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Abstract

In recent times, three-dimensional computer simulations have become quite popular to

model the acoustics of the vocal tract. They can overcome some of the classical limitations

of one-dimensional techniques and include all intricate details of the vocal tract geometry,

greatly improving the quality of the generated sounds. The finite element method (FEM)

is probably the most appropriate approach for solving the underlying equations of voice.

In the first part of this thesis the problem of vowel production is addressed. FEM is used

to solve the wave equation for the acoustic pressure combined with a Perfectly Matched

Layer (PML) to account for free-field radiation conditions. This allows the simulation

of acoustic waves propagating through the vocal tract and emanating from the mouth

aperture. The proposed FEM approach is then validated against experiments performed

with simplified vocal tract replicas. Following is an adaptation of a two-microphone

transfer function method to compute vocal tract impedances, which becomes later used

to analyze the radiation effects of human head simplifications on vowels. Finally, it is

proposed to perform two-dimensional (2D) simulations based on a tuning process that

allows 2D vocal tracts to mimic the acoustics of 3D vocal tracts, to a large extent. This

results in a very good balance between computational cost and voice quality. In the second

part of the thesis diphthong sounds are generated. A stabilized finite element scheme for

the mixed wave equation in an Arbitrary Lagrangian-Eulerian (ALE) framework is derived

for that purpose. Diphthongs are produced using both, 3D moving vocal tracts as well as

2D tuned vocal tracts.

The proposed approach for vowels and diphthongs allows not only to visualize waves

propagating within the vocal tract but also to listen to the corresponding generated

sounds.
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continuem fent els nostres sopars al Fosters molts més anys.
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Chapter 1

Introduction

1.1 Motivation and scope

In the past decades several strategies have been followed to simulate human voice.

For historical reasons, various simplifications have been attempted in order to generate

realistic voice signals. For instance, the pre-recorded speech segment concatenation or

parametric modelling (e.g., Hidden Markov Models or Harmonic plus Noise Models) that

current speech synthesizers incorporate, or the several tricks that classical articulatory

models make when approximating the intricate three-dimensional (3D) physics of voice

to more simplified one-dimensional strategies. However, the amazingly growing capacity

of computers combined with extensive research on numerical mathematics and medical

imaging, has opened the door to go one step beyond and simulate the whole 3D mechanism

of voice production. This means to simulate from the vocal folds vibration and the glottal

flow they generate, to its filtering by the vocal tract and final voice emission to free space.

Several physical phenomena have to be considered to do so, which include the interaction

between the mechanical, aerodynamic and acoustic fields, the collision of the vocal folds,

the generation of turbulent airflows and the propagation of acoustic waves in a dynamic

vocal tract.

It is at the aim of this work to contribute to the construction of this three-dimensional

voice simulation engine. In particular, to address the problem of vowel and diphthong

production by numerically solving the involved equations using Finite Element Methods.

Special attention is paid to the vocal tract acoustic modelling, which constitutes the core

of this thesis.

3



4 1.2. A brief review of articulatory voice models

The applications of such a voice engine are wide in the mid-long term, in addition to

the basic knowledge that it may provide to the better understanding on how voice works

(and fails). These range from synthesizing natural and personalized speech not depending

on pre-recorded speech corpora, to improved medical procedures (e.g., simulating the

acoustic effects of a surgery), pedagogy and education of voice (e.g., improvement of

second language learning by visualizing the voice organs and the generated acoustic waves

while listening the produced sound), media technologies (e.g., a human avatar with a real

synchrony between voice and image) and new forms of cultural expression.

1.2 A brief review of articulatory voice models

Any articulatory model for voice production has to address three issues: having an

appropriate geometrical model of the voice organ, having an acoustic source model for

the pulses generated at the vocal folds and having an adequate model for the vocal tract

acoustics. Let us briefly review their current state of the art with special emphasis on the

latter, which constitutes the core of the present thesis.

1.2.1 Block diagram

An articulatory voice model can be divided into the following parts conforming to the

block diagram in Fig. 1.1:

• Glottal source model: the main goal of this block is to mimic the behavior of

the phonatory organs (vocal folds) to generate the input inflow into the vocal tract.

For voiced sounds (e.g. vowels and diphthongs), this airflow corresponds to a train

of pseudoperiodic pulses known as glottal pulses.

• Vocal tract geometry model: this model generates the vocal tract geometry

corresponding to the sound produced at each instant of time. For vowels a static

configuration of the vocal tract can be assumed while for diphthongs dynamic vocal

tracts will be required.

• Vocal tract acoustic model: using as input the vocal tract geometries and the

train of glottal pulses generated by the vocal folds, the time evolution of the acoustic

pressure is computed within the vocal tract and in the near free-field. Tracking then

the acoustic pressure close to the mouth aperture and transforming it to an audio

file we get the generated sound. For instance, if the geometry model provides a
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set of vocal tracts transiting from vowel /a/ to vowel /i/, the produced sound will

correspond to the diphthong /ai/.

• Articulatory control: this is the “front-end” of the articulatory model and it

is the responsible to control all the above models for generating a given sound.

Simple configurations will be given to this model. However, in the future, it could

be replaced for example with a more sophisticated text-to-phonetics-to-neuromotor

“front-end”.

Fig. 1.1: Block diagram of the proposed time domain FEM articulatory voice model.

As previously commented, this work is focused on the vocal tract acoustic modelling, and

specifically on the use of finite element methods to solve the equations that describe the

production of vowels and diphthongs. In what follows, we will briefly describe the main

strategies used to model each block in Fig. 1.1 and justify the options selected in this

thesis.

1.2.2 Vocal tract geometry model

The first thing we need is a geometry that resembles the human vocal tract, in order to

lately compute its acoustic behavior. That is, we need to know the inner boundary of

the vocal tract cavity (which implies knowing the shapes and positions of all vocal tract

articulators such as lips, jaw, tongue, palate, nasal cavity, etc.) when a given sound is

produced. If the sound is not steady, then the geometry will evolve with time (e.g., when

pronouncing a diphthong or a syllable) and, hence, this evolution also has to be modeled.



6 1.2. A brief review of articulatory voice models

(a) (b) (c) (d)

Fig. 1.2: Vocal tract geometry models. (a) Geometrical model by Birkholz and Kröger

(2006), (b) statistical model by Matsuzaki et al. (2008), biomechanical model generated

using Artisynth environment by Stavness et al. (2011), and (d) 3D vocal tract airway of

vowel /a/ reconstructed by the author from area functions in Story (2008). The latter is

the option used through this work for the vocal tract geometry model.

Depending on how the vocal tract geometry is approximated, the corresponding models

can be classified as being geometrical (see Fig. 1.2a), statistical (see Fig. 1.2b) or

biomechanical (see Fig. 1.2c) (Kröger and Birkholz, 2009):

• Geometrical models (e.g., Mermelstein, 1973; Birkholz et al., 2006) rely on

simulating the complex vocal tract airflow linking simple geometric elements (i.e.,

circumferences, arcs, squares, etc.). The various parameters of these elements (i.e.

radius, dimensions, etc.) can be modified to simulate the articulatory movements of

the vocal tract. Geometric models are the most flexible ones and can be adapted to

mimic any speaker’s vocal tract (different age and sex, Birkholz and Kröger, 2006).

• Statistical models (e.g., Stark et al., 1999; Serrurier and Badin, 2008; Palo et al.,

2012; Aalto et al., 2014) obtain the vocal tract geometry from huge databases

measured using different techniques such as MRI (Magnetic Resonance Imaging),

CT (Computed Tomography), X-ray or/and EMA (a review of these techniques

applied to voice production can be found in Ridouane, 2006). Although very precise

and realistic, statistical models just reproduce the characteristics of a single speaker

and become much less flexible than geometrical models. Their advantage is that

they deal with a relatively small set of uncorrelated parameters.

• Biomechanical models (e.g., Dang and Honda, 2004; Fels et al., 2009; Stavness et al.,

2011) make use of numerical methods (typically FEM) to simulate the dynamics of

the vocal tract. Physiological knowledge on the relation between muscle activation

and articulatory movements for voice synthesis is therefore required. These models

usually involve a large number of parameters and are difficult to control.
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The above described models generate three-dimensional geometries. However, some vocal

tract acoustic models deal with faster one-dimensional simulations. To do so, a process

is performed consisting in computing the area of each cross-section perpendicular to the

midline of the vocal tract airway, at each time instant (see e.g., Birkholz and Jackèl, 2003).

As a result, a time-varying area function describing the vocal tract geometry is obtained.

Several data sets for the area functions of different sounds can be found in the literature

(see e.g., Story et al., 1996; Story, 2008, where area functions are obtained from MRI

measurements).

For the present work, area functions available in the literature (such as Story, 2008) will

be used for simplicity, from which 3D vocal tracts can be reconstructed (see Fig. 1.2d).

Interpolation strategies will be performed to generate dynamic vocal tract geometries from

static ones, so as to simulate diphthongs. The election of this simplified geometries will

be latter discussed in Section 2.5.1, where detailed vocal tracts obtained from MRI will

be compared to their simplified counterparts.

1.2.3 Glottal source model

Once defined the vocal tract geometry and prior to the simulation of its acoustics response,

we need to know how sound is generated in it. This is the main goal of the glottal source

models. As previously commented, for voiced sounds (e.g. vowels and diphthongs), a train

of pseudoperiodic pulses known as glottal pulses is generated by the vocal folds, which

act on the steady airflow coming from the lower respiratory tract (trachea, lungs, etc.).

Basically, glottal source models can be divided into waveform models (see Fig. 1.3a),

self-oscillating models (see Fig. 1.3b) and computational models (see Fig. 1.3c):

• Waveform models approximate the velocity waveform of the airflow generated by

the phonatory organs by means of trigonometric functions. The input parameters

of these models coincide with some articulatory parameters (e.g. fundamental

frequency or pitch, amplitude, etc.). The most celebrated waveform models are

that of Rosenberg (Rosenberg, 1971) and that of Liljencrants and Fant (Fant et al.,

1985). The latter is also known as LF model.

• In the case of self-oscillating models (see e.g. Story, 2002, for a review), the vocal

cords behavior is modeled by means of a mechanical analogy (e.g., coupled mass-

spring systems). The system solution gives place to self-sustained oscillations

determining the glottal aperture (aperture between the vocal folds, aka glottis)

and the glottal waveform (glottal pulses). Self-oscillating models are controlled by

biomechanical parameters like the air pressure provided by the lungs, the tension of
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(a)

= Mass 

= Spring & Damper 

(b) (c)

Fig. 1.3: Glottal source models. (a) Waveform model of the Rosenberg type (Rosenberg,

1971) (b) Self-oscillating two-mass model of Ishizaka and Flanagan (1972) (figure adapted

from Story, 2002) and (c) Computational FE model of the vocal folds with fluid-structure

interaction (figure from Guasch et al., 2013).

the vocal cords, etc. The simplest of these models are the one-mass model (Flanagan

and Landgraf, 1968) and the two-mass model (Ishizaka and Flanagan, 1972; Sondhi

and Schroeter, 1987; Pelorson et al., 1994; Lous et al., 1998).

• With regard to computational models, they attempt to simulate the fluid mechanics

and aeroacoustics of the vocal folds. For instance, in Zhao et al. (2002a,b), a direct

numerical simulation of the compressible Navier-Stokes equations using a finite

difference scheme was carried out. In Tian et al. (2014) fluid-structure interaction

is addressed in three-dimensional vocal folds by using FEM. However, it has not

been until very recently, that a finite element method to solve the coupled equations

for the mechanics, fluid dynamics and the acoustics of a two-dimensional glottal

system has been presented (Link et al., 2009). Analytical approaches based on the

Green’s function solution of the corresponding partial differential equations have

been also attempted (Howe and McGowan, 2007; McGowan and Howe, 2007). These

approaches have the advantage of easy parameter space exploration, but are only

suitable for very simplified geometries.

It is worthwhile noting that although LF and two-mass models were developed quite a

long time ago, they are still very popular as they combine simplicity with very acceptable

results (see e.g., Doel and Ascher, 2008). Our choice for the present work will then be

that of implementing waveform models such as the Rosenberg or the LF ones, which can

be input as boundary conditions for the simulations of vocal tract acoustics. Both models

are detailed in Appendix B.
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1.2.4 Vocal tract acoustic model

Once having the vocal tract geometry and the glottal source model (vocal tract inflow),

we can focus on simulating the acoustics of the vocal tract, which will finally yield the

generated voice. Vocal tract acoustic models can be divided in those that rely on one-

dimensional strategies and those that follow a three-dimensional approach.

One-dimensional models

For historical reasons and thanks to their simplicity, one-dimensional models (aka tube

models) have become widely known and used. These models approximate the vocal tract

geometry as a finite set of concatenative tubes, each one having constant cross-section

(i.e., vocal tract area functions, e.g. Story et al., 1996). Then, assuming plane wave

propagation within the vocal tract, which holds up to about 5 kHz, the acoustic pressure

at the exit (voice) is computed. They can be subdivided into the ABCD matrix based

models (see Fig. 1.4a), the Digital Waveguides Models (DWM, see Fig. 1.4b), circuit

analogy models (see Fig. 1.4c) and computational models:

• Tube models of the ABCD matrix type (e.g., Sondhi and Schroeter, 1987) compute

the acoustic transfer function of the vocal tract as the products of the individual

transfer functions for each tube. Then, the voice signal is computed in the frequency

domain using the vocal tract transfer function, and the inflow provided by the

source model. In contrast to time domain models, ACBD matrix based models

  

=  

 

 

= Acoustic pressure 

= Volume velocity 

(a)

f = forward signal

b = backward signal

 = delay time

f
1
(t) f

1
(t-

f
2
(t) f

2
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L L
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1
(t) b

1
( )

b
2
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2
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(c)

Fig. 1.4: Vocal tract acoustic models based on tubes (1D). (a) ACBD matrix based model,

(b) Digital Waveguide Model or KL model and (c) circuit analogy model.



10 1.2. A brief review of articulatory voice models

do not directly provide the acoustic pressure or the acoustic velocity within the

vocal tract. Consequently, time-frequency transformations are required to obtain

their time variations. These models can also be refereed as hybrid time-frequency

domain models.

• In Digital Waveguide Models, aka as KL models by Kelly and Lochbaum (1962),

the d’Alembertian solution (backward and forward signals) of the one-dimensional

acoustic equation is used to describe the acoustic wave propagation within the vocal

tract. This allows to approximate the vocal tract as a set of transmission lines. The

main problem of these models is that the geometry cannot be changed smoothly

(Doel and Ascher, 2008), which is essential for coarticulation processes such as the

generation of diphthongs.

• In tube models based on circuit analogies (see e.g., Birkholz et al., 2007; Serrurier

and Badin, 2008), the acoustic velocity and pressure waves are respectively

interpreted as intensity and voltage signals, and the acoustic properties of each

tube are modeled by an electrical circuit representation. These models compute the

voice signal in the time domain, but they need to do a lot of approximations in the

electric analogy process (Kröger and Birkholz, 2009) (this is the case for instance, of

the electrical analogue for the propagation of frequency-dependent waves into free

space, which is necessary to account for the propagation of voice emanating from

the mouth). In contrast to KL models, circuit models can assume time-varying

geometry lengths (Kröger and Birkholz, 2009).

• In 1D computational models the one-dimensional equations that describe the

acoustic waves within the vocal tract are solved using numerical methods. Typically

finite differences are used for both time and space. For instance, an elaborated

version of the Webster equation is solved in Doel and Ascher (2008) to synthesize

vowels and diphthongs in real time. The use of these type of approaches is not

as extended as the above models. This could be attributed to the fact that

computational techniques have been applied to voice production quite recently and

maybe that they are more intricate.
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Three-dimensional models

Three-dimensional techniques offer wider possibilities than one-dimensional models.

Complex vocal tract geometries can be implemented in full detail, plane wave assumption

is no longer necessary and some physical phenomena produced during voice production can

be taken into account in a more natural way (e.g., aeroacoustics involved in the generation

of many sounds). Three-dimensional approaches can be classified in computational

models, digital waveguide models and multimodal models:

• Computational models make use of numerical methods to solve the underlaying

equations of voice. In the case of vowels and diphthongs, the equation to be solved

correspond to the time domain acoustic wave equation either in irreducible form

(acoustic pressure) or mixed form (acoustic pressure and particle velocity), or its

frequency counterpart, the Helmholtz equation. Computational models can then be

subdivided depending on the numerical method that they use and if they work in

the frequency or time domain,

– Time Domain Finite Element Methods (TD-FEM), see e.g. Švancara and

Horáček (2006); Švancara et al. (2006); Vampola et al. (2008a,b, 2011, 2013);

Arnela and Guasch (2013); Arnela et al. (2013); Arnela and Guasch (2014b),

– Time Domain Finite Differences (TDFD), see e.g. Takemoto et al. (2010, 2013),

– Frequency Domain Finite Element Methods (FD-FEM), see e.g. Matsuzaki

et al. (2000); Motoki (2002); Kako and Touda (2006); Hannukainen et al.

(2007); Zhou et al. (2008); Fleischer et al. (2014),

– Frequency Domain Boundary Element Methods (FD-BEM), see e.g. Kagawa

et al. (1992).

Working in the time domain seems to be the best solution to describe the voice

production mechanism, given that most of the involved physical phenomena also

evolve in time (e.g., dynamic vocal tracts, self-oscillation of the vocal folds, etc.).

On the other hand, FEM is a more appropriate numerical method than finite

differences. It can better discretize complex geometries such as the detailed vocal

tracts generated fromMRI. In finite differences structured cubic meshes are required,

which find difficulties when discretizing complex boundaries (e.g., a curved surface),

while in FEM for instance unstructured tetrahedral meshes with arbitrary element

size can be used instead. Therefore, the most suitable option among the above

numerical method seems to be the Time Domain Finite Element Method.
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• The classical theory of Digital Waveguide Models has been recently extended to 3D.

Some examples can be found in Speed et al. (2013) for simplified vocal tract

geometries with circular cross-sections. As for the TDFD, this approach also suffers

from a poor spatial discretization of complex geometries since they also require

structured cubic meshes.

• In multimodal methods the three-dimensional acoustic field within a succession of

constant cross-section waveguides that conform the vocal tract is decomposed in an

infinite set of propagation modes. Applying the corresponding continuity equations

to each junction, the acoustic waves and therefore the voice signal is analytically

derived. This strategy was applied for instance in Motoki et al. (2000) to vocal tracts

with rectangular shape. More recently, this theory has been extended to vocal tracts

witch circular and elliptical shapes and with centric and eccentric junctions (Blandin

et al., 2014a, see also Chapter 3 for these geometries). Although these models do

not require large computational resources, their application to realistic vocal tracts

(with complex shapes) is still a challenge, since their difficulty rely on obtaining the

modal basis.

Fig. 1.5: Computational vocal tract acoustic model proposed in this work based on the

Time-Domain Finite Element Method (TD-FEM). A realistic human head combined with a

simplified vocal tract (see Fig. 1.2d) is used as a vocal tract geometry model (see Chapter 6).
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In this work the Finite Element Method will be used to numerically solve the acoustic

wave equation in the time domain (TD-FEM) (see Fig. 1.5 for an example). As previously

commented, it allow us to better account for the time evolving phenomena of voice

and consider intricate geometries of the vocal tract. Moreover, and in contrast to

one-dimensional models, three-dimensional acoustical effects can be simulated greatly

improving the voice quality, but at the price of increasing the computational times. Some

further steps will be specially done with respect to the above cited works when simulating

diphthongs, since they mainly deal with static geometries. The production of diphthongs,

which implies vowel coarticulation, will require working with moving geometries. Hence,

the involved wave equations will have to be expressed in an ALE (Arbitrary Lagrangian-

Eulerian) frame of reference (see e.g. Hirt et al., 1974; Hughes et al., 1981; Wall et al.,

2006, for more recent advances), which will pose new numerical challenges that will be

overcome in this thesis.

On the other hand, some comments should be made concerning numerical issues related

to FEM. It is well-known that the standard Galerkin approach to solve partial differential

equations may suffer from several numerical instabilities (e.g., the Galerkin weak form

for the Helmholtz equation suffers from the so-called pollution error as it becomes non-

positive definite for large wavenumbers). In the past decades, several numerical strategies

have been derived to circumvent these numerical instabilities. A breakthrough was the

development of stabilized finite element methods based on the subgrid scale approach

(also referred to as the Variational Multiscale Method, VMM, or the Residual Based

stabilization) (Hughes, 1995; Hughes et al., 1998). The main idea of the method is to

split the problem unknowns into a large scale that can be solved by the finite element

mesh, and a fine scale (subgrid scale) whose effects onto the large scales can be somehow

modeled. Applications of the method for the Navier-Stokes equations can be found e.g.,

in Codina (2002); Codina et al. (2007); Bazilevs et al. (2007), and respectively, for the

wave equation and convected wave equation with applications to aeroacoustics in Codina

(2008) and, Guasch and Codina (2007). Stabilization will be used throughout this work

when necessary.

Concerning implementation aspects, all FEM formulations in this work have been

programmed in an in-house finite element software based on Fortran language. The

generation of the geometries with the corresponding finite element meshes and the

postprocessing of the results coming from the finite element solver have been addressed

using GID (http://www.gidhome.com/), 3ds Max and Matlab.

http://www.gidhome.com/
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1.3 Aims of the thesis

The main purpose of this thesis is to address the numerical production of vowels and

diphthongs within complex three-dimensional vocal tract geometries. To do so, a time-

domain Finite Element strategy is selected to numerically solve the corresponding acoustic

wave equations. Special attention is paid to the vocal tract acoustics modelling, which

constitutes the main core of this thesis, as commented in the preceding sections.

The specific main goals of this work can be listed as follows:

1. Implement and validate a time-domain FEM formulation for vowel production.

2. Develop a numerical strategy for computing vocal tract impedances using the

acoustic pressure as the only physical magnitude (i.e., without requiring the acoustic

particle velocity).

3. Study the radiation effects that human head geometry simplifications produce on

the generated vowel sounds.

4. Find a two-dimensional approach that provides a good balance in terms of

computational time and voice quality.

5. Develop a time-domain FEM approach for diphthong production.

These objectives are organized as described in the following Section 1.4.

1.4 Thesis organization

This thesis is organized in two parts. The first one addresses the simulation of vowels

and the second one deals with the generation of diphthongs. It is to be noted that the

former has required most of the time of this thesis, since it has been found essential a

good characterization of vowel simulation prior to attempting its dynamic counterpart,

namely the diphthongs. Therefore, most chapters deal with vowel production.
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In what concerns the production of vowels:

• In Chapter 2 the Finite Element formulation for vowel production is presented. Some

numerical examples dealing with vocal tract acoustics analysis and vowel synthesis

are reported.

• In Chapter 3 the FEM approach developed in Chapter 2 is validated against

experiments performed with simplified mechanical replicas of the vocal tract.

• In Chapter 4 an approach to compute the radiation and input impedance of vocal

tracts is derived. This is based on the adaptation of an experimental two-microphone

transfer function method (TMTF) to the numerical framework.

• In Chapter 5 different strategies to account for acoustic radiation losses are reviewed

and compared.

• In Chapter 6 geometry simplifications of a realistic human head are analyzed in

terms of radiation effects by simulating vocal tract radiation impedances and transfer

functions.

• In Chapter 7 a two-dimensional approach is presented as a good balance between

voice quality and computational costs. This is based on a tuning process of 2D vocal

tracts that allows mimicking to a large extent the acoustics of 3D vocal tracts.

With regard to the generation of diphthongs:

• In Chapter 8 a stabilized Finite Element formulation based on subgrid scales is

derived to account for dynamic vocal tracts. Numerical examples include diphthong

sounds generated with three-dimensional and two-dimensional vocal tracts.

Conclusions and future research lines are finally exposed in Chapter 9. Additionally,

two appendices have been included for completeness. Appendix A contains analytical

expressions for radiation load impedances, whereas Appendix B describes the waveform

glottal models used in this work.
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FEM generation of vowels
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Chapter 2

Finite Element formulation for vowel

production

In this chapter a Finite Element approach for vowel production will be presented. First,

the problem statement for vocal tract acoustics will be derived, where the time domain

wave equation for the acoustic pressure will be supplemented with appropriate boundary

and initial conditions for the generation of vowels. Second, the resulting problem will be

expressed in its variational form and then discretized in space using the Finite Element

Method (FEM) and in time using finite differences, resulting in an explicit numerical

scheme. Next, the methodology followed to perform a numerical simulation for vowel

production will be explained. Finally, two applications of the proposed FEM approach

will be presented. In the first one, a vocal tract acoustic analysis will be performed of the

geometry simplifications of an MRI-based vocal tract for vowel /a/. In the second one,

the same vowel will be synthesized so as to listen to the generated sound.

This chapter is partially based on the following work

• Marc Arnela and Oriol Guasch (2013), “Finite element computation of elliptical vocal

tract impedances using the two-microphone transfer function method,” Journal of the

Acoustical Society of America, 133(6), pp. 4197–4209.

19



20 2.1. Introduction

2.1 Introduction

As commented in the introductory Chapter 1, the Finite Element Method seems to be the

most appropriate numerical method to solve the underlaying “equations of voice”, since

it allows us to properly consider intricate vocal tract geometries. On the other hand,

working in the time domain rather than in the frequency one, seems to be a good option

because most of the events produced during voice production are time-dependent (e.g.,

vocal folds oscillation, vocal tract movement, etc.). In the case of vowels, the linearized

acoustic wave equation may suffice. Yet, two options for it can be found in the literature.

The first one consists in solving the standard irreducible wave equation for the acoustic

pressure (see e.g., Vampola et al., 2008a, 2011; Arnela and Guasch, 2013; Arnela et al.,

2013; Arnela and Guasch, 2014b). The second one solves the mixed wave equation for

the acoustic pressure and the acoustic particle velocity (see e.g, Takemoto et al., 2010,

2013). Since the acoustic pressure is the magnitude of interest for voice production, it

seems more appropriate to directly solve the irreducible wave equation. Moreover, this

equation has the advantage that the standard Finite Element Galerkin discretization does

not require stabilization, in contrast to the mixed wave equation (see e.g., Codina, 2008),

numerical efforts usually being placed to the time discretization scheme.

In this chapter the time domain wave equation for the acoustic pressure will be solved

using FEM. First, in Section 2.2 this equation will be supplemented with appropriate

initial and boundary conditions for vowels. These include an inflow generated by the

vocal folds, wall losses and free-field radiation conditions. The Perfectly Matcher Layer

formulation described in Grote and Sim (2010) and Kaltenbacher et al. (2013) will be

adopted for the latter. Then, in Section 2.3 the resulting problem will be numerically

solved using FEM. As usual, the problem will be first expressed in its variational or weak

form (Section 2.3.1). Then, it will be discretized following the standard Galerkin approach

(Section 2.3.2). Finally, an explicit numerical scheme will be obtained by also discretizing

in time using finite differences (Section 2.3.3). In the following Section 2.4, some details

will be given concerning the general procedure followed to perform a FEM simulation for

vowels. Finally, in Section 2.5 two classical applications in the voice production field will

be addressed using the proposed numerical approach. In the first one (Section 2.5.1), vocal

tract acoustic analysis will be performed. The most typical magnitude that describes the

acoustic behavior of a vocal tract, the vocal tract transfer function, will be introduced. As

examples, the geometry simplifications of an MRI-based vocal tract for vowel /a/ will be

analyzed. In the second application (Section 2.5.2), FEM simulations using simplified

vocal tracts will be performed to synthesize two examples corresponding to different

geometries for vowel /a/. As a result, not only the acoustic pressure will be visualized,

but also an audio file will be generated to listen to the produced vowel sound.
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2.2 Problem statement

2.2.1 The acoustic wave equation

The mathematical problem to be solved by the finite element method will be next

exposed. Let us denote by Ω the computational domain where acoustic waves propagate.

Ω comprises the vocal tract and the outer region surrounding the head, where waves

emanating from the mouth propagate in free field conditions. The boundary of Ω, ∂Ω,

can be split into four non-intersecting regions (see Fig. 2.1): ΓG stands for the vocal tract

cross-section at the vocal folds position, ΓW corresponds to the vocal tract walls, ΓH to the

head contour and Γ∞ is a fictitious non-reflecting boundary. The acoustic pressure which

accounts for vowel generation can be obtained from the solution of the wave equation
(

∂2tt − c20∇2
)

p = 0 in Ω, t > 0, (2.1a)

with boundary and initial conditions

∇p · n = g on ΓG, t > 0, (2.1b)

∇p · n = −µ/c0∂tp on ΓW, t > 0, (2.1c)

∇p · n = 0 on ΓH, t > 0, (2.1d)

∇p · n = 1/c0∂tp on Γ∞, t > 0, (2.1e)

p = 0, ∂tp = 0 in Ω, t = 0. (2.1f)

In Eq. (2.1) c0 stands for the speed of sound, p(x, t) is the acoustic pressure, g(t) is

a function related to the airflow generated by the vocal folds (glottal pulses), µ(x) is a

friction coefficient for the losses at the vocal tract walls, n is the normal vector pointing

outwards ∂Ω and ∂t ≡ ∂/∂t denotes the partial time derivative.

Fig. 2.1: A sketch of the computational domain Ω of Eq. (2.1) in text. ΓG represents

the glottal cross-sectional area, ΓW the vocal tract walls, ΓH the human head and Γ∞ a

non-reflecting boundary.
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2.2.2 Glottal flow

The boundary condition in Eq. (2.1b) accounts for the volume velocity

Qg(t) = ug(t)Ag (2.2)

generated by the vocal folds, where ug stands for the inflow velocity and Ag for the area

of the boundary ΓG. The time derivative of the volume airflow ∂tQg is provided by most

parametric glottal models such as the Rosenberg (Rosenberg, 1971) or LF (Fant et al.,

1985) ones (see also Appendix B). Then, it follows from the momentum equation that

∇p · n = −ρ0∂tug = −ρ0
∂tQg

Ag
≡ g, (2.3)

where ρ0 designates the air density and function g(t) in (2.1b) is defined in the last

equality.

2.2.3 Wall losses

The subsequent boundary condition in Eq. (2.1c) considers losses at the vocal tract walls

(locally reacting soft walls). It arises from the following reasoning. The impedance

of the wall Z(x, ω) relates the acoustic velocity at the wall U(x, ω) and the acoustic

pressure P (x, ω),

U(x, ω) =
P (x, ω)

Z(x, ω)
. (2.4)

The momentum equation in the frequency domain can then be written as (∂t↔ jω, with

j =
√
−1)

∇P (x, ω) · n = −jωρ0
P (x, ω)

Z(x, ω)
. (2.5)

Assuming a frequency independent impedance, introducing the boundary admittance

coefficient

µ =
ρ0c0
Z

, (2.6)

replacing it in (2.5) and transforming the resulting expression back to the time domain,

results in Eq. (2.1c). In what concerns the homogeneous Neumann boundary condition

in Eq. (2.1d) it simply states that the surface of the head is modeled as a hard wall

(i.e., Z(x, ω) =∞). On the other hand, the boundary admittance coefficient can also be

related with the common sound absorption coefficient αn as (see e.g., Takemoto et al.,

2010)

µ =
1−√1− αn

1 +
√
1− αn

. (2.7)
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2.2.4 Free-field radiation: the Perfectly Matched Layer

Finally, Eq. (2.1e) is the well-known Sommerfeld radiation condition, which guarantees

that the emitted waves propagate outwards to infinity. However, this condition is only

optimal for waves impinging orthogonal onto Γ∞. To avoid this problem and to perform

simulations in a computational domain of reasonable size as well, Eq. (2.1e) is replaced

with a Perfectly Matched Layer. PMLs were originally introduced by Berenger (1994)

and are regions designed to absorb waves incident from any direction without producing

reflection at its interface (see Fig. 2.2a).

The PML formulation of Grote and Sim (2010) has been adapted for our custom code,

which solves Eq. (2.1) with the PML using FEM. Replacing the Sommerfeld radiation

condition with the PML, the original acoustic wave equation (2.1) becomes modified to

∂2ttp− c20∇2p = ∇ · φ− α∂tp− βp− γψ in Ω, t > 0, (2.8a)

∂tφi = −ξiφi + c20ai∂ip+ c20bi∂iψ, ∀i = 1, 2, 3 in Ω, t > 0, (2.8b)

∂tψ = p in Ω, t > 0, (2.8c)

with boundary and initial conditions

∇p · n = −ρ0/Ag∂tQg ≡ g on ΓG, t > 0, (2.8d)

∇p · n = −µ/c0∂tp on ΓW, t > 0, (2.8e)

∇p · n = 0 on ΓH, t > 0, (2.8f)

∇p · n = 0 on Γ∞, t > 0, (2.8g)

p = 0, ∂tp = 0 in Ω, t = 0, (2.8h)

φi = 0, ∂tφi = 0, ∀i = 1, 2, 3 in Ω, t = 0, (2.8i)

ψ = 0, ∂tψ = 0 in Ω, t = 0. (2.8j)

Note that (2.8a) modifies the right hand side (r.h.s.) of (2.1a) with the inclusion of

some extra terms involving the auxiliary functions ψ and φ = (φ1, φ2, φ3). Moreover,

four additional scalar equations (2.8b)-(2.8c) are needed for these additional functions.

Although it may be thought that the above formulation could result in a high

computational cost, it should be noticed that the additional variables are only non-null

in the PML region, and that the computational domain can be much smaller than the

one needed if the PML was absent. On the other hand, it has recently been observed

that enhanced stability properties can be obtained when setting bi = 0 in Eq. (2.8b)

(Kaltenbacher et al., 2013), allowing one to attain long time simulations. However, in

this work all terms will be kept to have a greater accuracy, since the performed FEM

simulations mainly involve short time events (∼25 ms). In what concerns the coefficients
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Fig. 2.2: (a) Sketch of a computational domain using a Perfectly Matched Layer (shaded

area), where an incident wave pi reaches the PML interface and becomes absorbed inside

it (pa), without giving to any reflection (pr). (b) Damping profile ξ̂i for different reflection

coefficients r∞ at the PML boundary considering Li = 0.1 m and c = 350 m/s.

α, β, γ, ai, bi, they depend on the damping profiles ξi and are given by

α = ξ1 + ξ2 + ξ3, a1 = ξ2 + ξ3 − ξ1, b1 = ξ2ξ3, (2.9a)

β = ξ1ξ2 + ξ2ξ3 + ξ3ξ1, a2 = ξ3 + ξ1 − ξ2, b2 = ξ3ξ1, (2.9b)

γ = ξ1ξ2ξ3, a3 = ξ1 + ξ2 − ξ3, b3 = ξ1ξ2. (2.9c)

The damping profiles ξi are used to control the amount of absorption in the PML and

many options exist for them. Following Grote and Sim (2010), use has been made of

ξi(xi) = ξ̂i





|xi − li|
Li

−
sin
(

2π|xi−li|
Li

)

2π



 (2.10)

for li ≤ |xi| ≤ li + Li. ξ̂i is a constant accounting for the damping effect in the i-th

direction, li is the i-th coordinate of the PML layer and Li the thickness of the PML

region in the i-th direction (see Fig. 2.2b). The constant ξ̂i depends on the discretization

and thickness of the layer and can be computed as

ξ̂i =
c0
Li

log

(

1

r∞

)

, (2.11)

with r∞ standing for the relative reflection at the boundary of the PML. The PML

boundary can be truncated using either a Dirichlet or a Neumann homogeneous condition

(the latter has been our choice, see Eq. (2.8g)). On the other hand, notice that for li ≤ |xi|,
ξi(xi) = 0, i.e., outside the PML, the damping profiles ξi vanish. In this case, the modified

PML wave equation (2.8a) reduces to the standard wave equation in (2.1a).
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2.3 Finite element approach

2.3.1 Variational formulation

The set of partial differential equations (2.8a)-(2.8c) supplemented with boundary and

initial conditions (2.8d)-(2.8j) constitutes the problem to be solved. If a FEM approach

is to be used to find a numerical solution for (2.8), first the problem has to be set in its

weak or variational form. Let us introduce some additional notation to do so, without

getting into much deep mathematical details. The space of square integrable functions

in Ω will be denoted as usual by L2(Ω), whereas the space of functions in L2(Ω) whose

spatial derivatives are also square integrable will be denoted by H1(Ω). Vp will denote the

space of functions for the unknowns that belong to H1(Ω) for every time instant t and

satisfy the problem essential boundary conditions, and Vq will stand for those functions

in H1 whose values vanish on the boundaries. To shorten the notation, the integral of the

product of any two functions f, g in Ω will be written as

(f, g) :=

∫

Ω

fgdΩ, (2.12)

whilst integrals over boundaries will be explicitly indicated e.g., (f, g)ΓG
.

Once established the above space functional framework, we can proceed to find the

variational formulation for problem (2.8). As usual, this is done by first multiplying (2.8)

by test functions q, vi, w (q for the pressure, vi for the first auxiliary functions φi, and w

for the second auxiliary function ψ) and integrating over the computational domain Ω.

Applying the divergence theorem and making use of boundary conditions, the weak form

of the problem is obtained, which consists in finding p, φi and ψ ∈ Vp such that
(

q, ∂2ttp
)

+ c0 (q, µ∂tp)ΓW
+ c20 (∇q,∇p) = c20 (q, g)ΓG

+

3
∑

i=1

(q, ∂iφi)− (q, α∂tp)− (q, βp)− (q, γψ) , (2.13a)

(vi, ∂tφi) = − (vi, ξiφi) + c20 (vi, ai∂ip) + c20(vi, bi∂iψ), ∀i = 1, 2, 3, (2.13b)

(w, ∂tψ) = (w, p) , (2.13c)

in Ω, t > 0, with initial conditions

(q, p) = 0, (q, ∂tp) = 0, (2.13d)

(vi, φi) = 0, (vi, ∂tφi) = 0, ∀i = 1, 2, 3, (2.13e)

(w, ψ) = 0, (w, ∂tψ) = 0, (2.13f)

in Ω, t = 0, for all q, vi, w ∈ Vq.
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2.3.2 Spatial discretization: semi-discrete formulation

To find a numerical solution to Eq. (2.13), this has to be discretized in both, space

and time. Let us first discretize it in space using a FEM approach. Given a finite

element partition of Ω with nel elements and np nodes and the finite dimensional subspaces

Vp,h ⊂ Vp and Vq,h ⊂ Vq, the Galerkin finite element approach to problem (2.13) aims at

finding ph, φih and ψh ∈ Vp,h such that

(

qh, ∂
2
ttph
)

+ c0 (qh, µ∂tph)ΓW
+ c20 (∇qh,∇ph) = c20 (qh, g)ΓG

+

3
∑

i=1

(qh, ∂iφih)− (qh, αh∂tph)− (qh, βhph)− (qh, γhψh) , (2.14a)

(vih, ∂tφih) = − (vih, ξihφih) + c20 (vih, aih∂iph) + c20(vih, bih∂iψh), ∀i = 1, 2, 3, (2.14b)

(wh, ∂tψh) = (wh, ph) , (2.14c)

in Ω, t > 0, with initial conditions

(qh, ph) = 0, (qh, ∂tph) = 0, (2.14d)

(vih, φih) = 0, (vih, ∂tφih) = 0, ∀i = 1, 2, 3, (2.14e)

(wh, ψh) = 0, (wh, ∂tψh) = 0, (2.14f)

in Ω, t = 0, for all qh, vih, wh ∈ Vq,h. The subscripts h in (2.14) denote the discrete versions

of the corresponding continuous variables. Expanding the unknowns ph, φih, ψh and the

test functions qh, vih and wh in terms of shape functions N(x) (piecewise linear shape

functions will be used in this work) and nodal values P b = ph(x
b, t), Φb

i = φih(x
b, t),

Ψb = ψh(x
b, t), Qa = qh(x

a), V a
i = vih(x

a) and W a = wh(x
a) we get

ph =

np
∑

b=1

N bP b, φih =

np
∑

b=1

N bΦb
i , ψh =

np
∑

b=1

N bΨb, (2.15a)

qh =

np
∑

a=1

NaQa, vih =

np
∑

a=1

NaV a
i , wh =

np
∑

a=1

NaW a. (2.15b)

Substituting (2.15) in the spatial discretized scheme (2.14) results in the following time

evolving algebraic matrix system

MP̈ + c0BṖ + c20KP = c20L

+

3
∑

i=1

BiΦi −MαṖ −MβP −MγΨ, (2.16a)

MΦ̇i = −MξiΦi + c20Bi,aiP + c20Bi,biΨ, ∀i = 1, 2, 3, (2.16b)

Ψ̇ = P , (2.16c)
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in Ω, t > 0, with initial conditions

P = 0, Ṗ = 0, (2.16d)

Φi = 0, Φ̇i = 0, ∀i = 1, 2, 3, (2.16e)

Ψ = 0, Ψ̇ = 0, (2.16f)

in Ω, t = 0. In Eq. (2.16), P , Φi and Ψ stand for the vectors of nodal values that

respectively correspond to the pressure and auxiliary functions (e.g., P = (P 1 · · ·P np)⊤),

whereas the remaining matrix and vector entries are given by

Mab =
(

Na, N b
)

, Mab
α =

(

Na, αhN
b
)

, (2.17a)

Mab
β =

(

Na, βhN
b
)

, Mab
γ =

(

Na, γhN
b
)

, (2.17b)

Mab
ξi

=
(

Na, ξihN
b
)

, Bab =
(

Na, µN b
)

ΓW

, (2.17c)

Bab
i,ai

=
(

Na, aih∂iN
b
)

, Bab
i =

(

Na, ∂iN
b
)

, (2.17d)

Bab
i,bi

=
(

Na, bih∂iN
b
)

, Kab =
(

∇Na,∇N b
)

, (2.17e)

La = (Na, g)ΓG
. (2.17f)

As usual, the domain integrals in (2.17) are to be understood as the summation of

integrals over elements Ωe, i.e., (·, ·)Ω =
∑nel

e=1(·, ·)Ωe
.

2.3.3 Time discretization: final numerical scheme

Let us next proceed to the time discretization of (2.16). A finite difference approach has

been used to do so. Considering a constant time step (∆t = tn+1 − tn) discretization of

the time interval (0, T ) into 0 < t1 < · · · < tn−1 < tn < tn+1 < · · · < tN ≡ T . A second

order finite difference central scheme has then been implemented for the pressure time

derivatives, whilst a first order central scheme has been used for the time derivatives of the

auxiliary variables in the PML region. This is so because first order schemes are known

to introduce stronger numerical dissipation, which in this case is advantageous to help

absorbing the waves crossing the PML. Inserting these time derivative approximations in

(2.16) yields

M
P n+1 − 2P n + P n−1

∆t2
+ c0B

P n+1 −P n−1

2∆t
+ c20KP n = c20L

n

+
3
∑

i=1

BiΦ
n
i −Mα

P n+1 − P n−1

2∆t
−MβP

n −Mγ
Ψn+1/2 +Ψn−1/2

2
, (2.18a)

M
Φn+1

i −Φn
i

∆t
= −Mξi

Φn+1
i +Φn

i

2
+ c20Bi,ai

P n+1 + P n

2
+ c20Bi,biΨ

n+1/2, (2.18b)
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Ψn+1/2 −Ψn−1/2

∆t
= P n, (2.18c)

with initial conditions

P 0 = 0, P 1 = 0, (2.18d)

Φ0
i = 0, Φ1

i = 0, ∀i = 1, 2, 3, (2.18e)

Ψ−1/2 = 0, Ψ1/2 = 0. (2.18f)

Note that (2.18) corresponds to a purely explicit scheme, where all the unknowns can be

calculated at time step n+1 from values already known from previous steps. In contrast

to the implicit ones, explicit schemes avoid matrix inversion, although at the price of

requiring very small time steps to fulfill a restrictive Courant-Friedrich-Levy condition

(the smaller the element size, the smaller the time step ∆t = 1/fs has to be).

Solving (2.18) at time step t = n + 1 involves

1. Use (2.18c) to compute Ψn+1/2

2. Insert Ψn+1/2 into (2.18a) and compute P n+1

3. Update Φn+1
i using (2.18b), Ψn+1/2 and P n+1

To fasten all computations, matrix inversion is avoided as usual by means of a lumped

approximation for all mass matrices (2.17a)-(2.17c) (Hughes, 2000). The system of

equations (2.18) constitutes the final numerical scheme that has been used for all the

computational simulations with regard to vowel generation.

2.4 General description of the FE simulations

The following computational features have been used to compute the acoustic pressure

for the numerical examples. In case of any modification of the below parameters for a

specific simulation, this will be explicitly indicated in the corresponding section.

The values c0 = 350 m/s and ρ0 = 1.14 kg/m3 have respectively been chosen for the

speed of sound and air density in Eq. (2.1). Concerning boundary conditions, a wideband

impulse has been used for the volume velocity Qg(t) in Eq. (2.3), consisting of a Gaussian

pulse of the type (Takemoto et al., 2010)

gp(n) = e[(∆t n−Tgp)0.29Tgp]
2

[m3/s], (2.19)
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(a) Realistic head (b) Spherical baffle (c) Flat baffle

Fig. 2.3: Computational domain for vowel production simulation where a vocal tract is set

on different radiation elements. The most outer volumes correspond to the PML, which are

surrounding the free-field radiation space.

with Tgp = 0.646/f0 and f0 = 10 kHz. To avoid numerical errors beyond the maximum

frequency of interest (fmax = 10 kHz), this pulse has been filtered using a low-pass filter

with cutoff frequency 10 kHz. For the boundary admittance coefficient at the vocal tract

walls the value µw = 0.005 has been used, which corresponds to the wall impedance of

the vocal tract tissue Zw = 83666 kg/m2s (see e.g., Švancara and Horáček, 2006).

With regard to the computational domain (see Fig. 2.3), the vocal tracts or duct systems

are set either on flat baffles, spherical baffles or realistic human heads, depending on the

required degree of accuracy of the radiation model (this will be analyzed in more detail

in Chapter 5 and Chapter 6). These get surrounded with corresponding volumes to allow

sound waves emanate from the mouth exit and, in turn, these volumes are enclosed with

a Perfectly Matched Layer, 0.1 m width, to absorb any incident wave. The PML has

been configured to get a reflection coefficient of r∞ = 10−4. The resulting computational

domains have been meshed using tetrahedral elements. The mesh size h ranges from

h = 0.001 m within the vocal tract to h = 0.002 m in the mouth immediate outer region,

h = 0.005 m in the most outer volume, and h = 0.0075 m in the PML.

Finally, Eq. (2.1) with a PML included has been solved using the explicit finite element

numerical scheme described in Eq. (2.18). A sampling rate of fs = 1/∆t = 2000 kHz is

used to fulfil a stability condition of the Courant-Friedrich-Levy type. In some simulations

this value has been increased to guarantee the stability condition. A time interval of total

duration T = 25 ms has been simulated.
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2.5 Numerical examples

2.5.1 Vocal tract acoustics analysis

One of the typical applications of Finite Element simulations for vowel production consists

in analyzing the vocal tract acoustic behavior. The latter can be characterized by

computing the so called vocal tract transfer functions H(f), which can be obtained from

the ratio

H(f) =
Po(f)

Qg(f)
, (2.20)

where Po(f) and Qg(f) respectively stand for the Fourier Transform of the acoustic

pressure po(t) captured at the exit of the vocal tract and the volume velocity Qg(t)

introduced at the glottal cross-section. In this case the latter does not correspond to

the typical train of glottal pulses generated by a glottal source model but rather to a

Gaussian pulse to excite all frequencies. In particular we use that described in Eq. (2.19).

To exemplify this type of analysis the following example has been chosen. In the classical

approximation of 1D models the vocal tract geometry is represented by the so called area

functions (see e.g., Story, 2008; Story et al., 1996), which describe the area of the vocal

tract cross-sections along its midline. The process to compute these area functions can be

summarized as follows. A volumetric representation of the vocal tract is first generated

from a set of magnetic resonances images (MRI) captured in different views, typically in

the sagittal, coronal and/or transverse planes. This vocal tract is then discretized in a

finite set of cross-sections perpendicular to the vocal tract midline, from which the area of

each cross-section is extracted. These values constitute the area function for the analyzed

sound. In Fig. 2.4 this process is illustrated for vowel /a/. Figure 2.4a represents the

reconstructed MRI model (from Palo et al., 2012, original geometry available online at

http://speech.math.aalto.fi/data.html), which contains not only the main conduct

of the vocal tract but also different side branches like the piriform fossae and valleculae.

In Fig. 2.4b the side branches have been removed and the MRI model has been discretized

with 40 cross-sections (see e.g., Story et al., 1996, where use is made of 40 − 46 cross-

sections). The vocal tract shape is approximated as having circular cross-sections in

Fig. 2.4c, and finally the vocal tract is next unbent in Fig. 2.4d. The latter corresponds

to the typical three-dimensional vocal tract that can be generated from area functions.

In this example we have computed the vocal tract transfer functions of each one of the

vocal tracts shown in Fig. 2.4 to analyze the effects of vocal tract simplifications. In order

to perform a numerical simulation these vocal tracts have been set in rigid flat baffle of

dimensions 0.3 × 0.3 m, to be interpreted as a rough approximation of the human head.

http://speech.math.aalto.fi/data.html
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Fig. 2.4: Vocal tracts for vowel /a/ illustrating the possible steps followed to extract a one-

dimensional area function. (a) Volume geometry reconstructed from MRI, (b) bent vocal

tract with realistic cross-sections, (c) bent vocal tract with circular cross-sections and (d)

straight vocal tract with circular cross-sections. The vocal tract simplifications have been

constructed from a joint collaboration with Saeed Dabbaghchian and Olov Engwall.

This baffle constitutes one side of a rectangular volume that allows sound waves emanate

from the vocal tract, which is then surrounded with a PML to absorb outgoing radiated

waves. More numerical details can be found in Section 2.4.

The computed VTTFs are shown in Fig. 2.5. Resonances (known as formants in the

voice and speech community) and antiresonances can be observed in the VTTFs. The

location of the first two formants determines the produced vowel (vowel identification),

while higher formants and antiresonances are responsible for other vowel features such

as timber (vowel naturalness). If we first focus in the MRI model, we can observe

that below ∼ 3 kHz only resonances appear. Beyond this value antiresonances are

also generated, which can be attributed to the side branches and to high-order modes

present within the main conduct of the vocal tract. Comparing the MRI case with any

of the simplifications below ∼ 3 kHz, we can observe that the formant locations are

quite similar between cases, since in this regime the plane wave assumption holds and

therefore the shape of the vocal tract practically does not influence its acoustic behavior.

Note that these include the first two formants and therefore one will identify the same
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Fig. 2.5: Vocal tract transfer functions for vowel /a/ computed in the FEM numerical

simulations using the vocal tract geometries in Fig. 2.4.

vowel sound for all cases, as one could expect. However, beyond this limit significant

differences are found. Between ∼ 3 kHz and ∼ 5 kHz none of the simplifications match

with the MRI case. The antiresonances of the MRI case that are not appearing in the

other configurations may be produced by the side branches, which are not included in the

simplifications (the effect of side branches such as the piriform fossae and valleculae is

studied for instance in Takemoto et al., 2010, 2013). Nonetheless, in this frequency range

the formant frequencies should have a similar value independently of the case, since it

seems that we are still in the plane wave propagation regime. Note for instance that the

fourth formant does not significantly change between the three simplifications. However,

some differences between the formants in the MRI case and those in the simplifications

can still be appreciated. On the one hand, they can be attributed to the fact that the

vocal tract has not probably been discretized with enough cross-sections, which produces

smooth transitions of the vocal tract geometry instead of abrupt changes (e.g. the larynx

opening into the pharynx, see Fig. 2.4). On the other hand, the computed midline from

which the cross-sections are determined may not be accurate enough as several strategies

can be found in literature (see for instance Story et al., 1996; Takemoto et al., 2006), none

of them being determinant. Beyond 5 kHz, the vocal tract acoustic behavior becomes

more intricate. Large differences can be observed between all cases. However, the case

with realistic cross-sections still present some resonances and antiresonances that are also

produced in the MRI geometry (see e.g. the deep antiresonance close to 6 kHz). Since

this case does not contain side branches, these antiresonances could be attributed to

transverse modes. Transforming the realistic shape of this case to a circular one produces

a large difference in this high frequency range, although some small antiresonances can be
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appreciated which can be attributed to the vocal tract bending. However, if we then make

this vocal tract straight, although high-order modes can be excited their appearance in

the vocal tract transfer functions is mitigated due to the radial symmetry of the geometry

and therefore, only resonances are produced.

As observed, simplified vocal tract geometries do not accurately reproduce the resonances

and antiresonances of the vocal tract, although in the low frequency region where plane

wave propagation predominates they do it with a certain confidence. Hence the perceived

vowel will be the same for a listener, although a poorer quality could be expected specially

when a straight vocal tract with circular cross-sections is used. One should therefore

consider, whenever is it possible, full detail vocal tracts to obtain a high voice quality.

However, this is not always possible, since there are still very few vocal tract geometry

databases available in the literature (e.g., Palo et al., 2012; Aalto et al., 2014) and

moreover, they do not cover all sounds. In addition, the interpolation of static MRI

geometries, or even the acquisition of dynamic MRI geometries, to generate for instance a

diphthong sound is still a challenging problem. The alternative then consists in working

with simplified vocal tract geometries, which can be generated using the large database

of area functions available in the literature (e.g., Story et al., 1996; Takemoto et al.,

2006; Story, 2008). Moreover, they provide a good simulation reproducibility given their

generation simplicity and allow us to easily build dynamic geometries by interpolating for

instance, the area functions. However, the vocal tract shape is not usually provided so

one has to use for instance circular cross-sections. Through this work three-dimensional

vocal tracts generated from area functions will be constructed.

2.5.2 Vowel synthesis

Some numerical examples dealing with vowel synthesis are presented in this section. In

the first example the production of vowel /a/ is simulated. To do so, a simplified vocal

tract for this vowel is built using the corresponding area function in Story (2008). These

area functions are converted to circular cross-sections along the midline of the vocal tract

which are then linearly interpolated to connect them. This vocal tract is set on a spherical

baffle of radius 0.09 m, which can be interpreted as an approximation of the human head.

The spherical surface is surrounded by a volume that allows emanating waves from the

mouth to propagate towards infinity. A free-field radiation simulation is then ran using

the computational features described in Section 2.4, but with the following modifications.

To deal with a finite computational domain, a PML of width 0.2 m is used to absorb

outward propagating waves. A train of glottal pulses with a fundamental frequency of

F0 = 100 Hz is introduced at the glottal area. These are generated using a LF glottal
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model (Fant et al., 1985, see also Appendix B.2). A boundary admittance coefficient

of µ = 0.005 is set to account for losses at the walls. The computational domains are

then meshed using tetrahedral elements. The mesh size h ranges approximately from

h ≈ 0.001 m inside the vocal tract to h ≈ 0.01 m at the outer PML region. With

regards to time evolution, the time discrete scheme (2.18) is used with a sampling rate of

fs = 1/∆t = 1600 kHz. The time evolution of the acoustic pressure is tracked at a node

located 3 cm outside the mouth (see Fig. 2.6a). This sequence can be easily converted to

an audio file to listen to the synthesized vowel. A snapshot of the numerical simulation

at time instant t ≃ 16 ms (corresponding to the dot in the waveform of Fig. 2.6a) is

presented in Fig. 2.6b, where it can be appreciated how plane front waves emanating from

the vocal tract transform to spherical front waves, which propagate outwards.

A second example is also performed for the production of vowel /a/. However, in this

case we consider a more complex geometry instead. The vocal tracts are generated using

the same area functions from Story (2008), but they have been artificially bent and their

cross-section shapes have been made elliptical. The resulting vocal tracts are set on a

realistic human head. More details on the construction of this geometry are provided in

Chapter 6. The features described in Section 2.4 are followed to perform a numerical

simulation, but using a LF model to generate glottal pulses with a fundamental frequency

of F0 = 110 Hz. In Fig. 2.7 snapshots of the computed acoustic pressure are presented at

different time instants. In each subfigure the vowel waveform can be appreciated with a

dot denoting the time instant. This signal is tracked just in front of the mouth exit and

converted to an audio file.
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Fig. 2.6: Example #1 of vowel synthesis for vowel /a/. (a) Waveform. (b) Wave propagation

inside the vocal tract and emanating from mouth aperture at time instant t = 13.3 ms. Iso-

pressure surfaces are used to represent the spherical waves emanating from the vocal tract.

Note that the color scale is for negative values.
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(a) t = 15.6 ms (b) t = 16.3 ms (c) t = 16.9 ms

(d) t = 19.8 ms (e) t = 19.9 ms (f) t = 20.0 ms

Fig. 2.7: Example #2 of vowel synthesis for vowel /a/. Snapshots at different time instants

of the acoustic pressure evolution. Two cuts in the midsagittal and midtransverse planes are

performed to better observe the acoustic waves outside the vocal tract. In each subfigure

the resulting waveform tracked in front of the mouth aperture is also shown with a red dot

denoting the corresponding time instant.
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2.6 Conclusions

The wave equation for the acoustic pressure has been supplemented with appropriate

initial and boundary conditions for vowel generation, which include the introduction of a

volume velocity generated by the vocal folds at the glottal cross-section, a boundary

admittance coefficient to account for wall losses and a PML to deal with free-field

radiation. The resulting problem has then been numerically solved, using the FEM

approach for the spatial discretization and finite differences for the discretization in time.

This has yielded an explicit time scheme. Finally, two typical applications of numerical

simulations of the vocal tract have been presented, showing a good performance of the

presented formulation.

The first application has dealt with the analysis of vocal tract acoustics. This has been

exemplified by studying the acoustic effects that geometry simplifications of an MRI-

based vocal tract for vowel /a/ produce on the vocal tract transfer function. As one could

expect, the spectra has not changed in the low frequency region (below 3 kHz), which

guarantees that the same vowel sound is produced. However, between 3 kHz and 5 kHz

some differences have been appreciated although the plane wave assumption still holds.

These have been attributed to a poor spatial discretization of the MRI geometry in terms

of cross-sections. In what concerns the high frequency region beyond 5 kHz, at first sight

none of the simplifications has been able to correctly reproduce the behavior of the MRI

geometry. A more detailed study is still necessary to verify some of the conclusions that

have been reached at this preliminary stage. This will be performed in a near future.

Despite of these clear limitations, simplifications of the vocal tract geometry are very

useful for voice production simulation. For instance, they can be easily constructed from

the large database of area functions available in the literature, and some processes such

as generating dynamic vocal tracts become less intricate. Therefore, since the main goal

of this work is to develop a framework to simulate the acoustics of the vocal tract, rather

than to construct a complete voice simulator, in the following sections of this thesis use will

be made of these simplified vocal tracts. It should be noted however that the presented

approach is general enough so as to consider any more intricate geometry.

In what concerns the second application, two numerical examples have been shown dealing

with the synthesis of vowel /a/. After introducing a train of pulses generated by a

Rosenberg model or a LF model at the glottal cross-section, the acoustic pressure has

been tracked at a node close to the mouth aperture and then transformed to an audio file

so as to listen to the generated sound. Moreover, acoustic wave propagation within the

vocal tract and in the near-field has also been visualized.
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It has to be noted that the presented approach is not free of problems. For instance,

imposing a frequency dependent impedance at the vocal tract walls in the time domain

is not straightforward. Some efficient steps towards this goal can be found, for example,

in Nieuwenhof and Coyette (2001). Moreover, with the proposed formulation acoustic

coupling between the vocal tract and the subglottal cavities and the vocal folds cannot

be considered. A solution to this problem may consist in solving the whole problem of

vowel production in a single domain that includes all these elements (subglottal cavities,

vocal folds and vocal tract). However, this might require the resolution of a more complex

problem such as the Navier-Stokes equations for a compressible flow and consider fluid-

structure interaction between the vocal folds and the acoustic field. Some works in this

direction have recently been done (see e.g., Kaltenbacher et al., 2014).





Chapter 3

Validation of numerical simulations

against experiments

The aim of this chapter is to validate the FEM approach presented in Chapter 2 against

experiments. In addition, the onset and behavior of high order propagation modes will

be examined and the plane wave propagation regime will be evaluated. For that purpose,

simplified vocal tract geometries with an increasing degree of complexity will be generated.

Different magnitudes will be computed using these geometries, which include vocal tract

transfer functions, pressure-pressure transfer functions and pressure distribution maps of

a given formant or antiresonance. The results herein exposed will show that the proposed

numerical approach can be used with confidence for vowel vocal tract acoustics, and will

highlight the importance of three-dimensional acoustic modelling.

This chapter is partially based on the following works

• Rémi Blandin, Marc Arnela, Oriol Guasch, Rafael Laboissière, Xavier Pelorson,

Annemie Van Hirtum and Xavier Laval, “Effects of higher order propagation modes in

vocal tract like geometries,” Journal of the Acoustical Society of America, Submitted.

• Rémi Blandin, Xavier Pelorson, Annemie Van Hirtum, Rafael Laboissière, Oriol Guasch

and Marc Arnela (2014), “Effet des modes de propagation non plan dans les guides

d’ondes à section variable,” French Acoustical Conference 2014, April 22–25, Poitiers,

France, pp. 745–751.

• Xavier Pelorson, Annemie Van Hirtum, Boris Mondet, Oriol Guasch and Marc Arnela

(2013); “Three-dimensional vocal tract acoustics,” Acoustics 2013, November 10–15,

New Delhi, India.
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3.1 Introduction

In this chapter the finite element strategy for vowel production presented in Chapter 2

will be validated. To do so, numerical simulations will be performed with a set of

simplified vocal tract geometries for vowel /a/ and contrasted to experimental results.

These geometries have been designed with an increasing degree of complexity. The most

simple configuration consisting of two connected circular tubes with different cross-sections

will be first considered. Second, simplified vocal tract geometries will be built from the

area functions in Story (2008).

In order to examine the onset and behavior of higher order modes, the shape of these

geometries will be generated as follows. First, circular vocal tracts with a centric

configuration to connect each one of the cross-sections will be considered. This is of

special interest since this configuration is widely used as a first approximation to generate

three-dimensional geometries from area functions (see e.g., Vampola et al., 2008a; Arnela

and Guasch, 2014b). One can move forward and also consider eccentric junctions. This

configuration should be slightly closer to the reality, since it better mimics the distribution

of cross-sections along the vocal tract. The upper line that shares all cross-sections could

be interpreted as if it was the palate. Finally, an additional case will be studied for the

simplified vocal tracts. Elliptical cross-sections which can better approximate the vocal

tract shape will be considered.

Numerical simulations and experiments will be performed for each configuration, from

which different magnitudes will be extracted and compared. First, vocal tract transfer

functions will be only computed for numerical simulations. Second, pressure-pressure

transfer functions between different points within the vocal tracts will be simulated and

contrasted to experimental results. Third, pressure maps will be calculated to examine

the acoustic pressure distribution within the vocal tract and in the outer near-field for a

given formant or antiresonance.

This chapter is organized as follows. In Section 3.2 the used methodology is presented. The

generated vocal tract models are introduced in Section 3.2.1, the performance of numerical

simulations and experiments is respectively specified in Section 3.2.2 and Section 3.2.3,

and details on the computation of vocal tract transfer functions, pressure-pressure transfer

functions and pressure maps are provided in Section 3.2.4. The obtained results are then

examined in Section 3.3 for the two-tube configuration (Section 3.3.1) and the simplified

vocal tracts (Section 3.3.2). Conclusions finally close the chapter in Section 3.4.
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3.2 Methodology

3.2.1 Vocal tract models

We will first start our analysis with a very simplified model for the vocal tract of vowel /a/.

This consists on a system made of two connected tubes with circular cross-sections. The

cross-sectional area of the duct ending at the mouth exit is larger than the one having

its input at the glottal cross-section (see e.g. Fant, 1970). The first tube is 85 mm in

length and has an internal diameter of 14 mm, and the second one has the same length

but with an internal diameter of 29.5 mm (see Fig. 3.1). Two different configurations

are considered to connect them. In the first one the two tubes share the same central

axis, while in the second one the junctions are eccentric and share a line through the

upper cross-sections. Hereafter we will refer to these two configurations as the centric and

eccentric cases, respectively.

Next we will increase the complexity of the geometries and consider simplified vocal tract

geometries generated from the area functions in Story (2008). Three configurations are

built for vowel /a/ (see Fig. 3.2). In the first one the vocal tract is generated with

circular cross-sections and centric junctions. This case is of particular interest since it is

widely used in the literature due to its simplicity (see e.g., Speed et al., 2013; Arnela and

Guasch, 2014b). The second case also uses circular cross-sections but they are connected

Fig. 3.1: Sketch with the tube system dimensions and with the points used to compute

the pressure-pressure transfer functions Hij(f). Centric configuration (left) and eccentric

configuration (right). In the inner part of the vocal tracts the midsagittal plane is

highlighted. Units are expressed in millimeters.
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with eccentric junctions, as done in the two-tubes configuration. Finally, in the third case

an eccentric configuration is maintained but replacing the circular cross-sections with

elliptical shapes. The eccentricity of the mouth for vowel /a/, obtained from Fromkin

(1964), is applied to all cross-sections to generate an elliptical shape (as done in Arnela

et al., 2013). From now on these three configurations will be respectively termed for

brevity as the circular-centric, circular-eccentric and elliptical-eccentric cases. Although

the three configurations are rough approximations of a realistic vocal tract, they can be

interpreted as approximations of increasing degree of reality. The circular-centric case

is the most simple configuration. With eccentric junctions we obtain a common upper-

line between the cross-sections that can be viewed as corresponding to the hard palate

(circular-eccentric case), and including elliptical cross-sections (elliptical-eccentric case)

we can obtain a closer vocal tract shape than with circles.

In order to generate the vocal tract geometries with eccentric junctions (circular-eccentric

and elliptical-eccentric cases), one can simply start from a centric configuration and

move all cross-sections up to make them share an upper-line. However, by using this

methodology a longer vocal tract midline (the line or curve that pass though the center of

each cross-section) is obtained, which can produce a shift down of the formant locations.

So to compensate this effect, the vocal tract lengths are corrected so that all configurations

have the same midline length than the centric case.

Fig. 3.2: The three simplifications of the vocal tract for vowel /a/ including the points used

to compute the pressure-pressure transfer functions Hij(f). (left) circular-centric, (center)

circular-eccentric and (right) elliptical-eccentric cases. In the inner part of the vocal tracts

the midsagittal plane is highlighted. Units are expressed in millimeters.
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3.2.2 Finite Element simulations

The Finite Element Method (FEM) is used to solve the time domain wave equation for

the acoustic pressure (see Chapter 2). First, each one of the vocal tract models presented

in Section 3.2.1 are set in a rigid flat baffle with dimensions 0.3 m x 0.3 m. This baffle

constitutes one side of a rectangular volume of 0.3 m x 0.3 m x 0.2 m in size which

allows sound waves radiate out from the vocal tract. Free-field radiation conditions are

then emulated by means of a Perfectly Matcher Layer (PML) of width 0.1 m that is

surrounding this radiation space and absorbs the outgoing sound waves. Details about

the PML configuration and the mesh description can be found in Section 2.4.

In what concerns boundary conditions, a Gaussian pulse is imposed at the vocal tract

entrance to compute transfer functions while a sinusoid with the frequency of interest is

used for obtaining a pressure map. At the vocal tract walls, a constant frequency boundary

admittance coefficient of µ = 0.0025 is imposed to introduce losses. This value has been

deemed appropriate after a tuning process where the resonance bandwidths obtained from

simulations were adjusted to fit those from experiments. The baffle where the vocal tracts

are set is considered rigid, i.e. µ = 0 on its surface.

A FEM simulation lasting 25 ms for each case is then performed with a sampling rate of

fs = 1/∆t = 2000 kHz. A value of c0 = 344 m/s is chosen for the speed of sound which

corresponds to the average temperature value of 21◦C reported during experiments.

3.2.3 Experiment description

In what concerns the experimental setup (see Fig. 3.3, extracted from Blandin et al.,

2014a), a mechanical replica made of Plexiglas is used for the two-tubes while the three

simplified vocal tracts are built with a 3D printer (ProJet 3510 SD). The exit cross-section

of these replicas are set on a rigid plane baffle of dimensions 365 mm x 360 mm. The

resulting models are then located inside a sound-insulated room (1.92 m x 1.95 m x 1.99 m,

Volume = 7.45 m3, Van Hirtum and Fujiso, 2012).

The compression chambers Monacor KU-916T and Eminence PSD:2002S-8 are

respectively used for the frequency ranges 100 − 2000 Hz and 2000 − 10000 Hz as a

sound source. Both compression chambers are located outside the sound-insulated room

to avoid non-desired interferences. They are connected with the entrance of the replica

by means of an adaptation device, which radiates the sound inside the replica through a

2 mm diameter hole (this hole is also reproduced in the FEM simulations).
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Fig. 3.3: Experimental setup (courtesy of Rémi Blandin and Xavier Pelorson).

To measure the acoustic pressure a sound probe (Brüel and Kjaer 4182) is used, which

can be located inside and outside the replicas using a 3D stage positioning system (OWIS

PS35) with an accuracy of ±4 µm. The initial position of this probe is however less

accurate (1 mm) and can be an error source which produces significant differences between

simulations and experiments. The positioning system is set on a table inside the insulated

room, which is covered with acoustic foam to minimize undesired sound reflections.

All measurements were performed in the GIPSA-lab facilities in Grenoble, France, by

Rémi Blandin, Xavier Pelorson, Annemie Van Hirtum and Xavier Laval.

3.2.4 Computation of transfer functions and pressure maps

First, vocal tract transfer functions are computed from FEM simulations to study the

acoustic behavior of each vocal tract model. A Gaussian pulse is used to generate the

volume velocity Qg(t) imposed at its entrance. Collecting the acoustic pressure po(t) at

the mouth exit, the vocal tract transfer function is computed as

H(f) = Po(f)/Qg(f), (3.1)

with Po(f) and Qg(f) standing for the Fourier Transform of the acoustic pressure po(t)

and the volume velocity Qg(t), respectively.

Second, pressure-pressure transfer function between two arbitrary points i and j are
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obtained for both FEM and experiments. This can be computed as

Hij(f) = Pj(f)/Pi(f), (3.2)

where Pi(f) and Pj(f) are the Fourier Transform of the acoustic pressure at points i and

j, respectively. The selected points can be observed in Fig. 3.1 for the two-tubes and

in Fig. 3.2 for the simplified vocal tracts. This magnitude is of special interest for the

realization of experiments, since the microphone and source calibration can be avoided;

a single microphone can be used and the influence of the experimental setup (amplifier,

wires and microphone conditioner) in the measure can be neglected.

Finally, to illustrate the importance of high-order modes and to compare simulations

against experiments, the pressure field at a given frequency within the vocal tract and in

the near-field is also computed. To do so, the vocal tract is excited at the glottis cross-

section with a sinusoidal signal. Its frequency is chosen to coincide with a vocal tract

resonance or antiresonance, which can be obtained from the spectrum of the acoustic

pressure at the vocal tract exit after exciting its entrance with a broadband signal. Since

small differences can be produced between experiments and simulations, these values are

extracted for each method to ensure similar pressure distributions. The acoustic pressure

is then tracked in a structured grid of points with a distance of 2.5 mm apart located

in the midsagittal plane. An example of this grid for the eccentric two-tubes and the

circular-eccentric /a/ can be observed in Fig. 3.4. The points have been selected so that

the microphone probe can reach any position (the probe can not be bent). Note than

in contrast to the two-tubes case (Fig. 3.4a), the grid of points for the circular-eccentric

/a/ (Fig. 3.4a) can only cover a small region of the midsagittal cut (shadowed region in

Fig. 3.4). The mean absolute value of the acoustic pressure is finally computed. In the

case of simulations, this is done by using the values from the last 5 ms.

(a) eccentric two-tubes (b) circular-centric /a/

Fig. 3.4: Grid of points (in red) where the acoustic pressure is extracted to compute the

formant pressure patterns. The shadowed region corresponds to the midsagittal cut.
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3.3 Results

3.3.1 Two-tubes

Vocal tract transfer functions

First, vocal tract transfer functions are computed in simulations for the centric and

eccentric cases, collecting the output acoustic pressure po(t) at the exit of the larger

tube. In Fig. 3.5 the obtained vocal tract transfer functions are presented. First, it can

be observed that by using an eccentric configuration the pressure levels are increased

with an offset about 15dB. Second, it can be appreciated that for the centric case, higher

order modes are not visible. This is due to the symmetry of the geometry. In contrast,

if we break this symmetry and consider an eccentric configuration, higher order modes

become apparent for frequencies beyond 5 kHz. Resonances with asymmetric bandwidths

and antiresonances can be observed in this frequency range. Below 5 kHz there are not

significant differences between the centric and eccentric cases. Therefore it can be said

that for this particular case the plane wave assumption holds up to about 5 kHz.
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Fig. 3.5: Vocal tract transfer functions computed in the FEM numerical simulations of the

two-tubes. (— Centric case, - - Eccentric case)

Pressure-pressure transfer functions

For both, simulations and experiments, pressure-pressure transfer functions are next

calculated from a set of four points distributed along the axis of the smaller tube (see

Fig. 3.1). In Fig. 3.6 pressure-pressure transfer functions for the centric and eccentric cases

are shown. The figures also contain the results obtained from experiments for comparison.
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Fig. 3.6: Modulus of the pressure-pressure transfer functions Hij(f) for the two-tubes

obtained in Finite Element simulations (FEM) and experiments (Exp).

All transfer functions are computed taking point #1, located within the narrowest tube,

as the reference. Then, the transfer functions H12, H13 and H14 are respectively computed

using point #2 located in the largest tube and close to the junction, point #3 close to

the mouth exit but still inside the larger tube, and point #4 which is outside the vocal

tract, in the near-field.

The first observation that can be made is that for any of the pressure-pressure transfer

functions both simulations and experiments match in the examined frequency range

(0,10) kHz, including the high frequency region where non-planar waves can also

propagate. This validates the proposed FEM approach for this case.

Let us now focus in the results for the centric configuration (Fig. 3.6a). Moving from

point #2 (H12) to point #3 (H13), it can be appreciated that in the frequency region below

5 kHz large differences are found between figures, while above this value no significant

changes are appreciated. This behavior can be expected for planar waves, since for low

frequencies the pressure field distribution in the propagation direction can contain abrupt

amplitude changes while for high frequencies they will be smoother. Moving next from

point #3 (H13) to point #4 (H14), at first sight no large differences are observed. However,

looking carefully at the amplitude levels it can be appreciated that H14 is gradually
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Fig. 3.7: Pressure spectrum Hi(f) for the two-tubes at the different points i = 1, 2, 3, 4 (see

Fig. 3.1 and Fig. 3.2 for the point locations in the centric and eccentric cases respectively).

decreasing its energy towards low frequencies. See for instance that the pick at 1 kHz

has ∼ 10 dB and 0 dB for H13 and H14 respectively, while the pick at 9 kHz has a similar

amplitude for both magnitudes. This behavior can be attributed to a radiation effect, since

the power radiated outwards is proportional to the radiation resistance which increases

with frequency (see e.g., Kinsler et al., 2000). Remember that point #3 is located within

the largest tube close to its exit and point #4 is outside.

In what concerns the eccentric case (see Fig. 3.6b), it behaves similar to the centric

configuration in the low frequency region. However, in this case for frequencies above

5 kHz significant changes occur between H12, H13 and H14. Complex pressure fields may

be given within the tube system, explaining the difference between H12 and H13, while

the variation between H13 and H14 can be attributed to a complex directivity pattern.

Therefore, the evidence of higher order modes beyond 5 kHz is again confirmed for the

eccentric case, as observed before in the vocal tract transfer functions (see Fig. 3.5).

Finally, we would like to note that one does not have to confuse the picks in the pressure-

pressure transfer functions as vocal tract resonances or formants, appearing for instance in

the vocal tract transfer functions shown in Fig. 3.5 (see e.g., Guasch and Magrans, 2004;

Guasch, 2009, for an explanation of peaks and dips in mechanical transmisibiliy functions).

Looking at the pressure spectrums of each one of the four points (see Fig. 3.7), note for

instance that the pick at ∼ 1 kHz in the pressure-pressure transfer functions (see Fig. 3.6)

is produced by the minimum pressure value of point #1 at this frequency (see Fig. 3.7a

or Fig. 3.7b) when H1j = Hj/H1 is computed, with j = 2, 3. Moreover, also observe that

the first two typical resonances of the vowel /a/ are canceled since they appear in all four

points (see Fig. 3.7).
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Pressure maps

Finally, in order to illustrate the three-dimensional behavior of acoustic waves, the pressure

pattern of a given formant has been obtained, within the duct system and in the near-field,

in a structured grid of points. One formant in the low frequency region has been chosen,

where the plane wave assumption holds, and another one beyond this limit. The selected

formants are the third formant (F3) and the eight formant (F8), for both the centric and

eccentric configurations. In Table 3.1 their frequencies are presented. These values have

been extracted for simulations from the vocal tract transfer functions in Fig. 3.5, while for

experiments they have been computed from a frequency sweep of the duct system over the

analyzed frequency range. Note from Table 3.1 that there are small variations between

FEM and experiments. However, these deviations are less than 3 − 5%, so they can be

considered perceptually irrelevant (Flanagan, 2008).

Figure 3.8 presents the formant patterns of F3 and F8 for both the centric and eccentric

configurations obtained in FEM and experiments (Exp). The origin of coordinates has

been defined at the tube exit. Negative values in the x-axis (longitudinal or propagation

direction) will then correspond to the interior of the tube and positive ones to the outer

near-field. The y-axis represents the transverse direction, with the zero value denoting

the center of the larger tube. The z-axis denotes mean acoustic pressure amplitude in dB,

normalized to the maximum pressure level. Moreover, to facilitate comparison between

FEM and experiments, two additional graphics are represented in Fig. 3.9 for each one

of the formants. They correspond to cuts of the pressure maps shown in Fig. 3.8 in the

sagittal plane (propagation direction) and just in front of the mouth exit in the frontal,

or coronal, plane (transverse direction).

Table 3.1: Locations of the third formant (F3) and the eight formant (F8) obtained from

FEM simulations and experiments (FEM/Experiments). Values are expressed in Hz.

F3 F8

centric 2570 / 2550 6980 / 6940

eccentric 2570 / 2550 7080 / 7150
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Let us first focus on the results for the centric case. If we look at the pressure map for F3

obtained for both FEM and experiments (see Fig. 3.8a and Fig. 3.8b), it can be observed

that a similar acoustic pressure pattern is obtained for both methods. Note that pressure

variations only take place in the longitudinal direction within the duct system, and that

the radiated field propagates as spherical waves. Analyzing the pressure map cuts for

this frequency (see Fig. 3.9), similar results are obtained for FEM and experiments in

the sagittal cut (see Fig. 3.9a), and also a similar spherical pattern is observed in the

frontal cut (see Fig. 3.9b). This behavior corresponds to plane wave propagation. If we

now move to F8, the obtained pressure patterns for FEM and experimental results are

slightly different (see Fig. 3.8c and Fig. 3.8d). In FEM simulations plane waves are mainly

produced, while in experiments a higher order mode is also excited. This is attributed

to the fact that in experiments the geometry is not perfectly symmetric, which produces

the onset of a higher order mode. If we analyst the acoustic pressure in the sagittal cut

(Fig. 3.9c), we set very close results between FEM and experiments, since this higher

order mode has a nodal line in the tube center line and therefore, only the planar wave

becomes visible. Comparing with the same cut at F3 (see Fig. 3.9a), as one could expect

the amplitude variation within the duct system is smaller for F8, since for high frequencies

planar waves have smoother pressure distributions than in the lower frequency region, as

mentioned before during the pressure-pressure transfer function analysis. In what concerns

the radiation pattern, spherical wave propagation is also observed for both experiments

and FEM (see Fig. 3.9d). Compared to F3 (see Fig. 3.9b), the radiation pattern is slightly

more directive. The main lobe at −0.04 m reaches −24 dB for F3 while for F8 it has a

value of −26 dB (remember that the pressure levels are normalized to the maximum value

of the pressure maps).

With regard to the eccentric configuration, a similar behavior to the centric case is

observed for F3. Compare the pressure maps for the eccentric case (Fig. 3.8e and Fig. 3.8f)

with the centric case (Fig. 3.8a and Fig. 3.8b), and their respective cuts (Fig. 3.9e and

Fig. 3.9f with Fig. 3.9a and Fig. 3.9b). For this frequency we are still under plane wave

propagation, so the duct configuration does not have any influence. Plane waves propagate

within the duct whereas spherical propagation is generated at the exit. These results

contrast with those obtained for F8 (see pressure maps in Fig. 3.8g and Fig. 3.8h). In

this case a more complex pressure pattern is given within the duct system, and there

is no longer spherical radiation. It becomes then apparent the presence of higher order

modes for this frequency regime. If we look now at the cuts (see Fig. 3.9g and Fig. 3.9h),

although FEM and experiments do not match as good as in previous comparisons, close

results are still obtained between them.
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(a) FEM F3 = 2570 Hz
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(b) Experiments F3 = 2550 Hz

−0.15
−0.1

−0.05
0

0.04

−0.04
−0.02

0
0.02

0.04

−60

−40

−20

0

Dist. fro
m exit [m

]
Dist. from axis [m]

A
c
o
u
s
ti
c
 p

re
s
s
u
re

 [
d
B

]

(c) FEM F8 = 6980 Hz
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(d) Experiments F8 = 6940 Hz
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(e) FEM F3 = 2570 Hz
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(f) Experiments F3 = 2550 Hz
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(g) FEM F8 = 7080 Hz
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(h) Experiments F8 = 7150 Hz

Fig. 3.8: Pressure maps within the duct system with centric and eccentric configuration for

the third formant (F3) and the eight formant (F8).
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(a) F3 Sagittal

(Dist. axis= 0mm)
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(b) F3 Frontal

(Dist. exit= 5mm)
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(c) F8 Sagittal

(Dist. axis=0mm)
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(d) F8 Frontal

(Dist. exit=5mm)
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(e) F3 Sagittal

(Dist. axis= 7.5mm)
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(f) F3 Frontal

(Dist. exit= 5mm)
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(g) F8 Sagittal

(Dist. axis= 7.5mm)
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(h) F8 Frontal

(Dist. exit= 5mm)

Fig. 3.9: Cuts of the pressure maps (see Fig. 3.8) in the sagittal and frontal planes of the

duct system with centric and eccentric configuration for the third formant (F3) and the

eight formant (F8).
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3.3.2 Simplified vocal tracts

Vocal tract transfer functions

In Fig. 3.10 the computed vocal tract transfer functions for the three configurations in

Fig. 3.2 are shown. It can be appreciated that the use of an eccentric configuration

increases the pressure level by ∼ 20 dB compared to the centric configuration, similar to

what was observed for the two-tubes (see Section 3.3.1). On the other hand, below 5 kHz

no significant differences are produced between cases in terms of formant location and

bandwidth. Therefore, it can be asserted that below this value the examined vocal tract

is under plane-wave propagation regime, since the introduced geometry modifications in

the vocal tract shape are not affecting its behavior. Note also that the formant locations

in this regime match thanks to the applied vocal tract length correction in the eccentric

configurations. Beyond 5 kHz, higher order modes are excited and large differences take

plane between cases, specially when moving from a centric to an eccentric configuration.

See for instance that with an eccentric configuration antiresonances appear, while they

are missing for the centric case due to the radial symmetry. However, comparing the

elliptical-eccentric with the circular-eccentric not so large differences can be appreciated.

The resonances and antiresonances are moved to higher frequencies and larger bandwidths

are obtained when elliptical shapes are considered.
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Fig. 3.10: Vocal tract transfer functions computed in the FEM numerical simulations of the

simplified vocal tracts. (— Circular-centric, - - Circular-eccentric, · · · Elliptical-eccentric)

Pressure-pressure transfer functions

Pressure-pressure transfer functions are computed in a set of three points located within

the vocal tract and distributed along the longitudinal axis centered with the glottal cross-
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section (see Fig. 3.2). The first point #1 is located within the narrow part of the vocal

tract, point #2 is in the widest region, and point #3 is placed in the mouth cross-sectional

area. For the eccentric configurations an additional point (point #4) is also considered

to capture the pressure field in the center of the mouth exit. Note that this point is the

equivalent to point #3 for the centric configuration. The obtained transfer functions are

shown in Fig. 3.11.

In what concerns the circular-centric case (see Fig. 3.11a), comparing H12 with H13 it

can be appreciated that the most significant differences are produced below 5 kHz, as

already observed for the two-tubes (see Section 3.3.1). This can be attributed again to

the typical behavior of planar waves, which in terms of amplitude have smoother pressure

field distributions at high frequencies than in the lower ones, the point location making

less sensitive in the high frequency range.

With regard to the circular-eccentric configuration (see Fig. 3.11b), a similar behavior than

in the circular-centric case is observed, for the low frequency region, when comparing

H12 with H13. However, in this case the higher order modes become apparent beyond

5 kHz. If we now compare H13 with H14 (an equivalent transfer function that considers

the point #4 centered in the mouth exit instead of the non-centered point #3) it can be

observed that in the low frequency region a similar transfer function is obtained. However,

above 5 kHz significant differences are produced. See for instance that the resonance at

about 8 kHz has changed its shape and that the resonance in H13 at about 9.5 kHz is now

an antiresonance in H14. This illustrates again the effect of higher order modes, which

have complex pressure distribution fields not only in the propagation direction but also

in the radial one. This behavior can be easily observed computing the transfer function

between these two points, H34. Below 5 kHz a flat response is obtained, indicating that

the acoustic pressure is the same in points #3 and #4. However, beyond this value

the pressure field changes in the radial direction, which justify the appearance of the

antiresonances observed in the figure.

The elliptical-eccentric case (see Fig. 3.11c) behaves similar to the circular-eccentric

configuration. However, in this case no significant differences can be appreciated between

H13 and H14. This is also observed in the flat response that H34 has in the whole examined

frequency range, indicating that the pressure distribution is not changing in this direction,

in contrast to the circular-eccentric case. This is a result that could be expected since for

an elliptical configuration the midsagittal distance is smaller than for a circular one (see

Fig. 3.2). However, similar results to the circular-eccentric case may be expected if we

examine the major semi-axis instead of the minor semi-axis.
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Fig. 3.11: Modulus of the pressure-pressure transfer functions Hij(f) for the simplified

vocal tracts of vowel /a/ obtained in Finite Element simulations (FEM) and experiments

(Exp).

On the other hand, in general both FEM simulations and experiments match for all the

considered cases in the examined frequency range. Some discrepancies can be found in

Fig. 3.11 beyond 8 kHz which are attributed to small measurement errors or imperfections

of the vocal tract replicas.



56 3.3. Results

Pressure maps

Finally, pressure maps are computed in a set of resonances and antiresonances belonging to

each vocal tract configuration. Their locations are extracted in FEM from the vocal tract

transfer functions in Fig. 3.10, whereas a frequency sweep over the analyzed frequency

range has been performed in experiments to find these values. The selected frequencies are

listed in Table 3.2. The third formant (F3) is chosen to analyze the low frequency range,

while for high frequencies the eighth formant (F8) is used. The second antiresonance (A2)

is also considered as an additional case for the circular-eccentric configuration.

Table 3.2: Formant (Fi) and antiresonance (Ai) frequency values used to compute

pressure patterns in each vocal tract configuration for FEM simulations and experiments

(FEM/Experiments). Values are expressed in Hz.

F3 F8 A2

circular-centric 2848 / 2870 7139 / 7380 -

circular-eccentric 2841 / 2820 7178 / 7390 8315 / 8280

elliptical-eccentric 2833 / 2810 7130 / 7434 -

The obtained pressure maps are shown in Fig. 3.12, Fig. 3.13 and Fig. 3.14 for the circular-

centric, circular-eccentric, and elliptical-eccentric cases, respectively. As done in the two-

tubes (see Section 3.3.1), the pressure maps have been normalized to its maximum value.

Some pressure map cuts in the sagittal plane and in the frontal plane just outside of the

mouth exit are also shown in Fig. 3.15 to better compare FEM with experiments.

Focusing first in the pressure maps for the circular-centric configuration (see Fig. 3.12), a

similar behavior than for the two-tubes is observed (see Section 3.3.1). For both, the low

frequency formant F3 (see Fig. 3.12a or Fig. 3.12b) and the high frequency formant F8

(see Fig. 3.12c or Fig. 3.12d), plane waves are generated within the vocal tract, which are

radiating outside the vocal tract following a spherical pattern. Comparing experiments

with simulations, for F3 no differences can be appreciated. However, it seems again that

in addition to the planar wave a higher order mode is also slightly excited for F8 in

experiments (see Fig. 3.12d), in contrast to simulations (see Fig. 3.12c). This can be

attributed again to small imperfections of the vocal tract replica. Some more details on

the comparison between simulations and experiments are given in the pressure map cuts

shown in Fig. 3.15. It can be appreciated that both FEM and experiments match in the

circular-centric case for both formants, showing also for F8 a smaller dynamic range (see

Fig. 3.15c) and a slightly higher directional behavior of the wave radiation (see Fig. 3.15d),

with respect to F3 (see respectively Fig. 3.15a and Fig. 3.15b).
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(a) FEM F3 = 2848 Hz
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(b) Experiments F3 = 2870 Hz
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(c) FEM F8= 7139 Hz
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(d) Experiments F8= 7380 Hz

Fig. 3.12: Pressure maps in the circular-centric /a/ for the third formant (F3) and the eight

formant (F8).

With regard to the circular-eccentric configuration, the pressure distribution for the low

frequency formant F3 (see Fig. 3.13a or Fig. 3.13b) behaves similar to the circular-centric

case. However, for F8 a complex pattern is produced within the duct due to the appearance

of a higher order mode. In this case, the radiation pattern is still spherical, in contrast

to what was observed for the high frequency formant of the two-tube configuration with

eccentric junctions (see Fig. 3.8g). The opposite occurs for the second antiresonance

A2 (see Fig. 3.13e or Fig. 3.13f). In this case the radiated pressure appears as strongly

directional, in addition to the complex pressure field distribution. Comparing simulations

with experiments, for both F3 and F8 no significant differences are appreciated. However,

the radiation pattern for A2 is slightly different, although the pressure field distribution

seems similar within the vocal tract. If we look at the pressure map cuts (see Fig. 3.15),

it is confirmed that both simulations and experiments match for F3 (see Fig. 3.15e and

Fig. 3.15f) and F8 (see Fig. 3.15g and Fig. 3.15h), and that A2 has a similar pressure

distribution within the vocal tract (see Fig. 3.15i) although the radiation pattern is

different (see Fig. 3.15j). While for simulations two non-symmetrical lobes are obtained,

the measurements present an almost symmetrical behavior.
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(a) FEM F3 = 2841 Hz
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(b) Experiments F3 = 2820 Hz
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(c) FEM F8 = 7178 Hz
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(d) Experiments F8 = 7390 Hz
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(e) FEM A2 = 8315 Hz
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(f) Experiments A2 = 8280 Hz

Fig. 3.13: Pressure maps in the circular-eccentric /a/ for the third formant (F3), the eight

formant (F8) and the second antiresonance (A2).
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Finally in Fig. 3.14 the pressure maps for the elliptical-eccentric configuration are shown.

It should be mentioned that in this case the pressure maps have been computed in the

transverse plane (direction of the major semi-axis) that contains the mouth exit center.

This plane is perpendicular to the midsagittal plane where the pressure maps for the

circular-centric and circular-eccentric cases have been obtained. In what concerns the low

frequency formant F3 (see Fig. 3.14a or Fig. 3.14b), plane waves are again appreciated

along the vocal tract which spherically radiates outwards. In contrast, for the high

frequency formant F8 (see Fig. 3.14c or Fig. 3.14d) a complex pressure distribution is

generated within the vocal tract, although spherical waves are still emanating from its

mouth aperture. Both simulated and experimental pressure maps show similar results.

The same conclusion can be derived when analyzing the pressure map cuts for F3 (see

Fig. 3.15k and Fig. 3.15l) and F8 (see Fig. 3.15m and Fig. 3.15n), although a small

level offset is observed for F3. This is probably a consequence of the amplitude scaling

performed for all pressure maps, which were normalized to the maximum pressure level

to allow a fair comparison between FEM and experiments.
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(a) FEM F3 = 2833 Hz
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(b) Experiments F3 = 2810 Hz
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(c) FEM F8 = 7130 Hz
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(d) Experiments F8 = 7434 Hz

Fig. 3.14: Pressure maps in the elliptical-eccentric /a/ for the third formant (F3) and the

eight formant (F8).
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(a) F3 Sagittal
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(b) F3 Frontal
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(c) F8 Sagittal
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(d) F8 Frontal

circular-eccentric
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(e) F3 Sagittal
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(f) F3 Frontal
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(g) F8 Sagittal
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(h) F8 Frontal
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(i) A2 Sagittal
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(j) A2 Frontal

elliptical-eccentric
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Fig. 3.15: Cuts of the pressure maps in the sagittal plane (Dist. from axis = 0 mm) and in

the frontal plane (Dist. from exit = 5 mm) for the three vocal tract configurations.
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3.4 Conclusions

In this chapter the FEM approach presented in Chapter 2 has been validated against

experimental results. Simplified vocal tract geometries for the production of vowel /a/

have been studied for this purpose, starting from the most simple two-tubes configuration

and moving to vocal tracts constructed from area functions available in the literature.

These vocal tracts have been generated with different configurations, including centric

and eccentric junctions and considering circular and elliptical shapes.

Vocal tract transfer functions have been first simulated, showing that higher order modes

can be produced beyond 5 kHz for those configurations that have eccentric junctions and

circular or elliptical cross-sections. Next, pressure-pressure transfer functions have been

obtained for both FEM and experiments. This magnitude has been found appropriate

since it simplifies the calibration of the experimental setup. Again higher order modes

have been observed above 5 kHz for all examined cases, with the exception of the centric

configurations. Below this limit planar wave propagation takes place for all configurations.

These results have been confirmed in the pressure maps obtained for different formant or

antiresonance frequencies. In addition, it has been observed that in the low frequency

region below 5 kHz, planar waves are always generated, which only oscillate along the

propagation axis and radiate following a spherical pattern. In contrast, in the high

frequency region the vocal tract shape plays an important role. For centric junctions,

planar waves are produced. However, when the symmetry of this geometry is broken,

either with eccentric junctions or elliptical cross-sections, higher order modes appear.

These modes exhibit a complex pressure distribution within the vocal tract, with a

radiation pattern that can be either spherical or highly directional.

These simple examples have illustrated the importance of three-dimensional modelling

of the vocal tract acoustics. On the other hand, FEM and experimental results have

matched to a very good extent, so it can be concluded that the FEM approach presented

in Chapter 2 can be used for vowel production simulation with confidence.





Chapter 4

Computation of vocal tract input

and radiation impedances

A two-microphone transfer function method (TMTF) is adapted to a numerical framework

to compute the radiation and input impedances of 3D vocal tracts of elliptical cross-

section. In its simplest version, the TMTF method only requires measuring the acoustic

pressure at two points in an impedance duct and the postprocessing of the corresponding

transfer function. However, some considerations are to be taken into account when using

the TMTF method in the numerical context, which constitute the aim of this chapter. In

particular, the importance of including absorption at the impedance duct walls to avoid

lengthy numerical simulations is discussed. It is also shown how the direct impedance

of plane wave propagation can be computed beyond the TMTF maximum threshold

frequency, by appropriate location of the virtual microphones. Virtual microphone

spacing is discussed on the basis of the so called singularity factor. Examples include

the computation of the radiation impedance of vowels /a/, /i/ and /u/ and the input

impedance of vowel /a/, for simplified vocal tracts of circular and elliptical cross-sections.

The contents of this chapter have been published in

• Marc Arnela and Oriol Guasch (2013), “Finite element computation of elliptical vocal

tract impedances using the two-microphone transfer function method,” Journal of the

Acoustical Society of America, 133(6), pp. 4197–4209.

• Marc Arnela and Oriol Guasch (2012),“Adaptation of the experimental two microphone

transfer function method to compute the radiation impedance of ducts from numerical

simulations”, 19th International Congress on Sound and Vibration (ICSV19), July 8–12,

Vilnius, Lithuania.
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4.1 Introduction

Radiation and input impedances of vocal tracts are of special interest for voice production.

They play a significant role in determining wave radiation at the lip termination or in

modelling the acoustic coupling of the vocal tract and the vocal folds. Impedances can be

computed from numerical simulations of vocal tract acoustics. Due to intricate geometry

of the vocal tract the finite element method (FEM) is an appropriate numerical approach

to carry out these simulations. Several works can be found in literature dealing with FEM

computations both in the frequency domain (e.g., Matsuzaki et al., 2000; Motoki, 2002;

Hannukainen et al., 2007) and time domain (e.g., Švancara and Horáček, 2006; Vampola

et al., 2008a, 2011). Occasionally other approaches such as finite differences have also

been used (e.g., Takemoto et al., 2010).

With regards to voice production, working in the time domain turns to be a very appealing

option given that time evolving phenomena such as the self-oscillation of the vocal folds,

the generation of diphthongs, or the visualization of acoustic waves propagating through

the vocal tract and generation of corresponding audio files, could be naturally accounted

for in numerical simulations. If the wave equation is solved in its mixed form (e.g.,

Takemoto et al., 2010; Codina, 2008), impedances can be directly computed from the

Fourier transforms of the acoustic pressure and acoustic velocity time evolutions. However,

this is not possible if the wave equation is solved in irreducible form for the acoustic

pressure (e.g. Vampola et al., 2011) or for the velocity potential (e.g., Matsuzaki et al.,

2000). In such cases the acoustic velocity has to be computed from the acoustic pressure

or the velocity potential gradients. This is not difficult for structured meshes but it is

not so straightforward for unstructured meshes, elemental integration and assembly being

required in addition at each time step for the pressure/velocity ratio at the radiation

surface, in order to obtain the impedance.

In this chapter an alternative is proposed for a straightforward computation of the plane

wave radiation and input impedances of vocal tracts, that requires no knowledge of the

acoustic velocity field. The idea is to adapt the experimental two-microphone transfer

function method (TMTF) to the numerical framework. Originally developed by Chung

and Blaser (1980), the simplest version of the TMTF method only requires measuring

the time evolution of the acoustic pressure at two points in an impedance duct, and

computing the corresponding transfer function. From this transfer function, the radiation

and/or input impedances at a given surface can be easily derived. In return, the price

to be paid for such a simple approach is that an additional simulation substituting

the vocal tract with an impedance duct has to be performed for the computation of

radiation impedances (this is not the case for input impedances where an impedance
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duct is always coupled at the entry of the vocal tract, whatever numerical approach is

followed). The purpose of this study was to develop the TMTF method for computing

vocal tract impedances in a numerical environment. First, it will be shown that dealing

with lossy impedance ducts reduces the overall time duration of the simulations. The

inclusion of wall losses allows for strong attenuation of the first duct eigenmode, which

otherwise determines the total duration of the computation. However, this implies using

appropriate complex wavenumbers in the TMTF expressions, which are well-known for

three-dimensional circular cylindrical ducts, and which will be derived in this work for

elliptical cross sectional impedance ducts, given their importance in voice production (see

e.g., Motoki, 2002; Matsuzaki et al., 2000, where elliptical vocal tracts are used). Second,

the frequency range of validity of the TMTF method will be analyzed. Specifically, it

will be shown how the direct impedance of plane wave propagation can be computed

beyond the TMTF maximum threshold frequency by appropriate location of the virtual

microphones (mesh nodes where the acoustic pressure time evolution is collected). In

addition, the appropriate virtual microphone spacing will be determined by means of

the so called singularity factor (SF) introduced by Jang and Ih (1998), according to the

maximum frequency of analysis. Throughout the work, time domain FEM simulations

for the irreducible wave equation will be performed with a custom software, to compute

vocal tract impedances using the adapted TMTF method. However, any other time

domain numerical approach could benefit from the reported results.

The chapter is organized as follows. Section 4.2 presents the methodology for computing

the acoustic impedance of vocal tracts from numerical simulations. In Section 4.3, the

various considerations to be taken into account when adapting the TMTF method to the

numerical framework become analyzed. Numerical examples of computed impedances for

vocal tracts of circular and elliptical cross-section are provided in Section 4.4. Finally,

conclusions close the chapter in Section 4.5.

4.2 Methodology

4.2.1 The two-microphone transfer function method

The two-microphone transfer function method (TMTF) was originally developed by

Chung and Blaser (1980) and later on standardized in the ISO 10534-2 (1998) for

measuring the normal reflection coefficient of material samples. The normalized specific

acoustic impedance Z can be obtained from the latter. The TMTF proceeds as follows.

First, plane waves are generated at the entrance of a duct of length L, referred to as the
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impedance duct. The acoustic pressure signals P1(f) and P2(f) become measured at two

points x1 and x2 close to the impedance duct exit, which is designated as the reference

surface, and the transfer function

H12(f) =
P2(f)

P1(f)
(4.1)

is computed. The reflection coefficient R1 at position x1 is related to Eq. (4.1) through

R1 =
H12 −HI

HR −H12
, (4.2)

with HI and HR respectively standing for the incident and reflected wave transfer

functions. Assuming plane wave propagation, the transfer functions HI and HR become

HI = e−jkzs, HR = ejkzs, with j =
√
−1, s = |x1 − x2| being the distance between

microphones and kz the wavenumber in the axial direction. In order to translate the

reflection coefficient to the reference surface, defined at x = 0, a factor ej2kzx1 is introduced

in (4.2), leading to the following expression for the normal reflection coefficient

R = R1e
j2kzx1 =

H12 − e−jkzs

ejkzs −H12
ej2kzx1 . (4.3)

The normalized specific acoustic impedance Z can be finally obtained by means of

Z =
1 +R
1−R . (4.4)

Z is usually split in its real R (resistive) and imaginary X (reactive) components,

Z = R + jX . On the other hand, the specific acoustic impedance Z ′ will be given by

Z ′ = Z0Z, Z0 standing for the characteristic impedance of the medium whose expression

is provided in Section 4.3.2.

4.2.2 Problem statement

Suppose that the radiation impedance Zr or the input impedance Zin of a vocal tract is to

be computed from a time domain numerical simulation, using the two-microphone transfer

function (TMTF) method. First, an impedance duct has to be coupled to the reference

surface, the duct having the same cross-sectional area and shape than this surface. For

instance, to compute the input impedance of a vocal tract, the impedance duct will be

coupled to the vocal tract at the glottal cross-section (see Fig. 4.1), whilst for the radiation

impedance, the duct will be coupled to the mouth exit replacing the existing vocal tract

geometry (see Fig. 4.1).
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Fig. 4.1: A sketch of the computational domain Ω of Eq. (4.5) in text for input impedance

computations (left) and radiation impedance computations (right). ΓG stands for the

impedance duct boundary where a volume velocity is imposed, ΓZ for the impedance duct

walls, ΓW for the vocal tract walls, ΓH for the human head and Γ∞ for a fictitious non-

reflecting boundary that emulates free-field conditions.

The next step consists in carrying out a time domain numerical simulation for the acoustic

pressure evolution. Let us denote by Ω the finite computational domain with boundary

∂Ω. ∂Ω is built from five non-intersecting regions, i.e., ∂Ω = ΓG∪ΓZ∪ΓW∪ΓH∪Γ∞ with

ΓG ∩ ΓZ ∩ ΓW ∩ ΓH ∩ Γ∞ = ∅ (see Fig. 4.1). ΓG stands for the impedance duct boundary

where a volume velocity is imposed, ΓZ for the impedance duct walls, ΓW for the vocal

tract walls, ΓH for the human head boundary and Γ∞ for the external boundary, where a

fictitious non-reflecting condition has to be imposed. The problem to be solved is that of

finding the acoustic pressure field p(x, t) in Ω that satisfies

(

∂2tt − c20∇2
)

p(x, t) = 0 in Ω, t > 0, (4.5a)

with boundary conditions

∇p(x, t) · n = −ρ0/S∂tQ(t) on ΓG, t > 0, (4.5b)

∇p(x, t) · n = −µw/c0∂tp(x, t) on ΓW, t > 0, (4.5c)

∇p(x, t) · n = −µz/c0∂tp(x, t) on ΓZ, t > 0, (4.5d)

∇p(x, t) · n = 0 on ΓH, t > 0, (4.5e)

∇p(x, t) · n = 1/c0∂tp(x, t) on Γ∞, t > 0, (4.5f)

and initial conditions

p(x, t) = 0, ∂tp(x, t) = 0 in Ω, t = 0. (4.5g)
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In Eq. (4.5), c0 denotes the speed of sound, ρ0 the air density, S the impedance duct

cross-sectional area at ΓG, ∂t ≡ ∂/∂t designates the partial time derivative and n

the normal vector pointing outwards a surface. With regards to boundary conditions,

Q(t) in Eq. (4.5b) stands for a volume velocity generated by an imaginary loudspeaker.

Eq. (4.5c) and Eq. (4.5d) account for constant frequency losses at the inner walls, being

µ the boundary admittance coefficient (subindexes w and z simply indicate that different

absorption values can be introduced at each boundary). µ is related to the wall impedance

Zw by means of µ = ρ0c0/Zw. Eq. (4.5e) expresses that the human head is taken as a

rigid surface (µ = 0). Finally, Eq. (4.5f) is the well-known Sommerfeld radiation condition,

which guarantees that emanating waves from the mouth propagate outwards to infinity.

However, this condition is only optimal for sound waves impinging on Γ∞ in the normal

direction. To overcome this problem, use have been made of a Perfectly Matched Layer

(PML) (Berenger, 1994) for the wave equation in its irreducible form. In particular, the

PML in Grote and Sim (2010) originally developed for the finite difference framework

has been adapted and formulated for our custom finite element code. Details on the

implemented numerical scheme can be found in Chapter 2.

As the simulation evolves, the acoustic pressure signals p1(t) and p2(t) are collected at

two nodes of the finite element mesh, as if they were virtual microphones. From their

Fourier Transform P1(f) and P2(f) are obtained and making use of the TMTF method

described in Section 4.2.1, the acoustic impedances can be finally computed.

Fig. 4.2: Geometries used for computing the input impedance (right top) and the radiation

impedance (right bottom) of the elliptical vowel /a/ (left).
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4.2.3 Vocal tract models

The vocal tracts of the three vowels /a/, /i/ and /u/ with circular and elliptical cross-

section have been considered. In order to shorten notation, these have been referred as

e.g., circular /a/ or elliptical /a/. For the vocal tracts with circular cross-sections, use

has been made of the simplified vocal tract geometries generated from cross-sectional

areas provided by Story (2008). With regards to the vocal tracts with elliptical shapes

(see Fig. 4.2), the circular cross-sections have been reshaped according to the eccentricity

of the elliptical mouth apertures described in Fromkin (1964). The resulting vocal tract

geometries have been set on a spherical surface of radius 0.09 m used to emulate the

human head.

Following the procedure outlined at the beginning of Section 4.2.2 (see Fig. 4.2), the

vocal tract geometry has been replaced by an impedance duct with equal mouth aperture

to compute the vocal tract radiation impedance, whereas an impedance duct have been

coupled at the glottal cross-section of the vocal tract to compute its input impedance

(see Table 4.1 for duct dimensions). The impedance duct has a length of L = 0.1 m to

fulfill the requirements of the standard ISO 10534-2 (1998) (the length should be at least

three times the duct radius or the major semi-axis). The virtual microphones have been

located at the centerline of the impedance duct and separated a distance s = 0.01 m apart

(see Fig. 4.3). Following the recommendations of the ISO 10534-2 (1998), the first virtual

microphone has been placed at a distance from the reference surface slightly larger than

two times the impedance duct radius, or the major semi-axis. Concerning the reference

surface for vocal tract radiation impedances computations, it should be noted that it is

well-defined for the circular case given that the intersection of a cylindrical vocal tract

with a spherical human head results in a flat disk. However, this is not the case if an

elliptical vocal tract is used. In such a case, the elliptical cross-section where the major

semi-axis intersects the sphere has been chosen as the reference surface (see the impedance

duct exit in Fig. 4.3).

Table 4.1: Radius a, major semi-axis ae and minor semi-axis be in cm of the circular and

elliptical impedance ducts used to compute the radiation impedance Zr and the input

impedance Zin for vowels /a/, /i/ and /u/.

Zr/a/ Zr/i/ Zr/u/ Zin/a/

a 1.23 0.54 0.23 0.43

ae/be 2.21/0.68 1.25/0.23 0.47/0.11 0.76/0.23
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Fig. 4.3: Cut with surface mesh details of the impedance duct for the elliptical /a/ radiation

impedance computation. Dots indicate locations of virtual microphones for capturing P1(f)

and P2(f) in text.

4.2.4 Simulation details

The computational domain consists of an outer volume of dimensions 0.25× 0.2× 0.2 m,

where the spherical head has been placed so that sound waves can emanate from the

mouth. This volume has been surrounded with a PML of width 0.1 m to absorb any

incident wave. The PML has been configured to get a relative reflection coefficient

of r∞ = 10−4 (see Chapter 2). The computational domain has been meshed using

unstructured tetrahedral elements with a size comprising h ≈ 0.1 cm inside the impedance

duct, h ≈ 0.5 cm in the outer volume and h ≈ 0.75 cm in the PML region (see Fig. 4.3

to appreciate some mesh details).

Equation (4.5) with a PML included has been solved using the finite element approach

described in Chapter 2. A time interval of total duration T = 30 ms has been simulated

using a sampling rate of fs = 1/∆t = 2000 kHz. The values c0 = 350 m/s and

ρ0 = 1.14 kg/m3 have respectively been chosen for the speed of sound and for the air

density. Concerning boundary conditions, a wideband impulse has been used for the

volume velocity Q(t) in Eq. (4.5b), consisting of a Gaussian pulse (Takemoto et al.,

2010). For the boundary admittance coefficient at the vocal tract walls the value

µw = 0.005 has been used, which corresponds to the wall impedance of the vocal tract

tissue Zw = 83666 kg/m2s (see Švancara and Horáček, 2006). For the impedance duct,

the artificial value µz = 0.01 has been chosen for the reasons explained in the following

section.
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4.3 The two-microphone transfer function method

for numerical simulations

4.3.1 Damping the first impedance duct eigenmode

Although theoretically numerical simulations to compute vocal tract impedances could be

carried out using a lossless impedance duct, including boundary losses is mandatory for

the simulations to have a reasonable duration. From an experimental point of view, time

duration is not a problem given that, for example, a measurement that lasts 5 seconds can

be easily performed. However, in the numerical framework the CFL stability condition

pose severe restrictions on the time step ∆t to be used, so that for intricate and large

computational domains, a 5 seconds event may involve several hours of computational

time.

Consider for example, the radiation impedance computation of the circular /a/ in two

cases: i) a lossless impedance duct with µz = 0 and ii) a lossy impedance duct with

µz = 0.01. Let us first focus on the acoustic pressure collected at the first virtual

microphone #1 (see Fig. 4.3) and plot its time evolution for the lossless and lossy cases

in Fig. 4.4. For the former, the 30 ms duration of the simulation has not sufficed to

attenuate the signal acoustic pressure inside the impedance duct, whilst it has decayed in

about 15 ms for the lossy case. It should be remarked that given that the acoustic pressure

has to be Fourier transformed to apply the TMTF method, it is necessary for it to vanish

to zero during the simulation interval, to avoid spurious errors in this operation. Some
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Fig. 4.4: Acoustic pressure evolution for circular /a/ at virtual microphone #1 for the

lossless (µ=0) and lossy (µ=0.01) cases.
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(a) µ = 0 (b) µ = 0.01

Fig. 4.5: Spectrograms for the acoustic pressures in Fig. 4.4: (a) lossless impedance duct

(µ=0) and (b) lossy impedance duct (µ=0.01).

more insight on what is going on inside the impedance duct can be obtained from the

spectrograms (time vs frequency) of the acoustic pressure signals for the lossless and lossy

cases (see Fig. 4.5). As observed, the problem arises from the difficulty to attenuate the

first duct eigenmode. This is attributed to the fact that radiation is by far a more effective

energy dissipating mechanism at high frequencies than at low frequencies. Therefore, the

inclusion of wall damping clearly helps to overcome this problem and noticeably shortens

the duration of the simulation.

The value µz = 0.01 for the impedance duct simulations of vowel /a/ has been deemed

appropriate from numerical experiments. It is important to note that µz has to be such

that the assumption of nearly hard walls is satisfied (µz << 1). This is necessary to ensure

that the mode coupling impedances are negligible (see Section 4.3.4). Besides, increasing

µz to reduce the time duration of the computation T lowers the frequency resolution given

that ∆f = 1/T . Moreover, if µz becomes too large almost no wave is reflected from the

duct termination, which results in a very poor estimate for the impedance. For instance,

numerical tests with µz = 0.5 yielded completely wrong impedances. Finally, it should be

remarked that using µz = 0.01 also for vowels /i/ and /u/ would be inappropriate. At the

end of the following section it will be shown how to modify the admittance coefficient so

as to guarantee that propagating waves through /i/ and /u/ impedance ducts experience

the same amount of attenuation than in the /a/ duct.
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4.3.2 Analytical expressions for the complex axial wavenumber

Introducing artificial damping at the impedance duct walls of the numerical model involves

dealing with complex axial wavenumbers kz in expression (4.3) of the TMTF method. In

experimental measurements, a calibration procedure is usually conducted for estimating

the attenuation factor (e.g. Boonen et al., 2009). In the numerical case, analytical

expressions can be used for kz. kz can be related to the admittance boundary coefficient µz

for a generic duct of arbitrary shape with perimeter P and cross-section S (see e.g. Sivian,

1937). For illustrative purposes, in what follows such an expression will be derived for

the particular case of three-dimensional ducts of elliptical cross-section, though following

analogous reasoning lines to those in Munjal (1987) for circular and rectangular ducts.

The case of the circular duct is quite standard (see e.g., Munjal, 1987) but will be

provided for completeness and for a better comprehension of the elliptical case. Assuming

a harmonic time dependence exp(jωt) so that Eq. (4.5) transforms to the Helmholtz

equation, and considering cylindrical coordinates (r, θ, z), we can express the boundary

condition at the duct wall (4.5d) as

∂p̂

∂r
+ jµzk0p̂ = 0 at r = a, (4.6)

with p̂(x, ω) being the time Fourier transform of the sound pressure p(x, t) and k0 = ω/c0
standing for the wavenumber. The sound pressure p̂(x, ω) at any point inside the duct

admits the following series decomposition (see e.g., Munjal, 1987)

p̂(r, z) =

∞
∑

m,n=0

Jm (kr,mnr) e
jmθ
(

A1,mne
−jkz,mn + A2,mne

jkz,mn
)

≃ J0 (kr,00r)
(

A1,00e
−jkz,00 + A2,00e

jkz,00
)

, (4.7)

where Ji correspond to the Bessel functions of order i, Ai are constant factors, and kz,mn

and kr,mn respectively stand for the axial and radial wavenumbers. In the second equality

of Eq. (4.7) we have assumed axisymmetry (m = 0) and plane wave propagation (n = 0).

Besides, note that

∂p̂(r, z)

∂r
≃ −kr,00J1 (kr,00r)

(

A1,00e
−jkz,00 + A2,00e

jkz,00
)

, (4.8)

so that evaluating Eq. (4.7) and Eq. (4.8) at r = a and substituting in the boundary

condition (4.6) yields

kr,00J1 (kr,00a)

k0J0 (kr,00a)
= jµz. (4.9)
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For wavelengths clearly larger than the duct radius (kr,00a≪ 1), the Bessel functions can

be approximated to first order yielding J0(kr,00a) ≃ 1, J1(kr,00a) ≃ kr,00a/2. Substitution

in Eq. (4.9) then provides

kr,00 ≃
√

j
2µzk0
a

. (4.10)

Therefore, we can finally obtain the axial wavenumber kz,00 for plane wave propagation

in an axisymmetric duct through

kz,00 =
√

k20 − k2r,00 ≃ k0

√

1− j 2µz

k0a
. (4.11)

Next, an analogous expression to Eq. (4.11) for a duct with elliptical cross-section will be

derived. To proceed, it is convenient to express the wave equation in elliptic cylindrical

coordinates (ξ, η, z) (see e.g., Lowson and Baskaran, 1975). For each constant value

of z, the coordinate lines correspond to confocal ellipses and hyperbolae. Curves of

constant ξ are ellipses whilst curves of constant η are hyperbolae. Assuming a harmonic

time dependence exp(jωt), so that Eq. (4.5) transforms to the Helmholtz equation, results

in the following expression for the boundary condition Eq. (4.5d) at the duct wall (ξ = ξ0),

in elliptic cylindrical coordinates (see e.g., Oliveira and Gil, 2010)

∂p̂

∂ξ
+ jµzκ

√

1− e2 cos2 η p̂ = 0 at ξ = ξ0. (4.12)

p̂(x, ω) stands for the time Fourier transform of the sound pressure p(x, t) and

e =
√

1− b2e/a2e is the eccentricity of the ellipse defining the duct boundary at ξ0, which

has focal distance ℓ = aee and major and minor semi-axes ae = ℓ cosh ξ0 and be = ℓ sinh ξ0.

κ ≡ k0ae is the reduced (adimensional) wavenumber. To simplify notation, use will be

also made of the parameter

q ≡
(

k⊥ℓ

2

)2

=

(

k⊥aee

2

)2

, (4.13)

with k⊥ ≡
√

k20 − k2z standing for the transverse wavenumber.

Separation of variables for the Helmholtz equation in elliptic cylindrical coordinates results

in the so-called Mathieu radial and angular equations. The solutions need to be 2π

periodic in η, which plays the role somehow analogous to θ for the circular case (developed

e.g. in Munjal, 1987, Chap. 1, pp. 35). The periodic solutions are given by products

of cosine elliptic functions cem(η, q), which are even, with the radial Mathieu functions

Jem(ξ, q) related to them, and by sine elliptic functions sem(η, q), which are odd, and their

corresponding radial Mathieu functions Jom(ξ, q) (see Gutiérrez-Vega, 2000). However,
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no linear combination of cem(η, q)Jem(ξ, q) and sem(η, q)Jom(ξ, q) is allowed since the sets

of characteristic values for cem(η, q) and sem(η, q) are different (the situation is somehow

similar to what occurs for rectangular ducts, see e.g., Munjal, 1987, Chap. 1, pp. 28).

Given that our interest is in plane wave propagation inside the duct, the lowest modal

indices from the even case will have to be considered.

The even radial Mathieu functions Jem(ξ, q) admit a series factorization in terms of Bessel

functions. The factorization depends on m being even or odd which results in even-even

Je2k(ξ, q) and even-odd Je2k+1(ξ, q) radial Mathieu function developments. For the case

m = 0 the former has to be considered. It turns that (Gutiérrez-Vega, 2000)

Je2k(ξ, q) =
ce2k(0, q)

A0

∞
∑

i=0

A2jJ2j(2
√
q sinh ξ) (4.14)

with Jm corresponding to the Bessel function of order m. Taking k = i = 0 yields

p̂(ξ, η, z) ≃ ce0(η, q)ce0(0, q)J0 (2
√
q sinh ξ) , (4.15)

with derivative

∂p̂(ξ, η, z)

∂ξ
≃ −ce0(η, q)ce0(0, q)2

√
q cosh ξJ1 (2

√
q sinh ξ) . (4.16)

Substituting (4.15) and (4.16) into the boundary condition (4.12) and evaluating at ξ = ξ0
results in

2
√
q cosh ξ0J1

(

2
√
q sinh ξ0

)

κJ0
(

2
√
q sinh ξ0

) = jµz

√

1− e2 cos2 η. (4.17)

Integrating at both sides from 0 to π/2 allows to eliminate the η dependence in the r.h.s

of Eq. (4.17). Changing variables to v = cos η shows that the integral in the r.h.s is a

complete elliptic integral of the second kind, whose solution can be expressed as a series

in terms of even powers of the eccentricity (see Abramowitz and Stegun, 1970)

∫ π/2

0

√

1− e2 cos2 ηdη =

∫ 1

0

√
1− e2v2√
1− v2

dv

=
π

2

[

1−
∞
∑

n=1

(

(2n− 1)!!

(2n)!!

)2
e2n

2n− 1

]

≡ I(e) (4.18)

Using this result, approximating the Bessel functions to first order, J0(x) ≃ 1,

J1(x) ≃ x/2, and considering the notation introduced above, it follows from Eq. (4.17)

that

q =
jµzκI(e)

π cosh ξ0 sinh ξ0
= j

µzk0I(e)a
2
ee

2

πbe
. (4.19)
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From (4.13) it follows that

k2⊥ = j
4µzk0I(e)

πbe
(4.20)

and the expected axial wavenumber becomes

kz =
√

k20 − k2⊥ ≃ k0

√

1− j 4µzI(e)

k0πbe
. (4.21)

In the case of zero eccentricity I(0) = π/2 and ae = be ≡ a so that the axial wavenumber

for the circular case in Eq. (4.11) is recovered. Given that an ellipse has perimeter

P = 4aeI(e) and surface S = πaebe and considering the equivalents for the circle, it

follows that Eqs. (4.21) and (4.11) are nothing but particular cases of the more general

expression

kz ≃ k0

√

1− j µzP
k0S

. (4.22)

On the other hand, note that to compute the impedance of vocal tracts, impedance ducts

of different cross-sections and shapes will be necessary. This implies that the total area

of the impedance duct walls will be different in each case, so that if the same boundary

admittance coefficient µz is used, different internal dissipation would result. To guarantee

the same amount of absorption, it must be ensured that the axial wavenumber remains

the same for all cases. Suppose that the same amount of dissipation is wanted for an

elliptical impedance duct m than for another elliptical impedance duct n, with respective

eccentricities em, en, and semi-minor axes be,m, be,n. Equating their axial wavenumbers

(4.21) it is possible to compute µz,m from µz,n as

µz,m = µz,n
I(en)

I(em)

be,m
be,n

. (4.23)

As mentioned in Section 4.3.1, in this work a boundary admittance coefficient of µz = 0.01

has been chosen for the circular vowel /a/. Therefore, to introduce the same amount of

dissipation in all simulations, use has been made of (4.23), with n =/a/ and m =/i/,/u/.

Finally, using the complex axial wave number derived in Eq. (4.22), the characteristic

impedance Z0 in the impedance duct can be readily obtained from the ratio between the

pressure and particle velocity in a lossy duct without mean flow in Munjal (1987), Chap. 6,

pp. 232,

Z0 = ρ0c0
k0
kz
≃ ρ0c0

(

1− j µzP
k0S

)−1/2

. (4.24)

For large ducts with small wall losses the usual value Z0 ≈ ρ0c0 is recovered (see e.g.,

Dalmont et al., 2001).
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4.3.3 Accuracy of complex axial wavenumbers

Several assumptions have been made in order to derive the axial complex wavenumbers

in Eqs. (4.21) and (4.11). Let us next check if these simple expressions are precise enough

for vocal tract impedance computations and what would happen if real wavenumbers were

considered instead. To do so, the radiation impedance of the circular and elliptical /i/

using complex and real wavenumbers have been computed considering different pairs of

virtual microphones, located at different distances from the duct exit. The computed

radiation impedances, splitted in terms of resistance Rr and reactance Xr, have been

(a) (b)

(c) (d)

Fig. 4.6: Radiation resistance Rr and reactance Xr for vowel /i/ with circular (top) and

elliptical (bottom) mouth aperture for different pairs of virtual microphones. (a) and (c)

Real wavenumber computations. (b) and (d) Complex wavenumber computations. Solid

lines correspond to FEM simulations and square symbols to the theoretical model, only

available for a circular piston.
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plotted in Fig. 4.6 and compared to the theoretical model of the baffle set in a spherical

surface (Morse and Ingard, 1968, Chap. 7, pp. 343), for the circular case. The single point

arrow on the Rr curves indicates their tendency when the selected pairs of microphones

used for the computations are moved away from the duct exit (see duct scheme in the

upper left side of figures). The double point arrow indicates that the Xr curves do not

follow any clear tendency when changing the pairs of virtual microphones.

Having a look at Eq. (4.3), it can be observed that the term ej2kzx1 is used to translate

the reflection coefficient R1 to the reference plane (x1 is the distance from the first virtual

microphone to the reference plane). Taking into account the first order approximation

(1 + x)1/2 ∼ 1 + x/2 in the expression for the complex wavenumber in (4.21) (which is

valid for hard wall behavior |Zw| ≫ ρ0c0), it follows that

kz,00 ≡ kz ≃ k0 − j2µzI(e)/(πbe). (4.25)

Substituting into the propagator ej2kzx1 results in

ej2x1k0ej2x1µzI(e)/(πbe), (4.26)

so that the factor ej2x1µzI(e)/(πbe) will be missing if a real wavenumber is used. Note

that the higher the value of x1 the larger will be the error. This can be appreciated in

Fig. 4.6a for the circular case, where Rr clearly departs from the theoretical curve as x1
increases. As opposite, the error is inexistent when the appropriate complex wavenumber

of Eq. (4.11) is used in (4.3), and the computed curve perfectly matches the theoretical

one (see Fig. 4.6b). The reactance Xr seems not to be as much affected as the resistance

Rr by the error.

A very similar behavior can be observed for the elliptical case as shown in Fig. 4.6c and

Fig. 4.6d. Besides, note that both for the circular and elliptical cases, some discrepancies

are found for the reactance values at the high frequency range, even when using the

correct complex wavenumbers. This is attributed to numerical errors in the simulations

to be discussed in Section 4.3.5.

4.3.4 Plane wave propagation restriction

At this point, it is convenient to comment that by using the TMTF method described

in this work only the direct impedance of the planar wave mode can be computed. This

is the one that dominates below the first cutoff frequency fc of the impedance duct.

However, above fc higher order modes get excited and combine with the planar one

resulting in complicate pressure patterns inside the duct (see e.g., Motoki, 2002). To
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(a) (b)

Fig. 4.7: Plots of the lower standing modes in an impedance duct with (a) circular and (b)

elliptical cross-section. Discontinuous lines represent nodal planes.

capture this acoustic multi-modal behavior a direct impedance is required for each mode,

leading to a matrix representation of the impedance, as described in Zorumski (1973).

Coupling between modes may also occur and perturb the direct impedances. This effect

is quantified by the coupling impedances and can be neglected for nearly hard walls, (see

Morfey, 1969; c.f. Zorumski, 1973). This is the case for vocal tract acoustics given that

the values µw = 0.005 and µz = 0.01 have respectively been used for the vocal tract walls

and for the impedance duct walls, as detailed in the preceding sections.

Although high order modes direct impedances are needed for an accurate characterization

of the radiation impedance above fc, several theoretical models such as the piston set in a

spherical baffle, which only consider the direct impedance of the plane wave propagation,

are still used in 3D simulations to emulate radiation (e.g., Zhou et al., 2008; Vampola et al.,

2008a). This is so because the computational domain (and hence the time duration of the

simulation) can be strongly reduced given that no radiation space is required. Therefore,

it would be interesting to use the TMTF method for computing the planar mode direct

impedance above fc, to allow comparison with those theoretical models. It will be next

shown how this can be done through appropriate location of the virtual microphones.

For a circular impedance duct of radius a, the first non-planar eigenmode is the (1,0) mode,

with a cutoff frequency f(1,0) = 1.84c0/(2πa) (Fletcher and Rossing, 1988). The next

one, is the (2,0) mode, with f(2,0) = 3.05c0/(2πa), followed by the (0,1) mode, with

f(0,1) = 3.80c0/(2πa). In the experimental framework, the (1,0) mode limits the working

frequency range of the TMTF method. However, in the numerical framework, this

limitation can be overcome by a proper location of the virtual microphones. Having a

look at the pressure distribution of the first three eigenmodes (see Fig. 4.7a), nodal planes
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Table 4.2: Frequency values in kHz for the first eigenmodes of the circular and elliptical

impedance ducts used to compute the radiation impedance Zr and the input impedance

Zin for vowels /a/, /i/ and /u/. Stars denote maximum frequency of analysis when the

virtual microphones are located at the centerline of the impedance duct.

Circular Elliptical

(1,0) (2,0) (0,1) E(1,1) E(2,1) E(3,1) O(1,1)

/a/ 8.33 13.81 17.2* 4.68 8.6* 12.47 13.79

Zr /i/ 19.05 31.58 39.35* 8.27 15.27* 22.18 39.3

/u/ 45.42 75.28 93.8* 22.23 40.98* 59.49 84.2

Zin /a/ 24.07 39.89 49.7* 13.57 24.97* 36.2 40.03

can be observed (corresponding to lines in the duct cross-sections of the figure), which

cross the centerline of the duct for the (1,0) and (2,0) modes. Consequently, locating the

virtual microphones at the centerline will avoid the pressure there being unaffected by

these modes. The TMTF method will be then still applicable at these frequencies and

limited by the (0,1) mode, which is the first eigenmode that does not have a nodal line at

the center of the duct (see Fig. 4.7a).

With regard to elliptical ducts, the frequency range can also be extended. In Fig. 4.7b the

pressure patterns of the first four eigenmodes are presented for the elliptical /a/ impedance

duct (these can be computed e.g., from the formulas in Oliveira and Gil, 2010). The first

non-planar mode is the even mode (1,1). This mode has a nodal plane in the center, so

that locating again the virtual microphones in the centerline of the impedance duct will

allow to extend the analysis up to the frequency of the even mode (2,1), which is the

limiting one in this case.

The first modes of the impedance ducts used in this work are shown in Table 4.2, with stars

denoting in each case the first mode without a nodal plane at its center (i.e., the limiting

one). As expected, the impedance duct with a strongest restriction is that of vowel /a/

(largest mouth aperture), whereas vowel /u/ (smallest mouth aperture) presents the less

stringent condition. It can also be observed that working with elliptical mouth apertures

results in more restrictive frequency ranges. Note however that by locating the virtual

microphones at the centerline of the impedance duct, the upper frequency limit of the

experimental TMTF method has been almost increased by a factor ∼ 2. Except for the

elliptical /a/, the desired frequency range of analysis that goes up to fmax = 10 kHz can

thus be attained.
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4.3.5 The singularity of the TMTF method

It is well-known that a singularity occurs in the experimental TMTF method when half

the wavelength of the acoustic pressure equals the microphone spacing s, or one of its

multiples. The minimum frequency that satisfies this condition is termed the critical

frequency,

fcr = c0/(2s), (4.27)

and imposes a high frequency limit fu < fcr to the method. On the other hand, a

minimum low frequency limit fd also exists, because the pressure differences measured

by the two microphones will be negligible if their distance apart is very small compared

to the measured wavelength. Working close to both limits is not recommended and a

suitable option is to take (as proposed in Jang and Ih, 1998)

fd = 0.2fcr < f < 0.8fcr = fu. (4.28)

The above situation contrasts with that of numerical simulations. Suppose that a

simulation up to a given frequency fmax, with corresponding wavelength λmin, is to be

carried out. In the case of unlimited computational resources at disposition, a fine enough

mesh could be used to meet the standard criterion of 10 nodes per wavelength for λmin

(see e.g., Ihlenburg, 1998) and numerical errors would be negligible. In such situation the

only frequency upper limitation would come from the plane wave restriction discussed in

Section 4.3.4, so it would be reasonable to take e.g.,

fd = 0 < f < fmax = fcr = fu (4.29)

as the operational working frequency range. This expression (4.29) together with

Eq. (4.27) provides the following possible values for the virtual microphone spacing s

h ≤ s < 0.5λmin. (4.30)

Note from (4.30), that obviously the microphone spacing s cannot be smaller than the

mesh size h.

However, working with very fine meshes can be unfeasible in many simulations and the 10

nodes per wavelength criterion is often sacrificed to lower the computational cost. This

results in the appearance of some numerical errors at high frequencies as happens with

the simulations performed throughout this work, where 34.5, 6.9 and 4.6 nodes per λmin

have been respectively taken within the impedance duct, the outer volume and the PML

region (see Section 4.2.4 for mesh details). In Fig. 4.8 plots of the radiation resistance and

reactance for the elliptical /i/ are given, computed using different microphone spacings,

s = 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5 cm, which respectively yield s/λmin ∼ 0.03, 0.07, 0.15,
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Fig. 4.8: Resistance and reactance of the elliptical /i/ for different microphone spacings s.

The dashed line stands for s = 0.1 cm (equal to the mesh size h), the dotted line for

s = 1.5 cm (close to the singularity), and solid lines correspond to intermediate values of s.

0.22, 0.29, 0.36, 0.43. The first spacing (s = 0.1 cm) has been chosen equal to the mesh size

h inside the impedance duct (dashed curve in Fig. 4.8), whilst the last one (s = 1.5 cm)

has a value close to the singularity value 0.5λmin (dotted curve in Fig. 4.8). No differences

can be appreciated in Fig. 4.8 between the various Rr and Xr curves for the low-mid

frequency range as there are no significant numerical errors at these frequencies for the

present simulations. Slight differences only become apparent for frequencies higher than

8 kHz (see zoom in Fig. 4.8), the largest ones precisely corresponding to the reactances

computed with the limiting values of s = 0.1 cm (mesh size) and s = 1.5 cm (singularity

value).

The above example shows that the condition in Eq. (4.30) for the microphone spacing is

too loose and that stronger requirements are needed in practice for the spacing limiting

values. In order to define them, resort is made to the so called singularity factor (SF) of

the TMTF method, introduced by Jang and Ih (1998). The SF indicates the sensitivity

of the TMTF method to errors in the input pressures P1(f) and P2(f); the higher the SF

value the stronger the influence of the error sources in the computed impedances. When

computing the SF in the experimental framework, it is assumed that all errors are of

the white type, uncorrelated and with constant variance. This will not be the case

of a single numerical simulation, the error being totally deterministic i.e., always the

same if the computation becomes reran. However, considering the simulation of a given

vocal tract impedance being representative of a certain ensemble average of vocal tracts

having e.g., slight different geometry details and material characteristics, it is reasonable to
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Fig. 4.9: Singularity factor SF of the TMTF method for a lossless impedance duct. The

circle and the square denote the low and high limits for the microphone spacing s obtained

when SF = 1.7. Vertical lines correspond to the microphone spacing configurations used in

the example of Fig. 4.8.

hypothesize that errors arising from these simulations would satisfy the error requirements

for the SF computation. It would then be logical to demand that the chosen spacing for

the virtual microphones results in a small SF value.

In Fig. 4.9, the SF curve (thick line) for the standard TMTF method in a lossless

impedance duct (implementation of the SF for a lossy impedance duct is out of the

scope of this work) has been plotted according to the procedure described in Jang and Ih

(1998). However, instead of representing the SF dependence with frequency, this has been

plotted versus the microphone spacing s (normalized by λmin). Moreover, the microphone

spacings corresponding to the resistance and reactance curves in Fig. 4.8 have been also

plotted as vertical lines. As observed in the figure, the SF values for the extreme spacings

corresponding to the mesh size and singularity values are much higher than the threshold

value of SF ≤ 1.7, recommended in the experimental framework (see Jang and Ih, 1998).

According to this criterion a more restrictive range is obtained for the virtual microphone

spacing than that provided by Eq. (4.30), namely

h′ < 0.1λmin < s < 0.4λmin. (4.31)

The optimum, and thus recommended, spacing s will be that minimizing SF, which is

close to s ≃ 0.25λmin in Fig. 4.9. In the computations s = 1 cm has been used (see

Section 4.2.4) that yields s ≃ 0.29λmin.
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4.4 Vocal tract impedances

In this section, radiation and input impedances for vowel vocal tracts using the described

FEM-TMTF approach will be presented. As detailed in Section 4.2, the radiation

impedance for vowels /a/, /i/ and /u/ has been computed considering circular and

elliptical mouth apertures, as well as the input impedance of vowel /a/ for circular and

elliptical vocal tracts.

In Fig. 4.10 the results for the radiation impedance are given, split in terms of the radiation

resistance (Fig. 4.10a) and reactance (Fig. 4.10b). All results are provided up to 10 kHz

except for the elliptical /a/, the analysis only being valid in this case up to ∼ 8 kHz

because of the limiting even mode (2,1) (f = 8.6 kHz, see Table 4.2). Note however,

that this value can be reached thanks to proper location of the virtual microphones (see

Section 4.3.4) and that the experimental TMTF would have only let to measure impedance

values up to f = 4.68 kHz, corresponding to the even mode (1,1) (see Table 4.2). Similarly,

the plane wave frequency restrictions for the circular /a/ (f = 8.33 kHz) and for the

elliptical /i/ (f = 8.27 kHz) in the experimental TMTF, can be easily overcome thanks to

centerline microphone positioning. Thus, for all analyzed cases, except for the elliptical

/a/, the radiation impedance can be computed for the whole frequency range of interest

(0 10] kHz, without problems (see Table 4.2).

The differences between the resistance and reactance curves for the circular and elliptical

mouth apertures in Fig. 4.10 can be justified as follows (remember that for a given vowel
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Fig. 4.10: (a) Radiation resistance and (b) reactance for the elliptical and circular vocal

tracts of vowels /a/, /i/ and /u/.
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only the shape of the mouth, elliptical or circular, changes but not the total mouth

surface). In the plane wave propagation regime, the curves should be almost identical.

However, as explained in Section 4.2.4, the reference surface for elliptical mouth apertures

is defined at the intersection between the major semi-axis of the impedance duct with

the sphere. This implies that there is a small partial protrusion of the duct beyond

the reference surface, which reaches the intersection between the minor semi-axis and

the sphere, and plays somehow the role of some kind of lips. Its effects on the radiation

impedance of the elliptical ducts can be understood as those of a modified end correction δ.

It is clear that changes in δ affect both, the resistance R and the reactance X , but for

R2
r + X2

r << 1 only the latter becomes substantially modified. This can be viewed as

follows. The reflection coefficient R is related to the normalized impedance Z = R + jX

by

R =
Z − 1

Z + 1
=

(R− 1) + jX

(R + 1) + jX
=

R2 +X2 − 1

(R + 1)2 +X2
+ j

2X

(R + 1)2 +X2
, (4.32)

its phase θ being given by

tan θ =
ImR
ReR =

2X

R2 +X2 − 1
. (4.33)

For R2+X2 << 1 we get tan θ ≃ −2X and if X has small values, θ ≃ −2X . The inertial

correction is then given by

δ =
θ − π
−2k0

=
−2X − π
−2k0

, (4.34)

showing that if R2 + X2 << 1 the end correction mainly affects the reactance. This

is what can be observed for vowel /u/, which shows the same resistance values for the

circular and elliptical cases (see Fig. 4.10a), but different ones for the reactance (see

Fig. 4.10b). For vowels /a/ and /i/ the condition R2
r +X

2
r << 1 is no longer satisfied, say

for frequencies bigger than 4 kHz, and differences in resistance values can become more

clearly appreciated.

Finally, moduli results for the input impedance of the circular and elliptical /a/ are

plotted in Fig. 4.11 (results for vowels /i/ and /u/ have not been included as very similar

conclusions to those of /a/ could be deemed). In contrast to the radiation impedance

computation, the input impedance for elliptical /a/ can be computed with no problem up

to 10 kHz. This is so because the glottal cross-section is much smaller than the mouth

aperture; a narrower impedance duct is then required, which will have the first non-planar

mode beyond 10 kHz. Looking at Fig. 4.11, it can be observed that below 5 kHz the input

impedance moduli of the circular and elliptical /a/ are very similar indicating that they
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are both in the plane wave propagation range. Note however, that there is a certain

formant shift to lower frequencies for the elliptical /a/, because its radiation reactance is

higher than that of the circular /a/ (see Fig. 4.10b). Above 5 kHz, differences become

notorious due to non-planar high order mode effects.
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Fig. 4.11: Input impedance for the circular and elliptical /a/.

4.5 Conclusions

The radiation and input impedances of vowel vocal tracts, with circular and elliptical

cross-sections, have been computed using an adaption of a two-microphone transfer

function (TMTF) experimental method to a numerical framework. The procedure is

rather straightforward and does not require any computation of the acoustic velocity field

though, in return, it demands an additional simulation with an impedance duct to obtain

radiation impedances. Despite of the simplicity of the method, some considerations are

to be taken into account. First, it has been shown that it is mandatory to impose losses

at the impedance duct walls to attenuate the first duct eigenmode and achieve reasonable

computational times. This implies using complex wavenumbers in the TMTF expressions,

which have been derived for three-dimensional cylindrical impedance ducts with elliptical

cross-section. Second, the frequency range of validity of the experimental TMTF method

can be almost doubled by locating the virtual microphones at the impedance duct

centerline. This allows computing the direct impedance for plane wave propagation

above the experimental limitation. Third, a range of possible values for the virtual

microphone spacing has been proposed making use of the so called singularity factor.

An optimum value of a quarter wavelength of the maximum frequency to be solved has

been recommended.



Chapter 5

Analysis of the radiation effects on

vowels

Radiation losses due to outward propagating waves outside the mouth are one of the

most important loss mechanisms of voice generation. In this chapter, their effects on

vowel production are illustrated by means of FEM simulations with free-field propagation.

Two different situations are considered. In the first one, the computational domain ends

at the mouth aperture, and an open end boundary condition is imposed on it, whereas

in the second one free-field radiation is allowed, using a PML approach to absorb the

outgoing sound waves. Differences in formant location and bandwidth are reported and

related to the effects of the real (resistance) and imaginary (reactance) components of the

computed radiation impedances, presenting a clear non-linear behavior due to formant

cavity affiliation. Consequently, small changes in the radiation modelling can lead to large

variations in vocal tract transfer functions, which highlights the importance of appropriate

modelling this loss mechanism. Finally, it is shown that for limited computational domains

ending at the mouth aperture, simulation results can be greatly improved by lengthening

the vocal tract through appropriate end correction. This is done at almost no additional

computational cost and could be useful for vowel identification as well as for medical

applications.

This chapter corresponds to an elaborated version of

• Marc Arnela, Oriol Guasch and Francesc Aĺıas (2012), “Analysis of the radiation effects

on vowels by means of time domain finite element simulations,” 19th International

Congress on Sound and Vibration (ICSV19), July 8–12, Vilnius, Lithuania.
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5.1 Introduction

Radiation loss is known to be the major loss effect of voice production in the mid and high

frequency range. Three strategies have been followed to date to model it (see Fig. 5.1).

In the first one (Fig. 5.1a), the computational domain is ended at the vocal tract exit

(mouth) and an open-end boundary condition (p = 0) is simply imposed on it (see e.g.,

Hannukainen et al., 2007). In the second one (Fig. 5.1b), the above condition is replaced

by a frequency dependent impedance load (see e.g., Zhou et al., 2008; Vampola et al.,

2008a,b). Several theoretical models for radiation impedance can be found in literature

(see Appendix A), which range from Flanagan’s approximation to the piston set in an

infinite baffle, to the exact solution for the piston set in the infinite baffle, or to the piston

set in a sphere, which better fits the head geometry (Chalker and Mackerras, 1985). In the

third strategy (Fig. 5.1c), a free-field solution is adopted. This consists in extending the

computational domain out of the vocal tract so sound waves can propagate from the mouth

aperture towards infinity. The computational domain is truncated using for instance non-

reflecting boundary conditions (see e.g., Kako and Touda, 2006), Perfectly Matched Layers

(see e.g. Takemoto et al., 2010; Arnela and Guasch, 2013) or infinite elements (see e.g.,

Švancara and Horáček, 2006; Vampola et al., 2011) to avoid spurious reflections from the

boundaries. This option directly accounts for radiation losses and allows us to consider

any human head geometry detail, but at a higher computational cost. The alternative

are the radiation load models. However, they are not straightforward to implement in

the time domain due to the frequency dependence of the theoretical models. Therefore,

sometimes the open-end strategy is adopted to circumvent it, but at the price of not

considering any radiation loss effect.

(a) (b) (c)

Fig. 5.1: Strategies to emulate acoustic radiation: (a) open-end boundary condition (p = 0),

(b) radiation load models and (c) free-field radiation solutions.
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In the present work, the radiation effects on vowel generation will be illustrated by

contrasting a free-field radiation solution against an open-end strategy (p = 0). In order to

facilitate comparisons with radiation load models, a spherical baffle will be used to emulate

the human head, vocal tract geometries with circular cross-sections will be constructed,

and the acoustic pressure will be sampled inside the vocal tract. Vowels /a/ and /u/ will

be selected, since they respectively correspond to limiting cases of large and small mouth

aperture, and also vowel /i/ because it has an intermediate value. A Perfectly Matched

Layer (PML) approach will be adopted to emulate radiation losses, which combined with

the time domain wave equation for the acoustic pressure constitutes the proposed solution

for vowel production. This problem will be solved using FEM (see Chapter 2). In addition,

a 1D frequency domain model that uses a spherical baffle impedance load will be included

for comparisons. Note that this radiation model corresponds to the best approximation for

the radiation losses that a 1D model can perform, since on the one hand no more realistic

analytical models for the human head radiation impedance can be found in the literature,

and on the other hand free-field radiation solutions cannot be obviously considered because

they require to compute the acoustic pressure outside the vocal tract.

This chapter is structured as follows. The acoustic radiation in vowel generation will

be analyzed in Section 5.2. First, the radiation impedance will be computed following

the methodology described in Chapter 4 and contrasted to widely used theoretical models

(Section 5.2.2). Then, the vocal tract transfer functions (Section 5.2.3) will be obtained for

the free-field radiation case (PML) and compared to the open-end case (p = 0). Moreover,

the differences with respect to the 1D approach that uses a spherical baffle impedance load

will be examined. Radiation impedances and vocal tract transfer functions will then be

related in Section 5.2.4 and the influence of resistance and reactance on formant location

and bandwidth will be analyzed, showing a rather intricate behavior partly due to formant-

cavity affiliation (Stevens, 2000). A non-standard representation for this phenomena will

be given from which front and back cavity formants can be easily identified. In addition,

for situations in which computational cost constitutes a limitation and/or a lower degree of

precision may be admissible (e.g., medical applications or vowel identification techniques),

in Section 5.3 we will show that results for simulations with computational domains ending

at the mouth aperture can be greatly improved by appropriate lengthening of the vocal

tract. End corrections from different impedance load models will be used and compared

for this purpose. Conclusions will finally close this chapter in Section 5.4.
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5.2 Influence of radiation on vowel production

5.2.1 Models and simulation details

As commented in the Introduction, vowels /a/, /i/ and /u/ are chosen to examine

radiation effects on vowels. Simplified vocal tract geometries with circular cross-sections

are generated using the cross-sections in Story (2008), see Fig. 5.2a. Two different cases

are considered. In the first one, outward propagating sound waves from the mouth exit

are allowed. In the second one, the computational domain is limited to the interior of

the vocal tract and a homogeneous Dirichlet boundary condition p = 0 is imposed at the

mouth aperture, to emulate an open-end condition. For brevity, the above approaches

will be hereafter designated as the free-field radiation case and the open-end case.

Time domain finite element simulations are then performed. We will follow the

computational features in Section 2.4, but with the modifications described below. In the

free-field radiation case, the vocal tracts are inserted in a spherical surface of radius 0.09 m,

intended as an approximation for the human head. The spherical surface is surrounded by

a volume that allows emanating waves from the mouth to propagate towards infinity. To

deal with a finite computational domain, a PML of width 0.2 m is used to absorb outward

propagating waves (see Fig. 5.2b). An unstructured mesh of tetrahedral elements is used

for all simulations. The mesh size h ranges from h ≈ 0.001 m inside the vocal tract

to h ≈ 0.01 m at the outer PML region. Numerical simulations are performed with a

sampling rate of fs = 1600 kHz and a duration of T = 50 ms. The values c0 = 345 m/s

and ρ0 = 1.1933 kg/m3 are chosen respectively for the speed of sound and air density.

(a) (b)

Fig. 5.2: (a) Surface mesh details for vowels /a/, /i/ and /u/ used in the open-end case.

(b) Computational domain for vowel /a/ used in the free-field radiation case.
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5.2.2 Computing the radiation impedance of vowels

The specific acoustic radiation impedances Zr of vowels /a/, /i/ and /u/ is first computed

for the free-field radiation case. An adaptation of the two-microphone transfer function

method to the numerical framework (see Chapter 4) is used to numerically compute the

real Rr (resistance) and imaginary Xr (reactance) parts of Zr, for every vowel. Results

are shown in Fig. 5.3. We also include in this figure the theoretical model of a piston set in

a sphere to validate the FEM simulations, the piston set in an infinite baffle and the well-

known Flanagan’s approximation (see Appendix A). Comparing the FEM results with

the spherical baffle ones, we observe that the simulated resistance and reactance for each
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Fig. 5.3: Acoustic radiation of vowels /a/, /i/ and /u/: (a) Normalized resistance Rr,

(b) normalized reactance Xr, (c) reflection coefficient modulus |R| and (d) inertial end

correction δ. (� FEM, — Spherical baffle, - - Infinite baffle, · · · Flanagan).
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vowel fit with accuracy the theoretical curves for the whole frequency range, regardless of

the mouth aperture. The same holds true for the related variables, reflection coefficient

and end correction length.

On the other hand, large differences can be appreciated when contrasting the infinite baffle

and Flanagan results in Fig. 5.3, with the spherical model (or the FEM one), specially

for large mouth apertures and high frequency values. Moreover, given that Flanagan’s

derivation is an approximation to the infinite baffle for ka << 1 (a being the mouth radius)

differences can be also appreciated between them, specially for vowels /a/ and /i/, for

frequencies above 2 kHz and 1 kHz respectively. However, no significant deviations are

found for vowel /u/. The implications of such behavior will be discussed to some extent

in Section 5.3. Note that the results in Fig. 5.3 state the obvious fact that the radiation

impedance increases with frequency and mouth aperture. With regard to the generation

of vowels, one could infer that radiation effects will be mainly of importance for such

regimes. It will be shown in Section 5.2.4 that this is not always the case.

5.2.3 Computing the vocal tract transfer functions

Next, time domain finite element simulations as described in previous Section 5.2.1 are

performed for the open-end and free-field radiation cases. A snapshot at time instant

t ≈ 1 ms of the acoustic pressure for vowel /a/ is presented in Fig. 5.4. The vocal tract

transfer function (VTTF) between the acoustic pressure Po at the mouth and the volume

Fig. 5.4: Acoustic pressure field (Pa) of vowel /a/ at time instant t ≈ 1 ms for the free-field

radiation case.
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Fig. 5.5: Transfer function H(f) + 50 dB for vowel /a/, H(f) for vowel /i/ and

H(f)− 50 dB for vowel /u/. (— Free-field radiation (3D-FEM), - - Open-end (3D-FEM),

· · · 1D-Spherical).

velocity Qi (a Gaussian pulse) input at the glottal folds boundary,

H(f) =
Po(f)

Qi(f)
, (5.1)

are computed. Po is taken from a node inside the vocal tract located at 0.3 cm from the

exit to allow fair comparison between the free-field radiation and open-end cases. The

corresponding VTTFs are shown in Fig. 5.5. For comparison purposes, we also include

the VTTFs of a 1D model using the impedance load of a piston set in a spherical baffle

(referred as 1D-Spherical). They have been computed using standard chain matrices for

acoustic transmission lines (see e.g., Fahy, 2001), with the same wall losses than for the

FEM case. As expected, large differences between the open-end and free-field radiation

cases can be observed. When free-field radiation is allowed, the formant locations are

shifted down, their bandwidths (3dB decay in Hz) increase, and their amplitudes become

modified. In Table 5.1, the first four (i = 1, 2, 3, 4) values for formant locations Fi

and bandwidths BWi for the open-end and free-field radiation cases are summarized.

Moreover, the differences between them (∆) are also reported. If we next focus on the

1D-Spherical case (see Fig. 5.5), in contrast to the free-radiation case (3D-FEM), in this

model non-planar waves can not be considered, so that significant differences are produced

specially for frequencies above 4 kHz. This results for instance that for vowel /u/ better

results are obtained for a 3D-FEM approach with an open-end condition than for a 1D

solution with a spherical baffle.
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Table 5.1: Formant location Fi (Hz) and bandwidth BWi (Hz) computed for the first four

formants (i = 1, 2, 3, 4) of vowels /a/, /i/ and /u/. The results are obtained for the open-end

(Open) and free-field radiation (Rad) cases. Their differences are computed in ∆.

F1 F2 F3 F4

Open Rad ∆ Open Rad ∆ Open Rad ∆ Open Rad ∆

/a/ 684 671 -13 1053 937 -116 2989 2890 -99 4011 3911 -100

/i/ 259 254 -5 2081 2072 -9 2968 2918 -50 4081 3949 -132

/u/ 256 248 -8 754 706 -48 2232 2232 0 3552 3551 -1

BW1 BW2 BW3 BW4

Open Rad ∆ Open Rad ∆ Open Rad ∆ Open Rad ∆

/a/ 133 133 0 50 74 24 85 149 64 116 227 111

/i/ 57 57 0 80 84 4 99 122 23 96 180 84

/u/ 69 68 -1 61 62 1 84 84 0 93 94 1

5.2.4 The radiation impedance versus the transfer functions

Finally, we discuss the radiation effects in vowels in terms of radiation impedance (see

Section 5.2.2) and vowel formants (see Section 5.2.3). It is well-known that the main

roles played by the reactance Xr and the resistance Rr are respectively those of frequency

shifting and damping of the vowel formants. In Fig. 5.6, a plot is made of Xr and Rr (see

Fig. 5.3) versus the formant frequency shift and bandwidth increment (see Table 5.1).

Moreover, as a reference, the figure also includes the same results for constant cross-

section tubes (a linear relationship is obtained in this case). We can observe that opposite

to constant cross-section tubes, there is no linear relationship between the reactance Xr

and the frequency shift (see Fig. 5.6a). For instance, if we have a look at the results

for vowel /u/ (see Table 5.1), it is apparent that there is no significant deviation for any

formant except for the second one, which reaches the substantial value of −48 Hz. In what

concerns the resistance Rr, it is clear from Fig. 5.6b that its dependence with bandwidth

is also no longer linear. On the other hand, note from Table 5.1 that the first formant of

all vowels is not affected by radiation damping. This confirms that radiation losses are

of importance mainly in the mid-high frequency range. The above non linear behaviors

between radiation impedance and radiation effects can be understood by means of the

formant-cavity affiliation concept (see Fant, 1970), where each formant is interpreted as a

resonance of a specific vocal-tract cavity. For example, for vowel /u/, the second formant

corresponds to a front-cavity whilst the first, third and fourth formants correspond to
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Fig. 5.6: Effects of resistance and reactance on vocal tract transfer functions: (a) Formant

shift versus reactance and (b) bandwidth increasing versus resistance. The solid line stands

for the behavior of constant cross-section ducts, and delimits front-cavity formants from

back-cavity formants.

back-cavities (see Apostol et al., 2004). To illustrate it, in Fig. 5.7 the acoustic pressure

distribution within the vocal tract is shown for the second and third formants of vowel

/u/, for the open-end case. Simulations have been carried out according to Section 5.2.1,

but using a pure tone with equal frequency to the formant of interest instead of the

Gaussian pulse. For the second formant, we can observe that a much higher pressure

values are achieved at the front-cavity than in the back-cavity. In contrast, for the

third formant the highest pressure levels are located in the back-cavity. Front-cavity

resonances are strongly influenced by acoustic radiation, whilst the latter’s effect on back-

cavity resonances is much weaker (Stevens, 2000). This explains why radiation effects

are noticeable for the second formant of vowel /u/, yielding to the strong frequency

shift value of −48 Hz (see Table 5.1), whereas no changes can be appreciated for the

remaining formants. Given that constant cross-section tubes consist of a single cavity,

all resonances become proportionally influenced by radiation, which results in the linear

behavior observed in Fig. 5.6. Moreover, this straight line for the constant cross-section

duct’s behavior establishes a boundary between front-cavity (below the line) and back-

cavity (above the line) formants. Therefore, we have observed that by means of the

analysis of the reactance effects the formant cavity affiliation could be determined.
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F2 = 754 Hz

(a)

(b)

F3 = 2232 Hz

(c)

(d)

Fig. 5.7: Acoustic pressure distribution for the (a-b) second and (c-d) third formant of

vowel /u/ at time instant t ≈ 6.4 ms without radiation (p = 0 at the mouth surface). (b)

and (d) represent the same results than in (a) and (c), but translating the acoustic pressure

level as a displacement over a cut of the vocal tract.

To conclude, the above results highlight the importance of accurate modelling radiation in

voice production, because small changes in the reactance and resistance may lead to strong

variations in formant location and bandwidth. In this sense, very accurate impedance load

models should be used or, otherwise, free-field radiation should be allowed. However, in

time domain simulations, impedance loads are difficult to implement, so a good alternative

is that of free-field radiation. The time domain FEM approach with PML used in this

work could be viewed as a good solution.
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5.3 End-corrected vocal tracts

5.3.1 Problem statement

In the previous Section 5.2, it has been shown that poor results are obtained if the

computational domain ends at the mouth aperture and an open-end boundary condition

p = 0 is imposed on it. However, this situation is of particular interest because it allows

dealing with small computational domains and thus saving a considerable amount of

computational time. Moreover, it bypasses implementing impedance load models, which

is a difficult task for time domain simulations. Consequently, these simplifications are

often used in literature (e.g., Hannukainen et al., 2007; Švancara and Horáček, 2006;

Vampola et al., 2008b). It will be next shown that some of the problems associated

to these simplifications can be easily overcome by lengthening the vocal tract through

appropriate end correction, at almost no computational cost.

As explained in Section 5.2, the effects of the end correction are mainly associated with

reactance so that lengthening modifications will basically produce formant shifts and

associated slight amplitude variations. Therefore, no improvements can be achieved on

effects due to resistance such as bandwidth increasing. However, in some applications

such as the medical ones, formant location turns to be of primary importance to analyze

how surgery could modify them (e.g., Švancara and Horáček, 2006), whereas bandwidth

accuracy plays a secondary role. Vowel identification (which is typically based on the

identification of the first two formants) is another application that could benefit from

Fig. 5.8: Surface mesh details for vowels /a/, /i/ and /u/ in the simulations with lengthened

vocal tracts.
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vocal tract lengthening (e.g., Al Bawab et al., 2010). The first apparent difficulty that

arises when trying to lengthen the vocal tract through the inertial end correction δ is that

the latter is frequency dependent, as it can be seen from Fig. 5.3d. However, this figure

also shows that for vowels with small mouth aperture, such as /i/ and /u/, δ is quite

constant through all the frequency range, so that an arithmetic average value δ̂ could

work as a good approximation.

5.3.2 Lengthening based on the piston set in a sphere model

Let us first take δ̂ as the frequency averaged end corrections of the piston set in a spherical

baffle for vowels /a/, /i/ and /u/, the equivalent load model for the free-field radiation

case in Section 5.2, in the frequency range from 0 to 5 kHz. The vocal tracts are then

lengthened according to their respective δ̂ (see Fig. 5.8). This only results in a slight

increase of the computational domain that is still endorsed with an open end boundary

condition p = 0 at the mouth exit. However, the effects of this correction on the vocal

tract transfer functions H(f) will be notorious.

The vocal tract transfer functions H(f) are presented in Fig. 5.9. For each vowel, the

free-field radiation, non-lengthened vocal tract (also referred as open-end in some figure

legends) and the lengthened cases are compared. We can observe a clear improvement

in the formant locations and amplitudes when using the end corrected vocal tracts.

Note however, that the formant bandwidths are not corrected given that lengthening

cannot account for resistance effects. For a better quantification of this improvement, the
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Fig. 5.9: Transfer functionH(f)+50 dB for vowel /a/, H(f) for vowel /i/ and H(f)−50 dB

for vowel /u/. (— Free-field radiation, - - open-end, −· lengthened).
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differences between the lengthened and non-lengthened cases with respect to the free-field

radiation situation are given in Table 5.2. The results of the lengthened case for vowel /u/

are striking but some differences with the free-field radiation case still remain for vowels

/i/ and /a/, specially for the high frequency range. This is because of the frequency

average of the end correction, which constitutes a rough approximation in the case of

large mouth exits (see Fig. 5.10).

Table 5.2: Deviation of formant locations for vowels /a/, /i/ and /u/, for the lengthened

vocal tracts with respect to the free-field radiation case (free-field). For comparison, the

values for the open-end case (non-lengthened) have been also included.

Vowel Case
Deviation (free-field)

F1 F2 F3 F4

/a/
lengthened 2 11 -6 -23

non-lengthened 13 116 99 100

/i/
lengthened 1 0 -1 -11

non-lengthened 5 9 50 132

/u/
lengthened 0 0 0 0

non-lengthened 8 48 0 1
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Fig. 5.10: Inertial end correction of the piston set in a spherical baffle, and averaged values

computed for the spherical model, the infinite baffle model and the Flanagan and 0.85a

approximations.
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5.3.3 Lengthening based on other radiation models

Finally, to illustrate the benefits of using the spherical model and to highlight the

importance of well-modelling the acoustic radiation, the vocal tract has also been

lengthened according to other well-known theoretical models. We have used the celebrated

end correction 0.85a, the Flanagan’s approximation and the piston in a infinite baffle.

The 0.85a case is actually an approximation to Flanagan’s model, which in turn is an

approximation to the piston in an infinite baffle. The first two models assume ka << 1,

which is not valid for large mouth apertures, as commented in Section 5.2.2.

The frequency averaged inertial end corrections δ̂ have been computed for every model

(see Fig. 5.10) and lengthened vocal tracts have also been built according to them. Again,

the vocal tract transfer functions H(f) have been calculated and deviations with respect

to the free-radiation case have been summarized in Table 5.3. As it could be expected,

the errors are progressive, the worst ones corresponding to the 0.85a model, followed by

Flanagan, the infinite baffle and the spherical one (the prefix ”Av” has been added to the

legends in tables and figures to remark that the various model end corrections have been

frequency averaged). The exactitude of the various models can be also appreciated in

Fig. 5.11, where the transfer function for vowel /a/ has been computed according to each

model end correction.

Having a look at Table 5.3, it is apparent that bigger errors are obtained for large mouth

apertures and for high frequencies (see also Fig. 5.11). The former is logical if one considers

the effects of frequency averaging for the inertial end correction (see Fig. 5.10). The
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Fig. 5.11: Vowel /a/ transfer functions for lengthened vocal tracts using different

approximations for the inertial end correction
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Table 5.3: Deviation of formant locations using lengthened vocal tracts with different

approximations for the inertial end correction. The obtained values are referenced to the

free-field radiation case (free-field).

Vowel Case
Deviation (free-field)

F1 F2 F3 F4

/a/

Av-Spherical 2 11 -6 -23

Av-Infinite baffle 0 1 -17 -36

Av-Flanagan -2 -7 -27 -50

0.85a -3 -12 -33 -58

/i/

Av-Spherical 1 0 -1 -11

Av-Infinite baffle 0 -2 -9 -34

Av-Flanagan 0 -2 -11 -39

0.85a 0 -2 -12 -42

/u/

Av-Spherical 0 0 0 0

Av-Infinite baffle -2 -10 0 0

Av-Flanagan -2 -10 0 0

0.85a -2 -10 0 0

latter could be also expected, given that any error in the average end correction will

be more evident for high frequencies (the reactance will be larger and so will be the

formant frequency shifts). However, as explained in Section 5.2.4 this cannot be viewed

as a general rule due to formant-cavity affiliation. Small errors in the reactance can

result in large errors in the formant locations, as happens for vowel /u/ (see Table 5.3).

As vowel /u/ has the smallest mouth aperture, its formants should experience almost

no deviation for the lengthened vocal tracts. This is in fact the case for the first, third

and fourth formants but not for the second one, which corresponds to a front-cavity

formant and it is thus strongly influenced by radiation effects. On the other hand, it can

be observed in Table 5.3 that for the first two formants of vowel /a/, better results are

obtained using the Av-Infinite baffle end correction than the Av-Spherical one. This is so

because the Av-Infinite baffle end correction value is closer to the spherical end correction

than the Av-Spherical one, for the 0 to 2 kHz frequency range (see Fig. 5.10). Actually,

it is to be noted that depending on the type of application one could compute the end

correction by frequency averaging only in a limited frequency range (for instance, from

0 to 2 kHz would suffice for vowel identification, whereas the typical range for medical

applications comprises from 0 to 5 kHz, see eg., Švancara and Horáček, 2006). Also note

that weighted frequency averages could be also used instead of the arithmetic one for

computing the end correction, to try to achieve better results.
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5.4 Conclusions

In this chapter, the importance of well modelling radiation losses has been illustrated by

analyzing their effects on three-dimensional vocal tracts with circular cross-sections set

in a spherical baffle. A time domain finite element approach (3D-FEM) combined with a

perfectly matched layer to account for free-field radiation has been used.

The radiation impedance for vowels /a/, /i/ and /u/ has been computed, showing a great

accuracy when compared to the theoretical model of a piston set in a spherical baffle.

Then, the effects of resistance and reactance on vowel vocal tract transfer functions

have been analyzed comparing a free-field radiation case versus an open-end case. A

bandwidth increase together with a formant location shift to lower frequencies and slight

amplitude variations have been observed. These radiation effects are not important for

the first formant of vowels, but in contrast to tubes with constant cross-section, they

present a rather intricate dependence with resistance and reactance for the remaining

formants due to the formant cavity affiliation phenomenon. It turns out that small

errors in radiation modelling can lead to strong variations in the vocal tract transfer

functions, thus reinforcing the importance of well-modelling this loss mechanism. In

terms of vocal tract transfer functions, the used time domain 3D-FEM with free-field

radiation has shown better performance than standard 1D models with an impedance

load, given that the latter can not deal with non-planar wave propagation within the

vocal tract. On the other hand, a non-standard method for detecting front and back cavity

formants has been derived. This method only requires two wide-broadband simulations,

with and without radiation, and can be viewed as an alternative to the approach

where each one of the formant pressure distribution patterns are visually examined one

by one (one numerical simulation for each formant) to determine the formant-cavity

affiliation. Lastly, it has been shown that for computational domains ending at the mouth

aperture, reactance effects can be almost considered by simply lengthening the vocal tract

geometry through appropriate end-correction. The additional computational cost of such

a procedure is almost negligible. Although probably not useful for the generation of good

quality synthetic voice, lengthening could be of value in medical and vowel identification

applications.

Finally, we would like to point out that approximating the human head geometry by a

sphere is a rough option for a real speaker. In the forthcoming Chapter 6, radiation effects

considering more realistic facial surfaces will be examined and contrasted to the results

obtained with the spherical approximation.



Chapter 6

Acoustics effects of human head

geometry simplifications

One of the key effects to model in voice production is that of acoustic radiation of sound

waves emanating from the mouth. The use of three-dimensional numerical simulations

allows to naturally account for it, as well as to consider all geometrical head details, by

extending the computational domain out of the vocal tract. Despite this advantage, many

approximations to the head geometry are often performed for simplicity and impedance

load models are still used as well to reduce the computational cost. In this chapter,

the impact of some of these simplifications on radiation effects is examined for vowel

production in the frequency range 0 − 10 kHz, by means of comparison with radiation

from a realistic head. As a result, recommendations are given on their validity depending

on whether high frequency energy (above 5 kHz) should be taken into account or not.

The contents of this chapter have been respectively published and presented in

• Marc Arnela, Oriol Guasch and Francesc Aĺıas (2013), “Effects of head geometry

simplifications on acoustic radiation of vowel sounds based on time-domain

finite-element simulations,” Journal of the Acoustical Society of America, 134(4),

pp. 2946–2954.

• Marc Arnela and Oriol Guasch (2014), “Validation of the piston set in a sphere

model for vowel sound radiation losses against realistic head geometry using

time-domain finite-element simulations,” 9th International Conference on Voice

Physiology and Biomechanics (ICVPB), April 10–12, Salt Lake City, USA.
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6.1 Introduction

The importance of accurate modelling of the radiation loss mechanism has been

highlighted in the previous Chapter 5. Several strategies to deal with it have been reviewed

and compared, which include open-end solutions, impedance load models and free-field

approaches. Impedance load models are probably the most extended solution. Their

key feature and advantage is that they end the computational domain at the vocal tract

exit (mouth) and impose a frequency dependent radiation impedance on it (e.g., the

circular piston set in a sphere or in a flat baffle). However, these models make some

strong assumptions and can only be seen as simple approximations of the voice radiation

mechanism. Clearly, the human head geometry is not that of a flat plane or a sphere;

the influence of some head details such as the nose or the lips is not considered and may

be of importance, the mouth aperture is clearly not circular and so on. It is the main

purpose of this chapter to examine the differences in radiation effects when performing

head geometry simplifications, and to analyze the extent to which they can be carried

out whilst still fitting the radiation behavior of a realistic head. This has been done by

resorting to time domain finite element simulations.

In three-dimensional (3D) numerical computations for voice generation impedance load

models have been used to emulate radiation (e.g., Zhou et al., 2008; Vampola et al.,

2008a,b), though it seems more natural to consider free-field options allowing for radiation

(e.g., Švancara and Horáček, 2006; Takemoto et al., 2010; Vampola et al., 2011; Arnela

and Guasch, 2013). The latter directly accounts for radiation effects, though at a higher

computational cost. Despite this advantage, the human head geometry has been typically

approximated, for instance, as a spherical baffle for simplicity (see e.g., Švancara and

Horáček, 2006; Vampola et al., 2011; Arnela and Guasch, 2014b), as done also in Chapter 5

for comparison purposes. We will next show the effects of considering more realistic human

heads.

The effects of head geometry simplifications will be analyzed for vowels /a/ and /u/, since

they respectively correspond to the limiting cases of large and small mouth aperture. Four

different head geometries will be considered: (a) a realistic head geometry with an elliptical

cross-section vocal tract that will be used as a reference, (b) a spherical baffle with lips

and elliptical vocal tract, (c) a spherical baffle without lips but still with an elliptical

vocal tract, and (d) a spherical baffle without lips and with a circular cross-section vocal

tract. The influence of these simplifications on the radiation of vowels /a/ and /u/ will

be quantified by means of the radiation impedance and its effects on vocal tract transfer

functions. The latter will be computed from the numerical solution of the acoustic wave

equation, using a time domain finite element method (FEM) with a PML formulation. To
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obtain the radiation impedance, use has been made of an adaptation of a two-microphone

transfer function method (TMTF) to the numerical framework (see Chapter 4).

The analysis of the results will be split into a low frequency range below 5 kHz, where plane

wave propagation dominates and determines voice intelligibility, and a high frequency

range up to 10 kHz, whose energy contributes to the perception of voice quality (Monson

et al., 2011). Recommendations for head geometry simplifications will be given depending

on whether an analysis is to be performed up to 5 kHz or up to 10 kHz, bearing in mind

possible perceptual consequences and computational costs.

This chapter is structured as follows. The methodology followed to examine the radiation

effects of the head simplifications is presented in Section 6.2. The obtained results are

detailed in Section 6.3, where the impact of the considered simplifications on vowel

production is discussed. Conclusions close the chapter in Section 6.4.

6.2 Methodology

6.2.1 Human head and vocal tract models

A realistic head model of a male from the 3D modelling company TurboSquid

(Bitmapworld, 2005) (see Fig. 6.1) has been chosen. The model is completely articulated

with many phonemes for speech, and by means of morph targets (blend shapes) and linear

combinations, new phonemes can be generated. In this work, the TurboSquid model has

been adapted for vowel production simulations. First, the model has been scaled to have

similar dimensions to those of a real male head (see e.g., Burkhard and Sachs, 1975),

obtaining 15.6 cm and 20 cm for the head breath and length. The eyes, eyelashes, nostrils

and ear canals have been removed and the resulting gaps have been covered with simple

surfaces. Next, to simplify the generation of the finite element mesh, the skin has been

smoothed to suppress some fine details as wrinkles.

As said in the Introduction, vowels /a/ and /u/ have been selected to examine the

radiation effects, since they correspond to the highest and lowest mouth aperture

configurations (mouth sections of 4.72 and 0.16 cm2, respectively). Simplified geometries

for their corresponding vocal tracts have been constructed using the cross-sectional areas

provided by Story (2008) with a vocal tract length of 16.90 cm for /a/ and 19.59 cm for

/u/. The eccentricities of the elliptical mouth apertures in Fromkin (1964) have been

applied to them. The vocal tracts have been bent artificially to fit within the 3D head.
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Fig. 6.1: Realistic head geometry for vowel /a/. Left: rendered original head with all details

included. Center: head geometry with eyes, nostrils and ear canals removed. Right: final

head geometry with inserted vocal tract.

To do so, their centerlines have been smoothly bent forming an angle of 90◦ with vertex

close to their center point, and the cross-sectional areas have been located in the normal

direction to the bent centerlines.

The corresponding vocal tract of each vowel has been inserted into the head. For each

case, the width and height of the lip opening (see e.g., Fromkin, 1964) in the realistic head

have been adjusted to fit the vocal tract exit cross-section. Next, following Story et al.

(1996), the front termination plane of the vocal tract (also termed the mouth termination

plane) has been defined using the technique of Mermelstein (1973). However, it has been

observed that this plane can be located between the corner of the mouth and the outer-

most points of the lips. Therefore, a complete outline of the vocal tract cross-section

cannot be determined in the front termination plane (see Fig. 6.2). The outer-most plane

where this can be done is that containing the mouth corner. Yet, the outline at this plane

will be not elliptical as those at the exit of the inserted vocal tracts. It is then necessary

to place the vocal tract at a certain (small) distance in front of the mouth corner plane,

so that its elliptical exit cross-section can be coupled with the non-elliptical outline at the

mouth corner plane (the plane of the elliptical exit cross-section of the vocal tract will

be hereafter referred to as the coupling plane). This procedure introduces some artificial

lengthening; the distance between the coupling plane and the mouth termination plane

has to be removed by eliminating the corresponding back end cross-sections of the original
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Fig. 6.2: Vocal tract geometry for vowel /a/ coupled with the lips. It is signaled the mouth

termination and coupling planes for this case.

vocal tract. The original length of the vocal tract is preserved but now comprises from

the glottis to the front termination plane. In Fig. 6.2 it is shown a detail of the coupling

between the lips and the vocal tract geometry for vowel /a/, including also the locations

of the mouth termination and coupling planes for this case. The above procedure is

mandatory for vowel /a/ but much easier for vowel /u/, because the front termination

plane already presents a complete almost elliptical outline and can be approximated as

being so.

6.2.2 Human head simplifications

To evaluate the impact of geometry simplifications on radiation four cases of decreasing

accuracy have been considered (see Fig. 6.3), namely, (a) the realistic head, (b) the

spherical head with lips, (c) the spherical head with elliptical mouth aperture, and (d)

the spherical head with circular mouth aperture. The first one constitutes the reference

model since it contains most geometry details of the head. In the second one, the head has

been replaced by a sphere of identical volume (obtaining a radius of r = 0.1048 m) though

the lips have been kept in the model. The third case corresponds to the second one but

with the lips being removed from the spherical baffle. Finally, in the fourth case, circular

cross-sections are considered for the vocal tracts instead of elliptical ones. Note that this

is the only case with analytical models available for radiation impedance computation.

Considering this case is of special interest, despite of its simplicity, because it is widely
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(a)             (b)           (c)           (d)

Fig. 6.3: Geometries for vowel /u/ corresponding to the four simplifications described in

text: (a) realistic head, (b) spherical head with lips, (c) spherical head with elliptical mouth

aperture and (d) spherical head with circular mouth aperture.

used to emulate radiation in voice production both in 1D and 3D simulations. For the

cases without lips (c) and (d), the front termination plane of the vocal tract is defined

where the major semi-axis (or radius) of the last vocal tract cross-section intersects with

the spherical baffle.

In addition to the above cases, an extra test has been carried out to check if the

computational domain can be reduced to diminish the computational cost without losing

significative quality. Instead of the whole sphere, only a small portion of it surrounding

the mouth aperture has been taken into account, thus considerably limiting the outer

computational domain (see the shaded region of the spherical baffle in Fig. 6.3).

6.2.3 The wave equation for vocal tract acoustics

The mathematical problem to be solved by the finite element method will be next

exposed. Let us denote by Ω the computational domain where acoustic waves propagate.

Ω comprises from the vocal tract to the outer region surrounding the head, where

waves emanating from the mouth propagate in free field conditions. The boundary of

Ω, ∂Ω, can be split into four non-intersecting regions (see Fig. 6.4): ΓG stands for

the vocal tract cross-section at the vocal folds position, ΓW corresponds to the vocal

tract walls, ΓH to the head contour and Γ∞ is a fictitious non-reflecting boundary.
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Fig. 6.4: A sketch of the computational domain Ω of Eq. (6.1) in text. ΓG represents

the glottal cross-sectional area, ΓW the vocal tract walls, ΓH the human head and Γ∞ a

non-reflecting boundary.

The acoustic pressure due to vowel generation can be obtained from the solution of the

wave equation

(

∂2tt − c20∇2
)

p = 0 in Ω, t > 0, (6.1a)

with boundary and initial conditions

∇p · n = g on ΓG, t > 0, (6.1b)

∇p · n = −µ/c0∂tp on ΓW, t > 0, (6.1c)

∇p · n = 0 on ΓH, t > 0, (6.1d)

∇p · n = 1/c0∂tp on Γ∞, t > 0, (6.1e)

p = 0, ∂tp = 0 in Ω, t = 0. (6.1f)

In (6.1) c0 stands for the speed of sound, p(x, t) is the acoustic pressure, g(t) is a

function related to the airflow generated by the vocal folds (glottal pulses), µ(x) is a

friction coefficient for the losses at the vocal tract walls, n is the normal vector pointing

outwards ∂Ω and ∂t ≡ ∂/∂t denotes the partial time derivative. Explicit dependence of

variables on space x, time t, and angular frequency ω, will be often omitted to shorten

notation, except where it could facilitate comprehension.

The boundary condition in Eq. (6.1b) accounts for the volume velocity Qg(t) = ugAg

generated by the vocal folds (ug stands for the inflow velocity and Ag for the area of

the boundary ΓG). The time derivative of the volume airflow ∂tQg is provided by most

parametric glottal models such as the Rosenberg (Rosenberg, 1971) or LF (Fant et al.,
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1985) ones. Then, it follows from the momentum equation that

∇p · n = −ρ0∂tug = −ρ0∂tQg/Ag ≡ g, (6.2)

where ρ0 designates the air density and function g(t) in (6.1b) is defined in the last

equality.

The subsequent boundary condition in Eq. (6.1c) considers losses at the vocal tract walls

(locally reacting soft walls). It arises from the following reasoning. The impedance of the

wall Z(x, ω) can be used to relate the acoustic velocity at the wall U(x, ω) to the acoustic

pressure P (x, ω),

U(x, ω) =
P (x, ω)

Z(x, ω)
. (6.3)

The momentum equation in the frequency domain can then be written as (∂t↔ jω, with

j =
√
−1)

∇P (x, ω) · n = −jωρ0
P (x, ω)

Z(x, ω)
. (6.4)

Assuming a frequency independent impedance, introducing the boundary admittance

coefficient

µ =
ρ0c0
Z

, (6.5)

replacing it in Eq. (6.4) and transforming the resulting expression back to the time domain,

results in Eq. (6.1c). At this point, it is convenient to comment that the impedance of

the vocal tract wall is not actually frequency independent (see e.g., Ishizaka et al., 1975).

However, implementing frequency dependent boundary conditions in the time domain is

not a straightforward task (see Nieuwenhof and Coyette (2001) for some steps towards this

goal), so that the constant frequency assumption is usually adopted (see e.g., Takemoto

et al., 2010). On the other hand, the homogeneous Neumann boundary condition in

Eq. (6.1d) simply states that the surface of the head is modeled as a hard wall (i.e.,

Z(x, ω) =∞).

Finally, Eq. (6.1e) is the well-known Sommerfeld radiation condition, which guarantees

that emitted waves propagate outwards to infinity. However, this condition is only

optimal for waves impinging orthogonal onto Γ∞. To avoid this problem and to perform

simulations in a computational domain of reasonable size as well, Eq. (6.1e) is replaced

with a perfectly matched layer. PMLs were originally introduced by Berenger (1994) and

are designed to absorb waves incident from any direction. The PML formulation of Grote

and Sim (2010) has been adapted for our custom code, which solves Eq. (6.1) with the

PML using the finite element method (see also Chapter 2 for details on the implemented

numerical scheme).
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6.2.4 Simulation details

The following computational features have been used to compute the acoustic pressure of

vowels. The values c0 = 350 m/s and ρ0 = 1.14 kg/m3 have been chosen for the speed

of sound and air density in Eq. (6.1). In what concerns the boundary conditions, the

Gaussian pulse gp(n) (Takemoto et al., 2010) has been used for the volume velocity Qg

in (6.2),

gp(n) = e[(∆t n−Tgp)0.29Tgp]
2

[m3/s], (6.6)

with Tgp = 0.646/f0 and f0 = 10 kHz. This pulse has been low pass filtered with a cutoff

frequency of 10 kHz, to avoid the appearance of high frequency numerical errors above the

maximum frequency of analysis (10 kHz). In (6.1c), a boundary admittance coefficient

of µ = 0.005 has been chosen to account for wall losses. This value corresponds to the

impedance of the vocal tract tissue Zw = 83666 kg/m2s (see Švancara and Horáček, 2006).

With regard to the computational domain, the vocal tract and head geometries described

in previous Sections have been employed. The head has been surrounded with a volume

of dimensions 0.24 × 0.28 × 0.28 m to allow sound waves emanate from the mouth and,

in turn, this volume has been surrounded with a perfectly matched layer, 0.1 m width, to

absorb any incident wave. The PML has been configured to get a reflection coefficient of

r∞ = 10−4. The lower part of the neck has been immersed within the PML as in Mokhtari

Fig. 6.5: Wave propagation inside the vocal tract and emanating from mouth aperture at

time instant t = 0.75 ms for vowel /a/ with a realistic head. It represents all the volume

for the vocal tract, while for the outer volume a cut in the midsagittal plane is done for

visualization purposes. The PML region is not shown. The white dot denotes the position

where the acoustic pressure po(t) is captured.
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et al. (2008), to avoid the sound waves following artificial paths through the underside of

the head model. On the other hand, when only a small portion of the spherical baffle is

considered (additional test case), the outer volume dimensions become 0.09×0.1×0.1 m.

The computational domains have been meshed using tetrahedral elements. The mesh size

h ranges from h = 0.001 m within the vocal tract to h = 0.003 m in the mouth and nose

immediate outer region, h = 0.005 m in the most outer volume, and h = 0.0075 m in the

PML. This results in, approximatively, 3.5 million and 1 million elements for the complete

and the reduced computational domains, respectively.

Concerning the time evolution, a sampling rate of fs = 1/∆t = 2000 kHz has been used

and the total duration of the simulation has been of T = 25 ms. Fig. 6.5 shows a snapshot

at time instant t = 0.75 ms of the acoustic pressure field for vowel /a/, with a realistic

head. The influence of high order modes can be identified within the vocal tract and it can

be appreciated how spherical front waves emanate from the mouth propagating outwards.

6.2.5 Transfer functions and radiation impedances

The time evolution of the FEM computed acoustic pressure po(t) has been collected at a

distance of 2 cm from the mouth termination plane (see white dot in Fig. 6.5). From its

Fourier Transform, the vocal tract transfer function (VTTF) can be obtained as

H(f) =
Po(f)

Qg(f)
. (6.7)

In order to compute the radiation impedance Zr, the procedure in Arnela and Guasch

(2013) has been followed, which consists in adapting a TMTF method to the numerical

framework (see also Chapter 4). In brief, the vocal tract geometry is replaced by a lossy

impedance duct of length 0.1 m, having the same shape and cross-sectional area than

the vocal tract exit. An admittance coefficient value of µ = 0.008 is imposed to the

impedance duct of vowel /a/, in the realistic head model. This artificial value has been

deemed appropriate from numerical experiments, showing a good compromise between the

computational cost and the accuracy of the results. In order to get the same absorption

for the remaining impedance ducts, their boundary admittances have been computed

imposing their complex axial wavenumbers to equal that of the /a/ impedance duct in

the realistic head model, which yields

µm = µn
PnSm

PmSn

. (6.8)

In Eq. (6.8), subindex n denotes the reference case (/a/ impedance duct in the realistic

head) and subindex m the new case for which µ has to be computed. S is the cross-

section area of the impedance duct and P its perimeter. Then, a numerical simulation is
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performed and the acoustic pressures p1(t) and p2(t) at two nodes inside the impedance

duct, separated a distance s = 1 cm apart, become tracked. These nodes are chosen to be

located in the centerline of the impedance duct. This allows extending almost two times

the upper frequency limit of the TMTF method so that the radiation impedance of the

planar mode at high frequencies can be computed. From the Fourier Transforms of p1(t)

and p2(t), H12(f) = P2(f)/P1(f) is calculated to get the reflection coefficient,

R =
H12 − e−jkzs

ejkzs −H12
ej2kz|x1|, (6.9)

where x1 is the distance from the impedance duct exit where p1(t) is collected and kz is

the complex axial wave number. The normalized specific acoustic impedance is computed

by means of

Zr =
1 +R
1−R . (6.10)

Finally Zr becomes split in terms of its real Rr and imaginary Xr components, Zr =

Rr + jXr. The specific acoustic impedance Z ′
r can be recovered from Z ′

r = Z0Zr, with Z0

standing for the characteristic impedance of the medium,

Z0 ≃ ρ0c0

(

1− j µP
k0S

)−1/2

. (6.11)

Note that for large ducts with small wall losses Eq. (6.11) yields the usual value Z0 ≈ ρ0c0.

Another parameter that will be considered in forthcoming Sections is the inertial end

correction δ, which is related to the reflection coefficient through (e.g., Selamet et al.,

2001)

R = |R|ejθ = −|R|e−j2kδ, (6.12)

with |R| being the modulus of R and θ its argument.

6.2.6 Acoustic pressure distribution of formants

For a better comprehension of some phenomena like the formant cavity affiliation (see

Fant, 1970), the acoustic pressure distribution within the vocal tract for a given formant

has been also computed. To do so, the same configuration described in Section 6.2.4 has

been used, but a sinusoidal signal has been imposed at the glottis cross-sectional area

instead of a gaussian pulse. The sinusoid has the frequency of the formant that it is to be

analyzed. After some time steps (∼ 1.5 ms), the acoustic pressure within the vocal tract

becomes stationary, and the pressure pattern of the formant can be observed.
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6.3 Results and discussion

6.3.1 Analysis of the head simplifications

Fig. 6.6 presents the computed radiation impedance Zr split in terms of resistance Rr

and reactance Xr, the inertial end correction δ and the vocal tract transfer function

H(f), for vowels /u/ (first row in figure) and /a/ (second row in figure), and for the

different head geometry configurations: (a) realistic head, (b) spherical baffle with lips,

(c) spherical baffle with elliptical mouth aperture but no lips, and (d) spherical baffle with

circular mouth aperture and no lips. For brevity, these configurations will be designated

hereafter as the realistic case, the lip case (or the case with lips), the elliptical case and

the circular case. For completeness, the first four formant values for each case and their

deviations with respect to the realistic case are listed in Table 6.1, and their bandwidths in

Table 6.2. In what follows, the differences in their computed radiation impedance will be

analyzed, as well as how these differences affect the vocal tract transfer functions (VTTF).

Two frequency ranges will be considered, that below 5 kHz corresponding to the plane

propagation regime, and that above 5 kHz, where high order modes can be excited.

Effects on the radiation impedance

For the vowel /u/, it can be observed from the impedance values of Fig. 6.6a that

simplifying the head geometry as a simple baffle with lips yields close results to those

of the most realistic case. Some differences can be observed above ∼ 5 kHz, however,

for both the resistance Rr and the reactance Xr. In contrast, removing the lips from the

spherical baffle (elliptical and circular cases) results in a large decrease of Xr for the whole

frequency range, and of Rr for frequencies above ∼ 5 kHz. Note that the elliptical and

circular configurations present almost the same values of Rr for all frequencies, Xr being

slightly smaller for the elliptical case.

Some further insight can be gained by resorting to the corresponding inertial end

corrections δ’s, plotted in Fig. 6.6b. As one could have expected, the inclusion of lips

results in an increase of δ (δ being almost identical for the elliptical and circular cases).

These differences can be approximated by a constant offset, which affects the radiation

impedance for the following reasoning. On the one hand, a positive offset in δ is translated

to Xr as an increase of the slope (see Fig. 6.6a). On the other hand, when R2
r +X

2
r << 1,

the phase θ of the reflection coefficient will only depend on the reactance Xr, to a first

order approximation. Consequently, it follows from (6.12) that the same will hold true
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Fig. 6.6: (a) and (d) Radiation resistance Rr and reactance Xr, (b) and (e) inertial end

correction δ, and (c) and (f) vocal tract transfer functions H(f) of vowels /a/ and /u/ for

different head geometry simplifications. All functions are computed up to 10 kHz except

for the radiation impedance and inertial end correction of vowel /a/, which are limited to

8 kHz because of the TMTF method limitations at the onset of higher order modes (see

Chapter 4). (— Realistic case, - - Lip case, −· Elliptical case, · · · Circular case).

for δ. This is what happens in the region below ∼ 5 kHz, where only the reactance Xr

is modified. However, when this condition is no longer satisfied, i.e. above ∼ 5 kHz, the

resistance Rr also increases.

With regard to vowel /a/, Fig. 6.6d shows the obtained impedance values computed

at the coupling plane (see Section 6.2.1). In contrast to vowel /u/, where only plane

waves propagate for the whole examined frequency range, the planar wave assumption

is only valid up to ∼ 4 kHz in the /a/ impedance duct; high order modes also being

excited beyond this frequency. However, and as mentioned in Section 6.2.5, it is still

possible to compute the radiation impedance of the planar mode up to ∼ 8 kHz by

appropriate selection of the nodes where the acoustic pressure is collected. Withal, it
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is noted that an accurate characterization of the radiation impedance accounting for all

involved modes would require the use of a matrix representation, as described in Zorumski

(1973). However, most impedance load models commonly used to emulate radiation, e.g.,

the piston set in a baffle, only consider the planar mode for the whole frequency range (see

e.g., Zhou et al., 2008; Vampola et al., 2008a) and could be thus directly compared with

the results reported here. In Fig. 6.6d, the computed impedance ressembles the input

impedance of a duct with an open end termination because the coupling plane is located

inside, though close to the exit, of the vocal tract. Again, more insight can be obtained

from the inertial end correction, now shown in Fig. 6.6e. As already observed for vowel

/u/, the case with lips presents similar values to those of the realistic case. When the lips

are not taken into account, the inertial end correction δ clearly diminishes, being slighter

greater for the elliptical case than for the circular one.

Effects on the vocal tract transfer function

The next step consists in analyzing the influence of the observed differences in the radiation

impedances of the four configurations, on the VTTFs. The computed transfer functions

for each case are plotted in Fig. 6.6c for the vowel /u/. Obviously, a variation in the

radiation impedance will not produce a new peak or valley on the VTTF; only changes in

formant location, bandwidth and amplitude are expected. However, large variations are

observed for the circular case when compared to the other ones beyond the plane wave

propagation regime (say above ∼ 5 kHz). Recall that elliptical cross-section vocal tracts

have been used for the realistic, lips and elliptical cases (see Section 6.2.2) so that their

cross-mode formants will clearly differ from those of the circular case.

Focusing on the lower frequency region of the VTTF (below ∼ 5 kHz), and analyzing some

formants, it can be observed for instance, that the second formant is practically identical

for the lip and realistic cases (see zoom in Fig. 6.6c and also Table 6.1). In contrast, when

lips are not considered the formant location is shifted up. Besides, comparing the two

cases without lips, only small differences in location can be observed. The shifts in the

formant location are the effects of reactance Xr variation (see e.g., Kinsler et al., 2000). In

general, it is observed that the larger its value the stronger the shift of formants to lower

frequencies (see Fig. 6.6a and Fig. 6.6c respectively). However, this rule is not always

fulfilled, as happens for example, for the third formant in Fig. 6.6c (see also Table 6.1).

Almost no differences can be appreciated among cases although the deviations in reactance

values are higher than for the second formant (see Fig. 6.6a). This can be explained by

means of the formant-cavity affiliation concept (see e.g., Fant, 1970), where each formant

is interpreted as a resonance of a specific vocal tract cavity. For vowel /u/, the first,
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third and fourth formants correspond to back-cavities, whereas the second formant is

produced by a front-cavity (see Apostol et al., 2004). To illustrate this concept, Fig. 6.7

represents the acoustic pressure field for the second and third formants of vowel /u/ in

the realistic case, computed as described in Section 6.2.6 (see also Arnela et al., 2012,

where more representations of the formant pressure pattern for vowel /u/ are shown). It

can be observed that for the second formant the cavity close to the mouth corresponds

to a high acoustic pressure area, whereas for the third formant the highest values are

achieved at the cavity close to the glottis. Front-cavity resonances are strongly influenced

by acoustic radiation, but the latter’s effect on back-cavity resonances is much weaker

(Stevens, 2000). This explains why radiation effects are noticeable for the second formant

of vowel /u/, whereas no changes can be appreciated for the third formant. In what

concerns formant bandwidths (see Table 6.2), no significant differences are observed in

the first formants between configurations, with the exception of the circular case which

presents lower values (see also e.g. the zoom for the third formant in Fig. 6.6c). These

variations are attributed to the vocal tract shape (circular vs elliptical) rather than to

radiation effects, since the radiation resistance has a very similar behaviour in the four

configurations for this frequency regime (see Fig. 6.6a).

Fig. 6.7: Snapshot of the acoustic pressure for the second (F2) and third (F3) formants of

vowel /u/ at time instant t ≈ 7.6 ms. The regions of the vocal tract where the acoustic

pressure is positive, negative and close to zero are represented respectively by crosses,

horizontal segments and circles.
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Table 6.1: First four formant values in Hz for vowels /a/ and /u/ in the realistic case, the

case with lips, the elliptical case and the circular case. Formant deviations (∆F/F ) in %

with respect to the realistic case are also indicated.

Vowel Case
Formant value Formant deviation

F1 F2 F3 F4 F1 F2 F3 F4

/a/

Realistic 686 924 2884 3911 - - - -

Lip 686 924 2884 3908 0 0 0 -0.08

Elliptical 691 945 2909 3946 0.73 2.27 0.87 0.9

Circular 686 953 2938 3969 0 3.14 1.87 1.48

/u/

Realistic 250 696 2264 3588 - - - -

Lip 250 695 2264 3588 0 -0.14 0 0

Elliptical 256 723 2264 3589 2.4 3.88 0 0.03

Circular 256 729 2275 3612 2.4 4.74 0.49 0.67

Table 6.2: First four formant bandwidths in Hz for vowels /a/ and /u/ in the realistic case,

the case with lips, the elliptical case and the circular case.

Vowel Case
Bandwidth value

BW1 BW2 BW3 BW4

/a/

Realistic 126 91 164 256

Lip 126 93 154 244

Elliptical 126 91 171 230

Circular 102 76 153 237

/u/

Realistic 101 88 116 138

Lip 100 87 116 138

Elliptical 100 87 116 137

Circular 70 64 84 96
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With regard to the high frequency range (above ∼ 5 kHz), not only variations in formant

location become apparent, but also some changes in amplitudes can be observed (see

Fig. 6.6c). The circular case will be left apart because, as mentioned, at these frequencies

it will not match at all with the configurations having elliptical vocal tracts. A close look

at Fig. 6.6c reveals some very small amplitude variations between the lip and the realistic

cases, above ∼ 8 kHz. In addition, the amplitude of the elliptical case gradually decreases

with respect to the realistic case beyond ∼ 5 kHz. The variations in amplitude are due to

the resistance effects. Above ∼ 5 kHz, notable differences are found in the resistance Rr

values (see Fig. 6.6a). The resistance for the lip case is higher than for the realistic case,

and much higher than for the elliptical one. The resistance is related to the transmitted

power (see e.g., Kinsler et al., 2000), so a lower value of resistance will result in a less

energetic vocal tract transfer function (see respectively Fig. 6.6a and Fig. 6.6c).

Concerning vowel /a/ (see Fig. 6.6f), similar conclusions can be drawn to those for vowel

/u/. In the low frequency region, only small variations in the formant locations are

appreciated (see also Table 6.1), and lower bandwidth values are observed for the circular

case (see Table 6.2) which are attributed again to the vocal tract shape. Above ∼ 5 kHz

the circular case clearly distances from the other ones. Shifts in the formant location

and differences in the amplitudes of the transfer functions can be observed between the

realistic, lip and elliptical cases.

6.3.2 Impact of the geometry simplifications in vowels

The results presented in Section 6.3.1 indicate that, although large deviations can be found

among impedance values, these only result in small differences in the formant locations for

the plane wave propagation regime (below ∼ 5 kHz). Since, in general, these differences

are less than 3 − 5% (see Table 6.1), one could consider them perceptually not relevant

(Flanagan, 2008). Therefore, in this range any of the studied approximations could be

used to properly emulate the radiation of vowels. However, if one intends to extend the

frequency range above ∼ 5 kHz, the lips play a key role as they will induce not only

differences in the formant location but also an increase of the transfer function level. The

latter ranges from about +1 dB to +6 dB in the frequency range 5− 10 kHz. These level

deviations can be considered important because they can modify the naturalness of the

generated vowel (see e.g., Monson et al., 2011, where minimum difference limen scores of

1 dB are given for the 8 kHz octave band). Consequently, it is highly recommendable to

deal with simulations allowing for net free-field propagation (instead of using impedance

load models), as well as to include the lips in the geometry, to correctly reproduce the

high frequency content of a vowel. It has also been observed that other head geometry
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details such as the nose, head shape, etc., play a secondary role, since their influence

on transfer functions can be considered negligible from a perceptual point of view (even

though impedance value differences become apparent). They will only be significant for

off-axis voice generation (not aligned in front of the mouth), involving three-dimensional

full simulation environments where the diffraction of the head can play an important

role. In summary, to correctly account for perceptually relevant radiation effects in the

generation of a vowel from a realistic head, in the frequency range 0− 10 kHz, it suffices

to take the case of a spherical baffle that incorporates the lips.

6.3.3 Reduction of the computational domain

It has been mentioned above that it is quite common to use impedance load models at

the exit of the vocal tract in some 3D numerical simulations, to account for free-field

radiation effects. The advantage of doing so is a great reduction of the computational

domain and thus, of the total duration of the simulation. However, in the preceding

Section 6.3.2 it has been resolved that including the lips is essential to correctly simulate

vowels in the high frequency range, which requires simulating waves emanating from the

mouth. Unfortunately, doing so as in the simulations carried out so far in this work, is

very time consuming because of the need of including the propagating domain outside the

vocal tract. Moreover, a PML is needed to avoid waves reflecting from the computational

domain boundaries.

In view of the results discussed in Section 6.3.2, this problem can be partially mitigated

by making some further geometry simplifications to reduce the computational cost. Given

that the shape of the head does not substantially influence radiation, so that the head

can be approximated by a sphere to a good extent, one may wonder what happens if

only a portion of the sphere surrounding the lips is taken into account in the simulations.

This point has been checked by making simulations that only consider the shaded region

of the sphere in Fig. 6.3 and a small outer domain in front of it. The obtained results

for the radiation impedance of vowels /a/ and /u/ are shown in Fig. 6.8. This figure

also includes the solution for the realistic and lip cases in the complete computational

domain, as references. As observed, there is almost no departure from the solution for the

lip case, hence, no perceptually relevant changes are to be expected in the corresponding

VTTF. It should be noted however, that in practice there is no magic rule to determine to

which extent the computational domain can be reduced without affecting the computed

results, as many aspects are to be considered. On the one hand, a certain volume for

free wave propagation outside the mouth is needed to account for the effects of the head,

or sphere, region close to the lips. On the other hand, some issues arise related to the
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Fig. 6.8: Radiation resistance Rr and reactance Xr of vowels /a/ and /u/ when the

computational domain is reduced. ( — Realistic case, - - Lip case with the complete

computational domain, −· Lip case lips with the reduced computational domain).

practical implementation of the PML. To facilitate FEM programming, and depending

on the PML formulation, it is recommendable for it to have a simple geometry (cubic o

spherical), which imposes some limitations to the reduction process. Moreover, a smooth

transition from the very fine mesh inside the vocal tract to the coarse one at the PML

is needed to avoid spurious numerical errors. All in all, this means that in practice one

has to perform some tests to determine which configuration yields a reasonable balance

between the exactitude of the results and the reduction of the computational cost, taking

into account all the involved factors.

Using the finally proposed simplification, the number of elements in the finite element

mesh was reduced by a factor of ∼ 3.5 (see Section 6.2.4 for mesh details), which

resulted in a factor ∼ 4 decrease of the computational time (numerical simulations were

performed in a serial computing system with processor Intel(R) Core(TM)i7 2.67 GHz).

The simulations with the whole domain lasted about∼ 36 hours for each analyzed case and

∼ 9 hours when the reduced domain was considered. Therefore, the proposed geometry

simplification allows a strong saving in computational time and memory at no quality cost

in vowel production, from a perceptual point of view.
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6.4 Conclusions

The influence on the vowel acoustic radiation of several geometry simplifications of a

realistic human head has been studied in this work. The main conclusions derived from

the analysis of the results can be summarized as follows. First, the numerical tests

indicate that for the examined frequency range (0 − 10 kHz) the role played by most

head appendices (e.g., the nose), as well as by the head shape, is perceptually irrelevant,

with the very important exception of the lips. Second, though large differences can be

appreciated in the radiation impedance for the plane wave propagation regime (0−5 kHz)

among the tested cases, these differences only manifest as small formant location shifts

in the vocal tract transfer functions, which are not relevant from a perceptual point of

view. Therefore, in this regime any of the analyzed simplified models could be used to

properly emulate vowel radiation. Actually and as a consequence, if the goal was to

develop a speech synthesizer/simulator that could run in near real-time, the impedance

load approach based on a piston set in a spherical baffle could be used instead, as a valid

alternative to the by far more computationally expensive free-field radiation simulations.

Third and in contrast, for the range 5−10 kHz, the lips play a significant role and not only

produce large deviations in the radiation impedance but also in the vocal tract transfer

functions. Therefore, for an accurate modelling beyond 5 kHz the spherical baffle with lips

is recommended. Besides, note that it has been shown that it is not necessary to model

the whole pressure field around the sphere; a small portion of it suffices which results in

a reduction of the computational cost by a factor of ∼ 4 without a loss of quality.

Finally, it is worth mentioning that conclusions on the influence of the geometry features

of a realistic head on radiation have been based on simplifications from a single reference

case. Ideally, one should work with an ensemble of samples for the conclusions to be

generalized with statistical confidence. However, in view of the presented results, we

do not have the impression that the use of different head geometries could substantially

modify the conclusions reached so far. More realistic vocal tracts (e.g. generated from

MRI) could also have been used instead of the simple elliptic and circular ones, but

again similar conclusions could be expected, given that these resulted from qualitative

comparison between models rather than from quantitative values. It would be worthwhile

testing in future works the behavior when covering the whole audible frequency range, up

to ∼ 20 kHz, as well as to analyze radiation effects for other phonemes.



Chapter 7

Two-dimensional simulations with

3D behavior

Two-dimensional (2D) numerical simulations of vocal tract acoustics may provide a good

balance between the high quality of three-dimensional (3D) finite element approaches and

the low computational cost of one-dimensional (1D) techniques. However, 2D models

are usually generated by considering the 2D vocal tract as a midsagittal cut of a 3D

version, i.e. using the same radius function, wall impedance, glottal flow and radiation

losses as in 3D, which leads to strong discrepancies in the resulting vocal tract transfer

functions. In this work, a four step methodology is proposed to match the behavior of

2D simulations with that of 3D vocal tracts with circular cross-sections. First, the 2D

vocal tract profile becomes modified to tune the formant locations. Second, the 2D wall

impedance is adjusted to fit the formant bandwidths. Third, the 2D glottal flow gets

scaled to recover 3D pressure levels. Fourth and last, the 2D radiation model is tuned

to match the 3D model following an optimization process. The procedure is tested for

vowels /a/, /i/ and /u/ and the obtained results are compared with those of a full 3D

simulation, a conventional 2D approach and a 1D chain matrix model.

This chapter is based on the following works

• Marc Arnela and Oriol Guasch (2014), “Two-dimensional vocal tracts with three-

dimensional behavior in the numerical generation of vowels,” Journal of the Acoustical

Society of America, 135(1), pp 369-379.

• Marc Arnela and Oriol Guasch (2014), “Three-dimensional behavior in the numerical

generation of vowels using tuned two-dimensional vocal tracts,” 7th Forum Acusticum,

September 7-12, Krakow, Poland.
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7.1 Introduction

In previous chapters of this thesis we have focused on three-dimensional (3D) aspects

of the vocal tract acoustics simulation of vowels. Although very accurate results can

be achieved, an associated problem to 3D simulations is that of strong computational

costs, which limit their use for those applications that aim at working in real-time

(e.g., articulatory speech synthesis). Alternatively, to reduce these high computational

times and also to diminish the memory requirements, two-dimensional (2D) approaches

have been attempted (Speed et al., 2009; Howard et al., 2009; Mullen et al.,

2007, 2006; Kako and Touda, 2006), which, in some cases, have been carried out

in real-time (see e.g., Mullen et al., 2007). 2D models present some improvements with

respect to the 1D types, in terms of the naturalness of the perceived sound (see e.g.,

Mullen et al., 2006; Howard et al., 2009) or in terms of control flexibility (see e.g., Mullen

et al., 2006, where linear control over formant bandwidth is achieved thanks to the second

dimension). However, 2D simulations performed to date show large discrepancies when

compared to 3D results, in terms of formant locations and bandwidths in the vocal tract

transfer functions. It is the main goal of this chapter to suggest a methodology to carry

out 2D simulations that match the acoustical behavior of 3D vocal tracts with circular

cross-sections.

At this point it is important to note that it is impossible to exactly recover the acoustic

performance of a 3D vocal tract with a 2D simulation. The high frequency modes involving

the third dimension can not logically be accounted for in the 2D case. In addition,

the nature of the wave propagation is different in two and three dimensions. Although

a point-like impulse propagates on an infinitely thin wavefront at the speed of sound

in 3D free field conditions, this is not the case in two dimensions, where the arrival

of a pulse at a field point is followed by a long tail that asymptotically tends to zero.

This afterglow phenomenon is characteristic of the wave equation Green function in even

dimensions, and some ways to compensate for it in free field, and in 2D simulations of

room acoustics as well, have been recently proposed (e.g., Spa et al., 2010; Escolano et al.,

2013). Nonetheless, afterglow compensation has not been considered in this work. Though

it could have some influence in voice synthesis due to its filtering effect, it will be shown

that a close resemblance between 2D and 3D vocal tract transfer functions can already

be achieved without taking it into account.

The basic problem with current 2D simulations arises from the fact that 2D vocal tract

models are generated as midsagittal cuts of 3D vocal tracts, i.e. using the same radius

function, wall losses, glottal flow and radiation model as in 3D. However, four simple steps

can be followed to tune a 2D model so that it conforms the acoustic behavior of a circular
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3D vocal tract. In the first step, the 2D vocal tract profile is modified so that its formant

locations match with those of the 3D case. In the second one, wall losses are allowed to

vary in space so as to tune the formant bandwidths. The third step consists in modifying

the airflow generated by the vocal folds to recover the 3D pressure levels and, finally, in

the fourth step an optimization process is followed to attain a 3D behavior for the 2D

radiation impedance. Though simple impedance models could be used for the latter, their

implementation in the time domain is by no means straightforward. Alternatively, one

can naturally account for radiation by extending the computational domain out of the

vocal tract and by making use of infinite elements or perfectly matched layers, to avoid

spurious reflections at the domain boundaries. The latter has been adopted in this work

and implemented using a custom time-domain FEM code (Arnela and Guasch, 2013).

The four-step 2D vocal tract tuning has been tested for vowels /a/, /i/ and /u/, using the

cross-sectional areas provided by Story (2008) for the vocal tract geometries. Although the

simulations in this work have been carried out using FEM, any other numerical approach

could benefit from the proposed methodology. At this point, it should be noted that in the

case of 1D vocal tracts, tuning procedures have been also carried out, though for different

purposes than the ones aimed in this work (see e.g., Story et al., 2001; Story, 2006)

The chapter is structured as follows. In Section 7.2, the proposed methodology to

construct the tuned 2D vocal tract model is exposed. The results obtained for the three

cardinal vowels are discussed in Section 7.3 and contrasted to 3D models, to the standard

2D approaches based on 3D midsagittal cuts, and to a simple 1D frequency domain

model, based on standard chain matrices (similar to that of Sondhi and Schroeter, 1987).

Conclusions are presented in Section 7.4.

7.2 Methodology

7.2.1 Problem statement

The 3D model to be mimicked with a 2D model is shown in Fig. 7.1. It consists of a 3D

vocal tract with circular cross-sections embedded on a sphere of radius as, representing

the human head (see e.g. Chalker and Mackerras, 1985). The vocal tract is characterized

by means of a vocal tract radius function a3D(x) defined along the vocal tract midline.

This has been extracted from the cross-section areas S(x) provided in Story (2008). A

boundary admittance µ3D(x) is imposed at the vocal tract walls to account for wall losses

and a volume velocity Q3D(t) is introduced at the glottal cross-sectional area, to generate
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Fig. 7.1: A sketch showing left a 3D vocal tract geometry with circular cross-sections set

in a spherical baffle, and right, the equivalent 2D model with the parameters to be tuned:

the radius function a(x), the wall boundary admittance µ(x), the volume velocity at the

glottal cross-section Q(t), the radius of the circular baffle ac and the length δ′ of a small

duct coupled at the mouth cross-section.

a given sound. Radiation losses are naturally accounted for by allowing sound waves

emanate from the mouth aperture and propagate outwards.

The problem to be solved consists in finding a configuration for the 2D model that

conforms the behavior of the 3D model described above (see Fig. 7.1). As commented in

the Introduction, the standard procedure followed to build a 2D model relies on performing

a midsagittal cut of the 3D vocal tract. Actually, the following equivalences are usually

made

a2D(x) = a3D(x), (7.1a)

µ2D(x) = µ3D(x), (7.1b)

Q2D(t) = Q3D(t), (7.1c)

ac = as, (7.1d)

where ac denotes the radius of a 2D circular baffle (see Fig. 7.1). However, as it will

be shown in Section 7.3, these assumptions lead to strong discrepancies between the 2D

vowel vocal tract transfer functions and the 3D ones. It is possible, however, to tune the

2D parameters to minimize the differences. It will be next shown how a2D(x), µ2D(x),

Q2D(t) and ac, together with an additional parameter δ′ can be adjusted to do so. δ′

represents the length of a small duct coupled at the mouth cross-sectional area to improve

2D radiation, see Fig. 7.1.
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7.2.2 Step 1: 2D vocal tract geometry

In the first step the 2D vocal tract geometry is modified to adjust the 3D vocal

tract formant locations. Consider non-bent 3D and 2D vocal tracts of length L,

generated from continuous area functions S(x). Each vocal tract can be split into N

differential ducts of constant cross-section, so that the interval [0, L] becomes discretized

as 0 ≡ x1 < · · · < xi < xi+1 < · · · < xN ≡ L, ∆x = xi+1 − xi being the spatial step size

and x1, xN respectively denoting the glottal and lip positions. The discretized vocal tracts

can be viewed as a chain of expansion chambers with expansion ratios

mi
3D

=
Si
3D

Si+1
3D

=

[

ai
3D

ai+1
3D

]2

, mi
2D

=
Si
2D

Si+1
2D

=
ai
2D

ai+1
2D

, (7.2)

for i = 1, 2, · · ·N − 1 and with ai3D, a
i
2D standing for the cross-section radii. It is

explained in Boij and Nilsson (2003) that in the case of expansion chambers, 2D numerical

simulations compare well to 3D experimental results in the plane wave regime, whenever

the 2D expansion ratio equals the 3D one. Imposing this condition for every subsequent

differential duct in (7.2), the following recursive equation is found

ai+1
2D

= ai
2D

[

ai+1
3D

ai
3D

]2

= ai
2D
/mi

3D
, (7.3)

which allows building a 2D geometry having the 3D expansion ratio, once the radius ad
2D

at a given arbitrary point xd, with 0 ≤ xd ≤ L, is fixed. For a known ad
2D
, Eq. (7.3) can

be rearranged as

ai
2D

=







ai+1
2D

mi 1 ≤ i < d

ad
2D

i = d

ai−1
2D

mi d < i ≤ N

, (7.4a)

with

mi =

{

Si
3D
/Si+1

3D
i < d

Si
3D
/Si−1

3D
i > d

. (7.4b)

It then remains to prescribe a value for the point xd and its corresponding radius ad
2D
.

This can be done by controlling the onset of non-planar modes in the 2D vocal tract. The

latter will be first induced at the largest cross-section of the vocal tract, so that ad
3D

and ad
2D

are chosen to be the radii precisely corresponding to these cross-sections. Consequently,

xd denotes the distance from the glottis where the maximum radius of the vocal tract is
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Fig. 7.2: Midsagittal profiles (top) and boundary admittance coefficients µ (bottom) for

vowels /a/, /i/ and /u/. (— 3D, - - 2D).

achieved. Taking into account that the frequency value of the first non-planar mode in a

3D and a 2D duct can be respectively computed as (see e.g., Fletcher and Rossing, 1988)

f 3Dc =
1.84

π

c0
2ad

3D

, f 2Dc = 0.5
c0
2ad

2D

, (7.5)

f 2Dc = f 3Dc can be imposed providing a reasonable way to obtain the radius value ad
2D

to be

inserted in (7.4a), from the maximum 3D one,

ad
2D

= ad
3D

0.5π

1.84
. (7.6)

In the top row of Fig. 7.2 the 3D vocal tract profiles for vowels /a/, /i/ and /u/ are given,

together with their 2D counterparts obtained through the above described process. Given

that 0.5π/1.84 < 1 in (7.6), the 2D vocal tracts will always be narrower than the 3D

versions.

7.2.3 Step 2: 2D wall losses

The second step aims at introducing the same amount of dissipation in the 2D vocal tracts

walls as that encountered in the 3D ones, to adjust the formant bandwidths. To do so,

the complex axial wave number kz within the vocal tract must be the same in both cases.

For a 3D cylindrical duct of radius a3D with axisymmetry, the axial wave number kz can

be related to the boundary admittance coefficient µ3D through

k3Dz =
√

k20 − k2r ≃ k0

√

1− j 2µ3D
k0a3D

, (7.7)
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where kr is the radial wave number and j =
√
−1. Besides, for a 2D duct of radius a2D,

the axial wave number k2Dz is given by

k2Dz =
√

k20 − k2x ≃ k0

√

1− j µ2D
k0a2D

, (7.8)

with kx standing for the wave number in the x direction (perpendicular to the axial

direction). The above expressions can be derived from the transcendental equations of

ducts with compliant walls in Munjal (1987) (see Eq. (1.164) in pp. 36 for circular ducts

and Eq. (1.124) in pp. 28 for rectangular ducts), after approximating the Bessel functions

and trigonometric functions in the expressions to first order, i.e. assuming a plane wave

propagation regime. Equating the axial wave numbers (7.7) and (7.8) in each differential

vocal tract duct allows computing the 2D boundary admittance as

µi
2D

= µi
3D

2ai
2D

ai
3D

. (7.9)

If the 3D boundary admittance is set to the usual value µi
3D

= 0.005 ∀i (e.g., Vampola

et al., 2008a) and use is made of ai
3D

and ai
2D

from the preceding Section 7.2.2 in Eq. (7.9),

µi
2D

can be computed for the three corner vowels as shown in the bottom row of Fig. 7.2.

As observed, the 2D boundary admittance is not constant in space because neither is the

ratio ai
2D
/ai

3D
in (7.9) (see also top row of Fig. 7.2).

7.2.4 Step 3: 2D glottal source

In a three-dimensional numerical simulation the particle velocity ug,3D generated by the

vocal folds can be introduced on its boundary as (see Chapter 2)

∇p · n = −ρ0∂tug,3D, (7.10)

where p is the acoustic pressure, n the normal vector pointing outwards and ∂t the partial

time derivative. Typically glottal models provide a 3D volume velocity Qg,3D, which is

related to ug,3D as

ug,3D =
Qg,3D

Sg,3D
, (7.11)

with Sg,3D being the 3D glottal cross-sectional area. In the third step, in order to recover

3D amplitude pressure levels from 2D simulations, the particle velocity ug,2D has to be the

same than in 3D. Therefore, from Eq. (7.11) it follows that

ug,2D =
Qg,3D

Sg,3D
=

Qg,3D

πa2g,3D
, (7.12)

with ag,3D denoting the radii of the 3D glottal cross-section.
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7.2.5 Step 4: 2D radiation model

The goal of the fourth and final step is to make 2D radiation effects resemble the 3D

ones. These effects can be quantified by means of the radiation impedance. 3D radiation

effects can be complex, specially when realistic human head geometries are considered.

However, it has been shown that good results for vowel production can be obtained when

replacing a realistic human head by a spherical baffle of identical volume, at least from

a perceptual point of view (Arnela et al., 2013). This means that the analytical model

for the radiation of a baffle set in a sphere can be used to a rather good extent to mimic

3D radiation effects. This theoretical model will be used as the reference for 3D, whereas

as exposed in Section 7.2.1, the piston set in a circle will be used as basis for 2D. The

corresponding analytical expressions can be found in Appendix A.

The idea is then to tune the 2D normalized radiation impedance Z2D

r to the 3D one, Z3D

r ,

in order to get a similar radiation behavior. An optimization process to do this will be

detailed in the following, which minimizes the distance between Z2D

r and Z3D

r by tuning

the values of the circle radius ac, and the length δ′ of the short duct coupled at the end

of the 2D vocal tract (mouth), in Fig. 7.1. Note that these are the only free parameters

at this point given that a3Dp and as are determined by the vowel to be generated, and a2Dp
has been fixed in the first step of the approach, see Section 7.2.2.

The proposed cost function to be minimized with respect to ac and δ′ is given by the

relative error

ǫ(ac, δ
′) =

∑

i

√

(R2D

r − R3D

r )2 + (X2D

r −X3D

r )2

∑

i

√

(R3D

r )2 + (X3D

r )2
, (7.13)

where Rr(f) and Xr(f) respectively correspond to the radiation resistance and reactance

(Zr = Rr + jXr), and the summation on index i is made over all frequency values. To

first order, it is well-known that modifying the reactance results in shifting of the formant

locations, whereas changing the resistance affects the formant bandwidths and pressure

amplitudes. Therefore, the error function in Eq. (7.13) accounts for a balance of these

effects. However, many other options could have been chosen depending on the particular

goal to be reached. For instance, one could have focused on the sole optimization of Xr

to better fit the formant locations, at the assumed price of getting worse results for the

formant bandwidths and pressure levels.

The expression for the impedance Z3D

r to be used in Eq. (7.13) is directly given in

Appendix A. In what concerns Z2D

r , it corresponds to the input impedance of the duct
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Fig. 7.3: Relative error function ǫ(ac, δ
′) in the optimization process of vowel /i/ 2D

radiation impedance. ac stands for the radius of the circle and δ′ for the length of the

duct coupled at the mouth exit. Dashed lines indicate the values of ac and δ′ corresponding

to the minimum of ǫ.

having length δ′ coupled at the mouth. This can be obtained as

Z2D

r =
1 +R2D

p e
−jkδ′

1−R2D

p e
−jkδ′

, (7.14)

withR2D

p standing for the reflection coefficient of a 2D piston set in a circle. This is related

to the 2D piston impedance Z2D

p provided in Appendix A through

R2D

p =
Z2D

p − 1

Z2D

p + 1
. (7.15)

It is to be noted that use is made of the so called effective piston radius in the analytical

series developments for Z3D

r in Appendix A, instead of the physical one a3Dp . For a sphere

of radius as, and mouth aperture angle referenced to the center of the sphere T , the

former is given by 2as sin(T/2) whilst a3Dp = as sin(T ) (see Morse and Ingard, 1968). It

is clear that both magnitudes coincide for small values of T and they have been assumed

equal to simplify the optimization process. An analogous reasoning applies to Z2D

p in the

2D case. Actually, it is to be noted that the theoretical developments for Z3D

r and Z2D

p

are only valid for small to moderate values of T . This implies that a constraint on the

minimum allowable value for ac in the optimization of (7.13) has to be imposed as it could

happen, for instance, that ac → a2Dp , which would involve large values of T . Numerical

experiments have revealed that the theoretical models perform well whenever T < 20◦,

which corresponds to demand that ac > 2.92a2Dp in the optimization process.
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Table 7.1: Parameters in Z3D

r and Z2D

r and results of the optimization process for the 2D

radiation impedance. ap is the piston radius (mouth aperture), as the sphere radius, ac
the circle radius, δ′ the length of the coupled duct, and T is the mouth aperture angle

referenced to the sphere or circle center. All values in cm.

Z3D

r Z2D

r

a3Dp as T a2Dp ac δ′ T

/a/ 1.226 9 7.83◦ 0.745 2.18 0.063 19.99◦

/i/ 0.538 9 3.43◦ 0.191 0.57 0.087 19.59◦

/u/ 0.226 9 1.44◦ 0.032 1.16 0.067 1.58◦

As an example, the cost function ǫ(ac, δ
′) has been plotted for vowel /i/ in Fig. 7.3. As

observed from the comparison between the section curve with δ′ = 0 and that passing

through the minimum, the inclusion of the additional short duct greatly improves the

results. The optimum pairs [ac, δ
′] obtained for each vowel have been summarized in

Table 7.1. Note in all cases that the angle T is always less than 20◦ (actually the constraint

T < 20◦ is only necessary for vowel /a/ in the optimization process). Also observe in

Table 7.1 that the obtained values for ac are much smaller than as. An intersection

between the vocal tract geometry and the circular baffle is then expected since 2ac < L

(see Fig. 7.4), but as it will be explained in the following subsection, this will not represent

a problem for the FEM simulations.

7.2.6 Time domain finite element simulations

The finite element method (FEM) has been used to solve the acoustic wave equation

within the 2D and 3D computational domains Ω. These are made of the vocal tract plus

an external space surrounding the human head (approximated by spherical or circular

baffles) with dimensions 0.28 × 0.24 × 0.28 m in 3D and 0.28 × 0.24 m in 2D. In both

cases the external space is surrounded by a perfectly matched layer (PML) of width

L = 0.1 m to absorb outgoing sound waves, and configured to get a reflection coefficient

of r∞ = 10−4. Details on the used FEM formulation with PML can be found in Arnela

and Guasch (2013).

The computational domains Ω have been meshed using unstructured tetrahedral meshes

for 3D and triangular meshes for 2D. The mesh size h for the 3D/2D simulations ranges
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Fig. 7.4: Detail of the 2D mesh for vowel /i/ around the mouth aperture.

from h = 0.002/0.0002 m within the vocal tract and the immediate area outside the

mouth, h = 0.005/0.002 m in the outer space, and h = 0.0075/0.002 m in the PML.

The smaller mesh sizes within the 2D the vocal tract are necessary because of the strong

constrictions in the modified 2D geometries. Besides and due to the high computational

cost of 3D simulations, the mesh size in free-field space has been increased to h = 0.005 m

in the outer volume and to h = 0.075 m in the PML. This limits the frequency analysis

of the 3D results to ∼ 10 kHz (following the 10 nodes per wavelength criterion, see e.g.,

Ihlenburg, 1998), while it reaches 20 kHz for the 2D case.

The above mesh configurations result, approximatively, in 7 million and 0.15 million

elements for the 3D and 2D computational domains, respectively. Note that although

smaller element sizes are used for 2D, the total number of elements is strongly reduced from

3D to 2D. In Fig. 7.4 some 2D mesh details for vowel /i/ are presented. As a consequence

of the optimization process (see Section 7.2.5) the circular baffle has a smaller radius than

the vocal tract length. However, this poses no problem in terms of the computation, since

the nodes outside the vocal tract are disconnected from those inside. Therefore, sound

waves leaving the vocal tract will be scattered by the baffle and will propagate outwards

without difficulty.

With regard to the boundary conditions, a Gaussian pulse (Takemoto et al., 2010) has

been used for the volume velocity Q(t) and imposed at the glottal cross-sectional area.

The pulse has been low pass filtered to avoid the appearance of high frequency numerical

errors. A constant boundary admittance coefficient µ3D = 0.005 has been imposed at the

3D vocal tract walls, whereas for the 2D simulations µ2D is space varying and has been

obtained from Eq. (7.9). For both, the spherical and circular baffles, hard walls (µ = 0)
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(a) Vowel /i/ (b) Vowel /u/

Fig. 7.5: Snapshot of the acoustic pressure for vowels /i/ and /u/ at time instant t = 1.15 ms

and t = 1.675 ms, respectively. (top) 3D vocal tract (wall surface, midsagittal and

midtransverse planes). (bottom) 2D-proposed vocal tract.

have been assumed. For the time evolution, a speed of sound of c0=350 m/s and an air

density of ρ0 = 1.14 kg/m3 have been prescribed. The sampling rates chosen for the

3D and 2D simulations are f 3Ds = 1/∆t = 2000 kHz and f 2Ds = 4000 kHz, which ensure

that the corresponding stability conditions of the Courant-Friedrich-Levy type required

by explicit numerical schemes are fulfilled. Note that a higher sampling rate fs is needed

in 2D because, as said above, very small elements are necessary to mesh the constrictions

of the modified 2D geometries. 50 ms events have been simulated in a serial computing

system with processor Intel(R) Core(TM) i5 2.8 GHz (see Table 7.4 for computational

times). In Fig. 7.5, a snapshot of the vocal tract acoustic pressure of vowel /i/ at the

time instant t = 1.15 ms is presented, for a 3D reference case and for the proposed 2D

approach.

Finally, the vocal tract transfer functions for the 3D and 2D numerical simulations have

been computed as

H(f) =
Po(f)

Q(f)
, (7.16)

with Po(f) andQ(f) corresponding to the Fourier Transforms of the acoustic pressure po(t)

at the mouth and the volume velocity Q(t) input at the glottis. For a fair comparison with

1D models in subsequent sections, po(t) is captured inside the vocal tract, at a distance

of 0.003 m from its exit (this distance does not include the coupled duct with length δ′,

which is treated as a radiation element).
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7.3 Results

Results for vowels /a/, /i/ and /u/ using the proposed methodology are next presented.

The 2D simulations carried out following the above described approach will be compared

to a 3D reference case, to the standard 2D method that considers a midsagittal cut of the

3D vocal tract, and to a 1D frequency domain technique based on standard chain matrices

for transmission lines (similar to that in Sondhi and Schroeter, 1987, but using the same

wall losses as in the 3D reference case and the radiation impedance of a piston set in a

sphere). For brevity, the above approaches will be hereafter designated as the 3D-case,

the 2D-proposed case, the 2D-standard case and the 1D-case. It should be noted that the

comparisons with the 1D model are somewhat unfair given that this is a frequency domain

model, whereas all other model results come from time domain simulations. Imposing free

field radiation in time domain 1D models is a rather intricate task and the inclusion of wall

damping has to be done through the inclusion of an extra damping term in the equation,

which combines spatial and time partial derivatives (see e.g., Doel and Ascher, 2008). As

it is possible to implement the 3D wall and radiation losses in the 1D frequency model,

this has at least the advantage that the observed differences with other models could be

basically attributed to non-planar wave propagation.

In order to check each step of the proposed methodology (step 1: vocal tract profile, step 2:

wall losses, step 3: glottal flow and step 4: radiation), two different situations have been

considered. In the first one no radiation losses are considered and the computational

domain is ended at the exit of the vocal tract. An homogenous Dirichlet boundary

condition p = 0 is imposed on it to emulate an open-end termination. This open-end

occurrence is intended to check the performance of steps 1, 2 and 3. In the second

situation, radiation takes place as described in Section 7.2.6 and the efficiency of the 2D

radiation model in step 4 is evaluated individually. The computational times for both

situations are summarized in Table 7.4 for the 3D-case, the 2D-proposed and the 1D-case.

The model accuracies will be contrasted to computational efficiency in what follows.

7.3.1 Open-end conditions

Figure 7.6 shows the obtained vocal tract transfer functions (VTTF) for the open-end

situation up to fmax = 20 kHz, Table 7.2 the formant locations and deviations in % with

respect to the 3D-case, and Table 7.3 the formant bandwidths. Step 3 (compensation of

glottal flow) has been always applied in the 2D models (including the 2D-standard) for

an easier comparison between cases, since it simply produces an offset variation of the

VTTFs. Step 2 has been first disabled to check the efficacy of the proposed vocal tract
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Fig. 7.6: Vocal tract transfer functions H(f) for vowels /a/, /i/ and /u/ when p = 0

is imposed at the mouth cross-sectional area (open-end conditions). Step 1 (vocal tract

profile), step 2 (boundary admittance) and step 3 (glottal flow) have been used to construct

the 2D-proposed model. (— 3D-case, - - 2D-proposed, −· 2D-standard, · · · 1D-case).

profiles in step 1, and then turned on to observe if proper wall losses are recovered.

First the 2D-standard case will be compared to the 3D-case in Fig 7.6. Strong

discrepancies in the formant locations are observed, specially for the first formants at

low frequencies. This will result in large audible differences when synthesizing a vowel,

since the deviations with respect to the 3D-case (see Table 7.2) are clearly larger than

3-5 % for some of the formants (Flanagan, 2008). Moreover, the peaks are sharper in 2D

than in 3D (see also Table 7.3). Having a look at Eq. (7.9), this may be attributed to

the fact that to get the same amount of wall absorption for 2D than for the 3D-case, a

factor 2 should have been applied to the boundary admittance coefficient, given that if

the midsagittal 3D cut is taken for the 2D vocal tract the ratio a2D/a3D = 1.

In contrast to the 2D-standard results, when step 1 is used to construct the vocal tract

profiles very close formant locations to the ones in the 3D-case are obtained up to 10 kHz
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(see dashed line in Fig. 7.6 and Table 7.2). Beyond 10 kHz, higher order modes appear

in the VTTFs which apparently cannot be correctly reproduced by any of the two 2D

approaches. Yet some of them are recovered in the 2D-proposed case, like the deep

around 18 kHz for vowels /a/ and /u/. The inclusion of step 2 (wall losses) allows to get

proper bandwidths (see Table 7.3), otherwise some large disparities can be appreciated,

see e.g., the first formant of vowel /a/ in Fig. 7.6. Actually, it is apparent that one could

not expect to regain all 3D higher order acoustic modes from 2D simulations, only some

of them can be obtained. However, and as mentioned in the introduction, 2D simulations

seem to produce more natural sounds than those arising from 1D simulations, even if

high order 3D modes are not perfectly matched, which make them appealing e.g., for

articulatory speech synthesis (see e.g., Howard et al., 2009; Mullen et al., 2006).

When testing the 1D-case against the 2D-proposed and the 3D-case, results only compare

well for low frequencies, as expected, as no high order modes can be generated in 1D

(departures can be clearly observed beyond 5-6 kHz for vowels /i/ and /u/). Besides, some

formant deviations to higher frequencies can be also appreciated for moderate frequency

values, see e.g. the fifth formant of vowel /u/. This is so because in 2D and 3D front

waves can curve at large area discontinuities (see Fig. 7.5). This can be understood as

an artificial lengthening of the differential duct where the discontinuity takes place (see

e.g., Kang and Ji, 2008), inducing the shift to the left of the 2D and 3D formants; a

phenomenon that obviously cannot naturally occur in the 1D case. Note that the initial

condition in Eq. (7.6) for the vocal width guarantees that this effect can take place. 1D

models can emulate this lengthening phenomena by introducing inner-length corrections

at the sudden expansions/constrictions of the vocal tract (Sondhi, 1983). Though for the

herein analyzed vowels this effect does not seem to be influential (the differences between

1D and 2D/3D Table 7.2 are less than 3-5%), the phenomenon may be of importance

in other situations and actually, some current 1D articulatory speech synthesizers take

it into account to improve the formant accuracy (see e.g. Birkholz, 2013). In what

concerns formant bandwidths, a general matching is observed between 1D and 3D (also

2D), although some formants in the low frequency region are found overdamped in 1D

(see e.g. F1 and F2 for vowel /u/ in Table 7.3), which might be perceptually relevant.

With regard to the computational times in Table 7.4, it can be observed that those of 2D

simulations are much lower than those of 3D simulations. Though in the present work it

has not been attempted to reach real-time computation (the simulated time interval was

50 ms for 2D and 3D, see Section 7.2.6), it has been shown that real-time applications

can be reached for both 1D (see e.g., Doel and Ascher, 2008) and 2D simulations (see e.g,

Mullen et al., 2007), using similar configurations to those presented in this section.
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Table 7.2: First formant locations Fi (Hz) and formant deviations ∆Fi/Fi (%) with respect

to the 3D-case in the 2D-proposed (2Dp), the 2D-standard (2Ds) and the 1D-case for vowels

/a/, /i/ and u/. Open-end conditions (p = 0) are considered at the mouth cross-section.

Vowel Case F1 F2 F3 F4 F5 F6 F7 F8

/a/

3D 696 1068 3031 4064 5039 5703 7065 7595

2Dp 701 1069 3036 4071 5057 5705 7072 7598

2Ds 682 1249 2730 3793 4780 5661 6862 7632

1D 705 1072 3065 4091 5066 5744 7108 7642

/i/

3D 263 2111 3010 4138 5019 5753 6575 7645

2Dp 266 2106 3003 4131 5024 5772 6578 7647

2Ds 392 1816 2779 3855 4784 5670 6605 7664

1D 262 2121 3029 4158 5048 5820 6606 7668

/u/

3D 259 757 2264 3603 4173 5062 6126 6594

2Dp 264 783 2266 3609 4179 5085 6144 6610

2Ds 378 1224 2068 3292 3950 4921 5862 6504

1D 260 769 2275 3624 4244 5105 6186 6736

Vowel Case ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

/a/

2Dp 0.72 0.09 0.16 0.17 0.36 0.04 0.1 0.04

2Ds -2.01 16.95 -9.93 -6.67 -5.14 -0.74 -2.87 0.49

1D 1.29 0.37 1.12 0.66 0.54 0.72 0.61 0.62

/i/

2Dp 1.14 -0.24 -0.23 -0.17 0.1 0.33 0.05 0.03

2Ds 49.05 -13.97 -7.67 -6.84 -4.68 -1.44 0.46 0.25

1D -0.38 0.47 0.63 0.48 0.58 1.16 0.47 0.3

/u/

2Dp 1.93 3.43 0.09 0.17 0.14 0.45 0.29 0.24

2Ds 45.95 61.69 -8.66 -8.63 -5.34 -2.79 -4.31 -1.36

1D 0.39 1.59 0.49 0.58 1.7 0.85 0.98 2.15
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Table 7.3: First formant bandwidths BWi (Hz) for the 3D-case, the 2D-proposed (2Dp),

the 2D-standard (2Ds) and the 1D-case for vowels /a/, /i/ and u/. Open-end conditions

(p = 0) are considered at the mouth cross-section.

Vowel Case BW1 BW2 BW3 BW4 BW5 BW6 BW7 BW8

/a/

3D 135 50 87 117 117 83 115 89

2Dp 137 51 86 120 115 87 113 93

2Ds 58 34 49 55 54 45 54 48

1D 126 59 76 107 111 84 114 86

/i/

3D 57 82 101 97 105 97 94 93

2Dp 58 82 101 97 105 101 94 92

2Ds 33 46 52 50 50 47 47 47

1D 95 71 92 90 100 97 93 92

/u/

3D 69 62 84 94 93 95 99 90

2Dp 70 64 84 95 93 98 100 89

2Ds 38 38 45 51 47 47 51 46

1D 125 122 76 84 87 93 90 86

Table 7.4: Computational times for the 1D-case, the 2D-proposed and the 3D-case when

open-end boundary conditions are used (p = 0) on the mouth section and when radiation

is allowed. Remark: 1D is not directly comparable to 2D and 3D simulations because it is

a frequency domain model while 2D and 3D work in the time domain.

Open-end Radiation

1D 2D 3D 1D 2D 3D

/a/ 5 s 4 min 44 min 8 s 2.7 h 56 h

/i/ 5 s 4 min 30 min 10 s 2.7 h 59 h

/u/ 5 s 4 min 31 min 13 s 2.7 h 57 h
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7.3.2 Radiation conditions

In order to check the performance of the radiation optimization in the fourth step of the

method, two different models have been considered. The first one is made of a 2D vocal

tract that has been tuned according to steps 1, 2 and 3. The vocal tract is embedded in a

circle consisting of the midsagittal cut of the 3D-case sphere. In other words, the values

ac = as and δ
′ = 0 are taken for it. The second model consists of the same 2D vocal tract

but with step 4 also being implemented. That is to say the values for ac and δ
′ in Table 7.1

have been used in this occasion. For brevity, the two models will be respectively refereed

to as the 2D-proposed case with and without optimization. Results will be presented for

them and also compared with those of the 3D-case with free-field radiation conditions and

those of the 1D-case with the piston-set on a sphere load radiation model implemented on

it. The 2D-standard case will be left aside due to its poor performance when compared to

others. The analysis will be restricted up to 10 kHz due to the high computational cost

of the free field 3D simulations.

Let us first comment on the 2D theoretical radiation impedances obtained that can be

computed using the values arising from the optimization process (see Section 7.2.5), and

compare them to the 3D ones. In Fig. 7.7, the 3D and 2D (with and without optimization)

impedance curves have been plotted in terms of the radiation resistance Rr (Fig. 7.7a)

and the reactance Xr (Fig. 7.7b). With regard to the former, both the 2D case with and

without optimization present similar values to those of the 3D-case for vowel /u/. In
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Fig. 7.7: Radiation impedance Zr for vowels /a/, /i/ and /u/ computed from theoretical

models. (a) Radiation resistance Rr and (b) Radiation reactance Xr, Zr = Rr + jXr.

(— 3D-case, - - 2D-proposed with optimization, · · · 2D-proposed without optimization).
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Fig. 7.8: Vocal tract transfer functions H(f) for vowel /a/, /i/ and /u/ considering

radiation. (— 3D-case, - - 2D-proposed with optimization in the radiation model,

−· 2D-proposed without optimization, · · · 1D-case).

contrast, for vowel /i/ differences become apparent and the 2D-case with optimization

better approximates the 3D curve for most of the spectrum; see Fig. 7.7a. For vowel

/a/, both 2D models clearly depart from the 3D resistance, though slightly better results

are obtained for the case with optimization. In what concerns the reactance, a striking

agreement is found between the 3D-case and the 2D with optimization for vowels /u/ and

/i/ (see Fig. 7.7b), whereas this is not the case for the 2D-case without optimization. The

results are not as good for vowel /a/, yet the 2D-case with optimization performs better

than that without optimization.

The impedance plots shown in Fig. 7.7 are useful to understand the differences between

the 3D and 2D VTTFs shown in Fig. 7.8. As mentioned in previous sections, increasing

the reactance is well known to shift the formant locations downward in frequency. This is

what is actually observed for vowels /i/ and /u/ in Fig. 7.8, where the 2D-case with

optimization better fits the 3D-case VTTF. The 2D with no optimization has lower

reactance (see Fig. 7.7b) and therefore its formants are shifted to the right. Note that

some exceptions occur, like the third formant of vowel /u/ which is a back-cavity formant

(see e.g. Apostol et al., 2004) and therefore becomes less influenced by changes in radiation

(see e.g., Stevens, 2000). Besides, the discrepancies already found between 9 − 10 kHz
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for vowel /u/ in Fig. 7.6, are also observed in Fig. 7.8. No significative deviations are

observed in the VTTF of vowel /a/ despite the 2D reactance values did not fit so well the

3D ones.

Increasing resistance generally results in larger formant bandwidths and lower amplitudes

(with dependence on the formant cavity affiliation phenomenon). A look at vowel /u/ in

Fig. 7.8 reveals that very good results are obtained for both 2D models, given that they

closely match the 3D resistance (see Fig. 7.7a). Only a small decrease of the 2D pressure

levels is observed beyond ∼ 5 kHz, because the 2D resistance also diminishes slightly with

respect to the 3D one at these frequencies. In contrast, for vowel /i/ better results are

obtained for the case with optimization (see Fig. 7.8 beyond ∼ 3 kHz), the formants being

smoothed if this is not carried out. For example, the fourth and fifth formants that lie

between 4 and 5 kHz have larger bandwidths since their resistance is also higher at this

frequency range (see Fig. 7.7a). The discrepancies between 3D and 2D VTTFs become

more visible for vowel /a/ due to the lower 3D resistance; see Fig. 7.7a. For example, the

first 3D-case formant of vowel /a/ not only has a smoother shape but also less amplitude

level. Close inspection reveals, however, some slight improvements in some formants (e.g.,

second and third) for the 2D case with optimization with respect to the 2D case without

optimization.

Results for the 1D-case have been also presented in Fig. 7.8. As expected, values similar to

the 3D-case ones are obtained, since the equivalent theoretical radiation impedance (piston

set on a sphere) has been applied to emulate radiation in the 1D model. Differences in

formant locations can be basically appreciated for vowel /u/ above 4 kHz, the explanation

for this behavior already being given in Section 7.3.1 and not related to radiation.

In what concerns the computational times, the inclusion of the free-field space in 2D

and 3D obviously has noticeably increased the total duration of the simulations (see

Table 7.4). The computational times for the 2D case are still much smaller than the 3D

ones and they could actually be reduced as the comparison is somewhat unfair in this

case. As commented in Section 7.2.6, the meshes in 2D are fine enough to reach 20 kHz

while only 10 kHz can be attained for 3D. The computational time is still low for the 1D

case given that it makes use of the theoretical impedance radiation model of a piston set

in a sphere, detailed in Appendix A.
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7.4 Conclusions

Numerical simulations show that the vocal tract transfer function (VTTF) of a 2D vocal

tract, generated from the midsagittal cut of a 3D one, presents strong discrepancies in

terms of formant locations, bandwidths and amplitudes when compared to a 3D VTTF.

Alternatively, a four step methodology has been proposed for tuning 2D models so as to

exhibit the behavior of 3D vocal tract shapes with circular cross-sections. The method has

shown substantial improvement when compared to the standard 2D approach and allows

taking benefit of the great reduction in computational cost of 2D simulations, without

paying strong quality sacrifices for it. The observed differences between the time-domain

3D and 2D proposed approach, and the 1D frequency-domain method are not huge, which

is partially attributed to the fact that simple 3D vocal tract with circular-cross sections

have been used. Moreover, larger discrepancies could have been expected if comparisons

were made with respect to a 1D time-domain model, given their difficulty to mimic some

phenomena such as radiation or wall losses.

2D methods can present some advantages with respect to 1D models, as non planar waves

can be generated and both, radiation and wall losses, can be naturally accounted for.

Moreover, one could consider using asymmetrical shapes and bent vocal tracts, which

will produce the onset of new transverse modes and probably improve the naturalness

of the generated sound. Complex side branches could be also included in 2D models to

take into account the influence e.g., of the piriform fossae or of the nasal tract. As a

result of this work, it may be concluded that accurate 2D simulations have the potential

to provide a reasonable balance in terms of quality and computational cost between 3D

and 1D approaches, though there is much more to be investigated concerning their future

possibilities.
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Chapter 8

Finite Element formulation for

diphthong production

For the numerical simulation of vowel production, the irreducible wave equation for

the acoustic pressure is typically solved. However, diphthong sounds require moving

vocal tract geometries so that the wave equation has to be expressed in an Arbitrary

Lagrangian-Eulerian (ALE) framework. It then becomes more convenient to directly work

with the wave equation in its mixed form, which not only involves the acoustic pressure

but also the acoustic particle velocity. In turn, this entails some numerical difficulties

that require resorting to stabilized FEM approaches. In this chapter, the mixed wave

equation expressed in an ALE frame of reference will be numerically solved using FEM

and stabilized following a subgrid scale strategy, which will allow one to use the same

interpolation for the acoustic pressure and acoustic particle velocity. Some numerical

examples will be finally presented showing a good performance of the proposed approach.

Diphthong sounds /ai/ and /au/ will be generated using three-dimensional vocal tracts

with circular cross-sections and their equivalent tuned two-dimensional counterparts.

This chapter is based on the following works

• Guasch, O., Arnela, M., Codina, R., and Espinoza, H., “A stabilized finite element

method for the mixed wave equation in an ALE framework with application to

diphthong production,” J. Comput. Phys., Submitted.

• Arnela, M., Guasch, O., Codina, R., and Espinoza, H. (2014), “Finite element

computation of diphthong sounds using tuned two-dimensional vocal tracts”, in Proc.

of 7th Forum Acousticum, Kraków, Poland.
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• Guasch, O., Codina, R., Arnela, M., and Espinoza, H. (2014), “A stabilized Arbitrary

Lagrangian Eulerian Finite Element Method for the mixed wave equation with

application to diphthong production”, in 11th World Congress on Computational

Mechanics (WCCM), Barcelona, Spain.

8.1 Introduction

The acoustic pressure is the magnitude of interest for numerical voice simulation.

Therefore, for vowel production, the standard irreducible wave equation, or its Fourier

transform, the Helmholtz equation, are the usual equations being solved (e.g., Matsuzaki

and Motoki, 2007; Vampola et al., 2008a; Arnela and Guasch, 2013; Arnela et al., 2013).

However, approaches dealing with the wave equation in mixed form that involves both,

the acoustic pressure and the acoustic velocity, can also be considered (see e.g., Takemoto

et al., 2010; Codina, 2008). Actually, it will be shown herein that to generate diphthong

sounds it precisely becomes more convenient to deal with the later. In the case of

diphthongs, one has to consider moving domains. For example, if one intends to generate

the diphthong /ai/, the vocal tract geometry has to smoothly change from the articulatory

position of vowel /a/ to the position of vowel /i/ (see Fig. 8.1). Therefore, dynamic vocal

tracts will be required and consequently it becomes necessary to express the involved

equations in an Arbitrary Lagrangian-Eulerian (ALE) framework (Hughes et al., 1981;

Huerta and Liu, 1988; Donea et al., 2004), rather than in a pure Eulerian one. This can

be done more naturally for the wave equation in mixed form.

In contrast to the irreducible wave equation presented in Chapter 2, the numerical

resolution of the mixed wave equation presents some additional difficulties. To solve

it by FEM one has to express this equation in its weak or variational form and

then discretized it. A compatibility inf-sup condition has to be satisfied for the

problem to be well-posed, which in the case of the mixed wave equation is not directly

inherited by the standard Galerkin FEM approach. It becomes then necessary to use

different interpolations for the acoustic pressure and particle velocity, which makes

it more difficult to code. Alternatively, one can resort to stabilization which allows

one to use equal interpolation for both magnitudes. Different options exist in the

literature (see e.g., Codina, 1998), although in this work we will adopt a residual based

multiscale method (Hughes, 1995; Hughes et al., 1998; Codina, 2002) for the mixed wave

equation (Codina, 2008). A detailed numerical analysis reveals that in this case the

solution becomes bounded by the problem data in a new energy norm that contains all

designed stabilization terms (Badia et al., 2014). In the case of its ALE counterpart the
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situation becomes more intricate. This equation has the same mathematical structure of

the linearized modified Boussinesq equation for shallow waters with convection. Numerical

experiments show that the Galerkin FEM solution for the latter exhibits strong high-

frequency oscillations if equal interpolations are used for the gravity waves depth and

velocity (Langtangen and Pedersen, 1998; Walkley and Berzins, 2002). Again these

oscillations can be overcome if one draws on stabilization strategies (Hauke, 1998; Codina

et al., 2008). In this work we will present a stabilized FEM approach for the ALE wave

equation in mixed form based on subgrid scales, following the main lines in Codina et al.

(2008). It is to be noted however, that contrary to the variational mixed wave equation,

little is know with regard to the well-posedness of the variational continuous and discrete

ALE mixed wave equation. Actually, and as far as we know, to date only very partial

results have been proved showing that the continuous linearized two-dimensional shallow

water equations (and by extension the ALE mixed wave equation) are only well posed

for some specific boundary conditions in a very simple rectangular geometry (Huang and

Temam, 2014).

This chapter is organized as follows. In Section 8.2 the wave equation is expressed in

an ALE frame of reference and supplemented with appropriate boundary and initial

conditions for diphthong sounds. This problem is then numerically solved with FEM

in Section 8.3. First, it is expressed in its variational form (Section 8.3.1). Then, it

is discretized in space following a subgrid scale strategy to use equal interpolation for

the acoustic pressure and acoustic particle velocity (Section 8.3.2). Next the so called

matrix of stabilization parameters need for the stabilization is derived (Section 8.3.3).

The final numerical scheme including both space and time discretization is then presented

(Section 8.3.4). The general methodology followed to perform a numerical simulation of a

diphthong sound is described in Section 8.4. In Section 8.5 a numerical example used to

check the proposed FEM approach is first shown. This consists of a two-dimensional tube

of constant cross-section with time variable length due to periodic movement of the exit

boundary, which can be interpreted as a very rough approximation of a vocal tract in a rest

position with lip protrusion. Next, the diphthongs /ai/ and /au/ are generated as a second

example using three-dimensional simplified geometries of the vocal tract with circular

cross-sections. Lastly, the same diphthongs sounds are synthesized but this time using a

two-dimensional approach that provides a very good balance between computational cost

and voice quality. The tuned two-dimensional vocal tract model developed in Chapter 7

is extended to account for dynamic geometries. Conclusions finally close the chapter in

Section 8.6.
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8.2 Problem statement

8.2.1 The acoustic wave equation in an ALE framework

The linearized continuity and momentum equations for sound propagation in a stationary

inviscid fluid read, in a spatial (Eulerian) frame of reference,

1

ρ0c20
∂tp +∇ · u = fp, (8.1a)

ρ0∂tu+∇p = fu, (8.1b)

where p(x, t) and u(x, t) respectively denote the acoustic pressure and the acoustic

particle velocity and c0 and ρ0 stand for the speed of sound and for the air density.

fp(x, t) represents a volume source distribution and fu(x, t) an external body force per

unit volume. The partial time derivative is denoted with ∂t. Equation (8.1) is sometimes

referred to as the wave equation in mixed form. Its standard irreducible counterpart can

be easily derived after combing the mixed wave equation (8.1) as

ρ0∂t(8.1a)−∇ · (8.1b), (8.2)

which yields

1

c20
∂2ttp−∇2p = ρ0∂tfp −∇ · fu. (8.3)

Solving Eq. (8.3) supplemented with appropriate boundary and initial conditions suffices

for numerical vowel production (see e.g, Arnela and Guasch, 2013, and also Chapter 2),

because, as said in the Introduction, the generated acoustic pressure is the sole quantity of

interest. However, when facing the production of diphthongs one has to deal with moving

domains. In such a situation, it becomes convenient to express the time derivative of any

fluid property, say ξ, in a referential frame moving with the mesh, while keeping its spatial

derivatives in an Eulerian frame (quasi-Eulerian ALE formulation, Hughes et al., 1981;

Huerta and Liu, 1988). To get the ALE expressions for the continuity and momentum

equations in Eq. (8.1), one has to replace

∂tξ ← ∂tξ − udom · ∇ξ (8.4)

in them, with udom(x, t) denoting the mesh velocity. This results in the ALE wave

equation in mixed form

1

ρ0c20
∂tp−

1

ρ0c20
udom · ∇p +∇ · u = fp, (8.5a)

ρ0∂tu− ρ0udom · ∇u+∇p = fu. (8.5b)
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Note that combining Eq. (8.5a) and Eq. (8.5b) to get an irreducible equation for the

acoustic pressure is not straightforward in this case. An analogous procedure to that

followed to get Eq. (8.3) should be followed. Replacing the time derivatives in Eq. (8.2)

by ∂tξ ← ∂tξ − udom · ∇ξ and using instead the ALE mixed wave equation (8.5), the

irreducible form of the wave equation in an ALE framework can be derived after applying

ρ0∂t(8.5a)− ρ0udom∇ · (8.5a)−∇ · (8.5b), (8.6)

which yields

1

c20
∂2ttp−∇2p− 1

c20
∂t (udom · ∇p) +

1

c20
udom · ∇ (udom · ∇p)− ρ0udom · ∇(∇ · u)

+ ρ0∇ · (udom · ∇u) = ρ0∂tfp − ρ0udom · ∇fp −∇ · fu. (8.7)

Note in Eq. (8.7) that some of the new terms that appear when expressing Eq. (8.3)

in an ALE framework include the particle velocity u, e.g. ρ0∇ · (udom · ∇u). Since this

magnitude will have to be computed anyway, it seems more appropriate to solve the mixed

wave equation which directly provides the pressure and velocity fields.

8.2.2 Boundary and initial conditions

The boundary and initial conditions that are used for the ALE wave equation in mixed

form, Eq. (8.5), applied to our particular problem are as follows. Consider a computational

domain Ω standing for the vocal tract airway. Its boundary ∂Ω can be split in three non-

intersecting regions (see Fig. 8.1): ΓG for the glottal cross-sectional area, ΓW for the vocal

tract walls, and ΓM for the mouth aperture. We impose

u · n = g(t) on ΓG, t > 0, (8.8a)

u · n = p/Zw on ΓW, t > 0, (8.8b)

p = 0 on ΓM, t > 0, (8.8c)

p = 0, u = 0 in Ω, t = 0, (8.8d)

where g(t) is a function that describes the time evolution of the acoustic velocity

generated by the vocal folds, Zw is the impedance of the vocal tract walls, related to

the boundary admittance coefficient by means of µ = ρ0c0/Zw, and n is the normal

vector pointing outwards ∂Ω. Note that in this case, and in contrast to vowel production,

a simple homogeneous Dirichlet conditions is used for the acoustic pressure at the mouth

exit. Future work will extend the presented approach to include outward sound wave

propagation so as to account for radiation losses.
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Fig. 8.1: A sketch of the computational domain Ω for vowels /a/ and /i/, from which

diphthong /ai/ can be generated by transiting from one vowel to the other. The boundary

regions used to define the boundary conditions in (8.8) are also indicated, with ΓG standing

for the glottal sectional area, ΓW for the vocal tract walls and ΓM for the mouth aperture.

8.3 Finite Element approach

8.3.1 Variational formulation

Equation (8.5), supplemented with the initial and boundary conditions in (8.8),

constitutes the problem to be solved. Before expressing this equation in its variational

form, let us introduce some additional notation and the functional framework without

getting into much deep mathematical details. The integral between two arbitrary functions

f and g in Ω will be written as

(f, g) :=

∫

Ω

fgdΩ, (8.9)

while integrals over boundaries will be explicitly indicated, for instance

(f, g)ΓG
:=

∫

ΓG

fgdΓG. (8.10)

The space of functions whose elements are square integrable in Ω will be denoted as usual

by L2(Ω), while H1(Ω) will be used to denote the space of functions in L2(Ω) that also

have square integrable spatial derivatives. Vp and Vu will represent the space of functions

that satisfy the Dirichlet boundary conditions of the problem and belong to H1(Ω) for

every time instant for the scalar pressure p and the vector velocity u, respectively, whereas

Vq and Vv will respectively stand for those functions in H1(Ω) whose values vanish on the

boundaries for the scalar test function q and the vector test function v.



8. FEM formulation for diphthong production 153

The weak formulation of (8.5) is found as usual by multiplying Eq. (8.5a) with a scalar test

function q, Eq. (8.5b) with a vector test function v, and integrating over the computational

domain Ω. The variational problem can then be formulated as that of finding p ∈ Vp and
u ∈ Vu such that

1

ρ0c20
(∂tp, q)−

1

ρ0c20
(udom · ∇p, q) + (∇ · u, q) = (fp, q), (8.11a)

ρ0(∂tu, v)− ρ0(udom · ∇u, v) + (∇p, v) = (fu, v), (8.11b)

for all q ∈ Vq and v ∈ Vu. Next, integrating by parts the last term in the l.h.s of (8.11a),

applying the divergence theorem and considering the boundary conditions in (8.8) we

obtain

1

ρ0c20
(∂tp, q)−

1

ρ0c20
(udom · ∇p, q)− (u,∇q) + (p/Zw, q)ΓW

= (fp, q)− (g, q)ΓG
, (8.12a)

ρ0(∂tu, v)− ρ0(udom · ∇u, v) + (∇p, v) = (fu, v). (8.12b)

Equation (8.12) corresponds to the ALE version of the third variational formulation

for the wave equation in mixed form in Badia et al. (2014); Espinoza et al. (2014), which

involves weak imposition of particle velocity boundary conditions, whilst strong imposition

of the acoustic pressure at boundaries.

On the other hand, to shorten notation, equation (8.12) can be rewritten as

B1([p,u], [q, v]) = L1(q) ∀qh ∈ Vq,h, (8.13a)

B2([p,u], [q, v]) = L2(v) ∀vh ∈ Vu,h, (8.13b)

where we have defined the bilinear forms

B1([p,u], [q, v]) :=
1

ρ0c
2
0

(∂tp, q)−
1

ρ0c
2
0

(udom · ∇p, q)− (u,∇q) + (p/Zw, q)ΓW
, (8.14a)

B2([p,u], [q, v]) := ρ0(∂tu, v)− ρ0(udom · ∇u, v) + (∇p, v), (8.14b)

and the linear forms corresponding to the forcing terms by

L1(q) := (fp, q)− (g, q)ΓG
, (8.15a)

L2(v) := (fu, v). (8.15b)
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8.3.2 Spatial discretization: subgrid stabilized scheme

The first step to find a numerical solution to Eq. (8.13) consists in the spatial

discretization. Let us partition the computational domain Ω in nel elements with np

nodes. Given the finite dimensional spaces Vp,h ⊂ Vp and Vu,h ⊂ Vu, the Galerkin finite

element approach to problem (8.13) consists in finding ph ∈ Vp,h and uh ∈ Vu,h such that

B1([ph,uh], [qh, vh]) = L1(qh) ∀qh ∈ Vq,h, (8.16a)

B2([ph,uh], [qh, vh]) = L2(vh) ∀vh ∈ Vu,h, (8.16b)

where the subindex h denotes the discrete version of the continuous variables. The

standard Galerkin approach presented in (8.16) needs to satisfy an inf-sup compatibility

constraint, which results in stability problems when equal interpolations for the

approximated acoustic pressure and velocity fields are used. Next we introduce a

variational subgrid scale stabilization strategy to circumvent this difficulty and thus to

facilitate code implementation. This consists in splitting the exact solutions p and u into

the finite element components ph and uh that can be resolved by the computational mesh,

plus the subscales p′ and u′ which cannot be computed, and have to be somehow modeled.

Substitution of p = ph + p′ and u = uh +u′ into (8.12) yields two sets of equations. The

first one accounting for the large solvable scales is given by

1

ρ0c20

[

(∂tph, qh) + (∂tp
′, qh)

]

− 1

ρ0c20

[

(udom · ∇ph, qh) + (udom · ∇p′, qh)
]

−
[

(uh,∇qh) + (u′,∇qh)
]

+ (ph/Zw, qh)ΓW
= (fp, qh)− (g, qh)ΓG

, (8.17a)

ρ0
[

(∂tuh, vh) + (∂tu
′, vh)

]

− ρ0
[

(udom · ∇uh, vh) + (udom · ∇u′, vh)
]

+
[

(∇ph, vh) + (∇p′, vh)
]

= (fu, vh), (8.17b)

where we have imposed in the boundary integrals that the subscales vanish on the element

contours. Assuming quasi-static subscales (i.e., ∂tp
′ ≈ 0, ∂tu

′ ≈ 0) and using the linear

and bilinear forms defined in (8.14) and (8.15), Eq. (8.17) can be rearranged as

B1([ph,uh], [qh, vh])−
1

ρ0c
2
0

(udom · ∇p′, qh)− (u′,∇qh) = L1(qh), (8.18a)

B2([ph,uh], [qh, vh])− ρ0(udom · ∇u′, vh) + (∇p′, vh) = L2(vh). (8.18b)

Integrating by parts yields

B1([ph,uh], [qh, vh]) +
1

ρ0c
2
0

(p′,udom · ∇qh) +
1

ρ0c
2
0

(p′,∇ · udom qh)

− (u′,∇qh) = L1(qh), (8.19a)

B2([ph,uh], [qh, vh]) + ρ0(u
′,udom · ∇vh) + ρ0(u

′,∇ · udom vh)

− (p′,∇ · vh) = L2(vh). (8.19b)
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The terms (p′,∇·udom qh) in (8.19a) and (u′,∇·udom vh) in (8.19b) will be disregarded for

simplicity. They do not affect the consistency of the proposed approach and the remaining

terms will be shown to produce enough stability for the problem at hand.

Let us now focus on the second equation coming from splitting the unknowns in ph + p′

and uh + u′. This equation, governing the behavior of the subscales, is given by

1

ρ0c20

[

(∂tph, q
′) + (∂tp

′, q′)
]

− 1

ρ0c20

[

(udom · ∇ph, q′) + (udom · ∇p′, q′)
]

+
[

(∇ · uh, q
′) + (∇ · u′, q′)

]

= (fp, q
′), (8.20a)

ρ0
[

(∂tuh, v
′) + (∂tu

′, v′)
]

− ρ0
[

(udom · ∇uh, v
′) + (udom · ∇u′, v′)

]

+
[

(∇ph, v′) + (∇p′, v′)
]

= (fu, v
′), (8.20b)

where integration by parts has been applied to (uh,∇q′) and (u′,∇q′) to obtain

the last two terms in (8.20a), and the boundary integrals have vanished given that

subscales become zero at the element contours. Note then that (8.20) is nothing but

the L2-projection of each term onto the space of subscales. Denoting with P ′
p and P ′

u

these projections and assuming again quasi-static subscales, (8.20) can be rewritten as

P ′
p

(

− 1

ρ0c
2
0

udom · ∇p′ +∇ · u′
)

= Rp,h, (8.21a)

P ′
u

(

− ρ0udom · ∇u′ +∇p′
)

= Ru,h, (8.21b)

where we have defined the residual functions Rp,h and Ru,h of the finite element

approximation onto the subscale space as

Rp,h := P ′
p

[

fp −
(

1

ρ0c20
∂tph −

1

ρ0c20
udom · ∇ph +∇ · uh

)]

, (8.22a)

Ru,h := P ′
u

[

fu −
(

ρ0∂tuh − ρ0udom · ∇uh +∇ph
)

]

. (8.22b)

As said, (8.21) is an equation for the subscales p′ a u′ whose solution is unknown and

has to be modeled. A reasonable approximation is that of taking (Codina, 2008)

p′ ≃ τpRp,h, (8.23a)

u′ ≃ τuRu,h, (8.23b)

with τp and τu standing for scalar stabilization parameters to be determined.

For simplicity, in this case we have already disregarded the cross influence of the velocity

subscales components in (8.23b) and also their impact in the equation for the pressure

subscales (8.23a) and viceversa, as will be latter done when designing the stabilization

parameters in Section 8.3.3. Note also that we have assumed the same value τu for each
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component of the velocity subscale vector. Next, inserting (8.23) in the equation for the

large scales we get

B1([ph,uh], [qh, vh]) +
1

ρ0c20
(τpRp,h,udom · ∇qh)− (τuRu,h,∇qh) = L1(qh), (8.24a)

B2([ph,uh], [qh, vh]) + ρ0(τuRu,h,udom · ∇vh)− (τpRp,h,∇ · vh) = L2(vh). (8.24b)

Note in Eq. (8.24) that the bilinear forms B1([ph,uh], [qh, vh]) and B2([ph,uh], [qh, vh])

correspond to the Galerkin approach (8.16) and that the remaining terms in the l.h.s. are

the additional stabilization terms that facilitate using equal interpolations for the acoustic

pressure and acoustic particle velocity.

The last step now consists in approximating the projection operators appearing in the

residual functions in (8.22). To do so, there exist different options in the literature. In the

so called OSS (Orthogonal Subgrid Scale) method (Codina, 2002; Codina et al., 2007),

the subscales are assumed to lay in a space orthogonal to the finite element space so that

P ′ can be computed as

P ′ = I − Πh, (8.25)

Πh being the L2-projection onto the finite element space, and I the identity matrix.

Alternatively, in the more classical ASGS (Algebraic Subgrid Scale) approach we simply

take

P ′ = I (8.26)

over the space of finite element residuals. The latter has been the option adopted in this

work, which yields from (8.24) the expression

B1([ph,uh], [qh, vh])

+
1

ρ0c20

(

τp

[

fp −
1

ρ0c20
∂tph +

1

ρ0c20
udom · ∇ph −∇ · uh

]

,udom · ∇qh
)

−
(

τu
[

fu − ρ0∂tuh + ρ0udom · ∇uh −∇ph
]

,∇qh
)

= L1(qh), (8.27a)

B2([ph,uh], [qh, vh])

+ ρ0

(

τu
[

fu − ρ0∂tuh + ρ0udom · ∇uh −∇ph
]

,udom · ∇vh

)

−
(

τp

[

fp −
1

ρ0c
2
0

∂tph +
1

ρ0c
2
0

udom · ∇ph −∇ · uh

]

,∇ · vh

)

= L2(vh). (8.27b)
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8.3.3 Design of the stabilization parameter

In this section we will derive expressions for the stabilization parameters τp and τu. Let

us first rewrite the equation for the subscales (8.21) in compact matrix form. Assuming

the summation convention over repeated indexes this becomes

P ′(Ai∂iU
′) = P ′[F − (∂tUh +Ai∂iUh)] =: Rh, (8.28)

where U = Uh + U ′ = [ph,uh]
⊤ + [p′,u′]⊤ is the vector of unknowns, F = [fp, fu]

⊤ is

the vector with the external forcing terms, Rh = [Rp,h,Ru,h]
⊤ is the residual of the finite

element approximation onto the subscale space, P ′ is the L2-projection onto the subscales,

and the matrices Ai are defined by

A1 =













−µpud1 1 0 0

1 −µuud1 0 0

0 0 −µuud1 0

0 0 0 −µuud1













, A2 =













−µpud2 0 1 0

0 −µuud2 0 0

1 0 −µuud2 0

0 0 0 −µuud2













,

A3 =













−µpud3 0 0 1

0 −µuud3 0 0

0 0 −µuud3 0

1 0 0 −µuud3













. (8.29)

To ease the notation and to facilitate comparisons with the work in Codina (2008)

as well, we have introduced the parameters µp ≡ (ρ0c
2
0)

−1 and µu ≡ ρ0 which fulfill

c0 = (µpµu)
−1/2. udi denote the components of the mesh velocity vector at each point,

udom = (ud1, ud2, ud3)
⊤. Analogously, defining τ = diag(τp, τu, τu, τu), the approximation

for the subscales (8.23) can be rewritten as

U ′ = τRh. (8.30)

The procedure to find the stabilization matrix τ , to be described below, involves dealing

with the norms of the residual vector Rh, which has dimensions of force, and of the

subscale velocity vector U ′. However, we note that contrary to U⊤F , products like F⊤F

or U⊤U are not dimensionally well defined. For instance, F⊤F = f 2
p +f

2
u1
+f 2

u2
+f 2

u3
but

[f 2
p ] 6= [f 2

ui
]. Analogously U⊤U = p2 + u21 + u22 + u23 and again, obviously, [p2] 6= [u2i ]. To

correctly define these products we can introduce the weighting matrix M (Codina, 2008),

M =







mp 0 0 0
0 mu 0 0
0 0 mu 0
0 0 0 mu






, mp :=

√

µu/µp = ρ0c0, mu :=
√

µp/µu =
1

ρ0c0
, (8.31)
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and define the norms

|F |2
M

:= F⊤MF , (8.32a)

|U |2
M−1 := U⊤M−1U . (8.32b)

We can readily check that |F |2
M

is now dimensionally correct because [mpf
2
p ] = [muf

2
ui
] =

ML−2T−3, with M , L and T respectively standing for dimensions of mass, length and

time. With regard to the unknowns U , we have to use the inverse of the M matrix

to get the right dimensions. Indeed, it follows that |U |2
M−1 is well defined because

[m−1
p p2] = [m−1

u
u2i ] = MT−3. Thus we can use M and M−1 to respectively define

products between any two force vectors F⊤
1 MF2 and unknowns U⊤

1 M
−1U2. We can

proceed similarly and define a M -weighted product between two arbitrary matrices B1

and B2 as B⊤
1 MB2. The squared M -pointwise norm of a matrix B will be given by

|B|2
M

:= sup
|X|

M−1=1

X⊤(B⊤MB)X. (8.33)

Equipped with the weighting matrix M and for regular enough force vector functions, we

can also define the following vector function scalar products,

(U ,F ) =

∫

Ω

U⊤F dΩ, (8.34a)

(F1,F2)M : =

∫

Ω

F⊤
1 MF2dΩ, (8.34b)

(U1,U2)M−1 : =

∫

Ω

U⊤
1 M

−1U2dΩ, (8.34c)

whose induced norms will be denoted by ‖ · ‖, ‖ · ‖M and ‖ · ‖M−1 .

A suitable option to find the matrix of stabilization parameters τ is based on a Fourier

analysis of the equation for the subscales (8.28). Let use a hat symbol to denote Fourier

transformed functions. Transforming (8.28) to the wave number domain allows us to

bound the norm of the Fourier transformed residual R̂h as (Codina, 2008; Codina et al.,

2008)

‖R̂h‖2M ≤
∣

∣

∣

∣

−i1
h
k0jAj

∣

∣

∣

∣

2

M

‖Û ′‖2
M−1, (8.35)

with k0j standing for particular dimensionless wave number components that arise from

the application of the mean value theorem and that, in practice, will be treated as

algorithmic constants (see below). On the other hand, from the Fourier transform of

the approximation for the subscales (8.30), we can get the bound

‖R̂h‖2M ≤ |τ−1|2
M
‖Û ′‖2

M−1 . (8.36)
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Therefore, (8.35) and (8.36) provide a means to get the stabilization matrix τ by equating

|τ−1|2
M

=

∣

∣

∣

∣

−i1
h
k0jAj

∣

∣

∣

∣

2

M

. (8.37)

Using the definition of the squared M -pointwise norm of a matrix (8.33) we get

sup
|X|

M−1=1

X⊤(τ−1Mτ−1)X = sup
|X|

M−1=1

X⊤(
1

h2
k0i k

0
jA

⊤
i MAj)X. (8.38)

In practice, we can implement the above condition by computing the spectra of matrices

τ−1Mτ−1 and 1
h2k

0
i k

0
jA

⊤
i MAj with respect to matrix M−1, and then imposing their

spectral radii to be the same.

Taking into account the definitions forAi in (8.29) and for the scaling matrixM in (8.31),

we get for the problem at hand,

1

h2
k0i k

0
jA

⊤
i MAj =

1

h2
×





































mu|k0|2
+βp|k0 · udom|2

−αk01(k0 · udom) −αk02(k0 · udom) −αk03(k0 · udom)

−αk01(k0 · udom)
mp(k

0
1)

2

+βu|k0 · udom|2
k01k

0
2mp k01k

0
3mp

−αk02(k0 · udom) k01k
0
2mp

mp(k
0
2)

2

+βu|k0 · udom|2
k02k

0
3mp

−αk03(k0 · udom) k01k
0
3mp k02k

0
3mp

mp(k
0
3)

2

+βu|k0 · udom|2





































(8.39a)

with

α ≡ (mpµp +muµu), βp ≡ mpµ
2
p, βu ≡ muµ

2
u
. (8.39b)

Let us denote the spectrum of the generalized eigenvalue problem BU = λM−1U , λ

being an eigenvalue, by SpecM−1(B), and its spectral radius by ρ(B). The spectrum of

k0i k
0
jA

⊤
i MAj can be analytically worked out and is given by

SpecM−1(k0i k
0
jA

⊤
i MAj) =

{(

k0 · udom

c0
+ |k0|

)2

,

(

k0 · udom

c0

)2

,

(

k0 · udom

c0

)2

,

(

k0 · udom

c0
− |k0|

)2}

, (8.40)
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where, as seen, the eigenvalue c−2
0 (k0 ·udom)

2 has multiplicity 2. As observed, the spectral

radius of k0i k
0
jA

⊤
i MAj is given by

ρ(k0i k
0
jA

⊤
i MAj) =

(

k0 · udom

c0
+ |k0|

)2

≡
(

C1|udom|
c0

+ C2

)2

. (8.41)

Since k0 is an unknown wave number, in the r.h.s equivalence we have taken

k0 · udom = |k0||udom| cos θ ≡ C1|udom|, |k0| ≡ C2, (8.42)

C1, C2 being constants that should be determined from numerical experiments. Taking

the stabilization matrix τ to be diagonal for simplicity, it follows that

Spec
M−1(τ−1Mτ−1) =

{

(

mp

τp

)2

,

(

mu

τu

)2

,

(

mu

τu

)2

,

(

mu

τu

)2
}

. (8.43)

As we want to fulfill the condition

ρ(τ−1Mτ−1) = ρ(h−2k0i k
0
jA

⊤
i MAj), (8.44)

we may achieve that by forcing every eigenvalue of τ−1Mτ−1 in (8.43) to equal to (8.41).

This results in the following matrix of stabilization parameters

τ =











τp 0 0 0

0 τu 0 0

0 0 τu 0

0 0 0 τu











with,

τp =
c0h
√

µu/µp

C1|udom|+ c0C2

=
ρ0c

2
0h

C1|udom|+ c0C2

,

τu =
c0h
√

µp/µu

C1|udom|+ c0C2

=
h

C1ρ0|udom|+ ρ0c0C2

, (8.45)

and where use has been made of the expressions for mp and mu in (8.31). In the case of

a static domain udom = 0 and we recover from (8.45) the stabilization parameters for the

standard wave equation in mixed form (Codina, 2008),

τp = Ch
√

µu/µp τu = Ch
√

µp/µu, (8.46)

with C standing for a constant.
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8.3.4 Time discretization: final numerical scheme

Up to now we have left the time continuous in the previous developments. As for the time

discretization, we equally split the time interval [0 T ] into N steps

0 < t1 < t2 < · · · < tn−1 < tn < tn+1 < · · · < tN ≡ T (8.47)

such that ∆t := tn+1 − tn is the time step size. For any time dependent function g(t),

gn will stand for its evaluation at tn = n∆t. The time evolution of (8.27) is then

approximated using a second order backward differentiation formula (BDF2). Let us

identify

δtg
n+1 :=

1

2∆t

(

3gn+1 − 4gn + gn−1
)

, (8.48)

so that the time discrete version of (8.27) becomes

1

ρ0c20
(δtp

n+1
h , qh)−

1

ρ0c20
(udom · ∇pn+1

h , qh)− (un+1
h ,∇qh) + (pn+1/Zw, qh)ΓW

+
1

ρ0c20

(

τp

[

fn+1
p − 1

ρ0c20
δtp

n+1
h +

1

ρ0c20
udom · ∇pn+1

h −∇ · un+1
h

]

,udom · ∇qh
)

−
(

τu
[

fn+1
u
− ρ0δtun+1

h + ρ0udom · ∇un+1
h −∇pn+1

h

]

,∇qh
)

= (fn+1
p , qh)− (gn+1, qh)ΓG

, (8.49a)

ρ0(δtu
n+1
h , vh)− ρ0(udom · ∇un+1

h , vh) + (∇pn+1
h , vh)

+ ρ0

(

τu
[

fn+1
u
− ρ0δtun+1

h + ρ0udom · ∇un+1
h −∇pn+1

h

]

,udom · ∇vh

)

−
(

τp

[

fn+1
p − 1

ρ0c20
δtp

n+1
h +

1

ρ0c20
udom · ∇pn+1

h −∇ · un+1
h

]

,∇ · vh

)

= (fn+1
u

, vh). (8.49b)

Equation (8.49), with the stabilization parameters in (8.45), is the final fully discrete

scheme in space and time proposed in this work. Note that in contrast to the derived

numerical scheme (2.18) for vowel production (see Section 2.3.3), this one corresponds

to an implicit scheme, which requires matrix inversion (higher computational cost) but

provides a less restrictive Courant-Friedrich-Levy condition compared to explicit schemes,

allowing us to use longer time steps. For the particular case of voice production, fp = 0

and fu = 0. They have been included in the development for completeness.
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8.4 General description of the FE simulations

In Fig. 8.2 a block diagram that describes the methodology used to perform a FE

simulation of a diphthong sound is represented. One can identify the same blocks of

the computational voice engine presented in Fig. 1.1 of Chapter 1:

• Vocal tract geometry model: this model generates the set of static vocal tracts

for different vowel sounds and interpolate their boundary values to produce a

diphthong transition. This model also provides an initial FE mesh.

• Glottal source model: this model generates a train of glottal pulses produced by

the vocal cords to be introduced at the glottal cross-section of the vocal tract.

• Vocal tract acoustic model: using as inputs the initial FE mesh and the

boundary node coordinates provided by the geometry model, this model first obtain

a new FE mesh for every time instant by computing the position of the inner nodes.

The mesh velocity udom is then derived using the current and previous vocal tract

meshes. Finally, using the glottal pulses generated by the glottal model, the ALE

mixed wave equation is resolved for each mesh. The acoustic pressure is tracked in

a node close to the mouth aperture and transformed to an audio file.

Inner nodes 

FEM SolverGlottal source

Initial FE mesh Boundary nodes 

Diphthong

File with the position of 

the boundary nodes 

t
dom

Query a new mesh 

t
dom

t
dom

2. Mesh velocity udom

File with the 

initial FE mesh

Acoustic model

Geometry model

File with the glottal 

1. File with the acoustic 

pressure and velocity 

2. File with the mesh 

every t
dom

Fig. 8.2: Block diagram for the FEM simulation of diphthongs.
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Due to CFL restrictions, the use of a very small time step for the acoustic wave equation

is usually required, whereas it might not be necessary the same small resolution to capture

the vocal tract movement. A different time step can be used for the acoustic wave equation

(∆t) and for updating the mesh (∆tdom), of course fulfilling ∆t ≤ ∆tdom. Logically, the

mesh velocity udom will be zero at those time instants where no new mesh is generated.

In what concerns the motion of the computational mesh, it is driven by prescribed

displacements on the boundary nodes generated by the geometry model, according to

the vocal tract profiles that represent the transition from one vowel to another. The

boundary motion is smoothly transmitted to the inner mesh nodes through diffusion, i.e.

by solving the Laplacian equation for the node displacements w(x, t). Therefore, every

∆tdom we solve using FEM the additional equation

∇2wn+1 = 0 in Ω, t = tn+1, (8.50a)

with boundary conditions

wn+1 = xn+1
walls − xn

walls on ΓW, t = tn+1, (8.50b)

wn+1 · n = 0 on ΓG, t = tn+1, (8.50c)

wn+1 · n = 0 on ΓM, t = tn+1, (8.50d)

the mesh node positions being updated according to

xn+1 = xn +wn+1. (8.50e)

Note that in addition to the prescribed vocal tract wall displacement in (8.50b), two

additional boundary conditions are imposed on the glottal (8.50c) and mouth (8.50d)

cross-sections. This limits any movement of the nodes in the tangential direction,

which would artificially lengthen the vocal tract. The velocity of the computational

mesh appearing in Eq. (8.5) is simply computed at time step n + 1 for a node i, with

coordinates xi(t), as

un+1
dom(xi) =

xn+1
i − xn

i

∆tdom
. (8.51)

On the other hand, the acoustic model also requires an initial mesh (see Fig. 8.2) at the

time instant t = 0. For 2D simulations this mesh corresponds to a rectangular domain

with structured triangular elements of size h ≈ 0.001 m, while for 3D simulations it is a

cylinder with tetrahedra with h ≈ 0.002 m (see Fig. 8.3). Their dimensions are obtained

from the average values of the length and maximum radius of the five vowels vocal tract

data set. However, the length has been finally fixed to L=18 cm (almost the mean length)

for simplicity. These initial meshes for 2D and 3D can be viewed as being the vocal tract

in a rest position (neutral vowel schwa).
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Fig. 8.3: Finite Element mesh for the 2D and 3D vocal tracts in the rest position. The red

dot indicates the mesh node close to the mouth exit where the acoustic pressure is tracked

for obtaining a diphthong sound.

In order to perform a diphthong sound, the corresponding initial mesh is gradually

distorted to reach the first vowel target. During this process only the Laplacian

equation (8.50) is computed to obtain the coordinates of the inner nodes. Once the

mesh boundary has the shape of the first vowel, both the Laplacian equation (8.50) and

the mixed wave equation in an ALE framework (8.5) are numerically solved. The 3D

boundary node coordinates generated by the geometry model are linearly interpolated

in time for simplicity. More elaborated interpolation models could be used instead to

control the formant trajectory (see e.g. Story (2005), where a mapping between area

functions and formant positions is used). However, the proposed approach to produce

diphthongs will remain the same. The above strategy for the mesh movement has been

found appropriate for diphthong production, since it shows little mesh distortion and thus

avoids remeshing strategies, which are computationally expensive.

A speed of sound of c0 = 350 m/s and an air density of ρ0 = 1.14 kg/m3 are considered in

all simulations. For the time step, a value of fs = 1/∆t = 80 kHz is used, which ensures

enough time accuracy for the audible frequency range. The stabilization constants in

Eq. (8.45) are taken as C1 = C2 = 0.01, which were found appropriate after some

numerical tests. Concerning wall losses, a constant boundary admittance coefficient of

µ = 0.005 is considered, which is related to the wall impedance Zw in Eq. (8.8b) by

µ = ρ0c0/Zw.
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Fig. 8.4: (a) Fundamental frequency (F0) of each one of the glottal pulses generated by the

3D glottal model and (b) resulting volume velocity Q(t) = Sg(t)g(t), with Sg(t) standing

for the glottal cross-sectional area and g(t) for the particle velocity.

In what concerns the glottal source model, a train of glottal pulses is generated using a

Rosenberg model of the C type (see Appendix B). In order to improve the naturalness

of the generated sound, a pitch curve is followed to obtain the fundamental frequency of

each glottal pulse (see Fig. 8.4a). In the particular case of a diphthong with a duration

of 200 ms, this results in 19 glottal pulses that almost fill the duration of the diphthong

sound. Moreover, some shimmer is also added to the amplitude of each pulse and a fade

in/out is applied to the global signal. The resulting glottal source for this particular case

can be observed in Fig. 8.4b. Note that there are not glottal pulses up to 200 ms in order

to let the acoustic waves vanish within the vocal tract and therefore reach a zero pressure

value.

The acoustic pressure is finally collected at a mesh node located 0.002 m from the vocal

tract exit (see red dot in Fig. 8.3), and converted to an audio file to listen to the produced

diphthong.

8.5 Numerical examples

8.5.1 Two-dimensional duct with periodically varying length

The proposed stabilized FEM formulation for diphthong production is first validated with

the following numerical example. The test consists of a two-dimensional tube of constant

cross-section that is being shortened and lengthened periodically by moving its boundary
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exit (see Fig. 8.5). This example can be interpreted as a very rough approximation of a

vocal tract in a rest position with a lip protrusion movement. At the beginning of the tube

a sinusoidal velocity is imposed so that only a longitudinal resonance mode gets exited.

Since for this mode plane waves will be generated within the tube, note that the mesh

velocity udom in Eq. (8.5) will be parallel to both the gradient of the acoustic pressure

and velocity, magnifying the importance of the ALE terms (i.e. in Eq. (8.5), the terms

containing udom · ∇p and udom · ∇u).

Fig. 8.5: Sketch of the tube example. ΓG stands for the boundary where g(t) is introduced,

ΓW for the tube walls and ΓM for the mouth aperture, a contour that is moving following

a sinusoidal pattern.

Let us split the boundary of the tube in three non intersection regions termed ΓG, ΓW and

ΓM (see Fig. 8.5). The boundary conditions that will be used to supplement the mixed

wave equation in an ALE framework (8.5) will be

u · n = g(t) on ΓG, t > 0, (8.52a)

u · n = 0 on ΓW, t > 0, (8.52b)

p = 0 on ΓM, t > 0. (8.52c)

The first boundary condition (8.52a) is used to impose a time varying velocity g(t). Rigid

walls are considered in Eq. (8.52b), while in Eq. (8.52c) an open-end boundary condition

is imposed. As mentioned before, this tube is excited at a longitudinal resonance mode, in

particular, the third resonance mode f3 of the tube in a rest position, i.e. g(t) = sin(2πf3t).

For a tube of length L with the boundary conditions described in Eq. (8.52) the frequency

of the nth mode can be computed from (see e.g., Fletcher and Rossing, 1988)

fn = (2n− 1)
c0
4L
. (8.53)

So using n = 3, c0 = 350 m/s and L = 17 cm we get that f3 ≃ 2573 Hz. A numerical

simulation has been performed with a sampling frequency of fs = 1/∆t = 80 kHz. The

mesh is updated at the same rate than the acoustic waves, i.e. ∆tdom = ∆t.
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The obtained results for the acoustic pressure at different time steps are shown in

Fig. 8.6, considering the proposed stabilization (Fig. 8.6a) and with a non stabilized code

(Fig. 8.6b). We can observe that in the first time instants, both solutions clearly form the

typical pressure distribution of a 3th resonance mode. Two nodal lines and three regions

of maximum/mimimum pressure can be appreciated. It should be noted that, although

the tube length is changing in time, this variation is not large enough to produce a change

of the resonance number and then modify the pressure pattern. The used input excitation

has always a frequency close to the 3-th resonance, obtaining maximum pressure levels

when the length is exactly L and minimum with L = L ± 0.01 m. Comparing now both

cases after some time steps (see in Fig. 8.6 t=23.45 ms), the numerical solution starts to

become unstable if stabilization is not considered. If we let evolve the problem even more

time (see in Fig. 8.6 t=25.8 ms, t=29.475 ms) the numerical solution clearly blows up

without stabilization, totally exceeding the plotted range [-500, 500] Pa.

(a) (b)

Fig. 8.6: Snapshots of the acoustic pressure in the tube example for different time instants

considering the (a) stabilized and (b) the non stabilized formulation.
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8.5.2 Production of diphthongs in 3D

A more applied example related to voice production will be next addressed. In particular,

we will focus on the numerical generation of diphthongs. The diphthong /ai/ will be first

generated for illustrative purposes though the presented procedure has general validity.

Fig. 8.7: Sketch for the numerical production of diphthong /ai/.

In the first part of the thesis, vowel sounds were produced by using simplified vocal tract

geometries generated from the area functions in Story (2008) (see top row in Fig. 8.7

for vowels /a/ and /i/). After imposing a train of glottal pulses at the glottis area ΓG,

and impedance and radiation conditions at the vocal tract walls ΓW and mouth exit ΓM

respectively, a vowel sound was produced by solving the irreducible wave equation (8.3)

for the acoustic pressure (see Chapter 2). Additionally, one could also compute a vocal

tract transfer function (see last row in Fig. 8.7) and obtain for instance the first two

formants F1 and F2, which are the ones that allow listening individuals to distinguish

between vowel sounds.

It is then clear that to generate the diphthong /ai/ we will have to transition from the

situation in the left column in Fig. 8.7 to the one in the right column. At this point

we would like to remark that some simplifications will be assumed. Since it is not the

goal of this work to reproduce diphthongs from a given individual with high fidelity,

we perform a linear interpolation from the geometry of the vocal tract of vowel /a/ to

the vocal tract of vowel /i/, though more accurate options exist, based on controlling

the formant transition trajectories between vowels Story (2005). Moreover, we simply

impose a zero pressure release condition p = 0 at the mouth exit ΓM . This is a

rough approximation to emulate radiation losses, which depending on the formant-cavity

affiliation phenomenon (Fant, 1970; Stevens, 2000), are known to shift the formants

towards lower frequencies and to increase the formant bandwidths for mid-high frequencies

(see e.g., Arnela et al., 2013, and Chapter 5 and Chapter 6 for a detailed discussion).
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Fig. 8.8: Snapshots at five different time instants showing the transition from vowel /a/ to

/i/. The acoustic pressure at the boundaries of the vocal tract and its shape evolution can

be appreciated.

A more precise option would consist in allowing acoustic waves to emanate from the

mouth and radiate towards infinity. This would involve, for example, implementing a

perfectly matched layer (PML) (Berenger, 1994; Kaltenbacher et al., 2013; Arnela and

Guasch, 2013) for the finite element approximation of the ALE wave equation presented

in this chapter, or imposing a good enough performing Sommerfeld boundary condition

(see e.g., Espinoza et al., 2014). This has been left for future developments.

To produce the diphthong /ai/ we solve the ALE mixed wave equation (8.5) supplemented

with the boundary conditions in (8.8) using the stabilized FEM approach described in

the Section 8.3, in the moving computational domain consisting of the transition from the

vocal tract of /a/ in the left column of Fig. 8.7, to the geometry of /i/ in the right column.

The moving vocal tract domain is initially meshed using a structured tetrahedral mesh

with initial element size h ≃ 0.002 m and evolved according to the procedure described

in Section 8.4. The mesh is updated in this case with ∆tdom = 10∆t, since the vocal tract

moves very slowly compared to the speed of sound. The simulation last for 200 ms and a

sampling rate of fs = 1/∆t = 80 kHz is used.
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In Fig. 8.8, a sequence of five snapshots corresponding to the transition from vowel /a/ to

/i/ is presented. The changes in vocal tract shape can be clearly appreciated. The first

snapshot at t = 12.5 ms corresponds to the articulation of an /a/, whereas the last one

at t = 190 ms corresponds to that of an /i/. The acoustic pressure values at the vocal

tract boundaries for the selected time instants can be also appreciated. Different limiting

values are chosen for the color scales to better perceive the acoustic pressure distribution

at the vocal tract for a particular time instant.
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Fig. 8.9: Time evolution of the acoustic pressure at a point close to the mouth exit. When

converted to audio, it produces the sound /ai/.

In Fig. 8.9 we show the time evolution for the acoustic pressure at a point close to the

mouth exit. When transforming this plot into an audio file we get, as expected, the

sound /ai/.

Fig. 8.10: Spectrogram of the acoustic pressure in Fig. 8.9 tracked at the node located close

to mouth exit. Formant trajectories from /a/ to /i/ are highlighted.

Finally, in Fig. 8.10 we show the spectrogram corresponding to the acoustic pressure in

Fig. 8.9. This is computed using a hamming window with a frame width of 20 ms and
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an overlap of 1 ms. As usually done in speech processing, a pre-emphasis FIR filter with

coefficients [1 -0.97] is applied to enhance the visualization of the high frequency range. In

the first curve of the spectrogram, corresponding to vowel /a/, we can clearly identify the

two formants previously highlighted in the vocal tract transfer function of /a/, in the last

row of the left column of Fig. 8.7. Similarly, the last curve of the spectrogram corresponds

to vowel /i/, and the two formants identified in the vocal tract transfer function of /i/

(last row of the right column of Fig. 8.7) can also be clearly recognized. The trajectories

of the two formants F1 and F2, which separate apart from /a/ to /i/, are indicated in

Fig. 8.10 to better show their evolution.

A second example is carried out to generate the diphthong /au/. Some snapshots are

presented in Fig. 8.11 showing the transition from vowel /a/ to vowel /u/ (Fig. 8.11a). In

(a) /au/ (b) /ai/

Fig. 8.11: Snapshots showing the acoustic pressure p within two cuts of the 3D vocal tract

for diphthongs /au/ and /ai/ at t = 12.5, 57.5, 97.5, 142.5 and 190 ms; the first time instant

corresponds to the first vowel, the last one to the second vowel, and the intermediate ones

to the transition between vowels. In each frame the color scale is tuned to the maximum

absolute value (”+/−”in the legend) within the vocal tract, which corresponds to an acoustic

pressure value of 202, 144, 120, 188 and −3 Pa for diphthong /au/, and 205, 41, 63, 218

and 2 Pa for diphthong /ai/, at time instants t=12.5, 57.5, 97.5, 142.5 and 190 ms

respectively.
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addition, diphthong /ai/ is also included in the figure for comparison purposes (Fig. 8.11b).

The vocal tract geometry is represented by the outer mesh while the acoustic pressure

is plotted in two cuts in the midsagittal and midtransverse planes, which allow for a

better visualization of the acoustic field in the interior. Positive and negative values for

the acoustic pressure can be produced within the vocal tract. In the case of diphthong

/ai/ all the presented snapshots have positive values (denoted by ”+” in the legend).

However, for diphthong /au/ some frames can contain either positive or negative values

(denoted by ”+/−” in the legend). In this case only the last frame corresponding to

vowel /u/ has negative values in the interior. Note however that the zero pressure value is

always denoted with the same color and therefore, that the acoustic pressure at the mouth

has always this color given that at this cross-section an open-end boundary condition is

prescribed, see Eq. (8.8c). On the other hand, the maximum absolute value of the color

scale is adapted to each frame to improve the visualization of the acoustic waves inside the

vocal tract. Although at first sight one could think that only plane waves are produced

within the vocal tract, we can observe in the last snapshot corresponding to vowels /i/

and /u/ that a complex field is generated. However, it has to be noted that at this time

instant the glottal model is not active (see Fig. 8.4b at t = 190.2 ms) so the acoustic

pressure within the vocal tract is really small (maximum/minimum of 2/-3.4 Pa for /ai/

and /au/ respectively), compared to other time instants (maximum values ranging from

41 to 218 Pa).

In order to listen to the generated diphthong, the acoustic pressure is tracked at a node

close to the mouth exit (see Fig. 8.3). The obtained signals for diphthongs /au/ and /ai/

can be observed and compared in Fig. 8.12. One can appreciate in the figure how the

time signal smoothly transition from one vowel to the other.
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Fig. 8.12: Acoustic pressure evolution captured at a node close to the vocal tract mouth

(see red dot in Fig. 8.3) for the 3D diphthongs /au/ and /ai/.
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8.5.3 Production of diphthongs in 2D

Finally, diphthong sounds are generated following a two-dimensional (2D) approach. To

do so, the 2D vocal tract methodology for static vowel sounds presented in Chapter 7 is

extended to the production of diphthongs. Following a four step methodology, we showed

that the acoustic behavior of three-dimensional vocal tracts with circular cross-sections

could be recovered to some extent by appropriate modifications of two-dimensional vocal

tracts. The first three steps in Arnela and Guasch (2014b) (see Chapter 7) will then be

adapted to generate diphthong sounds. Following this methodology 3D formant positions,

bandwidths and energy can be respectively recovered by means of a tuning process of the

2D vocal tract geometry, the 2D boundary admittance coefficient and the 2D glottal flow.

Otherwise, if the standard 2D approach is followed (based on performing a midsagittal cut

of a 3D vocal tract with circular cross-sections, see e.g., Mullen et al., 2006, 2007; Speed

et al., 2009), significative errors are produced in the vowel formants (Arnela and Guasch,

2014b,a). With regards to the last fourth step concerning the correction of radiation

losses, it will not be considered herein for simplicity. Free-field radiation will be included

in future works.

The methodology, as explained in Chapter 7, consists in tuning the 2D vocal tract radius

function a2D(x, t), the boundary admittance coefficient µ2D(x, t) and the glottal acoustic

velocity g2D(t) (see Fig. 8.13). Our goal is to reproduce the acoustics of a dynamic 3D

vocal tract with circular cross-sections built from the interpolation of the area functions

S3D(x, t) = πa2
3D
(x, t) in Story (2008), with a constant boundary admittance coefficient

of µ3D = 0.005 imposed at the walls, and with a particle velocity g3D(t) generated by the

vocal folds introduced at the glottal cross-section Sg,3D.

Fig. 8.13: Dynamic 2D vocal tract model, with a(x, t) standing for the radius of the vocal

tract cross-sections, µ(x, t) for the boundary admittance of the walls and g(t) for the acoustic

velocity generated by the glottal folds.
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In the first step, the 2D radius function a2D(x, t) is modified so that 3D formant positions

are recovered. To do so, at a time instant n the following recursive equation is used

a2D(x
n
i ) =







a2D(x
n
i+1) m(xni ) 1 ≤ i < d

a2D(x
n
d) i = d

a2D(x
n
i−1) m(xni ) d < i ≤ N

, (8.54a)

with

m(xni ) =

{

S3D(x
n
i )/S3D(x

n
i+1) i < d

S3D(x
n
i )/S3D(x

n
i−1) i > d

. (8.54b)

In Eq. (8.54) xnd is a point inside the vocal tract xn1 < xnd < xnN , with x
n
1 and xnN standing

for points at the glottal and mouth cross-sections at time instant n, respectively. The

point xnd is used to provide an initial condition to the recursive equation (8.54), and

corresponds to the distance from where the maximum vocal tract cross-sectional area

(maximum an
3D
) is produced with respect to the glottis. After imposing that the onset of

higher order modes at this point has to be the same in 2D and 3D, we get that a2D(x
n
d)

can be computed as

a2D(x
n
d) = a3D(x

n
d )
0.5π

1.84
. (8.55)

The second step of the approach is based on tuning the wall boundary admittance µ2D to

mimic the 3D formant bandwidths. This can be done by equating the 2D and 3D axial

wave numbers at each time instant, which yields

µ2D(x
n
i ) = µ3D(x

n
i )
2a2D(x

n
i )

a3D(xni )
, 1 < i ≤ N. (8.56)

In the third step, we impose that the particle velocity g(t) at the glottal cross-section to

be the same in 3D and 2D. This leads to

g2D(t
n) =

Q3D(t
n)

Sg,3D(tn)
, (8.57)

where Sg,3D is the 3D glottal cross-sectional area and Q3D is the 3D volume velocity

typically generated by the glottal models (e.g., Rosenberg, 1971).
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Fig. 8.14: Midsagittal profiles and boundary admittance coefficients µ of diphthong /au/

at time instants t = i/5 Ttr, where Ttr is the transition time and i = 0, 1, 2, 3, 4, 5. Linear

interpolation is used in the 3D vocal tracts. (— 3D, - - 2D).

In order to generate a diphthong sound, the three-dimensional radius function a3D is first

linearly interpolated, for simplicity, to produce the transition from one vowel to the other.

The area functions in Story (2008) are used for the static vowels. Then, a2D is obtained by

applying Eq. (8.55), µ2D is computed with Eq. (8.56) and g2D with Eq. (8.57). In Fig. 8.14

an example for diphthong /au/ is shown for the six time instants t = i/5 Ttr, with Ttr
being the transition time and i = 0, 1, 2, 3, 4, 5. In what concerns wall losses, note from

Eq. (8.56) that, although they are time independent in 3D, this is not the case in 2D

because µ2D evolves in time given that a2D/a3D 6= 1 (see Fig. 8.14).
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Fig. 8.15: Acoustic pressure evolution of the 2D diphthong /ai/ collected at a node close

to the mouth exit (see Fig. 8.3), with some snapshots showing the acoustic pressure p and

particle velocity components, ux and uy, within the vocal tract. Values are taken at (a)

t = 12.5 ms (vowel /a/), (b)(c)(d) t = 57.5, 97.5, 142.5 ms (transition from /a/ to /i/)

and (e) t = 190 ms (vowel /i/). The color scale is adapted in each frame.

In Fig. 8.15 some snapshots are presented for the 2D diphthong /ai/. The distribution

of the acoustic pressure p and the particle velocity components vx and vy are shown at

the same five time instants than in the 3D case (see Fig. 8.11). The first one corresponds

to an instant during the articulation of vowel /a/ (t = 12.5 ms), the second, third and

forth to an instant during the transition from /a/ to /i/ (t = 57.5, 97.5, 142.5 ms), and

the fifth one to an instant once we get vowel /i/ (t = 190 ms). The acoustic pressure

evolution of the generated diphthong is also represented to better illustrate the acquisition

times of these snapshots. Complex patterns for the pressure and velocity fields can be

appreciated within the 2D vocal tract, which could not certainly be attained from 1D

models because they assume plane wave propagation. Similar pressure distributions are

obtained compared with the 3D snapshots in Fig. 8.11.
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(b) 3D /ai/
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Fig. 8.16: Spectrogram of the simulated diphthongs /ai/ (top) and /au/ (bottom) for 2D

(left) and 3D (right).

In Fig. 8.16 the spectrogram of the generated diphthongs can be observed for both 3D

and 2D. These are computed from the acoustic pressure signal captured at a node close

to the mouth cross-section (red dot in Fig. 8.3). As usually done in speech analysis, a

pre-emphasis filter is applied to enhance the visualization of higher frequencies during the

spectrogram computation. One can observe in the figure that the formants characterizing

vowel /a/ smoothly transition to those of vowel /i/ for /ai/ and to those of vowel /u/

for /au/. Comparing the 3D and 2D spectrograms a very similar formant trajectory can

also be appreciated. Informal perceptual tests in fact have shown that no significative

difference is produced between the 3D and the 2D diphthong sounds. Therefore, the

voice quality is preserved in 2D, but with the advantage of achieving a large reduction of

the computational time compared to 3D. The performed 2D simulations have last about

∼ 8 minutes while ∼ 8 hours have been needed for 3D computations in a regular desktop

computer (Intel(R) Core(TM)i5 2.8 GHz).
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8.6 Conclusions

In this chapter a FEM approach for the numerical production of diphthongs has been

proposed. This has consisted in solving the mixed wave equation in an ALE frame of

reference, rather than working with its irreducible counterpart, usually employed in vowel

production. However, the numerical resolution of the former is more intricate than that

of the latter and requires stabilization in order to use equal interpolation for the acoustic

pressure and velocity fields. An algebraic subgrid scale strategy has been followed for

this purpose. The motion of the Finite Element meshes has been addressed by solving

with FEM the Laplacian equation, which smoothly translate the prescribed movement

of the wall nodes to the inner nodes through diffusion. A strategy based on building

an initial rectangular mesh emulating the vocal tract in a rest position has been also

presented as a useful methodology that avoids remeshing strategies an therefore minimizes

the computational cost. The proposed stabilized FEM formulation has been first checked

with a numerical benchmark problem consisting of plane waves propagating in a two-

dimensional duct with a moving exit boundary. Then, the diphthongs /ai/ and /au/ have

been generated as examples using a 3D and a 2D approach. For the latter, a dynamic 2D

vocal tract model has been constructed following three simple steps. In the first step the

vocal tract geometry has been modified to adjust 3D formant positions, in the second one

the boundary admittance coefficient has been tuned to get 3D formant bandwidth and

energy, and in the third one, the glottal velocity has been adapted to recover 3D pressure

levels. A very similar smooth formant transition to that in 3D has been reproduced in 2D.

Moreover, the dynamic 2D model has shown complex inner vocal tract acoustic pressure

and velocity patterns that are also produced in 3D and that cannot be obviously given

in 1D. Audio files have been generated presenting no significant differences between 3D

and 2D from a perceptual point of view, and showing fairly good quality, even though

simple homogeneous Dirichlet conditions have been used for the acoustic pressure at the

mouth exit. Future work will extend the presented approach to include outward sound

wave propagation so as to account for radiation losses. Moreover, more complex geometries

generated e.g. from MRI will be considered.
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Chapter 9

Conclusions and future work

9.1 Conclusions

This thesis has focused on the modelling of the vocal tract acoustics by means of numerical

methods, in particular the Finite Element Method. Conclusions at the end of each chapter

have been already provided, so in this section the main contributions will be only outlined.

The first part of the thesis has dealt with the numerical production of vowels. The main

contributions can be summarized as follows:

1. A Finite Element based strategy for vowel production has been presented

in Chapter 2. This has consisted in solving the time domain wave equation for

the acoustic pressure supplemented with appropriate boundary conditions for voice

generation. A Perfectly Matched Layer has been used to absorb the sound waves

emanated from the mouth, allowing us to consider free-field radiation conditions.

The proposed approach has been validated against experiments in Chapter 3.

The FEM formulation has been published in (J1) while the validation against

experiments has resulted in (J4), (C4), (C6) and (C7), see Section 9.3.

2. A strategy for the numerical computation of vocal tract impedances

based on an experimental transfer function method (TMTF) has been proposed in

Chapter 4. This methodology allows us to compute an impedance with the sole use

of the acoustic pressure (the acoustic particle velocity is not required), which makes

it suitable for the proposed FEM formulation in Chapter 2.

This work has been presented in the publications (J1) and (C1), see Section 9.3.
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3. A study of the acoustic effects of human head geometry simplifications

in numerical simulations has been performed. Once analyzed in Chapter 5 the

radiation effects of vowel production, in Chapter 6 it has been shown that a spherical

head with lips behaves similar to a realistic head up to 10 kHz from a perceptual

point of view, which can save a lot of time during the geometry modelling. On the

other hand, it has been observed that, for the considered head geometry, the lips can

be removed from the spherical baffle if one limits the analysis up to 5 kHz. As a

consequence, the theoretical load model of the piston set in a spherical baffle, widely

used to speed up simulations, has been validated for the [0, 5] kHz frequency range.

This has yield the publications (J2), (C2) and (C5), see Section 9.3.

4. A two-dimensional numerical approach with three-dimensional acoustic

behavior has been developed in Chapter 7 to synthesize vowel sounds. This has

consisted of a four step methodology in which the parameters of a two-dimensional

vocal tract model have been tuned to recover to a large extent the 3D formant

positions, formant bandwidths, formant energies and pressure levels of a 3D vocal

tract with circular cross-sections. Otherwise, if the standard 2D approach is followed,

which considers a midsagittal cut of the above 3D vocal tract to generate its 2D

counterpart, strong errors are produced in the vowel formants. The presented

methodology solves this problem and results in a very good balance between the

computational cost and the generated voice quality.

This has been reflected in the publications (J3) and (C9), see Section 9.3.

In the second part of the thesis the numerical generation of diphthongs has been addressed.

The main contributions made in this part are:

5. A stabilized Finite Element formulation for diphthong production has

been derived in Chapter 8 to account for moving vocal tracts. The mixed wave

equation for the acoustic pressure and acoustic particle velocity has been used in this

occasion, which has been found more appropriate than the irreducible wave equation

once expressed in an ALE frame of reference. However, this equation suffers from

stability issues when the same interpolation is used for the acoustic pressure and

particle velocity. For that purpose, a stabilized Finite Element approach based on an

algebraic subgrid scale strategy has been developed. Finally, some diphthong sounds

have been generated with simplified three-dimensional geometries. Moreover, the 2D

approach presented in Chapter 7 has been extended to consider dynamic vocal tracts.

Two-dimensional diphthong sounds have been produced, with almost the same voice

quality than 3D ones.

This has resulted in the publications (J5), (C8) and (C10), see Section 9.3.
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9.2 Future work

The work performed in this thesis leaves some future lines for exploration, being some of

them under current development.

With regard to the generation of vowels,

• Simplifications of the vocal tract geometry such as those considered in

Section 2.5.1 may be studied in further detail. On the one hand, this would contribute

to a better understanding of the complex 3D acoustic field within the vocal tract.

On the other hand, these simplified geometries might facilitate voice simulation

in a wide range of applications (e.g., interpolation of static vocal tract geometries

to generate a sound transition, 3D multimodal approaches which need analytically

defined contours, etc.). This subject is currently being performed.

• Frequency dependent wall impedances should be implemented for time domain

simulations to replace the current constant value ones. This would not only enhance

the modelling of the vocal tract wall losses but also could allow us to simply impose

load impedance theoretical models on the mouth aperture to emulate radiation losses,

instead of considering the more computational expensive, but also more accurate free-

field radiation solutions. To do so, a formal convolution integral induced by the inverse

Fourier transform of the impedance condition should be performed along the related

contour, requiring large computational times and the storage of the unknowns along

many time steps. This could be circumvented to some extent following for instance

the strategy in Nieuwenhof and Coyette (2001), where the frequency dependent

impedance is approximated in a rational form which yields a more efficient discrete

representation of the convolution.

• Calculation of high order modes direct radiation impedances for several

configurations of the human head geometry is also an interesting research line that

requires further exploration. These are needed to correctly characterize the radiation

impedance above the plane wave cutoff frequency, and could be used for instance as

load impedances in three-dimensional approaches. Some theoretical models can be

found in literature (e.g., Zorumski, 1973; Kemp et al., 2001). However, they relay on

many approximations, such as using an infinite flat baffle for the human head shape

or removing the lips from the model, though arbitrary shaped exits can be achieved

numerically (see e.g., Blandin et al., 2014a). It would be then interesting to extend

the current work so as to see how modal radiation impedances get modified with

human head geometry simplifications.
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• The two-dimensional approach could be improved by considering bent vocal

tracts, side branches such as the piriform fossae and valleculae or asymmetrical

boundaries. Each of the above configurations will suppose a new challenging problem,

since these elements produce the onset of further resonances and antiresonances which

may correspond to the three-dimensional ones.

• The acoustic interaction between the vocal folds and the vocal tract also

constitutes a challenging and interesting research line to explore. This could be

considered by adapting for instance a two-mass model to the 3D computational

approach, or by directly simulating in the same computational domain the fluid-

structure interaction of the vocal folds and the acoustics of the vocal tract.

However, the latter requires solving more complex equations such as the compressible

Navier-Stokes equations, consider fluid-structure strategies, and make use of acoustic

analogies.

Concerning the generation of diphthongs,

• Non reflecting boundary conditions still need to be considered for this particular

case to account for acoustic radiation of sound waves emanating from the mouth.

The Sommerfeld boundary condition in Espinoza et al. (2014) is currently being

implemented for that purpose.

• Flexible boundaries may be taken into account to enhance the wall loss mechanism.

At present, only rigid walls are being considered. The walls elastic back reaction due

to the inner acoustic pressure fluctuations will allow to better emulate the behavior

of a realistic vocal tract (see e.g., Doel and Ascher, 2008, where this is done for 1D).

This topic is also being investigated.

• The use of realistic dynamic vocal tract geometries to generate diphthong

sounds presents a challenging problem to be solved. On the one hand, to avoid

strongly distorted elements, remeshing strategies may be required to deal with

dynamic realistic vocal tract. On the other hand, one has to generate these

moving geometries. Since obtaining them from real-time MRI is still a subject for

further exploration, an alternative may consist in resorting to simplified vocal tract

geometries which can be easily interpolated to generate a transition. This has been

the option adopted in this work, but it could be improved by using enhanced simplified

vocal tracts e.g., incorporating bending and elliptical cross-sections. This strategy is

under study.
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Although not addressed in this work, the next natural step in computational voice

production may be that of dealing with the production of syllables. New geometrical issues

and physical phenomena will have to be considered. For example, in order to generate

a syllable containing a nasal consonant (e.g., /na/), the nasal cavity geometry will have

to be joined to the vocal tract. Stronger difficulties will be encountered in the simulation

of syllables containing fricatives (e.g., /sa/), because the aerodynamic sound generated

by the airflow vorticity leaving the lips at the output of the vocal tract, will have to be

computed. Consequently, it will be necessary to resort to computational aeroacoustics.

As a further remark, the research done in computational voice production should

contribute to build a full 3D voice simulation engine, which may enlarge the current

knowledge on voice generation and help to better understand its production mechanisms.

However, it seems clear that this will need huge computational resources and that

supercomputer facilities will be probably required. In parallel to this development, one

should explore alternatives to speed up these simulations to make the voice simulation

engine easier to handle by the potential users. Simplifications on the glottal source models,

vocal tract geometry and vocal tract acoustics models could be a possible strategy to reach

this goal. Needless to say that the performance of these simplifications should be checked,

when possible, against the full 3D version of the model. Of course, every time that a

simplification is performed, some voice quality is lost, but the challenge here will be that

of finding the configuration that provides the best balance between the computational cost

and the voice quality (in objective or subjective terms), which may differ on the specific

application and user demands.

Finally, it is worthwhile mentioning that other research fields of acoustics share similar

problems to those of voice production. This is the case of musical acoustics of

wind instruments (see e.g., Fabre et al., 2012). For instance, in a brass instrument

(e.g., a trumpet), the vibration of the player’s lips can be interpreted as the vocal fold

oscillation and the propagation of the generated sound waves trough the pipe, which latter

radiate to free-field from the bell (exit), behaves similar to the vocal tract acoustics. In the

case of woodwind instruments (flutes and reed instruments), the pipe acoustics could be

emulated in a similar way to the vocal tract, but using a different aeroacoustics excitation

mechanism. Although less related, other fields such as room acoustics could take benefit

from the techniques developed in vocal tract acoustics simulation, since they also have to

deal with complex geometries (i.e. rooms with a complex shape) and might be interested

in time domain solutions of acoustic wave propagation (e.g., in auralization).
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Appendix A

Theoretical models for the radiation

impedance

In this appendix we include the expressions of some of the models that are commonly

used to approximate the radiation impedance of the human mouth and that have been

referred thought this work.

A.1 Radiation impedance of a piston set in a baffle

Probably, the most extended theoretical model is that of the impedance of a piston set in

an infinite baffle. The resistance Rr and reactance Xr are given by (Kinsler et al., 2000)

Rr = 1− 2J1(2kap)

2kap
, (A.1a)

Xr =
2H1(2kap)

kap
, (A.1b)

where ap stands for the radius of the piston, H1 for the first order Struve function and J1
for the first order Bessel function of the first kind.
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The above expressions are often simplified and only the first terms of a Taylor expansion

for ka << 1 are taken into account. This is known as the Flanagan approximation

(Flanagan, 1972)

Rr ≃
(kap)

2

2
, (A.2a)

Xr ≃
8kap
3π

. (A.2b)

A.2 Radiation impedance of a piston set in a sphere

Another model is that of the piston set in a sphere, which has resistance Rr and reactance

Xr values (Morse and Ingard, 1968)

Rr =
1

4

∞
∑

m=0

[Pm−1(cosT )− Pm+1(cosT )]
2

(kas)2(2m+ 1)B2
m sin2(T/2)

, (A.3a)

Xr =
−1
4

∞
∑

m=0

[Pm−1(cosT )− Pm+1(cosT )]
2

(2m+ 1)Bm sin2(T/2)

× [jm(kas) sin(δm)− ym(kas) cos(δm)] . (A.3b)

Pm is the Legendre function of order m, jm and ym respectively represent the spherical

Bessel functions of the first and second kind, as is the radius of the sphere and ap =

2as sin(T/2) is the effective radius of the piston. The radiation impedance magnitude Bm

and the phase angle δm are given by

Bm =
1

2m+ 1

{

[mym−1(kas)− (m+ 1)ym+1(kas)]
2

+ [(m+ 1)jm+1(kas)−mjm−1(kas)]
2}1/2 , (A.4a)

δm = tan−1

[

(m+ 1)jm+1(kas)−mjm−1(kas)

mym−1(kas)− (m+ 1)ym+1(kas)

]

. (A.4b)

The normalized specific radiation impedance is given by

Zr = Rr + jXr, (A.5)

and the specific acoustic impedance Z ′ can be obtained as Z ′ = Z0Z, with Z0 = ρcπa2p
standing for the characteristic impedance of the medium.
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A.3 Radiation impedance of a piston set in a circle

In Chapter 7 an analytical expression for the radiation impedance of a two-dimensional

vocal tract set in a circle (termed as the piston set in a circle) is needed in an optimization

process to attain the acoustic radiation behavior of a three-dimensional vocal tract with

circular cross-sections set in a sphere (piston set in a sphere, see Section A.2). This

radiation impedance corresponds to a particular case of a piston set in a cylinder (see

Sherman, 1958). Considering only a strip of the cylinder and defining Z0 = ρc2ap, it

follows that the normalized specific radiation impedance can be computed as

Zr =
2ac
πap

∞
∑

m=0

sin2 (mφ)

m2

H
(1)
m (kac)

Emejγm
, (A.6)

where

E0 = 2
√

J2
1 (kac) + Y 2

1 (kac), m = 0 (A.7a)

Em =
1

2

{

[Jm+1(kac)− Jm−1(kac)]
2 + [Ym−1(kac)− Ym+1(kac)]

2}1/2 , m > 0 (A.7b)

γ0 = tan−1

[−J1(kac)
Y1(kac)

]

, m = 0 (A.7c)

γm = tan−1

[

Jm+1(kac)− Jm−1(kac)

Ym−1(kac)− Ym+1(kac)

]

, m > 0 (A.7d)

with Jm and Ym respectively denoting the Bessel functions of the first and second kind.





Appendix B

Waveform glottal models

In this appendix some simple waveform models for generating glottal pulses are described.

B.1 The Rosenberg model

The Rosenberg model of the C type parametrizes the waveform of the volumetric glottal

velocity Qg(t) as

Qg(t) =















a
2

[

1− cos
(

π t
Tp

)]

0 ≤ t ≤ tp

a cos
(

π
2
t−Tp

Tn

)

tp < t ≤ tp + tn

0 tp + tn < t < T0

, (B.1)

where a is the amplitude, tp is the positive slope, tn the negative slope and T0 the period

of the glottal pulses (see Fig. B.1). The times tp and tn are related to the fundamental

frequency F0 = 1/T0 as

tp = 40% T0, (B.2)

tn = 16% T0. (B.3)

In Fig. B.1 one pulse generated by the C Rosenberg model is shown, using

a = 3× 10−4m3/s2 and F0 = 100 Hz. However, this pulse contains high frequency

information because it has abrupt transitions (i.e. it is not smooth). In numerical

simulations, high frequency information can pollute the solution because these can not

be captured by the mesh (the size of the elements can not be fine enough to capture it).

This may result in errors and instabilities of the solution.
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Fig. B.1: (a) Volume velocity Qg(t) and (b) its time derivative ∂tQg generated by the

Rosenberg model of the C type. In (a) the times T0, Tp and Tn that characterize the pulse

Qg(t) have been indicated.

B.2 The LF model

The LF model (Fant et al., 1985) also describes the flow variations of the glottal source,

but it does so acting on its time derivative. This is an important feature because imposing

the time derivative of the glottal flow is a natural way to couple the source model with

the vocal tract acoustic model, see Eq. (2.3). However, the most important advantage

is that this model describes a smooth pulse, closer to reality than the Rosenberg one.

Therefore, in contrast to the Rosenberg pulses, no excessive high frequency is expected to

be introduced into the numerical simulations.

In the LF model, the time derivative of the volume velocity Qg(t) is given by






E0e
αtsin(wgt) 0 ≤ t ≤ te,

−Ee

ǫta

(

e−ǫ(t−te) − e−ǫ(T0−te)
)

te < T0,
(B.4)

where T0 is the inverse of the fundamental frequency F0. Prior to defining parameters E0,

α, wg and te, it is worth introducing the following dimensionless quantities

Ra =
ta

T0 − te
, Rk =

te − tp
tp

, Rg =
T0
2tp

. (B.5)

The definitions of te, tp, ta, T0 and Ee are given in Fig. B.2. The angular frequency

wg is related to the fundamental frequency F0 by wg = 2πF0Rg. For a male voice,
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Fig. B.2: (a) Volume velocity Qg(t) and (b) its time derivative ∂tQg(t) generated by the

LF model. In (b) the four wave shape parameters tp, te, ta and Ee that characterize the

pulse ∂tQg(t) have been indicated.

Ee = 0.4 m3s−2, Rg = 1.12 and Rk = 0.34 (see e.g., Vampola et al., 2008b). The time ta,

for small values of ǫ can be computed as

ta =
Ue

Ee
, (B.6)

where Ue is the mean flow volume rate in the glottis that for a male has a value of

Ue = 0.12 l/s (Vampola et al., 2008b). Then, using (B.6) we can compute the time

ta = 0.3 ms. On the other hand, if we impose that the time derivative of the glottal pulse

(B.4) at time tp must be zero and that it has to be continuous at time te, we are left with

the following non-linear equations

E0e
αtpsin(wgtp) = 0, (B.7a)

E0e
αtesin(wgte) = Ee, (B.7b)

−Ee

ǫta

(

1− e−ǫ(T0−te)
)

= Ee. (B.7c)

The solution to this system provides the parameters Ee, α and ǫ.
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