix we show that for the examples of subsection 3.2 the optimal

decision rule takes the form

at = � (kt) =

8>>>>>><>>>>>>:

1 if kt � kinf

0 if kinf < kt < ksup

1 if kt � ksup

Even though the formal proofs are quite long and tedious the idea is simple: we start by

showing that there are levels kinf 1 and ksup 1 with

0 < kinf 1 < k
sup 1 < kmax

such that for any level k in the intervals L1 = [0; kinf 1] or U1 =
�
ksup 1; kmax

�
the optimal

action is to undertake the activity. Then we keep enlarging these lower and upper intervals

(with the property that for any k belonging to one of them the optimal action is to undertake

the activity) until we get to L =
�
0; kinf

�
and U = [ksup; kmax] so that for any k 2

�
kinf ; ksup

�
the optimal action is to refrain.

In what follows, we will use the following notation: V (k) will denote the value

function associated to level k; that is, V (k) is the maximal intertemporal utility the indi-

vidual can obtain when starting in state k: Notice that because of positive internalities V

is increasing in k: A 2 f0; 1g1 will denote a behavior path, that is, an in�nite sequence of

admissible actions; we will use E to denote the behavior path where the individual always
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undertakes the activity, that is, E = (1; 1; :::). By V (k;A) we will denote the intertemporal

utility achieved by following path A with initial state level k:

2.6.1 Example 1: a = 0:4; b = 9; c = 10; e = 1; � = 0:5; 
 = 0:8

We know that kc = c�b
a = 2:5. For 
 = 0:8 we get kmax = 1

1�
 = 5: We start by

�nding a level kinf 1 such that if k < kinf 1 then � (k) = 1:

Claim 45 For any level k < kinf 1 =
c�b��(a+b)
a+(a�c)�
 � 1:076, the optimal rule is � (k) = 1:

Proof. For some starting level k < 1 consider the following cases. Case A: the

individual refrains in the �rst period. By doing so, he obtains instantaneous payo¤ ck

and the maximum intertemporal utility he can achieve is ck + �V (
k) : Since V (
k) <

c
k + �V
�

2k + 
 + 1

�
we have

ck + �V (
k) < ck + �c
k + �2V
�

2k + 
 + 1

�
(2.9)

Case B: the individual undertakes the activity in the �rst two periods. In this case the

maximum intertemporal utility he can obtain is given by

[(a+ b+ e) k � e] + � [a (
k + 1) + b] + �2V
�

2k + 
 + 1

�
(2.10)

Therefore, whenever (2.10) is greater than RHS of (2.9), i.e. whenever

[(a+ b+ e) k � e] + � [a (
k + 1) + b] � ck + �c
k

[(b+ e) + (a� c) (1 + �
)] k � e� � (a+ b)

k � e� � (a+ b)
(b+ e+ a� c) + (a� c) �
 (2.11)

the optimal rule must be � (k) = 1:(Since [(b+ e) + (a� c) (1 + �
)] is negative, in the last

step the inequality reverses). Now consider some level k such that 1 � k < 1

 and the same
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cases as before. The maximum intertemporal utility of Case A must satisfy

c+ �V (
k) < c+ �c
k + �2V
�

2k + 
 + 1

�
(2.12)

and the maximum value of Case B is

[ak + b] + � [a (
k + 1) + b] + �2V
�

2k + 
 + 1

�
(2.13)

and therefore whenever (2.13) is greater than RHS of (2.12), i.e. whenever

k � c� b� � (a+ b)
a+ (a� c) �
 (2.14)

the optimal rule must be � (k) = 1: For the speci�c parameter values of this example we have

e = c�b and therefore (2.11) and (2.14) are the same, therefore by making kinf 1 = c�b��(a+b)
a+(a�c)�


we obtain the claim.

So we have found a lower interval for which the optimal rule is to undertake the

activity. We turn now to �nd an upper interval where this also holds. Obviously for all

levels above kc the optimal rule is � (k) = 1 but in the following claim we �nd a value

ksup 1 < kc such that for all k � ksup 1 we have � (k) = 1. Before proceeding with the claim

note that for any k � 1 straightforward calculations yield

V (k;E) =

�
k +

�

1� �

�
a

1� �
 +
b

1� � (2.15)

(the reason for the condition k � 1 is simply that for those levels the instantaneous utility

function is linear in k and therefore we can obtain the explicit computation). Therefore, if

k � 1 and the optimal path is E = (1; 1; :::) the value function must satisfy V (k) = V (k;E)

and therefore we get

8k � 1; V (k) = V (k;E)) V (k) =

�
k +

�

1� �

�
a

1� �
 +
b

1� � (2.16)
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Claim 46 Let ksup 1 be such that V
�
ksup 1

�
= c+�V

�
ksup 1

�
; then 8k � ksup 1 the optimal

rule is � (k) = 1:

Proof. Suppose that there exists ek such that V
�ek� > c+�V �ek� and �

�ek� = 0:
By de�nition of the value function we must have V

�ek� = c+ �V �
ek� < c+ �V �ek� which
is a contradiction (the inequality follows by V being increasing). Therefore �

�ek� = 1

for all ek such that V
�ek� > c + �V

�ek� : But since V is increasing by making ksup 1 =

inf fk j V (k) > c+ �V (k)g we obtain the claim.

Note that since V
�
ksup 1

�
= V (ksup 1;E) = c

1�� we can obtain explicitly k
sup 1 from

(2.16):

ksup 1 =

�
c� b
1� �

�
1� �

a

� �

1� � (2.17)

Given the parameter values of our example we get

ksup 1 = 2 and V
�
ksup 1

�
= 20

Now, since 
4ksup 1 = 0:819 < kinf 1, it is impossible that an optimal path has four

consecutive 0�s. The following claim shows that no optimal path can have three consecutive

0�s.

Claim 47 There is no level k such that its optimal path has three consecutive 0�s.

Proof. For levels above ksup 1 the claim follows from Claim 46. So consider k <

ksup 1:By time consistency it su¢ ces to show that no path A beginning with 000 is optimal

for level k: Let A be a path beginning with 0001 (if it begins with 0000 we already know that it

is not optimal). Note that for period �ve state level is 
4k+1 < 
4ksup 1+1 � 1:819 < ksup 1
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so that V
�

4k + 1

�
< V

�
ksup 1

�
. We will show that E dominates A:Suppose �rst that

k � 1


3
� 1:953 (2.18)

so that in the fourth period (after the three consecutive 0�s) the state level is above 1; then

we must have

V (k;A) � c
�
1 + � + �2

�
+ �3

�
a
3k + b

�
+ �4V

�

4k + 1

�
< c

�
1 + � + �2

�
+ �3

�
a
3k + b

�
+ �4V

�
ksup 1

�
(2.19)

but simple calculations show that (2.19) is lower than V (k;E) when

k �
b�3 + c(1 + � + �2) + �4c

1�� �
b
1�� �

�
1��

a
1��


a
1��
 � �

3
3a
� 1:885

therefore for k � 1

3
; E dominates A: Now suppose

k <
1


3
� 1:953

so that in the fourth period (after the three consecutive 0�s) the state level is below 1; then

we must have

V (k;A) � c
�
1 + � + �2

�
+ �3

�
(a+ b+ e) 
3k � e

�
+ �4V

�

4k + 1

�
< c

�
1 + � + �2

�
+ �3

�
(a+ b+ e) 
3k � e

�
+ �4V

�
ksup 1

�
(2.20)

but (2.20) is lower than V (k;E) when

k �
�e�3 + c(1 + � + �2) + �4c

1�� �
b
1�� �

�
1��

a
1��


a
1��
 � �

3
3 (a+ b+ e)
� �39:063

Therefore for k < 1

3
E dominates A.
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Claim 48 Let A = 00111::: If k � 1

2
then there exists k001 > 1


2
such that

V (k;E) > V (k;A), k > k001

Proof. Notice that since k � 1

2
then using (2.15) we have

V (k;E) =

�
k +

�

1� �

�
a

1� �
 +
b

1� �

V (k;A) = c (1 + �) + �2
��

2k +

�

1� �

�
a

1� �
 +
b

1� �

�

De�ne 	(k) = V (k;E) � V (k;A) and notice that d	(k)dk = a (1 + �
) > 0: Therefore k001

is the level solving 	(k) = 0; that is

k001 =
(1 + �)

�
c� b� a�

1��


�
a (1 + �
)

� 1:786

Claim 49 Let A = 0111::: If k � 1

2
then there exists k01 > 1


2
such that

V (k;E) > V (k;A), k > k01

Proof. Notice that since k � 1

2
then using (2.15) we have

V (k;E) =

�
k +

�

1� �

�
a

1� �
 +
b

1� �

V (k;A) = c+ �V (
k;E) = c+ �

��

k +

�

1� �

�
a

1� �
 +
b

1� �

�

De�ne 	(k) = V (k;E)� V (k;A) and notice that d	(k)dk = a > 0: Therefore k01 is the level

solving 	(k) = 0; that is

k01 =
c� b� �a

1��

a

� 1:67
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Let k be such that k
sup 1�1

3

� k. Note that 
2k+1 > 
3k+1 � ksup 1 and therefore

we already know the optimal path for levels 
2k+1 and 
3k+1: it is path E:Let A be the

optimal path for level k. We will show that A = E: By claim 47 we know that A cannot

begin with 000: Suppose it begins with 001: Then, by time consistency, A = 001111:::but

by claim 48 E dominates A. Therefore A cannot begin with 00: Suppose it begins with

01: Then, by time consistency, A = 011111:::but by claim 49 E dominates A. Therefore A

cannot begin with 0 which means that A must begin with 1 and by time consistency we

obtain A = E: Thus we obtain the following claim

Claim 50 Let ksup 2 = ksup 1�1

3

� 1:953: If k � ksup 2 then the optimal rule is � (k) = 1

We have thus enlarged the upper interval where the optimal rule is � (k) = 1 to�
ksup 2; kmax

�
: The idea is to keep enlarging it in the same way: Consider now a level k such

that 
3k + 1 � ksup 2 (i.e. k � ksup 2�1

3

� 1; 862). We know by the previous claim that the

optimal path for levels 
2k + 1 and 
3k + 1 is E: Therefore, repeating the argument used

to obtain the previous claim we obtain

Claim 51 Let ksup 3 = ksup 2�1

3

� 1; 862: If k � ksup 3 then the optimal rule is � (k) = 1:

Consider now a level k such that 
3k + 1 � ksup 3 (i.e. k � ksup 3�1

3

� 1; 683). We

know by the previous claim that the optimal path for levels 
2k + 1 and 
3k + 1 is E: If

k � k001 we can repeat the argument but if k < k001 then path A = 001111::: dominates E:

Therefore we have found ksup:

Lemma 52 Let ksup = k001 =
(1+�)

�
c�b� a�

1��


�
a(1+�
) � 1:786: If k � ksup then � (k) = 1:
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Note that by construction V (ksup) = V (ksup;E) = V (ksup; 00111:::). Consider

now a level k such that ksup > k � k01: For such k any path beginning with 1 is dominated

by E and any path beginning by 0 is dominated by 001111::which in turn dominates E:

Therefore we have obtained

Claim 53 Let k be such that ksup > k � k01 = c�b� �a
1��

a � 1:67: Then the optimal rule is

� (k) = 0: Moreover, its optimal path is 001111:::

But now, by time consistency for any k such that 
2ksup > k > 
2k01 the optimal

path is E: Therefore

Claim 54 Let k be such that 1; 143 � 
2ksup > k � 
2k01 � 1; 067; then the optimal rule

is �(k) = 1:

This claim together with claim 45 produces

Claim 55 For every k � 
2ksup � 1; 143; the optimal rule is �(k) = 1:

Consider now a level k such that k01 > k � 1

 = 1; 25: Any path beginning with 1

is dominated (by time consistency) by E: But by claim 49 we know that 0111::: dominates

E therefore the optimal rule must be � (k) = 0 which together with claim 53 yields

Claim 56 For every k such that ksup > k � 1

 = 1; 25 the optimal rule is � (k) = 0:

Consider now k such that 1; 228 � ksup�1

2

< k < 1

 : If its optimal path begins with

1 it must be E by time consistency. If its optimal path begins with 0 then it must begin

with 01 by claim 55, but then by time consistency it must be 0111::: Since by claim 49

0111::: dominates E we conclude
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Claim 57 For every k such that ksup > k � ksup�1

2

� 1; 228; the optimal rule is � (k) = 0:

Consider now a level k such that 1; 143 � 
2ksup < k < ksup�1

2

� 1; 228 . If its

optimal path begins with 1 it must be E: If its optimal path begins with 0; it must be, by

time consistency, A = 0100111:::But

V (k;A) = c+ � [(a+ b+ e)
k � e] + �2c+ �3c+ V (
2(
2k + 1))

and we know that V (
2(
2k + 1)) = V
�

2(
2k + 1);E

�
. Solving V (k;E) � V (k;A) � 0

for k we obtain

k �
c
�
1 + �2 + �3

�
� �e�

�
1� �4

� �
b
1�� +

�a
(1��)(1��
)

�
+ a

1��
 �
4
2

a
1��


�
1� �4
4

�
� �
 (a+ b+ e)

� 1; 203

which yields kinf =
c(1+�2+�3)��e�(1��4)

�
b

1��+
�a

(1��)(1��
)

�
+ a
1��
 �

4
2

a
1��
 (1��

4
4)��
(a+b+e)
� 1; 203 and therefore

the optimal rule is characterized by

� (k) =

8>>>>>><>>>>>>:

1 if k � kinf

0 if kinf < k < ksup

1 if k � ksup

(2.21)

Proposition 58 The long-run behavior implies undertaking the activity (i.e. initial condi-

tions do not matter for the long-run behavior)

Proof. Consider k such that kinf < k < ksup and notice that the sequence of

actions 01 or 001 both lead to a state level above k: Therefore by following the optimal rule

� (k) given in (2.21) the individual eventually reaches a state level above ksup:
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2.6.2 Example 2: a = 0:4; b = 9; c = 10; e = 1; � = 0:5; 
 = 0:65

We know that kc = c�b
a = 2:5. For 
 = 0:65 we get kmax = 1

1�
 � 2:857: As in

Example 1, we start by �nding a level kinf 1 such that if k < kinf 1 then � (k) = 1:

Claim 59 For any level k < kinf 1 =
c�b��(a+b)
a+(a�c)�
 � 1:360 the optimal rule is � (k) = 1:

Proof. Exactly the same as in claim 45.

Also, by replicating the argument in claim 46, we get

Claim 60 Let ksup 1 be such that V
�
ksup 1

�
= c+�V

�
ksup 1

�
; then 8k � ksup 1 the optimal

rule is � (k) = 1:

Using (2.17) we get

ksup 1 =

�
c� b
1� �

�
1� �

a

� �

1� � � 2:375 and V
�
ksup 1

�
= 20

Now, given that 
2ksup 1 � 1:003 < kinf 1, an optimal path cannot have three consecutive

0�s. The following claim shows that no optimal path can have two consecutive 0�s.

Claim 61 There is no level k such that its optimal path has two consecutive 0�s.

Proof. Similar to claim 47.

Therefore if an optimal path begins with 0 the second action must be a 1: Notice

that since 
2ksup 1 + 1 < ksup 1 then for every k 2
�
0; ksup 1

�
we have 
2k + 1 < ksup 1: Let

A be a path beginning with 01 and suppose that k > 1

 � 1:538: Since for the third period

the state level is below ksup 1, we must have

V (k;A) < c+ � [a
k + b] + �2V
�
ksup 1

�
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and thus V (k;E)� V (k;A) � 0 holds when

V (k;E)�
�
c+ � [a
k + b] + �2V

�
ksup 1

��
� 0

which in turn is satis�ed for

k �
c+ �b+ �2V

�
ksup 1

�
� �

1��
a

1��
 �
b
1��

a
h

1
1��
 � �


i = ksup 2 � 1; 962 (2.22)

which implies that for any k � ksup 2, E dominates A and therefore we have obtained the

following claim

Claim 62 For any k � ksup 2 as given by (2.22), the optimal rule is �(k) = 1:

Repeating the above argument with ksup 2 instead of ksup 1 we can keep on enlarging

the upper interval for which the optimal rule is to undertake the activity:

Claim 63 For any k � ksup 3 where ksup 3 =
c+�b+�2V (ksup 2)� �

1��
a

1��
�
b

1��

a
h

1
1��
��


i � 1; 829; the

optimal rule is �(k) = 1:

Repeating the argument with ksup 3 instead of ksup 2 we get

Claim 64 For any k � ksup 4 where ksup 4 =
c+�b+�2V (ksup 3)� �

1��
a

1��
�
b

1��

a
h

1
1��
��


i � 1; 787; the

optimal rule is �(k) = 1

Keeping on with the iterations the process converges to the level where the value

of path E is equal to the value of path A = 010101:: Straightforward calculations show that

for k > 1

 � 1; 538

V (k;A) =
1

1� �2

�
c+ b� +

a
�3

1� �2
2

�
+ a
�k

1

1� �2
2
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But then, using (2.15) and doing some calculations V (k;E) � V (k;A) � 0 if and only if

k � ksup where

ksup =

�
1� �2
2

�
a

2664 1
1��2

�
c+ b� + a
�3

1��2
2

�
� b
1�� �

a�
(1��)(1��
)

3775 � 1:765 (2.23)

which means that A dominates E for any k 2
h
1

 ; k

sup
�
: But notice that for any such k

undertaking the activity leads to a state level above 2 and therefore to path E; thus we

have obtained the following two claims

Claim 65 For any k � ksup; the optimal rule is �(k) = 1:

Claim 66 For any k 2
h
1

 ; k

sup
�
; the optimal rule is �(k) = 0:

Moreover, notice that the optimal path for any level k 2
h
1

 ; k

sup
�
is in fact

A = 0101010::: because for any such k; following the rule �(k) = 0 leads the state level

to the interval [1; 
ksup) = [1; 
ksup) � [1; 1:148) so that next period the optimal rule is

�(k) = 1 by claim 59. But then for the third period the state level falls again in the intervalh
1

 ; k

sup
�
:

It remains to characterize the optimal rule for levels in the interval
�
kinf 1;

1



�
: So

consider any k 2
�
kinf 1;

1



�
. If its optimal path begins with a 1 then it must be (by time

consistency) path E because 
kinf 1 + 1 > ksup: If its optimal path begins with 0; then by

claim 61 it must begin with 01: But then for the third period the state level falls in the

interval
h
1

 ; k

sup
�
because 
2kinf 1+1 > 1


 and 

2 1

 +1 < k

sup: Therefore it its optimal path

begins with 0 it must be path A = 0101010::: So all we have to do is to �nd for which level

below 1

 the value of path E is equal to the value of path A: But for any k 2

�
kinf 1;

1



�
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simple calculations show that

V (k;A) =

2664 c+ � [(a+ b+ e) 
k � e] +

�2
h

1
1��2

h
c+ b� + a
�3

1��2
2

i
+ a
�

�

2k + 1

�
1

1��2
2

i
3775

and solving for V (k;A) = V (k;E) yields

kinf =
c� �e+ �2

1��2
�
c+ b� + a
�3

1��2
2

�
+ a
�3

1��2
2 �
b
1�� �

a�
(1��)(1��
)

a
1��
 � �
 (a+ b+ e)�

a
3�3

1��2
2
� 1:502

and therefore the optimal rule is characterized by

� (k) =

8>>>>>><>>>>>>:

1 if k � kinf

0 if kinf < k < kinf

1 if k � ksup

Consider levels k = 1
1�
2 � 1:732 and k = 


1�
2 � 1:126 and notice that 
k = k and


k + 1 = k: Since k < kinf < k < ksup we have �
�
k
�
= 0 and � (k) = 1 so that once the

individual reaches one of these states he keeps switching from one to another forever. In

particular this happens for any initial level k 2
�
kinf ; ksup

�
. Therefore we have the following

proposition.

Proposition 67 For any level k 2
�
kinf ; ksup

�
the optimal behavior path is 010101:::
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Chapter 3

On p-Beauty Contest Integer

Games

3.1 Introduction

The basic p-Beauty Contest Game1 (p-BCG), consists of a number N > 1 of

players, a real number 0 < p < 1, and a closed interval [l; h] with l and h integers. In such a

game, N players have to choose simultaneously real numbers from the given interval. The

mean of all chosen numbers is calculated and the winner is the person who chose the closest

number to p times the mean. The winner receives a �xed prize (in the case of many winners

the prize is equally divided among them), while the other players receive nothing.

The game was �rst introduced by Moulin (1986) as a means to illustrate an equi-

1This name was introduced by Du¤y and Nagel (1997) and Ho, Camerer, and Weighel (1998) and is due
to a famous analogy by Keynes (1936) between stock market investment and �those newspaper competitions
in which the competitors have to pick out the six prettiest faces from a hundred photographs, the prize
being awarded to the competitor whose choice most nearly corresponds to the average preferences of the
competitors as a whole�. Other authors such as Nagel (1995) have used the name �guessing game�.
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librium obtained by iterated deletion of (weakly) dominated strategies. The equilibrium

thus obtained was all players playing the lower boundary of the interval, l. Predicting such

an equilibrium as an outcome of the game relies in the assumption of rationality of all the

players (in the sense that no player is playing a weakly dominated strategy) and that all the

players know that the other players are rational and so on ad in�nitum. Starting with the

work of Nagel (1994) a variety of experiments on the p-BCG have been conducted to study

iterated dominance and learning (for a survey see Nagel(1998)). If we apply the process

of iterated best-reply to this game (rather than the iterated deletion of weakly dominated

strategies), it turns out that all players playing l is also the unique Nash equilibrium. How-

ever, if we allow the players to choose only among integer numbers2 in the given interval, this

is no longer true: although every player playing l continues to be a Nash equilibrium, there

could be more. The multiplicity of equilibria makes this game appealing to the empirical

issue of equilibrium selection.

The purpose of this chapter is �rst, to characterize the Nash Equilibria of a p-

Beauty Contest Integer Game (p-BCIG) and second to give some insights for further exper-

iments. The chapter is organized as follows: In Section 3.2 we formally de�ne a p-Beauty

Contest Integer Game and completely characterize its Nash Equilibria in pure strategies for

two cases: when the prize a winner earns is �xed and when it is increasing in the winning

number. The reason for concentrating in these two cases is simply that those are the cases

that have been treated in the experiments on p-BCG conducted so far. In Section 3.3 we

show that every experimental p-BCG can be thought of as a p-BCIG. In Section 3.4 we
2Osborne and Rubinstein (1994) pose an exercise with this restriction and p = 2=3. Some experiments

have made the integer restriction explicit (Thaler(1997)) while in other experiments players actually chose
only integer numbers though it was not a restriction in the instructions (e.g., Ho et al (1998)). Nagel (1995)
and Nagel (1998), mentions the p-BCIG, however their characterization of equilibria is incomplete.
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show that the equivalence between the iterated dominance and iterated best-reply holding

for the p-BCG may fail for the p-BCIG. Finally, Section 3.5 states the conclusions of our

�ndings.

3.2 Nash Equilibria of a p-BCIG

For a given 0 < p < 1; a given interval [l; h] and a set of players N = f1; 2; :::; Ng

with N > 1; de�ne the set of actions (or strategies) for each player i 2 N as

A = [l; h] \ Z

where Z is the set of integer numbers. Denote by xi 2 A a strategy (or action) for player

i and with S = (x1; x2; :::; xN ) a strategy pro�le. Given a strategy pro�le S de�ne �(S) as

the mean of S times p :

�(S) = p

 
1

N

NX
i=1

xi

!

The players�payo¤ functions are given by

8i 2 N , �i (S) =

8>><>>:
z > 0 if 8j 2 N , jxi � �(S)j � jxj � �(S)j

0 otherwise

De�nition 68 Given a strategy pro�le S, we say that x is a winning number if for some

i 2 N , x = xi and

8j 2 N , jxi � � (S)j � jxj � � (S)j

De�nition 69 Given a strategy pro�le S, we say that player i is a winner if xi is a winning

number



84

Proposition 70 If for strategy pro�le S, player i is not a winner then by unilaterally

deviating to some strategy pro�le S0 he can become one.

Proof. De�ne m = p

 
1
n

P
j 6=i
xj

!
and let player i deviate from S to S0 by choosing

an integer number x0i = x such that

m� 1
2

1� p
N

< x <
m+ 1

2

1� p
N

(3.1)

Note that such an integer exists since
m+ 1

2

1� p
N
� m� 1

2

1� p
N
= 1

1� p
N
> 1. But if (3.1) holds then we

must have

�1
2
< m+

px

N
� x < 1

2

which means that x is the closest integer to � (S0). Therefore player i becomes a winner

when deviating to S0.

Corollary 71 In a Nash equilibrium of a p-BCIG, every player must be a winner (thus

there can be at most two winning numbers).

Proposition 72 In a p-BCIG, if the prize of the game is �xed and equally divided among

the winners (FEDAW), then in a Nash equilibrium there is only one winning number.

Proof. If N = 2, the lowest choice is the winning number. So assume N > 2

and suppose strategy pro�le S is a Nash equilibrium with two winning numbers x and y.

Without loss of generality assume x < y. Let m be the number of players choosing x (notice

that then, by Corollary 71, the number of players choosing y must be N � m). Suppose

m > 1 and let z denote the �xed prize so that every winner is receiving z=N . Let S0 be

the strategy pro�le where one of the players choosing x unilaterally deviates by choosing y.

Then y would be closer to � (S0) than x and therefore only the players choosing y will win
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receiving z= (N �m+ 1). Since N �m + 1 < N the player deviating has incentives to do

so. Now suppose m = 1, then one of the players choosing y can improve by deviating to x.

Therefore there cannot be a Nash equilibrium with two winning numbers.

Proposition 73 In a p-BCIG, if the prize of the game is strictly positive, increasing in the

winning number and divided by the number of winners (IWND) then, in a Nash equilibrium

there is only one winning number.

Proof. If N = 2, the lowest choice is the winning number. So assume N >

2 and suppose strategy pro�le S is a Nash equilibrium with two winning numbers x and

y. Without loss of generality assume x < y. Let z(x) and z(y) be the prize for players

choosing x and players choosing y respectively. By assumption we must have z(x) < z(y).

Also, by Corollary 71, the number of winners is N , thus, a player choosing x is receiving

z(x)=N and a player choosing y is receiving z(y)=N . Consider a player choosing x: if he

unilaterally deviates to strategy pro�le S0 by choosing y, then y would be closer to � (S0)

than x. Therefore the winning number would be y and the player deviating would get no

less than z(y)=N which is greater than z(x)=N . Since a player choosing x has incentives to

deviate we conclude that there cannot be a Nash equilibrium with two winning numbers.

Now consider a strategy pro�le S where each player plays the same integer number

x. We have the following results:

Proposition 74 8p 2 (0; 1), no player has incentives to deviate from S by playing an

integer number y > x.

Proof. Trivial.
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Proposition 75 8p 2 (0; 1), if a player has incentives to deviate from S by playing an

integer number y < x then he has also incentives to deviate from S by playing x� 1.

Proof. Let y = x � k for some integer k � 1 . Let S0 be the strategy pro�le

where one player deviates from S by playing y: Since by assumption the player deviating

has incentives to do so it must be true that

p
x (N � 1) + x� k

N
� (x� k) < x� px (N � 1) + x� k

N
(3.2)

where the LHS is the distance to � (S0) for the player deviating and the RHS is the distance

to � (S0) for the players not deviating. Rearranging (3.2) yields

2x (p� 1) + k
�
1� 2p

N

�
< 0 (3.3)

Since 1 > 2p
N , then if (3.3) holds for some k � 1 it also holds for k = 1. Therefore a player

has incentives to deviate by playing x� 1:

Let F (p; x) = 2x(p� 1) +
�
1� 2p

N

�
.

Proposition 76 In a p-BCIG, a strategy pro�le S where every player plays the same integer

x is a Nash equilibrium if and only if F (p; x) � 0 or x = l:

Proof. Suppose S is a Nash equilibrium. Then a player has no incentives to

deviate by playing x� 1, or, if he has them, he cannot do so (because x� 1 < l), therefore,

either F (p; x) � 0 or x = l. Now suppose F (p; x) � 0 or x = l. If x = l then, by Proposition

74 S is a Nash equilibrium. If F (p; x) � 0 then a player has no incentives to deviate from

S by playing x � 1 (since F (p; x) is just the LHS of (3.3) with k = 1). Therefore, by

Proposition 75, a player has no incentives to deviate from S by playing a lower integer than
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x, but by Proposition 74 a player has no incentives to deviate by playing a higher number

than x. Therefore S is a Nash equilibrium.

Remark 77 Notice that a player unilaterally deviating from S by playing x� 1, remains a

winner when F (p; x) = 0 but does not when F (p; x) > 0.

Proposition 78 For N = 2, all players playing l is the unique Nash equilibrium.

Proof. When N = 2, F (p; x) = (1� p) (1� 2x) > 0 only for the integer x = 0.

Thus both players playing l is the unique Nash equilibrium.

Proposition 78 completely characterizes the Nash Equilibria for the case N = 2

and Proposition 74 implies that every player playing l is always a Nash Equilibrium. We

will now focus on the case where N > 2 and where the strategy pro�le is S = (x; x; :::; x); i.e.

every player is playing the same integer number x > l. Let P (x) be such that F (P (x); x) = 0

. Solving for P (x) yields

P (x) =
2x� 1
2x� 2

N

(3.4)

where clearly 0 < P (x) < 1 for N > 2 and x > l � 0.

Now notice that @F (p;x)@p = 2x� 2
N > 0 for N > 2 and x > l � 0. Since F is strictly

increasing in p we have that

F (p; x) � 0 if 1 > p � P (x)

F (p; x) < 0 if P (x) > p > 0

Corollary 79 For every x integer belonging to (l; h], if p � P (x) then S = (x; x; :::; x) is a

Nash equilibrium.

Proof. If p � P (x) then F (p; x) � 0 and by Proposition 76 S is a Nash equilib-

rium.
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Now notice that P (x) is strictly increasing in x because for N > 2

@P (x)

@x
=

2� 4
N�

2x� 2
N

�2 > 0
Corollary 80 8p 2 (0; 1), if S = (x; x; :::; x) is a NE then for y integer such that l < y < x,

strategy pro�le S0 = (y; y; :::; y) is also a NE.

Proof. Take any y satisfying l < y < x. Since S is a NE we must have p � P (x).

Since P (x) is increasing in x, we have p � P (y) and then S0 is a NE by Corollary 79.

Notice that for a particular p-BCIG, Corollaries 79 and 80 completely characterize

those NE where there is a unique winning number: to see this, we just need to solve for x

the inequalities p � 2x�1
2x� 2

N

and x > l which yield

l < x <
1� 2p

N

2 (1� p) (3.5)

Let B (p;N) =
1� 2p

N
2(1�p) . Since by Proposition 74 we know that every player playing l is a

NE, we have obtained the following

Proposition 81 In a p-BCIG, a strategy pro�le S is a NE with only one winning number

if and only if

1. In S every player plays the same integer x in the interval [l; h]; and

2. B (p;N) � x or x = l.

Propositions 72, 73 and 81 imply our �rst important result which we state as a

theorem:

Theorem 82 In a p-BCIG, if the prize is either FEDAW or IWND then a strategy pro�le

S is a NE if and only if
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1. In S every player plays the same integer x in the interval [l; h]; and

2. B (p;N) � x or x = l.

Notice from B (p;N) that as p goes to 1 then any integer in the interval is a NE3.

Notice also that in the case of multiple equilibria, if the prize is IWND, the higher integer

x in the interval satisfying B (p;N) � x is Pareto dominant.

Remark 83 Mixed Equilibria. In the p-BCG the unique NE in pure strategies is all players

playing the lower bound l and it turns out that this is also the unique mixed equilibrium of

the game. Is the set of mixed equilibria equal to the set of pure strategies equilibria in any

p-BCIG? The following example shows that the answer is no: consider the FEDAW p-BCIG

(N; p; l; h) =
�
3; 56 ; 0; 100

�
:Since B

�
5
6 ; 3
�
= 4

3 we know by Theorem 82 that the pure strategy

NE are 0 and 1. It is easy to check that every player playing 0 and 1 each with probability

0:5 is a mixed NE.

Remark 84 The p-Beauty Contest Decimal Game: Consider now a p-BCG in the interval

[l; h] where players are allowed to choose among decimal numbers up to D decimal positions.

Let�s call this game a p-BCDG. It is easy to see that this game is equivalent to the p-BCIG

in the interval [l (D) ; h (D)] where l (D) = l � 10D and h (D) = h � 10D. The equivalence

relation is given by S , SD = S � 10D where S is a strategy in the p-BCDG and SD is a

strategy in the p-BCIG.
3If the interval is [0; 100], as it has been for most of the experiments on p-BCG, the following are very

easy to prove:

1. For p � 3
4
, the p-BCIG has multiple equilibria.

2. For p � 1
2
, the p-BCIG has a unique NE.

3. For 1
2
< p < 3

4
, the p-BCIG has multiple equilibria provided the number of players is su¢ ciently

large.
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3.3 Experimental Implications

The p-BCG has been widely used to test iterated dominance and learning. In most

of the experiments it has been assumed that the game has a unique NE but, in fact, any

experimental p-BCG can be thought of as a p-BCIG: the reason for this is that in calculating

� (S) for any strategy pro�le S one must use a decimal approximation which implies that we

are facing a p-BCDG which in turn (see Remark 84) is equivalent to a p-BCIG. Therefore,

all of the results obtained in Section 3.2 also apply to an experimental p-BCG (E-p-BCG)

through its equivalent p-BCIG.

It is easy to see that the exact number of equilibria of a E-p-BCG de�ned in the

interval [l; h] is given by

E (N; p; l; h) = max fmin fh; bB(p;N)cg � l; 0g+ 1

In the following table we show some E-p-BCG for which we have calculated the number of

equilibria E (N; p; l; h) in column E.

Authors N p [l; h] Choice Prize B(p;N) E

Ho et
al. (1998)

7
7
3
3

0:7
0:9
0:7
0:9

[0; 100] reals

$3:50
$3:50
$1:50
$1:50

1:33
3:71
0:89
2:00

2
4
1
3

Nagel (1995)
12
17

2=3
2=3

[0; 100] reals
$x

winning
number

1:33
1:38

2
2

Bosch and
Nagel (1997)

3696 2=3 [1; 100] decim $100:000 1:5 1

Thaler (1997) 1460 2=3 [0; 100] integ
2 NY
Tickets

1:5 2

Nagel and
Selten (1998)

2728 2=3 [0; 100] decim 1000 DM 1:5 2

In order to know the NE of a particular E-p-BCG we just need to know the decimal
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approximation used in the calculations. As an example, for Nagel (1995) the approximation

in the calculations used was of one decimal, this means that the NE for that game were 0

and 0:14

Now, the aim of all these experiments was to �nd out whether the players tend to

equilibrium or not and, if doing so, establishing the way they did. The last three studies

were one-shot games. However, in the �rst three, the game was repeated a number of times

to study whether the players �learned�to play an equilibrium or not. Since in all of them a

decimal approximation was made, the natural question is: which are the equilibria players

learned to play?

3.4 Theoretical Predictions for the p-BCIG

Predicting the outcome of a game constitutes one of the main issues of game theory.

On simultaneous-move games the concepts of strict dominance and rationalizable strategies

(see Fudenberg and Tirole (1991) or Mas-Colell, Whinston and Green (1995)) are useful

to restrict the set of possible outcomes relying solely in the assumption of rationality: a

rational player should never play a strictly dominated strategy nor a strategy that is never

a best-response. Therefore, the iterated deletion of these strategies is justi�ed. It is easy

to see that in the p-BCG there are no strictly dominated strategies which implies that

every strategy might be a best-response. Therefore, the concepts of strict dominance or

rationalizable strategies are of no use for narrowing down the set of possible outcomes of

this game. The most used reasoning processes to re�ne the theoretical predictions of this

4For this same example if the aproximation were of D decimal positions the equilibria would be 0 and
10�D:
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game have been the iterated deletion of weakly dominated strategies (IDWDS), and the

iterated best-reply5 (IBR). In the �rst one, it is assumed that players iteratively eliminate

weakly dominated strategies, the process ending when no player has a weakly dominated

strategy left. In the second one, players act à la Cournot: starting from a hypothetical

strategy pro�le they iteratively best-reply to the previous pro�le, the process ending when

a �xed-point is reached.

It is easy to see that for the p-BCG, both processes lead to the unique prediction of

all players playing l (which is actually the unique NE), independently of the order of deletion

and the initial strategy pro�le for the IDWDS and the IBR respectively. However, the

situation changes dramatically in the p-BCIG: we will show that under very mild conditions

the IDWDS will not lead to a single prediction, while depending on the initial strategy

pro�le, the IBR process will lead to one. Therefore, the equivalence between the IDWDS

and the IBR processes that we had in the case of a unique NE fails under multiple equilibria.

This is worth noticing since the experimental results show that individuals use rather IBR

than IDWDS (see e.g., Nagel (1995), Stahl (1996), Ho et al.(1998)).

Proposition 85 Consider a p-BCIG where k 2 (l; h] is its highest NE. Let

S (t) = (s1 (t) ; s2 (t) ; :::; sN (t))

be the strategy pro�le at iteration t in a IBR process, with S (0) being the initial strategy

pro�le. If 8i, si (0) � k then the IBR process leads to the unique prediction of all players

playing k:

5We will focus here only in the simplest IBR procedure which takes into account only the immediately
previous period�s outcome. This procedure was �rst introduced by Cournot (1838). For more sophisticated
IBR procedures, see Ho, et al. (1998).
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Proof. Since si (0) � k for all i, then � (S (0)) is closer to k than to k � 1.

Therefore, in the next iteration we have si (1) � k for all i, and so on: 8t � 1, si (t) � k.

Suppose that at some iteration t there are some players choosing higher integers than k. Let

h(t) be the highest of those integers. We claim that si (t+ 1) < h(t) for all i: � (S(t)) �

p � h(t) and p � h(t) is closer to h(t)� 1 than to h(t) so a best-reply at time t+1 must be a

lower number than h(t). Therefore the IBR process leads to every player choosing k.

Proposition 86 Let k be an integer such that in the p-BCIG all players playing k consti-

tutes a strict6 NE. Then no player can eliminate k by IDWDS.

Proof. Suppose that at some iteration t player i is the �rst to eliminate k. Let

Si(t) denote the set of all possible strategies for player i at iteration t. Then it must be true

that some strategy s0 6= k and s0 2 Si(t) weakly dominates k for player i at iteration t. But

then, by de�nition of weak domination we must have

8s�i 2 S�i (t) ; Ui
�
s0; s�i

�
� Ui (k; s�i)

with strict inequality for at least one s�i (where s�i denotes a strategy pro�le for all players

except i and S�i (t) is the set of possible strategy pro�les, at iteration t, for all players except

i). Let k�i be the strategy pro�le where all players but i play k. Since by assumption at

iteration t no player except i has eliminated k, we have k�i 2 S�i (t). But by strictness

of the NE Ui (s0; k�i) < Ui (k; k�i) so that s0 does not weakly dominate k for player i at

iteration t. Therefore no player can eliminate k by IDWDS.

Proposition 87 In a IWND p-BCIG every NE is strict.

6Following Harsanyi (1973), we say that a NE is strict if each player has a unique best-reply to his rival�s
strategies.
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Proof. Consider any strategy pro�le S constituting a NE. By Theorem 82 we know

that S must be of the form where all players play the same integer k . Since the game is

IWND we know that the payo¤ for player i if not deviating must be Ui (k; k�i) = z (k) =N >

0. Clearly, if deviating to k0 > k player i obtains 0. If deviating to k0 < k player i obtains

at most z(k0)=N < z(k)=N . Therefore the unique best reply to k�i is k.

Proposition 88 In a FEDAW p-BCIG with M � 2 equilibria, a NE where all players play

the same integer k is strict if and only if k < B(p;N).

Proof. Immediate by Remark 77 and the fact that F (p; k) > 0.

Notice that by Proposition 88 and Theorem 82 the only way to have a not strict

NE where all players play k in a multiple equilibria FEDAW p-BCIG is if k = B(p;N).

Therefore an immediate implication of Proposition 88 is that if there are M � 2 equilibria

at least M � 1 are strict. Therefore, the Propositions of this section imply our second

important result:

Theorem 89 In a multiple Nash-Equilibria p-BCIG

1. The IBR process will lead to the highest NE when starting with a high initial strategy

pro�le.

2. The IDWDS process does not lead to a unique prediction if any of the following holds

(a) The game is IWND.

(b) The game is FEDAW and at the highest NE every player plays an integer k

satisfying k < B(p;N).

(c) The game is FEDAW and there are at least 3 NE.
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3.5 Conclusions

In this chapter we have completely characterized the NE of a p-BCIG and we have

obtained the following interesting results: First, we showed that in the p-BCIG the number

of equilibria depends on all the parameters of the game (N; p; l; h) while for the p-BCG the

unique NE is all players playing l. Second, we also showed that any experimental p-BCG

is in fact a p-BCIG because of the approximation needed to do the calculations. Third, we

proved that under very soft conditions the iterated deletion of weakly dominated strategies

(IDWDS) does not lead to a unique prediction of the game while the iterated best reply

(IBR) might do. This is worth noticing since experimental results show that subjects use

IBR rather than IDWDS.

Because of the equilibrium multiplicity that may arise in the p-BCIG it might be

interesting to do further experiments with explicit integer restrictions in order to get more

insight in the issue of equilibrium selection.

Finally, with the explicit introduction of the p-BCIG and the characterization of

its equilibria we have closed the gap between the coordination game (i.e. a p-BCG with

p = 1) where any number can be an equilibrium and the p-BCG where only one equilibrium

exists.
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