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Zero probability events happen every day.

— Josè Alberto Lobo Gutièrrez

To my family.





ABSTRACT

The eLISA concept design consists of a constellation of three space-crafts forming a
triangle in the sky. While in a sun centered orbit, it will constantly monitor the dis-
tance oscillations between the test bodies enclosed in the different space-crafts. Its
principal goal, is to detect oscillations that are caused by passing Gravitational-Waves.
The technical complexity of this design was the reason for ESA and NASA to approve
the LISA Pathfinder mission (LPF) which aims at testing all the key technologies for
future Gravitational-Wave space observatories.

The LISA Technology Package (LTP) instrument onboard the LPF satellite, can be
considered as one eLISA arm, squeezed from 106 km to � 30 cm, and it aims to mea-
sure the differential acceleration between two test-bodies with unparalleled precision
via a Mach-Zehnder interferometer. Among its objectives we have: The estimation of
the acceleration noise models, the derivation of an accurate dynamical model of the
system in all degrees-of-freedom, and the estimation of the systems’ parameters. In
this thesis, we focus on a Bayesian analysis framework to set-up analysis strategies to
process the planned system identification experiments.

We first model the system using different approximations, and then we develop and
apply Markov Chain Monte Carlo (MCMC) algorithms to simulated data-sets. We
report the accuracy on the parameters over the planned system identification experi-
ments, that can be divided in two categories; the x-axis system identification experi-
ments, that are performed over the sensitive axis defined by the line joining the two
test masses; and the so-called cross-talk experiments, where different degrees of free-
dom of the test bodies of the system are excited. The various cross-coupling physical
effects that produce signal leakage on the sensitive differential interferometer channel,
are then identified and estimated. In addition, the pipeline analysis designed for on-line
data analysis during operations is presented.

Finally, we also investigate the possible model selection problems in LPF data anal-
ysis, and we apply the reversible jump MCMC algorithm to simulated data sets. Dif-
ferent applications to the x-axis and the cross-talk experiments are considered, where
the efficiency of the developed tools is demonstrated. We also show the association of
the model selection results to the design of the experiment itself. The above work is
integrated to the LTP data analysis dedicated toolbox, the LTPDA.
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In God we trust, all others bring data.

— W. Edwards Deming, The Elements of Statistical Learning, Springer New York Inc,
2001
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1GRAVITAT IONAL WAVES

1.1 introduction

The search for Gravitational-Waves (GW) was greatly accelerated with the discovery
discovery of a milisecond pulsar in a binary system [1], where the loss of its energy
could be completely explained by gravitational-wave emission according to the theory
of General Relativity (GR) 1. From the discovery of the binary until the present day,
there have been numerous attempts and many detectors have been developed devoted
to directly measuring the effects of passing GWs. Along the way, the concept of a space-
born GW detector was born, the Laser Interferometer Space Antenna (LISA). The goal
of a space antenna like LISA is to directly detect gravitational-wave sources and study
the violent events that causes them, like binary super-massive black holes.

One of the challenges of this mission is the data analysis part, where the knowledge
of the system has to be combined with the signal in the data stream. The local dynam-
ics of the system, together with the movement of the test bodies in various degrees
of freedom, may cause undesired signal leakage to the sensitive channel, the one that
measures the test masses’ oscillations caused by passing GWs. Hence, although lot of
work has been done in the field of parameter estimation of gravitational-wave sources,
it has to be combined with the dynamics of the local system, that one of the space-craft
and the test-bodies enclosed in it.

This is the role of the LISA Pathfinder mission. The LISA Pathfinder mission is a
precursor mission to space detectors following the concept of LISA, and its principal
goal is to test key technologies, to be directly inherited, and derive a noise and dy-
namical model of the local system. The LISA Pathfinder mission is going to perform
a series of system identification experiments, where the parameters of the system have
to be derived and then to estimate the differential acceleration noise between two free-
floating test-masses2. For the estimation of the dynamical parameters of the system,
the data analysis team has developed a set of tools and algorithms, that are going to
be discussed extensively in this thesis. The modelling of the system is also discussed,
as well as the analysis strategies to be followed during flight operations.

In this first introductory chapter, we explore the concept of propagating GWs, and
how they are derived from GR. We discuss the possible sources of GWs, and summarise
the attempts of detecting them via ground-based detectors. Finally, the concept of
space-born GW telescopes is presented, focusing mostly in the LISA mission concept.
The part of the GW spectrum that will be visible to a telescope like Laser Interferom-
eter Space Antenna (LISA) is also discussed. The next chapter 2 enters into details of

1 R.A. Hulse and J.H. Taylor were awarded with the Nobel prize in 1993 for this discovery.
2 Free-floating means that the test masses follow a nominally geodesic motion.

3
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the design of the LISA Pathfinder experiment, while chapter 3 introduces the back-
ground theory of the Bayesian statistics that we will use in the analysis of simulated
data-streams. Then, in chapters 4 and 5, we discuss the modelling of the dynamics
of the system, as well as the parameter estimation results from the aforementioned
simulations. Finally, chapter 6 is dedicated to model selection methods implemented
to discover the best model that describes the observations for the case of the LISA
Pathfinder experiments.

1.2 an overview of the concept of gravitational waves

The concept of Gravitational Waves (henceforth GW) was first introduced with Ein-
stein’s Theory of GR [2] and they can be seen as the consequence that no information,
in particular the gravitational interaction, can travel faster than the speed of light from
any given source to an observer. Just like in electromagnetism accelerated charges pro-
duce electromagnetic waves, the GWs are emitted with mass distribution changing over
on the geometry of the space-time; they can be interpreted as small ripples on the
space-time that periodically stretch and compress the the proper distance between two
objects.

As a direct result, the proper distance L separating two test-masses will oscillate
under the influence of a GW. The measurable effect of the GWs is produced by the
equivalent of tidal forces, that is, gradients of the gravitational potential that affect the
space-time curvature. This allows the scientific community to built potential detectors
that operate with the same principle, i.e. measuring tiny differential disturbances that
may have been caused by GWs. Since this chapter serves as an introduction, it would
be beneficial to discuss the basic characteristics of the GW radiation and how they are
derived from GR [3, 4, 5, 6] as small perturbations of space-time.

The starting point is to approximate a weak gravitational field by a “nearly” flat
space-time, which is valid for the regions away from the sources of GWs. Now, the
spacetime can be described as the manifold on which coordinates exist in which the
metric has components

gμν = ημν + hμν. (1.1)

If ημν is the Minkowski metric and we assume |hμν| � 1, we have made a first
approximation of a gravitational field as a small perturbation to the flat space-time.
Then, Einstein’s equations in the absence of matter (Tμν = 0), and far away from the
source field, can be written as

�h̄μν =

(
−

∂2

∂t2
+∇2

)
h̄μν = 0 (1.2)

where we have used the transverse-traceless gauge conditions (TT). Eq. (1.2) is the
three-dimensional wave equation and has a solution of the form

h̄μν = Aμνeikμx
μ

(1.3)

where kμ are the (real) constant components of some one-form (or the wave-vector)
and Aμν the so-called wave amplitude tensor. To go a little further, one can restrict



1.2 an overview of the concept of gravitational waves 5

the number of independent components of h̄μν and reduce it to two. It can be shown
[6], that

(a) kμ is a null vector, and if the gauge condition h̄
μν
ν = 0 is imposed, we find that

Aμν is orthogonal to kμ.

(b) since there always exists some ξμ which will transform from an arbitrary hμν to
the Lorenz gauge, we can choose one that can further reduce the components of
h̄μν as shown in the following eq. (1.4).

h̄TT
μν = (ATT

μν) cos
[
ω(t− z)

]
=

⎛
⎜⎜⎜⎜⎜⎝
0 0 0 0

0 Axx Axy 0

0 Axy −Axx 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ cos

[
ω(t− z)

]
. (1.4)

To reach that point we have assumed that �k → (ω, 0, 0,ω), to adapt the coordinate
system so that the wave propagation direction coincides with the z axis. Here, the ω

is a given frequency of the wave. For the given example where the GW is propagating
along the z-axis, we can derive the independent states of polarization of the wave as
shown in Fig. 1.1.

0(TT)
xxA Polarisation

0(TT)
xyA Polarisation

x

y

Figure 1.1: The effect of GW propagating along the z-axis, when passing through a “ring” of equally
spaced free particles. The particles are initially at rest. The first row of images shows the
distortions of the circle produced by a wave with the ‘+’ polarization while the second shows
the effect of a ‘x’ polarised wave. Notice, that contrary to the states of a electromagnetic
wave, the two states of a GW are rotated by 45o.

1.2.1 Gravitational-Wave Sources

GWs are produced with rapid changes in the distribution of mass. But the principal
question is about the possible astrophysical and cosmological sources that emit GW

radiation that can be traced in our detectors. It can be proven [7] that far away from
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the source and when the motion is small compared to c, the dominant contribution to
the strain h is

h � 2GÏμν

rc4
, (1.5)

where G = 6.67× 10−11 m3 kg−1 s−2, r the distance to the source, and Ïμν is the
reduced quadrupole moment3. From the above, it can be derived that metric pertur-
bations which are spherically symmetric do not produce gravitational radiation. For
example, a spherically symmetric collapse of a massive star will generate no GWs.

On the other hand, an optimistic estimation for h produced by a binary Neutron
Star4 located at the Virgo cluster, with both masses equal to the Chandrasekhar mass
(∼ 1.4M�), will produce a strain of |h| � 6× 10−21. In turn, an asymmetric supernovae
originating from a star with ∼ 1M� core located again at the Virgo cluster, will produce
|h| � 10−21. This is almost one order of magnitude below the sensitivity of most of
the developed bar detectors and at the limits of the initial interferometer detectors (see
table 1.1 in the following section). Thus, to look for GW sources, we have to search for
massive, rapidly moving asymmetric systems.

Another key point to be mentioned, is the event rates for sources within the reach
of the developed detectors. For instance, the supernova event rate in our galaxy is
calculated to a number of one to three events per century. Therefore, it is of crucial
importance to increase the angular sensitivity of the detectors to reach bigger portion
of the sky and increase the potential number of GW sources.

Below we will describe the potential GW sources in more detail, classified in order of
their characteristic wave frequency, paving the way to later discuss about the detection
schemes. A graphical representation of the GW spectrum can be seen in figure 1.2.

• Extremely-low frequency band, (10−18 − 10−15 Hz): It was predicted that dur-
ing the cosmic inflation, the produced cosmic GW background would imprint its
signature in the polarization of the Cosmic Microwave Background (CMB). The
BICEP2 experiment on the South pole, claimed to have confirmed recently this
hypothesis by detecting this signature (the so-called “B-mode” polarisation of the
CMB) [8, 9, 10]. At the moment, BICEP2 is at the level of upgrading the in-
strumentation for more sensitive measurements, while other space missions like
Planck are expected to solidify this result with better statistical accuracy.

• Very-low and low frequency band, (10−9 − 1 Hz): The detection of any source
emitting in the Very-low frequency band (10−9 − 10−5), is extremely demanding
in terms of detector requirements. This bandwidth is populated mostly with bi-
nary Super Massive Black Holes (SMBHs). The developed strategy for detection,
is through measuring any simultaneous deviation of know pulsar periods that
may be caused by GWs passing through the Earth [12]. There are detector arrays
already devoted to this task, like the International Pulsar Timing Array (IPTA)6,
and the future Square Kilometre Array (SKA) [13], that are expected to be the

3 The reduced quadrupole moment is defined as Iμν =
∫
ρ(�r)

(
xμxν − 1

3
δμνr2

)
dV, where ρ is the matter

density. It is also worth mentioning that this is valid in GR, but not in other alternative theories of gravity.
4 Here we have assumed the signal frequency to be f = 1 kHz and a circular orbit of coordinate radius

R = 20 km.
5 http://science.gsfc.nasa.gov/663/research/

6 http://www.ipta4gw.org/
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Figure 1.2: The GW spectrum and the detection frequency range for the different observatories. Credit:
NASA5. An more intuitive and interactive plot, together with detectors sensitivity curves,
can be found in [11].

first to claim evidence of GWs.

For the case of the low frequency band (10−5−1 Hz), it is estimated that there is a
number of sources that can be used for GW astronomy. They can only be detected
by space-borne observatories like the eLISA mission (see section 1.3.2 and figure
1.7). In particular the potential sources are coalescences of SMBHs of masses of
105 − 109 M�, white dwarf binaries, Extreme Mass Ratio Inspirals (EMRIs) of
105 − 107 M�, and ultra-compact binaries inside our galaxy [14, 15].

• High frequency band, (1− 104 Hz): In this region, mainly GWs produced by sys-
tems in their last moments of their inspiral, or very rapid bursts caused by su-
pernovae explosions are expected [16]. The large ground interferometer detectors
are focused in this bandwidth. More specifically, one of the possible sources are
NS-BH7 mergers in their last few minutes of their inspiral, out to a cosmological
redshift z = 0.4. The enhanced detectors will be also able to see tidal disruptions
of a NS by its BH companion that can be cross-validated with short gamma-ray
bursts detection. The final stages of BH-BH merger and ringdown with larger
masses than ∼ 10M�/10M� at z = 1 are also expected, as well as, deformed
spinning NS, known fast pulsars and asymmetric stellar core collapses that cause
supernovae.

7 of masses MNS ∼ 1.4M� and MBH ∼ 10M�.
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1.3 gravitational wave detection

Until recently, GWs were not even considered as tools for astronomical observations
because of the obvious difficulties in their detection. Astronomers are mostly relying in
the observation of the electromagnetic spectrum, thus limiting their measurements to
a small fraction of the available information. First because only a 4% of the universe is
observable with optical means [6], and secondly, because electromagnetic waves, from
the moment of their production, they are dispersed, scattered and absorbed multiple
times before they reach our telescopes.

GWs on the other hand, since they interact very weakly with matter, they can pro-
vide with useful information directly from the interior of the source. For example, the
estimated cross-section for the absorption of GW energy by matter is [17]

σ = 10−24S, (1.6)

where S is the transversal area of the target body. While this can be beneficial, GW

astronomy requires extremely sensitive detectors. But since a few decades now, many
ideas for GW detectors have been implemented and they are continuously being up-
graded to their limits. There are two major categories for ground-based GW detectors.
The resonant mass or simply bar detectors and the interferometric detectors [18, 19].

1.3.1 Ground-Based Detection

The first ever GW detector was built by J. Weber in the 1960s, a pioneer in the field,
who supported the idea of bar detectors. He was the first to set-up an array of such
detector antennas, operating in room temperature. It is now known, that his claims for
GW detection [20], couldn’t be reproduced by other groups. But in the end the scientific
heritage from -the now surpassed- bar detectors is widely acknowledged, in terms of
instrumentation and data analysis. The scientific community now is more focused on
the interferometric detectors, that are estimated to detect the first GW source in the
high frequency band, in the nearest future.

However, the ground-based GW detectors show an important drawback that affects
their sensitivity curve in its lower frequencies, at around ∼ 10 Hz. They are limited by
the so-called seismic wall, the Earths seismic noise, and the gravity gradient noise, and
these two can be the principal arguments to build a space-borne GW detector.

1.3.1.1 Resonant Mass Detectors

The principle of the bar detectors os based on the idea (as the name suggests) of the
resonant amplification of a signal. Consider two test masses that are linked together
with a spring of length 
0, as in left panel of figure 1.3. A passing GW will drive
oscillations around their resting position, and the measurement will be the mechanical
amplification at the spring characteristic frequency Ω.

In reality, a bar detector consists of a solid body in the shape of a cylinder (although
many shapes have been proposed and/or developed [17, 21, 22]), while several materials
have been considered like niobium, sapphire and aluminium. More details can be found

8 http://www.auriga.lnl.infn.it/auriga/detector/run1/sensitivity.html



1.3 gravitational wave detection 9

Ω
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�(t)
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M M

Figure 1.3: Left: Principle of operation of a bar detector. Right: Typical sensitivity curve of a bar
detector, in this case the linear spectral density

√
Sh of the strain noise versus frequency

for the first run of the AURIGA detector8.

in table 1.1. The primary noise sources for such a design are namely the thermal
noise, sensor noise and the quantum limit. In 1971, several institutions agreed for the
development of a network of such detectors working in coincidence, in order to do
correlation analysis to identify the direction and velocity of incoming waves [18].

After continuous improvements (achieving impresively low temperatures for the
masses), in 1990s the pioneering groups of the field created the International Grav-
itational Event Collaboration. Later in 2006, after almost two decades of operations,
no coincidence events were recorded. Nevertheless, they published the upper limit for
gravitational wave events at around 1 kHz. The present sensitivity of the detectors
could only detect GW bursts of a duration of a few ms, from sources like class II
Super Novae (SN)e located inside our galaxy (corresponds to a strain sensitivity of
h ∼ 4× 10−19). Since the rate of such events is about 0.004 SNe/year, AURIGA and
NAUTILUS antennas continued to be functional for a small period of years, as com-
plementary to interferometer GW detectors. Now they are still being operative but
probably are going to be dismantled soon, specially in countries where the focus is
shifted to laser interferometers.

Specs AURIGA NAUTILUS EXPLORER ALLEGRO NIOBE

Material Al5056 Al5056 Al5056 Al5056 Nb
M (Kg) 2230 2260 2270 2296 1500

length (m) 2.9 3.0 3.0 3.0 2.75
min freq. (Hz) 912 908 905 895 694
max freq. (Hz) 930 924 921 920 713

Q± (106) 3 0.5 1.5 2 20
Temp. (K) 0.25 0.1 2.6 4.2 5

Misalignment (∗) 5• 2• 3• 6• 16•
h̄/

√
Hz 3× 10−21 2.5× 10−19 10−20 10−20 10−20

Source: http://igec.lnl.infn.it/

Table 1.1: List of resonant mass detectors and their characteristics [21]. (∗) Angle between bar axis
and the perpendicular to the Earth great circle closer to the five detectors.
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1.3.1.2 Laser Interferometry

Given the narrowband nature of bar detectors and their limited potential sources,
the interest shifted to laser interferometer type of detectors. The main advantages of
these set-ups, is firstly the considerable improvement in the sensitivity and the broader
spectrum of sources. The idea behind the interferometer detectors is shown in figure 1.4,
and is based on the fact that a passing GW will cause changes δ
 to the proper distance

0 between two test masses. If the orientation of the test-masses and the incoming GW

is optimal, the δ
 difference will produce a phase shift

δφ =
4π

λ
δ
. (1.7)

A Michelson interferometer is a great instrument to measure this phase shift. Unlike
the bar detectors, in this case the obvious solution to increase the the size of the signal
in the data-stream, is to increase the optical arms of the detector.

10
1
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10
3

10
4

10
−22

10
−21

f [Hz]

h n(f
)

≡ 
(f

 S
n(f

))
1/

2

Initial LIGO
Advanced LIGO
Advanced Virgo

Figure 1.4: Left: Interferometer detectors operation principle: A laser beam is firstly being split (by
a beam splitter mirror) and then transmitted to the test-masses (mirrors) at the end of
the 4 km arms. There, as he light bounces, a Fabry-Perrot cavity is formed. The final
measurement happens in the photodetector where the light from both arms interferes.
A passing gravitational wave will cause disturbances in the resting distances of the test-
masses, and in turn the detectable phase shift δφ as in eq. (1.7). Right: Effective GW noise
h(f) ≡√

fSn(f) of three GW ground-based detectors. Credit: [23].

The main noise sources of the ground-based interferometer detectors are:

• The seismic noise: the main limit below 10 Hz, often called as the seismic wall.
The large mechanical vibrations are filtered out with sophisticated pendulum
suspensions and various vibration isolation systems (piezo-electric actuators, ma-
terial layers).

• The thermal noise: it is caused mostly by brownian motion of the mirrors and it
is limiting at 50 and 250 Hz.

• The shot noise: limiting at frequencies above 250 Hz, the random distribution
of photons recorded in the photodiode produce fluctuations of the light intensity.
Can be mitigated with a powerful enough laser (to the cost of radiation pressure
noise).
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• The gravity gradient noise: is caused by the local changes of the newtonian field
(atmospheric pressure, seismic density waves) and is limiting at frequencies below
1 Hz.

• The quantum noise: the shot noise and effects like zero-point vibrations.

Similar to the case of bar detectors, a network of interferometer detectors has been es-
tablished (the Laser Interferometer Gravitational-Wave Observatory (LIGO) scientific
collaboration involves the LIGO antennas, the GEO600 and has signed an agreement of
data access with the European Gravitational Observatory (EGO) that includes VIRGO).
This network enhances the angular resolution of the detector with techniques based on
time-delay between signal detection and the Doppler effect due to relative motion of
the antennas.

During the writing of this document, the LIGO collaboration was in the status of
upgrading the detectors to the so-called advanced LIGO/VIRGO, and they are scheduled
to perform their first scientific runs starting from late 2016. There are also developments
for new detectors, such as KAGRA in Japan (formerly known as the Large Cryogenic
Gravitational-wave Telescope, LCGT), and studies for new concepts, like the Einstein
Telescope (ET). The ET is a project for a new generation underground GW detector
that will be better insulated from seismic noise, and it will use cryogenic technology
for thermal stability. It is still a very broad concept and there is no any final design
nor a date to start the construction. The characteristics of the ground-based detectors
are summarised in table 1.2.

Detector Country Arm length (km) Approximate date Generation

GEO600 Germany & UK 0.6 2001-present 1st

TAMA300 Japan 0.3 1995-present 1st

iLIGO US 4 2004-2010 1st

iVIRGO Italy & France 3 2007-2010 1st

aLIGO US 4 est 2016 2nd

KAGRA Japan 3 est 2018 2nd

aVIRGO Italy & France 3 est 2017 2nd

ET European 10 est 2030s 3rd

Table 1.2: List of ground-based GW detectors and their basic characteristics.

1.3.2 Space-Based Detection: The concept of the Laser Interferometer Space Antenna

Due to the limitations of the terrestial detectors at low frequencies of the GW spectrum,
but mostly because of the interesting science in the lower frequency bands, the LISA

concept was born. It can be seen as an interferometer, similar to the ones on ground, but
gliding into orbit. The first mission concept studies can be tracked back at around 1980s
[24, 25] as a purely NASA mission that consisted of six space-crafts in a heliocentric
orbit. Later, between the period of the early 1990s to 2005, the space-borne observatory
underwent many changes in its design, but it was always widely acknowledged by the
scientific community [26] as a telescope of great scientific potential.
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Figure 1.5: Left: Cartoon of the eLISA space-crafts constellation and orbit. Right: Details for the
eLISA space-crafts configuration. The proposed design consists of one “mother” and two
“daughters” space-crafts. See text for details. Credit: [27].

But around 2012, NASA dropped from the mission due to budget cuts, and forced the
European counterpart to continue with a reduced financial plan and an evolved design.
Notwithstanding the adversities, in October 2013 the Gravitational Universe [27], a
science theme addressed to the European Space Agency (ESA) by the collaboration,
was chosen for the L3 mission to be flown in the early 2030s. And in this document
the new evolved LISA (eLISA) was introduced.

The eLISA concept is fairly similar to the established LISA design [24, 28], but with
two arms instead of three. The distances of the space-crafts has been also reduced from
5× 106 to 106 km, still flying in a heliocentric orbit as in left panel of figure 1.5. The
main goals for a space-borne GW observatory like eLISA are [27, 26]:

1. to study the nature of black holes (understand the formation, trace their history
and growth rate) and map the space-time around them.

2. to explore the stellar populations and dynamics and structure of the galactic
nuclei.

3. to test Einstein’s theory of General Relativity in the strong field regime. That
is, to answer fundamental questions about gravity, for instance, what is the GW

propagation speed and if graviton has mass or not.

4. to probe new physics and cosmology using the GWs as a tool and search for
unforeseen sources of GWs.

5. to explore energy scales and epochs as close as 10−18 to 10−10 seconds after the
Big Bang.

Since the early days of LISA, it was clear that such a mission would be technologically
challenging. As already mentioned, the experiment consists of three drag-free space-
crafts in a triangle formation, where inside each one, test-masses in free fall conditions
(undisturbed by any force other than gravitation) are placed (right panel of figure
1.5). The importance of a very quiet environment for the test-masses is immediately
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recognised, because any local disturbance may be confused with displacements caused
by GWs. One important detail about the eLISA space-crafts is that they do not require
any kind of formation-flying [25]. The constellation (distance and angles) is evolving
freely under the influence of gravitation alone, while the only actuation is torques
applied to the space-crafts, firstly to follow the test masses, and secondly to keep the
constellation in the filed of view.

At this point, it would be beneficial to describe briefly the payload of the experiment,
first to put LISA Pathfinder in context in the following chapter, but also to underline
the technological developments of the last decade. In particular, the main instrument
blocks on-board are:

• the Optical System. It is responsible for the main scientific measurements, like
the noise and the distance between the test-masses. Each optical system unit con-
sists of the telescope, the optical bench with its subsystems, and the Gravitational
Reference Sensor (GRS), which will be described below. The “Mother” space-craft
is equipped with two of these units, while each “daughter” with one. The design
of the telescope is greatly affected by the planned size of the constellation of the
space-crafts, thus the light power required. The current design has a total 60 cm

mechanical length, 20 cm diameter, and a field of view of ±7 μrad out-of-plane
and ±4 μrad in-plane. The Optical Bench brings support to the various elec-
tronic and optical components (such as mirrors, splitters, photodiodes and CCD
sensors) in order to direct and interfere the laser beams. The set-up is planned to
be inherited directly from LISA Pathfinder Technology Package on-board LISA
Pathfinder. A very critical instrument for the mission is the phasemeter, which
cannot be inherited from LISA Pathfinder due to the higher heterodyne frequency
required [29].

• the Disturbance Reduction System (DRS) is the component that constrains the
differential residual acceleration error of the test-masses. Basically it consists of
two sub-systems, the GRS and the controllers (Drag-Free Attitude and Control
System). The DRS controls the space-craft to follow its hosting test-masses by
measuring their distance between them, while keeping the the constellation in
shape. The sub-systems of GRS are namely the test-masses and housing, the ca-
pacitive sensing, the test-mass locking system, and the charge control system .
The position of the test-masses is monitored via capacitive readout system, while
the degrees of freedom other than the sensitive axis are being controlled by ap-
plying voltage to the electrodes. The GRS for eLISA is similar to the GRS of LISA
Pathfinder.

• the Micropropulsion System. The LPF mission, originally was planned to use the
so-called Field Emission Electric Propulsion (FEEP) thruster, to be abandoned in
favour of the Cold Gas thrusters. The Cold Gas μNewton thrusters, that have
been selected for the GAIA mission, were verified and declared suitable for LISA
Pathfinder.

See [25] and its references for a more detailed description.
Concerning the Data Analysis section of the experiment, great progress has been

demonstrated during the last decade; algorithms and statistical tool have been devel-
oped in order to extract and resolve the GW signal from the data stream. In addition,
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the Mock LISA Data Challenges (MLDC) took place starting at 2006, in order to demon-
strate the technical readiness of the data analysis team to disentangle multiple sources
present in the data series [30, 31, 32], as in figure 1.6. The data analysis techniques
developed for eLISA are very relevant for this thesis, because of the related nature of
the instrumentation and the similar statistical challenges. An example of GW sources
in the frequency band of eLISA can be seen in figure 1.7.

Figure 1.6: A simulation of the strain spectral density recorded by LISA broken out into the individual
contributions from galactic sources (blue), instrument noise (red), massive black holes and
EMRIs. The black line denotes the spectrum of combined detector output. Credit: [31].
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Figure 1.7: Examples of gravitational wave astrophysical sources in the frequency range of eLISA,
where the data is plotted in terms of “characteristic strain amplitude”. An equivalent plot
is shown for an EMRI source at 200 Mpc, with 5 harmonic frequencies evolving simulta-
neously. Several thousand galactic binaries, with SNRs above 7, will be resolved after one
year of observation. Millions of other binaries result in a “confusion noise” that varies over
the year. The average level is represented as grey shaded area. Credit: [27].
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2L I SA PATHF INDER

So far, we have made a short introduction to GWs physics and detection, more focused
to the space-based experiment part, the eLISA. In this chapter, we will describe the
LISA Pathfinder mission in more details, since it’s more relevant for the purpose of
this thesis. This chapter is organised as follows: In the first section, the main idea,
purposes and goals of the mission are going to be described. In the second section, the
payload and main instrumentation are going to be briefly discussed, and finally, we
will summarise the current status of the satellite.

At the time around 2000, the ESA and NASA realised the technological challenges
in the design of LISA. In addition, a great part of the flight hardware could not be
fully tested on ground. For these reasons, a mission called SMART-2 (Small Missions
for Advanced Research in Technology) and later re-named to LISA Pathfinder (LPF)
[1, 2, 3], was selected as a precursor mission to a space-borne GW observatory similar to
the concept of eLISA. The LPF was selected by the ESA Science Programme Committee
(SPC) in November 2000. It was further reconfirmed by the same body and by the ESA

Council in May 2002, as part of ESA’s new ‘Cosmic Vision’ Scientific Programme.
During the first phases of the design of the mission, the two main components of the

payload of the satellite were the LISA Technology Package (LTP), from the ESA part,
and the DRS coming from the NASA counterpart. The LTP is basically the principal
element of LPF, while from the DRS module only the thrusters and controllers from the
initial design are included. In this thesis we will focus on the European contribution of
the LPF.

The LPF is going to be launched with the ESA VEGA rocket, and put in orbit around
the first Sun-Earth Lagrange point (L1). At the moment, it is at its final stages before
the scheduled launch in half of 2015.

2.1 the mission

The scientific objective of the LPF mission consists of the first in-flight test of low fre-
quency gravitational wave detection metrology [4, 5]. In particular, while the purpose
of eLISA is to directly measure the effect of changes in the spacetime geometry pro-
duced by passing GWs, the LPFs’ main aim is to demonstrate that free-falling bodies
follow geodesics in space-time by more than two orders of magnitude better than any
past, present, or planned mission (with the exception of eLISA itself) [6].

The scheme for this test is to “squeeze” an eLISA optical arm from 106 km down to
30 cm, while keeping the main principle of measurement. The main scientific measure-
ment of LPF is the distance between two test masses (as in an eLISA arm) by means of
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laser interferometry. In the end, the relaxed in comparison to eLISA differential accel-
eration noise requirement is

S
1/2
Δα (f) � 3× 10−14

[
1+

(
f

3 mHz

)2
]

m s−2/
√
Hz, (2.1)

in the frequency range of 1 mHz � f � 30 mHz. The last equation means, that the total
noise contribution for each subsystem in the differential acceleration measurement Δα,
does not exceed the value of S1/2Δα (f) for the given frequencies. And this comes directly
from the requirements of eLISA/LISA experiment, because the ability to measure space-
time curvature requires free-falling test-mass pairs with very low relative acceleration
of non-gravitational origin, and light beam tracking of the test-masses with the lowest
possible instrumental noise. Of course together with the previous requirements, there
are secondary demands that follow. To measure with this sensitivity, we need

• Very low thrust level (∼ 10 μN) and very quiet in terms of noise to command the
Space-Craft (SC) to follow the Test-Masss (TMs).

• 18-degrees of freedom dynamical control laws, and

• A gravitationally flat and stable SC to host the test bodies.

Having described the principal aim of LPF, there is a series of individual goals to be
achieved during the lifespan of the mission. In particular, the LPF will [6]:

1. Test and develop key technologies to be inherited to a future GW observatory, like
the eLISA mission concept..

2. Characterise and model all noise sources of an instrument operating following
the working principles of LISA, dedicated for low frequency Gravitational-Wave
detection.

3. Demonstrate that electromagnetic and locally generated gravitational fields can
be suppressed to a level that allows geodesic motion with a precision better than
Δα � 7× 10−15 ms−2/

√
Hz at 1 mHz.

4. Demonstrate the residual acceleration of the spacecraft relative to a local inertial
frame with αSC � 2× 10−13 ms−2/

√
Hz at 1 mHz.

5. Operate as a differential dynamometer, and it will measure forces at 1 mHz with
amplitude uncertainty of Δα/

√
T � 2× 10−17 during a period of T � 5 days.

6. operate as a gradiometer with a resolution of � 1.5 × 10−14 s−2/
√
Hz. This

together with the gravitational compensation abilities (� 10−6s−2) of LPF, opens
the way to a new class of high-resolution geodesy missions.

In the following section we will describe the main instrument on-board, the LTP,
which performs this sensitive measurement, together with its subsystems.
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Figure 2.1: Artistic representation of the LISA Technology Package. The test-masses inside the vacuum
enclosure can be seen, as well as the optical elements of the experiment.

The LTP encloses all the elements for the sensitive differential measurement between
the TMs. It is also responsible for the drag-free control of the space-craft. Drag-free con-
trol is just one of the many tools used to achieve test-mass geodesic motion. The main
difference between drag-free and geodesic motion, is that geodesic motion is the lack
of relative acceleration between free test-masses other than the one due to spacetime
curvature, while drag-free motion is the lack of acceleration of the spacecraft relative
to a local inertial frame. This is achieved (unlike other space missions), by controlling
the attitude of the LPF space-craft with the payload, by commanding forces to the μN

thrusters.

In the following, we will break-down and describe the LTP and its various subsystems
as well as a few other important elements of the experiment; the Inertial Sensor Subsys-
tem, the Optical Metrology System, the Drag-Free Attitude Control System (DFACS),
and the Data and Diagnostics Subsystem.

• Inertial Sensor Subsystem (IS): one of the major components, it consists of
the test-masses and their surroundings; namely the vacuum enclosure, the elec-
trode housing, the frond-end electronics, the charge management unit, the caging
mechanism, and the vacuum enclosure (see figure 2.2). The IS is responsible for
the capacitive sensing and applying forces to control the motion of the TMs. In
addition, it needs to guarantee the mechanical accuracy to allow TM alignment
under the requirements [7].

The TMs, are designed to reduce as much as possible the noisy external forces.
They are identical, 1.96 kg Gold-Platinum alloy cubes. The choice of the material
(73% gold and 27% platinum) is due to its high density and its magnetic proper-
ties (very low magnetic susceptibility χm � 10−5). The high density of the alloy,
together with a greater area of the TM, allows better sensing and more accurate
commanded forces with the electrodes.
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The Caging Mechanism Assembly (CMA) is the mechanism responsible for the
release of the TMs marking the beginning of the scientific operations. One of the
major requirements of the CMA is the accuracy of the TMs injection into geodesic
orbit, and their stability during launch and separation of the space-craft mod-
ules. This instrument must release the TM within an error margin of 200 μm

and a velocity u � 5× 10−6 ms−1. During launch a hydraulic actuator applies
� 2× 103 N on each TM. Ground tests have already shown that the above re-
quirements are met for the CMA.

The TMs are enclosed inside the Electrode Housing (EH) which monitors their
position, in all six degrees of freedom (per TM), via electrostatic sensing. The EH

was required to be mechanically robust and accurate, and provide a stable thermal
environment for the TMs. For that reason the material for the construction was
shifted to molybdenum (42Mo), because of its high thermal conductivity value.
The sensing per TM is performed by twelve gold coated sapphire electrodes with
� 4 mm gap between each TM face and the electrodes.

Figure 2.2: The main components of the Inertial Sensor. Credit [8].

The principle of the capacitive measurement is based on computing the induced
voltage of the electrodes; any possible displacement of the TM from its central
initial position will cause capacitance changes between the electrode pair, from
which the read-out signal for the TM positioning will be calculated. The dominant
sources of noise inside the EH are the displacement noise and noise originating
from environmental and thermal gradient effects. The displacement noise for one
channel at 100 kHz is estimated to be at the level of

S
1/2
xth

� 1.1 nm Hz−1/2, (2.2)
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where each channel is comprised by a pair of opposite electrodes as shown in
figure 2.3. Figure 2.3 shows a cartoon of the electrodes, as well as the Frond End
Electronics (FEE), and their basic principle of operation.

TM charging due to cosmic rays is another notable noise source. Any non-zero
charge on the TM will induce a bias on the read-out of the system, since it is based
on capacitive sensing [9]. For that reason, two main strategy have been employed.
First, a series of experiments have been planned to measure the charge of the
TMs for the duration of the in-orbit operations. If necessary, DC bias voltages are
going to be applied through the electrodes to compensate stray potentials on the
TMs.

Secondly, a mechanism has been developed to dismiss the accumulated charge
from both TMs [10, 11]. This mechanism is based on illuminating the TM and
housing with UV light. With similar photoelectric properties of the two surfaces,
a net flow of photoelectrons will be produced travelling from the TM to the housing.
The module designed for this job is the UV Light Unit (ULU).
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Figure 2.3: Schematic of the TM electrode configuration, simplified to a single channel (electrode pair
along x-axis) connected to its FEE (including actuation). The dark coloured electrodes
inject a 100 kHz ac bias, while the lighter coloured ones are those used for sensing and
actuation. The TM motion along the x-axis causes an unbalance of the bridge, which is
detected by the pre-amplifier. The TM is biased to a voltage VM � 0.6 V with a signal
that is also the reference for the phase sensitive detector (abbreviated as PSD here) at
the output of the pre-amp. Signals are A/D converted and read by an on board computer.
The actuation force signals, calculated numerically according to control laws, act through
a modulation of a numerically synthesized ac drive signal VACT (at audio frequencies).
The force signal is finally D/A converted and applied to the electrodes. In the lower left
we see the alternative electrode configuration (two electrodes pre face of the TM). The
quantities denoted with δ reflect dominant noise sources. Credit [7].

• Optical Metrology System (OMS): responsible for the most sensitive scien-
tific measurements, the OMS includes the Optical Bench (OB), the Reference Laser
Unit (RLU), the laser modulator and the phasemeter. The measurement scheme
goes as follows:

The laser source (RLU) is a Nd : YAG, 35 mW transmitting at 1064 nm, non-
planar ring oscillator [12] directed via optical fibres to the laser modulator. The
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modulator generates two beams with 1.2 kHz difference to be fed into the OB1

interferometer. The four interferometers developed for the LTP [13, 14, 15, 16] are
designed to perform –in combination– the two sensitive measurements of displace-
ment.

For the LTP, the non-polarising Mach-Zehnder interferometer was chosen to be the
most suitable [13, 17]. This decision was reached after a study of different types of
interferometry, many of them using polarising components. It was shown that the
polarising components are susceptible to temperature fluctuations, and results in
the laboratory were not easily reproducible. For a Mach-Zehnder interferometer
set-up, the measurement is the photocurrent produced by the beat note signal at
the frequency difference between two interfering beams

I(t) = A(1− c cos(2πfhett+φint(t))), (2.3)

where fhet the heterodyne frequency, I is the measured photocurrent, A the
average photocurrent of the heterodyne signal, c the interferometric contrast and
φint the interferometric phase given by

φint =
2π

λ
(
1 − 
2). (2.4)

Here, λ is the laser wavelength and 
1 and 
2 are the length of the interferometer
arms. Any displacement δ
 of the optical components (the TMs in the case of
the LTP) will cause a change in the arm-length and thus in the interferometric
phase φint, as in eq. (1.7) of the first chapter. A mrad change in the phase of
the 1 kHz heterodyne signal corresponds to a position change of the TM in the
sub-nanometre range.
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Figure 2.4: Sensitivity of the differential interferometer measurement. Credit: [18].

1 The OB is made mainly by Zerodur ceramic glass of dimensions 200×212×22.5 mm. The primary material
of the OB elements, like the mirrors and beam splitters is fused silica.
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The OMS includes in total, four interferometers. The principal scientific measure-
ment is performed by the x2 − x1 (or simply x12) interferometer, which moni-
tors the distance between the two TMs with a desired sensitivity of the order of
∼ 0.1 nm (see figure 2.4). The second interferometer x1 measures the distance
of the first TM and the OB, and is more noisy than the x12 due to the pollution
of the signal originating from the noisy thrusters. The third Reference interfer-
ometer is a rigid equal arm interferometer which provides the system noise floor,
and is used to stabilise the fibre pathlengths via the Optical Pathlength Difference
actuator (OPD). Finally, the Frequency Mach-Zehnder unequal-arm interferometer
is used for corrections of laser frequency fluctuations.

Figure 2.5: Schematics of the Optical Bench. See text for details. Credit: [4].

For each interferometer read-out, two quadrant photodiodes are utilised. The
quadrant photodiodes can also be used to determine the angular rotation of the
TMs. This output is transmitted to the Phasemeter [14]. The phasemeter receives
the current measured from each photodiode, converts to voltage, and digitises
it to 0.1 kHz. For each channel, the single bin Fourier transform at heterodyne
frequency is applied. The resulting complex data vectors and DC values are sent
to the on-board computer (see DMU below) for downsampling again to 10 Hz

and further processing. There, all the measurements are combined to produce
the final longitudinal measurement, Ψ, and two angular ones, φ and η, for the
TMs. The calculation of the angular rotation along φ and η is twofold; (1) via
Differential Wavefront Sensing (DWS), where the DC signals from each quadrant
is combined to estimate the position of the beam on the photodiode, and (2) via
the phase difference with respect the heterodyne frequency for each quadrant of
the photodiode. For the latter, the position error of the beam is smaller, but the
range is reduced in comparison to the first method.
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Figure 2.6: Sensitivity of the interferometer TM rotation from laboratory tests. Credit: [18].

• Data and Diagnostics Subsystem (DDS): is a collection of sensors and ac-
tuators (Diagnostics) focusing into monitoring various disturbances inside the
LTP. The sub-system completes the Data Management Unit (DMU), the on-board
computer. In particular, the subsystems of the DDS are [19]:

1. The Magnetometers: There are four fluxgate magnetometers placed in the
LTP, surrounding the TMs. They constantly monitor the magnetic field orig-
inating from different known and unknown sources inside the satellite. The
planned analysis of the data-set acquired, includes the extrapolation of the
magnetic field to the position of the TMs, and the estimation of the magnetic
force noise to the total noise budget. In combination with the magnetic coils,
the magnetic properties of each TM are going to be estimated. More details
can be found in [20, 21, 22].

2. The Magnetic Coils: Two magnetic coils are positioned just outside the vac-
uum enclosure along the x-axis (defined by the line joining the two TMs). As
already stated above, during the magnetic dedicated experiments, the coils
will apply oscillating magnetic field along the x-axis, with the aim of estimat-
ing the magnetic moment �m ≡ {mx,my,mz} and magnetic susceptibility χm
of the TMs.

3. The Temperature Sensors: Temperature monitoring is crucial for the outcome
of the mission since thermal gradients may induce excessive force noise on
the TMs. Consequently, 23 sensors have been placed around the LTP [23, 19].

4. The Heaters: There are 14 heaters placed on the EH, the Optical Window and
the suspension struts of the LTP. Their functionality is to heat the environ-
ment in proper constant levels of temperature to later estimate the thermal
noise contribution to the overall differential acceleration noise. Secondly, the
data analysis will be focused on the disentanglement of the various thermal ef-
fects inside the IS; namely the radiation pressure, the asymmetric outgassing,
and the radiometer effect.

5. The Radiation Monitor: It is essentially a particle counter to track the rate of
charged particles bombarding the space-craft. Although the LTP is shielded
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from cosmic events, some energetic particles (E 
 100 MeV) will penetrate
the outer material layers and add charge to the TMs. The radiation monitor is
mainly comprised by two scintillator plates forming a telescope. Coincidence
events (particles that pass through both surfaces) are recorded, together with
the energy deposited. For more details see [24, 25].

6. The Data Management Unit (DMU): It operates as a module of the LTP On-
Board Computer (OBC) and is designed to control the DDS and handle the
interferometer data streams. The OBC, in-turn interfaces with the SC and
LTP sub-systems. More information can be found in [25, 26].

• μ-Newton Trusters: During the first phases of the LPF implementation, the FEEP

technology for the thrusters was considered [27]. The idea behind FEEP-type
thrusters is based on the acceleration of ions by means of electrostatic force in high
vacuum. But due to delays in the qualification schedule, the concept was aban-
doned in favour of the Cold Gas thrusters design [2], that have been developed
by Thales Alenia Space - Italy (TAS-I). The Cold Gas thrusters concept is based
on a very fine control of the gas flow emitted (N2), and controlled by a closed
loop system. Measuring the mass flow rate is also possible, with piezo-electric
actuation used to move the thruster valve.

The selection and integration process for the thrusters was relatively short, since
they are already verified for the GAIA mission [28], that is already being launched
and taking scientific measurements.

Figure 2.7: Noise performance of the Cold Gas thrusters, in different levels of applied force.

• Drag-Free Attitude Control System (DFACS): Again, one of the most important
components of the experiment, the DFACS is the computer calculating and com-
manding forces and torques to the three bodies of the system (TMs and SC) via
control laws. The controller and its modes of operation is discussed shortly in the
following section.
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2.3 operation modes

As already mentioned above, the TMs position is measured by the OMS and the IS and
the attitude of the SC (three more Degrees-of-Freedom (DOF)) is sensed by the star-
tracker. In overall, the DFACS have to control a sum of 15 DOF to perform the following
tasks:

1. to achieve robust control of the LPF SC.

2. to stabilise its dynamics and give the best performance in assisted free-fall.

3. to keep the spacecraft panels pointed to the sun, and the communication antenna
pointed to Earth.

To perform successfully the above, a great effort has been put in the design of
the DFACS to meet the noise requirements. In fact, the controllers maintain a detailed
balance between the selected drag-free DOF and their measuring bandwidth. The design
itself is based on a feedback interconnection that yields a system of decoupled simple
Single-Input-Single-Output (SISO) systems [29, 30]. The controllers have a number of
operation modes, most of them switched on during station-keeping, TM release, or for
smoother transition between modes. Below we list the most important scientific modes,
and their basic operation principles.

• Science Mode 1: Operating in this mode (often abbreviated as M3), the TM2 is
controlled along the x-axis to follow TM1. Then, the sensitive differential measure-
ment is calculated as [31, 32, 33]

x12 = SsusG
[
−Ksus,xnx12

+
(FTM1−FTM2)

mTM

+ (ω2
1 −ω2

2)x1 +ω2
2(δx2 − δx1)

]
,

(2.5)

where (FTM1 − FTM2)/mTM is the differential force per unit mass, (ω2
1 −ω2

2)x1
is the acceleration due to differential stiffness, Ssus, G and Ksus denote transfer
functions of the system and ω2

2(δx2 − δx1) represents the coupling effect due to
elastic distortion along the sensitive axis. The last effect, can be neglected at a
first approximation. The ω terms denote the parasitic spring-like stiffnesses to
the TMs. By examining eq. (2.5), and if we discard cross-talk effects, we can dis-
tinguish the main contributions to the overall residual noise. This may become
more clear if we re-write a variation of eq. (2.5) in the acceleration domain. That
way, terms representing transfer functions vanish and the contributions to the dy-
namics become more apparent. A simple realisation of the differential acceleration
between the two TMs can be written as

α12 =

[
d2

dt
+ω2

2

]
x12 + (ω2

1 −ω2
2)x1 −G2

FTM2

mTM
+G1

FTM1

mTM
, (2.6)

where G1 and G2 are the actuator gains and here we assume

x1 = o1(t− τ),

x12 = o12(t− τ) + δ12o1(t− τ),
(2.7)
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where as previously stated, the o1 and o12 are the two interferometer readings
respectively, the τ is a system delay and δ12o1(t− τ) some interferometric cross-
coupling. The dynamics and modelling of the three bodies of the system will
be revisited in chapter 4. From eq. (2.6), one of the important contributions to
the total residual acceleration is the total differential force acting on the TMs.
The term (ω2

1 −ω2
2)x1 shows “pollution” of the first interferometer channel into

the differential one, an effect that depends on the material of the TMs and the
configuration of the IS.

The Science Mode 1 is the mode where most of the experiments analysed and stud-
ied in this thesis are performed. All planned parameter estimation experiments
are going to be performed during this system configuration and its variations.
More details in Chapters 4, where the system identification along the sensitive
axis is studied, 5, where the coupling effects between different DOF is investigated,
and 6, where we perform model selection on the aforementioned experiments. A
summary of Science mode 1 and the measurement channels are presented in table
2.1

Table 2.1: Summary of Science mode 1 and its sub-modes. The 1.1 case is a transition sub-mode before
reaching the 1.2-optical. The 1.2-backup mode will be used in case of malfunction or high
unexpected noise for the optical read-outs. The different DOF controlled can be seen in
figure B.1.

Mode Measurements
IS OMS

Science Mode 1.1 x1, y1, z1, θ1, η1, φ1, none
x2− x1, y2, z2, θ2, η2, φ12

Science Mode 1.2
� All optical y1, z1, θ1, y2, z2, θ2 x1, η1, φ1,

x12, η2, φ2

� Backup y1, z1, θ1, y2, z2, θ2, x1, x12

η1, φ1, η2, φ2

Name of Loop DOF

Drag-Free x1, y1, z1, θ1, y2, z2

Suspension x2, η1, φ1, η2, φ2, θ2

Attitude ηSC, θSC, φSC

• Normal modes: They are used as transition modes to the science phase of the
experiment. During the Normal Mode (and its sub-modes) the measurements are
performed only from the IS readings.

• Accelerometer modes: The Acceleration Mode and its multiple variations are de-
signed to bring the SC smoothly into full operation. It initially monitors TM1 and
TM2 after their release with the IS and performs the first measurements/tests with
the OMS.
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2.4 ltpda toolbox

Figure 2.8: The LTPDA logo. The LTPDA toolbox is an Open License product, and the latest release
can be downloaded from http://www.lisa.aei-hannover.de/ltpda/index.html.

It is quite evident that the data analysis for the LPF mission poses some particu-
larities; The analysis has to be performed on-line, meaning that the days results must
be finalised by the end of the day after, to allow possible re-planning of experiments
and investigations. The decision making will take place in the Science and Technology
Operations Centre (STOC), which is the same place where the frond-line analysis will
be performed. Also, all derived results from the LPF mission must have a long shelf-life,
up to the commissioning of the eLISA mission [34, 35].

All the above, led to the creation of the LPF data analysis software, the MatlabTM

[36] based LTPDA toolbox. The analysis supported with the LTPDA toolbox is object
oriented, which implies that all the processing chain, together with the data, is stored
in the so-called Analysis Objects (AOs). It is specialised mostly in all kinds of spectral
and time-series analysis, while it contains a long list of LTP models in various formats,
parameter estimation algorithms, plotting tools and repository related machinery. The
set of requirements for the LTPDA toolbox are listed as follows.

1. The toolbox must provide a flexible and robust data analysis environment for all
possible needs of the LTP planned experiments.

2. All methods and functions must come together with the appropriate help and
usage information.

3. A graphical user interface must be present, for the non-programming experts.

4. The history of the processing chain must be automatically captured. This ensures
that a given result can be reproducible by any member of the collaboration with
a single line command.

The LPF system can be modelled in various ways in the LTPDA environment but all
can be arranged into two categories; the analytical, and the state-space formats. The
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latter, uses the very detailed State-Space Models (SSMs), where at the same time they
can be used as a LPF simulator [37, 38].

Figure 2.9: Example of the usage of the LTPDA language. Credit: http://www.lisa.aei-hannover.de/
ltpda/

The SSM environment allows to combine different versions of the various LTP sub-
modules to generate a “custom-made” simulator. In addition, the different noise sources
of each submodule can be manipulated and updated to the latest laboratory results.
Other modelling approximations are used when there is a need for a more direct ap-
proach to the dynamics of the three bodies of the system. More information in the
system is available in Chapter 4.

One important feature, is that the toolbox contains all the mission data analysis
pipelines. A pipeline is a form of “one-button-analysis” specially designed to be used
during operations. The LTPDA pipeline structure begins with the downloading of the
data from repositories, it continues with a pre-designed step-by-step analysis, to end
with the submission of the results to dedicated repositories again.

It is worth to mention, that the entire work presented in this thesis, has been de-
veloped to be a part of the LTPDA toolbox, coming together with the necessary HTML

help. The Markov Chain Monte Carlo class (Appendix A) and the designed system
identification pipeline (Appendix D) have already been fully tested and put into stress
during the recent LPF training exercises.

2.5 status

Being almost one year prior to the official launch date, the different LPF modules are
already integrated and tested excessively in various test campaigns. The more impor-
tant one was the On-Station Thermal Test (OSTT) campaign in late 2011, where most
of the sub-systems where already integrated to the spacecraft and where put into a
vacuum tank simulating space conditions [39, 40]. The main purpose of this end-to-end
test was to verify the satellite thermal stability and thermal properties, but for LPF, it
provided the opportunity to further test the various sub-systems when integrated.

The campaign took place at the Industrieanlagen-Betriebsgesellschaft (IABG) mbH
space simulator, in Ottobrun (Germany), (figure 2.10). Inside the vacuum tank, the
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Figure 2.10: Top: IABG mbH space vacuum chamber with the LPF during the OSTT campaign. Credit:
Astrium UK. Bottom left: The assembly of the TOQM thermal model. Credit: [40]. Bottom
right: The LPF SC on vibration tests.

nominal pressure value was below 10−4 Pa and an array of high power lamps were
resembling the suns’ radiation in L1, where the LPF will operate in science mode. Since
the EH modules were not installed during the tests, an optical-thermal system replica
was used in its place, with two movable piezo-electric driven mirrors mimicking the TMs

dynamics. Together with the OMS flight model, this set-up was forming the so-called
TOQM. The thermal noise performance of this test can be seen in figure 2.11.
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Figure 2.11: (This caption will change) Left: PSD for the optical bench temperature sensors. Right:
PSD of the different Strut temperature sensors. Credit and more details: [39].
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Figure 2.12: Performance measurement of the OMS during the OSTT campaign. (a) longitudinal mea-
surement, (b) angular measurement via DWS. Credit and more details: [40].

Up to now, there have been a series of tests on the flight hardware and software,
that put the readiness of the mission to stress. The most important of them being
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Day N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9

Team 1 Online Offline Online Offline Travel Off Duty Off Duty Travel Online Offline

Team 2 Online Offline Online Offline Travel Off Duty Off Duty Travel Online

Team 3 Online Offline Online Offline Travel Off Duty

Team 4 Online Offline Online Offline Travel

Figure 2.13: Top: Example schedule table during operations. Each team comprised by a handful of
scientists and engineers will be online every other day, with time provided to finalise any
pending analysis from their on-duty day. Credit: LISA Symposium X invited talk by M.
Hewitson. Bottom: Schematics of the Science Operations Scheme and data flow of the
ground segment. Credit: [2].

the laser assembly test campaign and the OMS system tests [41]. The various relevant
subsystems, like the RLU, the DMU, the Optical Bench and the Phasemeter, were all
delivered and assembled. The next system level test was performed again in 2011 (the
so-called sine test), where the SC was undergone through a series of vibrations, to
evaluate its overall stability.

In overall, the LPF SC was proven to be in excellent state, and the various sub-systems
where verified to be operating nominally. The overall integration process of the SC is
essentially completed, and the LPF is in the final stages before being transported to
French Guiana. Some of the results from the hardware test campaigns can be seen in
figures 2.10, and 2.12.

Being so close to launch and operations, the LPF scientists and engineers team has
already started to organise the data acquisition and analysis scheme. The ninety days
of LPFs lifetime is packed with experiments spanning from several hours to a few days.
A plan for personnel shifts has already been proposed and tested in the so-called STOC

exercises [42, 43, 44]. The schematics of the daily schedules and data flow can be seen
in figure 2.13.

In this study, we will use the data-sets generated for these simulations. In particular,
we focus on the data from STOC simulations 2, 3, and 4. Finally, The LPF collaboration
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members have been already divided into the so-called Work Packages. Each Work
Package (WP) is dedicated to a specific group of experiments, and their members are
chosen due to their specialisation in the particular field.
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Part II

L I SA PATHF INDER DATA ANALYS I S

“Bayesians address the question everyone is interested in, by using assumptions
no-one believes”,

and

“Frequentists use impeccable logic to deal with an issue of no interest to anyone”.





3BAYES IAN STATIST ICS

This chapter serves as an introduction to basic Bayesian statistics principles, as we
are going to use throughout the rest of the document. The basic concepts and tools
for Bayesian Inference are going to be explained in a brief manner, while more can be
found in classic textbooks or lecture notes [1, 2, 3, 4, 5, 6]. First, the fundamental ideas
of Bayesian (and Frequentists, for the sake of completeness) approach is going to be
summarised. Then, Bayesian statistical methods like the Markov Chain Monte Carlo,
and the Fisher Information Matrix formalism, will be shown in more detail. These tech-
niques and their advancements are relevant for this thesis and for LPF pipeline analysis.

But at this point, it would be convenient to introduce the notation used in this
chapter. From the Frequentist point of view, the probability is is seen as the rela-
tive frequency of experiments conducted under identical conditions, usually denoted as
Pr(·), while the Bayesian case (degree of belief) as π(·). To keep things simple, in this
document we will follow the Bayesian notation, with additional explanation if required.

As most detection and system identification problems, for LPF we make the assump-
tion that the observed data-sets y can be accurately described by a model h(�θ) of the
system determined by a set of parameters �θ, plus the noise

y = h(�θ) +n. (3.1)

The noise, at a first level, is assumed to be uncorrelated, stationary with zero-mean.
Then, if we also assume Gaussianity, the random noise process determines a natural
inner product (·|·) and the associated norm on the vector space of measurements is
given by [7, 8]

(
a|b

)
= 2

∞∫
0

df
[
ã∗(f)b̃(f) + ã(f)b̃∗(f)

]
/S̃n(f) , (3.2)

where the tilde (˜) denotes the operations in frequency domain, and the (∗) the complex
conjugation. Sn is the one-sided PSD of the noise. The following equation〈

(n|a)(n|b)
〉
= (a|b), (3.3)

also holds for any given real vectors a and b. Here 〈 · 〉 is the ensamble average over all
possible realisations of the noise n. Then, it can be proven [7, 9], that the probability
for the measured noise time-series n(t) to take a specific value n0(t) (or simply n0),
can be expressed as

π (n = n0) ∝ exp
(
−
1

2

(
n0|n0

))
. (3.4)

If we combine eqs. 3.1 and 3.4, we make the realisation that the most probable parame-
ters of the model of the system are lying on the maximum of the exp

[
−1/2(y− h|y− h)

]

45
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surface. This quantity later will be defined as the likelihood function of the system pa-
rameters.

3.1 theoretical background: the frequentist approach

The main attribute of the Frequentist approach (often called as “orthodox” or “sampling
theory”), is that it treats the variables as the relative frequency of occurrence of a given
event in sequential repetitions of the same experiment1. That means that the probability
is regarded as a long-run relative frequency [4]. In particular, the the so-called sampling
distribution of the statistic that depends on a given parameter set �θ is defined, where
it can be calculated for each possible random sample. Then, this statistic is written as

π(y|�θ) (3.5)

and θ is treated as an unknown set of constants. This distribution measures how the
statistic varies over all possible samples, given the unknown �θ. From the Bayesian
point of view, the Frequentist statistics performs inferences in the parameter space (the
unobservable), based on a probability distribution in the sample space (the observable).
In Bayesian statistics (see also the following Chapter 3.2), quite the opposite holds; the
inference is performed in the parameter space based on a probability distribution in
the parameter space, leading to a posterior distribution as

π(�θ|y). (3.6)

In the Sampling theory framework, most experiments are analysed using the the
p-value and confidence intervals quantities. The p-value is one of the statistical sig-
nificance tests, and in most cases has a threshold assigned to p = 0.05. It can be
interpreted as the probability, given a null hypothesis for the probability distribution
of the data, that the outcome would be as extreme as, or more extreme than, the ob-
served outcome [10]. Additionally, a confidence interval for a parameter θ is the function
L = [θmin(y), θmax(y)] of the data y. This function calculates the confidence level of
the parameter to lie in L. Usually this level is assigned to 95%.

At a first level, the Frequentist Inference is point estimation, which is in essence any
real-valued statistic or function involving the sample data that is used to approximate
the true parameters �θtrue. Various approaches for this estimators are developed, the
most important being the Maximum Likelihood Estimation (MLE)2, where one tries to
maximise the the statistic of eq. (3.5). This estimator θ̂MLE(y) can be simply written
as

θ̂MLE(y) = argmax
�θ

{π(y|�θ)}, (3.7)

where

argmax
x

f(x) = {x|∀y : f(y) � f(x)}. (3.8)

1 Its theoretical foundation lies on the Strong Law of Large Numbers.
2 The MLE was introduced by Sir R. A. Fisher in 1822
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The MLE (or any other estimator in general) is classified as a good estimator if it is
unbiased, so that E[θ̂(y)] = �θtrue and efficient var[θ̂(y)] = CRB(�θtrue). The CRB de-
notes the Cramer-Rao Bound that will be discussed later in Section 3.3. The likelihood
function, as already mentioned, can be written straightforwardly from eq. 3.1 and 3.4,
as

π(y|�θ) = C× e−
1
2

(
y− h(�θ)

∣∣y− h(�θ)
)
= C× e−χ2/2, (3.9)

where

χ2 =

(
y− h(�θ)

∣∣∣y− h(�θ)

)
. (3.10)

In many cases, instead of maximising π(y|�θ), it is much more convenient to maximise
the logarithm of the likelihood −1

2χ
2.

For the error calculation in the Frequentist framework, it is assumed that the param-
eters of the given system are kept fixed (to the estimated set θ̂i), while the noise n(t)

of the instrument is sampled from a fictitious probability distribution. Then the error
is the fluctuations of a given parameter θi (we take the error of a single parameter for
the sake of simplicity)

varθ̂ =

〈(
θ̂(y) −

〈
θ̂(y)

〉)2
〉

(3.11)

In practice, the errors of the system parameters can be retrieved by making use of the
Fisher Information Matrix (see Section 3.3).

Another useful quantity is the SNR, defined crudely as the ratio of the signal over
the background noise. It can be proven that the SNR is also a point estimator [7], here
defined as

S

N
[h] = ρ(�θ) ≡

(
h|y

)
√
(h|h)

=
(
ĥ
∣∣y) , (3.12)

where the hat (ˆ) denotes the normalised signal with respect to the scalar product of
eq. (3.2), so that (ĥ|ĥ) = 1. The SNR ρ(�θ) is a random variable with Gaussian PDF
of unit variance, and it becomes optimal when the model h accurately describes the
given system hy. So if h � hy, from eq. (3.12) and (3.1)

ρ(�θ) =
(
ĥy

∣∣y) =
(
ĥy

∣∣hy +n
)
=
(
ĥy

∣∣hy

)
+
(
ĥy

∣∣n) =
(
hy

∣∣hy

)1/2
. (3.13)

Frequentist analysis is usually much easier to prepare because many things do not
need to be specified, such as prior distributions, initial values for numerical approxi-
mation, and usually the likelihood function. Most frequentist methods have been stan-
dardised to "procedures" where less knowledge and programming are required, and
they can be applied fast and straightforwardly in most parameter estimation cases.
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3.2 theoretical background: the bayesian approach

The probability from the Bayesian point of view is seen a little differently than from the
frequentist one described in the previous section. We have seen that in the frequentist
approach, the probability of a given parameter is translated as the outcome of multiple
(infinite) identical experiments. Also, the probabilities calculated are considered before
the data acquisition, because they are based on all possible random samples, not the
specific random sample we obtained.

On the other hand, in Bayesian statistics, the probability is treated as the assign-
ment of a degree of belief for the given event, based on the evidence at hand. In this
framework, one can add the level of knowledge for a given system, into the total avail-
able information to solve a particular problem. This last feature is very relevant for
LPF, as the level of knowledge for the system will increase from day-to-day experi-
ments. Another dissimilarity is that the unknown parameters are treated as random
variables with an assigned distribution probability function and that the data-set used
is the measured one. Frequentist inference uses both observed data and future data
that is hypothetical. In reality, the difference between the two “schools” of statistics
has foundation in the definition of probability and data treatment, but in the end, it’s
the nature of the problem to solve that defines the best strategy.

During mission operations, the measurements from LPF are going to be available
in the telemetry as y time-series. If we assume a model h(�θ), depending on the set of
parameters �θ3, we can associate the posterior probability distribution with the likelihood
function, the prior information and the evidence of the model in the prominent Bayes
theorem as

π(�θ|y) =
π(y|�θ,M)p(�θ)

π(y|M)
. (3.14)

Here, π(�y|�θ,M)4 is the likelihood of the parameters �θ over the data-set y, and p(�θ)

is the prior distributions of the parameters. The posterior π(�θ|�y), represents our state
of knowledge about the truth of the hypothesis in the light of the data. So, our prior
knowledge is modified by the experimental measurements through the likelihood func-
tion, to finally yield the posterior probability. In a sense, Bayes’ theorem encapsulates
the process of learning [11].

The evidence, or marginal likelihood of the model π(�y|M) is constant over the pa-
rameter space and can be calculated as

π(�y|M) =

∫
π(�θ,�y|M)d�θ. (3.15)

The evidence of a given model, denotes the ability of this model to explain the obser-
vations. For parameter estimation problems it serves only as a normalisation constant,
and can be omitted from eq. (3.14)

π(�θ|y) ∝ π(�y|�θ,M)p(�θ), (3.16)

3 Remember that the unknown parameters are treated as random variables. This reflects the lack of knowledge
about the system of interest, like for example random instrumental noise.

4 The M, denotes the given model.
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but this will be explored in more detail in Chapter ??. Here, it has to be noted that
the terms likelihood and probability are not synonyms. The likelihood computes the
dependance of the parameters of the model given the observed data. The prior p(�θ), as
already stated contains any prior belief for the parameters that we may have available
beforehand, and the posterior distribution is the term that denotes the joint poste-
rior knowledge of the estimated parameters. The single posterior Probability Density
function (PDF) for each of the parameters �θ ≡ {θ1, θ2, · · · θn} is obtained by marginal-
ising the joint posterior probability as

π(�θ|y) =

∫
dθ1

∫
dθ2 · · ·

∫
π(�y|θn,M)p(θn)

π(�y|M)
dθn, (3.17)

and the posterior mean for the parameters is calculated as [12]

〈θi〉π =

∫
θiπ(θi|�y)dθi∫
π(�θ|�y)d�θ

. (3.18)

The quadratic moment is then

〈θiθj〉π =

∫
θiθjπ(θi, θj|�y)dθidθj∫

π(�θ|�y)d�θ
, (3.19)

with the 〈·〉π denoting the integration over the posterior PDF. In the Bayesian case,
the error is taken from a single experiment, by measuring the spread of the posterior
distribution. So the variance of each parameter θi is taken as

σ2
i = 〈(Δθi)2〉 = 〈(θi − 〈θi〉π)2〉π = 〈θ2i 〉π − 〈θi〉2π. (3.20)

One of the advantages of Bayesian statistics, is that it has a straightforward way of
dealing with nuisance parameters. They are always marginalised out of the joint pos-
terior distribution, simplifying the given problem. But, Bayesians are criticised that
they introduce subjectiveness into the problem by incorporating the prior belief. There
has been a long discussion about the level of subjectiveness in combination with non-
informative prior probabilities, but this is out of the scope of this document, as it
touches more philosophical grounds5.

In the end, we have chosen to follow the path of Bayesian analysis for LPF because
of the following advantages.

• The prior distributions, and the elimination of nuisance parameters.

• Exact inferences (e.g., confidence interval) which do not rely on large sample
approximations, are available through Bayesian approach.

• Bayesian answers have simple interpretation than the Frequentists ones, because,
as we have already seen, we infer by a process which is closer to the empirical
process of learning. An example of this is the confidence intervals in both schools.

5 More information about these discussions can be found in [13, 14, 6, 10].
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3.2.1 Multiple data channels and multiple experiments

For the LPF case, a series of system identification experiments have been planned.
Each one of them is targeting to the estimation of a particular parameter set, and
are designed to stimulate the systems’ sensitivity to this set. Working in a Bayesian
framework we are able to consider the outcome of each experiment as prior information
for the next experiment in line. This can be crucial for LTP analysis, since the final
aim is to completely model the dynamics of the system (and characterise the noise
sources), specially because of the nature of the LTP itself, where cross-talk effects are
present. For these reasons, a combination scheme for the planned experiments has been
developed [15]. Furthermore, there will be a great number of data channels available,
that can be used in combination in the analysis for greater accuracy of the estimation.
An example of the read-out channels can be the DWS outputs of the photodiodes, the
IS readings or the Temperature Sensors, etc. If we consider

�y =

⎛
⎜⎜⎜⎜⎜⎝

y1

y2
...

yNch

⎞
⎟⎟⎟⎟⎟⎠ , �h =

⎛
⎜⎜⎜⎜⎜⎝

h1

h2
...

hNch

⎞
⎟⎟⎟⎟⎟⎠ , �n =

⎛
⎜⎜⎜⎜⎜⎝

n1

n2
...

nNch

⎞
⎟⎟⎟⎟⎟⎠ , (3.21)

then, eq. (3.1) can be generalised for Nch number of channels simply as

�y = �h(�θ) + �n. (3.22)

We can then split the scheme in two categories; one where the parameter set to be
estimated remains the same through the experiments, and one where different param-
eter sets are involved in the analysis. For the first case we can assume, without loss
of generality, a number of experiments Nexp = 2, and consequently two data-sets, �y1
and �y2. Then, taking into account eq. (3.22), eq. (3.16) becomes [15]

π(�θ|�y1,�y2) ∝
prior︷︸︸︷ likelihood︷ ︸︸ ︷
p(�θ)× π(�y1|�θ,M)︸ ︷︷ ︸

prior

×π(�y2|�θ,M)︸ ︷︷ ︸
likelihood

. (3.23)

The interpretation of the last equation is twofold. We can either (safely in most cases)
assume independent experiments and write the joint likelihood function as the product
of likelihoods of the individual experiments, or regard the product prior× likelihood of
the first experiment as the prior for the second experiment in line.

Quite frequently, it is more convenient to maximise the logarithm of the likelihood
of eq. (3.23), because the expressions can be further simplified. The logarithm of the
posterior is then written as

log
(
π(�θ|�y1,�y2, · · · ,�yNexp

)
)

∝ log

⎛
⎝p(�θ)

Nexp∏
j

π(�yj|�θ,M)

⎞
⎠

∝ log
(
p(�θ)

)
+Λ(�θ),

(3.24)
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where the log-likelihood is defined as

Λ(�θ) =

Nexp∑
j

log
(
π(�yj|�θ,M)

)
. (3.25)

The same way of thinking can be extended to the case where experiments depend on
different parameter sets Θ = {�θ1,�θ2,�θ3}. Following [15], at first level we can assume
again that both �y1 and �y2 data-sets and the corresponding model, depend on �θ1. On
the other hand we can assume that �y1 and �y2 depend also on �θ2 and �θ3 respectively.
Then, from eq, (3.23), the joint likelihood is

π(�y1,�y2|Θ) ≡ π(�y1,�y2|�θ1,�θ2,�θ3) = π(�y1|�θ1,�θ2)× π(�y2|�θ1,�θ3), (3.26)

where we have omitted the M for the sake of intelligibility. This can be further simplified
if we assume independent prior densities, so that

p(�θ1,�θ2,�θ3) = p(�θ1)× p(�θ2)× p(�θ3). (3.27)

For the majority of the LTP experiments, the prior PDFs are independent (see Chapter
4). From eq. (3.26) and (3.27) we can write the joint marginal posterior distribution
for �θ1 and �θ2 for both �y1 and �y2 data-sets as

π(�θ1,�θ2|�y1,�y2) = π(�θ1,�θ2|�y1)× π(�θ1|�y2)

p(�θ1)
. (3.28)

From the above, we can see that in order to take into account the second data-set
�y2, that depends on �θ1 and �θ3, we need to consider the marginal prior and posterior
distributions of the common parameter set and that the prior of �θ1 needs to be can-
celled out. Otherwise it would enter twice into the resulting posterior. This trick can
be generalised to any arbitrary higher dimension case.

The remaining detail in the developed scheme, is to compute accordingly the likeli-
hood function

π(y|�θ) = C× e−
1
2

(
�y− �h(�θ)

∣∣�y− �h(�θ)
)
= C× e−χ2/2, (3.9)

for the investigations with multiple data channels. The inner product (·|·) of (3.2)
contains Sn(f), which for the single channel case is the PSD of the noise (a frequency
series vector). Now we have to compute the cross-spectrum matrix of the noise

S̃n(f) =

⎛
⎜⎜⎜⎜⎜⎝

S1,1 S1,2 · · · S1,Nch

S2,1 S2,2 · · · S2,Nch

...
...

. . .
...

SNch,1 Sm,2 · · · SNch,Nch

⎞
⎟⎟⎟⎟⎟⎠ , (3.29)

where the non-diagonal terms are the Cross Power Spectral Density (CPSD) of the
discrete time series of the output data channels. Of course, if the measurement channels
are independent, the matrix of eq. (3.29) is diagonal. Finally, if we define the residuals
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�r(�θ) = �y−�h(�θ), we can combine the expressions for multiple data channels and multiple
experiments, and modify the log-likelihood function of eq. (3.25) to

Λ(�θ) ∝ −1
2

Nexp∑
j

⎛
⎜⎜⎜⎜⎜⎜⎝
[
r̃1,j(�θ) r̃2,j(�θ) · · · rNch,j(

�θ)
]� × S̃−1

n ×

⎡
⎢⎢⎢⎢⎢⎣

r̃1,j(�θ)

r̃2,j(�θ)
...

rNch,j(�θ)

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.30)

which is expressed in frequency domain. The last relation is constructed automatically
in our LTPDA machinery, with an arbitrary number of channels and experiments. The
only limitation is, of course, the available computational power, since that for large
data-segments, eq. (3.30) becomes computationally heavy.

3.3 the fisher information matrix

The Fisher matrix methodology has been used extensively when involving any kind of
detection schemes, in studies of expected accuracy of the parameters of the sources.
For the case of LPF, as we will see below, it is used again for parameter accuracy
investigations and experiment design. Here we display the basic concepts following
Vallisneri [16], who has gathered and presented the various interpretations of the Fisher
Information Matrix (FIM) formalism.

A great advantage of the FIM formalism is that it can be calculated analytically and
numerically. For the cases where an analytical model is available, the FIM is quite strait-
forward to implement. But its different interpretations give rise to possible confusion.
The inverse of the FIM F−1 is approximated by three different point of views; the
Cramèr-Rao Bound, the Frequentist point of view, and the Bayesian point of view.
Below, we briefly summarise the individual approximations, concluding to the one
used for LPF data analysis.

• The Cramèr-Rao Bound (CRB) approximation: The CRB can be derived,
simply by bounding the frequentist variance estimator, from Section 3.1

var(θ̂) =

〈(
θ̂(y) −

〈
θ̂(y)

〉)2
〉

. (3.11)

If the ensemble product

〈
u(y),w(y)

〉
=

∫
u(y)w(y)π(y|�θtrue)dy, (3.31)

is defined, we can set the bounds on the estimator with the Schwartz inequality

varθ̂ ≡ 〈
u(y),w(y)

〉
�
〈
u(y),w(y)

〉2〈
u(y),w(y)

〉 , (3.32)
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which holds true for any function of the data. With (3.32), together with the
assumption that θ̂ is an unbiased estimator6 we can prove [16] that for the mul-
tivariate case

covar(θ̂i, θ̂j) � F−1
ij (θtrue), (CRB) (3.33)

which is the CRB for unbiased estimators7. Here the F−1 is the inverse of the FIM,
defined if we consider eq. (3.25) as

Fij =

〈(
∂Λ(�θ)

∂θi

∣∣∣∣∂Λ(�θ)

∂θj

)〉∣∣∣∣∣∣
θ=θtrue

. (3.34)

evaluated at θ = θtrue.

From eq. (3.3), (3.1) and (3.9), where we have assumed Gaussian properties of
the noise, we arrive to the more simple and useful relation of

Fij =

(
∂h(�θ)

∂θi

∣∣∣∣∂h(�θ)∂θj

)∣∣∣∣∣∣
θ=θtrue

. (3.35)

One of the criticisms against CRB is that practically, there is no likelihood function
against the (3.33). So, in general, and in most cases for any unbiased estimator,
the CRB is not reached with an unknown level of underperformance. In addition,
the biased case of CRB, cannot be generalised since the result is affected from the
particular estimator.

• The Frequentist high SNR approximation: The reasoning starts with the
true signal/system hy and the optimal SNR from (3.13)

A =
(
hy

∣∣hy

)1/2
. (3.36)

Then, after assuming a very large A8, the θtrue − θ̂MLE becomes so small that
the estimator is implied to achieve the CRB. The parameter-estimation errors Δ�θ
have the Gaussian probability distribution [7, 9]

p(Δθi) = C ′ × e−1/2FijΔθiΔθj , with C ′ =
√

det(F/2π), (3.37)

and therefore the root-mean square error for the parameter θi is given by√〈
(Δθi)2

〉
=
√
Σii, with Σ ≡ F−1. (3.38)

Actually, it can be proven that the bound is not reached in many cases because we
are neglecting higher order corrections, and also in order the FIM to be consistent,
other measures have to taken into account, like the likelihood mismatch criterion.

6 An “unbiased” estimator means that
〈
θ̂(y)

〉
= θtrue and consequently ∂θtrue

〈
θ̂(y)

〉
= 1. For the biased

estimator,
〈
θ̂(y)

〉
= θtrue +b(θtrue), where b is the bias, and ∂θtrue

〈
θ̂(y)

〉
= 1+∂θtrue

b(θtrue).
7 The full expression, including any bias b can be written as covar(θ̂i, θ̂j) �(

δim +∂mbi(θtrue)
)
F−1
mj

(
δjl +∂jbl(θtrue)

)
.

8 The high SNR coincides with the Linearized-Signal Approximation (LSA).
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• The Bayesian high SNR approximation: In the Bayesian context and in the
high SNR regime, the inverse of the FIM is seen as the covariance of the posterior
π(�θ|�y) when �θ = �θMAP

9, assuming Gaussian noise and uniform priors for the
parameters [17]. The introduction of Gaussian prior information centered around
�θtrue in the formulae does not affect greatly the results [16]. At a first level, the
result is equivalent to the Frequentist treatment, but the interpretation is quite
different (see Sections 3.2 and 3.1).

An interesting feature, is that in the limit A → 0, the variance of the posterior
tends to the value of the variance of the prior PDF, whilst in the Frequentist
approach, the variance tends to zero for any non-uniform prior.

For low SNRs, like in some GW detection cases, the FIM can be singular or ill-
conditioned, making its inversion problematic. This may also apply to LPF data anal-
ysis, but the advantage is that for the planned system identification experiments, the
injections are known, and the SNR is large. With this at hand, it is safer to adopt any
of the aforementioned interpretations of the FIM. But to be consistent, for most cases
we select the Bayesian context, that allows for certain advantages, like the usage of
prior densities.

3.4 markov chain monte carlo methods

As the name suggests, the idea behind the Markov Chain Monte Carlo (MCMC) is to
mix Monte Carlo methods and Markov Chains. A Markov chain

{
ζ(t)

}
is a sequence

of dependent random variables such that the probability distribution of ζ(t) given the
past variables depends only on ζ(t − 1). This conditional probability distribution is
called a transition kernel or a Markov kernel K. Eventually, the aim is to construct
Markov chains that follow the desired target, stationary distribution. The existence of
a stationary distribution requires that the kernel K allows free moves in all-over the
parameter space (or in other words, there is always positive probability reaching any
point on the parameter space)10. Another prerequisite is the so-called ergodicity of
the chains. This means that a kernel K that produces ergodic Markov chain with a
stationary distribution f, will generate simulations from f. Then if all requirements are
met, any integral g can be approximated with the Ergodic Theorem

1

T

T∑
t=1

g(ζ(t)) → 〈
g(ζ)

〉
. (3.39)

Yet, the working principe of a MCMC, is to construct a target density f, together with
a Markov kernel K with f being its stationary distribution, generate Markov chains, and
finally evaluate the integral using eq. (3.39). While there could be frustration in the
choice of a suitable Markov kernel, the solution is to choose one that can be arbitrary
up to a certain level, like the Metropolis-Hastings (MH) algorithm11. The trick is to

9 Here, �θMAP is the set of parameter values that maximise the posterior distribution (Maximum A Posteri-
ori).

10 The kernel and stationary distribution f, must satisfy
∫
Z
K(x,y)f(x)dx = f(y).

11 The MH algorithm was first introduced in a 1953 paper by Metropolis et al [18], to be later generalised by
W. K. Hastings in [19].
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link the target f with an arbitrary conditional density q that is easy to simulate in
practice. A more detailed description can be seen in Algorithm 1.

Algorithm 1 The Metropolis-Hastings (see figure 3.1)

1: If the current state of chain is ζ(tn) ≡ ζ

2: Draw a new state ζ(tn+1) ≡ ζ ′ from a proposal distribution q(ζ ′|ζ).
3: Take

ζ(tn+1) =

⎧⎨
⎩ ζ ′ with probability α(ζ, ζ ′)

ζ with probability 1−α(ζ, ζ ′)
,
where

α(x,y) = 1∧

{
f(y)q(x|y)

f(x)q(y|x)

}
. (3.40)

4: Repeat until equilibrium is reached.

In principle, the MH algorithm is a MCMC version that is guaranteed to converge no
matter the choice of the proposal distribution. The proposal only affects the rate of
convergence [19]. It should be chosen to maintain a fine balance; to allow exploring a
great part of the parameter space, without going into very low probability areas and
getting stuck. A very common solution that maintains this balance, is the multivariate
Gaussian distribution.

Figure 3.1: Simple example of the performance of the MH algorithm in different configurations. In all
cases the initial point is in [−100,100]. In panel A the theoretical, target distribution is
shown. In panel B we have used a narrow proposal distribution, assuming no prior infor-
mation for the parameter set �θ ≡ {x,y}. It is evident that the poor choice of the proposal
distribution in combination with the “flat” priors, result to minima trapping or no conver-
gence of the chains. The sampling is immediately improved in panel C, when assuming
Gaussian prior PDFs with large σx = σy =

√
3× 103. A wider proposal distribution

allows the sampling of a larger part of the parameter space, as shown in panel D.
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After the implementation of a MH procedure, the typical question is about the stoping
criteria. Or, in other words, “after how many iterations have we reached the goal of
the MH?” As in any Monte Carlo (MC) sampling method, the aim of the MH is to
simulate independent samples from the target distribution. At a first touch with the
algorithm, a rule of thumb has been established that gives a lower bound on the number
of iterations [10]. Let us assume that the target distribution is a separable distribution
along D directions. If the largest standard deviation of the space of probable states is
σmax, a MH method whose proposal distribution generates a random walk with step
size ε must be run for at least [10, p. 369]

Niter �
(
σmax

ε

)2

, (3.41)

iterations to obtain an independent sample. Actually, the σmax is one of the unknowns
to be investigated, so a criterion like (3.41) is not very practical. For that reason, other
tools have been implemented to monitor the statistical properties of the MCMC chains,
and they are going to be summarised in section 3.4.1.

Now, going back to the LPF intended analysis, we can select our target distribution
as the eq. (3.24) that we have seen earlier

log
(
π(�θ|�y1,�y2, · · · ,�yNexp

)
)
∝ log

(
p(�θ)

)
+Λ(�θ), (3.24)

while we neglect the evidence π(�y) because it is constant over the parameter space �θ.
For our parameter estimation purposes, we can sample the joint posterior PDF which
will assign the posterior PDFs �θest for the parameter set. The �θest, correlation and
the errors �σ can be extracted directly from the MCMC chains.

The role of prior densities

The choice of prior PDFs depends heavily on the problem to solve, and incorporates
the idea of subjective view of probability of the Bayesian school. In some instances,
there might not be any prior information available, and we may simply assign uniform
PDFs for each parameter. In other cases, there might be more information available and
this allows us to introduce a known density centered at the best guess value before the
estimation. In general, the types of prior PDFs are categorised in the following families;
the non-informative and the informative priors.

• Non-informative family: The first case reflects the desire to remove any subjec-
tiveness from the Bayesian procedures, and perform inference solely with the data
at hand. A non-informative prior can be for example a uniform distribution. It
is also common to use Gaussian distributions θ ∼ N(θguess,σ) with a very large
spread, that in the area of interest it can be approximated as flat. But the known
composition of the normal distribution yields good properties for numerical ap-
proximations. The renowned Jeffreys prior falls in this area also, written for a
given parameter θ as

p(θ) ∝
√
F(θ), (3.42)
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where F is the FIM. Jeffreys’ prior generalises the location and scale invariance-
based non-informative priors to arbitrary (continuous and one-to-one) reparame-
terizations.

• Informative family: Any distribution in this category reflects any kind of partial
knowledge about the parameters. Here, we meet conjugate12 priors. Conjugate
distributions arise when the likelihood times the prior produces a recognisable
posterior kernel. This introduces many advantages for analytical problems, when
the resulting posterior belongs to a known family of distribution, making it easier
to sample from. For example, any prior that belongs to the family of

P = {p(θ) = ψ(θ)νexp(ξT (θ)γ)}, (3.43)

works in an efficient way with the exponential-type of likelihood of (3.9), to pro-
duce a posterior of the same family P.

Any prior density that is not normalised over the parameter space, e. g.∫
θ
π(θ)dθ = +∞, (3.44)

is called improper prior and it fails to follow the basic law of probability, that the
integral of (3.44) must result to unity13. But they can still be used together with a
well defined evidence to yield a “proper” posterior distribution. In our case, this type
of densities will not be used, and further explanation is beneath the intended range of
this document. More details, and useful discussions can be found in [13, 14, 20].

The proposal distribution

As shown in figure 3.1, the proposal distribution may affect greatly the convergence
rate of the algorithm [21]. This can be explained because the acceptance rate R, or the
percentage of samples that are accepted over the total proposed, is solely depending on
the choice of the proposal distribution q. A high acceptance rate, is generally desired,
but it does not necessarily mean that the algorithm is behaving satisfactorily. Quite
often, a high value of R indicates that the chain is moving too slowly on the surface
of the posterior. In contrast, if the average R is low, it implies that the MH explores
regions with low probability. Nonetheless, a low acceptance rate not an issue, except for
the computing time point of view, because it explicitly indicates that a larger number
of simulations are necessary.

The traditional rule of thumb for the optimal acceptance rate urges to “tune the
scale of the proposal distribution, so that the acceptance rate of the algorithm is roughly
1/4”. This was properly formulated by Gelman et al [22], and was generalised for D-
dimensional multivariate distributions of the form of

π(�θ) =

D∏
i=1

f(θi), (3.45)

12 There are many more categories of prior densities belonging to the informative family. Some of them are the
maximum entropy or the minimum description length priors. But their description is out of the scope of
this thesis. More information can be found in [4, 5, 6].

13 In practice they are considered the limits of proper priors.
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for any one-dimensional density f. In [22], it was proven that the optimal normal
jumping kernel has its scale � 2.38/

√
D times the scale of the D-dimensional target

distribution14.
Naturally, a good candidate for the proposal distribution is the multivariate Gaus-

sian. Among the available candidate distributions, it is relatively straightforward to
implement, since it is symmetric and makes the q(·|·) from (3.40) to vanish15. But a
significant advantage is that it can be tuned (or scaled) easier because we can get a
first estimation of the spread of the target posterior distribution by the FIM technique.
Since a normal distribution with

Σ = F−1

∣∣∣∣
�θ=�θMAP

(3.46)

becomes a good approximation of the posterior around its maximum, the normal PDF

N(�θ, 2.38/
√
D× Σ), (3.47)

becomes a suitable proposal density that generates the desired acceptance ratio.

The efficiency of the MH algorithm can be further improved if we consider updat-
ing the parameters on the direction of the eigen-directions of the covariance matrix
according to [23]

θμ → θμ +

(√
β

D

)
D∑

ν=1

Vμν√
Eν

nν, (3.48)

where nν ∼ N(0, 1), Eν the eigen-values, Vμν the eigen-vectors, and β is the heat
factor (see eq. (3.49) below). Since the covariance matrix can be interpreted also as a
“mapping” of the posterior surface, a symmetric proposal distribution that updates as
in (3.48), is proven to move quicker to the maximum of the posterior.

In the end, the suitability of the proposal distribution q, is always determined by
the given estimation problem. Many alternatives to the standard Gaussian have been
developed, like the adaptive proposal [24] or more complex multimodal distributions
like in [12] where delayed-rejection MH schemes are implemented[25].

The annealing procedures

For some problems, the sampled posterior distribution appears to be multimodal,
and the convergence of MCMC methods becomes slower. The MCMC chains are spending
more time in localities of the posterior distribution, and this requires longer runs of
the algorithm. There are a few techniques developed, that allow the MCMC chains
to sample the parameter space with more ease during the search or burn-in phase of
the simulation. The search phase happens during the first iterations and the proposal
distribution can be scaled to propose each time bigger jumps, thus covering a larger
part of the parameter pace. At the same time, the target distribution can be modified

14 The acceptance rate of the associated Metropolis algorithm is approximately R = 44.1% for D = 1 and
declines to R = 23.4% as D → ∞ for the normal target, normal proposal case [22].

15 By using a symmetric q, we build a so-called random-walk MH. A random-walk MH means that in algorithm
1, each ζ(tn+1) is simulated from ζ(tn+1 = ζ(tn)+ εt, where ε here is a random perturbation.
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Figure 3.2: Acceptance ratio improvement by updating to eigen-directions. The blue solid line rep-
resents the acceptance ratio from a standard multivariate Gaussian proposal, while the
dashed orange shows the acceptance ratio for the improved eigen-direction scheme. Credit:
[23].

from π(�θ|�y) to π(�θ|�y)1/T where T � 1 to smoothen the distribution and increase the
acceptance rate. The temperature T follows

T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
10β[1−(Th/Tc)], with 1 � i � Th

10β[1−(i/Tc)], with Th � i � Tc

1 with i � Tc

, (3.49)

where β is a positive constant, i the i-th sample of the chain and [Th, Tc] mark the
“annealing” profile [15, 26] (see figure 3.3).

Another type of annealing is based on the current estimated SNR [26]. In the ther-
mostated annealing case, the PSD of the noise in eq. (3.9) is multiplied by

T =

⎧⎪⎨
⎪⎩
1, with 0 � SNR � CSNR(

SNR
CSNR

)2
, with SNR � CSNR

, (3.50)

where CSNR is a constant. This ensures that the chains do not get stuck in localities
when reaching a high SNR of the template. The same type of “thermostat” can work
with the likelihood values instead of the SNR. We have called it “simple thermostat”,
and a variant of its implementation can be seen in [27]. The temperature T is controlled
every k amount of iterations (where k a fixed constant), by calculating the deviation
of the likelihood value, according to

T =

⎧⎪⎨
⎪⎩T + 1, with δΛ(�θ) � C1

T − 1, with δΛ(�θ) � C2

. (3.51)
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Figure 3.3: Demonstration of the effect of the Simulated Annealing procedure on a parameter chain θ.
From the first to the i = Th sample of the chain, the heating is large thus allowing easier
transition in the parameter space. When Th � i � Tc, β progressively goes to 1 according
to eq. (3.49). This is the “cooling down” phase of the sampling. For i � Tc, β = 1 and the
parameter estimation phase begins. The i � Tc part of the chain is later discarded, and
the μ̂ of the given parameter is estimated. The values of Th and Tc are of course defined
according the complexity of the given problem. Credit: LTPDA toolbox HTML help page.

If this deviation δΛ(�θ) is less than a constant C1, this means that the chains are not
mixing in a satisfactory way, and the temperature is rising. The opposite happens when
δΛ(�θ) � C2, and the temperature is lowered.

Another way to increase the efficiency of the algorithm is to provide more information
of the surface being sampled. In practice, prior to system identification, only a guess
of the parameter values can be used for the calculation of the FIM (and consequently,
the Σ of the proposal). Since, the covariance matrix Σ can also be seen as a mapping,
or slope, of the posterior surface, it can be updated frequently during the MCMC to
increase the acceptance ratio. Typically this can happen during the search or burn-in
period of the chain, and if the computation of the FIM and its inversion are cost-efficient
(not computationally demanding), the Σ is calculated at each MH iteration. Otherwise,
the proposal can be updated in a constant period of the MCMC iterations.

3.4.1 Convergence diagnostics

When implementing MCMC methods, one of the remaining issues is to construct the
necessary diagnostics machinery. For a healthy MH run, we must monitor the mixing
of the chains, the acceptance ratio, and finally the convergence of the algorithm. The
convergence and mixing of the MCMC chains, or in other words, the ability of suffi-
ciently sampling the parameter space, can be monitored in two ways; by “visual” and
by statistical means. In the LTPDA implementation, we choose the following strategies
to assess the MCMC simulation [28].
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• Regular plotting of the traces during the MCMC run. The convergence run can be
simply monitored visually, by looking the progress of the parameter traces. This
is a superficial diagnostic, but in most cases it can be proven to be very helpful.
The same holds for the sampled covariance matrix of the posterior distribution,
where a lot of information about the posterior surface can be derived.

• Plotting the auto-correlation of the parameter chains. Since the aim of a MCMC

algorithm is to simulate independent samples from a target distribution, the auto-
correlation between the draws of the Markov chain may reveal the convergence
progress. The auto-correlation ρk is the correlation between every draw and its
k-th lag

ρk =

∑n−k
i=1 (xi − x̄)(xi+k − x̄)∑n

i=1(xi − x̄)2
(3.52)

The expected behaviour would be that the k-th lag autocorrelation is smaller as k
increases. If the autocorrelation is still relatively high for higher values of k, this
indicates high degree of correlation between our draws and slow mixing (figure
3.4).
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Figure 3.4: Example of good and bad mixing of the chains based on the autocorrelation of the samples.

• Another graphical procedure to characterise the mixing of the chains is the Yu-
Mykland cumulative sum path plots, that is applied to every single parameter
chain. If the chosen summary statistic is g(X), then the estimate of its mean
based on the retained iterates is

μ̂ =
1

Ntotal − Tc

Ntotal∑
j=Tc+1

g(X(j)) (3.53)

where Ntotal is the total number of samples, and the cumulative sum is

Ŝt =

t∑
j=Tc+1

(
g(X(j) − μ̂)

)
. (3.54)
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If we plot Ŝt versus the samples t we obtain a plot that begins and ends in
zero, called the cusum plot. If the mixing of a parameter chain is slow, then
the cusum plot will appear to be smoother and fluctuating further from zero.
Conversely, a fast mixing chain is accompanied with a “hairier” cusum plot, like
the θ1 parameter in figure 3.5. But, this method was criticised for being rather

Yu-Mykland convergence diagnostic
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Figure 3.5: Example of the Yu-Mykland convergence diagnostic for testing the mixing of the MCMC
chains for the set �θ = [θ1,θ2]. From this plot we can derive that parameter θ1 is mixing
faster that θ2. This figure is produced at the end of each MCMC run of the LTPDA
algorithm implementation.

subjective, and Brooks [29, 30] later proposed the “index of hairiness” I as follows.
If we define the di as

di =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1, if Si−1 > Si and Si < Si+1

if Si−1 < Si and Si > Si+1

0, otherwise

, (3.55)

then

It =
1

t− Tc − 1

t−1∑
i=Tc+1

di, Tc + 2 � t � Ntotal (3.56)

In the end, the I takes values from 1, that indicates a high level of mixing, to 0,
that corresponds to smoother cusum plots and slow mixing of the MCMC chains.

• One of the most widely used convergence diagnostics is the Potential Scale Re-
duction Factor (PSRF) R̂c, introduced by Gelman and Rubin [31]. In essence the
PSRF measures the change of the variance of m different MCMC simulations. If
the change is small enough then we can assume that the chains are converging
to the same target distribution. For each θ, the individual chains are compared
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to the mix of mn values from all sequences. The first step is to compute the
between-sequence variance

B =
1

m− 1

m∑
j=1

(θ̄j − θ̄)2, (3.57)

and within-sequence variance

W =
1

m(n− 1)

m∑
j=1

n∑
t=1

(θjt − θ̄j)
2, (3.58)

where θjt is the value after t iterations in chain j. Then, if

V̂ =
n− 1

n
W +

(
1+

1

m

)
B

n
, (3.59)

the PSRF is calculated as

R̂c =
(df+ 3)V̂

(df+ 1)W
. (3.60)

The R̂c takes values � 1, with � 1.2 being a threshold to assess the convergence of
the chains. The PSRF is mostly used in parallel runs of MCMC simulations, but it
can also be calculated for a single run. The chains are “chopped” in different, equal
in length segments, treated again as independent runs, where R̂c is computed.

• The final test is to perform a Kolmogorov-Smirnov (KS) test to the statistics
of the MCMC chains. The KS test [32], compares the sampled distribution for
each chain with a reference probability distribution. If f(x) is the probability
density function associated with a random process Xn = {x1, x2, · · · , xn}, then
the Cumulative Distribution Function (CDF) is

F(x) = Pr[X � x] =

∫x
−∞ f(u)du. (3.61)

The Empirical Cumulative Distribution Function (ECDF) is defined Fn = k/n,
with k being the number of observations that are � x. If the null hypothesis is
that the two data-sets are generated from the same statistic, it can be proven
that the maximum distance between the two ECDFs has a limiting distribution
which is independent from the statistical properties of the corresponding random
variable. Then the test can be computed as

dk = max|Fn(x) − Fm(x)|. (3.62)

between two data-sets, with k = (nm)/(n +m). Finally, being a Frequentist
criterion, a significance level α is defined (usually set to 0.05) as the probability
to reject the null hypothesis. The KS test has already been implemented for LPF

analysis of the noise in [33].

All the aforementioned convergence diagnostics, are implemented and integrated into
the LTPDA version of the MCMC [34]. They are computed automatically at the end of
each simulation. A more complete collection of convergence diagnostics methods, and
more detailed explanations, can be found in [28].
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