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Abstract  

 

This thesis aims to develop a predictive controller for irrigation canals to improve the 

management of water resources. 

Water is necessary for life and it is a scarce good that we need for drinking, in the 

agriculture, etc. At the same time, it can constitute a serious threat in particular areas 

due to the difficulty to grow foods by the increasing of prolonged droughts. 

The agriculture holds an important part of the food chain and the water resources for 

agriculture are important, the problem is the water transport systems present low 

efficiencies in practice. The yield agriculture has to be optimized, because the goal of 

an operational water manager is to deliver the water to the irrigation sites accurately 

and efficiently. To improve the efficiency of the water transport systems is necessary 

to invest in automating the operation of irrigation canals. 

The management of a canal starts from setting the demand delivery accurately taking 

into account the crops necessities during the irrigation cycle and establishing the gate 

trajectories for controlling the canal in each time step. In an ideal case, the system 

would be controlled but someone could introduce a disturbance in the canal which 

could deviated the real canal state from the desired canal state. In that circumstance, 

it would be necessary a feedback controller which could aid the watermaster to restore 

the desired canal state. In order to fulfill this objective, we define an overall control 

diagrams scheme in chapter 5 which splits the management of the canal control in 

different blocks and each of these blocks is represented by a particular algorithm. The 

algorithms developed and tested for us in this thesis are the CSI and GoRoSoBo 

algorithms. 

The first one (CSI) defines a powerful tool in the management of a canal. The 

Watermaster establishes the gates positions and fixes the desired water level at 

checkpoints to fulfill a scheduled demand. In that sense, when someone introduce a 

disturbance into the canal perturbs the water level at checkpoints, so the scheduled 

deliveries cannot fulfilled by the watermaster. In such case, the water level 
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measurements at these checkpoints could be sent to the CSI algorithms which 

calculates the real extracted flow and the current canal state along the canal, that is, 

the water level and velocity in all cross-sections of the canal. This task is performed 

by the CSI algorithm which has been designed in this thesis and tested in numerous 

numerical examples (chapter 7) and experimentally in the laboratory canal of the 

Technical University of Catalonia (chapter 8). 

The last one (GoRoSoBo) is the essential tool in the management of a canal, that is, 

a control algorithm operating in real-time. The GoRoSoBo algorithm (Gómez, 

Rodellar, Soler, Bonet) is a feedback control algorithm which calculates the optimum 

gates trajectories for a predictive horizon taking into account the current canal state 

and the real extracted flow obtained by CSI as well as the scheduled demands and 

the previous gate trajectories. GoRoSoBo has been developed in this thesis and 

tested in several numerical examples (chapter 10) as well as with the Test-Cases 

proposed by the ASCE Task Committee on Canal Automation Algorithms (chapter 11). 

In that sense, we propose a centralized control performance to manage the canal 

control. 

In addition to these two main contributions, many other smaller developments, minor 

results and practical recommendations for irrigation canal automation are presented 

throughout this thesis. 
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Chapter 1. Summarize                                                                                                            1 

 

Chapter 1 

  

Layout of thesis 

An irrigation canal is a hydraulic system whose main objective is to convey water from 

a source (dam, river) to different users. Such systems can be very large (several tens 

or hundreds of kilometers), characterized by time delays and non-linear dynamics, 

strong unknown perturbations and interactions among subsystems. Varying 

operational objectives are assigned to their managers. The main general one is to 

provide water to the different users at the right moment and in the right quantity, 

reducing losses as much as possible to guarantee the safety of the infrastructure. In 

particular, a major concern is to prevent the canals from overtopping, but also from 

having water levels inside the pools below the supply depths of the gravity offtakes. 

One of the most important problems for an on-demand irrigation system designer is 

the calculation of the discharges flowing into the network. Such discharges strongly 

vary over time depending on the cropping pattern, meteorological conditions, on-farm 

irrigation efficiency and farmers' behavior. The amount of water to be supplied during 

an irrigation event, referred to as the target or required depth of application, is a major 

design consideration.  

The unknown changes in water demand are quite usual in a canal during an irrigation 

cycle. The result is that the real extracted flow is unknown by the watermaster. In that 

case, it is quite difficult to recompute a new gate trajectories to satisfy the scheduled 

deliveries when the watermaster does not know the real extracted flow and the current 

canal state. For this reason, the motivation of this thesis and the main objective are 

two. On one hand, developing an algorithm to establish the disturbances and the 

current canal state (CSI algorithm), that is, an algorithm that calculates the velocity 

and water level in each cross-section of the canal from water depth lectures at some 

canal sections during a past time horizon. On the other hand, a predictive control 

algorithm (GoRoSoBo algorithm) to establish the gate trajectories in real time from the 

current canal state. In this way, the watermaster could fulfil the real water demands in 

the canal. 



Chapter 1. Summarize                                                                                                            2 

The thesis is divided into 13 chapters: 

In the second chapter, we first talk about estimations about agricultural water 

consumption, and define the main problems generated by a low efficiency in water 

uses. To fix the problems related with the low efficiency, it is necessary to point out 

the main guiltiest as they are the water distribution infrastructure (the transport and 

the techniques of application of water in the parcel), the water prices and the structural 

productive, that is, the economic dimensions that irrigated farms have. To finalize the 

chapter, we define the concept of diagnosis and prognosis in canal control, we will 

check the efficiency in water uses obtained by control algorithms in the diagnosis, and 

we propose mechanisms to improve the results of these algorithms in the prognosis. 

In the third chapter, we introduce the literature review about the canal control 

algorithms. We define important control concepts which aid us to introduce a 

classification of control algorithms in irrigation canals. Each of these algorithms have 

been characterized according to several criteria. We follow the criteria established by 

Malaterre (1998). We classify these algorithms by the considered variables 

(controlled, measured, control action variables), the logic of control (type and 

direction), the design technique and the field implementation. 

In the fourth chapter, we make a general introduction about the main characteristics 

of control algorithms and we define their main elements. We give our particular point 

of view of predictive control and introduce our computer model and our optimization 

problem, as well as, the main elements of these ones. 

In the fifth chapter, the modernization of irrigation projects is achieved with a general 

improvement in the water transport and distribution networks and the field application 

techniques with a view to enhancing the efficiency of water use, which is extremely 

low. Such an overall improvement in efficiency can occur at three different levels: 

transport through the main canal, distribution through the secondary network and field 

application. In our opinion, improving water use at these three levels must be tackled 

at each level individually and at all three together. In line with predictive control theory 

(Martín-Sánchez and Rodellar, 1996), we define in this chapter, the different 

calculation steps that should be included in our overall irrigation canal control process, 

as the crop needs and outlet hydrographs, parameter identification, off-line reference 

trajectory, canal current state and on-line predictive control. 
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In the sixth chapter, we introduce the CSI algorithm (Canal Survey Information 

algorithm) which sets the real extracted flow and the hydrodynamic state in a canal at 

any moment from water depth lectures at some canal sections. We develop this 

algorithm for several reasons: it is an useful tool to get information about the 

disturbances and it is an useful supplementary tool for a feedback controller, because 

that algorithm establishes the past and current hydrodynamic state of a canal, that is, 

the water level and flow rate at every cross-section of the canal from the past to the 

present time. To develop this algorithm, we also had to develop the hydraulic influence 

matrix, which establishes the influence of flow changes (for instance, one pump 

running) on the canal state vector. 

In the seventh chapter, the CSI algorithm is tested through some numerical 

examples. We define a main canal system consisting of two canal pools and we test 

the CSI algorithm in this canal in three different tests. We also did a sensitivity analysis 

to evaluate CSI when we obtain errors in water depth measurements from the canal 

sensors. 

In the eighth chapter, we test CSI algorithm in a laboratory canal. The laboratory 

canal used is the Canal PAC-UPC designed to develop basic and applied research in 

irrigation canals control area and in all subjacent areas like canal instrumentation, 

canal modelling and water measurements. The CSI algorithm is tested in the canal 

and we present the results. We introduce several tests to study the sensitivity of the 

algorithm versus changes in physical parameters as the Manning coefficient.   

In the ninth chapter, we introduce and develop the theory of the proposed feedback 

algorithm, GoRoSoBo (Gómez, Rodellar, Soler and Bonet). GoRoSoBo is a predictive 

control algorithm that keeps the target level at several sections of the canal, so that 

the flow through the offtakes are the scheduled demands, in case of unknown flow 

changes in the canal. Any water level deviation from the desired setpoint is sent to the 

CSI algorithm which computes the real extracted flow and the current canal state and 

this data is sent to GoRoSoBo in order to produce a corrective action (new gate 

trajectories). To develop this algorithm, we used the hydraulic influence matrix, which 

establishes the influence of a gate movement on the canal state vector, introduced by 

Soler (2003). On the other hand, we define the algorithms developed for us in each 

block of our overall control scheme introduced at chapter 5. 
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In the tenth chapter, The GoRoSoBo algorithm is tested by several numerical 

examples. We define a main canal system consisting of one canal pool and we test 

the GoRoSoBo algorithm in this canal in eight different tests.  

In the eleventh chapter, the GoRoSoBo algorithm is applied to the “test cases” 

examples defined by the ASCE Task Committee on Canal Automation Algorithm. We 

analyze the results obtained with GoRoSoBo and compute the performance indexes 

proposed by the ASCE. We compare the performance indicators obtained with 

GoRoSoBo with the performance indicators estimated by others centralized predictive 

controllers as CLIS (Liu et al. 1998) and Pilote (Malaterre et al. 1995). 

In the last chapter, we introduce the conclusions of the thesis and the future works. 
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Chapter 2 

 

Introduction and general statements 

The world population is predicted to grow from 6.9 billion in 2010 to 8.3 billion in 2030 

and 9.1 billion in 2050 (UNDESA, 2009) and the food demand is predicted to increase 

by 50% in 2030 and by 70% in 2050 (Bruinsma, 2009). 

The most recent estimates for irrigated agriculture is an increase in comparison with 

the 2008, from 2,743 km3 in 2008 to 3,858 km3 in 2050 (FAO, 2011a,b). Much of the 

increase in irrigation water will be in regions already suffering from water scarcity. To 

study the impact of water scarcity, there are available several simulation models, for 

instance MCG (General circulation model) or MCR (regional climate model). In case 

of Spain, some of these models (AR4 (Rossby Centre regional atmospheric model) 

and HIRLAM (High Resolution Limited Area Model)) predict an increase of 1 °C in 

temperature and a decrease of 5% in precipitation in 2020, and as result a decline in 

water resources from these areas of 10% according to AEMET (2009)(Agencia Estatal 

de Meteorología). These values could increase significantly according to these studies 

which calculate a decrease of 20% in precipitation and increase of 3 °C in temperature 

in 2050 according to the PNACC (2011).  

In the next Figure 2.1, we can show the consequences of water scarcity in two 

scenarios for several catchments in Spain. The first scenario represents simulations 

with an increase of 1°C in temperature, in one of those scenarios without change in 

precipitation and in the other scenario with a decrease of 5% in precipitation.  
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Figure 2.1 Evolution of the percent decrease on the overall water resources in Spain 
(MIMAM,2000). 

 

Taking into account these estimations, the main challenge facing the agricultural 

sector is making a 70% more food available with less water resources. More water 

resources or a more efficient use of the resources will be needed to fit this objective. 

We cannot waste the water resources and therefore we are forced to improve the 

current irrigation technics. 

2.1  Definition of the irrigation problem 

The operational aspects of farm irrigation and water supply systems, in areas still 

dominated largely by tradition, do not usually reflect a high degree of water use 

efficiency as a primary objective. This efficiency, expressed as the ratio between the 

quantities of irrigation water effectively used by the crops and the total quantities 

supplied, has only been considered as an important factor in irrigation during the last 

60 to 65 years. This is not really surprising because up to 80 years ago our knowledge 

of the water requirements of crops, more specifically those of evapotranspiration, was 

only vague and water resources investigations of irrigated areas were not yet receiving 

as much attention as today. Moreover water was available and the price of the water 

was low or even free. 

There are three physical characteristics which govern any irrigation operation, in terms 

of both quantity and time: 
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 The evapotranspiration of the various crops cultivated and this changes 

during the growing season. 

 The moisture content of the soils between field capacity and a preselected 

depletion limit (that is, the lowest acceptable moisture content that does 

not significantly affect yields) 

 The infiltration rate of the relevant soils.  

Other physical factors such as rainfall distribution, topography, and canal seepage 

may, of course, play a role, but the above three characteristics must be considered 

under all circumstances. 

Together, all these factors must serve as a basis for defining such operational features 

as depth, duration, and interval of irrigation for different crops and soils. But even with 

this information available, it is only possible to predict the overall irrigation efficiency 

within an accuracy of 15 per cent (Bos et al., 1990 and 2005).  

The lack of basic knowledge of water use efficiencies has several serious drawbacks: 

 Due to the low efficiency in the planning and design of irrigation systems, a 

large safety margin is applied. 

 Investments are thus considerably higher than would otherwise be necessary. 

 The limited water resources are not optimally distributed and used, much water 

is wasted and less area can be irrigated. 

 The low overall irrigation efficiency creates harmful side-effects such as rising 

groundwater tables and soil salinization. To control the groundwater table a 

costly subsurface drainage system may be necessary and this will seriously 

affect the economy of the project. 

These irrigation problems are related with the efficiency in water uses but the irrigation 

problems are also related with an old infrastructure which is responsible of water 

losses due to cracks of the concrete of the canal side walls.  

2.1.1  Conditions involved in reducing the efficiency 

There are three ways to make better the efficiency of water used in the crops according 

to Oca (2009).  
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The first one is to improve the efficiency in the application of water to the crop by the 

farmer, the infrastructure and the modes of water distribution used by the irrigation 

communities to convey and distribute the water. The second one is acting on water 

price, once analyzed the socio-economic effects of increasing or decreasing the water 

price, in order to encourage the farmers to save water. A third area that we cannot 

ignore, it is the possibility to actuate on the structure of agricultural production in 

irrigated areas, because if the profit margin is low, the farmer does not have any 

chance to adopt new technologies which improve the efficiency of water use. 

These three areas of actuation are not independent at all, because we can build 

infrastructures to improve the efficiency of water distribution but the farmers must 

adopt new technologies to make a good use of water resources and save money, and 

all of these things are strongly conditioned by the productive structure. 

 

2.1.1.1  Water distribution: rotational irrigation scheduling or on-demand 

irrigation scheduling 

The water distribution from turnout structures requires infrastructure for conveying the 

water, but the final water distribution to the farmer depends on complex organizational 

structures that can adopt different forms of distribution. The water distribution system 

can influence the technique of irrigation and can be used to encourage water saving. 

The irrigation communities are usually responsible for water distribution and they also 

manage the maintenance of canal networks, the main and secondary canals. The 

irrigation communities are institutions with a long tradition in Spain and in other 

countries, and their role is distribution of irrigation water. The oldest democratic 

governance institution in Europe designed to guarantee the correct functioning of a 

complex network of irrigation canals and safeguard the interests of irrigation 

communities is the Valencia Water Court (Tribunal de las Aguas de Valencia). This 

court settles conflicts between irrigation users on an impartial basis and is made up of 

democratically elected farmers experts in uses and customs, and fair in their 

proceedings. 

The Valencia Water Court (Figure 2.2) has survived over the centuries to the present 

day and it was integrated into the Spanish legal system, with the same guarantees 

and legal value as any civil court. This is due to its effective contribution to the 

maintenance of the vast and complex system of irrigation canals used for Valencia's 
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fertile plains, built in the Andalusí age (9th-13th Century). That speaks of the great 

importance of the water distribution in Spain due to the dry climate of the country.  

 

Figure 2.2 The Valencia Water Court (this picture was painted by Bernardo Ferrándiz in 1865, 
and it is preserved in the Salón Dorado Grande del Palacio de la Generalidad Valenciana 

(Spain)). 

In a general way, we could classify the modes of water distribution depending on the 

degree of flexibility in water use by farmers.  

The rotational irrigation scheduling is the most restrictive of all irrigation systems. 

The rate, frequency, and duration are fixed by policy of the central water authority and 

remain fixed for the entire irrigation season. There are a number of possible variations 

of a rotational irrigation scheduling that allow the farmer fulfills the crop needs better. 

Several methods are presented herein:  

 Continuous flow schedules are a special case of rotation systems, where the 

duration is a fixed period, the rate is constant and the frequency remains fixed  

during the growing seasong. Rotation and continuous flow systems are used 

in places with plenty of water, the growing season is short, and the economics 

of efficient irrigation for maximum yield is not taken into account. In many 

http://es.wikipedia.org/wiki/Bernardo_Ferr%C3%A1ndiz
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cases, while a constant rate is delivered to a farm, the water is rotated between 

fields or spilled when not needed for irrigation. 

 Varied-amount rotation schedules are one way of adjusting the volume of water 

delivered over different parts of the growing season. In general, the frequency 

remains fixed, while the duration and/or rate is varied to apply more or less 

water to a particular area.  

 Varied-frequency rotation schedules are another way of adjusting for variations 

in crop water use over the irrigation season. Under these schedules, the 

frequency of delivery is varied.  

The rotational irrigation scheduling is the most common mode of water irrigation 

distribution. It is usually linked with an old irrigation infrastructure with a low frequency 

in water deliveries and a low efficiency in irrigation crops, where irrigation shift is 

supervised by the irrigation community not by the user. 

The pricing is usually based on the irrigated area of each user, which does not 

encourage the efficient use of water.  

The on-demand delivery schedule is the most flexible distribution system. The 

farmer or the watermaster decides at what time and what volume of water should be 

applied according to the crop needs, once analyzed several parameters measured in 

each crop or from the knowledge of the farmer. That is, in on-demand oriented 

systems, we set the irrigation scheduling from determining the timing and amount of 

water irrigation most suitable according to a series of technical procedures. The 

quantification of the water balance is based from the retention of water in the soil, that 

is, we can estimate the crop water consumption from the monitoring of water status of 

the soil or plant. 

Regarding the monitoring of crop water demand, it should be noted that there is a new 

generation of sensors to detect the water necessities of the plant with much more 

accuracy that until now. There are new sensors which use capacitance measurements 

that allow the continuous recording of soil moisture at different depths. In that sense, 

these sensors allow us to detect which are the best periods to irrigate the plant. It has 

also advanced in the early detection of water stress of the plant by remote sensing 

(Fereres et al. 2000).  

These different modes of irrigation scheduling take a great weight in the consumption 

of water for irrigation and define the developing degree of an irrigation area. In general, 
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the goal is to supply the entire field uniformly with water, so that each plant has the 

amount of water it needs, neither too much nor too little. There are various types of 

irrigation techniques which differ in how the water obtained from the source is 

distributed within the field and these are related with the modes of water distribution. 

 In surface irrigation systems, water moves across the surface in order to wet 

and infiltrate into the soil. Surface irrigation can be subdivided into furrow 

irrigation (small parallel channels along the field length and the water is applied 

through each furrow) and basin irrigation (small areas having level surfaces 

that are surrounded by earth banks, see Figure 2.3). The surface irrigation is 

often called flood irrigation, as the irrigation results is the flooding of the 

cultivated land. Historically, this has been the most common irrigation 

technique in water distribution and this type of irrigation technique is usually 

used in rotational irrigation scheduling. Among the different modes of rotational 

irrigation, the surface irrigation is the least efficient especially when it comes to 

shallow soils with low storage water capacity, which usually requires the 

application of large volumes of water at crop.  

 Localized irrigation is a system where water is distributed under low pressure 

through a piped network, in a pre-determined pattern, and applied as a small 

discharge to each plant. Drip irrigation (Figure 2.5), spray or micro-sprinkler 

irrigation and bubbler irrigation belong to this category of irrigation systems.  

This type of irrigation techniques is usually used on-demand irrigation 

scheduling. 

 

Figure 2.3: Basin irrigation of wheat. 
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Figure 2.4: Center pivot with drop sprinklers. 

 

Figure 2.5: Drip irrigation. 

The most important advantage of sprinkler and drip system is the ability to modify and 

adjust very accurately the rate and frequency of irrigation, that is, these systems can 

be adjusted easily to the characteristics of moisture retention soil and crop specific 

needs.  

The efficiency of water distribution is not only dependent on the modes of distribution, 

one of the most relevant causes in loss of efficiency is due to an old infrastructure. 

The waterproofing coating may be damaged, therefore it would be not in the same 
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conditions that the first day, so water leaks can be significant in many cases or even 

become excessive.  

The on-demand irrigation system needs an infrastructure more expensive and bigger 

than a rotational irrigation system, because an on-demand system has to deliver water 

as long as the farmer requires water for irrigating the crop. In case of crops with similar 

water needs or in particular periods of water scarcity, the water is delivered to the 

crops at the same time increasing the peak flow in the canal. But on the other hand, 

the volume of water delivered through on-demand irrigation systems is lower than in 

rotational irrigation systems, because the application efficiency* is the maximum in on-

demand irrigation systems and the farm irrigation efficiency is improved.. 

* The application efficiency is the ratio of the water that is stored in the root zone for later use 

by the plants to the total water applied. 

 

2.1.1.2  Increase of the water price 

The water price is an important tool to improve the efficiency in use of irrigation water, 

as we can use this tool to provide economic advantages to the users who make a 

good water use. It is necessary to adjust the water rate to the real water price to raise 

awareness to the users of the water value. In case of irrigation water, it is extremely 

important to analyze some important peculiarities such as the geographic and climatic 

conditions of the region and analyze the socio-economic effects of increasing or 

decreasing water prices. We can use this tool in different ways: 

• Application of a general increase in water prices as a way of saving water. 

• Establishment of economic incentives to reduce the use of irrigation water, especially 

in situations of scarcity. 

Increases in water prices must be introduced jointly with a particular water model 

distribution, that is, the irrigation distribution system should be an on-demand irrigation 

system, as the farmer could be more accurate in water consumption increasing the 

application efficiency and could save water and money. 

The majority of pricing services set by the irrigation community is based, as we have 

already shown in the previous sections, in fixing a price per hectare irrigated 

regardless of the volume of water supplied. In Spain, the main obstacle to implement 

http://irrigation.wsu.edu/Content/Resources/Irrigation-Glossary.php#rootZone
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new fee structures is the difficulty to install flow meters in each parcel. In this sense, 

developing methods to measure the flow rate delivered would be useful. 

However, before the possibility of increasing water prices for agricultural use, we must 

bear in mind that for most farms, the irrigation water is a large percentage of the 

average costs of cultivation as the seeds, fertilizers, salary of farmers…, in case that 

the farmers pay the real cost. Many times, these costs are subsidized by the 

government. This problem linked with the structural characteristics of the farms make 

that the social and economic impact of such measures can be extremely important for 

the farm agriculture. 

2.1.1.3  Productive structure 

To review the future prospects of irrigation is fundamental to know the structure of 

productive irrigated farms and more specifically the economic dimensions that they 

have. One way to characterize them is through the gross margin of farms, defined as 

the balance between the monetary value of gross output and the value of direct costs 

inherent in production. We show in the next figure the graph of the productive structure 

of farms in Catalonia-Spain (Figure 2.6) obtained by the National Institute of Statistics 

of Spain (INE). According to the criteria of INE, among these direct costs are included 

seeds, fertilizers, pesticides, water, etc.., but does not include labor neither 

maintenance of machinery and facilities.  

Note that 82% of farms have a gross income less than 48,000 euros per year and 

these farms occupy 46.5% of the irrigated area. It is also remarkable that over 50% of 

farms, which occupy about 15% of the irrigated area, can only reach 10,000 euros of 

gross margin. 

This production structure is a serious problem for adopting new technologies which 

would improve the efficiency of water use by the agricultural sector. The small 

economic size of the most irrigation farms prevents the use of new technology 

because the capital investment that the modernization process requires is high. 
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Figure 2.6 Survey about productive structure of farms during 2007 in Catalonia (INE). 

2.1.2 Associated structural problems in canals 

The structural problems in canals are frequently associated a bad management of 

these which are also related with a bad efficiency in water uses. Structural problems 

in a canal are sometimes consequence of unscheduled water deliveries or unknown 

extracted flows by the farmers. Small oscillations in water level at a cross section are 

not relevant, but if the water level variations are quick and higher than a meter, these 

oscillations could cause serious structural problems in a canal depending on the water 

level fall at the cross section, the height and angle of the side walls and the hydrologic 

features of the adjacent land.  

For instance, in a case that the soil in contact to the cross-section is a non-porous soil, 

the soil cannot release quickly the pressure in his pores. In case of big changes in 

water level at a cross section, the gradient of pressures behind the side walls would 
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be so high than the water pressure would be able to crack the concrete (Figure 2.7) 

or even the structure could fail. Anyway, the fissures increase water losses and they 

also reduce the system efficiency.  

Frequently, there are unscheduled water deliveries in a canal and it is not usual to 

take data records about increments and decrements in water level. So, it is quite 

difficult to know the water level variation in each cross-section along the canal. In this 

case, it would be useful to have a control element able to quantify the flow rate 

changes in a canal, from water level measurements at a particular cross-sections, to 

prevent important water level oscillations in the canal. 

 

Figure 2.7: Breakage of the cross section of a canal by changes in gradient of pressures (Chimbote 
canal (Peru)). 

 

2.2  Solutions to the irrigation problem 

There are three areas in which we can act to increase the irrigation efficiency:  

 Changing the water distribution from rotational irrigation scheduling to on-

demand irrigation scheduling. 

 Adapt the water prices to the real cost and establish economic incentives. 

 Improve the productive structure.  

The first and the third point are targeted introducing new technology as canal 

controllers and investing in irrigation infrastructure. If we look at the first point, the use 

of local manual control to manage the demand deliveries in a canal, rather than canal 
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controllers, causes more disadvantages than advantages. It is quite difficult globally 

to control a canal with local manual control. Simultaneous gate operations cannot be 

accomplished by local manual control unless irrigation system operators are stationed 

at every check structure so they can communicate with each other when flow changes 

occurs. On the other hand, we cannot expect that the operating staff control the 

interaction between all the parameters of a complex system.  

Other shortcoming of manual control is the availability of operating staff, as they 

cannot be continually in attendance at every structure, their degree of dedication and 

motivation is not unlimited as their ability to resist possible pressures from the farmers. 

As a consequence, control structures are frequently set incorrectly, and operation is 

irregular and/or inappropriate, similarly measurements and readings may be 

imprecise. These shortcomings as the resulting lack of reliability, flexibility and equity 

in the deliveries are responsible to reduce the water distribution efficiency and appear 

to be the main cause of the very low performance of most irrigation projects. 

In spite of these difficulties, we can achieve a satisfactory result between water 

requirement and demand deliveries, as it has been demonstrated using appropriate 

engineering techniques, and more recently of electronics and computer science (ICT) 

to reinforce traditional practice (Figure 2.8). The use of electronic means is becoming 

more and more common in all areas because it is cheaper. For this reason, nowadays 

it is easier to adapt them to the irrigation crops. 

The key elements of any effective control system will include: 

 New techniques to estimate the crop water consumption. 

 The method of water distribution, such as on-demand irrigation scheduling. 

 Equipment such as sluice gates, gages to measure water levels and canal 

controllers allowing us to control and modify the flow rate or the flow through 

the delivery turnouts. 

The degree of satisfaction of farmer will depend on the productive structure which can 

be optimized by irrigation techniques and the water distribution system. 
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Figure 2.8: The ICT office of the master station of Navarra canal (Spain). 

2.3   Diagnosis and Prognosis of the irrigation problem 

The stage of diagnosis and prognosis consists of the analysis of the irrigation system 

to identify shortcomings (diagnosis) and to propose corrective actions (prognosis). 

Many algorithms, in particular open loop algorithms, have difficulties and failures in 

the implementation in real canals (Rogers and Goussard, 1998). These difficulties are 

due to deviations between the predictive/control model and the reality, and these 

deviations are even more important when the factors introduced in the next paragraph 

are more relevant: 

• Conceptual errors in the internal model: the model is based on the Saint-Venant 

equations, and these equations are only applicable in particular cases, when the 

pressure distribution along an vertical axis is the same as in hydrostatic conditions, 

the vertical accelerations are negligible, the curvature of the free-surface is small,... 

• Errors in values of physical parameters of canal: Manning roughness coefficient, 

discharge coefficients in weirs and gates... 

• Disturbances introduced into the canal: infiltration losses by cracks in the coating, 

unknown withdrawal flow rate... 

The conceptual errors associated to the model (the first factor) are not important in 

canals, because the distribution of pressure in a cross section may be assumed 
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hydrostatic, the vertical accelerations are negligible and the curvature of the free-

surface is usually small.  

Instead, the errors in values of physical parameters (the second factor) are common 

in canals, because it is quite difficult to obtain an accurate value of the Manning 

coefficient or the discharge coefficient in weirs or gate. The model is very sensitive to 

these physical parameter; for that reason, we have to calibrate them accurately.  

The third factor (disturbances introduced into the canal) leads important deviations 

between the model and the reality. The disturbances caused by infiltration can be 

controlled by a good coating and these disturbances are not usually important and 

they have a constant value. Due to the difficulty to distinguish between disturbances 

as small perturbation caused by conceptual errors of the model or water infiltration 

losses, all of them are considered the same type of disturbance which are not 

important. But the disturbances introduced by changes in demand deliveries are more 

dangerous because the canal could overflow or could dry depending on the 

disturbance. These disturbances are usually unscheduled demand deliveries which 

are caused by flow rate extractions during the irrigation cycle.  

As we introduced before, if the farmers can adjust the supplies obtained by the 

irrigation community before the irrigation cycle begin, these changes on demand 

deliveries are known disturbances. These disturbances are known in advance, and 

these can be mitigated by an open loop controller (feedforward controller) as GoRoSo 

(Soler, 2003).  

The main problem in a canal are the disturbances caused by climatic variations 

(rainfalls and associated runoff) or unscheduled demands by farmers, that extract 

more or less flow that has been demanded by them, because these disturbances are 

more difficult to mitigate by a controller. One way to protect the canal from these 

disturbances could be with ponds built by the irrigation community or farmers 

themselves. A reservoir is able to store water according to the crop requirements and 

regulates the volume of water provided by the canal, but it is not always possible build 

large reservoirs to regulate each pool of the canal. Another option to control the 

disturbances in canals, which operate in steady state, would be to use the wedge 

storage of every pool, but this only works with very low disturbances. In all other cases, 

you need a closed loop controller (feedback controller) to modify the sluice gate 
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trajectory or a control variable of the system to return to the desired canal state on real 

time, as the control algorithm proposed in this thesis.  

2.4   Objectives 

In this chapter, we have identified the majority of associated problems in irrigation 

crops and we have proposed some actions to avoid these problems. In that sense, we 

are going to focus in a certain action (introduction of control algorithms) because we 

have contributed to the development of control algorithms in this thesis.  

Once we have introduced the irrigation problems in transport and water distribution in 

a canal, we can introduce the necessity of adopting control algorithms in canals to 

increase the efficiency in water supply and solve some of these problems. This is one 

of the objectives of this thesis.  

The main objective in this thesis will be develop a feedback control algorithm to control 

the unknown demand deliveries in real time.  

 

 

 

 

 

 

 

 

 

 



Chapter 3.Literature review                                                                                                     21 

 

Chapter 3 

 

Literature review 

 

3.1. Introduction 

P.O. Malaterre presented a working collection of all the documentation on canal 

control algorithms existing at the time when published in the Journal of Irrigation and 

Drainage of the American Society of Civil Engineers (ASCE), see Malaterre et al. 

(1998). The great work developed by Malaterre, defining a complete classification of 

the algorithms involved in canal control helps me to structure this chapter. The 

documentation of the literature review focuses on defining several classifications for 

control algorithms from different points of view and presents most of the control 

algorithms that have been developed so far. 

We define a control system, as an arrangement of algorithms, electronic, electrical, 

and mechanical components that commands or directs the regulation of a canal 

system. The control system is responsible for controlling structures in a canal based 

on information extracted from canal measurements, in addition to certain variable 

operating conditions which are defined as targets, usually constant water levels. The 

term canal control describes those steps necessary to ensure the required pool water 

level and flow along the canal. The flow conditions are controlled by adjusting the 

gates positions. 

Canal conditions depend upon the adjustment of action variables (gate openings, 

discharges) that provide some control of the canal system. Some variables are easily 

adjusted while others are more complicated or cannot be adjusted. A variable easily 

adjusted is the gate position. Other variables such as the Manning roughness, and the 

geometry of the canal cannot be readily controlled. Canal control is achieved by 

manipulation of the variables to obtain the desired canal system conditions. 

The control algorithm, which contains the set of rules or set of instructions, is one of 

the primary element in a controller, and it calculates the desired value (position or 
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speed) that the gate must fulfill. An algorithm is a prescribed set of well defined rules 

or processes for the solution of a problem in a finite number of steps. In canal control, 

algorithms are the procedures used to implement the various canal methods of 

operation. The algorithm is designed to process the input information from the sensors, 

perform the comparator function, and calculate the proper output to the actuator. The 

input are the quantities that are observed, measured, or predicted; the output is a 

control action. 

There are many criteria to characterize the canal control algorithms, such as control 

variables (flow, depth, gate opening), interactions between the local controllers (local, 

centralized...), communications requirements, technical design, alarms, and 

localization of measurements along the canal. 

Different control algorithms for the regulation of irrigation canals have been developed 

and applied throughout the world. Each of them can be characterized according to 

several criteria, among which are: the considered variables (controlled, measured and 

control action variables), the logic of control (type and direction), the control system 

design and field implementation.  

3.2. Considered variables 

In control theory, a system is usually represented as in Figure 3.1. “U” are the control 

action variables (e.g.: gate openings, increments of gate opening, discharges) to 

modify the state of the system and “Y” represents the system controlled variables (e.g.: 

water level, discharge, volume) or measured variables (e.g. water level, discharge). 

There are three kind of variables in a control algorithm. 

 Controlled variables 

 Measured variables 

 Control action variables 

 

Figure 3.1: Representation of a system. 
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3.2.1. Controlled variables 

Controlled variables are system variables to which targets are assigned. The 

controlled variables are those describing the desired behavior of the canal. Controlled 

variables on an irrigation canal can be of three types: flows, water levels or volumes, 

according to the terminology used in the physical system modelling. The controlled 

variables are localized at certain cross-sections in the canal. 

3.2.1.1. Controlled variable: Discharge 

The needs of irrigation canal users are defined mainly in terms of discharge. For 

example, agricultural needs are expressed in terms of given discharges delivered to a 

parcel, to a secondary canal, or to a pumping station, environmental needs as tailend 

discharge, or minimal discharge. Users' needs can then be defined in a more flexible 

way, in terms of volume distributed over a time period. In this case, the controlled 

variable is no longer a given value of discharge, but a volume. 

Discharge fluctuations are then authorized, but these disturbances can be managed 

by controllers or storage reservoir which is not the frequent option due to reservoirs 

are expensive and the space available next to the canal could be limited as we 

introduced before. 

A hydraulic system has to be managed, directly or indirectly, in order to satisfy users' 

demands in discharge. Considering the nature of the physical phenomenon (gravity 

surface flow from upstream to downstream), these demands in discharge can initially 

be satisfied from the volume of water in the canal, but these demands are usually 

satisfied from a source situated at the upstream end of the system, frequently a 

reservoir. Rodellar (Rodellar et al., 1993), CACG (Piquereau A. et al., 1982), 

CARAMBA (De Leon, 1986), Davis University (Balogun O.S., 1985), SIMBAK 

(Chevereau, 1991), are examples of regulation methods controlling discharges.  

3.2.1.2. Controlled variable: Water level 

The water levels can be easily measured in canals, so it is usually the controlled 

variable. Controlled water levels "y" can be upstream (Figure 3.2 A), downstream 

(Figure 3.2 B), or intermediate inside the pool (Figure 3.2 C) and operational 

characteristics are very different depending on the location of "y". The methods of 

operation should not be confused with canal operation and control concepts. These 
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methods of operation are based upon the location of a pivot point within the canal pool, 

where the water level remains constant while the water surface slope varies. We have 

introduced the methods of operation as follow (Buyalski et al. 1991): 

 Constant upstream depth- The pivot point is located at the upstream end of 

the canal pool (Figure 3.2 A).  

 Constant downstream depth- The pivot point is located at the downstream 

end of the canal pool (Figure 3.2 B). 

 Constant volume- The pivot point is located near the midpoint of the canal 

pool (Figure 3.2 C). 

 

Figure 3.2: Downstream control concept. 

Before defining the methods of operation, we have to introduce several concept: canal 

operation and canal control concept and, in this way, make more understandable the 

methods of operation. 
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The canal operation concept, established by the canal system operating criteria, 

determines the flow schedule. We can define the canal operation concept as:  

 Downstream operation concept applies to canal systems that are primarily 

demand-oriented and usually is associated with delivery systems. These 

systems convey water from a single source such as a storage reservoir to a 

number of individual points of use, and they are associated with irrigation. The 

delivery systems convey initially the maximum flow and it decreases 

downstream. 

 Upstream operation concept applies to canal systems that are primarily supply-

oriented and usually the concept is associated with collector systems. These 

systems convey water from several individual sources such as surface inlet 

drains for rain storm located upstream to a single point of diversion located 

downstream. The collector system is supply-oriented because it must convey 

a variable water supply from any number of sources to a downstream single 

point of diversion. The collector systems convey initially the minimum flow and 

it increases downstream. 

The control concept determines how the canal control structures are adjusted to satisfy 

the canal operation concept. The control concepts used in a canal system are defined 

by the location of information needed to operate the control structure: 

 Downstream control. Control structure adjustments are based upon 

information from downstream pool. The required information could be 

measured by a sensor located downstream or by the irrigation system 

operators, and the watermaster establishes the water schedule from the 

required information. Downstream control transfers the downstream canalside 

turnout demands to the upstream water supply source and is compatible with 

the downstream operation concept. 
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Figure 3.3: Downstream control concept. 

 

 Upstream control. Control structure adjustments are based upon information 

from upstream pool. The required information could be measured by a sensor 

located upstream of the position of the gate/regulator, and the watermaster 

establishes the upstream water schedule from the required information. 

Upstream control transfers the upstream water supply information (or inflow) 

to downstream regulators and is compatible with the upstream operation 

concept.  

 

Figure 3.4: Upstream control concept. 

Once we have defined the control concept and the operation concept, we can define 

the methods of operation: 
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Constant downstream depth 

The constant downstream depth method of operation wherein the water depth at the 

downstream end of each canal pool remains relatively constant is used in most canal 

systems. The reason why this method is so prevalent is that a canal can be sized to 

convey the maximum steady flow (Figure 3.5); steady-state water depths should never 

exceed the normal depth for the design flow rate. The cross-section size and freeboard 

can be minimized, thus reducing construction costs. 

When a constant depth is maintained at the downstream end of canal pool. The water 

surface profile will essentially pivot about this point as the canal flow as shown on 

Figure 3.5. A storage wedge between different steady-state flow profiles is created. 

When flow increases, the water surface gradient and storage volume must also 

increase. Conversely, storage volume must decrease for a reduction in steady-state 

flow. 

Because of these storage considerations, a natural tendency exists for a flow change 

that originates at the upstream end of a pool to create the change in storage that is 

needed to keep the downstream pool depth constant (Figure 3.6). 

Examples of regulation methods controlling downstream water level are GoRoSo 

(Soler, 2003), PI controller as Litrico X. et al. (2006) and Aguilar et al. (2012), LQ 

control (Weyer, 2003), Model Predictive control (Van Overloop, P. J., 2006), 

KAPTROLLER (Akouz K. et al., 1995 ), IMTA-Cemagref tested in Yaqui canal (Mexico) 

(Chavez A.A et al., 1994), PRECOM (Malaterre et al., 1996), Buyalski and Serfozo 

(1979), Deltour (1992), Chevereau (1991). There are other regulation methods which 

combine several controlled variables (discharge and downstream water level), as 

CLIS (Liu F. et al., 1998) or a distributed model predictive controller as Alvarez et al. 

(2013) or Rodellar et al. (1993). 
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Figure 3.5: Control of the downstream level of a pool. 

 

Figure 3.6: Upstream flow change with the constant downstream depth method of operation. 

 

Constant upstream depth 

With this method of operation, a constant upstream depth is maintained constant by 

pivoting the water surface at the upstream end of the canal pool as shown on Figure 

3.7. The constant upstream depth method is sometimes called "level bank" operation, 

because canal banks must be horizontal to accommodate the zero-flow profile (Figure 

3.7). The construction of a level bank canal is the main problem to this method. A level 

canal bank increases the cost of construction considerably, especially for concrete-

lined canals because this cross section is not constant along the canal. Most existing 

canals could not use level bank operation unless additional canal bank and lining were 
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added to the downstream portion of each pool. Exceptions to this would be canals with 

little elevation drop between checks, or those operating at flows well below maximum 

flow capacity. 

Flow changes originating at the downstream end of the pool cause canal water depths 

to change in the direction needed to achieve new steady-state profiles. AVIS and AVIO 

gates (Goussard, 1993), PIR (Deltour, 1992) are examples of regulation methods 

controlling upstream water level.   

 

Figure 3.7: Control of the upstream level of a pool. 

 

Constant intermediate water level 

This method of operation is based upon maintaining a relatively constant water volume 

in each canal pool at all times. The water surface will pivot about a point near midpool 

as the flow changes from one steady-state to another.  

Storage wedges will exist on either side of the midpooI pivot point as shown on Figure 

3.8. For any given flow changes, volume changes in each of these wedges is equal 

and opposite. When flow decreases, volume of water in the upstream wedge 

decreases and volume increases in the downstream wedge. When flow increases, the 

opposite occurs. 

With the constant upstream depth and constant downstream depth methods, 

excessive time is required to either build up or deplete the storage in the entire canal 

system when changing the steady-state rate of flow. The constant intermediate water 



Chapter 3.Literature review                                                                                                     30 

level method of operation avoids lengthy delays, because total volume of water in the 

canal system does not change significantly.  BIVAL (Zimbelman D.D., 1987) is an 

examples of regulation methods controlling constant volume. 

On the other side, canal dimensions must be adapted to the desired demands, and as 

a consequence oversized canals can be finally necessary, in comparison with other 

procedures. It is a method of operation used infrequently. 

 

Figure 3.8: Control of an intermediate water level. 

3.2.1.3. Controlled variable: Volume 

The methods which use the volume as controlled variable offer the advantage of 

drastically reducing transients by making the flow rate variations in each reach 

independent of the stored volumes. These methods are applicable to irrigation canals 

with important storage volumes, and equipped with turnouts whose feeding is not 

dependent on water levels in the main canal (e.g.: pumping stations). Examples of 

these methods are  the Dynamic Regulation (Coeuret ,1977), Controlled Volumes 

(Buyalski, 1991), BIVAL (Zimbelman D.D., 1987), or a multivariable approach for the 

command of Canal de Provence Aix Nord water supply subsystem (MIMO) (Viala Y. 

et al., 2004). 
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3.2.2. Measured variables 

Measured variables on irrigation canals are generally water levels (e.g.: ELFLO 

(Shand, 1971), PIR (Deltour, 1992), PREDAPTROL (Rodellar et al., 1993), PRECOM 

(Malaterre et al., 1996), KAPTROLLER (Akouz K. et al., 1995), Corriga (1982), 

GoRoSo (Soler, 2003). In some cases, measured variables can be discharges (e.g.: 

CACG (Piquereau et al., 1982), CARAMBA (De Leon, 1986)). A discharge can be 

measured with specific equipment (based in general on the measure of one or several 

flow velocities, with a propeller, an ultrasonic or electromagnetic device), through a 

cross structure equation or a local control section rating curve with a sufficient 

precision. A depth can be measured installing pressure transducers, bubbler pipes or 

gages directly in the cross-section. 

Automatically controlled canal operation depends on water level data collection. The 

accurate water level information is critical as the actions introduced to the canal are 

based on these water level measurements.  

3.2.3. Control action variables 

Control a variable requires mechanical equipment such as gates, valves, and pumps.  

Control action variables “U” are generally either gate openings, increments of gate 

opening and “Q” are generally discharges, or increments of discharge. Gate openings 

have the advantage to take into account the complex dynamics linking this opening 

with the local discharge and upstream and downstream water levels. Examples of 

controllers which used these control variables are: 

These variables are the gate positions (G) and the discharge (Q): 

 The discharge: the control action is the flow rate (Q), it is required a convert 

function to translate it into gate position (G) so that it can be applied to the 

system. Examples of this cases would be CACG (Piquereau et al., 1982) and 

KAPTROLLER (Akouz K. et al., 1995).  

 The gate position: it has the advantage to take into account the complex gate 

dynamics. Controllers that use the gate position as control action variable are 

CLIS (Liu et al., 1998), Sepúlveda (2007). 
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3.3. Logic of control 

To define the logic of control concept depending on the type of information used to 

calculate the control action variables of the system, we will talk about "closed loop", 

also called "feedback control", or "open-loop", also called "feedforward control". 

3.3.1. Open-loop control 

Open-Ioop control is when the controlled variable is adjusted with no comparisons to 

actual response or to actual desired conditions. An example of open-Ioop control is a 

traffic light signal. The traffic lights respond at specific time intervals regardless of the 

actual traffic conditions. 

In open-loop, the control action “U” is calculated knowing the dynamics of the system 

(using a model), the setpoint output “Yc” (for instant water demands by farmers, known 

in advance) and possibly an estimation “P” of perturbations (Figure 3.9). The open-

loop can compensate inherent system time delays by anticipating users' needs. These 

needs have to be known as precisely as possible. They should take into account 

climatic, agronomic, and sociological data, as well as recordings of the water 

consumption of previous weeks or seasons (Perrin 1989). An open-loop is generally 

insufficient, due to model errors, perturbation estimation errors, and unknown 

perturbations. Open-loops can be applied to all the controlled variables: discharge, 

water level and volume. Examples of such methods are Bautista et al. (2003), Baume 

(1993), Wahlin & Bautista (2003), Soler (2003), Sawadogo (1991), Sabet et al. (1985), 

Tomicic (1989), Huising (2004). 

 

Figure 3.9: Open-loop control (feedforward). 
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3.3.2. Closed-loop control 

Closed-Ioop control is when the controlled variable is measured and compared with a 

setpoint representing the desired performance. Any deviation from the setpoint is send 

to the control system so that it sets the control actions to reduce the deviation of the 

controlled variable from the reference. 

In closed-loop, the control action variable “U” is calculated from the error measured 

between the real controlled variable “Y” and its corresponding setpoint “Yc” (Figure 

3.10). Perturbations “P”, even if unknown, are taken into account indirectly, through 

their effects on the output “Y” of the system. In control theory, this concept is essential 

since it links a control action “U” to a controlled variable “Y”. Closed-loops can be 

applied to all the controlled variables: discharge, water level and volume. 

 

Figure 3.10: Closed-loop control (feedback). 

 

Examples of closed-loops in discharge are GPC (Sawadogo, 1992), Rodellar et al. 

(1993), CACG (Piquereau et al., 1982), CARA (Marzouki, 1989), CLIS (Liu et al., 1998) 

and Isapoor et al. (2011).  

We can introduce two points of view about the closed-loops in water level depending 

on the relative locations of the control action and controlled variable, as it was defined 

in canal operation and canal control concept. 

Water level downstream control generates indirectly a discharge closed-loop control, 

since it is obtained from the modification of the upstream discharge. This characteristic 
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is an essential property of the water level downstream control. Examples of such 

methods are AMIL, AVIS and AVIO gates (Goussard, 1987), LittleMan downstream, 

ELFLO (Shand, 1971), CARDD (Burt, 1983), Zimbelman (1987), PID (Chevereau, 

1991), PIR (Deltour, 1992), MPC (van Overloop, P. J., 2006), Clemmens & 

Schuurmans, J. (2004), Gómez et al. (2002).  

Some water level control methods combine upstream and downstream control logics. 

They are called feedback mixed controls. Examples of such methods are Balogun 

(1985 and 1988), Filipovic et al. (1989).  

3.4. Methods in control system design  

The design technique is the algorithm or methodology used within the control algorithm 

in order to generate the control action variables from the measured variables (i.e. the 

determination of control action “U” leading to a desired dynamic behavior of the 

controlled system).  

3.4.1. Controllers design: Definition of inputs / outputs 

In canals, discharge is normally the parameter that is to be controlled, although 

discharge is not a quantity which can readily be determined. Instead, some other 

quantity must be measured; then, discharge is related to these quantities through 

algorithms. In canals, the parameter most frequently used is water surface elevation 

or the difference in water surface elevation between two points. Unless otherwise 

noted, water surface elevation is the controlled parameter (input). The location and 

number of sensors used as output depend on the objectives of the conveyance 

system. Only one water level sensor per reach is used if the canal is a delivery system 

consisting of gravity turnouts. Usually, the location of the sensor is near the 

downstream end of a canal reach near the turnouts. Multiple sensors in a canal pool 

are used to implement various control methods.  

Control action variables “U” and controlled variables “Y” of a given controlled system 

have been defined in section 3.1. Variables “U” are particular inputs of the system and 

“Y” particulars outputs of the system. Since our classification concerns controllers and 

not systems, we choose to define "inputs" and "outputs" in reference to the controller 

and not to the system. The different types of inputs and outputs are illustrated in Figure 

3.11, where: 
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 U' are variables acting on the system, and not generated by the controller (e.g.: 

non controllable inputs, perturbations). 

 U variables generated by the controller, and acting on the system (e.g.: control 

action variables). 

 Y' variables generated by the system, and not directly used by the controller. 

 Y variables used by the controller, and generated by the system (e.g.: 

measured variables used by the controller). 

 

Figure 3.11: Inputs / Outputs of a controlled system. 

A monovariable controller (in input and output) has only one input and one output 

(variables being considered as scalars and not as vectors). Monovariable methods are 

also called SISO (Single Input, Single Output). A multivariable controller (in input and 

in output) considers several inputs and several outputs. The multivariable methods are 

also called MIMO (Multiple Inputs, Multiple Outputs).  

3.4.2. Monovariable methods 

These methods have traditionally been used in irrigation canal control. Monovariable 

methods are applied a single pool of the canal, these methods require to split the 

overall system into several subsystems without explicitly taking into account 

interactions between them. An irrigation canal is a multivariable system presenting 

strong interactions between subsystems. For example, the operation of a gate 

influences several upstream and downstream pools. 

Most of the irrigation canal control methods based on control theory use the well-

known linear monovariable PID controller. Examples of PID related methods are: 
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· P: AMIL, AVIS, AVIO (Goussard, 1987). 

· PI: ELFLO, BIVAL, Litrico et al. (2003). 

· PID: PID UMA Engineering. 

Although very efficient in most cases, PID controllers do not explicitly take into account 

the characteristic time delays in a canal. Examples of these methods are IMTA 

(Cemagref, 1994), BIVAL, ELFLO, PID UMA Engineering).  

There are methods as, the generalized predictive control method (GPC), a 

monovariable optimization method, based on the minimization of a criterion “J”, which 

calculates the control action variable and the error between the controlled variable and 

its targeted value. This method has been developed by Sawadogo (1992), Rodellar 

(1993) and Camacho and Bordons (2004).  

GPC method uses transfer function models: Chan et al. (1990), Soeterboek (1990), 

Lee et al. (1990), Linkens et al. (1992) and it incorporates an open-loop and a closed-

loop. 

There are more algorithms which use fuzzy control methods as CNABRL on the T2 

canal, a method based on fuzzy control expert systems used in Marrakech (Morocco), 

or  methods based on neural networks are (e.g.: Schaalje et al. (1993) and Toudeft 

(1994)). 

The little-man is another controller that uses monovariable method which was 

implemented in The Columbia River Basin Project (near Ephrata, Washington). The 

little-man control technique is applied to canal systems using the local automatic 

control method. The application of the Little-Man algorithm is most successful in 

implementing the constant upstream control method of operation.  

Monovariable methods take into account just one variable of the system, without taking 

explicitly into account interactions between them. Instead, an irrigation canal is a 

multivariable system which presents strong interactions between them. 

3.4.3. Multivariable methods 

A multivariable controller is designed to control several pools, therefore the controller 

operate globally in the canal, instead the monovariable controllers which are designed 

to control a single pool. 
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Multivariable controllers for canal automation have been designed based on optimal 

control techniques: linear (Reddy, 1996) or non-linear optimization and model 

inversion (Liu et al., 1995). 

Different model inversion methods are described in the literature, leading generally to 

open-loop controllers as Chevereau (1991), Liu et al. (1992), and more rarely to 

closed-loop controllers (Liu et al., 1994). 

Optimization methods have been developed too. These methods are, in essence, 

multi-variable. Different methods exist: linear optimization (Sabet 1985), non-linear 

optimization as Tomicic (1989), Khaladi (1992), Lin (1992), Soler (2003), van 

Overloop, P. J. (2006), Álvarez A. et al. (2013), LQR (Corriga, 1983), Garcia (1992), 

Filipovic (1989), Reddy (1992), Malaterre (1994), Sawadogo et al. (1994), LQG 

(Lemos J.M. et al., 2013), Wahlin (2004), Montazar et al. (2005), PI control (Litrico et 

al., 2006), Begovich et al. (2005). The classical non-linear optimization only leads to 

an open-loop, sensitive to errors and perturbations. In order to introduce a closed-

loop, the optimization has to be processed periodically. This complicates the method 

and limits its applications due to real-time constraints and computer time. Furthermore, 

the determination of real initial conditions, required for the optimization, is not easy. 

On the other hand, LQR methods, based on a state space representation, incorporate, 

in essence, an open-loop and a closed-loop. 

The implementation of multivariable methods is far more complex than for 

monovariable methods. 

3.5. Field implementation 

In the history of canal control, several multivariable methods have been developed. 

However, very few of them have been finally implemented on canals.  

Different aspects of field implementation of regulation methods can be distinguished. 

They are the configuration (e.g. localized, semi-local, centralized), the devices (e.g. 

automatic gates), the instrumentation (e.g. water level sensor, discharge 

measurement device), communications (e.g. radio transmission), calculation and data 

processing. 

In local configuration (Figure 3.12) each device is controlled by an independent 

controller. The device (e.g.: PID UMA Engineering, LittleMan, GEC Alsthom Gates) 
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only uses local information (measured variables). A local automatic controller consists 

of all the equipment required to execute the control algorithm and the necessary inputs 

and outputs in a stand-alone unit usually located at each check structure. Examples 

of this method of implementation would be Gómez et al. (1998), Cardona et al. (1997), 

Begovich et al. (2007) and Van Overloop et al. (2005). 

 

Figure 3.12: Local controller. 

In semi-local configuration (Figure 3.13) controllers are no longer independent. They 

explicitly use data generated by adjacent controllers or setpoints. For example, a 

controller can use the control action variable of the next downstream controller (e.g.: 

PIR, ELFLO + decoupler, semi-decentralized Predictive Control (Sepúlveda, 2007)). 

 

Figure 3.13: Semi-local controller. 
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In centralized configuration (Figure 3.14) all control actions are generated by a central 

controller (human being or computer) in a headquarter where information from the 

whole canal is available and used in the controller, distant from the different actuators. 

Control actions are gate openings (e.g.: Salt River Project) or discharges. Centralized 

control allows for supervision and remote control of the system. However, the 

implementation is more complex and more sensitive to hardware and communications 

breakdowns than localized configurations. Examples of this implementation would be 

GoRoSoBo (Soler, 2003) and Montazar et al. (2005). 

 

Figure 3.14: Centralized configuration. 
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Chapter 4 

 

Characterization of a predictive control scheme 

  

The term canal control describes those steps needed to ensure the required water 

level and flow along the canal. The control of the canal is achieved by manipulation of 

variables (sluicegate openings, pump flows) to obtain the desired conditions in the 

canal. These conditions are controlled by adjusting the volume of water pumped in/out 

the canal, adjusting the positions of gates, and by regulating flows through the delivery 

turnouts. When canal is in steady flow, the control of the canal is easy, but problems 

appear due to flow changes at setpoints. The demand deliveries are not constant in 

space neither in time. The canal state may vary unpredictably due to disturbances, 

which are considered to belong to the external environment of the system (runoff 

produced by rain events, canal losses due to infiltration, unknown turnouts operations). 

So if we want to keep under control the canal in these circumstances, it is necessary 

to use controllers, as for instance, proportional integrated derivative controllers 

(Montazar et al., 2005), predictive controllers (Gómez et al., 2002), optimal controllers 

(Malaterre, 1998) or Heuristic controllers (Durdu, 2004). 

If the canal system is operated by automation, the efficiency, flexibility, and 

responsiveness of the diversion project will be improved, and the water resource loss 

will also be reduced during the diversion project operation process (Buyalski et al., 

1991). 

Many times, the global state of a canal is governed by predictive controllers, which 

modifies the gate position depending on the demand or on-demand delivery changes, 

and these controllers have to take into account a lot of variables which affect the canal 

flow behavior, for instance, parameters as the Manning or energy loss coefficient, or 

the past and current canal state. Before considering a dynamic system (the canal 

state) governed by an overall control diagram as we will show in chapter 5, we will 

characterize how our predictive controller should work. 
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4.1. Introduction  

The main focus of a predictive control (PC) is to define control actions using input data 

from a computer model, which defines the dynamics of a canal system that can be 

correctly approximated by Saint-Venant’s equations  or other hydraulic approach and 

the hydraulic model of a check structure (as a sluice-gate, a weir,...) (Buyalski et al., 

1991; Yevjevich, 1975). On the other hand, physical parameters of the computer 

model (as the Manning coefficient) must be calibrated before using the predictive 

control. 

We should follow the next steps in the process of a predictive control algorithm: 

 Estimate the canal flow response during a predictive horizon.  

 Determine the sequence of control actions during a predictive horizon to 

control the canal. 

Really, the canal control is strongly associated with taking more actions depending on 

the reference defined by the Watermaster; normally this response is to increase or 

decrease the water level at a setpoint or checkpoint, that is, at a certain cross section 

in the canal in which we can measure the water level with pressure transducers or 

staff gages directly in the canal. Typically, these setpoints are associated with a certain 

constant value (desired water level) during the irrigation cycle.  

A control action to minimize the variation between the desired and 

simulated/measured behaviour, is usually made by optimization problems which seeks 

to minimize an objective function. Minimizing the objective function is equivalent to 

minimize the absolute deviation between simulated values and desired values. Before 

introducing the optimization problem of our predictive control, we are going to 

introduce a general definition of computer models and objective functions which are 

also involved on predictive controllers. 

4.2. Computer model 

An irrigation canal is a hydraulic system, whose objective is mainly to convey water 

from its source (reservoir) down to the users (farmers). This system is controlled by 

cross structures as sluicegates, weirs, orifice offtake which are operated in order to 

control the water levels or discharges in several cross sections along the canal.   
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The physical dynamics of this hydraulic system can be correctly approximated by 

Saint-Venant equations which are a nonlinear partial derivative hyperbolic equations, 

combined with non-linear algebraic cross structure equations depending on the cross 

structure (weir equation, sluicegate equation). These must be completed by initial 

conditions and boundary conditions at cross structures, and the whole canal. 

In irrigation canals, we have an advantage over other fields that use hydraulic 

modeling, due to the regularity and shape of the cross-sections. The flow in the canal 

can be simulated by 1D flow models, although it is true in certain sections as cross 

structures, the flow behaviour is 2-D or 3-D. Using 1-D flow models is very 

advantageous because these models decrease the computational time in front of 2D 

or 3D models, the computational time is a crucial factor to take into account for a 

predictive model. An unsteady 1D flow model is used to analyze the system behavior 

in this thesis and the model results are visualized with our displayer (Figure 4.1). 

In the references, there are several models describing the flow in canals. Some of 

these models are established from the full Saint-Venant equations and are called non-

linear models, and other models are established from approximations of the Saint-

Venant equations and are called linear-models.  

Simplifications and approximations of the Saint Venant equations can be separated 

into four categories: empirical, linearized, hydrological, and hydraulic (Fread, 1985).  

 Empirical methods are based on a large collection of observed data for a 

discrete reach of a river or canal and are only applicable for the reach. 

 Linearized methods simplify the Saint Venant equations by neglecting 

nonlinear terms. 

 Hydrological methods utilize the mass conservation equation and a 

relationship between storage and discharge. 

 Hydraulic methods add the momentum conservation equation.  

On the other hand, the linear models are commonly used in predictive control. These 

models simplify the Saint-Venant’s equations by linearizing them around a steady 

state, called reference state (Brogan, 1985). The advantage of a linear model is the 

simplicity. However, the same characteristic is responsible for the disadvantages. 

These models do not consider the non-linear terms, which have an important influence 

in the system dynamic when the flow changes are important in time. 
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Figure 4.1: Display of the values obtained by a computer model of a canal (this displayer 
was programed in Java code and it was developed for us to check the results obtained with 

the predictive control). 

 

4.2.1. Linear model 

There are several linear models in the bibliography, and we are going to introduce 

some of the more common: 

 The Muskingum model is a frequently used hydrologic linear model for flood 

routing (Cunge (1969); Dooge et al., 1982; Viessman et al., 1995). It contains 

two equations, a continuity and a storage equation. The parameters of the 

model are K (the travel time of the canal reach) and χ (dimensionless 

coefficient weighing the relative effects of inflow and outflow on the reach 

storage) containing all the information about the river or canal reach.  

 The first or second order Hayami model is derived from the diffusive wave 

equation (Alvarez B. X. (2004), Chentouf, B. (2001)), a simplified form of the 

full Saint-Venant equations. 
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 A linearized model was used by Malaterre (1994), based in a linearization of 

the full Saint Venant equations (a finite difference approach of the Saint-Venant 

equations) around a steady state. 

We can generalize all these models, and give a global point of view of them, as all 

these models have to represent the state vector, which describes the time evolution 

of the hydrodynamic variables of a canal (water level and velocity) in terms of control 

actions. An example of the equations that represents a linear model can be written as 

follow: 

𝑥(𝑘 + 1) = [𝑎1]𝑥(𝑘) + 𝑠(𝑘 + 1) 

𝑠(𝑘 + 1) =  [𝑎2]𝑢(𝑘 + 1) + ⋯+ [𝑎𝑛]𝑞(𝑘 + 1) 

 

  

(4.1) 

The state vector x(k+1) is the state vector at time step (k +1) and it contains a set of 

nx elements of water level and velocity at every one cross sections. The vector s(k+1) 

is the input data vector which contains the gate trajectories, extracted flows, demand 

deliveries,... at time step k+1 .The matrixes [a1]…[an] are constant and contain the 

linearization of Saint-Venant equations. The vector u (k+1) contains the gate position 

trajectories from the time step k to k+1 (see Figure 4.2).  The vector q(k+1) contains 

the changes in flow rate from the time step k to k+1 which is called the extracted flow 

vector. 



Chapter 4.Characterization of a predictive control scheme                                                    46 

 

Figure 4.2: A gate trajectory. 

We can define this state vector during a predictive horizon, for instance, between the 

time step kI+1 to kF. The vector, which compiles all terms, is called prediction vector, 

that is, the output data of the model: 

𝑋𝑘𝐼+1
𝑘𝐹 = [𝑥(𝑘𝐼 + 1)𝑇 +⋯+ 𝑥(𝑘𝐹)

𝑇]𝑇 

 

 

(4.2) 

The same way with the gate position vector (𝑈𝑘𝐼+1
𝑘𝐹 ) and the extracted flow vector (𝑄𝑘𝐼+1

𝑘𝐹 ): 

𝑈𝑘𝐼+1
𝑘𝐹 = [𝑢(𝑘𝐼 + 1)𝑇 +⋯+ 𝑢(𝑘𝐹)

𝑇]𝑇 

𝑄𝑘𝐼+1
𝑘𝐹 = [𝑞(𝑘𝐼 + 1)𝑇 +⋯+ 𝑞(𝑘𝐹)

𝑇]𝑇 

 

 

(4.3) 

We can define the prediction vector as a sum at every term at every time step.  

𝑋𝑘𝐼+1
𝑘𝐹 = [𝐴1]𝑥(𝑘𝐼) + [𝐴2]𝑈𝑘1

𝑘𝐹 +⋯+ [𝐴𝑛]𝑄𝑘1

𝑘𝐹 

 

(4.4) 
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For the numerical analysis, the grid used in the numerical method is divided in a huge 

number of nodes, where every node coincides with a cross section. The canal is 

divided in many cross sections, but the water level is only measured in some of them, 

called checkpoints.  The values of water level at checkpoints are contained in the water 

level state vector y(k+1) including ny elements of the state vector x(k+1). 

On the other hand, we can compile the water level state vector for all time instants in 

the so called prediction output vector, as: 

𝑌𝑘𝐼+1
𝑘𝐹 = [𝑦(𝑘𝐼 + 1)𝑇 +⋯+ 𝑦(𝑘𝐹)

𝑇]𝑇 (4.5) 

 

The  𝑌𝑘𝐼+1
𝑘𝐹  vector contains some of the elements of the prediction vector 𝑋𝑘𝐼+1

𝑘𝐹 .We write 

this vector as “Y”. 

 Now, let us consider a new vector, which will be essential when we introduce the 

optimization problem. This vector contains the desired values for the prediction output 

vector (desired water levels at checkpoints) during the predictive horizon. This vector 

defines the target values in our optimization problem. 

Y̅kI+1 
kF = [�̅�(𝑘𝐼 + 1)𝑇 +⋯+ �̅�(𝑘𝐹)

𝑇]𝑇 

 

(4.6) 

The desired output vector is called �̅�. 

The most important features of a linear model, which is defined in equation (4.1), are 

the variables which define the model. The prediction vector during a predictive horizon 

(kI+1, kF) is defined for the state vector in the time step kI at every cross sections and 

the control actions implemented during the predictive horizon. The more cross 

sections are defined by the state vector, the more accurate will be the predictive vector 

comparing this to the reality. We could come to the same conclusion talking about the 

prediction output vector. 

The matrixes [A] and [B] are built by constant elements, representing the physical 

parameters of the canal. This is not completely correct because these parameters 

represent coefficients as the Manning roughness coefficient that could change over 

time.  
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However the elements of those matrixes [A] and [B] can be evaluated off-line, and get 

these elements in certain periods of time. 

4.2.2. Non-Linear model 

The non-linear models solve the full Saint Venant equations simultaneously for 

unsteady flow along the canal. They provide the most accurate solutions available for 

calculating an outflow hydrograph while considering the effects of canal storage and 

wave shape (Bedient and Huber, 2002). The models are categorized by their 

numerical solution schemes which include the method of the characteristics, finite 

differences, finite element methods, finite volumes or others. 

 

Figure 4.3: Display of the values obtained by a computer model of a canal with eight pools 
with a total length of 28 Km during a predictive horizon of 6000 seconds. The canal is in 

steady state, therefore the gate position, changes in flow rate, demand deliveries are fixed 
over the time. The displayer used in this case is the Surfer 8. 

The method of characteristics is commonly used and it is based on the characteristic 

form of the governing equations. The two partial differential equations (Saint-Venant 

equations) are replaced with four total differential equations and solved in the x, t 
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domain. The four equations are commonly solved using explicit or implicit finite 

difference techniques (Amein, 1966; Liggett and Woolhiser, 1967; Baltzer and Lai, 

1968; Ellis, 1970; Strelkoff, 1970; Gómez, 1988).  

Numerical solution schemes are often referred to as being explicit or implicit. When a 

direct computation of the dependent variables can be made in terms of known 

quantities, the computation is said to be explicit.  Much research has been performed 

on this topic (Garrison et al., 1969; Liggett and Woolhiser, 1967). When the dependent 

variables are defined by coupled sets of equations, and either a matrix or iterative 

technique is needed to obtain the solution, the numerical method is said to be implicit. 

Again, this topic has been well researched by Amein and Chu (1975), Amein and Fang 

(1970), among others. The implicit method has fewer stability problems and can use 

larger time steps than the explicit method. 

Using nonlinear models in control algorithms is motivated by the possibility to improve 

the accuracy of the model that represents the system by introducing the nonlinearities 

of the process. The applicability of nonlinear models in forecasts is a point of 

discussion still open, although it seems that less, as the current computers solve the 

full Saint-Venant equations very fast. In this way, transport and canal networks where 

the watermaster wants to keep close of a steady state without huge disturbances, the 

potential improvement of using nonlinear models may seem small. However in canals 

where the state vector has a significant variation of water levels and flows, mainly due 

to external disturbances, the advantages of using nonlinear models can be significant.  

We can define a nonlinear model as follows: 

𝑥(𝑘 + 1) = 𝑓[𝑥(𝑘), 𝑠(𝑘 + 1)] 

𝑠(𝑘 + 1) =  𝑢(𝑘 + 1) +⋯+ 𝑞(𝑘 + 1) 

 

 

(4.7) 

Where f is a vector function which depends on the state vector of a previous time step 

(k), the sluice gate trajectories at time step k+1, the changes in flow rate at time step 

k+1, the scheduled demands at time step k+1,....  

The vector function is also dependent on the same physical parameters as in a linear 

model: Manning coefficient, local losses coefficients. 
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We have chosen a non-linear model to solve the full Saint-Venant equations in this 

thesis which uses the characteristic curves method, due to the fact that the 

computation time for solving these equations is not a problem for the current 

computers. 

4.3. Optimization problem 

4.3.1. Introduction 

In a simplest case, an optimization problem consists of maximizing or minimizing a 

function by systematically choosing input values from an allowed set, and computing 

the value of the function. This function is the so called objective function. 

Basic components of an optimization problem are defined as: 

• The objective function. It expresses the aim of the model which is either to 

be minimized or maximized. For example, in a manufacturing process, the aim may 

be to maximize the profit or minimize the cost. Comparing the data prescribed by a 

user-defined model with the observed data, the aim is minimizing the total deviation of 

the predictions based on the model from the observed data. In designing a predictive 

control for a canal, the goal is to minimize the error between the measured and the 

desired water level minimizing the gate movements.  

• The control action variables of the objective function. In the manufacturing 

problem, the variables may include the amounts of different resources used or the time 

spent on each activity. In the design of a predictive control for a canal, the variable 

could be the sluice gate trajectory during a predictive horizon.  

• A set of constraints are those which allow the unknowns to take on certain 

values but exclude others. In the manufacturing problem, one cannot spend negative 

amount of time on any activity, so one constraint is that the "time" variable which 

cannot be non-negative. A set of constraints for a predictive control algorithm for 

canals could be to limit the gate movements between time steps, or the minimum and 

maximum sluice gate position. 

The objective of an optimization problem is to find values of the variables that minimize 

or maximize the objective function while satisfying the constraints. In optimization 
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problems, the data prescribed by a model does not match with the target data, and 

the main goal is to make these values matching by modifying a set of unknowns or 

control variables.  

Which would it be the objective function in our optimization problem? The objective 

function is defined from the deviation between the model data (i.e. the prediction 

output vector) and the desired output vector. On the other hand, the control action 

variables could be the gate trajectory vector or the extracted flow vector. 

We can classify the optimization methods as: 

 The classic methods are the common methods used in optimization, among 

them, the lineal optimization, non-lineal optimization, dynamic optimization.  

 The other optimization methods are the metaheuristic optimization methods 

intimately linked to artificial intelligent, for instance, the evolutionary algorithms 

or the simulated annealing method (Theodore W. M.  et. al., 1999).  

The main difference between both optimization methods is that the classical methods 

calculate a local minimum and guarantee a local minimum, while the metaheuristic 

optimization methods calculate a global minimum but they do not guarantee to reach 

a global minimum.  

The classic methods are robust and the computational cost is very low. These 

methods have been used in control algorithms giving excellent results. An optimization 

problem subject to constraints can be stated as follows: 

𝑻𝒐 𝒇𝒊𝒏𝒅 𝑿 = (

𝒙𝟏

𝒙𝟐

⋮
𝒙𝒏

)  𝒘𝒉𝒊𝒄𝒉 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆𝒔 𝒇(𝑿) 𝒈𝒊𝒗𝒆𝒏 

𝒈𝒊(𝑿) ≤ 𝟎,   𝒊 = 𝟏, 𝟐, … ,𝒎 

𝒍𝒋(𝑿) = 𝟎,   𝒊 = 𝟏, 𝟐, … , 𝒑 

 

(4.8) 

Where X is an n-dimensional vector called the design vector, f(X) is the objective 

function, and gi(X) and lj(X) are the inequality and equality constraints, respectively. 

When the constraints gi(x) and lj(x) are active, the optimization problem is constrained.  
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The number of variables “n” and the number of constraints “m” and/or “p” need not be 

related in any way. This type of problem is called a constrained optimization problem. 

If the locus of all points satisfying f(xi) is equal to a constant “Ci” (Figure 4.4), it can 

form a family of surfaces for several control action variables (xi) in the design space 

called the objective function surfaces. When we draw the objective function surfaces 

with the constraint surfaces, see Figure 4.4, we can identify the optimum point. When 

we have four or more design variables, we have to solve the problem as a 

mathematical problem and this visualization is not possible. It is possible graphically 

only when the number of design variables is three or lower.  

 

Figure 4.4: Optimum point in a constraint optimization problem. 

Optimization problems can be defined without any constraints and they are called 

unconstrained optimization problems. The field of unconstrained optimization is quite 

large, and there are a lot of algorithms and software available. In this thesis we will 

use both constrained and unconstrained optimization problems. 
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4.3.2. Desired output vector  

There are many ways of defining the water offtake along a canal during a given 

forecasting horizon, for instance from side exits by gravity through orifices as in Figure 

4.5, probably the most used, although the pump station is used too. The gravity offtake 

is very common, because small deviations of the water level do not greatly affect the 

flow rate deliveries. This kind of hydraulic structure is not able to dry up the canal 

because the orifice is usually set above the canal bottom. In contrast, the pump is able 

to dry the canal depending of the extracted flow.  In order to maintain operational the 

water offtake, water level at the target must be higher than y0 (Figure 4.5), and the flow 

rate delivered by the orifice is related with the square root of the water level above the 

y0. The control of delivered flow rate is kept by controlling the water level.   

On the other hand, we could set a certain desired water level value at every orifice 

offtake to achieve a particular scheduled delivery during a predictive horizon, as the 

flow rate depends on the water level at the orifice offtake. The watermaster keep the 

desired water level at the checkpoints to fulfill the supplies scheduled and the farmers 

obtain a hydrograph that meets their needs. Sometimes a farmer ignores the irrigation 

scheduling and disturbance caused by him will affect the scheduled deliveries from 

other farmers. Although it is impossible that an external disturbance does not affect 

the scheduled deliveries from others farmers, the feedback controller must recompute 

a new sluice gate trajectory to reach quickly the desired water level at all checkpoints, 

for restoring as soon as possible the scheduled demand deliveries. 

The external disturbances are unknown in the process, for that reason it is not an easy 

way to estimate the desired water level. The desired water level is the value in order 

to meet the needs of the farmers, and the deviations between the desired water level 

and the real is proportional to the deviations between the delivered flow rate and the 

scheduled delivered flow rate. There is a direct link between the disturbance and the 

deviations of demand deliveries. The delivery schedule is fulfilled as well as the 

desired water level at particular cross sections are equal to the water level 

measurements.  

The water level measurements are done in particular cross sections or checkpoints 

usually located next to a sluice gate or pump station. As we will check in next chapters, 

the best mathematical approximation for an optimization problem would be to use the 
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water level and velocity at every cross sections in the canal and calculate the deviation 

between the desired and measured water level at each cross section. But it would be 

impossible to get measures at every cross section of the canal. 

 

Figure 4.5: Orifice offtake in a cross section. 

 

The aim of the objective function is minimize the error between the measured and the 

desired water level and this function may be chosen to meet a variety of conditions, 

as we will see in the next section 4.3.3. 

4.3.3. Objective function 

The goal of the optimization process is to find the parameter values that result in a 

maximum or minimum of a function called the objective function. We can classify the 

objective functions as follow:  

 The type of objective function: linear or quadratic. 

 The variables involved in the objective function. 

 The checkpoints or target points evaluated by the objective function.  

The objective function defined in equation (4.8) should be minimized and the 

complexity to derive this function is linked with the type of objective function and the 

constraints. 

In predictive control in canals, the variables involved in the objective function could be 

the water level, and the variability between the computed and desired water level at 

the checkpoint would be the error which should be minimized. This error can be 

established in the objective function in different forms, quadratic (4.9) or linear. 
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𝑱𝒌𝟏

𝒌𝑭 =
𝟏

𝟐
‖𝒓′𝒌𝟏

𝒌𝑭‖
𝑻
   𝒒𝒖𝒂𝒅𝒓𝒂𝒕𝒊𝒄 𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏   

 

𝒓′𝒌𝟏

𝒌𝑭 = 𝒀𝒌𝟏

𝒌𝑭 − �̅�𝒌𝟏

𝒌𝑭          ‖𝒓′‖𝑻 = 𝒓′𝑻[𝑸′]𝒓′ 

 

𝑻 𝒊𝒔 𝒂 𝒘𝒆𝒊𝒈𝒉𝒕 𝒎𝒂𝒕𝒓𝒊𝒙 

(4.9) 

 

From the type of objective function and constraints, we could also classify the 

optimization problem as follow: 

 If the objective function and the constraints are linear, the optimization problem 

is linear.  

 If the objective function is quadratic and the constraints are linear, the 

optimization problem is quadratic.  

 If the objective function is quadratic and the constraints are nonlinear, the 

optimization problem is nonlinear. 

The variables involved in the objective function could be the water level or the flow 

rate, and the variability between the computed and desired water level or the 

computed and desired flow-rate (�̅�𝒌𝑰+𝟏

𝒌𝑭 ) at the checkpoint is the error which should be 

minimized. The next equation shows this kind of objective function: 

𝑱𝒌𝟏

𝒌𝑭 =
𝟏

𝟐
‖𝒓′𝒌𝟏

𝒌𝑭‖
𝑻
𝒐𝒓 

𝟏

𝟐
‖𝒐𝒌𝟏

𝒌𝑭‖
𝑻′

 

 

𝒓′𝒌𝟏

𝒌𝑭 = 𝒀𝒌𝟏

𝒌𝑭 − �̅�𝒌𝟏 
𝒌𝑭 ;   ‖𝒓′‖𝑻 = 𝒓′

𝑻[𝑸′]𝒓′ 

 

𝒐𝒌𝟏

𝒌𝑭 = 𝑸𝒌𝟏

𝒌𝑭 − �̅�𝒌𝟏

𝒌𝑭  ;  ‖𝒒‖𝑻′ = 𝒒𝑻[𝑸′]𝒒 

 

(4.10) 

We have introduced the water level and the flow rate, both controlled variables, to 

define the objective function, but we could use a control action variable as the gate 

openings (U) to evaluate the objective function. The main goal is to minimize the 

deviation between the desired and measured water level, but it is also important to 

minimize the sluice gates movement, because an excessive gate movement causes 

an engine wear of the gate and a waste of energy for every gate movement which we 

could be avoided. The objective function can be dependent of both. The next equation 

shows this objective function: 
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𝑱𝒌𝟏

𝒌𝑭 = +
𝟏

𝟐
‖𝒓′𝒌𝟏

𝒌𝑭‖
𝑻
+

𝟏

𝟐
‖𝒔𝒌𝟏

𝒌𝑭‖
𝑻′

 

 

𝒔𝒌𝟏

𝒌𝑭 = 𝑼𝒌𝟏

𝒌𝑭 − �̅�𝒌𝟏

𝒌𝑭 

 

(4.11) 

Where �̅�𝒌𝟏

𝒌𝑭 is the gate trajectory with minimum operating cost. 

In predictive control, the gate position could be a variable involved in objective function 

too, but we would have to define the gate trajectory with minimum operating cost which 

we call the desired gate trajectory.   

On the other hand, it would be excellent to have a big number of checkpoint to 

establish a more effective control of the canal state but the checkpoint or target points 

evaluated by the objective function are usually limited by the number of sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5. Overall Control Diagram                                                                                                  57 

   

Chapter 5  

 

Overall Control Diagram  

 

5.1. Introduction 

The main objective of this thesis is to develop an on-line predictive control able to operate 

the canal in real time rectifying the gate trajectory in case of disturbances, establishing the 

desired behavior of the canal by the watermaster. In our opinion, an on-line predictive 

controller, operating alone and only using as input data the water levels measured at the 

checkpoints, is not an accurate predictive controller. There are factors that largely affect the 

canal, as disturbances or changes in Manning coefficient that the on-line predictive controller 

needs to know to recalculate the optimal sluice gate trajectory. For this reason, we define a 

set of algorithms that operate all together in parallel but not all of them necessarily operate 

in real time, as the period of time that each one is working depends on the variability of the 

process in time. All the information, obtained by these algorithms, is supplied to the on-line 

predictive controller to meets its objective.  

5.2. Structure Diagram 

Although there are multiple forms to define an overall scheme for canal control, we show 

our ideal solution of an overall control diagram of a canal in figure 5.1. This figure will be 

commented in several chapters in this thesis, because the algorithms developed for us 

follow the structure of this diagram. Every process as well as the task developed for each 

algorithm is introduced in the next paragraph (Figure 5.1).  
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Figure 5.1: Overall control diagram of irrigation canal. 

 

 

1. «Crop needs and desired hydrographs for canal outlets»: The hydrographs at the 

lateral diversion points of the main canal are calculated on the basis of the water demands. 

They are fixed considering the farmer requirements and others demands accepted by the 

watermaster. The behaviour of the canal supplying these hydrographs determines the 

“desired behavior” (Y*) at several cross sections (Figure 5.2). 
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Figure 5.2: The hydrographs at the lateral diversion points of the main canal. 

 

2. «Off-line Computation of the Reference Trajectories»: The desired behaviour (Y*) 

must be transmitted to the “Reference Trajectories Calculation” algorithm that determines 

the positions of each gate. This algorithm calculates the optimum behavior (YR (reference 

water level)), which is the one most similar to the desired behavior that is physically possible. 

We call “UR” the optimum gate trajectories calculated to obtain the optimum behavior (YR). 

They must be calculated off-line (e.g. with an anticipated irrigation cycle). There is an 

extensive bibliography of feedforward control algorithms which compute the reference 

trajectories as GoRoSo (Soler, 2003), Bautista et al. (2003), Wahlin et al. (2003). 

3.  «Off-line Parameter Identification»: In case of variations of empirical parameters as 

the Manning coefficient. The water level measurements obtained during a previous irrigation 

cycle in a steady state could be transmitted to the “Off-line Parameter Identification” 

algorithm for estimating these empirical parameters (Figure 5.1). The values of these 

parameters could be sent to the “predictive controller” and the “on-line current state 

computation” to be more accurate in their respective processes. This algorithm could also 

operate on-line and updates the empirical parameters during the irrigation cycle. 
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4. «Digital to analog converter —D/A and A/D»: A computer or control system based on 

a microprocessor cannot interpret analog signals, and uses only digital signals. Need to be 

translated, or converted into binary signals.  

 

Figure 5.3: A DAC used to convert a digital signal to analog.  

A DAC converts an abstract finite-precision number (usually a fixed-point binary number) 

into a physical quantity (e.g., a voltage or an intensity) (Figure 5.4). Control actions on the 

canal are implemented by means of digital-analog transformations (D/A) and average 

measurements obtained for each sampling period (yM(k) and uM(k)) are obtained by means 

of analog-digital transformations (A/D). The water level measurements are converted and 

transmitted to the “On-line Current State Computation” algorithm (A/D converter). On the 

other hand, the gate trajectories from the “on-line predictive control” are converted and 

transmitted to the sluice gate actuator (D/A converter). 

 

Figure 5.4: The first figure is a ideally sampled signal and the second one is a piecewise 
constant output of an idealized DAC lacking a reconstruction filter.  

 

http://en.wikipedia.org/wiki/Abstract_object
http://en.wikipedia.org/wiki/Fixed-point_arithmetic
http://en.wikipedia.org/wiki/Binary_number
http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/Reconstruction_filter
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5. «On-line Current State Computation»: This module uses all values stored in the 

database as yM (k + i) and uM (k + i), which have been measured at the checkpoints in the 

canal during a past time horizon (i = 0,…,-λ). If the water level measured at checkpoints is 

different from the desired water level, it is probably due to a disturbance introduced into the 

system or erroneous roughness coefficients used in the calculation. That is why is very 

important to update Manning’s coefficients periodically. One of the algorithms developed in 

this module is able to estimate the disturbances which have modified the measured water 

level at checkpoints from the desired water level, the algorithm can obtain the current 

hydrodynamic state of the canal, which is very useful in any case. The hydrodynamic state 

of a canal is defined as the velocity and water level at each cross-section of the canal. This 

process has not been developed by any author and for that reason there is not literature 

review about that kind of algorithm.  

6. «On-line Predictive Control»: These reference trajectories are transmitted to the next 

algorithm, called “Predictive Control”, which must re-act on-line in case of deviations 

between the observed data and the desired behavior at the checkpoints in each regulation 

period (e.g. every 5 min), due to unknown perturbations The predictive control recalculates 

new gate positions (u(k)) to come back to the reference behavior. There is an extensive 

bibliography of feedback control algorithms which recalculate the gate trajectories as CARA 

(Marzouki 1989), Wahlin et al. (2006) and Clemmens et al. (2004). 

The diagram (Figure 5.1) shows a cycle of processes, where some of these blocks represent 

processes in real time, and other blocks represent processes off-line. For instance the blocks 

that represent: the crop needs and desired hydrographs for canal outlets, off-line 

computation of the reference trajectories and off-line parameter identification are processes 

that can be solved off-line, that is, they are not solved in every sampling period K. The 

remaining blocks should be solved on-line, using data collected at every sampling period. 

The bigger restriction in real time problems is the computational time which must be as short 

as possible, and always lower than the regulation period, because the sluice gate actuator 

receives new gate trajectories from the control algorithm at every regulation period.  

The blocks that calculate the reference trajectories are updated periodically, and the update 

frequency is determined by the irrigation cycle. The reference trajectories are calculated 

every irrigation cycle according to the scheduled deliveries and the changes in Manning 

coefficient.  
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The data recorded from the beginning of the irrigation cycle, as the measured water level at 

checkpoints, can be used to estimate the current state of the canal; the output data obtained 

in solving this problem become the input data for the “on-line predictive control”. In this last 

block (on-line predictive control), the predictive control recalculates a new sluice gate 

trajectory if the water level at the checkpoints have changed from the desired water level, 

which depend on the current canal state at each regulation period. To complete each cycle 

of the overall control diagram, the control algorithm sends a set of sluice gates positions to 

the D/A converter and this sends a signal to the sluice gate actuator. 

From a theoretical point of view, the data input used in an on-line predictive control is 

obtained in different processes; therefore not all input data used in the on-line predictive 

control are obtained at the same time. The overall control diagram contains several 

processes, and data obtained in every of them are used in different blocks, and every of 

them is defined in a particular step during the overall diagram. 

For instance, the off-line parameter identification is not a process estimated on-line, because 

the main objective is probably to estimate the Manning coefficient, and this parameter is not 

susceptible to change every regulation period. This process is evaluated at the beginning of 

the irrigation cycle. The off-line parameter identification is a part quite important in the overall 

diagram because the canal state is very sensitive to Manning coefficient changes, even to 

the point that good control algorithm could be useless calibrated with wrong Manning 

coefficients, as we show in chapter 8. In that sense, the ASCE Task Committee on Canal 

Automation Algorithms developed a series of test cases to test the suitability of canal control, 

some of these tests consist in changing the canal conditions as the Manning coefficient to 

demonstrate the sensitivity of the algorithm to changes in canal conditions over time. We 

will assume in this thesis that all physical parameter as the Manning coefficient or the energy 

loss coefficient are set at the beginning of the irrigation cycle, and they are constant during 

the irrigation cycle.  

In the next paragraph, we are going to summarize the rest of processes involved in the 

overall diagram. 
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Figure 5.5: A simple view of an on-line predictive control on a canal. 

 

 The process defined as “off-line computation of reference trajectories” runs off-line. 

The watermaster knows all scheduled deliveries during the irrigation cycle and this 

process calculates the optimal gate trajectories for a predictive horizon taking into 

account the scheduled information. This process is estimated by a feedforward 

controller as GoRoSo. 

 The process “on-line current state computation” runs on-line because it estimates 

the canal state at each time step. This process is developed in this thesis. The 

algorithm uses data obtained from the beginning of the irrigation cycle to the present 

time. The data used by this process are the reference water levels, gate trajectories, 

demand deliveries and the water level measurements during the predictive past 

horizon. The solution of this process are: 

 The disturbances.  

 The water level and velocity along the canal at each period of time. 



Chapter 5. Overall Control Diagram                                                                                                  64 

 The process "on-line predictive control" runs in real-time, because it recalculates the 

sluice gate trajectories if the water levels at the checkpoints have changed from the 

desired water level values in each regulation period (Figure 5.5). This process is 

dependent on the on-line current state process, as the predictive control needs data 

input about the disturbances in the canal to set the water level error during the 

predictive horizon. The input data used by this process are the sluice gate 

trajectories, the pump trajectories, current canal state and demand deliveries. The 

on-line predictive control is defined as a feedback controller and this term is also 

used to describe closed loop controllers introduced before. The output data of this 

process is a new gate trajectories. This process is developed in this thesis. 

5.3. Conclusions 

Once defined all the process involved in the overall-diagram, we have identified different 

ways in which all these process are connected. Are all these processes easy to include in 

an overall control diagram?  Not at all, for the moment we will not take into account the off-

line parameter identification, due to the fact that the Manning coefficient could be estimated 

in advance, as this parameter is almost constant during an irrigation cycle. The off-line 

computation of reference trajectories is not an obstacle as there are several algorithms in 

the bibliography which are able to calculate the reference gate trajectory in a predictive 

horizon as GoRoSo (Soler, 2003) or Tomicic (1989). But the process which defines the 

current state of the canal is not one performed by algorithms found in the literature review, 

as it is an algorithm introduced in this thesis and it has not even been proposed before. On 

the other hand, the process defined as the on-line predictive controller is the main objective 

of this thesis and this process needs the prediction of the current canal state. 

As we will explain in chapter 6, the first idea was not to design an algorithm to identify 

disturbances and the current canal state, but we must to include this algorithm, because the 

optimal sluice gate trajectory obtained by the on-line predictive control is dependent on the 

flow state. The on-line predictive control needs the more accurate estimation of the 

disturbances and the hydrodynamic canal state.  

If there is not a good prediction of the current canal state, the gate trajectories solution will 

be bad because the estimation of the future error will also be bad, although the on-line 

predictive controller had been designed from an accurate and robust algorithm.  
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Some type of controllers, as the PID, whose algorithm consists of three basic coefficients 

(proportional, integral and derivative), predicts an error based in these three terms. The 

proportional term produces an output value that is proportional to the current error value, the 

contribution from the integral term is proportional to both the magnitude of the error and the 

duration of the error and the derivative of the process error is calculated by determining the 

slope of the error over time (Figure 5.6). Although this type of controller are able to predict 

an error for the predictive horizon without knowing the real external disturbance introduced 

into the system, it would be more accurate establish the real disturbance.   

 

Figure 5.6: A PID controller Block Diagram. 

Despite the independence between the different processes, all of them have in common a 

similar mathematical approach: they can be formulated as an optimization problem, they 

use a computer model, and all of these processes must modify a certain control action 

variable for setting a measured variable (simulated by the computer model) as close as 

possible to a particular desired value defined by the watermaster. 

 

http://en.wikipedia.org/wiki/Derivative
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Chapter 6 

 

Canal Survey Information: CSI algorithm 

One of the main problems in water management of irrigation systems is the control of 

the equitable distribution of water among different orifice offtakes. The difficulty of 

managing a canal is partly caused by the lack of knowledge of the canal state because 

the scheduled demand is not fulfilled in many times. The farmers extract more water 

that it is was scheduled; for that reason it is impossible to determine the canal state 

by the watermaster. This was one of the reasons to develop an algorithm (CSI) which 

is able to estimate the real extracted flow in certain cross sections during a past time 

horizon and the hydrodynamic canal state, that is, the water level and velocity along 

the irrigation canal during the past time horizon.  

Both results obtained with CSI could be valuable for a feedback controller. For 

instance, there are some controller which operate with computer model that does not 

know the unscheduled deliveries introduced in the canal. If the disturbance is 

significant, the real hydrodynamic state of the canal is quite different to the canal state 

obtained by the computer model, so the data introduced to the feedback controller is 

not good enough and the controller finally fails.  

 

Figure 6.1: Flow control structures in the irrigation ditch of Manresa. 
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6.1. Introduction 

In case that we introduce a flow change in a particular section of a canal, we could 

estimate the perturbations associated to this flow change from a computer model 

based on the Saint-Venant equations. CSI does the inverse problem, that is, from 

perturbations (water level measurements at checkpoints) it calculates the flow change 

associated to these. 

CSI algorithm uses the water level measurements at certain points of the canal, the 

scheduled demands and the gate trajectories during a past time horizon to obtain the 

extracted flow in that time horizon and the hydrodynamic canal state at the current 

time. This mathematical algorithm is introduced in this chapter. 

This algorithm was not our priority at the beginning of this thesis, because the main 

objective was to develop a feedback controller. But several problems relating to the 

predictive controller forced us to change our point of view. These problems were 

identified testing our feedback controller, introduced in chapter 9 (GoRoSoBo). Some 

of these tests (Test Cases) were proposed by the ASCE (Clemmens et al.,1998) and 

the results were not satisfactory. One of the main reason about the unsatisfactory 

results was a lack of knowledge of the canal state, and not predict quite well the future 

behavior of the canal state. This is the reason why the knowledge of the canal state at 

every moment is so important, as we introduced in chapter 5. 

The disturbances that usually modify the canal state are changes in flow deliveries to 

the farmers, and many times these flow changes are unknown. In that sense, CSI 

algorithm defines the flow water changes in the canal during a past time horizon, see 

Figure 6.2. 

If a disturbance is introduced to the system, the free surface of the canal will be 

different to the water surface obtained without flow changes. In that sense, the smaller 

is the disturbance, the more similar will be the water surfaces. Flow changes can be 

expressed as a sequence of depths and velocities obtained at some cross-sections in 

a canal at discrete times. There is only a set of flow changes to define a particular 

canal state. 
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Figure 6.2: Pumping in a cross-section i. 

When some hydrodynamic parameters (as the water level) at target points are 

measured during a past time horizon, it is possible to determine the flow changes 

introduced in the canal with the aid of CSI. This is the objective in this chapter.  

In order to achieve this objective, we introduce the HIM matrix (Hydraulic Influence 

Matrix) which defines the influence of the flow changes on the canal state. This matrix 

was defined by Soler (2003), although it was redefined by us in this chapter. Soler 

introduced this matrix in such a way that the identity of this matrix is to give us a value 

of the influence of gate movements on the canal state. The purpose of the matrix is 

obtain a value of magnitude of water level and velocity on the canal due to sluice gate 

movements.  Instead, we introduce a different point of view of the HIM which 

establishes the influence of an extracted flow on the water depth and velocity in all 

points of the canal during a past time horizon. The HIM theory is shown in Appendix I.  

In order to make more understandable the meaning of the HIM, we introduce the next 

example. When we pump in a section of the canal, we modify the canal state, that is, 

the water level and velocity in particular points at a particular time (Figure 6.3). For 

instance at t=10s, we modify the water level and velocity in cross-sections close to the 
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pump (cross-section i), but we do not modify the hydrodynamic variables in a far cross 

section (i+1). Instead at time=40s, we modify the hydrodynamic variables in all cross-

sections from i to i+1. The HIM matrix defines how the extracted flow modify the 

hydrodynamic variables in all sections of the canal during a past time horizon, for 

instance, from t=0 s to 40 s in Figure 6.3. In that sense, the HIM evaluates the range 

of influence of a flow change along the canal during a period of time. 

 

Figure 6.3: Influence of an extraction flow in the canal state. 

We choose a set of points of the space/time domain of the canal (Figure 6.3), where 

we can establish the influence of flow change on the water level and velocity at every 
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point, see Figure 6.4. Each element of the HIM matrix establishes the relation between 

an extracted flow at a particular section at a particular time step on the velocity/water 

level of a particular section at a particular time in the canal. 

A big percentage of disturbances that introduce changes in a canal state are caused 

by flow changes, for instance when a farmer hold a pump to get more supplies or when 

the farmer increase his deliveries from the orifice offtakes cause disturbances, these 

are the kind of disturbances considered when we defined the HIM. This matrix gives 

us the relation between these disturbances and the canal state. 

The hydraulic influence matrix is the main tool to the CSI algorithm which calculates 

the history of flow rate changes during a past time horizon in a canal.   

 

Figure 6.4: Pumping in a cross section i of a computational grid. The extracted flow influences the 

hydrodynamic variables in blue dots sections. 

6.2. Problem statement 

In many cases, the objective in an irrigation canal is to keep constant the water level 

in certain points of the canal where there are orifice offtakes. In that sense, the 

watermaster fulfils the scheduled demand previously established with the farmers. 
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Keeping constant the water level is difficult in a canal because there are many outlets 

along the canal and it is not easy to control the discharges in all of these points. For 

that reason, we would like to estimate the unknown flow changes which modify the 

desired water level at the checkpoints. More specifically, our objective is to obtain the 

flow changes (control inputs) over a scenario (past time horizon) in which we know the 

initial condition of the canal, the gate trajectories, the water level evolution at specific 

cross-sections (checkpoints) and the offtake scheduling demand. This objective is 

achieved by the CSI algorithm. 

This algorithm establishes an objective function defined from the total deviation 

between the measured data (water level measurement) and the data obtained by a 

computer model (predicted water level) considering an extracted flow. This objective 

function is minimized from an optimization procedure with the objective to obtain the 

optimal extracted flow. In that sense, CSI solves an inverse problem as an 

unconstrained optimization procedure. 

Some variables and parameters that CSI uses to solve the optimization problem, are 

obtained by a computer model describing the free-surface flow in canals, which can 

be defined from the Saint-Venant equations. These are constituted by a pair of 

equations that forms a quasilinear partial differential system. Moreover, we need to 

use some other equations to describe the flow along longitudinal structures like 

siphons, jumps, etc. Also, there are cross structures for control of flow like gates, weirs, 

off-takes, etc. Since the flow equations do not have analytical solution, we choose a 

set of points of the space/time domain to form a computational grid where the solution 

is computed by using a numerical procedure (Figure 6.5). 

6.2.1. Definition of the optimization problem 

As we explained before, the CSI algorithm needs as input data, the water level 

measurements at certain points (checkpoints). Now, let us consider a vector, which 

contains the water level measurements in the checkpoints at time instant k: 

       1 , , , ,
C

T

M m mi mny k y k y k y k     (6.1) 
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Finally, all vectors (6.1) for each time instant of the past time horizon are joined to 

define the measured water level vector, whose dimension is nc, where nc is the number 

of checkpoints. We define this vector as: 

       1 , 2 , , 1 ,
T

M M M M F M FY y y y k y k     (6.2) 

We can check the measured water level vector values in a computational grid in Figure 

6.5 (yellow dots) whose dimensions is ny, where ny = kF×nc. 

 

Figure 6.5: Sketch of a numerical grid of a canal with two pools that is controlled by two 
checkpoints downstream of each pool. There are pump stations close to each checkpoints. Pump 
flow trajectories are defined with four operation periods. Also, it shows the x/t-dots where the flow 
behavior is defined. Notice that "K" with capital letter denotes time interval of control and "k" with 

small letter denotes time instant of simulation. 
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We could obtain the predicted water level from the state vector x(k) which is defined 

as the vector containing the numerical solution at the time instant k of all the 

discretization points: 

             1 1, , , , , , ,
S S

T

i i n nx k y k v k y k v k y k v k     

 

  (6.3) 

where yi(k) and vi(k) = water depth and mean velocity at point i; and nS = number of 

cross sections in which the canal is discretized. In this way, the vector x(0) is the known 

initial condition.  

We can check the state vector at the current time which defines the current 

hydrodynamic state in a computational grid in Figure 6.5 (red triangles) and the state 

vector at initial time step (black triangles).  

We may include all state vectors   (6.3) for each k-instant of the past time horizon into 

a single vector that is called prediction vector: 

       1 1 , 2 , , 1 ,F

T
T T T Tk

F FX x x x k x k  
 

   (6.4) 

where kF = final instant of the past time horizon (Figure 6.5). The dimension of this 

vector is nX = (2×nS)×kF. 

Given the initial conditions x(0) and the boundary conditions needed for simulation, 

the prediction vector is uniquely determined by the extracted flow vector. 

Taking into account that in our optimization problem, the objective function only 

evaluates the error in particular points. We are only interested in the water level at 

target points where we also obtain the water level measurements. We define a new 

vector that contains the water depth values given at a prescribed number of points (nc) 

for k=1,...,kF-1: 

       1 , , , ,
C

T

i ny k y k y k y k     

 

  (6.5) 

This vector is constituted by a subset of values of the state-vector (6.3). All vectors 

shown in the equation (6.5) for all the time instants during the past time horizon are 
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lumped in the so called prediction output vector. The position of the elements of this 

vector in the grid domain (Figure 6.5) coincides with the elements of the measured 

water level vector: 

       1 1 , 2 , , 1 ,F

T
T T T Tk

F FY y y y k y k  
 

    (6.6) 

The dimension of the prediction output vector is nY=kF×nC. The vector (6.6) contains 

all water depth values and it coincides with the yellow dots (x/t-dots) shown in Figure 

6.5. 

The prediction output vector is clearly related to the prediction vector (6.4) in the form: 

1 1
F Fk kY C X  (6.7) 

where C is a matrix, called discrete observer matrix by Malaterre (1994), matrix of 

dimension nY×nX and their components are only ''zeros'' or ''ones''. This matrix defines 

the direction of the control logics along a canal pool: downstream level control, 

upstream level control or control of intermediate water levels. 

As we introduced before, CSI calculates the extracted flow at several points (for 

instance, pump stations) during a past time horizon. In that case, as it is illustrated in 

Figure 6.6, the pump stations are pumping with an operation period K. Then, the 

extracted flow trajectories are piecewise functions. The extracted flow vector is defined 

by lumping together all the extracted flows during the past time horizon, as follow: 

       1 11 , , 1 , , , , ,
p p

T

b n F n FQ q q q K q K 
 

 (6.8) 

where the dimension of this vector is nQ=nP× KF, nP is the number of pump stations 

and KF is the number of control operation periods in which the past time horizon is 

divided. 
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Figure 6.6: Mathematical representation of a pump flow trajectory. 

In this way, only Qb determines the behavior of the canal along the past time horizon. 

When the extracted flow trajectories are implemented in the canal, the flow response 

given by the model will be unique. Inversely, one flow behavior is caused by only one 

set of extracted flow vector. 

We can check the extracted flow vector values in a computational grid in Figure 6.5 

(blue arrows). 

Once CSI has estimated the extracted flow vector, the algorithm can also estimate the 

state vector at the current time, that is, the current hydrodynamic canal state (water 

level and velocity in all cross sections of the canal) from the real extracted flow, 

scheduled demands, the initial conditions, the gate trajectories during the past time 

horizon.  

6.2.2. Optimization problem: Objective function 

As we introduced in chapter 4, an objective function is an equation to be optimized 

given certain variables that need to be minimized or maximized using nonlinear 

programming techniques. 

The main objective consists to set the flow changes that modify the water level at 

checkpoints from the measured water levels in canal. The CSI algorithm calculates 
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the extracted flow trajectories (Qb) which explain the changes between the measured 

and predicted water levels.  

The objective is to make the prediction output vector more similar to the measured 

water level vector by manipulating the extracted flow vector. In mathematical terms, 

the objective is to obtain the extracted flow vector that minimizes the following 

performance criterion: 

𝐽(𝑄𝑏) =
1

2
(𝑌1

𝐾𝐹(𝑄𝑏) − 𝑌𝑀)𝑇[𝑄′](𝑌1
𝐾𝐹(𝑄𝑏) − 𝑌𝑀) 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐽(𝑄𝑏
∗) = 𝐹[𝑌1

𝐾𝐹(𝑄𝑏
∗)] 

(6.9) 

where Q’ matrix is a weighing matrix and the dimension of the matrix are nY× nY. This 

matrix could be used to define the level of importance of the water level error in a 

particular checkpoint. We define this matrix as the identity matrix in CSI. The vector 

Qb contains the extracted flow trajectories (6.9).  

The minimum of the objective function is also the minimum deviation between the 

prediction output vector and the measured water level vector at checkpoints. We 

obtain minimizing this function (6.9) a set of actions (Qb*) which establish the best 

possible approximation between measured and computed water level. This is the goal 

of the objective function and Qb* is the solution, see Figure 6.7. 

  

Figure 6.7: Minimum value (Qb*) for an objective function. 
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6.2.3. Optimization problem statement 

To summarize this section, the inverse problem is formulated as an unconstrained 

optimization problem. The optimization problem posed in (6.9) is the classical non-

linear problem without constraints. There are many methods to solve an optimization 

problem in optimization literature. In this thesis, the method used to solve this problem 

is the Levenberg-Marquardt method, and it is introduced in the next section 6.3. There 

is an extensive bibliography about the unconstrained optimized problems, see 

Fletcher (1987) and Numerical Recipes in FORTRAN 77 (1992). 

6.2.4. Conclusions of the problem statement 

In this thesis, the input variables for CSI will be directly obtained from a computer code. 

So system input variable as water level measurements are obtained from the computer 

model. As we can know the water level error at checkpoints, the next step it is to 

calculate the extracted flow trajectories that better explain the water level changes at 

checkpoints. For this purpose, we will use the Hydraulic Influence Matrix (HIM(Qb)), 

although the HIM matrix was introduced by Soler (2003), we have modified the HIM 

matrix as we are interested in obtaining the influence of a extracted flow on the canal 

state. In this chapter, every element of the HIM matrix represents the influence of a 

extracted flow at a particular point on the canal state (water level, velocity in a 

particular section at a particular time step), so an easy way to find the changes on the 

canal state when you introduce a change in flow is from the hydraulic influence matrix. 

If all flow changes are lumped in an extraction flow trajectories vector ΔQb, then 

multiplying the hydraulic influence matrix by this vector, we would obtain the variation 

of the hydrodynamic variables associated to these flow changes Figure 6.8, as follow.   

∆𝑋 = [𝐻𝐼𝑀(𝑄𝑏)]∆𝑄𝑏 (6.10) 

where ∆X represent the changes in hydrodynamic variable at checkpoints.  

In the appendix I at the end of the chapter, we introduce the hydraulic influence matrix 

where more details can be found. 
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The name of Hydraulic Influence Matrix is originated because their hydraulic 

components represent the influence of a flow change over the state vector in all cross-

sections at several time steps. The question is, how can I obtain this matrix? 

Based on the full Saint-Venant equations, which describes the free surface flow in 

canals, it is established a set of discretized finite difference equations to calculate the 

flow behavior, from the extracted flow. The numerical part consists of the application 

of the numerical method of characteristics to the Saint-Venant equations in order to 

obtain algebraic equations, and all the influences are lumped together in a global 

matrix, which is referred to as HIM(Qb). Based on this system of equations, and using 

the first derivative (
𝜕𝑋

𝜕𝑄
) on an analytical process, it can be established the changes in 

flow behavior by a flow change at a point at a certain time instant. 

This matrix makes possible to implement the CSI algorithm as a direct relation 

between the water level error and the flow changes (Figure 6.8). A detailed description 

of the method to compile the Hydraulic Influence Matrix is defined in appendix I. 

 

Figure 6.8: Direct relation between water level error and extracted flow.  

One of the singularities of this matrix is its condition number which initially caused 

numerical problems in CSI. This matrix is an ill conditioned matrix because some of 

them have large influence on the canal state, while other components have small 

influence on the canal state. In that way, it is possible that some rows or columns are 

close to zero which results in instabilities in the numerical method. In this case, we 

had no other choice that improve the condition number of the matrix as CSI has to 

inverse the HIM matrix. 
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6.2.5. System output / inputs variables of CSI 

To test the numerical examples, we use a computer model to replace the 

“measurements”. An advantage of using predictive models is that the numerical 

examples that anyone can test are limitless. The disadvantage is that measurements 

obtained by a predictive model are not as accurate as the measurements taken in a 

canal, as we introduced in chapter 4.  

The inputs are applied to a control method to predict a control action and influence the 

output variables of the system. In the Figure 6.9, we show the input and output 

variables in CSI algorithm taking into account the considered variables in the process, 

as follow: 

 Procedure: CSI algorithm. 

 Input variables: Scheduled demands, gate trajectories and water level 

measurements. 

 Output variables: extracted flow vector and state vector at the current time 

step. 

 

Figure 6.9: Input/Output variables in CSI algorithm. 
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6.3. Estimation algorithm from unconstrained optimization 

CSI algorithm solves an unconstrained optimization problem to obtain the extracted 

flow vector solution, minimizing the objective function. There are several methods to 

solve an optimization problem, all of them have to reach the solution (Qb*) and fulfil 

two conditions to be sure that Qb* is the better solution. The first condition (6.11) 

demonstrates that the solution is a maximum, minimum or a saddle, so the first 

derivative of function in the solution (Qb*) is equal to zero. The second condition (6.13) 

demonstrates that the solution (Qb*) is a minimum. These conditions have to be 

achieved by all optimized methods (constrained and unconstrained). In this way, it is 

interesting to introduce these order conditions. 

6.3.1. First-order and second-order conditions 

There is not any auxiliary information about the proposition and lemmas mentioned in 

this paragraph, but there is an extensive bibliography about the conditions in optimized 

problems, see Fletcher (1987) and Luenberger (1984).  

First-order conditions:  

The first-order conditions are necessary to find an optimal solution of an unconstrained 

optimization problem as: 

∇JQ𝑏
(Q𝑏

∗) = 0  (6.11) 

where  ∇JQ𝑏
(Q𝑏

∗) is the first derivative of the objective function around the solution 

(Q𝑏
∗). 

We can introduce a definition of a strict local minimizer in which J(Q𝑏) > 𝐽(Q𝑏  
∗) for all 

 Q𝑏 ≠ Q𝑏
∗ sufficiently close to Q𝑏

∗. A stronger definition is set for an isolated local 

minimizer in which Q∗ is the only local minimizer in a neighborhood of  Q𝑏
∗. 

So developing the first-order condition, we obtain: 

∇Q𝑏
𝐽(Q𝑏

∗) = (∇Q𝑏
𝑋1

𝐾𝐹(Q𝑏
∗)

𝑇
− 𝑌∗)𝑇[𝐶]𝑇[𝑄′]([𝐶]𝑋1

𝐾𝐹(Q𝑏
∗) − 𝑌∗)=0 

 

 (6.12) 
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The vector ∇𝑄𝑏
𝐽(𝑄𝑏

∗)  is the first derivative of the objective function. The term 

∇Q𝑏
𝑋𝐾𝐼+1

𝐾𝐹 (Q𝑏
∗)𝑇 contains the first derivative of the extracted flow on the state vector. We 

can express the first derivatives from the water level and velocity variables (
𝜕𝑣𝑖

𝜕𝑞
𝑏𝑖

,
𝜕𝑦

𝑖

𝜕𝑞
𝑏𝑖

). 

Dimension of the matrix ∇𝑄𝑏
𝐽(𝑄𝑏

∗) is nQ×nX. 

The gradient of the tangent line must be null over J(Qb) surface  at a stationary point 

or solution point. Although this is a necessary condition, this is not the only one 

condition as we will see in the next paragraph. 

Second-order conditions: 

In fact, all minimization methods are only based on locating a point Qb* such that 

∇JQ𝑏
(Q𝑏

∗) = 0.This may not be a strict local minimum and in general it is referred to as a 

stationary point (Figure 6.10). We need a second condition to confirm that Qb* is a 

strict local minimum point. 

𝑠𝑇{W(𝑄𝑏
∗, λ∗)}s > 0; ∀𝑠 ∈ 𝐺(𝑄𝑏

∗) 
 (6.13) 

Where G(𝑄𝑏
∗) is a set of the feasible directions. In an unconstrained optimization 

problem, all directions are feasible because there is not any constraint which prevents 

any direction, so any “s” is a feasible direction to get Qb*. 

W(𝑄∗) = ∇𝑄𝑏𝑄𝑏

2 J(𝑄∗) 
 (6.14) 

Where W(Qb*) is the Hessian matrix. 

∇𝑄𝑏𝑄𝑏

2 = 

[
 
 
 
 
 

𝜕2

𝜕𝑞𝑏1
2

⋯
𝜕2

𝜕𝑞𝑏𝑛𝑄
𝜕𝑞𝑏1

⋮ ⋱ ⋮
𝜕2

𝜕𝑞𝑏1𝜕𝑞𝑏𝑛𝑄

⋯
𝜕2

𝜕𝑞𝑏𝑛𝑄

2
]
 
 
 
 
 

 

(6.15) 

These conditions are necessary and enough to demonstrate that Qb* is a strict local 

minimum.  

The equation (6.12) refers to the first order necessary condition, as it is based on the 

first order variations in J(Qb*) and therefore first derivative.  
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The equation (6.13) is the second order necessary condition, and it represents the 

condition that the Hessian matrix is a positive definite matrix. By definition of this 

property, if the Hessian matrix was an indefinite matrix, it would be impossible to find 

a feasible direction ∇Qb. That is, although Qb* complies with one of the conditions 

requirements (the first condition), we could obtain a value of J(Qb*+∇Qb)<J(Qb*), and   

Qb* would not be a strict local minimum. The last condition would be able rewritten as: 

ΔQ𝑏
𝑇[∇𝑄𝑏𝑄𝑏

2 𝐽(𝑄𝑏
∗)]ΔQ𝑏 < 0 

(6.16) 

 

 

Figure 6.10: Types of stationary point. 

Meanwhile all the graphs have zero slope at Qb* (Figure 6.10), for (a) there is positive 

curvature in every direction, for (b) negative curvature in every direction, and for (c) 

there is negative curvature across the saddle and positive curvature along the saddle.  

As it has been written previously, a minimum of the function corresponds to a positive 

definite Hessian matrix, a maximum to a negative definite matrix, and a saddle point 

to an indefinite Hessian matrix.  
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We can write the Hessian matrix from the first derivative of the objective function 

(6.12):  

∇𝑄𝑏𝑄𝑏

2 𝐽(𝑄𝑏
∗) = (∇𝑄𝑏

𝑋1
𝐾𝐹(𝑄𝑏

∗)𝑇)[𝐶]𝑇[𝑄′][𝐶](∇𝑄𝑏
𝑋1

𝐾𝐹(𝑄𝑏
∗)𝑇)𝑇 

+([C]𝑋1
𝐾𝐹(𝑄𝑏

∗)𝑇 − 𝑌∗)𝑇(∇𝑄𝑏𝑄𝑏

2 𝑋1
𝐾𝐹(𝑄𝑏

∗)𝑇) 

(6.17) 

The problem is  the second derivative parameter (∇Q𝑏Q𝑏

2 X1
KF(Q𝑏

∗)T) which is quite difficult 

to evaluate but it is necessary to do it according to the second order condition to 

guarantee the solution. To evaluate this second derivative, the algorithm wastes a lot 

of computational time, so we use another way to evaluate ∇𝑄𝑏𝑄𝑏

2 𝐽(𝑄𝑏
∗) without 

calculating (∇QQ
2 X1

KF(Q𝑏
∗)T)  taking into account a simplification for the equation.  

For Qb values suffiently close to Qb* (i.e. for all Qb in some neighbourhood of Qb*), the 

value of ([C]X1
KF(Q𝑏

∗)T − Y∗)T  is close to zero. The equation (6.17) can be simplified 

omitting the second derivative term: 

∇𝑄𝑏𝑄𝑏

2 𝐽(𝑄𝑏
∗) ≈ (∇𝑄𝑏

𝑋1
𝐾𝐹(𝑄𝑏

∗)𝑇)[𝐶]𝑇[𝑄′][𝐶](∇𝑄𝑏
𝑋1

𝐾𝐹(𝑄𝑏
∗)𝑇)𝑇 

 

 (6.18) 

When ∇𝑄𝑏𝑄𝑏

2 𝐽(𝑄𝑏
∗)

 
is solved in the simplified form , we use the Gauss-Newton method 

or Least Squares method to solve (6.18). When ∇𝑄𝑏𝑄𝑏

2 𝐽(𝑄𝑏
∗) is solved in the full form , 

we use the Newton method to solve it (6.17). 

6.3.2. Implemented algorithm 

Many techniques for solving this type of problem are available in the optimization 

literature. The method used to solve the nonlinear optimization problem is the 

Levenberg-Manquardt method, which is a robust method of easy implementation and 

this is a special method to solve ill conditioned matrix as the HIM matrix.  

The Levenberg-Marquardt (LM) algorithm is an iterative technique that locates the 

minimum of a function that is expressed as the sum of squares of non-linear functions. 

It has become a standard technique for non-linear least-squares problems, widely 

adopted in a broad spectrum of disciplines. LM can be thought of as a combination of 

steepest descent and the Gauss-Newton method. When the current solution is far from 

the correct one, the algorithm behaves like a steepest descent method: slow, but 
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guaranteed to converge. When the current solution is close to the correct solution, it 

becomes a Gauss-Newton method. The references by Fletcher (1987), Gill et al. 

(1981) or Luenberger (1984) are useful to solve optimization problems. The theory 

associated to this method is developed in the appendix II at the end of the chapter. 

We choose the characteristics curves to describe the temporal discretization of second 

order equations of Saint-Venant because it has advantage over other methods 

evaluated. This method allows the user to understand easily the physics of wave and 

the algorithm can use large time steps without significant loss of accuracy, as the 

condition of Courant - Friedrichs - Levy makes possible the use of much larger time 

steps with consequent saving CPU time. 

In the context of simulation, this advantage can be considered as theoretical, although 

the method uses larger time steps. The solution is also more difficult to find for a large 

time step than for a short time step due to we need to use numerical techniques for 

solving nonlinear equations. However, if you consider that each time step the algorithm 

has to solve a system of equations for each parameter evaluated and build the 

hydraulic influence matrix, taking into account that each element of this matrix contains 

a first derivative of the objective function (∇𝑄𝑏
𝑋1

𝐾𝐹(𝑄𝑏
∗)𝑇 , the reduction in time 

discretization is an advantage. 

As it was mentioned, the HIM matrix is an ill conditioned matrix. In that sense, LM give 

us a certain degree of stability in the algorithm because this method introduces a value 

in the diagonal of the Hessian matrix to improve the condition of the matrix. 

𝐻 = [∇Q𝑏Q𝑏

2 J(Q𝑏
∗)] +  [𝐼]) 

  (6.19) 

Where  [𝐼] is the identity matrix and    is a quantity named Marquardt coefficient. 

The steps defined in the implemented algorithm are shown in the next flowchart which 

is a type of diagram that represents all the process done by the algorithm. Process 

operations are represented in boxes, and arrows define the sequencing of operations.  

 

 

http://en.wikipedia.org/wiki/Diagram
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We have to define some matrixes and variables that are used in the flowchart: 

 [Q’] is a weighting matrix. 

 [C] is the discrete observer matrix , a matrix of zero and ones. 

 𝑟′ = [𝐶]𝑋1
𝐾𝐹(𝑄𝑏𝑖𝑡

) − 𝑌∗ is the residual vector. 

 𝑋1
𝐾𝐹(𝑄𝑏𝑖𝑡

) is the state vector. 

 [𝐼𝑀] = 𝐼𝑀[𝑋1
𝐾𝐹(𝑄𝑏𝑖𝑡

)] is the Hydraulic Influence Matrix, all evaluated in 𝑄𝑏𝑖𝑡
.  

All the process of the algorithm are defined in each iterative loop, where the solution 

Qb* is calculated in each iteration (it) for a past time horizon (𝛾).  
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The HIM(Qbit) matrix is an ill conditioned matrix. In that sense, the matrix obtained by 

the product matrix of HIM(Qbit)T×HIM(Qbit) is also ill defined and for this reason the 

matrix determinant is close to be zero or negative, and  the matrix makes unstable to 

the CSI algorithm. To overcome this trouble, we can add to the diagonal matrix Hit, the 

Marquardt coefficient equal to the minimal absolute value of the eigenvalue (Hit). In 

this way, we are sure that the matrix is positive definite and the algorithm is stable. 

The choice of the Marquardt coefficient may be done in different ways: 

Selected heuristically and kept constant for a particular canal. 

Selected heuristically and variable at each iteration. The coefficient is divided 

by a constant value (ԑ), so this decreases at each iteration ( =  /ԑ).  

Variable at each iteration with a minimal value in order to ensure that the 

matrix product HIM(Qbit)T×HIM(Qbit) is positive definite. To achieve this 

objective, we have to obtain the eigenvalues of this matrix and identify the 

minimal eigenvalue. In the case of getting a negative definite matrix, the 

Marquardt coefficient has to be equal to the absolute value of the minimal 

eigenvalue. If the matrix is definite positive, the Marquardt coefficient is 

equal to zero. 

We chose the second option, the Marquardt coefficient is variable at each iteration. 

6.4. Conclusion 

The CSI algorithm calculates the disturbances introduced in a system, and the 

hydrodynamic canal state during a past time horizon. In that sense, the CSI is an 

excellent tool for a watermaster for two reasons. The first one, the watermaster can 

know the extracted flow in the canal and the localization of the extraction points. The 

second one, CSI is a useful tool for a feedback controller which has to know the 

hydrodynamic canal state in real time. 

The CSI algorithm solves an unconstrained optimization problem because it does not 

need constraints to converge to the solution and the computational time used to solve 

an unconstrained optimized problem is lower than a constrained optimization problem. 



Chapter 6. Canal Survey Information:CSI algorithm                                                             89 

The CSI uses the Hessian matrix in the optimization problem. This matrix is ill 

conditioned due to variability of the influence of the extracted flow on the state vector, 

because every extraction point has different value of influence on the checkpoint 

depending on the distance between them. The influence of a flow change on a 

checkpoint also depends on the discrete time between the action and the response.  

To solve the optimization problem, we had to improve the Hessian matrix. This was 

one of the reasons to use the Levenberg-Marquardt method. 

CSI solves an unconstrained optimization problem without any problem, but we had 

some doubt about the reliability of the algorithm. For instance, the GoRoSoBo 

algorithm (feedback controller) initially solved an unconstrained optimization problem 

too, but the solutions obtained by the algorithm were not feasible in some tests, 

because the solutions were not physically possible, so GoRoSoBo algorithm was 

modified in a constrained optimization problem.  

Taking into account, the optimization problem solved by CSI algorithm and the 

practical examples performed with it, we are sure that CSI algorithm always calculates 

a feasible solution. We have introduced all the reasons in the following points by which 

we are sure about the reliability of the algorithm: 

 The CSI algorithm calculates an extraction flow trajectory which is in 

accordance with the water level variation between the computed water level 

and the measured water level at checkpoints. Both water levels are physically 

possible, because the computed water level at checkpoints is the water level 

at checkpoints without unknown deliveries, whereas the water level measured 

is directly obtained from measures at checkpoints in the canal. The aim of CSI 

algorithm is to find out the disturbances caused by unscheduled deliveries. 

This process is quite different to the process solved by GoRoSoBo, which has 

to calculate a sluice gate trajectory to reduce the difference between the 

measured water level and desired water level at checkpoints, and this sluice 

gate trajectory could be a feasible solution or not depending on the error 

between both water levels and the period of time in which the sluice gates have 

to reach the desired water level.  

 The CSI has not the same problems associated to the HIM matrix as 

GoRoSoBo (without constraints). This feedback algorithm was tested with the 
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Test-Cases proposed by the ASCE (Clemmens et al., 1998) and the gate 

trajectories obtained by the algorithm in these tests had not a physical sense. 

In the Test-Cases not all sluice gates are close to a checkpoint. In that sense, 

the water level obtained at checkpoints allows to the algorithm controls the 

error between the computed water level and the desired water level, but in 

case that the sluice gates are close to checkpoints also controlling the 

excessive sluice gate movements introduced by the algorithm. In the Test-

Cases, there is not any checkpoint close to the first gate and this is the most 

important gate in the canal, because this takes the control on the flow between 

the reservoir and the canal. If the sluice gate only influences the water level at 

distant checkpoints and the wave generated by the sluice gate movement 

decrease a lot with the distance, this sluice gate has a low influence on the 

water level at the checkpoints. If the algorithm tries to modify the flow 

conditions with aid of this gate, then the algorithm has not other choice but to 

introduce excessive sluice gate movements in the system. In these specifics 

cases, the optimization problem would require constraints. This is not a 

situation that affects to CSI algorithm, because the extraction points are close 

to a checkpoint in these tests and the difference between the measured and 

computed water level are due to specific flow changes. 

As we will explained in next chapters, the CSI algorithm was not a main objective 

of this thesis, until we realized the importance to define the current state of a canal 

for a feedback controller. The results of the CSI algorithm were excellent as we 

will show in the next chapters 7 and 8. 
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6.5. APPENDIX I 

HIM (Hydraulic Influence Matrix) 

In this appendix we introduce the HIM matrix. We introduce the equations which define 

the hydraulic influence matrix and the influence concept of every parameter of the 

matrix.  

The hydraulic influence matrix concept was introduced by Soler (2003), but the theory 

of this previous work was modified, as we introduced before. CSI algorithm needs the 

influence of a state variable on the canal state and this state variable is the flow 

change, for instance a pump flow. A summary of the HIM matrix, introduced by Soler 

(2003), was published in his thesis.  

6.5.1. Free surface flow equations 

The equations of Barré de Saint-Venant (1871) describe the free-surface flow in 

prismatic canals and are the result of the application of the principles of mass 

conservation and of the quantity of movement in a controlled volume of short length in 

the direction of flow. A rigorous deduction of these equations for prismatic canals can 

be found in Walker (1987), resulting in:  
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(6.20) 

where x and t are the independent space and time variables, y is the level of the free-

surface from canal bottom, v is the average velocity of all particles of a cross section 

of the flow, A(y) is the area of wet section which depends on the water level, T(y) is 

the maximum width also dependent on the water level, S0 is the canal bottom slope, 

and finally, Sf (y, v) is the slope friction. 

The pair of equations (6.20) will be applicable to reality under the following 

assumptions: 

 The curvature of the free-surface is small. 
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 The vertical accelerations are disregarded. 

 The pressure distribution along an axis vertical to the liquid is the same as in 

hydrostatic conditions. 

 The canal slope is supposed sufficiently small such that its sin is practically 

null. 

 The energy dissipation term is be specified through Manning’s equation which 

is used in stationary regime. 
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 (6.21) 

where n is Manning’s coefficient and P(y) is the wet perimeter which is a function of 

the water level, and the changes in flow conditions are not fast enough to generate 

significant wave fronts. 

These equations cannot be solved analytically, only numerically. Thus, a variety of 

numerical methods exist, which can be found, among others, in Gómez (1988). 

According to Wylie (1969) all the numerical methods of resolution, whether they are 

explicit, implicit or characteristics methods, present results which are similar when 

compared to reality, depending more on the accuracy of the starting data than on the 

particular methodologies. Bearing this key fact in mind, we use the method of 

characteristics as it helps physical comprehension of the underlying wave 

phenomenon in free surface flow.  

Usually, equations (6.20) are expressed in the classical space and time (x/t) axes, but 

the so called characteristic curves are used, expressed parametrically with x+(t) and x-

(t) which locally satisfy the two following differential equations: 
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 (6.22) 

Thus, the system (6.20) is transformed into the following two ordinary differential 

equations: 
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(6.23) 

where the first is valid along the curve x+(t) and the second along x-(t) and c(y) is the 

wave celerity. 
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(6.24) 

The difficulty of the method lies in the fact that the equations (6.22) have to be solved 

along the characteristic curves or the local axes that are the solution of (6.23). As this 

last one is a set of non-linear equations, it obliges us to solve the four equations 

simultaneously. Fortunately, the curves x+(t) and x-(t) always intersect, although they 

are not orthogonal, and therefore assure hyperbolicity. 

In short, solving the system of two partial derivative equations (6.20) is the same as 

solving the following set of four ordinary differential equations: 
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(6.25) 

The mathematical process of transformation of system (6.20) to the equivalent (6.25) 

is found in many references such as Gómez (1988), Soler (1996), and Ames (1977) 

so will not be discussed further here. 

The system (6.25) describes the conditions of flow in a canal in the same way as the 

set of equations (6.20) as it adds no new hypothesis in the transformation. However, 
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the system (6.25) is limited in the way it is applied. The variable x, which was initially 

independent, is now dependent on time t, as it is understood in (6.22); then, ((6.25) -

(a)) will be true only along the curves that satisfy the equation ((6.25) -(b)) and, in the 

same way ((6.25) -(c)) will be true along the solution curves of ((6.25) -(d)). 

The system (6.25) can be represented in the graph x/t as in Figure 6.11, where the 

four equations are satisfied at the point of intersection R and therefore the four 

unknowns variables x, t, y and v can be found theoretically. This way, if flow conditions 

at points P and Q are known, the position of point R can be found and integrated 

numerically, along with the flow conditions. 

 

Figure 6.11: The dependence domain of point R. 

This can be proved thanks to the first of the uniqueness theorems developed by 

Crandall (1956) in which he shows that if on a curve on the graph x/t which is not a 

characteristic curve, as the line PQ in Figure 6.11, the conditions of flow y and v are 

known, then the set of equations (6.25) determines its solution with uniqueness in the 

zone marked as PQR. This zone is called the dependence domain of point R because 

the solution at this point is determined exclusively by the conditions of flow produced 
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at any point of this domain. That means that any disturbance introduced at any point 

of the dependence domain will affect the position of point R and the flow conditions. 

A complementary concept to the dependence domain is the influence domain. We 

show in Figure 6.12, the influence domain of point P, that is the set of points of the 

graph x/t (the area shaded with red vertical lines) which are seen to be affected by the 

present conditions of flow (yP,vP) at this point. In the same way, the area shaded with 

yellow horizontal lines is the influence domain of point Q and the area shaded with 

both vertical and horizontal lines is the influence domain of point R. 

 

Figure 6.12: The influence domains of points P, Q and R. 

Once the concepts of the influence and dependence domains have been introduced, 

we are able to present the basic objective of the following part. When a flow change 

is made by a pump, a series of changes to the flow condition are produced. Firstly, 

near the pump itself and then further away. If the flow change is considered as a 

disturbance, then we can speak of the disturbance influence domain. 

The objective of the next section is to present a form of calculating and quantifying the 

variation in the conditions of point R that we will call ΔyR and ΔvR when disturbances 

are introduced to points P and Q which we call ΔyP and ΔvP and ΔyQ and ΔvQ, 

respectively. 
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6.5.2. The discretization of the characteristic equations 

As previously mentioned, the system (6.20) and the equivalent (6.25) have no known 

analytical solution, so the use of numerical techniques has, until present, been 

compulsory. There are many numerical methods that can be used, at least in a 

theoretical manner. In this thesis we have preferred to use a specific discretization and 

make the appropriate mathematical developments based on the result of this 

discretization. In order to have the longest possible integration time period without loss 

of precision, we have adopted a discretization in finite differences of second order, 

called in Gómez (1988) as "the method of characteristic curves". If this method is 

applied to equations (6.25) and we take into account the characteristics curves that 

contain the points P-R and Q-R (Figure 6.12), respectively, we will obtain the next 

equations: 
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 (6.26) 

Where SfR=Sf(yR,vR), SfP=Sf (yP,vP), SfQ=Sf(yQ,vQ) and 0 ≤ θ ≤ 1 is the coefficient of 

average time that indicates the type of numerical scheme used. This is to say, when 

θ=1 the numerical scheme is implicit, when θ=0 is explicit, and when θ=1/2 the 

numerical scheme is in central differences or method of the characteristic curves. 

If the conditions of flow at points P and Q are known, then from the four equations 

(6.26) xP, tP, yP, vP and xQ, tQ, yQ, vQ are also known and xR, tR, yR, vR remain as 

unknowns variables, which can be found by using any of the methods of solving non-

linear equations, such as the Newton-Raphson method. The four equations of (6.26) 

can therefore be re-written in the form: 
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(6.27) 

Once the system (6.27) has been solved, one may ask the following question: What 

would be the solution if, instead of the conditions (yP,vP) at point P, we had, 

(yP+ΔyP,vP), that is, when a change in water level is introduced. As this flow change 

perturbs the flow conditions of R, we can linearize to the proximity of yP and expand a 

first order Taylor approximation series as: 

     2R
R P P R P P P

P

y
y y y y y y O y

y


      


 

 

(6.28) 

To answer this question, we introduce the concept of hydraulic influence. 

We define hydraulic influence of the conditions of water level and velocity at a point at 

a given time instant (as for example point P in Figure 6.11 or Figure 6.12) over the 

conditions at another point at another time instant (as for example point R in the same 

Figures) as the disturbance effect that is produced at point R caused by a small 

modification to the conditions of point P. 

In order to answer the given question, suppose that all the variables of the system 

(6.27) depend implicitly on yP, that is, yR (yP), vR(yP), tR(yP) and xR(yP) and also consider 

that the implicit function theorem is applied. Then by solving the 4×4 system: 

 



Chapter 6. Canal Survey Information:CSI algorithm                                                             98 

1 1 1 1

1

2 2 2 2

2

3 3 3 3

4 4 4 4

0

0

R

R R R R P

PR

R R R R P

PR

PR R R R

R

PR R R R

f f f f x

x y v t y f

yf f f f y

x y v t y f

yf f f f v

yx y v t

tf f f f

yx y v t

       
                    
             
         
          
        
  
      




 
 

(6.29) 

The values 
𝜕𝑋𝑅

𝜕𝑦𝑃

𝜕𝑦𝑅

𝜕𝑦𝑃

𝜕𝑣𝑅

𝜕𝑦𝑃
  and 

𝜕𝑡𝑅

𝜕𝑦𝑃
  can be found.  

It should be said that as (6.29) is the result of the application of the implicit function 

theorem on (6.27) it needs to fulfill the condition that the matrix in (6.29) can be 

inverted. That is to say, that its determinant is different from zero. 

It can be shown that this condition is fulfilled and therefore the values of the implicit 

derivatives 
𝜕𝑥𝑅

𝜕𝑦𝑃

𝜕𝑦𝑅

𝜕𝑦𝑃

𝜕𝑣𝑅

𝜕𝑦𝑃
and 

𝜕𝑡𝑅

𝜕𝑦𝑃
 always exist and are unique. The matrix structure in 

(6.29) can be formed for the remaining "disturbable" variables vP, yQ and vQ. In general, 

and for future developments, we will refer to a generic variable ψ to denote variables 

of flow description such as depth, velocity, physical coefficients, gate position, pump 

flow etc. Then, the following general expression will be used: 

PR

PR

QR

QR

yx

vy

yv

vt

 

  
  

      
   
  

   

M N  (6.30) 

Where:  

 

 

 

 
1 2 3 4 1 2 3 4, , , , , ,

;
, , , , , ,P R R R P P Q Q

f f f f f f f f

x y v t y v y v

 
 
 

M N   

Note that (6.29) is equal to (6.30) when ψ =yP and thus it has a more general character. 

From the physical point of view (6.30) "moves" or "modifies" the influence of a variable 

ψ from the points P and Q to point R. 
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The way of calculating the influences shown in this section is closely linked to the 

numerical scheme of characteristic curves. However, usually this scheme is not 

exactly used because it gives the solution at a point R whose coordinates (xR,tR) are 

unknown a priori. These coordinates are part of the solution and normally it is more 

important to know the solution of the flow conditions at specific point and at specific 

time instants. To solve this problem, there are two possibilities: first solve and then 

interpolate, or first interpolate and then solve. The second option will be the one used 

in this thesis to solve the problem and is presented in the next section. 

6.5.3. Applying to a structured grid 

In Figure 6.13 you can see how by placing the characteristic curves net (Figure 6.13 

a)) on top of a structured mesh (Figure 6.13 b)) a new scheme is obtained where the 

variables for points P and Q are interpolated (Figure 6.13 c)). In this way we can obtain 

the flow conditions for the fixed point R. 

 

Figure 6.13: The steps for the interpolation onto a structured grid. 

Obviously, the same system (6.27) is solved, but now with the new unknown’s xP, yR, 

vR and xQ. A structured grid like this one creates a new nomenclature. Indeed, every 

variable will have a double index, where k refers to time and i to space. So yik and vik 

represent the values for water level and average velocity at the co-ordinates xi=iΔx 

and tk=kΔt where Δx and Δt are appropriately selected. As interpolation has to be also 

of second order (in order to be coherent with the numerical procedure used) we have 
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used the Lagrange factors (a way of representing quadratic splines). For a dummy 

variable z the result is (Figure 6.14): 

 1 1

1 1 1 1
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  (6.31) 

In this way the variables yP, vP, yQ and vQ become functions of xP and xQ, as follows: 
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         (6.32) 

 

Figure 6.14: Interpolation functions. 

From now on it is necessary to determine the system to be solved in order to find the 

evolution of the influence of a parameter through a structured grid as it has been done 

for finding (6.30) from the characteristic curves. Contrary to what might be expected, 

finding the "transfer" of the influences (or evolution of the influence in time or space) 

in an interpolation grid simplifies the problem. The reason for this is that the influence 

of the general parameter on the position and at time instant  
𝜕𝑥𝑅

𝜕ψ
=

𝜕𝑥𝑖

𝜕ψ
, 
𝜕𝑡𝑅

𝜕ψ
=

𝜕𝑡𝑘+1

𝜕ψ
  loses all 

meaning, because we want to find the solution to specific x and y axes (Figure 6.15).  
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If we introduce two different disturbances at time K, then by solving the four equations 

(6.27) with xP, yi
k+1, vi

k+1 and xQ as unknowns, two system of characteristics are 

obtained x+, x'+ and x−, x'−, two solutions for point R (yi
k+1, vi

k+1) and (yi
k+1, vi

k+1)' and two 

sets of interpolated x axes xP, xQ and xP', xQ' are obtained, whereas the position of point 

R remains unaltered. 

 

 

Figure 6.15: A pair of systems of characteristic curves passing through point R. 

Applying once more the implicit function theorem to (6.27) with the assumption 

that  𝑦𝑖−1
𝑘 , 𝑣𝑖−1

𝑘 , 𝑦𝑖
𝑘, 𝑣𝑖

𝑘 , 𝑦𝑖+1
𝑘 , 𝑣𝑖+1

𝑘 , 𝑦𝑖+1
𝑘+1  and 𝑣𝑖+1   

𝑘+1 now depend on a general parameter ψ, gives 

a system similar to (6.30): 
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M NS    (6.33) 

where  
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It should be said that of the four values obtained 
𝜕𝑥𝑃

𝜕ψ
,
𝜕𝑦𝑖

𝑘+1

𝜕ψ
,
𝜕𝑣𝑖

𝑘+1

𝜕ψ
 and 

𝜕𝑥𝑄

𝜕ψ
 we are only 

interested in keeping  
𝜕𝑦𝑖

𝑘+1

𝜕ψ
 and 

𝜕𝑣𝑖
𝑘+1

𝜕ψ
  to find the solution to k+1, as the two other values 

never intervene in the right part of system (6.33). 

About the differences between (6.33) and (6.30), we should underline the presence of 

the matrix[𝑆]𝑖
𝑘, the values of which can be obtained from (6.32). Note also that from 

the known values  
𝜕𝑦𝑖−1

𝑘

𝜕ψ
,
𝜕𝑣𝑖−1

𝑘

𝜕ψ
,
𝜕𝑦𝑖

𝑘

𝜕ψ
,
𝜕𝑣𝑖

𝑘

𝜕ψ
,
𝜕𝑦𝑖+1

𝑘

𝜕ψ
  and 

𝜕𝑣𝑖+1
𝑘

𝜕ψ
 at time k, the values of 

𝜕𝑦𝑖
𝑘+1

𝜕ψ
and 

𝜕𝑣𝑖
𝑘+1

𝜕ψ
at 

time k+1 are obtained, which shows the concept of influence and dependence domain. 

For each point of the structured grid, a set of equations of the type (6.33) can be solved 

except for nodes that correspond to checkpoints or target points with pump, gates, 

and boundary conditions. These cases are analysed in the two following sections. 

6.5.4. Control structures 

There are many flow control structures in canals which allow flow modelling according 

to the specification of the watermaster. The individual study of each of these structures 

is impossible in this work, for this reason we will introduce the most common 

structures. A commonly found structure is a checkpoint with a sluice-gate, a lateral 

weir outlet, offtake orifice and a pumping, as seen in Figure 6.16. The interaction of 

this control structure with the flow can be described according to the principles of mass 

and energy conservation. These principles establish two mathematical relations 

between the flow conditions just upstream and downstream of the checkpoint, see 

Figure 6.16: 

         

 

e
e e e b s e s s offtake e

s s c e s

dy
S y A y v q q y A y v q y

dt

A y v k u y y d


     


   

 
 

(6.34) 

S(ye) is the horizontal surface of the reception area in the checkpoint. 

A(ye)ve is the incoming flow to checkpoint, defined in terms of water level  and velocity. 

A(ys)vs is the outgoing flow to checkpoint which continues along the canal, described 

in terms of water level and velocity. 

kc=√2g*Cc*ac where Cc is the discharge coefficient of the sluice-gate and ac is the 
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sluice-gate width. 

d is the checkpoint drop, and u is the gate opening. 

qb is the pumping offtake. 

qs(ye)=Cs*as*(ye−y0)3/2 is the outgoing lateral flow through the weir where Cs is the 

discharge coefficient, as is the width of the lip and y0 is the height of the lip measured 

from the bottom. 

qofftake(ye)=𝐶𝑑 ∗ 𝐴0 ∗ √2𝑔 ∗ 𝑦𝑒 is the outgoing offtake orifice flow where Cd is the 

discharge coefficient, A0 is the area of the offtake orifice. 

 

Figure 6.16: Diagram of a checkpoint with gate, lateral weir and pumping. 

From the control point of view, it is necessary to note the important difference between 

several types of lateral outflow: the pumping is predetermined by the operator, 

whereas the lateral weir outlet and the offtake orifice, represented by the overflow, 

depend on the existing water level upstream from the control point and so it is 

controlled by this. The difference lies in the fact that, by pumping, the extracted flow 

can be produced with the only condition being having enough water, whereas with the 
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overflow the water obtained will depend on the water level maintained. So in this 

second case the control of the extracted flow will be much more difficult. Apart from 

the cases in which pumping is compulsory (due to level limitations) the overflow 

system is preferred because it has lower energy costs even though it is more difficult 

to control, although this latter case depends on the irrigation canal, and the importance 

of the demand deliveries. 

6.5.5. The discretization of the checkpoint equations 

The presence of checkpoints or control structures in the middle of a canal leads to the 

sub-division of this canal into canal pools, in a way that there is a canal pool between 

two checkpoints, and there is a checkpoint between two pools. So yn
k+1 represents the 

water level at node n in the section upstream of the control point at time k+1, that is, 

the incoming water level ye. In the same way y1
k+1 is defined as the existing water level 

at the first node of the downstream pool from the checkpoint at the same time k+1, 

and ys the outgoing water level at the control point (Figure 6.17). The same can be 

said for the velocities vn
k+1 and v1

k+1. 

 

 

Figure 6.17: Graph with discretization of the control point equations. 

If discretization is carried out with time and we rewrite the control point equations 

(6.34), join them with the characteristics of (6.27) and then change the nomenclature, 

we arrive at the following system of six equations: 
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 (6.35) 

Where 

Δt=tk+1−tP=tk+1−tQ 

yP(xP)=s(𝑥𝑃, 𝑦𝑛−2
𝑘 , 𝑦𝑛−1

𝑘 , 𝑦𝑛
𝑘) 

yQ(xQ)=s(𝑥𝑄, 𝑦1
𝑘, 𝑦2

𝑘, 𝑦3
𝑘) 

vP(xP)=s(𝑥𝑃, 𝑣𝑛−2
𝑘 , 𝑣𝑛−1

𝑘 , 𝑣𝑛
𝑘) 

vQ(xQ)=s(𝑥𝑄, 𝑣1
𝑘, 𝑣2

𝑘, 𝑣3
𝑘) 

𝑐𝑛
𝑘+1 = 𝑐(𝑦𝑛

𝑘+1) 

𝑐1
𝑘+1 = 𝑐(𝑦1

𝑘+1) 

𝑆𝑓𝑛
𝑘+1 = 𝑆𝑓(𝑦𝑛

𝑘+1, 𝑣𝑛
𝑘+1) 

𝑆𝑓1
𝑘+1 = 𝑆𝑓(𝑦1

𝑘+1, 𝑣1
𝑘+1) 

 

Where the unknowns are  𝑥𝑃 , 𝑦𝑛
𝑘+1, 𝑣𝑛

𝑘+1, 𝑦1
𝑘+1, 𝑣1

𝑘+1 and  𝑥𝑄. 

In order to continue with the calculation of the influences of a general parameter ψ, it 

is necessary to assume, in our case, that this parameter defines the pumping flow 

qb(ψ), and the unknowns variables   𝑥𝑃 , 𝑦𝑛
𝑘+1, 𝑣𝑛

𝑘+1, 𝑦1
𝑘+1, 𝑣1

𝑘+1 and  𝑥𝑄 depend on ψ. So 

applying once more the implicit function theorem to (6.35), we obtain 
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M NS L     (6.36) 
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So far we have dealt with the influence of a generic variable ψ on the solution without 

entering into details about what the variable could represent. In (6.36) for the first time, 

it appears the pump flow qb(ψ) explicitly in the description. Despite the fact that the 

specific form of this function is still unknown, (6.36) shows that the influence of the 

parameter ψ on flow conditions at time k+1 is the sum of the indirect influence of the 

conditions at instant k and the direct influence at instant k+1 through the term |
𝜕𝑞𝑏

𝜕ψ
|
𝑛

𝑘+1
, 

which represents the variation in the pump flow when the parameter ψ changes. 
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6.5.6. Pump flow trajectories 

In irrigation canal control, the period of time that the pump need to reach full-power 

operation can be considered negligible if compared to the rest of the time that the 

pump remains working.  

This is the reason why an usual form of mathematically representing the pump flow 

trajectory is with a piece-wise function as seen in Figure 6.6. This representation 

allows the parametrization of the problem, which is the process of identifying the 

unknowns. By simply identifying the parameter ψ as the pump flow value qb(K) at the 

interval K between the time instants tK−1 and tK, the process is finished. A pump flow 

trajectory is defined as the following vector of variables: 

     1
T

b b b b FQ q q K q K     
    (6.37) 

where KF is the last interval in which the function of the pump flow trajectory is defined. 

 

Figure 6.18: Graphical representation on two canal pools of the time discretization. 
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A pump flow change implies some very important consequences which are described 

here:  

In order to solve the problem it will be necessary to use a set of Saint-Venant 

equations, for example those described in (6.27). It will be necessary to limit the 

maximum time step Δt for stability reasons, as described in the stability condition of 

Courant-Friedrichs-Levy (CFL). This condition says that the maximum step allowed is 

the time it takes a wave to travel the incremental space Δx. If a pump parameter were 

defined for each discretization time instant, then the total number of variables would 

depend on CFL, that is, on the existing flow conditions for each instant. Given that, it 

would be very difficult, or even impossible, to solve the problem, so it is necessary to 

establish a time discretization of the pump flow trajectory independent of that of the 

simulation. To show this difference the superscript K (as a capital letter) will be used 

for the time discretization of the pump flow trajectory and k (as a small letter) will be 

used for the discretization of the simulation called time step, as shown in Figure 6.18. 

The time discretization K is usually named regulation period.  

The piece-wise form of function in Figure 6.6 implies 
𝜕𝑞𝑏

𝜕ψ
= 1 in (6.36), so we will talk 

about the pumping flow qb(K) during the K-interval of time (Figure 6.18). 

Taking into account the pump flow trajectory vector (6.37), the variables give a time 

nature, which allows us to state: 
𝜕𝑦𝑖

𝑘

𝜕𝑞𝑏(𝐾)
= 0 if tk<TK. 

6.5.7. The boundary conditions 

To conclude the study of the influence that a pump flow has on the flow conditions at 

a point in the canal at a specific time instant, it is necessary to describe the boundary 

conditions as well as to find out how the influences evolve when they arrive at the 

edge of the canal and bounce. Crandall (1956) demonstrates another uniqueness 

theorem for second order systems like the one studied in this thesis, with the help of 

the graph in Figure 6.19, the theorem states the following: If the flow conditions at a 

characteristic intersection S are known and if only one variable is known from the two 

non-characteristic curves SP and SQ, then the solution uniqueness is guaranteed in 

the shaded area SPRQ.  
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Figure 6.19: Graph showing the formulation of the second theory of uniqueness for second 
order sets of hyperbolic equations. 

The joint application of this theory, and the one mentioned previously (Figure 6.11) 

entitles us to state that by establishing two conditions, one at each extreme of the 

solution interval, uniqueness can be guaranteed in the shaded areas of Figure 6.20. 

That is, if flow conditions at points P and Q on two characteristic curves and any 

condition of the y axis at both extremes are known, then the solution for points R and 

R' can be obtained. 

 

Figure 6.20: Graph representing the application of the two uniqueness theorem to the 
boundaries. 
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It should be said that in a subcritical regime (the usual working regime in irrigation 

canals, and the only considered in this thesis) a condition for each canal boundary 

must be established (as stated in the previous paragraph) because the slopes of the 

characteristic curves x+ and x− have opposite signs since the velocity of the wave is 

higher than the velocity of fluid media. That is, from (6.22) we have: 

   0 ; 0
dx dx

v c y v c y
dt dt

 

          

 

There are a large number of boundary conditions that can be set at the extreme ends 

of a canal. Continuing with the nomenclature of the structured grid (Figure 6.18), the 

boundary conditions are established as two expressions of the following generic types: 
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(6.38) 

Taking the third and fourth equations of (6.35) and the first from (6.38) gives a new 

system that needs to be solved in order to find the flow conditions at the upstream 

boundary: 
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  (6.39) 

By doing the same we can find the set of equations corresponding to the downstream 

ends if we take the first and the second equations of (6.35) and the second from (6.38), 

which gives: 
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 (6.40) 
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Applying once more the hypothesis that all variables are dependent on a pump flow 

qb(K) as we did in order to find (6.33) and (6.36) for the upstream point we can write: 
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and for the downstream end: 
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M NS L  (6.42) 

Where  

 

 
 

 

 

 

 

1 2 8 1 2 8

1 1

8

2 2 1 1

, , , ,
;

, ,, ,

, ,
0 0 ;

, , , , ,

s s

s s s s s s

k k
P P Pn n P

T

P P P

k k k k k k
b n n n n n n

f f f f f f

y v xy v x

y v xf

q K y v y v y v

 

   

 
  



  
     

M N

L S

  

 



Chapter 6. Canal Survey Information:CSI algorithm                                                             112 

6.5.8. Hydraulic influence of a pump flow trajectory parameter on 

the state vector 

The structured grid (Figure 6.18) shows a time-space discretization of a canal with two 

pools, Pool I subdivided into i−1 cells and Pool II subdivided into ns−1 cells. The grid 

also shows the flow solution at time k and at the subsequent time k+1 (every Δt) for 

all the nS sections. The algorithm allows us to find sequentially the solution for all the 

computational nodes at k+1, provided the type of each of these nodes is identified, the 

algorithm can solve the corresponding set of equations. Table 6.1 summarizes the 

whole procedure. 

 Pool Node Simulation 

Upstream boundary I 1 (6.41) 

Computational nodes I 2, . . . ,i-1 (6.33) 

Checkpoints I and II  i ,i+1 (6.36) 

Computational nodes II i+2, . . . ,ns-1 (6.33) 

Downstream boundary II ns (6.42) 

Table 6.1: summarize of the whole procedure 

So far we have only discussed about the solution of the equations for simulation 

purposes. However our final goal is the study of the time-space evolution of the 

influence of any variable in the trajectory (6.37). For each time instant, the new value 

of the influence of any pump flow qb(K) is calculated at each computational node using 

some of the previously mentioned systems of equations: (6.33), (6.36), (6.41) or 

(6.42). 

Adequately compiled into a single set that can be represented in the following manner: 

   
 

1
1,

k k
k

b

b b

q K
q K q K


 

     

x x
A b x   (6.43) 
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where A= A [xk+1, xk, qb(K)] is a (2nS)×(2nS) square matrix where nS is the total number 

of cross sections of the simulation according to the nomenclature showed in Figure 

6.18, b[xk+1, qb(K)] is the direct influence vector of 2nS components and x is the state 

vector of dimension 2nS, which at instant k and k+1 is defined as: 

 

 1 1 s si i

T
k k k k k k k

y v y v y yn nx  

 
   (6.44) 

 1 1 1 1 1 1 1

1 1 S S

T
k k k k k k k

i i n ny v y v y y      x  
 

The set of equations (6.43) shows that the influence of the pump parameter qb(K) on 

the state vector at time k+1 is equal to the direct influence of qb(K) in instant k+1 plus 

the updating of the influence in time k.  

The Figure 6.21 shows the influence of a pump flow change during a several regulation 

period (TK-TK+1), as the disturbance extends upstream and the downstream in the 

canal. Grey colours represent points that the disturbance has no influence and blue 

colour tones represent points that the disturbance decreases or increases water levels 

due to the pump flow. The plot can be also seen as the effect of a perturbation made 

by qb(K) over the predictive vector. If we look at the diagram in Figure 6.21, we need 

to make the following considerations: 
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Figure 6.21:The evolution of the influence of the pump flow through time and space. The grey 

dots correspond to the points where there is no influence of the pump flow: 
𝛛𝐗𝐢

𝐊

𝛛𝐪𝒃(𝐊)
= 𝟎 and the 

blue dots where there is influence of the pump flow: 
𝛛𝐗𝐢

𝐊

𝛛𝐪𝒃(𝐊)
≠ 𝟎. 

a) In case that we study the influence of qb(K) at time step k, as tk<TK, 

then     
∂Xi

K

∂q
𝑏
(K)

= 0 there is no need to set the influence of the pump flow because 

the influence domain of a parameter backwards in time is null. 

b) In case that we study the influence of qb(K)  at time step k+1, as tk+1= TK, the 

set of equations (6.43) becomes: 

∂xk+1

∂q𝑏(K)
= [A]

∂xk

∂q𝑏(K)
+ b[xk+1, q𝑏(K)] = b[xk+1, q𝑏(K)]   

 (6.45) 

where [A] = A[xk+1, xk, q𝑏(K)] represents the updating of the influence from  xk to 

xk+1 , and b[xk+1, q𝑏(K)] is the direct influence vector and x is the state vector. 

This last term is useful to find the initial value of the influence of the parameter 

qb(K) on the flow conditions xk+1, that is to say, the direct influence.  

c) In case that we study the influence of qb(K)  at time step k+2. The complete set 

of equations (6.43) is used when TK <tk+2≤ TK+1: 
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∂xk+2

∂q(K)
= A[xk+1, q

𝑏
(K)]

∂xk+1

∂q(K)
+  b[xk+2, q

𝑏
(K)] (6.46) 

 

d) Finally, when tk+10> TK+1 the equation (6.43) lose the direct influence of the 

parameter and becomes:  

∂xk+10

∂q(K)
= A[xk+9, q

𝑏
(K)]

∂xk+9

∂q(K)
 

(6.47) 

 

After determining the values of the state vector by applying the corresponding sets of 

equations, the influence domain of the parameter qb(K) can be described and 

quantified, and it’s influence on the system is showed by the blue dots of the Figure 

6.21. 

The hydraulic influence matrix is composed by the influence of the pump flow over the 

canal state lumped in a matrix, which it is composed by all the terms: 

[HIM (Q𝑏j
)] = [

∂x
k1

kF

∂q𝑏j(1)
…

∂x
k1

kF

∂q𝑏j(K)
…

∂x
k1

kF

∂q𝑏j(KF)
]. 

(6.48) 

 

 

A forecast of the perturbed flow can be calculated by the product: 

∆X1
kF = (

∂X1
kF

∂q𝑏(K)
)∆q𝑏(K)  (6.49) 

 

If we want to know a forecast of the predictive vector when the pump flow trajectories 

are perturbed a little, we only have to consider: 

X1
kF(Q𝑏

∗ + ∆Q𝑏) = X1
kF(Q∗

𝑏) + ∆X1
kF  (6.50) 

where Qb is the vector of the compilation of all the pump flow trajectories: 

 

𝑄𝑏 = (𝑞𝑏1(1)……𝑞𝑏𝑖(1) ⋯⋯𝑞𝑏𝑛𝑝
(1)… 𝑞𝑏1(𝐾𝐹)……𝑞𝑏𝑖(𝐾𝐹)  ⋯⋯𝑞𝑏𝑛𝑝

(𝐾𝐹)) 
 

(6.51) 
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where ΔQb= (0,...,Δqb(K),…) is the disturbance of the pump flow trajectories, Q*b is the 

reference pump flow trajectories, and the  X1
kF(Q𝑏

∗ + ∆Q𝑏) is the simulated state vector 

when the pump flow trajectories are disturbed a little.  

The HIM(Qb) allows to analyse the effect that a flow change has on the system (that 

we could call analysis of the "influence domain") and also which pump station has an 

effect on a cross-section of the canal at a certain instant (that we could call analysis 

of the "dependence domain" of the point).  

The HIM(Qb) can be considered as a linearization of the Saint-Venant model as the 

model used by Malaterre (1994), but the HIM(Qb) is a linearization model around of an 

unsteady state solution. The HIM is a helpful tool to calculate the state vector when 

the pump flow trajectories are disturbed a little: 

X1
kF(Q𝑞

∗ + ∆Q𝑞) − X1
kF(Q𝑞

∗) = HIM(Q𝑞
∗)∆Q𝑞 + O(∆Q𝑞

2)  (6.52) 

 

Neglecting the second order and upper terms, (6.52) can be rewritten in the form: 

∆X = HIM(Q𝑞
∗)∆Q𝑞 (6.53) 

where ΔQb = the perturbed pump flow vector; and ΔX = the predicted error from the 

state vector.  

We way include all the state vectors    (6.44) for each k-instant on the simulated past 

time horizon into the following single vector named predicted vector: 

         11 2

1
F F F

T
T T T Tk k kQ Q Q Q Q 

 
X x x x x   (6.54) 

Where kF = final instant of the past time horizon of a period of time. We can now 

compile into only one vector, in a similar way to before, all the values of the influence 

of any pump flow trajectory qbj(K) on the state vector. This new vector we will call the 

vector of influence of the pump flow on the predictive vector: 

 
 

 
 

 
 

 
 

 
 

11 2

1
F F F

b b

T
T T T Tk k k

b j b j j b j j

Q Q Q Q Q

q K q K q K q K q K

     
  

      

X x x x x
 (6.55) 
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6.5.9. Compilation of the Hydraulic influence matrix 

6.5.9.1. Definition  

Once we have introduced the hydraulic influence of a pump flow on the canal state, it 

is possible to compile all these elements in a matrix which we call ”the hydraulic 

influence matrix”. If we define the hydraulic influence on the state vector (6.54) of a 

certain pump station "j" (6.37) during a past time horizon (γ) in each cross-section, the 

following hydraulic influence matrix, denoted by [IM (qb)]j ,is obtained: 

 

[IM(𝑞𝑏)]𝑗 = [
𝜕𝑋𝑘1

𝑘𝐹

𝜕𝑞𝑏𝑗(1)
…

𝜕𝑋𝑘1

𝑘𝐹

𝜕𝑞𝑏𝑗(𝐾)
⋯

𝜕𝑋𝑘1

𝑘𝐹

𝜕𝑞𝑏𝑗(𝛾)
] = 

[
 
 
 
 
 
 
 
 
 
 
 𝜕𝑥𝑘𝐼

𝜕𝑞𝑏𝑗(1)

⋮
⋮

𝜕𝑥𝑘𝑖

𝜕𝑞𝑏𝑗(1)

⋮
⋮

𝜕𝑥𝑘𝐹

𝜕𝑞𝑏𝑗(1)

⋱
⋱
⋱
…
⋱
⋱
⋱

⋯
⋱
⋱
⋱
⋱
…
⋱
⋱
⋱

⋱
⋱
⋱
…
⋱
⋱
⋱
⋱
⋯

⋱
⋱
⋱
…
⋱
⋱
⋱

𝜕𝑥𝑘𝐼

𝜕𝑞𝑏𝑗(𝐾)

⋮
⋮

𝜕𝑥𝑘𝑖

𝜕𝑞𝑏𝑗(𝐾)

⋮
⋮

𝜕𝑥𝑘𝐹

𝜕𝑞𝑏𝑗(𝐾)

⋱
⋱
⋱
…
⋱
⋱
⋱

⋯
⋱
⋱
⋱
⋱
…
⋱
⋱
⋱

⋱
⋱
⋱
…
⋱
⋱
⋱
⋱
⋯

⋱
⋱
⋱
…
⋱
⋱
⋱

𝜕𝑥𝑘𝐼

𝜕𝑞𝑏𝑗(𝛾)

⋮
⋮

𝜕𝑥𝑘𝑖

𝜕𝑞𝑏𝑗(𝛾)

⋮
⋮

𝜕𝑥𝑘𝐹

𝜕𝑞𝑏𝑗(𝛾)]
 
 
 
 
 
 
 
 
 
 
 

 

 

(6.56) 

 

Where 2×ns is the dimension of the state vector at time step k equal to the number of 

cross sections plus the number of parameters (water level and velocity), j is “jth” pump 

station in the canal, and 𝛾 is the final regulation period.  

A feature of this matrix is the number of columns and the rows. There are more rows 

than columns because every term 
𝜕𝑥𝑘

𝜕𝑞𝑏𝑗(𝐾)
 has 2×ns rows, and the temporal discretization 

of the simulation ∆tk is smallest than the regulation period ∆TK.  

In the case that the matrix only defines the hydraulic influence of the pump flow on the 

water level (not considering the velocity), the number of elements by each term 
𝜕𝑥𝑘

𝜕𝑞𝑏𝑗(𝐾)
 

is reduced to ns, and if the number of cross-sections is also reduced to the number of 
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checkpoints so ns =nc. In case that the temporal discretization of the simulation 

introduced into the matrix is equal to the number of regulation period and the number 

of checkpoints is equal to the number of pumps, the HIM matrix is a square matrix. 

Another one feature of the HIM is that there are some elements with a zero value, 

because there is not any influence of the pumps on certain points at a certain time step.  

When there are more than one pump station in the canal, the matrix has to compile the 

pump stations all together. In that case, the HIM is compiled as: 

 

[IM(𝑄𝑏)]𝑋 = [[
𝜕𝑋1

𝑘𝐹(𝑞𝑏)

𝜕𝑞𝑏1(1)
⋯

𝜕𝑋1
𝑘𝐹(𝑞𝑏)

𝜕𝑞𝑏𝑛𝑝
(1)

]⋯ [
𝜕𝑋1

𝑘𝐹(𝑞𝑏)

𝜕𝑞𝑏1(𝛾)
⋯

𝜕𝑋1
𝑘𝐹(𝑞𝑏)

𝜕𝑞𝑏𝑛𝑝
(𝛾)

]] 

 

 (6.57) 

 

where sub index X is used to denote the hydraulic influence matrix on the state vector, 

np is the total number of the pump stations. 

6.5.9.2. The discrete observer 

In most cases we only need to know some values of the state vector in specific points 

of the canal in particulars time steps. It is possible to see an example of two canal 

pools with one pump in the Figure 6.18 , in this spatial discretization the number of 

sections is ns and the number of time steps (remember that the duration of the time 

step depend on the Courant condition in implicit schemes) is nT = kF −kI. The 

discretization of the pump flow trajectories depends on the number of pumps np = 1 

and the regulation periods, in this case 𝛾 = 4. As a result the total number of 

parameters becomes nQ = 𝛾 × np = 4.  

So the dimensions of the vectors and matrices shown in this spatial discretization are 

the following: 

The dimension of the simulation vector 𝑋𝑘𝐼+1

𝑘𝐹 :   𝑛𝑥 = 2 × 𝑛𝑇 × 𝑛𝑠 

The dimension of the pump flow vector 𝑄𝑏:   𝑛𝑄 = 𝛾 × 𝑛𝑝 = 4 

The dimension of the hydraulic influence matrix on the simulation 

vector[𝐼𝑀(𝑄𝑏)]𝑥:   𝑛𝑥 × 𝑛𝑄 = 2 × 𝑛𝑇 × 𝑛𝑠 × 𝑛𝑄 
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The result of the simulation at checkpoints 𝑌𝑘𝐼+1

𝑘𝐹 (𝑄𝑏):   𝑛𝑌 = 𝑛𝑇 × 𝑛𝑠  

• The dimension of the hydraulic influence matrix on the discrete observer set 

[𝐼𝑀(𝑄𝑏)]𝑌:   𝑛𝑌 × 𝑛𝑄 

In order to express this information mathematically, as we introduced before, a new 

matrix needs to be introduced called ”discrete observer matrix”, denoted as [C] in the 

control literature. This matrix is made up exclusively of ”zeros” and ”ones”, and it  

represents respectively in the next equation (6.58), the state vector at certain time 

steps and at certain points of the canal, and the influence matrix of the trajectories at 

these points. 

𝑌1
𝑘𝐹(𝑄𝑏) = [𝐶]𝑋1

𝑘𝐹(𝑄𝑏) 

[𝐼𝑀(𝑄𝑏)]𝑌 = [𝐶][𝐼𝑀(𝑄𝑏)]𝑥 
(6.58) 

In the case, that  𝑛𝑇 = 𝛾, 𝑛𝑠 = number of checkpoints = 𝑛𝑐  and the only one 

hydrodynamic variable represented is the water level. The HIM is a square matrix, 

conclusion reached anteriorly. 

6.5.9.3. Features of the hydraulic influence matrix 

One of the most important characteristic of the hydraulic influence matrix ([IM (Qb)]Y) 

must be that this matrix is not a non-singular matrix.. This requisite is justified by the 

fact that in the optimisation process, the matrix has to be inverted through its pseudo-

inversion (6.59) (see algorithms from sections 6.3.2). In other words, if we want to 

know what pump flow change (ΔQb) has to be introduced into the pump flow trajectory 

Qb to obtain a change of the state vector (ΔY), it is necessary to solve the pseudo-

inversion, as we introduce in Appendix 2. 

∆𝑄𝑏 = {[𝐼𝑀(𝑄𝑏)]𝑌
𝑇
[𝐼𝑀(𝑄𝑏)]𝑌}

−1
[𝐼𝑀(𝑄𝑏)]𝑌

𝑇
∆𝑌 (6.59) 

where {[𝐼𝑀(𝑄𝑏)]𝑌
𝑇[𝐼𝑀(𝑄𝑏)]𝑌}

−1
 is the so-called pseudo-inverse matrix, ∆𝑌 = 𝑌1

𝑘𝐹(𝑄𝑏 +

∆𝑄𝑏) − 𝑌𝑘1
𝑘𝐹(𝑄𝑏) is a deviation on the water level. So if the hydraulic influence matrix is 

not singular, then the pseudo-inversion will be able to be inverted and the set of 

equations (6.59) can be solved.  

The problem is when a bad definition of the discrete observer matrix makes that the 

hydraulic influence matrix is become a singular matrix, for instance when a pump 
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station ”j” (qjb (KF-1)) extracted flow at the regulation period KF-1, as we show at the 

Figure 6.22, this has not influence on section “i” of the canal from time step 1 to KF, so 

a whole column of [𝑰𝑴(𝑸)]𝒀 is full of ”zeros” (6.56).  

𝜕𝑌1
𝑘𝐹(𝑄𝑏)

𝜕𝑞𝑏𝑗(𝐾)
= 0 

  

(6.60) 

 

As we can look at the Figure 6.22, the parameter qbj (KF) has no influence on the levels 

Yi(1),…,Yi(KF-2),…,Yi(KF-1),…, Yi(KF). As a final conclusion, the study of the hydraulic 

influence matrix could allow the establishment of the control parameters, such as the 

determination of the testing period. 

 

Figure 6.22: An example of a pump parameter which has no influence on any point. 
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6.6. APPENDIX II 

 

Unconstrained optimized problem (Levenberg-Marquardt) 

As shown in the "perturbation theory" by Brogan (1985) applied in the predictive output 

vector, we can introduce Taylor series modifying this vector around a pump flow 

reference trajectory by means: 

* *

2
* * * 2

2

1
( ) ( )

2
b b

b b b b b

b bQ Q

Y Y
Y Y Q Q Y Q Q Q

Q Q

    
            

    
 

  (6.61) 

 

Assuming that the disturbance caused is sufficiently small, we can neglect the terms 

after of the first term (6.62) obtaining:  

*

* *( )

b

b b b b

b Q

Y
Q Y Q Q Y Q

Q

 
       

 
 

(6.62) 

 

On the other hand, it is possible to use the hydraulic influence matrix (HIM), defined 

by Soler (2003).  

*

*

b
b Q

Y
J

Q

 
       

 

(6.63) 

 

Taking account all of these terms, we can write: 

1
* * *T T

bQ J J J Y


          
 

(6.64) 

We can set the ΔQ pump flow changes to reach the desired water level in the targets 

as these have been modified for a perturbation ΔY. The equation system can be 

solved by Jacobi method, Cholesky method, singular value decomposition method or 

LU decomposition. There are an extensive bibliography about these methods, as 

Numerical Recipes in FORTRAN 77 (1992). 

The problem is to solve the equation (6.64) at each time step. We can define the 

equation on a compact form: 
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  * *T

G J J       
 

(6.65) 

*'
T

b J Y  
 

 
(6.66) 

 

So we can replace the equation (6.65) and equation (6.66) in equation (6.64): 

 ' bb G Q   
(6.67) 

Although the system matrix is positive definite by definition, is not well conditioned 

(Soler, 2003). This implies that solving the system, numerical errors can be very 

important. To avoid this problem we add a positive term to the diagonal of the system 

matrix, this parameter is called Marquardt coefficient ( ). It has been used several 

times, in all problems with the Hessian matrix. It exists a lot of theory about it, for 

instance in Fletcher (1987). 

The system of equations can be written then as: 

 ' bb G I Q    
(6.68) 

Where [I] is the identity matrix of the same dimensions as [G]. To solve the system 

(6.68) can use different methods. In our case we use a process optimization method 

based on the Levenberg-Marquardt method.  

Supposing we have a diagonal matrix [Λ] with the eigenvalues of the matrix [G], and 

a matrix orthonormal ([V]: [V× VT] = [I])   defined by the eigenvectors associated with 

each eigenvalue of [G]. Multiplying both sides of equality (6.68) for the matrix [VT], we 

obtain: 

'T T T T

bV G V I V V Q V b                  
(6.69) 

Knowing that the [V] matrix is orthonormal, we can write (6.69) as follow: 
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'T T T T

bV G V V I V V Q V b                   
(6.70) 

And according to the property [Λ] = [VT×G×V], it can be transformed (6.70) as follows: 

  'T T

bI V Q V b              
(6.71) 

 

Furthermore, the fact of using a matrix as orthonormal matrix [V] allows us to ensure 

that:    

  'T T

bI V Q V b            
 (6.72) 

. 

To simplify (6.71) we can define the vectors Z and B as follow: 

T

bZ V Q     
(6.73) 

'TB V b     
(6.74) 

So Z is an unknown quantity, and (6.71) can be transformed into: 

 I Z B   
(6.75) 

From equation (6.75) the Z components can be separated easily because the new 

system matrix is now diagonal. Each of the Z components can be calculated as follow: 

( )
( )

( , ) [I]

B i
Z i

i i 

 

 

(6.76) 

Although the matrix [G] is positive definite, it is ill conditioned so it is possible that some 

eigenvalue of [G] are negative, although very close to absolute zero. To prevent this 

problem is introduced the Marquardt coefficient whose value is necessarily greater 

than the absolute value of the smallest eigenvalue of [G], so that (Λ+ [I]) is always a 

positive number. Depending on the value you chose for the coefficient, the solution 

will be different. In that sense, we solve the system of equation in a iteration procedure, 
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the algorithm reduces the Marquardt coefficient in each iteration in order to reduce the 

influence of the coefficient in the final solution. 

Solving the equation (6.76), we obtain the solution (the changes in extracted flow 

vector). 

 bQ V Z    
(6.77) 

So an extracted flow vector is calculated at time step K for a past time horizon 

(Q0
K

b=Q0
K

 b+∆Q0
K

 b). The optimization problem must be solved again in the next time 

instant K+1, so we could obtain a new extracted flow vector at time step at time step 

K+1 for a past time horizon (Q0
K+1

b=Q0
K+1

 b+∆Q0
K+1

 b). 
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Chapter 7 

 

CSI performance: Numerical examples 

 

In this chapter we test the CSI algorithm in several numerical examples to establish 

the disturbances introduced in the system and the hydrodynamic state of a canal 

during a past time horizon. 

The CSI is an useful algorithm, as we have introduced in the last chapter, and can be 

used in different ways. For instance, if the demand deliveries have been increased 

because a farmer took a greater flow by the orifice offtake that it was scheduled, CSI 

can obtain the unknown flow withdrawn by the farmer. If a farmer pumps water from 

an unknown point in the canal, CSI can also obtain the approximate location of this 

point and the volume of water withdrawn by the farmer.  

CSI estimates the hydrodynamic state of a canal during a past time horizon and the 

current canal state which is very useful for a feedback controller which needs 

information about the canal state in real time.  

In this chapter, we introduce some numerical examples considering an irrigation canal 

in subcritical flow regime during a past time horizon, in which the unknown flow 

changes are associated with changes in demand deliveries at the control structures. 

The objective is to define with the aid of the algorithm, the past and current 

hydrodynamic state of the canal and the unknown flow diversions.  

To introduce this chapter we have to define the problem statement specifying, the 

geometry of the canal, the initial and boundary conditions, and the measured water 

levels at the checkpoints. We analyze the results obtained in each example, that is, 

the extracted flow water in space and time and the hydrodynamic canal state  
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7.1. Introduction  

The first objective of CSI is estimate the offtake changes and the second objective is 

obtain the hydrodynamic canal state from present moment to a past time by two 

reasons. On one side, we want to quantify the wrong deliveries and on the other side 

define the past and the current canal state to send to the feedback algorithm. CSI 

calculates the extracted flow (through lateral weirs, pumps, orifice offtake,…) from the 

water level measurements at checkpoints, the gate trajectories and the scheduled 

demands at the orifice offtakes during a past time horizon in these examples. The 

purpose is difficult to achieve because the farmer can extract flow in every pump 

station or orifice offtake in the canal at any time. 

We proposed several scenarios to test CSI algorithm in a canal which has two pools 

separated by sluice gates (Figure 7.1). The flow is controlled by a gate downstream 

from the reservoir. Water is delivered through gravity outlets at the downstream end 

of each pool, where the check-points are located. There are pumping stations at the 

end of each pool which can introduce disturbances on the system in space and time.  

 

Figure 7.1: Canal profile. 
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7.2. Geometry 

The canal with a trapecial section is represented in the Figure 7.1, and the general 

data is shown in Table 7.1. Checkpoints, sluice gates, pump stations and orifice 

offtakes are shown in Table 7.2: 

 

Pool 

number 

Pool 

length 

(Km) 

Bottom 

slope 

(%) 

Side 

slopes 

(H:V) 

Manning’s 

coefficient 

(n) 

Bottom 

width 

(m) 

Canal 

Depth 

(m) 

I 2.5 0.1 1.5:1 0.025 1 2.5 

II 2.5 0.1 1.5:1 0.025 1 2.5 

 

Table 7.1: General canal features. 

 

Number of 

control 

structure or 

checkpoint 

Gate 

discharge 

coefficient 

Gate 

width 

(m) 

Gate 

height 

(m) 

Step 

(m) 

Discharge 

coef./diameter 

orifice offtake 

(m) 

 

Orifice 

offtake 

height 

(m) 

Lateral 

spillway 

height 

(m) 

Lateral 

spillway width 

(m)/discharge 

coefficient 

0* 0.61 5.0 2.5 0.6 - - - - 

1 0.61 5.0 2.5 0.6 0.6/0.77 1.0 2.3 500/1.99 

2 - - - - 0.6/0.77 1.0 2.3 500/1.99 

Table 7.2: Checkpoints and Sluice gate/ pump station/ orifice offtake features (control 
structure). 

 

*There is only a gate in section 0, there is not a checkpoint.  

 

7.3. Discretization of a problem 

The past time horizon length is defined equal to TKF= 14400 seconds =240minutes= 4 

hours. The time interval between successive control actions is ∆T= 300s = 5min. The 

number of regulation periods during the past time horizon is γ= 48. The canal has been 

spatially discretized (∆x) every 20 meters, so the numbers of computational cross-

sections in each pool are 125 and along the canal are 250. 
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7.4. Boundary and initial conditions 

In these examples is considered an upstream large reservoir, whose water level 

Hreservoir is 3 m constant throughout the test. This is the upstream boundary condition. 

At the end of the last pool, there is a control structure with orifice offtake and a pump 

station. The flow through the orifice offtake depends on the upstream water level of 

the orifice and the flow pumped is variable at every example. This is the downstream 

boundary condition. The examples start from an initial steady state with the demand 

delivery at the end of the pools constant (5m3/s through the orifice offtake), and the 

flow is not pumped at the beginning of those examples. The initial conditions are the 

same in all examples. 

Control 

structure 

Initial Flow rate 

(m3/s) 

Control 

structure 

Initial water 

level 

(m) 

Gate 1 10.0 Checkpoint 1 2.0 

Gate 2 5.0 Checkpoint 2 2.0 

Table 7.3: Initial conditions in the canal. 

Control structure 
Flow delivered by an 

orifice offtake  (m3/s) 

Gravity outlet 1 5.0 

Gravity outlet 2 5.0 

Table 7.4: Flow delivered by an orifice offtake at the initial time step. 

 

 

Figure 7.2: Backwater profile of the canal in the initial steady state.   



Chapter 7.CSI performance: Numerical examples                                                               129 

CSI computes the unscheduled offtake changes introduced to the canal and write 

these offtake changes as a pump flow trajectory (temporal function) associated at a 

certain pump station. The algorithm assigns to the pump stations all flow changes 

between the initial steady state to the current state.  

Once we have introduced input parameters used in CSI algorithm as the boundary 

and initial conditions, we have to define important variables in flow as the scheduled 

deliveries, the gates trajectories, pump flow trajectories and the measured water levels 

at the checkpoints during the past time horizon. 

 Scheduled Deliveries (qofftake): There are orifices offtake to convey flow rate to 

the farmers at the end of every pool. The water demand in all scenarios (shown 

in Table 7.4) was estimated at every regulation time step during the past time 

horizon and this information is known by CSI.  

 

 

             where y is the water level in canal at offtake, y0 is the orifice offtake height 

             equal to ytarget/2, Cd is the discharge coefficient and Ф is the orifice offtake  

            diameter. 

 Measured water levels (Y*): The water level is measured at every checkpoint 

at every time step during the past time horizon. We have to introduce the water 

level measurements to CSI in each of these examples. 

 The gate trajectories (U): We have to define the sluice gate trajectories during 

the simulating horizon. Gate position is defined at every regulation period 

during the past time horizon. The gate position remains constant in these 

examples.  

 The pump flow trajectories (qpump): CSI has to compute the pump flow 

trajectories during the past time horizon. The pump flow trajectory vector is 

composed by two elements (two pumps stations) in a simulated time horizon 

of 48 regulation period, so the vector size is of 96 parameters. 

CSI solves an optimization problem to set the pump flow trajectories. The algorithm 

uses an iterative method (Levenberg-Marquardt) that provides successive 

𝑄𝑜𝑓𝑓𝑡𝑎𝑘𝑒 = 𝐶𝑑 ×
𝜋 × ∅2

4
√2𝑔(𝑦 − 𝑦0) 

(7.1) 



Chapter 7.CSI performance: Numerical examples                                                               130 

approximations to the solution, and it is necessary to establish a first pump flow 

trajectory. In this respect, the Levenberg-Marquardt is a derived method of Newton 

methods used in optimization problems, which find the solution although the first 

approximation starts very far from the final minimum, obtaining an accurate solution. 

If the first approximation to the solution is close to the optimum solution, the method 

converges faster. 

7.5. Test cases analyzed 

In order to test the algorithm, we introduce different disturbances in the canal in each 

example, which are unknown for CSI. We will consequently get variations between the 

measured water level and the expected water level at every checkpoint during the past 

time horizon.  In that sense, if we introduce a pump flow change in a pump station 

during a period of time, the initial steady state conditions of the canal is disturbed and 

the flow conditions becomes unsteady. At the end of the test, the canal comes back 

to the steady state because the duration of the pump flow disturbance is short.  

7.5.1. First example: flow disturbance  

The water level measurements (Figure 7.3) are obtained after introducing a flow 

disturbance of 2 m3/s (on the pump station 1 for 15 minutes, from the minute 40 to 55). 

These disturbances are introduced to the computer model as a pump flow change and 

we obtain the water level measurements from this model. Once the water level 

measurements are introduced in the CSI algorithm, the algorithm will propose the 

pump flow trajectories that describe with best accuracy the variation of water level at 

the checkpoints during the past time horizon which lasts 4 hours.  

The flow disturbance reduces the water level at the checkpoint 1, from 2 m to 1.60 m, 

and at the checkpoint 2, from 2 m to 1.92 m, see Figure 7.3. A flow change of 2 m3/s 

at the pump station 1 has a significant impact on the canal profile of the canal, and the 

water level at the checkpoint 1 and 2 is recovered to the desired water level (2 m) in 

160 minutes and 150 minutes, respectively. As soon as the water level at checkpoints 

recover the desired water level at this points, the flow through the orifice offtake come 

back to be 5 m3/s. 
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The flow disturbance introduced in this test is always an outlet pump flow (positive 

value) but the algorithm also works well when the pump flow is an inflow or external 

runoff (negative value), as we will show in chapter 10. 

 

Figure 7.3: Water level measured at checkpoint 1 and 2 during the past time horizon in the first 
example.  

 

The results of the pump flow obtained by CSI are shown in Figure 7.4. We can 

compare the result between the real pump flow (disturbance) and the simulating pump 

flow calculated by CSI. Both curves match exactly, differences between them are 

practically non-existent. The maximum error is around 0.005 m3/s, taking into account 

that the real pump flow is 2 m3/s, the percentage maximum error between the real and 

simulated result is 0.25%. 
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Figure 7.4: Pump flow at checkpoint 1 and 2 during the past time horizon in the first example. 

 

7.5.2. Second example: small disturbance  

The objective of this test is to set the accuracy of CSI algorithm in case of small water 

offtakes. We analyse CSI in a test in which the disturbance is very small. The 

difference between the real disturbance and the results obtained by CSI should be 

very small, much more in this example because the disturbance is reduced. It is 

possible in case of small disturbances that we could not differentiate between the real 

disturbance and the CSI error. If the error committed by CSI algorithm is much lower 

than the value of the real disturbance, CSI is an accurate algorithm. 

We introduce a disturbance much lower than the disturbance introduced at the last 

example and we compare the similarity between the CSI’s error respect to the value 

of the disturbance introduced. In this scenario, the disturbance is 50 l/s (a 1% of the 

total flow rate in the canal). This disturbance is introduced at the pump station 1 during 

15 minutes from the minute 40 to 55.  
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In order to illustrate this example, if the error in the result is close to 25 l/s, the 0,5% 

of the total flow rate in the canal, the error would be similar to the disturbance, and the 

accuracy of CSI would be low in this test.  

The disturbance reduces the water level at the checkpoint 1, from 2 m to 1.990 m, and 

at checkpoint 2, from 2 m to 1.998 m, see Figure 7.5. A flow change of 50 l/s at the 

pump station 1 will have a little impact on the water profile of the canal, and the water 

level at checkpoint 1 and 2 is recovered to the expected water level in 50 minutes and 

100 minutes, respectively.  

The water level measurements used by the CSI algorithm are shown in the Figure 7.5. 

 

Figure 7.5: Water level measured in checkpoint 1 and 2 during a past time horizon in the 
second example. 

 

The results of pump flow obtained by CSI are shown in the Figure 7.6. In all cases, 

the maximum error between the real and simulated solution is around 0.004 m3/s, as 

the real pump flow is 50 l/s, the percentage of maximum error is close to 8%. In that 

sense, the result obtained by CSI algorithm is a good approach to the real pump flow.  
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In this case, the only problem is to have a water level gage with such accuracy, 

although the gage should be more or less accurate depending on the geometry and 

features of the canal and the disturbance. In that example, an external disturbance 

value of 50 l/s represents a water level disturbance of few millimeters, and this water 

level variation can be too low to be measured accurately for a water gage.  

Taking into account the maximum error obtained by CSI and the accuracy of a gage, 

CSI is enough accurate for the gages that we usually use. 

 

Figure 7.6: Pump flow in checkpoint 1 and 2 during a past time horizon in the second example. 

 

7.5.3. Third example: flow disturbance not localized at a control 

structure 

The CSI algorithm calculates pump flow changes at every control structure, but 

sometimes the pump unit can be located in other places, instead of in a known control 

structure. For this reason we establish this scenario to check the CSI behavior when 

the disturbance is introduced out of a control structure. 
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In this example, we introduce a disturbance at a certain cross-section of a canal (PK 

3+750), where the pump flow change is located at the middle of the second pool, and 

this cross-section is not a control structure. The CSI has not any water level 

measures at PK 3+750, as this cross-section is not a node set by the algorithm as a 

checkpoint, so it is a “normal” node for the algorithm. 

The water level measurements (Figure 7.7), which are used as input data in the CSI 

algorithm, are obtained after introducing in the computer model a flow disturbance of 

2 m3/s (at the P.K. 3+750 for 60 minutes, from the minute 60 to 120). 

The flow disturbance reduces the water level at the checkpoint 2 from 2 m to 1.375 m, 

and at checkpoint 1 is kept constant, due to the canal features and the flow conditions, 

see Figure 7.7. In that sense, a flow pumped of 2 m3/s at P.K. 3+750 will have a 

significant impact on the checkpoint 2 and little impact at checkpoint 1. The water level 

at the checkpoint 2 is recovered to the desired water level (2 m) in 130 minutes.  The 

flow through the second orifice offtake come back to be 5 m3/s at the end of the test. 

 

Figure 7.7: Water level measured in checkpoint 1 and 2 during a past time horizon in the third 
example. 

In this example the CSI algorithm has to adapt a new situation, because CSI is only 

able to calculate disturbances at a control structure, but in this case the flow rate 
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pumping is not localized at a control structure, but in an unknown cross-section in the 

canal, between two checkpoints.  

The results obtained by CSI are shown in Figure 7.8. The CSI algorithm distributes 

the pumped flow in an unknown cross-section to the upstream and downstream pump 

stations. 

The simulated pump flow at "checkpoint 2" (P.K. 5+000) starts 5 minutes after that the 

real pump flow at PK 3+750 starts to pumping. This is because, until the depressive 

translatory wave does not reach to checkpoint 2, 1250 meter downstream from the PK 

3+750, there is not any change on water levels measurements at checkpoint 2, so the 

CSI algorithm does not have any notice about the pump flow change. This 5 minutes 

of difference correspond to the time that the wave travels from P.K 3+750 to P.K 

5+000.  

The travel time was also computed by the equation (7.2), and the value was 

approximately 287 seconds, with an average velocity of 0.54 m/s and an average 

celerity of 3.80 m/s obtained from the computer model. 

𝑇𝑖𝑚𝑒 =
(𝑋𝑃.𝐾.5+000 − 𝑋𝑃.𝐾.3+750)

(𝑉elocity + 𝐶elerity)
≈ 287 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

(7.2) 

 

Depending upon the value of the hydraulic depth, the wave velocity may be 10 times 

faster than the mean water velocity. In reality, flow will begin to decrease at cross-

sections downstream as soon as the leading edge of the translatory wave front arrives, 

which is much sooner than would be predicted from the average flow velocity in the 

canal. The total amount of the flow change will reach later at points downstream, due 

to the fact that the total flow travels at the average flow velocity in the canal. Once the 

depressive translatory wave arrives at checkpoint 2, the water level starts to decrease, 

but the checkpoint 2 does not have any notice of the true value of this disturbance (2 

m3/s) until 45 minutes later, once the total amount of the flow change reaches at 

checkpoint 2. 
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We can check that CSI assigns completely the flow change at P.K. 3+750 to the pump 

station at checkpoint 2, and this is a logical solution because the water level variation 

at checkpoint 1 is almost null. 

 

Figure 7.8: Pump flow in checkpoint 1 and 2 during a past time horizon in the third example. 

There are two remarkable things: 

 If the pump flow change value had been lower, for instance 50 l/s, and the 

period of time pumping is much lower, CSI would have never known the 

maximum flow change value due to the hydrograph routing. 

 The CSI algorithm assigns entirely the pump flow change introduced at P.K. 

3+750 to the pump station close to the checkpoint 2. The pump station close 

to the checkpoint 1 does not pump because the water level measures at 

checkpoint 1 are very close to 2 m (the water level at checkpoint 1 in steady 

state). In case that the depressive translatory wave* reaches checkpoint 1, the 

friction forces have attenuated a lot the height of the wave front. For this reason 

the water level changes at checkpoint 1 are close to 0. This happens because 

the canal is very steep and the height of the wave front is not sufficiently high 

to change a lot the water level at checkpoint 1. For this reason, this example 

was tested with the same flow conditions but modifying the canal geometry 

(example 3a), the canal slope was reduced to 0.01% in order to get a higher 
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depressive translatory wave at checkpoint 1. The results obtained by CSI are 

shown at Figure 7.9. The results were as we expected because the pump flow 

changes were distributed between the pump station at checkpoint 1 and 2, 

although the pump flow values at checkpoint 2 was higher than 1. 

 

Figure 7.9: Pump flow in checkpoint 1 and 2 during a past time horizon in example 3a. 

But the more interesting thing about this scenario was: 

As we show in Table 7.5, the water volume extracted by the real pump flow at P.K. 

3+750 (Figure 7.8) is similar to the water volume extracted by the proposed pump 

flows at checkpoint 1 and 2 in the third example, with an error of 0.28%. This error 

value is the same in the scenario 3a with a canal slope of 0.01 %.  

*A translatory wave is a gravity wave that propagates in an open canal and results in 

displacement of water particles in a direction parallel to the flow. 
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Water volume extracted by 

the real pump flow 

hydrograph at P.K. 3+750 

(m3) 

Water volume extracted by the 

simulating pump flow hydrograph at 

checkpoint 1 and 2 

(m3) 

Error (%) 

7200 7180,4 0,283 

Table 7.5: Water volume error between the simulated and real flow hydrographs in the third 
example. 

The watermaster can determine how much water has been extracted in the canal and 

it is possible to determine the location too, as we can use the input and output data of 

the algorithm to calculate it.  

In this case, the disturbance is introduced in the P.K. 3+750 at T=3600 seconds. The 

wave generated by the disturbance in the example 3a travels upstream with a velocity 

(v+c) of 4.21 m/s and downstream with a velocity of 5.20 m/s. The sensor 1 and 2 

measures the water level every 5 min (300 seconds), when the sensor measures the 

water level at T=3900 seconds the perturbation has arrived to the checkpoint 1 and 2 

according to the output data of CSI, so the wave could arrive to the sensor at 

checkpoint 1 just 1 second later that the sensor measures the water level (T=3601 

seconds) or 299 seconds later (T=3899 seconds). To obtain the location of the 

disturbance could draw in the computational grid of the canal four red lines (Figure 

7.10), two lines from upstream (v-c) and two lines from downstream (v+c), each of 

them defining a wave that arrives 1 second later than the sensor measures the water 

level (3601 seconds) and 299 seconds later (3899 seconds). The intersection of these 

lines define an area (A-B-C-D) in the space-time diagram and every intersection point 

could be the solution for this disturbance. It is possible to make a good estimation of 

the pump location depending of the period of time between water level measurements. 
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Figure 7.10: The wave generated by the disturbance traveling upstream and downstream from P.K. 
3+750. 

In this case as we know the location, velocity and celerity of the disturbance introduced 

in the canal, we can determine exactly the time that the wave needs to arrive 

downstream (checkpoint 2) and upstream (checkpoint 1) and we can check easily if 

this point is inside of the area (A-B-C-D). 

𝑇𝑖𝑚𝑒 (𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 2) =
(𝑋𝑃.𝐾.5+000 − 𝑋𝑃.𝐾.3+750)

(𝑉elocity + 𝐶elerity)
≈ 240 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝑇𝑖𝑚𝑒 (𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 1) =
(𝑋𝑃.𝐾.3+750 − 𝑋𝑃.𝐾.2+500)

(𝑉elocity + 𝐶elerity)
≈ 296 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

(7.3) 
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7.6. Associated errors due to the loss of water level 

measurements 

We try to set the behaviour of the algorithm when the water level measures at a 

checkpoint have been lost or simply the water level sensor is not working properly. To 

represent this case, we introduce a new checkpoint (checkpoint X) and a new pump 

station respect to the first example, both located at P.K. 3+750. This pump introduces 

an flow disturbance of 2 m3/s (at the P.K. 3+750 during 60 minutes, from the minute 

60 to 120). In case the CSI algorithm knows this new pump station at point P.K. 3+750, 

the algorithm assigns a new control structure at node P.K. 3+750. But if the water level 

sensor at checkpoint X (P.K. 3 750) is not working, we do not have water level 

measures at this cross-section.  

In that case, the geometry, the discretization of the problem, the initial condition and 

the disturbance is equal to the third example, so we can use the water level 

measurements at the checkpoints 1 and 2 of the third example. To consult this 

information see the section 7.5.3. 

The pump flow trajectory simulated by CSI is quite different to the pump flow trajectory 

introduced to the canal, as we can see in Figure 7.11. Because the disturbance was 

introduced at P.K. 3+750 of the canal, the only pump station that must pump for CSI 

should be the pump station at P.K. 3+750. However the pump station at P.K. 5+000 is 

also pumping for the algorithm. CSI divides the total flow rate extracted at P.K. 3+750. 

Most of the flow rate is assigned to the pump station at P.K 3+750 and the lower flow 

rate is assigned to the pump station at P.K 5+000, as we check at Figure 7.11. 
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Figure 7.11: Pump flow in checkpoint 1 and 2 during a past time horizon. 

The water volume extracted by the real pump flow hydrograph at P.K. 3+750 (Figure 

7.11) is slightly different to the water volume extracted by the sum of the simulated 

hydrographs at checkpoint 1, 2 and  X, with an error of 11% (see Table 7.6). 

 

Water volume extracted by 

the real pump flow 

hydrograph in P.K. 3+750 

(m3) 

Water volume extracted by the 

simulated pump flow 

hydrograph at checkpoint 1 

and 2 (m3) 

Error 

(%) 

7200 7885.78 10.95 

Table 7.6: Water volume error between the simulated and real flow hydrographs. 

 

The expected result in this example would be to assign the pump flow change to the 

new pump station at P.K. 3+750, as this is what really happens. But the question is: if 

the algorithm does not get water level measures at P.K. 3+750, only at checkpoints 1 

and 2; can the algorithm obtain the real pump flow trajectories at checkpoint 1, X and 

2? The first answer would be no, but we are going to explain this statement.  
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In the next figure (Figure 7.12), we can observe the water level measures at the 

checkpoints introduced to CSI, and the water level simulated by the pump flow 

trajectories calculated by CSI. Both water level trajectories are similar but the pump 

flow trajectories are different. The maximum difference between the water level 

measured and simulated at checkpoint 2 is 2 centimeters at a time step 113 min, and 

the other values are similar with differences of 2-5 mm during the past time horizon. 

In the next figure (Figure 7.13) is only analyzed the results at the checkpoint 2, as it is 

the checkpoint with bigger deviation of results.  

CSI has calculated an extracted flow vector which reproduces quite well the water 

level error introduced in the algorithm, but the pump trajectories are not the expected 

result. 

 

Figure 7.12: Water level measurements V.S. simulated water levels by CSI at checkpoint 1 and 
2 during the past time horizon. 
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Figure 7.13: Water level measurements at checkpoint 2 V.S. simulated water level by CSI at 
checkpoint 2 during the past time horizon. 

7.7. Associated errors due to measurement errors in depth gages 

The water level at the checkpoints is measured by sensors which set the water level 

from an electric signal. Occasionally, this electric signal has an error due to electrical 

noise or simply due to slight variations of water level at the checkpoint. This error can 

be significant in some case, and although the signal is filtered, the water level 

measurements provided by the sensor are not fully precise.  

In this section, we have the purpose to check the sensivity of the CSI algorithm to 

measurement errors. We introduce an error in the water level measurements and we 

test again the first and third example with CSI algorithm. In this way, we introduce 

three new cases for the first example:  

A) We have an error of +2 cm in water level measurements at checkpoint 1 and 2 of 

the first example (flow disturbance), so the water level function at checkpoint 1 and 

2 (Figure 7.3) is moved. 
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Figure 7.14: Water level measured at checkpoint 1 and 2 during a past time horizon (First 
example: Case:+2 cm). 

 

B) We introduce an error of -2 cm in water level measurements at checkpoint 1 and 

2 of the first example (flow disturbance). The water level function at checkpoint 1 

and 2 (Figure 7.3) is moved. 

 

Figure 7.15: Water level measured at checkpoint 1 and 2 during a past time horizon (First 
example: Case:-2cm). 
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C) We introduce an error of +2 cm in the water level measurements at the first time 

step, and – 2cm in the water level measurement at the second time step, and so 

on, at checkpoint 1 and 2 in the first example. In that sense, the water level function 

at checkpoint 1 and 2 (Figure 7.3) has a saw-tooth shape oscillating with +/- 2 cm 

variation. 

 

Figure 7.16: Water level measured at checkpoint 1 and 2 during a past time horizon (First 
example: Case:-/+2cm). 

The results obtained by CSI from this data are shown in Figure 7.17, Figure 7.18 and 

Figure 7.19. 

We got an error in pump flow associated with the error in water level measurements. 

A) The error in pump flow result is almost constant (Figure 7.17), and the error is 

easier to define at the end of the test (steady state). We can define in general that 

the pump flow error at checkpoint 1 is approximately -0.084 m3/s and at checkpoint 

2 is -0.02 m3/s. As the depth error increases the real water level in two centimeters, 

the CSI computes the necessary pump flow to increase the water level at 

checkpoints in two centimeters. The pump has to introduce a flow of -0.084 m3/s 

at checkpoint 1 and -0.02 m3/s at checkpoint 2.  The percentage of maximum 

pump flow error is 4%. 
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Figure 7.17: Pump flow at checkpoint 1 and 2 during the past time horizon (First example: 
Case:+2cm). 

B)  The error in pump flow result is almost constant in Figure 7.18, and the error is 

easier to define at the end of the test (steady state) too. We can define in general 

that the pump flow error at checkpoint 1 is approximately 0.085 m3/s and at 

checkpoint 2 is 0.016 m3/s. As the depth error decreases the real water level in 

two centimeters, the CSI computes the necessary pump flow to reduce the water 

level at checkpoints in two centimeters. That is, the pump has to extract more flow. 

The percentage of pump flow error is 4%. 

 

Figure 7.18: Pump flow at checkpoint 1 and 2 during the past time horizon (First example: 
Case:-2cm). 
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C) In that case, the error in pump flow changes in each regulation time from the depth 

error (Figure 7.19), with an absolute error of 4 cm. For that reason, the pump flow 

error at checkpoint 1 changes from 0.203 m3/s to -0.204 m3/s and at the checkpoint 

2 from 0.242 m3/s to -0.245 m3/s. The percentage of maximum flow error is 12%. 

 

Figure 7.19: Pump flow at checkpoint 1 and 2 during the past time horizon (First example: 
Case:-/+2cm). 

There is a proportional relation between the depth gage error and the pump flow 

error for this canal.  

We have checked the first example taking into account errors in the water level 

measurements. In the next example, we will test the third example taking into account 

an error in the water level measurements at checkpoint 1 and 2 of +2cm. We want to 

remember that in the third example the disturbance was introduced at an unknown 

cross-section for the CSI which was not defined as a pump station.  

We introduced an error of +2 cm in all water level measurements at checkpoint 1 and 

2, see Figure 7.20. 
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Figure 7.20: Water level measured at checkpoint 1 and 2 during the past time horizon (Third 
example: Case:+2cm). 

We got an error in pump flow result associated with the depth gage error in water level 

measurements as in the other examples. 

The error in pump flow result is almost constant comparing with the pump flow in the 

third example, as we show in Figure 7.21. The flow error is similar to the error obtained 

in the first example with a depth gage error variation of +2cm. We can define in general 

that the pump flow error at checkpoint 1 is approximately -0.084 m3/s and at checkpoint 

2 is -0.02 m3/s. The percentage of maximum pump flow error is 4%. So the pump flow 

trajectory obtained in this case is similar to the pump flow trajectory obtained in the 

third example without depth gage error (Figure 7.8).   

As we show in Table 7.7, the water volume extracted by the real pump flow hydrograph 

at P.K. 3+750 (Figure 7.6) and the simulating pump by CSI with depth gage error are 

quite similar, in case of an error of +2cm in water level measurements. The water 

volume error between both hydrographs is 6.5 % (Table 7.7). The difference in water 

volume between both hydrographs is due to the flow rate error of 0.085 m3/s at 

checkpoint 1 and 0.02 m3/s at checkpoint 2, although the flow rate error is low, if the 

duration of the disturbance is around 95 min (Figure 7.21), the water volume is not a 

negligible amount. 
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Figure 7.21: Pump flow at checkpoint 1 and 2 during the past time horizon (Third example: Case:-
/+2cm). 

 

 

Water volume by the real 

pump flow hydrograph in 

P.K. 3+750 (m3) 

Water volume by the 

simulated pump flow 

hydrograph at checkpoint 1 

and 2 (m3) in case of an 

error noise of +2cm 

Error 

(%) 

7200 6725.5 6.5 

Table 7.7: Water volume error between the simulated and real flow hydrographs from the 

minute 65 to minute 160 (Third example: Case +2cm). 

7.8. Hydroynamic canal state 

We show in this section that the CSI can also define the hydrodynamic state of a canal 

during a past time horizon and the current canal state, that is, the velocity and water 

level in each cross-section of the canal. This data is very useful for a feedback 

controller which has to know the hydrodynamic canal state in real time to calculate the 

optimum gate trajectories. 
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We have to show that CSI is a useful tool for calculating the hydrodynamic canal state, 

for that reason, we show the hydrodynamic canal state calculated by CSI in the first 

example at 2700 seconds (5 minutes after introducing the disturbance) and at 3900 

seconds (10 minutes after disappearing the disturbance). We can check the water 

level measurements at checkpoint 1 and 2 at Figure 7.22. 

In the next figures (Figure 7.23 and Figure 7.24), we show the water profile calculated 

by CSI and the water profile calculated by a computer model (taking into account the 

real extracted flow). The error between the real extracted flow and the extracted flow 

calculated by CSI is around 5 l/s in that case, as we introduced in the section 7.5.1. 

Considering that the dimension of the cross sections in the canal, an error of 5 l/s at 

the checkpoint represents a water level variation around 1 mm in some cross-sections 

(see Figure 7.23 and Figure 7.24). 

In the Appendix 1, we show the values of water velocity along the canal obtained by 

CSI and a computer model at 2700 seconds and 3900 seconds.   

 

Figure 7.22: Water level measurements in the first example (pointed at 2700 s and 3900s). 
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Figure 7.23: Water profile obtained by a computer model V.S. Water profile obtained by CSI at 2700s. 

 

Both water profiles are similar, as the accuracy of CSI calculating the extracted flow 

vector is so high. An error of 5 l/s in the extracted flow is equivalent to an error in water 

level of 1 mm and in water velocity of 0.001 m/s in cross-sections close to the extracted 

point.  
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Figure 7.24: Water profile obtained by the V.S. Water profile obtained by CSI at 3900s. 

The second case at 3900 s is equivalent to the other case. Here the cross sections 

with a water level error around of 1mm are close to the second extraction point, in 

which the extracted flow error is around 5 l/s. 

The hydrodynamic canal state obtained in both cases is similar using a computer 

model operating with the real disturbance or using CSI which previously calculates the 

disturbance and then the hydrodynamic canal state. 
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7.9. Conclusions 

All these tests have shown excellent results, because the algorithm finds a solution of 

the problem and reproduces the pump flow trajectories correctly in most cases. These 

examples have afford us to know the limits of the algorithm, which is quite important, 

because it is necessary to know the limits of the algorithm for not demanding things 

which it is not able to do. 

If we look at examples 1 and 2, the real pump flow changes introduced at the 

checkpoint 1 and the pump flow obtained by CSI are equals, with a maximum error 

between them lower than 0.005 m3/s (0.25 %) and 0.004 m3/s (8%), respectively.  If 

the pump flow change is introduced at a node, which CSI recognizes as a pump station 

and there is a checkpoint associated to this pump station, the results are good. 

The results obtained in example 3 are not so good but these results are valuable. In 

the example 3 although it is impossible to estimate correctly the pump flow 

hydrograph, it is possible to estimate how much water is extracted from the canal with 

a maximum error of 0.28 %. It is also possible to locate quite well the cross-section 

where the pump extracts the flow rate, with more or less accuracy depending on the 

time frequency between measurements and the value of the pump flow change. This 

is not an unusual scenario in a real canal, because we cannot always count on having 

checkpoints close to the pump which is operating, as the disturbances are usually 

introduced without permission and without knowledge of the watermaster.  

In case that a pump extracts water at an unknown cross-section in the canal, and the 

algorithm has not assigned any checkpoint in this localization, CSI can obtain the total 

volume of water extracted by the pump. 

In the case of associated errors due to the loss of water level measurements at 

checkpoints, we try to show that it is not a good idea to have more pump stations or 

variables than checkpoints or measurement points. In cases that there are more 

pumps stations than measurement points, there are multiples solutions or pump flow 

trajectories for reaching to similar water level measures at the checkpoints. Instead, 

there is only one solution when we know which pump extracts water and which not. 

The pump flow results are brilliant in this example 3, when the algorithm knows that 

the only operative pump station is the pump station at P.K. 3+750. 
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In case of loss of accuracy in water level sensors, we have to be careful with the data 

obtained from the gages. In those cases, CSI has obtained good results taking into 

account an error of 2 cm in example 1, the pump flow result is only deviated a 

maximum of 0.085 m3/s, from 2 m3/s to 2.085 m3/s. We have also repeated the third 

example considering an error of 2 cm. The pump flow trajectories calculated by CSI 

with error and without error are similar to the real pump flow trajectory, and the water 

volume error is not significant respect the real extracted water volume (6.5 %). 

We have also calculated the hydrodynamic canal state at two time instant, 2700 

seconds and 3900 seconds at the first example. The accuracy of CSI in calculating 

the extracted flow vector is essential for calculating with accuracy the hydrodynamic 

canal state with CSI. The CSI calculates the hydrodynamic canal state from the 

scheduled demands, gate trajectories, initial conditions and the extracted flow vector. 

The hydrodynamic canal state obtained by a computer model using the real 

disturbances and the result obtained using CSI (previously computing the disturbance) 

is very similar.  

The algorithm is as good as the results show; the algorithm works quite well with small 

disturbances and also in case that the flow rate pumping is not located in a control 

structure. 
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7.10. APPENDIX I:  

Table 7.8: Water velocity obtained by the computer model (real disturbance) V.S. Water velocity 

obtained by CSI along the canal in the first example at  2700 s and 3900 s. 

Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 
(m/s) 

Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 
(m/s) 

2.700 0 1,245 1,245 3900 0 1,245 1,245 

2.700 20 1,245 1,245 3901 20 1,245 1,245 

2.700 40 1,245 1,245 3902 40 1,245 1,245 

2.700 60 1,245 1,245 3903 60 1,245 1,245 

2.700 80 1,245 1,245 3904 80 1,245 1,245 

2.700 100 1,245 1,245 3905 100 1,245 1,245 

2.700 120 1,245 1,245 3906 120 1,245 1,245 

2.700 140 1,245 1,245 3907 140 1,245 1,245 

2.700 160 1,245 1,245 3908 160 1,245 1,245 

2.700 180 1,245 1,245 3909 180 1,245 1,245 

2.700 200 1,245 1,245 3910 200 1,245 1,245 

2.700 220 1,245 1,245 3911 220 1,245 1,245 

2.700 240 1,245 1,245 3912 240 1,245 1,245 

2.700 260 1,245 1,245 3913 260 1,245 1,245 

2.700 280 1,245 1,245 3914 280 1,245 1,245 

2.700 300 1,245 1,245 3915 300 1,245 1,245 

2.700 320 1,245 1,245 3916 320 1,245 1,245 

2.700 340 1,245 1,245 3917 340 1,245 1,245 

2.700 360 1,245 1,245 3918 360 1,245 1,245 

2.700 380 1,245 1,245 3919 380 1,245 1,245 

2.700 400 1,245 1,245 3920 400 1,245 1,245 

2.700 420 1,245 1,245 3921 420 1,245 1,245 

2.700 440 1,245 1,245 3922 440 1,245 1,245 

2.700 460 1,245 1,245 3923 460 1,245 1,245 

2.700 480 1,245 1,245 3924 480 1,245 1,245 

2.700 500 1,245 1,245 3925 500 1,245 1,245 

2.700 520 1,245 1,245 3926 520 1,245 1,245 

2.700 540 1,245 1,245 3927 540 1,245 1,245 

2.700 560 1,245 1,245 3928 560 1,246 1,246 

2.700 580 1,245 1,245 3929 580 1,246 1,246 

2.700 600 1,245 1,245 3930 600 1,246 1,246 

2.700 620 1,245 1,245 3931 620 1,246 1,246 

2.700 640 1,245 1,245 3932 640 1,246 1,246 
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Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 

(m/s) 

Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 

(m/s) 

2.700 660 1,245 1,245 3933 660 1,246 1,246 

2.700 680 1,245 1,245 3934 680 1,246 1,246 

2.700 700 1,245 1,245 3935 700 1,246 1,246 

2.700 720 1,245 1,245 3936 720 1,246 1,246 

2.700 740 1,245 1,245 3937 740 1,246 1,246 

2.700 760 1,245 1,245 3938 760 1,246 1,246 

2.700 780 1,245 1,245 3939 780 1,246 1,246 

2.700 800 1,245 1,245 3940 800 1,246 1,246 

2.700 820 1,245 1,245 3941 820 1,247 1,247 

2.700 840 1,245 1,245 3942 840 1,247 1,247 

2.700 860 1,245 1,245 3943 860 1,247 1,247 

2.700 880 1,245 1,245 3944 880 1,247 1,247 

2.700 900 1,245 1,245 3945 900 1,247 1,247 

2.700 920 1,245 1,245 3946 920 1,247 1,247 

2.700 940 1,245 1,245 3947 940 1,247 1,247 

2.700 960 1,245 1,245 3948 960 1,248 1,248 

2.700 980 1,245 1,245 3949 980 1,248 1,248 

2.700 1000 1,245 1,245 3950 1000 1,248 1,248 

2.700 1020 1,245 1,245 3951 1020 1,248 1,248 

2.700 1040 1,245 1,245 3952 1040 1,248 1,248 

2.700 1060 1,245 1,245 3953 1060 1,249 1,249 

2.700 1080 1,245 1,245 3954 1080 1,249 1,249 

2.700 1100 1,245 1,245 3955 1100 1,249 1,249 

2.700 1120 1,245 1,245 3956 1120 1,25 1,25 

2.700 1140 1,245 1,245 3957 1140 1,25 1,25 

2.700 1160 1,245 1,245 3958 1160 1,25 1,25 

2.700 1180 1,245 1,245 3959 1180 1,25 1,25 

2.700 1200 1,245 1,245 3960 1200 1,251 1,251 

2.700 1220 1,245 1,245 3961 1220 1,251 1,251 

2.700 1240 1,245 1,245 3962 1240 1,252 1,252 

2.700 1260 1,245 1,245 3963 1260 1,252 1,252 

2.700 1280 1,245 1,245 3964 1280 1,252 1,252 

2.700 1300 1,245 1,245 3965 1300 1,253 1,253 

2.700 1320 1,245 1,245 3966 1320 1,253 1,253 

2.700 1340 1,245 1,245 3967 1340 1,253 1,253 

2.700 1360 1,245 1,245 3968 1360 1,254 1,254 

2.700 1380 1,245 1,245 3969 1380 1,254 1,254 

2.700 1400 1,245 1,245 3970 1400 1,254 1,254 
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Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 
(m/s) 

Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 
(m/s) 

2.700 1420 1,245 1,245 3971 1420 1,255 1,255 

2.700 1440 1,245 1,245 3972 1440 1,255 1,255 

2.700 1460 1,245 1,245 3973 1460 1,255 1,255 

2.700 1480 1,245 1,245 3974 1480 1,256 1,256 

2.700 1500 1,245 1,245 3975 1500 1,256 1,256 

2.700 1520 1,245 1,245 3976 1520 1,257 1,257 

2.700 1540 1,245 1,245 3977 1540 1,257 1,257 

2.700 1560 1,245 1,245 3978 1560 1,258 1,258 

2.700 1580 1,245 1,245 3979 1580 1,258 1,258 

2.700 1600 1,245 1,245 3980 1600 1,259 1,259 

2.700 1620 1,245 1,245 3981 1620 1,259 1,259 

2.700 1640 1,245 1,245 3982 1640 1,26 1,26 

2.700 1660 1,245 1,245 3983 1660 1,26 1,26 

2.700 1680 1,245 1,245 3984 1680 1,261 1,261 

2.700 1700 1,245 1,245 3985 1700 1,261 1,261 

2.700 1720 1,245 1,245 3986 1720 1,262 1,262 

2.700 1740 1,246 1,246 3987 1740 1,262 1,262 

2.700 1760 1,246 1,246 3988 1760 1,263 1,263 

2.700 1780 1,246 1,246 3989 1780 1,263 1,263 

2.700 1800 1,246 1,246 3990 1800 1,264 1,264 

2.700 1820 1,247 1,247 3991 1820 1,264 1,264 

2.700 1840 1,249 1,249 3992 1840 1,265 1,265 

2.700 1860 1,251 1,251 3993 1860 1,266 1,266 

2.700 1880 1,253 1,253 3994 1880 1,266 1,266 

2.700 1900 1,257 1,257 3995 1900 1,267 1,267 

2.700 1920 1,262 1,262 3996 1920 1,268 1,268 

2.700 1940 1,267 1,267 3997 1940 1,268 1,268 

2.700 1960 1,273 1,273 3998 1960 1,269 1,269 

2.700 1980 1,278 1,278 3999 1980 1,27 1,27 

2.700 2000 1,283 1,283 4000 2000 1,27 1,27 

2.700 2020 1,288 1,288 4001 2020 1,271 1,271 

2.700 2040 1,293 1,292 4002 2040 1,272 1,272 

2.700 2060 1,297 1,297 4003 2060 1,272 1,272 

2.700 2080 1,302 1,302 4004 2080 1,273 1,273 

2.700 2100 1,308 1,308 4005 2100 1,274 1,274 

2.700 2120 1,314 1,314 4006 2120 1,275 1,275 

2.700 2140 1,321 1,321 4007 2140 1,276 1,276 

2.700 2160 1,329 1,329 4008 2160 1,276 1,276 



Chapter 7.CSI performance: Numerical examples                                                               159 

Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 
(m/s) 

Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 
(m/s) 

2.700 2180 1,338 1,337 4009 2180 1,277 1,277 

2.700 2200 1,347 1,346 4010 2200 1,278 1,278 

2.700 2220 1,356 1,356 4011 2220 1,279 1,279 

2.700 2240 1,367 1,367 4012 2240 1,28 1,28 

2.700 2260 1,379 1,379 4013 2260 1,281 1,281 

2.700 2280 1,392 1,392 4014 2280 1,282 1,282 

2.700 2300 1,407 1,406 4015 2300 1,283 1,283 

2.700 2320 1,423 1,422 4016 2320 1,284 1,284 

2.700 2340 1,441 1,44 4017 2340 1,285 1,285 

2.700 2360 1,461 1,46 4018 2360 1,286 1,286 

2.700 2380 1,484 1,483 4019 2380 1,287 1,287 

2.700 2400 1,51 1,509 4020 2400 1,288 1,288 

2.700 2420 1,54 1,539 4021 2420 1,289 1,289 

2.700 2440 1,575 1,575 4022 2440 1,29 1,29 

2.700 2460 1,618 1,617 4023 2460 1,291 1,291 

2.700 2480 1,67 1,669 4024 2480 1,293 1,292 

2.700 2500 1,736 1,735 4025 2500 1,294 1,294 

2.700 2500 0,99 0,99 4026 2500 1,052 1,052 

2.700 2520 0,991 0,991 4027 2520 1,052 1,052 

2.700 2540 0,991 0,992 4028 2540 1,052 1,052 

2.700 2560 0,992 0,992 4029 2560 1,052 1,052 

2.700 2580 0,993 0,993 4030 2580 1,052 1,052 

2.700 2600 0,994 0,994 4031 2600 1,051 1,051 

2.700 2620 0,995 0,995 4032 2620 1,051 1,051 

2.700 2640 0,996 0,996 4033 2640 1,051 1,051 

2.700 2660 0,996 0,997 4034 2660 1,051 1,051 

2.700 2680 0,997 0,997 4035 2680 1,051 1,051 

2.700 2700 0,998 0,998 4036 2700 1,05 1,05 

2.700 2720 0,999 0,999 4037 2720 1,05 1,05 

2.700 2740 1 1 4038 2740 1,05 1,05 

2.700 2760 1,001 1,001 4039 2760 1,049 1,049 

2.700 2780 1,002 1,002 4040 2780 1,049 1,049 

2.700 2800 1,003 1,003 4041 2800 1,049 1,049 

2.700 2820 1,004 1,004 4042 2820 1,048 1,048 

2.700 2840 1,005 1,005 4043 2840 1,048 1,048 

2.700 2860 1,006 1,006 4044 2860 1,048 1,048 

2.700 2880 1,007 1,007 4045 2880 1,047 1,047 

2.700 2900 1,008 1,008 4046 2900 1,047 1,047 
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Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 
(m/s) 

Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 
(m/s) 

2.700 2920 1,009 1,009 4047 2920 1,046 1,046 

2.700 2940 1,01 1,01 4048 2940 1,046 1,046 

2.700 2960 1,011 1,011 4049 2960 1,045 1,045 

2.700 2980 1,012 1,012 4050 2980 1,045 1,045 

2.700 3000 1,013 1,013 4051 3000 1,044 1,044 

2.700 3020 1,014 1,014 4052 3020 1,043 1,043 

2.700 3040 1,015 1,015 4053 3040 1,043 1,043 

2.700 3060 1,015 1,015 4054 3060 1,042 1,042 

2.700 3080 1,016 1,016 4055 3080 1,042 1,042 

2.700 3100 1,017 1,017 4056 3100 1,041 1,041 

2.700 3120 1,018 1,018 4057 3120 1,04 1,04 

2.700 3140 1,019 1,019 4058 3140 1,039 1,039 

2.700 3160 1,02 1,02 4059 3160 1,039 1,039 

2.700 3180 1,02 1,02 4060 3180 1,038 1,038 

2.700 3200 1,021 1,021 4061 3200 1,037 1,037 

2.700 3220 1,022 1,022 4062 3220 1,036 1,036 

2.700 3240 1,023 1,023 4063 3240 1,035 1,035 

2.700 3260 1,023 1,023 4064 3260 1,034 1,034 

2.700 3280 1,024 1,024 4065 3280 1,034 1,034 

2.700 3300 1,024 1,024 4066 3300 1,033 1,033 

2.700 3320 1,025 1,025 4067 3320 1,032 1,032 

2.700 3340 1,025 1,025 4068 3340 1,031 1,03 

2.700 3360 1,026 1,026 4069 3360 1,029 1,029 

2.700 3380 1,026 1,026 4070 3380 1,028 1,028 

2.700 3400 1,026 1,026 4071 3400 1,027 1,027 

2.700 3420 1,027 1,027 4072 3420 1,026 1,026 

2.700 3440 1,027 1,027 4073 3440 1,025 1,025 

2.700 3460 1,027 1,027 4074 3460 1,023 1,023 

2.700 3480 1,027 1,027 4075 3480 1,022 1,022 

2.700 3500 1,027 1,027 4076 3500 1,021 1,021 

2.700 3520 1,027 1,027 4077 3520 1,019 1,019 

2.700 3540 1,026 1,026 4078 3540 1,018 1,018 

2.700 3560 1,026 1,026 4079 3560 1,016 1,016 

2.700 3580 1,026 1,026 4080 3580 1,015 1,015 

2.700 3600 1,026 1,026 4081 3600 1,013 1,013 

2.700 3620 1,026 1,026 4082 3620 1,011 1,011 

2.700 3640 1,025 1,025 4083 3640 1,01 1,01 

2.700 3660 1,025 1,025 4084 3660 1,008 1,008 
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Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 
(m/s) 

Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 
(m/s) 

2.700 3680 1,025 1,025 4085 3680 1,006 1,006 

2.700 3700 1,024 1,024 4086 3700 1,004 1,004 

2.700 3720 1,023 1,023 4087 3720 1,002 1,002 

2.700 3740 1,022 1,022 4088 3740 1 1 

2.700 3760 1,02 1,02 4089 3760 0,997 0,997 

2.700 3780 1,018 1,018 4090 3780 0,995 0,995 

2.700 3800 1,016 1,016 4091 3800 0,993 0,993 

2.700 3820 1,014 1,014 4092 3820 0,99 0,99 

2.700 3840 1,012 1,012 4093 3840 0,987 0,987 

2.700 3860 1,01 1,01 4094 3860 0,985 0,985 

2.700 3880 1,008 1,008 4095 3880 0,982 0,982 

2.700 3900 1,005 1,005 4096 3900 0,979 0,979 

2.700 3920 1,002 1,002 4097 3920 0,976 0,976 

2.700 3940 1 1 4098 3940 0,973 0,972 

2.700 3960 0,997 0,997 4099 3960 0,969 0,969 

2.700 3980 0,994 0,994 4100 3980 0,966 0,966 

2.700 4000 0,99 0,99 4101 4000 0,962 0,962 

2.700 4020 0,987 0,987 4102 4020 0,958 0,958 

2.700 4040 0,983 0,983 4103 4040 0,954 0,954 

2.700 4060 0,979 0,979 4104 4060 0,95 0,95 

2.700 4080 0,975 0,975 4105 4080 0,946 0,946 

2.700 4100 0,971 0,971 4106 4100 0,942 0,942 

2.700 4120 0,966 0,966 4107 4120 0,937 0,937 

2.700 4140 0,962 0,962 4108 4140 0,933 0,932 

2.700 4160 0,957 0,957 4109 4160 0,928 0,928 

2.700 4180 0,952 0,952 4110 4180 0,923 0,923 

2.700 4200 0,947 0,947 4111 4200 0,918 0,918 

2.700 4220 0,941 0,941 4112 4220 0,912 0,912 

2.700 4240 0,936 0,936 4113 4240 0,907 0,907 

2.700 4260 0,93 0,93 4114 4260 0,901 0,901 

2.700 4280 0,924 0,924 4115 4280 0,895 0,895 

2.700 4300 0,917 0,917 4116 4300 0,889 0,889 

2.700 4320 0,911 0,911 4117 4320 0,883 0,883 

2.700 4340 0,904 0,904 4118 4340 0,877 0,877 

2.700 4360 0,897 0,897 4119 4360 0,871 0,871 

2.700 4380 0,89 0,89 4120 4380 0,864 0,864 

2.700 4400 0,883 0,883 4121 4400 0,858 0,858 

2.700 4420 0,875 0,875 4122 4420 0,851 0,851 
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Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 
(m/s) 

Time 
step (s) 

Distance 
(m) 

Water 
velocity by 
CSI (m/s) 

Water 
velocity by 
the model 
(m/s) 

2.700 4440 0,868 0,868 4123 4440 0,844 0,844 

2.700 4460 0,86 0,86 4124 4460 0,837 0,837 

2.700 4480 0,852 0,852 4125 4480 0,83 0,83 

2.700 4500 0,844 0,844 4126 4500 0,823 0,823 

2.700 4520 0,836 0,836 4127 4520 0,816 0,816 

2.700 4540 0,828 0,828 4128 4540 0,808 0,808 

2.700 4560 0,819 0,819 4129 4560 0,801 0,801 

2.700 4580 0,811 0,811 4130 4580 0,793 0,794 

2.700 4600 0,802 0,802 4131 4600 0,786 0,786 

2.700 4620 0,793 0,793 4132 4620 0,778 0,779 

2.700 4640 0,785 0,785 4133 4640 0,771 0,771 

2.700 4660 0,776 0,776 4134 4660 0,763 0,763 

2.700 4680 0,767 0,767 4135 4680 0,755 0,756 

2.700 4700 0,758 0,758 4136 4700 0,748 0,748 

2.700 4720 0,749 0,749 4137 4720 0,74 0,74 

2.700 4740 0,74 0,74 4138 4740 0,732 0,733 

2.700 4760 0,731 0,731 4139 4760 0,724 0,725 

2.700 4780 0,722 0,722 4140 4780 0,717 0,717 

2.700 4800 0,713 0,713 4141 4800 0,709 0,709 

2.700 4820 0,704 0,704 4142 4820 0,701 0,702 

2.700 4840 0,695 0,695 4143 4840 0,694 0,694 

2.700 4860 0,686 0,686 4144 4860 0,686 0,687 

2.700 4880 0,677 0,677 4145 4880 0,679 0,679 

2.700 4900 0,668 0,668 4146 4900 0,671 0,672 

2.700 4920 0,659 0,659 4147 4920 0,664 0,664 

2.700 4940 0,651 0,651 4148 4940 0,657 0,657 

2.700 4960 0,642 0,642 4149 4960 0,649 0,65 

2.700 4980 0,634 0,634 4150 4980 0,642 0,643 

2.700 5000 0,625 0,625 4151 5000 0,635 0,636 
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Chapter 8 

 

CSI tests on the experimental canal PAC-UPC 

 

In this chapter, we have tested the CSI algorithm in a real canal. We want to prove 

that CSI is able to calculate with accuracy a disturbance introduced in the canal, and 

in this way, some tests were done in a laboratory canal to check the good results 

obtained by CSI in chapter 7.  

Canal PAC-UPC is a laboratory canal specially designed to develop basic and applied 

research in irrigation canal control area and in all subjacent areas like irrigation canal 

instrumentation, irrigation canal modelling, water measurements, etc. 

The canal is located in the Laboratory of Physical Models inside the North Campus of 

the UPC. This laboratory occupies a 2000m2 surface area. 

Most of the design, acquisition and final implementation of the instrumentation and of 

the motorization of the canal were responsibility of Carlos Alberto Sepúlveda Toepfer, 

and all this work was reflected in his thesis, see Sepúlveda (2007).  

8.1. General description 

The original idea was to build a canal that could exhibit notorious transport delays in 

order to resemble real irrigation canal control problems. For this reason, it was decided 

to construct a zero slope rectangular cross-section canal, enough long and due to the 

lack of space inside the laboratory, the canal was designed with a serpentine shape 

to achieve the maximum canal length in the available space. With this particular 

design, the result was a 220m long, 44 cm width and 1m depth canal. A detailed 

scheme of this laboratory canal is presented in Figure 8.1 and Figure 8.2. 

 



Chapter 8. CSI tests on the experimental canal PAC-UPC                                                  164 

 

Figure 8.1: Schematic diagram of the top view of the Canal PAC-UPC. 
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The canal is supplied by a small reservoir at its head. The objective of this element is 

to provide the canal with enough and virtually unlimited water. 

The canal takes water from this reservoir through Gate1 (G1), which is normally under 

submerged conditions. This gate can regulate the canal inflow by adjusting the gate 

opening. The water that is not used is recirculated to the laboratory pumping system. 

 

Figure 8.2: Schematic diagram of the profile view of the Canal PAC-UPC. 

As illustrated by Figure 8.1 and Figure 8.2, the canal has currently: 

 1 head reservoir 

 3 vertical sluice gates 

 4 rectangular weirs 

 9 water level sensors 

 1 control room 
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In the present condition, it is possible to arrange the canal with several pool 

configurations, i.e. a canal with only one very long pool, a canal with one long pool 

and one short pool, etc.   

In the Figure 8.3 , we show a general view of the canal. 

 

Figure 8.3: General view of the Canal PAC-UPC. 

Test geometry canal  

In this test the geometric configuration of the canal is the following:  the sluice gate 1 

is the only sluice gate operating in this test because the gates 3 and 5 are out of the 

water. Only the weirs W2 and W4 are operating, and the algorithm only uses the water 

level measured at the sensors L1, L6, L10 and L11, although we will also use the data 

of the sensor L7 to check some results. The canal geometry configuration used in CSI 

for the canal is shown in the next Table 8.1 and the Figure 8.4: 
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Pool 

Numerical 

node 

upstream 

Numerical 

node 

downstream 

Pool 

length 

(m) 

Canal 

Depth 

(m) 

Manning's  

coefficient 

(n) 

Width 

(m) 

1 

(from G1 to G2) 
1 43 42 1,00 0,016 0,44 

2 

(from G2 to G3) 
44 89 45 1,00 0,016 0,44 

3 

(from G3 to G4) 
90 135 45 1,00 0,016 0,44 

4 

(from G4 to G5) 
136 181 45 1,00 0,015 0,44 

5 

(from G5 to W4) 
182 225 43 1,00 0,016 0,44 

Table 8.1: Features of the canal pools. 

We could not use all the sensors because some of them were out of order and others 

sensors were located very close to the canal bend. In every bend of the canal, the 

water surface has some variations of more of less 1 cm due to the local flow pattern.  

CSI is very sensitive to the water level variation at the checkpoints; even more if these 

water level variations are equivalents to the water level changes introduced to the 

system by the unknown discharge. In that case, CSI cannot recognize if the water level 

changes at the checkpoints are introduced by the unknown discharge or otherwise. In 

this circumstance, CSI would calculate an extracted flow change considering the 

absolute value of the water level changes, and therefore the extracted flow simulated 

by CSI would be different to the real unknown discharge introduced into the canal.  

We can filter the signal, but if the water level changes by the unknown disturbance is 

similar to the noise generated by the canal bend, it would be impossible to distinguish 

between them. 
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Figure 8.4: Profile view for the geometric configuration of the Canal PAC-UPC in the test. 

CSI does not simulate the weirs of the canal although it could be possible, that is, the 

CSI only obtains the outflows. The advantage of working with the flow is that the control 

action variable is directly the flow rate and the algorithm does not need any coefficient, 

as the discharge coefficient. We tested the CSI algorithm in several examples and the 

results were not good. We realized that we had to modify the specific nodes which 

represent the control structure to simulate correctly the flow in the canal, because the 

control structures coincide with the bends of the canal (Figure 8.5) and we had to 

introduce a loss coefficient to simulate the energy losses in the canal bend. For this 

reason, a new kind of node was built for this test, and the equations involved in this 

specific node are defined as: 
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Figure 8.5: Schematic diagram of the top view of a canal bend of the Canal PAC-UPC. 

where yR1, vR1, yR2 y vR2 are the water level and velocity upstream and downstream of 

the bend, respectively and the transition length is 4 m. The bottom widths are b1 and 

b2 (upstream and downstream of the bend, respectively), in our case b1= b2. The 

coefficient of energy lost in transitions is cT. n is the Manning coefficient, Sf is the 

Manning’s equation and q(K) is the water withdrawals or extracted flow during the 

period K.  

The extracted flow q(K) is calculated by CSI in each regulation period and every term 

is compiled in the extracted flow vector. 

We calibrated the physical parameter (cT) doing several test. We simulated the water 

profile of the canal with a computer model from the initial conditions introduced in 

section 8.4, so we did these tests in the real canal in the same flow conditions and we 
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took water level measurements in several sections of the canal. We adjusted the 

physical parameter of the model until we obtain the same water levels in these 

sections of the canal in both cases (simulated and real). 

The physical parameter adjusted in each canal bend are shown in Table 8.2:  

Specific loss node 
Upstream 

pool 

Downstream 

pool 
cT 

1 

(from L3 to L4) 
1 2 0,2 

2 

(from L5 to L6) 
2 3 0,2 

3 

(from L7 to L8) 
3 4 0,2 

4 

(from L9 to L10) 
4 5 0,2 

Table 8.2: Physical parameters on each canal bend. 

8.1.1. Gates 

Canal has vertical sluice gates. They are made of methacrylate reinforced with a metal 

skeleton in order to provide enough stiffness and a low weight. The vertical movement 

of the gates is guided by metal frameworks embedded in the canal and is executed by 

three-phase servomotors. These servomotors are located on top of the gates and are 

commanded by control boxes situated next to the canal. This particular gate 

motorization enables only constant speed movements of about 1 cm/s. In this test, all 

gates except the first have been kept out of the water during the whole test. 

8.1.2. Weirs 

Rectangular weirs are used to extract water in order to emulate the effect of offtake 

discharges in real irrigation canals. It is possible to obtain the flow rate extracted 

measuring the water level upstream of the weir. The Figure 8.6 shows a photo of a 

weir in the canal. 
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Figure 8.6: Photo of a weir of the canal PAC. 

These weirs have a width of approximately 39 cm and were constructed starting from 

a 35 cm canal height, except for the end weir (Weir 4) that starts from the canal invert. 

From this minimum height of 35 cm, it is possible to increase the height of the weir by 

placing PVC pieces in metal rails, one on top of the other. There are pieces of 5 cm, 

10 cm, 20 cm and 35 cm. With different combinations, it is possible to cover a broad 

range of weir heights, and thereby to achieve a broad range of output flow through the 

weir. 

8.1.3. Water level sensors 

The canal has currently nine level sensors located in strategic places, upstream and 

downstream of each sluice gate and close to every rectangular weir (see Figure 8.1/ 

Figure 8.2 for details). Their mission is twofold: sensors take measurements of water 

level to supply data to CSI and the measurements upstream of the weir are used to 

calculate the discharge through the weirs. 

8.2. Initial and boundary conditions 

We introduced the initial conditions from the water level measurements at the 

checkpoints, the flow downstream of every pool (Table 8.5) and the position of the 

gate 1. The upstream boundary condition is determined by the gate 1 and the water 

level at the reservoir. The gate equation is represented for the next system of equation: 
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(8.3) 

where yS is the downstream water level of the reservoir and vS is the velocity in that 

cross section, L1(t) is the water level measurement upstream of the reservoir, Cc is the 

contraction coefficient, CG is the discharge coefficient which depends on different 

parameters such as upstream water level, gate opening, contraction coefficient and 

the flow condition, aG is the gate width and u is the gate opening.  

 

Figure 8.7: A submerged hydraulic jump. 

The gate features are shown in the next table: 

Gate 

Numerical 

node 

upstream 

Numerical 

node 

downstream 

Gate 

discharge 

coefficient 

Contraction 

coefficient 

L1 water 

level 

reservoir  

Gate 

width 

(m) 

Height of 

the gate 

opening 

(m) 

Steep 

(m) 

1 0 1 0.68 0.60 1.257 0,434 0,122 0,0 

Table 8.3: features of the gate. 

Finally, the downstream boundary condition is associated to the weir 4 where the level 

of water reaches a critical depth. Weir equation is represented by the next discharge 

equations of a sharp crested weir: 
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where yR1 and vR1 are the water level and velocity in the sharp crested weir, H is the 

measured head above the crest, excluding the velocity head, Cd is the discharge 

coefficient and B is the weir width.  

 

 

Figure 8.8: A sharp crested weir. 

 

The features of the sharp crested weir are shown in the next table: 

 

Weir  
Numerical 

node  

Weir 

discharge 

coefficient 

(CW) 

Weir height 

(yW) (m) 

Weir width  

 (m) 

4 341 0.5776 0,35 0,39 

 

Table 8.4: Features of the weir. 

 

The steady state is the initial condition for the canal. The total flow is 110 l/s and the 

weir 1, 2 and 3 are not operative. In the Table 8.5, we show the water level 

measurements which were measured manually and the flow rate at particular points 

at initial time:  
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Checkpoint 

Initial water 

level 

 (m) 

Flow  

(m3/s) 

1 (L4) 0.758 0.110 

2 (L6) 0.730 0.110 

3 (L8) 0.689 0.110 

4 (L10) 0.644 0.110 

5  (L11) 0.604 0.110 

Table 8.5: Initial conditions (water level at particular points). 

 

The backwater profile for the canal from initial conditions can be seen in Figure 8.9.  

 

Figure 8.9: Backwater profile for the canal from initial conditions (steady state). 

8.3. Discretization of a problem 

The past time horizon is defined equal to TKF= 3410 seconds = 57 minutes. The 

regulation period or the time interval between successive control actions for a 

controller is ∆T= 10s, so the number of regulation periods during the predictive horizon 

is γ= 341. The canal has been spatially discretized (∆x) every meter, so the number 

of computational cross-sections along the canal is 220. 
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8.4. Scenario 

The canal state has been perturbed by a disturbance with the aid of the weirs. The 

main objective for CSI is to find the flow trajectory which describes better the flow 

through the weir. 

Several tests were done before and we conclude that, although water level sensors 

should be close to the crest weir, as the big changes in water levels are associated to 

these extraction points. The crest weirs are also close to the canal bends, and we 

have to take into account the local phenomenon introduced by the canal bends which 

affects the backwater profile.  The local phenomenon has a significant influence on 

the value of the water level measurements, as it causes over-elevations in the 

backwater profile which is a big problem for CSI. This is the reason why we only use 

the sensors L6, L10 and L11 in CSI. 

As we have introduced in the last chapter, we use a 1D computer model but the flow 

is clearly 2D in the canal bend. For that reason, we had to introduce in the 1D computer 

model a new specific node in the location of the canal bend to simulate the energy 

losses occurred in this short reach. 

The output data of the sensors must be accurate as much as possible because the 

noise associated to the water level measures can invalidate the test.  

At the beginning of the test, the flow rate in the canal is 110 l/s. In a particular time 

(250 s after starting the test), some of the pieces that make up the lateral weir (W2) 

were removed, so the weir height changes to 55 cm. Later, at time 1950 s, the weir 

was closed again. 

We had not any flow meter in the canal and for this reason the exact value of the flow 

through the weir 2 was not measured directly. However we could estimate the flow 

through the weir 2, see Figure 8.11, because we obtained the water level 

measurements of L7 sensor (Figure 8.10), which is the closest sensor to the weir 2 

(W2), and the discharge coefficient of the weir 2 was calibrated in previous works, see 

Horváth (2013).  
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We show in the Table 8.6, as we change the weir height to introduce the disturbance 

in the canal: 

 

Time (s) 
G1 Gate 

opening (m) 

W1 

Weir 

height  

 (m) 

W2 

Weir 

height 

 (m) 

W3 

Weir 

height 

 (m) 

W4 

Weir 

height 

 (m) 

0 0.122 0.90 0.90 0.90 0.35 

250 0.122 0.90 0.55 0.90 0.35 

1950 0.122 0.90 0.90 0.90 0.35 

3410 0.122 0.90 0.90 0.90 0.35 

Table 8.6: The disturbance characteristics introduced to the system. 

 

We can recognize at Figure 8.10, the exactly time when we introduce the disturbance 

in the canal because the water level at sensor L7 decreases quickly 3 cm.  

 

 

Figure 8.10: Water level measures in sensor L7. 
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Figure 8.11: Flow through the weir 2 using the weir equation and the discharge coefficient 

calibrated by Horváth (2013). 

Obviously, the flow extracted through the weir modified the water level surface and 

the flow along the canal. From the sensors L6, L10 and L11 were obtained the water 

level measurements shown in the next Figure 8.12. 

 

Figure 8.12: Water level measures in sensors L6, L10 y L11. The measures were obtained 

every second and calculating the average value per 10 seconds. 
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The water level measurements at sensor L6, L10 and L11 have an error of depth 

gages of 1/2 mm, as we can check at Figure 8.12, but the water level measurements 

at sensor L3, L5 or L7 (Figure 8.10) have an error of depth gages of 7/10 mm. These 

last measurements are not quite accurate for CSI in this test because the water level 

variation in the canal caused by the flow through the weir 2 is around 2.5-4 cm (Figure 

8.12).   

The water level measures at the reservoir (L1) are shown in Figure 8.13. This data 

series collected by the sensor L1 every second are used by CSI for the establishment 

of the upstream boundary condition. Although the water level at the reservoir should 

be constant in time, due to limitations of laboratory installations, the water level at the 

reservoir is variable in time, as it depends on the water level downstream of the gate, 

for this reason the water level in the reservoir decreases when the flow is extracted 

through the weir, as it is shown in Figure 8.13.   

 

Figure 8.13: Water level measures in sensor L1 (upstream reservoir). The measures were 

obtained every second and calculating the average value per 10 seconds. 
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8.5. Test results 

The disturbances are introduced to the system by modifying the weir height. The 

sensors L6, L10, L11 take the water level measurements and these values are 

introduced to CSI algorithm, which calculates a discharge through the weir that 

generates a variation in the water levels at the checkpoints equal to the water level 

measured at the sensors L6, L10 and L11. The extracted hydrograph explains the 

evolution of the water level measures at the sensors during the past time horizon. 

The hydrograph obtained by CSI was filtered using a 10 time steps moving average 

(SMA), see Figure 8.14. We also show in Figure 8.14, the flow through the weir (W2) 

obtained with the equation of a sharp crested weir from the water level measures at 

sensor L7 and the discharge coefficient calibrated by Hórvarth (2013). 

 

Figure 8.14: The extracted flow rate through the weir 2 by CSI using 10-period simple moving 

average V.S. the extracted flow rate through the weir 2 by the weir equation using the 

discharge coefficient calibrated by Horváth (2013).  
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After analysing the Figure 8.14, we can add: 

 The algorithm obtains an extracted hydrograph similar to the real flow extracted 

through the weir (W2), especially at the initial moment to introduce the 

disturbance. 

 Although the real extracted flow was obtained by the weir equation using not 

accurate water level measures (sensor L7), these measurements are quite 

accurate for using this equation. As it is shown at the Figure 8.14, the noise 

error of this curve is not significant. 

 The water level measurements of sensors L6, L10 and L11 were chosen to 

introduce in CSI because the variations of water level measures are lower than 

other sensors, as these sensors are far away of the canal bend. 

 The flow rate difference between the hydrograph obtained by CSI and the 

hydrograph using the discharge coefficient calibrated by Hórvarth was around 

2.5 l/s.  

 Probably, the differences between both hydrographs may be the result of 

deviations in water level measurements at sensors L6, L7, L10 and L11. But, 

it is also possible, that these differences are due to a bad calibration of the 

equivalent Manning coefficient or the energy loss transition coefficient, 

although we tried to adjust them as good as possible. We have to point that 

the differences between both hydrographs are not significant, only 2.5 l/s over 

110 l/s along the canal. 

 The initial conditions are input data for the algorithm, but sometimes there is 

not any possibility to start the simulating horizon knowing the initial conditions. 

For that reason, we test this example for different flow initial conditions and the 

algorithm is sensitive to this initials conditions, which affects the flow rate 

extracted through the weir calculated by CSI. However if you choose a past 

time horizon of a reasonably long period, the influence of initial condition on 

the canal flow disappears. Duration of this period depends on the geometry 

and the features of the canal. 
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8.6. Sensitivity of the extracted flow in front of Manning 

coefficient 

This test was performed to study the sensitivity of the flow through the weir versus the 

Manning roughness coefficient of the canal. With this objective in mind, the same test 

was done three times more modifying at each one the Manning coefficient increasing 

the real value in 0.003 and 0.006 and decreasing the real value in 0.003. The solution 

obtained by the CSI algorithm is shown in Figure 8.15. This type of test was called 

“tuning test” in Test Cases (Clemmens et. al. 1998). 

 

Figure 8.15: The extracted flow rate at weir (W2) modifying the Manning roughness coefficients. 

We show in Figure 8.15 how the Manning roughness coefficient has a large effect on 

the solution obtained by the algorithm, so we have to be very careful with the Manning 

roughness coefficient value introduced to the CSI algorithm. 

The accuracy of Manning coefficient is more important when the flow through the weir 

is a low flow rate, because a little variation in Manning coefficient can introduce a big 

variation in flow rates similar to the flow extracted through the weir. There is a linear 

relationship between the increment of Manning coefficient and the flow extracted 

through the weir.  
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8.7. Conclusions 

Conclusions are listed below: 

 We have obtained a fast convergence and accurate results with CSI which has 

been possible thanks to the Levenberg-Marquardt method.  

 The CSI algorithm is very stable because it calculates the extracted 

hydrograph more similar to the real hydrograph that has been extracted by the 

weir. That is, the result is physically feasible and CSI does not look for 

incoherent solutions which could also define the canal state. For this reason, it 

is not necessary to introduce constraints to stabilize the algorithm.  

 The water levels measurements must be as accurate as possible, as the result 

(extracted hydrograph) obtained by CSI will be as accurate as the input data 

(water level measurements) is. 

 The CSI algorithm is highly sensitive to some physical parameters as the 

Manning roughness coefficient and by extension, other parameters as the local 

energy losses in the canal bend. For this reason, the algorithm should not be 

used in canals whose physical parameters are not well known. 
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Chapter 9 

 

ONLINE PREDICTIVE CONTROL: GoRoSoBo 

One of the main objectives in this thesis is manage and drive the canal to the desired state 

during the irrigation periods. There are different types of algorithms able to manage a canal, 

for instance feedforward algorithms, feedback algorithms or heuristic algorithms.  

The feedforward algorithms are used in many canals but they present a particular problem. 

The feedforward algorithms calculate the optimal gate trajectories taking into account a 

particular scheduled demand established for an irrigation cycle. The problem is when 

someone introduces a disturbance and the algorithm fails to manage the canal.  

The heuristic algorithms are not bases on physical laws, so the system is for them a black 

box. These kind of algorithms are usually used when large time series of measurements are 

available and the system is too complex to model. The problem of these algorithms is similar 

to the feedforward algorithms, when someone introduces a disturbance and the algorithm 

operates out of the range which was calibrated, the controller fails.  

We have developed a feedback algorithm (GoRoSoBo) which gets the measured values 

and compare them with a reference representing the desired performance. Any deviation 

from the reference is fed back into the control system so that this reduces the deviation of 

the controlled quantity from the reference. We introduce GoRoSoBo in this chapter. 

9.1. Introduction 

To fulfil our objective, we are going to introduce our predictive control which is part of the 

overall control diagram of an irrigation canal, introduced in Chapter 5. If we take a look to 

the Figure 9.1, we have introduced in this diagram our developed algorithms.  
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Figure 9.1: Developed algorithms in this thesis in an overall control diagram of irrigation canal. 
This cycle is done in each operation period and GoRoSoBo calculates the optimum gate 

trajectories in each operation period for a predictive horizon. 

The primary objective for a control algorithm is to maintain the water level at several points 

of the canal, where the flow is extracted by control structures (lateral weirs, pumps, offtake 

orifices). Typically, almost all of these structures work by gravity so the flow control depends 

on the water level. Maintaining the water level at the checkpoints allows controlling the 

demand deliveries and protects the canal from significant variations of water level which 

could damage the canal. 

The objective of maintaining a constant water level at checkpoints is rarely achieved 

because the water deliveries along the canal are not always well implemented and 
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sometimes these deliveries are unknown. The disturbances produce transients in the canal 

and consequently, changes in water level and discharge in orifice offtakes. The flow rate 

delivered differs from the scheduled delivery established by the watermaster, and as a 

consequence the efficiency of irrigation canal decreases. It is important to develop a 

feedback controller which comes back the canal to the desired water level at the checkpoints 

as soon as possible. 

There are some feedback controllers which works in parallel with computer models and the 

results obtained are good when the disturbance is small because it only affects at the 

neighborhood of a section. As these controllers do not know the unscheduled deliveries 

introduced in the canal, if the disturbance is significant, the data introduced to the feedback 

controller, obtained previously by the computer model, is not good enough and the controller 

finally fails. 

These controllers do not work correctly when the water level measurements at a checkpoint 

are far away from the desired water level. The gate trajectories are far away to the real 

solution because the disturbance has modified the canal state entirely and the controller 

only takes into account some measured values in several checkpoints in the canal. These 

controllers only consider the perturbation indirectly, through their effects on the water level 

measurements of the system.  

Instead, GoRoSoBo has not this problem because we developed CSI to estimate these 

perturbations and establishes the hydrodynamic canal state at every cross-section, as we 

have seen in chapter 6, 7 and 8. All these date could be sent to the feedback controller 

(GoRoSoBo) to calculate the optimum gate trajectories taking into account a particular target 

which is usually to maintain the water level at the checkpoints.  

There are other authors as Delgoda et al. (2013) or Van Overloop et al. (2008) which have 

also developed predictive controllers based in predictions of unscheduled flows. 

In an ideal case where there are not disturbances in the canal, a feedforward algorithm could 

manage the canal, as we show in Figure 9.2. In this case, the gate positions are fixed by a 

feedforward algorithm taking into account the scheduled demand (a particular desired water 

level at the orifice offtake), which is 4 m3/s in Figure 9.2, during the irrigation cycle. 
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Figure 9.2: Ideal case for a predictive control which maintains a water level to satisfy a scheduled 
demand of 4 m3/s. 

The ideal case is quite far from reality frequently, because someone could pump an unknown 

flow so the water level above the offtakes would decrease and the flow delivered to the 

farmers too, see Figure 9.3. In this case, someone introduces a disturbance (2 m3/s) in the 

canal and the water level at the checkpoints decreases. The feedforward algorithm only 

considers the scheduled demand previously fixed, so the water level at the checkpoints is 

not recovered and the flow delivered to the farmers is reduced too.  

In this particular case we could use our overall control diagram of an irrigation canal. Initially, 

the canal shows a steady state (Figure 9.4 (a)), but someone introduces a disturbance at 

T=40s (Figure 9.4 (b)).The water level measurements are sent first to the CSI which 

calculates the disturbances and the current canal state, and then GoRoSoBo calculates a 

new gate trajectory to fulfill the objective (come back to the desired water level at the offtake), 

(Figure 9.4 (b)). The new gate trajectory is sent to the actuator which modifies the gate 

position (Figure 9.4 (c)). The canal state comes back to the desired state, (Figure 9.4 (d)).  
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Figure 9.3: Real case for a predictive control. The controller calculates a gate trajectories to maintain a 
water level and supply the scheduled demand of 4 m3/s. The problem is when someone introduce a 

disturbance of 2 m3/s. The discharge through offtakes would be reduced to 2 m3/s. 

The question is, why do we develop a new feedback algorithm when there are a lot of them 

in the bibliography review? Because some of them, as CLIS (Liu et al., 1998) or PILOTE 

(Malaterre et al., 1995), operate quite well and obtain good performance indicators in the 

Test Cases proposed by ASCE (Clements et. al., 1998) but they do not operate as we want, 

and other algorithms not achieve our objectives, as we introduce as follow: 

 Many feedback algorithms calculate the optimal gate trajectories from empiric 

relations between the gate trajectory and water level error at checkpoints obtained 
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in specifics canals. But these algorithms are not based on physical laws and the 

empirical relation only operate in a particular range.  

 There are other feedback algorithms which calculate the optimal gate trajectories 

from relations between the gate trajectories and the water level error in a particular 

steady state. In case that a small disturbance is introduced in the canal, these 

algorithms operate quite well. In case that the disturbance is significant, the initial 

steady state is quite different to the current canal state, so the gate trajectories 

calculated with these algorithms will not be the optimal trajectories. 

 There are feedback control algorithms which need two or more water level and flow 

measurements for each pool to calculate the gate trajectories. 

 

Figure 9.4: Logic of control in our overall control diagram of irrigation canal. 

In this thesis, our feedback algorithm (GoRoSoBo) calculates the optimum gate trajectories 

from a water level error with aid of the HIM (Hydraulic Influence Matrix, Soler (2003)). This 

matrix establishes the influence of a gate movement on the free surface. Every element of 
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the HIM matrix establish the variation of the variable X (water level and velocity along the 

canal) associated to any change in gate positions     (9.1). The HIM matrix could be 

recalculated every time step, so we know the influence of a gate position on the water level 

at the current canal state.  

 ( )
X

HIM U
U

 
   

     (9.1) 

The name of Hydraulic Influence Matrix (HIM) is originated because their hydraulic 

components represent the influence of gate trajectories over the state vector (see chapter 

6) at all sections during the predictive horizon. Based on the full Saint-Venant equations, 

and using the first derivative (
𝜕𝑋

𝜕𝑈
) on an analytical process, it can be established the changes 

in flow behavior from a sluice gate movement at any section in a certain time step. 

To show a general view of the HIM, we are going to introduce the Figure 9.5 . When we 

open a gate in a canal, we modify the canal state, the water level and velocity in particular 

points at a particular time. For instance at t=10s, we modify the water level and velocity in 

cross-sections close to the gate (cross-section i), but we do not modify the hydrodynamic 

variables in a far cross section (“i+2” or “i+3”). At time=30s, the hydrodynamic variables in 

all cross-sections from “i” to “i+3” have been modified. The HIM matrix establishes how a 

gate movement modify the hydrodynamic variables in all sections of the canal during a 

prediction horizon. 

The HIM matrix is ill-conditioned, as we introduced in chapter 6, partly explained by the 

disparity of influence between their elements values, as some of them are zero. The 

influence of a sluice gate movement on a particular section depends on the distance 

between them, and the influence decreases after several regulation periods from the gate 

movement.  

For instance in the Figure 9.6, the gate at “i” changes its position (∆Ui) at t=0, so the gate 

generates a perturbation which travels upstream and downstream of the canal. In this case, 

the section “i+3” at t=0s is not influenced by the gate movement (∆Ui), but at t=30 s is 

influenced by the gate. The magnitude of the influence of ∆Ui is not equal in section “i” at 

t=0s and in section “i+3” at t=30s, because the influence of the perturbation decreases in 

space and time. 
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Figure 9.5: General view of the influence of a gate movement in the hydrodynamic state of a canal.  

We can choose a set of points of the space/time domain from the canal (Figure 9.5) as many 

as we want to form a computational grid where we can establish the influence of a gate 

movement on the water level and velocity in each of these points (Figure 9.6).  

 

Figure 9.6: Influence of a gate movement in several points of the space/time domain in the canal 
disposed in a computational grid. Notice that "K" with capital letter denotes time interval of control 

and "k" with small letter denotes time instant of simulation. 
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9.2. Problem statement 

We could calculate the perturbations associated a particular gate movement in a canal from 

a computer model based on the Saint-Venant equations. GoRoSoBo does the inverse 

process, that is, it calculates the gate trajectories that most closely approximate a particular 

perturbation (water level error at checkpoint). 

The GoRoSoBo algorithm is a feedback controller where the desired output (variable with 

desired setpoint) is used to adjust the water level measurements to drive the system to the 

desired water demand from control actions (the optimal gate trajectories). 

There are multiple forms to obtain the optimal gate trajectories, for instance there are 

controllers which are based on the inversion of the equations describing the movement of 

the water, other controllers are based on the optimization of a given criterion for the present 

and a given time horizon, other controllers are based on the use of the 

proportional/derivative/integral of the measured error to correct the control action, etc. 

Our proposal defines an objective function from the total deviation between the data 

prescribed by the user (target water level) with the measured data (water level 

measurement). This objective function is minimized through an optimization procedure with 

the objective to obtain the optimal gate trajectories. In that sense, GoRoSoBo solves an 

inverse sequential problem as an optimization procedure. 

9.2.1. Definition of the optimization problem 

In this optimization problem, we replace the water level measurements with the prediction 

output vector (𝑌1
𝑘𝐹) obtained from a computer model (more details in chapter 6). This vector 

contains the values of water level at certain cross-sections of the canal for a prediction 

horizon (1-kF), from particular gate trajectories.  The dimension of the prediction output 

vector is nY= kF × nc, where kF is the final time step of the prediction horizon and nc is the 

number of checkpoints.  

GoRoSoBo calculates the optimal gate trajectories during a prediction horizon. As it is 

illustrated in Figure 9.7, the gates are operated with a period ΔK. Gate trajectories are 

assumed as piecewise functions. The gate position remains fixed during the regulation 
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period and the gate position could change between regulation periods. The gate trajectories 

vector is defined by lumping together all the gate positions as follows: 

       1 11 , , 1 , , , , ,
g g

T

n F n FU U U U K U K
 

  
 

 (9.2) 

 

 

Figure 9.7: Mathematical representation of a gate trajectory. 

where the dimension of this vector is nU= KF × ng , ng is the number of gates and KF is the 

final regulation period. In each operation period, GoRoSoBo calculates new gate trajectories 

for a prediction horizon. 

The data prescribed by the user in this optimization problem is the water level at checkpoints, 

where there are gravity offtakes and the algorithm has to maintain the water level.   

We can write the target water level vector at a particular time step k as:  

       * * * *

1 , , , ,
C

T

i ny k y k y k y k     (9.3) 

Finally, all vectors (9.3) for each time instant of the predictive horizon are joined to define 

the desired water level vector, the dimension of the vector is nY. We define this vector as: 

       * * * * *1 , 2 , , 1 ,
T

F FY y y y k y k     (9.4)  
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We choose a set of points of the space/time domain to form a computational grid where the 

solution is computes by using a numerical procedure (Figure 9.8). We can check the desired 

water level vector values at the computational grid in Figure 9.8 (yellow dots), we can also 

check the measured water level vector at the computational grid (red circle).  

 

Figure 9.8: Sketch of a numerical grid in a canal with two pools controlled by two checkpoints 
downstream each pool. There are two sluice gates. Gate trajectories are defined with four operation 

periods. The x/t-dots where the flow behavior is defined are shown. 

9.2.2. Control problem: Objective function 

As we introduced in chapter 4, an objective function expresses the aim of the control model 

to minimize or maximize some variables to obtain an optimal response. An objective function 

can be the result of an attempt to express a control action (gate movement) in mathematical 

terms to drive the system to the desired output (variable with desired setpoint).  



Chapter 9. Online Predictive Control: GoRoSoBo                                                                          194 

In that way, we thus define ideal flow behavior as a sequence of desired water level values 

for given sections (checkpoints) at several time steps. In order to continue with the 

mathematical treatment, these values are defined by the desired water level vector.  

In reality, the sequence of water level measurements could be not close to the desired water 

level vector due to disturbances, and this variation between both values is defined by the 

objective function. 

The objective function expresses the residual value between the prediction output vector 

and the desired water level at the target points. Minimizing this function, we obtain a set of 

control actions (U*) and the best possible approximation to the desired value (Y*). This is 

the goal of the objective function and U* is the solution. 

𝐽(𝑈) =
1

2
(𝑌1

𝐾𝐹(𝑈) − 𝑌∗)𝑇[𝑄′](𝑌1
𝐾𝐹(𝑈) − 𝑌∗) (9.5) 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐽(𝑈∗) = 𝐹[𝑌1
𝐾𝐹(𝑈∗)] (9.6) 

where Q’ matrix is a weighing matrix with dimension ny×ny. This matrix could be used to 

define the level of importance of the water level error in a particular checkpoint weighting 

some values more than others depending on their importance. We define this matrix as the 

identity matrix in GoRoSoBo. The vector U contains the gate trajectories, and the dimension 

of this vector is nU= KF × ng, where 𝑌1
𝐾𝐹(𝑈) is the water level at the checkpoints from K1 to KF 

due to gate trajectories U. 

 

Figure 9.9: Minimum value (U*) for an objective function. 
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9.2.3. Predictive control 

Once we know the water level/velocity along the canal at time step K with the aid of CSI 

(Figure 9.10), we could predict the water level/velocity along the canal for a predictive 

horizon (k-K+3) as we know the canal state and the real extracted flow at K, the gate 

trajectories and the scheduled demand from K to K+3. In that sense, we could obtain the 

water level error at the checkpoints between target value and the predicted water level, so 

the predictive control could calculate some actions at K (present time) for the prediction 

horizon to remove the water level error. At the end of this process, we would obtain a 

predicted output of the system at K for the prediction horizon, see Martín-Sánchez and 

Rodellar (1996).  

 

Figure 9.10: A model predictive control scheme. 

In that way, we could establish the perturbation of the gate trajectories vector (∆U) (9.7) to 

correct the water level error vector at the checkpoints (∆Y) for a prediction horizon from a 

simplification of the Hydraulic Influence Matrix (HIM(U)’) which represents the influence of 

the gates on the water level vector at checkpoints.  
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∆𝑌 = [𝐻𝐼𝑀(𝑈)′]∆𝑈 

 [𝐻𝐼𝑀(𝑈)′] =
Y

U

 
  

 
(9.7) 

The HIM matrix makes possible to implement the GoRoSoBo algorithm as this matrix 

establishes a direct relation between the water level error and the new gate trajectories 

vector. In that sense, the relation between the gate movements (∆U) to restore the volume 

of water (yellow area) in the canal of Figure 9.11, is established by the HIM. 

 

Figure 9.11: Logic of control of the feedback algorithm. 

The analytic process to obtain (
𝜕𝑌

𝜕𝑈
) is analyzing the influence of a perturbation on the free 

surface described by the Saint Venant equations in its characteristic form. If we look at 

Figure 9.6, a perturbation (∆U) introduced in the space/time domain generates an upstream 

wave and a downstream wave which are defined by the characteristic curves, we could 

analyze the variation of water level from the characteristic curves generated by the 

perturbation. Instead, the numerical process to obtain this matrix consist in the discretization 

of the analytic term calculating the state vector X (water level and velocity along the canal) 

considering a perturbation of the gate trajectories (U+∆U) and the state vector X obtained 

from the gate trajectories (U) (9.8). The analytic and numerical processes were analyzed by 

Soler (2003), and both results were similar.  

𝜕𝑌1
𝑘𝐹

𝜕𝑈(𝐾)
(𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠) ≈

𝑌1
𝑘𝐹(𝑈(𝐾) + ∆𝑈) − 𝑌1

𝑘𝐹(𝑈(𝐾))

‖∆𝑈‖
 (𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠) (9.8) 
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9.2.4. Inputs/outputs variables of a controlled system 

The system input variables are applied to a control method to produce a control action and 

modify the output variables of the system. In our problem, the system input variables are the 

state vector at current time step, scheduled demands, the desired water level vector and the 

gate trajectories in a previous predictive horizon. The system output variables would be the 

gate trajectories at the current time step for a prediction horizon with the objective to keep 

the desired water level at the checkpoints. In Figure 9.12 we show the input and output 

variables in GoRoSoBo algorithm taking into account the considered variables in the 

process, as follow: 

 Control method: GoRoSoBo algorithm. 

 Input variables: Scheduled demands, gate trajectories (previous prediction horizon), 

state vector at current time step and the desired water level at checkpoints. 

 Output variables: gate trajectories at the current time step. 

 

Figure 9.12: Representation of the feedback algorithm. 

9.2.5. Analysis of the Hydraulic Influence Matrix: HIM(U) 

The HIM matrix defines the influence of the gate on the canal state. The compiled HIM matrix 

([IM(𝑢)]𝑖) for a gate (i) for a particular predictive horizon (j) is shown in the next equation: 
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[IM(𝑈)]𝑖𝑗 = [
𝜕𝑋1

𝑘

𝜕𝑈𝑖(1)
…

𝜕𝑋1
𝑘𝐹

𝜕𝑈𝑖(𝐾)
⋯

𝜕𝑋1
𝑘𝐹

𝜕𝑈𝑖(𝜑)
]
𝑗

= 

 

                  

[
 
 
 
 
 
 
 
 
 
 
 𝜕𝑥1

𝜕𝑈𝑖(1)
⋮
⋮
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⋮
⋮
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⋱
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𝜕𝑥1

𝜕𝑈𝑖(𝐾)
⋮
⋮

𝜕𝑥𝑘

𝜕𝑈𝑖(𝐾)
⋮
⋮

𝜕𝑥𝑘𝐹

𝜕𝑈𝑖(𝐾)

⋱
⋱
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⋱
⋱
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⋯
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⋱
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⋱
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⋯
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⋱
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⋱
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⋮
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𝜕𝑥𝑘

𝜕𝑈𝑖(𝜑)
⋮
⋮

𝜕𝑥𝑘𝐹

𝜕𝑈𝑖(𝜑)]
 
 
 
 
 
 
 
 
 
 
 

 

(9.9) 

where the state vector at time step k is defined respectively as: 

 

xk = (y1
k  v1

k ……yi
k  vi

k ⋯⋯yns
k   vns

k ) (9.10) 

When there is more than one gate to control the canal, the matrix has to compile the gates 

all together. In that case, the HIM is compiled as: 

[IM(𝑈)]𝑋𝑗 = [[
𝜕𝑋1

𝑘𝐹(𝑈)

𝜕𝑈1(1)
⋯

𝜕𝑋1
𝑘𝐹(𝑈)

𝜕𝑈𝑛𝑔
(1)

]⋯ [
𝜕𝑋1

𝑘𝐹(𝑈)

𝜕𝑈1(𝜑)
⋯

𝜕𝑋1
𝑘𝐹(𝑈)

𝜕𝑈𝑛𝑔
(𝜑)

]] (9.11) 

where sub index X is used to denote the HIM on the state vector.  

The dimension of [IM(𝑈)]𝑋𝑗= nHX×nHY, nHX=2× ns×(kF-kI), nHY = 𝜑 ×ng, ns is the total number 

of cross sections which has been discretized the canal,  𝜑 is the number of regulation times 

of the prediction horizon, ng is the number of gates, i is the “ith” gate, j is the “jth” prediction 

horizon and the dimension of the state vector (x) in the time step k is 2×ns.  

A feature of this matrix is about the number of columns and rows. There are more rows than 

columns because every term  
𝜕𝑥𝑘

𝜕𝑈𝑖(𝐾)
  is a vector with 2×ns rows, and the temporal discretization 

of the simulation ∆tk is smallest than the regulation period ∆TK.  

In case that the matrix only defines the influence of a gate on the water level (not considering 

the velocity), the number of elements of the vector is reduced to ns. 
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Another one feature about the HIM shows some elements with a zero value, because there 

is no influence of the gates over the state vector in particular points during the prediction 

horizon which could destabilize the algorithm because the matrix is ill conditioned. We could 

obtain null values in some elements of the matrix, because these elements express the 

influence of a disturbance at the present time when the disturbance is introduced in future, 

or these elements express the influence of a disturbance in a faraway section of the canal 

where the disturbance has not influence.  

One of main problems of the HIM is the time used to calculate the matrix which depends on 

the pc features and the total parameters: gates, checkpoints and the predictive horizon. We 

tried to reduce the calculation time using the HIM around a steady state obtained previously 

because GoRoSoBo operates in real time and there is not so much time to calculate the 

gate trajectories between time steps. This option was discarded at the beginning because 

we tried to solve some hard tests with GoRoSoBo, as the Test-Cases proposed by the ASCE 

committee (Clemmens, et al. 1998), and it was impossible to solve the problems and get 

reasonable performance indicators using the HIM in steady state. The unscheduled water 

changes are quite huge in these tests. For that reason the free surface after several time 

steps is quite different of the free surface at the initial steady state.  In that sense, the HIM 

would not represent the influence of the gate trajectories on the current canal state.  

The HIM around a steady state would be acceptable for a test without huge flow changes, 

although it is also important the time duration of the flow changes. If the external disturbance 

is smooth, but its time duration is long, the gate trajectory obtained using a HIM matrix 

around a steady state is getting worst in each regulation period. For that reason, it will be 

impossible to control the canal. 

We could do a simile between the problems associated to the HIM around a steady state 

with a loop problem, as the steady state is not the current canal state, the HIM around a 

steady state does not reflect the real canal state, and the gate trajectories obtained with this 

matrix will not be accurate. As the gate trajectories are not enough accurate, the real water 

level will never reach the desired water level at target points. 

9.3. Algorithm controller from unconstrained optimization 

Initially, GoRoSoBo solved an unconstrained optimization problem minimizing an objective 

function to reach the solution. There are several methods to solve an unconstrained 
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optimization problem. All of them have to reach the solution (U*) and verify two conditions 

to be sure that U* is the better solution. The first condition demonstrates that the solution is 

a maximum, minimum or a saddle and the second condition demonstrates that the solution 

(U*) is a minimum. These conditions have to be achieved by all optimized methods 

(constrained and unconstrained). In this way, it is interesting to introduce these order 

conditions. 

9.3.1 First-order and second-order conditions 

It exists an extensive bibliography about the order conditions in optimization problems, for 

instance Fletcher (1987) and Luenberger (1984). Before solving an optimization problem, 

we have to be sure that the optimization problem fulfills the first order and second order 

conditions. 

The first-order conditions are necessary to find an optimal solution of an unconstrained 

optimization problem as: 

∇JU(U
∗) = 0 

(9.12) 

∇𝑈𝐽(𝑈
∗) = (∇𝑈𝑋1

𝐾𝐹(𝑈∗)𝑇 − 𝑌∗)𝑇[𝐶]𝑇[𝑄]([𝐶]𝑋1
𝐾𝐹(𝑈∗) − 𝑌∗) = 0 

(9.13) 

where  ∇JU(U
∗) is the first derivative of the objective function around the solution (U∗).  

In fact many minimization methods are based only upon trying to locate a solution U*.This 

may not be a strict local minimum and in general is referred as a stationary point. It is 

necessary a second condition to confirm that U* is a strict local minimum point.  As we 

introduced previously, a minimum corresponds to a positive definite Hessian matrix.  

Where the Hessian matrix can be defined as: 

∇UU
2 J(U∗) ≈ (∇UX1

KF(U∗)T)[C]T[Q][C](∇UX1
KF(U∗)T)T (9.14) 

When ∇𝑈𝑈
2 𝐽(𝑈∗)

 
is used in the simplified form , this equation is called Gauss-Newton method 

or Least Squares method (9.14).  
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9.3.2 Optimized problem theory 

As noted, GoRoSoBo was initially developed to solve an unconstrained optimization 

problem using the Levenberg-Marquardt method. The theory associated to this method was 

explained in chapter 6, when it was introduced the CSI algorithm, although we have 

developed this numerical method as the approach of Brogan perturbation theory (see 

Appendix 1) in which we use the Taylor series to develop the perturbation equation around 

a gate trajectory.  

9.3.3 Implemented algorithm 

We used Levenberg-Marquardt method, because this method is robust and applicable to ill-

conditioned matrix as the Hessian matrix. The HIM matrix is a positive definite matrix but it 

is also an ill conditioned matrix. The approximation of the Hessian matrix, obtained from 

multiplying the HIM matrix by its transposed, has a worst condition number than the HIM 

matrix. As noted, we use the Levenberg-Marquardt method which introduces a value ( ) in 

the diagonal of the Hessian matrix to improve the condition number of the matrix. 

𝐻 = [∇UU
2 J(U∗)] +  [𝐼]) (9.15) 

where  [𝐼] is the identity matrix and  > 0 is a real value named Marquardt coefficient. The 

steps defined in the implemented algorithm are shown in the next flowchart which is a type 

of diagram that represents every process, showing the steps as boxes, and their order by 

connecting them with arrows. This representation illustrates a solution to the optimization 

problem. Process operations are represented in these boxes, and the sequencing of 

operations by the arrows. Before to show the flowchart, we have to define some matrixes 

and variables that are used in the flowchart: 

 [Q’] is the weight matrix. 

 [C] is the discrete observer matrix (a matrix of zero and ones). 

 𝑟′ = [𝐶]𝑋𝑘𝑖
𝑘𝐹(𝑈𝑖) − 𝑌∗ is the residual vector. 

 𝑋𝑘𝑖
𝑘𝐹(𝑈𝑖) is the state vector.  

 [𝐼𝑀] = 𝐼𝑀[𝑋𝑘𝑖
𝑘𝐹(𝑈𝑖)] is the Hydraulic Influence Matrix, all evaluated in 𝑈𝑖. 

All the process of the algorithm are defined in each loop, where the solution U* is calculated 

in each regulation period (i) for a predictive horizon. 

http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Process_(science)


Chapter 9. Online Predictive Control: GoRoSoBo                                                                          202 

 

In
it
ia

liz
in

g
 t
h

e
 a

lg
o

ri
th

m
: 
 

it
=

  
  

/(
it
+

1
) 

(M
a
rq

u
a
rd

t 
c
o
e
ff
ic

ie
n
t)

it
 =

 0
 (

it
e
ra

ti
o
n
 c

o
u
n
te

r)

i=
1
 (

re
g
u
la

ti
o
n
 p

e
ri
o
d
)

U
i
=

 U
0

(f
ir
s
t 

e
s
ti
m

a
te

 o
f 

th
e
 g

a
te

 t
ra

je
c
to

ry
)



C
a

lc
u

la
te

 m
a

tr
ix

e
s
:

   
   
   
   
  𝐽

𝑖=
1 2
𝑟
𝑇
𝑄
′
𝑟
(P

e
rf

o
rm

a
n
c
e
 i
n
d
e
x
) 

  
 𝐻

𝑖
=

𝐼 𝑀
𝑇

𝐶
𝑇
𝑄
′

𝐶
𝐼 𝑀
 (
 
e
s
s
ia
n
 a
p
p
ro
x
im
a
ti
o
n
) 
   
 𝑔

𝑖
=

𝐶
𝐼 𝑀

𝑇
𝑄
′
𝑟
(J

a
c
o
b
ia

n
v
e
c
to

r)

S
e

tu
p

 o
f 
th

e
 H

e
s
s
ia

n
 m

a
tr

ix

*a
) 

E
v
a
lu

a
te

 t
h
e
 i
n
fl
u
e
n
c
e
s
 o

f 
H

IM
 [
𝐼 𝑀

] 

b
) 
A

d
d
 t

h
e
 M

a
rq

u
a
rd

t 
c
o
e
ff
ic

ie
n
t 
( 

 )
: 
  
 𝐻

𝑖 𝑖
 
=

𝐻
𝑖𝑡
+

[I
]

c
) 

C
h
o
le

s
k
y

d
e
c
o
m

p
o
s
it
io

n
: 
 

 
𝑇
=

𝐻
𝑖 𝑖
 




S
o

lu
ti
o

n
 o

f 
th

e
 a

lg
o

ri
th

m
:

∆
𝑈
𝑖
=

−
𝑔
𝑖

 
 

𝑇

T
e

s
t:

J(
𝑈
𝑖∗
)
=

𝐽(
𝑈
𝑖
+

∆
𝑈
𝑖)

If
: 

 J
(𝑈

𝑖∗
)
<

𝐽(
𝑈
𝑖)

T
h
e
 s

o
lu

ti
o
n
 i
s
 g

o
o
d

I 
   
 J
(𝑈

𝑖∗
)
>

𝐽(
𝑈
𝑖)

T
h
e
  

a
lg

o
ri
th

m
 d

o
e
s
 n

o
t 
c
o
n
v
e
rg

e

U
p

d
a

ti
n

g
 t
h

e
 g

a
te

 t
ra

je
c
to

ri
e

s
:

𝑈
∗
𝑖
=

𝑈
𝑖
+

∆
𝑈
𝑖



𝑖𝑡
=

𝑖𝑡
+

1
i=

i

𝑖𝑡
=

0
i=

i+
1

*T
h
e
 s

u
m

 o
f 
a
ll 

v
a
lu

e
s
 i
n
 e

v
e
ry

 c
o
lu

m
n
 m

a
tr

ix
 s

h
o
u
ld

 b
e
 d

if
fe

re
n
t 

to
 z

e
ro

, 
a
s
 i
n
 t
h
is

 w
a
y
 t
h
e
 g

a
te

 h
a
s
 i
n
fl
u
e
n
c
e
 o

v
e
r 

th
e
 w

a
te

r 
le

v
e
l 

in
 t
h
e
 t

a
rg

e
ts

 i
n
 t

h
e
 p

re
d
ic

ti
v
e
 h

o
ri
z
o
n
:𝐹
𝑗
 
 

𝐼 𝑖
𝑗

𝑛
𝑓

𝑖 
1

 ≠
0
, 
if
 i
t 
is

 n
o
t 

th
is

 c
o
lu

m
n
 m

u
s
t 

b
e
 r

e
m

o
v
e
d
 a

s
 t
h
is

 i
s
 a

 s
o
u
rc

e
 t
o
 b

e
c
o
m

e
 t
h
e
 

H
e
s
s
ia

n
 m

a
tr

ix
 w

o
rs

t 
c
o
n
d
it
io

n
e
d
.

T
h
e
 s

u
m

 o
f 
a
ll 

v
a
lu

e
s
 i
n
 e

v
e
ry

 r
o
w

 m
a
tr

ix
 s

h
o
u
ld

 b
e
 d

if
fe

re
n
t 
to

 

z
e
ro

, 
a
s
 t
h
is

 w
a
y
 t

h
is

 g
a
te

 h
a
s
 i
n
fl
u
e
n
c
e
 o

v
e
r 

th
e
 w

a
te

r 
le

v
e
l 
o
v
e
r 

th
e
 t
a
rg

e
ts

 i
n
 t
h
e
 p

re
d
ic

ti
v
e
 h

o
ri
z
o
n
: 
𝐶
𝑖 

 
𝐼 𝑖
𝑗

𝑛
𝑐

𝑗
 
1

 ≠
0
, 

if
 i
t 

is
 n

o
t,
 

th
is

 r
o
w

 m
u
s
t 
b
e
 r

e
m

o
v
e
d
 a

s
 t
h
is

 i
s
 a

 s
o
u
rc

e
 t
o
 b

e
c
o
m

e
 t
h
e
 

H
e
s
s
ia

n
 a

 v
e
ry

 i
ll 

c
o
n
d
it
io

n
e
d
 m

a
tr

ix
. 



Chapter 9. Online Predictive Control: GoRoSoBo                                                                          203 

9.3.4 Analysis of the unconstrained optimization problem 

As we introduced in the last section (9.3.1), our control algorithm was implemented from the 

HIM matrix around a steady state solving an unconstrained optimization problem but this 

method did not function properly in several tests in which the disturbances were significant.  

This part of the thesis was also important; because we realized that it was impossible to 

develop a control algorithm without information about the current canal state. A water level 

error (difference between the computed water level and measured water level) at a 

checkpoint in an instant of time modifies the free surface of a canal for a short time, whereas 

a flow change at a checkpoint during a regulation period modifies the free surface for a long 

time (Figure 9.13). Both situations are quite different and the control algorithms should take 

into account one case or another depending the situation, because the gate trajectories will 

be different in both cases. For that reason, it is so important obtain the disturbances with 

CSI, because we know as the free surface is modified in any time. 

If a disturbance is introduced into the canal, the algorithm cannot control the canal only 

measuring the water level change and making a prediction of the future error, without the 

information about the disturbance.  We realized in that moment that the controller needed 

the CSI algorithm, as the control algorithm needs to know the current canal state and 

disturbances at every regulation time. 

 

Figure 9.13: Flow disturbance during a regulation period V.S. water level disturbance at a 
particular time step. 
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As we introduced before, our controller solved an unconstrained optimization problem based 

on the system of equations (9.7). We implemented an unconstrained optimization problem 

in our predictive control, because it is easier to implement the code and reduces the 

computation time in front of algorithms based on constrained optimization but the results 

with this algorithm were not good. 

Sometimes one gets more information from the failures that from successful tests. In case 

that a significant unscheduled flow changes are introduced in the canal, the predicted water 

level error obtained by CSI would significant too. So the predictive controller would introduce 

important changes in gate trajectories to drive the system to the desired level such changes 

could be physically impossible and the algorithm could fail. This was one of the reason to 

introduce constraints in the optimization problem. 

We realized about this problem when we implemented the Test-Cases proposed by the 

ASCE (Clemmens et al., 1998). The first part of the Test-Cases (scheduled offtake changes) 

has been solved by several feedforward controllers, one of them was GoRoSo (Soler, 2003). 

Initially, this algorithm also solved an unconstrained optimization problem but GoRoSo was 

tested with these Test-Cases and the results were not good due to the important scheduled 

offtake changes. This was one of the reasons to modify the algorithm and GoRoSo 

implemented a constrained optimization problem which solved successfully the Test-Cases 

obtaining good performance indicators. 

We had the same problems with GoRoSoBo when we tried to solve the second part of the 

Test-Cases (unscheduled offtake changes). Although the control problems solving the 

second part were more important than the first part because the feedback algorithm does 

not have any notice about the disturbance until the water level at the checkpoints have been 

perturbed, that is, there is not any possibility to change the gate trajectory to reduce the 

future water level errors before the disturbance perturbs the water level at the checkpoints. 

Instead, the scheduled offtake changes of the first part are known in advance by the 

feedforward algorithm at the beginning of the irrigation cycle. 

 It is absolutely necessary to introduce constraints in our optimization problem. A 

constrained optimized problem is solved by GoRoSoBo.   

Before changing the code of our feedback algorithm to solve a constrained optimization 

problem, we studied other option before developing a constrained optimization problem. We 
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tried to introduce “artificial constraints” in an unconstrained optimization problem with the 

aid of the Marquardt coefficient. Although the real objective of using Marquardt coefficient is 

to improve an ill conditioned matrix, we tried to use the Marquardt coefficient to restrict the 

gate movements. The Marquardt coefficient was computed with the aim that the minimum 

gate position is equal or greater than the lowest gate position allowed. The problem is that 

all the gate trajectories calculated by the algorithm are penalized for this Marquardt 

coefficient and the coefficient would only be able to restrict the minimum gate position. In 

some way, applying the Marquardt coefficient is the same that modify the influences of the 

elements of the HIM, because we apply this coefficient in the diagonal of the Hessian matrix.  

We dismissed this option and we implemented in our algorithm a constrained optimization 

problem solved by the Lagrange-Newton method. 

9.4. Algorithm controller from constrained optimization 

As we discussed in previous sections of this chapter, we need to include constraints on the 

gate movements. In case of disturbances, the feedback algorithm computes new gate 

trajectories, taking into account the constraints, to maintain the water level as close as 

possible to the target water level at the checkpoints, so the gate trajectories computed by 

the algorithm are physically possible and the best approximation to the optimal gate 

trajectories. Establishing constraints in a predictive control has been made by many authors, 

for instance by Soler (2003) in GoRoSo (feedforward predictive control) or Zagona (1992) 

in MPC (model predictive control).  

We can classify the different types of constraints as: 

 Overall constraints 

 Functional constraints 

Taking into account the experience of these authors about constraints in predictive 

controllers, we introduced a set of overall constraints to avoid gate positions lower than the 

minimum gate opening and greater than the maximum gate opening (Figure 9.14):  

𝑈𝑖𝑗(𝐾) − 𝑈𝑚𝑖𝑛 ≥ 0 
(9.16) 

𝑈𝑚𝑎𝑥 − 𝑈𝑖𝑗(𝐾) ≥ 0 
(9.17) 
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where Umin is the minimum gate position, Umax is the maximum gate position, K is the number 

of the regulation period in a predictive horizon, “j” is the “jth” predictive horizon, and “i” is the 

“ith” gate. That is, Uij(K)  is the gate position in the “jth” predictive horizon, for the “ith” gate 

in the regulation period K.   

 

Figure 9.14: Maximum and minimum gate position for the constrained optimization 
problem. 

We also use functional constraints which restrict the gate movements between time steps. 

The gate position between consecutive time steps should not be very different, because the 

free surface would change a lot between regulation periods and it would be difficult to control 

the canal. When does the control algorithm compute big changes in gate position for 

consecutive time steps?  

This happens in the following situations:  

 The first one is by significant flow changes in the canal.  

 The second one is by small flow changes but the gate has a low influence on the 

target points. It is possible that a gate has a low or null influence on several target 

points because these points are far away of this gate and the wave height generated 

by the gate is attenuated a lot due to the friction forces, or because the wave 

generated by the gate arrives at the target points later that the end of the prediction 

horizon. If we want to fix the desired water level at the checkpoints with this gate, as 

the influence is low or null, the gate movement would be significant and functional 

constraints would be necessary (Figure 9.15): 
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|𝑢𝑖𝑗(𝐾 + 1) − 𝑢𝑖𝑗(𝐾)| ≤ 𝑑𝑈𝑚𝑎𝑥 
(9.18) 

where dUmax is the maximum gate movement acceptable between consecutive regulation 

periods. This value can be associated with the characteristics of the servo-motors used to 

move the gate. 

 

Figure 9.15: Maximum gate movement between consecutive regulation periods for the 
constrained optimization problem. 

After numerous tests using overall and functional constraints, it did not work. All of these 

kinds of constraints were not enough. We thought that a new one constraint was necessary 

to control the system, because some gate movements destabilized the system.  

The predictive controller computes new gate trajectories for a predictive horizon in every 

regulation period, but only the gate positions during the first regulation period for the 

prediction horizon are sent to the actuator (U*i(j-1)(K)) (Figure 9.16). In the next regulation 

period, new gate trajectories will be computed by the control algorithm and only the gate 

positions at the first regulation period are sent to the actuator again (U*ij(K)). The gate 

trajectories used in the control structures contain the gate position in the first regulation 

period of each predictive horizon. For that reason, we need to restrict the gate movement 

between consecutive regulation periods of different predictive horizons (Figure 9.16). A 

feedback controller, as GoRoSoBo, needs new constraints between gate positions for 

consecutive regulation periods obtained in different predictive horizons. The equations 

associated to this new constraints are written as: 
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0
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max ( 1) 0

( )
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 (9.19) 

where d0Umax is the maximum gate movement acceptable between consecutive regulation 

periods of different prediction horizons. U0 is a vector with the gate positions at “K” regulation 

period for the prediction horizon (j-1), so U0 is constant in the “jth” prediction horizon. A range 

of values to fix d0Umax is similar to the dUmax which could be estimated from empirical 

methods based on the experience of engineers in real cases, or from the features of the 

servo-motors which drive the gates.  

 

Figure 9.16: Maximum gate movement between consecutive regulation periods for different 
predictive horizons for the constrained optimization problem. 

Previously to discuss about the first and second order conditions, introduced in Appendix 2, 

which must be fulfilled by the constrained optimization problem, it is necessary to analyze 

the overall and functional constraint functions proposed in this constraint optimization 

problem. The Kuhn-Tucker conditions (first order condition) are necessary only if a particular 

condition is satisfied. That condition, called the constraint qualification, imposes certain 

restrictions on the constraint functions of a nonlinear programming problem, for the specific 

purpose of ruling out certain irregularities on the boundary of the feasible set, which would 

invalidate the Kuhn- Tucker conditions, as show Fletcher (1987) or Luenberger (1984). The 

constraint functions must fulfill the constraint qualification and this condition  is fulfilled in our 

optimization problem, because the active constraints functions are linear, and the first 
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derivative of these functions are linearly independent, see in Soler (2003). We have to note, 

that only active restrictions will be taken under consideration to evaluate the constraint 

qualification. The discussion about the constraint qualification is shown in the Appendix 3. 

9.4.1. Optimized problem theory 

The methods used to solve constrained optimization problem were two: the Lagrange-

Newton method and the Active Set Method.  

The placing of one loop inside the body of another loop is called nesting. We use the Active 

Set method nested inside of the body of Lagrange-Newton method. These methods were 

chosen taking into account the good results obtained when they were implemented in 

GoRoSo control algorithm by Soler (2003). 

The Lagrange-Newton method, also called SQP (Sequential Quadratic Problem) by Fletcher 

(1987), is an iterative method and each iteration sets a quadratic problem and every 

quadratic problem is solved by the Active set method. We use these methods because they 

are robust and fast convergence methods in optimization problem. The SQP method is 

usually used in constraint optimization problems where the constraints are nonlinear. We 

use this method although the constraints introduced in our optimization problem are linear.  

The SQP method is based on applying the Newton’s method to find the stationary point from 

the Lagrange function, for that reason this method is called Lagrange-Newton method, see 

Fletcher (1987). Both methods are used to solve the constrained optimization problem which 

is defined in each regulation period. A detailed explanation of the Lagrange-Newton and 

Active Set methods is done in the Appendix 4.  

9.4.2. Implemented algorithm 

The implemented algorithm consists of two iterative loops: an interior loop solves the 

quadratic problem by the Active set method nested within the external loop which solves 

the SQP (Sequential Quadratic problem). The steps defined in the implemented algorithm 

are shown in the next flowchart which is a type of diagram that represents every process, 

showing the steps as boxes, and their order by connecting them with arrows. As we did in 

the unconstrained optimization problem, we also added the Marquardt coefficient to the 

diagonal of the Hessian matrix to improve its condition number.  

http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Process_(science)
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9.4.3. Analysis of the Future State Computation 

If we want to define accurately the future canal state; we should know the future 

disturbances. The problem is that we do not know the future changes in flow, because these 

changes can be caused by unscheduled flow extractions and this will happen at the future, 

not right now. 

At this point we have two options:  

 Establishing the current canal state and not make future predictions.  

 Establishing the current canal state and make future predictions.  

So the question once CSI has established the disturbances in the canal would be: Which is 

the future forecast in flow changes? Our future predictions could be that the disturbance will 

only exist during a regulation period, but we could also think that the disturbance will exist 

during several regulation periods.  It is not an easy question because the control action 

calculated by GoRoSoBo will be different in both options. In that sense, in the second option 

the controller response will be stronger throughout the predictive horizon because the 

duration of the disturbance is longer than the first option. The canal state, that is, the velocity 

and the water levels along the canal are different in both options (Figure 9.17) as well as the 

gates openings because the flow through the gates must be different, although the water 

level at the checkpoint (Y=Y*) is equal.  

The problem is that the feedback controller modifies the gate opening according to the 

current canal’s hydrodynamic state and the future predictions. In case that we do not make 

future predictions about the disturbance, we suppose that the disturbance were introduce 

from the past to the present time, but if the disturbance has a long time duration in future, 

our future predictions will be wrong respect to the reality. In that case, the feedback controller 

cannot calculate the optimum gate trajectories because it does not have a good prediction 

of the future canal state. In that sense, if our current predictions do not assume a disturbance 

with a long time for the future the gate trajectories solution is bad, because the water level 

error at the checkpoints is significant at the end of the simulation. The solution in gate 

trajectories obtained by GoRoSoBo always maintains a stationary water level error at the 

end of the simulation, and the sluicegate trajectory never corrects this error, see Figure 9.18. 

This is a generalized problem in all predictive controllers, nobody knows which value and 

how is distributed the error during the prediction horizon, see Figure 9.10. 
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Figure 9.17: Logic of control of the GoRoSoBo algorithm. 
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There seems not to be a direct cause, but our predictions of the canal state in future take 

more relevance depending on the kind of the disturbance introduced into the canal. After 

performing several tests with different kind of disturbances using GoRoSoBo, we concluded 

that if the disturbance is significant and especially for long time duration, although 

GoRoSoBo knows the current canal state, it is not enough to find the right solution of gate 

trajectories. This problems associated to this kind of disturbance is related with the future 

prediction of the disturbance.  

Summarizing, the feedback controller cannot manage the canal for that kind of disturbance, 

only considering the current canal state.  

 

Figure 9.18: Associated problems to disturbances with long duration in GoRoSoBo not using future 
prediction. 

In case that the real disturbance is only introduced during a regulation time period, when the 

disturbance disappears the water level is recovered quickly at checkpoints and the water 

level error in future will be low. In this way, the current changes in gate position to solve a 



Chapter 9. Online Predictive Control: GoRoSoBo                                                                          214 

minor error in the future would be small, as once the disturbance disappears the water levels 

at  checkpoints are recovered quickly by themselves introducing little changes in gate 

trajectories. The algorithm will not introduce big perturbations in the system at present time, 

taking into account that the error is reducing in the future, and the perturbations introduced 

by the gate could be more important than perturbations for the disturbance.  

But in cases that the disturbance has a long time duration, it is necessary establish future 

prediction, because the changes in gate trajectory introduced by GoRoSoBo at the present 

time to correct the error in future are fundamental, due to the control actions taken at the 

present time are reflected in future, see Figure 9.19. Not considering that the disturbance 

will continue over a long period of time, it is the cause of not driving the canal to the desired 

state and maintains a stationary error between the desired and real water level in future.  

For this reason, once the extracted flow vector is established by CSI, the changes in flow at 

present time will be the forecast for the future in chapter 11 and 12. In other words, the 

changes on the extracted flow vector obtained currently, keep on being the changes in this 

vector during the prediction horizon. Although it is impossible to predict the future, there is 

no any way to drive the canal to the desired state in case of this kind of disturbances; so we 

will make this future prediction.  

Someone could think that this solution probably is the best when the disturbance has a long 

time duration, but what will happen if the flow disturbance disappears in a short period of 

time and by contrast our future predictions suppose the opposite?. In this case, the algorithm 

would calculate a gate trajectory taking into account a significant disturbance in future. There 

is no simple answer to this question.  

The result depends on the duration of the regulation period, as CSI receives water level 

measurements every regulation period, and CSI recomputes the extracted flow vector every 

regulation period. If this period is short, CSI would determine sooner that the disturbance 

has disappeared and GoRoSoBo would recompute quickly a new gate trajectories to correct 

the last one.   

In GoRoSoBo algorithm, the gate movements are restricted because we try to avoid 

instability in the numerical model. For these reasons, the changes in water level introduced 

by excessive gate movements, due to wrong future predictions, are not so important. 
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Figure 9.19: Variation of the canal state taking into account different predictive horizons.  
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9.4.4. Conclusions of the constrained optimization problem 

As a summary, we can conclude that: 

1. The GoRoSoBo obtains information from CSI about the current canal state and the 

extracted flow, so GoRoSoBo knows the water level error along the canal at the 

present time and it can make a prediction of the water level error for the prediction 

horizon from this information. The only way to get the current state in a canal, without 

CSI, would be measuring in every cross section of the canal and using a calibrated 

predictive model and the only way to establish the extracted flow in a canal would be 

implying the installation of flow meters in every extraction point.  

2. The HIM matrix, that represents the influence of a sluice gate on the canal state, is 

an excellent tool for GoRoSoBo which computes a new set of gate trajectories due to 

variations between the measured and the desired water level. 

3. The HIM matrix must be recomputed every regulation period in case of important 

disturbances. 

4. In front of significant disturbances, GoRoSoBo should use constraints, and mostly 

feedback controllers.  

5. The Lagrange-Newton method used to solve a constrained optimization problem is a 

robust and fast convergence method. 

6. GoRoSoBo is a feedback algorithm so the gate trajectories are computed at every 

regulation period during the irrigation cycle. For that reason, the algorithm needs a 

new overall constraint to restrict the gate movements at consecutive regulation 

periods from different prediction horizons.  

7. It is necessary that GoRoSoBo introduces forecasted predictions in disturbances to 

drive the system to the desired state. 

8. The GoRoSoBo algorithm shows promising results in all tests done, as we will show 

in the next chapters eleven and twelve. 
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9.5. APPENDIX I 

Unconstrained optimized problem (Levenberg-Manquardt) 

In the next equation, we show the "perturbation theory" by Brogan (1985) developed 

(eq.(9.20)) in Taylor series around the gate reference trajectory: 

* *

2
* * * 2

2

1
( ) ( )

2U U

Y Y
Y Y U U Y U U U

U U

   
              

 (9.20) 

Assuming that the disturbance caused is sufficiently small, we can neglect the terms after 

the first term (eq.(9.21)), obtaining:  

*
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u
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 (9.21) 

On the other hand, it is possible to use the hydraulic influence matrix (HIM), defined by Soler 

(2003) as:  

*

*
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Y
J

U

 
      

 (9.22) 

Taking account all of these terms, we can write: 

1
* * *T TU J J J Y



          
 

(9.23) 

We can compute a set of ΔU gate movements to reach the desired water level (Y=Y+ΔY) at 

the checkpoints. The equation system can be solved by Jacobi method, Cholesky method, 

singular value decomposition method or LU decomposition. There is an extensive 

bibliography about these methods, as Numerical Recipes in FORTRAN 77 (1992), where it 

is also illustrated the Levenberg-Marquardt method. 

 

The problem is to solve the equation (9.23) at each time step. We can define the equation 

on a compact form: 

  * *T

G J J       
 (9.24) 

*'
T

b J Y  
 

 (9.25) 

So replacing the equation (9.24) and equation (9.25) in equation (9.23), we obtain: 
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 'b G U   
(9.26) 

Although the system matrix is positive definite by definition, is not well conditioned (Soler, 

2003). This implies that solving the system, we can get numerical errors. To avoid this 

problem we add a positive term to the diagonal of the Hessian matrix, this parameter is 

called Marquardt coefficient ( ). It exists a lot of theory about this coefficient, for instance in 

Fletcher (1987).  

The system of equations can be written then as: 

 'b G I U    
(9.27) 

where [I] is the identity matrix of the same dimensions as [G].  

To solve the system (eq.(9.27)), we have to make some hypothesis. We have a diagonal 

matrix [Λ] with the eigenvalues of the matrix [G], and a matrix orthonormal ([V]: [V× VT] = [I]) 

defined by the eigenvectors associated with each eigenvalue of [G]. Multiplying both sides 

of equality (eq.(9.27)) for the matrix [VT], we obtain: 

'T T T TV G V I V V U V b                  
(9.28) 

Knowing that the [V] matrix is orthonormal, we can write the system as: 

'T T T TV G V V I V V U V b                   
(9.29) 

And according to the property [Λ] = [VT×G×V], it can be transformed (eq.(9.29)) as follows: 

  'T TI V U V b              
(9.30) 

Furthermore, the fact of using a matrix as orthonormal matrix [V] allows us to ensure that:    

  'T TI V U V b            
 

(9.31) 

To simplify (eq.(9.30)), we can define the vectors Z and B as follow: 
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TZ V U     
(9.32) 

'TB V b     
(9.33) 

So Z is an unknown quantity, and (eq.(9.30)) can be transformed into: 

 I Z B   
(9.34) 

From (eq.(9.34)), the Z components can be separated easily because the new system matrix 

is now diagonal. Each of the Z components can be calculated as (eq.(9.35)): 

( )
( )

( , )

B i
Z i

i i 

 

 (9.35) 

Although the matrix [G] is positive definite, it is ill conditioned too, and it is possible that some 

eigenvalue of [G] are negative, although very close to absolute zero. To prevent this 

problem, we introduced the Marquardt coefficient. If the Marquardt coefficient value is 

significant ∆U will tend to zero and the water level in the targets cannot be recovered. 

However, if   is very close to the minimum you can get excessively large ∆U, which cause 

large fluctuations in level. So you are looking for a range of values   that provides a 

magnitude of a vector ∆U minor or equal to a certain value max . Depending on the value you 

chose for it, the solution will be different, for this reason the value of this coefficient is getting 

smaller in each iteration of the algorithm, in order to achieve that the solution is getting closer 

of the optimum solution. 

Once you know the initial value for     , the system (eq. (9.35)) is resolved and consequently 

the system (eq.(9.32)), obtaining the desired values of ∆U (eq.(9.36)). 

 U V Z    
(9.36) 

In that sense, the algorithm computes a new gate trajectory (Ua=U+∆U) in the time step K 

for a prediction horizon. 
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9.6. APPENDIX II 

The Lagrange multipliers is the method used to solve the constrained optimization problem. 

The method of the Lagrange multipliers is explained in Fletcher (1987), Luenberger (1984) 

and Gill (1981), although we will make a brief introduction of the method in this appendix. 

We must prove that our constrained optimization problem fulfils the order conditions, as we 

show in this appendix 2, to be sure that we obtain the optimal solution.  

First order condition 

We could introduce the constrained optimization problem as follow: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑈) =
1

2
[[𝐶]𝑋𝑘𝑖

𝑘𝐹(𝑈) − 𝑌∗]
𝑇
[𝑄][[𝐶]𝑋𝑘𝑖

𝑘𝐹(𝑈) − 𝑌∗] 

𝑟𝑘(𝑈) = 0,      𝑖 ∈ 𝐼(𝑈) 

𝑟𝑘(𝑈) ≥ 0,       𝑖 ∈ 𝑁𝐼(𝑈) 

(9.37) 

where J(U) is the objective function, 𝑋𝑘𝑖
𝑘𝐹(𝑈) is the state vector from the regulation time step 

Ki to KF, Y* is the desired water level vector, Q is a weighting matrix, C is the discrete 

observer matrix and rk(U) is the “kth” constraint function, I(U) is a set of equalities constrains 

and NI(U) is a set of inequalities constraints. 

Minimizing the objective function, we obtain the gate solution U*. A feasible point U’ fulfills 

all constraints, see Fletcher (1987). When a feasible point fulfills an inequality constraint as 

an equality is called active constraint. A set of constraints (equality or inequality) which are 

active in U’ are called active set. 

We could define the constrained optimization problem from the Lagrange function as follow: 

If U* is a local minimum of the constrained optimization problem and λi are the Lagrange 

multipliers associated to the restrictions rk (U*), we can establish the following system: 

ℒ(𝑈∗, 𝜆∗) = 𝐽(𝑈∗) −∑𝜆𝑘
∗𝑟𝑘(

𝑛𝑡

𝑖 1

𝑈∗) (9.38) 

 

In that case, the first order conditions or Khun-Tucker are written as: 
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∇𝑈ℒ(𝑈
∗, 𝜆∗) = 0 

𝑟𝑘(𝑈
∗) = 0,        𝑖𝜖𝐼 

𝑟𝑘(𝑈
∗) ≥ 0,     𝑖𝜖𝑁𝐼 

𝜆∗𝑘 ≥ 0,           𝑖𝜖𝑁𝐼 

𝜆∗𝑘𝑟𝑘(𝑈
∗) = 0,     ∀𝑖 

(9.39) 

If we develop the first derivative, the constraints and the multipliers, we will obtain:  

∇𝑈ℒ(𝑈
∗) = (∇𝑈𝑋1

𝐾𝐹(𝑈∗
)
𝑇
) {[𝐶]𝑇[𝑄] ([𝐶]𝑋1

𝐾𝐹(𝑈∗
)− 𝑌∗)+ ∇𝑥𝑟

𝑇𝜆∗} 

+∇𝑈𝑟
𝑇𝜆∗ = 0 

where, 

𝜆 = (𝜆1, … , 𝜆𝑛𝑡)
𝑇 

𝑟 = (𝑟1(𝑋(𝑈
∗), 𝑈∗), … , 𝑟𝑛𝑡(𝑋(𝑈

∗), 𝑈∗)) 

(9.40) 

If the solution U* accomplishes this system (equation (9.40)), so the solution accomplishes 

the first order condition.  

So far, we have only considered the first order conditions (that is the first derivate). It is also 

possible to state second order conditions which give information about the curvature of the 

objective function at a local minimum. 

The second order conditions 

In this paragraph we analyse the second order condition, that is, we analyse the function in 

the neighbourhood of the local solution, where G(U*) is a set of feasible directions. The full 

definition of this second order condition is shown in Fletcher (1987), where it is demonstrated 

how we reach to the next expression: 

𝑠𝑇𝑊(𝑈, 𝜆)∗ 𝑠 > 0          ∀𝑠 ∈ 𝐺(𝑈∗)   

 

(9.41) 

𝑊(𝑈∗, 𝜆∗) = ∇𝑈𝑈
2 𝐽( 𝑈∗) −∑𝜆𝑘

𝑛𝑡

𝑖 1

∇𝑈𝑈
2 𝑟𝑘(𝑈

∗)        (9.42) 
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where 𝑊(𝑈∗, 𝜆∗) must be a definite positive matrix and “s” is a vector of any fixed length, the 

limiting vector “s” is referred to as a feasible direction to get U*.  

That means, the Lagrange function has not negative curvature for all feasible directions at 

U*.  

So we need to derive the equation (9.40) to get ∇𝑈𝑈
2 ℒ  :  

∇𝑈𝑈
2 ℒ(𝑈∗, 𝜆∗) = (∇𝑈𝑈

2𝑋
𝐾𝐼+1

𝐾𝐹
(𝑈∗

)
𝑇
) {[𝐶]𝑇[𝑄] ([𝐶]𝑋𝐾𝐼+1

𝐾𝐹 (𝑈∗
)− 𝑌∗)+ ∇𝑥𝑟

𝑇𝜆∗}

+ [∇𝑈𝑋𝐾𝐼+1

𝐾𝐹 (𝑈∗
)
𝑇
] {[𝐶]𝑇[𝑄][𝐶]+ [∇𝑋𝑋

𝑟 𝑟]𝜆} [∇𝑈𝑋𝐾𝐼+1

𝐾𝐹 (𝑈∗
)
𝑇
]
𝑇

+ [∇𝑈𝑋𝐾𝐼+1

𝐾𝐹 (𝑈∗
)
𝑇
]∑ 𝜆𝑖[∇𝑈𝑋

2 𝑟𝑖]
𝑖=𝑛𝑇

𝑖=1

+ [∇𝑈𝑋𝐾𝐼+1

𝐾𝐹 (𝑈∗
)
𝑇
]∑ 𝜆𝑖[∇𝑋𝑈

2 𝑟𝑖]+∑ 𝜆𝑖[∇𝑈𝑈
2 𝑟𝑖]

𝑖=𝑛𝑇

𝑖=1

𝑖=𝑛𝑇

𝑖=1
 

(9.43) 

where ∇𝜆𝑈
2 ℒ = ∇𝑈𝜆

2 ℒ = −∇𝑈𝑟. 

As the constraint functions are linear, some terms of the system (9.43) are null: ∇𝑈𝑋
2 𝑟𝑖 = 0, 

∇𝑈𝑈
2 𝑟𝑖 = 0, ∇𝑋𝑋

2 𝑟𝑖 = 0 and ∇𝑈
2 𝑟𝑖 = 0 for i=1,…,nt,, so: 

∇𝑈𝑈
2 ℒ(𝑈∗𝜆∗) = (∇𝑈𝑈

2𝑋𝐾𝐼+1
𝐾𝐹 (𝑈∗)𝑇){[𝐶]𝑇[𝑄]([𝐶]𝑋𝐾𝐼+1

𝐾𝐹 (𝑈∗) − 𝑌∗)}

+                       [𝐼𝑀]
𝑇
𝑌
[𝑄][𝐶][𝐼𝑀]𝑌 

(9.44) 

where: 

[𝐼𝑀]𝑌 = [𝐶](∇𝑈𝑋𝐾𝐼+1
𝐾𝐹 (𝑈∗

)
𝑇
) 

(9.45) 

When the solution U* is the optimal solution, so ([C]XKI+1
KF (U∗)T − Y∗)T is close to zero. This 

means that the predicted behavior of the model and the desired behavior are very similar, 

so in this case, it is easy to demonstrate that ∇𝑈𝑈
2 ℒ(𝑈∗, 𝜆∗) becomes positive definite as 

[𝐶](∇UXKI+1
KF (U∗)T) matrix is not singular. Moreover, the lineal constraints functions verify the 

constraint qualification for any value of U, then the∇𝑈𝑈
2 ℒ(𝑈∗) matrix is unfailingly positive 

defined for any values of U*. 

Note: in this case the Hessian matrix with linear constraints is equivalent to the Hessian 

matrix obtained from unconstrained optimization problems. 



Chapter 9. Online Predictive Control: GoRoSoBo                                                                          223 

9.7. APPENDIX III 

Constraint qualification 

To verify the constraint qualification is obviously necessary to analyses the constraint 

functions defined in (9.16), (9.17), (9.18) and (9.19):  

 

𝑟𝑘−1(𝑈) = 𝑢𝑖𝑗(𝐾) − 𝑈𝑚𝑖𝑛 = 0 
(9.46) 

𝑟𝑘(𝑈) = 𝑈𝑚𝑎𝑥 − 𝑢𝑖𝑗(𝐾) = 0 
(9.47) 

𝑟𝑘+1(𝑈) = 𝑑𝑈𝑚𝑎𝑥 − (𝑢𝑖𝑗(𝐾 + 1) − 𝑢𝑖𝑗(𝐾)) = 0 
(9.48) 

𝑟𝑘+2(𝑈) = 𝑑𝑈𝑚𝑎𝑥 − (𝑢𝑖𝑗(𝐾) − 𝑢𝑖𝑗(𝐾 + 1)) = 0 
(9.49) 

𝑟𝑘+3(𝑈) = 𝑑0𝑈𝑚𝑎𝑥 − (𝑢𝑖𝑗(𝐾) − 𝑢(𝑗−1)𝑖(𝐾 − 1)) = 0 
(9.50) 

𝑟𝑘+4(𝑈) = 𝑑0𝑈𝑚𝑎𝑥 − (−𝑢𝑖𝑗(𝐾) + 𝑢(𝑗−1)𝑖(𝐾 − 1)) = 0 
(9.51) 

 

Where rk(U) is the “kth” constraint function, Umin and Umax is the minimum and maximum 

gate position allowed, dUmax is the maximum gate movement between consecutive time 

steps, the d0Umax is the maximum gate movement between consecutive time steps for 

different prediction horizons. 

Before analyzing the constraint function, we have to point that the theory for constrained 

optimization problem only consider the active constraints to calculate the solution U, and 

other restrictions are essentially ignored. 

The first two overall constraints (9.46) and (9.47) exclude each other because, if a gate is 

totally open, so the constraint (9.47) is active, it cannot be totally close, so the constraint 

(9.46) cannot active. 
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The functional restrictions (9.48) and (9.49) exclude each other too because, these 

restrictions make reference to the gate movements between consecutive regulation time 

steps of a particular gate, and these constraints are completely opposed. The tendency of 

a gate movement should be to close or open, not all of them at the same time, so if the 

constraint function (9.49) is active to restrict the maximum gate opening so the constraint 

function (9.48) would not be active.  

The overall constraints (9.50) and (9.51) is the same case that the last. These constraint 

functions are completely opposed. These constraints only can be active in the first regulation 

period for a prediction horizon. 

In summary, you can ensure that the constraint qualification is verified for whatever 

combination of position values of the gates. For two reasons, the first one is that all 

constraints are linear and the second one is that the active constraints are linearly 

independent.  
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9.8. APPENDIX IV 

Lagrange Newton Method 

We can define the constrained optimization problem as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑈) =
1

2
[[𝐶]𝑋𝑘𝑖

𝑘𝐹(𝑈) − 𝑌∗]
𝑇
[𝑄][[𝐶]𝑋𝑘𝑖

𝑘𝐹(𝑈) − 𝑌∗] 

𝑟𝑘(𝑈) = 𝑢𝑖𝑗(𝐾) − 𝑈𝑚𝑖𝑛 ≥ 0 

𝑟𝑘(𝑈) = 𝑈𝑚𝑎𝑥 − 𝑢𝑖𝑗(𝐾) ≥ 0 

𝑟𝑘(𝑈) = 𝑑𝑈𝑚𝑎𝑥 − [𝑢𝑖𝑗(𝐾 + 1) − 𝑢𝑖𝑗(𝐾)] ≥ 0 

𝑟𝑘(𝑈) = 𝑑𝑈𝑚𝑎𝑥 − [𝑢𝑖𝑗(𝐾) − 𝑢𝑖𝑗(𝐾 + 1)] ≥ 0 

𝑟𝑘(𝑈) = 𝑑0𝑈𝑚𝑎𝑥 − [𝑢𝑖𝑗(𝐾) − 𝑢𝑖(𝑗−1)(𝐾 − 1)] ≥ 0 

𝑟𝑘(𝑈) = 𝑑0𝑈𝑚𝑎𝑥 − [𝑢𝑖(𝑗−1)(𝐾 − 1) − 𝑢𝑖𝑗(𝐾)] ≥ 0 

(9.52) 

where Umin and Umax is the minimum and maximum gate position, dUmax is the maximum 

gate movement between consecutive time steps, the d0Umax is the maximum gate 

movement between consecutive time steps for different prediction horizons. 

The Lagrange-Newton method solves a constrained optimization problem from the 

Lagrange function as follow: 

ℒ(𝑈, 𝜆) = 𝐽(𝑈) −∑𝜆𝑘𝑟𝑘(

𝑛𝑡

𝑖 1

𝑈) (9.53) 

where rk(U) is the  “kth” constraint, 𝜆k is the “kth” Lagrange multiplier and nt is the number of 

constraints. 

We could establish the minimum of the Lagrange function as follow: 

∇ℒ(𝑈, 𝜆) = 0 
(9.54) 
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Taking into account the Kuhn-Tucker conditions, it is possible to rewrite the optimization 

problem defined by the Lagrange function from Taylor series for U, λ, and the result of this 

method is a sequence of approximations U, λ (9.55) to get the solution vector U* and the 

vector of optimum Lagrange multipliers λ*.: 

 

∇ℒ(𝑈 + ∆𝑈, 𝜆 + ∆𝜆) = ∇ℒ + [∇2ℒ] (
∆𝑈
∆𝜆

) + ⋯ 
(9.55) 

where  ∇ℒ = ∇ℒ(𝑈, 𝜆). Neglecting higher order terms and setting the left hand size to zero, 

that is, ∇ℒ(𝑈+ΔU,𝜆+Δ𝜆)=0 , because 𝑈 + ΔU and  𝜆 + Δ𝜆 is the solution of the problem, gives 

the iteration procedure: 

 

[∇2ℒ] (
∆𝑈
∆𝜆

) = −∇ℒ 
(9.56) 

where ∇2ℒ is the Hessian matrix of the Lagrange function, and ∇ℒ is the first derivative of the 

Lagrange function. 

where: 

[∇2ℒ] = [
𝑊 −∇𝑈𝑟

−∇𝑈𝑟
𝑇 0

] (9.57) 

W = ∇𝑈𝑈
2 𝐽(𝑈) −∑𝜆𝑖[∇𝑈𝑈

2 𝑟𝑖]

𝑛𝑡

𝑖 1

 (9.58) 

∇ℒ = (∇𝑈𝐽(𝑈) −∑𝜆𝑖[∇𝑈𝑟𝑖]

𝑛𝑡

𝑖 1
𝑟

) 
(9.59) 

 

So the system is written as follow: 

 

[
𝑊 −∇𝑈𝑟

−∇𝑈𝑟
𝑇 0

] (
∆𝑈
∆𝜆

) = (∇𝑈𝐽(𝑈) −∑𝜆𝑖[∇𝑈𝑟𝑖]

𝑛𝑡

𝑖 1
𝑟

) 
(9.60) 

 

In fact it is more convenient to write λK+1=λK+∆λ, and so to solve the equivalent system: 
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[
𝑊 −∇𝑈𝑟

−∇𝑈𝑟
𝑇 0

] (
∆𝑈
𝜆
) = (∇𝑈𝐽(𝑈)

𝑟
) (9.61) 

Once solved the system and found the updated solution,  𝑈 = 𝑈 + ∆𝑈 and 𝜆, the solution must 

be checked so it must be fulfilled that ∇ℒ(𝑈, 𝜆) = 0, and if this is not accomplished, the 

Hessian matrix and the gradient vector must be recalculated. 

We can do a simplification in matrix W, because all constraints are linear in this problem, 

and the element  ∇𝑈𝑈
2 𝑟𝑖 = 0, and the matrix W can be written in the form  W = ∇𝑈𝑈

2 𝐽(𝑈) which 

is the Hessian matrix for unconstrained optimized problem. 

The system (9.61) has to be solved to get the solution ∆U. The problem is that we do not 

know initially which constraints are active, and it is not possible to limit 𝛿𝑈. We cannot be 

sure that the solution Uk+1= Uk + ∆U is in a feasible region and the constraint optimization 

problem could became an unconstrained optimization problem. For this reason, we use the 

Active Set Method to keep the solution in the feasible region defined by constraints. 

 

Active Set Method 

The Active set method was introduced to the algorithm code nested into the Lagrange-

Newton method. The aim of the Active Set method is to compute a ∆U solution into the 

feasible region. The active set method never computes directly ∆U, if not an approximation 

(∆∆U), where ∆U=∆U+α∆∆U, in this way the method does never compute a ∆U solution 

outside the feasible region. The active method is very useful when we want to solve a 

constrained optimization problem. 

The idea underlying in the Active set method is to set inequality constraints in two groups 

which are treated as active, while all other variables are treated as inactive. The inactive 

constraints are essentially ignored, as the solution ∆U is not restricted by these constraints.  

We can define the constrained optimization problem as follow: 

 

 Minimize    𝐽(𝑈 + 𝛿𝑈) 

𝑟(𝑈 + ∆𝑈) ≥ 0 

(9.62) 



Chapter 9. Online Predictive Control: GoRoSoBo                                                                          228 

The system (9.61 can be seen established as a quadratic problem, which consists in 

replacing the functions dependent on U by the respective linearization around U, 

establishing the following quadratic optimization problem: 

 

𝐽(𝑈 + ∆𝑈) = 𝐽(𝑈) + ∇𝑈𝐽(𝑈)∆𝑈 +
1

2
∆𝑈𝑇[∇𝑈𝑈

2 𝐽(𝑈)]∆𝑈 

𝑟(𝑈 + ∆𝑈) = 𝑟(𝑈) + [∇𝑈𝑟(𝑈)]
𝑇∆𝑈 

(9.63) 

If we establish the Lagrange function, we can write the system as follow: 

ℒ(∆𝑈, 𝜆) = 𝐽(𝑈) + ∇𝑈𝐽(𝑈)∆𝑈 +
1

2
∆𝑈𝑇[∇𝑈𝑈

2 𝐽(𝑈)]∆𝑈 

−(𝑟(𝑈) + [∇𝑈𝑟(𝑈)]𝑇∆𝑈)𝜆 

(9.64) 

We must remember that  𝑟(𝑈) = 0, because the solution (U) is always inside the feasible 

region, so only the active constraints are evaluated and these are only equality constraints. 

 

If we establishes that ∇ℒ(∆𝑈, 𝜆) = 0, we can write the system as follow: 

∇𝑈𝐽(𝑈) + [∇𝑈𝑈
2 𝐽(𝑈)]∆𝑈 − [∇𝑈𝑟(𝑈)]𝜆 = 0 

−[∇𝑈𝑟(𝑈)]𝑇∆𝑈 = 0 

(9.65) 

 

The system of equation (9.65) is nonlinear, for this reason, we have to solve it iteratively as 

follow: 

 

[
∇𝑈𝑈
2 𝐽(𝑈) −∇𝑈𝑟

−∇𝑈𝑟
𝑇 0

] (
∆∆𝑈
∆𝜆

) = −(
∇𝑈𝐽(𝑈) + +∇𝑈𝐽(𝑈)∆𝑈 + [∇𝑈𝑟(𝑈)]𝜆

0
) 

∆𝑈 = ∆𝑈 + ∆∆𝑈 

𝜆 = 𝜆 + ∆𝜆 

(9.66) 

 

In fact it is more convenient to write λK+1=λK+∆λ, and so to solve the equivalent system: 

[
∇𝑈𝑈
2 𝐽(𝑈) −∇𝑈𝑟

−∇𝑈𝑟
𝑇 0

] (
∆∆𝑈
𝜆

) = −(
∇𝑈𝐽(𝑈) + ∇𝑈𝐽(𝑈)∆𝑈

0
) 

∆𝑈 = ∆𝑈 + ∆∆𝑈 

(9.67) 
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It is possible, that for any  ∆𝑈 = ∆𝑈 + ∆∆𝑈, the solution 𝑈 = 𝑈 + ∆𝑈 was outside of the feasible 

set. For this reason, it is introduced the parameter 𝛼. 

∆𝑈 = ∆𝑈 + 𝛼∆∆𝑈 

𝛼 = 𝑀𝑖𝑛 [1,𝑀𝑖𝑛𝑘∄𝐴 𝑎𝑛𝑑 0<∇𝑈𝑟(𝑈)∆∆𝑈 (
𝑟𝑘(𝑈)−∇𝑈𝑟𝑘(𝑈)𝑇∆𝑈

∇𝑈𝑟𝑘(𝑈)𝑇∆∆𝑈
)] 

(9.68) 

So that  ∆𝑈 = ∆𝑈 + 𝛼∆∆𝑈. If 𝛼 < 1 then a new constraint becomes active, defined by the 

index which achieves the minimum in the equation (9.68), and this index is added to the 

active set A. Then if the other constraints were satisfied and the Lagrange multipliers turned 

out to non-negative, the solution would be correct. 
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Chapter 10 

 

 

GoRoSoBo application: canal with only one pool 

In this chapter we present several numerical test-cases on a canal with GoRoSoBo algorithm 

which works together with CSI. GoRoSoBo is a feedback algorithm which operates in real 

time and the objective of this algorithm is to maintain the desired water level at checkpoints. 

The algorithm modifies the gate trajectories to fulfill this objective.   

Under routine conditions, canal operations consist to control the scheduled delivery at each 

control structure. In case that a small disturbance for a short period of time is introduced into 

the canal during the irrigation cycle, the control strategy could be feedforward, as the flow is 

recovered quickly to the operative steady state. We are not worried about those 

disturbances. However, when an important disturbance (bigger than 10% or 20 % of the 

total flow rate) is introduced in the canal, we will need to use a feedback strategy. GoRoSoBo 

algorithm is tested in a canal with only one pool. We choose that kind of canal because it is 

easier to understand and evaluate the solution (gate trajectory) obtained by the algorithm 

and as a simple test to show the capacities of the proposed algorithm.   

10.1. Introduction 

We introduce different cases to test GoRoSoBo in this chapter. The objective is to check the 

accuracy of the control algorithm considering several kind of disturbances with different 

magnitude and duration under subcritical flow conditions.  

The initial canal state is set from a known steady state, but during the irrigation cycle we 

introduce the scheduled deliveries and disturbances. The canal state will initially change to 

an unsteady state and later it will reach another steady state different than the original case. 

The control algorithm has to maintain the water level at the checkpoint to fulfill the forecasted 

demand. These easy examples test the accuracy and the good behaviour of GoRoSoBo 

and the associated CSI algorithm working all together.  
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10.2. Canal geometry 

The geometry of the canal proposed in this chapter is based from Bautista’s work (Baustista 

et al. 1997). This canal was used by different authors as Whyle (1969), Liu (1992), 

Chevereau (1991) and Soler (2003) and all of them tested feedforward controllers. The canal 

geometry adopted in our examples is based in the Liu’s example as well as the scheduled 

demand which was introduced in some cases of this chapter. There are other authors who 

have also tested their feedback controllers in canals with only one pool similar to our canal, 

as Durdu (2009) or Litrico (2006). The canal geometry is shown at the Figure 10.1. 

 

Figure 10.1: Simple canal with only one pool. 

 

10.3. Canal features 

According to the canal tested by Liu (1992), we show the features of this canal as follow: 

 Geometry and canal parameters: one pool of 2500 meters length, and one sluice 

gate upstream the canal (ng=1), the bottom slope is 0.001, width is 5 meters, bank 

slope (H:V) is 1,5:1 and the Manning coefficient is 0.025. 
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 Discretization: the spatial discretization of the canal is divided in cells of 25 meters, 

so there are 101 nodes (ns= 101). The regulation period is 5 minutes and  the 

duration of the predictive horizon is 8 hours, so there are 96 regulation periods (KF 

=96).  

 Initial and boundary conditions: the upstream condition is fixed by a sluice gate that 

controls the water introduced into the canal from an upstream reservoir with a 

constant water level (3 meters). Other boundary conditions depend on the flow 

extracted by the orifice offtake and the disturbance which are introduced in the next 

section. At the end of the pool there is an orifice offtake, a lateral spillway and a pump 

station. The steady state is the initial condition of the canal at the first regulation 

period. Flow rate in the canal is 5m3/s and the desired water level at the checkpoint 

is 1.6 meters (Figure 10.2).  

Control 

structure 

Numerical 

node 

upstream 

Numerical 

node 

downstream 

Gate 

discharge 

coefficient 

Gate 

width 

(m) 

Gate 

height 

(m) 

Distance 

from the 

gate 1 

(Km) 

0 0 1 0.61 5 2.0 0 

1 101 101 - - - 2.5 

Table 10.1: Features of the canal control structures 1. 

Control 

structure 

Orifice 

offtake 

height 

(m) 

Discharge 

coefficient/Orifice 

offtake diameter 

(m)  

Lateral 

spillway 

height (m) 

Lateral 

spillway 

discharge 

coefficient 

Lateral 

spillway 

width 

(m) 

0 - - - - - 

1 0.8 2/0.85 2.0 1.99 500 

Table 10.2: Features of the canal control structures 2. 

There is a checkpoint at the last downstream node, the water level is measured at the 

checkpoint in each regulation period. 

The orifice offtake are located downstream end of each pool where the extracted flow 

through the offtake (Qofftake) is described as follow: 

𝑄𝑜𝑓𝑓𝑡𝑎𝑘𝑒 = 𝐾√𝑦 − 𝑦0 

                                              𝐾 = 𝐶𝑑 ×
𝜋×∅2

4
× √2𝑔 

(10. 1) 
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where y is the water level in canal at offtake, y0 is the orifice offtake height equal to ytarget/2 , 

Cd is a discharge coefficient and Ф is the orifice offtake diameter. 

 

Figure 10.2: Backwater curve of the canal (Initial condition at the first regulation period of the 
irrigation cycle). 

10.4. Problem setting 

We test several cases to check the algorithm's behavior in front of different disturbance.  

There are two different scheduled deliveries:  

 The forecasted demand is constant with a value of 5 m3/s during the predictive 

horizon. 

 The forecasted demand is variable in time, with a value of 5 m3/s for the first two 

hours, and 10 m3/s for the next two hours, and finally the forecasted demand returns 

to 5 m3/s during the last four hours of the test.   

There are two different kinds of disturbances:  

 The first one is called "variable disturbance" which is introduced thirty minutes after 

the test started and lasts 1 hour, with a value of 2 m3/s. 

 The second one is called the "step disturbance" which is introduced thirty minutes 

after the test started and lasts until the end of the test, with a value of 2 m3/s.  
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There are four cases more, but these cases are the same of these last ones, the only 

difference lies in the value of the disturbance (-2 m3/s). 

 
Forecast 
demand 

Disturbance 

Case 1 constant “step disturbance” (Figure 10.4) 

Case 2 constant “variable disturbance” (Figure 10.8) 

Case 3 variable “variable disturbance” (Figure 10.12) 

Case 4 variable “step disturbance” (Figure 10.15) 

Case 5 constant “negative step disturbance” (Figure 10.18) 

Case 6 constant “negative variable disturbance” (Figure 10.22) 

Case 7 variable “negative variable disturbance” (Figure 10.26) 

Case 8 variable “negative step disturbance” (Figure 10.30) 

Table 10.3: The scheduled and unscheduled deliveries introduced in the cases tested 

The cases, with a forecasted constant demand, are perfect to check how the algorithm is 

operating, as the only change in flow is due to the disturbance. It is easier to check the 

solution (the gate trajectory) obtained with GoRoSoBo and we can also check how the water 

level at the checkpoints recovers to the desired value. Possibly, the easiest case to check 

the gate trajectory solution is test case 1. 

The test case 2 produces two big flow changes in the canal: when we introduce the “variable 

disturbance” and once it disappears. The algorithm has to readjust the gate position in a 

short period of time. 

In test cases 3 and 4, the forecasted demand is not constant in time which in combination 

with the disturbances test the capacity of the GoRoSoBo algorithm to drive the canal to the 

desired state because the algorithm has to consider both flow changes. 

In the rest of cases, we evaluate the same situation but the disturbance is negative. 

Depending on the value and the duration of the forecasted demand and the disturbance, 

some test cases are more difficult to solve for the algorithm than others. For instance in test 

case 7, the flow rate in the canal changes from 3 m3/s to 10 m3/s in only thirty minutes and 

this is a big problem for the feedback algorithm. 
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10.5. The target value 

The control algorithm has to establish the target value for the canal maintaining a certain 

water level at checkpoint which is 1.6 meters. This water level target must be constant for 

the irrigation cycle. We show at Figure 10.3, the desired water level vector (yellow dots) 

defined at the checkpoint in every regulation period in a computational grid. 

The duration of the test is 8 hour (KF=8h). There is only one checkpoint downstream of the 

pool, so the numbers of water level targets are 96 (nT =nt* KF).  

 

Figure 10.3: Time discretization of a test in the canal. 
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10.6. Constraints and trajectories 

The sluice gate opening must not be greater or smaller than Umax or Umin, respectively and 

the gate movements between successive regulation periods (dUmax) should be physically 

acceptable, as we introduced in chapter 9. 

Taking into account the results obtained in the analysis of constrains did by Soler (2003) in 

these problems, we have imposed the overall and functional constraints on Table 10.4. The 

constraints are determined as a certain percentage of the gate height and this constraints 

are imposed to the gate position: 

Umin (%) Umax (%) dUmax (%) 

0.05 90 2.5 

Table 10.4: Overall and functional constraints values. 

10.7. Test results 

We represent the test results in several graphs. First graph represents the scheduled 

delivery and the disturbance during the irrigation cycle, the second one the disturbance 

calculated by CSI, the third one shows the gate trajectory in each regulation period during 

the irrigation cycle and the fourth one shows the water level at the checkpoint during the 

irrigation cycle.  

We only show the disturbance calculated by CSI in cases that the disturbance is different 

than the others, because there are cases where we use the same kind of disturbance. If CSI 

is able to estimate the disturbance in one of them it is able to do it in the others.  

In the first graph, we represent with a blue discontinuous line the scheduled delivery, and 

the disturbance represented by an orange continuous line. In the third and fourth graph, we 

represent with a blue discontinuous line the results obtained using a feedforward algorithm 

(GoRoSo) and with an orange continuous line the results obtained by GoRoSoBo algorithm. 

We can compare the sluice gate trajectories obtained by GoRoSoBo V.S. the sluice gate 

trajectories obtained by GoRoSo. 



Chapter 10. GoRoSoBo application: canal with only one pool                                                      238 

The gate trajectory is defined by the gate position in time, and the gate position is defined 

as follow: 

Case 1 

We show in the next graph the scheduled and unscheduled deliveries introduced in this 

case: 

 

Figure 10.4: Scheduled and unscheduled deliveries introduced in the System (Case 1). 

 

Figure 10.5: Disturbance calculated by CSI (Case 1). 
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𝐺𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
𝐺𝑎𝑡𝑒 𝑜𝑝𝑒𝑛𝑖𝑛𝑔

𝐺𝑎𝑡𝑒 ℎ𝑒𝑖𝑔ℎ𝑡
 (10. 2) 
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At the beginning of the test, the flow in the canal is steady and the scheduled delivery is 

constant for all demand period, and the sluice gate position remains fixed. After the first thirty 

minutes (1800 s), a disturbance is introduced into the system, although the algorithm has 

not any notice until the next regulation period (2100 s) once the water level is measured at 

the checkpoint, and the water level has been already reduced in more than 10 cm, from 1.6 

cm to 1.50 cm (Figure 10.7).  

Once the water level measurements is send to CSI, it calculates the extracted flow vector 

for a past time horizon, in that sense CSI establishes the disturbance introduced in the 

system (Figure 10.5). All these information are sent to GoRoSoBo which modifies the sluice 

gate trajectory to keep constant the water level at the checkpoint which is not going to 

increase until three regulation periods later (2700 s). Because once the sluice gate 

generates a wave to increase the water level at the checkpoint, the wave has to travel at the 

checkpoint (time delay). Once the wave generated by the sluice gate arrives at the 

checkpoint, the water level increases quickly recovering the target water level of 1.6 meters 

at 3700 s (Figure 10.7). 

The maximum deviation between the water level measured and desired is around 27.5 cm, 

from 1.6 cm to 1.325 cm, so the sluice gate movement must be quite important to reduce 

quickly this deviation (Figure 10.6). Gate position changes from 0.125 to 0.34 during a 

regulation period (1800-2100 s).   

Instead the feedforward algorithm does not modify the gate trajectory during the irrigation 

cycle because the scheduled demand is constant and the algorithm does not know that 

someone has introduced a disturbance in the canal and the water level is decreasing at 

checkpoint. The water level decreases to 1.1 m so the flow extracted by the offtake is close 

to 3 m3/s (Figure 10.7). In that sense, the total extracted flow is 5m3/s, but 3 m3/s are 

extracted by the offtake and 2 m3/s are extracted by someone who introduced the 

disturbance. The difference in gate opening between the feedforward and the feedback 

algorithms at 9000s is due to the disturbance. A difference of 0.06 in gate opening 

represents a flow of 2 m3/s in this canal with this flow conditions. 

Once the algorithm recovers the desired water level, the gate movements should be 

completely zero in this test. Although the water level is close to the desired value, it exists 

deviation between them of +/- 1 mm, these deviations between both water levels are due to 
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residual errors in the computations of both algorithms (CSI and GoRoSoBo), for that reason 

the gate movements are not completely zero.  

This case 1 is the easiest case for GoRoSoBo and it is the most suitable to check the 

algorithm behaviour because the demand deliveries are constant in time and the disturbance 

too. We can check at Figure 10.7, as the control algorithm keeps constant the water level at 

checkpoint (1.6 m), in only twenty five minutes, and it recovers a water level error of 27.5 

cm at the checkpoint. 

 

Figure 10.6: Gate trajectory obtained by GoRoSoBo (orange continuous line)/GoRoSo (blue 

discontinuous line) in Case 1. 

 

Figure 10.7: Water level at the checkpoint obtained by GoRoSoBo (orange continuous 

line)/GoRoSo (blue discontinuous line) in Case 1. 
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Case 2 

We show in the next graph the scheduled and unscheduled deliveries introduced in this 

case: 

 

Figure 10.8: Scheduled and unscheduled deliveries introduced in the System (Case 2). 

 

Figure 10.9: Disturbance calculated by CSI (Case 2). 
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This case is similar to the last case during the first 5400 s because we introduce a 

disturbance which only lasts one hour, as it is variable in time. The water level at the 

checkpoint decreases quickly from 1.6 cm to 1.32 cm (28 cm) in just 15 minutes as in the 

last test, see Figure 10.11. 

When the disturbance is introduced to the canal (Figure 10.8), the sensor measures the 

water level at the checkpoint and this data is sent to CSI which calculates the disturbances 

considering the scheduled demand and the gate trajectory in the past time horizon (Figure 

10.9).  

All these data is sent to GoRoSoBo which calculates the gate position around of 0.34 at 

2100 s (Figure 10.10) to increase the water level at the checkpoint. Once the disturbance 

disappears the water level at checkpoint increases too much at 5400 s (Figure 10.11) and 

CSI comes back to calculate the disturbances and send the information to GoRoSoBo which 

also calculates a new gate trajectory. The gate closes to reduce the flow rate introduced 

from the reservoir to the canal, and gate position is reduced from 0.34 to 0.0015 at 5700 s 

(Figure 10.10). The gate position comes back to 0.125 at 7500 s, because the flow 

conditions of the system come back to the initial conditions.  

Instead the feedforward algorithm does not modify the gate trajectory during the irrigation 

cycle because the algorithm establishes an optimal gate trajectory at the beginning of the 

irrigation cycle considering just the scheduled deliveries. As there is not a feedback between 

the feedforward controller and the canal state, the algorithm does not know that the water 

level is decreasing at the checkpoint. The water level decreases until the flow extracted by 

the offtake is close to 3 m3/s (Figure 10.11), once the disturbance disappears the water level 

recovers its target value, because the flow conditions are equal to the initial conditions. In 

that sense, if the disturbance is constant, as in the last test, the feedforward algorithms is 

not able to return to the target value therefore the farmers only get from the orifice offtake 3 

m3/s during the irrigation cycle.  
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Figure 10.10: Gate trajectory obtained by GoRoSoBo (orange continuous line)/GoRoSo (blue 

discontinuous line) in Case 2. 

 

Figure 10.11: Water level at the checkpoint obtained by GoRoSoBo (orange continuous 

line)/GoRoSo (blue discontinuous line) in Case 2. 
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Case 3 

We show in the next graph the scheduled and unscheduled deliveries introduced in this 

case: 

 

Figure 10.12: Scheduled and unscheduled deliveries introduced in the System (Case 3). 

This case is similar to the last the first two hours so we will obtain the same sluice gate 

trajectory to reduce the deviation between the measured and desired water level. 

As we have shown in the last cases, CSI is able to calculate the disturbance introduced into 

the system and that information is sent to GoRoSoBo which calculates a new gate position 

at 2100 s to drive the system to the desired state (Figure 10.13). 

The feedforward algorithm does not change the gate trajectory once the disturbance is 
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water level starts to increase when the disturbance disappears at 5400 s. If we look at Figure 
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to an important change in water demand, as the forecasted demand changes from 5 m3/s to 
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canal during the irrigation cycle, the water level reaches the target value at 10800 s. 
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In a feedback strategy, GoRoSoBo has to consider the scheduled demands in addition to 

the disturbance. GoRoSoBo has to close the gate at time 5700 s (see, Figure 10.13), 

because the disturbance has disappeared at 5400 s, but at the same time GoRoSoBo has 

to open the gate because the forecasted demand will change from 5 m3/s to 10 m3/s at time 

7200 s. The algorithm must take into account all these flow changes and maintains the 

desired water level (1.6 meters) at the checkpoint (Figure 10.14).  

 

Figure 10.13: Gate trajectory obtained by GoRoSoBo (orange continuous line)/GoRoSo (blue 

discontinuous line) in Case 3. 

 

Figure 10.14: Water level at the checkpoint obtained by GoRoSoBo (orange continuous 

line)/GoRoSo (blue discontinuous line) in Case 3. 
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Case 4 

We show in the next graph the scheduled and unscheduled deliveries introduced in this 

case: 

 

Figure 10.15: Scheduled and unscheduled deliveries introduced in the System (Case 4). 
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Figure 10.16: Gate trajectory obtained by GoRoSoBo (orange continuous line)/GoRoSo (blue 

discontinuous line) in Case 4. 

 

 

 

Figure 10.17: Water level at the checkpoint obtained by GoRoSoBo (orange continuous 

line)/GoRoSo (blue discontinuous line) in Case 4. 
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Case 5 

We show in the next graph the scheduled and unscheduled deliveries introduced in this 

case: 

 

Figure 10.18: Scheduled and unscheduled deliveries introduced in the System (Case 5). 

 

 

 

Figure 10.19: Disturbance calculated by CSI (Case 5). 
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As we show at Figure 10.49, CSI is also able to estimate the disturbance when it has a 

negative value. So this information is sent to GoRoSoBo which modifies the sluice gate 

trajectory to keep constant the water level at the checkpoint which is not going to decrease 

until three regulation periods later at time 2700 s (Figure 10.21). 

The gate trajectories obtained in case 5 are completely the opposite of the gates trajectories 

obtained in case 1, see Figure 10.20 and Figure 10.6, respectively. In this case, the gate 

position from 2100 s to 3000 s is the minimum allowed (Umin), so the flow through the gate 

is the minimum flow allowed to reduce the water level at checkpoint. The water level 

trajectory at checkpoint is also completely opposite to the case 1, see Figure 10.21 and 

Figure 10.7, respectively.  

As the feedforward algorithm has not any information about the negative disturbance, the 

algorithm does not calculate a new gate trajectory and the water level at the checkpoint 

increases over the canal, so there is canal overflow at 4614 s. As the disturbance does not 

disappear during the irrigation cycle, the lateral spillway operates until the end of the test. 

The difference in gate position between the feedforward and the feedback algorithms at 

9000s is due to the negative disturbance. A difference of 0.06 in gate position represents a 

flow of -2 m3/s in the canal, as the disturbance has the same absolute value than in case 1, 

the difference in gate position is the same. 

 

Figure 10.20: Gate trajectory obtained by GoRoSoBo (orange continuous line)/GoRoSo (blue 

discontinuous line) in Case 5. 
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Figure 10.21: Water level at the checkpoint obtained by GoRoSoBo (orange continuous 

line)/GoRoSo (blue discontinuous line) in Case 5. 

 

Case 6 

We show in the next graph the scheduled and unscheduled deliveries introduced in this 

case: 

 

Figure 10.22: Scheduled and unscheduled deliveries introduced in the System (Case 6) 
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Figure 10.23: Disturbance calculated by CSI (Case 6). 

This case is the same than the second case, the only difference between them is about the 

disturbance which has a negative value (Figure 10.22).   

As we show at Figure 10.23, CSI is also able to estimate the disturbance when it has a 

negative and variable value. The water level increases at 1800 s due to the negative 

disturbance and GoRoSoBo closes the gate to reduce the water level at checkpoint, when 

the disturbance disappears at 5400 s, so GoRoSoBo has to open the gate because the flow 

through the gate is too small to deliver 5 m3/s through the offtake.  

The gate trajectories obtained in case 6 are opposite to the gates trajectories obtained in 

case 2, see Figure 10.24 and Figure 10.10, respectively. In this case, the gate position 

reaches the minimum allowed (Umin) from 2100 s to 3000 s for that reason this gate trajectory 

is not equal to the inverse gate trajectory of case 2. The same analogy could be made about 

the water level trajectories at checkpoint in both cases. 

 

As the feedforward algorithm has not any information about the negative, variable 
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increases to 2 m at 4614 s (Figure 10.25) so there is a canal overflow and the lateral spillway 

operates from 4614 s to 5400 s when the disturbance disappears and the water level 

decreases at checkpoint. 
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Figure 10.24: Gate trajectory obtained by GoRoSoBo (orange continuous line)/GoRoSo (blue 

discontinuous line) in Case 6. 

 

 

Figure 10.25: Water level at the checkpoint obtained by GoRoSoBo (orange continuous 

line)/GoRoSo (blue discontinuous line) in Case 6. 
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Case 7 

We show in the next graph the scheduled and unscheduled deliveries introduced in this 

case: 

 

Figure 10.26: Scheduled and unscheduled deliveries introduced in the System (Case 7) 
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the water level is under the target value. 
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Figure 10.27: Gate trajectory obtained by GoRoSoBo (orange continuous line)/GoRoSo (blue 

discontinuous line) in Case 7. 

 

Figure 10.28: Water level at the checkpoint obtained by GoRoSoBo (orange continuous 

line)/GoRoSo (blue discontinuous line) in Case 7. 

 

Figure 10.29: Enclosed area V.S. Water level at the checkpoint obtained by GoRoSoBo (orange 

continuous line) in Case 7. 
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Case 8 

We show in the next graph the scheduled and unscheduled deliveries introduced in this 

case: 

 

Figure 10.30: Scheduled and unscheduled deliveries introduced in the System (Case 8) 
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canal and the water level is 0.409 m over the target value (1.6 m), for this reason the flow 

delivered by the offtake is 6.147 m3/s when the scheduled demand is 5 m3/s. 
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Figure 10.31: Gate trajectory obtained by GoRoSoBo (orange continuous line)/GoRoSo (blue 

discontinuous line) in Case 8. 

 

Figure 10.32: Water level at the checkpoint obtained by GoRoSoBo (orange continuous 

line)/GoRoSo (blue discontinuous line) in Case 8. 
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10.8. Conclusions 

Once the results of the different cases have been shown, some conclusions can be drawn: 

1. Some test cases, introduced in this chapter, are hard to solve by a control algorithm, 

because the flow changes in forecasted demand and disturbance are 100 % and 40 

%, respectively, over the total flow rate in the canal. 

2. The algorithm computes the best sluice gate trajectory to maintain the water level at 

the checkpoint. In that sense, the algorithm maintains the forecasted demand at the 

delivery point although a disturbance perturbs the free surface.   

3. To control the canal state in real time. The algorithm must calculate a new gate 

trajectory, in case that a disturbance modifies the water level at the checkpoint from 

the target. The changes in gate trajectories will be more important depending of the 

magnitude of this disturbance. For this reason, it is necessary to restrict the sluice 

gate movements which could be excessive in these cases. 

4. CSI and GoRoSoBo operate together in all those test cases. The water level 

measurements, scheduled demand and gate trajectory are sent to CSI, in case that 

a disturbance is introduced into the system, CSI is able to establish this disturbance. 

All these data is sent to GoRoSoBo which calculates the best sluice gate trajectory 

to reach the desired behaviour at the checkpoint.  

5. In the next chapter, more examples are going to be introduced to test the GoRoSoBo 

algorithm. 
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Chapter 11 

 

ASCE Test Cases 

We show in this chapter the application of the control algorithm in the test-cases proposed 

by the ASCE (Clemmens et al., 1998). The ASCE Task Committee on Canal Automation 

Algorithms proposed test-cases on two real canals for comparison of control algorithms. The 

test cases cover a set of conditions that may be found in practice. Two test schedules were 

adopted for each canal; during the first part in every of these four cases are introduced 

scheduled offtake changes and in the second part are introduced unscheduled offtake 

changes which are unknown for the algorithm. In this chapter as we want to evaluate 

GoRoSoBo, we only test the second part of every case.  

The two canals proposed by the ASCE were chosen because they are completely different. 

Whereas the Corning canal is large with a mild slope, the lateral canal WM within Maricopa 

Stanfield district is small and steep with short response times. The aim in these tests is to 

check the robustness and accuracy of the control algorithm for different canals. The 

response of the algorithm should be good in both cases.  

Two cases of the Test-Cases, proposed by the ASCE for feedback controllers, introduce 

huge changes on unscheduled flow deliveries in a short period of time. The aim is to check 

the capacity of the feedback controller to drive the canal state and remove the disturbance 

effect introduced by the unscheduled flow change. The test schedules strategies in both 

canals are similar, starting from steady state. The canal conveys a high flow-rate to deliver 

water to the farmers due to an important demand delivery. Two hours later of the beginning 

of the irrigation cycle, the demand delivery decreases sharply because the water demand is 

reduced to a minimum flow rate in all canal without knowledge of the watermaster. These 

Test-Cases are quite restrictive in two of them for most of the feedback controllers due to 

the changes on water demand are very important, for instance in Corning canal there are 

unscheduled offtake changes around of 4 m3/s. In the lateral canal WM, as it is a steep canal 

characterized by little storage, feedback controllers have even more problems to control the 

canal state due to the little storage capacity and the important changes on water demand.  
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The lateral outlet flow in the test is produced by orifice offtakes at the downstream end of 

each pool and by pump stations.  

Detailed canal features are introduced in this chapter as well as the unscheduled and the 

scheduled deliveries for every test. The behaviour of GoRoSoBo is evaluated in each test 

and the results are shown in the next section compared with the results obtained by other 

feedback control algorithms as CLIS or Pilote. More information about CLIS and Pilote 

control algorithms can be found in Liu et al. (1998) and Malaterre et al. (1995).  

11.1. Canal features 

Test canal 1 is based on lateral canal WM within the Maricopa Stanfield Irrigation and 

Drainage District in central Arizona. Details on canal 1 can be found in Clemmens et al. 

(1994). This canal is a steep canal characterized by higher values of Froude number than 

canal 2, although both canals operate in subcritical flow. The canal 1 has a little storage 

capacity due to its small cross sections. Instead, the canal 2 is based on the upstream 

portion of the Corning Canal in California, and is much flatter with significant storage 

(Buyalski and Serforzo 1979). In both canals, the target depth is close to the normal depth 

for each pool, at maximum flow. 

11.1.1. Maricopa Stanfield canal 

The Maricopa Stanfield canal has 9.5 Km. It is divided in eight pools by rectangular gates. 

The orifice offtakes, emergency lateral spillways, pump stations and checkpoints or target 

points are located at downstream end of each pool. The canal geometry is represented in 

Figure 11.1 and the canal features are shown in Table 11.1 and Table 11.2. 
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Figure 11.1: Maricopa Stanfield profile. The red lines mark the position of checkpoints. The first pool 
is number I and the first checkpoint is number 1. 
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I 1 6 0.1 2*10-3 1.5:1 0.014 1 1.1 

II 7 67 1.2 2*10-3 1.5:1 0.014 1 1.1 

III 68 88 0.4 2*10-3 1.5:1 0.014 1 1.0 

IV 89 129 0.8 2*10-3 1.5:1 0.014 0.8 1.1 

V 130 230 2 2*10-3 1.5:1 0.014 0.8 1.1 

VI 231 316 1.7 2*10-3 1.5:1 0.014 0.8 1.0 

VII 317 397 1.6 2*10-3 1.5:1 0.014 0.6 1.0 

VIII 398 483 1.7 2*10-3 1.5:1 0.014 0.6 1.0 

Table 11.1: Features of Maricopa Stanfield pools. 

Target 

points 

Numerical 

node 

upstream 

Numerical 

node 

downstream 

Gate 

discharge 

coefficient 

Gate 

width 

(m) 

Gate 

height 

(m) 

Step 

(m) 

Distance 

from the 

gate 1 

(Km) 

Orifice 

offtake 

height 

(m) 

0 0 1 0.61 1.5 1.0 1.0 0 - 

1 6 7 0.61 1.5 1.1 1.0 0.1 0.45 

2 67 68 0.61 1.5 1.1 1.0 1.3 0.45 

3 88 89 0.61 1.5 1.0 1.0 1.7 0.40 

4 129 130 0.61 1.2 1.1 1.0 2.5 0.45 

5 230 231 0.61 1.2 1.1 1.0 4.5 0.45 

6 316 317 0.61 1.2 1.0 1.0 6.2 0.40 

7 397 398 0.61 1.0 1.0 1.0 7.8 0.40 

8 483 483 - - - - 9.5 0.40 

Table 11.2: Maricopa Stanfield control structures. 
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Discretization: 

The prediction horizon is 12 hours (43200 seconds). The regulation time step is 300 seconds 

(5 minutes); consequently there are 144 regulation periods. There are eight sluice gates to 

control eight pools. As every gate position is estimated every regulation period, we need 

1152 gate trajectories parameters (144 regulation period by 8 sluice gates). The canal is 

spatially discretized every 20 meters. 

Initial and boundary conditions: 

Upstream the first gate, in Maricopa Stanfield canal exists a reservoir so the boundary 

condition is a constant water level of 1.0 meters, and this value remains constant over the 

irrigation cycle. The steady state is the initial condition at the beginning of the Test-Cases, 

the initial condition is shown in Table 11.3 (Test 1-1) and Table 11.4 (Test 1-2) and the 

downstream water level of every pool is defined by the target value. 

Pool 

number 

Offtake 

initial flow 

(m3/s) 

Resulting 

initial check 

flow (m3/s) 

Heading - 1.0 

1 0.1 0.9 

2 0.1 0.8 

3 0.2 0.6 

4 0.2 0.4 

5 0.1 0.3 

6 0.1 0.2 

7 0.1 0.1 

8 0.1 0.0 

 
Table 11.3: Initial conditions Test Case 1-1. 

Pool 

number 

Offtake 

initial flow 

(m3/s) 

Resulting 

initial check 

flow (m3/s) 

Heading - 2.0 

1 0.2 1.8 

2 0.0 1.8 

3 0.4 1.4 

4 0.0 1.4 

5 0.0 1.4 

6 0.3 1.1 

7 0.2 0.9 

8 0.9 0.0 

Table 11.4: Initial conditions Test Case 1-2. 

 

11.1.2. Corning Canal 

The Corning canal of California has a significant storage capacity. The canal length is 28 

Km and the cross sections are trapecial. It is divided in eight pools by rectangular gates. 

There are orifice offtakes, emergency lateral spillways, pump stations and checkpoints or 

targets points located at downstream end of each pool. The canal geometry is shown in the 

Figure 11.2 and other features are shown in the Table 11.5 and Table 11.6. 
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Figure 11.2: Corning Canal profile. The red lines mark the position of checkpoints. The first pool is 
number I and the first checkpoint is number 1. 

 

Pool 

number 

Numerical 

node 

upstream 

Numerical 

node 

downstream 

Pool 

length 

(Km) 

Bottom 

slope 

Side 

Slopes 

(H:V) 

Manning’s 

coefficient 

(n) 

Bottom 

width 

(m) 

Canal 

Depth 

(m) 

I 1 141 7 10-4 1.5:1 0.02 7 2.5 

II 142 202 3 10-4 1.5:1 0.02 7 2.5 

III 203 263 3 10-4 1.5:1 0.02 7 2.5 

IV 264 344 4 10-4 1.5:1 0.02 6 2.3 

V 345 425 4 10-4 1.5:1 0.02 6 2.3 

VI 426 486 3 10-4 1.5:1 0.02 5 2.3 

VII 487 527 2 10-4 1.5:1 0.02 5 1.9 

VIII 528 568 2 10-4 1.5:1 0.02 5 1.9 

Table 11.5: Features of Corning canal pools. 

Target 

points 

Numerical 

node 

upstream 

Numerical 

node 

downstream 

Gate 

discharge 

coefficient 

Gate 

width 

(m) 

Gate 

height 

(m) 

Step 

(m) 

Distance 

from the 

gate 1 

(Km) 

Orifice 

offtake 

height 

(m) 

Lateral 

spillway 

height 

(m) 

0 0 1 0.61 7 2.3 0.2 0 - 3 

1 141 142 0.61 7 2.3 0.2 7 1.05 2.5 

2 202 203 0.61 7 2.3 0.2 10 1.05 2.5 

3 263 264 0.61 7 2.3 0.2 13 1.05 2.5 

4 344 345 0.61 6 2.1 0.2 17 0.95 2.3 

5 425 426 0.61 6 2.1 0.2 21 0.95 2.3 

6 486 487 0.61 5 1.8 0.2 24 0.85 1.9 

7 527 528 0.61 5 1.8 0.2 26 0.85 1.9 

8 568 568 - - - - 28 0.85 1.9 

Table 11.6: Corning Canal control structures. 
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Discretization: 

The predictive horizon is 12 hours (43200 seconds). Regulation time step is 900 seconds 

(15 minutes) with 48 regulation periods. There are eight sluice gates to control canal pools; 

384 sluice gate trajectories parameters are needed (48 regulation period by 8 sluice gates). 

The canal is spatially discretized every 50 meters. 

Initial and boundary conditions: 

Upstream the first gate in Corning canal, there is a reservoir, so the boundary condition is a 

constant water level of 3.0 meters and this value remains constant over the predictive 

horizon. The steady state is the initial condition at the beginning of the Test-Cases; the initial 

conditions are shown in Table 11.7 (Test 2-1) and Table 11.8 (Test 2-2). 

Pool 

number 

Offtake 

initial flows 

(m3/s) 

Resulting initial 

check flows 

(m3/s) 

Heading - 13.5 

1 1.0 12.5 

2 1.0 11.5 

3 1.0 10.5 

4 1.0 9.5 

5 2.5 7.0 

6 2.0 5.0 

7 1.0 4.0 

8 1.0 3.0 

 
Table 11.7: Initial conditions Test Case 2-1. 

Pool 

number 

Offtake initial 

flows (m3/s) 

Resulting 

initial check 

flows (m3/s) 

Heading - 13.7 

1 1.7 12.0 

2 1.8 10.2 

3 2.7 7.5 

4 0.3 7.2 

5 0.2 7.0 

6 0.8 6.2 

7 1.2 5.0 

8 0.3 +2.0* 2.7 

Table 11.8: Initial conditions Test Case 2-2. 

*Changes in downstream pump discharge with no change in offtake flow. 
 
The offtake flows are obtained by gravity offtakes located downstream end of each pool 

where the extracted flow through the offtake (Qofftake) is described as follow: 

where y is the water level in canal at offtake, y0 is the orifice offtake height equal to ytarget/2 

,Cd the discharge coefficient calculated considering the extracted flow through the offtake 

for the target value so it gets a variable value during the irrigation cycle and Ф is the orifice 

offtake diameter.  

𝑄𝑜𝑓𝑓𝑡𝑎𝑘𝑒 = 𝐾√𝑦 − 𝑦0 

                                              𝐾 = 𝐶𝑑 ×
𝜋×∅2

4
× √2𝑔 

(11. 1) 
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11.2. Target values 

The target values which we have to maintain at the orifice offtake during the irrigation cycle 

are fixed in the whole test. We introduce these values of every test case in this section. 

11.2.1 Maricopa Stanfield 

As we introduced before, the control algorithm has to maintain a desired water level at the 

checkpoints during a predictive horizon. The desired water levels are shown in Table 11.9.  

Target 

point 

Water level 

desired (m) 

1 0.9 

2 0.9 

3 0.8 

4 0.9 

5 0.9 

6 0.8 

7 0.8 

8 0.8 

Table 11.9: Desired water level Test Case 1-1/1-2. 

11.2.2 Corning Canal 

The desired water levels at checkpoints are shown in the next table.  

Target 

point 

Water level 

desired (m) 

1 2.1 

2 2.1 

3 2.1 

4 1.9 

5 1.9 

6 1.7 

7 1.7 

8 1.7 

      

           Table 11.10: Desired water level Test Case 2-1/2-2. 

 
 
 



Chapter 11. ASCE Test Cases                                                                                                       266 

11.3. Unscheduled flow changes 

The duration of unscheduled deliveries is ten hours, almost all test duration. To control the 

canal is not easy because these disturbances cause hydraulic and numerical problems in 

the control algorithms.  

CSI algorithm calculates the unscheduled water deliveries and it sends the output data to 

the control algorithm which responds modifying the gate trajectories. However nobody 

knows the total duration of the unscheduled water deliveries. For this reason, GoRoSoBo 

algorithm calculates the sluice gate trajectories for a predictive horizon, taking into account 

the unscheduled water deliveries obtained by CSI algorithm in a present time and 

GoRoSoBo extrapolates the unscheduled water deliveries in all prediction horizon to 

calculate the sluice gate trajectories, as we introduced in chapter 9. In the next regulation 

period,  new water level measurements are taken at the checkpoints and CSI algorithm 

comes back to calculate the new unscheduled water deliveries and GoRoSoBo algorithm 

comes back to calculate the new gate trajectories too. In the case that the unscheduled 

water deliveries only exist at the present time, not during the next regulation periods, the 

GoRoSoBo will modify the gate trajectories considering a wrong water level error in the 

prediction horizon. The errors caused by that hypothesis (extrapolate the unscheduled water 

deliveries in the whole prediction horizon) are small, although these errors depend on the 

duration of the regulation period and the value of the unscheduled water deliveries.  

We had to consider this hypothesis because the sluice gate movements at present time are 

essentials to reduce the disturbance in future. The disturbance wave generated by the sluice 

gate movement does not travel quickly in free surface, so the control actions must be taken 

at the present time to obtain a response in future. If we consider that the unknown delivery 

does not exist in future, and the unscheduled offtake changes are permanent, the control 

algorithm can never obtain a gate trajectory to reduce the deviation between the desired 

and measured water level.  

This happens because once the disturbance disappears, the water level at checkpoints 

returns to the desired water level by itself quickly, if we make this supposition, the control 

algorithm does not have to make actions for the future, but if this supposition is wrong and 

the disturbance has a long duration, the water level error will not be removed. For this 
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reason, as we introduced in chapter 9, the unscheduled offtake obtained by CSI algorithm 

at the present time is extrapolated during the predictive horizon.  

We have to note that there are gates which have not any influences on some target points 

at the end of the prediction horizon, for instance, a gate movement did by the first gate at 

last regulation period has not any influences on target 8 at last regulation period because 

the wave generated by the first sluice gate at last regulation period cannot reach to the target 

8. There are some elements in the HIM matrix with zero values, and these zeroes can 

produce numerical problems, even more on important unscheduled delivery, as there are 

long periods during the prediction horizon that the sluice gate positions have changed a lot 

from the initial gate position, instead at the end of the prediction horizon as the sluice gates 

have not any influences on the checkpoints, the sluice gate remains in their initial position. 

These changes in gate trajectory so significant generate numerical problems. To solve these 

numerical problems, we increased the duration of the last regulation period, four times, as 

in this way all sluice gates have influences on any checkpoint during the last regulation 

period.  

11.3.1     Maricopa Stanfield 

The unscheduled water deliveries are more important in test 1-2 than in test 1-1, as it is 

shown in Table 11.11 and Table 11.12. These unknown deliveries are introduced from the 

second hour of the test until the end of the test.  

Pool 

number 

Offtake 

initial flow 

(m3/s) 

Check 

initial flow  

(m3/s) 

Unscheduled 

offtake changes 

at 2 hours (m3/s) 

Check 

final flow 

(m3/s) 

Heading - 1.0 - 0.8 

1 0.1 0.9 - 0.7 

2 0.1 0.8 - 0.6 

3 0.2 0.6 - 0.4 

4 0.2 0.4 -0.1 0.3 

5 0.1 0.3 -0.1 0.3 

6 0.1 0.2 - 0.2 

7 0.1 0.1 - 0.1 

8 0.1 0.0 - 0.0 

Table 11.11: Unscheduled offtake changes on Test Case 1-1. 
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Pool number 

Offtake 

initial flow 

(m3/s) 

Check 

initial flow  

(m3/s) 

Unscheduled 

offtake changes 

at 2 hours (m3/s) 

Check 

final flow 

(m3/s) 

Heading - 2.0 - 2.0 

1 0.2 1.8 - 1.8 

2 0.0 1.8 0.2 1.6 

3 0.4 1.4 -0.2 1.4 

4 0.0 1.4 0.2 1.2 

5 0.0 1.4 0.2 1.0 

6 0.3 1.1 -0.1 0.8 

7 0.2 0.9 - 0.6 

8 0.9 0.0 -0.3 0.0 

Table 11.12: Unscheduled offtake changes on Test Case 1-2. 

The unscheduled water deliveries in test 1-2 are important although the changes on the total 

flow rate is null, because there are pools where the unscheduled deliveries are positive and 

others are negative.  

The unscheduled deliveries are more significant at target 8 in test-case 1-2, where the flow 

rate changes from 0.9 m3/s to 0.6 m3/s (33%). For this reason, the control algorithm has to 

modify quickly the gate trajectories, because it exists a possibility to canal overflow in some 

pools downstream due to the low storage capacity. This is more usual in canals like 

Maricopa Stanfield than the Corning canal which has an important storage capacity. 

11.3.2     Corning Canal 

In test 2-1, we find that the unscheduled water deliveries are not very significant, as it is 

shown in the Table 11.13 and Table 11.14. The only flow change is in the orifice offtake of 

pool six. It is a flow change on the total flow in the canal of 14.8 % and on the total flow in 

pool six of 28.5%. These unknown deliveries are introduced from the second hour of the test 

until the test ending. These unscheduled deliveries are flow rate changes and the control 

algorithm realizes of these flow changes once the water levels increase or decrease at target 

points or checkpoints. 
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Pool 

number 

Offtake 

initial flow 

(m3/s) 

Check 

initial flow  

(m3/s) 

Unscheduled 

offtake changes 

at 2 hours 

(m3/s) 

Resulting 

check flow 

(m3/s) 

Heading - 13.5 - 11.5 

1 1.0 12.5 - 10.5 

2 1.0 11.5 - 9.5 

3 1.0 10.5 - 8.5 

4 1.0 9.5 - 7.5 

5 2.5 7.0 - 5.0 

6 2.0 5.0 -2 5.0 

7 1.0 4.0 - 4.0 

8 1.0 3.0 - 3.0 

Table 11.13: Unscheduled offtake changes on Test Case 2-1. 

 

Pool 

number 

Offtake 

initial flow 

(m3/s) 

Check 

initial flow  

(m3/s) 

Unscheduled 

offtake changes 

at 2 hours (m3/s) 

Resulting 

check flow 

(m3/s) 

Heading - 13.7 - 2.7 

1 1.7 12.0 -1.5 2.5 

2 1.8 10.2 -1.5 2.2 

3 2.7 7.5 -2.5 2.0 

4 0.3 7.2 - 1.7 

5 0.2 7.0 - 1.5 

6 0.8 6.2 -0.5 1.2 

7 1.2 5.0 -1.0 1.0 

8 0.3 +2.0* 2.7 -2.0* 0.7 

 
Table 11.14: Unscheduled offtake changes on Test Case 2-1. 

*Changes in downstream pump discharge with no change in offtake flow. 

 

The unscheduled water deliveries in test 2-2 are very relevant, as these water deliveries 

have an important percentage over the total flow. In this case, the unscheduled water 

deliveries are of 81% on the total flow and these water changes are more significant at target 

8, where the flow rate turns from 5 m3/s to 1 m3/s. For this reason, it should be pointed out 

that 15 minutes after introducing the unscheduled water deliveries in the canal, the water 

level in target 8 is 1.93 meters, so the lateral spillway must operate. This is the maximum 

flow rate change in all Test-Cases. 
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11.4.  Constrains and trajectories 

According with Soler (2003), there are different ways to reach the final solution depending 

on the maximum or minimum gate position, the maximum sluice gate movement permitted 

between consecutives regulation periods or the time-frequency that actuator can move the 

gates. The larger the maximum sluice gate movement permitted, the faster is to drive the 

canal state to the desired canal state in case of significant flow changes, but on the other 

hand it is easier to damage the servomechanism of the sluice gate, because the gate 

trajectories oscillate more. In such case, an optimization problem which the constraints are 

too lax can destabilize the model, because the change of the free surface due to the gate 

trajectories can be very abrupt. 

ASCE restricts the minimum regulation period in 15 minutes for the test-case 2-1/2-2. This 

was the regulation period chosen in test 2-1 and 2-2, and the time-frequency on gate 

movement is also 15 min. The ASCE restricts the minimum regulation period in 5 minutes 

for the test 1-1 and 1-2, so this was the regulation period chosen in test 1-1 and 1-2 and the 

time-frequency on sluice gate movement.  

Considering the results obtained in the analysis of constrains did by Soler (2003) and Soler 

et al. (2013), we have imposed the overall and functional constraints of Table 11.15. The 

constraints are determined as a certain percentage of the gate height, these constraints are 

imposed to the gate positions. 

 
Umin 

(%) 
Umax 

(%) 
dUmax/ dU0max 

(%) 

Maricopa Stanfield 2 90 5 

Corning Canal 0.5 90 5 

Table 11.15: Overall and functional constraints values. 

The value of minimum gate position is different in both cases. The gate width of the Corning 

canal is almost five times bigger than the Maricopa Stanfield so the minimum gate position 

is fixed by a combination of the gate width and the flow through the gate. For instance, we 

cannot fix a minimum gate position of 2 % for the Corning canal, because this gate position 

is equivalent to a significant flow through the gate, in situations that the total flow in the canal 

decreases by important reductions in water demand, the gates position should be lower than 

2 %.  
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11.5. Test results 

We show the results in three graphs for every test case: 

 The first one shows the scheduled offtakes and unscheduled offtake changes 

(demanded extracted flow), the extracted flow calculated by CSI and the real value 

delivered by the offtake after introducing the new gate trajectories by GoRoSoBo 

during the irrigation cycle. As we introduced before, GoRoSoBo needs the CSI 

information to calculate the gates trajectories so CSI has to calculate the extracted 

flow in the canal considering the scheduled and unscheduled offtake flow. 

 The second one* shows the gate trajectories during the irrigation cycle, where the 

gate trajectory is defined by the gate position in time, and the gate position is defined 

as follow: 

 

 The third one* shows the water level at the checkpoints which is proportional to the 

real flow-rate delivered to the farmer by the offtake.  

11.5.1 Test-Case 1-1 (Maricopa Stanfield) 

In the next table, we show the scheduled offtakes and the unscheduled water changes which 

are introduced 2 hours after starting the test: 

Pool number 

Scheduled offtake 

flow  

(m3/s) 

Unscheduled offtake 

changes at 2 hours 

(m3/s) 

Heading - - 

1 0.1 - 

2 0.1 - 

3 0.2 - 

4 0.2 -0.1 

5 0.1 -0.1 

6 0.1 - 

7 0.1 - 

8 0.1 - 

Table 11.16: Unscheduled offtake changes in test-case 1-1 (Maricopa Stanfield). 

*We have to note that the gate trajectories and water level trajectories has been divided in 

two graphs for a better comprehension of the results. 

𝐺𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
𝐺𝑎𝑡𝑒 𝑜𝑝𝑒𝑛𝑖𝑛𝑔

𝐺𝑎𝑡𝑒 ℎ𝑒𝑖𝑔ℎ𝑡
 

(11. 2) 
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Figure 11.3: Demanding extracted flow, extracted flow by CSI and real extracted flow in Test-Case 
1-1 (Maricopa Stanfield). 
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The only flow changes are introduced in the fourth and fifth pool (Table 11.16), and CSI is 

able to establish perfectly the extracted flow in the canal with a maximum numerical error of 

4% between the demanded extracted flow and the value by CSI, see Figure 11.3. This small 

error is due to numerical errors in CSI and we obtain a similar maximum error in every pump 

station. 

Once the GoRoSoBo algorithm realizes that the water level increases at checkpoints 4 and 

5 at 7500 s (Figure 11.4 and Figure 11.5.), the sluice gates 1 to 5 start to close to reduce 

the water level at downstream checkpoints (Figure 11.6 and Figure 11.7) and he sluice gates 

6, 7 and 8 start to open to reduce the water level at upstream checkpoints. After several 

regulation periods, the sluice gates 6, 7 and 8 must close because the water level at 

checkpoints 6, 7 and 8 also increase, see  

GoRoSoBo starts to modify the gate trajectories at 7500 s, one regulation period after the 

disturbance is introduced in the canal. GoRoSoBo drives the canal to the desired water level 

in every checkpoint at 18000 s.  

At the end, the controller response is smoother and gate movement is damped to prevent 

oscillations that would cause excessive control actions, because the water levels are almost 

equal to the desired levels, with a maximum error between them around of 0.26%.  

The results obtained in this test case are quite good as the performance indicators 

demonstrate, see section 11.6. Four hours later introducing the unscheduled offtake 

changes, GoRoSoBo drives the canal to the target value. 

 

Figure 11.4: Gate trajectories (1, 3, 5 and 8) in Test-Case 1-1 (Maricopa Stanfield). 
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Figure 11.5: Gate trajectories (2, 4, 6 and 7) in Test-Case 1-1 (Maricopa Stanfield). 

 

 

 

Figure 11.6: Water level at checkpoints 1, 3, 5 and 8 in Test-Case 1-1 (Maricopa Stanfield). 
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Figure 11.7: Water level at checkpoints 2, 4, 6 and 7 in Test-Case 1-1 (Maricopa Stanfield). 
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after starting the test are shown in the next table: 

 

Pool number 
Scheduled offtake 

changes (m3/s) 

Unscheduled 

offtake changes at 

2 hours (m3/s) 

Heading - - 

1 0.2 - 

2 0.0 0.2 

3 0.4 -0.2 

4 0.0 0.2 

5 0.0 0.2 

6 0.3 -0.1 

7 0.2 - 
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Table 11.17: Unscheduled offtake changes in test-case 1-2 (Maricopa Stanfield). 
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level is measured at the checkpoints. It is important to remark that the unscheduled water 

deliveries are relevant in all targets but especially at target 8, because just in one regulation 

period, the water level at checkpoint 8 increases from 0.8 m to 1.08 m (Figure 11.11).  

It is introduced a water delivery change of 0.3 m3/s at checkpoint 8, with a total flow rate 

change at target 8 from 0.6 m3/s to 0.9 m3/s, that is, a flow rate change around of 33.3 %. 

The extracted flow is calculated by CSI which establishes the value a maximum numerical 

error of 2% between the demanded extracted flow and the value by CSI, as we show in 

Figure 11.8. 

The unscheduled offtake changes in target 1 to 5 are 0.2 m3/s, in target 6 is 0.1 m3/s and in 

target 8 is 0.3 m3/s, in a canal with a total flow rate of 2 m3/s that has not storage capacity 

and a steep slope, this is a hard test for the control algorithm.  

Once the GoRoSoBo algorithm knows that the water level is increasing less at checkpoints 

2, 4 and 5 at time 7500 s (Figure 11.11 and Figure 11.12), all gates less 7 and 8 have the 

tendency of closing (Figure 11.9 and Figure 11.10). Although the water level is increasing in 

several checkpoints, the maximum water level variation is at checkpoint 8 at 8100 s, for that 

reason, the gates 7 and 8 close whereas the gates 1, 2, 3, 4, 5, 6 open for readjusting the 

water level in all checkpoints from 8100 s to 9900 s. We can check that the lower gate 

position at 18000 s is the gate 8 that is logic because the more important flow change is at 

checkpoint 8. 

The sluice gate trajectories have the same shape that the water level at the checkpoints, 

due to the gate trajectories and water levels fluctuate around the desired solution. 

The water level decreases in all targets at 9900 s due to changes in gate trajectories, and 

the water level returns to the desired water level in all checkpoints at 21600 s.  

The water levels were almost equal to the desired levels at the end of the test, with a 

maximum error between them around 0.25%. The results obtained in this Test Case 1-2 are 

so good as the results obtained in Test-Case 1-1. GoRoSoBo needs one hour more to drive 

the system to the target value than in Test Case 1-1, but the unscheduled offtake changes 

are more important in this Test Case 1-2. 
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Figure 11.8: Demanded extracted flow, extracted flow by CSI and real extracted flow in Test-Case 
1-2 (Maricopa Stanfield). 
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Figure 11.9: Gate trajectories (1, 3, 5 and 8) in Test-Case 1-2 (Maricopa Stanfield). 

 

 

 

Figure 11.10: Gate trajectories (2, 4, 6 and 7) in Test-Case 1-2 (Maricopa Stanfield). 

 

 

 

0 3600 7200 10800 14400 18000 21600

0.2

0.3

0.4

0.5

0.6

0.7

Time (second)

G
at

e 
p

o
si

ti
o

n
 (

%
)

Gate 1 Gate 3 Gate 5 Gate 8

0 3600 7200 10800 14400 18000 21600

0.2

0.3

0.4

0.5

0.6

0.7

Time (second)

G
at

e 
p

o
si

ti
o

n
 (

%
)

Gate 2 Gate 4 Gate 6 Gate 7



Chapter 11. ASCE Test Cases                                                                                                       279 

 

 

Figure 11.11: Water level at checkpoints 1, 3, 5 and 8 in Test-Case 1-2 (Maricopa Stanfield). 

 

 

 

Figure 11.12: Water level at checkpoints 2, 4, 6 and 7 in Test-Case 1-2 (Maricopa Stanfield). 
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11.5.3 Test-Case 2-1 (Corning canal) 

The scheduled offtakes and the unscheduled water changes which are introduced 2 hours 

after starting the test are shown in the next table: 

Pool number 
Scheduled offtake 

changes (m3/s) 

Unscheduled offtake 

changes at 2 hours (m3/s) 

Heading - - 

1 1.0 - 

2 1.0 - 

3 1.0 - 

4 1.0 - 

5 2.5 - 

6 2.0 -2 

7 1.0 - 

8 1.0 - 

Table 11.18: Unscheduled offtake changes in test-case 2-1 (Corning canal). 

The steady state is the initial condition. The sluice gates remain in their positions during the 

first two hours. The unscheduled water deliveries are introduced into the system at time 

7200 s, although the algorithm has not any notice until the next regulation period when the 

water level at checkpoint 6 is already increased close to 10 cm. The measurements are sent 

to CSI which establishes the extracted flow with a maximum numerical error of 0.7% 

between the demanded extracted flow and the value by CSI as we show in Figure 11.13.  

The change in water delivery is quite important at target 6, as it is introduced a water delivery 

change of 2 m3/s, and the total flow rate at target 6 is 7 m3/s (that is, a flow rate change of 

28 % of the total flow rate). 

Once GoRoSoBo algorithm realizes that the water level has increased at checkpoint 6 at 

8100 s (Figure 11.16), the gates 1 to 6 start to close (Figure 11.14 and Figure 11.15), and 

the gates 7 and 8 start to open from 8100 s to 9900 s to reduce the increased water lever at 

checkpoint 6 (Figure 11.14), so the water level at checkpoint 7 and 8 start to increase at 

9000 s (Figure 11.17) and the gate 7 and 8 start to close at 9900 s. The water level start to 

decrease in all checkpoints at 12600 s, and the water level returns to the desired level at 

19800 s, see Figure 11.16 and Figure 11.17. The gate movements were almost zero in the 

last six hours of the test because the water levels at checkpoints were equal to the desired 

water levels, with a maximum error of 0.2%. These little errors are due to residual errors in 

the computation of both algorithms (CSI and GoRoSoBo). 
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Figure 11.13: Demanded extracted flow, extracted flow by CSI and the real extracted flow in Test-
Case 2-1 (Corning canal). 
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Figure 11.14: Gate trajectories (1, 2, 4 and 6) in Test-Case 2-1 (Corning canal). 

 

 

 

 

Figure 11.15: Gate trajectories (3, 5, 7 and 8) in Test-Case 2-1 (Corning canal). 
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Figure 11.16: Water level at checkpoints 1, 2, 4 and 6 in Test-Case 2-1 (Corning canal). 

 

 

 

Figure 11.17: Water level at checkpoints 3, 5, 7 and 8 in Test-Case 2-1 (Corning canal). 
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11.5.4 Test Case 2-2 (Corning canal) 

In the next table, we show the scheduled offtakes and the unscheduled water changes which 

are introduced 2 hours after starting the test: 

 

Pool number 
Scheduled offtake 

changes (m3/s) 

Unscheduled offtake 

changes at 2 hours 

(m3/s) 

Heading - - 

1 1.7 -1.5 

2 1.8 -1.5 

3 2.7 -2.5 

4 0.3 - 

5 0.2 - 

6 0.8 -0.5 

7 1.2 -1.0 

8 0.3 +2.0* -2.0* 

Table 11.19: Unscheduled offtake changes in test-case 2-1 (Corning canal). 

*Changes in downstream pump discharge with no change in offtake flow. The outlet flow at checkpoint 
8 at initial time step is 2.7 m3/s and the outlet flow at checkpoint 8 at 7200 s is 0.7 m3/s. 

 

The test 2-2 is the most difficult test due to the significant unscheduled water deliveries in 

all targets. The canal state is steady during the first two hours, as in the previous test-cases. 

There are no unscheduled water deliveries for the first two hours, so the sluice gates remain 

in their initial positions. After the first two hours, unscheduled water deliveries are introduced 

to the system. The water level measurements are send to CSI which establishes the real 

extracted flow with a maximum error of 3% between the demanded extracted flow and the 

value obtained by CSI, as we show in Figure 11.18. The unscheduled water deliveries are 

so important in all targets that the total unscheduled deliveries were 9 m3/s in a canal with a 

total flow of 13.7 m3/s. GoRoSoBo obtained good results in Test  Case 2-2, as we show at 

Figure 11.21 and Figure 11.22, although it is important to remark that the unscheduled water 

deliveries are so important, especially in target 8, that once the algorithm has notice of the 

rising water level at checkpoint 8 at 8100 s, the water level has already increased 20 cm, 

that is, it reaches to the top of the cross-section. In that circumstances, GoRoSoBo closes 

the sluice gates 1 to 3 and open the sluice gates 4 to 8 (Figure 11.19 and Figure 11.20), so 

in this way the sluice gate trajectories reduce the increased water lever in all checkpoints.   
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Figure 11.18: Demanded extracted flow, extracted flow by CSI and the real extracted flow in Test-
Case 2-2 (Corning canal). 
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Redirecting the water level at checkpoints to the desired water level in a centralized system 

is not a duty of only one sluice gate. It is possible that some sluice gates have increased the 

water level error in some checkpoints at a regulation period (for instance, at checkpoint 4 

and 5) when there are not unscheduled offtake changes in these checkpoints, but the main 

objective is redirect the water level measured to the desired values in all checkpoints as 

soon as possible.  

The water level decreases in all checkpoints at 25200 s and the water level returns to the 

desired value in all the checkpoints at 30600 s. The unscheduled water delivery is quite 

important at target 8 introducing a total flow change of 4 m3/s at 7200 s because the total 

flow rate at pool 8 is 5 m3/s at initial time step and the flow rate at pool 8 is 1 m3/s at 7200 s, 

so the flow change is close to 80 % of the total flow rate of the pool. 

The gate movements are almost zero in the last two hours of the test because the water 

levels at checkpoints are equal to the desired values at the end of the test, with a maximum 

error around of 0.23%.  

 

Figure 11.19: Gate trajectories (1, 2, 4 and 6) in Test-Case 2-2 (Corning canal). 
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Figure 11.20: Gate trajectories (3, 5, 7 and 8) in Test-Case 2-2 (Corning canal). 

 

 

 

Figure 11.21: Water level at checkpoints 1, 2, 4 and 6 in Test-Case 2-2 (Corning canal). 
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Figure 11.22: Water level at checkpoints 3, 5, 7 and 8 in Test-Case 2-2 (Corning canal). 
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at checkpoints. First, we might calculate the maximum error at the checkpoint. Second, we 

might calculate how much time the control algorithm needs to remove the error at the 

checkpoint. Third, we might calculate the water level error at the checkpoint at the end of 

the test, that is, the water level should not stabilize at a wrong level. The fourth performance 

indicator controls the variations of flow rate between the initial flow thought the gate and the 

final flow. These four performance indicators are recommended by the ASCE Task 

Committee, and we show the maximum and the average of these performance indicators, 

as suggested by the Task Committee. 

0 3600 7200 10800 14400 18000 21600 25200 28800 32400

1.500

1.600

1.700

1.800

1.900

2.000

2.100

2.200

2.300

Time (second)

W
at

er
 le

ve
l (

m
)

Checkpoint 3 Checkpoint 5 Checkpoint 7 Checkpoint 8



Chapter 11. ASCE Test Cases                                                                                                       289 

11.6.1. Maximum Absolute Error (MAE) 

 

𝑀𝐴𝐸 =
max (|𝑦𝑡 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡|)

𝑦𝑡𝑎𝑟𝑔𝑒𝑡
 

(11.3) 

 

 

where yt is the observed or measured (computed from simulation) water level at time t; and 

ytarget is the target or desired water level.   

11.6.2. Integral of Absolute Magnitude of Error (IAE) 

 

𝐼𝐴𝐸 =

∆𝑡
𝑇

 |𝑦𝑡−𝑦𝑡𝑎𝑟𝑔𝑒𝑡|
𝑇
𝑡 0

𝑦𝑡𝑎𝑟𝑔𝑒𝑡
 

(11.4) 

 

 

where ∆𝑡 is the regulation time step; and T is the time period for test (12 hours). The time 

step must be held constant over the 12 hours interval specified. 

11.6.3. Steady-State Error (StE) 

The steady-state error is defined as the maximum of the average error over the last two 

hours of the test. The conclusion is that the conditions should be stable during this period of 

time. 

 

𝑆𝑡𝐸 =
max (|𝑦22,24 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡|)

𝑦𝑡𝑎𝑟𝑔𝑒𝑡
 

(11.5) 

 

where y22,24 is the average water level between 10 and 12 hours. Some control algorithms 

have not performed well because of constant oscillation around the sluice gate trajectory 

solution. To detect excessive oscillations in water levels at the end of the test, this indicator 

is proposed. 
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11.6.4. Integrated Absolute Discharge Change (IAQ) 

To avoid excessive oscillation of sluice gates during the irrigation cycle, this performance 

indicator related to the changes in discharge due to the sluice gate movements is proposed.  

𝐼𝐴𝑄 = ∑(|𝑄𝑡 − 𝑄𝑡−1|)

𝑡2

𝑡 𝑡1

− |𝑄𝑡1 − 𝑄𝑡2| 
(11.6) 

 

Where Qt is the check gate discharge at time t, so Qt-1 is the gate discharge at the previous 

time step. The second term is simply the difference between the initial and the final flow rate 

for the irrigation cycle. In that sense, the performance indicator IAQ could be zero, in case 

that Qt1>Qt2 and Qt-1>Qt for all time steps during the period of time (t1-t2), or in case that, 

Qt1<Qt2 and Qt-1<Qt for all time steps during the same period of time. Use of this performance 

indicator requires that the times for flows introduced in the summation include the times at 

all reversals in the sign of flow changes (all the peaks and valleys of the flow hydrograph 

are included to set this performance indicator). 

11.7. Comparison between controllers 

We compare the performance indicators obtained with GoRoSoBo in Test-cases with the 

performance indicators obtained with other control algorithms as CLIS (Liu et al. 1998) and 

Pilote (Malaterre et al. (1995)). The CLIS is based on an inverse solution method of the Saint 

Venant equations, and it is designed for the automation of demand oriented systems. The 

Pilote is a LQR closed-loop controller and it is obtained from the steady-state solution of the 

Riccati equation. A Kalman Filter is used to reconstruct the state variables and the unknown 

perturbations from a reduced number of observed variables. 

11.7.1 Test-Case 1-1 (Maricopa Stanfield) 

In this test 1-1, GoRoSoBo shows the best values of maximum and average MAE 

performance indicator and Pilote shows the second best values of the maximum MAE and 

CLIS shows the second best values of the average MAE. The maximum and average MAE 

values for GoRoSoBo are 8.5 % and 6.9 %, respectively, see Table 11.20.  
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The GoRoSoBo shows the best results of the maximum IAE indicator (1.6%) but it does not 

show the best result of the average IAE indicator which is very close of the best result 

obtained by Pilote. The values of the average IAE indicator of both control algorithms are 

1.38% and 1.28%, respectively. This is the only test that GoRoSoBo does not show the best 

result of this performance indicator and the difference with the best control algorithm (Pilote) 

is only 0.1%. 

The GoRoSoBo shows the second best values on the maximum StE indicator for this test-

case (2.4%), whereas Pilote shows the best results 0.35%. The values obtained by 

GoRoSoBo and CLIS in the average StE indicator are similar (1.39% and 1.4%, 

respectively) whereas the values obtained by Pilote are excellent (0.12%).   

GoRoSoBo algorithm gives low values of this indicator in all test-cases. However it is 

possible to make a modification on the control algorithm to reduce this indicator to zero. 

Once CSI algorithm calculates in several regulation periods that the unscheduled offtake 

changes are constant and close to an exact value, CSI can fix this constant value as 

unscheduled offtake changes. In that way, GoRoSoBo will obtain the same gate trajectories 

every regulation period, so the water level in all checkpoints would be the desired water level 

and the canal state would be steady. But the results of StE performance indicator obtained 

by GoRoSoBo algorithm are enough good in these tests to introduce this modification in the 

control algorithm. 

Instead, the values obtained by GoRoSoBo in the IAQ indicator are not good. These values 

are far away of the values obtained by CLIS which are close to zero. We can conclude that 

the optimum gate trajectories obtained by GoRoSoBo show the best values of MAE and IAE 

indicators, but these gate trajectories are not the best to obtain good values in IAQ indicator. 

The IAE performance indicator establishes the total changes on flow rate through the gates 

introduced by the gate trajectories to reach the desired final flow rate. When the unscheduled 

offtake changes introduced to the system are important, it is necessary quick changes on 

gate trajectories to recover the desired value at checkpoints as soon as possible, so the 

changes on flow rate will be significant too. Limiting more the constraints about gate 

movements to obtain better values of this indicator is not our principal objective, because 

the MAE and StE indicators will be worse.  
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TEST CASE 1-1 TUNED-UNSCHEDULED 

MAE (%) IAE (%) StE (%) IAQ (m3/s) 

12-24h 12-24h 12-24h 12-24h 

Maximum Average Maximum Average Maximum Average Maximum Average 

CLIS 19,9 7,8 3,8 1,8 2,6 1,4 0,2 0,1 

PILOTE 13,4 8,6 1,8 1,3 0,4 0,1 2,5 1,7 

GoRoSoBo 8,5 6,9 1,6 1,4 2,4 1,4 8,9 5,3 

Table 11.20: The performance indicators obtained in Test-Case 1-1 (Maricopa Stanfield). 

11.7.2 Test-Case 1-2 (Maricopa Stanfield) 

As it has happened in the last test cases, GoRoSoBo shows the best results of maximum 

and average MAE and IAE indicators. The maximum MAE value on GoRoSoBo is very 

similar to CLIS, 33’5 % and 34’5 %, respectively, although GoRoSoBo obtains excellent 

values of average MAE indicator (10.3 %) comparing with CLIS and Pilote (14.2% and 24.9 

%, respectively), see Table 11.21.   

Taking into account the maximum IAE indicator, CLIS and GoRoSoBo obtained the best 

results around of 5%, whereas Pilote obtained the worst results (9.2%). As regards the 

average IAE indicator, GoRoSoBo obtained the best reults (1.2%), the second one was CLIS 

(2%) and the third one was Pilote (5.2%).   

GoRoSoBo was the best in both performance indicators (StE), whereas CLIS obtained 

better results than Pilote. As regards the IAQ indicator, GoRoSoBo obtained values quite 

similar to Test Case 1-1, we could arrive at the same conclusion about IAQ than the last 

one. 

 

TEST CASE 1-2 TUNED-UNSCHEDULED 

MAE (%) IAE (%) StE (%) IAQ (m3/s) 

12-24h 12-24h 12-24h 12-24h 

Maximum Average Maximum Average Maximum Average Maximum Average 

CLIS 34,5 14,2 5,0 2,0 3,6 1,1 0,2 0,1 

PILOTE 43,0 24,9 9,2 5,2 11,2 2,9 2,9 1,4 

GoRoSoBo 33,5 10,3 5,0 1,2 2,1 0,7 6,7 3,6 

Table 11.21: The performance indicators obtained in Test-Case 1-2 (Maricopa Stanfield). 
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11.7.3 Test-Case 2-1 (Corning canal) 

In this Test Case 2-1, GoRoSoBo also shows the best maximum and average MAE indicator 

(6’1% and 4.2%, respectively), the second one was CLIS which obtained a values of 6.8% 

and 4.4%, respectively and third one was Pilote which obtained a values of 7.5% and 4.8%, 

respectively.  

The results about the IAE indicator are similar in all control algorithms, although the values 

obtained by CLIS in the maximum and the average IAE are difficult to reduce 1.4% and 1%, 

respectively, GoRoSoBo obtains the best values 0.7% and 0.5%.  

The maximum and average StE values are similar between the control algorithms, the better 

results are obtained by Pilote, and GoRoSoBo shows the second best results, although the 

values of StE indicator are very low in all control algorithms, below 0.5 %. 

The IAQ performance indicator is when worst values obtain GoRoSoBo in this Test Case 2-

2. Although, as we introduced previously, the main objective is drive the canal state to the 

desired state as soon as possible and this forces to the algorithm calculates significant 

changes in gate trajectories in those tests which is the opposite to move the gates 

progressively to avoid significant changes in flow through the gates.  

 

MAE (%) IAE (%) StE (%) IAQ (m3/s) 

12-24h 12-24h 12-24h 12-24h 

Maximum Average Maximum Average Maximum Average Maximum Average 

CLIS 6,8 4,4 1,4 1,0 0,5 0,4 5,8 3,0 

PILOTE 7,5 4,8 2,0 1,3 0,2 0,1 7,6 4,7 

GoRoSoBo 6,1 4,2 0,7 0,5 0,3 0,2 17,1 5,2 

Table 11.22: The performance indicators obtained in Test-Case 2-1 (Corning canal). 

11.7.4 Test-Case 2-2 (Corning canal) 

GoRoSoBo shows a maximum MAE value quite lower (13.7%) than the value obtained by 

others controllers as CLIS and Pilote (21.1% and 34.2%, respectively), see Table 11.23. 

GoRoSoBo reduces the maximum MAE indicator in 35% (CLIS) and 60 % (Pilote), 

respectively. The average MAE indicator shows a similar tendency to the maximum MAE, 
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whereas GoRoSoBo obtains an average MAE value around of 7.8%, the CLIS and Pilote 

obtain a value of 14.9 % and 17.1 %, respectively. 

Checking this performance indicator, the GoRoSoBo obtains the better values, whereas the 

maximum and average IAE indicators show similar values in GoRoSoBo (6.3% and 2.1%, 

respectively) and CLIS (7.6% and 2.8%, respectively). Pilote obtains worst results on this 

performance indicator (10.6% and 7.1%).  

GoRoSoBo is not the best control algorithm in the StE indicator in this Test Case 2-2, but 

the value of the maximum StE indicator is very close to CLIS, 0.8% and 0.7%, respectively. 

The average StE indicator for GoRoSoBo and CLIS are very close too, 0.5% and 0.4%, 

respectively. 

The values of IAQ performance indicator were not good in this test. The best values of IAQ 

indicator were obtained by CLIS.  

In a general view, the results of all control algorithms are similar in the performance 

indicators. We can conclude that GoRoSoBo is a good control algorithm. The performance 

indicator values obtained by GoRoSoBo are quite good, and most specially, the MAE and 

IAE indicators. The biggest difference between GoRoSoBo and CLIS and Pilote is, among 

other things, that GoRoSoBo calculates the optimum gate trajectories using the HIM matrix 

which is recalculated in every time step, so this matrix is updated in real time and it is not an 

approximation. In this way, the relation between water level error and gates movements is 

evaluated in every time step.  

We propose several things to improve the value of IAQ in those tests. For instance, we could 

reduce the functional constraints (dU0max and dUmax), if the gate movements are more 

restricted so there are less changes in gate trajectories and so less changes in flow through 

the gates. We could also increase the duration of the operation period, if there are less 

changes in gate positions during the irrigation cycle there are less changes in flow through 

the gates. We have to remember that all these changes would improve the IAQ indicator but 

we would obtain worst values in MAE and IAE indicators. 
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TEST CASE 2-2 TUNED-UNSCHEDULED 

MAE (%) IAE (%) StE (%) IAQ (m3/s) 

12-24h 12-24h 12-24h 12-24h 

Maximum Average Maximum Average Maximum Average Maximum Average 

CLIS 21,1 14,9 7,6 2,8 0,7 0,4 9,7 5,5 

PILOTE 34,2 17,1 10,6 7,1 8,8 4,3 10,4 6,1 

GoRoSoBo 13,6 7,8 6,3 2,1 0,8 0,5 15,2 11,7 

Table 11.23: The performance indicators obtained in Test-Case 2-2 (Corning canal). 

11.8. Conclusions 

Once we have analysed all test-cases and the performance indicators, we can conclude: 

1. The test-cases checked in these examples are extremely difficult especially the Test 

Case 1-2 and 2-2. In test 2-2 is introduced to the system a disturbance at the 

checkpoint 8 with a value of 80 % on the total flow rate conveyed at checkpoint 8 

and the water level reaches the top of the cross-section. 

2. The unscheduled deliveries calculated by CSI are quite accurate, with a maximum 

error of 4%. The extracted flow vector obtained by CSI is very important, because 

CSI obtain the current canal state and the disturbance. All these data aid to 

GoRoSoBo to calculate the optimum gate trajectories. 

3. The gate constraints drive the algorithm's response when the measured water levels 

is far away from the desired water level at the checkpoints and in this way the gate 

trajectory is smoother. 

4. Taking into account the performance indicators, we can establish a comparison 

between the different control algorithms:  

 The MAE is the maximum deviation of the controlled water level at the 

checkpoint with regard to the desired water level. From the values obtained 

by GoRoSoBo with this performance indicator, GoRoSoBo shows the best 

results in all tests. 

 The IAE is the integrated deviation of controlled water level on the target 

water depth. From the maximum and average IAE values obtained by 

GoRoSoBo, this algorithm shows the best results in seven of eight cases. 

 The StE is the deviation of controlled water level at steady state over target 

water depth, so we only consider the last two hours of the irrigation cycle to 
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calculate this performance indicator. GoRoSoBo obtained the best results in 

two cases, the second one in five cases, and the third one in one case.   

 The IAQ gives us an idea of how many changes on flow rate are introduced 

by the gates to reach the desired flow rate at the end of the test. GoRoSoBo 

shows the worst values on this performance indicator. When a control 

algorithm has, as an only objective, to maintain a desired water level at the 

checkpoints, the gate trajectories are calculated for that objective and there 

are performance indicators more benefited (as MAE/IAE) than others (as 

IAQ). IAQ indicator does not a consider an important thing, the flow rate can 

change a lot in a target, but if the water level does not vary significantly, the 

flow rate extracted by the orifice offtake will be the same, because the gravity 

offtake is not very sensitive to little changes in water level, for that reason it 

is so important maintain the water level at the target. In that sense, when 

significant flow changes are introduced in the system, it is necessary quick 

changes on gate trajectories to recover the desired value at checkpoints as 

soon as possible. For this reason, limiting more the constraints in gate 

movements to obtain better values of this performance indicator is not our 

principal objective. We can conclude that the magnitude of flow changes 

through the gates cannot be very important because the control algorithm 

maintains the measured water level close to the desired water level and it 

exists functional constraint to restrict the gate movement. 

5. As we introduced in chapter 9, in case of significates unscheduled flow changes, we 

have to update the HIM matrix at every regulation period, because it establishes the 

influence of a gate movement on the hydrodynamic canal state which is significantly 

modified every regulation period during the irrigation cycle in the Test Cases.   

6. The main objective of GoRoSoBo was reached if we look at the results obtained in 

sections 11.5 and 11.7. 

7. The calculating time using CSI and GoRoSoBo in a feedback strategy is quite large 

and it is dependent on the duration of the prediction horizon, the number of 

checkpoints, control structures,… In the Corning canal, the calculating time for a 

prediction horizon of 12 hours is approximately fifty minutes for every regulation 

period with a PC with a processor speed of 2GHz, a system RAM of 2 GB and a hard 

drive of 250 Gb. We could reduce the calculation time decreasing the duration of the 

prediction horizon, parallelizing the algorithm code with OpenMP, MPI or CUDA. The 
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algorithm wastes a lot of time doing a high number of iterations in the optimization 

problem, when the residual value of the objective function is under 1×10-4 we could 

finish the process. Other possibility would be not updating the HIM when there is not 

a significant disturbance because this step is the most time demanding or using the 

HIM at the previous time step whereas other algorithm calculates the HIM at the 

current time step at the same time for being used by GoRoSoBo in the next time 

step. 
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Chapter 12 

 

 

Conclusions and Future Work 

 

12.1 Summary of conclusions 
 
The algorithms proposed (GoRoSoBo and CSI), developed and tested in this thesis, show 

good results in all tests. GoRoSoBo establishes the gate trajectories that satisfy a target 

required whereas CSI calculates the history of extracted flow in a canal. These algorithms 

can operate together in a feedback strategy during an irrigation cycle. The CSI algorithm 

calculates the extracted flow vector and the current canal state in every regulation time step 

and GoRoSoBo algorithm recomputes the gate trajectories considering the extracted flow 

vector obtained by CSI to drive the system to the desired behavior. 

12.2 Conclusions of CSI 

The CSI algorithm is able to estimate any change in flow from a past time to the current time 

so any disturbance that modifies the free surface is characterized by this algorithm.  

CSI algorithm uses the Levenberg-Marquardt method to solve an unconstrained 

optimization problem. CSI is a robust algorithm which does not need constraints and it 

converges very fast.  The hydraulic influence matrix obtained analytically is the tool which 

the CSI uses to establish a relation between changes of water level at checkpoints and the 

extracted flow at a particular section.   

The test results have shown the accuracy of this algorithm (chapter 7 and 8). In all examples, 

the CSI algorithm finds the disturbances introduced into the canal.  An analysis of the CSI 

as follow: 
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 CSI is able to estimate big disturbances (20 % of the total flow rate in the canal) and 

small disturbances (1 % of the total flow rate in the canal) accurately. 

 

 Every extraction point should have a sensor measuring the water level. But in case 

a disturbance is not localized at a checkpoint, it is possible to set the total water 

volume extracted and localize the outflow point in the canal. 

 

 The Manning roughness coefficient is extremely important in CSI, because the 

algorithm is very sensitive to this coefficient. For that reason, we have to establish it 

accurately. 

 

 The initial flow conditions are not important data to supply CSI, because sometime 

after the test begun, the initial conditions did not affect the results of CSI. This period 

depends on the canal and flow features (canal length, flow conditions,...). 

 

 The water level measurements should be accurate because the results obtained by 

CSI are extremely dependent on the water level measures. Even an error in depth 

gages of 1% from the total water level is acceptable for CSI. 

 

 The water level error must be lower than the water level variation caused by the 

disturbance, but CSI could not calculate the disturbance accurately. 

 

 Once CSI calculates the extracted flow vector, the algorithm can establish the 

hydrodynamic canal state, water level and velocity in all sections of the canal. 

12.3 Conclusions of GoRoSoBo 

The GoRoSoBo algorithm is able to find the optimum gate trajectory during a predictive 

horizon from demand deliveries, initial gate trajectories, desired water level vector, 

disturbances and the current canal state which are obtained by CSI. All these data is 

introduced to GoRoSoBo and the algorithm recomputes the optimum gate trajectory to keep 

constant the desired water level at checkpoints. 

The GoRoSoBo algorithm uses the Lagrange-Newton method to solve a constrained 

optimization problem. This method is considered the most efficient when you have compiled 
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the Jacobian matrix and the Hessian matrix which are used in the computation of the gate 

trajectories.  

The introduction of constraints was absolutely necessary to ensure stability in our optimized 

problem, due to inherent instability in the unconstrained problem, which is caused by the 

condition number of the Hessian and the HIM matrixes. Not all elements of the HIM have 

similar values, there are gates that have a significant influence in certain checkpoints and 

little influence in others. This disparity of influence between elements of the matrix inevitably 

leads to a band matrix, of course, badly conditioned. This was a reason to use the Marquardt 

coefficient which improves the Hessian matrix condition. 

The watermaster can be more or less strict about the constraints in the optimization problem, 

because he must take care about the main priority of the canal. For instance, if the main 

priority is maintain constant the water level at any price, the constraints on the gates would 

be lax, so the constraints have not an important role in computing the gate trajectories by 

GoRoSoBo. If the main priority is to keep constant the water level, with a reduced gate 

movements, the constraints would be more restrictive, so they will have an important role in 

the optimization problem. 

As we shown in chapter 9. GoRoSoBo needs to consider a forecasted prediction of 

disturbances to calculate the optimum gate trajectories, because the algorithm has to 

calculate gate trajectories at present time to drive the system in future and some changes 

in gate positions at present time are needed to prevent water level variations in future. In 

case that the disturbances disappear in future, our forecasted prediction of disturbances 

would be wrong, but the results obtained with this strategy in GoRoSoBo are good.  These 

results will be more or less accurate depending on the duration of regulation period that CSI 

comes back to calculate the new extracted flow in the canal.  

The performance indexes in ASCE Test-Cases have shown the accuracy of the algorithm, 

especially as regards to the indexes involved in the water level errors (MAE and IAE). 

GoRoSoBo was the best controller proposed in all test case for these indexes. The gate 

trajectory obtained with GoRoSoBo is the one that gets a lower water level error at 

checkpoints and reaches faster the desired water level at checkpoints. 

Not all results obtained by GoRoSoBo are excellent, as for instance: 
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 The IAQ value is much bigger in GoRoSoBo than in other controller proposed. This 

index is strongly linked to the main priority of the canal. In case that the priority is to 

keep constant the water level at the checkpoints, the gate movements are significant 

and the flow rate variations through the sluice gate too, so the IAQ value will be also 

significant.   

 The GoRoSoBo algorithm obtained good results about the STE index, although the 

algorithm has great scope for improvement. We could restrict the gate movements 

when the water level error is lower than a certain threshold, (we could introduce a 

dead band).  

12.4 Future Work 

Following the investigations described in this thesis, a number of projects could be taken up: 

 Testing the CSI algorithm in the Canal PAC-UPC, using other pool configurations 

and other flow conditions. In this laboratory canal, it is possible to change the working 

conditions with small effort, providing an excellent opportunity to extend the results 

obtained in this thesis. 

 A further study on the performance index with GoRoSoBo in other kind of canals and 

in other hydrodynamic conditions used by other feedback algorithms. 

 Developing a new block in our overall control diagram of irrigation canal of chapter 

5. It would be interesting to develop the Off-line Parameter Identification. The 

Manning roughness coefficient is fairly difficult to define in a canal and it could 

change a lot after a large period of time. On the other hand, the Manning roughness 

coefficient has a great weight in the Saint-Venant equation as in CSI and GoRoSoBo.  

 Parallelizing the code of GoRoSoBo algorithm with CUDA or OpenMP and speed-

up the calculating process. In cases that the predictive horizon is large, the regulation 

interval is small, the canal length and the number of checkpoints are significant, the 

calculation time of the algorithm is too large for operating in real time. Much more if 

it is necessary to update the hydraulic influence matrix in every regulation time step.  

A real solution with the time conflict, it would be parallelize the algorithm with CUDA 

or OpenMP to reduce the CPU time. Other possibility to speed-up the calculating 

process would be that GoRoSoBo calculated the gate trajectories using the HIM in 

the previous time step, while at the same time, other algorithm calculated the HIM at 

the current time step to be used by GoRoSoBo in the next time step. 
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 We propose several things to improve the value of IAQ in these tests. We could 

reduce the functional constraints (dU0max and dUmax), if the gate movements are 

more restricted so there are less changes in gate trajectories and so less changes 

of flow through the gates. We could also increase the operation period, if there are 

less changes in gate positions during the irrigation cycle there are less changes of 

flow through the gates. Other possibility would be penalize the changes of flow 

through the gates from the objective function. The objective function only depends 

in our optimization problem of the water level, we could reformulate the objective 

function so as this function was dependent of the error in water level at checkpoints 

and the flow through the gates. 
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