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Abstract

In this work, we develop a generic framework that is able to handle document retrieval
problem in various scenarios such as searching the full page matches or retrieving the
counterparts for specific area of document, focusing on their structural similarity or
letting their visual feature to play the dominant role. Based on the spatial indexing
technique, we propose to search matches for the local key-region pairs carrying both
structural and visual information from the collection while a scheme to adjust the
structural and visual similarity is presented.

Based on the fact that the structure of documents is tightly linked with the dis-
tance among their elements, we firstly introduce an efficient detector named as Dis-
tance Transform based MSER (DTMSER). We illustrate that it is able to extract
the structure of a document image as a dendrogram (hierarchical tree) of multi-scale
key-region that roughly correspond to letters, words, paragraphs. We demonstrate
that, without benefiting from the computed structure information, the key-regions
extracted by DTMSER algorithm achieves slightly better result comparing with state-
of-the-art methods (SIFT, MSER) while much less amount key-regions are employed.

We subsequently propose a pair-wise BoW framework to efficiently embed the
explicit structure lies within the dendrogram extracted by DTMSER algorithm. We
represent each document as a list of key-region pairs that correspond to the edges
in the dendrogram where inclusion relationship is encoded. By employing those
structural key-region pairs as the pooling elements for generating the histogram of
features, we demonstrate that the proposed method is able to encode the explicit
inclusion relations into BoW representation. Besides, we apply the inverted file
indexing techniques to solve the quadratic computation complexity problem inherited
from the pair-wise representation. The experimental results illustrate that the pair-
wise BoW, powered by the embedded structural information, achieves remarkable
improvement over the conventional BoW and spatial pyramidal BoW methods.

To handle various retrieval scenarios in one framework, we propose to directly
query a series of key-region pairs, carrying both structure and visual information,
from the collection. We introduce the spatial indexing techniques into document re-
trieval community to speed up the structural relationship computation for key-region
pairs. We demonstrate that the proposed framework allows to adjust the role that
the structure and visual features would play when measuring the similarity through
tuning the discriminative power of the two types of visual features (geometrical and
content). We firstly test the proposed framework in a full page retrieval scenario
where the structural similar matches are expected. In this case, the pair-wise query-
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iv ABSTRACT

ing method achieves notable improvement over the BoW and spatial pyramidal BoW
frameworks. However, slight performance decrease is observed comparing with the
pair-wise BoW method due to the ”noise” introduced by the spatial indexation. Fur-
thermore, we illustrate that the propose method is also able to handle the focused
retrieval situations where the query is defined as a specific interesting area of the
image such as logos, address blocks or shopping records. We perform our method on
two types of focused queries: structure-focused queries that search their counterparts
by the structural similarity where the content variation is allowed and exact queries
that look for the matches hold similarity on both structure and their visual content.
The experimental results show that, the proposed generic framework obtains nearly
perfect precision on both type of focused queries while reasonable lower recall is ob-
served for structure-focused queries. It is because RANSAC algorithm fails to find
lots of matches from the collection for the structure-focused queries when searching
multi instance in one image due to the large portion of outliers.

To solve the problem of RANSAC which is observed to be too rigid for structure-
focused queries, we introduce a line verification method as an alternative strategy
to check the spatial consistency among the matched key-region pairs. We illustrate
that the line verification is more robust over outliers. Since it is very expensive to
compute the lines for all combination of two points, we propose a cheaper version
through a two step implementation. We first compute tentative bounding boxes that
might be not precise but can be employed to divide the matched key-region pairs into
several groups, then line verification is performed within each group and compute the
corresponding bounding boxes more precisely. We demonstrate that, comparing with
RANSAC, the line verification generally achieve much higher recall with slight loss
on precision on specific queries.



Resumen

En la presente investigacin se desarrolla un marco de trabajo genrico para la bsqueda
de documentos digitales partiendo de un documento de muestra, tanto para solicitudes
de imagenes completas como subpartes de la misma, donde el criterio de similitud
hace uso tanto del parecido a nivel estructural como de otras caracteristicas visuales
relevantes. Partiendo de la tcnica de indexacin espacial proponemos la utilizacin de
correspondencias entre pares de regiones locales de inters, aportando estas informacin
tanto estructural como visual, y al mismo tiempo detallamos un metodo para definir
la combinacin de ambos tipos de informacin en un unico criterio de similitud.

Partiendo del hecho constatado que la estructura de un documento est intrnseca-
mente ligada a las distancias que definen su contenido, primeramente presentamos un
detector eficiente que bautizamos como DTMSER, basado en el ya existente MSER y
modificado con la transformada de la distancia. Mostramos que este detector es capaz
de extraer la estructura del documento en forma de dendograma (arbol jerarquico)
de regiones de inters a diferentes escalas, las cuales corresponden aproximadamente
a caracteres, palagras y prrafos. Los experimentos realizados prueban que el algo-
ritmo DTMSER logra mejores resultados respecto a mtodos consagrados como SIFT
y MSER, con la ventaja de usar menos regiones de inters que dichos mtodos de ref-
erencia.

Posteriormente proponemos un metodo basado en pares de descriptores BoW que
permite representar el dendograma extraido mediante el algoritmo DTMSER. Para
este fin cada documento se representa mediante una lista de pares de regiones de
inters, donde cada par representa una arista del dendograma y define la relacin de
inclusin entre ambas regiones. Dado que el histograma de caracteristicas es generado
en base a tales pares de regiones de inters y los resultados obtenidos son satisfactorios,
se demuestra que el metodo propuesto refleja fielmente las relaciones de inclusin de
regiones. Tal metodo requerira un tiempo de computacin cuadratico debido al uso de
pares de regiones, pero mostramos como solventarlo mediante tecnicas de indexacin
inversas de ficheros. Los experimentos realizados demuestran que el metodo propuesto
supera con creces otras variantes de BoW, tanto convencionales como de espacio-
piramidales.

Teniendo en cuenta diferentes situaciones donde se puede requerir la busqueda
de documentos digitales, proponemos aglutinar estas situaciones y trabajar directa-
mente partiendo de pares de regiones de inters, donde se incluye informacin espacial
y tambien visual. Para ello usamos en este campo tecnicas de indexacin espacial
para agilizar los calculos relativos a la similtud entre pares de regiones. El marco de
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vi RESUMEN

trabajo propuesto permite encontrar un equilibrio satisfactiorio entre caractersticas
estructurales y caractersticas visuales. En primer lugar aplicamos este marco de tra-
bajo al caso comn de bsquedas de pginas enteras, donde se espera que los resultados
presenten una gran similitud espacial respecto a la imagen inicial. En este experi-
mento nuestro metodo de bsqueda basado en pares de regiones supera la mayoria de
mtodos BoW analizados. Aqui el uso de la indexacin inversa de ficheros no juega
a nuestro favor debido al ruido que introduce la busqueda de pares de regiones de
inters, y como resultado el metodo de referencia BoW dos a dos supera ligeramente
el nuestro. Sin embargo nuestra propuesta es claramente superior ya que permite
buscar partes de documento tales como logotipos, direcciones postales, listados en
albaranes, etc. Aplicamos esta bsqueda focalizada a dos casos distintos: priorizando
la similitud estructural pero permitiendo diferente contenido, y la ms restictiva de
estructura y apariencia similares donde adems se requiere un contenido similar. Los
resultados obtenidos son excelentes para ambos casos, aunque el primer caso presenta
menor sensibilidad debido al efecto de gran cantidad de valores atpidos en el algoritmo
RANSAC.

Para las busquedas con similitud estructural proponemos solucionar el problema
del algoritmo RANSAC mediante un metodo de verificacion de lineas, frente al genrico
punto a punto de RANSAC en la verificacin de pares de regiones de inters. Mostramos
la robustez de nuestro metodo de comparacin de lneas en presencia de gran cantidad
de valores atpicos. Para aligerar la carga computacional de nuestro metodo definimos
una simplificacin practica en tres pasos. El primer paso es obtener candidatos a
regiones de inters para luego posteriormente realizar la verificacin de lineas en estas y
finalmente precisar las regiones de inters. Los experimentos demuestran que nuestra
propuesta de verificacin de lineas es ms exhaustivo respecto a RANSAC a expensas
de un ligero decremento en precisin, lo cual es preferible en determinados casos de
busqueda.



Resum

Aquesta tesi doctoral presenta un marc de treball genric per a la cerca de documents
digitals partint d’un document de mostra de referencia, on el criteri de similitud pot
ser tant a nivell de pgina com a nivell de subparts d’inters. Aquest criteri de similitud
conjuga les relacions estructurals entre regions del document aix com caracteristiques
purament visuals. Combinem la tecnica d’indexaci espacial amb correspondncies entre
parells de regions locals d’inters, on aquestes contenen informaci tant estructural com
visual, i detallem la combinaci adient usada d’aquests dos tipus d’informaci per ser
usada com a nic criteri de similitud a l’hora de fer la cerca.

Donat que l’estructura d’un document est lligada a les distncies entre els seus
continguts, d’entrada presentem un detector eficient que anomenem DTMSER, basat
en el ja existent MSER pero modificant-lo amb la transformada de la distncia. El
detector proposat s caps d’extreure l’estructura del document en forma de dendograma
(arbre jerrquic) de regions d’interes a diferents escales, les quals guarden una gran
similitud amb els caracters, paraules i pargrafs. Els experiments realitzats proven que
l’algorisme DTMSER supera els metodes de referncia SIFT i MSER, amb l’avantatge
de requerir menys regions d’interes.

A continuaci proposem un mtode basat en parells de descriptors BoW que permet
representar el dendograma descrit anteriorment i resultat de l’algorisme DTMSER. El
nostre mtode consisteix en representar cada document en forma de llista de parelles
de regions d’inters, on cada parella representa una aresta del dendograma i defineix
una relaci d’inclusi entre ambdues regions. Com que l’histograma de caracterstiques s
generat a partir de les prelles de regions d’inters i els resultats sn satisfactoris, podem
concloure que el mtode proposat reflecteix la inclusi de regions. Aquesta proposta re-
queriria un temps de clcul quadrtic degur a l’s de parells de regions, pero tamb incloem
l’opci d’usar tcniques d’indexaci inversa de fitxers per alleugerir aquesta crrega. Els
experiments realitzats demostren que el nostre mtode supera mpliament altres vari-
ants exteses de BoW com poden ver les convencionals o les espacio-piramidals.

Per tal d’englobar diferents situacions on es pot requerir una la cerca de documents
digitals, proposem usar directament parelles de regions d’inters, les quals inclouen in-
formaci tant espacial com visual. Amb aquest objectiu introduim en aquest camp
tcniques d’indexaci espacial per millorar el temps de clcul de les similituds de parelles
de regions. El marc de treball que porposem permet definir satisfactriament la combi-
naci equilibrada entre les caracterstiques estructures i les visuals. Apliquem la nostra
proposta al cas de cerques de pgines senceres, on t ms pes la similitud estructural.
Els experiments corresponents mostren que la nostra proposta supera la majoria de
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mtodes BoW de referncia. En aquestes condicions l’s d’indexaci inversa de fitxers no
millora la cerca ja que afegeix soroll en la cerca de parelles de regions d’inters, i per
aquest motiu el mtode de referencia BoW dos a dos supera lleugerament la nostra
proposta. No obstant aix, la nostra proposta presenta un clar avantantge: podem fer
cerques de subparts de documents, com serien logotips, blocs de direccions postals,
llistes d’albarans, etc. Apliquem el nostre metode en la cerca de subparts en dos casos:
prioritzant la similitud estructural per permetent diferncies de contingut, i restringint
la cerca unes estructura y aparena similars on ara el contingut ha de ser semblant.
Els resultats obtinguts en els experiments sn excellents en tots dos casos, tot i que
el primer cas l’algorisme RANSAC usat presenta menys sensibilitat en presncia de
grans quantitats de valors atpics.

Per millorar les cerques amb similitud estructural proposem la millora de l’algorisme
RANSAC mitjanant la verificaci de lnies, substituint el genric punt a punt de RANSAC
a l’hora de verificar parells de regions d’inters. Mostrem la robustesa de la nostra
proposta de comparaci de lnies en presncia de valors atpics. Per reduir la crreca
computacional de la nostra proposta definim una simplificaci practica en tres passos.
Primer obtenim candidats a regions d’inters per posteriorment realitzar la verificaci
de lnies en aquestes regions, i finalment precisem les regions d’inters. Els experiments
demostren que la nostra roposta de verificaci de lnies es ms exhaustiva que RANSAC
a canvi de permetre una disminuci de precisi, la qual cosa es preferible en determinats
casos de cerca.
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Chapter 1

Introduction

During the past decades, considerable amount of document databases have been cre-
ated since the digitalization of the document images is becoming to be more con-
venient and cheaper. For example, instead of expensive professional scanners, one
could upload images nowadays through digital camera or even smart-phone which is
ubiquitous in our life. However, how to access and analyze the massive information at
low cost time is still a challenging problem. Depending on the types of content that
the users concern, many techniques have been developed for many applications such
as spotting specific words, validating the signature for security purpose and classify-
ing the stored data according to the writers for hand-written document images etc.
Among the various scenarios, document image retrieval receives significant attention
among the document image analysis domain and successfully applied to our really
life. For instance, one would probably want to efficiently collect all the administra-
tive forms from the same provider by matching the logos or business/private letters
from the same sender according to the titles or address blocks. As the smartphone
is becoming affordable for most people, similar or exact document could be retrieved
from a large number of images by taking a single photo the query in nearly real-time.
Similar situations may also happen to newspapers, mails, journals, magazines, books
etc.

Despite that enormous research on document image retrieval has been done for var-
ious situations, there are still many challenges that have not unsolved yet. However,
exploiting document structure in a stable manner is still missing while the layout-
based methods are retarded due to the segmentation errors and matching complexity.
As increasing number of images are keep adding into the database, the efficiency of
image storing, feature extraction and matching is also still an open problem. Another
concern for document image retrieval is that if the system is capable to return part of
database images that match the query best or the system only can search document at
full-page level. Besides, depending on specific applications, users may carry different
conception/criteria on similarity among images such as structure similar or content
similar etc. Even though lots of methods have been demonstrated to be effective for
some specific scenarios, a generic framework aiming at solve the whole spectrum of
document retrieval problem have not been exploited.

1
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1.1 Problem Definition

We can frame the problem of document image retrieval as returning a list of bound-
ingboxes {bbox1, bbox2, . . . , bboxi, . . . , bboxn} which has been sorted according to cor-
responding score that measuring the similarity of query image and the matched target
image as follows:

Scorei = f(Sim(Query, bboxi)) (1.1)

while bboxi could further formulated as bboxi = {im index, x, y, width, height} where
im index is employed to indicate the image that the boundingbox located from the
database and {x, y, width, height} represent the coordinate of top-left points and the
width and height of the boundingbox specifying part of the image. Even though
the queries and matches are rectangle zones in most cases, we should note that for
some specific situations, the boundingbox we mentioned here could be substituted by
polygons or circles.

Exact Matches Full page Matches Structure-focused Matches

(a) (b) (c)

Figure 1.1: Document Retrieval in 3 different scenario: 1) Full page retrieval that
searching for both content and structural similar images 2)Exact Matches aiming
to retrieve all the image parts that preserve the content and structural similarity
3)Structure-focused matches is expected to return the image parts that the structural
similarity is preserved within which the content could be varied

As shown in Figure 6.1, document image retrieval could be categorized into two
types: 1) full-page matching that searching whole document as the final target and
thus calculate the similarity score between query image and the complete target im-
age; 2)part-based document retrieval that try to find the part of target image that
hold high similarity score with query image. For instance, searching the whole page
captured from checks, books, journals or magazines could be considered as the full
page retrieval scenario. On the other hand, searching address block, shopping records,
company logos could be categorized as part-based retrieval problem. For the full-page
retrieval problem, the bounding box applied in (1.1) should be forced to the outline
of the document while, for part-based retrieval, the bounding box could be located
anywhere inside the target document. Besides, in some applications, the user may
look for multiple instances (bounding boxes) from one single image.

Besides, from the viewpoint of similarity, document image retrieval could be di-
vided into many categories where content-based retrieval and structure-based retrieval
are the most common ones. The content-based retrieval scenario aims at searching the
matches that hold high similarity on both content (and also the structure sometimes)
between images while the structure-based querying does not concern much on the
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content but pays more attention on structure similarity. For example, when search-
ing the documents that contain the given logo that looking for the exact counterpart
or with few changes in some cases, the similarity on both structural characteristic
and content feature would be considered. However, when the user want to get all
the shopping records from one provider, it might be better to compute the similarity
score based on the structure only since the conveyed contents may vary on product
name, quantity, price and so on.

In summary, our research aims at generic framework that could solve the whole
spectrum of document retrieval purpose from full-page retrieval to image part search-
ing, from content-based matching to structure-based querying. Even though signifi-
cant amount of research have been done for solving the problem from different aspect,
there are few algorithms that are capable to generally deal with the various demands
in one framework.

1.2 Motivation

As discussed before, document image retrieval problem yields to many scenarios such
as full-page and part-based matching where the similarity might be measured on con-
tent, structure or both of them. Considerable works have been done that focused on
their own specific applications and achieve good performance for the given situations.
However, few methods could generally handle the whole series of retrieval scenarios.
However, in reality, the users might seek for multi-objective solution in one single
framework to generally handle many different problems. For example, in most cases,
the administrative employee may use document analysis system to categorized the
invoices by matching the provider’s logo which could be considered as image part
retrieval problem based on the content and structure similarity. However, they may
appreciate that if the same system could also fetch the original full document image
from the database in the case that part of the printed version is destroyed due to
coffee stain or unintentional doodling. Besides, from the viewpoint of commercial
cost, space usage and system setup, the system that is capable to generally deal with
multi problems might be more economical than buying many systems each of which
only focus on limited problems.

When measuring the similarity of query and the counterparts, the most straightfor-
ward way is to check the difference of the conveyed contents based on either OCR-ed
strings or local key-points (key-regions) features. However, in most situation, the
document structure, typically represented as either the spatial relation between seg-
mented blocks or the hierarchical tree of the document elements, also plays significant
role in evaluating the similarity between query and target images. Document layout
analysis is the most straightforward and popular way for analyzing the document
structure. The layout analysis methods usually segment the document into group
of blocks and represent the structure as the spatial relation among the segmented
blocks. However, apart of the stability issue on segmentation that is still an open
challenge, the high computation cost for measuring the similarity between a group of
blocks and another also hinders the applications of layout analysis methods. Another
popular manner for representing document structure is to encode the location infor-
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mation of key-points (key-regions) into feature vector through dividing the image into
pyramidal parts. Even though such spatial structure encoding methods achieves nice
performance, the structural information that actually encoded in the feature vector
is implicit local patterns rather than explicit low-level structure and does not yield
to image rotation. Consequently, it is appealing to exploit one method to extract the
document structure in stable and repeatable manner where the content feature and
structure information could be combined together to evaluate the similarity between
query and target images.

Another aspect to be specially concerned for document image analysis problem is
the efficiency. This consists of the time consumption of content feature extraction,
the structure representation and distance computation for both content and structure
feature, sometimes the spatial consistence checking if applicable. Hence, the efficient
feature detection and description as well as the indexing strategy of both feature
vector and spatial relations for structure are also very attractive.

1.3 Challenges

As discussed before, document image retrieval problem yields to many different sce-
narios such as full-page or image part querying, content concentrated or structure-
based similarity for various document type like newspapers, letter, books, invoices
etc. Generally representing document for various situation in one single framework
is extremely difficult because different scenarios may have varied demands and cri-
teria of similarity. However, the fact is that the common characteristics that most
documents share are that they are composed by elements such as letters, words, para-
graphs (figures and tables if applicable) which are linked together in the same way:
letters to words, and words to paragraphs. These common characteristics imply the
possibility of a general framework for dealing document images in various scenarios.

One common issue for document image analysis, and also for natural scene images,
is the feature extraction problem which is very challenging to meet the discriminative
and repeatable requirement. Various feature detection methods such as Scale Invari-
ant Feature Transform (SIFT) and Maximal Stable Extremal Region (MSER) have
been proposed for natural scene understanding and achieve remarkable success in doc-
ument analysis domain as well. However, the current detection methods might not
be able to naturally extract the semantical elements of the document. For example,
in the situation of binary images, SIFT detects the blobs that basically correspond to
corners and edges of letters and MSER algorithm extracts the connected components
that correspond to letters only in most case. On the other hand, layout analysis meth-
ods representing document features as segmented blocks are still suffering from the
segmentation errors and the matching complexity. Consequently, extract the docu-
ment elements at different level in an efficient manner is still another open challenging
problem.

Besides the content contained in the document, the structure is another rich source
of image description many works have been studied for document structure extraction
for some specific types of documents. Due to the huge variation among documents,
representing their structure in an efficient and stable way is still a challenge. More-
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over, indexing the document structure which normally represented as graph is also
challenging even though many methods like graph embedding, random walk etc. have
been studied to computed the distance between graphs.

1.4 Our Contributions

To solve the challenging problems listed in the previous section, we made minor step
forward for document image analysis as follows:

Based on the fact that the letters usually are placed closer to each other than
words are and in turn the words are closer than paragraphs do, we propose Distance
Transform based MSER (DTMSER) detection method which performs MSER anal-
ysis process on distance transformed image where the value of each pixel is set to
corresponding distance to the nearest object/foreground pixel. DTMSER detection
algorithm is capable to extract the key-regions at different semantical levels such as
letters, words and paragraphs. On contrast, SIFT basically extracts corner or edge
blobs and MSER simply returns connected component. Besides, we demonstrate that
the content features extracted from DTMSER key-regions hold better discriminative
power than the features extracted from SIFT key-points and MSER key-regions for
binary document images scenario. Moreover, the main advantage of DTMSER algo-
rithm is that it could explicitly extract the document structure in an efficient manner
as a dendrogram (hierarchical tree) that roughly defines how letters merger to words,
words to paragraphs and paragraphs to the whole document.

Besides, base on Bag-of-Words (BoW) algorithm, we propose an efficient frame-
work to embed document structure into BoW histogram through key-region pairs
where labels are assigned according to the content features of corresponding key-
regions. Comparing with the standard BoW method that proposed for natural scene
image understanding and also achieves great success in document image analysis af-
terwards, the proposed framework efficiently encode the explicit inclusion structural
relationships among the DTMSER key-regions into the representation vector while
the standard BoW method only encode the orderless separated key-regions. Besides,
to handle structure-based retrieval applications, which allows the text variation on
content, we propose to employ the geometrical feature that is more robust on variation
of the conveyed content together with the content features.

We further introduced spatial database into document analysis domain to spa-
tially index the document structure to efficiently query structural relations among
key-regions. The DTMSER key-regions are stored in spatial database in terms of cor-
responding bounding boxes based on which the spatial indexes are built. Such spatial
indexation strategy significantly reduce the time consumption for explicitly struc-
ture querying such as ”return all key-region pairs where one labeled as A lies within
another labeled as B”. Taking the advantage of the advanced spatial indexing tech-
niques that developed for Geography Information System (GIS), our system is capable
to handle many different structural relationships between key-regions such as one is
placed of right/left or top/bottom of another. In the case of DTMSER key-regions,
the most straightforward and important one for most cases is the inclusion relation
between the extracted key-regions. We illustrate that the proposed spatial index-
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ing framework could be applied to both full-page and image part document retrieval
scenarios. Moreover, apart of the content features of key-regions, the assigned label
also implicitly encodes the information of geometrical features that suit for structure-
based retrieval scenarios. Consequently, the proposed document retrieval system is
a general solution that is capable to handle both content-based and structure-based
searching for both full-page and part-based retrieval situations.

In order to solve the over-rigid problem of RANSAC algorithm that applied for
checking the spatial consistency of the matched key-region pairs, we further stud-
ied the line verification method as an alternative solution of RANSAC. Different
with the global spatial consistency that RANSAC algorithm examines, line verifica-
tion only checks the local consistency based on the lines between two given points
which might represent key-points, key-regions, bounding boxes or key-region pairs.
However, the computational complexity of line verification is very expensive when
one-to-many matching is allowed. Hence,we propose to perform line verification in
two steps: 1) tentative bounding boxes searching according to the transform matrices
that estimated based on the corresponding matches; 2)examine the spatial consistence
between query and the matches from each bounding box.

The rest of the thesis are organized as follows: Chapter 1 will introduce the
objectives, the challenges of our research and the contribution we made; Chapter 2
will discuss the state-of-the-art methods; a real-time retrieval scheme will be intro-
duced in Chapter 3 to illustrate the benefit of integrating the structural information
for document retrieval; in Chapter 4, a detection algorithm that is able to extract
the multi-scale key-regions and the explicitly structure of document images will be
presented; Chapter 5 will introduce a BoW-like method to efficiently embed the docu-
ment structure into a histogram representation; a generic scheme to handle various of
document retrieval scenarios will be finally described in Chapter 6 while the scheme
to tune the similarity measurement between structural and visual features is also pre-
sented; Chapter 7 will introduce a flexible method to check the spatial consistency
and compute the transformation between query and the its matches; the conclusion
and future work will be discussed in Chapter 8.



Chapter 2

State of Art

Document retrieval problem has attracted many researches in the past decades and
been tackled from different viewpoints such as content-based, structure-based, text-
based signature and logo retrieval.

Optical Character Recognition (OCR) performs character analysis on scanned
documents and translate the digital image into ASCII texts. During retrieval pro-
cess, the matching score between documents is measured by the similarity on the
corresponding texts. The OCR-based methods demonstrated promising advantage
on processing document from the viewpoint of natural language since the synonym,
cross-language etc. information could easily be taken into account. Unfortunately,
the applications of OCR-based methods are retarded due to the recognition error and
the matching complexity especially when the synonym and cross-language are consid-
ered. To reduce the degradation introduced by OCR errors, a post processing scheme
is performed in [1] by a clustering process that locate the correct target term for the
misspelled text. Besides, in [2, 3], the error correction process is performed based on
the probability models that employ the information of the term frequency. In [4], the
problem has been tackled by training language models to recognize the mis-spelled
terms. Another factor that mainly hinders the growth of OCR-based methods is the
matching complexity among the ASCII texts given the scenario that the amount of
texts in the database are increasing significantly. In [5], the problem is approached
by approximate string matching technique through text compression methods. Many
other approximate string matching algorithms are surveyed in [6].

Another viewpoint to retrieve document from database is by matching the given
symbols such as logos or signatures etc. For example, the logo-like regions are ex-
tracted by the corresponding information on their size, shape, compactness and loca-
tion in [7]. The logo candidate regions are then further recognized by their proposed
geometric invariant features. In [8], a system to recognize if the given logos exist in
the incoming document is proposed based on local key-points matching while in [9]
they further locate the logo position by sliding windows techniques over Blurred Shape
Models (BSM) [10] description. Very similarly, in [11], the local key-point features are
employed while the matches is further refined by a clustering process that proposed
in [12]. Afterward, they further refine the matches by spatial consistency check process

7
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through homography estimation in [13]. In [14], the logo retrieval problem is tackled
through matching the local key-point features followed by a geometric consistency
validation process. Besides, the logo retrieval problem has also been concerned for
natural scene images in [15] through several local features such as shape context [16]
and sketches [17].

On the other hand, signature is another type of symbol that usually employed
to retrieve documents from the database. A signature segmentation method is in-
troduced in [18] through classifying the connected components into printed text and
signature by local feature description extracted from each component. Instead, in [19],
the text regions are removed by applying Bayesian approach on the two-dimentional
features: aspect ratio of bounding box and the normalized contour size. Afterwards,
the author employ Gradient, Structural and Concavity (GSC) [20] binary feature
to describe the signature regions and employed to match one signature to another.
In [21], a system is exploited for document retrieval based on signature matching
while the signature regions are described by their proposed scale and rotation fea-
ture. Differently with the local features, Zhu et al. [22] proposed a novel multi-scale
approach that improved the signature regions segmentation performance by capturing
the structural saliency and dynamic curvature of 2D contour fragments. The authors
further proposed two novel measures of shape similarity based on anisotropic scaling
and registration residual error for signature matching.

The signature-based and logo-based follows similar step: specific region segmen-
tation and feature extraction. At the end, the similarity score is measured based on
the features extracted from the logo or signature regions. Even though such symbolic
regions based method achieve many attention and successfully applied in various busi-
nesses, it is difficult to generalize those methods to other documents retrieval scenarios
that do not seek logo or signature such as journal paper, books etc. Consequently,
for the situation that aiming at solving more generic document retrieval problems, it
is advisable to focus on more general characteristics of the document images such as
the structure and content.

2.1 Layout Analysis based Retrieval

Layout is the most straightforward and explicit form of document structure and hence
well studied in the past decades. Layout analysis methods explicitly segment docu-
ment images into regions or blocks with logical or physical labels. Then a process
comparing the structural relation among the blocks is performed to obtain the sim-
ilarity between query and target images [23]. Generally, document layout analysis
algorithm is implemented into two steps: document segmentation and blocks match-
ing.

2.1.1 Document Segmentation

Document segmentation problem are researched for many situations whereas layout
analysis is the most common one. In the past decades, the segmentation have been
tackled by various algorithms that could be generally be grouped into top-down and
bottom-up. The top-down approaches split document into blocks which are classified
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and then further division are performed adaptively into text lines, paragraphs. For
example, in[24, 25], the document images are segmented into text and graphics blocks
through iterative run-length smoothing algorithm. Instead, segmentation problems
are also tackled with projection profiles [26, 27]. However, those top-down methods
assume that the blocks to be only non-skewed rectangular while, on contrast, the
bottom-up methods are generally more flexible.

Bottom-up methods usually starts from the document element at lower level such
as pixels [28] or connected components [29, 30, 31] or simple grid patches [32] and
then grouped to higher level representation of the documents (e.g. words, text lines,
paragraphs). For example, in [29], connect component is extracted from the document
images and described by both the shape and surrounding context. Besides, the patches
generated by evenly grid cutting might be alternatively employed as the document
elements at starting level. For instance, [32] simply divides document images into
small patches and extracts GLCM (Grey Level Co-occurrence Matrix) features [33](
the Energy, Entropy, Sum Entropy, Difference Entropy and Standard Deviation of
the patch) on each patch.

For Bottom-up segmentation methods, another concern is the classification of the
fundamental elements (pixels, connected components or patches) and the grouping
strategy. For instance, all the connected component are classified into either graphics,
text or space through k-means clustering [34] based on the extracted features in [32].
Afterwards, the blocks at paragraph level are obtained by heuristic grouping based on
the labeled connected component. In [29], the connect components are classified by
Multi-Layer Perception (MLP) classifier [35] and the labeled components are grouped
by nearest neighbor analysis which basically combines the surrounding component
together if they have the same label. Besides, we should note that there are some
methods that simply perform the well-designed morphological operation on binary
images and generate the segmented blocks [36, 37].

2.1.2 Block Matching

After the documents are reasonably segmented into blocks, the next challenging step
for layout-based document image retrieval is matching groups of blocks between query
and database images. Unfortunately, measuring the similarity between one group of
blocks and another is usually expensive. For instance, the document layout is repre-
sented as the XY-tree in [38, 39] while the tree edit distance is employed to measure
the similarity [40]. The tree edit distance measurement method is improved by adding
the tree grammar information in [41, 42]. Besides, in [43], the document is OCRed
and segmented and thus generate a full-connected labeled graph for each document
image. They manage to low down the complexity for approximately computing the
distance between graphs that implemented in two consecutive steps.

The above discussed tree or graph matching methods are precise since the label
of the blocks (nodes) and edges between blocks could be easily taken into account.
However, such matching strategies are usually very time-consuming for calculation.
Hence, the label of blocks and edges are discarded in [44]. Instead, overlap area ratio
is employed to find the best correspondences between query and database blocks while
the overall distance is computed as the weighted summation of every corresponding



10 STATE OF ART

blocks matching error. On contrast, three algorithms (assignment, minimum weight
edge cover and Earth Mover’s distance) aiming at the block mapping problem are
compared in [45] where the match score between two block are measured by either
Manhattan distance of corner points or area overlap ratio of the blocks.

Layout-based methods are widely employed for full page classification and re-
trieval where the document structure matters for the application. However, such
layout-based descriptors present several drawbacks for solving the retrieval problem
in generic manner. On one hand, such methods are highly dependent to the per-
formance of the block segmentation algorithm which might be unstable over various
type of document images. On the other hand, computing the similarity between two
groups of segmented blocks (normally represented as graphs) requires a computa-
tionally expensive mapping process that hinders the scalability of the final retrieval
application. Besides, since the blocks that consist the document layout usually are
extracted at paragraph level (rows or words level as well sometime but ultra expen-
sive for block matching), the contents of the document which are essential for exact
matching scenario hardly play important roles in the retrieval process.

2.2 Local Content Feature based Retrieval

Content is the most essential and valuable resource of the document images. In
many cases, OCR process is applied on the document images after digitalization.
However, as discuss above, the OCR-based information retrieval methods are limited
due to the recognition errors and the problems of text matching such as string edit
distance computation, multi-lingual, synonym etc. Hence, plenty of efforts have been
alternatively made for document image analysis aiming at content feature extraction
that interpret the local regions (related to ASCII texts) into feature vectors.

2.2.1 Local Representation

To efficiently extract the main information from digitalized images, numerous efforts
have been made to effectively extract features from various types of images such as
natural scene, medical, document images etc. Afterwards, a group of local feature
vectors is usually employed to represent each image and utilized for image classifi-
cation, object detection, image retrieval etc. The local feature exaction process can
further divided to two steps: feature detection and feature description.

Feature detection algorithms are applied to return the representative interesting
objects of images such as Canny edges [46, 47], Harris corners [48], blobs [49, 50]
and regions [51]. Among those detection algorithms, the most popular ones are Dif-
ference of Gaussian that applied in Scale Invariant Feature Transform (SIFT) [49],
Determinant of Hessian that employed in Speed-Up Robust Feature (SURF) [50] and
the Maximal Stable Extremal Regions (MSER) [51]. After the interesting objects are
successfully detected, the next step for feature extraction is to describe the objects
into vectors. In the past decades, plenty algorithms have been developed for describ-
ing the objects from different viewpoints such as contour (Fourier [52], Wavelet [53],
Curvature Scale Space [54]), content(SIFT,SURF,OpponentSIFT [55], Histogram of
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Oriented Gradient(HOG) [56]) etc. At the end, each image is represented as a group
of feature vectors extracted by the description algorithms.

Such feature extraction strategies have been successfully applied to various sce-
narios in computer vision domain such as panorama stitching [57, 58, 59], object
recognition [60, 61, 62], 3D scene modeling [63, 64, 65], natural scene image under-
standing and image retrieval [66, 67] and also introduced into document retrieval
scenario. For example, document images are described with SIFT in [68, 69], SURF
in [70, 14] and with HOG feature vectors in [71]. The most promising advantage for
representing each image as a group of feature vectors, in our case, is that it is feasi-
ble to match image part with a full page images. Besides, such local content based
features (SIFT, HOG, etc.) are generally very discriminative and thus obtain good
performance when the exact matches are expected.

Even though many key-point/key-region detection algorithms have been applied to
document images, the extracted interesting objects usually are not really semantical.
For example, SIFT algorithm only returns corners, edges and the spaces between texts
while MSER method roughly equivalent to Connect Component Analysis whereas
most of the extracted key-regions are letters for binary document. Hence, based on
the fact that characters are placed closer to each other than words are which are in
turn placed closer to each other than paragraphs or columns are, we proposed Distance
Transform based MSER methods to extract multi-scale/multi-level key-region such
as letters, words, paragraphs. We should point out that besides the multi-scale key-
regions, DTMSER algorithm can extract document structure as a dendrogram about
how one key-region merge to another. This work has been published in [72] and will
be explained with further details in Chapter 4.

It is very effective to represent document images as groups of feature vectors for
the document retrieval applications. However, computing the similarity of a group of
feature vectors with another group is usually not efficient comparing with representing
each image as one single vector (e.g. BoW), especially when the target images are
full-page images and consist of plenty of local features.

2.2.2 Global Representation

Various methods have been proposed to globally represent each document as a sta-
tistical vector based on local content features. For example, Li et al. [73] represent
each document image as a sequence of word sizes in terms of the number of object
pixels. Meng et al. [74] represent document images as the vertical and horizontal pro-
jections of both object pixel and crossing number(the number of changes from object
to background and from background to object).

Besides, the local key-regions/key-points based description methods that widely
employed in many scenarios of computer vision domain are also successfully applied to
document image retrieval applications [69, 75]. It is would desirable to represent each
image as one single vector based on those discriminative local features. Feifei Li et al.
proposed Bag-of-Words framework to represent each image as a histogram vector over
local features for natual scen image categorization [76]. In [77], document images
are represented as Bag-of-Words histograms based on SIFT description. Similarly,
in [78], regions are segmented from document images (see [79, 80]) and described by
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both HSV color histogram [81] and Local Binary Pattern (LBP) [82]. At the end,
Bag-of-Regions methods is proposed to globally represent document images. Globally
describing document as one feature vector per image could encode the discriminative
local features and is efficient for classification or retrieval at full page level.

2.2.3 Encoding Structure for Local Features

As discussed before, document structure is very valuable for searching similar images
from database. However, the layout-based methods that explicitly express the doc-
ument structure are not desirable in many cases due to the segmentation errors and
matching complexity. Hence, implicitly encoding the spatial information of the local
content is alternatively employed to represent the document structure. For instance,
in [83], the document image is iteratively divided into finer parts and the average of
pixel intensity of all the resulted parts is concatenated and employed to describe the
document, while in [84] the Run Length(RL) encoding, and in [85] SIFT, are used to
describe the resulted document parts. A problem of such pyramidal spatial method
to encode structure information is the exponential increase of the dimension of the
final representation vectors. Hence in [86, 87], the images are recursively partitioned
into halves, instead of pyramid, and thus leading to lower dimensionality. As another
solution, each part of spatial pyramidal BoW representation is analyzed according
to its origin windows in [88] and only the windows that show higher discriminative
power are used in the final representation.

However, for document image retrieval, such spatial information based method do
not explicitly encode low-level structural information, but rather the spatial distri-
bution of local patterns. Hence, we proposed to employ the key-region pairs, instead
of single key-region or key-point, as the elementary pooling unit for BoW represen-
tation. In such pair-wise way, we manage to embed the explicit document structure
(inclusion relations between key-regions) into BoW framework. This work has been
published in [89] and will explained in details in Chapter 5.

Adding the structural information (either implicitly or explicitly) into a global
representation of documents might significantly improve the efficiency of full-page
retrieval scenario, but it is not suitable for searching image part from database. As we
discussed before, our research aims at generic framework for both full-page document
and just part document retrieval. Hence, it would be better to represent documents
as groups of feature vectors that contain the content information of document. The
most challenging point here is to describe the structural relations among such local
features since our generic framework aims to tackle the whole spectrum of problems
from exact, content-based, matching to purely structure based matching.

DTMSER [72] algorithm provides an efficient way to extract explicit document
structure as a dendrogram (hierarchical tree) whose nodes are related to multi-scale
key-regions and branches correspond to inclusion structural relations. For example,
a letter-level key-region is included by another key-region which corresponds to the
word that it belongs to. Comparing with the global spatial information that widely
employed to express the image structure, the dendrogram conveys rich source of ex-
plicit structural information such as local inclusion relation and left/top of between
key-regions. The most attractive advantage of such structural description is that it
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is suitable for both part-based and full page queries through pair-wise key-regions
querying that combines the explicit document structure and local content features.

To address the problem of complexity for computing similarity among content fea-
tures, plenty of efficient algorithms such as Approximate Nearest Neighbors (ANN) [90],
Locality Sensitive Hashing (LSH) [91], feature clustering combing with inverted file
indexing [92], Product Quantization (PQ) [93], Bucket Distance Hashing (BDH) [94],
k-d tree [95, 85] have been proposed or applied to document image retrieval do-
main. However, the indexing strategy on the spatial relations between features (e.g.
inclusion relation and left/top of ) have not been exploited in our domain.

Spatial databases [96] are special databases designed for dealing with the spatial
relations (inclusion, intersection, overlapping etc.) among geometrical objects such
as points, lines, polygons, etc. while typical databases are designed to manage various
numeric and character types of data. Thanks to the advanced spatial indexing tech-
niques, spatial databases allow to cast queries in terms of geometrical relationships
among the stored objects in efficient fashion. For example such databases support
queries such as ”retrieve all the objects having a border close to point A that over-
lap with circle B and intersect with the polygon C”. They have been widely used in
various Geographical Information System (GIS) applications such as maps, national
census, car navigation, global climate change research, etc. however, to our best
knowledge, they have not been exploited in the document analysis community up to
now. The details about this will be further explained in Chapter 6.
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Chapter 3

Real-time Pyramidal Document
Structural retrieval

As discussed in the Chapter 1, our researched is focused on a generic framework where
both structural and visual similarity is measured. Hence, in this chapter, we will
initially explore how important the structural information of document images would
be in the retrieval process. As discussed in Section 2.1, due to the block segmentation
and matching problem, it is not proper to extract structural information as the layout
of the documents. Instead, we employ a pyramidal decomposition feature [97] as the
representation where the structural information is encoded as the rough locations of
local patches. The main purpose of this chapter is to illustrate that the structural
information of document images would make the simple features (pixel intensity) to
be very discriminative in a real-time document retrieval scenario.

In this chapter, we will test the performance of such spatial pyramid structural
feature for newspaper retrieval scenarios at full page level. Since the datasets are
dramatically increasing everyday, the computation complexity on image description,
feature similarity and retrieval should be particularly be considered. Hence, to ex-
tract feature vectors of newspaper images, we choose a global descriptor as the whole
page similarity. Such strategy demonstrates low computation complexity as only one
feature vector with fixed length is extracted for each image. On contrast, local de-
scriptors extract many feature vectors (normally thousands or more) for each image
and voting process should be additional applied. As our application aims at searching
images in daily ’exploding’ large dataset, a global descriptor with low computation is
chosen here to extract feature vector.

3.1 Global Image Description

Pyramidal decomposition provides an effective and global wayto represent images the
integrate structural and local information. It expresses the pixel intensity of image at
different scales. The algorithm is performed by a recursive operation of cutting the
images into four rectangular regions, the intensity values of which are used as feature
vector. In practice, the number of iterative cuts represents the detail-capture ability

15
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Figure 3.1: Demonstration of Pyramidal Decomposition. The extracted feature
vector is showed at the bottom.

and defines the length of feature vector. In this chapter, we mainly test such feature
extraction method in the scenario of retrieving the front-pages and non-front-pages
for digitalized newspapers. As demonstrated in Figure 3.1, the first level (D01 in
feature vector) corresponds to the intensity over the whole image, the second level
gives the intensity of 4 rectangular cuts: D11, D12, D13 and D14. Consequently, 5
level cut overall returns a feature vector with 341 (1+4+16+64+256) elements, and
sixth level returns 1365 elements.

The pyramidal decomposition descriptor is scale invariant because the resolution or
scale change does not lead to the pixel intensity alteration. Besides, the feature vector
extracted by pyramidal decomposition are slightly tolerant to translation and rotation.
The extent of such tolerance depends on the feature vector level: the higher level cut,
the finer feature vector extracted and hence the more sensitive to the translation
and rotation. In general, scanned document images exhibit limited skew, hence the
pyramidal decomposition descriptor is an adequate choice.

3.2 Retrieval by Similarity

Several types of distance metrics are introduced to measure similarity for different ap-
plications. A.Vadivel [98] compared four different distance metrics (Manhattan, Eu-
clidian, Cosine, and Histogram Intersection) with a colour histogram based descriptor
and concluded that Manhattan distance metric is better than others for content-based
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image retrieval. However, Manesh Kokare [99] showed that the Canberra distance
metric is the best one for their content-based image retrieval after compared various
distance metrics, including Euclidean, Mahalanobis, Chi-square etc. for texture fea-
tures extracted by Gabor filter bank. Obviously, the ’best’ distance metric varies over
different descriptors and hence it is necessary to test which distance metric is ’best’
for our pyramidal decomposition descriptor (feature vector).

For retrieving correspondences among the daily added newspaper images, the sim-
ilarity computation between the query and the existed dataset images is inevitable
and has to be done on-line. Consequently, besides effectiveness, its complexity should
be especially considered. In this chapter, four commonly used distance metrics are
considered to measure the dissimilarity between the query feature vector and dataset
images. We define the feature vector of query image as Q = (q1, q2, · · · , qn) and the
dataset newspapers as I = (i1, i2, · · · , in). Here, qj and ij represents the jth elements
of feature vector of the query and dataset image respectively. The different distance
metrics between Q and I are defined as follows.

• Euclidean distance is the most frequently used metric, easy to understand and
usually effective in many cases, to calculate the distance between two vectors.
We can calculate the Euclidian distance between Q and I as:

d(Q, I) =

√√√√ N∑
j=1

(qj − ij)2 (3.1)

• Chi-square distance is a special type of Euclidean based distance which is
calculated in a weighted way. Suppose C = (c1, c2, · · · , cj , · · · , cn) denotes the
average feature vector of the images in the dataset, then the chi-square distance
between Q and I will be:

d(Q, I) =

√√√√ N∑
j=1

(qj − ij)2/cj (3.2)

• Cosine distance measures the difference between two feature vectors Q and I
by calculating the vector cosine angle between them, and so its value ranges in
[0 1]. One important property of the Cosine distance is that it just takes the
included angle of two feature vectors into account while their scale difference is
’ignored’. The Cosine distance between Q and I is defined as:

d(Q, I) = 1−
∑N
j=1 qj ∗ ij∑N

j=1 q
2
j ∗
∑N
j=1 i

2
j

(3.3)
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• Histogram intersection distance computes dissimilarity between the query
image Q and a stored image I in the database, using histogram intersect dis-
tance, is given by:

d(Q, I) = 1−
∑N
j=1min(qj , ij)

min(
∑N
j=1 qj ,

∑N
j=1 ij)

(3.4)

As distance metric computation is an iteratively progress for each image of dataset
at on-line manner, computation efficiency is a major factor to make choice. Among
the four introduced distance metrics, Cosine distance metric possesses the lowest
computation complexity as it boils down to a simple multiplication of corresponding
elements and a summation if the data has been normalized previously. Besides, for
pyramidal decomposition feature vectors of the newspaper images, because the scale
of feature vector is ’ignored’ in Cosine distance metrics, such dissimilarity measure
also hold the invariant to illumination change, which commonly happens for scanned
images. So in Section 3.4.2, Cosine distance showed its advantage on both efficiency
(fast to calculate) and effectiveness (ability to assess visual similarity correctly given
the feature) over other distance metrics.

3.3 Relevance Feedback

Apart from the particular distance metric used to assess similarity, it is expected that
the number of false positives for non-front-pages might arise in the retrieved results
due to the large inner class variation. One way to solve this problem is to obtain
feedback from the user about the retrieved result. Such relevance feedback would be
helpful to make better understanding on what the user really wants, and then use
such information to improve the performance in later retrieval iterations. There are
two main methodologies to integrate user feedback to the process. These involve to
re-design the query vector or re-rank the feature vectors of dataset images according
to the user’s feedback.

In details, the first step uses an initial query vector (corresponding to the query
image) to retrieve several items. Afterwards, the user is asked to indicate which images
are correct results within the first few items of the retrieved set. Subsequently, by
using the provided relevant information, an adaptively revised query formulation or
re-ranking process of the dataset images is performed hoping to retrieve more relevant
items during the subsequent search.

Relevance feedback, which follows the above idea of using the relevant information
from the user, is a controlled method for improving the performance of the retrieval
system by interacting with the user about the truth in previous retrieved results. As
showed in Figure 3.2, after an initial retrieval step, the user is asked to provide some
feedback about which results are correct (the images with green frames are supposed
to be pointed out by user). This relevance information is used by relevance feedback
which allows to reformulate the query and hence provide an enhanced result list in
subsequent iterations.

Here, we have tested two different relevance feedback methods. The Rocchio
method, is a relevance feedback algorithm that follows the idea of query reformulation
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Figure 3.2: Demonstration of Relevance Feedback. The documents with green
frames are the true relevant images while the images with red frames are falsely
recognized as relevant. As shown here, with one iteration of relevance feedback, the
MAP performance increases from 0.7257 to 0.9308

trying to find, given the relevance assessments, a new query point in the vector domain
that is closer to the positive samples and farther from the negative ones than the
original query point. The Relevance Score method is a re-ranking method, that tries
to reorganize the original resulting list in terms of the relevance assessments without
casting any new query.

For these two relevance feedback method, both of which need iteratively calculat-
ing similarity during a relevance feedback. However, processing the Euclidean distance
applied to a large database can be really time consuming.On the other hand, the Co-
sine distance metric boils down to a simple vector multiplication if all the feature
vectors have been normalized previously. Besides, it can be shown that, as far as the
ranking of elements is the only concern, the Cosine distance metric serves equivalently
as the Euclidean distance metric. Consequently, without loss of generality, a Cosine
distance based relevance feedback method is employed here for evaluating different
relevance feedback methodologies, in order to improve the calculation efficiency.

3.3.1 Rocchio’s Algorithm

The Rocchio’s algorithm [100] is a widely used relevance feedback strategy. At each
iteration about the so far retrieved result, the Rocchio’s algorithm makes use of user’s
feedback to reformulate the query in order to incorporate the relevance feedback infor-
mation into the vector space model. Taking the mth feedback iteration for instance,
the query vector reformulation qm is computed as
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qm = αqm−1 +
β

|Dr|
∑

dj∈Dr

dj −
γ

|Dn|
∑

dj∈Dn

dj (3.5)

where qm−1 is the reformulated query vector in previous iteration of relevance feed-
back , and Dr and Dn the sets of relevant and non-relevant documents affirmed by
the user respectively. α, β and γ are the associated weights that reformulate query
vector with respect to the query used in previous iteration of relevance feedback, the
relevant and non-relevant items. In our setup, we experimentally set the weighting
values to α = β = γ = 1 which result in the equal weight for previous query, average
positive and negative samples.

By emphasizing the visually similar features contained in relevant images and re-
moving the visually different ones that wrongly retrieved, Rocchio’s algorithm could
gradually move(revise) the query closer to the relevant ones, and farther away from
the irrelevant ones, in the feature space. In another words, Rocchio’s relevance feed-
back algorithm leads to smaller inner-class and bigger intra-class distances. Hence,
retrieving by the revised query would lead to better performance.

3.3.2 Relevance Score

Another method of relevance feedback is to revise the similarity measurement ac-
cording to relevant information obtained from the user. Relevance Score method
proposed by Giorgio Giacinto [101] provides a way to adaptively revise the similarity
measurement. The idea of this method is to define similarity between query and each
document in the dataset as the ratio between the nearest relevant and the nearest
non-relevant document images. The relevance score RS is computed as follows:

RS(I) =

(
1 +

dR(I)

dN(I)

)−1
(3.6)

where I represents the image in the dataset, dR(I) represents the distance between the
image I and the nearest relevant image, and dN(I) represents the distance between
query and the nearest irrelevant image retrieved so far.

The advantage of this method is that it is capable to ’remember’ the previous
retrieval result: for the image I retrieved to be true front-page, dR(I) = 0 and so
Relevance(I) = 1 which means image I is exact visually similar to the query in this
iteration. Analogously, for the non-relevant image I, Relevance(I) = 0 which means
image I is totally different to the query. Consequently, the images marked as relevant
will always be definitely similar and the non-relevant ones will be extremely different
with the query in the later iterations. On contrast, Ricchio’s algorithm needs to
compute the distance between the new query and the dataset images.

3.4 Experimental Results

3.4.1 Dataset and Evaluation Measures

The experimental setup is implemented in two steps: we first extracted the feature
vectors of all images in the database in an offline fashion. Subsequently, we evaluated
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the performance of four alternative distance metrics discussed in section 3.2 based on
a subset of 500 newspaper images comprising 2 classes (front-page and non-front-page
from a single newspaper title). This experiment aimed to test the effectiveness of the
feature vector extraction process and determine the best distance metric for newspa-
per retrieval. We execute the two previously stated relevance feedback strategies using
the pyramidal decomposition feature vectors and the tested distance metric over the
whole newspaper dataset containing 23004 images comprising 16 classes (front-page
or non-front-page for 8 different newspaper titles). In each of the experiments, we use
the Mean Average Precision (MAP) to evaluate the performance of the system.

3.4.2 Evaluation of different distance metrics

In order to evaluate the performance of the different distance metrics, we performed
an experiment using a subset of the newspaper dataset consisting of 500 images of
a single title which were previously classified in two classes (108 front-pages and 392
non-front-pages).

In addition, to study the effect of adding more detail in the pyramidal decompo-
sition feature, we repeated the experiment using different levels of decomposition.

We compute the precision-recall curve and MAP for each image in a leave-one-
out fashion. Each image is taken as query and we perform the retrieval versus the
remaining 499 images. Consequently we obtain 500 precision-recall curves and 500
MAP values for each distance metric.

In order to evaluate the performance of different distance metrics based on the
same pyramidal decomposition feature, we calculate the average precision-recall curve
and MAP value according to the 500 precision-recall curves and MAPs for each type
of distance metric (see Figure 3.3 and Table 3.1). L4, L5, and L6 in Table 3.1 and
Table 3.2 represent the feature vector level we used, and Euc., χ2, Cos., HI correspond
to Euclidian, Chi-Square, Cosine, Histogram Intersection distance metric respectively.

Table 3.1: Average MAP of all the queries.

Euc. χ2 Cos. HI

All images
L4 0.8247 0.8266 0.9438 0.7337
L5 0.8364 0.8390 0.9342 0.7318
L6 0.8615 0.8652 0.9326 0.7384

Only front-page
L4 0.5820 0.5843 0.8939 0.4279
L5 0.6555 0.6585 0.9255 0.4580
L6 0.7469 0.7508 0.9461 0.4977

Only non-front-page
L4 0.8916 0.8933 0.9575 0.8180
L5 0.8863 0.8887 0.9438 0.8072
L6 0.8931 0.8967 0.9289 0.8048

We also perform the experiment on the front-page subset (only the front-pages are
used as queries) and non-front-page subset (only non-front-pages are used as queries)
separately in order to evaluate the performance on certain classes of images (see
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Figure 3.3: Precision-Recall curve of 500 queries (both front-Pages and non-front-
Pages, L5 feature vector).

Table3.1).
Despite the different level of feature vector extraction and types of dataset, the

Cosine distance performs much better than any other distance metric consistently
because such similarity measurement is invariant to the illuminant change that com-
monly exists in the grayscale documents. Euclidian distance and Chi-Square distance
yield similar performance with the latter being marginally better, while Histogram
Intersection distance invariably yields the poorest performance during the whole ex-
periment. Consequently, we arrive to the conclusion that the Cosine Distance is much
more suitable for newspaper image retrieval scenario.

For front-page only images retrieval, increasing the level of pyramid decomposition
feature results in clear effect: it produces better performance no matter what the
distance metrics are used. However, for non-front-pages only retrieval, it does not
yield any better performance for higher level feature. This is to be expected because
all the front-pages contain a pretty fixed part (the title part) which would play more
important role at higher detailed levels. The non-front-pages on the other hand are
similar only at the level of the general structure (e.g. all will have the same number
of columns) which is already captured at low pyramid levels. Consequently, adding
more detail by extracting higher level feature actually leads to worse performance.

We also calculated the computational cost of extracting the pyramidal decom-
position feature over the 500 query images (’Descriptor’ in Table 3.2) as well as the
distance calculation between the query image and other 499 dataset images (’Distance’
in Table 3.2). The time shown in Table 3.2 is the average time consumption over 500
queries. As demonstrated in Table 3.2, the computational complexity will rise up
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sharply for both feature vector extraction and distance computation when increasing
the pyramid level. Besides, we should note that even though distance calculation take
much less time than feature extraction for a dataset consisted of 500 image, the time
consumption on distance calculation will increase linearly as the dataset size grows
while the online computation of feature extraction is independent.

Table 3.2: Time Consumption of Feature Extraction and Distance Calculation.

Feature Level Descriptor (s.) Distance (s.)

L4 0.0277 3.3280e-05
L5 0.0445 9.2561e-05
L6 0.0979 3.5360e-04

Besides, we also test the document representation method on an administrative
dataset consisting of 4109 binary invoice documents. Following the previous experi-
mental settings, the experiments are repeated for 4 different similarity measures while
leave-out strategy is employed to generate the queries. Whether one image is rele-
vant with another is determined by checking if the two invoice are provided by the
company assuming they share the same template and thus similar format and layout.

As shown in Table 3.3, for the binary invoice images, the Euclidean and Cosine
distance generally performs promising better than the other two similarity measure-
ment. The performance difference between Euclidean and Cosine distances is not
notable here. It is because, theoretically, the two distances show high correlation
when the scales of query and database images hold small variation (‖Q‖ ' ‖I‖). It
is proved in Appendix B. On the other hand, since all the images in this experiment
are binary, the scales of their representation vectors hold less variation than the ones
at grayscale level do.

Since all the invoice images are in black-white format, thus the pixel intensity fea-
ture encoded in the image representation is less discriminative as it does for grayscale
image in the previous experiment. Hence, we also performed our experiment at higher
pyramidal level (Level 7) to further enhance overall discriminative power of the em-
ployed representation. For the Euclidean similarity measurement, it is illustrated that
the feature representation at level 7 achieved the best performance with 1 percent im-
provement over level 6. Besides, approximately equivalent behavior with Euclidean
distance is observed for Cosine measurement. Even though it might lead to slighter
better performance, we stop from going upper pyramidal level because the feature ex-
traction process will be not real-time anymore (nearly 2 seconds each image at level
8).

3.4.3 Results on Relevance Feedback

Although the retrieval performance is good on small datasets as demonstrated above,
retrieval performance decreases when generalizing the previous retrieval method to
the whole newspaper containing 23004 images comprising of 16 classes. Consequently,
we perform relevance feedback strategies on the whole newspaper dataset to improve
the user’s retrieval experience by offering more precise query vector or similarity mea-
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Table 3.3: Average MAP of all the queries.

Euc. χ2 Cos. HI

L4 0.8666 0.8687 0.8667 0.4283
L5 0.9170 0.9061 0.9147 0.6412
L6 0.9487 0.8972 0.9426 0.7024
L7 0.9568 0.6266 0.9504 0.6841

surement. Figure 3.2 demonstrates an example on how Rocchio’s relevance feedback
method improves the retrieval result. One image is randomly picked from the news-
paper database as query, and then we search for the relevant images in the rest of
the dataset using cosine distance metric. Subsequently, the information about which
images in the initial result (Iteration 0) is really relevant is obtained from the user
(GroundTruth labels in our simulated experiment here). Such information is then
used by the relevance feedback method to improve the retrieval result (Iteration 1).
As we can see in Figure 3.2, only 13 out of top-20 retrieved results are relevant in the
initial retrieval attempt and the corresponding MAP value is small (0.7257). How-
ever, during a single iteration of relevance feedback, 17 out of top-20 are found and
the MAP value increases (0.9308).
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Figure 3.4: MAP improvement by Relevance Feedback.
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Within the 23704 images, 2000 images are randomly chosen as queries. For each
query, 100 relevant images are expected to be retrieved and the relevance feedback step
is executed no more than 9 times over top-20 retrieved result (in a real application,
the user could execute this step many times until the retrieved image satisfy the user).
The feature vectors of all the images (both query and dataset images) are normalized
before relevance feedback facilitating Cosine distance calculation.

The experiment was implemented as a simulation where the relevance feedback
process is fulfilled as follows. We first labeled all the samples in our dataset. Then for
each relevance feedback iteration the samples that bear the same label as the query
are automatically selected as the relevant ones, in the same manner as a user would
do.

For each query we record the MAP value at each iteration during the relevance
feedback process. At the end the average MAP value over the 2000 queries is calcu-
lated at each iteration. The result is shown in Figure 3.4. Rocchio and RelScore, the
symbol in Figure 3.4, correspond to Rocchio’s method and Cosine distance metrics
based Relevance Score method.

As expected, as the Relevance Score Method variants are capable to ’remember’
the relevant images retrieved so far (labeled so in previous iterations), they achieve
much improvement than Rocchio’s method. When applying Relevance Score Method,
for most queries, after 3 iterations, all of the 100 top ranked images are relevant to the
corresponding queries. However, when executing Rocchio’s vector revision Method,
the MAP performance converges to 100% much slower.

3.5 Summary

In this chapter we have introduced a retrieval-based application based on the visual
(pixel intensity) features with the spatial pyramid structure of the images. We demon-
strated that with the help of structural information, the simple intensity features that
is very cheap to calculate achieved promising performance over a large dataset. Be-
sides, Cosine distance is observed to be very efficient and effective for newspaper
retrieval scenario. At the end, we demonstrated relevance feedback strategies could
significantly improve the retrieval performance by interacting with the users. Rel-
evance Score method which can ’memorize’ the users choice showed its advanced
capability over Rocchio’s query revision strategy.

However, the introduced manner to encode structural information is not invariant
to the rotation while it is increasing necessary to integrate such feature into the
system in the scenario of camera based document retrieval. Besides, representing each
document as a global vector is not advisable when the expected matches are specific
portions of the images. Hence, in next chapter, we will introduce an alternative
method to extract document structure to avoid the above drawbacks.
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Chapter 4

Distance Transform based MSER

The document structure plays important role in document retrieval. As demonstrated
in the previous chapter, benefiting from the discriminative power of the pyramidal
document structure, the image representation based on the simple density feature
achieves remarkable performance on both fast computation and precise result (could
be further improved through a relevance feedback scheme). However, such an implicit
pyramidal structure implies obvious drawbacks in part-based retrieval scenarios such
as logo searching, address block matching and shopping item retrieving etc. In this
chapter, we will exploit an efficient detector for document images to extract semantic
multi-scale key-regions that roughly correspond to letters, words and paragraphs.
We will demonstrate that such semantic key-regions slightly outperform SIFT and
MSER detectors while they are more descriptive, requiring descriptors of smaller size
when used in a bag of words framework . More importantly, the detection algorithm
presented here could simultaneously extract document structure as a dendrogram of
those multi-scale key-regions. The usage of such a structure will be discussed in the
next chapter while this chapter will solely focus on the quality of the key-regions
themselves.

Key-point or key-region based methods have achieved great success in various
of applications and also widely employed for document analysis. However, as, it
is difficult to fully associate meta-data to the images due to the exploding growth
of document imagery data and, on the other hand, limitation on computation and
storage. Consequently, the need for extracting region/points of interest has resulted
to a plethora of recent advancements with the emphasis being on reducing the size of
image descriptors without compromising retrieval efficiency [102].

Key-point correspondence based algorithms have also been used for image re-
trieval, either through a bag-of-words framework to create global image descriptors,
or by direct key-point indexing in cases when part-based retrieval is significant. Such
approaches are based on a variety of key-point and key-region detectors (e.g. Harris
corner [48], Harris-Laplace and Hessian-Laplace [103], Difference of Gaussians [104],
Hessian determinant [105], MSER [51], etc.) and an even larger number of local
descriptors (e.g. SIFT [49], GLOH [106], SURF [50], HoG [56], etc.).

Although in the document analysis domain there is a chronic lack of large public
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datasets, the issue of retrieval in big collections of documents has always been a topic
of interest with clear socio-economic impact especially in the administrative and the
historical document analysis areas. Following suite from the domain of natural im-
ages, state-of-the-art key-point detectors and local descriptors have been successfully
used in document analysis for document representation in classification and retrieval
scenarios [107], as well as other applications such as logo spotting [8], etc.

The basic premise of key-point detectors such as SIFT and SURF is to detect
as many stable key-points as possible in order to “densely cover the image over the
full range of scales and locations” [108]. Although this makes a lot of sense for ob-
ject recognition in individual cluttered scene images, it is not necessarily optimal
for retrieval applications. Indexing large numbers of local features extracted from
an equally large number of images is inefficient, even though it can become tractable
through the learning of small codebooks [109] and state of the art hashing and search-
ing techniques [110][94]. At the same time, document images are distinctly different to
natural scenes as documents have an explicit structure and are generally high contrast
images (giving rise to numerous stable key-points). Classically detected key-points,
although they work reasonably well since they densely cover the document image, do
not carry any particular semantic or structural meaning.

On the other hand, methodologies specifically designed for document images, make
explicit use of document characteristics in their representations. As an example the
document matching approach of Nakai et al. [111], makes use of structural features
of the document and local topological information. In the case of [111] the centres of
blobs detected through blurring and subsequent thresholding, assumed to correspond
to words, comprise the key-points, while an affine invariant descriptor encoding the
relative position of such blobs in their neighbourhood of the key-point is subsequently
used. The indexing and retrieval scheme employed is extremely fast, able to retrieve
at 40ms in a dataset of 10 million pages [112].

The approach of Nakai et al. [111] is indeed a very efficient solution given that
the objective is exact document retrieval. More often than not though, what is of
interest is to cover a wider range of retrieval scenarios rather than exact matching
only. For example, similar documents might share whole paragraphs of text -in which
case word blobs and a feature based on the relative positioning of words could provide
a good basis for similarity search- but frequently, similarity is evident in the document
structure but not in the exact content. See for example the documents in Figure 4.1.
In this chapter, to evaluate the quality of the extracted key-regions that might be
employed in different retrieval scenarios, we will focus on retrieving the invoices that
are generated by the same provider which might not be similar in terms of their
textual content, but still look visually similar.

In this chapter, we present the first steps towards such a document representa-
tion. We focus on the efficient detection of semantic key-regions that encode struc-
tural information among different levels (letters, words, paragraphs and so on). We
demonstrate that the proposed key-region detector is efficient to calculate and results
to a smaller number of semantic key-regions than other state-of-the-art key-point and
key-region detectors such as SIFT and MSER. To demonstrate the advantage of the
proposed key-region detector for document retrieval we calculate SIFT descriptors
over the detected key-regions and use them for indexing and retrieval in an adminis-
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a)

b)

Figure 4.1: Typical applications of document retrieval include historical and ad-
ministrative document analysis uses. (a) images taken from the IMPACT historical
newspapers dataset, where a typical application is the retrieval of front pages - used
with permission, (b) images from a typical digital mailroom page flow, a typical
application being the retrieval of invoices from the same provider.

trative document scenario. We show that the key-regions detected with the proposed
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method yields better results than other state of the art key-point and key-region
detectors.

4.1 Key-Region Detectors in Document Analysis

The standard local feature extraction pipeline that consists of a key-point detector
followed by a local descriptor has yielded high performance in numerous challenging
problems such as object recognition, robotic mapping and navigation, image stitching,
3D modelling, natural scene understanding, etc. Various detectors (e.g. Harris, Hes-
sian, SIFT, MSER) and descriptors (SURF, HOG, SIFT) have been proposed during
the past decades. In this chapter, we will concentrate on the performance of three
different detectors (SIFT, MSER and our proposed DTMSER) when applied in the
document image domain. The SIFT descriptor will be invariably employed to extract
local features for all of the three considered detectors.

In the SIFT framework, key-points are defined as maxima and minima of the
Difference of Gaussians (DoG) function applied in scale space to a series of smoothed
and resampled images. It therefore detects salient and meaningful blobs at their best
representative scale. However, when used in (usually binary) document images, the
extrema of the DoG function is usually found at the lower scales, provoking that
most of the extracted keypoints correspond to character corners, edges and spaces
between characters, instead of higher-level entities. Such key-points are very stable,
but present relatively low discriminatory power from the semantic viewpoint.

Concerning MSER, key-regions are extracted in terms of the stability of the in-
tensity function over their outer boundary. As such, the algorithm detects blobs that
present an important intensity change to their immediate surroundings. When used
with document images, the set of maximal regions generally correspond to text parts
(usually individual characters) and other dark foreground regions and the set of min-
imal regions to their white background counterparts. In the extreme case of bi-level
images, the output of MSER is roughly equivalent to a connected component anal-
ysis. In the document analysis domain, MSER regions have been shown to perform
well in matching tasks when dealing with “graphical” documents such as manga [113]
comics.

4.2 Distance Transform based MSER

In the domain of document analysis, it is desirable to identify key-regions that re-
late to the structural elements of the document, namely characters, words, lines and
paragraphs, as they carry important semantic information . Moreover, this should be
done in an efficient, repeatable and stable way, as opposed to existing layout analysis
approaches which are generally exhaustive and inherently unstable.

The notion of scale in the case of documents is tightly linked to the distance be-
tween the structural elements of the document. Characters are placed closer to each
other than words are, which are in turn placed closer to each other than paragraphs
or columns are. Moreover, the hierarchy of these structures is well defined and in-
formative. On the other hand, the MSER algorithm provides an efficient multi-scale
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a) b)

Figure 4.2: Demonstration of the distance transform. a) Original image, b) its
distance transform

analysis framework, based on the stability over a given pixel property, typically its
lightness. The key idea of the detector we propose is to leverage the efficiency of the
MSER algorithm to identify stable regions, where stability is defined as a function of
the distance of a region to neighbouring ones. Hence in our framework regions that
have larger distances to neighbouring ones would be more stable than regions that
are close to each other.

The above algorithm is practically equivalent to a graph contraction approach, over
a graph that encodes the neighbouring relationships between the connected compo-
nents of the image, which in the generic case could be the fully connected graph of
the connected components. A graph contraction implementation is quite inefficient.
Using instead the distance transform we translate the problem from the distance do-
main to the image domain, where the MSER segmentation offers an efficient way to
create and rank (in terms of their stability) the regions corresponding to clusters of
neighbouring connected components.

4.2.1 Distance Transform

The distance transform finds the minimum distances of all image pixels to the set
of foreground pixels. The result is a matrix of the same size as the image, where
each element is assigned a value corresponding to the smallest distance between the
corresponding image pixel and the closest foreground object.

We compute the distance transform of the document image based on the two pass
algorithm that only requires linear computation time proposed in [114]. Formally,
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let p be a background point and q a point in the set of foreground objects Q. The
distance transform f(p) assigns at each background point p its distance to the nearest
object point by:

f(p) = min
q∈Q

d(p, q)

where d(p, q) is the Euclidean distance between background point p and object point
q. An example of the distance transform matrix of an administrative document is
shown in Figure 4.2.

Note that we implicitly assume in this discussion that the image is bi-level . How-
ever, we should point out that the distance transform concept is readily applicable to
grey scale images [115].

f(p)<1

f(p)<5

f(p)<10

Figure 4.3: Example of thresholding the distance transform at different intensity
levels. At the lower level individual characters can be identified, at the middle level
characters have been merged into words, at the upper level words have been merged
into paragraphs.

4.2.2 MSER detection

The set of maximal regions produced by the MSER algorithm is the set of all connected
components produced over all possible thresholdings of the input image (essentially
identical to a watershed algorithm). When calculated over the distance transform
result, the maximal regions roughly correspond to semantically important structures
of the document (characters, words, text lines, paragraphs), as can be appreciated in
Figure 4.3.

Applying the MSER algorithm to the distance transform image produces a den-
drogram of maximal regions. The leaf regions correspond to the foreground objects,
while the mergers in the dendrogram depend solely on the distance between the max-
imal regions. An example of the typical dendrogram produced is shown in 4.4.

The MSER algorithm’s δ parameter controls the minimum lifetime (number of
iterations that a maximal region has to survive before merging with a neighbouring
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Figure 4.4: A typical dendrogram produced with the proposed method. The leaf
nodes correspond to the connected components of the image, while the mergers de-
pend solely on the distance between regions, giving rise to semantically relevant
groups.

one) in order for a region to be considered stable. In the case of documents, and given
the prior distance transform, δ effectively controls the minimum distance that a region
has to have to a neighbouring one in order to be considered stable. As characters
are the most closely positioned structures of interest, we should choose a value for δ
that is less than half the minimum distance between characters, in order for them to
be identified as stable. In practical terms, we can directly set δ = 1, as we do not
expect to have any components positioned closer to each other than characters in the
document.

One potential drawback of our proposed detector is the inconsistency of the dis-
tance transformation regarding noise. However, coupling the distance transformation
with a MSER analysis allows us to extract various key-regions of different sizes, only
a small subset of which would be affected by such artifacts.

4.3 Experimental Results

We tested our proposed key-region detector on invoice retrieval scenario at full page
level. The task is defined as searching the invoice documents that provided by the
same company with query. It would indicate the system’s performance on retrieving
images that are structurally similar because the content (e.g. address or date) of
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a) b) c)

Figure 4.5: Qualitative comparision of a) SIFT, b) MSER and c) DTMSER key-
region detectors.

the invoices from the same provider might vary while the structure are consistent
as they share the same template. The details and samples of the invoice dataset
are described in appendix A.1. Key-regions are detected with SIFT, MSER and the
proposed DTMSER methods and are subsequently described by the SIFT descriptor.
For each local feature of the query, we retrieve the 100-nearest neighbours over the
whole collection, each of them casting a vote at the corresponding document. For the
final document retrieval, documents are sorted according to the votes received and we
report the mean average precision MAP and the corresponding precision and recall
plots.

We tested three different voting schemes. A uniform voting paradigm in which
the 100 nearest neighbors give equal score to all matched documents. An inverse
rank scoring that weights the document votes depending on their position in the
nearest neighbor ranking list. Finally, a truncated inverse distance scoring function
that equally votes for the documents that hold very small distance with the query
feature and scores the rest with their inverse distance.

4.3.1 Qualitative results

We can see in Figure 4.5 a qualitative comparison of the types of key-regions identified
by the three different detectors. The interest points extracted by SIFT are mainly
located at letter corners. Most of the MSER produced key-regions correspond to
character-level connected components. In contrast, the proposed DTMSER detector
extracts multi-level features corresponding to letters, words, and paragraphs which
are potentially more semantically meaningful.

4.3.2 Comparative results on a subset

We first report comparative results obtained on a subset of the database correspond-
ing to 857 images from 50 different providers in which 10 invoices are selected as
queries. To exhaustively find key-region correspondences quickly becomes infeasi-
ble when dealing with large datasets. As the SIFT and MSER detectors return an
enormous amount of key-regions, we perform this first experiment on a subset of the
dataset to reduce the computational cost. Furthermore, we make a use of an ap-
proximate nearest neighbour search algorithm, namely the Bucket Distance Hashing
(BDH) to further reduce the computational time. Bucket Distance Hashing (BDH)
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Table 4.1: MAP and time consumption for sub dataset

Detector Num. regions NN Time (ms) Voting Scheme

Uniform Inverse Truncated

SIFT 9,402,479
BF 6,148,880 0.9830 0.9955 0.9963
BDH 3,640 0.9768 0.9945 0.9968

MSER 1,164,693
BF 135,896 0.9654 0.9667 0.9645
BDH 679 0.9595 0.9658 0.9601

DTMSER 422,288
BF 21,699 1.0000 0.9634 0.9990
BDH 131 1.0000 0.9659 0.9984

is a scalable approximate nearest neighbour search (ANNS) method [94]. The key
idea of BDH is a combination of hash-based distance estimation and loose selection
of nearest neighbour candidates, both of which are designed to find the true nearest
neighbour in high probability without time consuming process. Previous experiments
have shown that the BDH can reduce processing time significantly while maintaining
the same accuracy as other state-of-the-art algorithms [116], a behaviour confirmed
here as well.

We compare the performance of the three key-region detectors using the three
different voting schemes described before. The obtained results are summarized in
Table 4.1.

It can be easily appreciated that the amount of obtained key-regions is drastically
reduced when using the proposed DTMSER detector instead of SIFT or MSER while
the retrieval performance is not affected. There is a clear advantage in using an
approximate nearest neighbour search algorithm such as BDH in the retrieval stage as
there is a huge time improvement while suffering an insignificant loss in mean average
precision. We show in Figure 4.6 the precision and recall plot for this experiment
when using the truncated inverse distance scoring method.

4.3.3 Results on the whole dataset

To show the performance of the proposed DTMSER, we generalize our experiment
over the whole invoice dataset consisting 4109 images within 249 unbalanced classes
from which 383 queries are randomly picked. In this scenario the amount of key-
regions returned by the SIFT and MSER detectors is very large (SIFT detects more
than 40 million key-points). Therefore, we just evaluated the DTMSER detector
performance combined with the BDH search algorithm.

We can see in Table 4.2 that the performance over the whole dataset is in agree-
ment with what we obtained during the previous experiment. Regarding the different
voting schemes, the truncated inverse distance strategy is the one that performs the
best, although no significant differences can be observed.
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Figure 4.6: Precison-Recall curve for the sub-dataset when using the truncated
inverse distance scoring method.
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Table 4.2: MAP time consumption for whole dataset

Detector Num. Time Uniform Inverse Truncated
Key-regions (ms) Rank Inverse Distance

DTMSER 2,016,286 205 0.9893 0.9407 0.9909

4.4 Conclusions

In this chapter, we introduced a fast and efficient key-region detector to extract
document structure as a dendrogram of key-regions where the edges represent one
key-region merged to another bigger one at higher scale level. We demonstrated
that the proposed DTMSER detector takes advantage of the particular structure
of document images, and is able to detect semantically meaningful key-regions that
roughly correspond to structural elements of the document. Compared to other state
of the art detectors, DTMSER detects a much smaller number of key-regions, while
achieving slightly higher performance in a retrieval scenario.

The approach followed produces a dendrogram of regions. The dendrogram pro-
duced is a rich source of structural information, as it encodes relationships between
the regions. In the next two chapters, we will describe two strategies (previously
proposed by us) to embed such structural information into the document retrieval
process.
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Chapter 5

Pair-wise BoW

In the Chapter 4, we previously discussed that DTMSER detection algorithm is ca-
pable to extract multi-scale key-regions that roughly correspond to the structural el-
ements of the document such as characters, words and paragraphs, etc. Furthermore,
we demonstrated that document structure can also be extracted simultaneously as a
dendrogram of multi-scale key-regions. In this chapter, we will introduce a method
to efficiently employ such explicit structure information for document image retrieval
in BOW-like manner which generally achieves high performance for image retrieval
problems. We will show that, benefiting from the applied explicit structural infor-
mation, our method outperforms the recent state-of-the-art methods in document
retrieval domain.

In the past decades, considerable effort has been made for document image clas-
sification and retrieval from different perspectives. However, generally speaking, the
document images are usually represented by either their textual content [117], or their
layout structure [118, 119].

Layout analysis methods explicitly describe the document structure as the spa-
tial relations among the segmented blocks with assigned logical or physical labels.
Such layout structure is usually encoded in a small number of high-level blocks (e.g.
paragraphs, columns or titles) while the contents inside the blocks are ignored. The
performance of layout analysis methods highly depend on the quality of image seg-
mentation which is still a problem far from being solved. Besides, another drawback
of layout analysis methods is the distance computation between groups of blocks (nor-
mally represented as graphs) since computing the similarity between graphs is widely
recognized as time consuming. Such computation complexity also hinders the layout-
based methods represent the document in further details (lower-level blocks such as
words, or even letters). On the other hand, we focus on a document framework that is
suitable for a wider range where both structure and text content features are appreci-
ated. Consequently, layout-based methods are not considered in our research despite
of its success on explicitly extracting document structure.

Document images are also widely described by their content features either globally
(one feature vector per image) or locally (groups of local feature vectors per image).
For example, the local key-points/key-regions are described with SIFT feature vectors

39
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in [69, 68] and as HOG feature vectors in [75, 71]. On the other hand, representing
each image globally as one feature vector could achieve high efficiency for full page
document image retrieval. However, neither of those representation strategies could
capture the document structure which is significant important for lots of retrieval
problems. Hence, based on local content description, various strategies have been
proposed to compensate the drawback of lacking structural information. the most
straightforward and popular option is adding spatial information like Pyramidal Bag-
of Words (Pyram BoW) over Bag-of-Words (BoW).

Bag-of-Words was designed for processing text in documents and introduced by
Feifei Li et al. for natural scene categorization [76] (also stated as Bag-of-Feature
in computer vision domain). Afterwards, it is widely employed to represent images
for various applications due to its efficiency and discriminate power. As shown in
Figure 5.1, BoW representation strategy consists of 4 consecutive steps: feature de-
tection, description, quantization and pooling. The feature detection process extracts
patches (blobs or key-regions) that preserve high saliency (interest). The description
process usually interprets those patches into discriminative feature vectors. In quan-
tization step, feature vectors are assigned to nearest codewords (centroids) which are
previously computed. At the end, a pooling strategy is employed to represent each im-
age as a histogram of features whereas the basis is the assigned labels. Bag-of-Words
framework interprets each image as a single histogram which preserves the discrimina-
tive power of features, thus computing the similarity between images is solved as the
distance calculation of two vectors which could be implemented in extremely efficient
manner.

SIFTBdescription

feature1

featureBn

v11,Bv12...Bv1128

vn1,Bvn2...Bvn128

DTMSER Detection

...

Hierarchical Quantization

SIFT feature space

... ...

BoW Representaion

DocumentBImage

Figure 5.1: The pipeline of BoW representation for document images.

However, one significant drawback of the Bag-of-Words framework is that the
spatial information of the features is not taken into account during pooling process
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and thus the resulted histogram vector does not convey any structural information.
Several methods have been proposed to encode image structure into BoW framework
while its advantage on efficiency could be preserved. Among those BoW-like methods,
the most famous is spatial pyramidal BoW which is able to roughly embed the location
information of each feature. As shown in Fig. 5.2, spatial pyramidal BoW iteratively
divide the image into pyramidal parts and employ BoW strategy to represent each of
the resulted parts. At the end, all of the BoW histogram vectors are concatenated
together and employed as the representation of the whole image.

level 0 level 1 level 2

. . .

Figure 5.2: Encoding spatial structure into BoW representation

Similarly, the document image also could be iteratively divided into increasing
finer sub-images and is represented as a feature vector concatenating quantized fea-
tures extracted from all the resulted sub-images. A problem of the pyramidal spatial
method is the dimensionality of the feature vector which increases exponentially. Be-
sides, for document image analysis, adding such spatial information to local content
feature does not explicitly encode document structure but rather the spatial distri-
bution of local patterns.

The Distance Transform based Maximal Stable Extremal Region (DTMSER)[72]
algorithm efficiently extracts the document structure as a dendrogram that roughly
representing how the structural elements merge to each other (e.g. characters merge
to words, words to paragraphs). The extracted dendrogram is a rich source of struc-
tural relations such as top/down/left/right, neighboring within specific distance and
inclusion. Nevertheless, how to query such explicit structural relations in efficient
manner is still under challenge. In this chapter, we propose an approach to dace this
challenge.

In this chapter, we will present an efficient method, namely pair-wise BoW, that
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Figure 5.3: The pipeline of document retrieval based on the proposed pair-wise
representation.

incorporates the BoW method with the inclusion structural information which com-
monly exists between structural elements of document images. The main advantage
of our method is that the explicit document structure is efficiently embedded into a
BoW framework through pair-wise key-region representation. As illustrated in Figure
5.3, we extract the document structure as a dendrogram of key-regions containing rich
source of structural relations. Afterwards, each key-region is described by two types
of features: geometrical feature and content feature. To generate the codebook, hi-
erarchical k-means algorithm is then employed to quantize the geometrical and local
content features in two consecutive stages. At the end, the document dendrogram is
”decomposed” into list of key-region pairs (edges in the dendrogram) which are em-
ployed during pooling process to generate the BoW histogram representation. Briefly
speaking, pair-wise BoW represent each document into a histogram where the basis is
key-region pairs while the basis of the original BoW representation is separated key-
regions. The pair-wise BoW representation expresses the statistical characteristic of
key-regions where inclusion structural relation is encoded.

However, the pair-wise BoW representation strategy leads to higher dimension-
ality that equals to the square of codebook size. Nevertheless, we observe that the
histogram vector is very sparse. Consequently, to solve such problems, inverted file
indexing strategy is employed in order to efficiently compute the distance between
the sparse histograms (will be explained in Section 5.2).

5.1 Feature Extraction

Formally, a document D is represented by a tree structure T (R,E, l) where R = {r} is
a set of tree nodes corresponding to key-regions extracted by the DTMSER algorithm
(see section 5.1.1), E = {e}, whereas e = (r i, r j) and r i, r j ∈ R, is a set of directed
edges in the tree representing inclusion relations, and l is a labeling function assigning
shape attributes regions l : R → Rn. For each node r, l(r) is employed to map its
feature vector f(r) to an integer (numeric label).
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5.1.1 Distance based MSER (DTMSER)

The DTMSER algorithm, proposed in previous work [72] takes advantage of the fact
that the structure of a document is tightly linked to the distance among its elements:
characters are located closer to each other than words are, which are in turn placed
closer to each other than paragraphs are. As shown in Fig. 5.4, DTMSER algorithm
basically comprises two steps: distance transform and MSER analysis.

F(p)<10

F(p)<60

F(p)<120

(Distance Transform) (MSER Analysis) (DTMSER key-regions)

Figure 5.4: Progress of Distance Transform MSER algorithm.(a) Distance trans-
form; (b) Thresholding process for MSER analysis; (c) the resulted key-regions rep-
resented as ellipsoids and a dendrogram linking the key-regions together.

For each pixel p in the image, distance transform algorithm basically set its value
as the minimum distances to the set of foreground text pixels. Such ”preprocessing”
step transforms the image from x-y space into distance space where the more explicit
borders could be observed among different scales of document structural elements,
because characters are usually located closer to each other than words are, which are
in turn placed closer to each other than paragraphs are.

In order to produce a distance-aware version of MSER, we take the distance trans-
formed image as input and compute the classical MSER detection over it in order to
identifies the stable regions if their size change is small during the thresholding process
as shown Fig. 5.4(b). We set the thresholding strand (namely delta in the algorithm)
to 1 and thus build a redundancy tree T (R,E) that contains all the regions r generated
by thresholding process. Let us denote ri−1 and ri+1 as the immediate child (if exist)
and parent of the ith region ri, Areai and Areai+1 as the sizes of the regions ri and
ri+1 respectively. The initiative tree is truncated into a maximally stable extremal
region tree by deleting the (ith) node if (Areai+1−Areai)/Areai > 1 (unstable) and
linking ri−1 and ri+1 together: {e(ri−1, ri), e(ri, ri+1)} to {e(ri−1, ri+1)}. Afterwards,
the stable key-region tree is further simplified by filtering out the duplicated MSER
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regions. For example, the key-region ri is recognized as duplicated and thus deleted
if (Areai+1 − Areai)/Areai+1 < 0.5 while ri−1 and ri+1 is directly linked together
afterwards. In our experiment, such strategy gives us a dendrogram on multi-level
key-regions that roughly correspond to semantical elements of the document (letters,
words, paragraphs) since due to typesettings the distances between these elements
correspond to local maxima in the distance transform.

DTMSER detector leverages the efficiency of the MSER algorithm to extract sta-
ble regions. As shown in Figure 5.5(a), DTMSER algorithm is capable to efficient
extract document structure as a dendrogram of multi-scale semantical key-regions
that roughly correspond to letters, words, paragraphs.

5.1.2 Descriptors

For each DTMSER key-region r, affine normalization is employed to transform the
corresponding region to square size facilitating content feature description afterward.
We will test three different algorithms, SIFT, HOG and Run Length (RL), to compute
the content feature of each key-region fc(r).

• SIFT descriptor divides each normalized region into a 4× 4 grids. Eight bins
are used to quantize gradient vectors, then a histogram of 8 bins describes each
grid. Hence, SIFT descriptor represents each region as a feature vector with
4× 4× 8 = 128 dimensions. However, Gaussian weighting process is ignored in
our case because the text close to the boarder is considered as important as the
central part and a slight improvement is observed during the experiments.

• HOG descriptor computes features by dividing each normalized region in 4
by 4 cells and then 31 features are extracted from each cell [56]. At the end,
4× 4× 31 = 496 dimensional feature vector is returned for each key-region.

• RL descriptor also computes the histogram of the content features but in
terms of run length which is defined as the number of pixels with the same value
in a sequence. As discussed in [84], we quantize run lengths in a logarithmic
manner into 9 bins as follows: [1], [2], [3-4], [5-8], [9-16], [17-32], [33-64], [65-
128], [129-Inf]. For binary images in our case, run length yields 2× 9 = 18 bins
for both black and white sequences. Besides, we compute runlength feature in
horizontal, vertical, diagonal and anti-diagonal directions resulting in 4×18 = 72
dimensions in the final feature description.

One drawback of affine normalization applied to content description is that it discards
the geometrical information (e.g. aspect ratio of the bounding box) of the original
key-regions. Hence, the SIFT descriptor that takes the squared regions as input, is
not capable to discriminate the geometrical characteristics from one key-region to the
other. To compensate such loss, we proposed to further describe key-region r by its
geometrical feature fg(r) which is represented in two dimensions: the aspect ratio
of the bounding box and the area ratio between key-region and the corresponding
bounding box. Another reason to apply fg(r) is that it is more flexible on content
variation and thus allows our algorithm to mainly use structural information and solve
the structure spotting task.
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Figure 5.5: Pair-wise BoW pipeline with details.

5.1.3 Codebook

To create the codebook of the key-regions, we employed a hierarchical clustering
strategy applied in two consecutive steps: first geometrical feature quantization lg(r) :
fg(r) → intg and then content feature (SIFT) quantization lc(r) : fc(r) → intc. K-
means clustering algorithm is employed in both steps. The final label is assigned as
l(r) = [lg(r), lc(r)] = intg × n des+ intc where n des denote the number of centroids
for content feature. Thus, the codebook size equals to the product of the number
of centroids for lg(r) and for lc(r). For example, assume the number of centroids
for geometrical and content feature are configured as n geom = 10 and n des =
100, the codebook size would be: 10*100=1000. In section 6.2.2, we study how
the performance changes when the importance of the two types of features varies
while the respective cluster numbers are configured as n geom ∈ {5, 10, 15, 20, 25}and
n des ∈ {50, 100, 150, 200, 250} resulting in 25 parameter configurations.

In summary, as shown in Figure 5.5(b), after key-region detection, feature de-
scription and codewords assignment, a document image is represented as T (R,E, l).
Afterwards, by applying a consecutive two-step quantization process, a numeric la-
bel is assigned for each key-region r ∈ R according to the corresponding features:
content feature fc(r) and geometrical feature fg(r). More importantly, the edges of
the tree e = (ri, rj) ∈ E carry lots of structural relationships such as intersection,
top/left and inclusion. Considering the simplicity of the image representation, we
only consider the edges in parent-child manner that convey inclusion relations.



46 PAIR-WISE BOW

5.1.4 Pair-wise Pooling

We employed DTMSER to extract the document structure as a hierarchical key-
region tree T (R,E) where each r ∈ R is quantized to its nearest codeword in the
feature space. The main promising advantage of such key-region tree is that its edge
e(ri−1, ri) ∈ E contains a rich source of inclusion structural relations between the
parent node and child node. On the other hand, BoW framework efficiently represent
each image as a histogram of separate key-regions but structural relations among
the key-regions is ignored. Even though spatial pyramidal BoW representation could
partially carry the structural information by encoding the rough location of each key-
region, such spatial structure only encode the local patterns rather than document
structure and would fail when image rotation occurs. Hence, it is necessary to encode
other structural relations (e.g. inclusion) which are explicit and rotation invariant.
Consequently, we proposed to ”decompose” the labeled dendrogram into lists of key-
region pairs (edges) and represent each image as a BoW -like histogram while the
pooling elements are key-region pairs. The main advantage of our method is that we
manage to embed inclusion structural relation into the pooling elements while the
standard BoW use orderless separate key-regions without any structural information
as pooling elements.

The problem of the proposed method is that the size of the codebook is squared.
For example, assume the numbers of clustering centroids for geometrical and content
feature are set to be 20 and 200 respectively, the codebook size of standard BoW would
be s codebook = 20×200 = 4000. However, in the case of the proposed pair-wise BoW
representation, the codebook size would be s codebook = 4000× 4000 = 16Million.

5.2 Inverted File Indexing

The higher dimensionality of the pair-wise BoW representation would lead to the
increased computation complexity for calculating the similarity between images. To
address this problem, we apply Inverted File Indexing (IVF)[120] which is independent
to codebook size for calculating the similarity between two images.

The proposed method is applied for retrieving images based on structural informa-
tion, allowing for slight variation on key-region locations. As an example consider in
an administrative application, for invoice images from the same provider, the logo lo-
cation may change from one document to another. Hence the homography calculation
process that is usually employed to check the spatial consistency of the matched local
patterns is ignored in our case. This strategy could significantly reduce the required
key-region storage space and the time consumption of query process. As showed in
Figure 5.6, the words are stored with the image id and its occurrence time represented
here as count. During query time, the distance calculation process is only performed
for the database images that have at least one matched key-region pairs while other
images that do not share any key-region pair are directly ignored. Since the codebook
size of the proposed pair-wise method is the square of the standard BoW method,
the corresponding histogram vector would be very sparse. Hence, when computing
the distance between query and target images, only the non-zero dimension in their
representation vector is actually computed. As argued in [121], we employ Cosine
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Figure 5.6: The Inverted File Indexing structure of the key-region pairs.

distance to calculate the dissimilarity of two images while L2 normalization process is
performed in advance. To give more importance to the rare key-region pairs which are
more discriminative, the tf-idf (Term Frequency - Inverse Document Frequency) [122]
weighting scheme is applied.

5.3 Experiments

We apply the proposed method to an invoice retrieval scenario at full page level (see
Appendix A.1). Overall, 4.7 million multi-level stable key-regions are extracted by
the DTMSER algorithm corresponding to approximately 1000 key-regions per image
on average.

To obtain the ground truth, we assume that two images would be structurally
similar if they come from the same provider and they would be different if they come
from different providers. Mean Average Precision (MAP) is employed here to evaluate
the performance of the proposed pair-wise BoW. Since our method is a variant of BoW
framework, we consider the BoW and spatial pyramidal BoW that widely applied for
document retrieval as the baseline.

The experiment is discussed in two parts: 1)parameter validation on number of
clustering centroids and different type of content feature descriptor (SIFT, HOG and
RL); 2)then performance comparison of the proposed method with BoW and Spatial
BoW is discussed afterwards.

5.3.1 Parameters Validation

The parameters such as the numbers of clustering centroids for geometrical feature
and content feature determine the size of codebook. The codebook size controls the
discriminative power of the assinged label and thus would significantly affect the re-
trieval performance. Consequently, to figure out the optimal parameter configuration,
a validation process is performed on the number of centroids of the two considered
features and content feature description strategies (SIFT, HOG, RL).

To fairly compare the performance of the proposed method with BoW and spatial
BoW in Section 5.3.2, the validation process is also performed for the two considered
baseline methods. The corresponding results of BoW, spatial BoW and the proposed
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Figure 5.7: Clustering parameter Validation of a) Run Length, b) SIFT and c)
HOG descriptor based on BoW.
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Figure 5.8: Clustering parameter Validation of a) Run Length, b) SIFT and c)
HOG descriptor based on Pyramidal BoW .

method are illustrated in Figure 5.7, 5.8, 5.9 respectively.
We represent the combination of number of geometrical and content feature clus-

tering centoirds as Num geom and Num des for short respectively and the two pa-
rameters is configured asNum geom ∈ {5, 10, 15, 20, 25}andNum des ∈ {50, 100, 150, 200, 250}
resulting in 25 parameter combinations. As demonstrated in Figure 5.7, 5.8, 5.9, de-
spite of the descriptor types and the retrieval methods, within the considered range,
increasing the number of centroids of either geometrical or content feature will result in
a performance improvement. That is because increasing the number of clustering cen-
troids actually leads to the enhanced discriminative power of corresponding features.
However, for structural retrieval, this does not indicate that the bigger the codebook
size is the better performance would be since the feature may become to be too dis-
criminative. Even though, we could observe that, when the Num geom > 15 and
Num des > 150, increasing the number of centroid (either Num geom or Num des)
does not lead to obvious improvement on retrieval performance indicating that the
ceiling point is most probably reached. However, taking the slight performance im-
provement into account, we choose Num geom = 25 and Num des = 200 as the
optimal configuration for the number of clustering centroids. Besides, since inverted
file indexing is applied here, increasing the number of centroids does not lead to higher
(actually slight less) computation complexity.

Among the considered content descriptors, for most cases, RL performs worst and
HOG performs best. This makes sense because RL simply encodes the information
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Figure 5.9: Clustering parameter Validation of a) Run Length, b) SIFT and c)
HOG descriptor based on the proposed method.

about number of object pixels which is less discriminative for representing the lo-
cal content than the gradients information that employed by both SIFT and HOG.
For the same type of information (SIFT and HOG), increasing the dimensionality
would probably lead to the enhancement of discriminative power. Consequently, the
RL descriptor with less discriminative power performs worse than the SIFT and the
HOG descriptors. Taking the advantage of higher dimensionality, the HOG descriptor
achieves the slightly better performance than the SIFT descriptor. Generally speak-
ing, SIFT obtains more than 2% better performance than RL descriptor and around
1 % worse performance than HOG descriptor. Considering their dimension and the
resulted computation complexity for assigning labels, SIFT is recognized as the best
descriptor here even it performs 1 percent less than HOG. Because at 4 times calcu-
lating time for label assigning process resulting in 1 percent better performance is not
”economic” especially in the case of large scale retrieval.

In conclusion, Num geom = 25, Num des = 200 and SIFT descriptor is consid-
ered as the optimal configuration for BoW, spatial BoW and the proposed method.

5.3.2 Proposed VS BoW

In this section, we compare the retrieval performance of our method with BoW and
spatial BoW based on the parameters validated in the previous section. Both MAP
and precision-recall curve is employed to demonstrate the performance difference.

Table 5.1: MAP performance of descriptors and frameworks(n geom = 25 and
n des = 200)

BoW BoW Pyram Proposed

RL 0.9254 0.9448 0.9559
SIFT 0.9444 0.9630 0.9802
HOG 0.9493 0.9693 0.9816

Concerning RL, SIFT and HOG descriptor, table 6.2 shows the performance of
the considered retrieval methods. As argued in section 5.3.1, despite of the retrieval
methods, SIFT generally obtains 2% better performance than RL and less than 1%
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worse performance compared to HOG. Among all the considered retrieval methods,
benefiting from the pyramidal spatial information, spatial BoW achieved around 2%
improvement over the standard BoW method. Benefiting from the explicit structure
of document images, the proposed method gains further 2% better performance than
spatial BoW which represents the document’s structure implicitly as spatial distribu-
tion of local patterns. The precison-recall curve of three compared retrieval methods
is plotted in Figure 6.9 based on SIFT descriptor and optimal number of clustering
centroids.
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Figure 5.10: Precision-Recall curve of SIFT descriptor based on BoW, Pyramidal
BoW and the proposed method.

5.4 Conclusion

In this chapter, we have presented an inverted file indexing based method for struc-
tural document image retrieval. The document image is represented as a list of
paired multi-level stable key-regions which generally corresponding to character-word
or words-paragraph pairs with inclusion structural information explicitly incorpo-
rated. Instead of pooling separate key-regions to generate the histogram represen-
tation in the case of the BoW method, we employ the key-region pairs that carry
inclusion structural information as pooling elements. The inverted file indexing strat-
egy is employed to solve the computation complexity problem caused by quadratic
codebook size.
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Under the full page invoice image retrieval scenario, we compared the performance
of the proposed method with BoW and spatial BoW method while a validation process
on content feature descriptor and number of clustering centroids of both geometrical
and content feature is performed. We demonstrated that, within the considered BoW-
like methods, spatial pyramidal BoW achieves better results by taking the implicit
spatial information into account. Furthermore, benefiting from the explicit inclusion
structural information that encoded in the key-region pairs, our proposed pair-wise
methods gains further improvement comparing with spatial pyramidal BoW.

However, the proposed pair-wise BoW framework is not able to handle the focused
retrieval scenarios where the partial areas of images (instead of the whole images) are
expected from the collection. Such limitation would narrow down the employment
of the demonstrated explicit structure. Hence, in next chapter, we will introduce a
generic framework that allows to apply the inclusion structural relation in the focused
retrieval scenario.
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Chapter 6

Spatial Database

In the previous chapter, we introduced an efficient framework, named as pari-wise
BoW, which represents document images as a histogram while the pooling elements
are key-region pairs instead of separate key-regions. We demonstrated that, benefiting
from the explicit inclusion structural relation between key-regions pairs, the pair-wise
BoW methods achieves further improvement against spatial pyramidal BoW that
widely employed for document image retrieval.

Even though such global representation was illustrated to be very efficient and
effective for retrieving document images at full page level (see Figure 6.1(b)), it is
very challenging to apply representation for retrieving the correspondences when only
a small areas/portions of the images are expected. For example, both object detection
for PASCAL challenges [123] in computer domain and logo retrieval (see Figure 6.1(a))
in document community seek to further locate the counterparts inside given images.

Besides, from the viewpoint of similarity, documents comprise a particular type of
images where structure is quite explicit, and at the same time decoupled from content.
For example address blocks on letters, share the same structure across different letters,
although the exact content might change. Other examples might include newspaper
articles, figures with their respective captions, or items on an invoice as shown in
Figure 6.1(c).

Discovering similar areas in images is of great practical interest, and it makes
intuitive sense to include structural information in such a search. In the past decades,
document retrieval problem have been treated at either full page or part-based (parts
of image) level where the structure or visual similarity is measured. However, for many
applications it would make sense to try to decouple visual features and structural
information to allow conducting searches based on structural similarity solely, or in
the generic case to put a desired weight on content versus structure. The expected
benefit would be an extension of current methodologies to the discovery of areas that
share the same structure while the local content might vary, going over and above
discovering exact matches only.

To offer a practical example from the document image analysis domain, this would
translate to the ability of discovering e.g. address blocks in letters given a single
address block as a query on the basis of their common structure, ignoring possible

53
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Exact Matches Full page Matches Structure-focused Matches

(a) (b) (c)

Figure 6.1: Document Retrieval in three different scenarios: (a) Exact matches
aiming to retrieve all the image parts that preserve the content and structural sim-
ilarity; (b) Full page retrieval searching for both content and structurally similar
images; (c)Structure-focused matches expected to return the image parts where the
structural similarity is preserved but the content could be differ.

content variations between address blocks. This situation, made easy to study in the
realm of document images, is nevertheless quite generic, and solutions to this problem
could potentially have a use in every application where a part based model is used.
It should be stressed that in the context of this work, we use ”part-based retrieval”
to refer to the retrieval of areas (parts of images) instead of full images, and not to
the use of any part-based model.

This is an open research problem, that departs from exact object matching and
verges upon structural pattern recognition approaches and in particular sub-graph
matching techniques (assuming a consistent graph representation is easy to define).
The main downside with employing a fully fledged sub-graph matching approach is
its high computational cost that forbids its use in real-time applications.

The work presented here addresses the problem described above from a fresh
perspective, proposing a generic solution for structure based retrieval. As shown in
Figure 5.3, we represent query image as a group of key-region pairs that correspond to
the edges in the dendrogram tree. Correspondences are retrieved for each key-region
pair if the matches on both visual features and structural relations are observed. At
the end, the areas/parts of the target images that holds grant number of correspon-
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dences are located as the matches of the query image while RANSAC is employed to
check the spatial consistency.

The methodology is generic, in the sense that the relative contribution of visual
versus structure can be flexibly adjusted (hence allowing the same method to tackle
the whole spectrum of problems from exact visual based matching to purely structure
based retrieval), while it can be used within a local, spotting framework as well as
within a global, full image retrieval one. The main focus of this part of work is on
the more complex problem of retrieving local structure similarities in collections of
images given a local structural query, although we demonstrate how the exact same
framework can be used for full-page retrieval scenario yielding state of the art results.

The main innovative points of our work are as follows. We propose the use of
spatial databases for efficient indexing and retrieval of local structural inclusion pat-
terns. We propose a generic technique for structure based retrieval making use of
inclusion relationships and spatial indexing. We evaluate the proposed method on a
dataset of administrative documents and demonstrate that flexible retrieval of local
regions based on structural similarity is possible without penalising performance in
exact (visual-based) matching scenarios. We finally demonstrate that the framework
can be used as is for full-page retrieval, yielding state of the art results.

6.1 Pair-wise spatial retrieval

6.1.1 Document representation

As discussed in Chapter 5, we employed DTMSER detection algorithm to interpret
each document image as a dendrogram T (R,E) where E represents set of edges
e = (ri, rj) ∈ E and R indicates group of key-regions (nodes) r ∈ R that roughly
corresponds to the structural elements of the documents (letters, words, paragraphs,
etc.). Afterwards, each key-region r is described by its visual features which consists
of geometrical features fg(r) and content features fc(r). A consecutive k-means clus-
tering is performed in order to create codebook for geometrical and content feature
separately. Afterwards, hard assignment is applied to assign label for each key-region
as l(r) = lg(r) × numc + lc(r) where numc is codebook size of content feature and
the lg(r) and the lc(r) represent the IDs of nearest codewords of its geometrical and
content feature respectively. As the result of the assignment process, the visual fea-
tures of each key-region are quantized and thus the document is further described as
T (R,E, l) where l indicates the label information of each key-region. At the end, each
document is represented as a group of key-regions pairs (edges e )which is employed
as the pooling elements to generate the pair-wise BoW histogram.

However, pooling the key-region pairs into a histogram and globally represent
each document as a vector is not suitable for focused retrieval that aims at to further
locate portion of image as a correspondence. Hence, we will alternatively introduce a
new strategy which directly retrieve corresponding key-region pairs instead of pooling
them into a histogram.

As shown in Figure 5.3, similarly with pair-wise BoW framework, we extract a
key-region tree (dendrogram) T (R,E, l) for the query and represent the image as a
group of key-region pairs e = (ri, rj). However, during query time, for each key-
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Figure 6.2: Pipeline of the proposed structural matching.

region pair, we directly retrieve all of its counterparts e′ = (ri′, rj ′) where the labels
of corresponding key-region match and meanwhile the same structural relation is
observed in e = (ri, rj) and in e′ = (ri′, rj ′). However, comparing the relative spatial
relations (e.g. left/top and inclusion) between key-regions would be very expensive.
Hence, it is essential to incorporate with proper indexing strategies to boost such
pair-wise structural querying process.

In document analysis domain, plenty of indexing methods have been proposed such
as Approximate Nearest Neighbors (ANN) [90], Locality Sensitive Hashing (LSH) [91],
inverted file indexing [92], Product Quantization (PQ) [93], Bucket Distance Hashing
(BDH) [94], k-d tree [95, 85] have been proposed or applied to document image
retrieval domain. But neither of them could handle the relative spatial relations
between key-regions.

On the other hand, spatial databases [96] are designed for dealing with the spatial
relations (inclusion, intersection, overlapping etc.) among geometrical objects such
as points, lines, polygons, etc. In the past decades, lots of spatial indexing techniques
have been proposed for spatial databases to roughly ’memorize’ the spatial relations
among all stored objects. Hence, spatial databases allow to cast queries in terms of
geometrical relationships among the stored objects in efficient fashion. For example
such databases support queries such as ”retrieve all the objects having a border close to
point A that overlap with circle B and intersect with the polygon C”. They have been
widely used in various Geographical Information System (GIS) applications such as
maps, national census, car navigation, global climate change research, etc. however, to
our best knowledge, they have not been exploited in the document analysis community
up to now.

In order to boost the time consumption of spatial querying, various techniques
such as R-tree, R+-Tree, R∗-tree are designed for indexing the stored objects based
on their minimum bounding rectangle (MBR). Taking R-tree indexing strategy as an



6.1. Pair-wise spatial retrieval 57

example, as showed in Fig. 6.3, the MBRs (D, E, F) included in another MBR (A)
are placed in the child branch of their outbound MBR. The most straightforward
advantage of R-tree indexing is the computation reduction when querying the regions
that lie within given region because only the regions whose MBRs are included by the
MBR of the given region are checked while other regions are directly ignored. The
further details of R-tree indexing technique could be found in [124].

–     20     –

The transformation approach [Hi85, SeK88], here shown with the corner representation, generally
leads to rather skewed distributions of points. For example, all points fall into the area above the
diagonal x = y. If all intervals are small, all corresponding points lie very close to this diagonal. It is
also possible to use a center representation (using center and length of an interval) but then the
query regions become cone-shaped which does not fit so well with rectangular partitions of the point
set. The LSD-tree point data structure was designed particularly with the goal to be able to adapt to
such skewed distributions [HeSW89]. A recent discussion of the transformation approach and a
comparison to methods storing rectangles directly can be found in [PaST93].

Overlapping regions. The prime example of a structure using overlapping bucket regions is the R-tree
[Gu84], illustrated in Figure 11.
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Figure 11: A set of rectangles represented by an R-tree

It is a multiway tree, like the B-tree, and stores in each node a set of rectangles. For the leaves, these
are the rectangles of the set R to be represented. For an internal node, each rectangle is associated with
a pointer to a son p and represents the bucket region of p which is the bounding box of all rectangles
represented within p. For example, in Figure 11 the root node contains a rectangle A which is the
bounding box of the rectangles D, E, and F stored in the son associated with A. Rectangles may
overlap; hence, a rectangle can intersect several bucket regions but will be represented only in one of
them. An advantage is that a spatial object can be kept in just one bucket. A problem is that search
needs now to branch and follow several paths whenever one is interested in a region lying in the
overlap of two son regions. To keep search efficient, it is crucial to minimize the overlap of node
regions. This is determined by the split strategy on overflow. Several strategies based on different
heuristics have been studied in [Gu84, Gr89, Beck90]; the one proposed in [Beck90], called R*-tree,
appeared to perform best in experiments.

Clipping. A variant of the R-tree, called R+-tree, was proposed by [SeRF87, FaSR87] and used in
the PSQL database system [RoFS88]. It avoids overlapping regions associated with buckets or inter-
nal nodes of the same level completely by clipping data rectangles, if necessary.
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Figure 12: A set of rectangles represented by an R+-tree

Figure 6.3: R-tree indexing for spatial database.

6.1.2 Spatial Indexing

As stated before, structural relationship, such as top/left, inclusion, commonly ex-
ists on each edge e = (ri, rj) ∈ E. More abstractly, the extracted document structure
is a dendrogram tree composed by labeled objects linked those structural relation-
ships. On the other hand, spatial databases are capable to efficiently deal with lots
of relative location relationships among objects. Hence, we propose to index the
structural/spatial relations among the document key-regions r ∈ R through spatial
database. We observed that such indexing strategy would significantly improve the
efficiency when comparing the spatial relations (especially for inclusion relation that
employed in this work).

First of all, we store the labeled key-regions into a spatial database1 in the manner
showed in table 6.1. Each key-region is stored as a record consisting of document id
, key region id, label, bounding box (MBR). Besides, the area of the corresponding
region is also recorded in the database to improve the retrieval performance that will
explain in 6.1.3. To identify the key-regions uniquely, document id and key region
id are employed together as primary keys.

A potential problem is that regions from different document images are considered
to be intersect with each other by spatial database if their MBRs is fetched from
their own local coordinate. For example, a MBR {(10,10),(100,100)} from image i
is considered as included by another MBR {(1,1),(150,150)} from image j which will
not happen in reality if i 6= j. To avoid this, we define coordinate globally by aligning
images one besides another along X-axis as showed in figure 6.4.

Spatial indexing, called GiST index which is an hybrid implementation of B-tree,
R-tree and many other spatial indexing schemes, is built on all the stored regions

1We employed PostgreSQL software which is a powerful, open source spatial database system
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Table 6.1: Data Structure Stored in Spatial Database.

Document id Key-region id Label Bounding box Area

1 1 680 (107,82),(93,78) 56
1 2 898 (126,82),(111,77) 75
1 3 616 (167,1942),(150,1939) 51
2 1 59 (1718,1748),(1682,1725) 828
2 2 893 (1723,319),(1602,296) 2783
3 1 858 (3267,82),(3251,78) 64
3 2 460 (3281,2202),(3214,2128) 4985

Doc1 Doc2 Doc3 Doc4 Doc5

.........

X

y

Figure 6.4: Image coordinate definition.

based on their corresponding MBRs’ location. All the extracted key-regions R = {r}
are stored separately and spatially linked together by the tree-structured index.

6.1.3 Structural Retrieval

The DTMSER algorithm efficiently computes the document structure represented
as T (R,E, l). Taking advantage of the spatial indexes, the system could efficiently
query any type of spatial structures between key-regions (ri, rj) such as top of or left
of or within given distance etc. To reduce the complexity of similarity computation
between the querying T (R,E, l) and the stored document, we propose to represent
the document structure as a list of edges e = (ri, rj) with inclusion relationships
between the two associated key-regions. Then the edges are employed to retrieve
their matches from spatial database like find all the possible edges e′ = (ri′, rj ′) where
the corresponding labels l(ri) = l(ri′), l(rj) = l(rj ′) and meanwhile ri′ is included
by rj ′. Spatial indexing employed here can significantly boost such edge retrieval
process. RANSAC algorithm is then employed to check the global consistency among
the returned edges and a ranked retrieval list is returned afterwards based on the
number of inliers.

The main advantage of the proposed pair-wise key-region querying against isolated
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orderless key-region querying is that it is capable to efficiently query many structural
information such as top/left/ of , intersection and the inclusion relationships that
employed in our research. However, when retrieving the edges e′ = (ri′, rj ′) that
hold inclusion relationship and matched labels with query edge e = (ri, rj), it is
very possible that the area ratios of (ri, rj) and of (rk′, rm′) are significantly different
provoking that ”wrong” edges are returned. Hence, we compute the area-ratios for
all the paired regions linked by edges and those pairs that hold significant difference
(more than 20%) with the query pair are removed.

When measuring the structural similarity, the fact is that the key-regions with
bigger size generally play more important role than the smaller ones. On the other
hand, the document dendrogram tree T (R,E, l) normally contains more edges that
consisted of small key-regions than the big key-region edges. Thus most votes might
be made by the small key-region edges for measuring the similarity. Hence, we apply
key-region filtering process while the probability for each key-region to be kept is
p(r) ∝ Area(r) where Area(r) denotes the size of key-region r. If the given key-
region is filtered out, then its immediate child is linked with its immediate parent.
Hence, many edges that consisted of small key-regions are ignored during querying
process. This filtering strategy is also used to reduce the retrieval time as less pairs
are generated. Besides, some details of the query is kept.

6.2 Experiments

We have tested the proposed framework on the invoice dataset. The experiments were
performed in two parts: 1) full page based document image retrieval to experimen-
tally verify the optimal parameters for the proposed framework. Meanwhile, we will
illustrate that the proposed method can be applied for full page retrieval yielding the
state of the art results. 2) focused image retrieval demonstrating that the proposed
method can adaptively deal with both Structure-focused querying and Exact matching
scenario by tuning the importance of the two employed visual features. The top-10
retrieval results of the three different types of queries are illustrated in Figs. 6.5, 6.6,
6.7.

In this paper, n geom and n des are employed to denote the number of centroids
for geometrical and content feature respectively. The Mean Average Precision (MAP)
method is employed to evaluate the performance of our proposed and state of the art
methods.

6.2.1 Full Page Document Image Retrieval

We demonstrate that our method can easily applied for retrieving full-page documents
as well. In this section, we use BoW approaches, including the standard BoW, Spatial
Pyramidal BoW and pair-wise BoW that described in Chapter 5, as baseline methods
to compare the performance with the proposed one. The comparison between BoW
and Pyramidal BoW demonstrates the benefits of taking the structural information
into account. Besides, the performance difference between the proposed method and
Spatial Pyramidal BoW (noted as PyramBoW) is also discussed to illustrate the
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Full page Matches

Figure 6.5: Illustration of the Top10 results of the proposed framework for full-page
retrieval.

improvement of our proposed explicit structural (inclusion) strategy over implicit
structure encoded in PyramBoW through location of local features.

For full page document retrieval, the images from the same category are gen-
erally considered equivalent. In the case of invoices employed in our experiments,
the ground truth on full page structural retrieval is defined by their providers since
the images from the same provider share the same template. Following leave-one-out
strategy, 4109 queries are performed and, for each query, the structural similar images
are retrieved from 4108 database images. Mean Average Precision (MAP) evaluation
measure is applied here to evaluate the overall performance of the proposed frame-
work.

Since the labels assigned by the quantization process are the only visual descrip-
tion of DTMSER key-regions, the previously computed codebook plays a very im-
portant role in the retrieval performance. Consequently, we validate the factors
that could significantly affect the codebook quality which are the number of cen-
troids for geometrical feature (n geom = {5, 10, 15, 20, 25}) and for content feature
(n des = {50, 100, 150, 200, 250}) as well as the content feature description strategy
(RL, ISFT, or HOG).

For the proposed structural retrieval methods based on explicit inclusion relations
within key-region pairs, the performance improvement is generally observed when
n geom and n des are set to a big value as shown in Fig. 6.8(c). It is because the
assigned labels are not discriminative enough when clustering all key-regions into very
small amount of centroids (n geom = 5 and n des = 50). However, when the number
of centroids for geometrical and content feature are big enough (n geom >= 15 and
n des >= 150), further significant improvement could not be achieved anymore pro-
voking that the performance reach the ceiling limitation. Hence, considering the appli-
cability for other situations, we select a little bigger centroids size that is n geom = 20
and n des = 250 as the optimal option.
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Structure-focused Matches

Figure 6.6: Illustration of the Top10 results of the proposed framework for structure-
focused retrieval.

Exact Matches

Figure 6.7: Illustration of the Top10 results of the proposed framework for exact
retrieval.

To fairly compare the proposed method over the three considered BoW-like meth-
ods, we apply their corresponding optimal parameters that have been validated in
Section 5.3.1. The detailed results of the validation on the baseline methods could
be found at Figure 5.7, 5.8 and 5.9 respectively. As shown in Figure 6.8, comparing
the proposed spatial indexing based framework with the BoW-like approaches, very
similar behavior could be observed when tuning the number of centroids for the visual
features: increasing the codebook size for either geometrical or content feature, re-
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Figure 6.8: Clustering parameter validation of the proposed method: a) Run
Length, b) SIFT and c) HOG descriptor based on Spatial Database framework.

gardless of description methods (RL, SIFT, HOG), would lead to better performance
because larger codebook result to more discriminative power of relative feature. Be-
sides, the ceiling point is also observed when n geom > 15 and n des > 150. Hence,
we experimentally select n geom = 20 and n des = 250 as the optimal choice for
the number of clustering centroids. Besides, we should point out that the increasing
number of clustering centroids leads to higher dimension BoW and spatial BoW rep-
resentation while the proposed method would require less retrieval time due to the
implementation details of the spatial database.

Concerning the three considered description algorithm for content features,in Sec-
tion 5.3.1, it was demonstrated that RL generally performs worse that HOG or SIFT.
We think it is because the RL descriptor only encode the information about the num-
ber of object pixels which is less discriminative than the gradient information that
applied in SIFT and HOG description. As shown in Figure 6.8, HOG and SIFT de-
scriptors serve much better for the spatial indexing based retrieval framework than
RL does.

In summary, the performance variations when tuning the parameters are highly
consistent on different retrieval frameworks (BoW, Spatial Pyramidal BoW, Pair-wise
BoW and the spatial indexing based retrieval). Such consistency on performance
change make our conclusion about parameter validation more solid.

Table 6.2: MAP performance of descriptors and frameworks(n geom = 20 and
n des = 250)

BoW BoW Pyram Proposed Pair-wise BoW

RL 0.9242 0.9430 0.9404 0.9559
SIFT 0.9451 0.9631 0.9723 0.9802
HOG 0.9494 0.9686 0.9780 0.9816

Table 6.2 shows the MAP performance of BoW, Pyramidal BoW and the proposed
framework based on SIFT descriptors. Benefiting from the spatial/structural informa-
tion, Pyramidal BoW achieved better performance than BoW framework (generally
2 percent more of MAP) illustrating the advantage of taking implicit structural (spa-
tial) information into account for document image retrieval. Comparing with Spatial
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Figure 6.9: Precision Recall curve of SIFT descriptor based on BoW, Pyramidal
BoW and the proposed method.

Pyramidal BoW, the proposed framework outperforms Pyramidal BoW indicating
the advantage of the explicit inclusion structure over the implicit rough location
structure. Figure 6.9 demonstrates the improvement of our proposed method over
the other two frameworks through precision-recall curves.

However, comparing with Pair-wise BoW which also encode inclusion structural
information, the spatial indexing based retrieval method generally achieve 1 percent
lower MAP. It is because, when searching key-region pair e = (ri, rj), the spatial
database tests all the regions in the whole sub-branch of ri while the Pair-wise BoW
method only return check the immediate child key-regions of ri. Such ’enhanced’
spatial indexing strategy actually leads to ’noisy’ results such as parent-grandchild
key-region pairs while the query key-region pairs is in parent-child manner (Pair-wise
BoW only return parent-child pairs). The consistency checking on area ratio that
discussed in Section 6.1.3 is applied to limit such noise. On the other hand, such
’enhanced’ spatial indexing strategy allows to directly query the structural relations
between key-region pairs and thus makes the focused retrieval feasible while Pair-wise
BoW framework could only search document at full page level.

In summary, for full page document image retrieval, 20 geometrical and 250 con-
tent feature centroids are validated to be the optimal parameters in practice. The ex-
perimental results demonstrated that the proposed methods achieve around 3 percent
improvement over BoW and 1 percent over Pyramidal BoW. Besides, more impor-
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tantly, the proposed method could easily be adapted to the scenario that allows the
user to query part of document image and locate either Exact matches or Structure-
focused matches.

6.2.2 Focused Retrieval

We show the performance of the proposed framework on focused retrieval based on
SIFT description. A bounding box is expected to be obtained from the user highlight-
ing the most interested zone, and only the key-regions that lie within the specified
bounding box are employed for generating key-region pairs. Based on the matching
result returned from spatial database through pair-wise querying, the consistency be-
tween the query region pairs and matched pairs is calculated by employing RANSAC
algorithm. The correspondences are located by affine transforming the query bound-
ingbox into the target images according to estimated homography matrices while a
re-ranked process is performed based on the number of inliers.

To evaluate the performance of the proposed method, we define 20 part-based
queries that could be divided into two groups (10 queries for each group):

• Structure-focused queries– the queries that aiming at retrieving all the struc-
tural similar parts while the content inside may changes from one to another.
For example, in our experiment, the shopping records from invoices of the same
provider may varies over item name, quantity and price while structural simi-
larity is still kept.

• Exact queries– the queries that looking for the exact matches where both content
and structure of the target image parts are concerned. In the experiment, we
take the invoice headline as query and search the invoices that contain the same
structure and the same content.

Since one single invoice may contains many such instances, we perform an iterative
RANSAC process on each image while all the matched key-region pairs in the previous
iteration are not considered in the following iteration. This allows us to retrieve as
many matched parts as possible only if the amount of inliers is bigger than 5.

Besides, we manually create ground truth through specifying all the bounding
box(es) that corresponding to Structure-focused queries or Exact queries. During
query time, for each retrieved match, the query bounding box specified by the user
highlighting the interested zone is affine transformed into the target image accord-
ing to the corresponding matching homography matrices returned by RANSAC and
the overlap area ratio criteria between transformed bounding box and ground truth
bounding box is employed to determine if the retrieved matches are true or not. In-
spired by the protocol of PASCAL [125], we set the threshold for this criteria to
50%.

In this section, Q1-Q10 are employed to represent the queries that correspond to
Structure-focused queries while Q11-Q20 correspond to Exact queries. The ”Aver.”
means the average performance of the respective query type Mean Average Precision
(MAP) evaluation method is employed. For each query, we firstly test 8 different
configurations on {n geom, n des} (number of centroids on geometrical and content
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feature respectively): {100,1}, {20,1}, {20,50}, {20,200} etc. demonstrating the per-
formance changes when tuning the discriminative power of geometrical and content
features.

Table 6.3: Detailed performance on Structure-focused queries

{1,50} {1,200} {20,1} {20,50} {20,200} {100,1} {100,50} {100,200}
Q1 0.7228 0.6545 0.5732 0.6319 0.5049 0.6808 0.4292 0.3186
Q2 0.5111 0.5556 0.4444 0.1556 0.1852 0.2370 0.1185 0.0593
Q3 0.3397 0.3301 0.4641 0.1435 0.1005 0.4450 0.0287 0.0383
Q4 0.6036 0.6941 0.4788 0.7272 0.4973 0.6299 0.4853 0.3636
Q5 0.2875 0.2375 0.2708 0.1833 0.0208 0.4375 0.0542 0.0083
Q6 0.5102 0.4574 0.8281 0.5376 0.3441 0.9430 0.3763 0.2581
Q7 0.6887 0.6698 0.6887 0.6321 0.5000 0.6887 0.4623 0.3491
Q8 0.7340 0.6596 0.8298 0.6702 0.7872 0.9894 0.6809 0.5745
Q9 0.3726 0.2594 0.5646 0.2972 0.0566 0.8491 0.1792 0.0283
Q10 0.5000 0.8295 0.4487 0.6410 0.3846 0.8974 0.2692 0.1538

Aver. 0.5270 0.5348 0.5591 0.4620 0.3381 0.6798 0.3084 0.2152
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Figure 6.10: MAP performance for Structure-focused queries in terms of clustering
configuration and codebook size respectively

Table 6.3 demonstrates the detailed retrieval results of Structure-focused queries
that are looking for their structural similar counterpart while the change of the con-
veyed content is acceptable. The average performance of these ten queries is plotted
in Fig. 6.10 in terms of n geom, n des configuration (left) and codebook size (right).
When the content feature is not employed (n des = 1, correspond to the back row
or the left plot), a significant improvement is observed by increasing the discriminat-
ing power of geometrical feature which allows content variation ({20, 1} → {100, 1}).
However, when we only use the content feature (n des = 1), the performance does
not change much when increasing n des from 50 to 200. Besides, from the left plot,
the performance drop sharply when the codebook size is bigger than 1000 provoking
that the codewords employed are too discriminative. The higher MAP of {20, 1} over
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{1, 200} indicates that 20 geometrical codewords serve even better than 200 content
codewords for the Structure-focused queries. Consequently, when the variation on
content is allowed in the matches, it would be better to concentrate on geometrical
features.

Table 6.4: Detailed performance on Exact queries

{1,50} {1,200} {20,1} {20,50} {20,200} {100,1} {100,50} {100,200}
Q11 0.8485 0.9899 0.5960 1.0000 1.0000 1.0000 1.0000 1.0000
Q12 0.4586 1.0000 0.6165 1.0000 1.0000 1.0000 1.0000 0.9925
Q13 1.0000 0.9828 0.5000 1.0000 1.0000 1.0000 0.9828 0.9828
Q14 0.9684 0.9994 0.6126 0.8603 0.8689 0.7242 0.9050 0.8728
Q15 1.0000 1.0000 0.9855 1.0000 1.0000 1.0000 1.0000 1.0000
Q16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Q17 1.0000 1.0000 0.9474 1.0000 1.0000 1.0000 1.0000 1.0000
Q18 1.0000 1.0000 0.8350 1.0000 1.0000 1.0000 1.0000 1.0000
Q19 0.7619 0.9978 0.8571 0.9959 0.8571 1.0000 0.8095 0.8571
Q20 1.0000 0.9828 0.7748 0.9825 0.9446 0.5161 0.7931 0.7414

Aver. 0.9037 0.9953 0.7725 0.9839 0.9671 0.9240 0.9490 0.9447

20 50 100 200 1000 4000 5000 20000
0.7

0.8

0.9

1

Codebook Size

M
A
P

200
50

1

1
20

100

0

0.2

0.4

0.6

0.8

1

Num
_des

Num_geom

M
A
P

Figure 6.11: MAP performance for Exact queries in terms of clustering configura-
tion and codebook size respectively.

On the other hand, for the queries that searching for Exact content-based matches
which hold less in-class variation (especially on the content), the proposed system
achieves much higher MAP comparing with the Structure-focused queries. With only
geometrical feature (n des = 1), better performance is achieved when increasing the
number of geometrical codewords from 20 to 100. Such improvement could also
be observed if the number of content codewords is increased from 50 to 200 when
geometrical feature is not employed (n geom = 1). However, as shown Fig. 6.11,
when the codebook size is bigger than 1000, increasing the discriminative power of
either geometrical or content feature would lead to performance drop provoking that
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Table 6.5: Performance on part-based queries (codebook size fixed)

{100,1} {25,4} {10,10} {4,25} {1,100}
Structure-

focused
0.6771 0.6805 0.6062 0.5780 0.5519

Exact 0.9253 0.9698 0.9938 0.9891 0.9921

the codewords we used might be too discriminative.
As discussed above, for either Structure-focused or Exact queries, the assigned

labels encoding the content and geometrical features easily become to be too discrim-
inative. Hence, in Table 6.5, we further test the performance change when tuning the
importance of the two types of features while overall information content is roughly
limited in an proper range where over-discriminative problem rare occur.

We have fixed the overall codebook size to roughly limit the amount of overall
discriminative power of the employed codewords. Afterwards, we have studied the
behavior of the proposed system when tuning the importance of geometrical and
content codewords. As shown in Table 6.5, for Structure-focused queries, the improved
performance of utilizing four content codewords ({n geom = 25, n des = 4}) over
the configuration that only use geometrical information ({n geom = 100, n des =
1}) indicates the advantage of taking the content feature into account. However,
paying more attention on content feature will lead to less discriminative power on
geometrical feature and thus would generally result in worse retrieval performance.
On the other hand, for Exact queries, increasing the importance of content feature
normally results in improved retrieval performance while {n geom = 10, n des = 10}
could be considered as the ceiling configuration.

In summary, we demonstrated that the proposed system can adaptively return
Structure-focused matches and Exact matches by tuning the discriminative power of
geometrical and content features. The experiments demonstrate that concentrating
on the geometrical feature could generally enhance Structure-focused retrieval per-
formance. The reason is geometrical features are more tolerable for content change
and thus structure feature (inclusion) can play the key role in retrieval process. On
the other hand, for Exact queries that searching for the matches that hold similar-
ity on both structure and content, adding more information on either geometrical or
content feature would result in more discriminative power of key-region descriptions.
such enhanced visual features in turn lead to more discriminative power and thus
better retrieval performance.

6.3 Conclusion

In this paper, we have proposed a new framework for structural document image
retrieval that allows to query structure elements such as key-region pairs, triplets or
group of key-regions linked with various structural relationships (inclusion, intersection,
top/left of or even within specific distance, etc.) while inclusion relation within key-
regions is employed in this paper. By tuning the discriminative power of the two types
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of feature description, we have demonstrated that the proposed system could adap-
tively retrieving the Structure-focused and Exact matched parts. For example, when
searching for the exact match that holds similarity on both structure and content,
one would benefit from enhancing the importance of content feature. On contrast,
focusing on geometrical feature generally results in better retrieval performance when
the user only expects the counterparts that only hold similarity on structure while
the change of contained content is allowed. Besides, we also applied the proposed
method for full-page image retrieval and achieve better results comparing with the
baseline methods.



Chapter 7

Spatial Verification

We introduced a generic framework in Chapter 6 that is capable to retrieve the docu-
ment images by structural and visual similarities for both full page or focused-based
retrieval scenarios. Key-region pairs with inclusion structural relations are employed
to retrieve their counterparts from the database while the number of the matched
key-region pairs is applied to measure the similarity between query and the target
images (or image parts in the case of focus-based retrieval scenario). RANSAC al-
gorithm is then performed to check the spatial consistency between query key-region
pairs and the matched pairs in the target image.

The RANSAC algorithm have achieved great success for various applications es-
pecially when the exact matches are expected (e.g. image stitching, logo retrieval
etc.) However, it is observed that RANSAC becomes to be too rigid when searching
for the matches which are structurally similar with query while the conveyed text
might change (e.g. address block, shopping items etc.) Hence, in this chapter, we
will introduce a geometry verification method as an alternative option of the con-
ventional RANSAC algorithm to make sure the final matches follow the same spatial
transformation.

7.1 Spatial Verification

Spatial Verification process is usually employed to estimate the transformation re-
lations to filter out the ’bad’ matches (outliers) that are inconsistent with the es-
timated transformation. The transformation relations generally can be formulated
as a transformation matrix as follows (also known as homography matrix for many
applications).  x

y
1

 =

α cos θ −α sin θ αtx
α sin θ α cos θ αty

0 0 1

×
 x′
y′
1

 (7.1)

where α, θ and (tx, ty) represent the scale change, rotation and translate respectively.
Since the invoice images are well scanned in a flat plane, shearing seldom is observed
between images. Consequently, we only consider the three types of transformation.

69
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Spatial verification process takes XY = {(xy1, xy1′), (xy2, xy2′), . . . , (xyn, xyn′)}
as inputs whereas (xy1, xy2, . . . , xyn) and (xy1′, xy2′, . . . , xyn′) represent the location
of the matched points for query and target image respectively and n denotes the
number of the matched points. Then it employs such observations to estimate the
parameters for the transformation matrix shown in Equation 7.1. Various of methods
on spatial verification, such as RANSAC algorithm and geometrical verification meth-
ods, have been introduced for many applications to refine the corresponding matches
and further improve the matched instances.

7.1.1 RANSAC algorithm

RANSAC algorithm is an iterative process for estimating the transformation matrix.
It random sample specific number of matched points as a initial census/pool. After-
wards, an iterative calculation performed on the two following progress: 1)estimate
the value of parameter α, θ and (tx, ty) for transformation matrix using the current
census; 2) update the census by adding more points from location pairs XY if they are
consistent with the estimated transformation and remove the ones that are not consis-
tent with the new transformation from the previous census. The two step discussed
above are repeated until the algorithm converge (the census and transformation is
’updating’ anymore) or the given maximum iteration number is reached.

Generally, RANSAC algorithm makes an initial assumption on transformation and
add new ’inliers’ from all the observation for such assumption and afterwards update
the new assumption according to the updated group of ’inliers’. Hence, through the
two iterative progress, RANSAC is capable to arrive maxima point in parameter space
from the initial assumption through iterative ’minor’ revision. However, when large
portion of outliers appears in the given location pairs, RANSAC algorithm might fails
to obtain the right estimation for transformation. The reason might be that RANSAC
check the spatial consistency for all the matches in a global manner and thus the right
’answer’ would easily hidden from large portion of noise.

7.1.2 Geometrical Verification

Geometrical verification is an alternative type of methods for verifying the spatial
consistency of the pairs of matched points. Differently with the global manner that
employed in RANSAC algorithm, geometrical verification locally check the geometri-
cal consistency among small amount of matched points. For example in [14], geomet-
ric verification process is employed to compute the consistency of the matched SURF
key-points for logo retrieval scenario.

As shown in Figure 7.1, triangular geometrical verification compares the corre-
sponding triangles from query and target image and determine if their transformation
is consistent with the ones estimated through other triangles. Usually, when there are
only small amount of points, all combinations of 3 matched points are employed to
generate the triangles. The transformation that largest amount of triangles demon-
strate consistent is returned as the final estimation of transformation between query
and target image.

However, the computational cost of such triangular verification process is O(n3)
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Query Image Target Image Query Image Target Image

(Consistent Matches) (Inconsistent Matches)

Figure 7.1: Geometrical verification by checking the consistency between triangles.

where n is the number of the matched points. Hence, it become to be infeasible
when n grows. The common strategies to low down its computation time are: 1)
sample a subset with small size from all the matched points. 2) find a reference
matched point that will surely appear in all the target images and only compute the
triangles related with the reference point, thus the computational cost boiled down to
O(n2). For example, the number of effective matched points are limited to 25 in [14]
while other matches with large distance are not employed. However, as shown in
Figure 7.2, we seek for retrieving all the similar image parts from the dataset while
the multi instances are expected from one target image. Hence, it is not feasible in
our case to limit the number of matches into a proper range. Besides, as explained in
Section 6.2.2, apart from the exact matches, we also aim at searching the structure-
focused counterparts in a more flexible manner where the content change is allowed.
Consequently, strategy 2) also do not serve our situation since there might not exist
stable reference point that appears in all the counterparts.

Line verification is a cheaper option for geometrical verification. Similar with
triangular version, it takes paired X-Y location of the matched points and estimate
the transformations according to certain local geometrical relations. The difference
between line verification and triangle verification is that the former method compute
the estimation based on lines between points. As shown in Figure 7.3, the triangle that
employed in triangular verification boils down to three independent lines which are
further used to estimate three separate transformations ({αi, θi, txi, tyi, i = 1, 2, 3}) for
the matched points. Line verification computes all the combinations of two matched
points each of which corresponds one estimation on transformation. At the end ,
the transformations are determined by finding the ones that have large amount of
supporting lines (observations).

Comparing with triangle verification, line verification is less expensive since its
computation complexity boils down to O(n2). Besides, line verification is more flexible
than triangle one. As shown in Figure 7.3 (the inconsistent matching situation), even
though matched point 1 is an outlier and the related lines lead to wrong estimation,
one correct transformation still can be computed from the line connecting point 2 and
3 (dotted mapping line in blue).
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(Query Image) (Target Image)

Figure 7.2: The example of matched points (key-region pairs in our case). The blue
bounding boxes correspond the key-region pairs while the big red and black ones
indicate the focused query part and its expected matches respectively. Only 20% of
the overall matches are shown here for a nice visual.
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Figure 7.3: Geometrical verification by check the relations between lines and esti-
mate the transformation for the matched points. The dotted lines show the mapping
relation of lines. The blue dotted lines correspond to correct transformation estima-
tion and the red dotted line indicate the wrong ones.

7.1.3 Proposed Line Verification

Line verification hold O(n2) computation complexity that is much cheaper than tri-
angle verification. However, it is still unaffordable expensive when multi counterparts
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are expected. As shown in Figure 7.2, most of the matched points can not eventually
removed before performing line verification. Hence it is infeasible in our situation to
reduce the computation time through lowing down the number of matched points n.
In [126], its computation complexity is reduced to O(n) through firstly find a reference
point and only employ the lines that related to the reference point. However, we seek
for a generic retrieval framework that is not limited to only search the exact matches
only. Hence, searching in such flexible manner does not allow to firstly fix a reference
point because no firm matched points can be guaranteed.

In this section, we will introduce an variation of line verification method. As
shown in Figure 7.2, when multi instances are expected in the target image, there
are large number of correct matched points that will be positively contribute for
line verification process. However, it not necessary to employ all the combination
of points to generate the lines. For instance, the line that links one point from the
first bounding box in the target image (see Figure 7.2) and another point from other
bounding boxes will not lead to expected transformation estimation. Consequently,
we propose to performline verification in a two step manner as follows.

• Step 1: we firstly estimate the tentative bounding boxes (shown in Figure 7.4 as
the blue rectangles) to divide the matched points into several groups according
their locations. To obtain those bounding boxes, each match is employed to
compute the transformation parameters while the scale α = Areai/Areai′ and
the rotation θ = Orienti−Orienti′ where Areai and Orienti represent the area
and the orientation of the parent regions of the ith matched key-region pairs
in the query and Areai′ and Orienti′ correspond to the counterparts in target
image. The translation is determined by the location by the two corresponding
matched points. The estimated transformations that at least fit Thre1 points
are selected as tentative bounding boxes( Thre1 is experimentally set to 10.)

• Step 2: geometrical verification is employed to precisely check the spatial con-
sistency among the points insides each tentative bounding boxes. Those bound-
ing boxes is updated through finding the one that fit largest number of matched
lines (inliers). Similarly with step 1, we set a threshold Thre2 on number of
consistent lines (inliers). When Thre < 3, the estimated transformation is re-
moved due to too few inliers. Step 2 is repeated one time for the each of updated
bounding boxes to refine the result.

Comparing with the conventional line verification process, the introduced two-step
version is much cheaper for calculation its rough computation complexity is O(n+k ∗
(nk )2) where k denotes the number of tentative bounding boxes that found in step 1.
Besides, since the lines that link two matched points from different tentative bounding
boxes are not taken into account, the two-step line verification method handles less
number of wrong lines and thus lead to better estimation on transformation.

7.2 Experiment Results

We test the proposed line verification methods for the focused retrieval as described
in Appendix A.2. 20 queries are divided into 2 groups: exact match and structure
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Tentative Bounding Boxes Verified Bounding Boxes

Figure 7.4: Two step line verification.

focused match (defined in Section 6.2.2). Following the experimental setup of Sec-
tion 6.2.2, we employ DTMSER to generate key-pairs which is quantized according to
their visual features. Afterwards, a pair-wise key-regions querying process is casted
and the spatial database returns the matched pairs that demonstrate inclusion rela-
tion and hold the same corresponding key-region labels. However, we substitute the
RANSAC algorithm with the proposed two step line verification strategy to check the
spatial consistency among the matched key-regions.

As explained before, line verification is repeated two time for each tentative bound-
ing box: first time to estimate the transformation and the second round is employed
to refine the inliers and validate the estimated. Nevertheless, we also tested only
perform the line verification process one time while the refinement is not applied to
save around 50% time consumption.In this chapter, LineVeri1 and LineVeri2 stand
for performing line verification for one and two times respectively while RANSAC
corresponds to the performance achieved by RANSAC algorithm.

To compare the performance of RANSAC algorithm that presented in Section 6.2.2,
we also applied line verification process to find the optimal configuration on the num-
ber of centroids for the two type of visual features. As shown in Table 7.1, the opti-
mal parameters (ngeom = 25ndes) that validated for RANSAC also achieves the best
performance for the line verification. Besides, similar behavior with Section 6.2.2 is
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Table 7.1: Performance on focused queries whereas the structural similarity is es-
pecially focused (Q1 Q10).

{100,1} {25,4} {10,10} {4,25} {1,100}
RANSAC 0.6771 0.6805 0.6062 0.5780 0.5519
LineVeri1 0.7383 0.7970 0.6959 0.7234 0.6110
LineVeri1 0.7400 0.8243 0.6887 0.7246 0.6076

observed when tuning the discriminative power of the geometrical and SIFT features.
Comparing with RANSAC, line verification generally achieves 6 14 percentage

better performance despite of the employed parameter configuration. The reason for
such improvement is that RANSAC compute the transformation in a rigid global
manner and thus fails to retrieve the true positives when large portion of outliers
appear. On contrast, line verification separately estimate the transformations by
each the local lines and hence more robust on the outliers. As shown in Figure 7.2,
when seeking to search multi instances in one single target image, large amount of
outliers usually exists outside the expected bounding box.

Besides, we further analyze the precision and recall separately. As shown in Fig-
ure 7.5, RANSAC would generally achieve higher precision but signification lower
recall than the two line verification methods. Comparing LineV eri1 and LineV eri2,
representing line verification without and with refinement respectively, remarkable im-
provement on precision is observed when one extra verification process is applied (see
the precision of the query #1, #4, #6, #9, #10). Meanwhile, As shown in 7.6, such
refinement does not necessarily result in notable decrease on the corresponding recall.
Regarding to the recall of the retrieved result, line verification methods consistently
achieve much higher recall performance than RANSAC as shown in Figure 7.6. Such
significant enhancement on recall lead to the around 14 % improvement on retrieval
performance while MAP is employed as the evaluation method.

Apart of the structure focused queries, our research also aims at retrieving the
exact matches. Hence, we also compare the performance of line verification methods
with RANSAC. As shown in Table 7.2, the performance the retrieval with RANSAC
has already reach a near-perfect state (the MAP is 0.9938). Even though, with the
help of line verification which is employed to replace RANSAC, the system still make
tiny but very difficult improvement (from 0.9938 to 0.9999).

Table 7.2: Performance on part-based queries (codebook size fixed)

{100,1} {25,4} {10,10} {4,25} {1,100}
RANSAC 0.9253 0.9698 0.9938 0.9831 0.9921
LineVeri1 0.9828 0.9828 0.9996 0.9994 0.9961
LineVeri2 0.9873 0.9889 0.9998 0.9999 0.9964
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Figure 7.5: Two step line verification.
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Figure 7.6: Two step line verification.

7.3 Conclusion and Future Work

In this chapter, we introduce a line verification method to compute the transforma-
tions between query and target images. We demonstrated that the RANSAC algo-
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rithm might fail to find the right estimations when seeking for multi counterparts due
to large portion of outliers. Since the line verification is more flexible for outliers, it
would lead to much higher recall while small loss on precision is observed comparing
with RANSAC. Even though, line verification is still an optimal option when the
recall matters more.

The main disadvantage of line verification is that its cost is O(n2). However, the
other hand our system seeks for multi instance searching in single target images and
thus lead to larger number of matched points. Even though we manage to low down
its cost to O(n+ k(nk )2) through a two step strategy, it sis still much more expensive
than RANSAC. Hence, in the future, it would be nice to further boils its cost down
to O(n). One possible way is to find a reference points (e.g. geometrical center of the
tentative bounding box) and only employed the lines related to the selected reference
point.
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Chapter 8

Conclusion and Future Work

In this thesis, we introduced a series of consecutive works heading to a generic frame-
work for document image retrieval where a flexible similarity measurement based on
both structural information and visual features is developed. Based on the pair-wise
key-region representation carrying both visual features of key-regions and inclusion
structural relations between them, we demonstrated that the proposed framework
would serve the whole spectrum of retrieval problem, from solely structural similarity
based searching to purely visual feature (e.g. SIFT) based retrieval. Besides, since
the framework represent each document as a group of local key-region pairs, it allows
to cast both full page queries and focused image parts where one-to-many matches is
also specially considered. The path targeting to such generic framework is detailed
as follows.

We firstly introduced a simple method for real-time document retrieval problem
based the pyramidal structure and the corresponding density feature of the images.
We demonstrated that, benefiting from the encoded pyramidal structure information,
the density feature based document representation achieves remarkable performance.
Besides, we also illustrated that its performance could be significantly improved by
several iterations of relevance feedback process.

Based on the fact that the structure of a document is tightly linked to the distance
among its elements, we proposed a distance aware version of MSER (DTMSER). We
illustrated that DTMSER algorithm is able to efficiently extract multi scale semantical
key-regions that roughly correspond to the structural elements of the document such
as letters,words, paragraphs, etc. Meanwhile, the document structure is expressed as
a dendrogram (hierarchical tree) defining how those key-regions merge to each other.
We demonstrated that the DTMSER can achieve equivalent (actually slightly better)
performance with state-of-the-art in a retrieval scenario by comparing much smaller
amount of key-regions while the extracted structure information had not been applied.

Afterwards, we proposed a pair-wise BOW methods for full page document re-
trieval scenario. Each document image is represented as a list of key-pairs (correspond
to the edges in its dendrogram) with inclusion structural relations between the re-
lated key-regions. We illustrated an efficient manner to embed such structural infor-
mation into a BoW-like histogram representation by assigning the key-region pairs as
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pooling elements. Besides, to solve the computation complexity, the inverted file in-
dexing strategy is employed to calculate the distance between the pair-wise histogram
representations that is significant sparse. We demonstrated that, with embedded ex-
plicit inclusion structural information, the proposed pair-wise BoW representation
achieved remarkable improvement over the conventional BoW and Spatial Pyramidal
BoW methods.

We finally arrived to a generic framework for structural document image retrieval
that allows to directly query structure elements such as key-region pairs, triplets or
group of key-regions. We employed spatial indexing strategy facilitating to com-
pare various structural relationships (intersection, overlap, top/left of etc.) while
inclusion relation encoded in the key-region pairs is applied in our work. By tuning
the discriminative power of the two types of visual feature, we have demonstrated
that the proposed system is capable to smoothly adjust the similarity between struc-
tural and visual measurement and thus allows to retrieve Structure-focused and Exact
queries. We demonstrated that the proposed framework serves various retrieval sce-
narios including full page structural retrieval, the focused querying while the structure
similarity is concerned and also the focused searching when the exact matches are ex-
pected. We showed that the generic framework achieves better retrieval results than
BOW and Spatial BoW while slight performance decrease is observed comparing with
the pair-wise BoW introduced in Chapter 5. Besides, we illustrated that, with the
help of RANSAC to check spatial consistency, the proposed framework achieves nearly
perfect precision performance while the recall is not very high for structure-focused
queries even when very low threshold for number of inliers is applied.

At the end, we introduced a two step line verification, as an alternative method
of RANSAC which is found to be very rigid, to compute the transformations between
query and target images. We demonstrated that the RANSAC algorithm might fail to
find the right estimations when seeking for multi counterparts due to large portion of
’outliers’. We discussed that the introduced line verification is more flexible for outliers
because it compute the transformation from the local lines and thus other outliers
will not affect the lines between the inliers. We demonstrated that the proposed line
verification method would lead to much higher recall performance while small loss on
precision is observed comparing with RANSAC.

Even though we showed that the proposed methods have achieved reasonable
results for various retrieval scenarios, we believe that there is still a long way heading
to the final solution fordocument image retrieval problems. The future directions of
our research are discussed as follows.

We demonstrated that the proposed line verification is able to achieve remarkable
higher recall while its computation complexity (O(n2)) may retard its applications.
Hence, in the future, it would nice to explore an cheaper version of line verification.
One advisable direction is to employ the ker-region pair that mostly appears in the
tentative bounding boxes (see Section 7.1.3) as the reference point. In this way, the
computational cost of line verification process can be reduced to O(2n) by only check
the lines that related to the reference points. However, when the structure focused
matches are expected, the found reference point may not always appear in the true
positives due to the content variation. In such case, another way strategy to assign a
stable reference point is to use the geometrical center of the bounding boxes.
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Because the retrieval results from the proposed generic framework are usually very
precise (nearly 1), we think it is worthy to employe them as positives and develop
an automatic learning scheme to explore the which type of information is the user
trying to search. It would be nice if the system is able to inference whether the
query type, structure-focused retrieval or exact match searching, and then adaptively
find the optimal configuration on the number of clustering centroids and thus lead
to performance improvement. For example, if the positives retrieved by the generic
system demonstrate huge variation on the content, then it is advisable to assign more
importance on the structure relation by setting number of centroids to a smaller
value for the visual features, especially for the SIFT features. Another direction for
the learning scheme is to train a simple classifier online, e.g liner SVM, while the
retrieved result from the generic framework can be employed as positives and the
negative examples could be generated from the random patches. In this way, we can
directly apply the trained classifier to determine if the tentative bounding boxes are
a good match or not without applying the line verification which is known to be
expensive. The third way for benefiting from the retrieved positives would be the its
cooperation with relevance feedback process. In such case, it would be nice to explore
the discriminative or symbolic key-region pairs by exploring the ones that appear in
most of the positives and thus assign a higher weight to those common pairs during
the voting stage.

In Chapter 6, we stated that various of spatial relationships among the stored
key-regions have been indexed and ready to use. Hence, in the future, it would be
worthy to incorporate other spatial relation such as left/top of or within given dis-
tance into the framework while only incluson relation is currently employed. The
benefit of adding more spatial relations is that the retrieved results might be very
discriminated in the sense of the structure of the key-regions. Consequently, it would
be not necessary to employ RANSAC or any geometrical verification process to check
the spatial consistency because certain type of spatial relations have already been
checked when querying from the database. Another really challenging direction to
improve the spatial indexing based retreival system is develop the customized index-
ation strategy accordingly to the need of document retrieval system. For example,
in the implementation of the spatial index of the spatial database, many types of
relations such as intersection, overlap, tangency etc. has already been incorporated.
However, those spatial relations will never happen among the extracted DTMSER
key-regions. Hence, the customized indexation strategy might speed up the query
process while less space needed to store the indexing information.
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Appendix A

Datasets

In our research, we mainly tested our retrieval system on an invoice dataset con-
sists of 4109 images overall. Those invoices are provided by 249 companies and the
documents from the same provider are generated from the same template and thus
demonstrate obvious visual similarities and vice versa. The 249 invoice classes are
very unbalanced while their sizes varies from 3 to 133. The statistical details of the
class size are shown in Figure A.1. Hence, when the MAP measurement is employed,
the performance of the retrieval system over some specific invoices maybe not pre-
cisely manifest the retrieval power of the system. That is why we use leave-one-out
strategy to generate the queries images for full page retrieval. On the other hand, for
the focused retrieval scenarios, we only choose the relative image parts from invoices
with reasonable number of instances within their classes.

59%

19%

12%

4%
4%2%

3~10
11~20
20~40
40~60
60~100
100~133

Figure A.1: The statistical distribution of the size of all the invoice classes.
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A.1 Full page retrieval

The experiment on document retrieval at full page level is performed by searching
the invoices that provided by the same provider with the query image. As shown in
Figure, the invoices from the same provider share the same template and thus they are
structurally similar. Hence, this experiment is designed to demonstrate how would it
improve the retrieval performance by taking such structural consistency into account.

(a) (b)

(d)(c)

Figure A.2: Samples of invoice images from four providers.

As mentioned before, we employ leave-one-out strategy to generate the query and a
ranked list of the remaining 4108 database images is returned by the retrieval systems.
In order to determine if the retrieved images are structurally similar with the query,
the ground truth for each query is defined by the provider IDs of the images. Mean
Average Precision (MAP) is employed to evaluate the quality of the returned ranking
list as well as the performance of the retrieval systems. Besides, the precision-recall
curve, which is averaged over 4109 queries, is also employed to visually demonstrate
the retrieval performance.
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A.2 Focused Retrieval

Besides the full page retrieval scenario, we also test our framework on the focused
queries where query images are the focused area of the documents such as logos,
address blocks and shopping items. Furthermore, according to the similarity that
those queries seek for, the focused queries is in turn divided into two groups structure-
focused and exact queries. Structure-focused queries search for the counterparts that
hold similarity on their structure while the variation on the carried content is allowed.
On contrast, the exact only expect the results image parts that demonstrate high
similarity on both content and content. In our research, we employ the shopping
items and invoice logos to simulate the two types of queries. We defined 20 queries,
10 for each type, while the corresponding ground truth is manually tagged from the
whole collection. Figure A.3 and Figure A.4 illustrate some samples of the two types
queries respectively. The number of true positive for each of the queries is listed in the
Table A.1 whereas ”Type1”, ”Type2” and ”T.P. Amount” represent the structure-
focused queries, exact queries and the amount of the relative true positives.

Structure-focused Queries

Figure A.3: Samples of the structured focused queries.
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Exact Match Queries

Figure A.4: Samples of the queries that seek for exact matches from the collection.

Table A.1: Number of true positives of the queries for focused retrieval.

Type1 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

T.P. Amount 307 135 209 154 240 93 106 94 212 78

Type2 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20

T.P. Amount 99 133 58 111 69 38 38 103 21 58



Appendix B

Euclidean and Cosine Distance

We denote Q = (q1, q2, . . . , qn) and I = (i1, i2, . . . , in) as the feature representation
of query and target images respectively while n is the length of the corresponding
feature vectors. Denoting ‖Q‖ and ‖I‖ as the norm of Q and I respectively, the
Cosine distance between query and target image is defined as

Cos(Q, I) = 1−
∑n
j=1(qj ∗ ij)
‖Q‖ ∗ ‖I‖

(B.1)

Hence, the Euclidean distance between Q and I is computed as follows.

Eu(Q, I)2 =
∑n
j=1(qj − ij)2

=
∑n
j=1(q2j + i2j − 2(qj × ij))

=
∑n
j=1 q

2
j +

∑n
j=1 i

2
j − 2

∑n
j=1(qj ∗ ij)

= ‖Q‖2 + ‖I‖2 − 2
∑n
j=1(qj ∗ ij)

= ‖Q‖ ∗ ‖I‖(‖Q‖‖I‖ + ‖I‖
‖Q‖ − 2

∑n
j=1(qj∗ij)
‖Q‖∗‖I‖ )

∝ (‖Q‖‖I‖ + ‖I‖
‖Q‖ − 2

∑n
j=1(qj∗ij)
‖Q‖∗‖I‖ )

= (‖Q‖‖I‖ + ‖I‖
‖Q‖ − 2 + 2(1−

∑n
j=1(qj∗ij)
‖Q‖∗‖I‖ ))

= ‖Q‖
‖I‖ + ‖I‖

‖Q‖ − 2 + 2Cos(Q, I)

(B.2)

Hence, when ‖Q‖ = ‖I‖, then ‖Q‖‖I‖+ ‖I‖‖Q‖−2 = 0 and thus Eu(Q, I)2 ∝ 2Cos(Q, I).In
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this case, Euclidean distance serves equivalent as the Cosine distance does while only
the ranking order of the distances matters for the retrieval system rather than the
absolute value of the corresponding distances.

In the following parts, we will further study the relation between Euclidean and

Cosine distance when ‖Q‖ 6= ‖I‖. Denoting α = ‖Q‖
‖I‖ and β = α+ 1

α − 2, β will be in

the case α > 0 and α 6= 1. Hence, Equation B.2 can be further simplified as,

Eu(Q, I)2 ∝ α+ 1
α − 2 + 2Cos(Q, I)

= β(1 + 2
βCos(Q, I))

∝ 1 + 2
βCos(Q, I)

(B.3)

As shown in Equation B.3, for retrieval purpose where the only the ranking mat-
ters, Euclidean distance is correlated with Cosine distance with a factor 2

β . Figure B.1
illustrates the how the coefficient between Euclidean and Cosine distance. As show
in the figure, when α ' 1,in another words when ‖Q‖ ' ‖I‖, the coefficient of Eu-
clidean and Cosine distance become to nearly positive infinite and thus serves almost
equivalent for the retrieval purpose. The shape of the curve plotted in Figure B.1
could be further proved by computing the differential coefficient of β = α+ 1

α − 2.
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Figure B.1: MAP improvement by Relevance Feedback.



Appendix C

Publications

Refereed journals

• Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas and Josep Lladós. Effi-
cient Structure Spotting for Document Images through Spatial Database. IEEE
Transactions on Pattern Recognition, in reviewing.

Refereed major conferences

• Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas and Josep Lladós. Em-
bedding Document Structure to Bag-of-Words through Pair-wise Stable Key-
regions. International Conference on Pattern Recognition, 2014.

• Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas and Josep Lladós. Fast
Structural Matching for Document Image Retrieval through Spatial Database.
Document Recognition and Retrieval XXI, Part of the IS&SPIE 26th Annual
Symposium on Electronic Imaging, 2014

• Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas, Josep Lladós, Tomokazu
Sato, Masakazu Iwamura and Kiochi Kise, Key-region Detection for Document
Images Application to Administrative Document Retrieval. International Con-
ference on Document Analysis and Recognition, 2013.

• Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas, Apostolos Antonacopou-
los and Josep Lladós . An Interactive Appearance-based Document Retrieval
System for Historical Newspapers , In the International Conference on Com-
puter Vision Theory and Application, 2013
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