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Abstract 
 
Analytical disciplines are an important field for the progress of healthcare and medicine. In fact the 

technologies related to analytical disciplines may reveal important information for early diagnosis, 

treatment of diseases, food safety and environmental monitoring. In this regard, novel advances in 

analytical disciplines are highly desired. As a promising tool, biosensors are useful systems that enable 

the detection of agents with diagnostic interest. Since nanotechnology enables the manipulation and 

control at the nanoscale, biosensors based on nanotechnology offer powerful capabilities to diagnostic 

technology. In this dissertation, the advantages of the integration of nanomaterials into microarray 

technology are widely studied, generally in terms of sensitivity. Particularly, the performance of 

cadmium-selenide/zinc-sulfide (CdSe@ZnS) quantum dots (QDs) and the fluorescent dye Alexa 647 as 

reporter in an assay designed to detect apolipoprotein E (ApoE) has been compared. The assay is a 

sandwich immunocomplex microarray that functions via excitation by visible light. ApoE was chosen for 

its potential as a biomarker for Alzheimer’s disease. The two versions of the microarray (QD or Alexa 

647) were assessed under the same experimental conditions. The QDs proved to be highly effective 

reporters in the microarrays, although their performance strongly varied in function of the excitation 

wavelength. At 633 nm, the QD microarray, at an excitation wavelength of 532 nm, provided a limit of 

detection (LOD) of ∼62 pg mL−1, five times more sensitive than that of the Alexa microarray (∼307 pg 

mL−1). Finally, serial dilutions from a human serum sample were assayed with high sensitivity and 

acceptable precision and accuracy (Anal. Chem. 2012, 84:6821).  

 

Since graphene oxide (GO) is a recently discovered nanomaterial and microarray technology relies on 

optical signals, the photonic properties of GO are discussed and the state-of-the-art of GO in optical 

biosensing has been widely documented (Adv. Mater. 2012, 24:3298). Furthermore, GO has been studied 

as a highly efficient quencher of QDs, reporting a quenching efficiency of nearly 100%. Finally, such 

interaction between GO and QDs has been proposed as a highly sensitive transduction system for 

microarray-based biodetection (Carbon 2012, 50:2987). This research aims at demonstrating how the 

endeavour of the fusion between nanomaterials and microarray technology exhibits enormous 

possibilities towards biomarker screening, food safety and environmental monitoring. 

 

Keywords: Biosensors, Quantum dots, Fluorescence resonance energy transfer, Graphene oxide, 

microarray technology. 
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Nanomaterials Based Microarray Platforms for Biodetection 
 

 

Introduction 
 
The concept of diagnosis based on biological samples dated back several thousand years ago documented 

from the ancient China, Egypt to the Middle Ages of Europe.1 Nevertheless, it was not until the 60’s 

when Professor Leland C Clark Jnr., as the father of the biosensor concept, described how to perform 

reliable and robust measurements of analytes (molecules of interest) presents in the body.2 Presently, 

cancer can be diagnosed by screening the levels of the appropriate analytes existing in blood and likewise 

diabetes is inspected by measuring glucose concentrations. Moreover, the most conventional techniques 

of diagnostic technologies are the enzyme-linked immunosorbent Assay (ELISA) and the polymerase 

chain reaction (PCR). Nevertheless, these techniques report different handicaps such as high cost and 

time required, significant sample preparation, intensive sample handling, and can become troublesome to 

patients. Accordingly, novel advances in diagnostic technology are highly desired. 

Diagnostic technology is an important field for the progress of healthcare and medicine. In fact this 

technology may reveal important information for early diagnosis, treatment of diseases, food safety and 

environmental monitoring.  

A biosensor is defined by the International Union of Pure and Applied Chemistry (IUPAC) as a “device 

that uses specific biochemical reactions mediated by isolated enzymes, immunosystems, tissues, 

organelles, or whole cells to detect chemical compounds usually by electrical, thermal, or optical 

signals”.3 Generally, biosensors include biorecognition probes (responsible for the specific detection of 

the analytes) and a transducer element (which converts a biorecognition event into a suitable signal). In 

the 21st century, nanotechnology has been revolutionizing many fields including medicine, biology, 

chemistry, physics, and electronics. In this way, biosensors have also been benefited by nanotechnology, 

which is an emerging multidisciplinary field that entails the synthesis and use of materials or systems at 

the nanoscale (normally 1 to 100 nm). The rationale behind this technology is that nanomaterials possess 

optical, electronic, magnetic or structural properties that are unavailable for bulk materials. Since 

nanomaterials range in the same scale of the diagnostic molecules, when linked to biorecognition probes 

(such as antibodies, DNA and enzymes), nanostructures allow the control, manipulation and detection of 

molecules with diagnostic interest, even at the single molecule level. Normally, nanobiosensors are based 

on nanomaterials or nanostructures as transducer elements or reporters of biorecognition events. Figure 1 

displays the schematic representation of a nanobiosensor. 
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Figure 1. Schematic representation of a nanobiosensor. Normally, a nanobiosensor relies on nanomaterials as transducer 

elements or reporters of biorecognition events. 

 

Biorecognition probes 

 

Biorecognition probes, or molecular bioreceptors, are the key in the specificity of biosensors (a non-

specific biorecognition event can yield a false result). Biomolecular recognition generally entails different 

interactions such as hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-

pi interactions and electrostatic interactions. In this section the most common biorecognition probes in 

nanaobiosensors are briefly discussed (see figure 2). 

 

Antibodies 

 

Antibodies are soluble forms of immunoglobulin containing hundreds of individual amino acids arranged 

in a highly ordered sequence. These polypeptides are produced by immune system cells (B lymphocytes) 

when exposed to antigenic substances or molecules. Proteins with molecular weights greater than 5000 

Da are generally immunogenic. Antibodies contain in their structure recognition/binding sites for specific 

molecular structures of the antigen. Since an antibody interacts in a highly specific way with its unique 

antigen, antibodies are the key point of the so-called immunoassays and are widely employed in 

biosensing. 

 

Aptamers  

 

Aptamers are novel artificial oligonucleic acid molecules that are selected (in vitro) for high affinity 

binding to several targets such as proteins, peptides, amino acids, drugs, metal ions and even whole cells. 
4–6  
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Enzymes 

 

Enzymes are protein catalysts of remarkable efficiency involved in chemical reactions fundamental to the 

life and proliferation of cells. Enzymes also possess specific binding capabilities and were the pioneer 

molecular recognition elements used in biosensors7 and continue still used in biosensing applications.8,9 

 

Nucleic Acids 

Since the interaction between adenosine and thymine and cytosine and guanosine in DNA is 

complementary, specific probes of nucleic acids offer sensitive and selective detection of target genes in 

biosensors.10 

 

Transduction modes  

 

In order to detect biorecognition events, biosensors require a transduction mode. Transduction modes are 

generally classified according to the nature of their signal into the following types: 1) optical detection, 2) 

electrochemical detection, 3) electrical detection, 4) mass sensitive detection and 5) thermal detection.  

 

Optical detection 

 

Optical biosensing is based on several types of spectroscopic measurements (such as absorption, 

dispersion spectrometry, fluorescence, phosphorescence, Raman, refraction, surface enhanced Raman 

spectroscopy, and surface plasmon resonance) with different spectrochemical parameters acquired 

(amplitude, energy, polarization, decay time and/or phase). Among these spectrochemical parameters, 

amplitude is the most commonly measured, as it can generally be correlated with the concentration of the 

target analyte.11  

 

Electrochemical detection 

 

Electrochemical detection entails the measurement of electrochemical parameters (such as current, 

potential difference or impedance) of either oxidation or reduction reactions. These electrochemical 

parameters can be correlated to either the concentration of the electroactive probe assayed or its rate of 

production/consumption.11 

 

Electrical detection 
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Electrical detection is often based on semiconductor technology by replacing the gate of a metal oxide 

semiconductor field effect transistor with a nanostructure (usually nanowires or graphitic nanomaterials). 

This nanostructure is capped with biorecognition probes and a electrical signal is triggered by 

biorecognition events.12,13 

 

Mass sensitive detection 

 

Mass sensitive detection can be performed by either piezoelectric crystals or microcantilevers. The former 

relies on small alterations in mass of piezoelectric crystals due to biorecognition events. These events are 

correlated with the crystals oscillation frequency allowing the indirect measurement of the analyte 

binding.14 Microcantilever biosensing principle is based on mechanical stresses produced in a sensor upon 

molecular binding. Such stress bends the sensor mechanically and can be easily detected.15 

 

Thermal detection 

 

Thermal biosensors are often based on exothermic reactions between an enzyme and the proper analyte. 

The heat released from the reaction can be correlated to the amount of reactants consumed or products 

formed.16  

 

Nanomaterials: The nanobiosensors toolbox 

 

Recent advances of the nanotechnology focused on the synthesis of materials with innovative properties 

have led to the fabrication of several nanomaterials such as nanowires, quantum dots, magnetic 

nanoparticles, gold nanoparticles, carbon nanotubes and graphene. These nanomaterials linked to 

biorecognition probes are generally the basic components of nanobiosensors. In order to attach 

nanomaterials with biorecognition probes, nanomaterials are either electrostatically charged or 

functionalized with the suitable chemically active group.17–21 In the following section the most widely 

used nanomaterials in biosensing are briefly described and they are sketched in figure 2. 

 

Zero-dimensional nanomaterials 

 

Quantum Dots (QDs) 

 

QDs are semiconductors nanocrystals composed of periodic groups of II–VI (e.g., CdSe) or III–V (InP) 

materials. QDs range from 2 to 10 nm in diameter (10 to 50 atoms). They are robust fluorescence emitters 

with size-dependent emission wavelengths. For example, small nanocrystals (2 nm) made of CdSe emit in 
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the range between 495 to 515 nm, whereas larger CdSe nanocrystals (5nm) emit between 605 and 630 

nm. 22 QDs are extremely bright (1 QD ≈ 10 to 20 organic fluorophores).23 They have high resistance to 

photobleaching, narrow spectral linewidths, large stokes shift and even different QDs emitters can be 

excited using a single wavelength, i.e. they have a wide excitation spectra.24,25 Because of their properties 

QDs are used in biosensing as either fluorescent probes26,27 or labels for electrochemical detection28.  
 

Gold Nanoparticles (AuNPs)  

 

Synthesis of AuNPs often entails the chemical reduction of gold salt in citrate solution. Their scale is less 

than about 100nm. AuNPs have interesting electronic, optical, thermal and catalytic properties. 29,30 

AuNPs enable direct electron transfer between redox proteins and bulk electrode materials and are widely 

used in electrochemical biosensors, as well as biomolecular labels.31,32 

 

Magnetic nanoparticles (MNPs) 

 

MNP are often composed by iron oxide and due to their size (20 – 200 nm) they can possess 

superparamagnetic properties. MNP are used as contrast agents for magnetic resonance imaging and for 

molecular separation in biosensors devices.33–35  

 

One-dimensional nanomaterials 

 

Carbon Nanotubes (CNTs)  

 

CNTs consist of sheets (multi-walled carbon nanotubes, MWCNTs) or a single sheet (single-walled 

carbon nanotubes SWCNTs) of graphite rolled-up into a tube. Their diameters range about from 5 to 90 

nm. The lengths of the graphitic tubes are normally in the micrometer scale. CNTs seem a remarkable 

scheme of excellent mechanical, electrical and electrochemical properties36,37 and even can display 

metallic, semiconducting and superconducting electron transport.38 The properties of carbon nanotubes 

are highly attractive for electrochemical biosensors and also has been used as transducer in bio-field-

effect transistors.39,40 
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Figure 2. Biorecognition probes and nanomaterials. A. Biorecognition probes. B. Nanomaterials. C. Nanomaterials decorated 

with biorecognition probes. QD, Quantum Dot; AuNP, gold nanoparticle; MNP, magnetic nanoparticle. Sketches are not at scale. 

 

 

Nanowires 

 

Nanowires are planar semiconductors with a diameter ranging from 20 to 100 nm and length from 

submicrometer to few micrometer dimensions. They are fabricated with materials including but not 

limited to silicon, gold, silver, lead, conducting polymer and oxide.41,42 They have tunable conducting 

properties and can be used as transducers of chemical and biological binding events in electrically based 

sensors such as bio-field-effect transistors.43–45 
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The innovative two-dimensional material: graphene 

 

Graphene is a recently discovered one-atom-thick planar sheet of sp2 bonded carbon atoms ordered in a 

two-dimensional honeycomb lattice and is the basic building block for carbon allotropes (eg. fullerens, 

CNTs and graphite). Graphene has displayed fascinating properties such as electronic flexibility, high 

planar surface, superlative mechanical strength, ultrahigh thermal conductivity and novel electronic 

properties.46 Owing to its properties, graphene has been employed as transducer in bio-field-effect 

transistors, electrochemical biosensors, impedance biosensors, electrochemiluminescence, and 

fluorescence biosensors, as well as biomolecular labels.47,48  

 
Antibody Microarray Technology 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 3. Image of an antibody microarray. Microarrays foreground is integrated by microscopic target elements (spots) and is 

ordered by rows and columns. Background contains unspecific signals. 

 

Protein microarrays based biosensing is an area of active research with high potential for the development 

of novel multiplexed diagnostic assays. This biosensing technology often relies on fluorescent signals, 

provided from microarrayed labeled molecules over glass slides, so as to estimate the amount of analytes 

concentration after assay steps. Antibody microarrays is a technology that enables to quantify target 

proteins into a multiplexed assay (see figure 3). These analytical devices posses four distinct 

characteristics: (a) microscopic target elements or spots, (b) planar substrates (printing surface), (c) rows 

and columns of elements and (d) specific binding between microarray biorecognition probes on the 

substrate (capture antibodies for antibody micorarrays) and the target molecules in solution (analytes).  

The number of analytes that can be assayed is equal to the number of different spotted biorecognition 

probes. These analytes are captured through a multiplexed immunoassay, which relies on the reaction 

between analytes and their specific antibodies. 

 

Generally, microarray based biodetection implies: the printing of the biorecognition probes (i.e. 

antibodies) onto functionalized glass slides through a spotting robot (figure 4A), carrying out the assay 

    Spot 

     Fila 

    Spot 

     Row 

      Background 

Microarray 
             Column 
    Columna 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(including a fluorescent reporter of the performed biodetection, figure 4B), the imaging of the assayed 

slides with a microarray scanner and the measurement of the obtained images through a specialized 

software (e.g. GenePix) (figure 4C). 

 

 

Figure 4. Microarray technology set-up. A. Printing process of the microarrays onto functionalized glass slides. B. Carrying out 

the assay and reporting the biodetection through fluorescent probes. C. Imaging and measurement of the assayed slides. 

 

The endeavour of the integration of nanomaterials into microarray technology 

 

As a powerful biosensing platform, microarray technology may enable novel biosystems. Moreover, 

biorecognition probes linked to nanomaterials (such as graphene oxide and quantum dots) provide 

extraordinary biomolecular receptors/reporters that selectively bind molecules such as: small pesticides, 

toxins, drugs, biopolymers (e.g. allergens) and complex biological structures like biomarkers, bacteria 
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and viruses. In spite of possessing enormous capabilities in clinical diagnosis, food safety and 

environmental monitoring; the endeavour of the integration of nanomaterials into microarray technology 

is a relatively little-explored field. For example, a search on the Web of Knowledge through the formula 

Topic=(microarray technology) AND Topic =(nanomaterial*) displays only 22 results (consulted on June 

20th 2013). In this dissertation, the advantages of the integration of nanomaterials (such as quantum dots 

and graphene oxide) into microarray technology are widely studied, generally in terms of sensitivity.  

 

Particularly, the performance of cadmium-selenide/zinc-sulfide (CdSe@ZnS) quantum dots (QDs) and 

the fluorescent dye Alexa 647 as reporter in an assay designed to detect apolipoprotein E (ApoE) has 

been compared. The assay is a sandwich immunocomplex microarray that functions via excitation by 

visible light. ApoE was chosen for its potential as a biomarker for Alzheimer’s disease. The two versions 

of the microarray (QD or Alexa 647) were assessed under the same experimental conditions, and then 

compared to a conventional enzyme-linked immunosorbent assay (ELISA) targeting ApoE. The QDs 

proved to be highly effective reporters in the microarrays, although their performance strongly varied in 

function of the excitation wavelength. At 633 nm, the QD microarray gave an LOD of ~247 pg mL-1; 

however, at excitation wavelength 532 nm, it provided a LOD of ~62 pg mL-1—five times more sensitive 

that of the Alexa microarray (~307 pg mL-1) and seven times more than that of the ELISA (~470 pg mL-

1). Finally, serial dilutions from a human serum sample were assayed with high sensitivity and acceptable 

precision and accuracy. (Published in Analytical Chemistry, see pages 12-18).  

 

Since graphene oxide is a recently discovered nanomaterial and microarray technology relies on optical 

signals, the photonic properties of graphene oxide (GO) are discussed and the state-of-the-art of GO in 

optical biosensing has been widely documented. In fact, as an oxygenated lattice of donor/acceptor 

molecules exposed in a planar surface, GO enables unprecedented optical biosensing strategies to detect 

DNA, cancer biomarkers, viruses, and more. It has excellent capabilities for direct wiring with 

biomolecules, heterogeneous chemical and electronic structures, the ability to be solution-processed, and 

the ability to be tuned as either an insulator, semiconductor or semi-metal (published in Advanced 

Materials, see pages 19-30).  

 

In this thesis, GO has been studied as a highly efficient quencher of quantum dots; i.e. in Förster 

resonance energy transfer (FRET). FRET entails the transfer of energy from a photoexcited energy donor 

to a close energy acceptor. In this regard, quantum dots (QDs), as donors, are quenched when they are 

next to an acceptor material. Graphite, carbon nanotubes (CNTs), carbon nanofibers (CNFs) and graphene 

oxide (GO) were explored as energy acceptors of QD FRET donors in the solid phase. In our set-up, 

using a microarray scanner, the higher estimated values of quenching efficiency for each material are as 

follows: graphite, 66 ± 17%; CNTs, 71 ± 1%; CNFs, 74 ± 07% and GO, 97 ± 1%. Among these materials, 

GO is the best acceptor of QD FRET donors in the solid phase. Such an ultrahigh quenching efficiency by 
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GO and the proposed simple mechanism may open the way to several interesting applications in the field 

of biosensing (published in Carbon, see pages 31-37). For example, it can be exploited in novel nano-

enabled systems for food safety and environmental monitoring; particularly, for pathogen screening in 

microarray platforms. Therefore, as documented in the following content, which includes three peer-

reviewed publications, the endeavour of the fusion between nanomaterials (e.g. graphene oxide and 

quantum dots) and microarray technology exhibits enormous capabilities towards several applications 

such as clinical diagnosis, food safety and environmental monitoring. These applications might be overall 

very useful to safeguard/monitor the public health.  
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Discussion and Conclusions 
 

 

The integration of nanomaterials in microarray technology can outperform the conventional microarray 

technology performance. As en example, the biosensing performance of core−shell quantum dots 

(QD655) and a fluorescent dye (A647) while being employed in the same experimental conditions as 

reporters of sandwich immunocomplexes in microarray format has been explored and they are also 

compared with a conventional ELISA. A potential AD biomarker (ApoE) has been proposed as the model 

analyte. Regarding the sensitivity, quantum dots (QDs) have been found to become advantageous 

reporters in microarray technology even though they are not excited with an ideal wavelength (633 nm, 

LOD of ca. 247 pg mL-1). On the other hand, while QDs are excited at more suitable wavelengths (457, 

488, and 532), we obtain up to a 7-fold enhancement in the LOD (ca. 62 pg mL-1) when compared with a 

conventional ELISA (ca. 470 pg mL-1) and up to a 5-fold enhancement when compared with Alexa 647 as 

reporter in microarray format (LOD of ca. 307 pg mL-1). Finally, very small volumes (few µL) of human 

serum were assayed with high sensitivity and acceptable precision and accuracy. This approach could be 

extended to other kind of biomarkers.  
 

Since the incorporation of QDs into microarrays is a relatively new endeavour, various challenges in this 

technology remain to be addressed. For instance, many current scanners lack the tools to obtain QD 

fluorescent signals under suitable excitation conditions. Most of them include excitation sources for red 

lasers and for green lasers. Furthermore, many of these scanners cannot be configured to simultaneously 

select the excitation source and the filter emission. Moreover, compared to organic dyes, QDs are very 

expensive to purchase. However, several synthetic routes to QDs have already been published, and 

configurable scanners or other setups can be employed for QD signal acquisition in microarray platforms. 

Fine-tuning of microarrays for use with nanomaterials should enable improved biosensing performance 

and accelerate incorporation of this technology into real-world bioanalytical scenarios for applications in 

diagnostics, safety, security, and environmental monitoring. 

 

Graphene oxide (GO) displays advantageous characteristics as a biosensing platform due to its excellent 

capabilities for direct wiring with biomolecules, a heterogeneous chemical and electronic structure, the 

possibility to be processed in solution and the ability to be tuned as insulator, semiconductor or semi-

metal. Moreover, GO photoluminescences with energy transfer donor/acceptor molecules exposed in a 

planar surface and is even proposed as a universal highly efficient long-range quencher. The experimental 

results included here are evidence of the fact that GO is the most powerful acceptor of QDs fluorescence 

resonance energy transfer (FRET) donors compared with graphite, carbon nanofibers and carbon 

nanotubes. The demonstrated properties can be of exceptional importance for several kinds of 

applications in nanobiotechnology. For example, owing to the extraordinary structure and photonic 
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properties of GO, a pathogen detection system based on the interaction of GO as acceptor of QD FRET 

donors can be proposed. Since GO bears high-powered antibacterial properties, such proposal might be 

employed to both detect bacteria and attack bacterial membrane integrity. Furthermore, as a potential 

diagnosis tool, the proposed system might be extended to different kinds of analyte such as cancer cells, 

molecular logic operations and other nano-biosystems. 

 

Not only nanomaterials can enhance the performance of microarray technology but also micromaterials. 

For example, in microarray technology, the transport of the target molecule toward its molecular 

bioreceptors can play a critical role in its biodetection performance. In this context, the performance of 

microarray technology might also be enhanced by incorporating microdevices that assist the transport of 

the analyte (contained in the assayed sample) to the microarray spots (molecular bioreceptors). 

 

The presented approaches are in-vitro applications. In-vivo applications are seldom reported, furthermore 

the toxic effects of nanomaterials are little known yet. Nevertheless, close consensus with regulatory 

agencies (e.g. the European Medicines Agency or the US Food and Drugs Administration) to develop 

comprehensive standards for nanomaterials applications will ensure the operative and realistic transition 

of nanomaterials based biodetection systems to approved devices. In the future so as to facilitate 

healthcare and medicine, the studied approaches might be integrated to simple biomolecular detections 

performed in point of care devices. 

 

 

 




