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4PARAMETER EST IMATION ON THE SENS IT IVE AXIS

Up to this point, we have made an introduction the the LPF mission, and its ultimate
goal, which is no other than to pave the way for GW detection in space. Also, we have
overviewed the main statistical tools that we will use to perform parameter estimation
for the planned system identification experiments of the LTP. In this chapter, we will
first go through a more detailed description of the dynamics of the LTP and the mod-
elling of the system over the sensitive axis. While in this chapter we will approximate
the dynamics of the LTP from the more simplified one-dimensional point of view, the
modelling of the system can be extended to all DOF. Inside the LTPDA framework,
the system is modelled via three main approaches; via the SSM format, the analytical
x-domain, and finally in the analytical again, acceleration domain.

We will also overview the experiments design together with their goals, the esti-
mation of the parameters crucial for the characterisation of the LPF dynamics. The
strategy of these investigations, is basically to “excite” the system, by applying sinu-
soidal commanding displacements, forces and torques and then examining the motion
of the TMs and SC. The experiments are categorised into two major groups. The first
one aims to characterise the dynamics over the sensitive axis of the experiment, which
is an essential part of the mission. The second is designed to excite the system into
different DOF and investigate various cross-talk terms that may pollute the sensitive
interferometer read-out, and it will be described in the following chapter 5.

Finally, we will go through the modelling of the PSD of the noise, and how these
parameters can be handled in the bayesian framework. A comparison of different tech-
niques and approaches, is going to be presented.

4.1 the system identification experiments design

LTP dynamics
o1
o12

gi

o1,i

o12,i
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Ti

Figure 4.1: The input-output scheme for measuring the LTP parameters. There can be applied “fake”
interferometer readings o1,i and o12,i that will generate a response of the system, direct
forces gi and torques Ti, where i = TM1,TM2,SC.

Contrary to the detection schemes, the system identification of the LPF is based on
the fact that the injection signals are known. These known input signals will induce a
large in amplitude response of the system, that will be used to calibrate the close-loops
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70 parameter estimation on the sensitive axis

transfer functions. This scheme, allows to design injections that would generate a zero
output to a perfect system. “Perfect” means that there are no mechanical, alignment or
any other kind of imperfections while assuming that all system parameters are known.
But since this cannot be true for any given system, the last type of injections will reveal
any possible “disfigurement”, and furthermore, will allow us to quantitatively assess it.
Here, we will go through the design of the experiments on the sensitive axis, following
[1].

In general, the sinusoidal injection signals have the form of

i(t) =

Nfreqs∑
k=1

Ak sin
[
2πfk(t− Tk)

] [
H(t− Tk) −H

(
t− Tk +

nk

fk

)]
, (4.1)

where Nfreq the number of injection frequencies fk, with the corresponding amplitude
Ak and period Tk, and H(t) the Heaviside step function, and Tk+1 = Tk + nk

fk
+ΔT .

We define T1 = 0 and ΔT a delay between adjoining sinusoids. Also, the number of
cycles nk must be an integer to avoid signal truncation. The different LTP modules
allow to inject signals in various elements of the system, as depicted in figure 4.1. The
LTP during the system identification experiments operates in M3 mode (see Section
2.3), so the type of injections can be listed as

1. Fake interferometer readouts. As their name suggests, the idea is to command
movement via “fake” readings injected to the controllers. Then, the controllers,
respond to the hypothetical movement of the TMs or the SC and calculate a series
of commands to bring the system back nominal operation. Any interferometer or
IS channel can be used for this type of investigations.

2. Out-of-Loop (OOL) direct forces (through the electrodes for the TMs, or the
thrusters for the case of the SC). This is a special category of signals, because
they are commanded right after the controllers (DFACS). They can be used to
produce identical motion on the TMs and SC, and later calibrate the controllers
for possible imperfections.

The constrains on the design of the injection signals is listed over table 4.1.

Parameter Value Resolution

Ak (for o1,i and o12,i) 0 < Ak < 10 μm 10−3 μm

Ak (for g1 and g2) 0 < Ak < 5× 10−10 ms−2 5× 10−14 ms−2

Ak (for G) 0 < Ak < 5× 10−8 ms−2 5× 10−12 ms−2

fk 10−4 < fk < 1 Hz 3 digits

Nfreq 1 < Nfreq < 20 -

ΔT 0 < ΔT < 103 s 0.1 s

Duration D = TNfreq
+ nk

fk
5× 104 < D < 3× 105 s -

Table 4.1: Injection signals characteristics and requirements. Taken from [1].

Since the interest is shifted to the main scientific measurement, which is the sensi-
tive differential interferometer channel, the primary outputs to take into account in
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the analysis are the o1 and o12. The IS readings are also included for the sake of com-
pleteness.

The first investigation of the group of x-axis system identification experiments is to
inject fake interferometer readings (see the top panel of figure 4.2) to the o1 channel
and sequentially in o12, and monitor the positions of SC and TMs. For this investigation
the AC bias for actuation on TM1 is set to zero, with a direct result of ω1 < ω2. The
ωi parameter denotes the electrostatic1 stiffness on the TMs.

The second investigation is applying the same signals, but now setting the AC bias
of TM1 to the same nominal value of TM2, so as ω1 � ω2. This configuration of the
system is often called as matched stiffness. While at the same operation, the third
investigation is performed, where the OOL forces are applied. As shown in the bottom
panel of figure 4.2, the third investigation is comprised by a set of identical2 sinusoidal
forces on TM1 and SC that produce a zero output on the first interferometer o1. Then
the same force per unit-mass is applied to both TMs and SC with the intention to
produce a zero output to all channels. The last two groups of injections are designed
to highlight any given imperfections of the system.

This set of experiments have a total duration of � 45100 s. They are expected
to be run during the first days of the LPFs’ scheduled operations in order to get a
first estimate of the dynamical parameters. They will be repeated during the mission
timeline to consolidate and improve accuracies of the parameters, and also t o identify
possible changes of the system.
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Figure 4.2: Top: The x-axis system ID experiments injection signals. Bottom: The x-axis system ID
OOL forces injection signals.

1 In reality ωi includes all the possible effects that cause the stiffnesses of the TMs.
2 Identical per unit-mass.
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4.2 modelling the ltp system

The LPF must monitor constantly the position of the three main bodies of the system,
the two TMs, and the SC. The position readings are performed by the two main in-
terferometers, the IS mounted electrodes, and the attitude is controlled by the DFACS,
via commands of the capacitance actuators and the trusters of the SC. The closed-
loop nature of the system allows different approximations to its modelling. The LPF

Data-Analysis (DA) group has developed three different almost equivalent techniques
to model the LTP; the displacement domain3 transfer function format, the SSM, and
the analytical equations in the acceleration domain.

The first approach to model the system is through detailed transfer functions of
the LTP sub-systems. The advantage of this method is that any information from the
laboratories can be incorporated into the model. The transfer functions can be updated
to the latests experiment results to calculate a realistic response of the system. But
this can be a disadvantage at the same time, because a great amount of information is
required just to calculate the transfer function of each submodule of the LTP. Another
drawback is that the expressions can get extremely long and complicated, leaving no
room for straightforward adjustments and modifications.

TM TM

+

+

OB

IS

thrusters

laser source

Figure 4.3: Simple 1D scheme of the LTP operating in mode M3. The position of TM1 with respect
to the SC is monitored by the o1 interferometer, and the differential position between the
two TMs by the o12. The second TM and the SC attitude are controlled to follow the first
TM via the electrostatic actuators and thrusters respectively.

We shall take as an example the case where we inject the fake displacements in
the interferometer channels. This type of injection will be henceforth called guidance

3 The displacement domain has an equivalent naming, the x-domain.
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signals, and a depiction of such a system structure can be seen in figure 4.3. The
guidance �i, outputs �o, noise �n, and applied forces �g, from eq. (3.21) are then

�o =

⎛
⎝ o1(t)

o12(t)

⎞
⎠ , �i =

⎛
⎝ i1(t)

i12(t)

⎞
⎠ ,

�n =

⎛
⎝n1(t)

n2(t)

⎞
⎠ , �g =

⎛
⎝g1(t) − gSC(t)

g2(t) − g1(t)

⎞
⎠ .

(4.2)

The closed-loop LTP system (see figure 4.4), is then described by the following set of

+

++

control loop L

control loop L

o1,i

o12,i

o1

o12
S δ21

C FAD

C FAD

d1

d1

d2

d2δω

Figure 4.4: The model of the simple closed-loop system in the displacement domain of the x-axis
system identification [2], for figure 4.3. See text for details.

equations [2]

D�q = �g

�g = −L(�o+�i) − �gn

�o = S�q+ �on,

(4.3)

where here the ( ¯ ) denotes a matrix. The D is the matrix containing the dynamics,
S is the sensor (or sensing) matrix (e.g. the interferometer), �q are the generalised
coordinates of the TMs and SC, and L is the controllers. The index n denotes noise
time series of the corresponding channel. If we combine eq. (4.3), the overall transfer
function of this model can be written as [3]

H =

(
D×

(
d2 × S

)−1
+ L

)−1

× L× d1, (4.4)

The controllers box, is split in three sub-modules, the inertia decoupling matrix C, the
DFACS transfer functions F, and a matrix expressing the actuator gains and delays A.
The d1 and d2 are additional delays. Since we work in a high SNR regime, we can assume
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that the systems’ noise does not depend on the parameter set �θ, and �o = H(�θ)×�i+ �n

like in eq. (3.22). The dynamics of the system are expressed as

D =

⎛
⎝s2 +ω2

1

(
1+ m1

M + m2
M

)
+ m2

M δω2 m2
M (ω2

1 + δω2) + Γx

δω2 s2 +ω2
1 + δω2 − 2Γx

⎞
⎠ . (4.5)

The terms of (4.5) are the TMs mTM1 ≡ m1, mTM2 ≡ m2 and the SC mass mSC ≡
M, the stiffness of TM1 ω2

1, the differential stiffness δω2 ≡ ω2
2 −ω2

1, the Γx the
gravitational cross-coupling between the TMs, and s is the Laplace domain variable.
The control loop L is written

L = A×C× F, (4.6)

with the rest of the matrices reading as

A =

⎛
⎝A1e

−sτ1 0

0 A2e
−sτ2

⎞
⎠ , C =

⎛
⎝− 1

M
1
M

0 1
m2

⎞
⎠ , F =

⎛
⎝Hdf 0

0 Hsus

⎞
⎠ , (4.7)

where A1 and A2 are the gains of the drag-free and suspension loop respectively, and
τ1 and τ2 delays in the application of the commanded forces. In reality the two gains
calibrate the amplitude of the applied forces by the thrusters and the electrodes. The
remaining Hdf and Hsus are the two known transfer functions of the two control loops.
Finally, the sensing matrix is

S =

⎛
⎝δ11 δ12

δ21 δ22

⎞
⎠ , (4.8)

and it expresses the interferometer calibration constants, where the off-diagonal terms
represent the possible cross-talk couplings between the two read-out channels. Nomi-
nally, we can assume that δ11 = δ22 = 1 and δ12 = 0, while there might be a small
non-zero value for the δ12 term, a parameter to be estimated during operations. The
δ21, that can be located in figure 4.4 inside the S box, can cause signal leakage from
the first to the second channel as

o1(t) = x1(t) + o1,n(t),

o12(t) = x12(t) + o12,n(t) + δ21x1(t), (4.9)

with x1 and x12 the true distances and the o1,n and o12,n the readout noise. The
overall response of (4.4) can calculated with the default parameter values as in figure
4.5.

The second approach to LTP modelling is the SSM. The state-space format for the
LPF analysis was designed to meet certain requirements. In particular the LTP models
must be [4]

1. Modular. The closed-loop nature of the LTP, together with the various operation
modes and different sub-systems require a flexible model that allows smoother
updates during the mission. The knowledge of the noise shapes is increasing over
the duration of the operations and this should be integrated in the analysis.
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Figure 4.5: The response of the LTP analytic model. The different transfer functions of the 2× 2
system are showed.

2. Scalable. A simplified one-dimensional4 model should be a “nested” option of a
more complex 3D representation of the system. This allows better maintenance
and avoids code duplication.

3. Parametrised. This means that the built-in models can be used as a simulator, as
well as, for parameter estimation purposes. This adds another prerequisite, where
the models must be computationally cheap for fast MC simulations.

4. Documented. Each version and sub-module must be documented sufficiently for
the convenience of the end-user.

5. Require a low number of manipulations. Again for the convenience of the end-user,
he/she must use a high level language to assemble the different modules to build
a complete LTP model. Ready-made build-in versions of LTP should be present.

After consideration of various approaches, the state-space one was chosen. The LTPDA

SSMs [4, 5, 6, 7, 8] follows the standard implementation of the state-space representation
for continuous time invariant models

�̇x(t) = A×�x(t) +B× �u(t),

�y(t) = C×�x(t) +D× �u(t), (4.10)

where �x are the states, �u represent the input vector, and �y are the outputs of the
system. In turn, the A is the state matrix, B the input matrix, C the output matrix,
and D the feedthrough matrix, all of them containing constant coefficients. A full 3-D
SSM of the LTP considers all 15 DOFs. The state vector is composed of the spacecraft
attitude and rotation rate, followed by the position, velocity, attitude and rotation
rate for both TMs. The equations of motion are derived by the Euler-Lagrange and
d’Alembert equations [5], and once they are written down, the variables corresponding
to the spacecraft inertial motion are vanishing as they are not observable, yielding 30

4 One-dimensional representation of the LTP, not a single-parameter model.
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Figure 4.6: Block diagram of the SSM structure. In this diagram, the different sub-module/blocks
can be seen; the DFACS, the actuators (thrusters5 and the capacitive electrodes), the
dynamics block, the sensors (IS, interferometer and the star-tracker) and the delay blocks.
Each block can be built from different pre-defined version of the particular sub-system.
Also, the various injection and noise ports are denoted with blue colour. The noise ports
are indicated with the prefix DIST_ for disturbance. Credit: LTPDA HTML help page, [7, 9].

states. A basis change is then operated to express the state coordinates of TM2 rela-
tively to TM1 [4]. The schematics of the ssm architecture can be seen in figure 4.6.

The SSM also operates as a simulator, since the instrumental noise shapes studied
in the laboratory are incorporated in the model. These models characterise the noise
filters that shape the white noise entering the simulator. The noise shaping filters are
assembled together with the entire system automatically, and reside in the model li-
brary with different options and parameters, allowing the user to customise the noise
model during mission science activities. A breakdown of the various sources of the noise
is displayed in figure 4.7.

In overall, the LTPDA ssm class meets the aforementioned requirements and can be
proven to be a very useful tool during the mission. But when it comes to parameter es-
timation, it shares the same drawback with the analytical method in x-domain, where
the controllers must be known and always taken into account in log-likelihood calcu-
lations. This, together with the sizeable state-space matrices make the computations
heavier.
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Figure 4.7: The LTPDA SSM simulator noise breakdown. Credit: [8]
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The final approach to the LTP modelling, is to directly express the dynamics in
the acceleration domain [10, 11]. This strategy has a series of advantages concerning
computational speed and the physics of the system can be more digestible. To begin
with, the model is formed by combining the telemetry time-series as

αmodel[n] =

N∑
i=1

�di[n, {�θ}] +�dnoise[n], (4.11)

where n is the data samples, the �di[n, {�θ}] are the measured signals processed by some
algorithm and depend on the parameter set �θ, and the �dnoise[n] is the residual accel-
eration noise level. Again, we shall consider the example of the simple one-dimensional
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LTP case along the sensitive axis of measurement. Then, the acceleration of the SC, and
the differential acceleration between the two TMs is [12]

α1 =
[

d2

dt2 + (1+ m1
M )ω2

1 + m2
M ω2

2

]
x1+

+(Γx + m2
M ω2

2)x12 +ASCgSC − m2
M A2g2,

α12 =
[

d2

dt2 +ω2
2 − 2Γx

]
x12 + (ω2

1 −ω2
2)x1 −A2

g2
m2

+A1
g1
m1

(4.12)

where gi the applied forces on the TMs and SC, Ai are the actuator gains, ω2
1 and ω2

2

are the parasitic stiffnesses on TM1 and TM2 respectively6, and Γx the gravity gradient
between the TMs. Here, we assume the same interferometer imperfection as in (4.9)

x1 = o1(t− τ),

x12 = o12(t− τ) + δ21o1(t− τ),
(4.13)

with an additional delay on the interferometer readout τ. In fact, this delay could be ap-
plied on the commanded forces gi, since it doesn’t really matter whether we delay the
forces or advance the interferometer readings. Even if there is time delay effects on both
procedures (gi or oi), the one measured is the total delayed time from all the processes.
Another solution is to consider only one delay parameter on a interferometer channel,
which can be interpreted as the relevant delay between the channels. The A1 and A2

are often written as Asus,1 and Asus,2, since they represent the gain of the suspension
loop for TM1 and TM2 respectively. The ASC expresses the drag-free loop gain and is
also often expressed as Adf. But we will drop this notation for the sake of intelligibility
and we will keep the more readable index that dictates the body that the force is acting.

The obvious benefit in this analytical representation of the dynamics, is that the con-
trollers’ transfer functions are not present, and the overall expressions becomes much
smaller and intuitive. The actuation forces are available as telemetry, and they can
be directly subtracted following the Newtons’ law in eq. (4.12), instead of computing
them through transfer functions when working with SSM or analytical models in the
displacement domain. The absence of the controllers in the mathematical expressions
allows us also to model any given system identification experiment (like the cross-talk
in Chapter 5), but also any other investigation performed under different control modes
of operation.

But the major gain of this approach is the following. We consider that the LTP is
a closed loop system where the interferometer displacement readings �o(t) are used
to calculate the forces to be applied as compensation forces, to counter-balance the
external disturbances. From (4.3) and (4.12), and if we follow the notation from [13],
we can derive, that in general the dynamics can be described by a linear differential
equation with constant coefficients as [14]

��o(t) = �α(t), (4.14)

6 We can also use the differential stiffness δω2 ≡ ω2
2 −ω2

1 in the formula.



4.2 modelling the ltp system 79

where � is the Laplacian operator. Then, there is a steady-state solution �os(t) that
depends on the driving inputs �α(t), and a transient solution �o0(t) that depends on the
initial conditions �o(t0) and d�o(t0)/dt. The �o0 is the solution of

��o(t) = 0, (4.15)

and the set of the solutions of eq. (4.15), is called the kernel of the operator. Then, if
there exists a set of coefficients ck, and combined with a basis functions φk as

��o0(t) =
∑
k

ckφk, (4.16)

then the produced state is still a solution of (4.15). Now, if we apply the � operator
to both steady and transient state

��o = �(�os(t) + �o0(t))

= ��os(t) +
∑

k ck�φk(t)

= �α(t),

(4.17)

since �φk = 0 for any φk lying in the kernel. Therefore the operator automatically
suppresses any system transients that are present in the displacement domain. This
is of great importance for the LPF due to the slow nature of the systems’ dynamics.
The response, or relaxation times for the LTP are in the order of tens of thousand of
seconds, and in contrast to laboratories on ground, it is not feasible to simply wait for
the transients to decay for useful data acquisition [13].
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Figure 4.9: The acceleration noise level on the sensitive axis, as generated by the OSE simulator. This
is the characteristic acceleration measurement of the LTP when no injection signals are
present.
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4.3 system identification over simulated data-sets

In this section, we will present the results obtained from different simulations and
training exercises that happened in the context of LPF data analysis preparation. In
addition, each modelling approach requires the equivalent set of assumptions and/or
a more suitable method of fitting. The challenges, results and different approaches are
going to be summarised. For the training simulations, we have mainly performed the
fit on the data, using the analytical acceleration domain representation of the dynam-
ics. This approach was preferred after the unsuccessful attempts on the displacement
domain. The non-matching transfer functions between the simulator and the models
resulted into unsatisfactory acceleration residual levels.

Concerning data generation, the most widely used LPF simulators are the already
mentioned LTPDA SSM, and the OSE. The OSE is an ESA 3D simulator that handles
and process the data stream in similar format as in future operations [15, 16, 17,
18]. The data-sets available and analysed here, are generated from the LTPDA SSM

simulator, and from the four so-called STOC operational exercises7. During the STOC

exercises, experiments like TM charge investigations, TM magnetic characterisation,
thermal experiments, system identification, etc, that span several days are simulated
from the OSE. The STOC simulations aim to

• test and improve the developed algorithms into real-like simulated circumstances.

• improve the pipeline analysis for each planned experiment.

• train the scientific personnel in different special scenarios and various posts during
the mission8.

4.3.1 In the displacement domain

The parameter estimation experiments are analysed with the developed MCMC algo-
rithm for the LTPDA toolbox. The algorithm allows the analysis with any desired model
format, and is completely tuneable to solve any particular problem. At a first approach
we assume a system of the form

�y = �h(�θ) + �n, (3.22)

already discussed in the previous section, that yields a likelihood

π(y|�θ) = C× e−
1
2

(
�y− �h(�θ)

∣∣�y− �h(�θ)
)
= C× e−χ2/2. (3.9)

The noise appearing in the inner product (·|·) (see again eq. (3.2)) is considered known,
and its PSD is estimated from a previously “quiet” run of the instrument. Those so-
called quiet acceleration runs are going to be performed regularly during the mission,
to update the noise levels and shapes.

The first test was to simulate with the SSM simulator the first experiment of guid-
ance injections as in figure 4.10. The model to fit the data was the same as the one

7 More commonly referred to as STOC simulations.
8 The personnel is divided into the technicians, scribes, scientists on duty, and data analysts.
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Figure 4.10: Interferometer readouts (o1 and o12) during the x-axis system identification experiments.
The first two experiments are of the same design, that is guidance injections alternately
commanded into the two interferometer channels, but with different value of electrostatic
stiffness on TM1 (ω2

1 � ω2
2). In the third experiment, OOL forces are commanded on

the three bodies of the system. This data-set was generated with the OSE simulator for
the STOC exercise 3 [17]. In general, this is the designed and scheduled scheme for the
system identification experiments.

that generated them9, so we expected to get parameter values very close to the true
ones. We let a search phase of Th = 5× 103 samples, a cooling down phase of Tc = 104

samples, to a total Nsample = 3× 104. The proposal was a symmetric normal PDF

based on the covariance matrix calculated as the inverse of the FIM as explained in sec-
tion 3.3. We also considered no prior information available, so all prior densities were
set to uniform PDFs. The results for such a toy run can be seen in table 4.2, and as
expected, are quite satisfying. The estimated parameter values are in total agreement,
within their error margins, with the ones used to simulate the data-set.

Table 4.2: MCMC parameter estimation results from simulated experiments with the SSM simulator.
The investigation being analysed here, is the first guidance injection signals, where the
system is configured to yield ω2

1 < ω2
2 [1].

Parameter Real value Estimated ±σ

ω1 1.3× 10−6 (−1.2999 ± 0.0002)× 10−6

ω2 1.9× 10−6 (−1.8999 ± 0.0002)× 10−6

Adf 0.82 0.8201 ± 0.0002

Asus 1.08 1.080004 ± 3× 10−6

τ1 0.2 0.2002 ± 5× 10−4

τ2 0.2 0.2003 ± 2× 10−4

δ21 0.0004 0.0004001 ± 1× 10−7

9 Namely, the version of the SSM model was the LTP version Fitting.
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The next step, is to use the OSE simulator and an analytical model. From the DA

team point of view, the OSE is treated as a black box, since the true parameter values
are considered to be unknown. The particular simulated data-set was generated for the
STOC exercise 6 [3], where its purpose was to test the developed parameter estimation
algorithms on a more realistic situation. The experiments were again the unmatched
stiffness guidance injection, as in the previous run with the SSM. The model used is
the analytical in the displacement domain of eq. (4.4), and the results in this case is
shown in table 4.3. The results of the exercise, which in essence is a comparison of the
estimated parameters obtained with three different methods, can be found in [9, 3].

Table 4.3: MCMC parameter estimation results the 6th STOC exercise, using different algorithms; the
MCMC [2], a linear [8], and a non-linear [19] fitter. The investigation being analysed here,
is the first guidance injection signals, where the system is configured to yield ω2

1 < ω2
2.

Credit: [9, 3].

MCMC Linear Non-linear
Parameter Estimated ±σ Estimated ±σ Estimated ±σ

ω1 × 10−6 −1.31 ± 0.02 −1.31 ± 0.02 −1.31 ± 0.02

δω× 10−7 −7.150 ± 0.005 −7.160 ± 0.006 −7.160 ± 0.006

Adf 1.0694 ± 0.0003 1.0699 ± 0.0005 1.0705 ± 0.0006

Asus 0.99996 ± 0.00002 0.99998 ± 0.00003 0.99996 ± 0.00002

τ1 −0.1998 ± 0.0002 −0.1982 ± 0.0005 −0.1985 ± 0.0005

τ2 −0.199 ± 0.001 −0.199 ± 0.001 −0.199 ± 0.001

δ21 × 10−6 1.9 ± 0.3 1.2 ± 0.4 1.2 ± 0.4

For the case of LPF, the knowledge of the system is going to be updated constantly.
During operations, system identification experiments are going to be performed in
various stages of the LPF schedule. Although the estimated parameters might proven
to be time dependent10, and re-estimating them is necessary, a previous knowledge can
be very relevant information for the analysis in line. We can then build normal prior
PDFs centered around the values of the previous estimates. The MCMC chains are then
shorter, since convergence is achieved easily, and the search phase can be reduced. An
example of this can be seen in figure 4.11.

4.3.2 In the acceleration domain - Iterative χ2

The fitting in the acceleration domain procedure was firstly considered during the
second STOC operational exercise, and because of it’s efficiency, the focus of the team
was shifted towards it. Among the advantages of this strategy is computational speed,
the absence of slow transients in the data-stream, and no need for the transfer functions
of the controllers. But although fitting in the acceleration domain introduces a series
of advantages, one should be extra careful when constructing the posterior distribution
to be explored.

In the previous case of displacement domain, we consider the PSD of the noise as a
fixed quantity, calculated numerically and fed into the parameter estimation machinery.

10 For example, the stiffnesses of the TMs might change after a solar event.
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Figure 4.11: An example of the effect of prior PDFs on the LPF analysis. The red curve represents an
MCMC chain for ω2

1, when considering flat prior densities. The blue curve is a chain for
the same analysis, but with a wide Gaussian prior defined and centered around the true
value [20].

Now, we use the acceleration noise as the noise level, which in general may depend on
the parameters of the dynamics to be estimated, so that the S̃n(f) of

(
a|b

)
= 2

∞∫
0

df
[
ã∗(f)b̃(f) + ã(f)b̃∗(f)

]
/S̃n(f) , (3.2)

now becomes S̃n(f,�θ), since

αs(t,�θ) = ��θ�os(t)

αn(t,�θ) = ��θ�on(t),
(4.18)

where αs the acceleration estimation when the injection signals are present, and αn the
estimation of acceleration during a quiet noise (or acceleration) run, like (see figure 4.9).
The first approach to tackle this problem is by iterative χ2 fits on the data. The iterative
χ2 methodology follows the steps below.

1. We first define the initial parameter set, �θ0, and estimate numerically the S̃n(f,�θ0).

2. Build a log-likelihood function of the form of eq. (3.9), as

π(y|�θ) = C× e−χ2/2, (3.9)

but with a

χ2 =

(
αs(t,�θ)

∣∣∣αs(t,�θ)
)

, (4.19)

including the S̃n(f,�θ) into the inner product (3.2).

3. Then we proceed maximising the π(y|�θ) following, or assign prior densities and
sample the posterior π(�θ|y), to obtain a first estimate �θnew of the parameters.
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4. Update �θ0 = �θnew and iterate from (1) until a convergence criterion is satisfied
and get the final �θNiter

after Niter iterations.

In reality, for the LPF analysis case, the dependance of the S̃n(f,�θ) on the parame-
ter set is expected to be quite small, and at each χ2 iteration we apply second order
corrections. So, for the iterative χ2 we use fast non-linear minimisation algorithms like
the Nelder-Mead Simplex Method [21], and we sample with MCMC the final posterior
distribution with S̃n(f,�θNiter

) at the starting point of �θNiter
. This is done for purely

practical issues, as an MCMC simulation at each outer iteration step would be inefficient.
An example of the progress of such an iterative χ2 scheme, can be seen in figure 4.12.
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Figure 4.12: Example of the iterative χ2 scheme fitting the differential acceleration α12. Normally, the
first iteration gets values that produce residual acceleration very close to the noise level.
But these curves correspond to a high-dimensional model of the cross-talk experiment
(see Chapter 5), where the Nelder-Mead Simplex algorithm gets stuck to localities of
the likelihood function. This plot is produced during the parameter estimation pipeline
analysis developed for operations, see Appendix D.

The iterative χ2 methodology in the acceleration domain, was first applied to the
second STOC simulation [17], that was focused mainly on system identification. It was
tested the same time when the usage of the SSM approach to modelling had limited
success. This was later proven to be because of the different controllers incorporated
in the SSM than the ones developed for the OSE simulator.

Here we present the analysis of two of the simulated days with the OSE, during
the 2nd STOC simulation. The first day begins with the de-caging of the TMs, then
the system changes operation to science mode (M3), and finally a noise quiet run is
being performed. The following day begins with a double experiment. While in un-
matched stiffness mode, the first two pre-defined system identification experiments are
performed. They are comprised by alternate guidance injection signals to the first and
differential interferometer channel, as in figure 4.10. Then, the same experiment is per-
formed, but with modified injection signals, in order to investigate higher harmonics
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that are normally visible in the residuals spectra, way over the highest injection fre-
quency. This last design of injections aims to reduce the harmonic overlap, and avoid
truncation errors in the parameter modelling the same signals [22].

A first version of the model that was used is very similar to eq. (4.12), but with

x1 = o1(t− τ1),

x12 = o12(t− τ2) + δ21o1(t− τ1),
(4.20)

with the difference that the interferometer delay was modelled to be different at each
channel. The numerical results of the parameters of such a fit on the simulated data,
can be found in table 4.4, and the calculated residuals in figure 4.14. In addition, the
covariance of the parameters can be estimated (and visualised) from the MCMC chains
(see figure 4.13).
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Figure 4.13: The covariance matrix of the parameters from STOC simulation 2. Each one of the lines
of the ellipsoids on the off-diagonal elements represent the 1, 2 and 3 σ of the distribution
respectively.

In early June 2013, the third STOC operational exercise took place in European Space
Astronomy Centre (ESAC) [15]. The philosophy of the simulation was the same as the
previous one, only this time there was more variation in the simulated experiments. It
lasted five days in total, simulating the DC potentials, the drift mode, and finally the
system identification experiments. The DC potentials experiments focus on calculating
the voltage to be applied on the TMs to compensate for the stray potentials on the
surface of the TMs. The drift mode experiment is performed under the Drift Mode
2 (DM2) operation mode of the DFACS, and is designed to get a better estimate of
the low frequency acceleration noise, by getting rid of the electrostatic actuation noise.
This is done by switching off periodically the electrostatic actuation on the TMs. More
of the drift mode experiment can be found in [23, 24].

The third simulation presented the opportunity to analyse the complete set of the
planned x-axis system identification experiments. For the first time the TMs and SC
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Figure 4.14: Time-series of the matched stiffness experiments of STOC simulation 3. The φ1 time
series reveal that the first TM is rotating along the z-axis when the electrostatic stiffness
is matched to the second TM. This induces unwanted motion on the first TM, and suggests
that there should be a minimum rest time between changes of operation modes.

were directly set in motion via out-of-loop forces. in principle, the same analysis applied
to the guidance injections investigations should be applicable directly here, using the
same set of equations, as in (4.12). But in practice, the results showed that either a
more complicated model was required, either there is another process to be taken into
account, either both.

As figure 4.14 suggests, the first thing to consider, is the change of mode from un-
matched to matched stiffness. The induced undesirable motion of the first TM, forced
us to exclude the guidance injection to the first interferometric channel from the analy-
sis. The same applies to the data segment in the end of the identification experiments,
where the system returns to the unmatched stiffness mode. The second consideration
came after the unsatisfactory residual curves resulted from a fit with the model of
eq. (4.12). While this particular model is proven to provide with adequate estimations
for the case of the guidance injections, it showed poor results for the open loop ex-
periments (see figure 4.15). In addition, the estimated parameters were far from the
expected values, in comparison with the previous guidance injection investigations.

With this at hand, it was suggested that maybe the issue was relevant to the way
the commanded out-of-loop and the DFACS calculated forces were added together. A
new model was then formed as

α1 =
[

d2

dt2 + (1+ m1
M )ω2

1 + m2
M ω2

2

]
x1+

+(Γx + m2
M ω2

2)x12 +ASCgSC − m2
M A2g2,

α12 =
[

d2

dt2 +ω2
2 − 2Γx

]
x12 + (ω2

1 −ω2
2)x1 −A2

g2
m2

+A1
g1
m1

,

(??)
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Figure 4.15: First calculation of the residuals for the matched stiffness experiments of STOC simulation
3. It is evident, that the model used is not capable of removing the induced signal and
let the residuals reach the noise level.

but with the applied forces calculated as

g1 = g1,dfacs +Aoolg1,ool(t− τool),

g2 = g2,dfacs +Aoolg2,ool(t− τool),

gSC = gSC,dfacs +AoolgSC,ool(t− τool).

(4.21)

The new expression with the addition of two extra parameters, a gain on the out-of-
loop forces Aool and a delay τool, was proven to be successful and give better residual
acceleration, as seen in figure 4.16. The delay applied on the OOL forces is estimated
to be in the order of 0.9 s, something that was verified after the end of the simulation.
This time shift was explained to the different pre-processing sequences of the gi,ool
and gi time-series before uploading them to the repositories. The parameter values of
the total system identification experiments are gathered in table 4.16. Since the first
guidance injection was missing from the last analysis, the parameters sensitive to this
experiment were estimated with larger errors, like for example the ω1 stiffness.

The parameters poleCap and polethr, are the real poles from a pole-zero model, that
filters the applied forces. The general transfer function representation can be written
as

H(s) =

∏m
i=1(s− zi)∏n
i=1(s− pi)

, (4.22)

where zi the zeros, and pi the poles of the system. It was found that the the applied
forces differ from the telemetry received, and this difference was successfully modelled
with this simple pole-zero filter. This will be discussed in more detail in Chapter 6.

The same analysis was followed for the next simulation [18, 16], the STOC simu-
lation 4. Besides the well established system identification experiments, new investi-
gations were added to the schedule. For the first time, the cross-talk investigations
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Figure 4.16: Residuals acceleration for the matched stiffness experiments of STOC simulation 3. The
red curve is the total acceleration calculated at the initial guess of the parameter values,
while the green one is the calculated residuals. The yellow curve is the acceleration noise
level estimated from an acceleration quiet run from the first day of the simulation.

were performed (see Chapter 5), but also experiments focusing on thermal and mag-
netic excitations of the system. This time, the necessary resting time after the switch
from unmatched to matched stiffness mode was added in the sequence of commands,
eradicating the undesired movement of the first TM. For the unmatched and matched
stiffness case, the results are gathered in the summary table 4.4. In addition, an unex-
pected event was simulated during this training exercise, mimicking a solar radiation
event. Then, the team on-duty had to react according to the protocol, in the view
of such unforeseen incidents. The acceleration noise levels were then compared to the
estimates of previous days, and the magnetic and thermal sensors were checked for
unusual readings. A first estimate of the extra stiffnesses of the TMs was at the order of
3× 10−8 s−2, two orders of magnitude less than the expected value. After an extensive
search on the diagnostics items, it was decided to continue with the schedule without
entering into a “safe” mode of operation of the satellite (see fig. 4.18).

Table 4.4 gathers all the estimated parameters of the x-axis system identification ex-
periments, for the training simulations conducted over the last three years. Although
the analysis was focused on modelling the dynamics of the LTP in the acceleration do-
main, the differences in models from simulation to simulation are evident. For example,
during the second STOC simulation, parameter δω2 was preferred to the ω2

2, even if
those two quantities are directly connected through the relation of δω2 = ω2

2 −ω2
1.

In the end, this is a matter of personal preference, since the results are equivalent. For
STOC Sim. 2 and 3, the values of the stiffnesses were estimated to the same value within
their error margins. On the other hand, the default stiffnesses values were changed for
the 4th simulation, and the solar event did not cause any detectable increase on their
values.
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Figure 4.17: Residuals acceleration for the unmatched stiffness experiments of STOC simulation 4.

Also, we assumed different delay parameters for the two interferometer channels,
the τIFO,o1, and τIFO,o12. Although the analysis showed significant difference of the
delays, it later became known, that the delay is in fact the same for both channels in
the simulator. The difference found in the particular simulation was later explained due
to the difference of the real applied forces and the telemetry forces downloaded for the
analysis. We discovered that there is another filtering process applied to the forces time-
series. This process was modelled by single real pole filter, and was adapted for the later
simulations. The efficiency of this updated model is proven quantitatively in chapter 6.
When first modelling in the acceleration domain, we assumed that there is signal leakage
from the first to the differential interferometer channel, as in eq. (4.13). The MCMC

search over the posterior distribution showed that the parameter δ21 is equivalent to
zero, confirming that this physical effect is not implemented in the simulator.
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Concerning the gain parameters of the applied forces acting on the TMs, we assumed
that the actuators for both TMs were identical, and therefore Asus,1 = Asus,2. While
for the case of the second simulation, there was no experiment performed that we could
confirm any differences between the actuators, this changed in STOC simulation 3, where
the out-of-loop experiments were performed. We recall, that the last injection signals
of the x-axis system identification experiments were designed to excite the system in
a way that will reveal the possible “asymmetries” of the system. The TMs and SC are
commanded via the same force per unit mass, that nominally should produce a null
output for both interferometer channels. This was proven to be the case for STOC

simulations 2 and 3 (see figure 4.14), and Asus,1 = Asus,2 = 1.05 within the error. In
the following STOC simulation 4, the adapted model was not able to remove all the
induced acceleration down to the noise level, because, as it was proven Asus,1 �= Asus,2.
In fact, it was estimated that the gain of the actuators commanding forces on TM1
was Asus,1 = 1.00010± 2× 10−5, almost 5% smaller than Asus,2. This case will be
discussed in more details in chapter 6.

Figure 4.18: The signed document/agreement that operations during STOC simulation 4, should be
uninterrupted, after the recorded solar event at 16-11-2013, three days before the on-line
analysis of the team on duty.
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4.4 noise modelling

One of the challenges in LTP data analysis, in a similar is that the noise level during
system identification might not be available. This may happen due to a various of
reasons, like for example data loss, or unknown pollution of the time-series. So, at the
beginning of the analysis of each experiment, one has to make a set of assumptions. In
particular:

• the noise shape might be unknown during the experiment, and

• the level of knowledge of the noise level will define the best strategy to follow in
the analysis.

Up to this point, we have assumed a frequency domain analysis where the noise
shape has not changed from the first day of the quiet acceleration measurement, and
therefore its PSD is considered known. With this assumption, the S̃n(f) term in the
inner product

(
a|b

)
= 2

∞∫
0

df
[
ã∗(f)b̃(f) + ã(f)b̃∗(f)

]
/S̃n(f) , (3.2)

in the log-likelihood equation 3.25

log
(
π(�θ|�y)

)
∝ log

(
p(�θ)

)
− 1

2

(
y− h(�θ)

∣∣y− h(�θ)
)
+C, (3.24)

is known. But for the case where the noise shape has changed, but it is still comparable
to a previous acceleration measurement, one can try to model it in the frequency
domain. For example, one may follow [25], where the noise Discrete Fourier Transform
(DFT) coefficients are associated with some η amplitudes, to be estimated together
with the dynamical parameters of the system. The coefficients i of the S̃n(f) term is
multiplied by a set j of η amplitudes as

S̃n,i → ηjS̃n,i, ij < i � ij+1. (4.23)

An example of such a model can be seen in figure 4.20. The likelihood function can
then be calculated as

π(�θ|�y) = C ′exp
[
−1

2

(
χ2 +Nj,bins

∑
j ln(ηj)

)]
, (4.24)

where the Nj,bins is the number of Fourier bins of each segment, and the sum is
performed over the j segments. A test for this likelihood formation can be performed on
data generated for previous simulations. We shall take the unmatched stiffness guidance
investigations, and compare the iterative χ2 scheme of sub-section 4.3.2, with the noise
weighting procedure we just introduced. The proposal distribution for this extended
set of parameters, is the combination of the multivariate Gaussian with Σ ≡ F−1 and
a multivariate Gaussian for the η noise scale parameters. The second PDF to draw
samples from, is formed by taking into account the width of the normal prior densities
for each η [26]. Each sample is drawn from a normal distribution of

π(η) ∝ exp

[
−(1− ηj)

2

2σ2
j

]
, with σj = β× 1/

√
Nj,bins (4.25)
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Figure 4.20: Example of modelling the noise with η amplitude coefficients. The coefficients are multi-
plied with the spectrum of the top panel, their value to be estimated together with the
parameters of the system.

with a variance that is the scaled –by a factor β– width of the prior distributions. The
β factor embodies our level of knowledge on the current noise level. If we expect that
there is insignificant variation of the noise level, then a reasonable choice is to set β = 1,
whereas if not, we can increase it to an arbitrary amount.

The results can be seen in figure 4.21, where the PDFs of the parameters for both
techniques are superimposed. The difference is almost indistinguishable, and this be-
cause of the nature of the particular experiment. The SNR is very large for the two
approximations to present any bias.

Another approximation is to model the underlying noise model with a student’ t
distribution, like in [27]. This treatment is suitable for data showing non-Gaussian
properties, due to the tails of the distribution of the noise. In contrast to the grouping
treatment of level coefficients of eq. (4.24), now each frequency bin is assumed to
follow a bivariate student-t distribution. If one assumes Inverse-χ2 prior densities for
the variance of the noise coefficients, the marginal likelihood11 takes the form of

log
(
π(�θ|�y)

)
= −

∑
i

νi + 1

2
log

(
1+

χ2i
νi

)
+C(νi), (4.26)

where C(νi) is a normalisation constant based on Gamma functions in ν. In [27], it was
proven that the likelihood function of (4.26), works exceptionally for real and simulated
data sets [28].

The final road to noise treatment implemented, is the one in [29], where the noise
coefficients are marginalised out from the posterior distribution. One begins from the
assumption that all the noise sources are zero-mean and Gaussian, so as, the residuals
time-series

r(n,�θ) = α(n) − h(n,�θ), (4.27)

11 For ν → ∞, the standard Gaussian likelihood is recovered.
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Figure 4.21: Comparison of the resulting histograms following two different techniques to noise mod-
elling. The iterative χ2 resulting PDFs of the parameters are denoted with blue colour,
while the PDFs from a realisation of the (4.24) likelihood with red. For this particular run,
the β factor was set to 5, and for the likelihood the calculations a set of 9 η coefficients
were considered.

present the same statistical properties12. The α term here is the total differential
acceleration measured, and the model h(�θ) can be a linear combination of measured
time series, similar to eq. (4.12). In [29], it is shown that for k integers13 that depend
on the adopted spectral window, the variances of Re

{
r̃(k,�θ)

}
and Im

{
r̃(k,�θ)

}
follow

σ2

Re
{
r̃(k,�θ)

} = σ2

Im
{
r̃(k,�θ)

} =
Sk
2

. (4.28)

The Sk is the frequency averaged discrete time PSD of r(n), at the frequency fk = k/NT .
The logarithm of the joint conditional probability density is then given by

log
(
π(r̃|�θ,�S)

)
=

∑
k

log

(
1

(πSk)Ns

)
−Ns ×

∣∣∣r̃(k,�θ)
∣∣∣2

Sk
, (4.29)

where we have assumed Ns averages over data stretches. The averages are performed
by using Welford’s algorithm [30] to improve efficiency and numerical stability. Then,
if we assign a uniform priors for the logarithm of the Sk coefficients, we can form a
marginal log-likelihood of the form

Λ(�θ) = −Ns

∑
k

log

(∣∣∣r̃(k,�θ)
∣∣∣2
)
+C, (4.30)

12 Here, n are the time domain samples. In frequency domain it becomes r̃(k,�θ).
13 The k integers here refer to the frequency bins. For them to be independent, there should be |k| � k0 and∣∣k−k′∣∣ > k1, where k′ and k1 depend on the spectral window that is chosen. Then the imaginary and real

part Re
{
r̃(k,�θ)

}
and Im

{
r̃(k,�θ)

}
, can be also assumed zero-mean and independent Gaussian variables.
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which can be proven [29], that is equivalent to the iterative χ2 scheme explained earlier
in this chapter. The likelihood of the last eq. (4.30), will be henceforth called logarith-
mic likelihood.

All the above techniques on the treatment of the noise of the instrument, are already
implemented in the LTPDA toolbox framework, but also incorporated in the designed
pipeline for the mission on-line analysis. Depending on the experiment requirements,
and basically the level of knowledge of the differential acceleration noise curve, the
three approaches are to be used accordingly. Work is in progress in creating the fitting
protocols for on-line analysis of any given system identification experiment of the LTP,
where for each particular experiment the preferred technique is going to be defined and
quantitavely justified.

toy model examples

In this small section we will apply the implemented techniques of treating the like-
lihood functions on a three-parameter toy model. Since we are focusing primarily on
the acceleration domain fitting, where the model is a linear combination of time-series,
like in

αmodel[n] =

N∑
i=1

�di[n, {�θ}] +�dnoise[n], (4.11)

we can assume a toy model like

β(t) = p1x1(t− τ) + p2x2(t), (4.31)

where x1 and x2 are some time-series, and the parameter set to be estimated is �θ =

{p1,p2, τ}. The time-series of this simple case model are generated as x1 ∼ 2×N(0, 1),
and the x2 is the cumulative sum of 3×N(0, 1) multiplied by a constant. They are
displayed in figure 4.22, where the measurement data-set (red curve) is produced with
�θgen = {2,−3, 0.2}. Then, we can perform system identification analysis using the
likelihood functions of eq. (3.9), (4.24), and (4.30). The sampled PDFs of the parameters
can be seen in figure 4.23 and 4.25, while figure 4.24 shows the 2-D slices of the
likelihood surfaces of all techniques for comparison. In table 4.5, the numerical results
are listed. For the case of the χ2 and the logarithmic likelihoods, we estimated the PSD

of the noise and signals respectively, using a Blackman-Harris window and a number
of averages of Ns = 5 stretches. For the case of (4.24), we assumed three η noise
amplitude coefficients spanning over the analysis frequencies [10−4, 1] Hz.

To make a more robust comparison, we performed a Monte Carlo simulation with
this toy investigation. After Nsim = 300 realisations of the data-set, the results can
be seen in figure 4.25, and table 4.6. The mean values of the estimated parameters are
in total agreement for all approaches to the likelihood function. They also were able
to recover the true parameter values of the simulation very well within the error of
σs/

√
Nsim.
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Figure 4.22: The generation time-series of a toy example. The green, and yellow time-series are com-
bined to the resulting red curve (with �θgen = {2,−3,0.2}), which is considered the
measurement of the experiment.
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Figure 4.23: The sampled PDFs of the parameters using the three different techniques discussed in this
chapter. The black dotted line represents the true values of the simulated data. Figure
4.24 represents the likelihood shapes for each case.

Discussion

In this chapter, we presented an overview of the different approximations to the
dynamics of the LTP. The approximations are divided into two categories depending
on the chosen domain of analysis; the displacement and acceleration domain. For the
first case, analytical and state-space models have been used, both of them used also as
internal LTPDA simulators. Then, the system identification experiments were defined
as a series of sinusoidal signals injected as forces or displacement readings in various
channels of the instrument. Based on the planned experiments, the first mock data chal-
lenges were declared successful, since the parameter estimation algorithms developed,
were able to remove all the signal induced on the first and differential interferometer
channels.
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Figure 4.25: The Monte Carlo estimated PDFs on the toy model, after 300 realisations of the noise
time-series. Here, θtrue is the true values of the simulated data-set, and θest the esti-
mated one via the MCMC method.
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Table 4.5: The estimated parameters for the toy model using different techniques. The corresponding
PDFs are displayed in figure 4.23.

Parameter true value χ2 Logarithmic Noise modelling

p1 2 2.00 ± 0.01 1.98 ± 0.02 2.00 ± 0.01

p2 -3 -3.000 ± 0.005 -2.999 ± 0.002 -3.000 ± 0.004

τ 0.2 0.19 ± 0.01 0.19 ± 0.01 0.198 ± 0.008

Table 4.6: A Monte Carlo estimation for the parameters of the toy model, over 300 realisations of
the data-set. The “true” column shows the parameter values of the simulations, where μ̂
is the average of the mean values of the MCMC calculations of the parameters PDFs. The
σest is the standard deviation of the 300 mean values, and σs is the RMS of the standard
deviations of the 300 estimations.

χ2 Logarithmic Noise modelling

Param. true μ̂ σs σest μ̂ σs σest μ̂ σs σest

p1 2 2.000 0.013 0.016 2.000 0.018 0.025 2.000 0.013 0.012

p2 -3 -2.999 0.004 0.004 -3.000 0.013 0.025 -2.999 0.004 0.003

τ 0.2 0.199 0.008 0.009 0.199 0.011 0.014 0.199 0.008 0.007

The first complication was when the DA team was challenged with simulated data-
sets from the OSE simulator. It exposed the only weakness of modelling the dynamics
in the displacement domain, which is not other than the presence of the controllers
in the equations. The controllers calculate and command the response forces acting
on the three bodies of the system. Any given mismatch of the model and the real
controller will result to a bias estimate of the parameters, and remaining peaks in the
acceleration residuals spectra. The solution came when modelling the system in the ac-
celeration domain, where the controller transfer functions disappear from the equations.

But this induced another degree of freedom in the problem: The noise now becomes
parameter dependent, and this has to be taken into account in the minimisation of
the log-likelihood. The first way to address this issue, was to develop an iterative χ2

scheme, where the log-likelihood is minimised sequentially after the acceleration noise
is estimated with the new round of estimated parameters. With this technique, the
various training simulations were analysed, yielding good results, were the residuals
matched the acceleration noise level within the errors. During the simulations, the ex-
periment design was put into stress and then improved, for example as in figure 4.14,
were the increase of the first TM stiffness causes unwanted motion, and “pollutes” the
experiment with cross-talk elements (see next chapter).

Then, various approximations on the modelling of the noise were considered. Before
the analysis of the system identification experiments, assumptions about the knowledge
of the noise have to be made. Normally, acceleration runs are performed frequently dur-
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ing the lifetime of the LPF, updating the information of the noise level. Then if the
assumption that the noise is nearly unchanged, one can model its DFT coefficients
with η amplitude parameters. These parameters are then considered in the likelihood
function, thus increasing the dimensionality of the problem. Another treatment, is to
marginalise the DFT coefficients of the noise out of the posterior distribution and min-
imise the log-likelihood of eq. (4.30). These techniques were tested and compared with
toy investigations, showing similar resulting parameters.

It is worth to mention, that all the analysis performed in this chapter is integrated in
the analysis pipelines, to be used during flight operations. A LTPDA pipeline, handles
the analysis from the starting point of downloading the telemetry, to submitting the
results to sharing repositories. A simplified scheme of this step-by-step analysis can be
seen in the appendix D.
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5CROSS -TALK

Until now, we have seen the main contributions on the sensitive axis, where we have
estimated parameter sets based on the assumption that there is no cross-couplings1

between different DOF. But commanding movement on the TMs in a DOF other than
the x-axis, will result into a detectable signal leakage measured with the differential
interferometer channel. This signal excess originates on the so-called cross-talk mech-
anisms, that are related, for instance, to geometrical imperfections, misalignments of
the TMs, or distortion of the field lines of the electrodes.

The possible cross-couplings are of great importance for future space-borne GW an-
tennas, like the eLISA mission. One of the main differences between LPF and the current
design of eLISA, is that the GW observatory does not employ actuation along the x-axis,
or in other words, the axis joining two TMs in a distance of 106 km separating the
two SCs. The TMs are actuated along the rest of the DOF, since the x-axis is to remain
undisturbed to record oscillations caused by passing GWs. Therefore, the cross-coupling
terms of other DOF into the sensitive measurement axis must be known and subtracted
from the data stream leaving only the induced GW signal.

For that reason, and with the same logic as in the x-axis experiments, the cross-talk
system identification experiments have been designed for LPF. Their objective is to
reveal any possible coupling that needs to be understood and disentangled from the
main interferometer readout to reach the experimental goal of the mission. Moreover,
the knowledge of coupling effects allows us to apply corrections to the system attitude
during operations (see for example the piston effect later in this chapter). In the end,
the main goal of these investigations is to directly transfer any knowledge gained from
the LPF mission to a GW observatory following the concept of eLISA.

In this chapter, we will first introduce the possible cross-coupling mechanisms, and
also formulate their contribution in the total differential acceleration. Then, we will
analyse the simulated data-set generated for the 4th STOC simulation, where the cross-
talk experiments where analysed for the first time. We will focus mostly on the φ1

injection, which is the rotation of the first TM around its z-axis, and gradually build
an analytical model that fits the data in a satisfactory way. Then, we will attempt to
perform the fit over the complete data-stretch that includes all the performed cross-
talk experiments by writing a high dimensional model that includes all the possible
cross-coupling coefficients. This is where we enter into analysis areas that fall into the
model selection category of problems. The derived high-dimensional model is then re-

1 Either there is no cross-couplings, or it is safe to assume that their effects are negligible during the excitation
over the sensitive axis.
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visited in chapter 6, where we attempt to improve it by adding2 physical effects that
may contribute to the total acceleration signal respectively.

5.1 the main cross-talk mechanisms

The possible cross-talk mechanisms, can be classified in three main categories [1]

1. Pick up: the motion of a DOF is captured by the differential displacement along
x;

2. Actuation: deviations in the application of forces and torques produce acceleration
along x;

3. Cross-stiffness: a displacement along a DOF is transformed in a contribution to
the differential acceleration along x, through a stiffness coefficient.

The cross-talk signal leakage may originate from a plethora of different mechanisms,
the main of them are

• Geometrical: the motion of the TM along a DOF other than x, is projected into
the differential channel due to reasons of pure geometry. The piston effect falls
in this category, where the differential interferometer picks up the rotation of the
TM around z and y, and translates it into differential motion. The same output
may be generated through misalignments of the TMs. An off-centre position of the
TM with respect the IS, will cause cross-talk effects when commanding torques.

• of electrostatic origin: the distortion of the electrical field lines between the elec-
trodes of the different faces of the housing and the TM, can project an electro-
static force along x. Also, geometrical electrode imperfections must be taken into
account. In addition, signal leakage into the sensitive channel is expected, since
the electrodes that apply torques on the TMs are the same that command forces
along the x, y, and z axis. For example, the electrodes used to command rotation
along the φ angle, are the same that command forces along the sensitive axis.

• Gravitational: a self-gravity imbalance of the SC could affect the TMs motion along
x (gravitational cross-stiffness).

• External effects: all environmental causes are falling into this category. Effects
like non-uniform thermal gradients, or magnetic forces induce movement along x.

Moreover, the aforementioned leakage mechanisms can also interplay. For example,
a change in the relative position of the TMs (a geometric effect) with respect to the
EH may induce electrostatic effects. These effects depend also on the charge distribu-
tion on the TMs and the EH, that in turn depends on internal factors (for example,
the equipotential surfaces on the TMs and the asymmetries in the application of the
voltages) and external factors3.

2 Removing physical effects that do not contribute to the overall acceleration is also a possibility that improves
the given model.

3 Like for example, possible solar flares and cosmic rays that charge the TMs and the SC.
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Figure 5.1: Graphical representation of the piston effect. Credit [1].

The piston effect

The piston effect is a way in which the angular movement of a TM around one of
its axis (y or z) leaks into the x-axis displacement, through a leverage arm. With the
help of figure 5.1, which shows a graphical representation of the piston effect, the cross-
coupling coefficients associated to this effect can be calculated. Through geometry, it
can be shown that the perturbation to the displacement measurement when the TM

rotates, and also leaving room to some possible offset, should be given by [1]

δpiston = (e+ y) tanψ (5.1)

where y is the given offset displacement of the TM with respect to the axis of the
satellite. Then, the unknown parameter to be estimated is of e, as

e =
x

tanψ
(5.2)

and

x = d sinψ− c = d sinψ−



2
(1− cosψ). (5.3)

Then, from eq. (5.2) and (5.3), we can derive that

e =
x

tanψ
=

d sinψ

tanψ
−

�
2 (1− cosψ)

tanψ
(5.4)

and finally, from (5.1)

δpiston = (e+ y) tanψ =



2
sinψ tanψ−




2
(1− cosψ) + y tanψ. (5.5)

If we assume a very small ψ, we get

δpiston =



2
ψ2 + yψ. (5.6)
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In terms of differential acceleration, the contribution of the piston effect to the differ-
ential readout will be

α12 =



2
¨(ψ2) + yψ̈ (5.7)

where 
/2 = 23 mm is half the size of the TM and y is the offset of the TM along
the longitudinal DOF we are considering. According to [2], the offset should be equal
to y = 50× 10−6 m. In the following analysis, we will consider the crosstalk from
φ1,φ2 → x and consequently we will define the linear and non-linear crosstalk term in
the α = öΔ time-series as δ

φ̈2
1/2

φ̈2
1/2 + δφ̈1/2

φ̈1/2. From the above, the non-linear
piston coefficient is expected to be equal to the half of the edge of the TM. However,
also when the TM faces are not perpendicular4 with respect to the walls of the IS can
produce the same effect.

The cross-stiffness

The TMs are actuated along y and z axis by applying electrostatic forces. This
produces a stiffness, or a force gradient, since the induced motion modifies the gaps be-
tween electrodes and the TMs, and therefore a mismatch between the commanded and
the actual applied force. Moreover, the displacements and rotations could be coupled
with the x-axis motion, through the so called cross-stiffness. The cross-stiffness takes
into account the total of the possible forces that are acting on the TM: electrostatic,
magnetic and gravitational forces, although the electrostatic is the dominant contribu-
tion. For example, when the TM rotates around the y-axis, a cross-stiffness is produced
which converts the angular displacement φ in a force-per-unit-mass along x. We can
write it as

α12 = ö12 =
1

m

∂Fx

∂φ
φ = δφ (5.8)

where ∂Fx
∂φ = Fact,y. This term is due to the rotation of the TM while a force along y is

applied. Numerical expectation for this crosstalk value can be obtained by computing
the RMS of the commanded force along y per unit mass5. The physical interpretation
of this can be attributed to the distortion of the electrostatic field lines due to the
rotation of the TM. This distortion causes a force projection along x.

The cross-stiffness from y to x has not an electrostatic component. The dominant
term is the gravitational contribution estimated in [2] equal to 4.912× 10−8 s−2.

The torque coefficient

The torque coefficient represents the imperfection of the applied torques on the
TM. For example, to command a torque around z, the same electrodes that apply a
force along x are used (see figure 5.2). Also, a possible displacement of the TMs from
the geometrical centre of the EH, results to distorted forces on the TM faces. Given

4 Or even a deformation of the TMs with respct surface close to the spot hit by the laser beam.
5 The commanded forces, as we have seen in previous chapters, are available as telemetry for the analysis.
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Figure 5.2: Graphical representation of the EH for one TM. As it is clear from the image, the same
electrodes used to actuate a torque around z (the angle φ) are used to actuate a force
along x.

Δr = 21.5 mm, the mean distance between these electrodes and �F1 and �F2 the applied
opposite forces to the TM, the applied torque is given by

�T =
�Δr

2
× ( �F1 + �F2). (5.9)

The torque per unit of moment of inertia is given by

N =

�Δr
2 × ( �F1 + �F2)

1
6m
2

(5.10)

where �Δr/2 is the arm of the forces, m is the mass of the TM and 
 il the length of the
TM edge. If �F1 = �F2 = �F0 the desired “perfect” torque around z is applied, where �F0
is the nominal applied force in each electrode. But if �F1 �= �F2 we get also a net force
along x. Without the loss of generality, we can assume that �F2 = �F0, and F1 − F2 = δF

is the small imperfection that perturbs the applied torque. Then we can write the net
torque per unit of momentum of inertia as

N =
Δr
2 (F1 + F2)

1
6m
2

=
Δr(2F0 + δF)

1
6m
2

(5.11)

while the net acceleration induced is

ax =
δF

m
. (5.12)

Dividing eq. (5.12) by eq. (5.11) we get that

ax =
δF

(2F0 + δF)

1

3


2

Δr
N. (5.13)
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With this in mind, we can predict the value for the cross-coupling coefficient to be

δNcmd,φ1
=

δF

(2F0 + δF)

1

3


2

Δr
� δF

(2F0 + δF)

1

3

(46mm)2

21.5mm
� 32.8mm

δF

(2F0 + δF)
. (5.14)

From [2] we found that the error in the application of voltage is δV/V = 0.005. This
means that, because F ∝ V2, then δF/(2F0 + δF) � δF/(2F) = (δV/V) = 0.01. So, if we
consider a rotation along the z-axis, we get a first crude value for the corresponding
crosstalk coefficient as δNcmd,φ1

= 32.8× 10−6 m.

The readout equations

Since the equations of motion for the DOF of interest are quite lengthy and do not
serve immediate purpose here, they are gathered in the Appendix B. As already dis-
cussed, different effects can cause a pick up of the signal. We shall start by considering
the most important first, like the piston effect (which if we recall has a linear and non-
linear term). Because this contribution is considered a sensing type of signal leaking,
the associated crosstalk coefficients δ’s have the subscripts S1 or SΔ, depending on the
channel of interest. Then, the general set of equation considering only this effect, can
be written as follows:

o12 =Δx+ oy1δSΔy1 + oy2δSΔy2 +
1

2

δSΔφ1oφ1 +

1

2

δSΔφ2oφ2, (5.15)

while focusing only on the differential interferometer readout. Here Δx is the displace-
ment, and 
 the TM length. However, in general, we should allow for a leakage of the
o1 readout into o12. If we recall eq. (4.12), then eq. 5.15 becomes

o12 =Δx+ o1δ12 + oy1δSΔy1 + oy2δSΔy2 +
1

2

δSΔφ1oφ1 +

1

2

δSΔφ2oφ2. (5.16)

In this particular data-set, we have estimated that δ12 = −(0.04± 1)× 10−6 (see again
table 4.4), which is essentially a value very close to zero. Hence, on that account, we
safely assume that δ12 = 0, for the rest of the cross-talk analysis.

5.2 the experiment design and the simulated data-set

To study the cross-talk disturbances, we analyse data-sets taken from the aforemen-
tioned 4th STOC operational exercise, that are generated with the OSE simulator. The
OSE provides a detailed 3-D environment of the LTP, that allows us to study the dy-
namics of the system in all DOF. As figure 5.3 suggests, to study the system on the
x− y plane, we can inject forces along the x, and y-axis, and rotate the test bodies
via torque application around the z-axis6. Then, the observed time-series are the (1)
differential interferometer o12, (2) the first interferometer o1, (3) the IS readings, and
(4) the φ angles, via for example the DWS measurements for the TMs.

The system is stimulated by injecting sinusoidal signals, in the same philosophy
as in the x-axis system identification experiments [3]. They are defined as sequential

6 Or along the φj, and Φ angles, where j here refers to the TM, and Φ to the SC.
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Figure 5.3: The inputs and outputs of the system, when investigating the x−y plane of the dynamics.
This figure is, in essence a more detailed version of 4.1.

sinusoidals, with three different frequencies per investigation as shown in figure 5.4. In
the following analysis, we will divide the data-set in terms of investigations. Each time,
we will analyse the given injection (φ1, φ2, y1, y2, and Φ) and attempt to model
and fit the cross-coupling effects in all five separate cases. In the end, we will join the
separate models that correspond to different investigations into a single expression as
in

α12,ct =αφ1→a12
+αφ2→a12

+αy1→a12
+αy2→a12

+αΦ→a12
, (5.17)

that is capable of explaining the complete data segment of the particular simulated
cross-talk experiments. Here, each αinjection→a12

represents the analytical model
derived from the separate analysis of each injection.
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Figure 5.4: The cross-talk experiment injection signals, together with the output of the differential
interferometer o12.
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5.3 the φ1 injection

As a first example application, we shall examine now the case of the φ1 injection
investigation. To properly analyse it, we start from adding the cross-coupling terms
described previously in this chapter, and consider only the terms relevant to this ex-
periment. At this first approximation, we can safely assume that all the other crosstalk
contributions to ö12, are negligible in comparison to the high SNR terms linked to
the φ1 injection. Then, we split the data segment to focus on the investigation of the
particular experiment, and we can write the following equation

αφ1→a12
= −δφ̈1

φ̈1 (t) + δφ1
φ1 (t) − δNcmd ,φ1

Nφ1
(t − τ)

−ω2
2

(
o12 (t) + o1 (t)

)
+ ω2

1o1 (t) − Asusfcmd ,x2
(t − τ) .

(5.18)

A time delay has been added to the applied forces or torques (assumed to be the same
for applied forces and torques), and it is introduced as a free parameter. This is due
to a known feature of OBC implemented in the OSE simulator that takes into account
the time from the command of a signal and its actual application. In (5.18), the free
parameters are with red colour for clarity, and Nφ1

is the applied torque along the φ

angle of TM1. A brief description of all the parameters in this new notation and their
expected values is shown in the Table 5.1.

parameter expected value / first guess units mechanism

δφ̈1
50× 10−6 m/rad Linear Piston

δφ1
RMS of fcmd,y m/s2rad Cross-stiffness ω2

φx

δ
φ̈2

1
0.023 m/rad2 Non-linear piston

δNcmd,φ1
16.4× 10−4 m Torque imbalance

ω2
2 � −2× 10−6 1/s2 Stiffness TM2

ω2
1 � −2× 10−6 1/s2 Stiffness TM1

Asus 1.05 no units Gain of the suspension

δδ̈y 0.0001 rad non-orthogonality of TM faces

Table 5.1: The expected terms of crosstalk for the φ1 injection investigation and the initial guess of
the parameters, as presented in equation 5.19.

The particular model of eq. (5.18) proved to be insufficient, as most of the signal
was not removed, in addition to the very bad parameters estimates. This could be
attributed to the large amplitude of the injection excited the non-linear coupling of
φ1 to o12. The non-linear piston effect term, that we can write as δφ̈2

1
φ̈2
1, must to be

added into the equation as

αφ1→a12
= −δφ̈1

φ̈1 + δφ1
φ1 + δφ̈2

1
φ̈2
1

−δNcmd,φ1
Nφ1

−ω2
2(o12 + o1) +ω2

1o1 −Asusfcmd,x2
(t− τ),

(5.19)

where we have excluded the (t) dependance of time for the sake of intelligibility. Again,
despite the obvious improvement, we discovered a clearly visible “bump” (see figure
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Figure 5.5: The comparison of the acceleration noise PSD (red curve) estimated in a previous noise run
with the PSD of the residual acceleration (light green curve) estimated by subtracting from
ö12, αφ1→α12

in the equation 5.18 with the estimated parameters. The dark green curve
is the PSD of ö12. A high frequency peak at around 8×10−3 Hz and a bump between 10
and 50 mHz are clearly visible. Credit [1].

5.5), between 10 mHz and 50 mHz, giving hints for the possible improvement of the
model. A very rough argument shows that a high frequency feature can be related to
a coupling of the acceleration along x with the second derivative of some parameter.
In the x− y plane, we can imagine this effect as coming through a piston that convert
y into x. A simple way to explain this phenomenon is by assuming non-perpendicular
faces of the TM faces with respect the IS walls. The effect is foreseen and apportioned in
the Experimental Performance Budget (EPB) to about 10−4rad. Now, we can rewrite
the model including (ÿ1 − ÿ2) as

αφ1→a12
= −δφ̈1

φ̈1 + δφ1
φ1 + δφ̈2

1
φ̈2
1 − δNcmd,φ1

Nφ1

−ω2
2(o12 + o1) +ω2

1x1 −Asusfcmd,x2
+ δδ̈y(ÿ1 − ÿ2)

(5.20)

The MCMC chains sampled efficiently the unimodal posterior distribution (figure 5.7),
and the fit results in a better PSD of the residual acceleration.

Figure 5.6 shows that the first approximation of the model, can describe the data in
a satisfactory way. But, a closer look at the results, reveals a small mismatch between
the residuals and the acceleration noise level. In particular, a small feature (a bump)
around 8× 10−3 Hz, and a bump at lower frequencies, are visible in the spectrum. The
peak feature disappears if we include the η and θ commanded torques in the analysis,
something that will be discussed in more detail in chapter 6. There, we will see that
different combinations of the parameters in eq. 5.19 together with these extra new
terms could produce a PSD of residuals comparable to the noise level.
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Figure 5.6: The comparison of the acceleration noise PSD (red curve) estimated in a previous noise
run with the PSD of the residual acceleration (light green curve) we estimated subtracting
from ö12, ö12,ct in the equation 5.19 with the estimated parameters for the φ1 injection.
The dark green curve is the PSD of ö12. The bump between frequencies 10 and 50 mHz
from figure 5.5 has been eliminated, but the peak feature at 8× 10−3 Hz remains.
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Figure 5.8: The o12 interferometer reading during the cross-talk experiments.

5.4 fitting the complete data-stretch

The analysis strategy applied to the previous section on investigating the φ1 injection,
can be followed with the rest of the cross-talk experiments. For each one, we can
define an analytical model and perform MCMC searches on the likelihood surfaces. In
the end, we can try to fit the complete cross-talk experiments data-set by combining
all the previously defined models. This method allows us to perform the complete
analysis by also studying the correlations of the cross-coupling parameters. Having
already investigated the φ1 injection, we can now write down the equation for the
φ2, assuming that the instrument is symmetric concerning the two TMs housing and
controllers. Naturally, from eq. (5.20)

αφ2→a12
= −δφ̈2

φ̈2 + δφ2
φ2 + δφ̈2

2
φ̈2
2 − δNcmd,φ2

Nφ2

−ω2
2(o12 + o1) +ω2

1x1 −Asusfcmd,x2
+ δδ̈y(ÿ1 − ÿ2).

(5.21)

Then, following the same procedure analysis for the rest of the injections, we can claim
that [1]

αy1→a12
=− δÿ1

ÿ1 + δy1
y1 − δy1Fcmd,y1

−ω2
2(o12 − o1)

−ω2
1o1 −Asusfcmd,x2

+ δφ̈1
φ̈1 (5.22a)

αy2→a12
=− δÿ2

ÿ2 + δy2
y2 − δy2

Fcmd,y2
−ω2

2(o12 − o1)

−ω2
1o1 −Asusfcmd,x2

+ δφ̈2
φ̈2 (5.22b)

αΦ→a12
=δy1

y1 − δy2
y2 − δy2

Fcmd,y2
−ω2

2(o12 − o1)

−ω2
1o1 −Asusfcmd,x2

. (5.22c)

At the time of the simulation, the Φ experiment was not understood completely,
but there was the speculation that it coupled with the TMs through channels already
appearing in previous experiments like the (5.22a) and (5.22b). A more detailed analysis
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falls in the category of model selection, where one tries to include or exclude physical
effects that contribute to the overall acceleration measured. More details for the best
model that fits the observation will be presented in Section 6.3 of the following chapter 6.
Taking into account eq. (5.20), but also the models for the φ2, y1, y2 and Φ injections,
an initial guess for the model would be

α12,ct =αφ1→a12
+αφ2→a12

+αy1→a12
+αy2→a12

+αΦ→a12
. (5.17)

where the terms αinjection→a12
denote the corresponding cross-talk investigations,

and their contribution to the overall differential acceleration. Now, we can start inves-
tigating a first approximation of eq. (5.17). If we write down each αinjection→a12

,
and eliminate the terms appearing multiple times, eq. (5.17) can be written as

α12,ct =− δφ̈1
φ̈1 − δφ1

φ1

+ δφ̈2
1
φ̈2
1 + δNcmd,φ1

Nφ1
(t− τ)

+ω2
2(o1 − o12) −ω2

1o1 +Asusfcmd,x2
(t− τ)

− δφ̈2
φ̈2 − δφ2

φ2 + δφ̈2
1
φ̈2
2 + δNcmd,φ2

Nφ2
(t− τ)

− δÿ1
ÿ1(t− τ) − δy1

y1(t− τ) − δÿ2
ÿ2(t− τ) − δy2

y2(t− τ),

(5.23)

where the red coloured terms are the cross-talk amplitudes, ωi the stiffnesses and τ is a
delay. The model time-series in comparison with the measured acceleration time-series,
can be seen in figure 5.9. Here we have assumed that Asus = 1.05, a direct piece of
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Figure 5.9: Acceleration time series for the complete cross-talk experiments. The model (green) is
evaluated at the estimated parameters �θ, after a run with the MCMC on eq. (5.23) over
the data-set.

information from the x-axis system identification experiments analysed in section 4.3.
The analysis results for the estimated parameters can be seen in table 5.3, and 5.4, and
the residuals in figure 5.10.
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Parameter Initial guess value Estimated σ

δφ̈1
50× 10−6 (1.38 ± 0.003)× 10−4

δφ1
5× 10−10 (−7.3 ± 0.8)× 10−10

δφ̈2
1

0.19 −0.188 ± 0.005

δNcmd,φ1
18× 10−6 (4 ± 2)× 10−7

ω2
2 −2.42× 10−6 −(1.88 ± 0.06)× 10−6

ω2
1 −2.42× 10−6 −(1.59 ± 0.2)× 10−6

τ 0.001 −0.09 ± 0.01

δφ̈2
0.19 −(1.301 ± 0.001)× 10−4

δφ2
−5× 10−7 −(4.91 ± 0.07)× 10−10

δφ̈2
2

0.1 −0.2293 ± 0.0005

δNcmd,φ2
10−4 −(4.7 ± 3)× 10−7

δÿ1
10−4 −(4.3 ± 21)× 10−7

δy1
5× 10−5 (1.25 ± 0.09)× 10−7

δÿ2
10−4 (−7.7 ± 1.4)× 10−6

δy2
10−6 (2.9 ± 0.5)× 10−7

Table 5.3: First parameter estimation results for the cross-talk experiment. The analysis was performed
to the down-sampled 0.2 Hz data, employing a standard χ2 log-likelihood function as in
eq. (3.25).

Frequency [Hz]

[m
s−

2
H
z1

/
2
]

 

 

10−10

10−11

10−12

10−13

10−14

10−15

10−4 10−3 10−2 10−1 1

acceleration noise level

residuals

Figure 5.10: The calculated residuals for the complete cross-talk experiment data-stretch in compar-
ison to the acceleration noise measured the first day of the simulation. The PSD of the
residuals is comparable within the errors to the PSD of the noise (here visualised as the red
shadow), with the exception of a visible feature in the spectrum at around 8× 10−3 Hz,
like for the case of the analysis of the φ1 injection. The analysis here is performed on the
down-sampled to 0.2 Hz data.
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The residuals of figure 5.10 show a good performance of the model at this first stage
of the analysis. However, a peak at around 8× 10−3 Hz shows that a component of the
dynamics of the system contributing to this frequency, is not taken into account. This
suggests, that there may be a cross-coupling effect from a degree of freedom that is left
out of the equation, a speculation that will be further investigated in more depth in
section 6.3.

Discussion

In this chapter, we have introduced the cross-talk experiments to be performed on-
board the LPF satellite. Similarly to the x-axis system identification experiments, we
defined the analysis strategy based on modelling the dynamics in the acceleration do-
main. This allowed to focus directly on the cross-talk coefficients, without taking into
account the controller transfer functions.

We analysed data-sets generated from the last operational training (4th STOC end-
to-end simulation), where the cross-talk experiments were analysed for the first time.
The planned experiments were designed to stimulate the system along various degrees
of freedom, in particular

1. Around the the z-axis of the first TM, or along the φ1 angle equivalently.

2. Around the the z-axis of the second TM, or along the φ2 angle equivalently.

3. Along the y-axis of the first TM, or y1 for short.

4. Along the y-axis of the second TM, or y2.

5. Around the the z-axis of the SC, or along the Φ angle equivalently.

The excitation of the system was accomplished via sinusoidal injection forces and
torques, acting on the three test bodies. A search in literature, revealed the possible
cross-talk terms to be considered in an analytical model. We first split the data-set and
analysed each one of the injections, to identify the underlying dynamical model. During
this process, we discovered new possible cross-coupling terms, like the non-linear term
of the piston effect, or possible pollution of the readings due to actuation of a degree of
freedom not taken into account. The parameters estimated, with few exceptions, were
in agreement with the expected values, although more detailed analysis is planned for
the near future. For the analysis of the φ1, we presented the results using three different
approximations of the likelihood function, as described in section 4.4. All methods are
in agreement within their error margin, although the logarithmic likelihood, estimated
almost an order of magnitude larger errors.

With the residuals level being comparable to the noise level, we then attempted to
fit the complete segment of data including all the performed cross-talk experiments. A
first high-dimensional model was employed yielding good results, with the exception
of the same features on the PSD of the residuals, as in the φ1 investigation, indicating
that the model was lacking cross-coupling effects. This problem can be solved with
model selection techniques that will be introduced in chapter 6. There, a more suitable
model will be proposed that produces residual acceleration equivalent to the noise level.

This work was a collaboration with D. Vetrugno from the University of Trento, that
resulted into the Technical Report of [1].
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6BAYES IAN MODEL SELECTION

In the previous chapter about the cross-talk experiment, as well as when analysing the
x-axis investigations, we came across some model selection issues. In particular, for
the x-axis case, we discovered that a model of a linear combination of the data and
delay filters on the applied forces on the three bodies of the system, was insufficient
to produce good residuals level. The same applies to the investigations where the in-
jections are forces commanded out of the control loop. There, we found that different
pre-processing of the data-streams, caused additional time delay differences on the con-
trolled and out of the loop forces. This problem was more relevant for the cross-talk
experiments, specially because of the much higher dimensionality, and the presence of
physical effects that contribute with very low SNR to the overall acceleration measured.
Examples of this are the non-linear term of the piston effect, or even cross-coupling
effects with degrees of freedom not taken into account in the model. Also, acquiring
the best model prevents over-fitting issues, since higher dimensionality is penalised.

In this chapter, we will first set the theoretical grounds for model selection techniques,
from the Bayesian point of view. Different approximations to the solution of such prob-
lems will be discussed, as well as their implications. We discuss the reversible jump
MCMC, which is a generalisation of the MH algorithm, that allows trans-dimensional
jumps between models. Other methods, such as the Laplace approximations of the pos-
terior around its maximum, are also examined, mostly as cross-check for the heavier in
computation MC methods. Then, we apply the techniques to relevant LPF experiments,
where we search for the best model that describes the observations. The application
on LPF data is wide, and although here we study the system identification cases, the
developed model selection techniques were used for the analysis of the magnetic exper-
iments [1].

π(�y|M1)

π(�y|M2)

A
Figure 6.1: Cartoon showing the predictability of two models with different complexity. Here, D rep-

resents the data-sets space. The evidences express this predictability of the models, and
are quantified by a normalised probability distribution on D. A higher dimensional and/or
more complex model M1 is able to predict a greater variety of data sets. This means,
however, that M1 does not predict the data sets in region A as strongly as M2. Suppose
that equal prior probabilities have been assigned to the two models. Then, if the data set
falls in region A, the less powerful model M2 will be the more probable model.
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124 bayesian model selection

Working in a Bayesian framework, the way to perform model selection to the mea-
sured data-sets, is to simply compute the Odds ratio between the competing models.
The Odds ratio between model X and Y, is defined as

OXY ≡ π(MX|y)

π(MY |y)
=

p(MX)π(y|MX)

p(MY)π(y|MY)
=

p(MX)

p(MY)
BXY , (6.1)

with BXY being the Bayes Factor (BF), defined as the ratio of the evidences of the
models, and p(M) any prior bias for the models, if applicable. We recall that the
evidence of a model appears in the denominator of the Bayes rule as

π(�θ|y) =
π(y|�θ,M)p(�θ)

π(y|M)
. (3.14)

In essence, the evidence of a hypothesis X given the data-set �y, π(�y|MX), states how
much the measured data favours a given hypothesis. Or more accurately, the Bayes
theorem rewards models in proportion to how much they predicted the data that
occurred. And in general, “simple models tend to make precise predictions. Complex
models, by their nature, are capable of making a greater variety of predictions” [2]. This
means that complicated models will always be able to predict more realisations of
measured data-sets than simpler models. But an accurate with respect to the data
simple model, will explain the observations in a more satisfactory way.

We give emphasis to the level of complication1 of a given model for one empirical
reason. It is the Occam’s razor, a rule of thumb that suggests that the simpler model
model that explains the data, is the most favourable2. This idea is promoted for three
reasons. The first one invokes aesthetical reasoning, and the second one is historical,
due to the past empirical successes of the theorem. The third and most important one,
was stated by David J.C. MacKay as [2, p. 344]

“Coherent inference (as embodied by Bayesian probability)
automatically embodies Occam’s razor, quantitatively”.

It is true, that working with the Bayes rule, we assume the evidence of a model, which
encapsulates the Occam’s razor automatically into the problem to be solved. A graph-
ical representation that supports the previous statements, is shown in figure 6.1. A
counterargument to the Bayesian treatment of selecting the models’ complexity, is
that the subjectivity of our assumptions (the choice of prior probabilities for example)
greatly affects the outcome of the calculations. This might hold for very simple toy
problems, but for more realistic applications where the number of data points is large,
the importance of the Occam factor greatly surpasses the one of the subjectivity of our
assumptions.

In this chapter, we shall use the above ideas and implement several model selection
techniques, and finally apply them to LPF simulated data sets. Through the different
investigations, an analysis protocol to identify the most probable dynamical model of
the LTP will be developed, while the possible challenges at each case are going to be
highlighted. But before jumping into the analysis itself, we present the various methods
of calculating the heavy integrals of the marginal likelihood.

1 Or the dimensionality of a model, which is the number of free parameters.
2 “Everything should be made as simple as possible, but not simpler” – A quote attributed to A. Einstein,

although this current popular state may be a paraphrasing of one of his lectures [3].
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6.1 calculating the bayes factor

From eq. (6.1), to calculate the Odds Ratio between two models, one has to compute
first the marginal likelihood of each model. We can recall that the evidence, can be
calculated as

π(y|M) =

∫
Θ
π(�θ,y|M)d�θ, (3.15)

which is the integral on the complete parameter space. Eq. 3.15 can be extremely costly
to evaluate, specially when the model becomes complicated with higher dimensionality.
For that reason, a number of techniques have been developed to follow to approximate
the evidence of a model or directly evaluate the BF [4, 5, 6]. Here, we are going to
elaborate on a subset of them, the ones that we are going to use for LPF data analysis.

1. The Laplace approximations: The first way of computing (3.15) is by asymptotic
approximation3. In the beginning, we recall the logarithm of the likelihood as

Λ(�θ) = log
(
π(�θ|�y)

)
, (3.25)

and then we apply Laplace’s method: We Taylor expand the (3.25), around �θMAP

as

Λ(�θ) � Λ(�θMAP) −
1

2

(
�θ− �θMAP

)T
H
(
�θ− �θMAP

)
+ · · · (6.2)

with H being the matrix with elements

Hij = −
∂2

∂θi∂θj
Λ(�θ)

∣∣∣∣∣
�θ=�θMAP

. (6.3)

Then Λ(�θ) is approximated by an unormalised Gaussian as

Q(�θ) � π(�θMAP |�y)exp
[
−1

2

(
�θ− �θMAP

)T
H
(
�θ− �θMAP

)]
. (6.4)

In the end, the integral/evidence is approximated as the normalising constant of
the Gaussian of eq. (6.4) as

π(y|M) � π(�θMAP |�y)

√
(2π)DM

|H|
, (6.5)

where DM is the dimensions of the model. Indeed, if we assume that we work
within a high SNR regime, then the posterior PDF is Gaussian and highly peaked
near the maximum likelihood parameters. This can be true for cases of large data
samples. In essence, the Laplace approximations perform a comparison between
the volume of the models in the parameter space and the volume of the uncertainty
ellipsoid of the parameters [5]. Then, we can rewrite eq. (6.5) for the case of model
X, as:

π(�y|MX) � (2π)DX/2 |H|−1/2 π(�θMAP,X, |�y), (6.6)

3 Often referred as the saddle point approximation.
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where H can be recognised as the Hessian matrix of the posterior distribution.
Now, depending on how we calculate, or approximate the Hessian matrix, we can
divide the Laplace approximation into two main variations. In the first one we
make use of the Fisher Information Matrix F (see section 3.3), calculated at �θMAP,
as an approximation to the expected covariance matrix [7, 8]. Then, the evidence
of the model becomes:

π(�y|MX) � (2π)DX/2 |F|−1/2 π(�θMAP,X, |�y) (6.7)

Of course, the main limitations of this method are associated with the confidence
we have on the calculation of the FIM. Furthermore, as expected, the results appear
to be poorer in comparison with the other methods as we move towards lower SNR
areas. We can follow the notation of [7] and call this particular approximation
the Laplace-Fisher (LF) approximation. The second well-known variation is the
Laplace-Metropolis (LM) estimator of the marginal likelihood [5]. In this case, we
use all necessary components for the calculation of the evidence from previous
MCMC estimates. The parameters �θMAP are extracted from the chains of a MCMC
parameter estimation run for the particular model, while we use the weighted
covariance matrix of the chains Σ, using a Minimum Volume Ellipsoid (MVE)
or a Minimum Covariance Determinant (MCD) estimator [9]. The MVE will be
discussed in section 6.2. In this case, the evidence of model X can be written as

π(�y|MX) � (2π)DX/2 |Σ|1/2 π(�θMAP,X, |�y). (6.8)

The LM method is considered to be a very reliable tool for the computation of the
evidence of a model, since the MCMC can map the posterior surface accurately.

2. The Schwarz-Bayes Information Criterion (SBIC): The SBIC is based on the
assumption that the priors for each model follow a multivariate Gaussian PDF
and is defined as:

S � ln(π(�θMAP,X, |�y)) − ln(π(�θMAP,Y, |�y))

−1/2(DX −DY)ln(n), (6.9)

where DX and DY are the dimensions of each model and n is the number of
samples in the data. It can be proven [5] that if n → ∞, then

S− logBXY

logBXY
→ 0, (6.10)

and the Schwarz criterion can be a rough approximation to the logarithm of the
Bayes factor. In fact, n must be chosen carefully so that n = Neff, where Neff
is the number of effective samples in the data that represent the growth of the
Hessian matrix of the log-likelihood [5].

3. The Reversible Jump Markov Chain Monte Carlo (RJMCMC): An algorithm that
automatically penalises higher-dimensional models is the RJMCMC algorithm. The
RJMCMC method [4, 10, 11, 12, 13] is widely used when dealing with nested
models, meaning that we need to compare a set of models, where simpler models
are a subset of a more complicated one. In fact, the RJMCMC algorithm is the
generalised case of MCMC methods that is capable of sampling the parameter space
and at the same time jumping between models with different dimensionality (see
figure 6.2). In essence, it proposes to include or discard extra parameters, which
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can be translated to complex and simpler models. The acceptance ratio of this
generalised MH algorithm becomes

α ′ = 1∧

{
π(�y|�θY)p(�θY)g(uY)

π(�y|�θX)p(�θX)g(uX)
| J |

}
, (6.11)

where | J | the Jacobian

|J| =

∣∣∣∣∣∂(
�θY ,uY)

∂(�θX,uX)

∣∣∣∣∣ , (6.12)

and g(u) is the proposal distribution from where the “dimension matching” pa-
rameters u are drawn [14]. A variation of this method is used in for the LPF data
analysis [6, 15] and its details are discussed in the Appendix C.

parameter space

p
os
te
ri
or

d
en

si
ty

Figure 6.2: Cartoon of the working principle of the RJMCMC algorithm. Being a generalised version
of the MH algorithm, it is capable of sampling multiple parameter spaces.

4. Other techniques: With the recent progress in cluster computing, many new and
more computationally demanding methods were developed. The more popular
being the Thermodynamic Integration [16, 17] and the Nested Sampling algorithm
[18, 19].

After computing the evidences, the Odds ratio is straightforward to calculate. If
BXY < 1, the evidence of model X is negative and the observations support model Y. If
BXY > 1, the evidence is positive and model X is more favourable than model Y. Many
discussions have taken place about the “confidence level” for the preference of a model.
In the simplest cases, the comparison yields a Bayes factor that is usually � 1, but in
more ambiguous situations people refer to table 6.1.

6.2 minimum volume ellipsoid

One common problem faced in data analysis, is the detection of the best outlier that
encapsulates the measured data set. The motive of calculation such an outlier is to
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Table 6.1: The Bayes factor confidence levels, taken from [7, 20]. Another interpretation can be found
in [21]. The double logarithm of the Bayes factor is often used for the sake of simplicity.

BFXY 2logBFXY Evidence for model X

< 1 < 0 Negative

1 to 3 0 to 2 Not worth more than a bare mention

3 to 12 2 to 5 Positive

12 to 150 5 to 10 Strong

> 150 > 10 Very strong

find the centre of a point cloud and study the dispersion around this centre. There
is a plethora of approximations, one of them being the MVE estimator. The following
procedure follows closely the one introduced by P. J. Rousseeuw in[9]. We first assume
a data set

D = {d1, · · · ,dn}. (6.13)

which we divide it in p+ 1 number of subsets, indexed as J = {i1, · · · , ip+1}. For each
subset we calculate the mean and variance

d̂j =
1

p+ 1

∑
i∈J

di and Σj =
1

p

∑
i∈j

(di − d̂j)
T (di − d̂j). (6.14)

The ellipsoid containing this sub-set of points is inflated or deflated by adding or
removing data points according to

m2
J = med

i=1,··· ,n
(di − d̂J)

TΣ2
J (di − d̂J). (6.15)

This results to an ellipsoid with volume∣∣∣m2
JΣJ

∣∣∣1/2 =
∣∣ΣJ

∣∣1/2mp
J . (6.16)

The steps of eq. (6.15) and (6.17) is repeated for all J until we reach convergence to
a minimum value of the volume. The computing loop can be extremely long for large
data sets, but this can be tackled if one performs the analysis on a sufficient amount
of k random sub-sets of data points. Then the new mean and covariance of the data
are computed as

T(D) = d̂J and Σ(D) =
(
χ2p,0.5

)−1
m2

JΣJ, (6.17)

with T being a regression estimator, and χ2p,0.5 is the median of the chi-squared distri-
bution with p DOF. The problem with this procedure is that it is vulnerable to leverage
points. To avoid biased results we can use weights wi applied to the observations as

wi =

⎧⎨
⎩ 1 if

(
xi − T(D)

)
Σ−1(D)

(
xi − T(D)

)T � c

0 otherwise
, (6.18)
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with c = χ2p,0.975. Then the weighted estimators of the mean and covariance are

Tw(D) =

n∑
i=1

wixi

n∑
i=1

wi

, (6.19)

and

Σw(D) =

n∑
i=1

wi

(
xi − T(D)

)T (
xi − T(D)

)
n∑

i=1

wi − 1

. (6.20)

x

y

Figure 6.3: Example of the MVE calculation on a small simulated data-set. The blue x marks represent
the data points, while the blue dashed line a first estimation of the minimum volume
ellipsoid. The orange dashed line is the minimum volume ellipsoid estimated with the
reweighed data set and the procedure introduced in this section.

In section 6.1, we introduced the LM approximation to the marginal likelihood. In
that case we use the MCMC chains to get an estimation of spread of the posterior dis-
tribution. But to get a reliable calculation of the covariance matrix from the MCMC
chains, we need a high breakdown point robust estimator [5], and the MVE described is
proven to be suitable for our needs [7, 6]. It will be used thereafter in the computation
of the LM estimator of the evidence of a model. A toy example of the MVE calculation
is presented in figure 6.3.

A toy model example

Toy models have been used for testing and validating the RJMCMC algorithm imple-
mented for LTPDA, before apply it to more complex LTP. The toy systems employed
are the harmonic oscillator SSMs. The simulated data-set was first generated, with a
harmonic oscillator with mass m = 1 kg, damping coefficient β = 0.1 kg× s−1 and a
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spring constant k = 0.1 kg× s−2. A sinusoidal signal was again injected to the system,
while the output is the measurement of the oscillation movement. Then, the models
to compare were defined, as in table 6.2. With the above configurations we expect for

Table 6.2: The harmonic oscillator models to be compared.

model # Known parameters Parameters to fit

A m = 1 kg k and β

B m = 1 kg, k = 0.1 kg× s−2 β

C m = 1.05 kg, k = 0.1 kg× s−2 β

the algorithm to “favour" model A and B than model C. The results can be viewed in
figure 6.4 and they seem to agree with our expectations. The algorithm output was:

• “positive" when comparing model B and C.

• also positive when comparing model A and C (remember, model C has the wrong
mass value).

• “negative" when comparing model A and B. Model number B supports better our
data set.

• we can also see that model B is the most favoured of all three. It is an expected
outcome, since the algorithm automatically applies an “Occam Razor" to the
higher dimension models. At this simple investigation, no prior bias for the models
was assumed.
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Figure 6.4: In this figure the output of RJMCMC for this first example is presented. Each line repre-
sents the evolution of Bayes factor (comparing two models) against the iterations of the
algorithm. For example, the blue line is the BXY where X is model B and Y is model C. By
recalling eq. (6.1) and looking at this plot we can say that the model B is approximately
ten times more probable than model C.
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6.3 bayesian model selection for lpf

In the previous chapters 4 and 5, we introduced the modelling approaches of the LPF,
and begun to analyse the system identification experiments. There, we constructed
the models of the dynamics without discussing any reasoning behind the choice of the
dimensionality of these models. Here, we will attempt to justify quantitatively the best
model, that embodies all the physical processes appearing in the data stream. First, the
x-axis case is going to be examined, and then the more complicated case of cross-talk
experiments.

6.3.1 Model selection for the x-axis system identification experiments
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Figure 6.5: Schematics of a simplified LTP SSM (A more complete scheme is found in figure 4.6). It
is composed by smaller SSMs of the various subsystems, each one a standalone SSM, here
represented with white boxes. The rhombi represent the main injection inputs to the system.
We use mainly the first injection port, which represents the interferometric inputs to the
system, while the second rhombus stands for the capacitance actuators injection ports. The
�n represents noise contributions from various sources and finally, the parameters to fit, for
the sake of convenience, are located in the grey boxes inside of the respective SSMs. The
interferometer signals �i are injected to the controllers (DFACS), where the commanded
forces are generated and applied through the capacitance actuators and the thrusters of
the space-craft. In the last two of experiments of [22] “out of loop” forces �g are applied to
the three bodies (TMs and SC) of the system. Here, the interferometer output is denoted
as �o. Credit: [6].

In order to demonstrate a first model selection application to the LTP analysis, we
can investigate the case of a LPF mock data challenge [23, 24], the STOC exercise 6
that we first encountered in chapter 4. The experiment analysed in this mock data
challenge was the guidance injections on both interferometer channels, and the “true”
values of the parameters of the system were assumed unknown. The first version of the
model was proven insufficient to fit the data, but then it was noted that the fit was
improved when two extra parameters were introduced. These parameters are the guid-
ance delays, τ1 and τ2 already taken into account in chapters 4 and 5. These delays
to the application of the guidance signals (see figure 6.5), are caused from operations
and data procesing of the DMU. The final robustness of the fit indicates that the new
parameters substantially improve the fit. The estimated parameters of the particular
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mock data challenge are gathered in table 4.3 in chapter 4.

This problem can be better studied by reducing it to a model selection problem and
can be tested with synthetic data-sets. The simulated data source is a LTP SSM system
with these delays set to: τ1 = τ2 = 0. With this configuration, we assume a true
system where the application signals are applied instantaneously. For our first try-out
we injected “fake” interferometric displacements, while for the second investigation we
used the same structure of injections but with much lower Signal to Noise Ratio (SNR
∼ 5).

In order to determine the importance of the two extra parameters, we have to verify
which model describes better the particular data-set: The seven parameter model X
with parameters �θX = {ω1,ω2, τ1, τ2,Adf,Asus, δ21}, or the five parameter model Y
with parameters �θY = {ω1,ω2,Adf,Asus, δ21}. While both models, X and Y, are capa-
ble of explaining the observations, we expect the simpler model Y to be more favourable
from a RJMCMC output, since the extra parameters τ1 and τ2 are not significant for
the data. The evolution of the Bayes factor for such an investigation for two different
levels of SNR is shown in figure. 6.6.
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Figure 6.6: First 3 × 104 iteration of the RJMCMC output when comparing a seven and a five-
dimensional LTP model (models X and Y respectively). Since the models are not com-
petitive when the SNR = 60, the blue line tends asymptotically to zero. Credit: [6].

The results we obtain for all the approximations verify that the simpler model Y
is much more probable than the more complicated model X. For the particular exper-
iments proposed in [22] where the SNR is high, the Bayes factor computed tends to
zero. In fact, for the case of the RJMCMC method, there is no single iteration “inside”
the more complex model. This changes dramatically depending on the nature of the
problem and, of course, as we show in section 6.4, on the SNR. In Table 6.3 we present
only the low-SNR experiment, for the sake of comparison between the methods. Each
method seems to favour the simpler model but they are not in total agreement be-
tween them. This is to be expected, as the SNR of this investigation is very low and the
approximations of the evidence become more sensitive. For this particular case of the
injections, the models are not competitive and therefore, the resulting estimated Bayes
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Table 6.3: Results for the Guidance delay investigation with the low SNR experiment. See text for
details.

Method BXY

RJMCMC 0.309

LF 0.124

LM 0.078

SBIC 0.768

Factor is extremely small. For a direct comparison, the RJMCMC algorithm requires
more than 108-109 iterations.

Sticking to the one-dimensional case, it is also possible to examine interferometric
cross-couplings between the injection channels for experiments. We shall examine an-
other toy case of model selection, this time investigating the δ21 previously mentioned
in chapter 4. The final aim is to explore whether we are able to discover cross-couplings
by computing the Bayes factor between simpler and more complex models. The sensor
matrix S in figure 6.5 (or eq. (4.8) from chapter 4) contains calibration factors of the
interferometric readouts. We recall, that the off-diagonal terms represent the possi-
ble cross-talks contributions between the two measurements. In a simplified analytical
form, and for the particular set of experiments that are defined with two injections and
two readout channels (as in eq. (4.2)), the sensor matrix can be written as:

S =

⎛
⎝ 1 0

δ21 1

⎞
⎠ , (6.21)

which is just a reformat of eq. 4.8, if we assume modelling in the displacement do-
main. The cross-term under investigation is the component δ21 in eq. (6.21). The
LTPDA SSM simulator is again used to produce data for a double investigation. The
first data-set is generated with a LTP that is is equipped with a “perfect” interferometer
(δ21 = 0), while for the second there is a cross-coupling between the two channels
given by δ21 = 10−5. For both investigations we compare two models X and Y with
�θX = {ω1,ω2,Adf,Asus, δ21} and �θY = {ω1,ω2,Adf,Asus} respectively, or in other
words, for both cases we try to recover the model with the dimensionality that sup-
ports the observations. The injection signals this time are in the form of single frequency
sinusoidals with f = 0.01 Hz. This choice of simplified injections is justified by the fact
that our aim is to demonstrate the performance of the algorithms and methods, and a
multi-frequency signal yields to extremely large numerical values of the Bayes factor,
making the comparison between the methods practically unfeasible with the RJMCMC
algorithm. The results of this investigation are summarised in Table 6.4. In both cases
we were able to obtain conclusive results for the cross-coupling of the system: for the
first experiment, the Bayes Factor is below unity, thus favouring the simpler model Y
which does not contain the parameter δ21, while for the second experiment the favoured
model is X, that can describe a LTP with δ21 > 0. Indeed, this result shows possible
application of this methodology during flight operations. The Bayes factor could be
used to quantitatively discriminate competing interpretations of the data by the sci-
ence team.
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Table 6.4: Results for the two experiments of the interferometric cross-coupling investigation. For
the first experiment the true value of the cross-coupling is δ21 = 0, while for the second
δ21 = 10−5.

BXY

Method Experiment 1 Experiment 2

RJMCMC 0.00036 35.1

LF 0.00032 35.3

LM 0.00032 35.7

SBIC 0.00016 37.1

After demonstrating the model selection procedure, we can now apply the techniques
in more sophisticated problems. We recall that the dynamics in the acceleration domain
of eq. (4.12), could be written in a simplified form as [6]

α12 =

[
d2

dt2
+ω2

2

]
x12 + (ω2

2 −ω2
1)x1 −AF2 +AF1 (6.22)

where we have considered only the differential acceleration α12, and Fi is the real
applied forces on the first and second test-masses. The true motion �x of the TMs can
be approximated by the delayed interferometer read-outs

x1 = o1(t− τ),

x12 = o12(t− τ),
(??)

As in chapter 4, section 4.2, the parameters appearing in eq. (6.22) and (4.13) are
the stiffnesses of the two test-masses ω1 and ω2, the interferometer read-out delay τ,
and the gains of the capacitance actuators Asus (here represented as A for simplicity).
Note that for this first approximation we have assumed identical actuators A for both
test-masses. The commanded forces4 g1 and g2 are available as telemetry, but the real
applied forces on the three bodies are to be determined by the measurements and the
analysis itself. For example, in the real data-stream there might be additional delays
or even filtering of the applied forces coming from the controllers, so in reality a gain
A might be proven to be frequency dependent: A(f). This situation will appear in the
received telemetry and we need the means to disentangle those two physical effects in
a quantitative way.

For the particular simulated data-set, the model was not able to remove all the
injected signals and even for the simple case of eq. (6.22), this led to a biased estimate
for the parameters. Apart from a simple time delay on the commanded signals, there
might be another process that causes a difference between the commanded g1 and g2
and the actual applied forces F1 and F2. For a first approximation of such a process,
we assume a single real pole filter, filtering the time-series of the applied force on the
second test-mass. For this investigation we can propose two models where AFi(t) =

Agi(t− τC) and AFi = A( fo
f−jfo

)gi respectively. Here τC denotes the actuators time
delay. In the end we can apply the model selection methods to these two models: the
first one, X, where the applied forces are time delayed, and the second one, Y, where

4 Here the forces are normalised to the mass of the body that they are applied to.
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the forces are frequency dependent (filtered by a single real pole filter). The calculated
Bayes Factor between those two models is:

BFXY =
πX(�y)

πY(�y)
= 9.9478× 10−11, (6.23)

clearly indicating that the most probable process on the forces is the one described
by model Y. The real pole was estimated to be fo = 1.963± 0.001 Hz and was con-
firmed for the complete set of system identification experiments in section 4.3.2. The
estimated acceleration residuals for both models can be seen in figure 6.7.
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Figure 6.7: Power spectra of simulated differential acceleration between the two test-masses. The grey
curve represents the reference noise measurement, while the light blue curve is the differ-
ential interferometer read-out. The value of the computed Bayes Factor can be confirmed
with the comparison of the equivalent estimated residual acceleration for each model. The
differential interferometer read-out is also plotted for comparison. Credit: [6].

The same analysis strategy applies of course to more complicated versions of the
analytical models, where the number of parameter increases with the more terms of
the equation are added, as happens in the following more realistic case. As already
described in chapter 4, the two TMs are controlled with identical actuators. In reality,
a small misbalance between the electrostatic actuators surrounding each test mass
might be present. If we introduce this “asymmetry” to the system, immediately for
the simple case of eq. (6.22), we can increase the dimensionality of the model by four
parameters:

a12 =

[
d2

dt2
+ω2

2

]
x12 + (ω2

2 −ω2
1)x1

−A2(
fo2

f− jfo2
)g2(t− τC2)

+A1(
fo1

f− jfo1
)g1(t− τC1). (6.24)
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These parameters are gains, delays and filters that are different for the actuator of each
test mass. Theoretically the highest in dimensions model of eq. (6.24) can describe the
observations, but the problem to solve appears to be over-parametrized. A solution is to
generate a set of nested models under the highest in dimensions of eq. (6.24) and apply
the RJMCMC algorithm. The result of such a run is shown in figure 6.8 and it reveals
the most favourable model and consequently the underlying procedure that describe
best the physical system. For the particular simulation we can verify that the five-
dimensional model is the best, concluding that no “asymmetry” in the hardware of the
LTP is present. This changed in the following Data Challenge, where the Bayes factor
between the simple model of eq. (6.22) and a six-parameter asymmetric one, is greater
than 106, clearly supporting the correct higher dimension model where A1 �= A2.
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Figure 6.8: A RJMCMC run on a set of nested LTP models. There is a clear preference for the five-
dimensional model for the given data-set. The data were produced with a “perfect” model
where the two respective actuators were identical. Credit: [6].
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6.3.2 Model selection for the cross-talk experiments

In the previous chapter, 5 devoted to the cross-talk experiments, we did a first base
analysis on the simulated data-sets. We generated models that described the dynamics
and managed to compute the residuals almost at the noise level that was measured a
previous day of the experiments. By almost, we refer to the peak around 0.02 Hz of
the spectrum residuals of figure 5.10, embedded here again for convenience.
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Figure 6.9: The calculated residuals for the complete cross-talk experiment data-stretch in comparison
to the acceleration noise measured the first day of the simulation. The PSD of the residuals
is comparable within the errors to the PSD of the noise, with the exception of a visible
feature in the spectrum at around 8× 10−3 Hz.

The feature of this spectrum indicates that the model of eq. (5.23) can be improved.
Our first guess is that there is some cross-coupling coefficient not considered. This
might originate from various sources, either some imperfection of the mechanical parts
of the IS, or to the imperfectly aligned TMs on the centre of the IS at the moment of the
experiment. By inspection of the telemetry time-series, we noticed that the controllers
are actuating along the θ angle of the second test-mass (see figure 6.10). To be on the
safe side, we will include the actuation over the η angle as well, and let the analysis
decide the best approximation to the model.

Naturally, the model of the following equation used in the previous chapter

α12,model1 =− δφ̈1
φ̈1 − δφ1

φ1

+ δφ̈2
1
φ̈2
1 + δNcmd,φ1

Nφ1
(t− τ)

+ω2
2(o1 − o12) −ω2

1o1 +Asusfcmd,x2
(t− τ)

− δφ̈2
φ̈2 − δφ2

φ2 + δφ̈2
1
φ̈2
2 + δNcmd,φ2

Nφ2
(t− τ)

− δÿ1
ÿ1(t− τ) − δy1

y1(t− τ) − δÿ2
ÿ2(t− τ) − δy2

y2(t− τ),

(5.23)
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Figure 6.10: The actuation along θ during the cross-talk experiments.

becomes

a12,model2 =− δφ̈1
φ̈1 − δφ1

φ1 + δφ̈2
1
φ̈2
1

+ δΔNφ

(
Ncmd,φ1

(t− τ) −Ncmd,φ2
(t− τ)

)
− δφ̈2

φ̈2 − δφ2
φ2 + δφ̈2

2
φ̈2
2

− δÿ1
ÿ1 − δy1

y1 − δÿ2
ÿ2 − δy2

y2.

+ δΔNθ

(
Ncmd,θ1

(t− τ) −Ncmd,θ2
(t− τ)

)
+ δΔNη

(
Ncmd,η1

(t− τ) −Ncmd,η2
(t− τ)

)
−ω2

2(o12 + o1) +ω2
1o1 +Asusfcmd,x2

(t− τ).

(6.25)

In eq. (6.25), we have introduced a couple of tricks to reduce the dimensionality of
the model. In (5.23) we estimate the imperfection of the commanded torques along
the φ angles, as δNcmd,φ1

Nφ1
(t− τ) and δNcmd,φ2

Nφ2
(t− τ). Instead, we included

the δΔNφ, δΔNθ, and δΔNη parameters that correspond to the difference of the cross-
coupling coefficients. This allows us to reduce the problem dimensions and also avoid
ill-conditioned covariance matrices. While it was expected that commanded torques
around η and φ would leak through cross-talk mechanisms in the differential interfer-
ometer readings, the commanded torques along θ would appear through the y1 and
y2 electrodes if the TMs were not perfectly positioned in the geometrical centre of the
IS.

With this at hand we fed the two competing models into the RJMCMC machinery.
The priors were defined as Gaussian distributions centered around our first guess of
the parameter values, with very large spread, since our knowledge of the cross-coupling
terms is very limited before fitting. After 106 iterations, the RJMCMC chains were not
converging to a single value, and iterating mostly inside model Y, indicating that model
Y is a better model for the particular data-set. For this case where there is a clear
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Parameter Initial guess value Estimated ±σ

δφ̈1
50× 10−6 (1.369 ± 0.001)× 10−4

δφ1
5× 10−10 (−6.8 ± 0.2)× 10−10

δφ̈2
1

0.19 −0.190369 ± 2× 10−6

δΔNφ 10−7 (−4.4 ± 0.7)× 10−7

ω2
2 −2× 10−6 −(2.2 ± 0.1)× 10−6

ω2
1 −2× 10−6 −(2.0 ± 0.3)× 10−6

τ 0.4 0.455 ± 0.002

δφ̈2
0.19 −(1.290 ± 0.001)× 10−4

δφ2
−5× 10−7 −(5.2 ± 0.2)× 10−10

δφ̈2
2

0.1 −0.2303 ± 10−4

δÿ1
10−4 −(1.0 ± 0.5)× 10−5

δy1
10−4 −(1.32 ± 0.01)× 10−7

δÿ2
5× 10−5 (1.6 ± 1.5)× 10−5

δy2
10−4 −(1.23 ± 0.1)× 10−7

δΔNθ 10−6 −(7.8 ± 0.6)× 10−5

δΔNη 10−6 −(0.5 ± 0.7)× 10−5

δΔfy,cmd
10−4 −0.0010 ± 0.0005

Table 6.5: Estimated parameters of the best case model decided from the model selection procedure.

preference for a model, we can use the LM estimator of the marginal likelihood. The
logarithm of the Bayes factor is then estimated as

logBF12 = log
(
πX(�y)

πY(�y)

)
= −85.0, (6.26)

where we have named model 1 the first approximation to the model, and model 2 the
improved version discussed here in eq (6.25). From this result, it is safe to conclude that
we have to take into account the cross-coupling originating from the rotation along the
θ angles of both TMs. This can be more obvious from figure 6.11, where the residuals
now do not show any peak features, and they are comparable to the acceleration noise
levels.

A MCMC estimation over the most probable model will result to the parameter
estimates of table 6.5, and figure 6.13, that shows the sampled covariance matrix of
the parameters.
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text for details.
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6.4 association with the experiment design

In this last section we explore the capability of the implemented model selection frame-
work, not only as a set of tools for data analysis purposes, but also as a way to evaluate
the efficiency of the experiments we are planning to run in the satellite. As we are going
to show, by comparing different models under different input signal conditions, we can
safely determine the best range of parameters that define our experiments, or verify
the injection frequencies that maximise the information extracted from the system.

It has been shown [7, 25] that there is a dependence of the Bayes Factor output on
the SNR regime of the investigations. This, of course, holds true in the case of the LTP
as it can be seen in figure. 6.14. This figure was created by simulating the guidance
injections LTP experiments for each value of the SNR, while the injection signals were
single frequency (f = 0.01Hz) sinusoidal inputs into the system. The LTP models under
comparison were quite similar versions of SSMs, with the exception of a different real-
isation of the response model of the thrusters. We made this choice of similar models
and single injection frequencies, to produce more intelligible results, because the large
amplitude planned injections result to very large values of the Bayes factor. It is clear
that above the critical value of the SNR = 21 the results obtained with the different
techniques are consistent and in good agreement. Below that value of the SNR we can-
not make clear decisions about the competing models, as the wrong model is showing
preference, or we poorly approximate the Bayes Factor.

Although this SNR limit varies, as expected, depending on the type of investigation
and model, the current result is already providing an estimation of the required power of
the injection signals that we need to consider in the LTP experiment. This information
and the method used here will be of particular interest for the design of in-flight
experiments for the LPF mission.
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Figure 6.14: The Bayes Factor as a function of SNR computed using different methods.
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Figure 6.15: The Bayes Factor as a function of the injection frequencies in the first interferometric
channel. The computed evidence of model X is stronger when the sinusoidal injection
signals have a frequencies around fix1
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� 0.05 Hz respectively.

Furthermore, for system identification experiments, as in the case of the LTP, the
computed evidence of a model depends on the design of the experiment itself. The in-
formation obtained from the system differs depending on the injection frequencies. An
interesting study is to explore in detail this relation. A four- (X) and a five-dimensional
(Y) models are examined, given different injection frequencies. More precisely, since the
difference between the models is the cross-coupling δ21 as shown in figure 6.5, which
describes the signal leakage from the first to the differential interferometric channel,
we examine the Bayes Factor given different injection frequencies to the first channel,
while keeping constant the injection to the differential channel (fix12 = 0.2 Hz). The
SNR of this experiment is kept at the “low” value of 28.

The data generation model is mounted with a “perfect” interferometer (δ21 = 0) and
model X is the same as the one used to produce the data, while model Y is the one
with the extra parameter δ21. The expected outcome of this exploration is that if the
system is more sensitive to the δ21 parameter at some particular frequencies, we must
detect an increase in the Bayes Factor which underlines a more clear decision towards
the correct model.

In figure 6.15 we can see the corresponding Bayes Factor versus the injected frequen-
cies to the first channel. Given the low SNR of the investigation, while model X should
be more favourable, a preference for the more complex model Y is shown for a certain
set of frequencies. This result is a clear indicator of the set of preferred frequencies that
can be injected to the system for its characterisation given the current configuration
and SNR. Indeed, injections around f � 0.0006 Hz and f � 0.05 Hz promote the identi-
fication of the correct model, while injections at both the high and low frequency limit,
together with f � 0.01 Hz, may induce the analysis into an error. This frequency de-
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pendence must be associated to the sensitivity of the experiment to a given parameter,
the parameter δ21 in this particular case. This observed dependency, when considering
a more realistic model, will be of particular interest in the selection of injection signals
for the experiments to be run in-flight.
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Discussion

We have implemented three different methods to compare competing models of the
LTP experiment on-board the LPF mission: The RJMCMC algorithm, the Laplace ap-
proximations, and the Bayes Information Criterion. The results from each method seem
to be in agreement, but the output strongly depends on the expected SNR and of course
on the models under investigation. Considering the LPF mission planned experiments,
the SNR is high enough to safely use any of all the available techniques, but probably
the most computationally demanding methods will be used for off-line analysis to con-
firm our first computations.

The RJMCMC algorithm (together with the Laplace methods and the Bayes Informa-
tion Criterion) employed in this work has been integrated in the LTPDA toolbox as part
of the LPF data analysis software. The RJMCMC algorithm is by far the most computa-
tionally costly, but at the same time it is the more suitable one when we compare more
than two nested models or we work with inputs with low SNR. The Laplace-Metropolis
and the Laplace-Fisher methods are reliable when we work in the high SNR regime,
but they also require significant computing time, specially when one has to use outlier
detection methods to estimate the weighted covariance matrix. On the other hand, the
Laplace-Fisher approximation is limited by the use of the Fisher Information Matrix,
which for the case of LTP SSMs is computed numerically.

Moreover, an attempt to associate the output of the aforementioned methods with
the actual system identification experiment has been made. We have used different
experiment setups to demonstrate that the Bayes Factor depends not only on the SNR,
but also on the injection frequencies to the system.

The developed algorithms were successfully applied to model selection problems for
the LPF data analysis. Different cases of LTP model selection problems have been investi-
gated over data-sets that were produced by both the LTPDA and the ESA OSE simulator.
For the first case, we have considered an easy case of five- and seven-dimensional state-
space models, where the importance of the extra two parameters was examined. These
two extra parameters are time delays caused by the LPF hardware and they can be
characterised as essential parameters of the model. For the second case, we examined if
we are able to recover the dimensionality of the correct model used for the generation
of the data, by examining the interferometer cross-coupling coefficient.

Then, we explored the most suitable dimensionality of analytic models. There, the
simplest model that described efficiently the observations was recovered, excluding the
more complicated ones that caused over-fitting issues. Finally, we applied the developed
techniques to the more complicated cross-talk experiments, were the dimensionality of
the models can be much higher. From data-sets generated with the OSE simulator,
we discovered cross-coupling effects originating from a DOF not taken into account in
section 5.4. This type of analysis is expected to be performed during operations due
to the broad spectrum of possible applications, like identifying external disturbances
that result into forces applied to the three-body system.
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7CONCLUS IONS

The LISA Pathfinder (LPF), is a technology demonstrator mission, that is pioneering
the field of Gravitational-Waves (GW) detection in space. It will pave the way for GW
detectors operating with the same principles as eLISA. The eLISA concept consists of
three SCs forming a triangle with arm lengths of 106 km. The mother SC, hosts two
TMs, while the two daughter SCs one. The distances between the TMs will be constantly
monitored via laser interferometers, in order to discover oscillations in these distances,
that signify propagation of GWs. But these oscillations will have to be disentangled out
of the dynamics of the local system. This problem is going to be investigated by LPF,
since one of its main goals is to characterise the joint dynamics of TMs and SC and
construct an accurate noise model to be directly inherited by eLISA.

The LPF is in essence, a single arm of the eLISA squeezed down from one million km
to 30 cm. It will prove geodesic motion between two TMs by monitoring their relative
distance with laser interferometers. The in-flight operations will consist of a sequence
of experiments to characterise different aspects of the instrument. One of them will
be the system identification experiments, that can be divided into two categories. The
first category of experiments is performed over the sensitive x-axis, which is defined by
the line joining the two TMs. The TMs and SC are set in motion along x, while their
position is being recorded. In the second category, the three bodies are commanded
along different DOF in order to determine the cross-coupling effects and estimate the
signal leakage on the differential interferometer channel.

The analysis of the aforementioned experiments can be challenging, due to several
factors. The first one being the dimensionality of the models, that can be very high, and
the second one is the unknown effects that might be contributing to the overall mea-
sured acceleration. For that reason, we have developed a Bayesian analysis framework
to tackle the non-linearity and the high dimensionality of the models. The Bayesian
framework allows us to use prior densities for the parameters, a feature very relevant
to the LTP. This because the level of the knowledge of the system is constantly being
updated, not only by the analysis if the system identification experiments, but also
from others, like the TM charging measurements, or the drift mode. The results from
each experiment can then be integrated as prior knowledge in the analysis.

As a tool, we have developed a Markov Chain Monte Carlo (MCMC) algorithm, that
is proven to able to sample efficiently the parameter space. The MCMC scheme was
developed based on the work of [1], and was further enhanced and evolved into robust
DA tool to be used during operations. The developed MCMC method is fulfilling the
requirements for a fitting algorithm to be integrated to the dedicated data analysis
toolbox (LTPDA). In particular, the deployed algorithm comes with the necessary help
for the user, while keeping the analysis history. Furthermore, at the end of each run,
diagnostics on the chains are being conducted for more robust statistical results (see
section 3.4). The fitting algorithm was then integrated to a pipeline analysis framework
to be used for on-line analysis during operations. The pipeline consists of pre-defined
analysis steps, the first one being the data acquisition from repositories. Then given
investigation is defined, and the data are pre-processed to be finally fed into the MCMC
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machinery. The results, together with the produced figures are then uploaded to dedi-
cated analysis repositories automatically.

The robustness of the aforementioned pipeline, has been demonstrated in the train-
ing simulations over the last three years, where the different modelling techniques were
put to test (see chapter 4). More specifically we analysed data-sets generated for the
2nd, 3rd and 4th STOC simulations. The x-axis system identification experiments sim-
ulated are defined in [2], and are split in to two main categories; the interferometer
injection signals, were the controllers respond to fake displacements of the TMs, and
the application of open-loop forces on both TMs and SC. Different LTP modelling ap-
proximations were considered for the analysis, but in the end, the analytical models in
the acceleration domain were proven to be the more reliable ones. This was justified by
the fact that modelling in the displacement domain requires near-perfect knowledge of
the controllers transfer functions, whereas in the acceleration domain, the controllers
vanish from the equations. The free parameters �θ to be estimated, in all simulation
cases cases were very close to the true values of the simulator within their expected
error.

The cross-talk experiments were analysed for the first time during the 4th training
simulation (see chapter 5). The underlying dynamical model was formed in the accel-
eration domain, and each injection into various DOF was analysed separately1. After
successfully recovering a reliable model for each injection investigation, we joined all
the models to attempt to fit the complete data-stretch of the cross-talk experiments.
The result at a first approximation is quite satisfying, because it revealed that possible
cross-coupling mechanisms that were not taken into account at the first place, might
be causing signal leakage into the differential acceleration measured. This was further
studied in chapter 6, where we perform model selection techniques to the particular
data-set. There, the cause of the signal excess was identified and quantitatively assessed.
A more suitable model was then used to estimate the parameters of the system and
estimate residuals equivalent to the noise level.

In addition, we implemented different approximations to the treatment of the curve
of the PSD of the acceleration noise. The acceleration noise level is nominally estimated
from the frequent quiet measurements of the instrument. But its level is not constant
with time, and one has to make assumptions on the level of knowledge over this curve.
We can assume that the changes of the noise are negligible from the time of its mea-
surement to the time of the experiment we analyse, and use the χ2 likelihood function
of eq. (3.25), were the PSD curve is considered known. The relaxed assumption that the
noise might have changed slightly, leads to a likelihood function of eq. (4.24), where the
noise level is parametrised with a set of η coefficients [3], to be estimated along with
the dynamical parameters. Both approaches were tested with the guidance injection
system identification experiments yielding equivalent results, with negligible smaller
variance for the second approximation (see figure 4.21). The insignificant differences
of the two approaches was expected, due to the high SNR nature of the experiments.
The final approach was the one of [4], where the DFT coefficients of the noise (after
assuming zero-mean and Gaussian properties), are marginalised out of the posterior
distribution to form the final equation (4.30). All of the techniques were implemented
for LTPDA and tested with a three-parameter toy model investigation (see sub-section
4.4). A Monte Carlo study with different realisations of the data-set, proved that for

1 We recall that the TMs and SC were commanded to oscillate along φ1, φ2, y1, y2, and Φ.
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this simple case, the different methods agree within their respective errors.

The nature of the system identification experiments, suggests that during opera-
tions, model selection problems may appear. For example, the high dimensionality of
the cross-talk models, in combination with physical effects contributing in low SNR
verified that we needed model selection routines and protocols in the toolbox. For that
reason, we have implemented a Reversible Jump Markov Chain Monte Carlo (RJMCMC)
algorithm, which can be seen as a generalised version of a standard MCMC method (see
chapter 6). The RJMCMC automatically penalises higher dimensional models by em-
bodying the Occams’ Razor in the process. Furthermore, additional approximations to
the marginal likelihood were employed; the Laplace-Metropolis (LM) and the Laplace-
Fisher (LF) approximations. They differ on the way the Hessian matrix of the posterior
distribution is computed. The LF uses a Gaussian approximation and takes the inverse
of the FIM, while the LM takes the covariance matrix as sampled from a MCMC simula-
tion over the posterior. When using the LM criterion, one must carefully compute the
covariance matrix with a high breakdown point robust estimator [5]. The Minimum
Volume Ellipsoid (MVE) outlier detection method was chosen [6], and adapted into
the LTPDA toolbox. Finally, the Schwarz-Bayes Information Criterion (SBIC) was also
considered as an alternative to the logarithm of the Bayes factor .

The above techniques were applied to the x-axis experiments [7], first to toy mod-
els, and then to more realistic applications, where we were able to recover the correct
model for all the simulated data-sets. The dependence of the Bayes factor to the SNR
and possible links to the design of the experiment itself was also shown. The RJMCMC
was also applied to the cross-talk experiments analysis, with the aim to improve the
results from chapter 5, where there were hinds that there might be physical effects not
taken into account in the model of the dynamics. The cross-coupling of the η DOF was
proven to be causing the peak issues in the acceleration residuals, and the correspond-
ing model was proven to be more preferable than the one used in chapter 5. It is worth
to mention that the RJMCMC was also applied to the magnetic diagnostics analysis
for the LTP [8]. In this study, the possibility of detecting the various sources of the
magnetic filed in the SC was explored. The RJMCMC algorithm was then used to select
the most probable number of sources and their location around the LTP.

Future work includes the further enhancement of the analysis pipeline, and imple-
ment various improvements to our MCMC parameter estimation algorithm. Among the
tasks of the team is also to establish a fitting protocol procedure for online operations.
This means that for every experiment performed during flight, a protocol of the mini-
mum actions, and the preferred technique and fitting tool have to be defined. To achieve
this, one has to take into account the number of data points, the sampling frequency,
the model dimensionality, and make assumptions about the noise levels. An outcome
of this study will be several technical documents with theoretical justifications for each
experiments, but also small handbook documents describing these procedures in a
brief manner. More advanced methods of sampling the posterior distribution have also
been considered, like for example the Nested Sampling family of algorithms [9]. Such
a method will allow more robust searches on the surface of the posterior distribution
for the case of the more complicated problems.
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Part III

APPENDIX





AMCMC ALGORITHM CLASS

In this first part of the appendix, the MCMC algorithm class developed for the LTPDA
isa going to be explained. The class was developed by taking into account all the re-
quirements for the parameter estimation needs for LPF [1], and a technical report was
generated that describes the technical aspects of the algorithm [2]. In particular, a
parameter estimation algorithm must show a minimum of requirements, to be charac-
terised as suitable and be integrated into the LTPDA toolbox:

• The history of the analysis must be stored in the resulting pest object1.

• The results must be reproducible. Directly associated with the previous point,
each member of the DA team should be able to reproduce the analysis only with
the final product at hand.

• The code must be accompanied with the necessary comments and HTML help, for
the convenience of the user.

• A parameter estimation algorithm should be applicable to any kind of fitting
problems linked with the LPF experiments.

The new design of the MCMC class was fulfilling the above prerequisites after the
introduction of new elements, and the re-organisation of the code. Figure A.1 shows
the data flow diagram of the MCMC class, each of its modules is explained bellow.

• MCMC.preprocess: This is the first block of data handling. The time-series are split
into the desirable time spans, and later resampled, if necessary. The input model
is also pre-processed here2, depending on its format. Then, they are transferred
to the frequency domain, to be passed to the function that defines the likelihood.
The MCMC.buildLogLikelihood function builds the given likelihood, depending
on the inputs from the user. All of the discussed formats explained in sections
3.2 and 4.4, can be generated here. Finally, the expected covariance matrix of the
parameters is estimated through the <class>/fisher function.

• MCMC.simplex: A non-linear minimisation of the likelihood can be performed be-
fore sampling with the MH algorithm, to get to a better starting point. The method
used, is the one of [3].

• MCMC.mhsample: The sampling of the parameter space is performed. The likelihood
is calculated at each step, with the MH described in section 3.4. At the end of
the sampling, the statistics of the MCMC chains are computed and stored in the
output.

1 A pest object is an LTPDA instance, where the results of the parameter estimation procedures are stored.
2 The MCMC class accepts matrix, ssm, or mfh type of models.
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Figure A.1: The MCMC class flow diagram. See text for details. Credit: [2]
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Figure A.2: Git history tree. The development of the LTPDA toolbox is controlled with the git version
control, and source code management software. Credit: http://xkcd.com/1296/.





BTHE EQUATIONS OF MOTION

In this small section, the equations of motion for the x-y plane are introduced [4].
They are derived theoretically from the dynamics of the system and the recognised
cross-coupling mechanisms explained in chapter 5. The different DOF controlled can be
seen in figure B.1. At this point we should introduce some of the constants of that are
going to be used in the equations to follow:

• m1 = m2 = 1.96 kg are the masses of the TMs and mSC = 422.7 kg that of the
SC.

• Ix = Iy = Iz = 0.0006912 kg m2 are momenta of inertia of the TMs with respect
to the relative axis.

• Ix,SC = 202.5 kg m2, Iy,SC = 209.7 kg m2 and Iz,SC = 191.7 kg m2 are the
momenta of inertia of the SC with respect to the relative axis.

• 
 = 46 mm is the size of the TMs.

• r1 and r2 are the distances between TM1 and TM2 from the optical bench (in
principle, r1 = r2 ad r1 + r2 = L = 38 cm, where L is the distance between the
two TMs).

All forces and torques in the equations are normalised to the relative mass and momen-
tum of inertia respectively. The parameters and various terms that will appear in the
equations are listed as follows, assuming that each generic readout signal o is the sum
of the readout signal itself plus the injected signal, o+ oi.

Figure B.1: Schematics of the degrees-of-freedom and their notation for both TMs.

• ω2
x1, ω2

x2, ω2
y1, ω2

y2, ω2
φ1, ω2

φ2 are the parasitic stiffnesses that couple the
different DOF to the SC.

• δNcmd,φ1
and δNcmd,φ2

are the crosstalk coefficients related to the imperfection
of the two electrodes. When a rotation by applying a torque is commanded, non-
perfectly aligned electrodes will also apply a leakage force along x (see section
5.1).
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• δxy1, δxy2, δxφ1, δxφ2 are the so called cross-stiffness terms that link y1, y2, φ1,
φ2 to ö12 that originate from the distortion of the electric field lines. Actually,
here these dimensionless terms transform the stiffness of the proper DOF into a
cross-stiffness term with the x-axis.

• δfy1,cmd
and δfy2,cmd

convert the commanded force, respectively, on y1 and y2
into a force along x.

• δHy and δHΦ convert respectively the commanded force along y and the com-
manded torque around z on the SC into a force along x.

• hφ1 and hφ2 are the gains of the electrostatic suspension that controls the TMs,
respectively, around z1 and z2.

• Asus is the gain of the suspension control loop acting on the TM2 along x.

• Hy1 and Hy2 are the gain of the drag-free loops along y1 and y2.

• Hx is the gain of the drag-free loop along x.

• hΦA is the gain of the attitude control loop around z.

• ox1, oy1, oφ1
, ox2, oy2, oφ2

, oΔ are the readouts associated to the coordinates
of the two TMs and oΦ the readout associated with the SC rotation around z.

• Ax and Ay are the linear acceleration of the SC along x and y directions.

• oiφ1
, oiφ2

, oiΦ, oiy1, oiy2 are the guidance signals that we can inject into the
control loop as a bias to the original signal.

• fy1,cmd and fy2,cmd are the forces per unit mass applied respectively on TM1
and TM2 along y1 and y2.

The dynamics along x

TM1:

x1

(
s2 +ω2

px1

)
=−Ax+

+ [fy1,cmd + hΦA (oiΦ + oΦ) r1]δhy1

−
1

2

hφ1

(
oiφ1 + oφ1

)
δhφ1

+ oy1δxy1ω
2
py1 +

1

2

oφ1δxφ1ω

2
pφ1

(B.1)



the equations of motion 163

TM2:

(Δx+ x1)
(
s2 +ω2

px2

)
=−Ax+

− hxoΔ

+ [fy2,cmd − hΦA (oiΦ + oΦ) r2]δhy2

−
1

2

hφ2

(
oiφ2 + oφ2

)
δhφ2

+ oy2δxy2ω
2
py2 +

1

2

oφ2δxφ2ω

2
pφ2

(B.2)

SC:

Ax =Hxo1+

+

(
Hy2

(
oiy2 + oy2

)
r1 +Hy1

(
oiy1 + oy1

)
r2

)
δHy

r1 + r2

+
1

2

(
−Hy1

(
oiy1 + oy1

)
+Hy2

(
oiy2 + oy2

))
δHΦ

(B.3)

The dynamics along y

TM1:

y1

(
s2 +ω2

py1

)
= −Ay + s2Φr1 + hΦA (oiΦ + oΦ) r1 + fy1,cmd (B.4)

TM2:

y2

(
s2 +ω2

py2

)
= −Ay − hΦA (oiΦ + oΦ) r2 − s2Φr2 + fy2,cmd (B.5)

SC:

Ay =

(
Hy2

(
oiy2 + oy2

))
r1 +

(
Hy1

(
oiy1 + oy1

))
r2

r1 + r2
(B.6)

The dynamics around z
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TM1:

φ1

(
s2 +ω2

pφ1

)
= −s2Φ− hφ1

(
oiφ1 + oφ1

)
(B.7)

TM2:

φ2

(
s2 +ω2

pφ2

)
= −s2Φ− hφ2

(
oiφ2 + oφ2

)
(B.8)

SC:

s2Φ = −
Hy1

(
oiy1 + oy1

)
−Hy2

(
oiy2 + oy2

)
r1 + r2

(B.9)



CTHE REVERS IBLE JUMP MCMC ALGORITHM

The RJMCMC algorithm is a robust and efficient tool to estimate the Bayes Factor.
It can be shown [5, 6] that after a large number of iterations it will converge to the
true value of the Bayes Factor. The only drawback is the computational cost of the
algorithm. When more than three models are being compared, meaning that many
transdimensional moves have to be performed, a considerable amount of time is re-
quired for convergence. The algorithm implemented in this work is a special case of
the Metropolized Carlin and Chib method [7, 8].

More specifically, let us suppose that we have a total number K of models to compare
given a data set �y. Then, the recipe for our RJMCMC method can be summarised in
the following steps [7]:

1. Initialization: Choose an initial model k and the corresponding parameters �θk.

2. Apply the Metropolis algorithm for model k. This step is also called the “in model
step”.

3. Generate new �θk ′ from a multivariate Gaussian PDF and a random number ρ
ε[0, 1] from a uniform distribution. This is the step where we propose a new model
k ′.

4. Calculate the acceptance ratio α ′:

α ′ = min

[
π(�y|�θk ′)p(�θk ′)g(uk ′)

π(�y|�θk)p(�θk)g(uk)
|J|, 1

]
, (C.1)

where g(u) is the proposal distribution from where the “dimension matching”
parameters u are drawn [9], and |J| is the Jacobian:

|J| =

∣∣∣∣∣∂(
�θk ′ ,uk ′)

∂(�θk,uk)

∣∣∣∣∣ . (C.2)

5. If ρ < α ′ we accept the new model k ′ with parameters �θk ′ and set �θk = �θk ′ .

6. Iterate from step 2 until convergence is achieved.

The old set of parameters is connected to the new one by a well defined function
�θk = q( �θk ′ ,u) (and of course �θk ′ = q ′( �θk,u ′)). We use independent proposals, so
�θk = q( �θk ′ ,u) = u and �θk ′ = q ′( �θk,u ′) = u ′, thus, the Jacobian term in equation

(C.1) is unity. The algorithm spends most of the time iterating “inside" the model that
best describes the data. The RJMCMC method auto-penalizes high dimension models,
also by taking into account the priors p(�θk) of each model k. They serve as an Occam
Factor integrated within the algorithm.
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Convergence is achieved if two main conditions are satisfied. First, the condition of
reversibility, which is stated in a simple way: The proposal function must be invertible,
meaning that we can jump from the proposed parameters back to the current param-
eters. And second, we must satisfy the dimension matching condition which in our
case is always true since we use independent proposals in the acceptance ratio. After
convergence has been achieved, a good approximation to the Bayes Factor is given by
[10, 11, 6, 12]

BXY =
# of iterations in model X
# of iterations in model Y

. (C.3)



DTHE BAYES IAN PARAMETER EST IMATION P IPEL INE SCHEME

Figure D.1: The Bayesian parameter estimation pipeline flow diagram. This figure is automatically
produced in Matlab, with the command pipeline_obj.flowDiagram.

A pipeline analysis, must include a series of analysis steps to be sequentially per-
formed during operation of the LPF experiment [13, 14]. These steps refer to data re-
trieving up to submitting the results to dedicated repositories. In reality, the pipelines
designed are generalised scripts that can be applied in most in-flight situations. The
particular one showed in figure D.1 is organised as follows:

• Pipeline definition: The first action is the definition of the pipeline, by calling its
constructor with the appropriate inputs. The inputs fields are the name, type,
time-span of the analysis, and repository information. It captures all the details
of the investigation being analysed and can handle multiple experiments. This is
the red box of figure D.1, while the first grey one refers to the data repository.

• Preprocess: After the definition of the pipeline, the data are downloaded and
stored to the disk locally. The pre-process step then resamples and splits the data
in the desired sampling frequency and time-span of the analysis.
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• Consolidate: Resamples all input AOs onto the same time grid and truncates
all time-series to start at the maximum start time of the inputs and end at the
minimum stop time of the inputs.

• BuildResAccFunction: It automatically loads the pre-processed times-series and
constructs two models in the acceleration domain and stores then into disk. The
pre-defined models are a set of α1 and the differential acceleration α12, from equa-
tions 4.12. This step was developed for the x-axis system identification analysis.

• BuildModel: With the same working principle as the BuildResAccFunction, it
constructs a model given the equation provided by the user. This step basically
covers the needs for any given investigation that requires fitting.

• EvaluateResAcc: Here the model is evaluated at a given set of parameters.

• BuildLogLikelihood: The log-likelihood function is build according the the defi-
nitions provided by the user. All the available techniques discussed in this thesis
(see section 4.4), are available here. The unction is then saved into disk locally.

• EvalCovariance: The expected covariance matrix of the parameters is estimated
via the inversion of the FIM (see section 3.3). The resulting matrix is then used
for the proposal distribution1 of the MH algorithm.

• SimplexLoop: The iterative χ2 scheme described in section 4.3.2 is performed here
by sequential minimisations of the log-likelihood with the algorithm described in
[3].

• PerformMCMCFit: The sampling of the posterior distribution is performed. The
final analysis results are stored locally and also submitted to dedicated repositories
defined at the beginning of this pipeline analysis.

1 We recall that the proposal used here is a multivariate normal distribution with Σ = F−1, with F being the
Fisher matrix. It is all possible to set another porpoal distribution that may be more suitable for the given
problem.
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