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Celebrem els funerals 

amb diner i candela 

de la mort del nostre porc, 

que és gran meravella, 

entre els amics i parents 

que se’l troben entre dents 

sens tenir-ne pensaments 

si és mascle o femella. 

 

 

 

Els funerals del porc (fragment), 

cançó tradicional catalana 

The funeral of the pig (fragment), 

traditional Catalan song 
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Summary 
 

 

Intramuscular fat (IMF) content and fatty acid composition affect the quality of 

pork. In particular, increasing oleic acid (C18:1) content would improve pork 

quality in terms of organoleptic and technological attributes and also of 

nutritional properties. This thesis dissertation is part of a line of research 

conducted by the Pig Breeding and Genetics Group of the University of Lleida, 

with the aim of finding strategies to genetically improve pork quality by 

increasing IMF and C18:1. It is divided into three parts. Part 1 discusses the 

implications of applying a specific statistical approach for compositional data to 

analyze these traits. It is shown that, because of the low variability of fatty acid 

composition in pork, the standard statistical techniques on raw percentages are 

robust enough for most genetic analyses, including those performed next. In 

Part 2, the genetic parameters associated to IMF and C18:1 were estimated in a 

purebred Duroc line. Both traits have a similar high heritability (0.51−0.56, for 

IMF, and 0.44−0.50, for C18:1) and a favorable genetic correlation between 

them (0.47). Furthermore, there exist selection scenarios where these traits and 

lean growth can be improved simultaneously. It was proved experimentally that 

(1) IMF and C18:1 respond effectively to selection on estimated breeding 

values based on phenotypic data of relatives, and (2) backfat thickness can be 

modified independently of IMF and C18:1. However, selection for IMF and 

C18:1 based on records from one muscle has unequal correlated responses on 

other muscles and fat tissues. In Part 3, the sequence variation of the stearoyl-

CoA desaturase (SCD) gene, the gene producing the rate-limiting enzyme in the 

biosynthesis of C18:1, was analyzed. It was shown that there is a functional 

variant in the promoter of the SCD gene with an average additive effect of 

+0.75% and +1.00% on C18:1 and total monounsaturated fatty acids, 

respectively, but no effect on IMF or carcass fatness. This was confirmed in a 

genome-wide association study which also revealed nucleotide variations in the 

leptin receptor (LEPR) gene locus affecting overall fatness and, as a result, fat 

composition. The use markers at both loci substantially enhanced the accuracy 

of prediction of IMF and C18:1. It is concluded that it is possible to 

successfully select for increased IMF and C18:1 in pork. In light of the results 

obtained several scenarios are discussed on how to implement such selection in 

practice.



Resum 
 

 

El contingut i la composició en àcids grassos del greix intramuscular (GIM) 

afecten la qualitat de la carn de porc. En particular, augmentar el contingut 

d’àcid oleic (C18:1) milloraria la seva qualitat pel que fa a atributs 

organolèptics i tecnològics i propietats nutricionals. Aquesta tesi doctoral forma 

part d’una línia de recerca del Grup de Millora Genètica del Porcí de la 

Universitat de Lleida, amb l’objectiu final de trobar estratègies per millorar 

genèticament la qualitat de la carn de porc a través de GIM i C18:1. Es divideix 

en tres parts. La Part 1 discuteix les implicacions d’aplicar un enfocament 

estadístic específic per a dades composicionals per analitzar aquests caràcters. 

Es va mostrar que, com que la variabilitat de la composició del greix de la carn 

de porc és baixa, les tècniques estadístiques estàndards sobre percentatges bruts 

són suficientment robustes per la majoria d’anàlisis, incloent les que es realitzen 

a continuació. En la Part 2, en una línia Duroc, es va estimar que GIM i C18:1 

tenen una heretabilitat alta similar (0.51−0.56, per a GIM, i 0.44−0.50, per a 

C18:1) i una correlació favorable entre ells (0.47). A més, existeixen escenaris 

de selecció en què aquests caràcters i el creixement magre es poden millorar 

simultàniament. Es va demostrar experimentalment que (1) GIM i C18:1 

responen a la selecció basada en valors de millora a partir de dades fenotípiques 

de parents, i (2) l’espessor de greix dorsal es pot modificar independentment de 

GIM i C18:1. No obstant, la selecció per GIM i C18:1 basada en dades preses 

en un múscul té respostes correlacionades desiguals en altres músculs i teixits 

adiposos. En la Part 3 es van analitzar les variacions de la seqüència del gen 

estearoil-CoA desaturasa (SCD), que codifica l’enzim limitant en la biosíntesi 

de C18:1. Es va mostrar que hi ha una variant funcional en el gen SCD amb un 

efecte additiu de +0.75% en C18:1 i +1.00% en contingut total d’àcids grassos 

monoinsaturats, però sense efecte en GIM o engreixament de la canal. Aquesta 

associació es va confirmar en un estudi d’associació genòmica que també va 

revelar variacions de nucleòtids en el locus del gen del receptor de la leptina 

(LEPR) que afecten el nivell d’engreixament i, en conseqüència, la composició 

del greix. L’ús de marcadors en aquests dos loci va millorar substancialment la 

precisió en les prediccions de GIM i C18:1. Es conclou que és possible 

seleccionar amb èxit per GIM i C18:1 en carn de porc i es discuteixen diversos 

escenaris sobre com implementar aquesta selecció a la pràctica. 



Resumen 
 

 

El contenido y la composición en ácidos grasos de la grasa intramuscular (GIM) 

afectan la calidad de la carne de cerdo. En particular, aumentar el contenido de 

ácido oleico (C18:1) mejoraría su calidad en cuanto a atributos organolépticos y 

tecnológicos y propiedades nutricionales. Esta tesis doctoral forma parte de una 

línea de investigación del Grupo de Mejora Genética del Porcino de la 

Universitat de Lleida, con el objetivo final de encontrar estrategias para mejorar 

genéticamente la calidad de la carne de cerdo a través de GIM y C18:1. Se 

divide en tres partes. La Parte 1 discute las implicaciones de aplicar un enfoque 

estadístico específico para datos composicionales para analizar estos caracteres. 

Se mostró que, como la variabilidad de la composición de la grasa de la carne 

de cerdo es baja, las técnicas estadísticas estándares sobre porcentajes brutos 

son suficientemente robustas para la mayoría de análisis, incluyendo los que se 

realizan a continuación. En la Parte 2, en una línea Duroc, se estimó que GIM y 

C18:1 tienen una heredabilidad alta similar (0.51−0.56, para GIM, y 0.44−0.50, 

para C18:1) y una correlación favorable entre ellos (0.47). Además, existen 

escenarios de selección en que estos caracteres y el crecimiento magro se 

pueden mejorar simultáneamente. Se demostró experimentalmente que (1) GIM 

y C18:1 responden a la selección basada en valores de mejora a partir de datos 

fenotípicos de parientes, y (2) el espesor de grasa dorsal se puede modificar 

independientemente de GIM y C18:1. No obstante, la selección por GIM y 

C18:1 basada en datos tomados en un músculo tiene respuestas correlacionadas 

desiguales en otros músculos y tejidos adiposos. En la Parte 3 se analizaron las 

variaciones de la secuencia del gen estearoil-CoA desaturasa (SCD), que 

codifica el enzima limitante en la biosíntesis de C18:1. Se mostró que hay una 

variante funcional en el gen SCD con un efecto aditivo de +0.75% en C18:1 y 

+1.00% en contenido total de ácidos grasos monoinsaturados, pero sin efecto en 

GIM o engrasamiento de la canal. Esta asociación se confirmó en un estudio de 

asociación genómica que también reveló variaciones de nucleótidos en el locus 

del gen del receptor de la leptina (LEPR) que afectan el nivel de engrasamiento 

y, en consecuencia, la composición de la grasa. El uso marcadores en estos dos 

loci mejoró substancialmente la precisión en las predicciones de GIM y C18:1. 

Se concluye que es posible seleccionar con éxito por GIM y C18:1 en carne de 

cerdo y se discuten varios escenarios sobre como implementar esta selección en 

la práctica. 
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Introduction 
 

 
Pig meat represents 36% of the total meat produced in the world, and the 51% in 

the European Union (FAO, 2014). Spain is the 4th pig producer in the world and 

produces 3M tonnes/year, which represents 3% and 15% of the world and European 

Union productions, respectively. In Spain, where the production of pig meat reaches 

the 64% of total meat, processed and dry-cured products are of great importance. 

Particularly, the traditional dry-cured ham is very appreciated by consumers and can 

have a large added value according to its quality. Intramuscular fat (IMF) content and 

fatty acid composition are relevant factors for meat quality from the organoleptic, 

technological, and nutritional points of view (for a review see Wood et al., 2003), and 

thus, they are becoming two important issues for both the pig industry and the 

consumers. 

Intramuscular fat comprises the lipids both in the proper intramuscular adipose 

tissue (fat cells located along the fibres and in the interfascicular areas) and in the 

muscle fibres (Gandemer, 2002). Whereas the intramuscular adipose tissue has a 

storage function and mostly contains neutral lipids (mainly triglycerides), the principal 

contribution of muscle fibres to IMF is phospholipids (lipids in the cell membrane with 

a structural function). Overall, the major fatty acids in pork are oleic acid (C18:1; 

>30% of total fatty acids, reaching 45% in our study population), palmitic acid (C16:0; 

~20%), stearic acid (C18:0; ~10%), and linoleic acid (C18:2; ~10%). Both IMF 

content and composition are known to be interrelated and affected by several factors, 

including genetics, which makes them susceptible to being genetically improved 

through selection. 

 

I.1. INTRAMUSCULAR FAT AND MEAT QUALITY 

I.1.1. Organoleptic quality 

There is a general agreement that IMF content has a favorable effect on the 

sensory attributes of pork, although there has been some debate because systematic 

effects have not been found in all studies (Cameron, 1990; Fernandez et al., 1999a,b; 

Ruiz-Carrascal et al., 2000; Fortin et al., 2005; Lonergan et al., 2007; Gjerlaug-Enger 

et al., 2010). The mechanisms by which IMF could improve the organoleptic quality 

are not totally clear either. It is speculated that the fat cells between muscle fibre 

fascicles might separate them physically and promote tenderness (Wood et al., 2003). 

Juiciness could be improved by lipids trapping moisture (Wood et al., 2003) and 

stimulating the secretion of saliva (Ruiz-Carrascal et al., 2000). Lipid oxidation and 

Maillard reactions during cooking transform the fatty acids into volatile compounds 
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that contribute to the characteristic flavor of pork (Mottram, 1998; Cameron et al., 

2000; Gandemer, 2002). Some reports suggested that there is a threshold above which 

further increases of IMF levels do not improve sensory attributes. It has been estimated 

in 1.5% (Fortin et al., 2005), 2% (Bejerholm & Barton-Gade, 1986), or 2.5−3% 

(DeVol et al., 1988). 

Nonetheless, the most important is the consumer acceptability of meat. 

Kempster et al. (1986) reported that although the meat from fat carcasses was juicier, 

less tough, and more flavorful than that from lean carcasses, no differences were found 

in consumer acceptability. Similarly, in the experiments by Fernandez et al. (1999a), a 

trained sensory panel gave higher juiciness and flavor scores to loin chops with IMF 

levels above approximately 2.5%. When the same chops were evaluated by non-trained 

consumers (Fernandez et al., 1999b), those with IMF levels of 2.5−3.5% were more 

favorably evaluated for both tenderness and taste, but it was observed that higher IMF 

levels could lead to rejection of the raw chops due to more visible fat and fat-

associated health concerns (Fernandez et al., 1999b; Brewer et al., 2001). Marbling is 

the term used to refer to the visible fat in meat, in the form of white streaks of fat 

between the muscle fibres. It is only a part of the total IMF, but strongly related to total 

content, and it affects the consumer perception of meat (Brewer et al., 2001). Several 

studies determined the optimum IMF levels for consumer acceptability. It varies 

depending on cultural preferences but also on the kind of product. For example, for 

fresh pork, the optimum has been located at 1.5−3.5%, but for high-quality Iberian dry-

cured products levels up to 12% are appreciated (Ventanas et al., 2007). 

The composition of IMF also affects the organoleptic quality of meat. In general, 

SFA and MUFA are positively related to better attributes, in opposition to PUFA. This 

holds true for flavor, tenderness, and juiciness (Cameron & Enser, 1991; Cameron et 

al., 2000; Ruiz-Carrascal et al., 2000). In particular, Cameron et al. (2000) reported 

positive correlations of C18:1 with pork flavor and overall acceptability (0.36−0.40). 

However, because IMF content and composition are interrelated (Section I.2.1), it 

remains uncertain whether this reflects the effect of IMF content instead of the fatty 

acids themselves. 

 

I.1.2. Technological quality 

In general, greater concentrations of PUFA are undesirable regarding 

technological quality (Wood et al., 2003; Webb & O’Neill, 2008). The melting point of 

fatty acids declines with unsaturation and, as a consequence, PUFA content affects 

negatively the fat firmness and also the color of fat, which is more yellowish when 

fatty acids with low melting points are more abundant. At the same time, more 

unsaturated fatty acids are more prone to oxidation, either by direct chemical action or 
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by lipolytic enzymatic activity. Although lipid oxidation is an important reaction in the 

development of flavor of cooked pork, it affects negatively the product shelf life, 

causing problems of fat rancidity. 

 

I.1.3. Nutritional value 

Meat is a major source of fat in the diet and its fatty acid composition determines 

its nutritional value. Whereas total fat intake is clearly associated with diseases like 

obesity, no evidence for significant effects on cardiovascular disease or cancer 

incidence have been found (FAO, 2010). Rather than the total amount of fat, it is its 

fatty acid composition that has an impact on the risk of cardiovascular disease. The 

intake of SFA has been widely associated with increased low density lipoprotein 

(LDL) and total cholesterol levels in blood, considered indicators for the risk of 

cardiovascular disease (Williams, 2000; FAO, 2010). Reducing the total fat intake has 

been proved to be an inefficient strategy to overcome this problem (Hooper et al., 

2012). Meta-analyses indicated that isocaloric substitutions of dietary SFA with 

carbohydrates have not succeeded in modifying the ratio between total and high-

density lipoprotein (HDL) cholesterol in blood (Micha & Mozaffarian, 2010). On the 

other hand, isocaloric replacements of SFA with unsaturated fatty acids can reduce the 

cholesterol levels and the risk of cardiovascular diseases (Hooper et al., 2012). 

Particularly, replacing SFA with PUFA is effective in reducing LDL and total 

cholesterol and increasing HDL cholesterol and in reducing cardiovascular disease (Hu 

et al., 2001; Stewart et al., 2001; Micha & Mozaffarian, 2010). Results regarding the 

effects of replacement with MUFA are often mixed and contradictory. Some 

experiments proved that products with MUFA-enhanced compositions can be 

successful in reducing blood cholesterol levels in humans (Williams, 2000). A meta-

analysis by Clarke et al. (1997) indicated that isocaloric substitutions of dietary SFA 

with MUFA succeeded only in increasing HDL cholesterol (about as much as PUFA) 

but failed to decrease LDL and total cholesterol. Substitutions of carbohydrates with 

MUFA resulted in increased HDL cholesterol levels without affecting LDL cholesterol 

(Hu et al., 2001) or in decreased LDL cholesterol without affecting HDL cholesterol 

(Micha & Mozaffarian, 2010). Overall, replacement of SFA with PUFA has had better 

results on blood cholesterol levels than replacement with MUFA. The FAO (2010) 

considered that there is convincing evidence that replacing SFA with PUFA reduces 

the risk of cardiovascular disease, and reckons that a similar effect may be expected for 

MUFA despite insufficient evidence. 

Regarding PUFA, the omega-3 and omega-6 PUFA have to be distinguished. 

Both are essential in humans, i.e., they cannot be synthesized de novo and must be 

provided by the diet, mainly by meat and fish products. However, while omega-3 
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PUFA are widely regarded as beneficial for human health and have chemoprotective 

properties, some unfavorable effects have been reported for the omega-6 PUFA if their 

intake is excessive. These PUFA, and mainly arachidonic acid (C20:4), can easily 

oxidise and their peroxidation products could have adverse health effects such as 

increasing the risk of breast cancer development (Jiménez-Colmenero et al., 2001; de 

Lorgeril & Salen, 2012). Because the susceptibility to peroxidation increases with the 

number of double bonds of the molecule, Christophersen & Haug (2011) suggested 

replacing SFA with C18:1 instead of PUFA to overcome the adverse properties of the 

peroxidised products derived from PUFA. 

Social concerns about the effects of fatty acid composition on health find their 

expression in the recommendations of national and international health authorities. The 

Food and Agriculture Organization and the World Health Organization of the United 

Nations (FAO, 2010) recommended a fat intake of 15−35% of total energy intake, a 

maximum SFA intake of 10% of total energy, and a PUFA intake of 6−11% of total 

energy (2.5−9% and 0.5−2% for omega-6 and omega-3 PUFA, respectively). No limits 

for MUFA intake were included in these recommendations. The MUFA intake can 

cover a wide range of values depending on total fat, SFA, and PUFA intakes. More 

recently, in 2011, Denmark was the first country to apply a "fat tax" of 2 €/kg of 

saturated fat on products that exceeded 2.3% of SFA (BBC News, 2011). Although it 

was abolished one year later due to the extra costs for the producers and the inflated 

prices for the consumers (BBC News, 2012), this is the first known attempt to regulate 

the fatty acid composition of food rather than only providing guidelines. 

 

I.1.4. Intramuscular oleic acid and meat quality 

While high contents of SFA and MUFA are desirable in terms of organoleptic 

and technological meat quality, dietary recommendations indicate unsaturated fatty 

acid profiles as healthier. A more monounsaturated fat can be regarded as a good 

alternative to improve simultaneously the organoleptic, technological, and nutritional 

properties of meat. The MUFA C18:1 is the main fatty acid in pork and, because of all 

this, intramuscular C18:1 content can be an interesting trait to be included in the 

selection objectives of pig lines aimed at high-quality products. As stated before, C18:1 

has been associated with better pork flavor and overall pork acceptability (Cameron et 

al., 2000) and benefits on human health (Christophersen & Haug, 2011). Additionally, 

high intramuscular C18:1 content is one of the characteristics of the well-reputed dry-

cured ham from acorn-fed Iberian pigs, sometimes also called "the olive with legs". 

Like olive oil, this kind of ham is already favorably perceived by consumers both for 

its taste and for its nutritional value. A higher C18:1 content in pork could help in 

changing the unjustified (from the scientific point of view) negative perception that 

some consumers have of pork (Verbeke et al., 1999). While nowadays pig carcasses 
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and meat are not directly priced based on its fat composition, meat products with better 

sensory attributes and a healthier fatty acid profile might find good acceptance in niche 

high-quality markets (Knap, 2014). 

 

I.2. MAIN FACTORS AFFECTING INTRAMUSCULAR FAT COMPOSITION 

Intramuscular fat content and composition are affected by several factors 

including diet, breed, sex, age, or tissue, among others. Because there exists a 

relationship between IMF content and its fatty acid composition, the effect of the 

aforementioned factors on IMF composition is difficult to separate from the effect of 

IMF content (De Smet et al., 2004; Wood et al., 2008). The diet is the factor with the 

greatest effect on fat composition. Because of this, multiple studies investigated diet-

based strategies to modify the pork fatty acid profile, but their effectiveness regarding 

IMF composition is limited. 

 

I.2.1. Relationship between fat content and composition 

Fat depots can be divided into two fractions: neutral lipids (mainly triglycerides) 

and phospholipids. Because phospholipids are a constituent of cell membranes in 

muscle fibres, their amount in muscle remains almost constant throughout fattening 

(Wood et al., 2008). In the case of subcutaneous fat (SF), the proportion of 

phospholipids is low and unimportant. As the adipose tissue develops, the endogenous 

synthesis of SFA and MUFA increases and results in a greater accumulation of neutral 

lipids in the adipocytes. This leads to a differential composition of these two fractions. 

The phospholipids have a higher PUFA content than the neutral lipids (Leseigneur-

Meynier & Gandemer (1991) reported values of 33−40% and 7−15%, respectively) 

and, particularly, C20:4 content is also proportionally higher in the phospholipid 

fraction with respect to the other PUFA. When IMF content increases, so does the 

neutral lipids fraction (and so, SFA and MUFA), while the phospholipids fraction (and 

so, PUFA) relatively decreases. Thus, the SFA and MUFA are positively correlated 

with the IMF content, and the PUFA negatively (e.g., Cameron & Enser, 1991; Yang et 

al., 2010). Also, because SFA and MUFA are mostly synthesized endogenously, the 

correlations among them are positive (mean value reported by Cameron & Enser 

(1991): 0.59), but they are negatively correlated with PUFA (−0.62), which, on the 

other hand, have a dietary origin and are also positively correlated among them (0.70). 

 

I.2.2. Diet 

In opposition to ruminant animals, in monogastric animals such as the pig 

dietary fatty acids are not modified during their pass through the digestive system and 
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are deposited in SF and in muscle as they are intaken. As a consequence, pig adipose 

tissues reflect the fatty acid composition of the diet. Feeds with supplementary fatty 

acids have been proved a successful strategy in modifying the composition of fat in 

pig. There has been particular interest for omega-3 PUFA. Because in pigs C18:2 and 

C18:3 are essential fatty acids (i.e., they cannot be synthesized endogenously), their 

contents can be easily modified by the diet. Reported experiments indicate that it is 

possible to increase the C18:2 content from 10-15% to over 30% only by 

supplementing it in the diet (Wood et al., 2003), but then adverse consequences on 

sensory attributes can appear. Similarly, the C18:1 content can also be modified by the 

diet, without negatively altering the organoleptic quality (Rhee et al., 1990; Myer et al., 

1992; Klingenberg et al., 1995). The paragon of this strategy is the acorn-fed Iberian 

pigs, whose fresh ham can reach C18:1 contents up to ~55% (Tejeda et al., 2002). 

However, because the C16 and C18 SFA and MUFA can be synthesized endogenously, 

their final content is less affected by the diet than the PUFA content (Wood et al., 

2008). In pigs, the de novo synthesis could produce 86% of total deposited non-

essential fatty acids (Kloareg et al., 2007). This is likely to happen especially in 

genetically fatter pigs where de novo synthesis has a greater relative impact, although 

de novo synthesis could be reduced when high amounts of fat are fed (Flachowsky et 

al., 2008). 

Another downside of this approach is that it has been observed that the fatty acid 

supplementation in the diet is less effective in modifying the IMF composition than 

that of the SF (Duran-Montgé et al., 2008; Flachowsky et al., 2008), probably because 

of the higher neutral lipids content of SF (the composition of structural lipids in IMF is 

more stable). For example, in a study by Klingenberg et al. (1995) pigs were fed during 

8 weeks either with a control diet containing beef tallow or with an experimental diet 

containing high-oleic acid sunflower oil. The C18:1 content of the experimental diet 

was 1.92 folds that of the control, but C18:1 of animals in the experimental group 

resulted to be only 1.07-fold in IMF and 1.18-fold in SF. In this experiment, diet also 

affected the activity of the stearoyl-CoA desaturase (SCD), responsible of desaturing 

C18:0 into C18:1 and, consequently, the desaturation index C18:1/C18:0, in SF but not 

in IMF. Other experiments provided mixed results. In the trials by Mas et al. (2010, 

2011), a high-oleic diet with 1.53 folds the C18:1 of the control treatment was fed to 

crosses of Landrace × Large White with either Pietrain or Yorkshire. While in one trial 

C18:1 in IMF increased more than in SF (1.13 vs. 1.08 folds those of the control 

treatment, respectively), in the other a significant increase was found only in SF. 

An alternative strategy for modifying fat content and composition through the 

diet is feeding low-protein diets. In this case, the energy that cannot be used in muscle 

synthesis due to the unavailability of aminoacids is expended in synthesizing fat 

instead, increasing IMF (Wood et al., 2004). Doran et al. (2006) showed that in low-
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protein diets, the intramuscular SCD protein expression and activity were also 

increased, resulting in increased desaturation index C18:1/C18:0 in muscle. Wang et al. 

(2012) provided further evidence of the up-regulation of the SCD gene expression in 

low-protein diets. Interestingly, the expression of lipogenic genes was up-regulated and 

that of lipolytic genes down-regulated. As a consequence of the increased IMF de novo 

synthesis, C18:1 and MUFA contents increase (Wang et al., 2012; Wood et al., 2013). 

Cost of the high-oleic raw ingredients and penalty in the feed conversion ratio 

are other factors that may limit the application of these diet-based strategies. 

 

I.3. GENETIC STRATEGIES TO IMPROVE INTRAMUSCULAR FAT 

CONTENT AND COMPOSITION 

During the last decades, most breeding schemes have focused on performance 

traits, such as average daily gain, feed conversion ratio, and lean content. Due to the 

negative genetic correlation of IMF with carcass leanness (from −0.55 to −0.07, as 

reviewed by Sellier, 1998) and positive with carcass fatness (from 0.04 to 0.60, 

according to the same review), these breeding programs have reduced IMF content in 

pig meat below the recommended values (Bejerholm & Barton-Gade, 1986; DeVol et 

al., 1988; Wood et al., 2008). This led to a diminution in the sensory attributes of pork. 

During the 1970s and 1980s, some authors already alerted that the improvement of lean 

content in pig meat was leading to poorer meat sensorial quality (Judge, 1972, as cited 

by Martin & Fredeen, 1974; Kempster et al., 1986). However, despite of the positive 

genetic correlation between IMF and pork overall acceptability (from 0.54 to 0.68; 

Sellier, 1998), acceptability by consumers was not negatively affected (Kempster et al., 

1986). Schwab et al. (2006) used frozen semen of Duroc sires from the 1980s to 

compare the meat quality of their offspring with that of current sires. Results showed 

that improvement of the leanness during the last decades had been accompanied by a 

reduction of IMF and instrumental tenderness, and by worse flavor scores. In a similar 

way, in another Duroc line selected for lean growth efficiency, a reduction of IMF 

content was observed together with reduced meat quality despite that a causal link 

between them was not established (Lonergan et al., 2001). This was also observed in 

Large White by Cameron et al. (2000), who showed that selection for the components 

of efficient lean growth reduced IMF and increased its PUFA content, but, in this case, 

unfavorable changes in flavor and acceptability were very low, maybe because IMF 

level was already very low (around 1%). 

Nowadays, the negative effects of selection for efficient lean production on 

sensorial quality and the consumers concerns about health have stimulated the 

inclusion of criterion traits such as IMF content and fatty acid composition, particularly 

C18:1, in the selection schemes of the breeding companies for improving meat quality. 
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The new challenge for pig industry is to improve simultaneously the performance and 

meat quality traits or, at least, to improve some of them without penalizing the others. 

While diet modification is a feasible strategy, genetics can be an equally effective 

complementary approach. 

 

I.3.1. Duroc crosses 

The Duroc breed is characterized by its high IMF in relation to the other 

common breeds (Large White, Landrace, and Pietrain) and, because of this, it has been 

widely used in commercial crosses to improve meat quality (Oliver et al., 1994). In 

Spain, the Duroc breed is also used both as purebred and as Iberian-crossed (BOE, 

2014) for dry-cured ham production. Duroc (sire) × Iberian (dam) crosses are aimed to 

improve production performance of Iberian pigs without penalyzing their IMF content 

as much as crossing with leaner breeds could (Tejeda et al., 2002; Ventanas et al., 

2007). 

 

I.3.2. Direct selection 

Because there exists genetic variance within breed (De Smet et al., 2004; Cilla et 

al., 2006; Solanes et al., 2009), it is possible to select for IMF content and composition 

traits. The heritability of IMF has been found to be high, as well as that of fatty acids 

content. A wide range of heritability estimates have been reported for IMF, from 0.26 

to 0.86, with an average of 0.50 (Sellier, 1998). Selection experiments have proved that 

IMF responds to selection but at the expense of increasing carcass fatness. In the 

experiment by Schwab et al. (2009), where IMF was selected without restrictions, IMF 

increased by 2.12% after six generations, but there were unfavorable correlated 

responses for BT (+6.17 mm) and loin muscle area (−3.62 cm
2
). On the other hand, 

selection for IMF did not affect growth performance and the meat of selected animals 

showed greater instrumental tenderness and best flavor scores. It has been argued that, 

because the unfavorable genetic correlation between IMF and leanness traits is 

moderate, there is room for independent manipulation of IMF and carcass lean growth 

(Clutter, 2011). Indeed, quite low genetic correlations have been reported for IMF with 

BT (0.24 to 0.64; Suzuki et al., 2005b; Solanes et al., 2009; Schwab et al., 2010; Yang 

et al., 2010), loin muscle area (−0.15 to −0.27; Schwab et al., 2010), and carcass lean 

meat content (0.02 to −0.38; Knapp et al., 1997). However, such a selection objective 

has been proved difficult in practice. After seven generations of selection, Suzuki et al. 

(2005b) achieved more than the desired genetic gain for IMF (+1.2%) but renounced to 

BT reduction. 

Estimates of genetic parameters of fatty acids content are scarcer, particularly of 

their genetic correlation with other economic traits. Early estimates were provided by 
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Cameron (1990) and Cameron & Enser (1991), who, using Duroc and Large White 

data, estimated a high heritability for C18:1 in SF (0.69) but a much lower one for 

C18:1 in loin IMF (0.28). Like IMF, C18:1 had an unfavorable correlation with lean 

weight (−0.41; Cameron & Enser, 1991). However, it was not until the last decade that 

genetic parameters of fatty acids were further studied for different breeds, genetic lines, 

adipose tissues, and analytical methods. The unweighted average heritability for C18:1 

across previous studies was 0.38 (range: 0.26−0.58) in IMF, mostly in loin (Suzuki et 

al., 2006; Casellas et al., 2010; Ntawubizi et al., 2010; Sellier et al., 2010), 0.47                                                                                                                                 

(range: 0.26−0.67) in SF (Fernández et al., 2003; Suzuki et al., 2006; Sellier et al., 

2010; Gjerlaug-Enger et al., 2011), 0.44 in intermuscular fat (Suzuki et al., 2006), and 

0.69 in perirenal fat (Sellier et al., 2010). Some of these studies, however, used few and 

heterogeneous data and were designed for other purposes than estimation of genetic 

parameters, which makes some of the estimates not conclusive enough. The few 

available genetic correlation estimates for intramuscular C18:1 indicate a correlation 

structure similar to that for IMF, being 0.20−0.25 with average daily gain, −0.75 with 

carcass lean meat content, −0.06 with BT, 0.22 with loin muscle area, and only 0.10 

with IMF (Suzuki et al., 2006; Ntawubizi et al., 2010). Overall, the genetic parameter 

estimates indicate that selection for C18:1 should be effective, but to our knowledge, 

there are no reports of the response of C18:1 to direct selection, and only some results 

showing a slight favorable correlated response after selection for IMF (Burkett et al., 

2008). 

The main problem for including IMF and fatty acid composition traits in the 

selection objectives of the breeding companies is that they are difficult to measure. 

Determination by chemical methods such as gas chromatography is the most accurate 

but laborious, time-consuming, and expensive. Therefore, it may be unsuitable if a 

large number of records are needed, for example, for accurate genetic evaluations. A 

faster and more cost-effective method using flow injection analysis/mass spectrometry 

has been developed specifically for intramuscular C18:1 (Muñoz et al., 2011). 

However, it is still difficult to measure these traits in vivo in the selection candidates. 

Biopsies (Bosch et al., 2009) allow the determination of both IMF and fatty acid 

composition in live pigs but they are likely to be restricted to experimental purposes 

due to ethical concerns. During the last years, several technologies have been 

developed for the indirect determination of these traits. Real-time ultrasound predicts 

IMF in vivo (Newcom et al., 2002, 2005), while computed tomography predicts IMF in 

carcasses but it does not seem reliable in vivo (Kongsro & Gjerlaug-Enger, 2013). The 

on-line near infrared spectrometry (NIRS) systems that are currently being developed 

open up new opportunities to set routine determinations of fatty acid composition traits 

in the abattoir (González-Martín et al., 2002, 2005). This technology can be 

implemented to stablish regular genetic evaluations of the selection candidates for 

these traits based on data from their slaughtered relatives, provided that there exists, as 
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in all post-mortem measurements, full traceability of carcasses or primal cuts, which in 

practical terms can be rather difficult to achieve in most current pig breeding schemes. 

Due to the difficulty and cost of sampling muscles of interest, measures of IMF 

and C18:1 are usually taken on a single muscle, mostly the loin, or on SF. However, it 

is known that the pattern of fatty acid deposition may differ between IMF and SF 

(Duran-Montgé et al., 2008; Sellier et al., 2010; Bosch et al., 2012), across muscles 

(Sharma et al., 1987; Leseigneur-Meynier & Gandemer, 1991; Kim et al., 2008), and 

even among locations within a specific tissue (Sharma et al., 1987, Faucitano et al., 

2004; Franco et al., 2006). Thus, to develop adequate recording and genetic evaluation 

schemes for IMF and fatty acid composition traits, there is a need to know the 

correlation structure of these traits across valuable muscles and with SF. The few 

reports available giving phenotypic correlations of fatty acids contents in different 

tissues show positive but low-to-moderate values (0.19−0.57 between fatty acids in 

IMF and SF; Suzuki et al., 2006; Yang et al., 2010). Regarding C18:1, the phenotypic 

correlation between its content in IMF and in SF has been estimated to be 0.33−0.45 

and the genetic correlation 0.66−0.72 (Suzuki et al., 2006; Yang et al., 2010). A 

phenotypic correlation of 0.35 was found between C18:1 in muscles longissimus dorsi 

and gluteus medius (Rauw et al., 2012), but genetic correlations between muscles are 

not available and, therefore, it remains unclear to what extent selection for C18:1 based 

on records from a particular muscle or SF would be successful in modifying C18:1 in 

other muscles. 

 

I.3.3. Marker-assisted and genomic selection 

Genetic markers have been proposed as a useful tool to select for traits that are 

difficult to measure in the selection candidates, such as meat quality traits. Under a 

marker-assisted selection scheme, genetic lag and prediction error are expected to be 

reduced in comparison to selection schemes based on phenotypes of slaughtered 

littermates (Grindflek et al., 2001). During the last decades, a lot of efforts have been 

put into the detection of quantitative trait loci (QTL) affecting IMF content and fatty 

acid composition. Using low-density microsatellite linkage maps, several QTL and 

candidate genes have been reported for IMF content (as summarized by Gao & Zhao, 

2009) and several more for fatty acid composition of either SF or IMF (Pérez-Enciso et 

al., 2000; Grindflek et al., 2001; Clop et al., 2003; Kim et al., 2006; Nii et al., 2006; 

Sanchez et al., 2007; Guo et al., 2009; Quintanilla et al., 2011; Uemoto et al., 2012c). 

These first attempts provided large QTL confidence intervals, which limited the 

identification and validation of the positional candidate genes within them. Moreover, 

most of these studies were performed using experimental crosses designed to generate 

variability for the studied traits. Because, to our knowledge, their results have not been 
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validated in purebred lines, markers have not been introduced in commercial breeding 

programs (Dekkers, 2004, 2012). The onset of high-density genotyping arrays has 

enabled a more precise scanning of the genome to detect QTL and quantitative trait 

nucleotides (QTN). The first genome-wide association studies (GWAS) for fatty acid 

composition in swine have already been performed in Iberian × Landrace (Ramayo-

Caldas et al., 2012; Muñoz et al., 2013b) and in White Duroc × Erhualian and Chinese 

Sutai pigs (Yang et al., 2013). This technology can also be used to make genomic 

predictions of breeding values (Meuwissen et al., 2001), but the accuracy of genomic 

prediction for IMF content and fatty acid composition in swine has not been assessed 

yet. 

To date, association with fatty acid traits has been reported for some candidate 

genes. One of the most promising is the SCD gene. Stearoyl-CoA desaturase has a 

direct role in the MUFA biosynthesis pathway as it is the responsible for catalyzing the 

desaturation at the Δ
9
 position of stearoyl-CoA and palmitoyl-CoA into oleoyl-CoA 

and palmitoleoyl-CoA, respectively. The SCD gene maps to Sus scrofa chromosome 

(SSC) 14 at 120.96−120.98 Mb, which co-localizes with some previously detected 

QTL for the C16 and C18 SFA and MUFA in purebred and crossed Duroc (Sanchez et 

al., 2007; Quintanilla et al., 2011; Uemoto et al., 2012c). Findings so far support that 

there is genetic variation in the SCD gene affecting fatty acid composition of muscle 

and adipose tissue. Several single nucleotide polymorphisms (SNPs) in the SCD 

promoter region have been associated to C16 and C18 SFA and MUFA content both in 

IMF and SF, but results are not conclusive yet, as either the location of haplotypes is 

not coincident (Uemoto et al., 2012b; Maharani et al., 2013), favorable alleles are 

swapped (Renaville et al., 2013), or even no association was found (Bartz et al., 2013). 

Suzuki et al. (2006) suggested that a selection strategy for fatty acid composition 

targeting SCD might be effective, but genetic markers in the SCD gene will not be 

suitable for implementation in breeding schemes until the association between these 

SNPs and pork fatty acid composition is further validated and better understood. 

Other functional candidate genes that at some point have been found to affect 

fatty acid composition include the microsomal triglyceride transfer protein (MTTP) 

(Estellé et al., 2009), the acetyl-CoA carboxylase α (ACACA) (Gallardo et al., 2009), 

the heart fatty acid binding protein (FABP3) (Lee et al., 2010), the leptin receptor 

(LEPR) (Galve et al., 2012), the elongase of very long chain fatty acids 6 (ELOVL6) 

(Corominas et al., 2013), the insulin-like growth factor 2 (IGF2) (López-Buesa et al., 

2014), and the melanocortin 4 receptor (MC4R) (López-Buesa et al., 2014). 

Confirmation of these associations (without neglecting possible pleiotropic effects on 

carcass fat content and other economic traits) and discovery of other informative 

markers related to IMF content and fatty acid composition could lead to the 

development of low-density marker panels aimed at the genetic improvement of these 
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traits (Weigel et al., 2009; Vazquez et al., 2010). The great cost of genotyping large 

amount of individuals in commercial conditions and the shorter generation interval 

than in cattle are some factors often referred as limiting the implementation of genomic 

selection schemes in the pig industry (Blasco & Toro, 2014). Low-density marker 

panels could reduce the genotyping costs, thereby offering an attractive opportunity. 

 

I.4. IN THIS THESIS DISSERTATION 

A priority of the Pig Breeding and Genetics Group of the University of Lleida is 

to carry on research on the genetic selection for IMF content and fatty acid 

composition in pig for the ultimate benefit of consumers and the industry. The present 

thesis dissertation has been developed in the frame of this on-going research and 

focuses mainly on exploring the genetic strategies for improving IMF and C18:1 of 

pork. It comprises seven chapters that are divided into three parts. 

Part 1 comprises Chapter 1 and deals with the proper methodology for the 

statistical analysis of fatty acid composition. A fact about fatty acid compositions that 

has been widely ignored in meat science research is that from the mathematical point 

of view they are, as the name itself indicates, compositional data. Compositional data 

have specific mathematical properties because they represent relative, rather than 

absolute, information. Therefore, they should not be analyzed using standard statistical 

techniques that are defined in the real space, which has an absolute scale. Although 

specific methods for compositional data have been developed since the 1980s 

(Aitchison, 1986), there is no reference in the literature where they have been used for 

fatty acid data in meat research. In Chapter 1, we discussed the implications of 

adopting or not the compositional data statistical approach to analyze fatty acid 

compositions. 

Part 2 examines the opportunities for improving IMF and C18:1 using only 

phenotypic records on slaughtered relatives. It is hypothesized that with such recording 

scheme it is possible to capture enough genetic variation to directly improve IMF and 

C18:1. Thus, Part 2 first estimates the genetic parameters associated to C18:1 and IMF 

together with those of other economic relevant traits and then discusses their expected 

responses under different selection scenarios accordingly (Chapter 2). It is not clear 

how response based on one muscle or fat tissue may affect others. Therefore, the 

genetic correlations of IMF and fatty acid composition traits across muscles and in SF 

are studied in Chapter 3. Moreover, the effectiveness of selection using different 

objetive and criteria muscles or fat tisues is discussed. It is known that selection for 

carcass lean content decreased both BT and IMF, but its effect on C18:1 is less 

understood. Chapter 4 presents the results from a selection experiment designed for 

reducing BT at restrained IMF. Chapter 5 provides the results from a selection 
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experiment specifically conceived to increase C18:1, as well as the correlated response 

of C18:1 to the selection described in Chapter 4. 

Part 3 explores marker-assisted selection as a strategy to enhance the genetic 

responses of IMF and C18:1. Here, it is hipothesized that there are nucleotide 

polymorphisms in candidate genes with potential for being used as genetic markers for 

IMF and C18:1. Chapter 6 includes the search and validation of genetic variants in the 

SCD gene, the most relevant one in the biosynthesis of C18:1. Then, a GWAS is 

performed to detect other polymorphisms associated with IMF and fatty acid 

composition traits across the whole genome (Chapter 7). Chapter 7 concludes with a 

discussion on the use of genomic data for improving breeding value estimation and 

selection for IMF and C18:1. 

Finally, in the Discussion section, opportunities for genetic breeding value 

evaluation combining phenotypic records on slaughtered relatives and information 

from genetic markers are considered. In light of the results obtained in Parts 2 and 3, 

several scenarios are discussed on how to implement selection for IMF and C18:1 in 

practice. 
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Objectives 
 

 
The main objective of this research was to analyze the genetic determinism of 

intramuscular fat (IMF) content and fatty acid composition, particularly of oleic acid 

(C18:1) content, in pork. A second objective was to find strategies to genetically 

improve IMF and C18:1 in the context of a breeding programme of a Duroc line aimed 

at producing high quality fresh and cured pork products. 

 

For this purpose the following specific objectives were formulated: 

1. To examine the implications of using a compositional data approach in the 

statistical and genetic analyses of fatty acid compositions. 

2. To estimate the genetic parameters of IMF and C18:1 and their expected 

selection responses if other economically important traits are included in 

the selection objective. 

3. To prove experimentally whether backfat thickness and carcass lean growth 

can be modified regardless of IMF and C18:1. 

4. To prove experimentally whether C18:1 responds to selection. 

5. To assess how selection for IMF and C18:1 in a particular muscle or 

subcutaneous fat affects these traits in other muscles and fat tissues. 

6. To search sequence variations in the stearoyl-CoA desaturase (SCD) gene 

associated with saturated and monounsaturated fatty acids content. 

7. To identify other candidate regions associated to IMF content and fatty acid 

composition by means of a genome-wide association study. 

8. To explore the use of genetic markers and genomic selection as a way to 

enhance the response to selection for IMF and C18:1. 
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Animals and Samples 
 

 
Data from a purebred Duroc line were used for the analyses. This line is 

primarily used for producing high quality dry-cured hams. The line was completely 

closed in 1991 and since then it has been selected for an index including body weight 

(BW), backfat thickness (BT), and intramuscular fat (IMF) content (Tibau et al., 1999; 

Solanes et al., 2009). The data set currently consists of 119,390 pedigree-connected 

pigs, from which 110,855 have at least one recorded trait. Pigs with records were born 

from 1996 to 2013. At approximately 75 d of age, piglets were moved to the fattening 

units, where they were penned by sex (8 to 12 pigs/pen) until slaughter. All pigs were 

performance-tested at an average age of 180 d for BW (n=110,165) and BT 

(n=106,276). Backfat thickness was ultrasonically measured at 5 cm off the midline at 

the position of the last rib (Piglog 105, SFK-Technology, Herlev, Denmark). During 

the test period, pigs had ad libitum access to commercial diets. 

Since 2002, 1,391 of the purebred barrows used for producing dry-cured ham 

were taken for recording IMF and C18:1. Barrows were castrated within the first week 

of age. Two barrows per litter were taken and raised in 17 batches. From 160 d 

onwards, barrows were fed a commercial pelleted finishing diet (Esporc, Riudarenes, 

Girona, Spain). Feed composition was similar along the years, with an average 

composition of 17.2% crude protein, 5.8% fiber, and 6.5% fat (C16:0, 18.0%; C18:0, 

6.9%; C18:1, 34.4%; and C18:2, 29.7%). Feed in each batch was analyzed in triplicate 

as described in Cánovas et al. (2009). At the end of the finishing period, the barrows 

were slaughtered in the same commercial slaughterhouse at around 210 d (at ~125 kg 

of BW). After slaughter, the carcass weight (CW) and the carcass length were 

measured. The carcass length was measured from the anterior edge of the symphysis 

pubic to the recess of the first rib. Carcass BT and loin thickness at 6 cm off the 

midline between the third and fourth last ribs were measured by an on-line ultrasound 

automatic scanner (AutoFOM, SFK-Technology, Herlev, Denmark). The carcass lean 

percentage was estimated on the basis of 35 measurements of AutoFOM points by 

using the official approved equation (OJ, 2001) and the carcass lean weight was 

calculated using CW and lean percentage. Immediately after slaughter, samples of 

subcutaneous fat (SF; n=343), muscle semimembranosus (SM; n=200), and liver 

(n=96) were collected. After chilling for about 24 h at 2ºC, each carcass was divided 

into primal cuts and the left side ham was weighed. Each ham was trimmed according 

to customary procedure used for manufacturing traditional dry-cured Spanish ham. 

Immediately after quartering, samples of at least 50 g of muscle gluteus medius (GM; 

n=1,383) were collected from the left side ham. A section of around 1 kg from the left 

loin (muscle longissimus dorsi; LD) of each carcass at the level of the third and fourth 

last ribs was also taken following the same procedure (n=406). Samples of SF were 



Animals and Samples 

32 

collected at the same location than either the LD (n=210) or the GM (n=133) samples. 

Additional samples of muscle latissimus dorsi (LT; n=85) were collected from the left 

side shoulder. Samples were immediately vacuum-packaged, and stored in deep-freeze 

conditions (at −20ºC) until required for IMF and C18:1 determination. Storage time 

does not affect fatty acid composition (De Pedro et al., 2000).  

After muscle samples were completely defrosted and vacuum drip losses were 

eliminated, the dissected muscle, trimmed of subcutaneous and intermuscular fat, was 

minced. A representative aliquot from the pulverized freeze-dried muscle was used for 

fat analysis. Intramuscular fat content and composition was determined in duplicate by 

quantitative determination of the individual fatty acids by gas chromatography (Bosch 

et al., 2009). Fatty acid methyl esters were directly obtained by transesterification 

using a solution of 20% boron trifluoride in methanol (Rule, 1997). Methyl esters were 

determined by gas chromatography using a capillary column SP2330                                                              

(30 m × 0.25 mm; Supelco, Bellefonte, PA) and a flame ionization detector with 

helium as carrier gas at 1 ml/min. Runs were made with a constant column head 

pressure of 172 kPa. The oven temperature program increased from 150 to 225°C at 

7°C/min, and injector and detector temperatures were both 250°C. Quantification was 

carried out through area normalization after adding into each sample                               

1,2,3-tripentadecanoylglycerol as internal standard. Intramuscular fat content was 

calculated as the sum of each individual fatty acid expressed as triglyceride equivalents 

(AOAC, 1997) and expressed as percentage of fresh matter. Fatty acids were identified 

by comparing their relative retention times with those of the external standard and 

confirmed by comparing their mass spectra to the computer library of the gas-liquid 

chromatography/mass spectrometry databases Wiley 275 K and NBS 75 K (Agilent 

Technologies, Wilmington, DE). Fatty acids were analyzed on a simple quadrupole 

instrument (GC/MSD 6890N-5973N, Agilent Technologies, Wilmington, DE) 

equipped with an electron ionization source using the same temperature program as 

described above. The scanned mass range of fatty acids was m/z 35 to 450 and the 

scanning rate 3.46 scans/s. The complete profile for each sample included saturated 

(SFA; C14:0, C16:0, C18:0, and C20:0), monounsaturated (MUFA; C16:1n-7, 

C18:1n-9, and C20:1n-9), and polyunsaturated (PUFA; C18:2n-6, C18:3n-3, C20:2n-6, 

and C20:4n-6) fatty acids, expressed as their percentage relative to total fatty acids in 

IMF. Because oleic (C18:1n-9) and vaccenic (C18:1n-7) acids were not completely 

resolved with this chromatography program, their contents were summed up. Vaccenic 

acid represented ~10% of total C18:1. Preliminary results using either total C18:1 or 

individual C18:1n-9 did not differ substantially. Fatty acid profiles of SF were 

analyzed following the same procedure. 



 

 

 

 

 

PART 1  



 

 



Chapter 1 

35 

Chapter 1. 

On the compositional analysis of fatty acids in pork 
 

 
R. Ros-Freixedes & J. Estany 

 

Departament de Producció Animal, Universitat de Lleida − Agrotecnio Center, 191 

Av. Alcalde Rovira Roure, 25198 Lleida, Catalonia, Spain. 

 

 

The content of this chapter was published in Journal of Agricultural, Biological, and 

Environmental Statistics (2014), 19: 136−155. DOI: 10.1007/s13253-013-0162-x 

 

 

The authors wish to thank Dr. Juan José Egozcue, Univeristat Politècnica de 

Catalunya, for his helpful advice. 

 

 

ABSTRACT: The fatty acid composition of pork is an important issue for the pig 

industry and consumers. Fatty acid compositions are commonly described as the 

percentages of a set of fatty acids relative to total and therefore should be statistically 

treated as compositional data. To our knowledge there is no reference in the literature 

where specific methods for compositional data analysis have been applied to analyze 

fatty acid composition in meat quality research. The purposes of this study were (1) to 

present an overview of compositional data analysis techniques, (2) to apply them to the 

analysis of the fatty acid composition of muscles and subcutaneous fat from 971 pigs 

as a case study, and (3) to discuss and interpret the results with respect to those 

obtained using standard techniques. Results from both approaches indicate that fatty 

acid composition differed across tissues and muscles but also, for a given muscle, with 

the intramuscular fat content. It is concluded that fatty acid composition in pork did not 

display enough variability to become critical for standard statistics, particularly if the 

individual fatty acid parts remain the same across experiments. However, even in such 

case, compositional analysis may be useful to correctly interpret the correlation 

structure among fatty acids.  
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1.1. INTRODUCTION 

The quality of fat is a feature becoming increasingly important for both the 

industry and consumers. Currently, there is enough evidence indicating that fat 

quantity and quality affect the nutritional, sensory, and technological properties of 

animal products, particularly pork (Wood et al., 2003; Schmid, 2010). Fat quality is 

chemically defined in terms of fatty acid composition, which is commonly presented as 

a set of percentages corresponding to the relative content of each individual fatty acid 

(or the sum of some of them) with respect to the total content of the fatty acids that had 

been determined, i.e., as a vector of positive values whose sum is a constant. 

Technically, this sort of data is what in statistics is known as compositional data, i.e., 

multivariate data where the variables represent parts of a whole (Pawlowsky-Glahn & 

Egozcue, 2006). Compositional data are intrinsically multivariate because each 

component cannot be interpreted without relating it to any of the other components. 

They only represent relative information and therefore standard statistical techniques, 

which were conceived to deal with variables measured on an absolute scale, are 

inappropriate. Consequently, specific methods for compositional data analysis have 

been developed since the 1980s (Aitchison, 1982; Aitchison, 1986; Aitchison & 

Egozcue, 2005; Bacon-Shone, 2011). To our knowledge there is no reference in the 

literature where compositional data analysis had been applied to meat quality research. 

Much research has been undertaken in recent years to assess the effect of 

influential factors (such as diet, genotype, gender, body weight, age, or fat content, 

among others) on the fatty acid profile of pork fat and meat, mostly sampled from 

backfat and loin chops. However, it is also known that the pattern of fatty acid 

deposition differs not only between the adipose and muscle tissues (Franco et al., 2006; 

Duran-Montgé et al., 2008; Yang et al., 2010) but also among muscles (Sharma et al., 

1987; Leseigneur-Meynier & Gandemer, 1991). The University of Lleida has 

assembled a biorepository of pig fat and muscle specimens for conducting research 

studies on meat quality, including samples from a Duroc genetic line used for 

producing premium quality pork cuts. Currently, the associated dataset to this line, 

with around 1,700 fatty acid profiles from different muscles and backfat locations 

(Section 1.2), provides a valuable resource for revisiting the pattern of fatty acid 

deposition in pork under a compositional data analysis setting. The purpose of this 

study was (1) to review the fundamentals of the compositional data analysis techniques 

(Sections 1.3−1.4), and then (2) to use this approach to examine the variations in the 

fatty acid profile of pork meat and fat as a case study (Section 1.5). The utility of 

adopting the compositional data approach in the statistical analysis of fatty acid 

compositions in meat products is discussed in light of the results of the case study. 
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1.2. DESCRIBING THE CASE STUDY 

The case study comprises data from 971 purebred Duroc barrows (see Animals 

and Samples Section). The pigs were raised at a carcass market weight of around 

95−100 kg in twelve commercial batches from 2001 to 2008 (Table 1.1). All pigs had 

ad libitum access to a commercial feed and were slaughtered at the same abattoir. 

There, a sample of the muscle gluteus medius (GM) was collected from the left ham of 

all pigs. Moreover, in randomly chosen subgroups of them, additional samples of the 

muscles longissimus dorsi (at the level of the third and fourth last ribs; LD), 

semimembranosus (SM), and latissimus dorsi (LT) were also taken, as representative 

muscles of the loin, ham, and shoulder, respectively. Finally, two samples of the 

subcutaneous backfat (SF) were obtained at the positions where GM (SFGM) and LD 

(SFLD) muscle samples were taken. The number of samples per muscle and backfat 

location by batch is detailed in Table 1.1. Samples were collected and analyzed for 

intramuscular fat (IMF) content and fatty acid composition as detailed in the Animals 

and Samples Section. The complete profile for each sample included saturated (SFA; 

C14:0, C16:0, C18:0, and C20:0), monounsaturated (MUFA; C16:1n-7, C18:1n-9, and 

C20:1n-9), and polyunsaturated (PUFA; C18:2n-6, C18:3n-3, C20:2n-6, and C20:4n-

6) fatty acids (Figure 1.1). Because C20:0 is present at very low levels, it was not 

detectable in a few samples. The zero values represent a mathematical challenge for 

compositional data, which only represent relative magnitudes. To solve this problem 

several replacement strategies have been proposed (Martín-Fernández & 

 

Table 1.1. Number of animals (n), age at slaughter (Age), carcass weight (CW), and 

number of samples per muscle and backfat location by batch. 

Batch n Age, d (SD) CW, kg (SD) 
Sample

1
 

GM LD SM LT SFGM SFLD 

1 109 215.8 (5.3) 90.9 (11.3) 109 52 51 42 15 - 

2 105 214.0 (3.4) 95.9 (10.6) 104 54 54 43 15 - 

3 68 203.1 (6.4) 94.7 (7.8) 66 - 27 - - 27 

4 72 200.9 (8.2) 91.0 (10.2) 72 - 20 - - 48 

5 112 223.2 (3.8) 104.3 (12.0) 112 24 - - - 24 

6 74 220.6 (4.0) 100.1 (7.7) 73 33 - - - 32 

7 32 220.7 (0.8) 100.0 (8.8) 31 31 - - - 31 

8 58 195.8 (1.9) 92.0 (9.2) 58 - - - 28 - 

9 51 206.5 (1.7) 97.5 (10.0) 51 - - - 30 - 

10 94 230.9 (2.1) 104.0 (10.7) 93 - - - 15 - 

11 110 217.5 (1.7) 107.4 (8.9) 110 - - - 15 - 

12 86 204.1 (2.9) 94.2 (10.1) 85 - - - 15 - 

Total 971 213.8 (10.7) 98.4 (11.7) 964 194 152 85 133 162 

1
 GM: gluteus medius muscle; LD: longissimus dorsi muscle; SM: semimembranosus muscle; 

LT: latissimus dorsi muscle; SFGM (SFLD): subcutaneous backfat at the level where GM (LD) 

was taken. 



Chapter 1 

38 

 
Figure 1.1. Main metabolic pathways for the fatty acids considered in the case study 

(adapted from Cook and McMaster, 2002). Discontinuous arrows indicate less 

important pathways. 

 

Thió-Henestrosa, 2006; Palarea-Albaladejo et al., 2007). For its simplicity, we 

followed here the strategy in Sanford et al. (1993) and replaced the zeros by 0.55 times 

the lowest measured value in each tissue before calculating the fatty acid percentages. 

 

1.3. SETTING THE PROBLEM 

One of the drawbacks of analyzing compositional data with conventional 

methods is that the results can be subcompositionally incoherent (Aitchison, 1986, 

Chapter 3; Pawlowsky-Glahn & Egozcue, 2006). This becomes particularly evident in 

correlation analyses, where the correlation coefficient between two given components 

can differ depending on whether they are expressed relative to a set of components or 

another. In order to highlight this problem we calculated the correlation between pairs 

of fatty acids under two different compositional settings. In the first one, the 

correlation matrix among the complete 11-part fatty acid profile of GM was calculated 

(Table 1.2, rows a), while, in the second, the correlation was calculated between each 

SFA, MUFA, and PUFA expressed relative to the total SFA, MUFA, or PUFA, 

respectively, in such a way that, for instance, C14:0, C16:0, C18:0, and C20:0 summed 

up to 100% (i.e., the SFA subcomposition was closed). Then, the correlations among 

the fatty acids in each subcomposition (SFA, MUFA, and PUFA) were recalculated 

diet
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Table 1.2. Correlations among raw fatty acid percentages in gluteus medius when 

expressed relative to either the full fatty acid composition (rows a) or the 

corresponding saturated (rows b), monounsaturated (rows c), and polyunsaturated 

(rows d) fatty acid subcompositions. 

Fatty 

acid 
 C16:0 C18:0 C20:0 C16:1 C18:1 C20:1 C18:2 C18:3 C20:2 C20:4 

C14:0 a −0.10 −0.34 −0.02 0.14 0.10 0.14 0.00 0.31 0.05 0.12 

 b 0.40 −0.75 −0.07 - - - - - - - 

C16:0 a  0.80 0.39 −0.08 −0.73 −0.38 −0.44 −0.44 −0.35 −0.50 

 b  −0.91 −0.26 - - - - - - - 

C18:0 a   0.46 −0.20 −0.71 −0.21 −0.39 −0.44 −0.24 −0.48 

 b   0.18 - - - - - - - 

C20:0 a    −0.18 −0.20 0.01 −0.39 −0.13 −0.09 −0.34 

C16:1 a     0.11 0.02 −0.24 −0.15 0.29 −0.15 

 c     −0.98 −0.12 - - - - 

C18:1 a      0.43 −0.19 0.01 0.03 0.07 

 c      −0.07 - - - - 

C20:1 a       −0.16 0.07 0.16 −0.04 

C18:2 a        0.70 0.27 0.59 

 d        0.21 −0.15 −0.89 

C18:3 a         0.32 0.26 

 d         0.22 −0.50 

C20:2 a          0.13 

 d          −0.24 

 

(Table 1.2, rows b, c, and d, respectively). As can be seen in Table 1.2, the two 

correlations were not consistent, with the discrepancy being particularly relevant for 

those between C16:0 and C18:0, C16:1 and C18:1, and C18:2 and C20:4, which 

changed, respectively, from 0.80 to −0.91, 0.11 to −0.98, and 0.59 to −0.89. These 

changes, both in magnitude and sign, are due to the fact that components in 

compositional data do not vary independently. It can be proven that for a D-part 

composition x = [x1, x2, ..., xD], if x1 + x2 + ... + xD = κ (where κ is a constant, often 1 

or 100%), then cov(x1, x2) + cov(x1, x3) + ... + cov(x1, xD) = −var(x1). Therefore, at 

least one of the covariances of x1 with the other components must be negative (Pearson, 

1897; Aitchison, 1986, Chapter 3; Filzmoser & Hron, 2009). This negative bias causes 

that an increase in one of the components results in the decrease in, at least, another 

one. Hence, the correlations are not free to range over the interval [−1, 1]. The 

distribution of the bias over the covariance terms, along with the subsequent changes in 

the correlation matrix among components, depends upon which parts are included in 

the composition. As a consequence, the above correlations do not have any neat 

interpretation. This simple example highlights that the analysis of compositional data 

using standard techniques may lead to spurious and inconsistent results across 

subcompositions. 
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1.4. OVERVIEW OF COMPOSITIONAL ANALYSIS 

Compositional data need to be statistically treated considering that they only 

carry relative information. Two general approaches have been developed to deal with 

them. The first is known as staying-in-the-simplex approach. It operates in the so-

called simplex space (S
D
, for D-part compositions) and uses the Aitchison geometry 

(Aitchison, 1986, Chapter 2). The second approach resorts to log-ratio transformations 

(Aitchison, 1986, Chapter 7; Egozcue et al., 2003) to map the simplex to the real space, 

where the more familiar Euclidean geometry is used and standard statistics methods 

can be applied. Both approaches can be used complementarily depending on which 

geometrical framework is preferred. A brief description of both approaches is given 

below. Some software has been developed to easily process and analyze compositional 

data, such as the freeware CoDaPack (Thió-Henestrosa & Martín-Fernández, 2005; 

Comas-Cufí & Thió-Henestrosa, 2011a,b) and the R packages compositions (van den 

Boogaart et al., 2011) and robCompositions (Templ et al., 2011). 

 

1.4.1. Staying-in-the-simplex 

The simplex vector space is defined by the internal simplicial operation of 

perturbation, the external operation of powering, and the simplicial metric. The 

operations of perturbation, 

  (1.1), 

and powering,  

  (1.2), 

where x (y) is a D-part composition, xi (yi) are the percentages for each part (i = 1, 2, 

..., D), a is a scalar, and C is the closure operator to constant κ (rescaling through 

division of each part by their total sum), are the equivalent to translation and scalar 

multiplication in the real space, respectively. The staying-in-the-simplex approach 

requires an algebra that differs from the one used in standard statistics. 

An example of this algebra is found in the calculation of descriptive statistics. 

The mean and the variance are not suitable statistics for compositional exploratory 

analyses (Daunis-i-Estadella et al., 2006) and therefore they are replaced in the 

Aitchison geometry by the centre (g) and the variation matrix (T), respectively. The 

centre or geometric mean is defined as: 

 (1.3), 

𝐱 ⊕ 𝐲 =  𝑥1, 𝑥2, … , 𝑥𝐷 ⊕  𝑦1, 𝑦2, … , 𝑦𝐷 = 𝐶 𝑥1𝑦1, 𝑥2𝑦2, … , 𝑥𝐷𝑦𝐷  

𝑎 ⊙ 𝐱 = 𝑎 ⊙  𝑥1, 𝑥2, … , 𝑥𝐷 = 𝐶 𝑥1
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1 𝑛 
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𝑛
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where xij are the percentages for each part (i = 1, 2, ..., D) in sample j, and n is the 

number of samples. Moreover, the compositions can be centered, i.e., moved to the 

barycenter of the simplex, using x ⊕ (−1 ⊙ g) = x ⊕ g
−1

 (Pawlowsky-Glahn & 

Egozcue, 2006). Centering is equivalent to subtracting the arithmetical mean in the 

Euclidean space. The variation matrix is defined as T = [τij], with τij = var[ln(Xi/Xj)], 

where Xi and Xj are the data vectors for the parts i and j across samples. Low variance 

of a log-ratio indicates proportionality between the parts involved. The total variability 

of the dataset is the sum of the variances of all log-ratios divided by 2D: 

 (1.4). 

 

1.4.2. Log-ratio transformations 

The two first log-ratio transformations were introduced by Aitchison (1986, 

Chapters 4 and 6) and the third by Egozcue et al. (2003). These log-ratio 

transformations make it possible to work on compositional data in the real space using 

Euclidean geometry. 

 

1.4.2.1. Additive log-ratio 

The additive log-ratio (alr) transformation is written in terms of log-ratios of 

D−1 components relative to an arbitrary D component: 

 (1.5). 

This transformation has the obvious disadvantage that the results are dependent 

on the chosen divisor component, which in turn does not have an equivalent for further 

analyses. But, most importantly, the alr-transformation is not isometric, i.e., distances 

are not preserved in the new metric space (Filzmoser & Hron, 2009). 

 

1.4.2.2. Centered log-ratio 

The centered log-ratio (clr) transformation is written in terms of the log-ratio of 

each component relative to the geometric mean of all the components of an individual: 

 (1.6). 
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In the z = clr(x) transformation all parts of the composition have a direct 

equivalent, so that transformed variables can be easily traced back to the originals. 

Although the clr transformation is isometric, it is subcompositionally incoherent. 

Moreover, the covariance matrix of the clr-transformed variables is singular, which 

difficults the use of the clr transformation in multivariate statistical analyses requiring 

the inversion of this matrix. The clr transformation is mostly used in exploratory 

analysis. The so-called clr-biplots allow for a graphical representation of the 

distribution of the samples based on their composition. Moreover, the depiction of 

links (i.e., the vectors connecting the apexes of two variable rays) provides an easy-to-

interpret representation of the log-ratios between the two involved components, where 

their length represents the standard deviation of the log-ratios and the cosine of the 

angle between two links the correlation between the two involved log-ratios. A 

complete description of clr-biplots and their interpretation is given in Aitchison & 

Greenacre (2002) and Daunis-i-Estadella et al. (2006). Conclusions only should be 

drawn from biplots that explain a large percentage of the total variance. An example is 

presented in Section 1.5.1. 

 

1.4.2.3. Isometric log-ratio 

The isometric log-ratio (ilr) transforms the raw composition to its coordinates in 

an orthogonal system based upon an orthonormal basis (𝚿) (Egozcue et al., 2003). If 𝚿 

is chosen following a sequential binary partition (Egozcue & Pawlowsky-Glahn, 2005), 

the ilr-transformed components are called balances (bk, where k = 1, 2, ..., D−1). In a 

sequential binary partition, 𝚿 is constructed by successive divisions of the set of parts 

into two mutually exclusive groups (parts in one group are marked with the symbol + 

while parts in the complementary group with the symbol −) until only one part per 

group is left (see Table 1.3 for an example). To be interpretable, partitions should be 

based on previous knowledge and experience. Then, 𝚿 is derived replacing the 

symbols + and – by 
1

𝑟
√

𝑟𝑠

𝑟+𝑠
 and −

1

𝑠
√

𝑟𝑠

𝑟+𝑠
, respectively, where r (s) is the number of 

parts marked with + (−) in each balance, with blanks being zero. Then, the balances                                                                                    

w = ilr(x) are calculated as w = z𝚿T
, or directly, in terms of normalized log-ratios 

between the geometric means of the two groups, as: 

   (1.7),  

where 𝑥𝑘
+ and 𝑥𝑘

− represent the subsets of rk and sk parts in group + and − of the kth 

balance, respectively. 

b𝑘 =  
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Table 1.3. Sequential binary partition of the 11-fatty acid composition for ilr-

transformation. 

Balance C14:0 C16:0 C18:0 C20:0 C16:1 C18:1 C20:1 C18:2 C18:3 C20:2 C20:4 

1 − − − − − − − + + + + 
2 − + + + + + +     

3  − + + − + +     

4   − +  − −     

5  −   +       

6   −   + +     

7      − +     

8        + − + + 

9        −  − + 

10        −  +  

 

Note that, as happens with the alr transformation, there are only D−1 balances 

for a D-part composition, and that the balances may be different for each 𝚿. The 

balances are isometric and subcompositionally coherent and, as a result, they can be 

analyzed using standard statistical techniques. However, because they do not have a 

one-to-one relation to the original components, their interpretation is not 

straightforward. This can be overcome by choosing, if it exists, a sequential binary 

partition leading to interpretable balances or, alternatively, back-transforming them 

into interpretable D-part compositions lying in the simplex. Because compositions are 

intrinsically multivariate, estimates on the full set of D−1 balances (for instance, either 

least squares means or regression coefficients) must be jointly back-transformed as                                                                    

x = C(e𝐰𝚿) (Tolosana-Delgado & van den Boogaart, 2011). In Sections 1.5.2 and 1.5.4 

examples on the application of ilr-transforming and back-transforming are presented. 

However, it is not possible to back-transform the standard errors associated with least 

square estimates, but they can be substituted by the corresponding back-transformed 

confidence intervals. The use of balances is the best choice for correlations (Filzmoser 

& Hron, 2009), but they cannot be back-transformed either. If the sequential bipartition 

used does not lead to the desired balances, additional log-ratios can be calculated as 

linear combinations of the initial D−1 set derived from 𝚿. For example, apart from the 

balances derived from the sequential bipartition in Table 1.3 (b1 to b10) we could be 

interested in the log-ratios of C18:1 and C18:0: 

 (1.8), 

or, similarly, MUFA and SFA: 

 (1.9). 
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The inclusion of more log-ratios can enrich the interpretation of the results but then it 

should be noted that the covariance matrix including the new log-ratios will be 

singular. An example of correlation analysis using balances is given in Section 1.5.5. 

 

1.5. ANALYZING THE CASE STUDY 

 The basics of compositional analysis are illustrated in five examples using the 

pork fatty acid composition as a case study. The first is an exploratory analysis 

conducted to examine the differences between IMF and backfat for fatty acid 

composition (Section 1.5.1). The second and third introduce the procedures to compare 

the distinct tissues and muscles in terms of centers (Section 1.5.2) and variation 

matrixes (Section 1.5.3). In Section 1.5.4 a linear regression is used to assess the effect 

of IMF content on fatty acid composition. Finally, Section 1.5.5 illustrates how to 

interpret correlations among biologically meaningful balances. In Sections 1.5.2 and 

1.5.4 the compositional and the standard approaches are compared. 

 

1.5.1. Exploratory analysis 

The distribution of fatty acid composition across muscles and backfat locations 

was first explored depicting the whole set of observations on a joint biplot (Figure 1.2). 

To this purpose the dataset X was clr-transformed to Z, and then singular value 

decomposed using standard procedures (Daunis-i-Estadella et al., 2011). The two first 

components accounted for 76% of the total variation. The projection of the samples 

(Figure 1.2a) in the biplot showed that IMF can be clearly discriminated from SF based 

on fatty acid composition. More specifically, the first component, which explained 

56% of the total variation, was enough to separate IMF from SF samples. The most 

important fatty acid affecting this component was C20:4, whose ray was opposite to 

those of the other PUFA and formed with them a long link along the first component 

(as an example, the link of ln(C20:4/C18:2) is represented with a discontinuous line in 

Figure 1.2b). The length of these links, which relates to the standard deviation of the 

log-ratios of the two fatty acids involved, indicates that the log-ratio between C20:4 

and other PUFA (C18:2 and C18:3) displayed a great variation along the gradient 

separating IMF and SF. The SF samples were allocated in a cluster at the left side of 

the biplot and the IMF samples were clustered at the right side, indicating that the 

ratios C20:4/C18:2 and C20:4/C18:3 were greater in IMF than in SF. Despite some 

overlapping, the samples from each muscle can also be singled out (Figure 1.2a), 

especially within batch (Figure 1.2b). In doing so, SM samples were mostly found in 

the upper region of the IMF cluster whereas those from GM (left), LT (middle), and 

LD (right) were in the lower. This could not be done for SF, where only one backfat 

location was analyzed per batch. The distribution pattern of the batch centers suggested 
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Figure 1.2. Score plot (a) and loading plot (b) of components 1 and 2 for fatty acid 

composition of intramuscular fat (IMF) across muscles (GM: gluteus medius; LD: 

longissimus dorsi; SM: semimembranosus; and LT: latissimus dorsi) and backfat 

locations (SFGM: at the level of GM; and SFLD: at the level of LD). The loading plot 

(b) includes one link (discontinuous) and the projection of the center of each of the 

twelve batches. Horizontal and vertical axes represent components 1 (56% of total 

variance) and 2 (20% of total variance), respectively. 
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that the effect of the batch on the fatty acid composition of IMF could be, at least 

partially, explained by differences in the age at slaughter (Table 1.1). Because IMF 

increases with age and saturation with IMF, pigs slaughtered at later ages are expected 

to have more saturated fat (Bosch et al., 2012). Accordingly, within muscle, the 

samples from pigs slaughtered at later ages (Table 1.1; batches 5−7 and 10−11) should 

tend to show greater SFA/PUFA ratios and therefore appear preferentially lower-left in 

the biplot relative to those from pigs slaughtered at earlier ages (Table 1.1; batches 

1−4, 8−9, and 12). 

A biplot for each muscle was also set up. The effect of batch was removed 

centering the data by batch (which is the equivalent in the simplex to subtract the mean 

of the batch) before they were clr-transformed and singular value decomposed. The 

IMF content was included in the biplots as a supplementary variable (Daunis-i-

Estadella et al., 2011) to assess the relationship between IMF content and composition. 

The loading plots of the two first components by muscle are given in Figure 1.3. The 

two first components explained from 67% (GM) to 74% (SM) of the total variance. 

The loading plots showed a similar pattern among muscles, with SM being the most 

different. In all muscles, SFA and MUFA were in the opposite side to PUFA for the 

first component. The cosine of the angle between two links refers to the correlation 

between their log-ratios. In general, the angles between links involving two SFA 

(C16:0, C18:0), two MUFA (C16:1, C18:1), or a SFA with a MUFA, were small, 

indicating high correlations among them. Because C18:0 can be synthesized from 

precursor C16:0 by an elongase, and both C16:1 and C18:1 are synthesized by the 

same Δ
9
 desaturase (stearoyl-CoA desaturase) from C16:0 and C18:0, respectively 

(Figure 1.1; Cook & McMaster, 2002), the product/substrate ratio C18:0/C16:0 is 

frequently used as an indicator of the elongase activity, and ratios C16:1/C16:0 and 

C18:1/C18:0 of the Δ
9
 desaturase activity. Thus, the high correlations among ratios of 

these four fatty acids are biologically consistent and in line with the correlations found 

by other authors (Ntawubizi et al., 2010). The links involving C14:0, in all the muscles, 

and C20:0, in SM, had much greater angles, and thus lower correlations, with the other 

links. This might be because C14:0, unlike other SFA, is mainly of dietary origin 

(Figure 1.1; Wood et al., 2008) and because C20:0 is subjected to relatively larger 

instrumental error and greater number of zeros. Small angles, and thus high 

correlations, were also found between links corresponding to log-ratios of PUFA. 

However, in all the muscles, the links involving two SFA, two MUFA, or a SFA with a 

MUFA, on one side, and the links involving PUFA, on the other side, were almost 

perpendicular to each other. This indicates low correlations between these two groups 

of log-ratios, in accordance with the low association of PUFA with SFA and MUFA 

reported in literature (Cameron & Enser, 1991; Zhang et al., 2007; Ntawubizi et al., 

2010; Yang et al., 2010). Overall, the results indicate that SFA and MUFA behave 

similarly to each other but differently from PUFA, in line with their different 
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Figure 1.3. Loading plot of components 1 and 2 for the intramuscular fat (IMF) 

content and fatty acid composition in gluteus medius (GM, a), longissimus dorsi (LD, 

b), semimembranosus (SM, c), and latissimus dorsi (LT, d) muscles. Horizontal axis 

represents component 1 (46%, 51%, 47%, and 52% of the total variance in GM, LD, 

SM, and LT, respectively) and vertical axis component 2 (21%, 18%, 28%, and 18% of 

total variance in GM, LD, SM, and LT, respectively). 

 

deposition patterns. Fat depots, IMF and SF, can be divided into two fractions: 

phospholipids and neutral lipids. Phospholipids have structural functions and have 

abundant PUFA, particularly C20:4, which is the major PUFA in cell membranes 

(Larsson et al., 2004), whereas neutral lipids, mainly composed of SFA and MUFA, 

have storage functions. It means that IMF increases with neutral lipids while 

phospholipids remain relatively constant (Cameron & Enser, 1991; De Smet et al., 
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2004), which is the reason for the positive relationship of IMF with SFA and MUFA, 

but negative with PUFA (Cameron & Enser, 1991; Zhang et al., 2007; Yang et al., 

2010). The IMF content displayed a negative collinearity with C20:4 in all the muscles, 

supporting that increased IMF is associated with decreased C20:4, namely 

phospholipids, and PUFA, as well as to increased SFA and MUFA (Cameron & Enser, 

1991; De Smet et al., 2004; Bosch et al., 2012). 

 

1.5.2. Differences among tissues and muscles 

The centers of the fatty acid composition of IMF and SF (Eq 1.3) established 

that the most abundant fatty acids were C18:1 (44.0−46.1%), C16:0 (21.2−24.3%), 

C18:2 (9.2−16.2%), and C18:0 (10.6−12.1%) in all the studied muscles and backfat 

locations, in agreement with the general knowledge on meat fatty acid composition 

(Valsta et al., 2005). The centers revealed differences of fatty acid composition among 

the muscles and backfat locations. These differences were estimated and tested using 

the balances described in Table 1.3. The balances were analyzed using a linear mixed 

model, in which fixed effects included the batch (1 to 12), tissue (the four muscles and 

the two backfat locations), and carcass weight as a covariate. The pig and the residual 

were the random effects. Variances were estimated by restricted maximum likelihood 

and fixed effects were tested following a Kenward-Roger approach. The differences 

between tissues were contrasted with the Tukey HSD test at a significance level of 

0.05. The analyses were performed using JMP 8 software (SAS Institute Inc., Cary, 

NC). The least squares means and confidence intervals for the balances were back-

transformed as indicated in Section 1.4.2.3. Results were compared with those obtained 

using the same model for raw fatty acid percentages instead of balances. 

The centers adjusted for batch and carcass weight are given in Table 1.4. The 

ordinary least squares means differed on average only by 0.1% (SD 0.1), with a 

maximum of 0.8% (C18:1). Significant differences among muscles and backfat 

locations were found, with compositional and standard approaches leading to similar 

conclusions. The two backfat locations showed greater contents of the PUFA C18:2, 

C18:3, and C20:2 than IMF in all muscles, but lower of C20:4. By contrast, IMF was 

more saturated and monounsaturated, although for some fatty acids the differences 

between IMF and SF were not significant. These findings were in line with the well-

known result that essential PUFA, C18:2 and C18:3, which are from dietary origin 

(Figure 1.1), are preferentially deposited in SF (Kloareg et al., 2007; Duran-Montgé et 

al., 2008). That the C20:4 displays an opposite trend to other PUFA (see Figure 1.2b) 

could be explained by the much greater fraction of phospholipids in IMF as compared 

to SF. Among muscles, SM had higher concentrations of C18:2 and C20:4 than GM, 

LD, and LT, and lower of the main SFA and MUFA. The observed differences in 

muscle composition can be partly attributed to IMF content (Table 1.4). 
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Table 1.4. Centers
1
 for fatty acid composition by muscle and backfat location adjusted 

for batch and carcass weight, and least squares means for intramuscular fat (IMF) 

content by muscle. 

Fatty acid, % 
Muscles

2
  Backfat locations

2
 

GM LD SM LT  SFGM SFLD 

C14:0 1.65
A

a 1.60
B

ab 1.45
C

c 1.55
B

ab 
 1.39

D
c 1.60

B
b 

C16:0 23.23
D

c 24.37
B

b 23.56
C

c 26.04
A

a 
 21.72

D
d 20.89

D
e 

C18:0 11.27
D

d 11.89
B

bc 12.08
B

b 14.10
A

a 
 11.42

C
cd 10.29

D
e 

C20:0 0.14
B

c 0.16
A

b 0.09
D

e 0.16
A

bc 
 0.19

A
a 0.11

C
d 

C16:1 3.81
B

b 4.04
A

a 2.94
D

c 3.03
C

c 
 2.11

E
d 2.11

E
d 

C18:1 44.63
B

bc 45.48
A

a 41.78
D

e 42.83
C

d 
 43.90

C
cd 45.25

A
ab 

C20:1 0.82
B

b 0.77
B

c 0.72
C

d 0.74
B

cd 
 1.12

A
a 1.14

A
a 

C18:2 11.94
C

c 9.58
D

d 13.82
B

b 9.62
D

d 
 15.78

A
a 16.17

A
a 

C18:3 0.73
C

b 0.48
E

d 0.58
D

c 0.55
D

c 
 1.19

B
a 1.31

A
a 

C20:2 0.59
C

c 0.42
E

e 0.53
D

d 0.50
D

d 
 0.95

A
a 0.87

B
b 

C20:4 1.19
C

b 1.21
B

b 2.44
A

a 0.88
D

c 
 0.23

F
d 0.28

E
d 

IMF, % dry matter 16.2±0.2b 12.7±0.3c 9.1±0.4d 21.1±0.5a  - - 

1
 Adjusted centers were calculated following the compositional approach (i.e., using balances 

followed by back-transformation). The least squares means for each fatty acid based on the raw 

percentages are not shown because on average they only differed by 0.1% (SD 0.1). 
2
 See abbreviations in Table 1.1. 

A-F
 Differences tested on ilr-transformed variables. Within a row centers without a common 

superscript letter differ (p<0.05). 
a-e

 Differences tested on raw percentages. Within a row means without common subscripts 

differ (p<0.05). Subscripts are given only for comparison purposes with superscripts. 

 

1.5.3. Variation within tissue and muscle 

The variation arrays and the total-variances (Eq 1.4) were calculated for each 

muscle and backfat location. The total-variance of the composition of IMF in GM was 

0.57. After adjusting for batch (i.e., centering by batch), the total-variance decreased to 

0.32. This indicates that around one half of the variability of the muscle fatty acid 

composition is due to common environmental effects in a batch. The adjusted total-

variance was higher for IMF in SM (0.97) than in GM, LD, and LT, which were very 

similar to each other (0.27−0.32) and to SFLD (0.37). The total-variance for SFGM 

was much lower (0.10). In general, the log-ratios involving C18:1 were the ones 

displaying the lowest variances (0.01−0.33) in all cases. Interestingly, the log-ratios 

involving C20:4 showed the highest relative variability in all cases (0.02−0.73), except 

for IMF in SM and SFLD, where C20:0 was the most variable fatty acid. Nonetheless, 

the high variability of C20:0 could be due, because of its low content, to the relatively 
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large analytical errors and replaced zeros. The variability of C20:4 is partly due to the 

variance of the phospholipids fraction in the IMF content, which, as it will be shown in 

Section 1.5.4, is not neutral with respect to IMF content. Overall, the variation of fatty 

acid composition in pork is low. The largest element of the variation matrix of IMF in 

GM was 0.48 and the maximum across tissues was 1.13 for SM. These values are, for 

example, 10-fold and 4-fold lower than those reported by Daunis-i-Estadella et al. 

(2006) for geological compositional data, the area of expertise where compositional 

data techniques have been mostly applied. 

 

1.5.4. Regression on intramuscular fat content 

Results in Section 1.5.2 support that fat content influences fat composition 

(Wood et al., 2008; Bosch et al., 2012). This relationship can be assessed by 

performing a compositional regression analysis of fatty acid composition on IMF 

content (Aitchison, 1986, Chapter 7; Egozcue & Pawlowsky-Glahn, 2011; Egozcue et 

al., 2012). The 109 samples of GM in batch 1 were used for this purpose. The ten 

balances described in Table 1.3 were compositionally regressed on IMF content (JMP 

8 software, SAS Institute Inc., Cary, NC) and then the results were compared with the 

simple regression of the raw fatty acid percentages on IMF content. The vectors of 

estimated intercepts (i) and slopes (s) in the ilr-setting were back-transformed to the 

simplex as i’ = C(e𝐢𝚿) and s’ = C(e𝐬𝚿). Then, the fatty acid composition at a given 

IMF content (x) can be predicted operating either in the simplex, with                                                                                                                       

x = i’ ⊕ (IMF ⊙ s’), or in the real space, with w = ilr(i’) + IMF × ilr(s’) = i + IMF × s 

and then back-transforming w to x = C(e𝐰𝚿). 

The balances more influenced by IMF content were balances 1 and 8 (R
2
=0.23 

and 0.20, respectively). The R
2 

associated to the other balances was lower than 0.08. 

The balance 1 was built to represent the ratio PUFA vs. SFA+MUFA, while balance 8 

was associated to the ratio n-6 vs. n-3 PUFA (i.e., C18:2+C20:2+C20:4 vs. C18:3). 

This is consistent with results discussed in Section 1.5.1, where PUFA and, 

particularly, C20:4, more abundant in phospholipids, decrease as IMF content 

increases. Similar results were found for raw percentages, with C18:2 and C20:4 

showing the highest R
2 

(0.34 and 0.14). The relationship between fatty acids and IMF 

content is displayed in Figure 1.4. For simplicity, only three fatty acids are displayed, 

although the analyses were done using the whole 11-fatty acid composition. A relevant 

difference between compositional and standard regression is that in this latter case, at 

extreme values of the covariate, the predicted values can be non-sense. Thus, at high 

IMF contents negative percentages are predicted for C18:2 (IMF>65%) and C20:4 

(IMF>35%). This does not happen in the compositional analysis. The back-

transformed regressions of the 10 balances on IMF content were non-linear and
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Figure 1.4. Regression of the percentage of C18:1, C18:2, and C20:4 on intramuscular 

fat (IMF) content in the muscle gluteus medius using the compositional (ilr) or 

ordinary (raw) regression analysis. Vertical lines delimit the range of observed values. 

 

asymptotically bounded, with predicted values always lying within the [0, 100] range. 

However, within the expected range of values for IMF, from 5% to 30% on dry matter 

basis (equivalent to approximately 1% to 10% of fresh meat), the compositional 

regression is almost linear, overlapping with the standard regression. Predicted values, 

even using validation samples from other batches, were almost identical under the two 

approaches. In the expected range of values for IMF the standard regression led to 

similar results to the compositional analysis. A similar conclusion is reached in models 

other than the regression used here, which is deliberately simple for illustrative 

purposes.  

 

1.5.5. Correlations among enzymatic indices 

The correlations between balances for GM are given in Table 1.5. The balances 

described in Table 1.3 were established in accordance with known metabolic pathways 

for fatty acid synthesis in pigs (Figure 1.1). Because they are regulated by specific 

enzymes the balances can be thought in terms of enzymatic activity. The first balance 

can be interpreted as a polyunsaturation index (PUFA vs. SFA+MUFA), which 

separates the PUFA and the SFA and MUFA pathways. Balances 2 to 7 are associated 
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Table 1.5. Correlations among balances in muscle gluteus medius. 

Balance 2 3 4 5 6 7 8 9 10 

1 −0.35 −0.16 −0.42 0.12 0.40 −0.16 0.42 0.67 −0.22 

2  0.24 0.24 −0.18 −0.40 0.12 0.08 −0.30 0.06
ns

 

3   0.64 −0.56 −0.02
ns

 0.39 −0.12 −0.10 0.26 

4    −0.29 −0.28 0.00
ns

 −0.26 −0.19 0.17 

5     0.61 0.02
ns

 0.08 0.07 0.25 

6      0.27 0.11 0.28 0.29 

7       −0.08 −0.21 0.46 

8        0.75 −0.11 

9         −0.34 

ns
: not significant (p>0.05). 

 

to SFA and MUFA metabolism, where balances 2, 3, 4, and 7 can be interpreted as 

indexes of elongase activity, and balances 5 and 6 of Δ
9
 desaturase activity. Note that 

although they are aimed at representing different elongation or desaturation steps, in 

general they are not ratios between single products and substrates. For instance, 

balance 3 accounts not only for the elongation of C16:0 to C18:0, but also for the 

amount of C16:0 that has alternatively been desaturated to C16:1 and the amount of 

C18:0 further transformed into C20:0, C18:1, and C20:1. The balances can be an 

interesting alternative to elementary indexes between only two fatty acids because they 

also include further or alternative products derived from the same substrate (Figure 

1.1). However, because they are designed based upon a sequential bipartition, some 

balances cannot include all the desired fatty acids (e.g., balance 6 does not include 

C20:0, which can be elongated from C18:0). As expected, all the elongase balances 

were positively correlated among them, as well as the two desaturation indexes. 

However, interestingly, the correlation among the desaturation and the elongase 

indexes was negative. The polyunsaturation index was negatively correlated to the 

elongase activity but positively to the Δ
9
 desaturase activity. Balances 8, 9, and 10 are 

associated with PUFA metabolism. Balance 8 is the ratio between n-6 and n-3 fatty 

acids, which is known to play a crucial role in the nutritional quality of fat (Schmid, 

2010). The positive correlation between balance 1 and balance 8 indicates that the                                                            

n-6/n-3 ratio increased with polyunsaturation. Balance 9 reflects the total efficiency of 

biosynthesizing C20:4 from any of the two pathways using C18:2 as a precursor, while 

balance 10 only accounts for the intermediate elongation step from C18:2 to C20:2 

carried out in one of the two pathways (Figure 1.1). The positive correlation of balance 

9 with balances 1 and 8 confirmed that the percentage of C20:4 increases with PUFA 

and with the n-6/n-3 ratio. A correct interpretation of the balances may help to gain 

new insight into fatty acid metabolism. Note that in this example we used only the                                    

D−1 balances described in Table 1.3, which derived from a unique sequential 

bipartition. More log-ratios could be calculated and added as discussed in                                               
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Section 1.4.2.3. For example, the correlation between the log-ratios of C18:1/C18:0 

and MUFA/SFA (Eq 1.8 and 1.9) was 0.70. 

 

1.6. CONCLUSIONS 

Fatty acid compositions, which by nature are compositional data, should be 

statistically treated as such. There are two complementary approaches to analyze 

compositional data: either operate in the simplex space or make use of log-ratios to 

operate in the real space. The ilr transformation allows for a straightforward handling 

of geometric elements in the simplex using standard statistical procedures. 

Nonetheless, for the case study considered here we found that the inferences drawn 

from compositional analysis did not substantively differ from those obtained using 

standard statistics techniques on raw data. The low variability of fatty acid composition 

across fat pork depots may explain why the standard approach, although 

methodologically inconsistent, is robust enough for practical purposes. This is likely to 

happen to other unprocessed raw food products, where natural variability is subjected 

to homeostatic biological constraints. Results evidenced that IMF and SF behave 

differently in terms of fatty acid composition, with IMF showing more SFA, MUFA, 

and C20:4, and that fatty acid composition differs among muscles, with SFA and 

MUFA increasing with IMF. Compositional analysis proved to be useful in correctly 

interpreting the correlation structure among fatty acid components. Choosing an 

appropriate set of balances may help not only to avoid spurious results but also to 

better address the biological mechanisms involved in fatty acid deposition. Careful 

attention is recommended in cases of higher expected variability, such as when 

comparing differentiated processed products, where a compositional analysis may lead 

to more dramatic changes. 
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ABSTRACT: Intramuscular fat (IMF) and oleic acid (C18:1) content in pork are 

important issues for the pig industry and consumers. Data from a purebred Duroc line 

were used to (1) estimate the genetic parameters of IMF and C18:1 and their genetic 

correlations with lean growth components, and (2) evaluate the opportunities for 

genetically improving C18:1 in IMF. The data set used for estimating genetic 

parameters consisted of 93,920 pigs, from which 85,194 had at least one record for 

body weight (BW) or backfat thickness (BT) at 180 d and 943 for IMF and C18:1 at 

210 d. Intramuscular fat content, expressed as percentage of fresh matter, and C18:1, 

expressed as percentage of total fatty acids, were determined in the gluteus medius 

muscle by gas chromatography. Genetic parameters for C18:1 were estimated under a 

Bayesian 4-trait multivariate animal mixed model. Heritability of C18:1 was 0.50, with 

a probability of 95% of being greater than 0.37. Genetic correlations of C18:1 with 

BW, BT, and IMF were 0.11, 0.22, and 0.47, respectively (with a probability of 95% of 

being greater than –0.07, 0.04, and 0.27, respectively). Genetic responses were 

evaluated by deterministic simulation using a half-sib recording scheme for C18:1 and 

the previously estimated parameters. The C18:1 content is expected to exhibit only 

minor changes in selection programs directed at growth rate but to decrease in those 

focusing on lean content. Maximum expected response in C18:1 at no lean growth loss 

(i.e., at no change in BW and BT) was 0.44%, with a resulting correlated response in 

IMF of 0.15%. However, because lean growth is emphasized in the breeding goal, the 

resulting response scenarios are more constrained. We concluded that there is evidence 

to support the idea that C18:1 in IMF is genetically determined and defined selection 

strategies can lead to response scenarios in which C18:1, IMF, BT, and BW can be 

simultaneously improved. However, if adopted, the potential for lean growth would be 

reduced. The extent to which it is affordable relies on how much consumers are 

prepared to pay for high-oleic pork products. 
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2.1. INTRODUCTION 

Fat content and composition are important issues for the pig industry and 

consumers. Intramuscular fat (IMF) and oleic acid (C18:1) content are two of the traits 

that have attracted greatest interest in the last few years. The IMF content has been 

favorably related to tenderness and juiciness of cooked meat (Wood et al., 2008), as 

well as to technological and sensorial properties of dry-cured products (Ruiz-Carrascal 

et al., 2000). The C18:1 content has been traditionally considered a key quality 

criterion in dry-cured products because of its positive role in the manufacturing process 

and in flavor (Toldrá, 2002). More recently, because of its associated benefits for 

human health (Christophersen & Haug, 2011; Jiménez-Colmenero et al., 2010), C18:1 

has become an appreciated trait in some niche markets of fresh meat. 

Both IMF and C18:1 are affected by dietary and genetic factors (De Smet et al., 

2004). It is known that IMF, despite being unfavorably correlated with carcass lean 

content, can be efficiently selected (Suzuki et al., 2005a). However, there is little 

evidence on the opportunities for genetic change in fatty acid composition. Recent 

studies in this regard, although promising, were either based on small and 

heterogeneous data sets (Ntawubizi et al., 2010; Sellier et al., 2010) or, regarding 

C18:1, not conclusive (Casellas et al., 2010). Moreover, because the challenge for the 

industry is to develop selection criteria not only aimed at increasing C18:1 but at the 

whole profit of a line, the genetic correlation structure of C18:1 with other economic 

traits, particularly with lean growth, is needed. Therefore, the aims of this study were 

to (1) estimate the heritability of C18:1 and its genetic correlations with IMF and lean 

growth in pigs from a Duroc line primarily used for producing high quality dry-cured 

hams, and (2) discuss the opportunities for genetically improving C18:1 under different 

selection scenarios. 

 

2.2. MATERIALS AND METHODS 

2.2.1. Animals and sample collection 

Data from a purebred Duroc line were used for the analyses (see Animals and 

Samples Section). The data set used for the estimation of genetic parameters consisted 

of 93,920 pedigree-connected pigs, from which 85,253 had at least one recorded trait. 

Pigs with records were born from 1996 to 2009. All pigs were performance-tested at an 

average age of 180 d for BW and BT. Since 2002, a sample of the purebred barrows 

used for producing dry-cured ham was taken for recording IMF and C18:1. These 

barrows were raised in twelve batches until slaughter at around 210 d. After chilling 

for approximately 24 h at 2°C, a sample of the gluteus medius muscle was taken from 

the left side ham and used for IMF and C18:1 determination, expressed as percentage 

of fresh matter and of total fatty acids, respectively. Complete details on the procedures 
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are given in the Animals and Samples Section. A summary of the population 

characteristics and number of records, sires, dams, and litters used for each analyzed 

trait in this analysis is given in Table 2.1. 

 

Table 2.1. Description of the data set used in the analyses. 

Item 
No. of 

pigs 

No. of 

sires 

No. of 

dams 

No. of 

litters 
Mean SD 

Pedigree 93,920 731 18,516 32,315 - - 

Traits
1
       

 BW at test, kg 85,002 641 16,548 32,211 104.8 12.5 

 BT at test, mm 80,687 642 16,335 31,197 15.6 3.5 

 IMF, % 943 141 543 546 4.9 1.9 

 C18:1, % 947 142 544 547 44.8 3.1 

Covariates       

 Age at test, d 85,194 642 16,601 32,310 180.2 10.7 

Age at slaughter, d 2,098 298 1,313 1,370 206.5 14.6 

Carcass weight, kg 937 142 542 545 98.4 11.6 

1
 BW: body weight; BT: backfat thickness; IMF: intramuscular fat; C18:1: oleic acid. 

 

2.2.2. Estimation of genetic parameters 

Genetic parameters for BW, BT, IMF, and C18:1 were estimated fitting a 4-trait 

multivariate animal model. In matrix notation, the model was: 

yi = Xibi + Ziai + Wici + ei , 

where yi is the vector of observations for trait i (BW, BT, IMF, and C18:1); bi, ai, ci, 

and ei are the vectors of systematic, additive genetic, litter, and residual effects, 

respectively; and Xi, Zi, and Wi the known incidence matrices that relate bi, ai, and ci 

with yi, respectively. Systematic effects for BW and BT were the batch (1,039 levels), 

gender (3 levels; males, females, and castrates), and age at measurement as a covariate. 

Pigs tested at the same time and in the same unit were considered as one batch. The 

same model was used for IMF and C18:1 but with systematic effects only including 

batch (12 levels) and age at measurement (or carcass weight). Because there were only 

1.7 piglets/litter with records on IMF and C18:1, litter was dropped from the model for 

these two traits. Intramuscular fat content and C18:1 were analyzed using either the 

raw data or the following u1 and u2 isometric log-ratio (ilr) transformed variables 

(Egozcue et al., 2003): 

 

u1 =
1

 6
ln  

C18: 1 ×  100 − C18: 1 ×  
IMF
100

 
2

(100 − IMF)2   
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and 

, 

where (100 – IMF) + [C18:1 + (100 – C18:1)] × IMF/100 = 100. 

Genetic parameters were estimated in a Bayesian framework using Gibbs 

sampling with the TM software (Legarra et al., 2011). Observed phenotypes and 

missing records imputed by data augmentation were assumed to be conditionally 

normally distributed as follows: 

, 

where R was the (co)variance matrix. Sorting records by trait, and pig within trait, R 

could be written as R0  I, with R0 being the 4 × 4 residual (co)variance matrix 

between the 4 traits analyzed and I an identity matrix of appropriate order. Flat priors 

were used for bi and residual (co)variance components. Additive genetic and litter 

values, conditionally on the associated (co)variance components, were both assumed 

multivariate normally distributed with mean zero and with (co)variance G  A and                                     

C  I, respectively, where A was the numerator relationship matrix, G was the 4 × 4 

genetic relationship matrix between the 4 traits, and C was the 2 × 2 (co)variance 

matrix between litter effects of BW and BT. The matrix A was calculated using all the 

pedigree information summarized in Table 2.1. Flat priors were used for additive and 

litter (co)variance components. Statistical inferences were derived from the samples of 

the marginal posterior distribution using a unique chain of 2,000,000 iterations, where 

the first 250,000 were discarded and 1 sample out of 100 iterations was retained. 

Statistics of marginal posterior distributions and the convergence diagnostics were 

obtained using the boa package (Smith, 2005). Convergence was tested using the                                         

Z-criterion of Geweke (Geweke, 1992) and visual inspection of convergence plots. 

 

2.2.3. Prediction of expected responses 

The expected genetic response for C18:1 from a simulated breeding program 

was compared in two recording scenarios. In the first, it was assumed that records on 

C18:1 were not available and selection was only directed at either increasing BW (or 

IMF) or decreasing BT, while in the second, records on C18:1 were available and 

C18:1 was proactively selected. The selection objective in each case was derived as the 

linear combination of the appropriate breeding values weighted by their economic 

values. Economic weights were determined iteratively using a desired-gains approach 

u2 =
1

 2
ln  

C18: 1

(100 − C18: 1)
  

 

𝐲1

𝐲2
𝐲3

𝐲4

 | b1, b2, b3, b4, a1, a2, a3, a4, c1, c2, R ~ N 𝐗 
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until the desired combination of genetic gains was achieved. For simplicity, only some 

illustrative cases in each scenario are presented. A population with discrete generations 

was simulated in which 40 boars were randomly mated to 400 sows with a mating ratio 

of 1 boar to 10 sows. The breeding scheme consisted of two selection stages resulting 

in the top 25% males and 50% females, with the same selection pressure in each stage. 

Two males and 2 females from the offspring of each sow were performance-tested at 

180 d for BW and BT. In the second stage, 3 of the culled individuals per sire family 

were slaughtered to determine IMF, in the first scenario, and also C18:1, in the second. 

Pigs in the first stage were selected on the individual, full-sib, and half-sib phenotypic 

performance of BW and BT, and the pedigree information (best linear unbiased 

prediction, BLUP) of all recorded traits. Selection on the second stage was additionally 

based on the new half-sib records on IMF and, if available, C18:1. Only the first stage, 

but with the whole selection pressure, was applied in cases where neither IMF nor 

C18:1 were recorded. Selection response was predicted by deterministic simulation of 

a 2-stage selection scheme with discrete generations using the program SelAction 

(Rutten et al., 2002). The program accounts for reduction in variance due to selection 

(Bulmer, 1971) and corrects selection intensities for finite population size and for the 

correlation between index values of family members (Meuwissen, 1991). 

 

2.3. RESULTS 

2.3.1. Phenotypic values and environmental effects 

The average phenotypic value of C18:1 in IMF was 44.8%, with an IMF content 

of 4.9% (Table 2.1). The effects of batch and age at slaughter on C18:1 are given in 

Table 2.2. On average, the variation among batches accounted for 2.4% of C18:1, with 

a maximum difference between batches of 7.5%. The effect of age at slaughter on 

 

Table 2.2. Features of the posterior distribution of the effect of batch, age at slaughter, 

and carcass weight on oleic acid content (C18:1). 

Parameter Mean SD Mode HPD95
1
 k

2
 

Batch      

 Maximum difference 7.49 0.50 7.54 6.53, 8.49 6.65 

 Minimum difference 0.21 0.53 0.02 −1.24, 0.83 −1.12 

 SD among batch effects 2.35 0.10 2.34 2.14, 2.55 2.17 

Covariates      

 Age at slaughter, d −0.02 0.02 −0.02 −0.05, 0.00 −0.05 

 Intramuscular fat, % 0.00 0.14 −0.02 −0.31, 0.26 −0.25 

 Carcass weight, kg 0.02 0.01 0.02 0.00, 0.05 0.00 

1
 HPD95: highest posterior density interval at 95% of probability. 

2
 k: limit for the interval [k, +∞) having a probability of 95%. 
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C18:1 was small but negative (–0.02%/d). There was not much evidence for the 

environmental effect of the IMF content on C18:1, with a mean value of 0 but showing 

a large highest density interval at 95% of probability (HPD95), ranging from –0.31 to 

0.26%/percentage unit of IMF. The environmental effect of carcass weight was 

positive, with a mean value of 0.02%/kg, with a probability of 95% of being greater 

than 0. 

 

2.3.2. Genetic parameters 

Estimates of the variance components and heritabilities for BW, BT, IMF, and 

C18:1, together with the respective genetic and residual correlations among each other, 

can be seen in Table 2.3. Specific features concerning the posterior distribution of the 

heritability of C18:1 and the genetic and phenotypic correlations of C18:1 with BW, 

BT, and IMF are given in Table 2.4. The correlation between litter effects in BW and 

BT was 0.58 (SD 0.02). The heritability for C18:1 was 0.50 (SD 0.08) and similar to 

that for IMF (0.56, SD 0.09), with a probability of 95% of being greater than 0.37. The 

genetic and phenotypic correlations of C18:1 with IMF were moderate and positive, 

with a 95% probability of being greater than 0.27 and 0.29, respectively. The genetic 

and phenotypic correlations with BW and BT were also all positive, although lower, 

with values in the range of 0.11 to 0.22. Results did not provide conclusive evidence 

concerning the sign of the genetic correlation between C18:1 and BW, where the 

associated HPD95 ranged from –0.10 to 0.31. No substantial deviations in the 

estimates were observed after adjusting C18:1 for carcass weight or IMF content, or 

when the ilr-transformed variables u1 and u2 were used in the analyses instead of IMF 

and C18:1 (Table 2.5). Compared with the reference case, where C18:1 was only 

 

Table 2.3. Posterior means (SD) of heritabilities (diagonal), genetic correlations 

(above diagonal), residual correlations (under diagonal), additive genetic variance (σa
2), 

litter variance (σc
2), and residual variance (σe

2) for body weight (BW), backfat thickness 

(BT), intramuscular fat content (IMF), and oleic acid content (C18:1). 

Parameter 
Trait 

BW BT IMF C18:1 

Trait     

 BW 0.31 (0.01) 0.63 (0.02) 0.27 (0.10) 0.11 (0.11) 

 BT 0.60 (0.01) 0.45 (0.01) 0.37 (0.10) 0.22 (0.10) 

 IMF 0.08 (0.07) 0.15 (0.08) 0.56 (0.09) 0.47 (0.12) 

 C18:1 0.20 (0.07) 0.22 (0.08) 0.20 (0.12) 0.50 (0.08) 

Variance     

 σa
2  29.75 (1.34) 4.11 (0.14) 1.85 (0.36) 2.22 (0.42) 

 σc
2  9.26 (0.37) 0.61 (0.03) - - 

 σe
2  57.25 (0.78) 4.45 (0.08) 1.41 (0.27) 2.22 (0.32)  
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Table 2.4. Features of the posterior distribution of the heritability of oleic acid content 

(C18:1) and the genetic and phenotypic correlations of C18:1 with body weight (BW), 

backfat thickness (BT), and intramuscular fat content (IMF). 

Parameter Mean SD Mode HPD95
1
 k

2
 

Heritability 0.50  0.08 0.49 0.35, 0.65 0.37 

Genetic correlations      

 C18:1, BW 0.11 0.11 0.13 −0.10, 0.31 −0.07 

 C18:1, BT 0.22 0.10 0.22 0.01, 0.42 0.04 

 C18:1, IMF 0.47 0.12 0.51 0.24, 0.71 0.27 

Phenotypic correlations      

 C18:1, BW 0.15 0.03 0.15 0.09, 0.21 0.10 

 C18:1, BT 0.21 0.03 0.21 0.15, 0.27 0.16 

 C18:1, IMF 0.35 0.03 0.35 0.28, 0.41 0.29 

1
 HPD95: highest posterior density interval at 95% of probability. 

2
 k: limit for the interval [k, +∞) having a probability of 95%. 

 

Table 2.5. Posterior means (SD) of heritability of oleic acid content (C18:1) and the 

genetic correlations of C18:1 with body weight (BW), backfat thickness (BT), and 

intramuscular fat content (IMF) under alternative models for C18:1. 

Parameter 
Covariate

1
 

ilr
2
 

Age Age+IMF CW CW+IMF 

Heritability 0.50 (0.08) 0.51 (0.08) 0.53 (0.09)  0.55 (0.07)  0.49 (0.08) 

Genetic correlation      

 C18:1, BW 0.11 (0.11) 0.15 (0.11) 0.02 (0.11) 0.02 (0.12) 0.12 (0.12) 

 C18:1, BT 0.22 (0.10) 0.21 (0.11) 0.16 (0.11) 0.16 (0.12) 0.18 (0.11) 

 C18:1, IMF 0.47 (0.12) 0.45 (0.14) 0.42 (0.13) 0.46 (0.13) 0.48 (0.13) 

1
 C18:1 was adjusted for age at slaughter (Age), age at slaughter plus IMF (Age+IMF), carcass 

weight (CW), or carcass weight plus IMF (CW+IMF). 
2
 The isometric log-ratio (ilr) transformed variables u1 and u2 were used instead of IMF and 

C18:1, respectively. 

 

adjusted for age at slaughter, the estimates of the heritability of C18:1 after 

alternatively adjusting C18:1 for carcass weight, age plus IMF content, or carcass 

weight plus IMF content were only slightly greater with a maximum value of 0.55. 

Similar values were obtained for the differently adjusted genetic correlations of C18:1 

with BW, BT, and IMF, except for the correlation between C18:1 adjusted for carcass 

weight and BW, where, as expected, values decreased to almost zero. When the ilr-

transformed variables were used, the maximum change occurred for the genetic 

correlation between C18:1 and BT, which decreased from 0.22 to 0.18. Because only 

minor changes were seen across models and data transformation, responses below were 

calculated using the estimates in Table 2.3. 
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2.3.3. Expected responses 

Indirect expected responses in C18:1 to selection for BW, BT, or IMF are given 

in Table 2.6. In the first scenario, where records on IMF are not available, at best no 

change in C18:1 is expected. In most sire lines, the breeding goal is directed at 

increasing lean growth. According to the emphasis put on each of the two components 

of the trait, the selection objective in these lines can be placed in-between maximizing 

BW at restrained BT, in one extreme, and minimizing BT at restrained BW, in the 

other. Thus, within this scenario, the best situation occurs when selection is for BW at 

restrained BT, in which case only little changes in C18:1 are expected. However, as 

selection against BT is emphasized, C18:1 decreases by up to 0.2% per generation 

when BW is constrained to remain unchanged. This decrease in C18:1 can be 

minimized if records on IMF are available. Thus, in this new scenario, if IMF is also 

restrained, the decrease in C18:1 is reduced 3-fold. Moreover, if IMF is proactively 

selected, there is room for favorable responses in C18:1. Increasing IMF at restrained 

BW and BT led to similar but opposite response in C18:1 than decreasing BT at 

restrained BW. Response in C18:1 can be further improved if it is directly selected 

(Figure 2.1). There are selection scenarios leading to favorable responses in all traits; 

for instance, 1 kg in BW, –0.25 mm in BT, 0.06% in IMF, and 0.25% in C18:1. 

Maximum expected response in C18:1 at no lean growth loss (i.e., at no change in BW 

and BT) is 0.40%, with a resulting correlated response in IMF of 0.15%. Increasing the 

emphasis on BW and against BT constricts the response curves.  

 

Table 2.6. Indirect response per generation in oleic acid content (C18:1) to restricted 

selection for body weight (BW), backfat thickness (BT), or intramuscular fat content 

(IMF) by availability of IMF records. 

Recorded traits Objective
1
 Restriction 

Expected response 

BW, kg BT, mm IMF, % C18:1, % 

BW, BT       

 Max BW BT = 0 +2.28 0.00 +0.03 −0.03 

 Min BT BW = 0 0.00 −0.93 −0.20 −0.17 

BW, BT, IMF       

 Max BW BT = IMF = 0 +2.26 0.00 0.00 −0.05 

 Min BT BW = IMF = 0 0.00 −0.80 0.00 −0.06 

 Max IMF BW = BT = 0 0.00 0.00 +0.35 +0.17 

1
 Trait to maximize (Max) or minimize (Min). 
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Figure 2.1. Maximum expected response for oleic acid (C18:1) (and correlated 

response for intramuscular fat content, IMF) at differing backfat thickness (BT) and 

fixed body weight (BW) responses (0, 0.5, and 1 kg). Responses are given per 

generation. 

 

2.4. DISCUSSION 

Results obtained provide strong evidence that C18:1 content in IMF is 

genetically determined. The estimate of the heritability of C18:1, with a value around 

0.50, is in line with that obtained by Ntawubizi et al. (2010) with crossbred pigs but 

greater than other estimates, which were in the range of 0.26 (Sellier et al., 2010), in 

Landrace and Large White, to 0.36 (Suzuki et al., 2006), in Duroc. In the present study, 

as in Suzuki et al. (2006), inferences were based on a Duroc line with known selection 

trajectory, but using a bigger data set and a more representative family structure across 

generations. Similar values have been reported for the heritability of C18:1 in backfat 

of Duroc pigs, with values ranging from 0.26 (Suzuki et al., 2006) to 0.57 (Gjerlaug-

Enger et al., 2011). Estimates obtained in other breeds for the heritability of C18:1 in 

subcutaneous fat showed a similar trend, with values from 0.30 in Iberian pigs 

(Fernández et al., 2003) to as great as 0.67 in Landrace (Gjerlaug-Enger et al., 2011). 

The high value for the heritability of C18:1 is maintained even when adjusted for 

IMF, showing a negligible probability of being less than 0.28. This finding removes 

the concerns raised by Casellas et al. (2010) about the genetic determinism of C18:1 at 

fixed IMF. However, this result contrasts with the dramatic reduction, from 0.58 to 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

C
1

8
:1

, 
%

 (
IM

F
, 
%

) 

BT, mm 

∆BW = 0.0 kg, C18:1 

∆BW = 0.5 kg, C18:1 

∆BW = 1.0 kg, C18:1 

∆BW = 0.0 kg, IMF 

∆BW = 0.5 kg, IMF 

∆BW = 1.0 kg, IMF 



Chapter 2 

66 

0.18, observed by Ntawubizi et al. (2010) for the heritability of C18:1 after adjusting 

for IMF. These later authors suggested that this might be due to the low IMF content 

showed by their experimental crossbred pigs (1.2%), a situation where small variations 

in IMF, mostly dominated by changes in polyunsaturated fatty acids, may have a great 

impact. Our results, which were obtained in a population displaying 4-fold greater IMF 

than theirs, would support this hypothesis. However, note that here, because estimates 

are based on a 4-trait analysis, with IMF being one of the traits, and not on a series of 

univariate analyses, the genetic effect is subtracted from IMF when acting as a 

covariate, then giving as a result a lesser effect of IMF on C18:1. In fact, the effect of 

IMF on C18:1 was much greater in a 3-trait analysis excluding IMF (0.33, SD 0.04) 

than in the full 4-trait analysis (0.01, SD 0.14). The heritability of C18:1 in the 3-trait 

analysis was lower (0.45, SD 0.08) but still conclusive with respect to the genetic 

determination of C18:1. Taken as a whole, the results indicate that C18:1 displays a 

moderate-to-high heritability and suggest that there is potential for improving C18:1 in 

IMF by selection. 

Selection responses in C18:1 should be put into context with the correlated 

genetic change in other economic traits. In this study, C18:1 showed a favorable and 

moderately high genetic correlation with IMF, in accordance with the observed trend 

of fatty acid composition with IMF in this line (Bosch et al., 2012), but much greater 

than that reported by Suzuki et al. (2006), the only other study that examined the 

genetic relationship between C18:1 and IMF, which was 0.10. Although positive and 

low, there is less evidence on the magnitude of the genetic correlations of C18:1 with 

BW and BT, particularly for BW, where negative values cannot be discarded 

completely. Reported estimates for the correlation between C18:1 and BW are more 

consistent with the values encountered here than those for the correlation between 

C18:1 and BT (Suzuki et al., 2006; Ntawubizi et al., 2010). Suzuki et al. (2006) 

observed that C18:1 and BT are almost uncorrelated, but Ntawubizi et al. (2010) found 

that they are positively correlated (−0.75 with carcass lean meat content). Because 

genetic correlation among C18:1 at different fat depots is approximately 0.7 (Suzuki et 

al., 2006), complementary information can be retrieved from results on C18:1 in fat 

tissues other than IMF. Results for backfat C18:1 give a similar contradictory picture; 

some authors (Cameron, 1990; Fernández et al., 2003) found that C18:1 and BT are 

hardly correlated (around 0.10), and others reported that they are unfavorably related 

(Gjerlaug-Enger et al., 2011). Intramuscular fat content showed a similar genetic 

correlation structure with BW and BT as C18:1, in agreement with previous results in 

the same Duroc population (Solanes et al., 2009). 

Discrepancies in the above estimates may arise because of differences in the age 

or weight at test and in the muscle where IMF and C18:1 were measured. In the present 

study, pigs were tested for BW and BT at 180 d, and IMF and C18:1 were determined 
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analytically in the gluteus medius muscle at 210 d. Results in Solanes et al. (2009) 

showed that the genetic correlation of IMF with BW and BT, both traits measured at 

180 d, were greater than those found here for IMF at 210 d. This could indicate that the 

genetic relationship between performance traits, particularly for BW and IMF-related 

traits, including C18:1, decreases as age increases. In fact, in heavy Iberian pigs, 

Fernández et al. (2007) found that the correlation between BW and IMF was negative. 

This might be interpreted in light of the fact that C18:1 evolved linearly with age 

throughout the period studied, whereas BW and BT did not (Bosch et al., 2012). The 

muscle and the determination method of IMF may also influence the relationship 

among fat depots. Here C18:1 was measured in the gluteus medius muscle instead of 

the longissimus, as in most reported estimates, because sampling from gluteus medius 

is easier and cheaper, compared with longissimus. Muscles behave differently in terms 

of both IMF content and composition and, because gluteus medius is fatter than 

longissimus at a given age (Casellas et al., 2010), IMF in gluteus medius may be more 

correlated to overall fatness (Solanes et al., 2009). Variations in age, slaughter weight, 

and IMF content are commonly adjusted including a covariate in the model describing 

the data. The magnitude of these covariates for C18:1 in the 4-trait analysis was very 

small, and therefore inferences concerning C18:1 did not relevantly change across 

models. Major differences occurred when adjusting for carcass weight, likely because, 

in this case, the covariate is capturing part of the deviations between BW at 180 d and 

carcass weight at 210 d. Similarly, no relevant changes in the estimates of the genetic 

parameters were observed after the ilr transformation of IMF and C18:1. Note that both 

IMF and C18:1 are compositional data in nature (Aitchison, 1986), so conceptually 

they cannot be used in real space unless they are previously transformed (Egozcue et 

al., 2003). However, Estany et al. (2011), using real and simulated data, have already 

shown that, in regard to IMF and C18:1, transformed values only performed a little 

better when predicting future records of IMF. 

Data on fatty acid composition have often been obtained from experiments 

designed for other purposes or from culled pigs, and, therefore, they are not necessarily 

randomly chosen. In such cases, data may be subjected to selective recording and 

inferences on genetic parameters may be biased. However, if the history of the 

selection process is contained in the data used in the analysis, the posterior distribution 

has the same mathematical form with or without selection (Gianola & Fernando, 1986). 

In this study, pigs in which IMF and C18:1 were determined were chosen exclusively 

on the BLUP of the breeding values of BW and BT from the pedigree and records used 

in the present analysis. All estimates shown here were derived under this principle, and 

they were implicitly adjusted for selective recording. Inferences obtained using only 

data from pigs with records on C18:1, although they did not affect the estimate of the 

heritability of C18:1, underestimated the genetic correlations of C18:1 and IMF with 

BW and BT, even suggesting a negative genetic relationship of BW with IMF and 
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C18:1 (results not shown). Including all data in the analysis removed the effect of 

selection and revealed the risks of estimating genetic parameters, particularly 

correlations, using data recorded for other purposes. 

Expected responses suggest that breeding programs directed at increasing C18:1 

are feasible but also that this genetic progress is achieved at the expense of decreasing 

lean content. In many instances, the correlated change in C18:1 to selection for 

production traits is likely more important than the execution of direct selection. In this 

scenario, our results show that selection for lean growth will not lead to favorable 

changes in C18:1, which will only be indirectly improved in breeding regimens 

selecting proactively for IMF. Some experiments have already demonstrated that it is 

possible to increase IMF through selection (Suzuki et al., 2005a; Schwab et al., 2009). 

The low expected responses in C18:1 and IMF to selection for BW at restrained BT 

indicate that, if selection gives a great emphasis on growth rate, little changes in both 

IMF and C18:1 should be expected. This result is consistent with experimental 

evidence indicating that continuous selection for lean growth did not necessarily lead 

to decreased IMF (Oksbjerg et al., 2000; Tribout et al., 2004). 

Direct selection for C18:1 allows for convenient scenarios in which C18:1, IMF, 

BW, and BT can be simultaneously improved. A desired-gain approach was used to 

determine the weights for traits in the breeding objective. This is a useful approach for 

traits not yet included in the payment system or subjected to restrictions, as established 

in some labeled products. In fact, restricted values on fatty acids are a common feature 

in regulations for foods bearing nutritional or health claims concerning fat properties 

and, for example, when minimum C18:1 and maximum palmitic, stearic, and linoleic 

acid contents are required in grading Iberian cured products. However, proper 

economic weights are needed to achieve the optimum response profile in each 

situation. It has been proposed to use interviews with experts or market surveys as 

input for developing a pricing system based on a quantitative differentiation of 

willingness-to-pay values for carcasses of different qualities (von Rohr et al., 1999). 

The method has been used in the Swiss breeding program for calculating the economic 

value of fat quality, indirectly measured as the amount of double bonds in fatty acids in 

the outer layer of backfat (Hofer et al., 2006). To our knowledge, this is so far the only 

published attempt to select for fat composition in pigs, although no realized responses 

have been reported yet. A similar approach can be used to elucidate the economic 

value of traits, such as C18:1, reflecting possible future trends in the pork market. 

Selection for C18:1 leads to an undesired correlated response in BT (i.e., lean 

content) and to genetic lag in BW (i.e., average daily gain). Then, for a given scenario, 

the opportunity cost of selecting for increased C18:1 can be derived by subtracting the 

total economic response weight in the adopted scenario from the maximum total 

economic response. Alternatively, in case of being negative, this difference can also be 
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interpreted as an estimation of the societal benefits of selecting for healthiness (Kanis 

et al., 2005). Other economic traits not included in the present analysis may also show 

undesired responses. There have not been reported estimates of the genetic correlation 

of C18:1 in IMF with feed conversion ratio, proportion of premium cuts, or prolificacy. 

However, results relating to C18:1 (Fernández et al., 2003) and linoleic acid (Hofer et 

al., 2006) in backfat lead to expected unfavorable correlated responses in both feed 

conversion ratio and proportion of premium cuts, although not to premium pieces 

weight. By contrast, in accordance with Solanes et al. (2009), who found that IMF was 

uncorrelated to prolificacy, no relevant genetic change in prolificacy is expected after 

selection for C18:1. 

Genetic differences between individuals for C18:1 in IMF may come from 

differential ability of pigs either to incorporate dietary C18:1 to IMF or to synthesize 

C18:1 from palmitic and stearic acids via increased enzymatic activity of elongases and 

Δ
9
 desaturases, respectively. Cánovas et al. (2009) found that selection for decreased 

BT at restrained IMF led to decreased expression of both enzymes in backfat but not in 

IMF, giving support to the hypothesis that the metabolic pathways underlying the 

synthesis of C18:1 are altered by selection. From a practical view, however, the 

question whether selection for increased C18:1 content is affordable must be contrasted 

with the cost/benefit ratio of alternative strategies. Diet and age at slaughter, which 

partly explain the variation among batches for C18:1, are the two most used practices 

to improve both IMF content and composition. However, experimental results indicate 

that the impact of dietary fatty acid additions mainly affects subcutaneous fat and 

polyunsaturated fatty acids rather than IMF and monounsaturated fatty acids (Wood et 

al., 2008). Even though feeding pigs high-oleic acid diets may increase C18:1 in IMF 

by up to 3% (Mas et al., 2010), this approach has not always been successful (Mas et 

al., 2011). In general, major changes in C18:1 are achieved indirectly by raising IMF 

content. Teye et al. (2006), using a low protein diet, and Bosch et al (2012), delaying 

the age at slaughter, two management practices aimed at improving IMF, increased 

C18:1 by values in the range of 4 to 7%. However, our data indicate that, on average, 

batch differences only accounted for around 2% of C18:1, approximately the expected 

genetic change that would be achieved after 5 generations of selection. 

A limitation for implementing direct selection for C18:1 is that phenotypes 

cannot be observed on the selection candidates themselves and are costly to determine. 

It is difficult to measure C18:1 in live animals unless biopsies (Bosch et al., 2009) or 

genetic markers (Estellé et al., 2009) are used. However, the first approach is mostly 

restricted to experimental designs, and the second has not yet been able to translate 

advances into effective commercial improvements (Dekkers, 2004). The use of 

increasingly accurate on-line equipment, such as that based on near-infrared 

spectroscopy (Gjerlaug-Enger et al., 2011; Shackelford et al., 2011), represents an 
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opportunity for systematic recording of C18:1 on the slaughter chain. Due to greater 

measurement errors, lower heritability values may be expected using such records in 

relation to analytical methods (Fernández et al., 2003). However, the estimate of the 

heritability of IMF obtained here is consistent with a previous estimate obtained in the 

same Duroc population, but using data taken with a near-infrared transmittance 

spectrometry device (Solanes et al., 2009). Accordingly, no relevant changes should be 

expected by using on-line measurement technologies. Other direct alternative methods 

specifically for determining C18:1 content have also been proposed (Muñoz et al., 

2011). 

 

2.5. CONCLUSIONS 

Two questions were addressed in this study. (1) Is there genetic variation in 

C18:1 content in IMF? (2) Which response scenarios are expected for indirect and 

direct selection? We concluded that selection for C18:1 content in IMF can be effective 

and that there are selection strategies leading to response scenarios in which C18:1, 

IMF, BT, and BW can be simultaneously improved. However, if adopted, a reduction 

in the potential for lean growth is also expected. The extent to which it is affordable 

relies on how much consumers are prepared to pay for high-oleic pork products. 
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ABSTRACT: There is an increasing interest in including intramuscular fat (IMF) 

content and fatty acid composition, particularly oleic acid (C18:1) content, in the 

selection objectives of pig lines for quality pork markets. These traits are costly and 

can be measured in more than one location, so knowing their correlation structure 

across muscles and with subcutaneous fat (SF) is necessary for developing optimum 

sampling and recording schemes. We analyzed the genetic and phenotypic correlations 

of IMF content and composition among three of the most relevant muscles (GM: 

gluteus medius; LD: longissimus dorsi; and SM: semimembranosus) and with the fatty 

acid composition of SF. All genetic correlations were positive but variable. For IMF, 

the genetic correlation between GM and LD was 0.68 and, for fatty acids, ranged from 

0.62, for C18:1, to 0.82, for total polyunsaturated fatty acids. Genetic correlations of 

GM and LD with SM were much lower: 0.13−0.19, for IMF, and 0.10−0.54, for fatty 

acids. Correlations for fatty acid composition in SF were moderate to high with GM 

and LD (0.29−0.53 and 0.43−0.75, respectively), but were null with SM. The expected 

responses for IMF in the three muscles and for C18:1 in each muscle and in SF to 

selection on records taken from only a single muscle or SF were estimated. Selection 

for IMF and C18:1 in GM is expected to lead to positive responses in IMF and C18:1 

in LD and vice versa, although this can entail genetic lags of 20−45% in the muscle not 

directly selected for. Selection for C18:1 in SF is more effective for C18:1 in LD than 

in GM and of very limited value for IMF. In conclusion, the genetic correlations of 

IMF content and fatty acid composition among muscles and with SF, although 

positive, are variable enough to influence the genetic evaluation scheme for IMF and 

fat quality. They also indicate that GM and LD can be used alternatively for selection 

purposes. 
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3.1. INTRODUCTION 

Intramuscular fat (IMF) content and fatty acid composition affect both the 

organoleptic and nutritional properties of pork and its derivatives (Wood et al., 2003). 

Particularly, oleic acid (C18:1) content has become an appreciated trait in dry-cured 

products and in some niche markets of fresh meat because of its association with 

flavor, technological properties, and health benefits (Toldrá, 2002; Christophersen & 

Haug, 2011; Jiménez-Colmenero et al., 2010). The strong economic importance of dry-

cured ham in the Mediterranean area, where hams containing higher levels of C18:1 

are premium-paid, together with the increased demand of healthy sources of meat, has 

triggered the interest of including IMF and fatty acid composition in the breeding goal 

of the pig lines producing for those markets. Because these traits are difficult and 

costly to measure, their genetic evaluation is usually based on indirect assessments 

(Jeremiah, 1998; Newcom et al., 2002, 2005) or on a limited number of records taken 

either on a single muscle (Chapter 2; Ntawubizi et al., 2010) or from the subcutaneous 

fat (SF) (Fernández et al., 2003; Hofer et al., 2006; Gjerlaug-Enger et al., 2011). 

However, it is known that the pattern of fatty acid deposition may differ between IMF 

and SF (Duran-Montgé et al., 2008; Sellier et al., 2010; Bosch et al., 2012), across 

muscles (Sharma et al., 1987; Leseigneur-Meynier & Gandemer, 1991; Kim et al., 

2008), and even among locations within a specific tissue (Sharma et al., 1987; 

Faucitano et al., 2004; Franco et al., 2006). Therefore, to develop adequate recording 

and genetic evaluation schemes for IMF and fatty acid composition traits, there is a 

need to know the correlation structure of these traits across valuable muscles and with 

SF. The objective of this study is to estimate the genetic correlation of IMF and fatty 

acids content across three economically relevant muscles (the loin and two muscles 

from the ham) and with SF. The expected response for IMF and C18:1 in each muscle 

and SF to selection on records from only one of them is assessed. 

 

3.2. MATERIALS AND METHODS 

3.2.1. Animals and sample collection 

Data from a purebred Duroc line were used for the analyses (see Animals and 

Samples Section). The data set used for the estimation of genetic parameters consisted 

of 111,305 pedigree-connected pigs, from which 102,915 had at least one recorded 

trait. Pigs with records were born from 1996 to 2011. All pigs were performance-tested 

at an average age of 180 d for body weight (BW) and backfat thickness (BT). Since 

2002, 1,204 of the purebred barrows used for producing dry-cured ham were taken for 

recording IMF and C18:1. These barrows were raised in 15 batches until slaughter at 

around 210 d of age. At the end of the finishing period, all barrows were slaughtered in 

the same commercial slaughterhouse at ~125 kg of BW. Immediately after slaughter, a 
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sample of SF (n=333) and muscle semimembranosus (SM, n=198) was collected. After 

chilling for about 24 h at 2ºC, samples of muscles gluteus medius (GM, n=1,204) from 

the left side ham and longissimus dorsi at the level of the third and fourth ribs (LD, 

n=318) were also collected. Samples of SF were collected at the same location than 

either the LD (n=203) or the GM (n=130) samples. Samples were used for 

determination of IMF (expressed as percentage of fresh matter), individual C18:1, and 

total saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty 

acids content (expressed as percentage of total fatty acids). Complete details on the 

procedures are given in the Animals and Samples Section. A summary of the 

population characteristics and number of records, sires, dams, and litters used for each 

analyzed trait is given in Table 3.1. 

 

Table 3.1. Description of the data set used in the analyses. 

Item 
No. of 

pigs 

No. of 

sires 

No. of 

dams 

No. of 

litters 
Mean SD 

Pedigree 111,305 830 22,634 40,658 - - 

Traits
1
       

 BW at test, kg 102,325 747 20,722 39,594 104.8 12.3 

 BT at test, mm 98,397 748 20,582 38,724 15.6 3.5 

 Muscle gluteus medius       

  IMF, % 1,200 169 678 681 4.8 1.9 

  C18:1, % 1,204 171 680 683 44.9 2.9 

  SFA, % 1,204 171 680 683 36.3 3.5 

  MUFA, % 1,204 171 680 683 49.4 3.1 

  PUFA, % 1,204 171 680 683 14.2 2.6 

 Muscle longissimus dorsi       

  IMF, % 318 90 264 264 3.5 1.2 

  C18:1, % 318 90 264 264 45.8 2.7 

  SFA, % 318 90 264 264 38.0 3.4 

  MUFA, % 318 90 264 264 50.5 2.6 

  PUFA, % 318 90 264 264 11.6 2.5 

 Muscle semimembranosus       

  IMF, % 146 59 138 138 2.7 1.7 

  C18:1, % 196 69 170 170 44.3 5.0 

  SFA, % 196 69 170 170 34.3 4.8 

  MUFA, % 196 69 170 170 48.3 5.3 

  PUFA, % 196 69 170 170 17.4 4.4 

 Subcutaneous fat       

  C18:1, % 333 130 281 281 44.1 3.7 

  SFA, % 333 130 281 281 34.2 5.3 

  MUFA, % 333 130 281 281 47.3 4.0 

  PUFA, % 333 130 281 281 18.4 2.4 

Covariates       

 Age at test, d 102,915 748 20,848 39,837 179.3 10.6 

 Age at slaughter, d 4,317 392 2,480 2,633 207.2 16.1 

1
 BW: body weight; BT: backfat thickness; IMF: intramuscular fat; C18:1: oleic acid; SFA: 

saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids. 
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3.2.2. Estimation of genetic parameters 

Genetic parameters for IMF and fatty acids content in GM, LD, SM, and SF 

were estimated fitting 4-trait multivariate models, where BW and BT were the two first 

traits and IMF or C18:1 in two different tissues the other two. In matrix notation, the 

model was: 

yi = Xibi + Ziai + Wici + ei , 

where yi is the vector of observations for trait i; bi, ai, ci, and ei are the vectors of 

systematic, additive genetic, litter, and residual effects, respectively; and Xi, Zi, and Wi 

the known incidence matrices that relate bi, ai, and ci with yi, respectively. Systematic 

effects for BW and BT were the batch (1,226 levels), gender (3 levels; males, females, 

and castrates), and age at measurement as a covariate. The model for IMF and fatty 

acids content only included the batch (15 levels) and age at measurement. Because 

there were only 1.2 piglets/litter with records on IMF and fatty acids content in LD, 

SM, and SF, litter was dropped from the model for these two traits. Genetic 

correlations between IMF and C18:1 in different tissues were estimated fitting 6-trait 

(or 5-trait) multivariate models including, besides BW and BT, IMF and C18:1 in two 

different tissues (only IMF in one muscle if the other tissue was SF). The genetic 

parameters were estimated in a Bayesian framework using Gibbs sampling with the 

TM software (Legarra et al., 2011). Observed phenotypes and missing records imputed 

by data augmentation were assumed to be conditionally normally distributed as 

follows: 

 

𝐲1

𝐲2

…
𝐲𝑛

  | b1,b2,...,bn,a1,a2,...,an,c1,c2,R ~ N 𝐗 

𝐛1

𝐛2

…
𝐛𝑛

 + 𝐙  

𝐚1

𝐚2

…
𝐚𝑛

 + 𝐖 
𝐜1
𝐜2

 , 𝐑 , 

where R was the (co)variance matrix. Sorting records by trait, and pig within trait, R 

could be written as R0  I, with R0 being the n × n residual (co)variance matrix 

between the n traits analyzed and I an identity matrix of appropriate order. Flat priors 

were used for bi and residual (co)variance components. Additive genetic and litter 

values, conditional on the associated (co)variance components, were both assumed 

multivariate normally distributed with mean zero and with (co)variance G  A and                                               

C  I, respectively, where A was the numerator relationship matrix, G was the n × n 

genetic relationship matrix between the n traits, and C was the 2 × 2 (co)variance 

matrix between litter effects of BW and BT. The matrix A was calculated using all the 

pedigree information. Flat priors were used for additive and litter (co)variance 

components. Statistical inferences (means and highest posterior density intervals at 

95% of probability (HPD95)) were derived from the samples of the marginal posterior 

distribution using a unique chain of 1,000,000 iterations, where the first 500,000 were 
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discarded and one sample out of 100 iterations retained. Statistics of marginal posterior 

distributions and the convergence diagnostics were obtained using the boa package 

(Smith, 2005). Convergence was tested using the Z-criterion of Geweke (Geweke, 

1992) and visual inspection of convergence plots. 

 

3.2.3. Prediction of expected responses 

The expected genetic responses for IMF and C18:1 were evaluated in a 

simulated breeding program based on records on either IMF or C18:1, or both 

simultaneously, taken from a particular tissue. For a given scenario, we assumed that 

only records from one of the tissues were available. Intramuscular fat and C18:1 were 

assumed to have the same economic weight when both traits were included in the 

selection objective. The simulated breeding program was a simplified version of that 

described in Chapter 2. A population of 40 boars and 400 sows randomly mated was 

maintained on discrete generations. We assumed that 3 individuals per sire family were 

slaughtered to determine IMF or C18:1 or both. In each generation 25% of males and 

50% of females were selected based on three half-sib plus pedigree records. Selection 

response was predicted deterministically by using the program SelAction (Rutten et al., 

2002). The program accounts for reduction in variance due to selection (Bulmer, 1971) 

and corrects selection intensities for finite population size and for the correlation 

between index values of family members (Meuwissen, 1991). 

 

3.3. RESULTS 

The posterior mean of the genetic variance and the posterior mean and HPD95 

of the heritability of IMF in GM, LD, and SM, as well as of the genetic correlations 

among them and with BT, are shown in Table 3.2. The corresponding posterior means 

and HPD95 for fatty acid composition in GM, LD, SM, and SF are given in Table 3.3. 

The heritability of IMF in the three muscles was high, particularly for LD. Although 

they had wide HPD95 (due to the low number of pigs with data on these traits), all of 

them showed 95% probability of being greater than 0.30. The heritabilities of C18:1, 

SFA, MUFA, and PUFA in the three muscles were of similar magnitude than those for 

IMF. In GM and LD, the heritability estimates for SFA were the lowest and those for 

PUFA the highest. The heritabilities estimated in SF tended to be lower than those 

estimated in the muscles for all fatty acids. The genetic variance of fatty acids was 

much higher in SM than in GM, LD, and SF. 

The genetic correlation between IMF in GM and LD was high (0.68), but it 

decreased to ~0.15 for that between them and SM. Unlike for GM and LD, the HPD95 

for the genetic correlation between IMF in SM and IMF in GM and LD included null 
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and negative values, thereby indicating very little evidence of correlation between 

them. Similarly, BT was positively correlated to IMF in GM and LD (~0.40), but 

uncorrelated to IMF in SM. The phenotypic correlations showed the same trends, but 

lower in magnitude than the genetic correlations. For all fatty acid traits, the highest 

genetic correlations were also found between GM and LD (0.62 to 0.82). The genetic 

correlations of GM and LD with SM were also positive but more moderate (0.29 to 

0.44 and 0.10 to 0.54, respectively). However, the genetic correlations of LD with SF 

were consistently higher (0.43 to 0.75) than those of GM with SF (0.29 to 0.53). No 

evidence of genetic correlation between SM and SF was found. 

The genetic parameters for C18:1 adjusted for IMF are shown in Table 3.4. 

Adjusted estimates did not relevantly differ from the unadjusted estimates reported in 

Table 3.2. Including IMF of the involved muscles as covariates only slightly decreased 

the correlations among muscles, although increased those between muscles and SF. 

Including IMF as additional traits in the multivariate model did not have any 

systematic effect on the genetic parameters. 

The posterior mean and HPD95 of the genetic correlations of C18:1 in GM, LD, 

SM, and SF with IMF in the three muscles are given in Table 3.5. The IMF content of 

of GM and LD were moderately correlated with the C18:1 content in the same muscles 

(0.47−0.52), except for IMF in GM with C18:1 in LD (0.24). The genetic correlations 

between C18:1 and IMF were much lower when SM was involved (ranging from 0.14 

to 0.37), although C18:1 and IMF in SM were highly correlated (0.69). The IMF 

content in any of the three muscles was uncorrelated with C18:1 in SF. 

 

Table 3.2. Genetic variance, heritability (diagonal, in bold), genetic correlations
 
(above 

diagonal), and phenotypic correlations (below diagonal) for intramuscular fat content 

(IMF) in three muscles and backfat thickness (BT). 

Trait 
Genetic 

variance 

Genetic parameters
1
 

IMF
2
 

BT 
GM LD SM 

IMF, %      

 GM 1.66 0.51 

(0.38, 0.65) 

0.68 

(0.48, 0.87) 

0.16 

(−0.25, 0.56) 

0.42 

(0.24, 0.59) 

 LD 0.76 0.47 

(0.38, 0.56) 
0.64 

(0.44, 0.83) 

0.13 

(−0.15, 0.42) 

0.40 

(0.14, 0.66) 

 SM 1.47 0.15 

(−0.04, 0.33) 

0.21 

(0.02, 0.39) 
0.53 

(0.30, 0.72) 

−0.09 

(−0.53, 0.30) 

BT, mm 4.35 0.29 

(0.24, 0.34) 

0.32 

(0.23, 0.42) 

0.04 

(−0.12, 0.22) 
0.48 

(0.46, 0.50) 

1
 Mean of the posterior density and, in parentheses, highest posterior density interval at 95% of 

probability. 
2
 GM: gluteus medius; LD: longissimus dorsi; SM: semimembranosus. 
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Table 3.3. Genetic variance, heritability (diagonal, in bold), genetic correlations
 
(above 

diagonal), and phenotypic correlations (below diagonal) for oleic (C18:1), saturated 

(SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acid content in 

three muscles and subcutaneous fat (SF). 

Fatty acid 
Genetic 

variance 

Genetic parameters
1
 

Muscle
2
 

SF 
GM LD SM 

C18:1, %      

 GM 1.92 0.44 

(0.32, 0.59) 

0.62 

(0.41, 0.80) 

0.40 

(0.14, 0.65) 

0.29 

(−0.06, 0.72) 

 LD 2.13 0.54 

(0.46, 0.62) 
0.59 

(0.41, 0.80) 

0.30 

(−0.08, 0.68) 

0.52 

(0.24, 0.78) 

 SM 12.69 0.24 

(0.12, 0.37) 

0.30 

(0.13, 0.45) 
0.59 

(0.39, 0.78) 

0.02 

(−0.47, 0.60) 

 SF 1.83 0.34 

(0.23, 0.45) 

0.47 

(0.31, 0.61) 

0.09 

(−0.16, 0.39) 
0.41 

(0.22, 0.60) 

SFA, %      

 GM 1.89 0.42 

(0.26, 0.57) 

0.73 

(0.53, 0.91) 

0.29 

(−0.03, 0.58) 

0.53 

(0.21, 0.81) 

 LD 2.39 0.67 

(0.60, 0.73) 
0.54 

(0.36, 0.71) 

0.10 

(−0.19, 0.46) 

0.75 

(0.57, 0.90) 

 SM 8.28 0.18 

(0.04, 0.30) 

0.15 

(0.00, 0.28) 
0.57 

(0.37, 0.78) 

0.00 

(−0.52, 0.49) 

 SF 3.33 0.37 

(0.27, 0.47) 

0.63 

(0.51, 0.74) 

0.13 

(−0.10, 0.38) 
0.46 

(0.26, 0.65) 

MUFA, %      

 GM 2.55 0.50 

(0.35, 0.66) 

0.73 

(0.56, 0.88) 

0.43 

(0.18, 0.70) 

0.32 

(−0.06, 0.66) 

 LD 2.56 0.62 

(0.55, 0.69) 
0.61 

(0.45, 0.80) 

0.30 

(0.02, 0.66) 

0.58 

(0.33, 0.79) 

 SM 14.63 0.28 

(0.16, 0.41) 

0.30 

(0.16, 0.43) 
0.59 

(0.41, 0.78) 

0.02 

(−0.42, 0.58) 

 SF 2.13 0.35 

(0.24, 0.45) 

0.54 

(0.40, 0.66) 

0.10 

(−0.15, 0.37) 
0.41 

(0.22, 0.59) 

PUFA, %      

 GM 2.79 0.60 

(0.47, 0.75) 

0.82 

(0.73, 0.92) 

0.44 

(0.20, 0.66) 

0.41 

(0.19, 0.63) 

 LD 3.23 0.76 

(0.72, 0.81) 
0.67 

(0.48, 0.82) 

0.54 

(0.32, 0.79) 

0.43 

(0.17, 0.68) 

 SM 10.30 0.38 

(0.26, 0.49) 

0.47 

(0.35, 0.58) 
0.57 

(0.37, 0.76) 

0.11 

(−0.28, 0.49) 

 SF 2.27 0.40 

(0.31, 0.49) 

0.41 

(0.25, 0.55) 

0.03 

(−0.18, 0.21) 
0.57 

(0.37, 0.76) 

1 
Mean of the posterior density and, in parentheses, highest posterior density interval at 95% of 

probability. 
2 
GM: gluteus medius; LD: longissimus dorsi; SM: semimembranosus. 
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Table 3.4. Heritability (diagonal, in bold), genetic correlations
 
(above diagonal), and 

phenotypic correlations (below diagonal) for oleic acid content (C18:1) in muscles 

adjusted for intramuscular fat content (IMF) and C18:1 in subcutaneous fat (SF). 

Adjustment for IMF was performed either adding IMF of the corresponding muscles as 

covariates in the model for C18:1 or as additional traits in a multivariate analysis
1
. 

Model 
Muscle

2
 

SF 
GM LD SM 

IMF as covariate     

 GM 0.41 

(0.28, 0.55) 

0.56 

(0.28, 0.82) 

0.35 

(0.10, 0.58) 

0.31 

(−0.07, 0.64) 

 LD 0.50 

(0.42, 0.59) 
0.55 

(0.34, 0.75) 

0.18 

(−0.22, 0.60) 

0.52 

(0.25, 0.81) 

 SM 0.19 

(0.06, 0.31) 

0.19 

(0.06, 0.33) 
0.59 

(0.40, 0.79) 

0.14 

(−0.22, 0.46) 

 SF 0.35 

(0.23, 0.46) 

0.47 

(0.29, 0.62) 

0.16 

(−0.05, 0.36) 
0.44 

(0.24, 0.63) 

IMF as trait     

 GM 0.47 

(0.34, 0.60) 

0.64 

(0.49, 0.80) 

0.33 

(0.11, 0.55) 

0.32 

(0.00, 0.62) 

 LD 0.55 

(0.47, 0.62) 
0.61 

(0.43, 0.80) 

0.36 

(0.13, 0.59) 

0.49 

(0.15, 0.76) 

 SM 0.21 

(0.10, 0.31) 

0.30 

(0.17, 0.43) 
0.62 

(0.41, 0.82) 

0.18 

(−0.24, 0.57) 

 SF 0.34 

(0.23, 0.45) 

0.47 

(0.30, 0.62) 

0.15 

(−0.09, 0.38) 
0.45 

(0.24, 0.65) 

1
 Mean of the posterior density and, in parentheses, highest posterior density interval at 95% of 

probability. 
2
 GM: gluteus medius; LD: longissimus dorsi; SM: semimembranosus. 

 

Table 3.5. Genetic correlations of intramuscular fat (IMF) and oleic acid (C18:1) 

content in different muscles and subcutaneous fat (SF)
1
. 

IMF
2
 

C18:1
2
 

GM LD SM SF 

GM 0.47 

(0.27, 0.66) 

0.24 

(−0.04, 0.50) 

0.29 

(−0.02, 0.59) 

−0.03 

(−0.39, 0.32) 

LD 0.51 

(0.30, 0.71) 

0.52 

(0.31, 0.72) 

0.37 

(0.19, 0.55) 

0.10 

(−0.29, 0.41) 

SM 0.15 

(−0.15, 0.44) 

0.14 

(−0.14, 0.46) 

0.69 

(0.49, 0.86) 

0.06 

(−0.29, 0.42) 

1
 Mean of the posterior density and, in parentheses, highest posterior density interval at 95% of 

probability. 
2
 GM: gluteus medius; LD: longissimus dorsi; SM: semimembranosus. 
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The expected responses for IMF and C18:1 in the three sampled muscles and SF 

to selection on records from different tissues are shown in Table 3.6. The correlated 

response in IMF (or C18:1) in GM to selection for the same trait in LD, and vice versa, 

was 0.6−0.7 times the direct response obtained in the sampled muscle. For GM and 

LD, selection for C18:1 (or IMF) led to a correlated response for IMF (or C18:1, 

respectively) of around half of the response for the proactively selected trait. The 

correlated responses in SM to selection based on records on GD or LD were always 

very low. There was only a small opportunity cost for IMF and C18:1 (less than 20%) 

with respect to single-trait selection when both traits are measured and included in a 

selection objective with equal economic weights. Relevant genetic changes in C18:1 in 

SF were found only for direct selection or for selection for C18:1 in LD. Selection for 

C18:1 in SF led to the same correlated response of C18:1 in LD than selection for 

C18:1 in GM, but the first had the disadvantage that it was not accompanied by a 

correlated change in IMF. 

 

Table 3.6. Direct (bold) and correlated (not bold) expected genetic response for 

intramuscular fat (IMF) and oleic acid (C18:1) content in a given tissue to selection on 

records taken on different muscles or subcutaneous fat (SF)
1
. 

Response
2
 

Tissue and trait used as a selection criterion
3
 

GM  LD  SF 

IMF C18:1 IMF+C18:1
4
  IMF C18:1 IMF+C18:1

4
  C18:1 

IMF
3
          

 GM 28 12 24  20 7 15  −1 

 LD 18 14 20  30 15 25  2 

 SM 4 4 5  4 4 5  2 

C18:1
3
          

 GM 13 26 23  15 18 19  7 

 LD 7 16 14  16 29 27  13 

 SM 8 11 11  11 9 11  1 

 SF −1 7 4  3 15 12  25 

1
 In each generation 25% of males and 50% of females were selected based on three half-sib 

plus pedigree records. 
2
 Genetic standard deviation units (×100). 

3
 GM: gluteus medius; LD: longissimus dorsi; SM: semimembranosus. 

4
 Same economic weights for both traits in the selection objective. 

 

3.4. DISCUSSION 

Three economically relevant muscles were considered in this study, two of them 

located in the ham (GM and SM) and one in the loin (LD). Sampling of central LD for 

chemical analysis is laborious and depreciates the loin as a primal cut. Instead, a big 

sample of GM can be easily obtained on the cutting line from the superior edge of the 
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ham at no cost. Because of this, GM has been frequently used as the reference muscle 

in studies conducted under field conditions (Chapters 2 and 4; Casellas et al., 2010). It 

is also feasible to sample SM from its exposed surface at no cost, but this sampling 

scheme has the limitation that only allows obtaining small off-line samples. Since SF 

samples are much easier to obtain than muscle samples, SF has been often used as the 

reference tissue where to determine the fatty acid profile, both for research and genetic 

evaluation purposes (Fernández et al., 2003; Hofer et al., 2006; Gjerlaug-Enger et al., 

2011). Although alternative non-destructive methods can be used in substitution of 

chemical determinations, such as near infrared technology (González-Martín et al., 

2002, 2005), the nature of the problem still persists and it is still needed to know the 

correlation structure between target and measured muscles for IMF content and fatty 

acid composition. The present study investigates the genetic implications of using 

alternative muscles or SF for phenotyping IMF and fatty acid composition in pigs. 

The estimates of the heritability were slightly higher than those previously 

reported (Suzuki et al., 2006; Casellas et al., 2010; Sellier et al., 2010) for IMF, C18:1, 

MUFA, and PUFA, but similar for SFA. Among muscles, GM and LD showed high 

correlations between them for IMF and fatty acids content, but not with SM, the 

correlations of which were much lower, particularly for IMF and SFA. An explanation 

for this result is that SM is subjected to greater sampling errors. To avoid depreciation 

of the ham, SM was sampled by cutting a small slice from the exposed surface of the 

carcass at the slaughterhouse. In contrast, a much bigger sample of GM and LD was 

obtained from the ham and the loin retail cuts, respectively. As a result, samples from 

GM and LD are likely more representative of the whole muscle than the small slices of 

SM. This result would confirm that sampling can be a critical factor for an adequate 

interpretation of the correlations across muscles (Bosch et al., 2009). 

The genetic correlations of fatty acids content between muscles GM and LD 

were higher than those between them and SF, in line with the results of Cánovas et al. 

(2009), who found different expression patterns between IMF and SF. The only 

exception was the correlation between SFA in LD and SF. In general, the correlations 

of fatty acid composition between LD and SF were higher than those between GM or 

SM and SF. This can be attributed to the fact that SF samples were mostly collected at 

the same anatomical location as LD, thereby suggesting that SF composition correlates 

better to the IMF composition of an adjacent muscle. In line with this, the remaining 

SF samples were taken at the same location as GM and, consequently, SF showed a 

higher correlation with GM than with SM. Note, however, that, due to the low number 

of samples at each location, genetic parameters for SF are based on pooled estimates at 

both locations. An additional source of sampling error may be incurred by sampling SF 

across fat layers. Although it is known that fatty acid composition differs between SF 

layers, its effect on the estimates of genetic parameters is likely small. For the main 
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fatty acids, Suzuki et al. (2006) found that the correlation between the inner and outer 

SF layers was very high, from 0.84 to 0.96. The correlation structure of IMF fat 

content and composition with BT and SF composition has practical implications. On 

one hand, it indicates that there is room for improving IMF content independently from 

overall fatness (Chapter 4; Tribout et al., 2004; Solanes et al., 2009), but, on the other 

hand, that measuring fatty acids content in SF can be a good criterion for improving 

IMF traits only in certain retail cuts. Thus, regarding C18:1, SF (as measured in this 

study at the level of the third and fourth ribs) could be a good criterion for loin but not 

for ham. 

The IMF content is known to affect fatty acid composition, being positively 

related to SFA and MUFA and negatively to PUFA (Chapter 1; Wood et al., 2008). 

Using C18:1 as an example, genetic parameters were adjusted for IMF of the involved 

muscles, including them either as covariates in the respective models or as additional 

traits in a multivariate approach. In general, the estimates based on (co)variances 

adjusted for IMF as a covariate were lower than those obtained when adding IMF as 

additional traits. Although the interpretation of this result is not straightforward, what 

is important here is that the differences of both approaches with the unadjusted 

estimates are minor, particularly in terms of HPD95. 

Results in the literature regarding the correlation of IMF and fatty acid 

composition among tissues are scarce but in line with those obtained here. Rauw et al. 

(2012) reported a phenotypic correlation of IMF between GM and LD higher than ours 

(0.69), but in contrast, for the correlation among the main fatty acids, their estimates 

were below our lower HPD95 limit, with values below 0.38. A genetic correlation of 

0.65 between IMF in GM and LD and much lower ones with BT (0.36−0.38) were 

found by Hernández-Sánchez et al. (2013) using genomic markers information. These 

estimates were similar to ours. The phenotypic correlations reported by Yang et al. 

(2010) between longissimus muscle and SF in a White Duroc × Erhualian cross were in 

the same range of values than ours (their values were included in our HPD95), with the 

exception of SFA, which were lower. Cameron & Enser (1991) reported much lower 

values for C18:1 (0.19) but more moderate for the main SFA and PUFA (0.31−0.54), 

using data from Duroc and Landrace. These latter results are in contrast with those 

obtained by Suzuki et al. (2006) in Duroc for the genetic correlation of MUFA and 

SFA between LD and SF (~0.70). For PUFA, this genetic correlation was as low as 

~0.18. Although part of the discrepancies among estimates may be explained by the 

age of the pigs, much younger in Cameron & Enser (1991) as compared to other 

works, and part by the relatively high standard errors associated to them, they provide 

sufficient evidence indicating that the pattern of fat deposition can differ widely across 

muscles and fat tissues. 
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Low correlations between muscles have also been found for other meat quality 

traits. Huff-Lonergan et al. (2002), in Large White, reported phenotypic correlations of 

0.47 and 0.30 between LD and SM for pH and color (relative lightness) at 24 h post-

mortem, respectively. Similarly, Gjerlaug-Enger et al. (2010) reported high genetic 

correlations (~0.8) between ultimate pH in GM and LD, both in Landrace and Duroc, 

but the estimates between these muscles and gluteus profundus were only in the range 

of 0.10 to 0.55. The phenotypic correlations among these three muscles did not exceed 

0.5. As in our study, correlations were positive but moderate in magnitude. 

It has been shown that there is room for improving IMF and fatty acid 

composition of pork through genetic selection (Chapter 2). This involves setting up a 

feasible routine of recording these data on a commercial basis. The definition of an 

optimum design for such schemes requires knowing the correlation structure of IMF 

and fatty acid composition among target and sampled tissues. One of the main costs of 

sampling is the depreciation cost, which is likely to occur if measures are taken from 

the inner side of a high value retail cut such as loin. For its sampling simplicity, an 

alternative is to sample a portion of GM from the superior edge of the hams. Although 

it implies an opportunity cost with respect to LD, the target muscle, our results indicate 

that selection based on GM still leads to acceptable genetic gains in LD, both for IMF 

and C18:1. In some cases, however, selecting for C18:1 in SF can be a good criterion 

to increase C18:1 in LD without increasing IMF, at least if SF is taken at the same 

location as LD. However, in general, C18:1 in SF is of very limited value for 

improving IMF or its fatty acid composition. A full description of the consequences of 

alternative selection and sampling schemes must take into account both the economic 

value of each muscle and its relative proportion in the carcass, as well as the genetic 

variation of IMF and fatty acid composition traits within each of them (Faucitano et al., 

2004). 

 

3.5. CONCLUSIONS 

The genetic correlations of IMF and fatty acid composition across muscles and 

fat tissues, although positive, are variable enough to influence the genetic evaluation 

schemes for IMF and fat quality. The results obtained indicate that, in terms of genetic 

response, GM and LD can be used alternatively as the reference muscle for selection 

purposes. Moreover, they also reveal that using fatty acid composition of SF as 

selection criterion should cause more changes in LD than in GM, but not in IMF. 
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ABSTRACT: Intramuscular fat (IMF) content is a relevant trait for the pig industry 

and consumers. However, selection for IMF has the undesired correlated effect of 

decreasing lean growth. A selection experiment was performed to investigate the 

effects of selection against backfat thickness (BT) at restrained IMF. Barrows from a 

purebred Duroc line were allocated into a selected (n=165) or a control (n=185) group 

based upon their litter predicted breeding values. Litters in the selected group were 

selected against BT at 180 d at restrained IMF in gluteus medius muscle (GM) whereas 

those in the control group were chosen randomly. Realized selection intensities and 

genetic responses for BT, IMF in GM, and body weight (BW) were estimated using a 

3-trait multivariate animal mixed model under a Bayesian setting. Correlated responses 

for other traits were estimated similarly but using a 4-trait model, where other traits 

were added to the previous 3-trait model one at a time. Selected pigs had less BT than 

control pigs (−1.22 mm, with highest posterior density interval at 95% of probability 

(HPD95) [−2.47, −0.75]) with restrained decrease in IMF, both in GM (−0.16%, 

HPD95 [−0.36, +0.05]) and in longissimus dorsi muscle (−0.15%, HPD95 [−0.37, 

+0.09]). However, the realized selection intensity for IMF in GM denotes that the 

restriction on IMF was incomplete (−0.18, HPD95 [−0.36, +0.02]). Selection decreased 

BW (−1.64 kg, HPD95 [−2.47, −0.75]) but increased carcass lean weight (+0.66 kg, 

HPD95 [+0.14, +1.22]), indicating that the response in BT offsets the unfavorable 

correlated response in BW. Selected pigs were shorter (−0.50 cm, HPD95 [−0.81, 

−0.20]) but with similar ham weight and loin depth. These results provide evidence 

that lean weight can be improved restraining the genetic change in IMF. However, they 

also stress that a complete restriction on IMF is difficult to achieve unless selection is 

practiced on a big population where IMF is accurately predicted.  
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4.1. INTRODUCTION 

Intramuscular fat (IMF) content is a key trait for marketing cured pork products, 

but it is also increasingly becoming relevant for fresh pork. Because IMF is 

unfavorably correlated with lean content, the selection for leanness undertaken in the 

last decades has led to develop genetic lines with a level of IMF that does not match 

the requirements of those specialized markets (Lonergan et al., 2001; Wood et al., 

2008). However, the reported genetic correlations between lean-related traits and IMF 

are only moderate (Clutter, 2011), suggesting that there is room for improving lean 

growth independently from IMF. 

Bosch et al. (2009, 2012) estimated the IMF content and backfat thickness (BT) 

at different age-points and muscles in a Duroc line. The values obtained by these 

authors proved that in some lines the problem is not IMF, which is already within the 

optimum range for dry-cured production, but overall fatness. Therefore, a suggestive 

breeding goal for such situations could be to increase leanness (reducing BT) subjected 

to minor change in IMF. It has been proved theoretically that this can be a feasible 

strategy (Chapter 2; Solanes et al., 2009), but there is only little experimental evidence 

to support this approach. Results in the two experiments reported so far involving IMF 

in the selection objective (Suzuki et al., 2005a,b; Schwab et al., 2009, 2010) confirmed 

that IMF responds to selection, but also that selection for increased IMF is 

accompanied by increased overall fatness. 

In this paper the results of a selection experiment conducted to investigate the 

effects of selection against BT at restrained IMF are presented. 

 

4.2. MATERIALS AND METHODS 

4.2.1. Selection experiment 

A selection experiment was conducted to study the effects of selection for 

decreased BT at restrained IMF. Selection was practiced in a purebred Duroc 

population that was completely closed in 1991 and since then it has been selected for 

an index including body weight (BW), BT, and IMF (see Animals and Samples 

Section). Selection was practiced among available litters at four established dates 

throughout 2006 and 2007 (selection batches 1 to 4). A litter born within two weeks 

before the set date was considered available for selection. In each batch, around 50 

litters were allocated into a selected (S) or a control (C) group according to their litter 

(mid-parent) best linear unbiased prediction (BLUP) estimated breeding value (EBV) 

for BT and IMF. Litters in group C were chosen randomly whereas those in group S 

were selected against BT at 180 d at restrained IMF in gluteus medius muscle (GM). 

Linear programming was used to select the litters in group S. These litters were those 
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with the lowest EBV for BT while satisfying the restriction of having the same mean 

EBV for IMF than the litters in group C (±0.03%). The EBV for BT and IMF were 

obtained from, respectively, 37,698 and 3,066 records at 180 d from full pedigree-

connected pigs born since 1996. The IMF content was determined in GM by near 

infrared transmittance spectrometry (Valero et al., 1999). The genetic evaluations were 

performed univariately using basically the same animal models described below 

(Solanes et al., 2009) but with heritabilities 0.19 and 0.40 for BT and IMF, 

respectively. Two males per litter were randomly chosen shortly after birth. Pigs from 

both groups were mixed and reared together. The number of litters and pigs used in the 

experiment by selection group and batch is given in Table 4.1. 

 

Table 4.1. Number of pigs, litters, and sires, and mean (SD) of backfat thickness (BT) 

at 180 d, intramuscular fat (IMF) in gluteus medius (GM), and body weight (BW) at 

180 d by selection group and batch. 

Selection 

group 

No. of 

pigs 

No. of 

litters 

No. of 

sires 

Traits 

BT, mm IMF in GM, % BW, kg 

Batch 1       

 Selected 55 31 12 17.89 (3.98) 4.32 (2.23) 99.52 (12.94) 

 Control 52 30 19 19.54 (5.10) 4.50 (2.05) 101.37 (17.93) 

Batch 2       

 Selected 47 30 14 16.77 (3.21) 4.72 (2.79) 104.50 (9.87) 

 Control 58 31 20 17.09 (3.54) 4.78 (2.33) 104.82 (10.41) 

Batch 3       

 Selected 30 22 12 16.45 (2.25) 4.74 (2.42) 105.92 (9.40) 

 Control 36 24 14 19.22 (3.28) 4.89 (2.94) 109.95 (9.44) 

Batch 4       

 Selected 33 20 9 14.38 (2.89) 3.36 (1.43) 105.18 (14.08) 

 Control 39 23 10 16.05 (2.96) 3.71 (1.99) 113.87 (11.23) 

 

4.2.2. Management of pigs and sample collection 

All pigs were performance-tested at an average age of 180 d for BW and BT. At 

the end of the finishing period, all barrows were slaughtered in the same commercial 

slaughterhouse at ~125 kg of BW. After slaughter, the carcass weight (CW), length, 

BT, loin thickness, and lean percentage were measured. After chilling for about 24 h at 

2ºC, each carcass was divided into primal cuts and the left side ham was weighed. 

Immediately after quartering, a sample of GM was taken from the ham. A section of 

around 1 kg from the left loin (longissimus dorsi; LD) of each carcass at the level of 

the third and fourth last ribs was also taken. Intramuscular fat content was determined 

by gas chromatography in GM and LD. Complete details on the procedures are given 

in the Animals and Samples Section. 
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4.2.3. Analysis of response to selection 

The response to selection was estimated as the difference between the average 

EBV of the pigs in group S and the pigs in group C. A description of the selection 

groups by batch is given in Table 4.1. The genetic parameters and EBV of the pigs for 

BT, IMF in GM, and BW were estimated fitting a 3-trait multivariate animal model 

under a Bayesian setting, in line with the methodology described in Chapter 2. The 

genetic parameters and EBV of other correlated traits were obtained using a 4-trait 

model, where each of them was added one at a time to the previous 3-trait model. A 

summary of the data used for the analyses is given in Table 4.2. Records for BT and 

BW were collected in pigs born from 1996 to 2009 while carcass traits only in pigs 

born since 2002 onwards. 

The model used was: 

yi = Xibi + Ziai + Wici + ei , 

where yi is the vector of observations for the ith trait; bi, ai, ci, and ei are the vectors of 

systematic, additive genetic, litter, and residual effects, respectively; and Xi, Zi, and 

Wi, the known incidence matrices that relate bi, ai, and ci with yi, respectively. 

Systematic effects for BW and BT were the batch (1,039 levels), gender (3 levels; 

males, females, and castrates), and age at test as a covariate. Pigs tested at the same 

time and in the same unit were considered as one batch. The model for the other traits 

 

 Table 4.2. Description of the data set used in the analysis of the response to selection. 

Item 
No. of 

pigs 

No. of 

litters 

No. of 

sires 

No. of 

dams 
Mean SD 

Pedigree 93,920 32,315 731 18,516 - - 

Traits
1
       

 BW at test, kg 85,002 32,211 641 16,548 104.8 12.5 

 BT at test, mm 80,687 31,197 642 16,335 15.6 3.5 

 IMF in GM, % 943 546 141 543 4.9 1.9 

 Carcass weight, kg 937 545 142 542 98.4 11.6 

 Carcass length, cm 446 270 85 270 86.8 3.0 

 Carcass BT, mm 921 538 142 535 23.4 3.8 

 Carcass loin thickness, mm 921 538 142 535 43.7 7.9 

 Carcass lean percentage, % 921 538 142 535 42.9 5.2 

 Carcass lean weight, kg 920 538 142 535 42.0 5.7 

 Ham weight, kg 431 268 85 268 12.1 1.2 

 IMF in LD, % 189 149 65 149 3.9 1.2 

Covariates       

 Age at test , d 85,194 32,310 642 16,601 180.2 10.7 

Age at slaughter, d 2,098 1,370 298 1,313 206.5 14.6 

1
 BW: body weight; BT: backfat thickness; IMF in GM (LD): intramuscular fat in gluteus 

medius (longissimus dorsi). 
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only included the batch (12 levels) and the age at slaughter. The litter effect was not 

included in the model for carcass traits because there were only 1.7 piglets/litter with 

these data. 

The genetic parameters and EBV for all traits were estimated in a Bayesian 

framework using Gibbs sampling with the TM software (Legarra et al., 2011). 

Observed phenotypes and missing records imputed by data augmentation were 

assumed to be conditionally normally distributed as follows: 

, 

where R was the (co)variance matrix. Sorting records by trait, and pig within trait, R 

could be written as R0  I, with R0 being, in the most general case, the 4 × 4 residual 

(co)variance matrix between the four traits analyzed and I an identity matrix of 

appropriate order. Flat priors were used for bi and residual (co)variance components. 

Additive genetic and litter values, conditional on the associated (co)variance 

components, were both assumed multivariate normally distributed with mean zero and 

with (co)variance G  A and C  I, respectively, where A was the numerator 

relationship matrix, G was the 4 × 4 genetic relationship matrix between the four traits, 

and C was the 2 × 2 (co)variance matrix between litter effects of BW and BT. The 

matrix A was calculated using all the pedigree information summarized in Table 4.2. 

Flat priors were used for additive and litter (co)variance components. Statistical 

inferences for all unknowns were derived from the samples of the marginal posterior 

distribution using a unique chain of 1,000,000 iterations, where the first 250,000 were 

discarded and one sample out of 100 iterations retained. Statistics of marginal posterior 

distributions and the convergence diagnostics were obtained using the boa package 

(Smith, 2005). Convergence was tested using the Z-criterion of Geweke (Geweke, 

1992) and visual inspection of convergence plots. 

The response to selection for the ith trait (R(i)) was calculated as: 

R 𝑖 = a̅S 𝑖 − a̅C 𝑖  , 

where āS(i) and āC(i) are the average of the EBV for the ith trait in pigs from group S and 

C, respectively. Overall responses to selection and by batch were calculated. In this 

latter case only the pigs from the corresponding batch were used in the above 

expression. The realized selection intensities for BT and IMF in GM (iS(i) and iC(i), for 

the ith trait and group S and C, respectively) were obtained by calculating the 

standardized selection differentials as follows: 

iS 𝑖 =  a̅S 𝑖 − a̅all 𝑖  /σa 𝑖  

 

𝐲1

𝐲2
𝐲3

𝐲4

 | b1, b2, b3, b4, a1, a2, a3, a4, c1, c2, R ~ N 𝐗 

𝐛1

𝐛2

𝐛3

𝐛4

 + 𝐙  

𝐚1

𝐚2
𝐚3

𝐚4

 + 𝐖 
𝐜1

𝐜2
 , 𝐑  
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and 

iC 𝑖 =  a̅C 𝑖 − a̅all 𝑖  /σa 𝑖 , 

where āall(i) is the average EBV of pigs from all candidate litters (i.e., available litters at 

each selection time-point) for the ith trait, and σa(i) the genetic standard deviation of the 

trait. Both iS(i) and iC(i) were calculated independently for each batch, with the EBV 

obtained using only the data collected up to the selection time-point of the batch. The 

average realized selection intensity of the experiment was calculated weighting the 

realized selection intensity across the four batches. Statistical inferences for genetic 

parameters, realized selection intensities, and responses to selection were derived from 

random samples of the corresponding marginal posterior distributions. In particular, the 

mean, the SD, the mode, and the highest posterior density interval at 95% of 

probability (HPD95) of the marginal posterior distributions were calculated. Response 

to selection was assessed using the HPD95 and the probability of R(i) being negative. 

 

4.3. RESULTS 

4.3.1. Genetic parameters 

Estimates of the variance components and the heritability for each of the 

analyzed traits, as well as the genetic and residual correlations of BT, IMF in GM, and 

BW with carcass traits and IMF in LD are given in Table 4.3. The estimates of the 

heritability were within the expected range, from 0.31 (SD 0.01), for BW, to 0.69                                 

(SD 0.09), for IMF in LD. The genetic correlations of BT with carcass traits were 

positive, except for the lean-related traits loin thickness (−0.40, SD 0.13), lean 

percentage (−0.88, SD 0.04), and lean weight (−0.49, SD 0.08). A similar genetic 

correlation structure was found for IMF in GM but, in general, lower in magnitude. 

The genetic correlations of IMF in GM with carcass loin thickness (−0.58, SD 0.07), 

lean percentage (−0.45, SD 0.11), and lean weight (−0.38, SD 0.12) were also negative. 

However, for IMF in GM, the genetic correlation with ham weight was much lower 

(0.09, SD 0.16) than for BT (0.36, SD 0.09). The genetic correlation of BT with IMF, 

both in GM (0.38, SD 0.10) and in LD (0.41, SD 0.12), was lower than observed 

between IMF in GM and LD (0.64, SD 0.10). 

 

4.3.2. Realized selection intensities 

The realized selection intensities are given in Table 4.4. As expected, in group S, 

the overall realized selection intensity for BT was negative (−0.49, HPD95 [−0.62, 

−0.35]) whereas that for IMF in GM was much closer to zero (−0.18, HPD95 [−0.36, 

+0.02]). By contrast, the values in group C confirmed that pigs in this group were 
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randomly chosen both for BT (+0.09, HPD95 [−0.03, +0.21]) and IMF in GM (0.00, 

HPD95 [−0.15, +0.15]). The corresponding realized selection differentials were                                                                       

−0.93 mm (HPD95 [−1.18, −0.67]), −0.25% (HPD95 [−0.53, +0.02]), +0.17 mm 

(HPD95 [−0.06, +0.40]), and 0.00% (HPD95 [−0.23, +0.21]), respectively. These 

results were consistent across the four selection batches. The associated HPD95 

indicate that selection for BT was effective in all batches, but also that the constraint 

imposed on IMF was not fully accomplished. 

 

Table 4.4. Realized selection intensity for backfat thickness (BT) at 180 d and 

intramuscular fat (IMF) in gluteus medius (GM) by selection group. 

Selection group 
BT  IMF in GM 

Mean HPD95
1
  Mean HPD95

1
 

Average      

 Selected −0.49 −0.62, −0.35  −0.18 −0.36, +0.02 

 Control +0.09 −0.03, +0.21  0.00 −0.15, +0.15 

Batch 1      

 Selected −0.40 −0.62, −0.20  −0.17 −0.51, +0.17 

 Control +0.16 −0.05, +0.38  −0.05 −0.33, +0.23 

Batch 2      

 Selected −0.45 −0.69, −0.23  −0.13 −0.45, +0.16 

 Control +0.08 −0.12, +0.27  +0.03 −0.21, +0.29 

Batch 3      

 Selected −0.40 −0.69, −0.10  −0.14 −0.52, +0.22 

 Control +0.18 −0.09, +0.44  +0.10 −0.24, +0.45 

Batch 4      

 Selected −0.76 −1.11, −0.39  −0.27 −0.77, +0.24 

 Control −0.07 −0.33, +0.23  −0.06 −0.46, +0.32 

1
 HPD95: highest posterior density interval at 95% of probability. 

 
 

4.3.3. Direct response to selection 

The phenotypic values of BT and IMF in GM by selection group and batch are 

given in Table 4.1. The features of the posterior distribution of the direct response to 

selection on these traits are given in Table 4.5. Selection against BT was effective (the 

probability of the response of BT being negative was greater than 0.99 in all batches), 

with an overall reduction of 1.22 mm (HPD95 [−1.51, −0.93]). The results also 

indicated that selection was not completely neutral with respect to IMF in GM. The 

IMF content in GM showed an overall decrease of 0.16% (HPD95 [−0.36, +0.05]), 

with a probability of 94% of getting a negative response. However, this probability was 

lower within each selection batch, where it ranged from 72 to 88%. 
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Table 4.5. Features of the posterior distribution of the response to selection to 

decreased backfat thickness (BT) at 180 d at restrained intramuscular fat content (IMF) 

in gluteus medius (GM). 

Trait 
Response 

Mean SD Mode HPD95
1
 P(<0)

2
 

BT, mm      

 Overall −1.22 0.15 −1.26 −1.51, −0.93 >0.99 

 Batch 1 −1.35 0.26 −1.37 −1.89, −0.85 >0.99 

 Batch 2 −0.76 0.26 −0.67 −1.27, −0.23 >0.99 

 Batch 3 −1.55 0.33 −1.55 −2.20, −0.91 >0.99 

 Batch 4 −1.43 0.32 −1.39 −2.07, −0.82 >0.99 

IMF in GM, %      

 Overall −0.16 0.10 −0.15 −0.36, +0.05 0.94 

 Batch 1 −0.11 0.18 −0.12 −0.45, +0.25 0.74 

 Batch 2 −0.10 0.17 −0.07 −0.44, +0.24 0.72 

 Batch 3 −0.21 0.23 −0.18 −0.67, +0.24 0.82 

 Batch 4 −0.27 0.23 −0.31 −0.70, +0.19 0.88 

1
 HPD95: highest posterior density interval at 95% of probability. 

2
 P(<0): probability of having a negative response. 

 

4.3.4. Correlated response to selection 

The features of the posterior distribution of the correlated responses are given in 

Table 4.6. Selection reduced BW (−1.64 kg, HPD95 [−2.47, −0.75]), CW (−1.83 kg, 

HPD95 [−2.71, −0.85]), and carcass length (−0.50 cm, HPD95 [−0.81, −0.20]), 

whereas it increased lean percentage (+1.47%, HPD95 [+0.98, +1.97]). The favorable 

response in lean percentage more than offset the unfavorable correlated response in 

CW, thereby resulting in a favorable correlated response in carcass lean weight                                                                

(+0.66 kg, HPD95 [+0.14, +1.22]). Despite the loss in CW, no correlated change in 

ham weight was detected. The correlated response in IMF in LD was similar to that in 

GM (−0.15%, HPD95 [−0.37, +0.09]), but with a lower probability of being negative 

(90%). In general, the overall correlated responses were consistent across selection 

batches (results not shown). Nonetheless, in this regard it is worth noting that in                                                                  

batch 2 there was found a relatively high probability (82%) of a positive response in 

IMF in LD, a result proving that there exist scenarios where BT and IMF can be 

improved simultaneously. 

 

4.4. DISCUSSION 

The selection experiments undertaken so far for increased IMF proved that IMF 

responds to selection but at the expense of increasing BT (Suzuki et al., 2005a,b; 

Schwab et al., 2009, 2010). Previous theoretical studies using the estimates of the 
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Table 4.6. Features of the posterior distribution of the overall correlated responses to 

selection to decreased backfat thickness (BT) at 180 d at restrained intramuscular fat 

content (IMF) in gluteus medius. 

Trait 
Response 

Mean SD Mode HPD95
1
 P(<0)

2
 

Body weight, kg −1.64 0.44 −1.76 −2.47, −0.75 >0.99 

Carcass traits      

 Weight, kg −1.83 0.47 −1.73 −2.71, −0.85 >0.99 

 Length, cm −0.50 0.16 −0.42 −0.81, −0.20 >0.99 

 Carcass BT, mm −1.15 0.19 −1.18 −1.51, −0.78 >0.99 

 Loin thickness, mm +0.48 0.45 0.31 −0.41, +1.34 0.14 

 Lean percentage, % +1.47 0.25 +1.51 +0.98, +1.97 <0.01 

 Lean weight, kg +0.66 0.27 +0.62 +0.14, +1.22 0.01 

 Ham weight, kg −0.07 0.06 −0.06 −0.18, +0.05 0.87 

IMF in longissimus dorsi, % −0.15 0.12 −0.10 −0.37, +0.09 0.90 

1
 HPD95: highest posterior density interval at 95% of probability. 

2
 P(<0): probability of having a negative response. 

 

genetic parameters obtained in this population showed that, despite the positive genetic 

correlation between BT and IMF, there are response scenarios where BT can be 

reduced with no change in IMF (Chapter 2; Solanes et al., 2009). The results presented 

here confirmed experimentally that such goal is feasible but difficult. Thus, even 

though the response in IMF was restrained, there is not compelling evidence that the 

constraint had been fully achieved. 

The expected correlated response in IMF to one generation of unrestricted 

selection against BT can be approached as (Falconer & Mackay, 1996):  

, 

where rg(IMF,BT) is the genetic correlation between BT and IMF. In such situation, with 

the genetic parameters given in Table 4.4, decreasing BT by 1.22 mm is expected to 

result in a correlated reduction in IMF of 0.30%, in GM, and of 0.26%, in LD, values 

that are around 2 folds those realized. Therefore, in practical terms, the imposed 

restriction on IMF served to halve the correlated response in IMF. That the restriction 

had not been fully effective is in line with the negative value of the realized selection 

differential for IMF in the selected group. A reason for that could be the poor 

predictive capacity of the mid-parent EBV for IMF used for selection. It can be 

retrospectively assessed by correlating the litter EBV with the phenotypic values of the 

offspring. This correlation was 0.12, for IMF, and 0.27, for BT, and increased to 0.20 

and 0.34, respectively, for the realized EBV, which were calculated using the 

multivariate model and data used for estimating the realized selection intensities. These 

R(IMF ) = rg(IMF ,BT )

σa(IMF )

σa(BT )
R(BT ) 
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predictive capacities are consistent with the precision of the EBV in the experimental 

pigs, calculated as 1 − σEBV
2 /σe

2, where σEBV
2  is the variance of the EBV of an 

individual between iterations and σe
2 the residual variance of the corresponding trait. 

The average precisions were 0.45 (0.33 to 0.50), for IMF, and 0.62 (0.47 to 0.64), for 

BT. These results explain why selection response for lower BT was more successful 

than the restriction on IMF. Moreover, they evidenced that there is scope for 

improvement. In fact, although retrospectively, it can be proved that there is a subset of 

90 barrows in group S showing, as compared to pigs in group C, much lower BT 

(−1.79 mm, HPD95 [−2.13, −1.44]) but identical IMF in GM (0.00%, HPD95 [−0.28, 

+0.28]). This result highlights the fact that selection against BT does not necessarily 

lead to decrease IMF if accurate EBV for IMF are available and the population is big 

enough to allow the pigs with low BT and high IMF to be sorted out. 

The selected pigs were lighter and had lighter carcasses. Because BW is shown 

to be genetically more correlated to BT than to IMF (Table 4.4), selection for BT is 

expected to cause greater changes in BW than selection for IMF. This is in line with 

results from the experiments in Schwab et al. (2009, 2010), who found no correlated 

response in growth performance to selection for IMF, and in Solanes et al. (2009), who 

showed in this population that selection for BW at restrained BT did not affect IMF. 

Results from commercial lines suggest that changes in IMF depend on the selection 

emphasis that has been put on growth as compared to lean content, with pigs that had 

been more intensively selected for daily gain than for lean content showing higher IMF 

(Oksbjerg et al., 2000; Tribout et al., 2004). In this regard, carcass lean weight is a 

more appropriate trait for the industry (Fowler et al., 1976; Chen et al., 2002, 2003). 

Lighter carcasses at a fixed age mean that there has been a loss in either fat or lean 

mass or both during the fattening period. The results here support the hypothesis that 

decreased CW is mostly due to fat loss. The selected pigs not only increased carcass 

lean weight, but also they were able to decrease carcass BT without adversely affecting 

loin thickness. Thus, the detrimental effect of selection on CW (BW) becomes less 

relevant when expressed in terms of lean growth. This is in line with the findings in 

Gjerlaug-Enger et al. (2012), who in a recent study on body composition using 

computerized tomography found that the genetic variation in carcass lean percentage is 

more determined by fat than by muscle growth. No data on feed intake was available 

for this research, but feed efficiency is known to be negatively correlated to fatness. 

Some authors reported a similar genetic correlation of feed efficiency with both BT 

and IMF (Hermesch et al., 2000; Cai et al., 2008) while others found it more correlated 

to BT than to IMF (Suzuki et al., 2005b). In either case, the selected pigs should be at 

least as efficient as the control. 

The two more important retail pork cuts are ham and loin, particularly for the 

dry-cured market. Even though the relationship between fatness and carcass quality can 
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be negligible in light white pigs (Hermesch et al., 2000), the correlation pattern 

observed here between BT and IMF with ham weight, loin thickness, and carcass 

length, together with previously reported estimates in Iberian (Fernández et al., 2003) 

and Duroc (Suzuki et al., 2005a; Solanes et al., 2009) heavy pigs, indicate that 

selection against fatness may lead to undesired effects on primal cuts. However, in 

terms of correlated responses, side effects were only found in carcass length, but not in 

ham weight and loin thickness, thereby suggesting that the loin may be more sensitive 

than the ham to simultaneous selection for BT and IMF. The results of our selection 

experiment indicate that selection for BT at restrained IMF may lead to shorter (lower 

carcass length), but not narrower (loin thickness did not decrease) loins, in agreement 

with the positive genetic correlation observed between BT and carcass length, both 

here and elsewhere (Johnson & Nugent, 2003; Chimonyo & Dzama, 2007). These 

results contradict the findings in Schwab et al. (2009), who found that selected pigs for 

increased IMF had lower loin muscle area but similar carcass length. However, it is 

worth noting that in this latter experiment BW did not significantly change by 

selection. Because the weight of primal cuts greatly depends on BW, their correlated 

responses must be interpreted in light of the correlated changes observed in BW. 

The metabolism of IMF may differ among muscles (Sharma et al., 1987; 

Leseigneur-Meynier & Gandemer, 1991; Muriel et al., 2002) and even among locations 

within muscle (Sharma et al., 1987). The molecular mechanisms of the differential 

deposition patterns are not well known, and therefore it still remains uncertain whether 

changes in a muscle cause correlated changes into another. Most research so far 

concerning IMF in pigs used longissimus as the reference muscle. However, neither 

longissimus is the only valuable muscle nor likely, because of depreciation costs, it is 

the most convenient for sampling purposes. In this experiment GM has been used as 

the reference muscle for determining IMF. It has been shown that IMF in LD is not 

only highly genetically determined, but also that it displays a high genetic correlation 

with IMF in GM. Therefore, the correlated response for IMF in LD was very similar to 

that for IMF in GM. While this is a comforting outcome of the experiment, it needs to 

be assessed in other muscles differing in IMF content and fiber composition. 

 

4.5. CONCLUSIONS 

The results of the present selection experiment provide evidence that lean weight 

can be improved restraining the genetic change in IMF, both in GM and LD. The 

selection practiced may lead to lighter pigs, mainly due to decreased body fat rather 

than lean. Nonetheless, attention should be paid to primal cuts, which can be lighter 

too. Simultaneous genetic improvement of BT, IMF, and BW should be feasible if the 

accuracy of the EBV for IMF, along with the selection intensity, is high enough. While 



Chapter 4 

95 

accuracy for IMF can be easily increased with a well-designed recording scheme, 

selection intensity may be a problem in small populations. The experimental design 

used here was based on a series of one-generation selection batches aimed at proving 

that BT and IMF can be manipulated independently. Selecting for more traits would 

have reduced the response in BT and therefore the power of the experiment. However, 

in practice, pigs are continuously selected across generations for an objective including 

all relevant traits. Short-term responses are lower, but in the long-term the population 

can be better accommodated to specific needs. 
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Chapter 5.  

Response to selection for intramuscular oleic acid 

content in Duroc pigs 
 

 
The content of this chapter is currently under preparation for publication. 

 

 

ABSTRACT: Intramuscular oleic acid (C18:1) is an interesting trait to improve pork 

quality from the organoleptic, technological, and nutritional points of view. It has been 

shown to be moderately to highly heritable, but there are no reports of realized 

selection responses for this trait. A selection experiment was performed to investigate 

the effectiveness of selection for C18:1. Barrows from a purebred Duroc line were 

allocated into a selected (n=137) or a control (n=136) group based upon their litter 

estimated breeding values (EBV). Litters in the selected group were selected for C18:1 

in gluteus medius muscle whereas those in the control group were chosen randomly. 

The average selection differential was +0.57%. Realized genetic responses for C18:1, 

as well as correlated responses for intramuscular fat (IMF) content, backfat thickness 

(BT), and body weight (BW), were estimated using a 4-trait multivariate animal mixed 

model under a Bayesian setting. Selected pigs had 0.24% more C18:1 (with highest 

posterior density interval at 95% of probability (HPD95) [−0.03, +0.53]). While 

selection was successful in two out of three batches (+0.35% and +0.33%, 

respectively), no evidence of response in batch 3 was found (+0.04%) probably due to 

poor accuracy when predicting litter EBV. The correlated responses for IMF, BT, and 

BW were +0.13%, −0.32 mm, and −0.31 kg, respectively. The same 4-trait model was 

used to evaluate the correlated responses for C18:1 in two other selection experiments, 

one for reduced BT at restrained IMF and the other for BW at restrained BT. These 

experiments were performed following a similar design. Correlated responses for 

C18:1 showed the same trend than responses for IMF. To our knowledge, this is the 

first report of realized responses to selection for fat composition in pigs. Results proved 

that direct selection for C18:1 is possible but emphasized the need for a systematic 

recording to accurately predict C18:1 EBV.  
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5.1. INTRODUCTION 

Intramuscular fat (IMF) composition affects the quality of pork. While high 

contents of saturated and monounsaturated fatty acids are desirable in terms of 

organoleptic and technological meat quality, dietary recommendations point towards 

unsaturated fatty acid profiles. The monounsaturated oleic acid (C18:1) is the main 

fatty acid in pork and, therefore, intramuscular C18:1 can be a good alternative to 

improve simultaneously the organoleptic (Cameron et al., 2000), technological, and 

nutritional (Christophersen & Haug, 2011) properties of pork. Although dietary 

modifications are a strategy for increasing intramuscular C18:1 (Rhee et al., 1990; 

Myer et al., 1992; Klingenberg et al., 1995), the increased costs associated to high-

oleic raw ingredients and higher feed conversion ratio are factors that may limit its 

application. Other strategies based on genetic selection have been theoretically 

postulated (Chapter 2). However, to our knowledge, there are no reports of the direct 

response of C18:1 and those assessing its correlated response to selection for other 

economically important traits are very scarce (Burkett et al., 2008). The objective of 

this study is to analyze the realized responses of C18:1 in three selection experiments, 

one for increased intramuscular C18:1 and the other two for other carcass fatness and 

performance traits. 

 

5.2. MATERIALS AND METHODS 

5.2.1. Animals 

Three selection experiments were performed in a purebred Duroc population that 

was completely closed in 1991 and since then it has been selected for an index 

including body weight (BW), backfat thickness (BT), and IMF (see Animals and 

Samples Section). The pigs in all the experiments were castrated within the first week 

of age. All pigs were performance-tested at an average age of 180 d for BW and BT. 

At the end of the finishing period the barrows were slaughtered in a commercial 

slaughterhouse at 210 d of age and a sample of subcutaneous fat (SF) was taken at the 

level of the third and fourth last ribs. After slaughter and chilling for about 24 h at 2ºC, 

a sample of gluteus medius muscle (GM) was taken from the ham, as well as a section 

from the left loin of each carcass at the level of the third and fourth last ribs 

(longissimus dorsi, LD). The IMF content (expressed as percentage of fresh matter) 

and fatty acid composition (expressed as percentage of total fatty acids) of the samples 

were determined by gas chromatography. Complete details on the procedures are given 

in the Animals and Samples Section. 
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5.2.2. Selection experiment 1: Increased intramuscular oleic acid 

A selection experiment was conducted to study the effects of selection for 

increased C18:1 (Exp 1). Selection was practiced among available litters at three 

established dates throughout 2009 and 2010 (selection batches 1 to 3). A litter born 

within two weeks before the set date was considered available for selection. In each 

batch, around 50 litters were allocated into a selected (S1) or a control (C1) group 

according to their litter (mid-parent) best linear unbiased prediction (BLUP) estimated 

breeding value (EBV) for C18:1. Litters in group C1 were chosen randomly whereas 

those in group S1 were selected for increased C18:1 in GM. The EBV for C18:1 were 

obtained from 943 records on full pedigree-connected pigs born since 1996. The 

genetic evaluations were performed univariately using the same animal model 

described below but with heritability 0.41. The selection differential was calculated as 

the difference between the weighted average litter EBV of the pigs in group S1 and C1. 

The average realized selection differential was 0.57%. Two males per litter were 

randomly chosen shortly after birth to be performance-tested according to the 

procedures indicated in the Animals and Samples Section. Pigs from both groups were 

mixed and reared together. The number of litters and pigs used in the experiment by 

selection group and batch is given in Table 5.1. 

 

Table 5.1. Number of pigs, litters, and sires, and mean (SD) of oleic acid (C18:1), 

intramuscular fat (IMF), backfat thickness (BT), and body weight (BW) by selection 

group and batch in Exp 1. 

Selection 

group 

No. of 

pigs 

No. of 

litters 

No. of 

sires 

Traits 

C18:1, % IMF, % BT, mm BW, kg 

Batch 1        

 Selected 43 21 7 45.82 (2.98) 4.65 (1.84) 18.93 (3.49) 114.90 (9.14) 

 Control 43 26 11 45.56 (2.81) 4.23 (2.16) 19.44 (3.53) 114.70 (7.70) 

Batch 2        

 Selected 49 25 7 44.81 (1.58) 4.28 (2.06) 16.78 (3.83) 105.73 (8.97) 

 Control 49 24 10 44.53 (1.21) 4.34 (1.48) 17.77 (4.45) 108.22 (9.26) 

Batch 3        

 Selected 45 20 6 45.71 (1.18) 5.33 (1.72) 18.21 (3.45) 106.33 (9.72) 

 Control 44 21 9 45.88 (1.20) 5.08 (1.61) 18.25 (2.64) 108.23 (7.29) 

 

5.2.3. Selection experiment 2: Reduced backfat thickness at restrained 

intramuscular fat 

Another experiment was performed to study the effect of selection for decreased 

BT at restrained IMF on C18:1 (Exp 2). This experiment followed a similar procedure 

than experiment 1. Selection was practiced among available litters at four established 

dates throughout 2006 and 2007. In this experiment, 50 litters per batch were allocated 
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into a selected (S2) or a control (C2) group according to their litter BLUP EBV for BT 

and IMF. Litters in group C2 were chosen randomly whereas linear programming was 

used to select the litters with the lowest EBV for BT while satisfying the restriction of 

having the same mean EBV for IMF than the litters in group C2. Full details of this 

selection experiment are given in Chapter 4. 

 

5.2.4. Selection experiment 3: Increased and reduced body weight at restrained 

backfat thickness 

A third selection experiment was performed to assess the correlated response of 

C18:1 after selection for BW at restrained BT (Exp 3). This experiment took place in 

two established dates throughout 2002. Similarly to the experiments above, 50 litters 

per batch were allocated into a high (H3), average (C3), or low (L3) group according 

to their litter BLUP EBV for BW and BT. Linear programming was used to select 

litters displaying the maximum difference in the EBV for BW of the groups H3 and L3 

respect to C3 while having the most similar average EBV for BT. Full details of this 

selection experiment are given in Solanes et al. (2009). 

 

5.2.5. Analysis of response to selection 

The response to selection was estimated as the difference between the average 

EBV of the pigs in the selected groups (S1, S2, and H3 or L3) and the pigs in the 

respective control groups (C1, C2, and C3). The genetic parameters and EBV of the 

pigs for C18:1, IMF, BT, and BW were estimated fitting a 4-trait multivariate animal 

model under a Bayesian setting, in line with the methodology described in Chapter 4. 

A unique analysis was used for all experiments. A summary of the data used for the 

analyses is given in Table 5.2. Records for BT and BW were collected in pigs born 

from 1996 to 2012 while carcass traits only in pigs born since 2002 onwards. 

The model used was: 

yi = Xibi + Ziai + Wici + ei , 

where yi is the vector of observations for the ith trait; bi, ai, ci, and ei are the vectors of 

systematic, additive genetic, litter, and residual effects, respectively; and Xi, Zi, and 

Wi, the known incidence matrices that relate bi, ai, and ci with yi, respectively. 

Systematic effects for BW and BT were the batch (1,311 levels), gender (3 levels; 

males, females, and castrates), and age at test as a covariate. Pigs tested at the same 

time and in the same unit were considered as one batch. The model for C18:1 and IMF 

only included the batch (17 levels) and the age at slaughter. The litter effect was not 

included in the model for carcass traits. Correlated responses for C18:1 in LD and SF 

were estimated using the same procedure but adding each trait in a 5-trait model. 
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Table 5.2. Description of the data set used in the analysis of the response to selection. 

Item 
No. of 

pigs 

No. of 

litters 

No. of 

sires 

No. of 

dams 
Mean SD 

Pedigree 119,390 46,723 863 24,612 - - 

Traits
1
       

 BW at test, kg 110,165 42,870 780 22,683 104.9 12.2 

 BT at test, mm 106,276 42,017 781 22,549 15.6 3.5 

 IMF, % 1,275 718 175 715 4.9 1.9 

 C18:1, % 1,280 719 176 716 44.9 2.8 

Covariates       

 Age at test , d 110,795 43,130 781 22,815 178.9 10.5 

Age at slaughter, d 4,545 2,707 401 2,553 207.3 15.7 

1
 BW: body weight; BT: backfat thickness; IMF: intramuscular fat; C18:1: oleic acid. 

 

The genetic parameters and EBV for all traits were estimated in a Bayesian 

framework using Gibbs sampling with the TM software (Legarra et al., 2011). For the 

4-trait model, observed phenotypes and missing records imputed by data augmentation 

were assumed to be conditionally normally distributed as follows: 

, 

where R was the (co)variance matrix. Sorting records by trait, and pig within trait, R 

could be written as R0  I, with R0 being, in the 4-trait case, the 4 × 4 residual 

(co)variance matrix between the four traits analyzed and I an identity matrix of 

appropriate order. Flat priors were used for bi and residual (co)variance components. 

Additive genetic and litter values, conditional on the associated (co)variance 

components, were both assumed multivariate normally distributed with mean zero and 

with (co)variance G  A and C  I, respectively, where A was the numerator 

relationship matrix, G was the 4 × 4 genetic relationship matrix between the four traits, 

and C was the 2 × 2 (co)variance matrix between litter effects of BW and BT. The 

matrix A was calculated using all the pedigree information summarized in Table 5.2. 

Flat priors were used for additive and litter (co)variance components. Statistical 

inferences for all unknowns were derived from the samples of the marginal posterior 

distribution using a unique chain of 1,000,000 iterations, where the first 250,000 were 

discarded and one sample out of 100 iterations retained. Statistics of marginal posterior 

distributions and the convergence diagnostics were obtained using the boa package 

(Smith, 2005). Convergence was tested using the Z-criterion of Geweke (Geweke, 

1992) and visual inspection of convergence plots. 
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The response to selection for the ith trait was calculated as āS(i) − āC(i), where āS(i) 

and āC(i) are the average of the EBV for the ith trait in pigs from group S1 (or S2, H3, 

or L3) and C1 (or C2 or C3), respectively. Overall responses to selection and by batch 

were calculated. In this latter case only the pigs from the corresponding batch were 

used in the above expression. Statistical inferences for genetic parameters, realized 

selection intensities, and responses to selection were derived from random samples of 

the corresponding marginal posterior distributions. In particular, the mean, the mode, 

the SD, and the highest posterior density interval at 95% of probability (HPD95) of the 

marginal posterior distributions were calculated. Response to selection was assessed 

using the HPD95 and the probability of being positive. 

 

5.3. RESULTS 

5.3.1. Selection for increased intramuscular oleic acid 

The phenotypic values of C18:1, IMF, BT, and BW by selection group and batch 

of Exp 1 are given in Table 5.1. The differentials of selection applied in Exp 1 and the 

features of the posterior distribution of the direct and correlated responses to selection 

for C18:1 in GM are given in Table 5.3. Overall, selection for C18:1 was effective, 

with a 95% probability of obtaining a positive response. However, responses by batch 

indicate that response was effective in batches 1 and 2, with C18:1 increases of 

0.33−0.35%, but that response in batch 3 was null. In batches 1 and 2 response to 

selection was approximately half the expected. The increase of C18:1 in GM was 

accompanied by an increase of C18:1 also in LD in batch 1 but there was less evidence 

of a correlated response in SF. The overall correlated responses indicated that IMF 

increased by 0.13% with a probability of 85% and BT decreased by 0.32 mm with a 

probability of 96%. Selection for C18:1 appeared neutral to BW.  

 

5.3.2. Selection for other carcass fatness and performance traits 

The features of the posterior distribution of the responses to selection for 

reduced BT at restrained IMF are given in Table 5.4, and those to selection for BW at 

restrained BT in Table 5.5. Because the constraint on IMF was not fully achieved in 

Exp 2 (Chapter 4), selection against BT was accompanied by a small reduction in IMF. 

A correlated decrease was also observed for C18:1, with a similar magnitude than the 

increase obtained by direct selection in Exp 1 (−0.34%, HPD95 [−0.56, −0.08]). In                                                                                 

Exp 3, selection succeeded in increasing or reducing BW (+2.27 and −3.17 kg, 

respectively) without relevantly altering BT. In both cases, moderate increases were 

observed for both IMF (+0.10−0.22%) and C18:1 (+0.19−27%). 
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Table 5.3. Differential of selection in Exp 1 and features of the posterior distribution of 

the response to selection to increased oleic acid content (C18:1) in gluteus medius 

(GM) and of the correlated responses of C18:1 in longissimus dorsi (LD) and 

subcutaneous fat (SF), intramuscular fat content (IMF) in GM, backfat thickness (BT), 

and body weight (BW). 

Trait Differential 
Response 

Mean SD Mode HPD95
1
 P(>0)

2
 

C18:1 in GM, %       

 Overall +0.57 +0.24 0.14 +0.26 −0.03, +0.53 0.95 

 Batch 1 +0.57 +0.35 0.25 +0.25 −0.16, +0.85 0.92 

 Batch 2 +0.61 +0.33 0.23 +0.38 −0.12, +0.76 0.93 

 Batch 3 +0.51 +0.04 0.24 +0.10 −0.44, +0.48 0.58 

C18:1 in LD, %       

 Overall - +0.18 0.17 +0.14 −0.15, +0.51 0.86 

 Batch 1 - +0.67 0.28 +0.73 +0.09, +1.20 0.99 

 Batch 2 - 0.00 0.27 +0.03 −0.53, +0.52 0.51 

 Batch 3 - −0.09 0.27 −0.15 −0.62, +0.42 0.36 

C18:1 in SF, %       

 Overall - +0.13 0.24 +0.17 −0.31, +0.63 0.71 

 Batch 1 - +0.02 0.38 −0.03 −0.74, +0.76 0.53 

 Batch 2 - +0.24 0.36 +0.17 −0.44, +0.95 0.74 

 Batch 3 - +0.13 0.37 +0.26 −0.62, +0.83 0.64 

IMF in GM, % - +0.13 0.12 +0.13 −0.10, +0.37 0.85 

BT, mm - −0.32 0.18 −0.29 −0.67, +0.02 0.04 

BW, kg - −0.31 0.56 −0.29 −1.34, +0.81 0.29 

1
 HPD95: highest posterior density interval at 95% of probability. 

2
 P(>0): probability of having a positive response. 

 

Table 5.4. Features of the posterior distribution of the correlated response of oleic acid 

content (C18:1) to selection for reduced backfat thickness (BT) at restrained 

intramuscular fat content (IMF) in Exp 2. 

Trait 
Response 

Mean SD Mode HPD95
1
 P(>0)

2
 

BT, mm −1.24 0.15 −1.26 −1.54, −0.96 <0.01 

IMF, % −0.18 0.10 −0.16 −0.39, +0.01 0.04 

C18:1, % −0.34 0.12 −0.36 −0.56, −0.08 <0.01 

1
 HPD95: highest posterior density interval at 95% of probability. 

2
 P(>0): probability of having a positive response. 

 

5.4. DISCUSSION 

Results of Exp 1 proved that C18:1 responds to selection. However, although 

selection increased C18:1 in two experimental batches, response was less than 

expected. Moreover, selection failed to modify C18:1 in a third batch. A possible 
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Table 5.5. Features of the posterior distribution of the correlated response of oleic acid 

content (C18:1) and intramuscular fat content (IMF) to selection for increased (High) 

or reduced (Low) body weight (BW) at restrained backfat thickness (BT) in Exp 3. 

Selection 

for BW 
Trait 

Response 

Mean SD Mode HPD95
1
 P(>0)

2
 

High BW, kg +2.27 0.80 +2.28 +0.65, +3.79 >0.99 

 BT, mm +0.06 0.27 +0.11 −0.45, +0.59 0.59 

 C18:1, % +0.27 0.21 +0.32 −0.15, +0.66 0.90 

 IMF, % +0.10 0.18 +0.08 −0.27, +0.44 0.72 

Low BW, kg −3.17 0.81 −3.00 −4.76, −1.59 <0.01 

 BT, mm −0.06 0.27 −0.08 −0.57, +0.47 0.41 

 C18:1, % +0.19 0.21 +0.31 −0.24, +0.58 0.82 

 IMF, % +0.22 0.18 +0.19 −0.13, +0.59 0.88 

1
 HPD95: highest posterior density interval at 95% of probability. 

2
 P(>0): probability of having a positive response. 

 

explanation for these results is the low precision of the litter EBV used to select the 

piglets. For the genetic evaluation of the candidate litters, we used 943 records from 

pigs born during the years 2002−2007. Candidate litters in batches 1 and 2 were born 

two years later, in October and November 2009, respectively, and those in batch 3 

were born in November 2010. The Spearman’s correlation coefficient between the 

C18:1 EBV used for litter selection (i.e., univariate model and no own phenotypic 

records) and those used for the response estimation (i.e., multivariate model and own 

phenotypic records) was 0.20 and 0.17 for batches 1 and 2, respectively, but only 0.04 

for batch 3. This indicated that the ranking for C18:1 EBV was (poorly) conserved in 

batches 1 and 2 but not in batch 3. This emphasized the need for a sampling scheme 

allowing recording of C18:1 for estimating accurate EBV. A retrospective analysis was 

performed by including the phenotypic data of one littermate per litter during the 

estimation of the litter EBV. This increased the Spearman’s correlations (calculated as 

above but excluding the littermates whose data was used) to 0.67 (n=27), 0.71 (n=32), 

and 0.65 (n=29) for experimental batches 1 to 3, respectively. If selection had been 

performed picking up the top half of these subsets, selection responses would have 

been +1.32%, +1.15%, and +0.67%, respectively. Overall, the results of this 

experiment, together with theoretical predictions (Chapter 2), indicated that C18:1 

would effectively respond to selection if an adequate recording system is implemented. 

This selection experiment was based on C18:1 and IMF records from GM. In 

batch 1, a positive correlated response on C18:1 was observed also in LD, but not in 

SF. This was consistent with the higher genetic correlation estimated between these 

two muscles than between them and SF (Chapter 3). In this study, the genetic 

correlation of C18:1 in GM was estimated to be 0.66 with LD and 0.33 with SF. Other 

studies have found higher genetic correlations (0.66−0.72) between fatty acids content 
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of muscles and SF (Suzuki et al., 2006; Yang et al., 2010), but these estimates could be 

highly dependent on the anatomical location of the samples (as suggested in Chapter 

3). More surprising was the lack of correlated responses in LD in batch 2, where a 

positive response in GM was achieved. The reasons for the unexpected correlated 

responses of IMF and C18:1 in LD in batch 2 are not clear. Previous results also 

supported that genetic gains in one muscle can indirectly affect other non-selected 

muscles; e.g., those in Chapter 4 showing similar responses for IMF content in GM 

(directly selected) and in LD (correlated). Taking these results together, direct selection 

for C18:1 based on records from GM is expected to favorably modify C18:1 in LD, 

although this effect may be not always observed. More accurate EBV could increase 

the chance of favorable correlated responses in LD but maybe less in SF. We have 

proved that by using littermates data, EBV accuracy can be significantly increased and 

higher responses obtained. In this retrospective scenario, C18:1 correlated responses in 

LD would have been +0.91%, +0.88%, and +0.90% in batches 1 to 3, respectively, and 

in SF +0.37%, +0.28%, and +0.05%, respectively. Correlated responses may need to be 

assessed locally in other muscles of interest as they could be unaffected by selection 

(Chapter 3). 

The correlated genetic changes of other traits of economic interest were 

analyzed. The greatest genetic correlation of C18:1 was found with IMF (0.44;                                                              

Chapter 2). An overall positive correlated response was observed for IMF, but it tended 

to decrease in batch 2 (results not shown). Interestingly, on the other hand, BT 

decreased in both batches where selection was effective. This result was unexpected in 

light of the positive correlation between C18:1 and BT (0.30). Several studies have 

found C18:1 (in either IMF or SF) either hardly correlated with BT (Suzuki et al., 

2006) or negatively correlated with carcass leanness traits (Ntawubizi et al., 2010; 

Gjerlaug-Enger et al., 2011), but, to our knowledge, no negative correlations have been 

reported with BT or carcass fatness that could explain this correlated response. 

Consistently with the very low correlation between C18:1 and BW, selection for C18:1 

was almost neutral to BW. Overall the variability of the correlated responses per batch 

indicated that the selection for C18:1 led to little changes in other economic traits. 

In Exp 2, BT decreased as intended but IMF was constrained only partially 

(Chapter 4). Despite that theoretically IMF and carcass fatness are susceptible to 

independent modification (Clutter, 2011), experience has shown that this goal is 

difficult to achieve in practice (Suzuki et al., 2005a,b; Schwab et al., 2009, 2010). 

Because IMF decreased to some extent, so did C18:1. The results from Exp 3, on the 

other hand, showed that selecting for high BW at restrained BT tended to cause a small 

positive correlated response on IMF, but surprisingly, a positive correlated response in 

IMF was also achieved when selecting for low BW at restrained BT. Despite that the 

magnitude of the correlated responses of IMF in this last experiment was smaller than 
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expected (Solanes et al., 2009), it is interesting to note that they were accompanied by 

a similar correlated response on C18:1. Taken together, results of Exp 2 and 3 

indicated that C18:1 and IMF behave similarly in terms of correlated responses. 

Accordingly, genetic strategies aimed at improving IMF would indirectly improve also 

C18:1. This is consistent with the simulation of the expected responses based on the 

genetic parameters reported in Chapter 2, which already indicated that favorable C18:1 

correlated changes would only be achieved following proactive selection for IMF but 

not for BT or BW. Unfortunately, there are scarce reports on correlated responses of 

C18:1 to selection on other traits. In a selection experiment that raised IMF by 1.95%, 

total monounsaturated fatty acids (mostly C18:1) in LD increased by 1% (although not 

significantly), while polyunsaturated fatty acids decreased (Burkett et al., 2008). 

Similar results were obtained in a divergent selection experiment performed in rabbits 

(Zomeño et al., 2009), where lines selected for high and low IMF differed by 1.16% 

and 1.58% for C18:1 and total monounsaturated fatty acids in LD, respectively. It is 

known that as IMF develops, the endogenous synthesis of saturated and 

monounsaturated fatty acids, including C18:1, increases and results in a greater 

accumulation of neutral lipids in the adipocytes respect to the phospholipids fraction 

(Wood et al., 2008). 

 

5.5. CONCLUSIONS 

To our knowledge, this is the first report on realized responses to selection for 

fat composition in pigs. Results indicated that direct selection for C18:1 is possible but 

they also emphasized the need for accurate EBV, which requires a systematic 

recording that in general is not available yet. Records taken on a particular muscle like 

GM could successfully improve C18:1 not only in the criterion muscle but also in LD 

but caution is recommended for other muscles and SF. Oleic acid is expected to 

respond to selection similarly to IMF. Results reported here prove that there are 

opportunities for genetically improving the fatty acid profile of pork for high-quality 

products. 
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Chapter 6. 

A functional variant in the stearoyl-CoA desaturase 

gene promoter enhances fatty acid desaturation in pork 
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ABSTRACT: There is growing public concern about reducing saturated fat intake. 

Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the 

biosynthesis of oleic acid (C18:1) by desaturating stearic acid (C18:0). Here we 

describe a total of 18 mutations in the promoter and 3’ non-coding region of the pig 

SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter 

region enhances fat desaturation (the ratio C18:1/C18:0 in muscle increases from 3.78 

to 4.43 in opposite homozygotes) without affecting fat content (C18:0+C18:1, 

intramuscular fat content, and backfat thickness). No mutations that could affect the 

functionality of the protein were found in the coding region. First, we proved in a 

purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide 

polymorphisms (SNPs) (g.2108C>T, g.2228T>C, g.2281A>G) of the promoter region 

was additively associated to enhanced C18:1/C18:0 both in muscle and subcutaneous 

fat, but not in liver. We show that this association was consistent over a 10-year period 

of overlapping generations and, in line with these results, that the C-T-A haplotype 

displayed greater SCD mRNA expression in muscle. The effect of this haplotype was 

validated both internally, by comparing opposite homozygote siblings, and externally, 

by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the 

g.2108C>T SNPs were excluded as causative mutations using new and previously 

published data, restricting the causality to g.2228T>C SNP, the last source of genetic 

variation within the haplotype. This mutation is positioned in the core sequence of 

several putative transcription factor binding sites, so that there are several plausible 

mechanisms by which allele T enhances C18:1/C18:0 and, consequently, the 

proportion of monounsaturated to saturated fat.  
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6.1. INTRODUCTION 

Good eating habits are conducive to good health. Total fat and fatty acid content 

in food affect both human health and food quality and, consequently, they are 

becoming increasingly important to consumers. There is convincing evidence that a 

high dietary intake of saturated fat (SFA) increases the risk of lipid metabolism 

disorders which are common to many human chronic diseases (FAO, 2010). 

Conversely, the intake of monounsaturated (MUFA) and polyunsaturated (PUFA) fat 

has beneficial effects over human health (de Lorgeril & Salen, 2012). In this regard, 

dietary guidelines advice that optimal intake of SFA should account for no more than 

10% of the total diet energy, in line with recent findings suggesting that dietary 

composition may matter for longevity more than calorie count (Mattison et al., 2012). 

Worldwide, the demand for meat, but specifically pork, has increased from the 1980s 

onwards driven by growing human population and incomes (Smith et al., 2010). 

Although pork is rich in bioavailable macro- and micronutrients, it is also a source of 

dietary SFA (McAfee et al., 2010). In addition to nutritional aspects, fat content and 

fatty acid composition also influence relevant manufacturing and organoleptic 

properties of pork (Wood et al., 2003, 2008). Thus, high levels of intramuscular fat 

(IMF) and MUFA are favorably associated to texture, juiciness, flavor, and general 

acceptability of high-quality products (Wood et al., 2003, 2008) (Figure 6.1). 

Therefore, a reasonable strategy to deal with both healthy and quality constraints is to 

substitute dietary SFA with MUFA. 

The pork fatty acid composition varies across fat tissues and muscles and it is 

greatly influenced by the genetic type of the pig, the diet, and, in general, by any factor

 

Figure 6.1. Pork loins with 

optimal intramuscular fat but 

different monounsaturated 

fatty acid content. The mono-

unsaturated pamitoleic (C16:1) 

and oleic (C18:1) acids are more 

abundant in the loin in panel A 

(4.0% and 44.2%, respectively) 

than in the loin in panel B (3.0% 

and 41.4%), expressed as per-

centage with respect to total fatty 

acids. The peaks of these two 

fatty acids in the chromatograms 

below are labelled accordingly, 

along with those of their respect-

tive precursors, palmitic (C16:0) and stearic (C18:0) acids. The desaturation ratios C16:1/C16:0 

and C18:1/C18:0 are higher in loin A (0.16 and 3.7, respectively) than in loin B (0.12 and 2.8, 

respectively). Genotyping for g.2228T>C in the promoter region of the SCD gene revealed that 

loin A was homozygous for allele T and loin B homozygous for allele C.  
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affecting fatness, such as gender or age (Nürnberg et al., 1998; Bosch et al., 2012). In 

this regard, the use of the Duroc breed is becoming very popular in quality conscious 

consumer segments because of their high level of IMF relative to subcutaneous fat. 

However, regardless of the genetic type, the deposition of dietary fatty acids is small 

compared to fatty acid synthesis, with endogenous oleic (C18:1), palmitic (C16:0), and 

stearic (C18:0) acids representing more than 80% of the total deposited fatty acids 

(Kloareg et al., 2007). The stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme 

required for the biosynthesis of MUFA from SFA. In particular, SCD catalyzes the 

desaturation of palmitoyl-CoA and stearoyl-CoA substrates at the 
9
 position to 

produce de novo palmitoleoyl-CoA and oleoyl-CoA, respectively. Maintaining a 

balance in the SCD activity is paramount to optimize health (Paton & Ntambi, 2009; 

Merino et al., 2010) and, therefore, SCD expression, both in normal and in disease 

states, is tightly controlled by dietary and hormonal factors (Mauvoisin & Mounier, 

2011). SCD is largely expressed in liver and adipose tissue, responding positively to 

high carbohydrate diets and negatively to starvation and PUFA rich diets. The ratio of 

C18:1 to C18:0 (C18:1/C18:0) is commonly used as an indirect indicator of SCD 

activity. Alterations in this desaturation ratio have been linked to cardiovascular 

disease, obesity, diabetes, and cancer (Miyazaki & Ntambi, 2003; Ntambi & Miyazaki, 

2004; Paton & Ntambi, 2009; Merino et al., 2010; Mauvoisin & Mounier, 2011), and 

correlated with longevity (Hulbert, 2010). Recent evidence indicates that SCD also 

plays an important role in defining plasma and tissue lipid profiles (Merino et al., 

2010).  

In pigs, the SCD gene is assigned to chromosome SSC14q27 (Ren et al., 2003). 

The position of this gene co-localizes with quantitative trait loci for muscle content of 

C18:0 and C18:1 described in Duroc-based populations (Sanchez et al., 2007; 

Quintanilla et al., 2011). SCD is, therefore, an attractive positional candidate gene 

(Uemoto et al., 2012c). In fact, findings so far support that there is genetic variation in 

the SCD gene affecting fatty acid composition of muscle and adipose tissue. Several 

single nucleotide polymorphisms (SNPs) in the SCD promoter region have been 

associated to C18:0 and C18:1 content. Yet, results are inconclusive, as either the 

location of haplotypes is not coincident (Uemoto et al., 2012b; Maharani et al., 2013), 

favorable alleles are swapped (Renaville et al., 2013), or even no association was found 

(Bartz et al., 2013). We have been collecting since 2002 samples of subcutaneous fat, 

muscle, and liver from a full-pedigreed Duroc line (Animals and Samples Section) and 

muscle samples from three ad hoc pig crossbreds divergent for fatness. Fat content and 

composition data is currently available for all these samples. Here we use this 

repository to provide evidence that allele T at SNP AY487830:g.2228T>C in the SCD 

gene is a causative mutation that promotes fat desaturation in muscle and subcutaneous 

fat.  
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6.2. MATERIALS AND METHODS 

6.2.1. Animals and tissue sampling 

An association analysis (Exp 1) was done using genomic DNA and phenotypic 

data of twelve batches (n=891) of purebred Duroc barrows from the line described in 

the Animals and Samples Section (Duroc-1). In two of these batches, crossbred Duroc 

(DU-3 × DU-1), Duroc × Iberian (IB-2 × DU-1), and Large White × Landrace (LW-1 

× L-2) barrows (Exp 2) were contemporaneously raised to Duroc-1 barrows, for 

validation purposes (n=170). Pigs in the same batch were raised from 75 d of age until 

slaughter at 210 d in the same farm under identical conditions. All batches were 

managed following the same standard protocol for data recording and tissue sampling 

(Animals and Samples Section). Barrows had ad libitum access to commercial diets. 

In two of the Duroc batches at 180 d of age three 10-ml samples of blood per barrow 

were obtained between 8 and 10 a.m. after an overnight fast. All pigs were slaughtered 

in the same commercial abattoir, where lean content and other carcass traits were 

measured by using an on-line ultrasound automatic scanner. Immediately after 

slaughter, samples of the semimembranosus muscle, subcutaneous adipose tissue at 

the level of the third and fourth ribs, and liver were collected, snap-frozen, and stored 

at −20°C. After chilling for about 24 h at 2ºC, a sample of the gluteus medius muscle 

was excised from the left side ham, vacuum packaged, and stored at −20ºC. A sample 

of longissimus dorsi muscle was collected for a subset of animals. Finally, we used 

genomic DNA representing European wild boar and several domestic breeds of pigs 

and commercial crossbreds for monitoring haplotype segregation.  

 

6.2.2. Fatty acid and blood lipid indicator analysis 

Fat content and fatty composition was determined in duplicate by quantitative 

determination of the individual fatty acids by gas chromatography as detailed in the 

Animals and Samples Section. Blood triglycerides, cholesterol, leptin, and insulin-like 

growth factor-1 were determined using available kits (Muñoz et al., 2013a). 

 

6.2.3. Nucleic acids isolation 

Genomic DNA was isolated from freeze-dried muscle samples using standard 

protocols (Sambrook & Russell, 2001). Total RNA was isolated from fat, liver, and 

semimembranosus muscle. Samples (50 mg) were homogenized in 1 ml of TRI 

Reagent (Sigma-Aldrich, Madrid, Spain) using a mechanical rotor (IKA Werke, 

Staufen, Germany) following the manufacturer’s instructions. 
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6.2.4. Sequencing of promoter and exonic regions of the pig SCD gene 

Based on genomic and cDNA sequences (GenBank accession numbers 

AY487830 and NM_213781, respectively) primers were designed in order to amplify 

and sequence 780 bp of the SCD proximal promoter and the entire exonic regions of 

the gene. Seven primer sets were designed with the Primer3Plus online 

oligonucleotide design tool (http://primer3plus.com; Untergasser et al., 2007) (Table 

6.1). The promoter and 3’ non-coding region were amplified from approximately                       

60 ng of genomic DNA from twelve Duroc pigs selected to represent extreme levels of 

C18:1 in gluteus medius. PCR reaction of a final volume of 25 μl contained 200 nM of 

each primer, 160 mM dNTPs, 3 mM MgCl2, and 0.4 U of Taq DNA polymerase 

(Biotools, Madrid, Spain). PCR conditions were as follows: 95ºC for 5 minutes,                                   

35 cycles of 95ºC for 20 s, annealing temperature as in Table 6.1 for 40 s, and 72ºC 

for 90 s, and completed by an extension step at 72ºC for 5 min. The 5’ non-coding and 

coding regions were amplified using the same reaction and cycling conditions from 

total RNA of semimembranosus muscle retrotranscribed to cDNA as indicated in 

Section 6.2.6. PCR amplicons were sequenced on an ABI-3100 capillary sequencer 

(Applied Biosystems, Foster City, CA) with the BigDye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems). Sequences were aligned with the ClustalW

 

Table 6.1. Sequence of DNA primers used in the characterisation of the porcine SCD 

gene. A list of the primers used to amplify and sequence seven fragments of the porcine SCD 

gene encompassing 780 bp of the promoter and the entire coding and 5’ and 3’ non-coding 

regions (3’UTR). The annealing temperature used in the PCR cycling program is also indicated. 

Primer name Sequence 5’  3’ Amplicon size 
Annealing 

temperature 

promoter_F ACTTCCCTAGTGCCCATCCT 
980 bp 58ºC 

promoter_R GATCACTTTCCCAGGGATGA 

cDNA_F GTCTCATCCCTGGGAAAGTG 
1160 bp 62ºC 

cDNA_R CAGCTGGCTTTCAGAAAAGG 

3’UTR_F1 AAGTATCCAAGGCTGCCATC 
866 bp 58ºC 

3’UTR_R1 CAATTCCGGAAAGAACCTCA 

3’UTR_F2 TGGGGAAGAAGTCTTTCTTGT 
990 bp 58ºC 

3’UTR_R2 GGTTCAGTGACCCTGAGCAT 

3’UTR_F3 TTTCCTGCCGGTTCTATCTC 
945 bp 60ºC 

3’UTR_R3 GAGTAGGTGCTTGGGTCTGG 

3’UTR_F4 ATGGAGGATAAAGGGGTTGG 
648 bp 60ºC 

3’UTR_R4 ACTTGCCCAGGGTCACATAG 

3’UTR_F5 GTCAAGGTTACACGGGTGGT 
742 bp 58ºC 

3’UTR_R5 CAGGACATAGGGTGGCAGAT 
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Table 6.2. Primers used for genotyping the three single nucleotide polymorphisms 

(SNPs) in the porcine SCD gene promoter with an allelic discrimination assay. 

Polymorphism in 

AY487830 
Primer name Sequence 5’  3’ 

Final 

concentration 

g.2108C>T Primer Forward AGTGTCTGCAGCATCCAGTTTT 900 nM 

Primer Reverse GCATGGGCGGGAGAGG 900 nM 

Probe for G allele VIC-CCAGCAAGCCCC-NFQ 200 nM 

Probe for A allele FAM-CCCAGTAAGCCCC-NFQ 200 nM 

g.2228T>C Primer Forward CCCTTCTTGGCAGCGAATAAAA 900 nM 

Primer Reverse CAGGCTGGGTATTTAAAGGCTAGAG 900 nM 

Probe for C allele VIC-CGACCGTGTCCTGTATT-NFQ 200 nM 

Probe for T allele FAM-CGACCGTATCCTGTATT-NFQ 200 nM 

g.2281A>G Primer Forward TGCCAGCTCTAGCCTTTAAATACC 900 nM 

Primer Reverse CACGTTGGGTCGGTGTCT 900 nM 

Probe for G allele VIC-ACCCGCGCACAGCA-NFQ 200 nM 

Probe for A allele FAM-AGACCCACGCACAGCA-NFQ 200 nM 

 

alignment tool (http://www.ebi.ac.uk/Tools/msa/clustalw2/) and compared to identify 

polymorphic sites. All sequences have been submitted to the GenBank data base 

(accession numbers KC736975 and KC736976). 

 

6.2.5. Genotyping the pig SCD promoter 

Three SCD promoter polymorphisms (AY487830:g.2108C>T, g.2228T>C, and 

g.2281A>G) were genotyped with allele discrimination assays (Custom TaqMan SNP 

Genotyping Assays, Applied Biosystems) using the primers and probes described in 

Table 6.2. For all of them, 15 ng of genomic DNA were used in 8 μl reactions 

containing 1x TaqMan Universal PCR Master Mix (Applied Biosystems) and 900 nM 

primers and 200 nM probes. Cycling conditions were as follows: initial denaturation at 

95ºC for 10 min and 40 cycles at 93ºC for 5 sec and 60ºC for 1 min. 

 

6.2.6. Gene expression analysis 

SCD expression levels were measured by quantitative real-time PCR (qPCR) in 

semimembranosus muscle, subcutaneous fat, and liver and from a subset of 45 animals 

representing all diplotypes. Total RNA (1 µg) was treated with Turbo DNA-free 

DNase (Ambion, Austin, TX) according to the manufacturer’s protocol and 

retrotranscribed with 0.5 pmol of random hexamers using 100 U of MuMLV reverse 

transcriptase (Fermentas, St. Leon-Rot, Germany) at 25ºC for 10 min, 42°C for 1 h, 
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and 70ºC for 10 min. cDNA was diluted 1:10 in DEPC-treated H2O prior to qPCR 

analysis. Primers, PCR conditions, and data normalization was conducted as in 

Cánovas et al. (2010). 

 

6.2.7. Estimating haplotype effects 

The haplotype effect was estimated within tissue using a linear model including 

the diplotype and the batch (JMP 8, SAS Institute Inc., Cary, NC). The age at slaughter 

and fat content were tested as covariates in the model. The haplotype additive (a) and 

dominant (d) effects were tested replacing the diplotype effect by the covariates a 

(coded as +1 and −1 for homozygous and 0 for heterozygous diplotypes) and d (coded 

as 0 for homozygous and +1 for heterozygous diplotypes). The effects of the diplotype 

and covariates were tested using the F-statistic and the differences among diplotypes 

were contrasted with the Tukey-HSD test. The batch was removed from the model 

when results were expressed on a batch basis (Exp 1). The haplotype effect in the 

validation experiment (Exp 2) was estimated within genetic type using the same 

procedure. In IB-2 × DU-1 and LW-1 × L-2 crossbreds, the sire effect was included in 

the model because only two IB-2 and LW-1 sires were used. A paired t-test was used 

for comparing homozygote siblings. The additive fraction of the genetic variance 

accounted for by the diplotype was calculated as 2pqa
2
 (Falconer & Mackay, 1996) 

divided by the additive genetic variance. The genetic variance for fatty acids and their 

ratios were estimated using the approach in Chapter 2 and univariate animal models 

including the full pedigree since 1991.  

 

6.2.8. In silico analysis of the SCD promoter 

To characterize the SCD promoter, a computer-assisted identification of putative 

promoter/enhancer elements was performed using the GENOMATIX software suite 

(Genomatix Software GmbH) (Cartharius et al., 2005). Genomatix Matrix Library 8.3 

was used with a core similarity threshold of 0.85 and an optimized matrix similarity 

threshold (program default). The Gene2Promoter application was used to retrieve the 

SCD promoter from pig, human, cow, and sheep. Common transcription factor binding 

motifs were explored using the CommonTF, DiAlignTF, and MatInspector 

applications for pattern search and analysis. 

 

6.3. RESULTS 

6.3.1. Sequence variation in the SCD gene in Duroc pigs 

 The 5’ and 3’ non-coding regions, coding region, and 680 bp upstream on the 

proximal promoter of the pig SCD gene were sequenced in twelve Duroc pigs 
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representing extreme phenotypes for muscle C18:1 content. A total of 18 

polymorphisms were identified: three in the promoter and 15 in the 3’ non-coding 

region (Table 6.3). No variation was found in the sequence corresponding to the SCD 

coding and 5’ non-coding regions.  

 The SCD transcription unit spans 16,186 bp and includes a coding region of 

1,079 bp plus an unusually long 3’UTR of 4,047 bp. Despite being over 12 kb apart, in 

the Duroc animals analyzed the polymorphisms of promoter and 3’UTR regions 

formed one haplotype block which displayed >95% overall linkage disequilibrium 

(r
2
=0.965 between SNPs g.2108C>T in the promoter and g.15109A>G in the 3’UTR). 

The three SNPs in the promoter region were close together in a 173 bp fragment 

(Figure 6.2). Given the lack of sequence variation in the coding region of the gene, we 

focus on the study of the three SNPs in the promoter region as these might potentially 

influence the SCD mRNA expression levels affecting, therefore, the total SCD activity 

of the cells. 

 

Table 6.3. Description of the polymorphisms identified at SCD gene. Eighteen 

polymorphisms in the SCD gene were found to be segregating in the investigated Duroc 

population by comparing the DNA sequence of six pigs with extreme high and low values for 

oleic acid content in gluteus medius muscle. Position numbering is relative to the translation 

start codon and the genomic sequence AY487830. Three of the polymorphisms are single-

nucleotide substitutions in the promoter region. 

Polymorphism in 

AY487830 
Gene region 

Sequence 

change 

Position relative 

to ATG 

Variant 

1 

Variant 

2 

g.2108C>T Promoter Y −353 C T 

g.2228T>C Promoter Y −233 T C 

g.2281A>G Promoter R −180 A G 

g.14924G>A 3’UTR R +1382 G A 

g.14981C>T 3’UTR Y +1439 C T 

g.15013T>C 3’UTR Y +1471 T C 

g.15060A>G 3’UTR R +1518 A G 

g.15109A>G 3’UTR R +1566 A G 

g.15115_15119insATGG 3’UTR ins(ATGG) +1572 - ATGG 

g.15157C>T 3’UTR Y +1618 C T 

g.15294G>A 3’UTR R +1755 G A 

g.16195G>A 3’UTR R +2656 G A 

g.16617A>G 3’UTR R +3078 A G 

g.16623A>G 3’UTR R +3084 A G 

g.16663T>C 3’UTR Y +3124 T C 

g.17305G>C 3’UTR S +3766 G C 

g.17313G>T 3’UTR K +3774 G T 

g.17437A>C 3’UTR M +3898 A C 
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Figure 6.2. Characterization of the 5’ flanking region to the transcription start site of 

the pig SCD gene. (A) Schematic representation of recognition motifs for several transcription 

factor binding sites in the proximal 5’ flanking region of the pig SCD gene. The relative 

position of the three SNPs polymorphisms identified in this promoter (AY487830:g.2108C>T, 

g.2228T>C, and g.2281A>G) are indicated. (B) Sequence encompassing three SNPs 

polymorphisms in the promoter region of the pig SCD gene. Position numbering is relative to 

the translation START codon (in blue). The transcription start site is at position −175 (arrow in 

panel A). Coding sequence and the 5’ non-coding region is shown in uppercase and italics, 

respectively. The motifs for transcription factors SP1, PPARγ, NF-1, RXR:RARα, and the 

TATA-box are underlined and notated above the sequence.  

 

6.3.2. Association of SCD haplotypes with desaturation ratios 

In a first experiment we genotyped all the available purebred Duroc pigs in the 

repository (n=891) which had at least one tissue analyzed for fatty acid composition 

(Exp 1; Table 6.4). The segregation analysis of the three SNPs in this population 
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revealed that they are in strong linkage disequilibrium (r
2
>0.97), with two clearly 

predominant haplotypes (H1: C-T-A, frequency 43.7%; and H2: T-C-G, frequency 

55.5%). The results of the association analysis confirmed that pigs carrying the H1 

haplotype had higher C18:1/C18:0 ratio in the three muscles analyzed (gluteus medius, 

longissimus dorsi, and semimembranosus) and subcutaneous fat but not in liver (Figure 

6.3). We proved that this haplotype behaved additively, with an average additive effect 

for C18:1/C18:0 in the muscle gluteus medius of 0.33 (Table 6.5), but also that it did 

not affect the amount of C18:0+C18:1. Moreover, these effects were consistent across 

batches, thereby showing both genetic stability over generations and environmental 

stability against occasional dietary and management changes. A similar trend was 

found for the ratios of palmitoleic acid (C16:1) to C16:0 (C16:1/C16:0) and of MUFA 

to SFA (MUFA/SFA) (Table 6.6). As a result, the substitution effect of H1 for H2 for 

MUFA, C18:1, and C16:1 in the gluteus medius muscle was 1.02%, 0.70%, and 0.30%, 

respectively. Adjusting these values for the age at slaughter and fat content did not 

change the results. Because segregation was at intermediate frequencies, the above 

 

 
Figure 6.3. Desaturation ratio by SCD diplotype and tissue in purebred Duroc. The 

presence of haplotype H1 is associated to higher C18:1/C18:0 ratio both in intramuscular and 

subcutaneous fat. The H1H1 pigs have a greater C18:1/C18:0 ratio than the H2H2 animals in 

the muscles gluteus medius (H1H1−H2H2: 0.65), longissimus dorsi (H1H1−H2H2: 0.67), and 

semimembranosus (H1H1−H2H2: 0.57), and in the subcutaneous fat (H1H1−H2H2: 0.50), with 

the heterozygote H1H2 showing an intermediate effect. No difference is observed among 

diplotypes in liver. Error bars represent standard errors. Columns lacking a common letter 

within tissue differ (p<0.01, for gluteus medius and longissimus dorsi; p<0.05, for 

semimembranosus and subcutaneous fat). 
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Table 6.6. Carcass weight, fat content, and fatty acid composition by SCD diplotype 

and fat tissue in purebred Duroc. The haplotype H1 showed a favorable effect on fatty acid 

composition traits resulting from increased SCD activity (C16:1/C16:0, C18:1/C18:0, 

MUFA/SFA, C18:1, C16:1, and MUFA) and no effect on fat content-related traits (carcass 

weight, lean content, intramuscular fat content, C16:0+C16:1, C18:0+C18:1, and SFA+MUFA). 

This pattern was more evident in muscle than in subcutaneous fat. Values are expressed as the 

least square mean (±standard error) for each trait by diplotype. Means lacking a common 

superscript within trait differ (p<0.05).  

Trait
1
 

 Diplotype 

 H1H1 H1H2 H2H2 p-value 

No. of pigs  166 435 268 - 

Age at sampling (d)  212.1 212.0 211.9 - 

Carcass weight (kg)  95.7±0.8 96.9±0.5 96.7±0.6 0.38 

Backfat depth (mm)  22.6±0.3 23.1±0.2 22.9±0.2 0.33 

Lean content (%)  43.9±0.4 43.3±0.2 43.5±0.3 0.30 

Muscle gluteus medius      

 No. of pigs  167 432 267 - 

 IMF (% dry matter)  16.57±0.37 16.42±0.23 16.55±0.30 0.91 

 C16:1 (%)  4.10±0.05
a
 3.76±0.03

b
 3.50±0.04

c
 <0.001 

 C16:1/C16:0 (×100)  18.04±2.46
a
 16.18±1.58

b
 14.90±2.00

c
 <0.001 

 C16:0+C16:1 (%)  27.32±0.11 27.24±0.07 27.16±0.09 0.52 

 C18:1 (%)  45.38±0.16
a
 44.71±0.10

b
 43.97±0.13

c
 <0.001 

 C18:1/C18:0  4.43±0.04
a
 4.11±0.03

b
 3.78±0.03

c
 <0.001 

 C18:0+C18:1 (%)  56.10±0.15 56.03±0.10 55.98±0.12 0.81 

 MUFA (%)  50.30±0.17
a
 49.27±0.11

b
 48.27±0.14

c
 <0.001 

 MUFA/SFA  1.44±0.01
a
 1.37±0.01

b
 1.31±0.01

c
 <0.001 

 SFA+MUFA (%)  86.02±0.17 85.88±0.11 85.75±0.14 0.44 

Muscle longissimus dorsi      

 No. of pigs  50 165 98 - 

 IMF (% dry matter)  12.88±0.47 12.96±0.26 12.47±0.34 0.51 

 MUFA (%)  51.43±0.26
a
 50.23±0.14

b
 49.22±0.19

c
 <0.001 

 MUFA/SFA  1.40±0.01
a
 1.32±0.01

b
 1.27±0.01

c
 <0.001 

 SFA+MUFA (%)  88.76±0.31 88.73±0.17 88.49±0.23 0.67 

Muscle semimembranosus      

 No. of pigs  43 86 67 - 

 IMF (% dry matter)  10.22±0.70 10.01±0.54 11.03±0.58 0.36 

 MUFA (%)  49.78±0.70 48.32±0.53 47.94±0.57 0.11 

 MUFA/SFA  1.48±0.05 1.44±0.04 1.39±0.04 0.37 

 SFA+MUFA (%)  83.73±0.62 82.88±0.47 83.34±0.51 0.51 

Subcutaneous fat       

 No. of pigs  56 124 80 - 

 C16:1 (%)  2.20±0.04 2.18±0.03 2.08±0.03 0.029 

 C16:1/C16:0 (×100)  10.54±2.79 10.32±1.96 9.78±2.38 0.07 

 C16:0+C16:1 (%)  23.86±0.22 24.10±0.15 24.17±0.19 0.53 

 C18:1 (%)  44.87±0.28
a
 43.76±0.19

b
 43.41±0.24

b
 <0.001 

 C18:1/C18:0  4.38±0.11
a
 4.16±0.07

ab
 3.90±0.09

b
 0.002 

 C18:0+C18:1 (%)  55.74±0.22
a
 54.95±0.16

b
 55.16±0.19

ab
 0.018 

 MUFA (%)  48.23±0.29
a
 47.04±0.21

b
 46.56±0.25

b
 <0.001 

 MUFA/SFA  1.47±0.03
a
 1.41±0.02

ab
 1.36±0.03

b
 0.031 

 SFA+MUFA (%)  82.31±0.26 81.78±0.18 82.02±0.22 0.24 1
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Table 6.7. Blood lipid indicators by SCD diplotype in purebred Duroc. The diplotype 

did not affect (p<0.05) blood plasma lipid indicators at 180 d. Values are expressed as the least 

square mean (±standard error) for each trait by diplotype. 

Trait
1
 

 Diplotype 

 H1H1 H1H2 H2H2 p-value 

No. of pigs  20 52 36 - 

Triglycerides, mg/dl  33.9±3.2 37.8±1.9 36.1±2.4 0.57 

Cholesterol, mg/dl  119.1±4.2 118.8±2.6 114.6±3.2 0.54 

HDL cholesterol, mg/dl  44.3±1.6 44.44±1.0 42.8±1.2 0.57 

LDL cholesterol, mg/dl  78.6±3.0 78.8±1.9 75.7±2.2 0.56 

VLDL, mg/dl  7.4±0.8 7.8±0.6 7.0±0.8 0.71 

Leptin      

 No. of pigs  11 39 26 - 

 Concentration, ng/ml  44.7±9.5 47.2±4.9 40.0±6.3 0.68 

IGF-1      

 No. of pigs  42 138 84 - 

 Concentration, ng/ml  75.6±5.0 75.8±2.8 82.9±3.6 0.27 

1
 HDL: high-density lipoprotein; LDL: low-density lipoprotein; VLDL: very low density 

lipoprotein; IGF-1: insulin-like growth factor 1. 

 

Figure 6.4. Desaturation 

ratio in opposite homo-

zygous siblings for SCD 

haplotypes H1 and H2.                
(A) Ratio C18:1/C18:0, and 

(B) C18:0+C18:1 content (in 

percentage of total fatty 

acids) in the muscle gluteus 

medius of homozygous H1H1 

and H2H2 sibling pairs 

(n=25) are plotted against the 

sibling pair mean value. The 

H1H1 pigs showed a greater 

desaturation ratio (p<0.01) 

than their H2H2 sibs but the 

same C18:0+C18:1 (p=0.94) 

content. The associated                            

p-values were determined 

using a paired t-test. 

Regression lines were fitted 

for each diplotype (blue: 

H1H1; red: H2H2). The 

difference between homo-

zygotes for C18:1/C18:0 increased with C18:1/C18:0 sibling pair mean (p<0.05), with H1H1 

sibs showing a trend higher than the expected (1.17±0.10) and H2H2 sibs lower (0.83±0.10). 

The regression of C18:0+C18:1 on the litter mean value was not different from the average 

trend (unity) in both genotypes (p=0.89).  



Chapter 6 

123 

haplotype variants were able to explain a relevant fraction of the total additive genetic 

variance for MUFA/SFA (31%), C18:1/C18:0 (37%), C16:1/C16:0 (35%), MUFA 

(20%), C18:1 (13%), and C16:1 (25%). However, they did not affect fat content-

related traits, including carcass weight, backfat thickness, lean content, and IMF 

content (Table 6.6), or standard blood lipid indicators (Table 6.7). The favorable effect 

of H1 on C18:1/C18:0 was internally validated by comparing opposite homozygote 

siblings (Figure 6.4). In line with the population-wide results, H1H1 pigs had a greater 

C18:1/C18:0 ratio in gluteus medius muscle than their corresponding H2H2 sib pairs, 

with no change in the total content of C18:0+C18:1. 

To assess the functional impact of the haplotype association we analyzed the 

SCD mRNA expression in muscle, subcutaneous adipose tissue, and liver across 

diplotypes. In accordance with the association results, we found that H1H1 animals 

showed greater SCD mRNA expression than H2H2 pigs in muscle (Figure 6.5). 

Despite the trend was the expected, we were not able to detect significant differences 

in SCD mRNA expression between diplotypes in subcutaneous fat. The haplotype had 

no effect on the SCD mRNA expression in liver. 

 

 
Figure 6.5. The haplotype H1 upregulates SCD mRNA expression in muscle. Pigs H1H1 

had higher SCD mRNA expression than the H2H2 pigs in muscle semimembranosus but not in 

subcutaneous fat and liver. Values are expressed relative to the mean expression in the diplotype 

with the greater expression in each tissue. Error bars represent standard errors. Columns lacking a 

common letter within tissue differ (p<0.05). Haplotype H1 had a favorable additive effect on 

SCD mRNA expression in muscle (24.9±8.2, p<0.01) but not in subcutaneous fat (7.2±12.5, 

p=0.57) and liver (−1.5±15.0, p=0.91). 
 

 

0

25

50

75

100

125

150

m. semimembranosus subcutaneous fat liver

R
e
la

ti
v
e
 S

C
D

m
R

N
A

 e
x
p

re
s
s
io

n
 H1H1

H1H2

H2H2

n=16
a

n=14
ab

n=15
b

n=14
a

n=15
a

n=16
a

n=16
a

n=16
a

n=6
a



Chapter 6 

124 

6.3.3. Validation and haplotype determination 

We next validated the effect of the haplotypes on experimental Duroc crossbreds 

(Exp 2; Table 6.4). To that end, Duroc sows from the line used in Exp 1 were mated, in 

addition to Duroc boars from the same line (genetic type control), to either Duroc boars 

from a leaner commercial line or to Iberian boars where the H1 haplotype was fixed. 

Barrows from contemporary offspring of the three mating types were raised in two 

batches. The Duroc crossbred types reproduced not only the favorable effect of H1 on 

the C18:1/C18:0 ratio, but also, when compared to purebred Duroc, replicated the 

magnitude of the effect as well (Figure 6.6). Thus, the substitution effect of H1 for H2 

for C18:1/C18:0 remained close to 0.40. Moreover, as expected, the H1 variant 

increased the C16:1/C16:0 ratio, but did not affect body growth and fatness                                     

(Table 6.8). 

 

 
Figure 6.6. Desaturation ratio by SCD diplotype in experimental crossbreds. The effect 

of SCD haplotypes on the C18:1/C18:0 ratio was validated in three experimental genetic types. 

Sows from the investigated Duroc line (Duroc-1), which was used as control, were sired by 

boars from an independent Duroc line (DU-3 × DU-1) and by Iberian boars (IB-2 × DU-1), and 

their progeny contemporarily compared with Large White × Landrace barrows (LW-1 × L-2). 

The results confirmed that the H1 haplotype increased the C18:1/C18:0 ratio in the gluteus 

medius muscle in all genetic types. The H1H1 pigs showed a higher desaturation ratio than 

H2H2 (0.81 more in Duroc-1 and 0.61 more in DU-3 × DU-1), H1H2 (0.37 more in IB-2 × DU-

1), and H1H3 (0.38 more in LW-1 × L-2) pigs. All LW-1 × L-2 pigs were AA for SNP 

g.2281A>G, thereby excluding this SNP as a causative mutation. Error bars represent standard 

errors. Columns lacking a common letter within genetic type differ (p<0.05). 
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To refine the haplotype block determination and disentangle which SNP was the 

responsible of the haplotype effect, we investigated the progeny of two heterozygote                                   

C-T-A/T-C-A (H1H3) Large White boars. Barrows from mating these boars with H1H1 

Landrace sows were contemporaneously raised with pigs in Exp 2, with the expectation 

to obtain half of the offspring C-T-A/C-T-A (H1H1) and half C-T-A/T-C-A (H1H3) 

(i.e., segregating at g.2108C>T and g.2228T>C, while fixed at g.2281A>G). The 

haplotype segregation was as expected (Table 6.4). This experiment showed that, 

similarly to contemporaneously purebred and crossbreds Duroc in Exp 2, H1H1 Large 

White × Landrace barrows still displayed a greater C18:1/C18:0 ratio than heterozygotes 

carrying the H3 haplotype (Figure 6.6). As with other genetic types in Exp 2, the 

haplotype in Large White × Landrace had no effect on traits other than those directly 

affected by SCD (Table 6.8). Importantly, the results of this last validation experiment 

allow us to exclude SNP g.2281A>G as the causative mutation of the effect on the 

desaturation index. 

 

Table 6.8. Carcass weight, fat content, and fatty acid composition by SCD diplotype in 

experimental crossbred pigs. The haplotype H1 showed a favorable effect on C16:1/C16:0 

and C18.1/C18:0 ratios and no effect on fat content-related traits (carcass weight, lean content, 

intramuscular fat content, C16:0+C16:1, and C18:0+C18:1). Values are expressed as the least 

square mean (±standard error) for each trait by diplotype. Means lacking a common superscript 

within trait differ (p<0.05). 

Genetic type Trait
1
 

Diplotype 

H1H1 H1H2 / H1H3
2
 H2H2 p-value 

DU-3 × DU-1 No. of pigs 11 28 16 - 

 Age at sampling (d) 206.0 206.1 205.7 - 

 Carcass weight (kg) 94.9±2.8 95.9±1.7 91.5±2.3 0.31 

 Backfat depth (mm) 20.0±1.2 19.6±0.7 19.1±0.9 0.85 

 Lean content (%) 47.9±1.5 48.4±0.9 48.8±1.2 0.90 

 Muscle gluteus medius     

  IMF (% dry matter) 10.63±1.00 12.15±0.62 12.11±0.82 0.41 

  C16:1 (%) 4.01±0.15
a
 3.82±0.10

a
 3.32±0.13

b
 0.001 

  C16:1/C16:0 (×100) 17.46±0.72
a
 16.81±0.45

a
 14.43±0.60

b
 0.002 

  C16:1+C16:0 (%) 27.00±0.46 26.66±0.29 26.37±0.38 0.58 

  C18:1 (%) 43.28±0.77 43.08±0.48 42.30±0.63 0.53 

  C18:1/C18:0 4.42±0.14
a
 4.20±0.08

a
 3.71±0.11

b
 <0.001 

  C18:1+C18:0 (%) 53.10±0.85 53.46±0.53 53.83±0.70 0.80 

  MUFA (%) 48.03±0.77 47.69±0.48 46.39±0.63 0.18 

  MUFA/SFA 1.39±0.04 1.36±0.02 1.28±0.03 0.07 

  MUFA+SFA (%) 82.75±0.82 82.90±0.51 82.89±0.67 0.99 

1
 IMF: intramuscular fat; C16:0: palmitic acid; C16:1: palmitoleic acid; C18:0: stearic acid; 

C18:1: oleic acid; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids. 
2
 H1H2 for DU-3 × DU-1 and IB-2 × DU-1; H1H3 for LW-1 × L-2. 
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Table 6.8. Continued. 

Genetic type Trait
1
 

Diplotype 

H1H1 H1H2 / H1H3
2
 H2H2 p-value 

IB-2 × DU-1 No. of pigs 29 25 - - 

 Age at sampling (d) 206.6 206.6 - - 

 Carcass weight (kg) 93.2±1.8 91.8±1.9 - 0.57 

 Backfat depth (mm) 24.4±0.3 24.4±0.4 - 0.96 

 Lean content (%) 45.5±0.9 44.9±0.9 - 0.61 

 Muscle gluteus medius     

  IMF (% dry matter) 18.15±0.93 17.77±0.97 - 0.77 

  C16:1 (%) 3.87±0.09
a
 3.46±0.09

b
 - 0.002 

  C16:1/C16:0 (×100) 15.80±0.42
a
 14.18±0.43

b
 - 0.009 

  C16:1+C16:0 (%) 28.48±0.34 27.97±0.35 - 0.30 

  C18:1 (%) 45.12±0.42 44.68±0.44 - 0.47 

  C18:1/C18:0 4.14±0.09
a
 3.77±0.09

b
 - 0.005 

  C18:1+C18:0 (%) 56.11±0.42 56.67±0.43 - 0.35 

  MUFA (%) 49.77±0.44 48.90±0.45 - 0.17 

  MUFA/SFA 1.33±0.03 1.28±0.03 - 0.15 

  MUFA+SFA (%) 87.38±0.37 87.31±0.38 - 0.89 

LW-1 × L-2 No. of pigs 18 25 - - 

 Age at sampling (d) 205.5 205.5 - - 

 Carcass weight (kg) 106.8±1.9 102.6±1.7 - 0.10 

 Backfat depth (mm) 18.4±0.8 17.7±0.7 - 0.46 

 Lean content (%) 50.7±1.0 51.7±0.9 - 0.45 

 Muscle gluteus medius     

  IMF (% dry matter) 7.62±0.41 7.38±0.37 - 0.66 

  C16:1 (%) 3.57±0.13 3.29±0.12 - 0.12 

  C16:1/C16:0 (×100) 15.89±0.66 14.38±0.59 - 0.09 

  C16:1+C16:0 (%) 26.12±0.41 26.22±0.37 - 0.85 

  C18:1 (%) 39.90±0.49 39.42±0.44 - 0.45 

  C18:1/C18:0 4.10±0.14
a
 3.72±0.13

b
 - 0.04 

  C18:1+C18:0 (%) 49.85±0.54 50.31±0.49 - 0.51 

  MUFA (%) 44.16±0.55 43.40±0.50 - 0.30 

  MUFA/SFA 1.29±0.03 1.23±0.03 - 0.11 

  MUFA+SFA (%) 78.55±0.69 79.02±0.62 - 0.60 

1
 IMF: intramuscular fat; C16:0: palmitic acid; C16:1: palmitoleic acid; C18:0: stearic acid; 

C18:1: oleic acid; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids. 
2
 H1H2 for DU-3 × DU-1 and IB-2 × DU-1; H1H3 for LW-1 × L-2. 

 

6.3.4. In silico analysis of SCD promoter polymorphisms 

To assess if polymorphisms in the promoter region could affect SCD expression 

through the disruption of transcription factor binding sites, a computer-assisted 

identification of potential cis-acting DNA-sequence motifs was carried out. As a first 

step, we analyzed in parallel the promoter region (−500 to +100 from the 

transcriptional start site) of human, cow, pig, and sheep SCD gene with the view of 

identifying common regulatory modules. The promoter sequence displays stretches of 
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strong conservation between these four species interspersed with fragments of lower 

conservation (Figure 6.7). A conserved PUFA response element (PUFA-RE), which 

includes a sterol regulatory element (SRE), two CCAAT boxes (NF-Y), and two 

nuclear factor (NF)-1 binding sites, has been described approximately at positions 

−450/−550, which is highly conserved between species (Ntambi, 1999; Bené et al., 

2001; Ren et al., 2004b; Ohsaki et al., 2007) (Figure 6.7) and is essential for correct 

SCD gene regulation by PUFA and cholesterol (Ntambi, 1999; Bené et al., 2001). The 

transcription factor SRE binding protein-1 down-regulates SCD expression through the 

interaction with the SRE element in this regulatory region (Bené et al., 2001). In 

addition to the PUFA-RE element, our in silico analyses revealed a conserved 

peroxisome proliferator-activated receptor gamma (PPARγ) motif at position 

−400/−420. Another region containing many potential binding motifs lays in the 

sequence around the g.2228T>C polymorphism, about 40 bp upstream of the TATA-

box. Several transcription factor-binding motifs partially overlap in this region. There 

is a conserved PPARγ and NF-1 motif on the negative strand, which lay adjacent to a 

CCAAT/enhancer binding protein motif (C/EBP) in cow, sheep, and humans. 

However, our analysis failed to recognize this C/EBP motif in the pig sequence, 

although it has been postulated before (Ren et al., 2004b). In pig this motif is replaced 

by two PPARγ binding sites, a half-site in the positive strand and a full homodimer 

motif with 3-bp inter half-site spacing between inverted repeats (IR3) where PPARγ 

binds to both complementary strands (data available at: http://www.plosone.org/article/                                                  

fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0086177.s006). In 

addition, bridging these PPARγ sites together, there are two binding motifs for the 

retinoid X receptor and the retinoic acid receptor α (RXR:RARα) response elements 

(direct repeats with 1-bp (DR1) and 5-bp (DR5) spacer sequence, respectively). The 

g.2228T>C polymorphism lies in the core of the IR3 motif in the positive strand and at 

the end of the DR5 element (Figure 6.7). 

 

6.4. DISCUSSION 

We have shown that the C-T haplotype at SNPs g.2108C>T and g.2228T>C in 

the promoter region of the SCD gene increases fatty acid desaturation in muscle and 

subcutaneous fat, in line with some previous findings in Duroc (Uemoto et al., 2012b). 

The third polymorphism screened in the promoter (g.2281A>G) was excluded as a 

causal by the results in our external validation experiment (Exp 2), where Large                                     

White × Landrace pigs were all homozygous for this SNP but still presented the same 

effect on the desaturation index. Conversely, as in all the screened populations SNPs 

g.2108C>T and g.2228T>C were in almost complete linkage disequilibrium, we were 

not able to disentangle which one of the two is the causative mutation. However, 

considering the results from a Landrace × Korean native pig intercross in which these  
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Figure 6.7. Comparative promoter sequence between cow, pig, sheep and human SCD 

gene. (A) Sequence alignment of a 700 bp homologous 5’ flanking sequence of the gene using 

ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). The conserved PUFA response 

element including a sterol response element (SRE), two CCAAT-box (NF-Y), two nuclear 

factor (NF)-1, and one stimulator protein 1 (SP1) binding site is boxed. Other common motifs 

(TATA-box, NF-1, and PPARγ) are also indicated along with the position of the three pig 

promoter SNPs genotyped. Several putative transcription factor binding sites close to the 

g.2228T>C polymorphism are depicted in the four species. These include a putative CCAAT 

enhancer binding protein (C/EBP) element, NF-1, two PPARγ binding sites, and two 

RXR:RARα motifs (DR1 and DR3). (B) Potential binding of these transcription factors in the 

sequence around the g.2228T>C polymorphism. 
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two SNPs segregated independently (Maharani et al., 2013), we can conclude that fatty 

acid composition was associated to an haplotype comprised, in its 5’ extreme, not 

beyond the g.2109 position and, in its 3’ end, not past the g.2280 nucleotide (Figure 

6.2). However, no other mutations have been described in this short 171 bp region in 

other studies which have extensively sequenced the SCD promoter in independent 

Duroc lines (Uemoto et al., 2012b; Bartz et al., 2013; Maharani et al., 2013; Renaville 

et al., 2013), including the present study. In contrast, the g.2228T>C SNP is common 

to all the studies which have found a significant relationship between the SCD 

promoter genotype and fatty acid composition (Uemoto et al., 2012b; Maharani et al., 

2013). Taken together, these findings strongly support that allele T at g.2228T>C is the 

causative mutation leading to increased fatty acid desaturation. Interestingly, this allele 

is virtually absent in the Asian breeds (Ren et al., 2004a) and, in contrast, almost fixed 

in other breeds, including Landrace, Pietrain, Iberian, and wild boar (Table 6.4; Bartz 

et al., 2013). This explains why whole-genome analyses based on these latter breeds 

failed to identify SCD as a positional candidate gene for fatty acid composition. It 

remains unclear why Duroc is the only breed where g.2228T>C is segregating at 

intermediate frequencies.  

In pig, the g.2228T>C SNP is positioned at 58 nucleotides from the SCD 

transcription start site, in a stretch of moderate sequence conservation with cow, sheep, 

and human SCD sequences (Figure 6.7). In silico analysis of this region has identified 

several overlapping putative transcription factor binding sites, some of which are 

unique to the pig promoter and contain the T>C mutation at position g.2228 (Figure 

6.2). Among them, there are the two putative DR1 and DR5 retinoic acid response 

elements overlapping to two PPARγ motifs. The DR1 is a high affinity response 

element for RXR:RARα and PPARγ:RARα heterodimers (Lefterova et al., 2008), 

which regulate gene expression in response to their ligands, all-trans or 9-cis retinoic 

acid. A recent genome-wide study revealed that the consensus PPARγ/RXRα DR1-

binding motifs co-localized at nearly all locations tested (Lefterova et al., 2008). 

Bioinformatics analysis also revealed C/EBP-binding motifs in the vicinity of most 

PPARγ-binding sites in genes induced in adipogenesis. Thus, PPARγ and C/EBP 

factors cooperatively regulate adipocyte-specific gene expression by adjacent binding 

(Lefterova et al., 2008). Unlike other authors (Ntambi, 1999; Ren et al., 2004b), we 

failed to identify the C/EBP motif in the pig promoter, although it has been described 

for instance in the human, mouse, sheep, and cow promoters (Bené et al., 2001; Ohsaki 

et al., 2007; Zulkifli et al., 2010). 

By which mechanism the g.2228T>C polymorphism enhances SCD expression 

is unknown, although we can postulate three possible scenarios. In the first one, the 

T>C mutation, which affects a core nucleotide of the PPARγ homodimer motif, might 

alter the PPARγ binding affinity to this site. In a second scenario, the mutation might 
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alter the affinity of the RXR:RARα to their target DNA motifs, enhancing or 

repressing transcription depending on the nature of the motif. And lastly, our third 

possible scenario relies on the cooperative binding between RXR:RARα and PPARγ 

sites, which is a wide-spread feature in the genome (Lefterova et al., 2008), and that 

the g.2228T>C mutation alters the relative affinity of one or both of these regulatory 

partners. This mechanism is additionally fine-tuned by the availability and 

concentration of different ligands, which not only modulates their affinity for the DNA 

binding sites, but also their ability to interact with other co-activators, thus defining 

their enhancing or inhibitory action over gene expression (Pérez et al., 2012). 

In this regard, we were able to prove increased SCD transcription in TT pigs as 

compared to CC pigs in muscle, indicating that higher product-to-precursor ratios in 

pigs carrying the allele T are a consequence of increased SCD expression rather than a 

more active version of the protein, as the two main haplotypes did not differ in the 

coding region sequence. Moreover, our results indicate that the enhanced activity of 

the allele T of the SCD gene is tissue-specific, with preference for muscle, and 

substrate-specific, with preference for C18:0 rather than C16:0. In contrast to 

subcutaneous fat, IMF is less sensitive to dietary fat and, conversely, more prone to 

endogenous fatty acid synthesis and remodeling, particularly regarding C18:1 (Bosch 

et al., 2012). Therefore, differences across SCD genotypes are expected to be better 

accounted for in muscle than in the subcutaneous tissue. We have seen in a previous 

experiment that genetic selection of pigs against fatness led to differential responses in 

SCD protein expression in muscle and subcutaneous adipose tissue (Cánovas et al., 

2009). The tissue-specific behavior of the pig SCD gene is also shown by distinct 

patterns of CpG methylation in the proximal promoter in muscle as compared to 

subcutaneous fat (Cho et al., 2011). In contrast, the SCD promoter genotypes had no 

impact on liver fatty acid composition, which is in line with the fact that, in pigs, the 

adipose tissue, and not the liver, is the principal site of de novo fatty acid synthesis 

(Dodson et al., 2010). Moreover, in liver, genes encoding for fatty acid remodeling 

enzymes, such as SCD, respond differently to steroid hormone stimulation than genes 

involved in the fatty acid biosynthesis. For instance, unlike fatty acid synthase or 

malic enzyme gene, the hepatic pig SCD gene undergoes a negative response to 

thyroid hormone occurring through a thyroid receptor response element located 

downstream the g.2228T>C (Waters et al., 1997). Although indirectly, the results here 

also indicate that the expected extra SCD produced by allele T prefers C18:0 rather 

than C16:0 as a substrate. Thus, we observed that allele T has a consistent negative 

side effect on the C18:0/C16:0 ratio. Because there is no reason for differential dietary 

deposition of fatty acids across genotypes (they were subjected to the same diet), a 

likely interpretation is that C18:0 is consumed more steadily than C16:0, which may 

occur if SCD desaturates C18:0 to C18:1 more efficiently than C16:0 to C16:1 

(Kloareg et al., 2007). Comparison of the means of C16:0, C16:1, C18:0, and C18:1 
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for the two extreme genotypes (Table 6.6) shows that, in gluteus medius, TT 

homozygotes desaturate 10.9% more C18:0 than the CC but only 2.1% more C16:0. 

As for the subcutaneous fat, these values were 8.5% and 3.0%, respectively, thereby 

reproducing the same pattern. The substrate specificity may be due to different SCD 

isoforms (Miyazaki & Ntambi, 2003). A recent update of the pig SCD annotation in 

Ensembl, corresponding to assembly Sscrofa10.2 release 72 (performed on June 2013) 

reported three new isoforms for the SCD gene, bringing the total number to four. They 

are translated into four different peptides. The tissue-dependent expression of these 

isoforms is another level of complexity of the activity of the SCD expression that has 

not yet been explored in pigs. 

In addition, the regulation of SCD expression is a complex phenomenon. The 

intracellular concentration of desaturases fluctuates in response to a large number of 

effectors including hormonal and dietary factors (Mauvoisin & Mounier, 2011). 

However, the influence of dietary treatment on muscle fatty acid composition is not 

evident (Duran-Montgé et al., 2009), likely because deposition of dietary fat can be 

offset by endogenous synthesis. It has been shown experimentally in pigs that a 

reduced protein diet enhances SCD expression in muscle but not in subcutaneous 

adipose tissue (Doran et al., 2006). The favorable effect of the allele T on 

C18:1/C18:0, although consistent, varied across batches. A key component of all the 

environmental factors accounted for in the batch effect is the diet. We have seen that 

there is a negative relationship of the additive effect of this allele in muscle with 

dietary protein (R
2
=0.38, p<0.05). In contrast, the dietary C18:1/C18:0 ratio exerted a 

positive effect on the additive effect of allele T in muscle (R
2
=0.39, p<0.05). These 

effects were not detected in the subcutaneous fat. Overall, these findings not only give 

additional evidence that the effect of the SCD genotypes is most noticeable in muscle, 

but also that it is tuned by the diet. In this regard, an interesting topic for future 

research will be to study the effect of these haplotype variants in pigs subjected at 

diets differing in vitamin A, or some other metabolic precursor of retinoic acid. In line 

with two of our hypothetical scenarios, it has been shown experimentally that retinoic 

acid inhibits porcine preadipocyte differentiation by upregulating RAR and 

downregulating RXR (Brandebourg & Hu, 2005) but the effects of dietary vitamin A 

on IMF content and fatty acid composition in pigs are scarce and inconclusive 

(Olivares et al., 2009a), with results depending on the genetic type (Olivares et al., 

2009b). The study of the g.2228T>C mutation may contribute to unravel the 

biological causes of the interaction between dietary vitamin A and gene expression. 

Moreover, because the RAR and RXR mRNA levels decline with age (Enderlin et al., 

1997), it may also help to explain the favorable evolution of the C18:1/C18:0 ratio 

with age (Bosch et al., 2012). 
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6.5. CONCLUSIONS 

We provide evidence that there exists genetic variation in the SCD gene with 

the potential to increase MUFA content in pork. Strict values on fatty acid content are 

becoming a common feature in regulations for foods bearing nutritional or health 

claims concerning fat properties. The MUFA content can be also subjected to such 

regulations. Selective lipid deposition in meat animals is a relevant issue not only in 

terms of animal agriculture but also in biomedicine. Evidence is also emerging 

indicating the existence of allelic variations in the human SCD gene affecting enzyme 

activity and, consequently, disease risk factors (Merino et al., 2010). Therefore, 

research in meat animals may well not only lead to a new understanding of the 

regulation of lipid metabolism (Dodson et al., 2010) but also to integrate agriculture 

science, nutrition, and pharmacology for improved treatment of important chronic 

diseases (Christophersen & Haug, 2011). 
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ABSTRACT: Intramuscular fat (IMF) content and fatty acid composition affect the 

organoleptic quality and nutritional value of pork. A genome-wide association study 

was performed on 138 purebred Duroc barrows genotyped with a 60k single nucleotide 

polymorphism (SNP) chip. We detected strong associations with IMF traits for two 

chromosomal regions co-localizing with the SCD (SSC14) and LEPR (SSC6) genes. 

The SCD gene is responsible for the biosynthesis of oleic acid (C18:1) from stearic 

acid. This locus affected the oleic to stearic desaturation index (C18:1/C18:0), C18:1, 

and saturated (SFA) and monounsaturated (MUFA) fatty acids and was consistently 

detected in gluteus medius, longissimus dorsi, and subcutaneous fat. The association of 

LEPR with fatty acid composition was detected only in muscle and was, at least in part, 

a consequence of its effect on IMF content, with increased IMF resulting in more SFA, 

less polyunsaturated fatty acids (PUFA), and greater SFA/PUFA ratio. Marker 

substitution effects estimated with a subset of 65 animals were used to predict the 

genomic estimated breeding values of 70 animals born 7 years later. Although 

predictions using all chip SNPs were relatively highly correlated with observed SFA, 

MUFA, and C18:1/C18:0 (0.48−0.60), IMF content and composition were in general 

better predicted by using only the SNPs at the SCD and LEPR loci, in which case the 

correlation between predicted and observed values was in the range of 0.32 to 0.54 for 

all traits. It is concluded that markers in these two genes can be useful to select for 

optimum fatty acid profiles of pork.  
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7.1. INTRODUCTION 

Intramuscular fat (IMF) content and fatty acid composition affect both 

organoleptic quality and nutritional value of pork and, therefore, there is increasing 

interest in including these traits in the selection objectives of pigs bred for quality pork 

markets. Particularly, oleic acid (C18:1) is the most abundant fatty acid in pork and 

can be regarded as a good alternative for the simultaneous improvement of 

organoleptic, technological, and nutritional attributes of pork (Cameron et al., 2000; 

Christophersen & Haug, 2011). The onset of high-density single nucleotide 

polymorphism (SNP) genotyping arrays has enabled a more precise scanning of the 

genome to detect quantitative trait loci (QTL) and nucleotides (QTN) and to make 

genomic predictions of breeding values. While some genome-wide association studies 

(GWAS) have already been reported for fatty acid composition in pig, there are no 

reports for purebred pigs. Moreover, the accuracy of genomic prediction for IMF 

content and fatty acid composition in swine has not been assessed. Thus, the objectives 

of this study were to use GWAS techniques to detect genomic regions affecting IMF 

content and composition in a purebred Duroc population, and to discuss the potential 

use of genomic prediction for these traits. 

 

7.2. MATERIALS AND METHODS 

7.2.1. Animals and data 

We genotyped 138 purebred Duroc barrows from the line described in the 

Animals and Samples Section using the PorcineSNP60 v2 Genotyping BeadChip 

(Illumina, CA). Animals were chosen to be as unrelated as possible and representative 

of the whole population. For this purpose, the offspring of 54 sires and 126 dams were 

chosen to be genotyped. Half of the animals (n=66, from 29 sires and 57 dams) were 

born in 2002−2003, and the other half (n=72, from 25 sires and 69 dams) in 

2009−2010. All animals were raised in 6 batches (3 batches for each period, with 19 to 

26 genotyped animals per batch) under commercial conditions and slaughtered in the 

same commercial abattoir at ~210 d of age. Carcass backfat thickness (BT, n=131) was 

measured by an on-line ultrasound automatic scanner (AutoFOM, SFK-Technology, 

Herlev, Denmark). Samples of muscle gluteus medius (GM, n=138), muscle 

longissimus dorsi at the level of the third and fourth ribs (LD, n=138), and 

subcutaneous fat at the same location (SF, n=112) were collected. The IMF content 

(expressed as percentage of fresh sample) and individual and total saturated (SFA), 

monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acid contents 

(expressed as the percentage relative to total fatty acids) were determined in duplicate 

by gas chromatography. The desaturation ratios of C18:1 to stearic acid (C18:1/C18:0) 

and SFA/PUFA were calculated. Full details of the procedures are given in the 
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Animals and Samples Section. Means and range of values observed for each trait are 

detailed in Table 7.1. The range of values in the genotyped animals was found to be 

representative of those observed in the whole population. DNA was extracted as 

described in Chapter 6. The concentration of leptin in blood plasma at 180 d of age 

after overnight fasting was analyzed in a subset of animals (n=37) using a porcine 

leptin ELISA kit (Diagnostic Systems Laboratories Inc., Webster, TX) (Amills et al., 

2008). 

 

 Table 7.1. Mean and range of values of trait phenotypes and posterior means of 

marker-based additive genetic (σa
2) and residual (σe

2) variances and heritability (h
2
). 

Trait
1
 

Phenotypes 
 Posterior mean of variance 

components  

Mean Range  σa
2 σe

2 h
2
 

Backfat thickness, mm 22.98 12.7−30.1  4.19 7.14 0.37 

Muscle gluteus medius       

 IMF, % 5.07 2.2−9.5  1.00 0.90 0.53 

 SFA, % 38.62 34.9−45.5  1.48 0.73 0.67 

 MUFA, % 48.41 42.0−52.9  1.76 0.70 0.72 

 C18:1, % 44.06 38.1−48.7  1.42 0.62 0.70 

 PUFA, % 12.97 8.6−17.7  1.50 1.05 0.59 

 C18:1/C18:0 3.65 2.4−4.8  0.087 0.044 0.66 

 SFA/PUFA 3.05 2.0−4.7  0.095 0.118 0.45 

Muscle longissimus dorsi       

 IMF, % 3.49 1.5−6.8  0.60 0.50 0.54 

 SFA, % 39.58 33.5−48.2  1.81 0.93 0.66 

 MUFA, % 49.48 44.8−54.8  1.73 1.00 0.63 

 C18:1, % 44.86 39.1−50.5  1.46 1.11 0.57 

 PUFA, % 10.94 6.9−16.3  1.99 0.85 0.70 

 C18:1/C18:0 3.58 2.1−5.2  0.082 0.046 0.64 

 SFA/PUFA 3.76 2.2−7.0  0.132 0.297 0.31 

Subcutaneous fat       

 SFA, % 37.94 29.7−44.5  1.41 2.06 0.41 

 MUFA, % 44.94 39.1−50.9  1.63 1.49 0.52 

 C18:1, % 41.89 36.4−47.3  1.48 1.31 0.53 

 PUFA, % 17.12 12.1−22.1  1.22 1.48 0.45 

 C18:1/C18:0 3.34 2.3−4.9  0.072 0.069 0.51 

 SFA/PUFA 2.26 1.4−3.5  0.050 0.050 0.47 

1
 IMF: intramuscular fat; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; 

PUFA: polyunsaturated fatty acids; C18:1: oleic acid; C18:0: stearic acid. 

 

7.2.2. High-density SNP data quality control 

The PLINK software (Purcell et al., 2007) was used to filter out SNPs with 

minor allele frequency below 0.05 and genotyping rate below 0.95, and individuals 
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with more than 10% missing genotypes. Unmapped SNPs based on the current pig 

genome assembly Sus scrofa Build 10.2 were also excluded. The remaining data 

comprised 135 individuals and 36,432 SNPs. 

 

7.2.3. Genome-wide association study 

Associations of SNP genotypes with the phenotypes were analyzed using the 

Bayes B approach (Meuwissen et al., 2001) implemented in the GenSel software 

(Fernando & Garrick, 2009). The basic model was: 

, 

where y is the phenotype vector, X is the incidence matrix relating fixed factors to 

phenotypes, b is the vector of fixed effects, zj is the vector of (coded) genotypes for a 

SNP at locus j (j= 1 to k), αj is the allele substitution effect of the SNP at locus j, δj is a 

random 0/1 variable that represents the absence or presence (with prior probabilities π 

and 1−π, respectively) of SNP j in the model for a given iteration of the Markov chain 

Monte Carlo procedure, and e is the vector of random residuals (assumed to be 

normally distributed). Alternate homozygous genotypes were coded as −10 and 10, 

heterozygotes as 0, and missing genotypes as the average value in the population. 

Fixed effects included batch as a class variable and age at slaughter as a covariate. 

Intramuscular fatty acid composition traits were analyzed with and without IMF 

content as an additional covariate. Due to the limited number of animals in the study, 

the prior proportion of SNPs considered to have no effect on the trait (δj=0) was fixed 

to π=0.997, so that the model fitted ~110 SNPs per iteration. Variance components 

used as priors were estimated as in Chapter 2 with the full pedigree and all available 

phenotypic data. A total of 750,000 iterations with a burn-in of 250,000 were run for 

the analyses. Posterior means and posterior samples of the effects of all SNPs within                                      

1-Mb non-overlapping windows (based on Build 10.2 of the swine genome) were 

collectively used to predict the genomic merit of the window for each individual and 

the proportion of total genetic variance that the window accounted for. Windows that 

accounted for at least 2.5% of the genetic variance of a trait were considered as 

candidate regions. To take account of potential linkage disequilibrium between SNPs, 

both single 1-Mb windows and combinations of contiguous or nearby windows that 

accounted for at least 0.25% of the genetic variance were considered. Linkage 

disequilibrium in candidate regions was analyzed using Haploview software (Barrett et 

al., 2005). Candidate genes in these regions were retrieved from Ensembl (EMBL-EBI) 

and functional gene annotation was based on Enrichr gene analysis tool (Chen et al., 

2013). For strong candidate genes, a tag SNP was selected based on its position relative 

to the gene. The association of the tag SNP with the studied traits was further analyzed 

𝐲 = 𝐗𝐛 +  𝐳𝑗α𝑗δ𝑗 + 𝐞

𝑘

𝑗=1
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using an animal model with batch and genotype of the tag SNP as class variables. This 

analysis was performed using the full pedigree under a Bayesian setting with TM 

software (Legarra et al., 2011). 

 

7.2.4. Genomic prediction 

We used the animals born in 2002−2003 as training data to estimate the SNP 

effects and then to predict the GEBV of the animals born in 2009−2010. The effect of 

each SNP was re-estimated using the same procedure as for GWAS but with π=0.9985 

because only the training set (n=65) was used instead of the whole population. The 

GEBV of an individual i in the testing dataset was predicted as: 

, 

where zij is the genotype of animal i for a SNP at locus j (j= 1 to k, where k is the 

number of SNPs) coded as above, and α̂𝑗 is the allele substitution effect estimate for 

the SNP at locus j based on the analysis of the training dataset. The correlation between 

GEBV and the adjusted phenotypic values of the testing dataset was used as a measure 

of the prediction accuracy. Phenotypes were adjusted for batch and age at slaughter 

using a fixed model. Different sets of SNPs were used for both training and prediction: 

(1) all SNPs in the chip, (2) only SNPs from selected regions with the strongest 

associations, or (3) all SNPs in the chip but excluding those in the selected regions. For 

case (2) only, some SNPs not available in the chip but genotyped independently in a 

previous study (AY487830:g.2228T>C and g.2281A>G; Chapter 6) were also used. 

 

7.3. RESULTS AND DISCUSSION 

7.3.1. Genome-wide association study 

The posterior means of variance components and heritabilities based on the 

genotypic data are given in Table 7.1. Variance estimates of individual markers for BT 

and IMF content and composition of GM are shown in Figure 7.1, and those of LD and 

SF are in Figures 7.2 and 7.3, respectively. A summary of the 1-Mb windows 

explaining more than 2.5% of genetic variance of any trait is given in Table 7.2. The 

GWAS analysis only found weak associations for carcass BT, with the highest values 

of explained genetic variance hardly reaching 2%. In contrast, strong signals for IMF 

content and fatty acid composition of GM and LD were located on SSC6 and SSC14, 

which are zoomed in in Figures 7.4 and 7.5. 

The region on SSC6, at 132−137 Mb, accounted for 5.8% of the genetic variance 

of IMF in GM. This region includes two overlapping genes, the leptin receptor (LEPR) 

GEBV𝑖 =  z𝑖𝑗 α̂𝑗

𝑘

𝑗=1
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Figure 7.1. Variance estimates of individual markers for backfat thickness (BT, mm) 

and intramuscular fat (IMF, %) content and composition of gluteus medius, including 

saturated (SFA, %), monounsaturated (MUFA, %), and polyunsaturated (PUFA, %) 

fatty acids, individual oleic acid (C18:1, %), and the ratios of oleic to stearic acid 

(C18:1/C18:0) and SFA/PUFA. 
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Figure 7.2. Variance estimates of individual markers for intramuscular fat (IMF, %) 

content and composition of longissimus dorsi, including saturated (SFA, %), 

monounsaturated (MUFA, %), and polyunsaturated (PUFA, %) fatty acids, individual 

oleic acid (C18:1, %), and the ratios of oleic to stearic acid (C18:1/C18:0) and 

SFA/PUFA. 

 

and the leptin receptor overlapping transcript (LEPROT), which share the two first 

exons (Figure 7.4). Leptin is an adipocytokine that acts as an adiposity signal that 

regulates energy intake and expenditure through interaction with its receptor. The 

LEPROT gene encodes a protein that negatively regulates the presence of leptin 

receptors in the cell surface, decreasing the response to leptin. A non-synonymous



Chapter 7 

 142 

 
Figure 7.3. Variance estimates of individual markers for subcutaneous fat 

composition, including saturated (SFA, %), monounsaturated (MUFA, %), and 

polyunsaturated (PUFA, %) fatty acids, individual oleic acid (C18:1, %), and the ratios 

of oleic to stearic acid (C18:1/C18:0) and SFA/PUFA. 

 

polymorphism in the exon 14 of LEPR has been reported as the possible causative 

mutation associated with increased feed intake and fatness, affecting both BT and IMF 

(Óvilo et al., 2005; Galve et al., 2012; Uemoto et al., 2012a). Moreover, several QTL 

for IMF have been reported in this region (animalgenome.org/QTLdb/pig.html‎). In our 

study, this region (135−137 Mb) was also strongly associated with fatty acid 

composition, both in GM and LD. In particular, it explained a great percentage of the 

genetic variance for SFA (17.6%), PUFA (16.7%), and SFA/PUFA (21.7%) in GM 

and, to a lesser extent, in LD (14.7, 2.5, and 3.6%, respectively). However, when 

adjusting for IMF, the variance explained by this region decreased to 0−7%, indicating 
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Table 7.2. Candidate regions for intramuscular fat (IMF) content and fatty acid 

composition of muscles gluteus medius (GM) and longissimus dorsi (LD) and fatty 

acid composition of subcutaneous fat (SF). 

SSC 
Position

1
 

(Mb) 
Trait

2
 Tissue 

Genetic 

variance
3
 

(%) 

Top 1-Mb window 

Position 

(Mb) 

Genetic 

variance
3
 

(%) 

P(>0)
4
 

1 181−186 MUFA LD 4.4 182−183 3.0 0.31 

3 1−3 PUFA LD 10.7 1−2 9.3 0.68 

  SFA/PUFA LD 3.2 1−2 2.5 0.17 

3 28−30 PUFA LD 5.1 29−30 3.8 0.41 

5 83−85 PUFA AdjIMF GM 3.0 84−85 2.5 0.35 

6 132−137 IMF GM 5.8 135−136 3.1 0.28 

6 135−137 SFA GM 17.6 135−136 13.2 0.72 

   LD 14.7 135−136 12.2 0.72 

  PUFA GM 16.9 135−136 15.4 0.76 

   LD 2.5 135−136 2.2 0.31 

  SFA/PUFA GM 21.7 135−136 21.7 0.58 

   LD 3.6 135−136 3.0 0.22 

  SFA AdjIMF GM 4.1 135−136 3.0 0.34 

   LD 7.0 135−136 6.1 0.47 

  PUFA AdjIMF GM 1.2* 135−136 1.0 0.16 

   LD 0.4* 135−136 0.4 0.10 

  SFA/PUFA AdjIMF GM 1.2* 135−136 0.9 0.14 

   LD 0.6* 135−136 0.5 0.11 

7 87−96 SFA GM 2.8 90−91 0.8 0.17 

  MUFA SF 5.3 90−91 1.7 0.18 

  C18:1 SF 4.8 90−91 1.7 0.17 

8 107−113 IMF GM 2.6 109−110 0.6 0.09 

9 145−148 PUFA AdjIMF LD 2.9 146−147 1.6 0.22 

11 19−21 IMF LD 3.7 19−20 2.0 0.20 

12 24−25 SFA AdjIMF GM 2.5 24−25 2.5 0.39 

13 40−50 MUFA GM 3.3 40−41 1.3 0.20 

  C18:1 GM 6.7 40−41 3.3 0.32 

  C18:1 AdjIMF GM 3.9 40−41 1.8 0.22 

14 120−124 SFA GM 18.2 121−122 10.1 0.57 

   LD 17.3 121−122 9.1 0.54 

   SF 2.2* 122−123 0.9 0.14 

  MUFA GM 27.8 121−122 17.5 0.64 

   LD 24.1 121−122 12.2 0.53 

   SF 11.5 122−123 3.7 0.29 

  C18:1 GM 14.7 121−122 8.4 0.55 

   LD 8.0 121−122 2.9 0.31 

   SF 7.5 122−123 2.3 0.24 

  C18:1/C18:0 GM 45.0 121−122 31.1 0.71 

   LD 38.7 121−122 22.4 0.61 

   SF 15.2 122−123 5.2 0.33 

1−4,
* See footnotes in next page. 
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Table 7.2. Continued. 

SSC 
Position

1
 

(Mb) 
Trait

2
 Tissue 

Genetic 

variance
3
 

(%) 

Top 1-Mb window 

Position 

(Mb) 

Genetic 

variance
3
 

(%) 

P(>0)
4
 

14 120−124 SFA AdjIMF GM 22.9 121−122 12.3 0.57 

   LD 23.7 121−122 13.6 0.59 

  MUFA AdjIMF GM 28.6 121−122 18.0 0.65 

   LD 25.2 121−122 12.8 0.53 

  C18:1 AdjIMF GM 16.0 121−122 9.0 0.55 

   LD 9.5 121−122 3.8 0.35 

  C18:1/C18:0 AdjIMF GM 44.8 121−122 30.6 0.70 

   LD 38.5 121−122 22.4 0.61 

15 7−8 SFA/PUFA LD 3.1 7−8 3.1 0.20 

18 13−15 PUFA LD 3.4 14−15 3.2 0.37 

1
 Regions that explained at least 2.5% of genetic variance. To take account of potential linkage 

disequilibrium between SNPs, combinations of contiguous or nearby 1-Mb windows that 

accounted for at least 0.25% of the genetic variance were considered. Details of the most 

associated 1-Mb window are also given. 
2
 SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty 

acids; C18:1: oleic acid; C18:0: stearic acid; AdjIMF: trait with intramuscular fat content fitted 

in the model as a covariate. 
3
 Posterior mean of the percentage of total genetic variance explained by this region or 1-Mb 

window. 
4
 Probability that the percentage of total genetic variance explained by the top 1-Mb window is 

greater than 0. 

* Below 2.5% but shown due to the importance of the locus. 

 

Table 7.3. Mean of the estimated marginal posterior distribution of differences 

between ASGA0089937 genotypes and probability of the difference being positive 

(P(>0)) for leptin concentration in plasma and fat-related traits. 

Trait
1
 

CC−AA  CC−AC  AC−AA 

Mean P(>0)  Mean P(>0)  Mean P(>0) 

Leptin in plasma, ng/ml +32.21 0.91  +25.50 0.97  +6.71 0.69 

Backfat thickness, mm +2.50 0.99  +1.15 0.93  +1.35 0.94 

Muscle gluteus medius         

 Intramuscular fat, % +0.91 0.99  +0.59 0.98  +0.33 0.85 

 SFA, % +1.30 >0.99  +1.25 >0.99  +0.04 0.56 

 MUFA, % +0.56 0.89  +0.17 0.69  +0.40 0.85 

 PUFA, % −1.91 <0.01  −1.41 <0.01  −0.51 0.08 

Muscle longissimus dorsi         

 Intramuscular fat, % +0.51 0.97  +0.37 0.98  +0.14 0.75 

1
 SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty 

acids. 
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Figure 7.4. Detail of the individual markers in the SSC6 at 135−137 Mb region. Panel 

(a) shows the variance estimates for intramuscular fat content (IMF, %), saturated fatty acids 

(SFA, %), polyunsaturated fatty acids (PUFA, %), and SFA/PUFA of muscle gluteus medius, 

with vertical grey lines indicating the location of candidate genes LEPR (tentative), LEPROT, 

and JAK1. Panel (b) shows the linkage disequilibrium in the region (white: r
2
=0; black: r

2
=1). 

An arrow indicates the SNP described by Óvilo et al. (2005) in exon 14 of LEPR, not provided 

in the chip and not included in the genome-wide association study but in high linkage 

disequilibrium with the four SNPs picking up the strongest signals (circled; from left to right: 

ASGA0089937, ASGA0093565, ALGA0037129, and H3GA0053839). 

 

that, at least in part, the observed associations of the SNPs in this region with SFA and 

PUFA are an indirect effect of differences in IMF. It is well known that the 

endogenous synthesis of SFA and MUFA increases with IMF content, which leads 

PUFA to proportionally decrease (Wood et al., 2008). The association of the LEPR
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 (a) 

 
(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Detail of the individual markers in the SSC14 at 120−124 Mb region. Panel 

(a) shows the variance estimates for saturated fatty acids (SFA, %), monounsaturated fatty acids 

(MUFA, %), oleic acid (C18:1, %), and the desaturation ratio C18:1/C18:0 of muscle gluteus 

medius, with vertical grey lines indicating the location of candidate gene SCD. Panel (b) shows 

the linkage disequilibrium in the region (white: r
2
=0; black: r

2
=1). Circled, the haplotype 

described in Chapter 6, not provided in the chip and not included in the genome-wide 

association study but in high linkage disequilibrium with several SNPs downstream. 

 

locus with fat-related traits was further evaluated using ASGA0089937 (in intron 3 of 

the LEPR gene; Genbank accession number FN677933.1) as a tag SNP. Pigs with CC 

genotype (allele C frequency: 0.55) for this SNP had higher leptin concentration in 

plasma, were fatter (both BT and IMF), and had more saturated fat than AA pigs 

(Table 7.3). Taken together, these results suggest that a mutation in or near the LEPR 

gene may affect the leptin regulatory system (Clément et al., 1998) and, as a 

consequence, feed intake and overall carcass fatness. The significant signal in this 

region reaches out about 0.6 Mb, starting in the LEPR/LEPROT locus and finishing 
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downstream the JAK1 gene. Interestingly, the signal transductor coded by JAK1, which 

maps to 135.9 Mb (Figure 7.4), is also involved in the adipocytokine signaling 

pathway, promoting the leptin-induced transactivation of the satiety neuropeptide NPY 

gene (Muraoka et al., 2003). Mutations in JAK1 have not been related to fattening traits 

in pigs. The JAK1-located SNPs are in strong linkage disequilibrium with the exon 14 

mutation in LEPR (Figure 7.4), which, in our view, remains the strongest candidate 

mutation for this QTL effect. 

On the other hand, the region on SSC14 at 120−124 Mb was found to be 

strongly associated with SFA, MUFA, C18:1, and the desaturation index C18:1/C18:0. 

This region, which was estimated to capture up to 45% of the genetic variance of 

C18:1/C18:0, corresponds to the location of the SCD gene (Figure 7.5), thereby 

confirming the association already found in the same population in Chapter 6 of an 

haplotype in the promoter of the SCD gene with C18:1/C18:0 and related fatty acid 

traits. The SCD enzyme is rate-limiting for the biosynthesis of MUFA C18:1 from 

SFA C18:0. Due to the high linkage disequilibrium downstream the SCD position 

(Figure 7.5), the signal detected spanned 4 Mb and included other genes involved in 

lipid metabolism, such as ELOVL3 (responsible for the elongation of long-chain SFA 

and MUFA). The percentages of genetic variance explained by this region for SFA 

(18.2% in GM and 17.3% in LD), MUFA (27.8% and 24.1%, respectively), C18:1 

(14.7% and 8.0%, respectively), and C18:1/C18:0 (45.0% and 38.7%, respectively) 

were close to those obtained in Chapter 6 when only accounting for the effect of the 

SCD haplotypes. Moreover, in accordance with the findings in Chapter 6, the explained 

genetic variance did not depend on IMF, which confirms that sequence variation at this 

locus affects fatty acid composition but not total IMF content (Chapter 6). The same 

association was found, although to a lesser extent, in SF. 

A previous GWAS performed by Yang et al. (2013), using a Duroc × Erhualian 

F2 cross and a larger population size, did not reach much different results from ours, 

with the SCD locus being the only reported QTL for major fatty acids in IMF. The 

aforementioned SCD haplotypes have not been found to segregate in the Iberian and 

Landrace breeds (Chapter 6), but neither the SCD nor the LEPR locus were identified 

in the GWAS experiments using Iberian × Landrace crossbreds by Ramayo-Caldas et 

al. (2012) and Muñoz et al. (2013). 

 

7.3.2. Genomic prediction 

The different sets of SNPs used were: (1) all SNPs in the chip, (2) only SNPs 

from the LEPR and/or SCD loci, and (3) all SNPs in the chip but excluding those in the 

LEPR and SCD windows defined in Table 7.2. For case (2), we used SNPs 

ASGA0089937 and ASGA0093565, as representatives of the LEPR locus, and 
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AY487830:g.2228T>C and g.2281A>G, from the promoter of gene SCD (not available 

in the chip but genotyped independently in Chapter 6). The correlation between GEBV 

and adjusted phenotypic values of the testing dataset are given in Table 7.4. Note that 

these correlations should be divided by the square root of heritability of the trait to 

convert them to accuracies of GEBV as predictors of true breeding values. Accuracies 

of GEBV based on 36,432 SNPs were low (0.04−0.10) for IMF, PUFA, and 

SFA/PUFA, moderate (0.28) for C18:1, and high (0.48−0.60) for SFA, MUFA, and 

C18:1/C18:0. The accuracy of SFA, MUFA, and C18:1/C18:0 only showed a slight 

decline when predictions were based only on the two SNPs at the promoter of the SCD 

gene, and improved for C18:1. Similarly, using only two SNPs at the LEPR locus 

raised the accuracy of predictions for IMF, PUFA, and SFA/PUFA to 0.33−0.40, 

although that for SFA was halved as compared to whole genome predictions. The 

combination of the four SNPs in SCD and LEPR provided similar or better accuracies 

than the whole chip, with values ranging from 0.32, for IMF, to 0.54, for C18:1/C18:0. 

Consistently, the rest of SNPs predicted the phenotypes very poorly. 

On one hand, these results confirm the relevance of the effects of the SNPs at 

SCD and LEPR loci and, because pigs in the predicted set were separated by a span of 

seven years from those in the training set, that their effects are consistent across 

generations. On the other hand, these results suggest that using many SNPs does not 

necessarily lead to improved predictive ability. To our knowledge, the only attempt to 

assess the value of genomic prediction for IMF fatty acid composition has been in 

Angus cattle using the BovineSNP50 BeadChip (Saatchi et al., 2013). Interestingly,

 

Table 7.4. Correlation between genomic estimated breeding value and adjusted 

phenotype of the 2009-born pigs using the 2002-born as training set and using different 

sets of SNPs for both training and prediction. 

Trait
1
 

SNPs used for training and prediction
2
 

36k
 

SCD LEPR SCD+LEPR 36k−SCD−LEPR 

IMF 0.04 -
3
 0.33 0.32 0.03 

SFA 0.48 0.38 0.23 0.43 0.17 

MUFA 0.50 0.43 - 0.46 0.14 

C18:1 0.28 0.36 - 0.37 0.14 

PUFA 0.07 - 0.40 0.42 0.04 

C18:1/C18:0 0.60 0.54 - 0.54 0.04 

SFA/PUFA 0.10 - 0.38 0.36 0.03 

1
 See abbreviations in Table 7.1. 

2
 36k: using all 36,432 SNPs; SCD: using only AY487830:g.2228T>C and g.2281A>G from 

the SCD promoter; LEPR: using only ASGA0089937 and ASGA0093565; SCD+LEPR: using 

all four SNPs at the SCD and LEPR loci; 36k−SCD−LEPR: all SNPs except the SSC14 at 

120−124 Mb (SCD) and SSC6 at 135−137 Mb (LEPR) windows. 
3
 A hyphen indicates lack of convergence of the model. 
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their reported correlations between GEBV and phenotypes using the whole genome 

SNPs were in line with ours, i.e., very low for PUFA and SFA/PUFA (0.07 and 0.10) 

and moderate for C18:1, MUFA, and SFA (0.26−0.34). 

 

7.4. CONCLUSIONS 

We have been able to confirm the association of known SNPs at the SCD gene 

with fatty acid composition and to identify an association between SNPs in the LEPR/ 

LEPROT region and IMF traits, which had not yet been detected in the Duroc 

population used in this study. The described SNPs in these two loci can be used 

conjointly for marker-assisted selection for IMF and fatty acid composition. The other 

minor candidate regions detected require further research, but they provide a good 

basis for exploring the development of low-density SNP panels aimed at improving 

meat quality. 
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Discussion 
 

 
The first issue that was assessed was the correct methodology for statistically 

analyzing the fatty acid compositions. As the name itself indicates, fatty acid 

compositions belong to the mathematical category of compositional data (Aitchison, 

1986), which require specific treatment according to their properties and own 

geometry. The contents of each individual fatty acid are expressed in relative terms, 

commonly respect to the amount of total fatty acids, and, because of this, the fatty acid 

percentages of a composition are not independent: when one fatty acid percentage 

increases at least another one has to decrease, or, in other terms, there must be at least 

one negative covariance between each fatty acid and any other. This has been 

commonly ignored in meat quality research, and to our knowledge there was no study 

assessing the practical implications of neglecting the compositional data approach. 

Application of the compositional data techniques in Chapter 1 brought a new 

perspective on how to perform exploratory data analyses and interpret correlations 

among ratios of fatty acids. However, in the particular case of pork, the isometric log-

ratio (ilr) transformation (Egozcue et al., 2003) did not lead to relevant changes in the 

results of variance and regression analyses when compared to standard analysis of raw 

percentages. 

Additionally, Estany et al. (2011) assessed the impact of introducing the 

compositional data approach to genetic evaluations of intramuscular fat (IMF) and 

oleic acid (C18:1) contents. Raw and ilr-transformed percentages were used to 

estimate the genetic parameters and estimated breeding values (EBV) of pigs. 

Although the ilr-transformed data showed a capacity for predicting future records 

slightly greater than the raw percentages, no relevant differences were observed either 

in the estimation of genetic parameters, as reported in Chapter 2, or in the ranking of 

the selection candidates. In this latter case, Spearman’s correlation coefficients of 

>0.95 were found between the EBV estimated based on the raw or ilr-transformed data 

(>0.99 when only animals with own registers of IMF and C18:1 were considered). 

Based on these results, we decided to neglect the compositional data approach in 

further analyses. Although analyzing raw percentages under the Euclidean metrics is 

methodologically inconsistent, results were robust enough for genetic evaluations, 

selection, and other practical applications. The reason is that fatty acid composition of 

pork is subjected to biological homeostasis and, as a consequence, it has low 

variability. Only a narrow range of possible fatty acid percentages is observed and, in 

this range, fatty acid data approximately follow the Euclidean geometry in the real 

space.  
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Two genetic breeding value evaluation strategies for C18:1 were explored. The 

first was based on best linear unbiased prediction (BLUP) of EBV using only 

phenotypic data on relatives, while the second relied on the use of genetic markers. Our 

results indicated that direct selection for C18:1 based only on phenotypes from 

relatives is theoretically feasible (Chapter 2). Oleic acid content in IMF is a highly 

heritable trait. Its heritability (h
2
) was estimated to be 0.44−0.50 in muscle gluteus 

medius (GM) and 0.59 in both muscles longissimus dorsi (LD) and semimembranosus 

(SM) (Chapters 2 and 3). The heritability estimates in our population were higher than 

the unweighted average (0.38) and close to the upper bound of the range (0.26−0.58) of 

previous reports (Suzuki et al., 2006; Casellas et al., 2010; Ntawubizi et al., 2010; 

Sellier et al., 2010). In subcutaneous fat (SF), our estimate for heritability of C18:1 was 

0.41 (Chapter 3), which is similar to the unweighted average of previous estimates 

(Fernández et al., 2003; Suzuki et al., 2006; Sellier et al., 2010; Gjerlaug-Enger et al., 

2011). However, we did not consider the litter effect for C18:1 and IMF in our 

analyses. Preliminary results indicated that the litter effect (c
2
) for C18:1 and IMF 

might be around 0.05−0.10 and their heritabilities after accounting for the litter effect 

~0.40. As a consequence, their genetic responses to selection may be slightly 

overestimated. In contrast, the genetic correlations among traits did not seem to be 

substantially affected by the litter effect. 

Results from a selection experiment proved that C18:1 responds to direct 

selection (Chapter 5). Unfortunately, the responses displayed in this experiment fell 

short as compared to expected values. The reason for this is the poor predictive 

capacity of the EBV of the selection candidates, particularly in the third batch. 

Intramuscular C18:1 has a high heritability and considerable genetic variation, but 

accurate EBV predictions are needed. One of the main difficulties in C18:1 (and also 

IMF) breeding schemes appears during the phenotyping of animals. Whereas IMF can 

be indirectly measured via real-time ultrasound in vivo in selection candidates 

(Newcom et al., 2002, 2005), this technology is unsuitable for fatty acid composition 

traits. Genetic evaluation for fatty acids content is more likely to be based on 

phenotypes of slaughtered littermates and other relatives of the selection candidates. In 

our experiment, slaughtered barrows with C18:1 records were distantly related to 

selection candidates. Further analyses showed that if records from littermates had been 

available to ensure a high accuracy for the genetic evaluation of candidates, genetic 

responses had been significantly improved. 

The muscle sampled for measuring fatty acid content is a relevant factor that 

should not be neglected when designing a selection programme for C18:1 or any other 

fatty acid. It is known that muscles differ among them and from SF regarding fatty acid 

metabolism and deposition (Chapter 1; Sharma et al., 1987; Faucitano et al., 2004; 

Franco et al., 2006; Duran-Montgé et al., 2008; Bosch et al., 2012). The fatty acid 
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content and composition of muscles GM and LD are highly correlated (0.62−0.82), but 

their correlation with other muscles, such as SM, can be much lower (Chapter 3). It is 

advisable, therefore, to analyze the correlation between the fatty acid composition of 

the criterion and target muscles, given that all muscles cannot be sampled. Our results 

indicated that selection performed on records from GM would indirectly improve also 

C18:1 in LD, although with an opportunity cost. This was validated in our selection 

experiment, where we found evidence of a positive correlated response of C18:1 in LD 

after selection based on GM (Chapter 5). This correlated response in LD was observed 

in experimental batch 1 but not in batch 2, but results also indicated that if higher 

accuracies had been obtained for C18:1 in GM, a positive correlated response in LD 

had been expected in all batches. To our knowledge, there are no studies assessing the 

correlations between fatty acid traits in two different muscles other than Rauw et al. 

(2012), who reported phenotypic correlations for fatty acids in GM and LD much 

lower than ours. On the other hand, measuring fatty acid composition traits in SF could 

be informative only for anatomically close muscles (Chapter 3). In particular, SF 

composition may be of interest for improving the fatty acid composition of the loin 

(Suzuki et al., 2006; Yang et al., 2010). 

Selection responses of C18:1 should be put into context with the correlated 

genetic changes in other economic traits. A positive genetic correlation was estimated 

between C18:1 and IMF (0.47; Chapters 2 and 3). Genetic correlations with 

performance traits backfat thickness (BT) and body weight (BW) were positive (0.22 

and 0.11 for C18:1, respectively) but low enough to allow the simultaneous genetic 

improvement of all analyzed traits (Chapter 2). Our selection experiment for C18:1 

applied no restriction on the correlated traits (Chapter 5). Interestingly, BT decreased 

in both experimental batches where C18:1 successfully responded to selection. 

Correlated responses for IMF and BW differed across batches and suggested that, if 

restrictions were applied, scenarios of simultaneous improvement for the four traits 

could have been met. On the other hand, C18:1 is expected to respond to selection 

similarly to IMF. 

Like C18:1, IMF is positively correlated to BT (0.37−0.42; Chapters 2, 3, and 4) 

but there is room for BT to be genetically improved independently to IMF (Chapter 2; 

Solanes et al., 2009; Clutter, 2011). We proved that selection for reduced BT at 

restrained IMF was possible after a one-generation selection experiment (Chapter 4). 

These results have been validated by the genetic trends of the studied population for 

the last decade, which are plotted in Figure D.1. The EBV for all pedigreed animals 

were estimated using the same 4-trait multivariate animal model as in Chapters 2 and 5 

with the complete data described in the Animals and Samples Section. The average 

EBV per trait and year of birth was calculated and expressed in genetic standard 

deviation units. The displayed genetic trends show that it is possible to reduce BT 
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Figure D.1. Evolution of the average estimated breeding value (EBV, expressed in 

additive genetic standard deviation units) by year of birth for backfat thickness (BT), 

intramuscular fat (IMF), oleic acid (C18:1), and body weight (BW) during the last 

decade. 

 

while maintaining IMF, C18:1, and BW. After one decade of selection, BT has been 

reduced by approximately 0.7 genetic standard deviations while the other traits did not 

change substantially. 

We identified a haplotype block in the promoter region of the stearoyl-CoA 

desaturase (SCD) gene that affects fatty acid composition of IMF and SF but neither 

IMF content nor carcass fatness (Chapter 6). The haplotype is formed by three single 

nucleotide polymorphisms (SNPs): AY487830:g.2108C>T, g.2228T>C, and 

g.2281A>G. Although in complete linkage disequilibrium with the two other SNPs, 

our results provide evidence that the SNP g.2228T>C is the causative mutation of the 

effect of the haplotype on C18:1 and the monounsaturated fatty acids (MUFA) content. 

This haplotype presents several advantages in terms of their use in selection: (1) its 

effect is additive, (2) it explains a high percentage of the additive genetic variance,                                            

(3) the frequency of the favorable haplotype (C-T-A) is intermediate, (4) it does not 

influence IMF and production traits, and (5) its effect is consistent across muscles and 

fat tissues. The effect has been validated across generations, in different Duroc lines, 

and in Duroc crossbreds, which is important because the Duroc, in accordance with the 

current regulations (BOE, 2014), is the only breed allowed for use in the production of 

Iberian products. 
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The response of C18:1 to the selection experiment in Chapter 5 was reexamined 

in light of the effect of the SCD marker (Table D.1). Decomposing the response into 

polygenic and gene effects showed unexpected results. Responses in each batch gave a 

different picture when the underlying effects of selection are unraveled. The 

components of the response in batch 1 were the expected: the realized response was 

partly explained by the polygenic effect and partly by the marker (~30% of total 

response). Total response in batch 2 was similar to that obtained in batch 1, but here 

the realized change was only due to the polygenic effect, since the frequency of allele 

T did not differ between the selected and the control group. Finally, in batch 3, 

although there was no response, the frequency of the allele T increased significantly. 

Thus, the impact of selection on the polygenic and marker effects varied across 

batches. Polygenic response was negative and marker response was positive in batch 3. 

The negative polygenic response in batch 3 could be attributed to the poor accuracy of 

breeding values in this batch as compared to the other two. In such situation, the 

marker is the dominant driving-selection force and therefore, in line with the results, 

when it works better. These results highlight the fact that a successful selection for 

C18:1 needs to account for both effects. 

The genome-wide association study confirmed the SCD locus as the most 

determining for the fatty acid composition together with polymorphisms in the leptin 

receptor (LEPR) locus. The LEPR polymorphisms affected IMF content and, as a

Table D.1. Number of genotypes (AY487830:g.2228T>C), allelic frequency of T 

(f(T)), and response to selection for oleic acid content (due to the SCD marker and 

polygenic effect) by batch and selection group. 

Selection 

group 

Genotype 

(AY487830:g.2228T>C) 
 

Components of response  

(% of total fatty acids) 

TT CT CC f(T)  Total
1
 Polygenic

2
 SCD

3
 

Batch 1         

 Selected 7 23 12 0.44  +0.35 +0.27 +0.11 

 Control 8 14 21 0.35  - - - 

Batch 2         

 Selected 9 29 10 0.49  +0.33 +0.27 −0.03 

 Control 13 22 13 0.50  - - - 

Batch 3         

 Selected 12 26 6 0.57*  +0.04 −0.13 +0.21 

 Control 5 26 12 0.42  - - - 

1 
Polygenic response obtained using the model described in Chapter 5. 

2 
Polygenic response as in Chapter 5 but including the SCD genotype as an additional effect. 

3 
Response due to changes in the allelic frequency of the SCD marker, with genotype effects 

estimated as in footnote 2. 

* Significant difference between the allele frequency of T between selected and control groups 

with a χ
2
-test (p<0.05). 
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result, saturated (SFA) and polyunsaturated (PUFA) fatty acids content (Chapter 7). 

This association was tested using a tag SNP and confirmed to consistently affect BT 

and IMF content and composition in muscle. The other associations found in the 

genome-wide association study were much weaker in comparison with those of loci 

SCD and LEPR and need further validation. 

Both SCD and LEPR genetic markers proved to be useful for predicting IMF 

content and composition traits (Chapter 7). However, because of the genotyping costs, 

the benefits of marker-assisted and genomic selection should be carefully evaluated 

against selection based exclusively on phenotypes and pedigree. Moreover, there exist 

genetic evaluation strategies that combine both sources of information. In Table D.2 

the accuracy (calculated as the correlation with adjusted phenotypes) of different 

methodologies for estimating the EBV are compared. Case A summarizes the genomic 

EBV (GEBV) predicted using Bayes B in Chapter 7. In case B, EBV were predicted 

by BLUP without genetic markers information. In case C, a single-step genomic BLUP 

(ssGBLUP; Legarra et al., 2014) was performed with high-density genotyping data. 

Finally, in case D a BLUP was performed incorporating information of the genetic 

markers at the SCD and LEPR loci. 

Genomic prediction by Bayes B using all SNPs available had disparate 

accuracies: high (0.48−0.60) for SFA, MUFA, and C18:1/C18:0, moderate (0.28) for 

C18:1, and low (0.04−0.10) for IMF, PUFA, and SFA/PUFA. Interestingly, when only 

four markers at the SCD and LEPR loci were used instead of all available SNPs, the 

accuracies for the more poorly predicted traits raised to 0.32−0.42, with only a small 

penalty for the traits with the highest accuracies (0.43−0.54). When records from 

littermates were available, estimates using BLUP from about 1,000 records provided 

accuracies of 0.31−0.39 for all traits except SFA and C18:1/C18:0, consistently with 

the results reported in Chapter 5. However, because BW and BT are recorded routinely 

in commercial breeding units, they can be included in a multivariate model for a joint 

evaluation with IMF and fatty acid traits. In doing so, the accuracies of BLUP 

exceeded those of Bayes B, excepting for the C18:1/C18:0 ratio, which is uncorrelated 

with BW and BT (results not shown). For the other traits, genetic correlations with BW 

and BT are high enough to improve substantially the accuracy of BLUP. Genetic 

markers resulted more beneficial when phenotypic data contribute with little 

information. 

Accuracies did not improve with ssGBLUP, probably because of the low 

number of genotyped animals and the poor degree of relationship between the 

reference and the testing sets. In contrast, BLUP accounting for the SCD and LEPR 

genetic markers provided the best accuracies. With univariate models and no records 

from littermates, accuracies from BLUP with genetic markers where similar to those 

obtained for Bayes B with only the SCD and LEPR markers. By adding records from 
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Table D.2. Correlation of estimated breeding value (EBV) with adjusted phenotype
1
 in 

a testing set of pigs born in 2009−2010 (n=70) by prediction methodology. 

Methodology
2
 

Trait
3
 

IMF SFA MUFA C18:1 PUFA C18:1/C18:0 SFA/PUFA 

(A) Bayes B 

 36k 0.04 0.48 0.50 0.28 0.07 0.60 0.10 

 SCD+LEPR 0.32 0.43 0.46 0.37 0.42 0.54 0.36 

(B) BLUP 

 U, NL 0.11 0.11 0.08 0.12 0.16 0.07 0.13 

 U, L 0.31 0.15 0.32 0.32 0.39 0.14 0.39 

 M, NL 0.41 0.39 0.30 0.29 0.61 0.08 0.60 

 M, L 0.42 0.41 0.40 0.38 0.67 0.15 0.67 

(C) ssGBLUP 

 U, NL 0.13 0.14 0.07 0.11 0.26 0.02 0.23 

 U, L 0.31 0.15 0.34 0.34 0.48 0.15 0.45 

 M, NL 0.39 0.40 0.27 0.27 0.61 0.05 0.61 

 M, L 0.39 0.38 0.39 0.38 0.67 0.17 0.65 

(D) BLUP accounting for genetic markers 

 U, NL 0.34 0.50 0.39 0.31 0.41 0.51 0.41 

 U, L 0.42 0.52 0.51 0.44 0.51 0.53 0.51 

 M, NL 0.47 0.59 0.48 0.41 0.65 0.50 0.63 

 M, L 0.47 0.62 0.55 0.48 0.70 0.53 0.70 

1
 Phenotypes were adjusted for batch and age at slaughter using a fixed model. 

2
 Methodology: 

(A) Genomic prediction on the effects of either 36,432 SNPs (36k) or only SNPs at SCD and 

LEPR loci (SCD+LEPR) estimated by Bayes B in a training set of 65 pigs born in 

2002−2003. See Chapter 7 for further details. 

(B) Univariate (U) and multivariate (M) best linear unbiased prediction (BLUP) using 

phenotypic data and pedigree. Multivariate models included body weight and backfat 

thickness at 180 d. Further model details as in Chapter 5. Data on IMF and fatty acids 

were from pigs born in 2002−2007 (NL; n=936) or included also littermates of the testing 

set (L; n=1,132). AIREMLF90 software (Misztal et al., 2002) was used. 

(C) Single-step genomic BLUP using the 36k SNPs. Other details as in case B. 

(D) Same as in case B but adding genotypes of SCD (n=915) and LEPR (n=803) genetic 

markers. The breeding value of animal j for trait i was calculated as v̂(SCD)ij + v̂(LEPR)ij + ûij, 

where v̂(SCD)ij and v̂(LEPR)ij are the genotypic values of markers at SCD and LEPR loci, 

respectively, and ûij the polygenic effect adjusted for the markers. 
3
 IMF: intramuscular fat; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; 

PUFA: polyunsaturated fatty acids; C18:1: oleic acid; C18:0: stearic acid. 

 

littermates and on BW and BT, accuracies were 0.47−0.48 for IMF and C18:1, 

0.53−0.55 for MUFA and C18:1/C18:0, and as high as 0.62−0.70 for SFA, PUFA, and 

SFA/PUFA. As compared with BLUP, the SCD and LEPR markers substantially 

improved the accuracy for SFA, MUFA, C18:1, and C18:1/C18:0. Contrarily, the 

contribution of these markers to the accuracy of IMF, PUFA, and SFA/PUFA is 
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irrelevant as compared to predictions based on data from routine recording of pedigree-

connected relatives. 

Overall, our results indicate that a breeding program involving IMF and C18:1 

should first focus on designing a system for recording IMF and C18:1 at slaughter and 

then on developing a BLUP genetic evaluation procedure based on phenotypes and 

relationships among relatives. This requires to set a system for individual traceability 

of pigs until slaughter and the implementation there of a feasible recording routine, 

preferably on muscle rather than on SF. Fortunately, new non-destructive on-line 

equipments, mostly based on near infrared spectrometry (NIRS), are becoming 

available to cope with this need with very promising results (González-Martín et al., 

2002, 2005). Some genetic markers, as those found here in the SCD and LEPR loci, 

may enhance the accuracy of BLUP-based breeding values for some meat quality 

traits. If additional markers are incorporated, this may lead to set a panel of several 

markers or even to develop low-density SNP panels (Weigel et al., 2009; Vazquez et 

al., 2010) with which to improve selection decisions at any stage of the breeding 

scheme. In light of our results, the use of genomic selection, involving the genotyping 

of a big number of pigs with high-density SNP chips, is not crucial. With current 

technical and economic standards, the use of genomic selection for improving IMF and 

C18:1 needs further assessment. Although it may open up new selection opportunities 

(Ibáñez-Escriche et al., 2014), it still entails many unsolved questions to be the method 

of choice at commercial level (Blasco & Toro, 2014). Instead, given the cost of feed, 

the input of nutrigenomics, with a better knowledge of the potential interactions 

between genetics and dietary factors, may give new insights into integrated strategies 

directed at producing pork with optimum IMF and fatty acid profiles. 
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Conclusions 
 

 

 

 
1. Statistical analyses based on raw fatty acid percentages are robust enough for most 

genetic analyses and practical applications due to the low variability of the fatty 

acid composition of pork. However, because fatty acids are compositional data in 

nature, using the compositional data statistical approach may help to avoid 

inconsistencies and to correctly interpret results from exploratory and correlation 

analyses.  

 

2. The intramuscular fat and oleic acid contents present a high heritability and are 

positively correlated to each other. Their genetic correlation with backfat thickness 

is unfavorable, particularly for intramuscular fat, but favorable with body weight, 

albeit lower. Yet, there are selection scenarios where intramuscular fat and oleic 

acid can be simultaneously improved with lean growth. 

 

3. It has been shown experimentally that, with proper selection objectives, it is 

possible to decrease backfat thickness and increase carcass lean growth at no 

change in intramuscular fat and oleic acid contents. 

 

4. It has been shown experimentally that oleic acid content responds to selection on 

predicted breeding values based only on phenotypic data from relatives. 

 

5. The response to selection for intramuscular fat and oleic acid contents is unequal 

across muscles and fat tissues. Because fat content and composition traits in 

muscles gluteus medius and longissimus dorsi are highly genetically correlated, 

records taken on one of them can be used as a selection criterion for the other. 

However, genetic correlations with other muscles and fat tissues may be lower. In 

particular, the oleic acid content in subcutaneous fat could be of limited value for 

the oleic acid content in muscles other than longissimus dorsi. 
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6. The C-T-A haplotype (AY487830:g.2108C>T, g.2228T>C, and g.2281A>G) in the 

promoter of the stearoyl-CoA desaturase gene enhances fat desaturation in pigs 

without affecting total fat content. The haplotype additively increases oleic and total 

monounsaturated fatty acid contents, reaching to explain around 40% of the genetic 

variance of the stearic to oleic acid desaturation ratio. Evidence is provided that 

g.2228T>C is the causative mutation of this effect. 

 

7. A genome-wide association study detected single nucleotide polymorphisms around 

the leptin receptor gene that are associated to backfat thickness and intramuscular 

fat content and fatty acid composition. However, unlike for the stearoyl-CoA 

desaturase gene polymorphism, the effects on intramuscular fat content and fatty 

acid composition are not specific but a result of increased carcass fatness. 

 

8. High accuracies for the predicted breeding values of intramuscular fat and oleic 

acid content can be achieved based on phenotypic data of close relatives and 

correlated performance traits. The accuracies can be substantially enhanced with the 

genetic markers described at the stearoyl-CoA desaturase and the leptin receptor 

genes. With the benefits of genomic selection needing further assessment, selection 

combining pedigree-connected phenotypic data and some singled-out genetic 

markers is presented as a suitable alternative. 
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