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General introduction 

Food price patterns have been historically characterized by 

considerable volatility. Market instability makes future price prediction a 

difficult task and creates significant uncertainty for market participants. The 

very large food price swings that have been registered over the last decade, 

have revitalized the literature on food price behavior. Proper understanding 

of the dynamics of price behavior is especially relevant to design adequate 

policies to mitigate the impacts of price shifts (Deaton, 1999). Price 

volatility results in large social and economic consequences (Prakash and 

Gilbert, 2011). Social effects are specially felt in developing countries, 

where the population spends a large share of its income on food, and thus 

suffers substantially from food price increases. At the economic level, food 

price instability has large impacts on farmers, market participants and 

consumers. While high commodity prices benefit sellers and hurt buyers, 

lower prices have the opposite impacts. This puts a premium to 

understanding the drivers of price behavior, so as to be able to anticipate 

and ameliorate the consequences of large price shifts. 

The literature has suggested several causes that may be underlying 

recent food price increases. These include (Prakash and Gilbert, 2011) 

crude oil price increases and financialization of food commodities. Crude 

oil price increases have affected food supply through increasing input costs 

such as fertilizers, pesticides, or transportation costs. Crude oil prices have 

also influenced food demand by altering the competitiveness of biofuels, 

whose expansion caused an unprecedented increase in the demand for food 

commodities to produce energy. In the past decade, the magnitude of 

financial traders’ positions in commodity markets has substantially grown. 

This financialization of food commodities has raised questions regarding 

the extent to which food prices are still driven by market fundamentals such 

as demand and supply, or whether financial trade has acquired a major role. 

Exchange rates, that alter the purchasing parity, interest rates, commodity 

stocks, among others, have also been highlighted by previous literature as 

potential influences on food price behavior.   

While several causes have been suggested as possible explanations 

for recent food price changes, further quantitative empirical research is 

needed to confirm or dismiss these hypotheses. The objective of this thesis 

is to provide further understanding of recent food price patterns. Price 

analyses can be classified into structural and non-structural studies. While 

structural models rely on economic theory, non-structural analyses identify 

empirical regularities in the data. The approach throughout this dissertation 

is based on non-structural time-series models that require less data than 
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structural models. Data necessary to estimate structural models is usually 

unavailable at high frequencies. High frequency data is key to understand 

price instability, one of the most characteristic patterns of food price 

behavior. Time series models differ from mainstream econometrics because 

time series data often violate the most common assumptions of 

conventional statistical inference methods, which may lead to obtaining 

completely spurious results. This makes it especially relevant to use 

methods suited to model time series. 

The empirical focus of this dissertation is twofold. First, I study price 

links between food and energy markets, both in Spain and Europe. As well 

known and up to date, agricultural commodities constitute the main 

feedstocks used by the biofuels industry. The outbreak of the international 

biofuels market has stimulated research on the impacts that biofuel demand 

has had on food prices. While research has mainly focused on the US and 

Brazilian industries that dominate the global biofuel markets, less attention 

has been paid to European and Spanish industries. This thesis aims at filling 

this gap. The analysis covers not only the first statistical moment, but also 

the second moment of prices, i.e., attention is paid to both price levels and 

price volatility. The analysis relies on flexible and innovative time-series 

econometric techniques. Second, I study the effect that information exerts 

on commodity prices. More specifically, I appraise the effect that the 

release of public information, containing structural data on different crops, 

has on their futures market prices. Time-series econometric techniques are 

also used to achieve this second purpose. The main contribution of this 

thesis is of an empirical nature and aims at understanding food price 

formation over the last years. 

This thesis is composed by three main core chapters that constitute 

three independent scientific articles. The first chapter is devoted to study 

the impacts of the Spanish biofuels market on food prices. More 

specifically, the relationship between the Spanish biodiesel, refined 

sunflower oil and crude oil prices is modeled. Attention is paid to both the 

first and second moment of prices. The existence of a long-run relationship 

between food and energy prices in Spain is tested by means of cointegration 

techniques. How prices adjust to this equilibrium parity is assessed through 

a vector error correction model. This model also depicts short-run price-

level links between the prices considered. Volatility and volatility spillovers 

are studied using asymmetric multivariate GARCH models. This represents 

a contribution to previous literature that has hardly allowed for asymmetric 

impacts of price increases and decreases on volatility. Hence, it is not yet 

well known whether an increase in biofuel prices has a stronger impact on 

food price volatility than a biofuel price decline. Nor is obvious whether the 

biofuel price becomes more volatile during crude oil price increases than 

crude oil price declines.  
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While the biofuels market in Spain has a reduced size, the biodiesel 

industry in the European Union occupies the first position in the worldwide 

ranking. Previous literature has paid little attention to study the effects of 

this industry on food prices, a gap that I fill in the second chapter of this 

thesis. More specifically, the relationship between the European biodiesel, 

rapeseed oil and Brent oil prices is investigated. As in the first chapter, 

short and long-run price level links are assessed by means of cointegration 

and error-correction analysis. A common characteristic of food price 

volatility studies is that, with few exceptions, they have usually considered 

price volatility interactions across related markets and volatility clustering 

as the sole causes of price instability. Previous research, however, has 

identified other possible volatility sources such as storage, food demand 

shocks, weather conditions, macroeconomic framework, speculation in 

futures markets, etc. (Cooke and Robles, 2009; Balcombe, 2011; Wright, 

2011). This raises questions such as what is the impact of biofuels on food 

price instability relative to other volatility causes? In the second chapter of 

the thesis, I contribute to shed light on this question. I investigate volatility 

and volatility spillovers by means of the semiparametric MGARCH model 

proposed by Long et al. (2011), which is extended to a consideration of the 

influence of exogenous variables representing market fundamentals.  

In the third chapter, I investigate the effect of public information in 

the form of USDA released crop production reports, on corn and soybean 

futures price levels and volatility. Futures markets have two main roles: 

price discovery and price risk management. The third chapter of the thesis 

focuses on the first, for which information on market supply and demand is 

vital. Since market fundamentals are crucial in explaining price movements, 

published forecasts on production and consumption are expected to have an 

effect on market prices. The value and impact of released (public and 

private) information on commodity prices (futures and spot) has recently 

received considerable attention. This thesis contributes to enlarge this 

literature. The influence of public information on close to close and close to 

open returns for corn and soybean futures prices is assessed by means of 

GARCH models. 
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Chapter 1: Asymmetric price volatility transmission 

between food and energy markets: The case of Spain 

1.1. Introduction 

The link between biofuel and food markets is receiving growing 

attention within the economics literature, specially since the outbreak of the 

global biofuels industry in the second half of the 2000s. Increased food 

prices and volatilities are a major threat over food security and economic 

well-being, specially in developing countries, where an important portion of 

the population spends most of household income on food (Prakash, 2011). 

Many studies have assessed the impacts of biofuel prices on food prices 

using time series econometric techniques (Balcombe and Rapsomanikis, 

2008; Zhang et al., 2009; Serra et al., 2011a and 2011b). Other methods 

such as general or partial equilibrium models have been used as well (Arndt 

et al., 2008; Rosegrant et al., 2008). In contrast to time-series econometric 

techniques, these other methodologies usually require a considerable 

amount of data that is often unavailable, specially at high frequencies, thus 

reducing the amount of data at hand for econometric model estimation. 

 While evidence on causal links from biofuels to food prices and 

vice-versa is mixed (Saghaian, 2010), several research results point towards 

the conclusion that fuel price shocks govern rising food prices. Balcombe 

and Rapsomanikis (2008) show that an increase in energy price levels will 

lead to an increase in Brazilian sugar prices, the link between the two 

markets being established through the ethanol industry. Similar conclusions 

are reached by Serra et al. (2011b) for the United States (US) corn market. 

Chang and Su (2010) show that during periods of high crude oil prices, 

crude drives US corn and soybean price levels. In contrast to the literature 

showing strong links between food and energy markets, Zhang et al. (2010) 

find no evidence of an equilibrium relationship between US fuel and 

agricultural commodity prices. Limited evidence, if any, of short-run price 

links is provided.  

EU markets have received less research attention than US and 

Brazilian biofuel markets (Serra and Zilberman, 2013). Peri and Baldi 

(2010) find EU’s rapeseed oil price levels to be affected by diesel prices. 
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Busse et al. (2011) show that agricultural commodity and energy price 

levels exhibit an increasing positive correlation in the EU, particularly 

during the 2006/08 period. This correlation not only increases during 

periods of high prices, but it keeps rising afterwards. Busse et al. (2012) 

find the German biodiesel industry to influence rapeseed oil and soy oil 

price levels. The German ethanol industry is found by Rajcaniova and 

Pokrivcak (2011) to drive agricultural price levels. Hassouneh et al. (2012) 

study the Spanish biodiesel industry to find evidence of sunflower oil price 

levels to be driven by energy prices.  

Although most of the literature on energy-food price links has 

focused on price levels (Balcombe and Rapsomanikis, 2008; Serra et al., 

2011b), multivariate generalized autoregressive conditional 

heteroskedasticity (MGARCH) models have started to be used to capture 

volatility spillover effects (Zhang et al., 2009; Serra et al., 2011a). These 

latter studies recognize that, if biofuel and food price levels are interrelated, 

volatility spillovers between these markets should also take place.  

Previous research has shown that price time series are usually 

characterized by volatility persistence, i.e., periods of high (low) volatility 

tend to be followed by periods of high (low) volatility. To capture volatility 

clustering, Autoregressive Conditional Heteroscedastic (ARCH) models 

and their Generalized (GARCH) version were introduced in the time series 

econometrics literature. In their early versions, these models were based 

upon the assumption that positive and negative market shocks have a 

symmetric impact on volatility. However, it soon became evident, through 

the estimation of more flexible models, such as the asymmetric GARCH by 

Glosten et al. (1993) (GJR), the threshold GARCH (TGARCH) proposed 

by Zakoïan (1994), or Nelson’s  (1991) Exponential GARCH (EGARCH) 

models, that price volatility may respond differently to positive and 

negative market shocks. Previous studies assessing volatility spillovers 

between food and biofuel markets have not allowed for asymmetries, 

offering scope for further research. Asymmetric models should allow 

responding to questions such as: do biofuel price increases have the same 

impact on food price volatility than price declines?, or does biofuel price 

instability get worse during feedstock price increases than feedstock price 

declines? 

This paper aims at studying price behavior in the Spanish biofuel 

industry. Special attention to model volatility is paid and asymmetries are 
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allowed for. The contribution of this work to the literature is twofold. First, 

it focuses on the Spanish biodiesel market. From recent literature reviews 

on the use of time-series methods to assess biofuel prices (Serra and 

Zilberman, 2013), it is clear that previous research has mainly focused on 

the two main ethanol markets in the world: the US and Brazil. Conversely, 

European Union (EU) biofuel markets have not received much research 

attention. Second, in contrast to the predominant literature, not only we do 

assess price level links, but also volatility spillovers, by means of an 

asymmetric MGARCH model. While a few attempts to model volatility 

spillovers between food and biofuel markets have been published, our work 

is the first in explicitly allowing for asymmetries.  

The remainder of this chapter is organized as follows. Section 1.2 

presents a literature review on nonlinear price behavior in energy and food 

markets. Section 1.3 describes the biodiesel industry in the EU and the 

Spanish biodiesel market. Section 1.4 presents the methodological 

approach. Section 1.5 reports the empirical results. Section 1.6 presents the 

concluding remarks and a summary of the research results.   

1.2. Previous literature 

Empirical studies in the food and energy economics literature have 

provided evidence that price transmission mechanisms are usually 

characterized by nonlinearities. However, attention has focused on 

nonlinearities in price level links. Nonlinearities in price volatility 

spillovers have been widely ignored. In the following lines, we focus on 

price-level studies, to then review some articles assessing price volatility 

interactions. 

1.2.1. Price level studies 

Serra and Gil (2012) study the link between crude oil and biodiesel 

blends, and crude oil and diesel prices in Spain during extreme market 

events, which are the most likely to have relevant economic impacts. 

Copula models are used to assess dependence. Results suggest asymmetric 

dependence between the crude oil and the biodiesel price, which protects 

consumers against extreme crude oil price increases. Diesel and crude oil 

prices, in contrast, exhibit a symmetric dependence by which both extreme 

crude oil price increases and decreases are equally likely to be passed on to 

consumers. 
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Busse et al. (2012) use a Markov-switching Vector Error Correction 

Model (VECM) to investigate the relationship between biodiesel, diesel, 

rapeseed oil and soy oil price-levels in Germany. Results show that two co-

integration relationships characterize long-run price dynamics, one 

representing the relationship between biofuels and agricultural commodities 

and the other the biodiesel-diesel. This is compatible with Serra et al. 

(2011b) findings that two co-integration relationships characterize long-run 

price level behavior in the US ethanol industry, one representing the ethanol 

industry and the other the oil industry equilibrium. Strong evidence of 

nonlinear price adjustments is found through the use of a smooth transition 

VECM.  

As for the literature focusing on energy price-levels, Grasso and 

Manera (2007) use asymmetric and threshold-type Error Correction Models 

(ECM) to assess gasoline - crude oil price level links in the EU. They find 

evidence of long-run asymmetries in Spain, France, Italy, United Kingdom 

and Germany. While a handful of studies support that crude oil price 

increases are passed on to liquid fuel prices more quickly and completely 

than price declines, Douglas (2010) warns that findings of asymmetry 

critically depend on outlying observations. He provides evidence that 

asymmetries in the US gasoline market may be driven by a small number of 

outliers, which suggests less departures of gasoline prices from traditional 

price theory than previously thought and minimal consumer welfare losses 

derived from asymmetry.  

The literature on asymmetric price transmission in food markets is 

extensive, but focuses on price levels. Threshold autoregressive type of 

models (TAR) have been a useful tool to assess vertical price transmission 

along the value chain (Goodwin and Holt, 1999; Goodwin and Piggott, 

2001; Serra and Goodwin, 2003; Hassouneh et al., 2010). By studying a 

wide range of products, Peltzman (2000) concludes that asymmetries are 

more the rule than the exception. The asymmetric price transmission 

literature survey conducted by Meyer and Cramon-Taubadel (2004), shows 

that out of 40 articles published in major journals over the last decade, 27 

focus on agricultural products. They also show that 48% of the applied 

asymmetry tests reject symmetry. 
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1.2.2. Price volatility studies  

In the following lines, we review the scarce price volatility literature 

that focuses on the links between food and energy markets. Zhang et al. 

(2009) study volatility spillovers between US weekly ethanol, corn, 

soybean, gasoline and oil prices by means of Baba-Engle-Kraft-Kroner 

(BEKK-GARCH) model. Price volatility links between oil and gasoline and 

corn and soybean characterize the markets, both during the pre-ethanol and 

the ethanol boom periods. Serra et al. (2011a) fit a MGARCH to weekly 

Brazilian ethanol, sugar and international crude oil prices. Results indicate 

strong bidirectional volatility spillovers between food and energy markets. 

Trujillo-Barrera et al. (2012) study US corn, ethanol and crude oil price 

volatility interactions. A MGARCH model that includes an exogenous 

random shock coming from the crude oil market is estimated to assess the 

volatility of corn and ethanol prices. Evidence of spillovers from crude to 

corn and, specially, to ethanol prices is found. Spillovers between corn and 

ethanol are also identified, being the ones from corn to ethanol much larger. 

Volatility studies focusing on energy markets include Rahman and 

Serletis (2012) who examine the effects of oil price uncertainty on real 

economic activity in Canada using a bivariate vector autoregression 

moving-average (VARMA), GARCH-in-Mean, asymmetric (BEKK-

GARCH) model specification. The conditional variance-covariance process 

underlying output growth and the crude oil price changes is characterized 

by significant non-diagonality and asymmetry. Evidence is also provided 

that increased crude oil price uncertainty involves lower economic activity.  

The theoretical literature attempting to explain asymmetries in 

volatility has focused its attention on financial markets. Two main theories 

have been offered for this purpose: the leverage and the feedback theory 

(French et al., 1987; Schwert, 1989; Campbell and Hentschel, 1992). No 

theoretical framework however has been offered to explain possible 

asymmetric spillovers between food and energy markets. Our paper 

contributes to the literature by providing empirical evidence that 

asymmetries in volatility spillovers between food and biodiesel prices are 

relevant and should thus deserve further attention on the part of economic 

theory.  



10 

 

1.3. The Biodiesel industry in the EU and Spain 

Biofuels have been promoted within the EU not only as a means of 

curbing down greenhouse gas (GHG) emissions and reducing dependence 

on fossil fuels, but to also enhance energy security and offer alternative 

outlets for agricultural production. Several studies (Pimentel, 2003; 

Pimentel and Patzek, 2005; OECD, 2007) have shown that energy output 

from biofuels is less than the output from fossil fuels. While opinions 

regarding the capacity of biofuels to reduce GHG are mixed, there seems to 

be a general agreement of a positive impact (US-EPA, 2007; FAO, 2013; 

USDA-FAS, 2012).  EU policies are important for European biofuel 

markets to develop and acquire a critical size, and can also play a key role 

for second-generation biofuels to join the first generation in the fuels 

market.  

The most common tools being used to promote biofuels in the EU 

include tax reductions, subsidies and blending mandates establishing 

minimum content of biofuels in liquid fuels sold in gas service stations. The 

EU 2020 targets require renewable sources to represent 20% of total EU 

energy use. A minimum 10% share of renewable energies should further be 

ensured in the transportation sector in every member state (Directive 

2009/28/EC). In 2008, energy from renewable sources contributed 10.3 % 

to EU-27 gross final energy consumption. The highest share of 

consumption from renewable sources was recorded in Sweden (44.4%) and 

the lowest in Malta (0.2%). The Spanish share was 10.7% (Energy, 

transport and environment indicators, 2010). Further, in 2008, the share of 

biofuels in transport fuel consumption in the EU-27 was 3.29 %, which 

contrasts with the share ten years ago of 0.13 %. At the state-level, the 

highest shares of biofuel consumption in transport were observed in 

Slovakia 6.19 %, Germany 6.09 %, Austria 5.67 %, France 5.47% and 

Spain 1.80%. 

In 2008, the EU transport sector was responsible for about one third 

(32%) of final energy consumption. Further, 79 % of total GHG emissions 

were energy-related. Fuel use in the energy and manufacturing industries 

represented 60% of these emissions, while the transport sector made up the 

remaining 19%. During the last 18 years, transport has been the only sector 

that has increased its emissions (24%), making it specially pertinent to curb 

them down. Most energy used in transportation comes from oil. The EU-27 
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is highly dependent on crude oil imports, and this dependence has been 

growing in the last years (Energy, Transport and Environment Indicators, 

2010). Biofuels can partially replace fossil fuels and possibly reduce GHG 

emissions. Since biofuels are being mainly produced from agricultural 

crops, agriculture can thus play a role in increasing supply of renewable 

energy. Predominant biofuel feedstocks are currently corn in the US, sugar 

cane in Brazil, and rapeseed in the EU. Rapeseed cultivation in Spain is 

however irrelevant, being sunflower the major domestically produced 

feedstock. 

The EU is the first world biodiesel producer, representing around 

65% of the world market. In 2008, total EU-27 biodiesel production was 

over 7.7 million metric tons, an increase of 36% from 2007. Production 

reached 9 million metric tons in 2009. Biodiesel output represents around 

75% of the EU’s biofuel production (EBB, 2010). Germany was the first 

country in the EU ranking of biodiesel production in 2009, followed by 

France and Spain. While Spain occupied the third position in terms of 

production, its production capacity was the second largest among the EU 

countries, after Germany (EBB, 2011). The EU biodiesel industry is 

characterized by its relevant unused production capacity. While in 2009 

biodiesel production reached 9 million tons, production capacity was 22 

million tons (the latter representing a fivefold increase from 2005). In 2008, 

the EU-27 biodiesel production capacity represented 70% of total biofuel 

capacity. Production capacity in Spain in 2010 was 4.1 million tons 

compared to actual production of 0.925 million tons (EBB, 2011). Such 

large unused production capacity can be attributed to favorable expectations 

for biodiesel markets due to high crude oil prices and EU policies that led to 

investments in biodiesel plants, subsidized biodiesel imports from 

Argentina and the US, or the recent economic crisis that has reduced energy 

demand (EBB, 2010; EurObserv’ER, 2010). 

Biofuel use in the EU in 2009 totaled 12 million toe,1 representing 

4% of the fuels used for transportation. Biodiesel and bioethanol 

consumption in Spain were on the order of 894 and 152 thousand toes in 

2009, respectively (EurObserv’ER, 2010), with a growth rate of 71% from 

2008. Biodiesel is usually sold blended with diesel at gas service stations 

and benefits from favorable tax treatments and fiscal incentives. Biodiesel 

                                                 
1
 Tonne of Oil Equivalent  
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consumption in Spain has increased, specially after enforcement of the 

consumption mandates since 2009. Consumption of biodiesel has doubled 

since 2008 to reach 1,668 million tons in 2011 (CORES, 2012).  

 In 2009 (2010) biodiesel imports represented more than 40% (60%) 

of biodiesel consumption. Argentina and Indonesia are the primary 

biodiesel suppliers, representing around 50% and 20% of total Spain’s 

imports in 2010, respectively (USDA-FAS, 2011). The biodiesel industry 

complains that imports have dramatically affected the profitability of the 

Spanish domestic industry (EBB, 2010; EBB, 2012). Recently, the EU 

Commission has launched anti-dumping measures against Argentina and 

Indonesia to protect European producers from uncompetitive imports of 

biodiesel (EBB, 2013). 

Spain’s biodiesel production depends substantially on imported 

feedstocks. According to Spanish CNE (2011), soybean, palm, sunflower 

and rapeseed oils are the major feedstocks. Soybean and palm represent 

47,66% and 38,36% of the total feedstock used, respectively; frying oil, 

sunflower and rapeseed oil represent around 11,67%; and animal fats 

represent 2.31% (Spanish CNE, 2011). Of all the feedstocks currently being 

used to produce biofuel, the Spanish agricultural sector only produces 

sunflower oil, being the production of the other feedstocks residual. The 

domestic production of sunflower reached 1,09 million tons in October 

2011, with a cultivated area of about 863.7 thousand hectares representing 

an increase of about 67% from 2005 (MAAMA, 2012).2 Sunflower 

production has traditionally been directed to food consumption. Recently, 

its use as an input in the biodiesel industry has increased its demand. Hence, 

if the biodiesel industry has any impact on Spain’s agricultural prices, this 

should be specially evident on sunflower oil prices. The focus of this article 

is on sunflower prices as the major biofuel industry feedstock that is being 

produced in Spain. 

1.4. Methodology 

Most price time series data have common characteristics that need to 

be considered when conducting econometric analysis (Myers, 1994). Three 

of these characteristics are important to our research. First, commodity 

price time series usually have a unit root. Second, prices of related markets 

                                                 
2
 The irrelevance of rapeseed, soybean and palm oil output, is the underlying reason of a 

lack of price statistics on these crops in Spain. 
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can share a tendency to co-move. Co-movements that can result from the 

existence of an equilibrium relationship between individual price series are 

known as co-integration. Third, commodity prices usually exhibit volatility 

that tends to change over time and to display a clustering behavior.  

1.4.1. Unit roots and Vector Error Correction Model 

(VECM) 

Well-known standard unit root tests are used in our analysis to test 

for non-stationarity in price series (Dickey and Fuller, 1979; KPSS, 1992; 

Perron, 1997). We assess co-integration using Johansen (1988) 

methodology. While we focus on the links between crude oil, biodiesel and 

sunflower oil prices, crude oil is imposed to be exogenous for both short 

and long-run parameters. Johansen (1988)’s approach is applied based on 

the following VECM:  

               
 
                (1) 

where   represents the first differences operator,    and      are, 

respectively, n-dimensional vectors of the current and lagged prices being 

considered, with n representing the number of prices (n=2 in our analysis). 

Vector     contains exogenous variables and    is a n-dimensional vector of 

white noise residuals that may be correlated with each other. The term      

contains the residual from the co-integration relationship (i.e. the linear 

combination of the non-stationary variables that is stationary).    and    are 

parameter matrices showing short-run price dynamics, while    is an n-

dimensional vector containing parameters that measure the speed at which a 

variable adjusts to disequilibriums from the long-run equilibrium 

relationship.  

1.4.2. Multivariate Generalized Autoregressive 

Conditional Heteroscedasticity Model (MGARCH) 

VECMs explain price-level behavior by explicitly allowing for non-

stationarity and co-integration. These models, however, are based upon 

fairly simplifying assumptions on price variance: they assume that price 

variance is constant over time. ARCH models and their generalized version 

(GARCH) were introduced in the econometrics literature in order to model 

time-changing and clustering price volatility. The ARCH model was 

introduced by Engle (1982) to allow for the variance-covariance matrix of 
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the current model errors to be a function of the actual size of the lagged 

error terms. However, ARCH models have limited capacity to explain 

persistent volatility usually present in time-series. Later, Bollerslev (1986) 

proposed a generalized version of the ARCH model. In the GARCH model, 

the variance-covariance matrix not only depends on lagged residuals, but 

also on its own lags. While multivariate GARCH (MGARCH) models can 

be specified using different functional forms, some of the parsimonious 

forms proposed in the literature are too restrictive in that they do not allow 

for volatility spillovers across the different markets considered. Further, 

most of these specifications do not allow testing for volatility causality 

links. Our analysis will rely on the BEKK model defined in Engle and 

Kroner (1995) to capture patterns of volatility transmission across markets 

and to test for volatility causality links. While the multivariate BEKK-

GARCH model is an improvement over other more restrictive 

specifications, it is unable to capture asymmetric volatility patterns. Our 

analysis will be based upon an asymmetric specification of the multivariate 

BEKK-GARCH model following Kroner and Ng (1998).  

Previous literature on price behavior has provided evidence that 

linearities in price links should not be expected to hold, either because 

prices respond nonlinearly to market changes, or because changes in the 

political or economic framework can lead to structural breaks (Obstfeld and 

Taylor, 1997). While articles studying price-level behavior in biofuel 

markets have usually allowed for these nonlinearities, price volatility 

studies have generally not. The financial economics literature has however 

recognized the importance of allowing for asymmetry (or nonlinearity) in 

volatility transmission (Engle and Ng, 1993; Bekaert and Harvey, 1997; 

Brooks and Henry, 2002; and Bekaert et al., 2003). Kroner and Ng (1998) 

define the asymmetric volatility effect as implying that bad market shocks 

lead to higher volatility than good market shocks. Failure to account for 

asymmetry in volatility models may lead to model misspecification. The 

asymmetric BEKK-GARCH model has the property that the conditional 

covariance matrices are positive definite by structure and can be expressed 

as follows: 

 

                 
             

         
   (2) 
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where Ht is the (n x n) variance-covariance matrix, A, B, C and D are (n x 

n) parameter matrices (recall that n=2 in our analysis) and C is further a 

lower triangular matrix. Asymmetries are captured by adding the term 

          
   to the conventional BEKK model where 

                      and   is the hadamard product of the vectors. The 

conditional mean (1) and variance (2) models are estimated by Seemingly 

Uncorrelated Regression (SUR) and standard maximum likelihood 

procedures, respectively. In order to estimate the asymmetric BEKK-

GARCH, we assume normally distributed statistical innovations which 

leads to the following log likelihood function: 

 

     
 

 
      

           
 

 
    

   
    

 
       (3) 

 

that is maximized with respect to the parameter matrices A, B, C, and D. 

Allowing for asymmetry in our model provides valuable information 

to policy makers and economic agents participating in the marketing chain, 

on the existing differences between the impact of negative and positive 

news on biodiesel market price fluctuations. The fact that asymmetric 

effects are significant indicates potential misspecification if asymmetries 

are ignored.  Before concluding this section, it is relevant to note that, in 

contrast to the theoretical models that rely on economic theory and require 

an important amount of data, time-series models are nonstructural models 

that identify empirical regularities in the data. Our results should not be 

interpreted beyond this point.  

1.5. Empirical Results 

Previous research assessing the links between food and energy prices 

has usually considered feedstock, crude oil and biofuel prices (Serra and 

Zilberman, 2013) and concluded that crude oil prices are very relevant in 

explaining both biofuel and feedstock prices. These results are supported 

theoretically by a series of conceptual models that establish a link between 

crude oil, biofuel and feedstock prices (de Gorter and Just, 2007 and 2008; 

Rajagopal and Zilberman, 2007). In our selection of data to conduct the 

analysis, we follow previous research and use weekly nominal Spanish 

biodiesel blend prices (P1t), refined Spanish sunflower oil prices (P2t) and 

international crude oil prices (P3t). Prices are expressed in Euros (€) per 

liter and observed from 07/11/2006 to 05/10/2010, yielding a total of 205 
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observations. The time span evaluated comprises a period of relevant price 

increases that occurred during 2007, reaching their maximum in 2008. 

Information on Spanish biodiesel blend prices was obtained from the 

Spanish Ministry of Industry, Tourism and Trade (2010). These prices 

correspond to national average biodiesel blend prices at the pump.3 In 

being pump prices, they are affected by policy instruments such as a 

blending mandate or a tax exemption. Refined sunflower oil prices were 

obtained from the Spanish Ministry of Environment and Marine and Rural 

Affairs (2010), while international crude oil prices were taken from the US 

Energy Information Administration (2010) dataset. The latter are a 

weighted average of world spot FOB crude prices using, as a weight, the 

estimated export volume. They are expressed in US dollars per barrel and 

were converted into € per liter using the European Central Bank (ECB, 

2010) exchange rates. Figure 1.1 shows the evolution of the three prices 

over time. The analysis was carried out using the econometric software 

RATS 6.3. Given the relevance of imported soybean and palm oil as 

feedstocks used by the Spanish biodiesel industry, international prices for 

these two oils were considered in the analysis. However, the high 

correlation between feedstock prices created multicolinearity problems, 

recommending model simplification to a consideration of a single feedstock 

price. Noteworthy is the fact that price dynamics that will be identified in 

our analysis, are conditional upon the selection of the prices being modeled.  

Logarithmic transformations of price series are used in the empirical 

analysis
4
 and descriptive statistics are presented in table 1.1 Standard 

augmented Dickey and Fuller (1979), Kwiatkowski et al., (1992) and 

Perron (1997) tests confirm that all three series are integrated of order one 

I(1) (table 1.1). Long-run links between crude oil, biodiesel and sunflower 

oil prices are assessed using Johansen (1988) co-integration tests. Prices are 

found co-integrated with a co-integration rank r=1, i.e., there is a single 

relationship characterizing long-run price dynamics (table 1.2). Hansen and 

Johansen (1999) recursively calculated beta test for the null of constancy of 

the cointegration parameters shows that no structural breaks affect the 

cointegration relationship.  

                                                 
3
 Noteworthy is the fact that these are the only data available on biofuel prices in Spain.  

4
 Logarithmic transformations allow obtaining well behaved error terms (Bierlen et al., 

1998) and facilitate the interpretation of research results. By using logged prices, the 

parameters of the co-integrating vectors represent elasticities and the short-run dynamic 

parameters represent proportionate changes.    
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Within the Johansen’s framework, a chi square test for the null of 

sunflower weak exogeneity for long-run parameters, leads to the acceptance 

of the null (table 1.2). As will be seen below, this result is compatible with 

the conditional mean model results. In light of these results, the equilibrium 

relationship should be interpreted as the parity that biodiesel blend prices 

need to maintain with crude and sunflower oil prices, for the biodiesel 

industry to be in equilibrium. In other words, biodiesel blend prices in the 

long-run are influenced by crude oil and sunflower oil prices, but not the 

other way around. Engle and Granger (1987) tests for co-integration, taking 

biodiesel blend as the endogenous variable in the price system, also support 

the existence of a long-run relationship characterizing the biodiesel 

industry. Co-integration parameters (table 1.2) suggest that, in the long-run, 

an increase in sunflower and crude oil prices will lead to an increase in 

biodiesel blend prices. The positive relationship between biodiesel blend 

and sunflower oil prices is expected given that more than 90% of biodiesel 

production costs have been attributed to feedstock (IDAE, 2005). Since 

biodiesel is not usually commercialized in its pure form, but blended with 

regular diesel, a crude oil derivative, it is not surprising to find that blend 

prices increase with an increase in crude oil prices. Our results are 

compatible with Hassouneh et al. (2012) who study Spanish biodiesel 

industry price level behavior using both a VECM and local modeling 

techniques. Also, our co-integration results are in line with Balcombe and 

Rapsomanikis (2008), who found evidence of a price transmission 

hierarchy from oil to sugar to ethanol and not the other way around. 

Interpretation of price elasticities from the cointegration analysis 

requires reliable information on average blends available in the market, as 

well as the share of feedstocks and crude oil in biodiesel and diesel 

production costs, respectively. There are no accurate statistics on average 

blend ratios in Spain. While the Spanish Government set a binding mandate 

on the order of 6,5% for 2012 (Real Decreto 459/2011), blends on the order 

of 10% are not rare. This makes it difficult to interpret the elasticities 

derived from the cointegration analysis. Assuming a blend ratio around 7% 

and assuming that 90% of biodiesel production costs are due to feedstock 

costs (IDAE, 2005), a 100% increase in feedstock prices would involve an 

increase in biodiesel blend prices on the order of 6.3%, the elasticity 

obtained in our analysis. As for the elasticity of crude oil prices, on the 

order of 47%, it is compatible with an approximate 50% share of crude oil 
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price in diesel price, a percentage in line with estimates presented in US 

Energy Information Administration (2013).  

Results from the two-step estimation of the VECM, the conditional 

mean model, and the multivariate asymmetric BEKK-GARCH, the 

conditional covariance model, are presented in tables 1.2 and 1.3, 

respectively. As noted, crude oil prices are considered as exogenous in the 

price system (Asche et al., 2003; Trujillo- Barrera et al., 2012).5 This 

assumption is reasonable, given the small size of the Spanish biodiesel 

industry relative to the international crude oil market, as well as given 

preliminary testing providing support for this specification. For ease of 

interpretation of MGARCH model, table 1.4 containing the nonlinear 

parameter functions of the conditional variance equations is presented. In 

the following lines, we focus on interpreting the conditional mean model.  

Biodiesel blend short-run price dynamics involve that current changes 

in biodiesel blend price are positively related to past biodiesel price changes 

and to crude oil lagged price changes. Short-run sunflower oil price 

dynamics are driven by own lagged price changes and by lagged changes in 

biodiesel blend prices. Consistently with weak exogeneity testing for long-

run parameters within the Johansen’s (1988) framework, the biodiesel blend 

price is the only price in the system that responds to long-run 

disequilibriums. i.e., both energy and food price levels exert a relevant 

influence on biodiesel equilibrium prices. This confirms, once more, that 

the co-integration relationship represents the parity that biodiesel blend 

prices in Spain have to keep with sunflower and crude oil prices for the 

biodiesel market to be in equilibrium. Further, weak exogeneity of 

sunflower oil prices with respect to long run parameters suggests that, at 

least for the market and time-period studied, the Spanish biodiesel industry 

has not been able to shape agricultural prices in the long-run. It has, 

however, influenced these prices in the short-run.  

In contrast to our results, Serra et al., (2011a), who assessed price 

links within the Brazilian ethanol industry, did not find sugar short-run 

dynamics to change as a response to past ethanol price changes. However, 

sugar prices were found to adjust to disequilibrium from the long-run 

parity. For the US ethanol market, Zhang et al. (2009) found that during the 

                                                 
 
5
 Crude oil was considered as exogenous in both the conditional mean and volatility 

models, but only found to be significant in the first one. AIC and SBC criteria were used 

for model selection.  
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pre-ethanol boom period, ethanol price changes were not affected by lagged 

corn price changes. In contrast, short-run corn price dynamics were driven 

by past changes in ethanol prices. Also, Zhang et al., (2009) found evidence 

of co-integration between food and energy prices during the pre-ethanol 

boom period. However, this equilibrium was not found to be significant 

during the ethanol boom.  

Residuals of the VECM were tested for multivariate autocorrelation 

following Hosking’s (1981) variant of the multivariate Q statistic and 

results led to accept the null of no autocorrelation. Also, the multivariate 

ARCH LM test was conducted and evidence of ARCH effects was found, 

thus supporting the use of a MGARCH model. We now turn to the 

interpretation of the conditional volatility model. The test for the null 

hypothesis that parameters in matrices A, B and D in the MGARCH model 

are equal to zero is rejected, showing evidence of time varying volatility, 

additionally, an LR test for the null that parameters in D matrix in the 

GARCH specification are zero is conducted to test for the relevance of the 

asymmetric effects. Results show that asymmetric effects are statistically 

significant (table 3). Nyblom (1989) fluctuations test leads to accept the 

null of model stability.  

As noted above, individual coefficients of the MGARCH 

parameterization cannot be directly interpreted. Instead, we draw 

conclusions from the nonlinear parameter functions in the conditional 

variance equations (table 4). We focus on statistical significance at the 5% 

level. Results suggest statistically significant direct and indirect volatility 

spillovers from sunflower oil to biodiesel prices. Past shocks to the 

sunflower oil market are found to have an asymmetric effect (     
 ) on 

biodiesel blend price volatility (    ), with sunflower oil price declines 

increasing the biodiesel price variance more than price increases. This is 

indicative of biodiesel blend price responses being more sensitive to 

sunflower price decreases than to price increases. Passing an increase in 

production costs on to biodiesel consumers may reduce biodiesel 

competitiveness in the liquid fuels market. Conversely, passing on a price 

decline may improve market perspectives. The sunflower oil price 

instability (h22t) is affected by its own lagged shocks (     
 ) that increase 

volatility independently on their sign (i.e., both good and bad news increase 

market instability). The parameter representing        suggests that the 

strength of the correlation between biodiesel and sunflower oil price 
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volatility has an impact on sunflower oil price instability. While a positive 

and strong correlation will reduce instability, a negative strong correlation 

will enhance it. So it looks like stability is guaranteed when the prices of 

both the feedstock and the biofuel move together in the same direction. 

Statistical significance of        also provides evidence of an indirect effect 

of biodiesel on sunflower price variability   Hence, biodiesel blend markets 

are not only found to influence sunflower oil price levels in the short-run, 

but they also show some power to affect instability in these markets.  

Serra et al. (2011b) found sugarcane-based ethanol price volatility to 

increase with own lagged volatility, as well as by past turbulence in sugar 

and crude oil markets. Indirect volatility transmission through covariances 

was also identified. Zhang et al. (2009) found corn-based ethanol price 

volatility to be independent of past volatilities in corn and crude oil markets 

in pre and post ethanol market boom. Spillovers between agricultural 

markets (corn and soybean) were however found to be significant.   

The MGARCH model forecast of the biodiesel blend price volatility 

(the only endogenous variable for long-run parameters) is presented in 

(figure 1.2) after being annualized. The model predicts specially high 

volatility during the period 2007-2009, which corresponds with a relevant 

increase in the demand for biodiesel, mainly as a result of public initiatives 

such as the EU 2020 target to ensure a minimum 10% share of renewable 

energies in the transportation sector. The boost in demand caused a 

substantial increase in biofuel price levels and volatility. This period also 

coincides with the global financial crisis that led to the global economic 

recession and to increased volatility in stock and commodity prices. The 

period also includes the 2008 global food crisis after which high and 

volatile food prices (and biofuel feedstocks) have become more the norm 

than the exception.  

 

1.6. Concluding Remarks 

This paper investigates price relationships in the Spanish biodiesel 

industry. We assess both price level links and volatility interactions. Three 

prices relevant to this industry are considered: the international crude oil 

price, the Spanish biodiesel blend price and the Spanish sunflower oil price. 

Prices are observed at a weekly frequency from November 2006 to October 

2010. Price level relationships are studied by means of a VECM model 
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using SUR estimation, while price volatility behavior is analyzed through 

an asymmetric BEKK-GARCH model estimated by maximum likelihood 

procedures. Our work is the first in assessing asymmetries in biofuel-food 

price links, as well as in studying volatility spillovers in the Spanish 

biodiesel market. 

We find blended biodiesel, sunflower and crude oil prices to be 

interrelated in the long-run by an equilibrium parity. This parity is 

maintained by the biodiesel industry in order to be in equilibrium. Based on 

co-integration analysis results, we can conclude that renewable energy 

plays a modest role in defining Spanish fuel prices. Blends usually 

commercialized in gas stations highly depend on crude oil prices, which is 

reflected in a high price elasticity on the order of 47%. Conversely, 

agricultural commodities have a limited influence on biodiesel prices at the 

pump, with an elasticity of around 6%. Other statistically significant short-

run price interactions are also found to characterize price dynamics. While 

biodiesel blend prices are not found to influence sunflower oil prices in the 

long-run, they exert an influence in the short-run. Hence, biofuels can only 

cause a temporary increase in agricultural prices. Significant volatility 

spillovers between sunflower and biodiesel markets are found. Evidence of 

asymmetries in price volatility patterns is also found, with price declines 

causing more price instability than price increases. Asymmetries are likely 

due to the availability of alternative feedstocks in the market, together with 

reluctance of biodiesel producers to increase food prices when feedstocks 

become more expensive. 

Both the EU and the US advocate for an increase in the role of 

renewable energies as instruments to reduce dependence on fossil fuels, as 

well as to reduce GHG emissions. Biofuels are a relevant renewable energy 

source. Up to date, marketed biofuels are mainly first generation biofuels 

that rely on agricultural commodities as feedstock. Policies promoting 

renewable energies have had a relevant effect on the agricultural sector, 

altering the pattern of the global agricultural land use and production, as 

well as agricultural price behavior. Our analysis shows that the biodiesel 

industry in Spain has had an impact on both short-run sunflower oil price 

levels and price volatility. The long-run sunflower oil price levels, however, 

are not found to depend on the energy market. This conclusion is 

compatible with Serra (2011) and with a small size of the biodiesel industry 

in Spain. In any case, long-run effects are likely to appear in the future as 
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the biofuel industry expands. Promotion of second-generation biofuels can 

prevent energy price instability being spread to agricultural markets. 

MGARCH models have been found to be affected by several 

limitations. Among them it is noteworthy the assumption of normally 

distributed errors. Longin and Solnik (2001) and Richardson and Smith 

(1993), among others, have rejected the normality assumption. This 

suggests a possible extension of our analysis to a consideration of 

conditional volatility models that are robust to misspecifications of the error 

distribution. This may include the use of nonparametric specifications such 

as the ones proposed by Long et al. (2011). Further, nonlinearities in 

volatility behavior may also be captured by more flexible models such as 

Threshold-GARCH and Smooth Transition Conditional Correlation (STCC-

GARCH) models that are based upon the assumption that conditional 

volatility correlations change depending on the prevailing economic regime. 

These models are more flexible than the asymmetric MGARCH models 

used in this analysis because they not only allow for two price behavior 

regimes, but for an unlimited number of regimes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

References 

Arndt, C., Benfica, R., Maximiano, N., Nucifora, A.M.D., Thurlow, J.T., 

2008. Higher fuel and food prices: impacts and responses for 

Mozambique. Agric. Econ. 39, 497-511. 

Asche, F., GjØlbeg, O., Völker, T., 2003. Price relationships in the 

petroleum market: an analysis of crude oil and refined product 

prices. Energy econ. 25, 289-301. 

Balcombe, K., Rapsomanikis, G., 2008. Bayesian estimation and selection 

of nonlinear vector error correction models: the case of the sugar-

ethanol-oil nexus in Brazil. Amer. J. Agric. Econ. 90, 658-668. 

Bekaert, G., Harvey, C.R., 1997. Emerging equity market volatility. J. 

Finan. Econ. 43, 29-77. 

Bekaert, G., Harvey, C.R., Ng, A., 2003. Market integration and contagion. 

NBER Working Paper Series, Working Paper 9150.  

Bollerslev, T., 1986. Generalized autoregressive conditional 

heteroskedasticity. J. Econometrics. 31, 307-327. 

Brooks, C., Henry, O.T., 2002. The impact of news on measures of 

undiversifiable risk: Evidence from the UK stock market. Oxf. Bul.  

Econ.  Stat. 64, 487-508. 

Busse, S., Brümmer, B., Ihle, R., 2011. Emerging linkages between price 

volatilities in energy and agricultural markets. In: A. Prakash (ed.), 

Safeguarding Food Security in Volatile Global Markets. Rome: 

FAO, 111–125.  

Busse, S., Brümmer, B., Ihle, R., 2012. Price formation in the German 

biodiesel supply chain: A markov switching vector error-correction 

model. Agric. Econ. 43, 545-559. 

Campbell, J.Y., Hentschel, L., 1992. No news is good news: An 

asymmetric model of changing volatility in stock returns. J. Finan. 

Econ. 31, 281-318. 

Chang, T-H., Su, H-M., 2010. The substitutive effect of biofuels on fossil 

fuels in the lower and higher crude oil price periods. Energy. 35, 

2807-2813. 

de Gorter, H., Just, D., 2008. “Water” in the U.S. ethanol tax credit and 

mandate: implications for rectangular deadweight costs and the 

corn–oil price relationship. Rev. Agr. Econ. 30, 397–410. 



24 

 

Dickey, D., Fuller, W., 1979. Distribution of the estimators for 

autoregressive time series with a unit root. J. Amer. Stat. Assoc. 74, 

427-431. 

Douglas, C.C., 2010. Do gasoline prices exhibit asymmetry? Not usually! 

Energy Econ. 32, 918-925.Energy, transport and environment 

indicators, 2010. Available at: http://epp.eurostat.ec. 

europa.eu/cache/ITY_OFFPUB/KS-DK-10-001/EN/KS-DK-10-001-

EN.PDF (Last accessed May 2011). 

Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with 

estimates of the variance of United Kingdom inflation. 

Econometrica.  50, 987-1007. 

Engle, R.F., Granger, C.W.J., 1987. Co-integration and error correction: 

representation, estimation, and testing. Econometrica. 55, 251-276. 

Engle, R.F., Kroner, K.F., 1995. Multivariate simultaneous generalized 

ARCH. Econometric Theory. 11, 122-150. 

Engle, R.F., Ng, V.K., 1993. Measuring and testing the impact of news on 

volatility. J.  Finan. 48, 1749-1778. 

European Biodiesel Board (EBB), EBB official press release July 22, 2010. 

Available at: http://www.ebb-eu.org/EBBpress.php (Last accessed 

March 2011). 

European Biodiesel Board (EBB), EBB official press release August 30, 

2012. Available at: http://www.ebb-eu.org/EBBpress.php (Last 

accessed September 2012). 

European Biodiesel Board (EBB), EBB official press release May 28, 2013. 

Available at: http://www.ebb-eu.org/EBBpress.php (Last accessed 

June 2013). 

European Biodiesel Board (EBB), Statistics 2011. Available at: 

http://www.ebb-eu.org/stats.php (Last accessed March, 2011). 

European Central Bank (ECB), Dataset 2010. Available at:  

http://www.ecb.int/home/ html/index.en.html  (Last accessed April 

2011). 

EurObserv’ER, Biofuels barometer, July 2010. Available at: 

http://www.eurobserv-er.org/downloads.asp  (Last accessed April, 

2011). 

European parliament and of the council of 23 April 2009, Directive 

2009/28/EC, Available at: 

http://www.ebb-eu.org/EBBpress.php
http://www.ebb-eu.org/EBBpress.php
http://www.ebb-eu.org/EBBpress.php
http://www.ebb-eu.org/stats.php
http://www.ecb.int/home/%20html/index.en.html
http://www.eurobserv-er.org/downloads.asp


25 

 

http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:1

40:0016:0062:en:PDF (Last accessed April 2011). 

Food and Agriculture Organization (FAO) report, 2013. biofuels and food 

security. Available at: 

http://www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/ 

HLPE_ Reports /HLPE-Report-5_Biofuels_and_food_security.pdf  

(Last accessed June 2013).  

French, K.R., Schwert, G.W., Stambaugh R.F., 1987. Expected stock 

returns and volatility. J.  Finan. Econ. 19, 3-29. 

Glosten, L.R., Jagannathan, R., Runkle, D.E., 1993. On the relation 

between the expected value and the volatility of the nominal excess 

return on stocks. J. Finance. 48, 1779-1801. 

Godby, R., Lintner, A.M., Stengos, T., Wandschneider, B., 2000. Testing 

for asymmetric pricing in the Canadian retail gasoline market. 

Energy Econ. 22, 349-368. 

Goodwin, B.K., Holt, M.T., 1999. Price transmission and asymmetric 

adjustment in the U.S. beef sector. Amer. J. Agri. Econ. 81, 630-637. 

Goodwin, B.K., Piggott, N.E., 2001. Spatial market integration in the 

presence of threshold effects. Amer. J. Agric Econ.  83, 302-317. 

Grasso, M., Manera, M., 2007. Asymmetric error correction models for the 

oil–gasoline price relationship. Energy Policy. 35, 156-177. 

Hansen, H., Johansen, S., 1999. Some tests for parameter constancy in 

cointegrated VAR-models. J. Bus. Econ. Stat. 19, 166–176.  

Hassouneh, I., Serra, T., Gil, J.M., 2010. Price transmission in the Spanish 

bovine sector: the BSE effect. Agric. Econ. 41, 33-42. 

Hassouneh, I., Serra, T., Gil, J.M., 2012. Non-parametric and Parametric 

Modeling of Biodiesel, Sunflower Oil, and crude oil price 

relationships. Energy Econ. 34, 1507–1513. 

Hosking, J.R.M., 1981.  Equivalent Forms of the Multivariate Portmanteau 

Statistic. J. Roy. Stat. Soc.:B. 43, 261-262.  

Instituto para la Diversificación y Ahorro de la Energía (IDAE), Plan de 

Energías Renovables en España 2005-2010. Madrid, Ministerio de 

Industria, Turismo y Comercio, 2005. Available at: 

http://www.idae.es/index.php/moddocumentos/ 

mem.descarga?file=/documentos_PER_20052010_8_de_gosto2005_

Completo.%28modificacionpag_63%29_Copia_2_301254a0.pdf  

(Last accessed May, 2011).  

http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:%202009:140:0016:0062:en:PDF
http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:%202009:140:0016:0062:en:PDF
http://www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE_%20Reports%20/HLPE-Report-5_Biofuels_and_food_security.pdf
http://www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE_%20Reports%20/HLPE-Report-5_Biofuels_and_food_security.pdf
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-9868
http://www.idae.es/index.php/moddocumentos/%20mem.descarga?file=/documentos_PER_20052010_8_de_gosto2005_Completo.%28modificacionpag_63%29_Copia_2_301254a0.pdf
http://www.idae.es/index.php/moddocumentos/%20mem.descarga?file=/documentos_PER_20052010_8_de_gosto2005_Completo.%28modificacionpag_63%29_Copia_2_301254a0.pdf
http://www.idae.es/index.php/moddocumentos/%20mem.descarga?file=/documentos_PER_20052010_8_de_gosto2005_Completo.%28modificacionpag_63%29_Copia_2_301254a0.pdf


26 

 

Johansen, S., 1988. Statistical analysis of cointegration vectors. J.  Econ. 

Dynam. and Cont. 12, 231-254. 

Kroner, K.F., Ng, V.K., 1998. Modeling asymmetric comovements of asset 

returns. The Rev. finan. stud. 11, 817-844. 

Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y., 1992. Testing the 

null hypothesis of stationarity against the alternative of a unit root: 

How sure are we that economic time series have a unit root? J. 

Econometrics. 54, 159-178. 

Long, X., Su, L., Ullah, A., 2011. Estimation and forecasting of dynamic 

conditional covariance: A Semiparametric Multivariate Model. J. 

Bus.  Econ. Stat. 29, 109-125. 

Longin, F., Solnik, B., 2001. Extreme correlation of international equity 

markets. J.  Finan. 56, 649-676. 

Meyer, J.,  Cramon-Taubadel, S.v., 2004. Asymmetric price transmission: 

A Survey.  J. Agric. Econ. 55, 581-611. 

Myers, R.J., 1994. Time series econometrics and commodity price analysis: 

A Review. Rev.  Mark. Agric. Econ. 62, 167-181. 

Nelson, D.B., 1991. Conditional heteroskedasticity in asset returns: A new 

approach. Econometrica. 59, 347-370. 

Nyblom, J., 1989. Testing for the Constancy of Parameters Over Time. J. 

Amer. Stat. Assoc. 84, 223-230. 

Obstfeld, M., Taylor, A., 1997. Nonlinear aspects of goods-market arbitrage 

and adjustment: Heckscher’s commodity points revisited.  J. Jpn. Int. 

Econ. 11, 441–479. 

Organisation for Economic Co-operation and Development (OECD) report, 

2007. Biofuels: Linking Support to Performance. Available at: 

http://www.internationaltransportforum.org/jtrc/RTbiofuelsSummary

.pdf  (Last accessed June 2013).  

Peltzman, S., 2000. Prices rise faster than they fall. J. Polit. Econ. 108, 466-

502. 

Peri, M., Baldi, L., 2010. Vegetable oil market and biofuel policy: an 

asymmetric cointegration approach. Energy Econ. 32, 687–693. 

Perron, P., 1997. Further evidence on breaking trend functions in 

macroeconomic variables. J. Econometrics. 80, 355-385. 

Pimentel, D., 2003. Ethanol fuels: energy balance, economics, and 

environmental impacts are negative. Nat. Res. Res.  12, 127-134. 

http://www.internationaltransportforum.org/jtrc/RTbiofuelsSummary.pdf
http://www.internationaltransportforum.org/jtrc/RTbiofuelsSummary.pdf


27 

 

Pimentel, D., Patzek, T.W., 2005, Ethanol Production Using Corn, 

Switchgrass, and Wood; Biodiesel Production Using Soybean and 

Sunflower. Nat. Res. Res.  14, 65-74. 

Prakash, A., 2011. Why volatility matters. In A. Prakash (ed.), 

Safeguarding Food Security in Volatile Global Markets. Rome: 

FAO, 1–24.  

Rahman, S., Serletis, A, 2012. Oil price uncertainty and the Canadian 

economy: Evidence from a VARMA GARCH-in-Mean, asymmetric 

BEKK model.  Energy Econ. 34, 603-610. 

Rajcaniova, M., Pokrivcak, J., 2011. The impact of biofuel policies on food 

prices in the European Union. J. Econ. (Ekonomicky Casopis) 5, 

459–471. 

Rajagopal, D., Zilberman, D., 2007. Review of Environmental, Economic 

and Policy Aspects of Biofuels. Policy Research Working Paper 

4341.The World Bank, Washington, DC. 

 Real Decreto Nº 459/2011 - Los objetivos obligatorios de biocarburantes 

para los años 2011, 2012 y 2013. Available at: 

http://faolex.fao.org/docs/pdf/spa101525.pdf (last accessed 2011). 

Richardson, M., Smith, T., 1993. A test for multivariate normality in stock 

returns. J. Bus. 66, 295-321. 

Rosegrant, M.W., Zhu, T., Msangi, S., Sulser, T., 2008. Global scenarios 

for biofuels: Impacts and implications. Appl. Econ. Persp. P. 30, 

495-505. 

Saghaian, S.H., 2010. The Impact of the oil sector on commodity prices: 

Correlation or causation? J.  Agric. Appl. Econ. 42, 477–485. 

Schwert, G.W., 1989. Why does stock market volatility change over time? 

J. Finan. 44, 1115-1153. 

Serra, T., Gil, J.M., 2012. Biodiesel as a motor fuel price stabilization 

mechanism. Energy Policy 50, 689-698. 

Serra, T., Goodwin, B.K., 2003. Price transmission and asymmetric 

adjustment in the Spanish dairy sector. Appl. Econ. 35, 1889-1899. 

Serra, T., Zilberman, D., 2013. Biofuel-related price transmission literature: 

A review. Energy Econ.  37, 141-151. 

Serra, T., Zilberman, D., Gil, J.M., 2011a. Price volatility in ethanol 

markets. Eur. Rev. Agric. Econ. 38, 259-280. 



28 

 

Serra, T., Zilberman, D., Gil, J.M., Goodwin, B.K., 2011b. Nonlinearities in 

the U.S. corn-ethanol-oil-gasoline price system. Agric. Econ. 42, 35-

45. 

Spanish ministry of the environment and rural and marine affairs, Dataset 

2010. Available at: http://www.marm.es/index_en.html  (Last 

accessed April 2011). 

Spanish ministry of industry, tourism and trade, Dataset 2010. Available at: 

http://geoportal.mityc.es/hidrocarburos/eess/# (Last accessed April 

2011). 

Spanish ministry of agriculture, food and environment (MAAMA), Boletin 

mensual de estadistica 2012. Available at: 

http://www.magrama.gob.es/es/estadistica/ 

temas/estadpublicaciones/Boletin_Mensual_de_Estadistica_2011-

12_tcm7-188003.pdf  (Last accessed September 2012). 

Spanish Corporation of Strategic Reserves of Oil-based Products (CORES). 

Boletín Estadístico de Hidrocarburos 2012. Available at: 

http://www.cores.es/pdf /ResumenBEH_Cores_2011.pdf (Last 

accessed September 2012). 

Spanish National Energy Commission (CNE). Información básica de los 

sectores de la energía, 2011. Available at: 

http://www.cne.es/cne/Publicaciones?accion= 

3&id=3086&id_nodo=32  (Last accessed September 2012).  

Trujillo-Barrera, A., Mallory, M., Garcia, P., 2012. Volatility spillovers in 

U.S. crude oil, ethanol, and corn futures markets. J. Agric. Res. 

Econ. 37, 247-262. 

US Energy Information Administration, 2013. Independent Statistics and 

Analysis. Petroleum and other liquids. Available at: 

http://www.eia.gov/petroleum/ gasdiesel/  (Last accessed July 2013). 

US Energy information administration, World crude oil prices. Dataset 

2010. Available at: 

http://tonto.eia.doe.gov/dnav/pet/pet_pri_wco_kw.html (Last accessed 

April 2011). 

US Environmental Protection Agency (US-EPA), 2007. Greenhouse Gas 

Impacts of Expanded Renewable and Alternative Fuels Use. 

EPA420-F-07-035, Office of Transportation and Air Quality, 

Location, April. 

http://www.marm.es/index_en.html
http://geoportal.mityc.es/hidrocarburos/eess/
http://www.magrama.gob.es/es/estadistica/%20temas/estadpublicaciones/Boletin_Mensual_de_Estadistica_2011-12_tcm7-188003.pdf
http://www.magrama.gob.es/es/estadistica/%20temas/estadpublicaciones/Boletin_Mensual_de_Estadistica_2011-12_tcm7-188003.pdf
http://www.magrama.gob.es/es/estadistica/%20temas/estadpublicaciones/Boletin_Mensual_de_Estadistica_2011-12_tcm7-188003.pdf
http://www.cores.es/pdf%20/ResumenBEH_Cores_2011.pdf
http://www.cne.es/cne/Publicaciones?accion=%203&id=3086&id_nodo=32
http://www.cne.es/cne/Publicaciones?accion=%203&id=3086&id_nodo=32
http://www.eia.gov/petroleum/%20gasdiesel/
http://tonto.eia.doe.gov/dnav/pet/pet_pri_wco_kw.html


29 

 

USDA Foreign Agriculture Service (USDA-FAS), 2011. Spain’s biodiesel 

standing report. Available at: 

http://gain.fas.usda.gov/Recent%20GAIN%20Publications 

/Spain%27s%20Biodiesel%20Standing%20Report_Madrid_Spain_1

1-7-2011.pdf (Last accessed September 2012). 

USDA Foreign Agriculture Service (USDA-FAS), 2012. EU biofuels 

annual, 2012. Available at:  

http://www.usdafrance.fr/media/Biofuels%20Annual_The%20 

Hague_EU-27_6-25-2012.pdf  (Last accessed January 2013). 

Zakoïan, J-M, 1994, Threshold heteroskedastic models. J.  Econ. Dynam. 

and Cont. 18, 931–955.  

Zhang, Z., Lohr, L., Escalante, C., Wetzstein, M., 2009. Ethanol, corn, and 

soybean price relations in a volatile vehicle-fuels market. Energies. 

2, 320-339. 

Zhang, Z., Lohr, L., Escalante, C., Wetzstein, M., 2010. Food versus fuel: 

What do prices tell us?. Energy Policy. 38, 445-451.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://gain.fas.usda.gov/Recent%20GAIN%20Publications%20/Spain%27s%20Biodiesel%20Standing%20Report_Madrid_Spain_11-7-2011.pdf
http://gain.fas.usda.gov/Recent%20GAIN%20Publications%20/Spain%27s%20Biodiesel%20Standing%20Report_Madrid_Spain_11-7-2011.pdf
http://gain.fas.usda.gov/Recent%20GAIN%20Publications%20/Spain%27s%20Biodiesel%20Standing%20Report_Madrid_Spain_11-7-2011.pdf
http://www.usdafrance.fr/media/Biofuels%20Annual_The%20%20Hague_EU-27_6-25-2012.pdf
http://www.usdafrance.fr/media/Biofuels%20Annual_The%20%20Hague_EU-27_6-25-2012.pdf


30 

 

Table 1.1. Descriptive statistics for weekly prices 

 Biodiesel price Sunflower price Crude oil price 

Mean 1.005 0.894 0.333 

Standard 

deviation 
0.113 0.275 0.079 

Maximum 1.314 1.686 0.550 

Minimum 0.823 0.619 0.156 

Skewness 0.820** 1.215** 0.421** 

Kurtosis 0.262 0.391 0.235 

Jarque-Bera 23.572** 51.776** 6.547** 

ADF 1.483 1.424 1.240 

Perron -5.586 -5.365 -6.524 

KPSS 0.395** 0.573** 0.339** 

*** (**) [*] denotes statistical significance at the 1 (5) [10] % level 

Note: the deterministic component used in conducting unit root tests is a 

constant 
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Table 1.2. Biodiesel - sunflower oil - crude oil: conditional mean equations 

Co-integration relationship                                        

                                                         (0.044)       (0.031)          (0.043) 

Conditional mean equations    
    
    

    
  
  
        

      
      

  
      
      

  +  
  
  
        +  

   
   

   

 

 i 

i=1  i=2    

-0.057***(0.014) 0.025(0.048)  

 1i 0.277***(0.046) 0.010(0.019)  

 2i 0.384**(0.152) 0.431***(0.064)  

 i 0.160***(0.014) 0.040 (0.045)   

Chi square test for the null of weak exogeneity of Sunflower oil price within 

Johansen’s framework = 0.165  

Hosking multivariate Q(12) Statistic = 48.875 

Multivariate ARCH LM test = 36.04*** 

AIC =  -3487.270 

SBC =  -3447.512 

  

  

P1t biodiesel, P2t refined sunflower oil price, P3t crude oil price 

*** (**) [*] denotes statistical significance at the 1 (5) [10] % level 

Standard errors in parenthesis 
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Table 1.3. Biodiesel - sunflower oil - crude oil : conditional variance equations 

Conditional volatility equations  

   
    
      

  
      
    

   
      
      

  
     
 

     
        

      
   

      
      

   
      
      

  
            
            

  
      
      

  

 
      
      

  
     
 

     
        

      
   

      
      

  

 

c1i 

i=1  i=2    

0.003** (0.001)    

c2i 0.004(0.006) 0.007***(0.002)  

a1i 0.152 (0.121) 0.520*(0.263)  

a2i 2.786e-02 (0.021) 0.470***(0.072)  

b1i -0.333(0.222) -1.602***(0. 483)  

b2i -0.220***(0.064) 0.523*** (0.180)  

d1i -0.436***(0.147) -2.000***(0.555)  

d2i 0.196***(0.051) 0.543***(0.174)  

LR test for the null that parameters in matrices A, B and D are zero = 

1200.881*** 

LR test for the null that parameters in matrix D is zero = 40.511*** 

  

Nyblom (1989) fluctuation joint test   = 2.556(0.420)   

*** (**) [*] denotes statistical significance at the 1 (5) [10] % level 

Standard errors in parenthesis 

¨e¨ refers to exponential operator   
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Table 1.4. Biodiesel - sunflower oil - crude oil : conditional variance equations 

                                                                    
                 

        

                      
               

               

                                                                   
                

               

             
             

                

h11 biodiesel, h22 refined sunflower oil price variance. The standard errors of the estimated parameters are obtained by 

means of first order Taylor series expansion of the function around its mean (the so called delta method) 

*** (**) [*] denotes statistical significance at the 1 (5) [10] % level 

¨e¨ refers to exponential operator 
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Figure 1.1. Evolution of Price series 
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Figure 1.2. Predicted annualized volatility of blended biodiesel price 
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Chapter 2: Asymmetric volatility spillovers between food 

and energy markets in Europe: A semi-parametric 

approach 

2.1. Introduction  

Since the outbreak of the global biofuels industry in the second half 

of the 2000s, considerable research has been devoted to investigate biofuel 

markets. The expansion of biofuels has coincided with the increase in food 

prices. First generation biofuels are produced from agricultural 

commodities, implying competition with agricultural production for land 

use. Many studies have investigated the economic nature of this interesting 

time period from different perspectives such as agricultural land allocation 

(Banse et al, 2008; Timilsina and Beghin, 2012), or the relationship 

between agricultural commodity and energy prices (Zhang, 2009; Serra 

2011; Trujillo et al, 2012). According to Busse et al. (2011), there has been 

an increasing positive correlation between agricultural commodity and 

energy prices, particularly during the 2006/08 period. This correlation not 

only increases during periods of high prices, but it keeps rising afterwards. 

High food price levels and volatilities are a major risk over food security 

and economic welfare in developing countries, where an important portion 

of the population spends most of household income on food (Prakash, 2011; 

Rapsomanikis, 2011).  

While the literature on food-energy price relationships has focused 

on price levels (Serra and Goodwin, 2003; Serra et al., 2011b; Hassouneh et 

al., 2012) and found that nonlinearities usually characterize price 

transmission mechanisms, more recently a few studies have concentrated on 

modeling price volatility spillovers between different energy-food markets 

(Zhang et al., 2009; Serra et al., 2011a). Volatility is usually studied using 

time-series econometric methods that generally model current price 

volatility as a function of past volatility and past market shocks. Less 

attention has been paid to volatility studies allowing for the influence of 

exogenous variables in the conditional variance equation. Additionally, 

nonlinearities in price volatilities are usually ignored. Nonlinear patterns, 

including asymmetries, in the conditional covariance matrix have been 
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widely observed, specially in the financial economics literature (Long et al., 

2011).  Prakash and Gilbert (2011) note that there are many factors prone to 

affect price volatilities, including rising energy prices, the rapid expansion 

of biofuel production, inventory supplies, international trade and other 

macroeconomic factors like interest rates and exchange rates. Low 

inventories can inflate prices. A low carryover from the past will reduce the 

possibility of using inventories in order to meet positive demand or negative 

supply shocks (Gilbert and Morgan, 2010; Balcombe, 2011). Exchange 

rates were considered and found to have an impact on food price volatilities 

(Balcombe, 2011). Mitchell (2008) concluded in his paper that the major 

factor causing food prices to increase was the large increase in biofuel 

production in the United States (US) and the European Union (EU). The use 

of food commodities to produce first generation biofuels has implied a 

shock to food markets, and is thus likely to have increased price instability. 

Expansion of biofuels has been so quick that it has overtaken the ability of 

many economies to keep up with it, which has led to extreme price 

increases in response to unpredictable demand shifts (Wright, 2010).  

The objective of this study is to investigate food-energy price 

relationships, allowing for both asymmetric volatility spillovers and the 

influence of exogenous variables in the conditional variance. We focus on 

the European biodiesel industry, which is the largest in the world. Rapeseed 

oil is the main EU’s biodiesel feedstock industry, representing around 62% 

of total 2013 feedstock use, as forecasted by USDA-FAS (2012), which 

explains our decision to assess the links between biodiesel and rapeseed oil 

prices. The influence of exogenous variables that can exert an influence on 

European biodiesel industry’s price instability is considered.  

To address our objective, we adopt a multivariate generalized auto-

regressive conditional heterscedasticity (MGARCH) model with exogenous 

variables, that allows for asymmetry in the variance-covariance matrix 

(Kroner and Ng, 1998). The contribution of this work to the literature is 

double. First, it focuses on the European biodiesel market. Recent literature 

reviews on the use of time-series methods to assess biofuel market prices 

(Serra and Zilberman, 2013), show that previous research has mainly 

concentrated on major ethanol markets: US and Brazil, while the EU has 

not received much research attention. Second, in comparison to the 

predominant literature, not only we study price level links. Instead, we 

adopt a MGARCH model to estimate price volatility spillovers allowing for 
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asymmetric effects and exogenous variables in the conditional variance. We 

further use a semi-parametric approach following Long et al.’s (2011) to 

capture the remaining information that is not reflected by the parametric 

estimation. 

The remainder of this chapter is organized as follows. Section 2.1 

presents a review of the literature assessing nonlinear price links between 

energy and food markets. Section 2.2 describes the biodiesel industry in the 

EU. Section 2.3 presents the methodological approach. Section 2.4. reports 

and analyzes the empirical results. Section 2.5. offers the concluding 

remarks.   

2.1. Previous literature  

Previous research has found ample evidence that biofuel and food 

price levels are strongly interrelated (Balcombe and Rapsomanikis, 2008; 

Serra et al., 2011b; Hassouneh et al, 2012). As a result, volatility spillovers 

should also take place. However, not until recently has this question started 

to be assessed. Multivariate generalized autoregressive conditional 

heteroskedasticity (MGARCH) models have been used to characterize not 

only price links but also price volatility interactions (Serra, 2011; Serra et 

al., 2011a; Zhang et al., 2009; Trujillo-Barrera et al., 2012).  

2.1.1. Price levels studies 

In the following lines, we review some of the articles that study 

food-energy price level links. Serra et al. (2011b) adopted a smooth 

transition vector error correction model to investigate the relationship 

among corn, ethanol, oil and gasoline prices in the US. Results show that 

two co-integration relationships characterize long-run price level dynamics, 

one representing the ethanol industry and the other the oil industry 

equilibrium. Results also suggest that the strong link between food and 

energy markets occurs mainly through the ethanol market and contributes to 

explain relevant corn price increases during the ethanol boom in the second 

half of the 2000s. Hassouneh et al. (2012) study the Spanish biodiesel price 

and its relationship with sunflower oil price. A vector error correction 

model (VECM) and local modeling techniques are fit to weekly data 

observed between 2006 and 2008. They find a long-run link to characterize 

biodiesel, sunflower oil and crude oil prices. Biodiesel is the only variable 

that adjusts to disequilibrium from the long-run parity. The estimation of 
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the model using local linear regression techniques allows refining results 

and shows that the speed of adjustment to this parity is faster when 

biodiesel is relatively cheap than relatively expensive.  

Busse et al. (2012) use a Markov-switching VECM to investigate the 

relationship between biodiesel, diesel, rapeseed oil and soy oil price-levels 

in Germany. Results show that two co-integration relationships characterize 

long-run price dynamics, one representing the relationship between biofuels 

and agricultural commodities and the other the biodiesel-diesel. The 

relationship between biodiesel-diesel price levels is characterized by two 

different regimes. In the first regime, from 2005 to 2007 when the biodiesel 

expansion took place, biodiesel price was independent from diesel market. 

In the second regime, after 2007, biodiesel shows a marked response to 

diesel price changes, motivated by blending mandates. 

2.1.2. Price volatility studies  

Studies investigating the relationship between food and energy price 

volatility interactions are scarce and include Zhang et al. (2009), Serra et al. 

(2011a), Du et al. (2011), or Trujillo-Barrera et al. (2012). Trujillo-Barrera 

et al. (2012) study US corn, ethanol and crude oil price interactions. A 

MGARCH model that includes an exogenous random shock coming from 

the crude oil market is estimated to assess corn and ethanol price volatility. 

Evidence of spillovers from crude to corn and, specially, to ethanol prices is 

found. Spillovers between corn and ethanol are also identified, being the 

ones from corn to ethanol much larger.  

Du et al. (2011) adopted stochastic volatility models to study the 

impact of crude oil on corn and wheat futures prices during the period from 

November 1998 to January 2009. Consistent with Zhang et al. (2009), no 

evidence of spillover effect before the biofuels boom is found. 

Nevertheless, between October 2006 and January 2009, results show strong 

volatility spillovers from crude oil to corn markets. Wu et al. (2011), who 

fit a volatility spillover model to corn spot and Crude oil futures prices 

using data from January 1992 to June 2009, obtain results consistent with 

Du et al. (2011).  

2.1.3. Price volatility studies with exogenous variables 

Most of the literature on price volatility has explained current 

volatility as a function of past volatility and past market shocks. Empirical 
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studies considering exogenous variables in the conditional variance-

covariance model have been scarce (Balcombe, 2011; Serra and Gil, 

2012b). The impact of commodity stocks on food price volatility has 

received considerable theoretical debate (Gustafson, 1958; Samuelson, 

1971; Scheinkman and Schechtman, 1983; William and Wright, 1991; 

Deaton and Laroque, 1992). This debate is based on the competitive storage 

model that, under the assumption that economic agents are rational, finds 

stocks to be a major factor affecting commodity price behavior. When the 

current price is below the expected price, sales will be delayed and the 

commodity stored. On the other hand, when prices are higher than the 

expected price, there will be no incentive to store and stock-out will be the 

case. The impact of macroeconomic factors is also found to be relevant in 

the literature on price volatility (Roache, 2010; Balcombe, 2011). During 

the period 2006 to 2010, EU's blending mandates spurred an increase in 

domestic demand and production of biofuels, creating a demand for 

imports. Around a fifth of biofuel domestic use is imported from the outside 

the EU (USDA-FAS, 2012), which contributes to reduce internal biofuel 

and feedstock price pressures, thus reducing their volatility.  

Balcombe (2011) adopted a random parameter model with time 

varying volatility that was fit to different food products including cereals, 

vegetable oils, dairy products, or meat products. The author allowed for 

exogenous variables in the conditional variance equation and found that 

crude oil price volatility has a positive impact on food price volatilities. 

Yields and stock levels were also found to have a strong impact on price 

volatility. Exchange rates and interest rates were also pointed to be 

important volatility determinants.  

Serra and Gil (2012b) used a bivariate GARCH model to investigate 

price volatilities of corn and ethanol markets. They allowed time-varying 

volatilities to depend on corn stocks to disappearance ratio and interest rate 

volatilities. They found that both exogenous variables have a significant 

effect on corn price volatility and no effect on ethanol price volatility. 

While stocks are found to reduce price fluctuations, interest rate volatility 

contributes to higher corn price instability. Serra and Gil (2012b) further 

apply Long et al.’s (2011) approach which is essentially a nonparametric 

correction of the parametric MGARCH model, that uses the information 

still remaining in the residuals of the model. They concluded that the 
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semiparametric model, which is more flexible than the parametric one, is 

specially suited to capture high volatility periods.  

From the literature review presented above, we can conclude that 

asymmetries have not been explicitly modeled in the literature assessing 

volatility spillovers between food and biofuel prices. This paper contributes 

to the literature by providing empirical evidence of asymmetric volatility 

spillovers by means of a parametric GARCH model. Following Serra and 

Gil (2012b), the parametric model is then flexibilized by means of the 

semiparametric technique proposed by Long et al. (2011), so that 

information remaining in the model residuals can be used. 

2.2. The biodiesel industry in the EU 

The EU is considered the largest biodiesel producer in the world. In 

2011, biodiesel represented 70% of total EU biofuel production, being the 

share of bioethanol on the order of 28%. Use and production of biofuels 

within the EU was pushed forward by Directive 2003/30/EC, which 

established that Member States should define national mandates ensuring 

that biofuels and renewable fuels represent a minimum proportion of the 

fuels market. This Directive led to introduction of tax incentives in several 

member states and a considerable expansion of the biodiesel industry, 

mainly in Germany and France (USDA-FAS, 2012). Biofuels have been 

promoted within the EU not only as a means of reducing greenhouse gas 

emissions, but also to enhance energy security by reducing dependence on 

fossil fuels (USDA-FAS, 2012). Several studies (Pimentel, 2003; Pimentel 

and Patzek, 2005; OECD, 2007) have shown that energy output from 

biofuels is less than the output from fossil fuels. While opinions regarding 

the capacity of biofuels to reduce GHG are mixed, there seems to be a 

general agreement of a positive impact (US-EPA, 2007; FAO, 2013; 

USDA-FAS, 2012).
 
 Competition of first-generation biofuels with the use of 

agricultural commodities to produce food, has led EU policies to encourage 

second-generation biofuels to join first generation biofuels in the fuels 

market. For this purpose, the food-based biofuels share to meet the 10% 

renewable energy target in the transportation sector has been limited to 5% 

(EC press release, 2012).  

Biodiesel is currently the major biofuel used in the EU’s 

transportation sector. The transportation sector alone consumed one third 

(33%) of the EU27 final energy consumption in 2009. The share of 
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renewable energy consumption in transport was about 3% in 2009. Biofuel 

promotion, however, is likely to bring this share to higher levels. 

Consumption of biofuels experienced a 26-fold increase in 2009 relative to 

1999. Further, while EU’s total fuel consumption declined between 2008 

and 2009, biofuel use increased (Energy, transport and environment 

indicators, 2011). The EU’s biofuel industry is characterized by an 

important unused production capacity. In 2010, biodiesel production in the 

EU reached 9.57 million tons, being the production capacity on the order of 

22 million tons. In terms of production capacity, Germany was followed by 

Spain and France (EBB, 2013). The idled production capacity is partly due 

to investments responding to the expectations created by public promotion 

of biofuels. These expectations, however, were recently curbed down by 

both the recent economic crisis, by heavily subsidized biodiesel imports 

from Argentina, Indonesia, the US and other countries, as well as by 

increasing feedstock costs resulting from a global increase in agricultural 

commodity prices. 

Largest EU biofuel consumers in 2011 were Germany, France, 

Spain, Italy and the UK. The top three producers were Germany, France 

and Spain, that accounted together for about 57.66% of total production. 

This production share decreased from a 75% in 2006 (EBB, 2013). Hence, 

increased production came at the hand of other Member States. Excess 

production capacity has dramatically lowered annual increases in this 

figure: while between 2006-09 the increase was of 360%, increases on the 

order of 2-3% were registered between 2010-11. Slowdowns in production 

capacity increases are expected to continue in the future (USDA-FAS, 

2012).  

Major biofuel feedstocks used worldwide are currently corn in the 

US, sugar cane in Brazil, and rapeseed oil in the EU. Rapeseed oil is the 

major EU biodiesel industry input and represents almost two thirds of total 

feedstocks. Soybean and palm oil are conversely used in limited amounts 

(USDA-FAS, 2012). Most soybean oil is used in Spain, France, Italy and 

Portugal. Recycled vegetable oils and animal fats are not used extensively; 

however, they provide an alternative to the use of food commodities to 

produce biofuels (USDA-FAS, 2012). Our article focuses on studying price 

links within the EU’s biodiesel industry and for such purpose, it considers 

the biodiesel, the Brent oil and the rapeseed oil prices. 
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2.3. Methodology  

Previous research has shown that price time series usually display 

time-changing and clustering volatility. The latter property implies that 

periods of high volatility are followed by periods of high volatility and vice 

versa (Myers, 1994). GARCH models, that have been devised to capture 

such volatility behavior, express current volatility as a function of lagged 

volatilities and past market shocks. Our specification also allows for 

exogenous variables (the exchange rate and global rapeseed oil stocks
6
) to 

affect price volatilities. 

2.3.1.Multivariate Generalized Autoregressive 

Conditional Heteroscedasticity Model (MGARCH) 

with exogenous effects  

GARCH models are usually composed of two sub-models. The 

conditional mean that captures prices in levels and the conditional volatility 

that represents price volatility patterns. The conditional mean and variance 

models are estimated separately using standard procedures.
7
 The 

conditional mean is specified as a VECM, which characterizes both short-

run and long-run price dynamics of nonstationary and cointegrated data 

(equation 1). The conditional variance model follows the specification of 

Baba-Engle-Kraft-Kroner (BEKK) model defined in Engle and Kroner 

(1995), but allows for asymmetry and exogenous influences as presented in 

equation (2). While the multivariate BEKK-GARCH model is an 

improvement over other more restrictive specifications, it is unable to 

capture asymmetric volatility patterns. We adopt the Kroner and Ng (1998) 

asymmetric specification of the multivariate BEKK-GARCH. 

               
 
              (1) 

                 
                     

    (2) 

where   represents the first differences operator,    and      are, 

respectively, n-dimensional vectors of the current and lagged prices. The 

term      is the lagged residual from the long-run (co-integration) 

                                                 
6
 The influence of other possible exogenous variables was considered, but not found to be 

statistically significant.  
7
 Joint estimation was attempted, but did not converge. 
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relationship, and    is an n-dimensional vector containing parameters that 

measure the speed at which a variable adjusts to disequilibrium from the 

long-run equilibrium relationship. Matrix    represents the short-run price 

dynamics. Vector    contains n white noise residuals that may be correlated 

with each other. Model (1) is estimated by seemingly unrelated regressions 

(SUR) techniques. 

A, B, C and D are (2x2) parameter matrices that capture the volatility 

process. Matrix A represents the ARCH effect, i.e., the impact of market 

innovations on the volatility process. Matrix B contains the GARCH effect, 

i.e., the impact past volatility on current volatility. The C matrix is a 2x2 

lower triangular matrix containing the exogenous variables in the model. It 

is specified following Moschini an Myers (2002) as:          , being    a 

vector of exogenous variables in the variance equations and     a vector of 

parameters. The specification of C does not restrict the sign of the influence 

of the exogenous variables on price volatility. Asymmetries are captured by 

adding the term           
   to the conventional BEKK model where 

                     , I is the indicator function and   is the hadamard 

product of the vectors. We assume normally distributed statistical 

innovations which leads to the following log likelihood function: 

     
 

 
      

           
 

 
    

   
    

 
      (3) 

 Multivariate parametric GARCH models have several limitations, 

among them the assumption of normally distributed errors. Another 

limitation is the rather common assumption of parameter constancy, which 

restricts the ability to capture changing price behavior. Longin and Solnik 

(2001) and Richardson and Smith (1993), among others, have found ample 

evidence against both normality and parameter constancy.  

2.3.2. The semi-parametric model  

To overcome the above mentioned restrictions, flexible parametric 

specifications have been proposed (Capiello et al., 2003; Silvennoinen and 

Terasvirta, 2005). Asymmetric volatility models are an example of such 

attempt to move towards more flexible parametric specifications. While our 

parametric model partially overcomes the assumption of parameter 

constancy by allowing for a different effect of negative and positive past 

errors on current volatility, this flexibility is limited. Nonparametric and 
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semi-parametric specifications usually offer increased flexibility. To benefit 

from this increased flexibility, we apply the nonparametric correction to the 

parametric MGARCH as proposed by Long et al. (2011). 

 Assume that the conditional mean model vector of errors    

         
  follows the stochastic process                   , where      

is the information set at time    ,               ,       
           , 

P is the joint cumulative distribution function of    and   are the 

distribution parameters. Vector    is the standardized    vector:    

  
    

  ,             ,       
          , being    

   
 the symmetric 

square root of   . No distributional assumption on    is required to obtain 

the semi-parametric estimator. Let               be the parametric 

estimation of the variance-covariance matrix. The semiparametric estimator 

of this matrix can be expressed as follows:  

          
                

              
     (4) 

where        
    is the symmetric square root of        , and       

       
        the vector of the standardized residuals from the parametric 

model.             
        is the nonparametric component of   . This 

component is defined by assuming that the conditional expectation of      
  

depends on the current information set      only through a q x 1 

vector                 (see equation 5). By substituting (5) into (4), the 

semiparametric estimate of    is obtained (equation 6).         is derived 

through the Nadaraya-Watson non-parametric estimator as presented in 

equation (7),  

       
                  (5)  

          
                   

     (6) 

           
       

          
 
   

          
 
   

 (7) 

             
   

          
   

   (8) 

where              
                

 
    is a multiplicative kernel, 

  is a univariate Gaussian kernel function:                     , 

and             is a vector of bandwidth parameters defined as 
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      being   the number of observations,     the sample 

standard deviation and     a parameter selected through a grid search. The 

grid search minimizes the difference between the true conditional 

covariance matrix and its estimates. Since the true conditional covariance 

matrix is not known, the squared     vector is used as an approximation 

(Zangari, 1997; Awartani and Corradi, 2005; Pelletier, 2006; Long et al, 

2011). The semi-parametric estimator is presented in equation (8). 

2.4. Empirical Results  

The empirical application aims at assessing the links between weekly 

pure biodiesel price (P1t), rapeseed oil price (P2t) both expressed in US 

dollars per metric tons, and the Brent spot price (P3t) expressed in dollars 

per barrel. The study period is between 06/11/2008 to 14/06/2012, yielding 

a total of 189 observations. Biodiesel and rapeseed oil prices were obtained 

from Mer-7 (http://www.mer-7.com) and are based on indications provided 

by market players including traded prices, firm bids and offers. Brent spot 

prices were taken from the US Energy Information Administration (2010) 

dataset. Two variables were considered as exogenous in the volatility 

model
8
: the euro-dollar exchange rate (Z1) that was obtained from Mer-7; 

and international rapeseed oil stocks (Z2) that were obtained from the 

Foreign Agricultural Service of the U.S Department of Agriculture on a 

monthly basis, and converted to weekly frequency through cubic spline 

methods. The period of analysis is of interest, as it includes the food price 

spike in 2010/2011 and is likely to reflect the impacts of the EU biofuels 

Directive (2003/30/EC) and mandatory goals for increased use of biodiesel 

(Directive 2009/28/EC). Figure 1 shows the evolution of the three price 

series, as well as rapeseed oil inventories and the exchange rate over time. 

We used RATS 8.0 to carry out our analysis. 

Logarithmic transformations of the prices are used in the empirical 

analysis
9
. A preliminary analysis of the prices is conducted to assess their 

time-series properties. Standard augmented Dickey and Fuller (1979), 

                                                 
8
 Other exogenous variables such as crude oil prices were considered, but found to be 

non-significant. The Exchange rate and the rapeseed oil inventories variables are used in 

first differences in the conditional variance model. 
9
Logarithmic transformations allow obtaining well behaved error terms (Bierlen et al., 

1998) and facilitate the interpretation of research results. By using logged prices, the 

parameters of the co-integrating vectors represent elasticities and the short-run dynamic 

parameters represent proportionate changes.    

http://www.linkedin.com/redirect?url=http%3A%2F%2Fwww%2Emer-7%2Ecom&urlhash=F-hG
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Kwiatkowski et al., (1992) and Perron (1997) tests confirm that all three 

series have a unit root, descriptive statistics and unit root results are 

presented in table 2.1., long-run links between the three prices are assessed 

using the co-integration tests proposed by Johansen (1988). Test results 

provide evidence that the prices considered are co-integrated with a co-

integration rank r=1, i.e., there is a single long-run relationship 

characterizing price behavior as shown in table 2.2.
10

 We follow previous 

research that has considered crude oil as an exogenous influence within the 

food-energy price system (see, for example, Amano and Norden, 1998; 

Asche et al., 2003; Trujillo- Barrera et al., 2012). This assumption is 

reasonable given that the European biodiesel industry is very small 

compared with the Brent oil market. A chi square test for the null of 

Rapeseed oil price weak exogeneity for long-run parameters, against the 

alternative hypothesis of being endogenous, leads to the acceptance of the 

null (table 2.2). This result is compatible with the conditional mean model 

results.   

The cointegration relationship presented in table 2.2 shows that the 

increase in rapeseed oil and Brent spot prices has a positive impact on pure 

biodiesel price. The positive relationship between rapeseed oil and biodiesel 

prices is expected since rapeseed represents the highest biodiesel production 

cost (IISD, 2013). Brent positive influence on biodiesel may point towards 

a substitute relationship between the two fuels. Our results are compatible 

with Balcombe and Rapsomanikis (2008), whose results suggest a price 

transmission hierarchy from crude oil to sugar and finally to ethanol for the 

Brazilian industry. Results from the maximum likelihood estimation of the 

conditional variance-covariance model are presented in table 2.3. 

MGARCH model parameter estimates can’t be directly interpreted, but we 

draw inferences from the nonlinear parameter functions in the conditional 

variance equations (table 2.4). Conditional mean model results are 

discussed in the following lines. While cointegration tests confirm the 

existence of a long-run parity between the prices considered, only biodiesel 

price dynamics react to disequilibriums and move to reequilibrate the 

market. In contrast, EU rapeseed oil prices do not respond to deviations 

from the biodiesel market equilibrium parity. Short-run price dynamics 

                                                 
10

 Engle and Granger (1987) tests for co-integration, taking pure biodiesel as the 

endogenous variable in the price system, also support the presence of a long-run 

relationship. 
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confirm rapeseed oil price exogeneity within the price system. While crude 

oil prices are found to influence biodiesel prices through the long-run price 

dynamics, they do not seem to influence these prices through short-run 

dynamics Our results are compatible with Serra (2011), who found that 

short-run dynamics of sugar prices are not affected by ethanol and that 

sugar prices do not respond to deviations from the ethanol market 

equilibrium parity. 

The VECM residuals were tested for multivariate autocorrelation 

following Hosking’s (1981) variant of the multivariate Q statistic and 

results led to accept the null of no autocorrelation. Also, the multivariate 

ARCH LM test was conducted and evidence of ARCH effects was found, 

thus supporting the use of a MGARCH model. The test for the null 

hypothesis that parameters in matrices A, B and D in the MGARCH 

specification are equal to zero is rejected, showing evidence of time varying 

volatility. Additionally, an LR test for the null that parameters in D matrix 

are zero is conducted to test for the relevance of the asymmetric effects, 

being the null hypothesis of symmetry rejected. As noted, for an easier 

interpretation of MGARCH model parameter estimates, we rely on the 

nonlinear parameter functions of the conditional variance equations 

presented in table 2.4. Biodiesel price volatility is found to be positively 

affected by its own past volatility and past shocks to the pure biodiesel 

market. Past shocks to the rapeseed oil market are found to have an 

asymmetric effect on biodiesel price volatility: negative residuals increase 

variance more than positive ones, which indicates that negative news have a 

greater impact on pure biodiesel price instability than positive news. Results 

also show that while biofuels cannot influence rapeseed price levels, they 

can bring instability into this market: past volatility in the biodiesel market 

tends to increase current rapeseed price volatility. 

The marginal impacts of euro-dollar exchange rate variations (Z1) 

and the international rapeseed oil inventories (Z2) are computed at the data 

means and presented in table 2.5. Exchange rate variations reduce biodiesel 

and rapeseed oil price volatilities. Blending mandates between 2006 and 

2007 spurred an increase in domestic demand and production of biofuels 

and created a demand for imports (EU biofuels annual, 2012). Our results 

suggest that the appreciation of the euro against the dollar facilitates 

imports and reduces price volatility. Our results are compatible with 

Balcombe (2011) who found exchange rates to be a relevant variable in 
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explaining price volatility. International rapeseed oil inventories have an 

expected negative and significant effect on h11 and h22, which is in line with 

Balcombe (2011), Stigler and Prakash (2011), Serra and Gil (2012b) and 

compatible with the theory that stock building usually reduces price 

volatilities and the dependence of prices on market shocks (Williams and 

Wright, 1991; Wright, 2011).   

As noted above, the non-parametric correction of the conditional 

variance-covariance equation proposed by Long et al. (2011) allows 

capturing the information that still remains in the residuals of the model. 

Parametric and semi-parametric predicted volatilities are shown in figure 2. 

While predictions during low-volatility periods are quite similar, the 

semiparametric model deviates from the parametric one for periods of 

specially relevant volatility. This suggests that the semi-parametric 

approach may have greater flexibility in capturing erratic behavior.  

Volatility is specially high at the beginning and middle of our sample 

period. Blending mandate objectives defined by the EU and the impacts of 

food crises in the second half of the 2000s may explain increased price 

instability. Long et al.’s (2011) method further allows correcting the 

nonlinear parameter functions in the conditional variance equations for each 

observation in sample. The benefits of adopting Long et al.’s (2011) 

methodology are confirmed by the variation in the localized nonlinear 

parameters in the biodiesel and rapeseed volatility equations (figures 2.3 

and 2.4). The parametric marginal effects of the exogenous variables can 

also be corrected under the Long et al.’s (2011) approach to get better 

inferences of the estimates. In figure 2.5, we compare the predicted 

parametric and semi-parametric marginal effects of rapeseed oil stocks and 

exchange rate variations on pure biodiesel price volatility. We find the 

impacts of these exogenous variables to change notably over time, and 

specifically to grow during high volatility periods. It is thus precisely when 

volatility is the highest that a policy intervention aiming at calming down 

the markets by means of managing public stocks or seeking currency 

appreciation will be more effective.  

2.5. Conclusions  

This study analyzes price behavior in the EU biodiesel market. 

Special attention is paid to modeling price volatility interactions. Since 

price volatility has been found to have important negative economic 
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consequences, it is particularly interesting to identify those variables that 

can contribute to calm down the markets. This is why we consider the 

influence of exogenous variables in the conditional variance-covariance 

model. Our analysis is based on a parametric MGARCH model and results 

from this parametric exercise are refined using the semi-parametric 

approach by Long et al. (2011). Our empirical application focuses on the 

biodiesel, rapeseed oil and crude oil prices. International rapeseed oil stocks 

and exchange rates are considered as exogenous variables in the conditional 

volatility equation. Results suggest that the three prices have a long-run 

equilibrium relationship that is maintained by the pure biodiesel price. 

Crude oil and rapeseed oil prices are found to be exogenous. Pure biodiesel 

price volatility is affected by its own past volatility and past biodiesel and 

rapeseed market shocks. The latter have a nonlinear influence, with 

negative market news having a greater impact than positive ones. While 

biodiesel prices cannot affect rapeseed price levels, they can cause 

instability in this market by means of increasing rapeseed price volatility. 

Stock building and the euro-dollar exchange rate can reduce biodiesel and 

rapeseed oil price volatilities.  

The importance of using the semi-parametric approach by Long et al. 

(2011) is confirmed through the identified heterogeneity in the localized 

nonlinear parameters in the conditional variance equations. Predicted 

variances from the parametric and semi-parametric models suggest that the 

semi-parametric estimator may better capture price fluctuations during 

convulsive times. We further find evidence of the capacity of stocks and 

exchange rates to reduce price volatility. Our results have important policy 

implications. They suggest that biodiesel markets in Europe have been 

unable to generate long-lasting impacts on agricultural feedstock prices. 

Hence, the EU biofuel industry has been incapable of causing long-run 

increases in food prices. Conversely, biodiesel prices strongly depend on 

rapeseed prices. Biodiesel price volatility can be managed by increasing 

rapeseed oil stock levels. By altering biodiesel foreign trade, the euro-dollar 

exchange rates are also found to exert significant influence on price 

fluctuations.  
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Table 2.1. Descriptive statistics for weekly prices  

 Pure biodiesel price Rapeseed oil price Brent price 

Mean 7.044 6.975 4.412 

Standard 

deviation 
0.204 0.216 0.317 

Maximum 7.365 7.293 4.841 

Minimum 6.633 6.536 3.566 

Skewness -0.050 -0.040 -0.651** 

Kurtosis -1.364** -1.465** -0.342 

Jarque-Bera 14.737** 16.966** 14.281** 

ADF -1.050 -0.938 -1.464 

Perron -4.641 -5.239 -3.787 

KPSS 2.881** 3.045** 3.465** 

*** (**) [*] denotes statistical significance at the 1 (5) [10] % level 

Note: the deterministic component used in conducting unit root tests is a constant 
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Table 2.2. Brent oil – Biodiesel – rapeseed oil conditional mean model    

Co-integration relationship 

                                  

    (0.400)      (0.090)           (0.062) 

Conditional mean equations 

 
    
    

    
  
  
        

         
         

  

      
      
      

  

 

αi 

i=1  i=2  i=3 
 

-0.206***(-0.061) -0.070(0.062)  

 1i -0.313***(0.105) 0.254**(0.103) 0.008(0.065) 

 2i 0.016(0.107) -0.028(0.105) -0.016(0.066) 

Chi square test for the null of weak exogeneity of rapeseed oil price within 

Johansen’s framework= 0.599 

Hosking multivariate Q(12) Statistic = 46.095 

Multivariate ARCH LM test = 24.70** 

AIC =  -2706.139 

SBC =  -2660.903  

P1t biodiesel, P2t rapeseed oil, P3t Brent oil 

*** (**) [*] denotes statistical significance at the 1 (5) [10] % level 

Standard errors in parenthesis 
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Table 2.3. Brent oil – biodiesel – rapesed oil MGARCH model: conditional  

                  variance equations 

    
     
        

   
       
            

 

  
       
            

    
        
     

   
            
       

 

  
            
       

  

  
      
      

  
     
 

     
        

      
   

      
      

 

  
      
      

  
            
            

  
      
      

 

  
      
      

  
     
 

     
        

      
   

      
      

  

 i=1  i=2  
  

c1i1 0.010***(0.002)   

c2i1 -0.004**(0.002) -0.001(0.004)  

c1i2 -0.051(0.036)   

c2i2 -0.072(0.068) -0.185**(0.071)  

c1i3 0.157**(0.077)   

c2i3 0.347**(0.153) -0.109 (0.149)  

a1i 0.504 (0.127) -0.102(0.127)  

a2i -0.403***(0.109) 0.360**(0.165)  

b1i 0.709***(0.153) 0.657***(0.110)  

b2i 0.183(0.153) 0.305(0.221)  

d1i -0.150(0.180) 0.195(0.200)   

d2i 0.368**(0.129) 0.084(0.217)   

LR test for the null that parameters in matrices A, B and D are zero = 

15731.448*** 

LR test for the null that parameters in matrix D is zero = 18.682*** 

*** (**) [*] denotes statistical significance at the 1 (5) [10] % level 

Standard errors in parenthesis 
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Table 2.4. Brent oil – biodiesel – rapesed oil MGARCH model: conditional variance equations 

                         
          

                                                         
                                        

             
                               

 

              
                    

                   
           

                                                      
                                      

             
                               

 

            
                   

h11 pure biodiesel variance, h22 rapeseed oil variance  

z1 exchange rate variations, z2 rapeseed oil feedstocks variations  

*** (**) [*] denotes statistical significance at the 1 (5) [10] % level 

¨e¨ refers to exponential operator   
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Table 2.5. Marginal effects of the exogenous variables on price volatility at data means 

         0.336 Z1 -0.551e-03  0.105*** Z2  = -1.186e-03 

         0.034 Z2   -0.490e-03
 

0.105*** Z1   = -2.816e-04  

         0.133 Z1  1.209e-03 0.140* Z2 = -4.550e-04 

         0.074 Z2 -0.641e-03 0.140* Z1 = -2.415e-04 

h11 pure biodiesel variance, h22 rapeseed oil variance  

*** (**) [*] denotes statistical significance at the 1 (5) [10] % level 

¨e¨ refers to exponential operator   
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Figure 2.1. Time series data 
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Figure 2.1. (Continued) Time series data 

 
 

 

 

 

 

 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

11/06/2008 11/06/2009 11/06/2010 11/06/2011 

Rapeseed oil Inventories MT 

1 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

11/06/2008 11/06/2009 11/06/2010 11/06/2011 

Exchange rate 



- 64 - 

 

Figure 2.2. Predicted volatilities for pure biodiesel (   ) and rapeseed oil 

(   ) under parametric and semi-parametric approaches  
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Figure 2.3. Distribution of the localized parameters of the pure biodiesel 

conditional variance equation 
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Figure 2.4. Distribution of the localized parameters of the rapeseed oil  

conditional variance equation 
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Figure 2.5. Parametric and semi-parametric marginal effects of exchange 

rate variations (Z1) and Rapeseed oil stocks variations (Z2) on  Biodiesel 

volatility 
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Chapter 3: The impact of news on Corn and Soybeans 

futures markets 

3.1. Introduction  

Since the global food price increase in the second half of the 2000s, 

substantial research has been devoted to investigate food price levels and 

volatility. Several factors have been identified that explain recent food price 

patterns, including rising energy prices, the rapid expansion of biofuel 

production, inventory supplies, international trade and other 

macroeconomic factors like interest rates and exchange rates (Prakash and 

Gilbert, 2011). Futures markets have two main roles: price discovery and 

price risk management. This article focuses on the first, for which 

information on market supply and demand is vital. Since market 

fundamentals are crucial in explaining price movements, published 

forecasts on production and consumption are expected to have an effect on 

market prices. The value and impact of released (public and private) 

information on commodity prices (futures and spot) has recently received 

considerable attention. A body of literature has been developed to address 

this matter (Taylor, 2012).  

One of the major sources of information used by economic agents 

participating in the United States (US) agricultural commodity futures 

markets are the United States Department of Agriculture (USDA) crop 

production reports (Makenzi and Singh, 2011). According to the Efficient 

Market Hypothesis (EMH), as new fundamental information becomes 

available, futures markets should immediately react to reflect the change in 

rational traders’ price expectations. Several research results confirm this 

hypothesis for agricultural commodity markets. Adjemian (2012), Lehecka 

(2013) and Makenzi (2008) have proved the effect of information on grain 

markets like corn, soybean and wheat. The impact of information on 

livestock prices has also been assessed and demonstrated by Isengildina-

Massa et al. (2006), Mckenzie and Thomsen (2001), Schaefer et al. (2004). 

The cotton market was studied by Adjemian (2012) and the lumber market 

by Rucker (2005). Although most of the literature on the effect of 
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information on food price behavior has focused on price levels (Mckenzie 

and Thomsen, 2001; Rucker et al., 2005; Lehecka, 2013), more recently 

generalized autoregressive conditional heteroskedasticity (GARCH) models 

have started to be used to capture volatility responses (Isengildina-Massa et 

al., 2006; Karali, 2012; Karali and Park, 2010).  

Our analysis studies corn and soybean futures price responses to 

USDA production forecasts for these two crops. More specifically, we 

assess the market response to production forecasts released on August, 

September, October, and November.
11

 The literature has proposed several 

methods to convert information released into a quantitative variable that can 

be used in numerical models. These methods range from the use of dummy 

to continuous variables (Andersen et al., 2003; Steiner et al., 2009; 

Hassouneh and Serra, 2010; Isengildina-Massa et al., 2006; Karali, 2012). 

Compared to dummy variables, continuous variables have a richer nature as 

they allow capturing not only whether information is available or not, but 

also the intensity of the information. Following Andersen et al. (2003), in 

this article a “news surprises” variable is defined as the difference between 

private market’s production expectations and USDA production forecasts. 

This implies that the market impact of USDA reports is measured by 

considering the response to how well the market anticipates the public 

forecasts. If private agents expectations agree with USDA forecasts, then, 

under EMH, prices will not change. However, if market expectations 

diverge from USDA forecasts, market prices will respond to the degree of 

the surprise.  

While studies assessing the impacts of news on price volatility are 

scarce, those that focus on news surprises effects have mainly restricted 

their attention to the conditional variance only (Adjemian, 2012; 

Isengildina-Massa et al., 2006; Karali, 2012; Karali and Park, 2010) without 

considering its effects on the conditional mean. The assumption that either 

price levels or price volatility are not affected by the news surprises may 

imply model misspecification issues and lead to biased results. The 

objective of this paper is to study the impact of public information on 

Chicago Board of Trade (CBOT) corn and soybean daily futures prices. A 

twofold contribution is made to the literature. First, in contrast to previous 

                                                 
11

 Instead of a forecast, the January report, published after harvest, is considered to 

contain the final production estimates. We do not consider the January report in our 

analysis. 
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research that has usually measured information through a dummy variable 

on the release day, we consider the magnitude of information through the 

news surprises variable. Second, since changes in price levels can involve 

changes in price volatility and the other way around, and in contrast to the 

predominant literature that has either focused on the effects of news on 

price levels or on  price volatility, we consider both types of impacts.  

The remainder of the paper is organized as follows. Section 3.2 

presents a literature review on the effect of public information on prices. 

Section 3.3 presents the methodological approach. Section 3.4 presents a 

description of the corn and soybeans markets. Section 3.5 offers a 

description of the corn and soybean sectors in the US. Section 6 provides 

details on the data used and reports the empirical results. Finally, section 

3.6 presents the concluding remarks and a summary of the research results.  

3.2. Literature review  

The economic value and impact of public information has long been 

subject to debate. The changing structure of the agricultural sector, the 

growth of private firms that provide relatively low-cost information and 

evolving priorities within the USDA (Isengildina-Massa et al., 2006) have 

increased, over the last decade, the interest in assessing the effect of release 

of information on the agricultural sector (Karali, 2012).  Taylor (2012) has 

grouped the literature into three main areas, depending on the subject of 

analysis: accuracy, value and market effect literature. While our interest 

will be on the later, the following lines briefly discuss the first two types of 

analyses.  

3.2.1. Public information accuracy studies 

Previous research has raised questions on the accuracy of public 

information. While public reports have been generally found to be better 

than private agency forecasts (Kastens et al, 1998; Bailey and Brorsen, 

1998; Sanders and Manfredo, 2002, 2003; Isengildina-Massa et al., 2004, 

2006), USDA report forecasts have been shown to contain, to some extent, 

biased farm-level data (Bailey and Brorsen, 1998; Isenglidina et al, 2004, 

2006). Bailey and Brorsen (1998) investigate the accuracy of USDA report 

production and supply forecasts, by computing trends for mean and 

variance of percentage forecast errors. Forecast errors are defined as the 

difference between USDA’s production estimate and actual production. 
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Evidence is found of a significant decreasing bias for both beef and pork 

production and supply forecasts over the period studied (1982-1996). Good 

and Irwin (2004) assess the accuracy of the USDA production forecasts for 

corn and soybeans, by comparing the monthly forecasts with the final post-

harvest January forecast and find that the August report is the one with the 

largest forecasting error. The August report is the first within the crop year 

and coincides with the start of the harvest time. The forecasting error 

becomes smaller in the subsequent reports, showing an improvement in the 

information of the real crop size as the crop year progresses.  

3.2.2. Public information value studies 

The literature on the value of the USDA reports for the society 

concludes, in general, that these reports are vital and ignoring them would 

have negative consequences for relevant industries (Hyami and Peterson, 

1972; Just, 1983, Garcia et al., 1997). Some farmers and agribusinesses, 

however, choose not to share their data with USDA because they consider 

these reports to push commodity prices down (Hoffman, 1980). Gerling et 

al. (2008) argue that this is the third most important reason for farmers 

declining to take part in the survey conducted by the USDA, in order to 

collect information on production practices and elaborate estimates of 

crops, livestock and economic trends. 

3.2.3. Public information impact studies 

Most of the literature on the market effect of public information has 

focused on the impact of information on price levels and has used non-

structural models. Miller (1979) investigates the effect of USDA’s Hogs 

and Pigs reports on futures prices of hogs, to test the basic hypothesis of 

market efficiency. The author uses partial adjustment models. Colling and 

Irwin (1990) asses the same issue using two-limit tobit models. Results 

suggest a significant impact of unanticipated changes in reported 

information on market prices. Hoffman (1980) studied the effect of USDA 

reports on cattle and hog prices through different regression specifications 

that compare cash and futures prices just before and after the report release. 

While cash prices can either increase or decrease after the release of 

information, futures prices are more prone to rise. Relative to cash markets, 

the futures market seems to be more efficient in predicting the underlying 

market conditions. Summer and Mueller (1989) use several statistical tests 
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(t-tests, F-tests and non-parametric chi-square tests) and find evidence that 

USDA information release on harvest forecasts, impacts on corn and 

soybean futures markets daily price changes. Releases in August, 

September and October are found to be specially influential. 

Mckenzie and Singh (2011) study daily cash and closing futures 

prices around report release time using two-stage estimation methods. First, 

authors estimate the value at risk by Monte Carlo simulation to identify 

hedging effectiveness. Second, factors affecting the estimated value at risk 

are identified using ordinary least squares. The analysis is conducted for the 

period 1992-2008 on daily futures and cash returns for soybean and corn. 

Dummy variables are used to represent and capture the information impact. 

Results indicate that hedging stored grain during USDA report days (five 

days before and six days after report release) is vital from a risk 

management point of view. Un-hedged corn and soybean losses are larger 

during event days compared with non-event days. Additionally, release of 

other information, location, crop type and storage strategy are found to have 

an effect on value at risk losses. 

Adjemian (2012) investigated the effect of USDA World 

Agricultural Supply and Demand Estimate (WASDE) announcements on 

cotton, soybean and hard winter wheat close-to-open (CTO) and close-to-

close (CTC) future price differences for the study period of 1980-2010 

using a two-stage GLS model. WASDE reports are found to have an impact 

on cotton, soybean, and hard winter wheat futures prices. The impact is on 

the order of $140 per contract, which represents around ±5% return on 

collateral for a trader in a single day. 

Taylor (2012) studies the effect of USDA reports on corn prices in 

different US markets. The analysis uses Maximum Likelihood parameter 

estimates to test for the significance of the reaction of the corn basis to the 

report. Dummy variables and other control variables are used to measure 

the effect of reports at time of release, being the study period: 1949-2011. 

Results support the hypothesis that the reports affect corn markets at the 

national level and in Illinois, Iowa, and Nebraska. No effect is found on 

North Carolina and Wisconsin corn markets.  

Although most of the literature studying public information impact 

on agricultural commodity futures prices has focused on price level 

impacts, more recently multivariate generalized autoregressive conditional 

heteroskedasticity (MGARCH) models have started to be used to capture 
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the volatility spillover effect (Isengildina-Massa et al., 2006; Karali, 2012). 

Isengildina-Massa et al. (2006) investigate the effects of USDA reports 

(measured through dummy variables) on hogs and cattle CTO futures 

returns’ conditional variance for the period 1985-2004. Following Zakoian 

(1994), the authors use a threshold autoregressive conditional 

heteroskedasticity (TARCH)-in-mean model, which considers two types of 

news: positive and negative. Dummy variables are introduced in the 

conditional mean and volatility models to account for USDA reports’ 

impact, days of the week effect and seasonality. Results show that there is a 

statistically significant positive effect of USDA reports on live/lean hogs 

futures price volatilities. Isengildina-Massa et al. (2008a) studied the impact 

of WASDE reports on the implied volatility of corn and soybean futures 

prices for the period of 1985-2002, using three statistical tests (Z-test, 

paired t-test and a nonparametric matched-sample test called the Wilcoxon 

signed rank test). Results indicate that WASDE reports have a statistically 

significant effect on implied volatility, which is reduced by 0.7 percentage 

points for corn and 0.8 percentage points for soybeans, on average. 

Reduction in volatility is interpreted as a sign that WASDE reports resolve 

uncertainty. Those WASDE reports that contain both domestic and 

international situation and outlook information are the ones with the 

strongest effects. 

Karali and Park (2010) use a bivariate GARCH model to investigate 

the effect of USDA reports (captured through dummy variables) on the 

conditional variances and covariances of futures price returns. Results show 

that USDA reports have both positive and negative impacts on related 

markets, as covariances and correlations are found to react to announcement 

days. Karali (2012) studies the effect of selected USDA reports on the 

conditional variance and covariances of returns of agricultural commodities 

like corn, soybean and lean hog futures contracts using multivariate 

GARCH models. Results show that the biggest effect is registered on the 

report release days (measured through dummy variables) and consists of an 

increase in volatility.  

Isengildina-Massa et al. (2008b) examined the impact of WASDE 

reports on corn and soybean price return variance for the period from 1985 

to 2008 using parametric statistical tests (two-tailed F-test, Bartlett test, 

Levene test and Brown-Forsythe test). Results show WASDE reports 

containing National Agricultural Statistics Service (NASS) crop production 
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estimates and other domestic and international data and outlook 

information, are the more influential, being the impact of other WASDE 

reports less relevant. Information release causes return variance on report 

sessions to be 7.38 times greater than normal return variance in corn futures 

and 6.87 times greater than normal return variance in soybean futures. 

Results also show that the effect of WASDE reports has increased over 

time. Lehecka (2013) investigates the response of corn and soybean futures 

price return variability to USDA’s crop progress reports for the period 

1986-2012, using statistical tests. The Kruskal-Wallis chi-square test shows 

evidence of return variability increase on report day, while Wilcoxon-test 

results suggest that prices respond quickly to the crop progress report. 

3.3. Methodology  

Our analysis aims at studying the impacts of USDA reports on both 

the first and the second moments of commodity futures prices. This requires 

specification of a conditional mean and a conditional volatility model. 

Previous research has shown that price time series usually display time-

changing and clustering volatility. Such property implies that periods of 

high volatility are followed by periods of high volatility and vice versa. 

GARCH models, that have been designed to capture such volatility 

behavior, express current volatility as a function of past volatilities and past 

market shocks. We focus on corn and soybean futures markets, which may 

be related as a result of the substitute or complement relationship that can 

characterize the two crops. Time series data are used in the analysis and 

their properties are assessed by means of well known unit root and 

cointegration tests. Since our time series have a unit root (Myers, 1994), the 

conditional mean model is based on first-differenced data. No cointegration 

relationship is found to characterize corn and soybean prices, which 

provides evidence against a long-run parity between the two prices studied. 

Univariate conditional mean and variance models are estimated separately 

using standard maximum likelihood procedures.  

Price returns are defined as the difference between the logged price 

and its lag. The conditional mean of price returns ktR  , where k indexes 

crops and t the time periods, is assumed to depend on its own lags. Cross 

effects from related markets are also allowed for. ktR  is also considered to 

be function of news published on the crop and on other related crops. The 

conditional variance is specified as a Student’s t Generalized 
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Autoregressive Heteroscedasticity model (GARCH) (Bollerslev, 1986) with 

exogenous variables (information release). To measure the impact of 

information releases, we follow Andersen et al. (2003) and compute the 

announcement surprises variable kmtS , which is the difference between 

announced kmtA  and expected kmtE  news  kmt kmt kmtS A E , with m indexing the 

information release time.
 12

 Equations (1) through (3) represent the 

conditional mean and variance models. 

 

 kt k kj kt j km kmt kt

k j k m

R R S u         (1) 

1/ 2 ,  (0,1)kt kt kt ktu z h z iid     (2) 

2

      kt k kj kt j kj kt j km kmt

j j k m

h u h S       for each k (3) 

 

Results from model estimation, as well as details on the data used are 

presented in the empirical implementation section. In the following section, 

a brief description of the markets studied is offered.  

3.4. The US corn and soybean markets  

The US is the largest world producer and consumer of corn and 

soybeans. In the late 2000s, it accounted for 32% and 50% of the world 

production of corn and soybeans, respectively (US-EPA, 2013). Corn 

production reached 13.9 billion bushels and soybean production reached 

3.29 billion bushels in 2013 (USDA-NASS, 2014a). Corn and soybeans are 

used for different purposes including animal feed, biofuel production, 

among others. In 2013, the US represented 31.1% of global corn 

consumption, ranking first ahead of China (22.3%). US use of soybean 

meal represented 16% of world consumption, occupying the third position 

after China and the European Union (EU). Further, US soybean oil and 

crushed soybeans consumption reached 18,7% and 20.26% of global 

demand in 2013, respectively, placing the US second in global 

consumption, after China. In 2013, the US was the largest exporter of corn, 

soybeans, soybean oil and soybean meal with a share of 40%, 44.6%, 

                                                 
12

 We don’t standardize the surprise variable like Andersen et al(2003) as we only use one 

indicator 
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15.2%, and 16% of global exports, respectively (USDA-FAS, 2014a; 

USDA-FAS, 2014b).  

Corn and soybean futures contracts are the two most heavily traded 

agricultural contracts in the CBOT. In 2013, the CBOT registered a trade of 

corn, soybean, soybean meal and soybean oil futures contracts of 64,322 

million,  46,721 million, 20,237 million , and 23,805 million, respectively, 

being the contract size of 5 thousand bushels  (FIA annual volume survey, 

2013). Corn futures contracts traded in July 2013, represented 9.7% of total 

agricultural commodity futures trade. The share of soybean products 

(soybeans, soybean oil, soybean meal) was 14.4% (CBOT Exchange 

Volume Report, 2014). Price limits have been applied that confine the 

changes that futures prices can undergo in order to control trading when 

markets become too volatile, and to prevent market manipulation. When 

applied, price limits may affect equilibrium prices. This may in turn affect 

price responses to NASS reports. Corn price changes were limited to 0.08 

cent/bushel till November 1972, 0.10 cent/bushel (expandable to 0.15 

cent/bushel) till November 1992, 0.12 cent/bushel (expandable to 0.18 

cent/bushel) till august 2000 and 0.20 cent/bushel since September 2000. 

Soybean futures price changes were limited to 0.30 cent/bushel (expandable 

to 0.45 cent/bushel) till August 2000 and 0.50 cent/bushel since then. 

Isengildina-Massa et al. (2008a) suggest that price responses to information 

release are hardly affected by price limits when these are barely applied. 

3.5. Empirical Application 

The NASS-USDA public reports are a critical component of the US 

agricultural public information system. NASS reports provide 

comprehensive forecasts on supply and demand for the major US and world 

crops and livestock. These reports are mainly fed by data from farm surveys 

and objective surveys. Through the farmer-reported surveys, farmers 

located in the main producing states are asked to provide a subjective 

prediction for their final production. Objective surveys are conducted in the 

biggest corn and soybean-producing states, whose  corn and soybean joint 

production represents about 70% of the US total. Objective surveys are 

based on area-frame sampling methods, where cultivated areas of a given 

crop are randomly selected. Farmer surveys and  objective surveys are 

pooled in a multistage process through applying judgmental and statistical 
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techniques. All indications are then reviewed before the final look up the 

night before the release day (Good and Irwin, 2004).   

The objective of this article is to assess the impact of NASS-USDA 

crop production public forecasts on corn and soybean futures prices. We 

focus on NASS production forecasts that, for corn and soybeans, are 

released monthly from August through November, which coincides with the 

corn and soybean harvest period. To achieve our objective, daily corn and 

soybean futures prices are studied during the five days following the NASS-

USDA report release for the period starting from 1970 to 2004, yielding a 

total of 700 observations. Price data are obtained from the Commodity 

Research Bureau (http://www.crbtrader.com/). Specifically, prices for the 

following two contracts are used. First, the CBOT corn No. 2 with contract 

months including September, December, March, May and July and with a 

contract size of 5 thousand bushels. Second, the CBOT soybeans No. 1 with 

contract months including January, March, May, July, August, September, 

and November and contract size 5 thousand bushels. Futures prices are 

transformed into price returns by computing the logged changes in first 

differences.
13

 We follow Isengildina-Massa et al. (2008a) who suggest 

relying on nearby futures contracts in research analysis. Nearby contracts 

benefit from the highest trade and liquidity. Also, nearby contracts for 

storable goods shall reflect both old and new crop information released. 

NASS-USDA reports are released during non-trading time (either 

before trading begins or after trading stops). Specifically, NASS-USDA 

reports were released at 3 PM for the period from 1970 to 1993 and at 08:30 

AM from 1994 till the end of the sample period. To capture their impact, 

CTC and CTO returns are derived. Karali (2012) shows that CTC returns 

have the advantage of being more conservative than CTO returns, if the 

effects of news are disseminated instantaneously when the market opens. 

CTC returns do not capture instantaneous reactions to releases. Further, 

CTC returns also capture the impacts of other information released during 

the trading day (Isengildina-Massa et al., 2006). Figures 1 and 2 show the 

CTC and CTO prices returns for corn and soybeans. 

In order to define news surprises, the difference between the USDA 

production forecast and market expectations is taken. USDA forecasts are 

obtained from the NASS crop production reports (USDA-NASS, 2014b). 

                                                 
13

 Price limits were applied during the period of our analysis, representing less than 7% of 

our sample of 700 observations.  
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Market expectations on production are obtained as in Good and Irwin 

(2004). For the 1970-2000 period, an average of the forecasts made by 

Conrad Leslie and Sparks Companies, Inc. is taken as a proxy for the 

market expectations. An average of Sparks Companies, Inc. (now Informa 

Economics, Inc.) and Oster/Dow Jones (ODJ) forecasts are used as a proxy 

for the private market expectations from 2001 onwards.
14

 

Figures 3 and 4 show corn and soybean production forecasts news 

surprises. The analysis was carried out using the econometric software 

RATS 6.3. Descriptive statistics for the CTC, CTO futures price returns and 

news surprises are presented in table 1. Test statistics suggest futures price 

returns follow a non-normal distribution with the presence of fat tails. We 

thus assume that the errors in the conditional variance model follow a 

student-t distribution. News surprises are also non-normally distributed. 

 Results from the estimation of the conditional mean and variance 

models are presented in tables 2 and 3, respectively, for both the CTC and 

the CTO models. Lags of price returns in equation (1) were discarded as 

they were not statistically significant. According to economic theory, we 

expect that a positive surprise will cause a decrease in price returns (bearish 

trend), as USDA-NASS production forecasts cause an upward correction of 

production market estimates. A negative surprise will cause an increase in 

price returns (bullish trend) as private agents will update their output 

expectations downward. Hence, the parameter measuring the effect of 

(own) news surprises on price levels shall be negative. Since corn and 

soybeans can be substitutes and complements, both on the production and 

consumption side, cross effects of news surprises are likely to be observed, 

being their sign dependent on the relationship between the two 

commodities. While a negative cross-news surprises sign will be an 

indicator of complementarity, a positive sign would suggest a substitution 

relationship. As explained, USDA production forecasts for corn and 

soybeans, are released monthly from August to November. In the next lines 

a discussion on the release months that are expected to be more influential 

is presented. Uncertainty regarding crop production shall be highest on 

September, at the beginning of the harvest season, and lowest in November, 

at the end of the harvest season. At the beginning of the harvest season, 

uncertainties are higher and markets may be more sensitive to information 

releases. Hence, September news surprises are likely to exert a significant 
                                                 
14

 Logarithmic transformation is applied on private market forecasts. 
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impact. As the harvest season ends, uncertainties are clearing and NASS 

forecasts shall increase in accuracy. This makes these forecasts more 

valuable and markets may be highly sensitive to them. Hence, those reports 

published in the extremes of the harvest season are expected to be more 

influential. 

Conditional mean model results suggest that corn news surprises 

exert a negative and statistically significant effect on CTC and CTO corn 

price returns. Statistical significance is specially relevant in the CTO 

equation. This implies immediate opening time impacts of news. While all 

report releases are relevant to CTO returns, only the August and September 

news surprises are found to be statistically significant in the CTC equation, 

which is compatible with the hypothesis that releases at the beginning of the 

harvest season are relevant. Soybean news surprises are statistically 

significant on both CTO and CTC soybean returns, but differ in both their 

magnitude and the release dates that are found to be significant. Statistical 

significance supports, once more, the idea that releases at the extremes of 

the harvest period tend to be more influential. Cross effects from soybean 

news surprises on corn price returns are mainly significant in the extreme 

points of the harvest period. A similar pattern is followed by the cross 

effects from corn news surprises on soybean price returns. The sign of 

cross-effects suggest a complement relationship between the two crops 

considered. Our results are compatible with Taylor (2012) who studied the 

effects of USDA crop production reports on corn price levels and found 

evidence that report releases at the extreme points of the harvest season are 

the most important. 

ARCH LM tests were applied on the residuals of the conditional 

mean model and evidence of ARCH effects was found, thus supporting the 

use of a GARCH model. We now turn to the interpretation of the 

conditional volatility model. While both corn and soybean price volatility 

are positively influenced by past volatility and past market shocks, 

volatilities do not respond to NASS production forecasts.  The significant 

positive effect of September soybean news surprises on soybeans volatility 

is the only exception. Hence, while information release causes a change in 

price levels, price volatility is left almost untouched. This is indicative of a 

very gradual change in price levels, as opposed to abrupt changes. In 

contrast to our results, Isengildina-Massa et al. (2006) who only considered 

the impact of USDA reports on live/lean hogs futures price conditional 
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variance, found a statistically significant positive effect of USDA reports on 

price volatility. 

3.6. Conclusions  

This paper investigates the impact of USDA-NASS crop production 

reports on corn and soybean futures prices. We assess both the first and the 

second moments of price returns during the five days following the release 

of a NASS report.  Our period of analysis goes from August 1970 to 

November 2005. Price conditional means are modeled as a function of news 

surprises. Price volatility behavior is analyzed through a Student’s t 

GARCH model that allows for news surprises as exogenous variables. The 

model is estimated by maximum likelihood procedures. Our work is the 

first in assessing the effect of public information measured as news 

surprises on both price levels and volatility.  

Our results allow deriving two main conclusions. First, USDA-

NASS reports affect price levels. Both own and cross-price effects are 

found to be relevant. The releases of information at the beginning and at the 

end of the harvest season are usually the ones exerting a stronger impact. 

Hence, market responses seem to be specially relevant when market 

uncertainty is highest and when pubic production forecasts are more 

reliable. Second, price volatility is not affected by news surprises, which is 

indicative of gradual price-level changes. Cross-effects of news are also 

found to be significant. 

In short, results suggest that private agents do not always agree with 

NASS when forming their output expectations. When USDA report releases 

evidence this expectation bias, market prices respond smoothly without 

increasing price instability. Our results thus suggest that public information 

release may contribute to increase market efficiency, to improve stock 

management decisions and might smooth the price formation process, 

relative to a situation in which public forecasts were unavailable. In this 

latter context, price behavior may be more erratic and market shocks may 

be more sizeable. 
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Table 3.1. Descriptive statistics for daily price returns 

 
Close to close Close to open Corn news Soybeans news 

 
Corn soybeans Corn Soybeans  

 

Mean 
-4.560e-4 -5.060e-4 3.120e-4 5.400e-5 1,900e-4 1,491e-3 

Standard deviation 0.015 0.017 0.011 0.012 0.015 0.017 

Maximum 0.055 0.074 0.061 0.083 0.046 0.044 

Minimum -0.052 -0.063 -0.052 -0.062 -0.061 -0.048 

Skewness 0.264*** 0.076 0.922*** 0.422*** -0.311*** -0.209** 

Kurtosis 0.876*** 1.013*** 7.209*** 9.800*** 1.331*** 0.340* 

Jarque-Bera 30.422*** 30.003*** 1610.484*** 2769.863*** 62.929*** 8.463** 

              *** (**) [*] denotes statistical significance at the 1 (5) [10] % level 

              ¨e¨ refers to exponential operator 
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Table 3.2. The conditional mean equations for corn and soybean price    

                  returns  

 
Close to close Close to open 

 
Corn Soybeans Corn Soybeans 

             -0.127** -0.022 -0.165** -0.099** 

                -0.237** 0.011 -0.138** -0.032 

                    -0.081    -0.056 -0.121* -0.094 

                     -0.090 0.172 -0.238** -0.012 

                          -0.107** -0.055 -0.068* -0.063 

                           0.071 -0.090 0.019 -0.022 

                        0.015 -0.146* -0.047 -0.120** 

                           -0.326** -0.398** -0.045 -0.126 

ARCH test         6.859** 4.948** 8.765** 3.719** 

Log-Likelihood 1957.958 1829.517 2188.291 2099.082 

*** (**) [*] denotes statistical significance at the 1 (5) [10] % level 

 

 

 

 

 

 

 

 

 

 

  



90 

 

Table 3.3. The conditional variance equations for corn and soybean price     

                   returns 

 
Close to close Close to open 

 
Corn soybeans Corn  Soybeans 

   3,290e-5* 2,295e-5** 1,869e-5 2,657e-5* 

    
  0.078** 0.110** 0.233 0,200** 

    
  0.762*** 0.810** 0.750** 0.715** 

             -6,202e-4 -1,139e-4 -4,443e-4 -4,075-e4  

                -3,565e-4 1,391e-4 -5,670e-4 -6,808e-4 

              -3,091e-4 2,350e-4 -6,610e-4 -4,118e-5  

               1,054e-3 -4,402e-5 1,047e-3 1,052e-3 

                 6,916e-5 -3,502e-4 4,104e-4 1,179e-4 

                    2,099e-3 9,281e-4* 5,637e-4 8,204e-4** 

                  -6,417e-4 1,296e-4 4,327e-4 -2,226e-4 

                   -7,560e-4 -2,850e-4 -5,358e-4 5,653e-4 

Log-Likelihood 1984.375 1886.110 2362.431 2316.516 

*** (**) [*] denotes statistical significance at the 1 (5) [10] % level 

¨e¨ refers to scientific notation (with exponent) 
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Figure 3.1. Close to Close price returns for corn and soybeans 
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Figure 3.2. Close to Open price returns for corn and soybeans 

 

 

 

 

-0.06 

-0.04 

-0.02 

0 

0.02 

0.04 

0.06 

0.08 

1
 

2
7

 
5

3
 

7
9

 

1
0

5
 

1
3

1
 

1
5

7
 

1
8

3
 

2
0

9
 

2
3

5
 

2
6

1
 

2
8

7
 

3
1

3
 

3
3

9
 

3
6

5
 

3
9

1
 

4
1

7
 

4
4

3
 

4
6

9
 

4
9

5
 

5
2

1
 

5
4

7
 

5
7

3
 

5
9

9
 

6
2

5
 

6
5

1
 

6
7

7
 

Corn 

-0.08 

-0.06 

-0.04 

-0.02 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

1
 

2
7

 
5

3
 

7
9

 

1
0

5
 

1
3

1
 

1
5

7
 

1
8

3
 

2
0

9
 

2
3

5
 

2
6

1
 

2
8

7
 

3
1

3
 

3
3

9
 

3
6

5
 

3
9

1
 

4
1

7
 

4
4

3
 

4
6

9
 

4
9

5
 

5
2

1
 

5
4

7
 

5
7

3
 

5
9

9
 

6
2

5
 

6
5

1
 

6
7

7
 

Soybeans 



93 

 

Figure 3.3. News Surprises for corn production forecasts 
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Figure 3.3. (continued) News Surprises for corn production forecasts 

 

 

 

 

-0.08 

-0.06 

-0.04 

-0.02 

0 

0.02 

0.04 

0.06 

0.08 

News Surprises of October 

-0.08 

-0.06 

-0.04 

-0.02 

0 

0.02 

0.04 

0.06 

0.08 

News Surprises of November 



95 

 

Chapter 4: General conclusions and future research  

The guiding theme of this thesis is the empirical analysis of recent 

food price behavior. It is composed of three applied studies that address the 

impacts of energy prices on both food price levels and volatility, as well as 

the impact of public information release on futures markets of major 

agricultural commodities. Non-structural time series econometric 

techniques are applied for such purpose. 

In the first chapter,  the impact of the Spanish biodiesel industry on 

agricultural feedstock prices is investigated. Both price level and volatility 

interactions are evaluated. Three relevant prices are considered: the 

international crude oil price, the Spanish biodiesel blend price and the 

Spanish sunflower oil price. Weekly Prices are observed from November 

2006 to October 2010, yielding a total of 205 observations. Blended 

biodiesel, sunflower and crude oil prices are found to be interrelated in the 

long-run. This parity is preserved by the biodiesel industry in order to be in 

equilibrium. The impact of biodiesel on sunflower oil price levels is found 

to be very modest, which is reasonable given the small size of the Spanish 

biodiesel industry. Volatility spillovers between sunflower and biodiesel 

markets are found to be significant. Evidence of asymmetries in price 

volatility patterns is also found, with price declines causing more price 

instability than price increases. Asymmetries can be triggered by the 

availability of alternative feedstocks in the market, as well as by the 

unwillingness of biodiesel producers to increase food prices when 

feedstocks become more expensive. 

In the second chapter, the impact of the EU biodiesel market on 

agricultural feedstock prices is analyzed. The study comprises the period 

between 06/11/2008 to 14/06/2012, and is based on 189 weekly prices. 

Cointegration analysis suggests that the three prices have a long-run 

equilibrium relationship that is preserved by the pure biodiesel price. 

Biodiesel prices are not found to have an effect on rapeseed oil prices. 

Volatility of pure biodiesel price is affected by its own past volatility and 

past pure biodiesel and rapeseed market shocks. Also, evidence is found of 

asymmetries in price volatility, with negative market shocks having a 

greater impact than positive ones. While pure biodiesel prices cannot affect 

rapeseed oil price-levels, they can bring instability to these prices. 

Inventory building and the euro-dollar exchange rate are found to be 
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relevant risk management instruments that can be used to mitigate the 

biodiesel and rapeseed oil price volatilities.  

In the third chapter, the impact of public information in the form of 

USDA-NASS crop production reports on daily corn and soybeans futures 

prices is evaluated. The study period is between 1970 to 2004, with a total 

of 700 observations. Results show that USDA-NASS crop production 

reports significantly affect futures price levels. Report releases at the 

beginning and at the end of the harvest season are usually the ones exerting 

a stronger impact. Report releases are not however found to have an effect 

on price volatility, which suggests gradual price-level changes as a response 

to published information. Cross-market effects of news are also found to be 

significant. 

This thesis contributes to previous literature by shedding light on 

recent food price behavior. While different causes have been pointed as 

responsible for recent food price patterns, further empirical research is 

needed to confirm or dismiss such causes. This constitutes the main 

scientific contribution of this dissertation. More specifically, this thesis 

addresses three important topics that have not been considered by previous 

research. First, it assesses whether asymmetries do characterize price 

volatility links between food and energy markets. Second, it extends the 

specification of food price volatility models to a consideration of the impact 

of exogenous variables such as commodity stock building, or exchange 

rates. Third, it sheds light on a very recent research topic that aims at 

determining to what extent information release and financialization of food 

commodity markets can have an effect on food price behavior.  

The research conducted in this thesis may be extended from different 

perspectives. Time-series econometric techniques are usually based upon 

specific assumptions on the multivariate distribution function characterizing 

price dependence. Conventional analyses of dependency between multiple 

random variables are constrained by statistical tool availability and mainly 

rely on multivariate normal or student’s t distributions. These distributions 

have been shown to usually misrepresent food price patterns. This calls for 

the need to use flexible statistical instruments to represent multivariate 

distribution functions.  

Statistical copulas provide flexibility in evaluating dependence 

between variables. Copulas are based on the Sklar's (1959) theorem that 

shows that, in multivariate distribution functions, the univariate margins 
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and the multivariate dependence structure can be separated and the 

dependence structure represented by a copula. The Sklar's theorem allows 

the researcher to focus on modeling univariate distribution functions, which 

usually leads to the construction of better models (Patton, 2006; Patton, 

2012).  

Future research paths not only include the use of more flexible 

methodologies such as copulas, but also the selection of the topics being 

studied. At the time of writing this concluding remarks chapter, the 

literature on the links between food and energy prices has grown 

substantially (Serra and Zilberman, 2013). A topic that still remains rather 

unexplored are the consequences of the financialization of food markets. 

Hence, the effects of speculation, the introduction of electronic trading, etc. 

remain very appealing areas for future analysis. 
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