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Introduction
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1 Dualities in Physics

One of the most fundamental ingredients in modern theoretical physics, and in string

theory in particular, is the notion of duality, the exact equivalence between two systems

or theories with different descriptions but with the same underlying physics.

The very first discovery of an exact duality in Physics probably dates back to Paul

Dirac’s crucial observation that Maxwell’s equations are invariant under the exchange of

the electric and magnetic fields and sources if one is imaginative enough to introduce

the concept of magnetic monopole. Even more important, he showed that quantum

mechanics does not really preclude the existence of isolated magnetic monopoles but in

order to produce a consistent theory at the quantum level we need to require the electric

and magnetic charges to satisfy Dirac’s quantization condition [1] (in natural units)

qeqm = 2πn ; n ∈ Z (1.1)

Turning the argument around, the existence of a magnetic monopole implies quantization

of electric charge. This very first example already shows beautifully the potential

predictive power of dualities.

At the same time, equation (1.1) can also be regarded as a prototypical example of a

weak/strong duality or, in a more modern language, an S-duality.

In general, under an S-duality a theory with coupling constant g is mapped to a possibly

very different theory with coupling constant 1/g. It is hard to overestimate the importance

of having such a symmetry, since then one might be able to extract information about

strongly coupled non-perturbative aspects of one theory by studying the perturbative

weak coupling expansion of its S-dual and vice versa.

Entering now the realm of string theory we find, apart from the above described

S-duality, new duality transformations such as T-duality and its natural extension,

mirror symmetry, which are particular of string theory and, contrary to what happens

with S-duality, have no realizations in quantum field theory. Moreover, much more

dramatically than what happened in field theory, string dualities play a crucial role in

the understanding of the theory.

After the First Superstring Revolution physicists realized that there seemed to be five

distinct superstring theories: type I, types IIA and IIB, and heterotic SO(32) and

E8×E8. Later, with the discovery of all these string dualities the paradigm shifted and

in 1995 the Second Superstring Revolution finished with the certainty that there is indeed

a unique string theory and all five string theories, plus the recently discovered M-theory,
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are connected through an intricate net of dualities and each one of the previous theories

should now better be seen as the appropriate description for a given region of the space

of parameters of the Theory.

It came up that one of the crucial ingredients in the development of this final picture

was the discovery of D-branes, extended objects which admit a dual interpretation as

non-perturbative solitonic solutions of supergravity and as hypersurfaces in flat space

where open fundamental strings can end. Precisely due to this dual interpretation, D-

branes have also been essential in the construction of dualities between non-gravitational

field theories and string theories, which include gravity in a natural manner. These are

known as gauge/gravity or gauge/string dualities and, in turn, can be seen as particular

examples of an open/closed string duality.

Finally we arrive at which will be the subject of this dissertation, the AdS/CFT

correspondence discovered by Juan Maldacena in 1997 [2]. The original conjecture states

that maximally supersymmetric N = 4 super Yang-Mills theory in four dimensions,

which is a conformal field theory, is exactly equivalent to type IIB superstring theory

living on a particular ten-dimensional space, AdS5×S5.

This is one of the most notable and fruitful examples of a gauge/string duality and one

of the major breakthroughs in string theory in the last decades. At the same time it is

the first explicit realization of the Holographic Principle: the idea that string theory,

which is a theory of quantum gravity, has a dual description as a quantum field theory

living on the boundary of the background space.

At a practical level, the AdS/CFT correspondence represents a powerful tool to explore

regions of the moduli space of gauge theories which are not directly accessible by ordinary

field theoretical techniques such as the perturbative expansion in small parameters.

The remaining chapters of this introductory section will be devoted to introduce in

more detail this correspondence as well as many of the specific ingredients and techniques

that I have been using during my PhD.
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2 Strings and branes

This thesis is devoted to the study of the AdS/CFT correspondence by means of extended

probes. Thus, in this section we provide a very brief review of the building blocks of

string theory, namely fundamental strings and D-branes, up to the point of being able to

discuss the essential features of type IIB superstring theory necessary for deriving and

working with the correspondence.

2.1 Fundamental Strings

Let us start with the simplest object, the bosonic string. Although fundamentally

incomplete, it is important as many of its features still play a role in superstring theory

and, as a matter of fact, it will prove to be enough for most of the computations involved

in this dissertation.

The dynamics of the bosonic string are described by the Nambu-Goto action

SNG = − 1

2πα′

∫
d2σ
√
− det(Gµν∂aXµ∂bXν) (1.2)

which is simply the proper area of the worldsheet. Here, Gµν is the target metric and Xµ

describes the embedding of the string. Alternatively, we can introduce an independent

metric γab on the worldsheet and work with the Brink-Di Vecchia-Howe action (often

referred to in the literature as the Polyakov action)

SP = − 1

4πα′

∫
d2σ
√−γγabGµν∂aX

µ∂bX
ν (1.3)

Both actions are classically equivalent (i.e. when the equations of motions for γab are

satisfied), but the Polyakov action is more desirable than the Nambu-Goto action since

the lack of the square-root allows for quantization more easily and furthermore it exhibits

a very important symmetry not present in the first one. Both actions show manifest

spacetime Poincaré and worldsheet diffeomorphim invariance but only the second one

exhibits worldsheet Weyl invariance.

Quantization of the bosonic string is a fascinating topic, although very technical.

Since this thesis is centered mainly in the study of semiclassical strings and branes in

supergravity backgrounds, I will prefer not to cover this topic. However, the interested

reader is referred to any of the very good books and reviews [3–7].
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For future reference, and without entering into too many details, I may outline:

• Quantization of the bosonic string gives a critical dimension of D = 26 and a ground

state of negative mass-squared, i.e. a tachyon.

• There is an ingenious way to get rid of this tachyon by adding fermionic modes

on the worldsheet and imposing supersymmetry, hence the name “superstring”.

Applying now the quantization procedure one finds that the critical dimension of

the superstring is D = 10 and there is no tachyon in the spectrum. The resulting

target space picture also exhibits supersymmetry.

• For the case of the closed superstring, fermionic modes can satisfy either periodic

boundary conditions (Ramond sector R) or anti-periodic boundary conditions

(Neveu-Schwarz sector NS). Boundary conditions for right-moving and left-moving

modes can be chosen independently, which gives a total of four possiblities:

target-space bosons (R,R), (NS,NS) and target-space fermions (R,NS), (NS,R).

• Massless bosonic fields include the graviton Gµν , the NSNS Kalb-Ramond 2-form

Bµν , the dilaton Φ and several RR p-form fields. The exact form of these extra

bosonic fields depends on exactly what superstring theory we consider.

• The massless, tree-level approximations of string theories (that is, their low-energy,

gs→ 0 limit) become supergravity theories.

As a final remark, fundamental strings can couple to the antisymmetric Kalb-Ramond

field Bµν through the term

−
∫
dτdσ∂τX

µ∂σX
νBµν , (1.4)

but they are neutral with respect to the RR fields.

2.2 Branes in Supergravity and Superstring Theory

As we have seen, superstring theory has two kinds of bosonic gauge fields, from the NSNS

and RR sectors of the string Hilbert space, that are quite different in perturbation theory.

Some string states carry a worldsheet charge under the NSNS space-time gauge symmetry

but, on the other hand, they are all neutral under the RR symmetries. Nevertheless,

various dualities interchange NSNS and RR states so string duality requires that states

carrying the various RR charges should exist. In a first attempt it was suggested that



Introduction 7

these objects should be black p-branes, soliton-like classical solutions of supergravity

that can be seen as extended versions of charged black holes. In 1995 Polchinski showed

that there is a seemingly different class of objects which carry the RR charges, the

D(irichlet)-branes [8].

A Dirichlet p-brane (or Dp-brane) is a p + 1 dimensional hyperplane in a higher

D-dimensional space-time where open strings are allowed to end. For the end-points of

such strings the p+ 1 longitudinal coordinates satisfy the conventional free (Neumann)

boundary conditions, while the D − p − 1 coordinates transverse to the Dp-brane

worldvolume have fixed (Dirichlet) boundary conditions (and hence the name),

na∂aX
µ = 0 , µ = 0, ..., p

Xµ = 0 , µ = p+ 1, ..., D − 1 (1.5)

Polchinski realized that the simplest Dp-brane is a BPS saturated dynamical object

which preserves 1/2 of the bulk supersymmetries and carries an elementary unit of charge

with respect to the p+ 1 form gauge potential from the RR sector, which is the same

kind of charge that carries a black p-brane solution of supergravity. One is then led to

think of D-branes as an alternative representation of black p-branes or, better speaking,

as objects that give their full string theoretical description. We have, in some sense, two

different descriptions of the same object.

But this is not the end of the story. Another fascinating feature of D-branes is that they

naturally realize gauge theories on their worldvolumes. The massless spectrum of open

strings living in a (single) Dp-brane is that of a maximally supersymmetric U(1) gauge

theory in p+ 1 dimensions. The 9− p massless scalar fields present in this supermultiplet

are the expected Goldstone modes associated with the transverse fluctuations of the

Dp-brane, while the photons and fermions may be thought of as providing the unique

supersymmetric completion. It can be argued that the low-energy dynamics of a single

Dp-brane in a given background is well described by the Dirac-Born-Infeld-Wess-Zumino

effective action. In the string frame this action reads as follows

SDp = SDBI + SWZ

SDBI = −TDp
∫
M dp+1ξ e−φ

√
−|gij + Fij| SWZ = TDp

∫
M dp+1ξ eF ∧ P [C] (1.6)

where gij = Gµν∂iX
µ∂jX

ν is the induced metric on the worldvolume of the brane (i.e.

the pullback of the target space metric) and Fij = 2πα′Fij +Bij, being Fij the 2-form
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abelian field-strength inherent in the brane and Bij the pull-back to the worldvolume of

the NSNS antisymmetric tensor field. Finally, φ is the dilaton field, C =
⊕

nC
(n) is the

collection of all the RR n-form gauge potentials of the target space and M stands for

the D-brane worldvolume.

If we consider now a stack of N coincident D-branes instead of one, we have to

associate N degrees of freedom with each of the end-points of the strings in order to

specify between which two branes a given string is hanging. This extra labels are the

so-called Chan-Paton indices. For the case of oriented open strings, the two ends are

distinguished, and so it makes sense to associate the fundamental representation N with

one end and the antifundamental representation N̄ with the other one. In this way one

associates N2 degrees of freedom to each open string that begins and ends on any of the

branes so one naturally describes the gauge group U(N). Indeed, at low energies, we

find the maximally supersymmetric U(N) gauge theory in this setting.

For unoriented strings, such as type I superstrings or after orientifolding type II, the two

ends are indistinguishable and the representations associated with the two ends have

to be the same. This forces the symmetry group to be one with a real fundamental

representation, specifically an orthogonal or symplectic group.

Both descriptions of a D-brane, as a black brane or as a boundary condition in

string perturbation theory, are appropriate at different (complementary) regimes. When

there are N D-branes on top of each other, the effective loop expansion parameter for

the open strings is gsN rather than gs so the D-brane description is good only when

gsN << 1. On the other hand, a description in terms of a black brane of charge N under

the RR fields is appropriate only when the supergravity approximation is valid, and it

can be proved that this happens in the regime 1 << gsN < N . As explained in the

following subsection, various comparisons of the two descriptions led to the discovery of

the AdS/CFT correspondence.
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3 The AdS/CFT correspondence

It has been known for a long time that gauge theories and string theories should be

related in some way. After all, string theory was born precisely as an attempt to model

the strong interaction.

This old idea was first observed by ’t Hooft in his seminal paper of 1974 [9], where he

showed that the perturbative expansion of any gauge theory with gauge group U(N)

can be rewritten in terms of an expansion of double-line Feynman diagrams in a way

that is totally reminiscent of the string theory double expansion, with the gauge theory

Feynman diagrams seen as string worldsheets. Most notably, if we denote by gs the

coupling constant of the gauge theory, we can write the free energy as

F (gs, N) = logZ =
∞∑

g=0

∞∑

h=1

Fg,hg
2g−2+h
s Nh (1.7)

The above sum is over double-line diagrams with the topology of an open Riemann

surface Σg,h of genus g with h holes, and Fg,h can be computed in terms of the Feynman

rules associated to the diagram. On the other hand, one could read (1.7) as an open

string amplitude in which we sum over all possible topologies of the worldsheet Σg,h. The

coupling gs should be interpreted now as the string coupling constant, which weights

the contribution of a particular topology by a factor of g−χs , with χ = 2− 2g − h being

the Euler characteristic of the worldsheet. Analogously, the factors N can be seen as

Chan-Paton factors associated to the boundary of the open string. From this new point

of view the quantities Fg,h would be interpreted as open string amplitudes on Σg,h.

This can in turn be re-summed by introducing the so-called ’t Hooft coupling λ = gsN

F (gs, N) =
∞∑

g=0

∞∑

h=1

Fg,hg
2g−2
s λh, (1.8)

in such a way that (1.8) now resembles completely the double expansion of a closed string

theory amplitude, gs playing now the role of a closed string coupling constant.

Obviously, the key question is now the following: Is it possible to make this statement

more precise? In other words, given a certain U(N) gauge theory, is it possible to find

its particular dual open/closed string theory?

To answer such a question turned out to be an extremely difficult task and, as of today,

there are only very few examples where this identification has been carried out in detail.
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The first explicit realization of ’t Hooft’s idea had to wait until 1997, when Maldacena

proposed the original conjecture of the AdS/CFT correspondence.

Now, before motivating and discussing the conjecture in more detail, we present next

the most relevant features of the main two ingredients of the AdS/CFT correspondence,

namely N = 4 super Yang-Mills theory and the Anti-de Sitter space (AdS).

3.1 N = 4 super Yang-Mills

SU(N) N = 4 super Yang-Mills (SYM) theory in four dimensions has only one multiplet,

an N = 4 gauge multiplet, composed by a gauge field Aµ (with Lorentz index µ =

0, · · · , 3), four Weyl fermions ψAα (with A = 1, · · · , 4 and spinor index α = 1, 2), and six

real scalars ΦI (I = 1 · · · , 6). All the fields transform in the adjoint representation of the

gauge group SU(N). There is also a global SU(4) ∼= SO(6) R-symmetry under which

the gauge field is a singlet, while the fermions and scalars transform respectively in the 4

and 6 representations.

Its action reads (in Euclidean signature)

S =
1

g2
YM

∫
d4xTr

( 1

2
FµνF

µν +
g2
YMθ

8π2
FµνF̃

µν + DµΦIDµΦI + iΨ̄ΓµDµΨ −

− 1

2
[ΦI ,ΦJ ][ΦI ,ΦJ ] + iΨ̄ΓI [ΦI ,Ψ]

)
, (1.9)

where gYM is the Yang-Mills coupling constant, we have expressed the four Weyl fermions

in terms of a ten-dimensional single Majorana-Weyl spinor Ψ, Γµ and ΓI are ten-

dimensional 16× 16 Dirac matrices and we have allowed the possibility of a non-vanishing

θ angle, which can be relevant for non-trivial instantonic backgrounds.

This action is manifestly scale invariant since gYM is dimensionless and all terms in the

Lagrangian have dimension 4. It is actually also conformal invariant, i.e. it is invariant

under the whole four-dimensional conformal group SO(4, 2) ∼= SU(2, 2) formed by

Poincaré transformations Pµ, Mµν , dilatations D and special conformal transformations

Kµ. Combined with the 16 Poincaré supercharges QA
α and Q̄Aα̇ they form the larger

superconformal group SU(2, 2|4). This supergroup has, in addition to the 16 Poincaré

supercharges, also 16 superconformal charges SAα and S̄Aα̇ stemming from the fact that

the Poincaré supersymmetries and the special conformal transformations do not commute.

The doubling of the number of supercharges is a very characteristic feature of conformal

field theories.
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Another crucial particularity of N = 4 SYM is that the superconformal invariance

persists also at the quantum level and the theory is then UV complete. As a consequence

the coupling constant gYM is actually a non-running parameter with vanishing beta

function which can be fixed to the desired value. N = 4 SYM is thus trivial in the

sense that it is so constrained by its symmetries that its Lagrangian (when a Lagrangian

description is possible) and matter content are completely fixed and the only freedom is

the choice of the gauge group and the value of the coupling.

3.2 Anti-de Sitter space

The n-dimensional anti-de Sitter space AdSn is the maximally symmetric Lorentzian

manifold with constant negative scalar curvature (R < 0). It is the Lorentzian analogue

of n-dimensional hyperbolic space, just as Minkowski space and de Sitter space are the

Lorentzian analogues of the Euclidean flat space and sphere, respectively. From the point

of view of general relativity, anti-de Sitter space is the maximally symmetric vacuum

solution of Einstein’s field equations with a negative (attractive) cosmological constant Λ

included.

In order to develop a geometric intuition it is useful to imagine anti-de Sitter space as

a manifold embedded in a higher dimensional space. In fact, AdSd+1 can be represented

as a Lorentzian hyperboloid of radius R

X2
0 +X2

d+1 −
d∑

i=1

X2
i = R2 (1.10)

embedded in flat (d+ 2)-dimensional space R2,d with metric

ds2 = −dX2
0 − dX2

d+1 +
d∑

i=1

dX2
i (1.11)

By construction, the induced metric on AdSd+1 manifestly preserves the symmetry of the

ambient flat space (i.e the embedding is isometric), so it has isometry group SO(d, 2).

Equation (1.10) can be solved by setting

X0 = R cosh ρ cos τ ; Xd+1 = R cosh ρ sin τ

Xi = R sinh ρ Ωi (i = 1, ..., d ;
∑

i

Ω2
i = 1) (1.12)
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and substituting this into (1.11), we obtain the following metric of AdSd+1:

ds2 = R2(− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2
d−1) (1.13)

If we take 0 ≤ ρ and 0 ≤ τ ≤ 2π this solution covers the entire hyperboloid once.

Therefore, (τ, ρ,Ωi) are called global coordinates.

In addition to this global parametrization of AdS, there is another set of coordinates

(u, t, ~x) which will be also very useful in the context of the AdS/CFT correspondence. It

is defined by

X0 =
1

2u
(1 + u2(R2 + ~x2 − t2)) ; Xd+1 = Rut

Xi = Ruxi (i = 1, ..., d− 1) ; Xd =
1

2u
(1− u2(R2 − ~x2 + t2)) (1.14)

By taking 0 ≤ u, t and ~x ∈ Rd−1 these coordinates cover one half of the hyperboloid.

Substituting (1.14) into (1.11) we obtain another form of the AdSd+1 metric

ds2 = R2

(
du2

u2
+ u2(−dt2 + d~x2)

)
. (1.15)

These coordinates are called Poincaré coordinates. In doing calculations it is very usual

to work with a variation of the AdS metric in Poincaré coordinates, obtained from the

one above by setting u = 1/z, giving

ds2 =
R2

z2

(
dz2 − dt2 + d~x2

)
. (1.16)

Using these coordinates the conformal boundary at spatial infinity is placed at z = 0.

As a final remark, the Penrose diagram of AdS5 is best understood from the metric in

global coordinates by taking out a Weyl factor of cosh2 ρ and defining dx = dρ/ cosh ρ.

This way one obtains a solid cylinder with boundary given by S3×R, where R is the

global time direction. Poincaré coordinates cover only a triangular slice of the cylinder.

3.3 The statement of the correspondence

Using the above explained identification between D-branes and black branes, it can be

shown that the large N limit of certain CFT’s in various dimensions include in their

Hilbert space a sector describing supergravity on the product of AdS space-times, spheres

and other compact manifolds. For both a pedagogical and an extension reason I will
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focus my attention to the first and best understood example, the duality between type

IIB string theory compactified on AdS5×S5 and N = 4 super-Yang-Mills theory.

D-brane picture

We start with type IIB string theory in flat, ten dimensional Minkowski space-time.

Let us consider N parallel D3 branes sitting together or very close to each other. String

theory on this background contains two kinds of perturbative excitations, closed strings

(excitations of empty space) and open strings which, as explained in the previous section,

end on the D-branes and describe their excitations. If we consider this system at low

energies, energies lower than the string scale 1/ls, then only the massless string states

can be excited and we deal with an effective theory that involves only the massless fields

but takes into account the effects of integrating out the massive fields. The low-energy

effective Lagrangian of closed string massless states is that of type IIB supergravity

while the low-energy effective Lagrangian for the open string massless states is that of

four-dimensional N = 4 U(N) SYM. The complete effective action will have the form

S = Sbulk + Sbrane + Sint

where Sbulk is the action of d = 10 supergravity in the bulk, Sbrane is the brane action

defined on the (3 + 1) dimensional worldvolume of the coincident D3-branes and, finally,

Sint describes the interactions between the brane modes and the bulk modes.

free type IIB SUGRA

N D3-branes

If we take the low energy limit (sending ls→ 0 while keeping the energy and all

the dimensionless parameters fixed) the coupling goes to zero so that the interaction

Lagrangian vanishes, leaving just the pure N = 4 U(N) SYM theory in 3 + 1 dimensions
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and free supergravity in the bulk. In the low energy limit we have, then, two decoupled

systems, free gravity in the bulk and the four dimensional gauge theory.

Black brane picture

Let us consider now the same system from a different point of view. As we saw in

the previous section, D-branes give the full string theoretical description of extremal

p-branes so they can also be seen as massive charged objects which act as sources for the

various supergravity fields. In fact, we can find a D3-brane solution of supergravity for

which the metric takes the form

ds2 = f−1/2(−dt2 + dx2
1 + dx2

2 + dx2
3) + f 1/2(dr2 + dΩ2

5)

f(r) = 1 +
R4

r4
, R4 ≡ 4πgsα

′2N (1.17)

As it happens for the well-known case of the Schwarzschild black hole, since the gtt

component of the metric is a non-constant function of r, the energy Er of an object

measured by an observer at a constant position r and the energy E∞ measured by an

observer at the spatial infinity are related by a redshift factor in the following way

E∞ = f−1/4(r)Er . (1.18)

Clearly f(r) diverges as r goes to zero, so this means that the same object brought closer

and closer to r = 0 would appear to have lower and lower energy from an observer at

infinity point of view. Now, and as we did for the D-brane picture case, we take the

low-energy limit. Since we are dealing now with a curved space-time, we have to choose

a specific reference frame, and that would be the one of the observer at infinity. The

reason of this choice, beyond the evident simplification, will become much more clear

when the conjecture has been stablished.

From the point of view of an observer at infinity, there are two kinds of low energy

excitations. On the one hand we have massless particles propagating in the bulk with

very large wave lengths and, on the other hand, any kind of excitation that we bring

close enough to r = 0. In this limit, the wavelength of the massless particles becomes

much bigger than the typical gravitational size of the stack of branes, which is of order

R, so the bulk massless particles decouple from the near horizon region around r = 0

(in other words, the low energy absorption cross section is very small). Similarly, the
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closer an excitation is to r = 0, harder it finds to climb the gravitational potential and

escape to the asymptotic region. We see that, like in the D-brane picture case, we have

two decoupled pieces. One, as we had in the previous case, is free bulk supergravity and

the other is the near horizon region of geometry (1.17).

In the near horizon region r << R we can approximate f ∼R4/r4 and then the near

horizon geometry becomes

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +R2dr
2

r2
+R2dΩ2

5 (1.19)

which is the geometry of AdS5×S5 in Poincaré coordinates.

We see, then, that in both pictures we have two decoupled theories in the low-energy

limit. In both cases one of the decoupled systems is supergravity in flat space, so it

is natural to identify the second system which appears in both equivalent descriptions.

Since N = 4 d = 3+1 U(N) SYM is a unitary theory, we conclude that, in the low-energy

limit, it includes in its Hilbert space the states of type IIB supergravity on AdS5×S5. It

is natural to think that this correspondence goes beyond the supergravity approximation,

and thus we are led to the conjecture that N = 4 U(N) super-Yang-Mills theory in 3 + 1

dimensions is dual to (is the same as / is equivalent to) type IIB superstring theory on

AdS5×S5.

AdS5 × S5

R

Mink10

Having presented the conjecture, let us now be a bit more precise about the validity

of various approximations. From the physics of D-branes we know that the Yang-Mills
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coupling gYM is related to the string coupling gs through

g2
YM = 4πgs

where we have eluded for simplicity the relation between the θ angle and the expectation

value of the RR scalar χ. Moreover, we know that we can trust the perturbative analysis

in the Yang-Mills theory only when the ’t Hooft coupling λ is small, i.e

λ = g2
YMN = 4πgsN =

R4

l4s
<< 1 (1.20)

It is worthy to notice that we need g2
YMN to be small and not just g2

YM . On the other

hand, the supergravity description is acceptable only when the radius of curvature R of

AdS5 and S5 becomes large compared to the string length ls,

R4

l4s
= 4πgsN = g2

YMN >> 1 (1.21)

We can see that the supergravity regime (1.21) and the perturbative filed theory regime

(1.20) are perfectly incompatible, and is in this sense that we call at this correspondence a

“duality”. The two theories are conjectured to be exactly the same, but when one is weakly

coupled the other is strongly coupled and vice versa. This makes the correspondence

both hard to prove and useful.

It is important to notice that both in (1.20) and (1.21) we assumed gs < 1 (up to an

SL(2,Z) duality gs→ 1/gs in case we have gs > 1), so it is always necessary, but not

sufficient, to have large N in order to have a weakly coupled supergravity description.

Matching the symmetries

Let us examine now more closely the matching of global symmetries on both sides

of the correspondence. In the string theory side we have that the isometry group of

AdS5×S5 is SO(4, 2)×SO(6). In the gauge theory side, we know that the N = 4 SYM

theory is also invariant under the whole SO(4, 2)×SO(6) Lie group, now understood as

the four-dimensional conformal group times the R-symmetry of the theory. We see, then,

that the (bosonic) global symmetry groups on both sides of the correspondence agree.

Furthermore, we have some supersymmetries as well. In the gauge theory side the

SYM theory is invariant under 16 ordinary supersymmetries as well as under 16 special

conformal supersymmetries. In the gravity side, AdS5×S5 is a maximally supersymmetric
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solution of type IIB string theory, and so it possesses 32 Killing spinors which generate

the fermionic isometries. These can be split into two groups that match those of the dual

gauge theory. We therefore conclude that the global symmetries (the whole supergroup)

are the same on both sides of the correspondence.

This exact correspondence between global symmetries of both theories gives us, among

many other insights, a very nice geometric picture of the renormalization group flow of

the dual gauge theory. The identifications stands as follows.

N = 4, d = 3 + 1 SYM is a CFT so it is, in particular, invariant under a dilatation

transformation

xµ→Λxµ (1.22)

where Λ is a constant. For all we have seen until now, we are led to expect that this

transformation is also a symmetry on the gravity side, and indeed this is the case.

We saw that the metric of the AdS5 part of the near horizon throat geometry, in Poincaré

coordinates, reads

ds2 =
r2

R2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
R2

r2
dr2 (1.23)

The coordinates xµ may be thought of as the coordinates along the d = 3+1 worldvolume

of the stack of D3-branes, while r and the S5 coordinates span the directions transverse

to the branes. This way Poincaré coordinates provide a very simple geometric picture of

AdS5 as a foliation of constant-r slices, each of which is isometric to d = 4 Minkowski

space. As r→∞ we approach the conformal boundary of AdS5 while at r = 0 we reach

the Poincaré horizon. Moreover, this metric is invariant under (1.22) provided this is

accompanied by the rescaling

r→ r/Λ (1.24)

Imposing symmetry correspondence thus links short-distance physics (UV) in the gauge

theory with physics near the AdS conformal boundary, whereas long-distance physics

(IR) is associated to physics near the horizon of the gravity theory. In other words, r

is identified with the renormalization group scale in the gauge theory. Since any UV

complete QFT is always defined by an ultraviolet fixed point and a RG flow, it is common

to think of the gauge theory as residing at the conformal boundary of AdS.
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3.4 A precise prescription

Shortly after the publication of Maldacena’s 1997 original paper, in an attempt to make

more precise the conjecture Gubser, Klebanov and Polyakov [10], followed by Witten [11],

proposed an ansatz whose justification, initially, is just that it combines the ingredients

at hand in the most natural way. Gradually, further evidence for this ansatz emerged.

The statement (for the particular case of the original correspondence) is that the partition

function of string theory on AdS5×S5 should coincide with the partition function of

N = 4, d = 3 + 1 SYM theory living “on the boundary” of AdS5.

Schematically, it reads (working in Euclidean signature for convenience)

Zbulk = Zgauge = e−W (1.25)

where W is the generating functional for connected Green’s functions in the gauge theory.

The right-hand side of (1.25) encodes all the physical information in the dual gauge theory,

since it allows the calculations of correlation functions of arbitrary gauge-invariant (local)

operators. On the other hand, the left-hand side is in general not easy to compute if not

directly out of reach, but it simplifies a lot in the classical supergravity approximation

(only valid in the large N and large λ limit). At leading order it reduces to

Zbulk∼ e−Ssugra (1.26)

where Ssugra is the on-shell supergravity action.

Following from a D-brane physics perspective, the main technical idea behind this

bulk-boundary correspondence is that the boundary values of string theory fields act as

sources for gauge-invariant operators in the field theory.

Working in Poincaré coordinates, we will write the bulk fields generically as φ(~x, z), with

value φ0(~x) at z = ε. Then, in the supergravity approximation, we think of choosing

the values φ0 arbitrarily and then extremizing the action Ssugra[φ] in the region z > ε

with this boundary condition. In short, we solve the supergravity e.o.m’s subject to

these Dirichlet boundary conditions on the boundary and then evaluate the action on

the solution. So, we can write

W [φ0] = − log〈e
∫
d4xφ0(x)O(x)〉CFT ' Ssugra[φ(~x, z)|z=ε = φ0(~x)] (1.27)

where O(x) denotes the corresponding dual operator. We conclude that the generator

of connected Green’s functions in the gauge theory is, in the large N , large λ limit, the
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on-shell supergravity action. Thus, in this particular limit of the theory, we can obtain

correlation functions of the dual operator O(x) just by taking derivatives of the on-shell

supergravity action with respect to φ0 and then setting it to zero at the end.

As a final remark, ε� 1 serves to avoid divergences of the bulk action integral associated

with the infinite volume of AdS which in turn can be seen as a UV cut-off of the dual

field theory.

A formula like (1.27) is valid, in general, for any field φ in the bulk. Therefore, each field

propagating in AdS is in one to one correspondence with an operator in the dual field

theory, and we usually talk about this as the AdS/CFT “dictionary”. Nevertheless, in

general it is not easy to figure out which operator corresponds to which field, but for

some very special cases it is easy due to their symmetries.

3.5 Beyond the supergravity approximation

As we have just seen, the AdS/CFT correspondence offers us a very useful tool for

analyzing the strongly coupled regime of gauge theories and indeed many tests have

been done comparing correlation functions in the CFT and propagators and scattering

processes in AdS5×S5 in the supergravity approximation. Nevertheless, we may not

forget that the original derivation of the correspondence was build completely out of

string theory and (the strongest version of) the duality states that the full string theory

on AdS is exactly dual to N = 4 super-Yang-Mills theory on its boundary, for all values

of λ and N .

This way, the AdS/CFT correspondence provides us with a full non-perturbative definition

of string theory on an AdS-like background, including all the stringy objects and effects

thats you may think of. A very convincing reason of why the CFT can’t be equivalent to

“just supergravity” is that the pure supergravity is inconsistent as a quantum theory (it is

non-renormalizable) while the CFTs we are dealing with are well-behaved and consistent.

Nevertheless, the conjecture cannot be rigorously proved as of today and we would like

to have precise checks in order to support the strongest version of the duality. At the

same time, it is certainly necessary to understand how holography works beyond the

well-stablished supergravity approximation and how can we translate complicated string

theory computations in simpler conformal field theory ones.

This will be one of the main topics of the present dissertation and thus it will be important

to present it in some more detail.
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String theory has fundamentally only two relevant parameters, the string length

ls =
√
α′, which controls fluctuations given a fixed worldsheet topology and the string

coupling constant gs, which weights the probability of emission and absorption of strings,

that is, the change in worldsheet topology. As we discussed, these have to be related

with the two unique parameters of N = 4 SYM, the coupling constant gYM and the

number of colors N , the precise relationship being

gs = g2
YM ; λ =

L4

l2s
= g2

YMN. (1.28)

In the ’t Hooft limit N→∞, gYM→ 0 with λ kept fixed you see that when λ is smaller

than one, then the Yang-Mills theory is weakly coupled and the perturbative gauge-theory

diagrams are guaranteed to approximate physics well. On the contrary, when λ is (much)

greater than one, the AdS radius R is (much) greater than the string length which means

that one may approximate the physics by string theory on a “mildly curved” background.

In this limit, when the curvature radius is (much) longer than the string length, it is

always possible to approximate low-energy physics of string theory by supergravity. In

string theory, the supergravity approximation means to neglect the α′ stringy corrections

while in the gauge-theoretical language, it is equivalent to focus on the planar limit for

large λ and neglect subleading 1/N nonplanar contributions.

λα′/R2 = 1/
√
λ

1/
N
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Ideally, in both regimes we could now incorporate corrections to the leading order:

1/N corrections (fixed λ) ↔ gs corrections (higher genus topologies)

1/
√
λ corrections ↔ α′ corrections (worldsheet fluctuations)

Realistically, computing corrections directly in the bulk is a very difficult task. On the

string side, testing AdS/CFT beyond the planar limit involves calculating higher genus

string amplitudes which, although presumably a well-defined problem, is currently out

of reach. Furthermore, we certainly do not know how to reliably compute quantum gs

corrections in backgrounds spacetimes with RR fluxes. Another approach comes from

the realization that higher curvature (or more broadly higher derivative) interactions are

expected to arise on general grounds, as quantum or stringy corrections to the classical

action. Hence a more refined description beyond the leading order will be given by an

effective action supplemented with such higher derivative corrections.

In the present work we will circumvent such difficulties by addressing the problem

in a completely different manner. On one hand, the first line of research will be the

use of certain D-brane probes with electric fluxes as a way to resum an infinite series of

string worldsheet topologies. On the other hand we will use the so-called supersymmetric

localization technique in order to get exact results in the dual field theory, that is, exact

analytic functions of λ and N . Finally, combining these results and making use of the

holographic dictionary, we will infer new predictions for string theory.
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4 Supersymmetric localization

Exact results in quantum field theory are certainly rare and very particular. In most of

the cases, they rely on large amounts of symmetry and on sophisticated and powerful

mathematical theorems.

The most notable examples of exact results accessible in supersymmetric gauge theories

are maybe the topological theory constructed by twisting N = 2 super Yang-Mills,

where the path integral of the twisted theory localizes to the (zero-dimensional) moduli

space of instantons and can be used to compute the Donaldson-Witten invariants of

four-manifolds [12,13], the Seiberg-Witten exact low-energy effective action [14,15] and

Nekrasov’s instanton partition function [16].

In this section we will introduce briefly the basic features of another technique, the

so-called supersymmetric localization technique of Pestun [17].

The fundamental ingredient is to start with a fermionic (Grassmann-odd) symmetry

Q of a theory described by the action S[Φ], depending on a set of fields Φ

δS = QS[Φ] = 0 (1.29)

Consider now defoming the partition function corresponding to the previous action

perturbed by a δ-exact term as follows

Z(t) =

∫
DΦe−S−tδV , (1.30)

where V is a fermionic Grassman-valued functional of the fields, invariant under the

bosonic (Grassmann-even) symmetry δ2 = Q2 = LB, and where t is a free real parameter.

It is worth noticing that LB is made of other possible bosonic symmetries of S and,

since we are dealing with Lorentz and gauge invariant theories, it has to be made out of

combinations of gauge and Lorentz transformations.

With this conditions satisfied, it is immediate to see that the modified partition

function Z(t) is independent of t, since

dZ

dt
= −

∫
DΦδV e−S−tδV = −δ

(∫
DΦV e−S−tδV

)
= 0. (1.31)

In the second equality we have integrated by parts and the missing term vanishes precisely

because of the premise δS = δ2V = 0. We have also supposed that the δ-symmetry

leaves the path integral measure invariant, that is, we presuppose that the theory doesn’t
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suffer from anomalies. In the last equality we have used the fact that δ is a symmetry of

the path integral. However, this last result may not hold if the boundary term does not

decay sufficiently fast in field configurations, but this does not happen in general and

certainly will not be the case in our computations.

Most notably, the same derivation also applies for the expectation value of any operator

preserving this very fermionic symmetry, that is, any O such that δO = 0. The argument

is completely analogous:

d

dt
〈O〉t =

d

dt

∫
DΦOe−S−tδV = −δ

(∫
DΦOV e−S−tδV

)
= 0. (1.32)

If the modified partition function or the vev of the operator O do not depend on the

parameter t, we can compute them for several values of t and all of them coincide

with the original t = 0 integrals. Typically, one chooses V such that δV has a positive

definite bosonic part, (δV )B > 0. Therefore, when we take the t→∞ limit, the partition

functions and the vev of the operator localizes to the submanifold of field configurations

{Φc} that satisfy

(δV )B = 0 . (1.33)

It turns out that, in most of the cases cases, this localized set of field configurations {Φc}
is independent of the space-time coordinates, leading to a zero-dimensional matrix model

integral. In particular, one computes the path integral by a saddle point approximation

which, in the strict t→∞ limit, happens to be one-loop exact. The final expression reads

Z = Z(0) =

∫
DΦcZ1-loopZinste

−S[Φc], (1.34)

where Z1-loop is the one-loop determinant of all field fluctuations due to the saddle-point

and the factor Zinst is Nekrasov’s partition function of point instantons.

As we see, the fact that S has to be invariant under a fermionic (Grassman-odd)

symmetry, makes supersymmetric quantum field theories the ideal context in which to

apply such technique.

In section 5.3 we will apply these results in order to compute the exact vev of the 1
2
-BPS

circular Wilson loop in N = 4 super Yang-Mills theory.
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5 Wilson loops

This thesis is devoted mainly to the study of supersymmetric Wilson loops in N = 4 SYM

and their relation with many relevant observables of the quantum field theory like the total

radiated power, the vev of the Lagrangian density or the momentum diffusion coefficient.

Such operators are interesting per se, but in addition they exhibit many interesting

features. First, they can be computed both at weak coupling by standard perturbative

techniques as well as at strong coupling by means of the AdS/CFT correspondence.

Secondly, for very specific contours and very ideal and symmetric theories, such operators

can be evaluated exactly using the supersymmetric localization technique. This way,

they can be used as remarkable precision tests for the conjectured holographic duality.

5.1 Wilson loops in N = 4 SYM

Wilson loops are among the most interesting operators in any gauge theory. They are

non-local gauge invariant operators (and so they are observables) which essentially are

phase factors associated with the trajectory of a charged point particle along a closed path.

Thus, from a physical point of view, they codify the response of the gauge field to the

insertion of an external point-like source passing around a closed contour. Mathematically,

they correspond to the holonomies of the gauge connection and they play the role of

parallel transporters for charged particles moving in a gauge field background.

They were proposed originally by Kenneth Wilson in his seminal paper [18] as order

parameters in the lattice formulation of quantum chromodynamics, and hence the name.

In pure gauge theory, Wilson loops form a complete set of observables. That is, in principle

you can generate all the other (local) observables by applying algebraic operations and

taking certain limits. This comes from the mathematical fact that a (gauge) connection

is completely determined up to a gauge transformation by its holonomies. And this is

not just an statement of the classical theory, the same claim is true in the quantum

theory via the path integral formalism: anything you can write down in terms of the

gauge fields, you can also write down in terms of Wilson loops [19–23].

In order to be definite, consider the simplest example. Let’s take the propagator of a

scalar field in flat space. Using Schwinger’s proper time formalism we can write it as a
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sum over histories

G(x, y) = 〈x| i

p2 −m2
|y〉 =

∫ ∞

0

dT

∫

X(0) = x
X(T ) = y

[DX] exp

[
− im

∫ T

0

dt
√
Ẋ2

]
(1.35)

Consider now a charged scalar particle with charge q minimally coupled to a background

U(1) gauge field Aµ. As usual, all we have to do is just to replace the derivatives with

covariant ones ∂µ → Dµ = ∂µ − iqAµ or, equivalently, modify the conjugate momenta as

pµ → pµ − qAµ. The propagator now reads

G(x, y) =

∫ ∞

0

dT

∫

X(0) = x
X(T ) = y

[DX] exp

[
− im

∫ T

0

dt
√
Ẋ2

]
exp

[
− iq

∫ T

0

Aµẋ
µdt

]
(1.36)

This extra (abelian) phase factor is precisely the Wilson line U(y, x). Under an (Abelian)

gauge transformation, we have

ψ(x)
g.t.−−→ eiα(x)ψ(x)

Aµ(x)
g.t.−−→ Aµ(x) +

1

e
∂µα(x)

U(y, x)
g.t.−−→ eiα(y)U(y, x)e−iα(x)∼ “ψ(y)ψ†(x)”. (1.37)

It is then clear that we can construct two manifestly gauge invariant operators out of

these fields. The first would be ψ†(y)U(y, x)ψ(x), which can be seen as the abelian

analogous of the familiar two quarks linked by a confining string. Otherwise, if we

consider closed trajectories γ, we get our beloved Wilson loop

W (γ) = eiq
∮
γ Aµẋ

µdt. (1.38)

The clearest example for presenting the physics behind Wilson loops is probably the classic

Aharonov-Bohm effect [24]: Imagine performing a double-slit interference experiment

with electrons, and supoose we place a solenoid carrying magnetic flux in between the

two slits. The solenoid is perfectly shielded, so that no electron can penetrate inside and

detect the magnetic field directly. Yet, we find that the electrons know that the field is

there. As the magnetic flux in the solenoid changes, the interference fringes shift. From

the amount of the shift, we can infer that there is a field-dependent contribution to the

relative phase of the electron paths that pass through the top and bottom slits given by

eieΦB/~c = exp
[ ie
~c

∮

γ

~A · d~x
]
. (1.39)
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This is due to the well know fact that in quantum mechanics the wave-function phase

itself is unobservable but, in contrast to the classical theory, the phase differences are

indeed observables.

A very direct geometric analogy of this effect is to consider parallel transporting vectors

around the tip of a cone. Although it certainly doesn’t look flat, a cone is flat everywhere

just except by the tip. Any closed path not containing the tip will return the vector to its

original position, while if we consider a closed path around the tip, the vector will return

to the same point with a deficit angle, directly related with the opening angle of the

cone. In this second case we will talk about the holonomy of the Levi-Civita connection

capturing trhe curvature of the manifold.

~B = 0

∆ϕ = e
h̄c

∮
γ
~A · ~dx = e

h̄cΦBγ
ΦB

Rµν = 0

R 6= 0

γ

Of course, we can generalize the previous results to the case of generic non-Abelian

gauge theories. Now the gauge fields Aµ, transforming in the adjoint, are matrix valuated

vectors and we have to introduce a notion of path ordering in order to be definite. Usually

we will understand

eiqεA(x1)ẋ1eiqεA(x2)ẋ2 . . . eiqεA(xN )ẋN =
ε→0
Peiq

∫
Aµẋµdt , (1.40)

where the path ordering acting on the exponential have to be understood through its

Taylor expansion,

P exp

(∫ T

0

M(t)dt

)
= 1+

∫ T

0

M(t)dt+

∫ T

0

dt1

∫ T

t1

dt2M(t1)M(t2) + . . . (1.41)

Although the matrices Aµ(x) do not commute, the path-ordered exponential is now

defined unambiguously. At the end of the day the Wilson loop for a generic non-Abelian

gauge theory will read

W (γ) ∝ Tr P exp

(
ig

∮

γ

Aµdx
µ

)
, (1.42)
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where we take the trace in order to deal with a gauge invariant quantity. Finally, we

could also consider probes transforming in different representations of the gauge group

as well as supersymmetric theories, where the vector multiplet includes, apart from the

gauge field, scalars and fermions (transforming in the adjoint) that will also interact with

our probes.

In order to be explicit, if we concentrate on the particular case of N = 4 SU(N)

SYM, which is the theory we will focus on later on, the most general Wilson loop we

could consider is naturally defined (in Euclidean signature and supressing all fermions

fields for the moment) [25–27]

WR(γ;λ,N) =
1

dimRTrRP exp

(∮ [
iAµẋ

µ + ẏIΦI
]
dτ

)
(1.43)

where ΦI are the six scalar fields that belong to the N = 4 gauge multiplet and we

chose the standard normalization. The irreducible representations R of SU(N) can be

expressed in terms of Young tableaux. We will start next subsection with the simplest

R = � case, the fundamental representation, but later on we will consider more general

cases, which will be in fact the main focus of the section.

Finally, let us now study the invariances of the N = 4 SYM loop (1.43) under the

Poincaré and conformal supersymmetry transformations of the gauge and scalar fields

δQAµ = Ψ̄Γµε0 ; δQΦI = Ψ̄ΓIε0

δSAµ = Ψ̄Γµx
νΓνε1 ; δSΦI = Ψ̄ΓIxνΓνε1. (1.44)

As before, Ψ is a ten-dimensional spinor and the transformation parameters ε0,1 are two

ten-dimensional 16-components Majorana-Weyl fermions of opposite chirality. Focussing

for the moment on the Poincaré supercharges one finds that δQW (C) = 0 implies [27],

(
iΓµẋµ + ΓI ẏI

)
ε0 = 0 (1.45)

This equation has eight independent solutions if
(
iΓµẋµ+ΓI ẏI

)
squares to zero. Recalling

that the matrices Γµ amd ΓI anticommute, this happens only if

ẋ2 − ẏ2 = 0. (1.46)

This equation is solved for ẏI(τ) = |ẋ|ΘI(τ), where (ΘI)2 = 1, that is, it is a unit vector

on R6, constrained to move over the S5. With these specifications the Wilson loop (1.43)
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becomes now

WR(γ;λ,N) =
1

dimRTrRP exp

(∮

γ

[
iAµ(τ)ẋµ + |ẋ|ΦIΘI(τ)

]
dτ

)
. (1.47)

Notice that the previous remarks lead only to locally supersymmetric Wilson loops. If one

considers the supersymmetry variations of the loop, then at every point along the loop

one finds a different condition for preserved supersymmetry. Only if all these conditions

commute will the loop be globally supersymmetric.

Considering the simplest case and taking ΘI to be a constant vector, the two only

maximally (globally) supersymmetric trajectories are the straight line and the circle.

5.2 Wilson loops in the AdS5×S5

Now, equipped with all the insights from the previous sections, we are ready to present

the dual bulk description of supersymmetric Wilson loops as sources of fundamental

strings and D-branes of type IIB string theory in AdS5×S5.

Fundamental representation

It was proposed originally in [25,26] that an N = 4 SYM Wilson loop transforming in

the fundamental representation of the gauge group should be associated to a fundamental

string extending on the bulk of AdS and reaching the boundary along the very same

contour of the dual loop. In the large N , large λ limit the expectation value of the loop

operator is then given by the regularized area of the minimal surface swept by the string.

We will now try to motivate this proposal and discuss it in detail.

First of all, we saw that in N = 4 super Yang-Mills there are no dynamical “quarks”,

there are only “gluons” transforming in the adjoint, together with all their superpartners.

Nevertheless, a fundamental particle can be engineered in the following way. Consider

a stack of N + 1 D3-branes and then move one of them far away from the remaining

N . There will be a very long string stretching in-between, which can be interpreted as

a very heavy “W-boson”. The endpoints of this string are the external non-dynamical

sources that we call quarks. After taking the decoupling limit characteristic of the string

derivation of the AdS/CFT correspondence, the string extends in the bulk of AdS5 and

lands on the loop on the boundary. At the gauge theory level this consists in giving a large

expectation value to one scalar and in breaking the gauge group U(N+1)→U(N)×U(1).

The resulting off-diagonal bosons are in the fundamental of U(N). The amplitude for
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one of these W-bosons with mass m to go around a loop C of length l(C) is given (in

the limit of very large m) by

A∼ e−ml(C)〈W (C)〉. (1.48)

According to the proposal in [25,26], this amplitude should be equal to the worldsheet

area of the string associated to the contour C (with appropriate boundary conditions)

A =

∫
[dXµ][dY I ][dhab] exp(−SNG[X, Y, h]) | Xµ|C = xµ ; Y I |C = yI . (1.49)

Considering now the particular limit of large λ, large N the integral can be evaluated on

the saddle point, where string fluctuations are suppressed and the action is the (minimal)

area of the classical surface

lim
λ→∞

A = e−
√
λArea(C) (1.50)

Then, our prescription for the regularized vev of the Wilson loop is

〈W (C)〉 ' exp
[
− (
√
λArea(C)−ml(C))

]
(1.51)

Higher representations

Let’s move on to presenting the bulk description of higher rank Wilson loops, i.e.

loops in representations other than the fundamental.

A first naive guess for the bulk description of a higher rank loop, many coincident loops,

or a multiply wrapped loop would be to consider a set of coincident fundamental strings

all landing along the loop on the boundary [28]. Although natural and well motivated,

this direct approach presents serious technical difficulties, starting from the very fact

that we don’t know the appropriate (effective) action that describes a stack of coinciding

strings. Furthermore, some attempts to bypass this fundamental obstacle lead to string

worldsheets developing conical singularities and branch cuts, whose locations need to be

integrated over.

A more effective way to describe such loops was first proposed in [29] (see also [30,31]),

where it was suggested that a multiply wrapped loop might be associated to a D3-brane

extending in the bulk and pinching off at the boundary landing on the loop. This

proposal is based on the merging of two older ideas: the first one is to generalize to the
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AdS5×S5 background the BIon picture, first put forward by Callan and Maldacena in

ten-dimensional flat space [32], that k fundamental string ending on a Dp-brane in flat

space can be described in terms of a curved Dp-brane with a localized spike carrying k

unit of electric flux, and the second one is the idea, known as Emparan-Myers polarization

effect [33–36], that coincident strings can polarize into a single D-brane.

This brane picture has the advantage of automatically encoding the interactions

between the coincident strings and yields all non-planar contributions to the expectation

value of the higher rank Wilson loop [29].

If we indicate with k the rank of the loop, the number of coincident loops or the number

of windings, the D-brane must have k units of fundamental string charge dissolved in

its worldvolume. Furthermore, it must preserve the SO(1, 2)×SO(3)×SO(5) global

symmetry group of the gauge theory operator.

It turns out that there are two kinds of branes with these characteristics: an electri-

cally charged D3-brane with AdS2×S2 worldvolume and charge k, and a D5-brane

with AdS2×S4 worldvolume and, again, charge k. Both the D3 and D5-brane are 1/2

BPS and both have an AdS2 factor which can be associated to the fundamental string

worldsheet. The difference between them is that the D3 is completely embedded in AdS5,

whereas the S4 factor of the D5 is inside S5.

All these realizations ended with a very precise entrence of the holographic dictionary

[29,30,37] connecting the D3-branes to Wilson loops in the rank k symmetric representa-

tion and the D5-branes to the rank k antisymmetric one.

This brane picture is very reminiscent of the giant/dual giant graviton picture for chiral

primary operators [38–40]. A giant graviton is a D3-brane wrapping an S3 inside S5,

whereas a dual giant graviton is a D5 wrapping an S3 inside AdS5. Both describe

excitations with large angular momentum J ∼N . The role of J is played in this context

by the charge k.

The probe brane approximation discussed so far is valid when k∼N and breaks down

when k � N . In that regime the brane backreacts and the AdS5× 55 geometry is de-

formed into the supergravity solutions called bubbling geometries and studied in [41,42].

In the comming sections we will make explicit use of the solutions for the D3 and

D5-branes associated to higher rank loops. We therefore review them in detail in the

following.
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D5-brane ↔ k-antisymmetric representation

As it was shown in [30,37], Wilson loops in the k-th antisymmetric representation

are dual to D5-branes embedded in the dual geometry carrying k units of worldvolume

electric flux. For the particular case of a 1
2
-BPS circular Wilson loop transforming in the

antisymmetric representation, the precise embedding was originally found by Yamaguchi

in [30]. Here we will prefer to follow the more general derivation of [43], where the

embedding for a probe D5 ending on an arbitrarily shaped contour at the boundary was

found.

Consider a general type IIB background of the form M ×S5, where the manifold M

can have any asymptotically (locally) AdS5 metric. We can write the metric as

ds2 = R2
(
ds2

M + dθ2 + sin2 θdΩ2
S4

)
(1.52)

with polar angle θ ∈ [0, π].

Recall that the effective action for a D5-brane embedded in AdS5×S5 reads (in Euclidean

signature)

SD5 = TD5

∫
dτd5σ

√
det(g + 2πα′F )− igsTD5

∫
2πα′F ∧ ∗C4, (1.53)

with brane tension TD5 = N
√
λ/8π4R6 and where the relevant part of the RR four form

potential is

C4 =
R4

gs

[3(θ − π)

2
− sin3 θ cos θ − 3

2
cos θ sin θ

]
volS4 (1.54)

θ being the polar angle in the five sphere, as it appears in (1.52).

As we just discussed, the D5-brane embedding we are looking for will be of the form

Σ×S4 ↪→ M ×S4, the S4 set to be at an angle θ in the S5. Thus, this embedding

preserves an SO(5) subgroup of the R-symmetry, as did the original Σ worldsheet.

Furthermore, in order to have a dissolved string charge k over the brane, we need to turn

on an electric worldvolume gauge field (constrained by the symmetries of the system)

Fτσ = iF

√
λ

2π
. (1.55)
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With this ansatz the equations of motion for θ and F allow for constant solutions θ = θ0,

provided theta θ0 satisfies

π
( k
N
− 1
)

= sin θ0 cos θ0 − θ0. (1.56)

For these solutions,

F = − cos θ0

√
det gΣ. (1.57)

Using now the constancy of θ and the fact that F is proportional to the volume form

on Σ, it is straightforward to show that the equations of motions reduce to the ones

following from the Nambu-Goto action. Therefore, we have found that any embedding Σ

into M of a fundamental string defines an embedding Σ×S4 of a D5 brane for every

k ∈ Z.

Finally, after adding the appropriate boundary conditions, the total renormalized action

is of course proportional to the on-shell Nambu-Goto action and reads

SD5 =
2N

3π
sin3 θ0SF1. (1.58)

As a final example, we can compute holographically the vacuum expectation value of

the 1
2
-BPS circular Wilson loop transforming in the k-antisymmetric representation of

SU(N) in the large N , large λ [30]:

〈WAk〉 = e−SD5 = exp
(2N

3π

√
λ sin3 θ0

)
(1.59)

D3-brane ↔ k-symmetric representation

Very different from the D5-brane case, for many years we only knew the precise

embedding for a D3-brane ending on a straight line or a circle. Since in this dissertation

we will concentrate only in these two possibilities, we discuss them in detail. At the very

end we will comment on new results for general embeddings for probe D3-branes ending

on arbitrary trajectories at the conformal boundary.

We start with the D3-brane originally found in [29] and consider a circular Wilson

loop of radius a placed on the boundary of AdS5 . It will be convenient to write the
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metric of AdS5 in polar coordinates as

ds2
AdS5

=
L2

z2
(dz2 + dr2

1 + r2
1dψ

2 + dr2
2 + r2

2dφ
2) ; r2

1 = x2
0 + x2

1 , r
2
2 = x2

2 + x2
3 (1.60)

The position of the loop is defined by r1 = a and z = r2 = 0. As explained above,

we look for a D3-brane which pinches off on this circle as z→ 0 and preserves a

SO(1, 2)×SO(3)×SO(5) isometry.

Again, the bulk action includes a DBI part and a Wess-Zumino term, which captures the

coupling of the background Ramond-Ramond field to the brane

SD3 = TD3

∫ √
|g + 2πα′F | − TD3

∫
P [C(4)], (1.61)

where TD3 = N
2π2 is the tension of the brane, g is the induced metric, F the electromagnetic

field strength, and P [C(4)] is the pull-back of the RR 4-form

C(4) =
r1r2

z
dr1 ∧ dψ ∧ dr2 ∧ dφ (1.62)

to the D3-brane worldvolume. It turns out to be more convenient to use a new set of

coordinates obtained by transforming z, r1, r2 into

z =
a sin η

cosh ρ− sinh ρ cos θ
, r1 =

a cos η

cosh ρ− sinh ρ cos θ
, r2 =

a sinh ρ sin θ

cosh ρ− sinh ρ cos θ

(1.63)

In these coordinate system the metric on AdS5 reads

ds2
AdS5

=
1

sin2 η

(
dη2 + cos2 ηdψ2 + dρ2 + sinh2 ρ(dθ2 + sin2 θdφ2)

)
(1.64)

where ρ ∈ [0,∞), θ ∈ [0, π], and η ∈ [0, π/2]. The Wilson loop is located at η = ρ = 0.

One can pick a static gauge in which the worldvolume coordinates of the brane are

identified with ψ, ρ, θ, φ and the brane sits at a fixed point of the S5. The remaining

coordinate can be seen as a scalar field, η = η(ρ). Because of the symmetries of the

problem, the electromagnetic field has only one non-vanishing component, Fψρ(ρ). In

these coordinates the DBI action reads

SDBI = 2N

∫
dρdθ

sin θ sinh2 ρ

sin4 η

√
cos2 η(1 + η′2) + (2πα′)2 sin4 ηF 2

ψρ (1.65)
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while the Wess-Zumino term is

SWS = −2N

∫
dρdθ

cos η sin θ sinh2 ρ

sin4 η

(
cos η + η′ sin η

sinh ρ− cosh ρ cos θ

cosh ρ− sinh ρ cos θ

)
(1.66)

The solution to the equations of motion reads [80]

sin η =
1

κ
sinh ρ , Fψρ =

ikλ

8πN sinh2 ρ
, κ =

k
√
λ

4N
(1.67)

From this solution one can see that k is not constrained for the D3-brane. In fact

k determines a particular position in an AdS2×S2 foliation of AdS5, which is a non-

compact space. This has to be contrasted with the D5-brane case where we clearly find

the bound k ≤ N .

The bulk action has to be complemented with boundary terms for the worldvolume scalar

η and for the electric field Fψρ . These terms do not change the solution but alter the

final value of the on-shell action which finally reads

SD3 = SDBI + SWS + S
boundary

= −2N
(
κ
√

1 + κ2 + sinh−1 κ
)

(1.68)

The expectation value of the 1
2
-BPS circular Wilson loop transforming in the k-symmetric

representation is then

〈WSk(C)〉 = exp
[
2N
(
κ
√

1 + κ2 + sinh−1 κ
)]

(1.69)

For small κ this expression coincides with the result of k coincident non-interacting

fundamental strings

〈WSk(C)〉∼ ek
√
λ. (1.70)

As a final remark, I would like to stress that it was not until very recently that the

authors of [44] constructed the D3-brane embedding dual to a point-like particle of N = 4

SYM transforming in the k-symmetric representation of SU(N) and undergoing arbitrary

motion. Their method consists on a generalization of the ansatz of Mikhailov for the

fundamental string [45] and proceeds analogously by shooting light rays inwards in the

bulk from the AdS conformal boundary.

At the same time this very method can be applied to the case of a D5-brane embedding,

finding exact agreement with the previously dervied embeddings.
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5.3 Exact results through localization

If we were to compute perturbatively the vev of the Wilson loop (1.43) at small λ we
would find that, expanding up to second order, it would read

〈W (C)〉 =
1

N
Tr(δab)−

1

2

∮
dτ1

∮
dτ2

1

N
Tr〈(Aµ(x1)ẋµ1 − i|ẋ1|ΦI(x1)ΘI)(Aν(x2)ẋν2 − i|ẋ2|ΦJ(x2)ΘJ)〉+ ...

= 1 +
1

2

∮
dτ1

∮
dτ2

1

N
Tr
(
〈ΦaI (x1)ΦbJ(x2)〉|ẋ1||ẋ2|ΘIΘJ − 〈Aaµ(x1)Abν(x2)〉ẋµ1 ẋν2

)
T aT b + ...

= 1 +
λ

16π2

∮
dτ1

∮
dτ2
|ẋ1||ẋ2| − ẋ1 · ẋ2

(x1 − x2)2
+O(λ2) (1.71)

For the particular case of an infinite straight line it is obvious that the combined gauge

and scalar propagator vanishes, and one anticipates the expectation value of this operator

to be 1. In fact, as we saw, we recover the same result from the dual gravity computation

in the bulk, and thus it is expected to be the final answer. But the straight Wilson

line is not the only (globally) 1
2
-BPS loop operator. As we briefly commented before,

the circular Wilson loop also preserves half of the supercharges (although a different

combination than for the case of an infinite straight line) and can be obtained from the

Wilson line by performing a special conformal transformation1.

Thus, one could think that the vev of the circular loop should also be trivially 1, but it

turns out that this is not true due to a subtle conformal anomaly coming from mapping

the point at infinity (which strictly doesn’t belong to R4) to the origin [48,49]. In other

words, this can be understood considering that the special conformal transformation

mapping the line to the circle is not a global symmetry of flat space, but only of S4.

Taking the explicit parametrization for the circle of unit radius xµ = (cos τ, sin τ, 0, 0),

one can immediately see that the relevant propagator in (1.71) reduces to a constant

〈
(
iAµ(x1)ẋµ1 + |ẋ1|ΦI(x1)ΘI

)(
iAν(x2)ẋν2 + |ẋ2|ΦJ(x2)ΘJ

)
〉 =

λ

16π2
δab (1.72)

Given the coordinate independence of the propagator it is possible to sum an infinite class

of Feynman diagrams without internal vertices, the so-called planar ladder or rainbow

diagrams. It is just a counting problem, doable if one can solve the appropriate recurrence

relation. At the end one finds a result valid at leading order in N and for any value of the

’t Hooft coupling λ. It is in fact believed that graphs with internal vertices cancel at any

order in perturbation theory and one is then left only with free propagators [48]. A formal,

albeit incomplete, proof of this conjecture based on the conformal anomaly mentioned

above and valid for any values of N (and thus including non-planar corrections) and λ

1This is an old result in conformal field theory [46]. The first implementation in a holographic
computation appeared in [47]
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was presented in [49].

But the very fact that the propagator (1.72) loses coordinate dependence for the 1
2
-BPS

circular loop suggests that it might be possible to map the problem of summing the ladder

diagrams of the circle to a 0-dimensional matrix model. Furthermore, since interacting

graphs are conjectured to cancel in the perturbative expansion we also expect this matrix

model to be quadratic [48,49].

For some years this remained as a promising conjecture, until it was finally proved by

Pestun using the supersymmetric localization technique [17].

Applying the localization technique to the particular case of N = 4 super Yang-Mills

it turns out that the one-loop determinant is exactly one (that is, the bosonic and

fermionic contributions cancel each other), all the instanton corrections vanish and we

are led to a Hermitian Gaussian matrix model defined in terms of the partition function

[17]

Z =

∫
[dM ] exp

(
− 2N

λ
TrM2

)
. (1.73)

The 1
2
-BPS circular Wilson loop is a very particular operator that preserves enough

supersymmetries off-shell and for which the localization technique can also be applied.

As a first particular example, the vacuum expectation value of the loop transforming in

the fundamental representation is given by

〈W�(C)〉 = 〈 1

N
TreM〉 =

1

Z

∫
[dM ] exp

(
− 2N

λ
TrM2

) 1

N
TreM . (1.74)

Being Gaussian, this matrix model integral can be solved exactly by using orthogonal

polynomials. The final exact result turns out to be given in terms of a generalized

Laguerre polynomial

〈W�(C)〉 =
1

N
L1
N−1(− λ

4N
)e−

λ
8N . (1.75)

If we compute now the large N , strong coupling limit of this expression, which is the

appropriate limit for a comparison with the holographic result, one has

〈W�(C)〉 '
√

2

π

e
√
λ

λ3/4
, (1.76)

finding perfect agreement with the AdS/CFT results obtained at leading order in 1/N

and 1/
√
λ.
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Martı́ i Franquès 1, 08028 Barcelona, Catalonia, Spain

(Received 8 July 2011; published 3 October 2011)

We use the AdS/CFT correspondence to compute the energy radiated by an infinitely massive half-

Bogomol’nyi-Prasad-Sommerfeld particle charged under N ¼ 4 super Yang-Mills theory, transforming
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compare our results to the one obtained for the fundamental representation, deduced by considering a

string in AdS5.
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Introduction.—Given a gauge theory, one of the basic
questions one can address is the energy loss of a particle
charged under such gauge fields, as it follows arbitrary
trajectories. For classical electrodynamics this is a settled
question, with many practical applications [1]. Much less is
known for generic quantum field theories, especially in
strongly coupled regimes. This state of affairs has started
to improve with the advent of the AdS/CFT correspon-
dence [2], which has allowed us to explore the strongly
coupled regime of a variety of field theories. Within this
framework, the particular question of the energy radiated
by a particle charged under a strongly coupled gauge
theory—either moving in a medium or in the vacuum
with nonconstant velocity—has received a lot of attention
(see [3] for relevant reviews). The motivations are mani-
fold, from the more phenomenological ones, such as mod-
eling the energy loss of quarks in the quark-gluon plasma
[4] to the more formal ones, such as the study of the Unruh
effect [5]. In most of these studies the heavy particle
transforms in the fundamental representation of the gauge
group, and the dual computation is in terms of a string
moving in an asymptotically AdS space. The main purpose
of this note is to extend this prescription to other represen-
tations of the gauge group, which will amount to replacing
the fundamental string by D3 and D5-branes (see [6] for a
previous appearance of this idea), in complete analogy to
the prescription developed for the computation of Wilson
loops [7–11].

Besides the intrinsic interest of this generalization, our

main motivation in studying it is that, as it happens in the

computation of certain Wilson loops, the results for the

energy loss obtained withD-branes give an all-orders series

in 1=N. Given the paucity of such results for large N 4d

gauge theories, this by itself justifies its consideration.

Furthermore, these 1=N terms might shed some light on

some recent results in the study of radiation using the AdS/
CFT correspondence. Let us briefly review them.
The case of an infinitely massive particle transforming in

the fundamental representation and following an arbitrary
timelike trajectory was addressed by Mikhailov [12], who
quite remarkably found a string solution in AdS5 that
solves the Nambu-Goto equations of motion and reaches
the boundary at any given particle worldline. Working in
Poincaré coordinates,

ds2AdS5 ¼
L2

y2
ðdy2 þ ���dx

�dx�Þ (1)

it was furthermore shown that the energy of that string with
respect to the Poincaré time is given by

E ¼
ffiffiffiffi
�

p
2�

�Z
dt

~a2 � j ~a ^ ~vj2
ð1� v2Þ3 þ �

1

y

��������y¼0

�
; (2)

where the integral is with respect to the worldline time
coordinate, and � ¼ g2YMN is the ’t Hooft coupling. The
second (divergent) term corresponds to the (infinite) mass
and � is the Lorentz factor. The first term corresponds to
the radiated energy, so in the supergravity regime the total
radiated power by a particle in the fundamental represen-
tation is

PF ¼
ffiffiffiffi
�

p
2�

a�a�; (3)

which is essentially Lienard’s formula for radiation in

classical electrodynamics [1] with the substitution e2 !
3

ffiffiffiffi
�

p
=4�. This

ffiffiffiffi
�

p
dependence also appears—and has the

same origin—in the computation of the vacuum expecta-
tion value (VEV) ofWilson loops at strong coupling [8,13].
Having computed the total radiated power, a more re-

fined question is to determine its angular distribution. For a
particle moving in the vacuum, this has been done in
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[14,15], who found that this angular distribution is essen-
tially like that of classical electrodynamics. This is a some-
what counterintuitive result, as one might have expected
that the strong coupling of the gauge fields would tend to
broaden the radiating pulses and make radiation more
isotropic. In particular, the authors of [15] argue that these
results are an artifact of the supergravity approximation,
and might go away once stringy effects are taken into
account (see [16] for alternative interpretations). Here is
where considering particles in other representations might
be illuminating, since the 1=N expansion of the radiated
power we find can be interpreted as capturing string loop
corrections [17].

The plan of the present note is as follows: in the next
section we introduce D5-branes dual to particles in the
antisymmetric representation following arbitrary timelike
trajectories, and evaluate the corresponding energy loss.
We then consider a D3-brane dual to a particle in the
symmetric representation following hyperbolic motion,
and compute its energy loss. We end by discussing the
possible connection of this result with the similar one for
particles in the fundamental representation, and mention-
ing possible extensions of this work.

D5-branes and the antisymmetric representation.—
Given a string worldsheet that solves the Nambu-Goto
action in an arbitrary manifold M, there is a quite general
construction due to Hartnoll [18] that provides a solution
for the D5-brane action in M� S5, of the form �� S4

where � ,! M is the string worldsheet and S4 ,! S5. The
evaluation of the respective renormalized actions gives
then a universal relation between the VEVof Wilson loops
in the antisymmetric and fundamental representations, al-
ready observed, in particular, examples [9,19]. More re-
cently, this construction has been used to evaluate the
energy loss of a particle in the antisymmetric representa-
tion, moving with constant speed in a thermal medium [6].
In this section we combine Mikhailov’s string worldsheet
solution [12] with Hartnoll’sD5-brane construction [18] to
compute the radiated power for a particle in the antisym-
metric representation.

For a given timelike trajectory, we consider a D5-brane
in AdS5 � S5, with worldvolume �� S4 where � is the
corresponding Mikhailov worldsheet [12]. On � there is in
addition an electric Dirac-Born-Infeld (DBI) field strength
with k units of charge [18]. This D5-brane is identified as
the dual to a particle transforming in the kth antisymmetric
representation, and following the given timelike trajectory.
As shown in [18] the equations of motion force the angle of
S4 in S5 to be

sin�0 cos�0 � �0 ¼ �

�
k

N
� 1

�
: (4)

We now proceed to compute the energy with respect to the
Poincaré time coordinate and the radiated power of such
particle. The energy density for the D5-brane is

ED5 ¼ TD5

L2

y2
j�þ Fjsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�j�þ Fjp

¼ TD5

L2

y2
j��js

sin�0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�j��j

p ffiffiffiffiffiffiffiffiffiffi
j�S4 j

q
;

where the subscript s means that the determinant is re-
stricted to the spatial directions of the D5-brane or the
fundamental string. We have used that in Hartnoll’s solu-
tion the DBI field strength is purely electric and the DBI
determinant is block diagonal. Integrating over the S4 part
of the worldvolume one immediately obtains up to con-
stants the energy density of the fundamental string, so

ED5 ¼ 2N

3�
sin3�0EF1:

This is the same relation as the one found between the
renormalized actions of the D5-brane and the fundamental
string [18], and in [6] for the relation of drag forces in a
thermal medium. In the regime of validity of supergravity,
the radiated power of a particle in the kth antisymmetric
representation is therefore related to the radiated power of
a particle in the fundamental representation (3) by

PAk
¼ 2N

3�
sin3�0PF: (5)

The range of validity of this computation is determined by
demanding that backreaction of the D5-brane can be ne-
glected and its size is large in string units, yielding

g2sNsin3�0 � 1 and �1=4 sin�0 � 1, respectively. For
comparison with the symmetric case it is convenient to

write these conditions as N2=�2 � Nsin3�0 � N=�3=4. In
particular, this implies that the result cannot be trusted
when k=N is very close to 0 or 1.
D3-branes and the symmetric representation.—The

computation of Wilson loops of half-BPS particles in the
symmetric representation is given by evaluating the renor-
malized action of D3-branes [10], and analogously we
propose to compute the radiated power of a half-BPS
particle in the symmetric representation by evaluating the
energy of a D3-brane that reaches the boundary of AdS at
the given timelike trajectory. Contrary to what happens for
the fundamental or the antisymmetric representations, we
currently do not have the generic D3-brane solution, so we
will focus on a particular trajectory. On the other hand,
since these D3-branes are fully embedded in AdS5, we do
not use any possible transverse dimensions, so the results
should be valid for other 4d conformal theories with a
gravity dual.
The particular trajectory we will consider is one-

dimensional motion with constant proper acceleration,
which in an inertial system corresponds to �3a ¼ 1=R.
The trajectory is hyperbolic, �ðx0Þ2 þ ðx1Þ2 ¼ R2. A rele-
vant feature is that a special conformal transformation
applied to a straight worldline (static particle) gives the
two branches of hyperbolic motion [20]. Besides its promi-
nent role in the study of radiation and the Unruh effect,
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another reason to choose this trajectory is that the relevant
D3-brane is the analytic continuation of the one already
found in [7].

The radiated energy of a particle in the fundamental
representation, Eq. (2) derived in [12], is written in terms
of the worldline of the heavy particle. At least in particular
cases, it is possible to obtain an alternative derivation that
emphasizes the presence of a horizon in the worldsheet
metric, which encodes the split between radiative and non-
radiative gluonic fields, and therefore signals the existence
of energy loss of the dual particle, even in the vacuum [21].
It is convenient to briefly rederive this result for the
particular case of hyperbolic motion, since the computa-
tion of the energy loss using a D3-brane that we will
shortly present resembles closely this second derivation.
Working in Poincaré coordinates, Mikhailov’s string solu-
tion for hyperbolic motion can be rewritten as y2 ¼ R2 þ
ðx0Þ2 � ðx1Þ2; the Euclidean continuation of this world-
sheet is the one originally used to evaluate the VEV of a
circular Wilson loop [22] (see also [23]). This worldsheet
is locally AdS2 and has a horizon at y ¼ R, with tempera-
ture T ¼ 1=2�R, which is the Unruh temperature mea-
sured by an observer following a r1 ¼ R trajectory in
Rindler space. By integrating the energy density from the
horizon to the boundary we obtain

E ¼
ffiffiffiffi
�

p
2�

Z R

0

dy

y2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ ðx0Þ2 � y2
p

¼
ffiffiffiffi
�

p
2�

��x0

R2
þ �

1

y

��������y¼0

�
: (6)

The contribution from the boundary is just the (divergent)
second term, corresponding to the mass of the particle. The
first term comes from the horizon contribution, and corre-
sponds to the radiated energy.

A. The D3-brane solution.—We are interested in a
D3-brane that reaches the boundary of AdS5 at a single
branch of the hyperbola �ðx0Þ2 þ ðx1Þ2 ¼ R2. To find it,
we change coordinates on the ðx0; x1Þ plane of (1) to
Rindler coordinates, so the new coordinates cover only a
Rindler wedge

ds2 ¼ L2

y2
ðdy2 þ dr21 � r21dc

2 þ dr22 þ r22d�
2Þ: (7)

In these coordinates the relevant D3-brane solution found
in [7] is given by

ðr21 þ r22 þ y2 � R2Þ2 þ 4R2r22 ¼ 4	2R2y2; (8)

where

	 ¼ k
ffiffiffiffi
�

p
4N

:

Near the AdS5 boundary y ¼ 0, this solution goes to
r2 ¼ 0, r21 ¼ R2, so it reaches a circle in Euclidean signa-
ture and the branch of a hyperbola in the Lorentzian one.

The D3-brane also supports a nontrivial Born-Infeld field-
strength on its worldvolume [7]. By a suitable change of
coordinates, its worldvolume metric can be written as [7]

ds2 ¼ L2ð1þ 	2Þðd
2 � sinh2
dc 2Þ
þ L2	2ðd�2 þ sin2�d�2Þ (9)

so it is locally AdS2 � S2, with radii L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	2

p
and L	

respectively, and it has a horizon at 
 ¼ 0 [i.e., r1 ¼ 0 in
the coordinates of (7)]. The temperature of this horizon can
be computed by requiring that the associated Killing vector
is properly normalized at infinity; this is easily done in the
coordinates of (7) and the resulting temperature is again

T ¼ 1

2�R
: (10)

B. Evaluation of the energy.—To determine the total
radiated power of this solution we will evaluate the energy
with respect the Poincaré time coordinate x0. The energy
density is

E ¼ TD3

�
L2

y2
j�þ Fjsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�j�þ Fjp � L4

y4

�
: (11)

After we substitute the Lorentzian continuation of the
solution of [7] in this expression, the energy density is

E ¼ TD3

L4

y4

�
0
@ ð1þ 	2ÞR2 þ ðx0Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	2ð1þ 	2ÞR4 � 	2R2r21 � ð1þ 	2ÞR2r22

q � 1

1
A:

(12)

The energy is the integral of this energy density from the
boundary to the worldvolume horizon. A long computation
yields

E ¼ 2N	

�

�
� x0

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	2

p
þ �

1

y

��������y¼0

�
: (13)

Exactly as it happened for the string, Eq. (6), the boundary
contributes only the second term, which is divergent, and is
just k times the one for the fundamental string, Eq. (6). The
first term is the contribution from the horizon, and from it
we can read off the total radiated power

PSk ¼
2N	

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	2

p 1

R2
¼ k

ffiffiffiffi
�

p
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2�

16N2

s
1

R2
:

This result was found for a particular timelike trajectory
with a�a� ¼ 1=R2. Nevertheless, in classical electrody-

namics the radiated power depends on the kinematics only
through the square of the 4-acceleration, a�a� and as we

have seen, the same is true in theories with gravity duals for
particles in the fundamental, Eq. (3), and antisymmetric
representations, Eq. (5). It is then natural to conjecture that
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in the regime of validity of supergravity, the radiated power
by a particle in the symmetric representation following
arbitrary timelike motion is

PSk ¼
k

ffiffiffiffi
�

p
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2�

16N2

s
a�a�: (14)

It would be interesting to check this conjecture by find-
ing D3-branes that reach the AdS boundary at arbitrary
timelike trajectories and evaluating the corresponding
energies.

We now discuss the range of validity of this result, and
its possible relevance for the case of a particle in the
fundamental representation. By demanding that the radii
of the D3-brane are much larger than ls and that its back-
reaction can be neglected, one can conclude [7] that this

result can be trusted when N2=�2 � k � N=�3=4. It is
therefore not justified a priori to set k ¼ 1 in our result,
Eq. (14). Nevertheless, the Euclidean continuation of this
D3-brane was used in [7] to compute the VEVof a circular
Wilson loop, which for k ¼ 1 is known exactly for all N
and � thanks to a matrix model computation [17,24], and it
was found [7] that the D3-brane reproduces the correct
result in the large N, � limit with 	 fixed, i.e., even for
k ¼ 1. This better than expected performance (probably
due to supersymmetry) of the Euclidean counterpart of this
D3-brane in a very similar computation suggests the ex-
citing possibility that (14) might capture correctly all the
1=N corrections to the radiated power of a particle in the
fundamental representation, i.e., for k ¼ 1, in the limit of
validity of supergravity.

We are investigating whether the angular distributions of
the radiated energy obtained with this D3-brane and with
fundamental strings [14,15] differ qualitatively.

Finally, as already mentioned, the Euclidean version of
theD3-brane considered herewas used in [7] to evaluate the
VEVof a circular Wilson loop. That D3-brane result is in
turn only an approximation to the exact result, available for
allN and� thanks to amatrixmodel computation [17,24]. It
would be extremely interesting to understand whether the
radiated power of a particle coupled to a conformal gauge
theory can be similarly computed by a matrix model.
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1 Introduction

Exact results for generic 4d quantum field theories are extremely hard to come by. The

situation improves when one considers quantum field theories with additional symmetries,

as conformal invariance and/or supersymmetry, since these additional symmetries constrain

the parametric dependence of a variety of interesting quantities, that can sometimes be

determined exactly.

One of the most intensively studied theories with such additional symmetries is N = 4

SYM, which is both conformally invariant and maximally supersymmetric. Among its

local gauge invariant operators, one encounters the chiral primary operators (CPOs) and

their descendants, which fall into short multiplets of the superconformal algebra and enjoy

various special properties [2–4]. For the purposes of this work, we will be chiefly interested

in the supercurrent multiplet, whose CPO has scaling dimension ∆ = 2, since both the

Lagrangian density and the stress-energy tensor belong to this multiplet.

Among the non-local gauge invariant operators of N = 4 SYM, locally BPS Wilson

loops and Wilson lines have also been intensively studied over the years. They are char-

acterized by a contour in space-time and a representation of the gauge group, and their

vacuum expectation value has been computed exactly in a few cases [5–8]. Finally, there

have been a number of works devoted to computing correlation functions of Wilson loops

with local operators [9–11].

In a superficially different line of research, the behavior of external probes and the

response of the fields to such probes, both in vacuum and at finite temperature, have been

intensively scrutinized using the AdS/CFT duality [12, 13]. One first goal of the present

note is to continue the study of such computations, by presenting the evaluation of the

one-point function of the Lagrangian density in the presence of a static heavy probe in the

symmetric representation.1 A second, and in our opinion, farther reaching goal is to argue

that some of the questions that appear in the study of external probes can be answered

exactly, by relating them to the evaluation of certain correlation functions involving Wilson

loops and local operators. To be specific, we propose that from the two-point function of

1This computation appeared in our previous preprint [1], which has been superseded by the present work.
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the circular Wilson loop in the fundamental representation and the ∆ = 2 CPO, computed

exactly in [10] (and normalized by the vev of the circular Wilson loop computed in [5–

7]) one can read off the exact one-point functions of this CPO and (more importantly) its

descendants, in the presence of a heavy particle following either a static trajectory (straight

Wilson line) or a trajectory with constant proper acceleration (hyperbolic Wilson line). Up

to kinematic factors, these one-point functions are given by the following function

f(λ, N) =
λ

64π2N

L2
N−1(− λ

4N ) + L2
N−2(− λ

4N )

L1
N−1(− λ

4N )
(1.1)

where Lα
n are generalized Laguerre polynomials.

The structure of this note is as follows. In section 2 we review the study of external

probes within the framework of the AdS/CFT correspondence, and the computation of

various one-point functions of operators in the presence of such external probes. In section

3 we present2 the computation of the one-point function of the Lagrangian density for

a static heavy particle in the symmetric representation, by means of the study of the

perturbation of the dilaton profile caused by a certain D3-brane in the AdS5 background.

We note that the result that we obtain is, up to the respective kinematical factors, exactly

the same as in two previous D3-brane probe computations that have appeared in the

literature, a first one regarding the two-point function of a circular Wilson loop with a

particular chiral primary operator [11],3 and a second one devoted to the computation for

energy loss by radiation of a heavy particle in the symmetric representation [15]. Finally,

in section 4 we address why the results of these different computations ought to coincide,

and argue that their agreement holds for arbitrary representations of the gauge group and

beyond the D-brane probe approximation. This leads us to propose that existing exact

results [10] provide an exact formula for all those quantities.

Note Added: Quite recently, a very interesting preprint appeared [14] presenting

arguments, complementary to those provided here, for an exact formula for the radiation

of a moving quark in N = 4 SYM. While the possible connections between their and our

arguments remain to be fully sorted out, happily the proposed formulas for energy loss

exactly agree. Indeed, their formula depends on a function B(λ, N)

B(λ, N) =
1

2π2
λ∂λ log 〈W 〉

where 〈W 〉 is the vev of the circular Wilson loop obtained by a special conformal trans-

formation of the 1/2 BPS straight line, and computed exactly in [5–7]. Considering the

explicit form of 〈W 〉 [5–7], it is a simple matter to check that this function B is up to a

numerical factor our function f , eq. (1.1). In fact, using that

∂λL1
N−1

(
− λ

4N

)
=

1

4N
L2

N−2

(
− λ

4N

)

and L1
N−1 = L2

N−1 − L2
N−2 one easily sees that B = 4f , so the dependence on λ and N is

exactly the same.

2See footnote 1.
3We would like to thank N. Drukker for pointing out this reference to us, and for urging us to compare

our results with the ones that appear there.
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2 External probes in AdS/CFT

One of the many applications of the AdS/CFT correspondence is the study of the behavior

of external probes and the response of the fields to the presence of those probes. The first

example of such computations was the evaluation of the static quark-antiquark potential

in [16, 17] by means of a particular string configuration reaching the boundary of AdS.

Following those seminal works, the key idea of realizing external heavy quarks by strings in

the bulk geometry has been generalized in many directions. In particular, as we will briefly

review, probes transforming under different representations of the gauge group are holo-

graphically realized by considering different types of branes in the supergravity background.

An external probe in the fundamental representation of the gauge group is dual to a

string in the bulk. At least for the simplest implementations of this identification (i.e. in

the absence of additional scales like finite mass or non-zero temperature), the computed

observables reveal a common feature: if we identify at weak coupling λ as the analogous of

the charge squared, at strong coupling there is a screening of this charge, in the sense that

the results obtained are similar to the ones we would obtain in classical electrodynamics,

but with the strong coupling identification

e2
� ∼

√
λ (2.1)

This generic behavior stems from the fact that the Nambu-Goto action evaluated for world-

sheet metrics embedded in AdS5 goes like

SNG = − 1

2πα′

∫
d2σ

√
−|g| = −

√
λ

2πL2

∫
d2σ

√
−|g|

where L is the AdS5 radius which generically cancels out from this expression when specific

world-sheet metrics are plugged-in. Some examples of this are the original quark-antiquark

potential [16, 17], the expectation value of gauge invariant operators in the presence of a

particle at rest [18, 19] or following arbitrary motion [20–24], and the formula for energy

loss by radiation [25].

This leading
√

λ result is expected to receive 1/N and 1/
√

λ corrections. The compu-

tation of 1/
√

λ corrections is addressed for instance in [26–29]. As it turns out, a possible

venue to compute results that capture 1/N corrections is to switch to probes transforming

in higher rank representations of the gauge group. It is by now well understood that on

the gravity side these probes are realized by D3 and D5 branes. Specifically, the duals of

particles in the symmetric or antisymmetric representations of the gauge group are given by

D3 and D5 branes respectively, with world-volume fluxes that encode the rank of the rep-

resentation [30–33]. One of the novel features of this identification is that some computed

observables are functions of k/N , where k is the rank of the symmetric/antisymmetric

representation. This allows to explore the AdS/CFT correspondence beyond the leading

large N , large λ regime.

While the holographic prescription is in principle equally straightforward for the study

of probes in the symmetric and the antisymmetric representations, when it comes to actual

– 3 –
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computations we currently face more difficulties in the symmetric case than in the antisym-

metric one. One of the reasons behind this difference comes from the existence of a quite

universal result for the embedding of D5 branes in terms of embeddings of fundamental

strings, due to Hartnoll [34]: given a string world-sheet that solves the Nambu-Goto action

on an arbitrary Ricci flat manifold M , there is a quite general construction that provides

a solution for the D5-brane action in M × S5, of the form Σ × S4 where Σ →֒ M is the

string world-sheet and S4 →֒ S5. This gives a link between the string used to describe a

particle in the fundamental representation and the D5 brane used to represent a probe in

the antisymmetric representation. Moreover,

√
λ → 2N

3π
sin3 θk

√
λ ∼ e2

Ak
(2.2)

where θk denotes the angle of S4 inside S5 and is the solution of [35, 36]

sin θk cos θk − θk = π

(
k

N
− 1

)

This identification is supported by explicit computations of Wilson loops [32, 34] which

match matrix model computations [37], energy loss by radiation in vacuum [15] and in a

thermal medium [38], or the impurity entropy in supersymmetric versions of the Kondo

model [39, 40].

On the other hand, for probes in the symmetric representation we currently don’t

have a generic construction that links the string that realizes a particle in the fundamental

representation with a D3 brane that realizes a probe in the symmetric representation.

Furthermore, while the observables analyzed so far in the symmetric representation seem

to depend on the combination

κ =
k
√

λ

4N
(2.3)

introduced in [41], they do not display a common function that replaces the
√

λ dependence

of the fundamental representation. For instance, in the computation of the energy loss by

radiation in vacuum of a particle moving with constant proper acceleration, it was found

in [15] that
√

λ → 4Nκ
√

1 + κ2 = k
√

λ

√
1 +

k2λ

16N2

?∼ e2
Sk

(2.4)

while for the vev of a circular Wilson loop, it was found that [41]

√
λ → 2N

(
κ
√

1 + κ2 + sinh−1 κ
)

While both functions expanded as a power series in κ start with the common term

k
√

λ (i.e. k times the result for the fundamental representation) they are clearly different

beyond this leading order.

In order to shed some light on the issue of observables for probes in the symmetric

representation, in the next section we will compute the expectation value of the Lagrangian

density in the presence of an infinitely heavy half-BPS static particle, transforming in

– 4 –
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the k-symmetric representation of N = 4 SU(N) SYM. This operator is sourced by the

asymptotic value of the dilaton [42, 43] (we follow the conventions of [24]) ,

OF 2 =
1

2g2
Y M

Tr
(
F 2 + [XI , XJ ][XI , XJ ] + fermions

)

On general grounds, in the presence of a static probe placed at the origin, and transforming

in the R representation of the gauge group, the one-point function will be of the form

〈OF 2(~x)〉R =
fR(λ, N)

|~x|4

and our objective is to compute the dimensionless function fSk
(λ, N) when the probe

transforms in the k-symmetric representation of SU(N). By analogy with the Coulombic

case, one might refer to fSk
(λ, N) as the square of the “chromo-electric” charge of the heavy

particle. To carry out this computation we will consider a particular half-BPS D3-brane

embedded in AdS5 × S5 and analyze the linearized perturbation equation for the dilaton,

with the D3-brane acting as source. The advantage of considering this operator is that the

perturbation equation of the dilaton decouples from the equations for the metric and RR

field perturbations, so its study is quite straightforward.

The analogous computation for a particle in the fundamental representation was carried

out some time ago, considering in that case the perturbation equation for the dilaton

sourced by a fundamental string [18, 19]. For future reference, let’s end this section by

quoting their final result in our conventions,

〈OF 2(~x)〉� =

√
λ

16π2

1

|~x|4 (2.5)

3 Static fields via a probe computation

In this section we will present the details of the computation of 〈OF 2〉 in the presence of

a static heavy probe transforming in the symmetric representation. We will first compute

the linearized perturbation of the dilaton field caused by the D-brane probe, and from

its behavior near the boundary of AdS5 we will then read off the vev of OF 2 . Our com-

putations will closely follow the ones presented in [18, 19] for the case of a probe in the

fundamental representation.

We work in Poincaré coordinates and take advantage of the spherical symmetry of the

problem

ds2
AdS5

=
L2

z2

(
dz2 − dt2 + dr2 + r2dθ2 + r2 sin2 θdϕ2

)

The D3-brane we will be interested in was discussed in [16, 41]. It reaches the boundary

of AdS (z = 0 in our coordinates) at a straight line r = 0, which is the world-line of the

static dual particle placed at the origin. Since we let the D3 brane reach the boundary,

the static particle is infinitely heavy. To describe the D3-brane, identify (t, z, θ, ϕ) as the

world-volume coordinates. Then the solution is given by

r = κz Ftz =

√
λ

2π

1

z2

– 5 –
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with κ as defined in eq. (2.3). As shown in detail in [41] this D3-brane is 1/2-BPS.

Our next step is to consider at linear level the backreaction that this D3-brane induces

on the AdS5 × S5 solution of IIB supergravity. More specifically, since the dilaton is

constant in the unperturbed solution, and its stress-energy tensor is quadratic, at the

linearized level the equation for the perturbation of the dilaton decouples from the rest of

linearized supergravity equations. As in [18, 19], we work in Einstein frame, and take as

starting point the action

S = −Ω5L
5

2κ2
10

∫
d5x

√
−|gE |1

2
gmn
E ∂mφ∂nφ − TD3

∫
d4ξ

√
−|GE + e−φ/22πα′F |

The resulting equation of motion can be written

∂m

(√
−|gE |gmn

E ∂nφ
)

= J(x)

with the source defined by the D3-brane solution

J(x) =
TD3κ

2
10

Ω5L

κ sin θ

z2
δ (r − zκ)

To compute φ(x) we will use its Green function D(x, x′)

φ(x) =

∫
d5x′ D(x, x′) J(x′)

It is convenient to write D(x, x′) purely in terms of the invariant distance v defined by

cos v = 1 − (t − t′)2 − (~x − ~x′)2 − (z − z′)2

2zz′ (3.1)

The explicit expression for D(v) can be found for instance in [18]

D =
−1

4π2L3 sin v

d

dv

(
cos 2v

sin v
Θ(1 − | cos v|)

)

To carry out the integration, we follow the same steps as [18]. We first define a rescaled

dilaton field,

φ̃ ≡ Ω5L
8

2κ2
10

φ

and use eq. (3.1) to change variables from t′ to v to obtain, after an integration by parts

φ̃ =
Nκz2

16π4

∫ ∞

0
dr′

∫ π

0
dθ′ sin θ′

∫ 2π

0
dϕ′

∫ ∞

0

dz′ δ(r′ − z′κ)

(z2 + z′2 + (~x − ~x′)2)
3
2

×

×
∫ π

0

dv cos 2v
(
1 − 2zz′ cos v

z2+z′2+(~x−~x′)2

) 3
2

The integral over v is the same one that appeared in the computation of the perturbation

caused by a string dual to a static probe [19]. The novel ingredient in the computa-

tion comes from the non-trivial angular dependence in the current case. While it might

– 6 –
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be possible to completely carry out this integral, at this point it is pertinent to recall

that to compute the expectation value of the dual field theory operator, we only need

the leading behavior of the perturbation of the dilaton field near the boundary of AdS5.

Specifically [18],

〈OF 2〉 = − 1

z3
∂zφ̃|z=0 (3.2)

so for our purposes it is enough to expand the integrands in powers of z, and keep only the

leading z4 term. This simplifies the task enormously, and reduces it to computing some

straightforward integrals. Skipping some unilluminating steps we arrive at

φ̃ =
Nκ

16π2

z4

(z2 + r2)2
1

(1 + κ2)3/2

1
(
1 − κ2

1+κ2
r2

r2+z2

)2 + O(z5)

which upon differentiation, and setting then z = 0 as required by eq. (3.2), leads to our

final result

〈OF 2〉Sk
=

Nκ
√

1 + κ2

4π2

1

|~x|4 =
k
√

λ

16π2

√
1 + k2λ

16N2

|~x|4 (3.3)

to be compared with the result for the fundamental representation (2.5).

4 Exact results for static and radiative fields

The coefficient that appears in the one-point function (3.3) computed in the previous

section has appeared before in the literature, at least in two different computations. Let us

review them in turns. The first place where this coefficient appears is in the computation

of the large distance behavior of the correlation function of a circular Wilson loop in the

symmetric representation with the ∆ = 2 chiral primary operator by means of a D3-

brane [11]. A circular Wilson loop of radius R can be expanded in terms of local operators

when probed from distances D much larger than its radius, and the coefficients appearing

in this OPE can be read off from the large distance behavior of the two-point function of

the Wilson loop and the local operators [44]

〈W (C)On〉
〈W (C)〉 = cn

R∆n

D2∆n
+ . . .

The authors of [11] computed the coefficients cn in the case that the local operators are

chiral primary operators given by symmetric traceless combinations of scalar fields, and

for a Wilson loop in the symmetric or antisymmetric representation. For the symmetric

representation and in their normalization4 for On, they obtained (eq. (4.20) in [11])

cGRT
Sk,∆ =

2∆/2+1

√
∆

sinh(∆ sinh−1 κ)

4[11, 44] consider CPOs whose two-point function is unit-normalized [3].

– 7 –
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In the previous section we computed a one-point function for the Lagrangian density, which

belongs to the same short multiplet as the chiral primary operator with ∆ = 2, so we are

interested in comparing our result with the previous formula for ∆ = 2

cGRT
Sk,2 = 4

√
2κ

√
1 + κ2 (4.1)

which displays the same dependence in λ and N as our result (3.3), except for the overall

differing normalization conventions for O2 (as a check, both results reproduce in the cor-

responding limit the previously known results for the fundamental representation, k = 1).

We are now going to argue that this agreement can be understood as following from

generic properties of N = 4 SYM, and it is a reflection of exact relations among expectation

values of various operators. These relations are valid for any representation of the gauge

group, and beyond the regime of validity of the D-brane probe computation. Our argument

proceeds in three steps: first, we notice that the one-point function of an operator in the

presence of an external probe is equivalent to the two-point function of the operator with

the corresponding Wilson loop, normalized by the vev of the Wilson loop.

As the second step in our argument, we claim that the coefficient that appears in the

normalized two-point function of a circular Wilson loop with a CPO is the same that the

one that appears in the (trivially, since 〈W 〉 = 1 for the straight line) normalized two-

point function of a straight line Wilson loop with the same CPO. One argument5 is that

when one performs the conformal transformation from the circle to the straight line, the

whole anomalous contribution comes from diagrams where some gluon has both ends of its

propagator hitting the origin, the space-time point in the contour being sent to infinity by

the conformal transformation (see sections 2.2 and 2.3 of the second reference in [5–7] for

a detailed discussion). Diagram by diagram, the contributions from these gluons factorize

from the rest of the diagram; furthermore the localization results of the third reference in [5–

7] rigurously prove that the resulting matrix model is Gaussian, so gluons in interacting

vertices don’t contribute to the anomaly. Therefore, the full anomalous contribution is

insensitive to the rest of the diagram, which implies that both the two-point function and

the vev of the Wilson loop pick up the same anomalous contribution, so it will cancel in

the ratio.

Finally, since the Lagrangian density and the stress-energy tensor are descendants of

O2, we expect that their normalized two-point functions with the circular Wilson loop are

determined by the same coefficient as the normalized two-point function of O2.

This line of reasoning explains the agreement found between results (3.3) and (4.1),

obtained in the D-brane probe approximation for external sources in the symmetric rep-

resentation, but goes well beyond this particular case. If we are somehow able to exactly

compute the normalized two-point function of O2 and the 1/2 BPS circular Wilson loop

in some representation, we claim that this also gives the exact one-point function of the

Lagrangian density or the stress-energy tensor in the presence of a heavy particle in that

representation. Luckily, some of the relevant computations have already been performed;

for instance, in [10], Okuyama and Semenoff computed the exact two-point function of a

5due to N. Drukker (private communication).
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circular Wilson loop in the fundamental representation and a chiral primary operator, by

means of a normal matrix model. In particular, for the unit-normalized chiral primary

operator O2 they obtain (eq. (4.5) in [10])

〈W (C)�O2〉 =

√
2λ

4N3

[
L2

N−1

(
− λ

4N

)
+ L2

N−2

(
− λ

4N

)]
e

λ
8N

so after normalizing by the vev of the circular Wilson loop computed in [5–7] we obtain

c2 =
〈W (C)�O2〉
〈W (C)�〉 =

√
2λ

4N2

L2
N−1(− λ

4N ) + L2
N−2(− λ

4N )

L1
N−1(− λ

4N )

The authors of [11] already showed that this matrix model result reduces in the corre-

sponding limit to the one computed with the D3-brane probe approximation, eq. (4.1).

Furthermore, in the planar limit it reproduces the result of [9]. Applying the reasoning

presented above, we therefore propose that the exact one-point function of OF 2 in the

presence of a heavy probe in the fundamental representation is given by

〈OF 2(~x)〉� =
λ

64π2N

L2
N−1(− λ

4N ) + L2
N−2(− λ

4N )

L1
N−1(− λ

4N )

1

|~x|4 (4.2)

This is one of our main results. It reduces in the large λ, large N limit to the known

result (2.5). More than that, as argued in [15, 41] the range of validity of the probe

computation is N2/λ2 ≫ k ≫ N/λ3/4, so a priori it does not include setting k = 1 (i.e.

considering the fundamental representation); if we nevertheless go ahead and set k = 1, it

can be checked that (3.3) correctly captures the large λ, large N limit with κ fixed of (4.2).

This type of agreement between a matrix model result and a D3-brane computation, beyond

the expected regime of validity of the D-brane probe approximation, has been observed

before [41].

So far we have been discussing static sources. Let’s now turn to particles undergoing

accelerated motion, where we will encounter for the second time that the coefficient of

the one-point function (3.3) computed in the previous section had appeared before in the

literature. In [15], two of the present authors computed the energy loss by radiation of an

infinitely heavy particle transforming in the symmetric or antisymmetric representation, in

the large λ, N , fixed κ limit. For the symmetric representation, it was possible to carry out

the computation only for the particular case of a particle undergoing motion with constant

proper acceleration, and the total radiated power obtained was [15]

PSk
=

2Nκ

π

√
1 + κ2

1

R2
(4.3)

where R appears in the hyperbolic trajectory −(x0)2 +(x1)2 = R2. Note that again, apart

from kinematic factors, the coefficient that appears in the total radiated power, eq. (4.3),

is the same one as in the one-point function computed in the previous section, eq. (3.3) and

in the two-point function of the circular Wilson loop with O2, eq. (4.1). The agreement

between coefficients in eq. (4.3) and in eq. (4.1) is perhaps not too surprising from the

field theory point of view, since the radiated power can be read off from the stress-energy
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tensor, which as already mentioned is in the same short multiplet as O2, and the D3-brane

corresponding to hyperbolic motion [15] is just the continuation to Lorentzian signature of

the Euclidean D3-brane used to compute the vev of the circular Wilson loop [41]. Let us

nevertheless note that from the point of view of the D3-brane computations, this agreement

was not a foregone conclusion, even if the D3-branes used in these three computations are

related by a conformal transformation and/or continuation to Lorentzian signature. For

instance, the energy loss computation in [15] captured physics of radiative fields, encoded

in the bulk by the presence of a horizon in the world-volume of the D3-brane, while in the

computation of the previous section, the physics of static fields is captured by the behavior

near the AdS boundary, and the D3-brane world-volume has now no horizon.

Furthermore, this agreement between the coefficient of radiated power and the two

point function of the circular Wilson loop with O2 also takes place for the antisymmetric

representation, at least at the D-brane probe computation. This can easily be checked

by comparing the relevant results obtained respectively in [15] and [11], by means of D5-

brane probes.

This second agreement in the coefficients of eq. (3.3) and eq. (4.3), or perhaps more

directly between eq. (4.3) and eq. (4.1), leads us again to propose that given a particular

representation of the gauge group, the full coefficients are exactly the same. In particular

this proposal implies that the exact formula for radiated power of an infinitely heavy particle

transforming in the fundamental representation and undergoing hyperbolic motion, valid

for arbitrary values of N and λ is

P =
λ

8πN

L2
N−1(− λ

4N ) + L2
N−2(− λ

4N )

L1
N−1(− λ

4N )

1

R2
(4.4)

This is our second main result in this section. It reduces in the large λ, large N limit to

the one obtained by Mikhailov [25]. Furthermore, if we again set k = 1 in the result of the

D3-brane probe computation for the k-symmetric representation, eq. (4.3), we obtain an

agreement in the large λ, large N , fixed κ limit, even though k = 1 is beyond the regime

of validity of the computation [15] yielding (4.3).

Let us conclude this paper by commenting on the possibility that the previous for-

mula (4.4) for total radiated power might be valid not only for hyperbolic motion, but

for an arbitrary timelike trajectory, with the obvious substitution 1/R2 → aµaµ. A first

piece of evidence is that Mikhailov’s computation [25] of the total radiated power for ar-

bitrary timelike trajectories does indeed give a common
√

λ coefficient, independent of the

trajectory. Some further evidence beyond the leading large N, large
√

λ result is given by

the fact that for particles in the antisymmetric representation, the D5-brane computation

in [15] again gives a Liénard-type formula for the total radiated power. This issue deserves

further attention.
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1 Introduction

One of the possible ways to study gauge theories is to introduce heavy external probes,

following prescribed trajectories. These external probes can transform under various rep-

resentations of the gauge group, and can also be coupled to additional fields, besides the

gauge potential. A common tool to implement this idea is the use of Wilson loops, where

the contour of the loop is given by the world-line of the probe. Wilson loops are among the

most interesting operators in a gauge theory, but in general computing their expectation

value or their correlation functions with other operators is prohibitively difficult. On the

other hand, for gauge theories with additional symmetries (e.g. conformal symmetry and/or

supersymmetry) and for particular contours, a variety of techniques allows to prove exact

relations among various correlators involving line operators, and sometimes also evaluate

exactly these quantities [1–7].

In this work we will be concerned with external probes coupled to a four dimensional

conformal field theory (CFT), following either a static or a hyperbolic trajectory in vacuum.

The probes can transform in an arbitrary representation of the gauge group, and when we

consider probes transforming in the fundamental representation, we will often refer to them

as quarks. We will extend recent work [8, 9] that provides exact relations among various

observables related to these probes. In the particular case of N = 4 U(N) or SU(N) SYM,

these exact relations will allow us to compute explicitly the momentum diffusion coefficient

of an accelerated quark in vacuum, a transport coefficient than until now was only known

in the limit of large N and large ’t Hooft coupling λ = g2
YMN .
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The first observable that appears in our discussion is the energy emitted by a moving

quark in accelerated motion, which for small velocities can be written as a Larmor-type

formula

∆E = 2πB(λ,N)

∫
dt (v̇)2 , (1.1)

where B(λ,N) is a dimensionless function independent of the kinematics that was dubbed

the Bremsstrahlung function in [8].

One can also consider inserting operators on the world-line of the probe [10–13]. These

operators localized on the world-line are not gauge singlets; nevertheless, their correlation

functions evaluated on the world-line are gauge invariant. If the world-line is a straight

line, it preserves a SL(2,R)×SO(3) subgroup of the original group [14, 15],1 and world-line

operators can be classified according to representations of SL(2,R)×SO(3). Among them,

the so called displacement operators Di(t) i = 1, 2, 3 [8] will play a prominent role in this

work. These are operators defined for any line defect in any conformal field theory, that

couple to small deviations of the world line, orthogonal to it. They form a SO(3) triplet and

their scaling dimension ∆ = 2 is protected for all values of the coupling, so their two-point

function evaluated on a static world-line has the form

〈〈Di(t)Dj(0)〉〉 = γ̃(λ,N)
δij
t4
, (1.2)

where again γ̃(λ,N) is a dimensionless coefficient and the double ket denotes evaluation

on the world-line (see below for a precise definition). Physically, we will interpret cor-

relators of these displacement operators as giving momentum fluctuations of the probe,

an interpretation that has appeared before in the literature [16, 17] although not in this

language.

A crucial point for what follows is that the two coefficients in (1.1) and (1.2) are exactly

related by [8]

γ̃ = 12B (1.3)

for any CFT and any straight line defect operator (Wilson loop, ’t Hooft loop,. . . ). This

relation is claimed to be exact, valid for any value of the coupling constant, any gauge

group and any representation of the gauge group. While it is important to appreciate that

this Bremsstrahlung function appears in various observables related to probes coupled to

CFTs, it is also important to actually compute it for different line operators in different

interacting CFTs. Currently, this has only been done for a probe in the fundamental

representation of N = 4 U(N) or SU(N) SYM, for which the Bremsstrahlung function

B(λ,N) was recently computed in [8, 9] and is given by

BU(N)(λ,N) =
λ

16π2N

L2
N−1

(
− λ

4N

)
+ L2

N−2

(
− λ

4N

)

L1
N−1

(
− λ

4N

) , (1.4)

1This is the common group preserved by any line defect in any CFT. For particular CFTs with bigger

symmetry groups, the preserved group might be much larger.
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where the Lαn are generalized Laguerre polynomials. It is worth emphasizing that this

formula is valid for any value of λ and N , and its derivation ultimately relies on localization

techniques. In various limits, it can be checked using the AdS/CFT correspondence [18, 19]

or Bethe ansatz techniques [20–23]. To obtain the result for the SU(N) theory, we have to

subtract the U(1) contribution [8]

BSU(N) = BU(N) −
λ

16π2N2
.

The main observation of this paper is that the coefficient γ̃ in (1.2) also controls the

two-point function of displacement operators when the probe is undergoing motion with

constant proper acceleration a = 1/R, since this hyperbolic world-line is related to the

static one by a special conformal transformation. As it is well-known, a particle moving with

constant proper acceleration in vacuum will feel an Unruh temperature T = a/2π [24]. The

thermal bath felt by the accelerated particle will cause momentum fluctuations, and these

can be encoded in a particular transport coefficient, the momentum diffusion coefficient,

defined as the zero frequency limit of the two-point function of displacement operators in

momentum space,

κij ≡ lim
w→0

∫ ∞

−∞
dτe−iwτ 〈〈Di(τ)Dj(0)〉〉 ,

where τ is the proper time of the accelerated probe. Since the hyperbolic trajectory still

preserves a SL(2,R) × SO(3) subgroup of the original group [14, 15], by isotropy there is

only a single transport coefficient as seen by the accelerated observer, κij = κδij , and a

straightforward computation yields

κ = 16π3B(λ,N)T 3 . (1.5)

This is one of the main results of this paper; it relates the momentum diffusion coeffi-

cient of an accelerated heavy probe in the vacuum of a 4d CFT with the corresponding

Bremsstrahlung function, eq. (1.1), and Unruh temperature. We claim that this result is

exact for any 4d CFT, for any value of λ and N and for any representation of the gauge

group. In the particular case of a heavy probe in the fundamental representation of N = 4

U(N) or SU(N) SYM, since B(λ,N) is given exactly by (1.4), the relation (1.5) provides

an explicit expression for the momentum diffusion coefficient. Furthermore, the result thus

obtained can be subjected to a non-trivial check, since for N = 4 SYM , κ has been

computed in the large λ, planar limit by means of the AdS/CFT correspondence [25, 26].

Reassuringly, in the corresponding limit our result reduces to the previoulsy known one.

Having obtained the exact two-point function of momentum fluctuations of an accel-

erated heavy quark in the vacuum of N = 4 SU(N) SYM, it’s tempting to ask whether

we can use it to learn something about momentum fluctuations of a heavy quark in the

midst of a finite temperature N = 4 SU(N) SYM plasma. This is a problem that has

been extensively scrutinized in the context of the AdS/CFT correspondence [16, 27–29]

(see [30–32] for reviews), as a possible model for the momentum fluctuations of a heavy

– 3 –
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quark traversing the quark-gluon plasma. In general, while an accelerated probe in vac-

uum registers a non-zero temperature, its detailed response differs from that of a probe

in a thermal bath; in particular their respective retarded Green functions and momentum

diffusion coefficients are different. Nevertheless, if we take the guess

κexact
Unruh

κSUGRA
Unruh

≈ κexact
thermal

κSUGRA
thermal

for some range of values of λ as a working hypothesis, we can estimate κexact
thermal in that

range of values of λ, since now the other three quantities in the relation above are known.

The plan of the paper is as follows. In section 2 we recall the definition of displace-

ment operators, and we interpret their correlation functions as characterizing momentum

fluctuations of the probe. We then go on to compute their exact two-point function for

an accelerated infinitely heavy probe coupled to a CFT, and extract from it the momen-

tum diffusion coefficient. In section 3, we use the AdS/CFT correspondence to verify the

relation (1.3) in the particular case of N = 4 SU(N) SYM for static heavy probes in the

fundamental and the symmetric representation. In section 4 we again use the AdS/CFT

correspondence, now to compute the momentum diffusion coefficient of accelerated probes,

in the fundamental and in the symmetric representations, and check that the results ob-

tained are compatible with the exact result. Finally, in section 5 we explicitly evaluate the

momentum diffusion coefficient for an accelerated quark coupled to N = 4 SU(3) SYM.

We then evaluate the error introduced when one uses the supergravity expression instead

of the exact one, and end by commenting on possible implications for the study of heavy

quarks in a thermal bath.

2 Momentum fluctuations and displacement operators

Consider a heavy probe coupled to a four dimensional conformal field theory. This probe

transforms in some representation of the gauge group, and perhaps it is also coupled to

additional fields, as it is the case for 1/2 BPS probes of N = 4 SYM [33, 34]. Since

we are considering a heavy probe, we will represent it by the corresponding Wilson line.

In this section we will first recall the definition of certain operators inserted along the

world-line, the displacement operators, and argue that their physical interpretation is that

of momentum fluctuations due to the coupling of the probe to the quantum fields. We

will then focus on the two-point function of such displacement operators for static and

accelerated world-lines.

To define the displacement operators [8], consider a given Wilson loop, parameterized

by t and perform an infinitesimal deformation of the contour δxµ(t), orthogonal to the

contour δ~x(t) · ~̇x(t) = 0. This deformation defines a new contour, and the displacement

operator Di(t) is defined as the functional derivative of the Wilson loop with respect to

this displacement [35]. In particular, the infinitesimal change can be written as

δW = P

∫
dtδxj(t)Dj(t)W . (2.1)
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These operators, and in general other local operators inserted on the world-line, are not

gauge invariant. Nevertheless, their n-point functions, evaluated over the world-line are

gauge invariant, e.g.

〈〈Di(t1)Dj(t2)〉〉 =
< Tr[PDi(t1)ei

∫ t1
t2
A·dx Dj(t2)ei

∫ t2
t1
A·dx] >

< Tr[Pei
∮
A·dx] >

.

What is the physical interpretation of these operators? In general, when we introduce

an external heavy probe, its classical trajectory is fixed, giving the contour of the corre-

sponding Wilson line. At the quantum level, this trajectory will suffer fluctuations due to

its coupling to quantum fields. By definition, these small deformations in the contour δxi(t)

are coupled to the displacement operators, so we identify these operators as forces causing

momentum fluctuations. This identification is valid for general quantum field theories (not

just conformal ones), and it has appeared before in the literature [16, 17]. For instance, if

we consider a charged particle coupled to a U(1) Maxwell field and moving with 4-velocity

Uµ, the Lorentz force is qFµνU
ν and the displacement operators are

Dµ = qFµνU
ν .

Since UµDµ = 0, we see explicitly that displacement operators are transverse to the world-

line. This is easily generalized to additional couplings to scalar fields. For instance, a

particularly relevant example for what follows is the 1/2 BPS Wilson loop of N = 4 SYM,

W = 1
N tr Pei

∫
A+

∫
~n·~φ, for which the displacement operator is

Dj = iFtj + ~n · ∂j~φ .

When the gauge theory under consideration is conformal, there is more we can say

about displacement operators. Let’s start by considering the world-line corresponding to a

static probe, a straight line parameterized by t. In any conformal field theory, any straight

line defect (or for that matter, any circular defect in Euclidean signature) preserves a

SL(2,R) × SO(3) symmetry group of the original conformal group [14, 15], so operators

inserted on the world-line are classified by their SL(2,R) × SO(3) quantum numbers. In

particular, displacement operators Di(t) form a SO(3) triplet, and since δxi and t have

canonical dimension, we learn from eq. (2.1) that displacement operators have scaling

dimension ∆ = 2, and this dimension is protected against corrections. This fixes their

two-point function evaluated on a straight line to be of the form

〈〈Di(t)Dj(0)〉〉 = γ̃
δij
t4
. (2.2)

Let’s now consider a heavy probe moving with constant proper acceleration a = 1/R in one

dimension. It is a textbook result that the resulting trajectory is the branch of a hyperbola

in spacetime, which can be written as

x̃0(τ) = R sinh
τ

R
x̃1(τ) = R

(
cosh

τ

R
− 1
)
. (2.3)
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Furthermore, for a conformal field theory, this hyperbolic world-line can be obtained by

applying the following special conformal transformation to a static world-line

x̃µ =
xµ − x2bµ

1− 2x · b+ b2x2
with bµ = (0,

1

2R
, 0, 0) . (2.4)

The Euclidean counterpart of this statement is that a special conformal transformation can

bring a straight line into a circle. This hyperbolic world-line also preserves a SL(2,R) ×
SO(3) symmetry group of the original conformal group [14, 15]. The two-point function of

displacement operators in terms of these coordinates is

〈〈Di(x̃)Dj(0)〉〉 = γ̃
δij
x̃2∆

. (2.5)

Recalling that ∆ = 2 for displacement operators and using (2.3), this two-point function

can be immediately written in terms of the proper time of the heavy probe as

〈〈Di(τ)Dj(0)〉〉 = γ̃
δij

16R4 sinh4
(
τ

2R

) , (2.6)

where the coefficient γ̃ is the same as for the two-point function evaluated on a straight

line, eq. (2.2). This is required so at very short times, when τ/2R � 1, we recover the

result for the straight line, eq. (2.2).

On the other hand, the two-point functions (2.2) and (2.6) ought to reflect the very

different physics felt by a static and an accelerated probe. In particular (2.6) captures the

response of the accelerated probe to the non-zero Unruh temperature. To display this, we

will now compute the Fourier transform of (2.6) and extract the corresponding transport

coefficient. To compute the Fourier transform of (2.6), we notice that it presents poles

in the τ complex plane whenever τ = 2πinR, n ∈ Z. Using the same pole prescription

as in [8], we follow [36] and choose the integration contour displayed in figure (1). A

straightforward computation then yields

G(w)ij =

∫ ∞

−∞
dτe−iwτ 〈〈Di(τ)Dj(0)〉〉 = γ̃δij

∫ ∞

−∞
dτ

e−iwτ

16R4 sinh4
(
τ

2R

) = γ̃δij
2π

3!

w
R2 + w3

e2πwR − 1
.

This Green function displays a thermal behavior with temperature T−1 = 2πR, i.e. the

usual Unruh temperature. Note that this temperature depends only on the kinematics,

not on dynamical aspects of the theory (e.g. it is coupling independent) [37].

We can take the zero frequency limit of this two-point function to obtain the momen-

tum diffusion coefficients κij . In fact, since the hyperbolic trajectory preserves a SO(3)

symmetry, there is a single transport coefficient κij = κδij given by2

κ = lim
w→0

G(w) = 16π3B(λ,N)T 3 . (2.7)

2This transport coefficient is usually obtained from the retarded Green function,

κ = lim
w→0

−2T

w
Im GR(w) .

Since for a static particle in a thermal bath, G(w) = −coth w
2T

Im GR(w), in that case the two expressions

are equivalent.
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2πRi

Im τ

Re τ

Figure 1. Integration contour for the Fourier transform of the two-point function of displacement

operators.

This expression gives the momentum diffusion coefficient of an accelerated heavy probe in

terms of the corresponding Bremsstrahlung function, eq. (1.1) and the Unruh temperature

T . It is valid for any four-dimensional CFT, and for any heavy probe. Notice that if we

Fourier transform the two-point function evaluated on the straight line, eq. (2.2), we obtain

that the Green function is proportional to |w|3 [8, 17] so, as expected, the momentum

diffusion coefficient defined as in (2.7) vanishes for a particle moving in vacuum with

constant speed.

In the particular case of N = 4 SYM, the AdS/CFT correspondence provides the

possibility of carrying out a non-trivial check of eq. (2.7). On the one hand, in the planar

limit and for large λ, using the asymptotic value of B →
√
λ

4π2 , eq. (2.7) reduces to

κ→ 4π
√
λT 3 . (2.8)

On the other hand, in this regime, one can use the AdS/CFT correspondence to compute

this transport coefficient in an alternative fashion. The heavy probe is dual to a string

reaching the boundary of AdS5 at the hyperbolic world-line. Analysis of the fluctuations

of this classical string solution allows to compute the relevant two-point function [25, 26]

and from it extract the momentum diffusion coefficient [25, 26] (see also section 4), which

precisely reproduces the result above, eq. (2.8). The dependence on T was bound to agree,

since is dictated by dimensional analysis, and the
√
λ dependence is ubiquitous in AdS/CFT

probe computations using fundamental strings (see e.g. [9] for a discussion of this point),

but the agreement on the numerical coefficient 4π in (2.8) is a non-trivial check.

3 Static probes in AdS/CFT

In this section we intend to verify the relation (1.3) for the particular case of N = 4

SYM by means of the AdS/CFT correspondence. To do so, we will compute separately γ̃

and B, and check that they are indeed related by γ̃ = 12B. This relation ought to hold
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for a probe transforming in any representation of the gauge group, and we will perform

this check for a heavy probe in the fundamental and in the k-symmetric representations.

On the gravity side this corresponds to considering respectively a string and a D3-brane

embedded in AdS5 and reaching the boundary at a straight line. Performing the check for

the k-symmetric representation has an interesting plus: while in principle the computation

with the D3-brane can’t be trusted in the limit when we set k = 1 (i.e. we go back to

the fundamental representation), by now there are a number of examples [9, 19, 38, 39]

where it is known that this procedure nevertheless correctly captures corrections in the

large λ, large N limit with fixed
√
λ/N . Given that we already know the exact expression

of B(λ,N) for this probe, eq. (1.4), we will be able to verify that this offers yet another

example where a D3-brane probe computation correctly captures all order corrections to

the leading large λ large N result.

3.1 Fluctuations of a static string in AdS5

The fluctuations of a static string in AdS5 have been computed in many previous works [40–

42], so we will be brief. We will work with the Nambu-Goto action in the static gauge,

and will be concerned only with the bosonic fluctuations of the transverse coordinates in

AdS5, which we identify as dual to the world-line displacement operators.

Start by writing AdS5 in Poincaré coordinates

ds2
AdS5

=
L2

y2

(
dy2 − dt2 + d~x2

)
. (3.1)

The relevant classical solution to the NG action is given by identifying the world-sheet

coordinates with (t, y). The induced world-sheet metric is AdS2 with radius L. We now

turn to the quadratic fluctuations around this solution, and focus on the fluctuations of the

transverse coordinates in AdS5, xi, i = 1, 2, 3. To make manifest the geometric content of

these fluctuations, it is better to switch to φi = L
y x

i. The Lagrangian density for quadratic

fluctuations is then

L =
−1

2πα′

(
−1

2
∂t~φ ∂t~φ+

1

2
∂y~φ ∂y~φ+

1

y2
(~φ)2

)
, (3.2)

so the equation of motion for the fluctuations is

−∂2
t φ

i + ∂2
yφ

i − 2

y2
φi = 0

from where we learn that the three transverse fluctuations in AdS5 are massive m2 = 2/L2

scalars in the AdS2 world-sheet [41, 42]. Furthermore, it can also be seen that the five

fluctuations of S5 coordinates are massless [41, 42]. The bosonic symmetries preserved by

the classical string solution are SL(2,R)× SO(3)× SO(5), which is the bosonic part of the

supergroup OSp(4∗|4) [43, 44]. Therefore, fluctuations should fall into representations of

this supergroup, and indeed it is shown in [45] that together with the fermionic excitations

they form an ultra-short multiplet.

These bosonic fluctuations are massive and massless scalars in the AdS2 world-sheet,

and according to the AdS/dCFT correspondence, “holography acts twice” [46] and they
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source dual operators in the boundary of AdS2, which is just the heavy quark world-line.

The conformal dimensions ∆ of these operators are determined by the usual relation

2∆ = d+
√
d2 + 4(mL)2 .

In our case d = 1, so the three fluctuations φi in AdS2 with m2 = 2/L2 are dual to a SO(3)

triplet of operators with ∆ = 2: these are the displacement operators Di(t). Furthermore,

the operators dual to the five massless S5 fluctuations have ∆ = 1 and are in the same

supermultiplet as the displacement operators [8]. We will not consider this second set of

operators in the rest of the paper.

Our next objective is to compute the two-point function of displacement operators (1.2)

in the regime of validity of SUGRA, i.e. the leading large
√
λ large N behavior of γ̃(λ,N).

This was essentially done in [17], with the minor difference that there the fluctuating fields

were xi rather than φi. After introducing the Fourier transform xiF (w, y), the author of [17]

solved the corresponding equation and imposing purely outgoing boundary conditions,

obtained the following Green function [17]

G(w) =
L2

2πα′
|w|3 ⇒ G(t) =

3
√
λ

π2

1

t4

from where we finally deduce

γ̃ =
3
√
λ

π2
. (3.3)

To complete the check, we need the coefficient of energy loss by radiation, defined in

eq. (1.1). The computation of B for a heavy probe in this regime was first carried out by

Mikhailov in a beautiful paper [18], obtaining B =
√
λ

4π2 . Putting together these two results,

we have verified γ̃ = 12B to this order.

3.2 Fluctuations of a static D3-brane in AdS5

We will now check relation (1.3) for a heavy probe in the k-symmetric representation. To

do so, we will consider a D3-brane dual to a static probe in AdS5, with k units of electric

flux that encode the representation of the heavy probe. The relevant static D3-brane

solution was found in [33, 38], but for our purposes it will be convenient to present it in

the coordinates introduced in [45, 47]. First, write AdS5 in the following coordinates

ds2
AdS5

= L2

(
du2 + cosh2 u

1

r2

(
−dt2 + dr2

)
+ sinh2 u

(
dθ2 + sin2 θdφ2

))
.

The D3-brane world-volume coordinates are (t, r, θ, φ). The classical solution includes some

non-trivial world-volume electric field

sinhu = ν Ftr =

√
λ

2π

√
1 + ν2

r2

with3

ν =
k
√
λ

4N
. (3.4)

3This combination was originally dubbed κ in [38] and subsequent works. To avoid any possible confusion

with the momentum diffusion coefficient, in this work we change its name to ν.
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The induced metric is of the form AdS2 × S2, with radii L
√

1 + ν2 and Lν respectively.

Consider now fluctuations of u, the S5 coordinates and the Born-Infeld abelian gauge field

Aµ. The main advantage of the coordinates used here is that as shown in detail in [45]

these sets of fluctuations decouple in these coordinates, so we can focus exclusively on

fluctuations of u. Due to the presence of world-volume fluxes, the Lagrangian density for

the fluctuating fields is not controlled by the induced world-volume metric, but by the

AdS2 × S2 metric with both radii Lν

ds2
AdS2×S2 = Gabdξadξb =

L2ν2

r2

(
−dt2 + dr2

)
+ L2ν2

(
dθ2 + sin2 θdφ2

)
.

In particular, the Lagrangian density for fluctuations of u is

L = −TD3

√
1 + ν2

ν

√
−|G|

(
1

2
L2Gab∂au∂bu

)
.

Given that the D3-brane world-volume is of the form AdS2×S2, the next step is to perform

a KK reduction of these fields on the world-volume S2 to end up with fields living purely

on AdS2. This produces an infinite tower of modes, but the only ones relevant for us are

the l = 1 triplet, since those are the ones sourcing the displacement operators. This KK

reduction is discussed in detail in [45] (see their appendix C), and for the l = 1 triplet of

modes we are interested in, the resulting fluctuation Lagrangian is k
√

1 + ν2 times the one

computed with the string. Since the computation of the two-point function of displacement

operators involves the kinetic term of the fluctuations, the upshot is that the γ̃ computed in

this regime is k
√

1 + ν2 times the one computed with the string in the previous subsection,

eq. (3.3), so

γ̃(λ,N) =
3k
√
λ

π2

√
1 +

k2λ

16N2
.

To finish the check, we again need the coefficient B in (1.1) for this case. In [19] the total

radiated power of a heavy probe in the k-symmetric representation was computed using

the AdS/CFT correspondence by means of a D3-brane, and the result found was

B(λ,N) =
k
√
λ

4π2

√
1 +

k2λ

16N2
.

Comparing these two results, this proves the γ̃ = 12B relation for a static probe in k-

symmetric representation, in the regime of validity of the D3-brane probe approximation.

Furthermore, if we set k = 1 in the previous result we can check [9, 39] that the exact

expression for B(λ,N) reduces to the one above in the appropriate limit.

4 Accelerated probes in AdS/CFT

In this section we will consider accelerated heavy probes coupled to N = 4 SYM, in the

context of the AdS/CFT correspondence. As in the previous section, the probes considered

transform in the fundamental and the symmetric representations, so their gravity dual is

given respectively by a string and a D3-brane, reaching the boundary at a hyperbola.

We will compute the momentum diffusion coefficient in both cases, verifying that they

reproduce in appropriate limits our exact result (2.7).
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4.1 Fluctuations of the hyperbolic string in AdS5

The dual of a heavy probe moving with constant proper acceleration is a string reaching

the boundary of AdS5 at a hyperbola, or at a circle in Euclidean signature. This type

of world-sheet was first considered in [48], see also [49].4 The spectrum of fluctuations of

this world-sheet was discussed in [42], and it is the same as for the straight line. This

world-sheet and its fluctuations were used in [25, 26] to derive the momentum diffusion

coefficient of this probe in the supergravity approximation. To do so, [25, 26] made a series

of change of coordinates to the gravity background, to work in a frame where the probe

is static. We will now show that it is possible to obtain that transport coefficient working

with Rindler coordinates. We start by writing the AdS5 metric in Poincaré patch with

Rindler coordinates

ds2
AdS[5

=
L2

y2

(
dy2 + dr2 − r2dψ2 + dx2

2 + dx2
3

)
.

We identify the world-sheet coordinates with (ψ, y). The classical solution is then given by

r =
√
R2 − y2 [48]. We consider now fluctuations in the transverse directions x2, x3. The

Lagrangian density for transverse fluctuations is

Lfluc =
1

2πα′
L2R

y2

(
−1

2

1

R2 − y2
(∂ψx)2 +

1

2

R2 − y2

R2
(∂yx)2

)
.

As a check, near the boundary (y → 0), defining τ = Rψ we recover the fluctuation

Lagrangian (3.2), except for a global factor of R, since here we are integrating with respect

to ψ = τ/R. Defining z = y/R, the equation of motion for transverse fluctuations is

−∂2
ψx+ (1− z2)2∂2

zx− 2
1− z2

z
∂zx = 0 .

We separate variables x(z, ψ) = e−iwψx(z) (and keeping in mind that this w is dimension-

less, wτ = w/R), the solutions are

x(z) = C1(1− iwz)eiw arctanh z + C2(1 + iwz)e−iw arctanh z .

To compute the retarded Green function, we take the purely outgoing solution (C2 = 0)

and following [17] obtain

GR(w) =
−iw
2πα′

L2

R2
+O(w3) ,

where as in the static case [17] we dropped a 1/y term. This retarded Green function

coincides with the one computed by Xiao [25], and from it one arrives at

κ = 4π
√
λT 3 .

4Some subtleties associated to this world-sheet solution and its usual interpretation have been recently

pointed out in [50], but since they concern the part of the world-sheet below the world-sheet horizon, they

don’t affect our discussion.
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4.2 Fluctuations of a hyperbolic D3-brane in AdS5

We can also compute the momentum diffusion coefficient for an accelerated probe in the

symmetric representation. The relevant D3-brane reaches the boundary at a circle in

Euclidean signature, and was first discussed in [38]. As in the previous section, it is

convenient to present it in the coordinates introduced in [45, 47], so we start by writing

AdS5 as

ds2 = L2
(
du2 + cosh2 u

(
dζ2 − sinh2 ζdψ2

)
+ sinh2 u dΩ2

2

)
.

The D3-brane has world-volume coordinates (ζ, ψ, θ, φ) and the classical solution is

sinhu = ν Fζψ =

√
λ

2π

√
1 + ν2 sinh ζ ,

with ν defined in eq. (3.4). Consider now fluctuations for the world-volume fields u, the

S5 fields and the BI gauge field. As it was discussed in detail in [45] these fluctuations

decouple, so we can focus on the fluctuations of u. To present the relevant fluctuation

Lagrangian, define the metric

Gabdξadξb = L2ν2(dζ2 − sinh2 ζdψ2) + L2ν2dΩ2
2 .

This is the metric that controls the fluctuations of u (and the gauge field)

Lfluc = TD3L
4
√

1 + ν2ν3 sinh ζ sin θ

(
1

2
L2Gab∂au∂bu

)
.

As in the previous section, we now have to KK reduce this world-volume field u on S2, to

obtain an infinite tower of 2d fields on the world-volume AdS2. Again, the relevant modes

are the l = 1 triplet, and as it happened for the static probe, the resulting fluctuation

Lagrangian is k
√

1 + ν2 the one we would obtain for the fluctuations of a fundamental

string in these coordinates. We then conclude that the resulting momentum diffusion

coefficient is again k
√

1 + ν2 times the one obtained for the fundamental string, so

κ = 4πk
√
λ

√
1 +

k2λ

16N2
T 3 .

5 Lessons for the N = 4 super Yang-Mills plasma?

In section 2 we have found the exact two-point function of momentum fluctuations in

vacuum of an accelerated heavy quark coupled to a conformal field theory. As expected,

this two-point function presents thermal behavior, and the question arises whether we

can use our results to learn something about momentum fluctuations of a heavy probe

immersed in a thermal bath of the same conformal theory, now at finite temperature.

Besides its intrinsic interest, this question has broader relavance since it is expected that

at finite temperature, conformal theories (even superconformal ones) share some properties

with the high-temperature deconfined phase of confining gauge theories. More specifically,

a particular CFT, N = 4 SYM at T 6= 0, has been used by means of the AdS/CFT
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correspondence to model the quark-gluon plasma experimentally observed at RHIC and at

the LHC (see [30–32] for reviews). In particular, the momentum fluctuations of a heavy

quark (either static or moving at constant velocity) in the quark-gluon plasma have been

estimated by considering a dual trailing string in the background of a black Schwarzschild

brane in an asympotically AdS5 background [16, 27–29].

The study of a heavy quark in a strongly coupled conformal plasma by means of

the AdS/CFT correspondence is currently limited to the large λ, large N regime where

supergravity is reliable (see [51, 52] for computation of the 1/
√
λ correction and some

λ−3/2 corrections to the jet quenching parameter in the N = 4 SYM plasma) and it

currently seems extremely hard to perform such computations at finite λ and N . For this

reason, it would be very interesting if the study of an accelerated quark in the vacuum

of a conformal field theory, which as we have seen can be tackled at finite λ and N ,

can become an indirect route to the study of conformal T 6= 0 plasma. However, while

a probe accelerated in vacuum and a static probe in a thermal bath experience a non-

zero temperature, the details of their response are not identical ( see the review [53] for

a discussion on this point). We can see this explicitly for the N = 4 SYM plasma, by

comparing known expressions of the momentum diffusion coefficients in various regimes.

Let’s consider first the regime of weak coupling; the momentum diffusion coefficient of a

heavy quark in a weakly coupled N = 4 SU(N) SYM plasma has been computed at leading

and next-to-leading orders [54, 55]

κthermal =
λ2T 3

6π

N2 − 1

N2

(
log

1√
λ

+ c1 + c2

√
λ+O(λ)

)
,

with c1,2 known coefficients (see the second reference in [54, 55]). This expression differs

qualitatively from the weak coupling expansion of our result for the momentum diffusion

coefficient for an accelerated quark

κUnruh = πλT 3N
2 − 1

N2

(
1− λ

24
+O(λ2)

)
.

Notice that κthermal starts at λ2 (versus the leading λ in κUnruh) and furthermore presents

a term logarithmic in λ, absent in κUnruh. These two features come from the non-trivial

coupling dependence of the Debye mass in the thermal bath [56].

Let’s move now to the regime where supergravity is reliable, i.e. large λ and large N .

As recalled in section 4, an accelerated probe in vacuum is dual to a string reaching the

boundary of pure AdS5 at a hyperbola, while a heavy probe in a thermal bath is represented

by a string in the Schwarzschild- Anti de Sitter background, and the respective retarded

Green functions are quantitatively different (see [57] for a discussion on this point). In

particular, the momentum diffusion coefficient yields [16, 27]

κSUGRA
thermal = π

√
λT 3 ,

which is four times smaller than the supergravity result for the similar transport coefficient

for a probe accelerated in vacuum, eq. (2.8),

κSUGRA
Unruh = 4π

√
λT 3 .
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This difference might be surprising at first, since it can be argued that transport coefficients

can be read from the world-sheet horizon [58], and the two classical world-sheet metrics

(i.e. accelerated string in AdS5 versus hanging/trailing string in Schwarzschild-AdS5) while

clearly different, have the same near-horizon metric, 1+1 Rindler space. However, the dif-

ferent change of variables used to write these near-horizon metrics imply different normal-

izations of the corresponding wavefunctions, giving rise to this factor of four discrepancy

between the respective transport coefficients.

Keeping this difference in mind, we nevertheless propose to use our exact results to

make an educated guess of the impact of using SUGRA instead of the exact result for

computing the momentum diffusion coefficient of a static heavy quark, κthermal, in N = 4

SYM at finite temperature. To that end, we start by evaluating the difference between the

SUGRA (large λ, large N) and the exact (finite λ, N=3) computations of the coefficient

for the accelerated probe in vacuum.

The first ingredient we need in our computation is the Bremsstrahlung function (1.1)

for a heavy quark coupled to N = 4 SU(3) SYM. For U(N) the Bremsstrahlung func-

tion is given in (1.4), and since the SU(N) function is obtained by subtracting the U(1)

contribution [8]

BSU(N) = BU(N) −
λ

16π2N2

we obtain

BSU(3) =
1

4π2

λ

18

λ2 + 144λ+ 3456

λ2 + 72λ+ 864

and using the relation derived in this paper, eq. (2.7), we arrive at the following expression

for the SU(3) momentum diffusion coefficient, valid for any value of λ,

κSU(3) = 4π
λ

18

λ2 + 144λ+ 3456

λ2 + 72λ+ 864
T 3 . (5.1)

Notice that both for small λ and large λ the coefficient grows linearly with λ. This is true

for generic fixed N

κλ�1
SU(N) =

N2 − 1

N2
πλT 3 κλ�1

SU(N) =
N − 1

N2
πλT 3 .

We now consider the quotient of the exact expression for this transport coefficient, eq. (5.1),

versus the result obtained in the supergravity limit, eq. (2.8),

Unruh
κEXACT

κSUGRA
=

√
λ

18

λ2 + 144λ+ 3456

λ2 + 72λ+ 864
. (5.2)

A first observation is that this ratio is a monotonously increasing function of λ that doesn’t

go to one as λ → ∞. The reason is that the denominator, obtained in the planar limit

(N → ∞), grows like
√
λ, while the numerator, obtained for N = 3, grows like λ. This

ratio is smaller than one for small λ and becomes larger than one for λ & 182.45. As we

discuss below, when modelling the quark-gluon plasma by N=4 SYM the range of values

considered for λ is substantially below this point, so another observation is that in that

range of values, the supergravity computation gives a value κSUGRA which is larger than

– 14 –
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Figure 2. The relation between the exact momentum diffusion coeffient and the supergravity

approximation for an accelerated quark in vacuum. The range of λ displayed corresponds to the

one considered when modelling the quark-gluon plasma.

κEXACT. To be more quantitative, we will zoom in the range of values of λ that have

been considered when modelling the QCD quark-gluon plasma by N = 4 SYM. Given

the differences among these two theories, there are inherent ambiguities in choosing the

parameters of N = 4 SYM that might best model the real world QCD plasma. A first

choice [59] is to take

“obvious” scheme: TN=4 = TQCD g2
YMN = 12παs = 6π ,

where in the last equation the value αs = 0.5 was taken. A second choice made in the

literature [17, 60] tries to ameliorate the impact of the obvious difference that N = 4 SU(3)

SYM has more degrees of freedom than QCD. The main idea is to compare the theories

at fixed value of the energy density, rather than temperature. This results in the following

identification

“alternative” scheme: 31/4TN=4 = TQCD g2
YMN = 5.5 ,

where the value λ = 5.5 is the central value derived from this analysis. This scheme has

its own limitations, and the only lesson we want to take from it is that the range of values

λ ∈ [5.5, 6π] has been considered when modelling the quark-gluon plasma by the N = 4

SYM plasma. Having fixed the range of values for λ we will be zooming in, we can now

determine the impact of using supergravity to compute the momentum diffusion coefficient

instead of using the exact result: in this range, the ratio (5.2) increases from 0.43 to

0.61, see figure (2). Roughly speaking, in this range of values for the ’t Hooft coupling,

supergravity gives an answer for this transport coefficient about twice the exact result.

Up until here, we were on firm ground, comparing the result of two computations for

the momentum diffusion coefficient of an accelerated quark in the vacuum of N = 4 SYM.

Having used the word “exact” or variations exactly thirty-three times so far in this paper,

we will end it by indulging in far less precise statements. We have seen that the perturbative

expressions (fixed N , g2
YM � 1) for the momentum diffusion coefficients in a thermal bath

and in the Unruh effect differ qualitatively, while the corresponding expressions in the

– 15 –
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supergravity regime (large λ, large N), share the same parametric behavior, but not the

overall numerical coefficient. It is then clear that we are not in a position to estimate κthermal

for N = 4 SYM for abitrary λ,N . A more modest goal is to estimate it in the range of

values singled out above, that appear when modelling the QCD quark-gluon plasma. If we

consider a path in the (λ,N) plane from the range of values considered above to the region

of validity of supergravity (i.e. now we don’t keep N fixed) the ratio κUnruh/κ
SUGRA
Unruh will

uneventfully evolve from the value found above, about 1/2, to 1. In order to proceed, we

are going to assume that roughly the same is true for κthermal so along that path

κexact
Unruh

κSUGRA
Unruh

≈ κexact
thermal

κSUGRA
thermal

.

If this assumption is true, it means that the supergravity computations [16, 27, 28] for

κthermal give an answer κSUGRA
thermal that is about twice the exact one. While we currently lack

solid arguments to substantiate this speculation, let’s end by noting that if true, it would

in turn imply that the diffusion constant D = 2T 2/κ for the N = 4 SYM plasma would

be about twice the one obtained in supergravity, pushing it in the right direction to match

the range of values suggested by RHIC [61].
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1 Introduction

The AdS/CFT correspondence has drastically changed our view on the interrelations be-

tween field theory and quantum gravity. However, at the level of specific results, it seems

fair to assess that it has not brought as many new results in quantum gravity as in field the-

ory. Indeed, while it has allowed access to regimes of field theory previously unexplored,

the amount of work using field theory results to learn about quantum gravity has been

smaller. One of the main reasons of this state of affairs is of course the paucity of known

results in the relevant regimes of field theory.

Localization has emerged as a powerful technique to drastically simplify very specific

computations in supersymmetric field theories, allowing in some cases to obtain exact

results [1–4]. In particular, for 4d N = 2 super Yang Mills theories with a Lagrangian

description, the evaluation of the vev of certain circular Wilson loops boils down to a

matrix model computation [1]. Furthermore, for the particular case of N = 4 SYM, the

matrix model is Gaussian [1, 5, 6], so all the integrals can be computed exactly. This has

been done for G = U(N), SU(N) first for a Wilson loop in the fundamental representation,

and more recently for other representations [7, 8]. Even though the quantities that can be

computed thanks to localization must satisfy a number of conditions that make them non-

generic, it seems pertinent to ask whether these exact results in field theories can teach us

something about the holographic M/string theory duals, beyond the supergravity regime.

There have been a number of works trying to use the localization of Wilson loops in

four dimensional N = 2 Yang Mills theories to probe putative string duals [9–11]. This is
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a potentially very exciting line of research, as it may reveal properties of holographic pairs

that have not been fully established to date. In this work we will take a slightly different

route, by applying localization to probe a known example of holographic duality. We

will consider N = 4 SYM with gauge group G = SO(N), Sp(N), which is dual to type IIB

string theory compactified on AdS5×RP5 with various choices of discrete torsion [12].1 This

duality is closely related to the original proposal for G = SU(N), but it displays a number of

novel features, related to the presence of non-orientable surfaces in the 1/N expansion of the

field theories, or equivalently to the existence of homologically non-trivial non-orientable

subvarieties in the gravity background. Our aim is to explore some of these features at finite

gs and α′/R2, taking advantage of the possibility of computing exactly the vev of certain

Wilson loop operators for these field theories. While our focus is on non-local operators,

the physics of local operators of these field theories at finite N has been explored in [16, 17].

Our first task will be to compute the vev of 1/2-BPS circular Wilson loops in various

representations, for Euclidean N = 4 SYM with gauge groups G = SO(N), Sp(N). Even

before we start thinking about holography, the evaluation of these vevs has interesting

applications within field theory. For instance, for G = U(N), SU(N), they immediately

allow us to compute the Bremsstrahlung functions for the corresponding heavy probes,

using the relation [18]

B(λ,N)R =
1

2π2
λ∂λ log〈WR〉 (1.1)

valid for any representation R. These Bremsstrahlung functions in turn completely de-

termine various quantities of physical interest, like the total radiated power [18, 19] and

the momentum fluctuations of the corresponding accelerated probe [20]. These vevs also

determine the exact change in the entanglement entropy of a spherical region when we add

a heavy probe [21].2 Finally, they can also be used to carry out detailed tests of S-duality

in N = 4 SYM [7].

The technical computation of these vevs is quite similar to the ones performed for

unitary groups, and amounts to introducing a convenient set of orthogonal polynomials

to carry out the matrix model integrals. In fact, since for all Lie algebras g the matrix

model is Gaussian, the relevant orthogonal polynomials are Hermite polynomials, and the

computation of vevs ends up amounting to the evaluation of matrix elements for a N -

fermion state of the one-dimensional harmonic oscillator,

〈W 〉 =
〈Ψg|W |Ψg〉

〈Ψg|Ψg〉
(1.2)

the only difference being the parity of the one-fermion states involved: for su(n), |Ψ〉 is

built by filling the first N eigenstates of a harmonic oscillator, for so(2n) filling the first

1The precise statement is actually more subtle: given a Lie algebra g, there is a variety of Lie groups

G associated to it, and all of them define different gauge theories. These gauge theories have the same

correlators of local operators, but differ in the spectrum of non-local operators [13]. In the case of N = 4

SYM, theories with the same g and different G each have their own holographic dual, differing by a choice

of quantization of certain topological term in the type IIB action [14, 15]. We are grateful to Ofer Aharony

for clarifying correspondence on this point.
2It is worth keeping in mind that for the computation of the entanglement entropy [21], it is convenient

to use a normalization of the Wilson loops different from the one used in this work.
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N even states and for g = so(2n + 1), sp(n) the first N odd eigenstates [16, 17, 22, 23].

The computations are straightforward, and reveal exact relations among various vevs. For

Wilson loops in the respective fundamental representations we find that

〈W (g)〉SO(2N)
Sp(N)

= 〈W (g)〉U(2N) ∓ 1

2

∫ g

0
dg′ 〈W (g′)〉U(2N) (1.3)

where g = λ/4N . This in an exact relation, valid for any value of λ and N .

Once we have obtained these exact field theory results, we shift gears towards string

theory. In the past, the exact computation of circular Wilson loops of N = 4 SU(N) SYM

has been used for precision tests of AdS/CFT [24–26]. Our attitude in the present work

will be different, we will take for granted the holographic duality, and we aim to use the

exact field theory results to learn about string theory on AdS5 ×RP5. Our first observation

actually doesn’t even rely on the actual computation of the vevs of Wilson loops, it can be

made just by noticing that for SU(N), the N -fermion state |Ψ〉 in (1.2) is the groundstate

of the fermionic system dual to the LLM sector [27] of AdS5 ×S5. We use this observation

to revisit the question [28] of what is the analogue of the LLM sector for type IIB on AdS5×
RP5, and argue that it is given by geometries built out of fermions whose wavefunctions

have fixed parity, even for SO(2N) and odd for SO(2N + 1), Sp(N). In this latter case,

those are the wavefunctions of the half harmonic oscillator [28]. Still in the LLM sector,

we point out that the absence or presence of discrete torsion in the gravity dual correlates

with the sign of the one-fermion Wigner quasi-distribution at the origin of phase space.

Another aspect of the holographic duality where we can put our exact results to work

is perturbative string theory around AdS5 × RP5. The idea is not new: consider the vev

of the circular Wilson loop in the fundamental representation of SU(N), which is known

exactly [6]; in principle, string perturbation theory ought to reproduce the 1/N expansion

of this vev by world-sheet computations at arbitrary genus on AdS5 × S5. In practice,

these world-sheet computations are currently well out of reach. We would like to claim

that some of our results for G = SO(N), Sp(N) might have a better chance of being

reproduced by direct world-sheet arguments than those of G = SU(N). To see why, let’s

recall some generic facts about the large N expansion of gauge theories. In this limit,

Feynman diagrams rearrange themselves in a topological expansion of two-dimensional

surfaces, weighted by Nχ, where χ is the Euler characteristic of the surface, namely,

χ = −2h+ 2 − c− b

for a surface with h handles, c crosscaps and b boundaries. For a U(N), SU(N) field theory

with all the fields in the adjoint, gauge invariant quantities admit a 1/N2 expansion (rather

than 1/N) as befits orientable surfaces. For instance, for the vev of the circular Wilson loop

in the fundamental representation of U(N) the relevant world-sheets have a single boundary

and an arbitrary number of handles, and in [6] it was explicitly shown that this vev admits

a 1/N2 expansion. On the other hand, it is well-known that the 1/N expansion of field

theories with G = SO(N), Sp(N) contains both even and odd powers of 1/N [29], signaling

the presence of non-orientable surfaces.3 On general grounds, as discussed in detail below,

3See [30, 31] for the 1/N expansion of 2d Yang-Mills theory with G = SO(N), Sp(N).
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we can classify the world-sheets as having an arbitrary number of handles, and zero, one or

two crosscaps. However, a closer inspection of eq. (1.3) reveals that in a 1/N expansion, the

first term of the r.h.s. corresponds to orientable world-sheets, while the second one to world-

sheets with a single crosscap. We thus learn that, for these quantities, the contribution

from world-sheets with a single crosscap is given by an integral of the contribution from

orientable world-sheets, while world-sheets with two cross-caps don’t contribute. These

two features are peculiar to the very specific vevs we have considered. Nevertheless, since

they have been derived from exact field theory relations, before actually carrying out the

1/N expansion, it is conceivable that they could be deduced in string theory by symmetry

arguments, without having to carry out the world-sheet computations.

The structure of the paper is as follows. In section 2 we define the field theory quantities

we want to evaluate, and recall that thanks to localization, they boil down to matrix

model computations. We then compute the vev of circular Wilson loops for various gauge

groups and representations. In section 3 we discuss implications for string theory of the

computations presented in the previous section. Some very basic facts about classical simple

Lie algebras that we use in the main text are collected in appendix A, while in appendix

B we present an alternative derivation of some of the results obtained in section 3.

2 Computations

This section is entirely devoted to the computation of vevs of circular Wilson loops in N = 4

SYM, leaving for the next section the discussion of the implications of the results found

here. Technically, the evaluation of these vevs of Wilson loops is possible since they localize

to a computation in a Gaussian matrix model [1, 5, 6], with matrices in the Lie algebra g. To

carry out the remaining integrals, we resort to the well-known technique of orthogonal poly-

nomials (see [32, 33] for reviews). Besides the specific results we find, the main point to keep

in mind from this section is that for all classical Lie algebras, the orthogonal polynomials are

Hermite polynomials, the main difference being the restrictions on their parity. Namely, for

the A, B/C and D series, the Hermite polynomials that play a role have unrestricted, odd

and even parity, respectively. This observation will become important in the next section.

The field theory quantities we want to compute are vevs of locally BPS Wilson opera-

tors. These Wilson loops are determined by a representation R of the gauge group G and

a contour C,

WR[C] =
1

dim RTrRPexp

(
i

∫

C
(Aµẋ

µ + |ẋ|Φiθ
i)ds

)
(2.1)

We have fixed the overall normalization of the Wilson loop by the requirement that at

weak coupling, 〈WR〉 = 1 + O(g). We will be interested in the case when the signature is

Euclidean and the contour is a circle. These Wilson loops are 1/2 BPS and remarkably

the problem of the evaluation of their vev localizes to a Gaussian matrix model computa-

tion [1, 5, 6],

〈W 〉R =
1

dim R

∫
g dMe

− 1
2g

tr M2

TrReM

∫
g dMe

− 1
2g

tr M2
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where the integrals are over the Lie algebra g and g = λ/4N . These integrals can be

reduced to integrals over the Cartan subalgebra h (see [7] for details), and one arrives at

〈W 〉R =
1

dim R

∫
h dX∆(X)2e

− 1
2g

tr X2

TrReX

∫
h dX∆(X)2e

− 1
2g

tr X2
(2.2)

where the Jacobian ∆(X)2 is given by a product over positive roots of the algebra,

∆(X)2 =
∏

α>0

α(X)2 (2.3)

As in [7], it is convenient to write the insertion of the Wilson loop as a sum over the weights

of the representation,

TrReX =
∑

v∈Ω(R)

n(v)ev(x) (2.4)

where Ω(R) is the set of weights v of the representation R, and n(v) the multiplicity of

the weight. Now that we have introduced the matrix integrals that we want to compute

let’s very briefly recall the technique we will use to solve them, the method of orthogonal

polynomials. Given a potential W (x), we can define a family of orthogonal polynomials

pn(x) satisfying ∫ ∞

∞
dx pm(x)pn(x)e−

1
g
W (x) = hnδmn

We will choose these polynomials to be monic, namely pn(x) = xn + O(xn−1). More

precisely, in all the cases in this work, the potential is W (x) = 1
2x

2, and the orthogonal

polynomials are Hermite polynomials,

pn(x) =
(g

2

)n
2
Hn

(
x√
2g

)
(2.5)

so in our conventions

hn = gn
√

2πg n!

For future reference, recall that these polynomials have well-defined parity, pn(−x) =

(−1)npn(x). The key point is that in all cases we will encounter in this work, the Jacobian

∆(X)2 in (2.3) can be substituted by the square of a determinant of orthogonal polynomi-

als. Once we perform this substitution, we expand the determinants using Leibniz formula

and carry out the resulting integrals. Note also that the determinant of orthogonal poly-

nomials combined with the Gaussian exponent is (up to a normalization factor) the Slater

determinant that gives the wave-function of an N -fermion state,

|ΨN (x1, . . . , xN )〉 = C|Hi(xj)e
− 1

4g
x2

j |

so in all cases the computations we perform can be thought of as normalized matrix ele-

ments for certain N -fermion states

〈O〉mm =
〈ΨN |O|ΨN 〉
〈ΨN |ΨN 〉 (2.6)
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where the specific |ΨN 〉 depends on the algebra g. For G = SO(N), Sp(N), these Slater de-

terminants involving one-fermion wavefunctions of definite parity also appear in the study

of certain local operators [16, 17].

Having reviewed all the ingredients we now turn to some explicit computations. We

use some very basic facts of classical Lie algebras, that we have collected in appendix A.

2.1 su(n)

This case is the best studied one, corresponding to the familiar Hermitian matrix model. It

is customary to work with U(N), and we will do so in what follows; the modification needed

when dealing with SU(N) is mentioned below. While none of the results recalled here are

new, having them handy will be helpful in what follows. In this case, the Jacobian (2.3) is

∏

α>0

α(X)2 =
∏

1≤i<j≤N

|xi − xj |2

This Vandermonde determinant can be traded by a determinant of polynomials, which

due to the Gaussian potential is convenient to choose to be the first N Hermite polynomi-

als (2.5), ∏

1≤i<j≤N

|xi − xj | = |pi−1(xj)| (2.7)

The partition function can be computed using (2.7)

Z =

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN

∏

1≤i<j≤N

|xi − xj |2 e−
1
2g

(x2
1+···+x2

N )
=

=

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN |pi−1(xj)|2 e−

1
2g

(x2
1+···+x2

N ) = N !
N−1∏

i=0

hi (2.8)

In the last step we used the following integral of Hermite polynomials [34], that we will

apply repeatedly in this work,

∫ ∞

−∞
Hm(x)Hn(x)e−(x−y)2dx = 2n√

πm! yn−mLn−m
m (−2y2) n ≥ m (2.9)

where Lα
n(x) are generalized Laguerre polynomials.

Let’s recall briefly the computation of Wilson loops. Consider first the Wilson loop in

the fundamental representation.4 The new integral to compute is

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN

∏

1≤i<j≤N

|xi − xj |2 (ex1 + · · · + exN ) e
− 1

2g
(x2

1+···+x2
N )

=

= N

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN |pi−1(xj)|2 ex1e

− 1
2g

(x2
1+···+x2

N )

4A Lie algebra of rank r has r fundamental weights, which are the highest weights of the r fundamental

representations. In Physics ‘fundamental representation’ often refers to the representation with highest

weight w1.
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where we already used (2.7). Now applying (2.9) and recalling (2.8) we arrive at [6]

〈W (g)〉U(N) =
1

N

N−1∑

k=0

Lk(−g)e
g
2 =

1

N
L1

N−1(−g)e
g
2 (2.10)

The remaining U(N) fundamental representations are the k-antisymmetric representation.

The exact vevs of the corresponding Wilson loops were computed in [8]. In order to evaluate

vevs of Wilson loops for SU(N), we have to modify the insertion to [6, 35]

TrReX → e−
|R|
N

TrX TrReX

2.2 so(2n)

The Jacobian ∆(X)2 for these algebras is

∏

α>0

α(X)2 =
∏

1≤i<j≤N

|x2
i − x2

j |2

The key argument to evaluate all the integrals we will encounter in this case rests on two

facts: first, the expression above for ∆2(X) is a Vandermonde determinant of {x2
i } and

second, even polynomials p2i(x) involve only even powers of x, so it is possible to replace

∏

1≤i<j≤N

|x2
i − x2

j |2 = |p2(i−1)(xj)|2 (2.11)

It is worth pointing out that while for g = su(n), the Hermite polynomials that appear

in eq. (2.7) correspond to the first N eigenstates of the harmonic oscillator, for so(2n)

what appears in (2.11) are the first N even eigenstates, so only those will contribute to

the computation of the partition function and the vev of Wilson loops. Let’s start by

evaluating the partition function of the corresponding matrix model,

Z =

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN

∏

1≤i<j≤N

|x2
i − x2

j |2e−
1
2g

(x2
1+···+x2

N )

Performing the substitution (2.11), we arrive at

Z = N !
N−1∏

i=0

h2i (2.12)

Let’s now compute the vev of Wilson loops in various fundamental representations. As

a first example, let’s choose the representation with highest weight w1. The 2N weights

of this representation are ei and −ei for i = 1, . . . , N . After diagonalization, the matrix

model that computes the vev of the Wilson loop is

〈W (g)〉SO(2N) =
1

Z

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN

∏

1≤i<j≤N

|x2
i − x2

j |2
ex1 + e−x1

2
e
− 1

2g
(x2

1+···+x2
N )

– 7 –



J
H
E
P
0
9
(
2
0
1
4
)
1
6
9

Performing the substitution (2.11), taking into account (2.12) and using (2.9) we arrive at

〈W (g)〉SO(2N) =
1

N

N−1∑

k=0

L2k(−g)eg/2 (2.13)

Let’s now compute the vev of a Wilson loop in a spinor representation.5 The spinor

representation with highest weight wN−1 has weights of the form

1

2
(±e1 ± e2 ± · · · ± eN )

with an odd number of minus signs, while the representation with highest weight wN has

weights with an even number of minus signs. Let’s focus on the representation with highest

weight wN ,

〈W 〉wN
=

1

Z
1

2N−1

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN

∏

1≤i<j≤N

|x2
i −x2

j |2
∑

{si=±}∏
i si=1

e
1
2
(s1x1+···+sNxN )e

− 1
2g

(x2
1+···+x2

N )

For each si = −, we change variables x̃i = −xi, and deduce that all 2N−1 terms contribute

the same to the full integral,

〈W 〉wN
=

1

Z

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN

∏

1≤i<j≤N

|x2
i − x2

j |2e
1
2
(x1+···+xN )e

− 1
2g

(x2
1+···+x2

N )
=

=
1

Z

∫ ∞

0
dx1 . . .

∫ ∞

0
dxN

∏

1≤i<j≤N

|x2
i − x2

j |2
N∏

i=1

(
e

xi
2 + e−

xi
2

)
e
− 1

2g
(x2

1+···+x2
N )

Now the remaining integrals can be solved as before. After using the substitution (2.11) the

details are quite similar to the computation of the vev of Wilson loops in antisymmetric rep-

resentations of U(N) [8], so we will skip the details and just present the final result. Define

the N ×N matrix Dij , with entries involving generalized Laguerre polynomials Lα
n(x),

Dij = L2j−2i
2i−2 (−g/4)eg/8

Then, the vev of the Wilson loop in the wN representation is

〈W 〉wN
= |Dij |

Expanding the determinant, and following identical steps as those presented in [8], we can

rewrite this vev as

〈W 〉wN
= PN (g)e

λ
32

where PN (g) is a polynomial in g of degree N(N − 1)/2 that can be written as a sum

involving ordered N-tuples,

PN (g) =
∑

0≤τ1<τ2<...τN≤2N−2

N∏

m=1

τm!

(2m− 2)!

∣∣∣∣
(

2i

τj

)∣∣∣∣
2 (g

4

)N(N−1)−∑N
m=1 τm

5In AdS5 × RP5, these Wilson loops are dual to a D5-brane wrapping RP4 ⊂ RP5 [12].
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The other spinor representation, with highest weight wN−1, has weights with an odd num-

bers of minus signs, but applying the same change of variables x̃i = −xi to all minus signs,

we immediately arrive at the same integral as before, so we conclude that both vevs are

the same,

〈W 〉wN−1
= 〈W 〉wN

2.3 sp(n)

In this case we have
∏

α>0

α(X)2 =
∏

1≤i<j≤N

|x2
i − x2

j |2
N∏

i=1

x2
i

Again, since odd Hermite polynomials involve only odd powers of x, it is possible to sub-

stitute the Jacobian by the square of a determinant of orthogonal polynomials

∏

1≤i<j≤N

|x2
i − x2

j |2
∏

i

x2
i = |p2i−1(xj)|2 (2.14)

where now the polynomials that appear correspond to the first N odd eigenstates of the

harmonic oscillator. The partition function can be readily computed

Z = N !
N∏

i=1

h2i−1 (2.15)

Let’s now turn to the computation of Wilson loops. Let’s compute for example the vev of

the Wilson loop in the representation with highest weight w1. The weights are ei and −ei
for i = 1, . . . , N . After diagonalization, the matrix model that computes the vev of the

Wilson loop is

〈W (g)〉Sp(N) =
1

Z

∫ ∞

∞
dx1 . . . dxN

∏

1≤i<j≤N

|x2
i − x2

j |2
∏

i

x2
i

ex1 + e−x1

2
e
− 1

2g
(x2

1+...x2
N )

Using the substitution (2.14), taking into account (2.15) and (2.9), we arrive at

〈W (g)〉Sp(N) =
1

N

N−1∑

k=0

L2k+1(−g)eg/2 (2.16)

2.4 so(2n + 1)

The Jacobian is the same as for sp(n), so it admits the same replacement

∏

α>0

α(X)2 =
∏

1≤i<j≤N

|x2
i − x2

j |2
N∏

i=1

x2
i

The partition function is essentially the same as for sp(n), eq. (2.15). Let’s compute some

vevs of Wilson loops. As a first example, consider the representation with highest weight
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w1. The weights of this representation are ei and −ei for i = 1, . . . , N plus the zero weight.

After diagonalization, the matrix model that computes the vev of the Wilson loop is

〈W (g)〉SO(2N+1) =
1

2N + 1

1

Z

∫ ∞

∞
dx1 . . . dxN

∏

1≤i<j≤N

|x2
i − x2

j |2
∏

i

x2
i

(
1 + ex1 + e−x1 + · · · + exN + e−xN

)
e
− 1

2g
(x2

1+···+x2
N )

Now, the measure is the same as for sp(n), so the same substitution (2.14) works here, and

we arrive at

〈W (g)〉SO(2N+1) =
1

2N + 1

(
1 + 2

N−1∑

k=0

L2k+1(−g)eg/2

)

For the spinor representation of so(2n + 1), the computation proceeds along the same lines

as for the spinor representations of so(2n). Let’s just quote the result; define the N × N

matrix

Bij = L2j−2i
2i−1 (−g/4)eg/8

Then

〈W 〉wN
= |B|

3 Implications

In the last section we have computed the exact vev of circular Wilson loops of N = 4

SYM, for various representations of different gauge groups. In what follows, we are going

to discuss some features and implications of the results we have obtained. Our main interest

is trying to derive lessons for the holographic duals of these gauge theories.

The string dual of N = 4 SYM with gauge group SU(N) is of course type IIB string

theory on AdS5 × S5. For N = 4 with gauge groups SO(N), Sp(N) one can argue for

the string duals as follows [12]. Start by placing N parallel D3-branes at an orientifold

three-plane. Taking the near horizon limit, the theory on the world-volume of the D3-

branes becomes N = 4 SYM with gauge group SO(N), Sp(N) while the supergravity

solution becomes AdS5 × RP5 (Recall that RP5 is S5/Z2 with Z2 acting as xi ∼ −xi).

This orientifold is common to all the holographic duals for SO(2N), SO(2N + 1), Sp(N).

The additional ingredients that discriminate among these duals are the possible choices

of discrete torsion. Let’s recall very briefly the identification of these supergravity du-

als, referring the interested reader to [12] for the detailed derivation. In the presence

of the orientifold, the B-fields BNS and BRR become twisted two-forms. The possible

choices of discrete torsion for each of them are classified by H3(RP5, Z̃) = Z2, so calling

θNS and θRR these two choices, there are all in all four possibilities. Using the trans-

formation properties of N = 4 SYM with different gauge groups under Montonen-Olive

duality, it is possible to identify the choices of discrete torsion for the respective gravity

duals. The choices (θNS , θRR) = (0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2) correspond to the gauge

groups SO(2N), SO(2N + 1), Sp(N), Sp(N) respectively.6

6These last two Sp(N) theories differ by their value of the θ angle.
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3.1 The LLM sector

The first aspect of the holographic duality that we are going to consider is the analogue of

the LLM geometries [27] in AdS5 × RP5. Let’s recall briefly that LLM [27] constructed an

infinite family of ten dimensional IIB supergravity solutions, corresponding to the backre-

action of 1/2 BPS states associated to chiral primary operators built out of a single chiral

scalar field. These ten dimensional solutions are completely determined by a single function

u(x1, x2) of two spacetime coordinates. For regular solutions, this function can take only the

values u(x1, x2) = 0, 1 defining a “black-and-white” pattern on the x1, x2 plane.7 On the

field theory side, the dynamics of this sector of operators of N = 4 SU(N) SYM is controlled

by the matrix quantum mechanics of N fermions on a harmonic potential [36, 37]. The one-

fermion phase space (q, p) gets identified with the (x1, x2) plane displaying the “black-and-

white” pattern. In particular, the ground state of the system is given by filling the first N

states of the harmonic oscillator; in the one-fermion phase space, this corresponds to a circu-

lar droplet, which in turn is the pattern giving rise to the AdS5×S5 solution in supergravity.

The fermion picture can be inferred directly from the supergravity solutions [38–40].

This is the LLM sector of the duality between type IIB on AdS5 × S5 and N = 4

SU(N) SYM. What is the similar sector for N = 4 SYM with G = SO(N), Sp(N) ? We are

going to propose an answer motivated by the fact that the groundstate of the LLM sector

for SU(N) is precisely the N-fermion state |ΨN 〉 that appears in the matrix model that

computes Wilson loops, eq. (2.6). We then propose that for the other classical Lie algebras,

it also holds that the corresponding |Ψg〉 in eq. (2.6) is the groundstate of the fermionic

system dual to the LLM sector. We can imagine starting with the matrix model for U(2N),

so in the ground state the fermions fill up the first 2N energy levels, and then the orientifold

projects out either the even or odd parity eigenstates, depending on the gauge group we

consider. The LLM sectors are certainly richer than just the groundstate: they are given

by a matrix quantum mechanics that allows for excitations. Our complete proposal is that

the full LLM sectors are given by any N fermion state built from one-fermion eigenstates

of fixed parity: even parity for SO(2N) and odd parity for SO(2N + 1), Sp(N),

ψ(−x) = (−1)sψ(x) (3.1)

where s = 0, 1 depending on the gauge group. This picture is especially easy to visualize for

SO(2N+1), Sp(N) since in these cases we are keeping odd-parity eigenstates, which are the

eigenstates of an elementary problem in 1d quantum mechanics: the “half harmonic oscil-

lator” where we place an infinite wall at the origin of a harmonic oscillator potential. This

identification between the orientifold in AdS5 × RP5 and the projection from the harmonic

oscillator to the half harmonic oscillator was pointed out in [28], where it was suggested

to hold for any SO(N), Sp(N) group. According to our argument, this identification holds

for SO(2N + 1), Sp(N), but it does not for SO(2N), since in this case the states preserved

by the orientifold action are the even parity ones.

We can formalize this identification as follows. In [28] it was argued that the orientifold

projection acts in the (x1, x2) plane of LLM geometries as (x1, x2) ∼ (−x1,−x2). Since the

7This function u(x1, x2) is related to the function z(x1, x2) of the original paper [27] by u = 1/2 − z.
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(x1, x2) plane is identified with the one-fermion phase space, this identification amounts to

implementing a parity projection in phase space. To do so, one can define [41] the following

parity operator in phase space

Πq,p =

∫ ∞

−∞
ds e−2ips/~ |q − s〉 〈q + s| (3.2)

and the projectors

P±
q,p =

1

2
(1 ± Πq,p)

In particular, Π(0,0) is the parity operator about the origin of phase space: it changes ψ(q)

into ψ(−q) and ψ̂(p) into ψ̂(−p), so the similarity with the orientifold action is apparent.

The projectors P±
0,0 project on the space of wavefunctions symmetric or antisymmetric

about the origin, and the orientifold projection amounts to keeping one of these subspaces.

Going forward with the argument, we note that s = 0, 1 in eq. (3.1), depending on

the absence or presence of discrete torsion. We want to provide a new perspective on this

discrete torsion, from the phase space point of view. We start by recalling that the function

u(x1, x2) is identified with the phase space density u(p, q) of one of the fermions in the sys-

tem of N fermions in a harmonic potential. To go beyond a purely classical description, one

can consider a number of phase space quasi-distributions that replace the phase space den-

sity, as has been discussed in the LLM context in [42, 43]. One particular such distribution

is the Wigner distribution, defined as the Wigner transform of the density matrix,

W(p, q) =
1

π~

∫ ∞

−∞
dy e2ipy/~ 〈q − y|ρ̂|q + y〉

A salient feature of Wigner quasi-distributions is that they are not positive definite func-

tions over phase space. For instance, if we consider a given eigenstate |n〉 of the har-

monic oscillator, the corresponding Wigner distribution is given again by a Laguerre func-

tion [42, 43]8

Wn(p, q) =
(−1)n

π~
Ln

(
2
q2 + p2

~

)
e−

q2+p2

~

In particular, for the eigenstate |n〉, at the origin of phase space we have

Wn(0, 0) = (−1)n 1

π~
so it can have either sign. More generally, the Wigner quasi-distribution is the expectation

value of the parity operator defined in (3.2) [41]

W(p, q) =
1

π~
〈Πp,q〉

and in particular

W(0, 0) =
1

π~
〈Π0,0〉

8At this time, we regard the fact that Laguerre functions appear both in the vevs of circular Wilson

loops and in Wigner distributions as merely fortuitous. In particular, note that the vevs of Wilson loops

have negative argument, while for Wigner distributions the argument is positive.
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so it is clear that the sign of W(0, 0) captures the parity properties of the wavefunction

with respect to the origin of phase space.9 For a generic N fermion state with eigenstates

{j1, . . . , jN}, the Wigner function is [42, 43],

W(p, q) =
1

π~
e−(q2+p2)/~

∑

{ji}
(−1)jiLji

(
2

~
(q2 + p2)

)

For G = SO(N), Sp(N), the sign (−1)ji is the same for all states, to it comes out of the

sum. In particular, for any N fermion state, at the origin of phase space we get

(−1)s = sign W(0, 0)

3.2 Features of the non-orientable terms

In the previous section we have computed the vevs of circular Wilson loops for various gauge

groups and representations. We now want to present some exact relations among these vevs,

as well as their large N expansion, which in principle ought to be reproduced by string

theory computations on AdS5 ×RP5. Before we take a detailed look at the results we have

obtained, let’s recall briefly some general expectations. In the large N expansion, Feynman

diagrams rearrange themselves in a topological expansion in terms of two-dimensional

surfaces. Each surface is weighted by Nχ, with χ the Euler characteristic of the surface;

for a surface with h handles, b boundaries and c crosscaps, the Euler characteristic is

χ = −2h+ 2 − c− b (3.3)

As a consequence of the classification theorem for closed surfaces, a general non-orientable

surface can be thought of as an orientable surface with a number of crosscaps. Furthermore,

according to Dycks’ theorem, three crosscaps can be traded for a handle and a single

crosscap, so we expect three kinds of contributions, coming from world-sheets with an

arbitrary number of handles and with zero (i.e. orientable), one or two crosscaps.

For a U(N), SU(N) theory with all fields in the adjoint representation, the large N

expansion of any observable is actually a 1/N2 expansion (without odd powers of 1/N)

as it befits an expansion in orientable surfaces. For the vev of a circular Wilson loop

of U(N) in the fundamental representation, this 1/N2 expansion of the exact result was

already carried out in [6].10 On the other hand, when G = SO(N), Sp(N), the adjoint

representation can be thought of as the product of two fundamental representations (rather

than a fundamental times an antifundamental representation as in U(N)), so propagators

can still be represented by a double line notation, but now without any arrows in the

lines [29]. As a result, the large N expansion of observables for SO(N), Sp(N) theories

9Incidentally, negative values of the Wigner function at the origin of phase space have apparently been

measured experimentally for single photon fields [44].
10The surfaces that appear in the 1/N expansion of 〈W 〉SU(N) have a single boundary and an arbitrary

number of handles, so they all have odd Euler characteristic, eq. (3.3). However, in the normalization for

〈W 〉SU(N) followed in [6] and in the present work, there is an additional overall 1/N , so the expansion ends

up being in even powers of N . At any rate, what is relevant is that the expansion parameter is 1/N2 and

not 1/N .
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— even when all fields transform in the adjoint representation — involves both even and

odd powers of 1/N , signaling the appearance of non-orientable surfaces [29]. Furthermore,

gauge invariant quantities for Sp(N) are related to those of SO(2N) by the replacement

N → −N [45, 46]. Finally, we know that SO(2N) and Sp(N) theories can be obtained from

orientifolding U(2N). All in all, these general arguments imply that vevs in the respective

fundamental representations of various groups ought to be related by11

〈W 〉SO(2N)
Sp(N)

= 〈W 〉U(2N) ± unoriented c=1 + unoriented c=2 (3.4)

where unoriented refers to terms that in the large N limit arrange themselves into non-

orientable surfaces with either one or two crosscaps. In the formula above, we have already

imposed the relation Sp(N) = SO(−2N), which implies that world-sheets with a single

cross-cap contribute the same for SO and Sp up to a sign, while world-sheets with two

cross-caps give the same contribution for the two groups.

We are now going to show that indeed our exact results (2.13) and (2.16) follow the

pattern expressed in (3.4). In the process, we will furthermore find a couple of features

that do not follow from these general arguments.

To obtain the 1/N expansion of 〈W 〉SO(2N) and 〈W 〉Sp(N), we can analyze them sep-

arately, following the steps of [6], as we do in the appendix. However, it is much more

efficient to consider their sum and their difference, and expand those. Let’s start consider-

ing the sum. Recalling eq. (2.10), it is immediate that the results we have found, eqs. (2.13)

and (2.16) satisfy

〈W (g)〉SO(2N) + 〈W (g)〉Sp(N) = 2〈W (g)〉U(2N) (3.5)

As for the difference 〈W (g)〉Sp(N) − 〈W (g)〉SO(2N), using properties of the Laguerre poly-

nomials, it is not difficult to prove from the explicit results eqs. (2.13) and (2.16) that the

following exact relation holds

∂

∂λ

(
〈W (g)〉Sp(N) − 〈W (g)〉SO(2N)

)
=

1

4N
〈W (g)〉U(2N) (3.6)

These last two relations, eqs. (3.5) and (3.6), can we rewritten in the following suggestive

form

〈W (g)〉SO(2N)
Sp(N)

= 〈W (g)〉U(2N) ∓ 1

2

∫ g

0
dg′ 〈W (g′)〉U(2N) (3.7)

Recall that 〈W (g)〉U(2N) has a expansion in 1/N2. Furthermore, since g = λ/4N , the

integral brings an extra power of 1/N . Therefore, equation (3.7) neatly splits the 1/N

expansions of 〈W (g)〉SO(2N) and 〈W (g)〉Sp(N) into even and odd powers of 1/N . The 1/N2k

terms coincide for both vevs and are given 〈W (g)〉U(2N); they correspond to orientable

surfaces. Note in particular that since all even powers of 1/N come from orientable surfaces,

there are no contributions from world-sheets with two crosscaps, as it can be already

deduced from eqs. (3.4) and (3.5).

11Recall that we are normalizing all vevs such that 〈W 〉 = 1 + O(g). In other normalizations of the vevs

of Wilson loops, this equation might involve a different numerical coefficient in front of 〈W 〉U(2N).
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Turning now to the 1/N2k+1 terms in the expansion of 〈W (g)〉SO(2N) and 〈W (g)〉Sp(N),

they come from the integral in eq. (3.7), so it is manifest that they differ just by a sign;

this, together with the equality of the even terms in the expansions, proves that indeed

〈W (g)〉Sp(N) can be obtained from 〈W (g)〉SO(2N) by the substitution N → −N , as it had

to happen according to general arguments [45, 46].

To recapitulate, the 1/N expansion of 〈W (g)〉SO(2N) and 〈W (g)〉Sp(N) could in principle

involve contributions from three kinds of surfaces, with zero, one or two crosscaps. By a

mix of generic arguments and exact field theory computations, we have found that for these

quantities, and for any number of handles, contributions from surfaces with one crosscap

are given by an integral of the contribution from surfaces without crosscaps, while there is

no contribution from surfaces with two crosscaps, eq. (3.7).

The two features that we have just uncovered for the 1/N expansion of 〈W (g)〉SO(2N)

and 〈W (g)〉Sp(N) bear certain resemblance with properties encountered in other instances

of 1/N expansion of SO/Sp gauge theories. A first example is the computation of the

effective glueball superpotential of N = 1 SYM theories with a scalar field in the adjoint,

with an arbitrary tree-level polynomial superpotential, W(Φ). Dijkgraaf and Vafa [47]

pointed out that for G = U(N), this computation reduces to an evaluation of the planar

free energy of a one-matrix model with the matrix model potential given by the tree-level

superpotential of the gauge theory. For N = 1 SYM with gauge groups SO(N), Sp(N) the

corresponding matrix models are, like in the present work, valued on the Lie algebras [48–

50]. It was found in [48–50] that the effective superpotential of the N = 1 SYM gauge

theory is fully captured by the contributions from S2 and RP2, so there is no contribution

from the world-sheet with two crosscaps (Klein bottle); furthermore, the contribution to

the free energy coming from RP2 is given by a derivative of the contribution from S2,

F1 = ±gs

4

∂F0

∂S0

with S0 (half) the ’t Hooft coupling. Notice however that in this example the properties are

only established for world-sheets without any handles or boundaries, while our arguments

work for world-sheets with a single boundary and an arbitrary number of handles. A

second example comes from the large N expansion of Chern-Simons theory on 3-manifolds.

It was observed in [51] that the 1/N expansion of the free energy of Chern-Simons on S3

with gauge groups SO(N), Sp(N) involves unoriented world-sheets with one cross-cap, but

again world-sheets with two cross-caps are absent in this expansion. Moreover, the large N

expansion of Chern-Simons with G = SO(N), Sp(N), via its connection with knot theory,

displays non-trivial relations for the invariants of U(N) and SO(N), Sp(N) links [52].

While it is interesting that the two features we have uncovered in the 1/N expansion

of 〈W (g)〉SO(2N) and 〈W (g)〉Sp(N) have superficially similar incarnations in other gauge

theories with gauge groups SO(N), Sp(N), we don’t expect these two features to be generic

for other observables of N = 4 SYM with G = SO(N), Sp(N). For instance, in the case we

have studied, the absence of contributions coming from world-sheets with two crosscaps is a

consequence of the exact relation (3.5), but this relation appears to be quite specific of vevs

of Wilson loops in the respective fundamental representations, and we don’t know of similar
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relations for vevs of Wilson loops in other representations. Not surprisingly, in Chern-

Simons theory with G = SO(N), Sp(N), vevs of Wilson loops in higher representations do

get contributions from world-sheets with two crosscaps [53, 54].

Turning now to string theory, reproducing the actual 1/N expansion of 〈W (g)〉SO(2N)

or 〈W (g)〉Sp(N) from world-sheet computations is as out of reach as for 〈W (g)〉U(2N). On

the other hand, granting the AdS/CFT duality for any value of gs and α′/L2, our results

are also exact results in string theory, even beyond the perturbative regime. It is tantalizing

to suspect that the results we have found — e.g. the absence of contributions from world-

sheets with two crosscaps and any number of handles — are in the string theory language

consequences of some symmetry enjoyed by the particular quantities we are considering.

Identifying this symmetry and the stringy argument beyond the relations we have found

appears to be a more promising and illuminating task than attempting to reproduce them

by carrying out the explicit world-sheet computations.

Everything we have said so far follows from the exact results we have computed, and the

exact relations among them. We didn’t even have to carry out the explicit 1/N expansion

of the exact results to arrive at these conclusions. Nevertheless, it is still worth to obtain

this 1/N expansion explicitly, and this task can be accomplished with very little effort, by

combining the exact relation (3.6) with the results in [6]. Drukker and Gross [6] obtained

the following 1/N expansion of 〈W 〉U(N), that we write for U(2N),

〈W 〉U(2N) =
2√
2λ
I1(

√
2λ) +

∞∑

k=1

1

N2k

k−1∑

i=0

Xi
k

(
λ

2

) 3k−i−1
2

I3k−i−1(
√

2λ)

where Iα(x) are modified Bessel functions of the first kind, and Xi
k are coefficients satisfying

the recursion relation

4(3k − i)Xi
k = Xi

k−1 + (3k − i− 2)Xi−1
k−1 (3.8)

with initial values X0
1 = 1/12 and Xk

k = 0. A trivial integration then yields

〈W 〉SO(2N)
Sp(N)

= 〈W 〉U(2N) ∓ 1

4N

[(
I0(

√
2λ) − 1

)
+

∞∑

k=1

1

N2k

k−1∑

i=0

Xi
k

(
λ

2

) 3k−i
2

I3k−i(
√

2λ)

]

This result is valid for any λ. We can then use it to obtain a large λ expansion at every

order in 1/N

〈W 〉SO(2N) − 〈W 〉Sp(N) =
∑

k

1

(2N)2k+1

e
√

2λ(2λ)
6k−1

4

96kk!
√

2π

(
1 − 36k2 + 144k − 5

40
√

2λ
+ . . .

)

Perhaps the most important feature of this result is that the exponent (6k− 3)/4 obtained

in [6] is now replaced by (6k − 1)/4.
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A Classical simple Lie algebras

In this appendix we collect some very basic facts about classical simple Lie algebras that

we use in the main text. A Lie algebra of rank r has r simple roots. For each simple

root in the Lie algebra there is a fundamental weight, which is the highest weight of a

fundamental representation. A simple Lie algebra has then r fundamental representations.

In Physics, the name “fundamental representation” if often reserved for the fundamental

representation with highest weight w1.

su(n). The Lie algebra su(n) has rank r = n− 1. We introduce the basis ei, i = 1, . . . , n.

The positive roots and the simple roots are

R+ = {ei − ej , i < j}
Π = {α1 = e1 − e2, . . . , αn−1 = en−1 − en}

The n− 1 fundamental weights of su(n) are

wk = e1 + e2 + · · · + ek − k

n
(e1 + · · · + en) , k = 1, . . . , n− 1 (A.1)

Applying the Weyl dimension formula, the dimensions of the associated fundamental rep-

resentations are
(
n
k

)
, so these are the antisymmetric representations.

so(2n + 1). The Lie algebra so(2n + 1) has rank r = n. We introduce the basis ei, i =

1, . . . , n. The positive roots and the simple roots are

R+ = {ei ± ej (i < j), ei}
Π = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en}

The fundamental weights are

w1 = e1, . . . , wn−2 = e1 + · · · + en−2, wn−1 = e1 + · · · + en−1,

wn =
1

2
(e1 + · · · + en)

The first n− 1 representations have dimensions
(
2n+1

k

)
. The last one is a spinor represen-

tation of dimension 2n.

sp(n). The Lie algebra sp(n) has rank r = n. We introduce the basis ei, i = 1, . . . , n.

The positive roots and the simple roots are

R+ = {ei ± ej , i < j ; 2ei}Π = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = 2en}

The corresponding fundamental weights are

w1 = e1, w2 = e1 + e2, . . . , wn = e1 + · · · + en

There are no spinor representations for sp(n).
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so(2n). The Lie algebra so(2n) has rank r = n. We introduce the basis ei, i = 1, . . . , n.

The positive roots and the simple roots are

R+ = {ei ± ej , i < j }
Π = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en}

The corresponding fundamental weights are

w1 = e1 , w2 = e1 + e2 , . . . , wn−2 = e1 + · · · + en−2,

wn−1 =
1

2
(e1 + · · · + en−1 − en) , wn =

1

2
(e1 + · · · + en−1 + en)

The first n−2 fundamental representations have dimensions
(
2n
k

)
. The last two fundamental

weights correspond to spinor representations, both with dimension 2n−1.

B 1/N expansion of 〈W (g)〉SO(2N) and 〈W (g)〉Sp(N)

In this appendix we will derive the 1/N expansion of 〈W (g)〉SO(2N) and 〈W (g)〉Sp(N) with-

out making use of the exact relations among them found in the main text. We will eventu-

ally find out that the expansions involve certain coefficients that satisfy the same recursion

relation as the ones that appear in 〈W (g)〉U(2N), eq. (3.8).

To expand 〈W (g)〉SO(2N) given in eq. (2.13) in 1/N , we will first rewrite

N−1∑

k=0

L2k(−g) =
2N−2∑

k=0

dk
gk

k!

with

dk ≡
N−1∑

i=0

(
2i

k

)

These coefficients satisfy the recursion relation

dk + 2dk+1 =

(
2N

k + 2

)

and with d0 = N we can now write

〈W (g)〉SO(2N) =
1

N

∞∑

n=0

(
λ

2

)n 1

n!(n+ 1)!
D(n,N)

with

D(n,N) ≡ 2
n!(n+ 1)!

(2N)n+1

n∑

k=0

dk

2n−k(n− k)!k!

D(n,N) is a polynomial in 1/N of degree n. Expanding in 1/N ,

D(n,N) = 1 − n+ 1

2

1

2N
+

(n+ 1)n(n− 1)

12

1

(2N)2
+ . . .
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So

〈W (g)〉SO(2N) =

√
2

λ
I1(

√
2λ) − 1

4N

(
I0(

√
2λ) − 1

)
+ . . .

To expand 〈W (g)〉Sp(N) given in eq. (2.16) in 1/N , we will first rewrite

N−1∑

k=0

L2k+1(−g) =
2N−1∑

k=0

ck
gk

k!

with

ck ≡
N−1∑

i=0

(
2i+ 1

k

)

These coefficients satisfy the recursion relation

ck + 2ck+1 =

(
2N + 1

k + 2

)

and with c0 = N we can now write

〈W (g)〉Sp(N) =
∞∑

n=0

(
λ

2

)n 1

n!(n+ 1)!
C(n,N)

with

C(n,N) ≡ 2
n!(n+ 1)!

(2N)n+1

n∑

k=0

ck
2n−k(n− k)!k!

C(n,N) is a polynomial in 1/N of degree n. Expanding in 1/N ,

C(n,N) = 1 +
n+ 1

2

1

2N
+

(n+ 1)n(n− 1)

12

1

(2N)2
+ . . .

So

〈W (g)〉Sp(N) =

√
2

λ
I1(

√
2λ) +

1

4N

(
I0(

√
2λ) − 1

)
+ . . .

We know from general arguments that the odd powers in 1/N of C(n,N) andD(n,N) differ

by a sign. Now we want to argue that the even powers are the same, so as polynomials in

1/N we have D(n,−N) = C(n,N). Define

∆(n,N) ≡ C(n,N) −D(n,N) = 2
n!(n+ 1)!

(2N)(n+1)

n∑

k=1

dk−1

2n−k(n− k)!k!

If we prove that ∆(n,N) is a polynomial in 1/N with only odd powers, it will follow that

even powers of C and D coincide. The coefficients ∆ satisfy the recursion relation

∆(n+ 1, N) =
n+ 2

n+ 1
∆(n,N) +

(n− 1)(n+ 2)

16N2
∆(n− 1, N)

Together with ∆(0, N) = 0,∆(1, N) = 1/N this proves that indeed ∆(n,N) are odd in

1/N , and indeed even powers of C and D coincide.
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To carry out the expansion of ∆(n,N) we follow closely appendix B of [6]. We define

∆(n,N) =
∑

k

pk(n)

(2N)2k+1

where pk(n) are polynomials in n of degree 3k+1. We rewrite them as linear combinations

of polynomials (n+ 1)!/(n− 3k + i)! with coefficients Y i
k ,

pk(n) =
k−1∑

i=0

(n+ 1)!

(n− 3k + i)!
Y i

k

Using the recursion relation for ∆(n,N) we derive the relation

4(3k − i)Y i
k = Y i

k−1 + (3k − i− 2)Y i−1
k−1

which is the same recursion relation found in [6] for the cofficients Xi
k, eq. (3.8). The initial

values can also be seen to coincide, proving that the unoriented term are related to the

oriented ones.
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Chapter 5

Summary and conclusions

The holographic duality between gauge theories and string theories has opened a new

door to access the strongly coupled regime of quantum field theories and offers, at the

same time, a completely new way to understand the elusive nature of quantum gravity

and the non-perturbative regime of string theory.

After almost two decades of research, the current status of the correspondence is that of

a solid conjecture that has passed a great number of nontrivial tests, to the point that it

is generally believed to be true. However, it is fair to say that we still have to face many

and sever limitations, among which I may remark:

• Holography is specially well understood and can be made precise only for the

specific case of a few ideal and very symmetric theories. Starting from these simpler

settings and by breaking manifestly or spontaneously some of their symmetries, it

is indeed possible to find the gravity duals of more realistic theories with reduced

symmetry. Nevertheless, in general we don’t know how to derive precise dualities

for less-symmetric theories. We still don’t fully understand how holography works.

• When using the correspondence as a tool for analyzing strongly coupled gauge

theories, most of the computations are performed at the leading order and using

the supergravity approximation. To capture corrections beyond this approximation

is in general a very difficult task and the majority of methods and techniques are

specific of a particular kind of problem.

• The gauge/gravity correspondence offers us perhaps the best description that we

have for a theory of quantum gravity. However, the bulk of the AdS/CFT literature

is carried out within the weakly coupled or classical regime of the gravity dual,

focusing on the strongly coupled physics of the dual gauge theory. It seems fair
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to assess that it has not brought as many new results in quantum gravity as in

quantum field theory.

Of course, the main reasons for this state of affairs is the paucity of known results in

the relevant regimes of field theory. How can we use the duality in order to extract

relevant information about the putative quantum gravity theory that leaves on the

bulk?

The present thesis includes a collection of four papers published in peer-reviewed scientific

journals, all of them in the context of the AdS/CFT correspondence and with a particular

focus on studying gauge theories by inserting heavy external probes, following prescribed

trajectories and transforming under various representations of the gauge group.

Each of these works reports a little step forward in the development of new strategies for

capturing corrections beyond the leading order as well as in using exact results available

in quantum field theory in order to derive exact expressions for other relevant observables

and new non-trivial string theory predictions.

In chapters 2 and 3 we use the AdS/CFT correspondence in order to compute several

observables of N = 4 SU(N) super Yang-Mills theory related with the presence of

an infinitely heavy particle transforming in the k-symmetric or the k-antisymmetric

representations of the gauge group and following particular trajectories. This is achieved

by means of adding certain D-brane probes with electric fluxes turned on and reaching

the boundary of AdS on the very trajectories followed by the dual particles. For the

antisymmetric case we consider D5-branes reaching the boundary at arbitrary time-like

trajectories, while for the symmetric case, we consider a D3-brane fully embedded in

AdS5 that reaches the boundary at either a straight line or a hyperbola. This generalizes

previous computations that used fundamental strings, which are claimed to be dual to

infinitely heavy point particles transforming in the fundamental.

Besides the intrinsic interest of these generalizations, our main motivation in studying

them is that, as it happens in the computation of certain Wilson loops, the results

obtained with D3-branes give an all-orders series of corrections in 1/N to the leading

order result for the fundamental representation obtained by means of fundamental strings.

It is important to remark, one more time, that we can not really extrapolate up to k = 1,

since this is beyond the regime of validity of the supergravity approximation. Therefore,

it is not justified a priori to set k = 1 in our results. Nevertheless, when compared with

the exact results available, we find that the D3-brane computation reproduces the correct

result in the large N , λ limit and with k = 1.

This better than expected performance suggests the exciting possibility that certain
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D3-branes with electric fluxes might capture correctly all the 1/N corrections, but it is

fair to say that we still lack of a precise string-theoretic argument to prove this.

The remaining part of chapter 3 is devoted to the derivation of exact results for

observables related with static and radiative fields. This was achieved by finding exact

relations between certain physical observables, the vacuum expectation value of the
1
2
-BPS circular Wilson loop in the fundamental representation and the two-point function

of the circular loop and a chiral primary operator, which in turn can be computed exactly

by means of the supersymmetric localization technique.

In particular, we provided exact expressions in N = 4 super Yang-Mills for the total

energy loss by radiation of a heavy particle in the fundamental representation (from now

on, a “quark”), the expectation value of the Lagrangian density operator in the presence

of a heavy quark and the momentum diffusion coefficient of a heavy quark moving with

constant proper acceleration in the vacuum.

Finally, in chapter 4 we compute the exact vacuum expectation value of the 1
2
-

BPS circular Wilson loops for Euclidean N = 4 super Yang-Mills with gauge group

G = SO(N), Sp(N), in the fundamental and spinor representations. These field theories

are conjectured to be dual to type IIB string theory compactified on AdS5×RP5 plus

certain choices of discrete torsion, and we use our results to probe this particular holo-

graphic duality.

After revisiting the Liu-Lunin-Maldacena-type geometries having AdS5×RP5 as ground

state, we find that our results clarify and refine the identification of these geometries as

bubbling geometries arising from fermions on a half harmonic oscillator. We furthermore

identify the presence of discrete torsion with the one-fermion Wigner distribution becom-

ing negative at the origin of phase space.

We end with a string world-sheet interpretation of our results. In that case our goal

was not that of using the exact results for testing the correspondence, but our attitude

was to take for granted the holographic duality and use the exact field theory results to

learn about string theory on an AdS5×RP5 background. The exact relations between

the quantities considered imply two main features: first, the contribution coming from

world-sheets with a single crosscap is closely related to the contribution coming from

orientable world-sheets, and second, world-sheets with two crosscaps don’t contribute to

these quantities. Finally we end up by carrying the explicit 1/N expansion of the exact

results and comparing with the known SU(N) case.
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Outlook and future directions

The localization technique has emerged as a very powerful and promising technique to

drastically simplify very specific computations in supersymmetric gauge theories, allowing

in some cases to obtain exact results. It has been stablished that for four-dimensional

N = 2 super Yang-Mills theories with a Lagrangian description, the evaluation of the

partition function and the vev of certain circular Wilson loops boils down to a zero-

dimensional matrix model computation. For the particular case of N = 4 SYM, the

matrix model is Gaussian and all the integrals can be computed exactly, but when we

consider less supersymmetric N = 2 theories, the one-loop determinant that appears

from integrating out field fluctuations becomes a complicated function and an exact

evaluation of the integrals is out of reach.

However, there have been a number of works trying to use the localization of the partition

function and of certain loop operators in four dimensional N = 2 super Yang-Mills

theories to probe the putative string duals. As of today, we have analyzed a broad family

of four-dimensional N = 2 superconformal quiver gauge theories from the matrix model

and in the large N limit. In particular, this allowed us to find another evidence for the

classification of gauge theories in two big families, with or without a putative classical

gravity dual, depending on their matter content.

This is a potentially very exciting line of research, as it may reveal properties of holographic

pairs that have not been fully established to date.

Another completely different line of future research will be the extension of our string

and D-brane probe computations to more realistic situations, a first approach being that

of allowing for finite temperature. Obviously, this breaks completely and explicitly both

conformal symmetry and supersymmetry so localization is not applicable.

Studying probes at finite temperature is an old and well established subject, and one

of the very first applications of holography for unraveling the mysteries of the strongly

coupled regime of QCD. Nevertheless, it has been claimed recently that the standard

approach of using fundamental strings and D-branes to probe finite temperature gravity

backgrounds can miss important quantitative as well as qualitative information, since

these probes are extremal by definition and cannot be in thermal equilibrium with the

medium at finite temperature. A promising candidate that fixes this is the so-called

blackfold approach, which is a technique that consists basically in finding approximate

solutions of probe black branes. Being black objects, these will always be in thermal

equilibrium with any stationary background.

In this context, my first goal will be to compute the quark-antiquark potential of N = 4
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SYM at finite temperature and finite chemical potential as a generalization of a previous

computation done at zero chemical potential. Although a priori it may look like a

straightforward generalization, I think that in this second case one may find richer

physics. On the one hand, the relevant phase space is now two-dimensional and was

studied in detail in the past. On the other hand, and most importantly, one can approach

very low temperatures both in Poincaré and in global coordinates. Maybe this will lead to

a separation between classical and quantum temperature fluctuations, as it was observed

recently in a slightly different context.
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Chapter 6

Resum en Català

Summary in Catalan

La Teoria Quàntica de Camps, la teoria resultant de fer compatibles la Mecànica Quàntica

amb els postulats de la Relativitat Especial d’Einstein, és una eina amb una gran diversitat

d’aplicacions i que ens permet explicar de manera satisfactòria una gran varietat de

fenòmens f́ısics en diferents intervals d’energia. En el camp de la f́ısica d’altes energies, la

Teoria Quàntica de Camps és la teoria subjacent que fonamenta el Model Estàndard, el

qual ofereix una visió unificada i precisa de les interaccions electromagnètica, nuclear feble

i forta. En el marc de la f́ısica estad́ıstica, la Teoria de Camps descriu satisfactòriament

les transicions de fase al voltant d’un punt cŕıtic aix́ı com la f́ısica de diversos sistemes

de matèria condensada.

Aquestes teories presenten, però, diverses dificultats. La gran majoria de situacions

on la Teoria Quàntica de Camps ens és útil tenen en comú el fet de trobar-se en un

règim feblement acoblat, el qual ens permet un estudi pertorbatiu de les interaccions.

Aquesta descripció pot ser fonamental, com és el cas del Model Estàndard de la F́ısica

de Part́ıcules, o bé efectiva, com seria el cas de la teoria de pertorbacions quiral, la teoria

BCS per a la superconductivitat o la teoria dels ĺıquids de Fermi.

Al món real trobem també, però, molts sistemes d’interès f́ısic o amb clares aplicacions

tecnològiques on no coneixem cap descripció feblement acoblada: QCD a energies baixes

(i.e. comparables amb l’energia en repòs del protó), superconductivitat a temperatures

altes, sistemes de fermions pesants, etc... Realitzar càlculs en teories com aquestes on

el règim d’acoblament és fort resulta molt complicat. Una possibilitat consisteix en

discretitzar l’espai-temps substituint-lo per un reticle de punts i portar a terme càlculs

numèrics amb ordinadors. Aquesta enfocament pot resultar útil per tal d’avaluar certes
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quantitats, però requereix un gran poder computacional i no és fiable per analitzar

processos fora de l’equilibri.

Vist l’ampli ventall de sistemes on el paradigma de part́ıcules o quasi-part́ıcules inter-

accionant feblement no és aplicable, aix́ı com les limitacions dels mètodes discrets, és

imperatiu trobar noves eines anaĺıtiques que vagin més enllà del càlcul pertorbatiu.

Durant les darreres dues dècades ha aparegut un nou paradigma que permet reformular

completament certes teories quàntiques de camps i ens aporta una nova eina que ens

permet realitzar càlculs anaĺıtics en règims fins ara inaccessibles. Aquest nou paradigma

sorgeix del descobriment d’una correspondència o dualitat exacta entre dues teories

aparentment molt diferents. Per una banda de la dualitat tenim certes teories quàntiques

de camps, com per exemple les denominades teories de Yang-Mills, similars a les teories

del Model Estàndard. Aquestes descriuen part́ıcules interactuant en un espai pla d-

dimensional sense gravetat. A l’altra banda de la dualitat trobem teories que inclouen la

gravetat, com ara la Teoria de la Relativitat General d’Einstein o les seves generalitzacions

en el marc de la Teoria de Cordes. Aquestes teories de gravetat estan definides sobre espais

de dimensió més alta que d, i és per això que aquesta correspondència rep sovint l’adjectiu

de “hologràfica”. Depenent del context, aquesta rep el nom de dualitat gauge/gravetat,

dualitat gauge/corda o AdS/CFT (acrònim anglès per la correspondència particular entre

teoria de cordes a espais d’Anti-de Sitter i teories de camps conformes).

Fins ara, una de les correspondències més ben estudiades i que comprenem millor (i sobre

la qual es centra la present tesi) és la dualitat entre la teoria quatre-dimensional N = 4

super Yang-Mills amb grup de gauge SU(N) i teoria de cordes tipus IIB en un espai

deu-dimensional AdS5×S5.

Aquesta tesi presenta una recopilació de quatre articles publicats en revistes cient́ıfiques

d’alt impacte, tots ells en el camp de la correspondència AdS/CFT i centrats en l’estudi de

teories gauge supersimètriques mitjançant la inserció de part́ıcules de prova infinitament

massives, seguint trajectòries determinades i transformant sota diverses representacions

del grup de gauge. Cadascun d’aquests treballs aporta un pas endavant en el desenvolu-

pament de noves estratègies per calcular correccions més enllà del primer ordre aix́ı com

en l’ús de resultats exactes accessibles a la Teoria Quàntica de Camps per tal de derivar

expressions exactes d’altres observables rellevants de la teoria i realitzar prediccions de

Teoria de Cordes.

Als caṕıtols 2 i 3 hem utilitzat la correspondència AdS/CFT per calcular certs

observables de la teoria N = 4 super Yang-Mills relacionats amb la presència d’una

part́ıcula de prova infinitament massiva, transformant sota les representacions k-simètrica
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o k-antisimètrica del grup de gauge i seguint trajectòries concretes. Això es realitza

mitjançant la inserció de determinades D-branes de prova amb fluxos elèctrics activats i

que arriben al contorn a l’infinit d’AdS precisament sobre les trajectòries descrites per

les part́ıcules duals. Pel cas de la representació antisimètrica considerem una D5-brana

arribant al contorn en una trajectòria arbitrària tipus temps, mentre que pel cas de la

representació simètrica considerem una D3-brana completament immersa dins AdS5 i

que arriba al contorn sobre una ĺınia recta o sobre una hipèrbola. Aquests resultats

generalitzen càlculs previs on s’utilitzaven cordes fonamentals.

Tot i l’interès intŕınsec d’aquestes generalitzacions, la nostra motivació principal és que,

aix́ı com també passa amb el càlcul de certs llaços de Wilson, els resultats obtinguts

mitjançant D3-branes presenten una sèrie de correccions a tot ordre en 1/N que con-

icdeixen exactament amb les prediccions mitjançant resultats exactes. Aquest resultats,

molt millors del que un esperaria donats els rangs de validesa de la tècnica emprada, ens

suggereix la interessant possibilitat que certes D3-branes amb fluxos elèctrics activats

puguin capturar totes les correccions 1/N . Cal dir, però, que a dia d’avui encara no hem

aconseguit trobar una derivació utilitzant un llenguatge de Teoria de Cordes per tal de

demostrar aquest fet.

La part restant del caṕıtol 3 està dedicada a la derivació de resultats exactes per

observables a la teoria de camps relacionats amb camps estàtics i radiatius. Això

s’aconsegueix trobant relacions exactes entre aquests observables, el valor d’expectació al

buit del llaç de Wilson circular 1
2
-BPS transformant sota la representació fonamental i la

funció de correlació a dos punts del llaç circular i un operador primari quiral. Per altra

banda, aquests dos últims al seu torn poden ésser calculats de manera exacta mitjançant

la tècnica de la localització supersimètrica.

D’aquesta manera hem derivat l’expressió exacta a la teoria N = 4 super Yang-Mills

de l’energia total radiada per una part́ıcula infinitament massiva a la fonamental (d’ara

endavant un “quark”), el valor d’expectació de l’operador densitat Lagrangiana en

presència d’un quark pesant i el coeficient de difusió de moment d’un quark pesant

movent-se amb acceleració pròpia constant al buit.

Per acabar, al caṕıtol 4 calculem exactament el valor d’expectació al buit del llaç de

Wilson circular 1
2
-BPS a la versió Eucĺıdea de N = 4 super Yang-Mills, amb grups de

gauge G = SO(N), Sp(N) i transformant sota les representacions fonamental i espinorial.

La conjectura ens diu que aquestes teories de camps son duals a la teoria de corda tipus

IIB compactificada sobre AdS5×RP5, amb l’elecció d’una determinada torsió discreta,

aix́ı que utilitzem els nostres resultats per fer mesures de prova d’aquesta dualitat.
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Després de fer un repàs a les geometries de Liu-Lunin-Maldacena amb AdS5×RP5 com

a estat de mı́nima energia obtenim, com a primera conclusió, que els nostres resultats

clarifiquen i refinen la identificació d’aquestes geometries com a bubbling geometries

que emergeixen d’un sistema de fermions en un potencial del tipus “mig oscil · lador

harmònic”.

Acabem finalment amb una interpretació dels nostres resultats encarada a la fulla de

temps de la corda dual. En aquest cas el nostre objectiu no és pas el d’utilitzar els resultats

exactes per tal d’estudiar la conjectura, sinó que la nostra actitud consisteix en donar per

suposada la dualitat hologràfica per aix́ı poder utilitzar els resultats exactes obtinguts

per obtenir nova informació sobre la teoria de cordes en aquest fons particular. Les

relacions exactes entre les diverses quantitats considerades impliquen dos fets principals:

en primer lloc, la contribució de les fulles de temps amb un únic crosscap està estretament

relacionada amb la contribució provinent de les fulles de temps orientables. En segon

lloc, fulles de temps amb dos crosscaps no contribueixen a aquestes quantitats. En últim

lloc acabem realitzant una expansió en 1/N expĺıcita dels resultats exactes obtinguts per

tal de comparar-los amb els resultats coneguts pel cas de grup de gauge SU(N).
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