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ABSTRACT  

The use of concrete in disposal facilities to contain low- and intermediate-level nuclear 

waste requires that the durability of this material is optimal for the lifetime of these repositories. 

One of the most important processes that put such durability at risk is the attack of concrete by 

water with low mineral content and neutral pH. For instance, in the El Cabril disposal facility 

(Southern Spain) the existence of water flow across the concrete of the wall cells can provoke 

the dissolution of concrete and originate alterations in the microstructure of the concrete, such 

as decalcification and dissolution of the cement phases, increased porosity and loss of barrier 

properties. Therefore, to yield reliable estimations of the durability of cement-based materials 

we need to increase our knowledge of the reactivity of these materials. Within this context, in 

this Thesis, the dissolution kinetics of the calcium silicate hydrate (C-S-H) -the main binding 

phase in all cement-based systems- and the processes responsible for mortar alteration have 

been studied. 

In the first stage of this study, flow-through experiments were carried out to study the 

dissolution kinetics of C-S-H gel under CO2-free atmosphere at room temperature (23 ± 2 ºC). 

The flow of demineralized water caused the dissolution of C-S-H and changes in the 

composition of the solutions. It was observed that the C-S-H gel dissolved incongruently when 

the Ca/Si ratio was high and congruently as the Ca/Si ratio decreased to the tobermorite-like 

stoichiometric Ca/Si ratio of ≈ 0.83. A dissolution rate law for C-S-H gel with Ca/Si ratio equal 

to 0.83 was proposed based on the dissolution rates normalized to the final BET surface area. 

Additionally, reactive transport modeling of the changes in aqueous chemistry allowed the 

fitting of the rate constants for C-S-H with Ca/Si ratio ranging from 1.7 to 0.83. Solid 

examination by scanning electron microscopy (SEM-EDX) and electron microprobe analyser 

(EPMA) showed some variability of the Ca/Si ratios of the analyzed particles, suggesting the 

existence of compositional domains with variable Ca/Si ratios. 
29

Si nuclear magnetic resonance 

(
29

Si MAS-NMR) spectra showed an increase in polymerization of the reacted C-S-H, 

associated with the decrease in Ca/Si ratio, and also the formation of Si-rich domains in some 

cases, mainly under slow flow conditions. Additionally, the changes in the microstructure of the 

dissolving C-S-H gel were characterized by small angle neutron scattering (SANS). The SANS 

data were fitted using a fractal model. The SANS specific surface area (ST) tended to increase 

with time up to 31 days. Thereafter, it diminished as the C-S-H gel dissolved. The rest of the 



fitted parameters (particle diameter (Do), fractal exponents (DV and DS), etc.) reflect the 

changes in the nanostructure of the dissolving C-S-H gel.  

In the second stage, two types of experiments have been performed to study the alteration of 

the El Cabril mortar which is composed of 64% I42.5R/SR cement and 36 % fly ash. 

Column experiments using mortar fragments of ≈ 2 mm in diameter were performed to 

study mortar alteration by flowing water at room temperature. Dissolution of the mortar 

released Ca, Si, Al, S, and Fe from the main mortar components (C-S-H gel, portlandite, fly ash, 

ettringite, monocarboaluminate, and Si-hydrogarnet). Variation of the chemical composition 

and the inspection of the mortar fragments by means of visual inspection, SEM and X-ray 

fluorescence (XRF), before and after the experiments, allowed interpretation of the dissolution 

and precipitation reactions. The aqueous chemistry data was modeled using the CrunchFlow 

reactive transport code in which the obtained dissolution rate law for the C-S-H gel and the 

associated kinetic parameters were incorporated. 

Evaporation experiments with mortar samples, under controlled N2 atmosphere, temperature 

and relative humidity, were performed at the laboratory scale to study the effect of the 

evaporation-induced water flow through the walls of the disposal cell at El Cabril on the 

microstructure of the mortar. The mortar specimens were visually inspected and SEM-EDX 

examined. Mortar samples were used to determine the retention curve and obtain hydraulic 

parameters to be used in the thermohydraulic modeling. First, variation in the water flux and 

temperature along the evaporation experiments was modeled with the multiphase flow and heat 

transport code CodeBright. Secondly, the multicomponent reactive transport code Retraso 

coupled to CodeBright was used to simulate the variation of solution composition along the 

samples during the experiments. The previously obtained C-S-H gel dissolution rate law and 

associated kinetic parameters were included in the model. 



RESUMEN  

El uso de hormigón en instalaciones de almacenamiento de residuos radiactivos de baja y 

media actividad requiere que la durabilidad de este material sea óptima durante el tiempo de 

vida de estos depósitos. Uno de los procesos más importantes que puede poner en riesgo su 

durabilidad es el ataque del hormigón por agua de bajo contenido mineral y pH neutro. Por 

ejemplo, en la instalación de almacenamiento de El Cabril (sur de España) la existencia de un 

flujo de agua a través del hormigón de la pared de las celdas puede provocar la disolución de 

hormigón y originar alteraciones en la microestructura del hormigón, como la descalcificación y 

la disolución de las fases de cemento, aumentando la porosidad y la pérdida de propiedades 

barrera. Por lo tanto, para obtener estimaciones fiables de la durabilidad de los materiales base 

cemento es necesario incrementar nuestro conocimiento de la reactividad de estos materiales. 

Dentro de este contexto, en esta Tesis, se han estudiado la cinética de disolución del silicato 

cálcico hidratado (gel C-S-H) -principal fase de unión en todos los sistemas base cemento- y los 

procesos responsables de la alteración de mortero. 

En la primera etapa de este estudio, se realizaron experimentos de flujo continuo con el 

objetivo de estudiar la cinética de disolución de gel C-S-H en atmósfera sin CO2 a temperatura 

ambiente (23 ± 2 ºC). El flujo de agua desmineralizada causó la disolución del gel C-S-H 

además de cambios en la composición de las soluciones. Se observó que el gel C-S-H disuelve 

incongruentemente cuando la relación Ca/Si es alta y congruentemente a medida que la relación 

Ca/Si disminuyó hacia la estequiometria de una tobermorita cuya relación Ca/Si es de ≈ 0.83. Se 

propuso una ley de velocidad de disolución para el gel C-S-H con una relación de Ca/Si de 0.83 

basada en las velocidades de disolución normalizadas con el área superficial final determinada 

por BET. Adicionalmente, el modelado de los cambios en la química acuosa con el tiempo 

mediante transporte reactivo permitió el ajuste de las constantes de velocidad para el gel C-S-H 

con una relación de Ca/Si que varía entre 1.7 y 0.83. El análisis del sólido mediante microscopio 

electrónico de barrido (SEM-EDX) y microsonda electrónica de barrido (EPMA) mostró cierta 

variabilidad de las relaciones Ca/Si de las partículas analizadas, sugiriendo la existencia de 

dominios de composición con relaciones Ca/Si variables. Los espectros de resonancia 

magnética nuclear (
29

Si MAS-RMN) mostraron un aumento en la polimerización del gel C-S-H 

reaccionado, asociado con una disminución de la relación Ca/Si, y también la formación de 

dominios ricos en Si en algunos casos, sobre todo en condiciones de flujo lento. Además, se han 

caracterizado los cambios en la microestructura del gel C-S-H disuelto por dispersión de 



neutrones a bajo ángulo (SANS). Los datos SANS se ajustaron utilizando un modelo fractal. El 

área superficial específica de SANS (ST) tiendió a aumentar con el tiempo hasta 31 días. 

Después disminuyó por efecto de la disolución del gel C-S-H. Los demás parámetros obtenidos 

del ajuste (diámetro de las partículas (Do), exponentes fractales (DV y DS), etc.) reflejan los 

cambios en la nanoestructura del gel C-S-H disuelto. 

En la segunda etapa, se realizaron dos tipos de experimentos para estudiar la alteración del 

mortero de El Cabril compuesto por un 64% de cemento I42.5R/SR y un 36% de cenizas 

volantes. 

Por un lado, se realizaron experimentos en columna utilizando fragmentos de mortero de    

≈ 2 mm de diámetro para estudiar la alteración de mortero. A través de las columnas se hizo 

pasar agua mediante una bomba peristáltica y los experimentos se realizaron en atmósfera sin 

CO2 a temperatura ambiente (23 ± 2 ºC). La disolución del mortero liberó Ca, Si, Al, S y Fe de 

las principales fases (gel C-S-H, portlandita, cenizas volantes, etringita, monocarboaluminato, y 

Si-hidrogranate). La variación de la composición química y la inspección de los fragmentos de 

mortero por medio de la inspección visual, SEM y fluorescencia de rayos X (XRF), antes y 

después de los experimentos, permitieron interpretar que reacciones de disolución y 

precipitación habían tenido lugar. Los datos de la química acuosa se modelaron utilizando el 

código de transporte reactivo CrunchFlow en el cual fueron incorporados la ley de velocidad de 

disolución obtenida anteriormente y los parámetros cinéticos asociados al gel C-S-H. 

Por otro lado, se realizaron experimentos de evaporación con probetas de mortero a escala 

de laboratorio, bajo condiciones controladas de atmósfera de N2, temperatura y humedad 

relativa, para estudiar el efecto que el flujo de agua -inducido por evaporación- a través de las 

paredes de la celda de almacenamiento en El Cabril ejerce sobre la microestructura del mortero. 

Las probetas de mortero fueron inspeccionadas de forma visual y examinadas mediante SEM-

EDX. Se utilizaron muestras de mortero para determinar la curva de retención y obtener 

parámetros hidráulicos aptos para ser utilizados en el modelo termohidráulico. En primer lugar, 

la variación en el flujo de agua y la temperatura a lo largo de los experimentos de evaporación 

fue modelada con el código de transporte multifase CodeBright de flujo y calor. En segundo 

lugar, el código Retraso de transporte reactivo multicomponente acoplado a CodeBright fue 

usado para simular la variación de la composición de la solución a lo largo de las probetas de 

mortero. La ley de velocidad de disolución obtenida previamente para el gel C-S-H y los 

parámetros cinéticos asociados se incluyeron en el modelo. 



RESUM  

L'ús de formigó en instal·lacions d'emmagatzematge de residus radioactius de baixa i 

mitjana activitat requereix que la durabilitat d'aquest material sigui òptima durant el temps de 

vida d'aquests dipòsits. Un dels processos més importants que pot posar en risc la seva 

durabilitat és l'atac del formigó per aigua de baix contingut mineral i pH neutre. Per exemple, en 

la instal·lació d'emmagatzematge d’El Cabril (sud d'Espanya) l'existència d'un flux d'aigua a 

través del formigó de la paret de les cel·les pot provocar la dissolució de formigó i originar 

alteracions en la microestructura del formigó, tals com la descalcificació i la dissolució de les 

fases del ciment, augmentant així la porositat i la pèrdua de propietats barrera. Per tant, per 

obtenir estimacions fiables de la durabilitat dels materials base de ciment cal incrementar el 

nostre coneixement de la reactivitat d'aquests materials. En aquest context, en aquesta Tesi 

s’han estudiat la cinètica de la dissolució del silicat càlcic hidratat (gel C-S-H) -principal fase 

d'unió en tots els sistemes base de ciment -i els processos responsables de l'alteració de morter. 

En la primera etapa d'aquest estudi, es van realitzar experiments de flux continu amb 

l'objectiu d'estudiar la cinètica de dissolució del gel C-S-H en condicions atmosfèriques sense 

CO2 a temperatura ambient (23 ± 2 º C). El flux d'aigua desmineralitzada va causar la dissolució 

del gel C-S-H i canvis en la composició de les solucions. Es va observar que el gel C-S-H va 

dissoldre incongruentment quan la relació Ca/Si era alta i congruentment a mesura que la relació 

Ca/Si va disminuir cap al valor de l’estequiometria d’una tobermorita de 0.83. Es va proposar 

una llei de velocitat de dissolució del gel C-S-H amb una relació de Ca/Si de ≈ 0.83 basada en 

velocitats de dissolució normalitzades amb l'àrea superficial final determinada per BET. 

Addicionalment, la modelització dels canvis en la química aquosa amb el temps mitjançant 

transport reactiu permet l'ajust de les constants de velocitat del gel C-S-H amb una relació Ca/Si 

que varia entre 1.7 i 0.83. L’anàlisi del sòlid mitjançant microscopi electrònic d’escombrat 

(SEM-EDX) i microsonda electrònica d’escombrat (EPMA) va mostrar certa variabilitat de les 

relacions Ca/Si de les partícules analitzades, suggerint l'existència de dominis de composició 

amb relacions Ca/Si variables. Els espectres de ressonància magnètica nuclear (
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Si MAS-

RMN) van mostrar un augment en la polimerització del gel CSH reaccionat, associat amb el 

descens de la relació Ca/Si, i també la formació de dominis rics en Si en alguns casos, sobretot 

en condicions de flux lent. A més a més, es van caracteritzar els canvis en la microestructura del 

gel C-S-H dissolt per dispersió de neutrons a angle baix (SANS). Les dades de SANS es van 

ajustar utilitzant un model fractal. L'àrea superficial específica de SANS (ST) va tendir a 



augmentar amb el temps fins a 31 dies. Després va disminuir per efecte de la dissolució del gel 

C-S-H. Els altres paràmetres obtinguts de l'ajust (diàmetre de les partícules (Do), exponents 

fractals (DV i DS) , etc.) reflecteixen els canvis en la nanoestructura del gel C-S-H dissolt.  

En la segona etapa, es van realitzar dos tipus d'experiments per estudiar l'alteració del 

morter d’El Cabril compost per un 64% de ciment I42.5R/SR i 36% de cendres volants. 

D'una banda, es van realitzar experiments en columna utilitzant fragments de morter de ≈ 2 

mm de diàmetre per estudiar l'alteració de morter. A través de les columnes es va fer passar 

aigua mitjançant una bomba peristàltica i els experiments es van realitzar en atmosfera sense 

CO2 a temperatura ambient (23 ± 2 ºC). La dissolució del morter va alliberar Ca , Si , Al, S, i Fe 

de les principals fases (gel CSH, portlandita, cendres volants, etringita, monocarboaluminat, i 

Si-hidrogranat). La variació de la composició química i la inspecció dels fragments de morter a 

partir de la inspecció visual, SEM i fluorescència de raig X (XRF), abans i després dels 

experiments, va permetre interpretar que reaccions de dissolució i precipitació de fases. Les 

dades de la química aquosa es van modelar utilitzant el codi de transport reactiu CrunchFlow en 

el qual s’hi van incorporar la llei de velocitat de dissolució i els paràmetres cinètics associats al 

gel C-S-H, obtinguts anteriorment. 

D'altra banda, es van realitzar experiments d'evaporació amb provetes de morter a escala de 

laboratori, sota condicions controlades d'atmosfera de N2, temperatura i humitat relativa, amb 

l’objectiu d’estudiar l'efecte que el flux d'aigua induït per evaporació a través de les parets de la 

cel·la d’emmagatzematge d’El Cabril exerceix sobre la microestructura del morter. Les provetes 

de morter es van inspeccionar visualment i es van examinar mitjançant SEM-EDX. Amb 

mostres de morter es van determinar la corba de retenció i paràmetres hidràulics per ser 

utilitzats en el model termohidràulic. En primer lloc, la variació de flux d'aigua i la temperatura 

al llarg dels experiments d'evaporació es van modelitzar amb el codi de transport multifase 

CodeBright de flux i de calor. En segon lloc, el codi Retraso de transport reactiu 

multicomponent acoblat a CodeBright va ser usat per simular la variació de la composició de la 

solució al llarg de les provetes de morter. La llei de velocitat de dissolució del gel C-S-H 

obtinguda prèviament i els paràmetres cinètics associats es van incloure en el model. 
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CHAPTER 1  

Introduction 

1.1. Background 

The El Cabril disposal facility (Southern Spain) is a vault-type surface disposal 

repository for the storage of low- and intermediate-level nuclear waste. The concept of this 

multibarrier surface disposal system consists of waste packages (220-liter drums) placed inside 

concrete containers (disposal unit). Mortar is injected into containers to fill all available space 

between the drums. The containers are placed inside 24x10x10 m
3
 concrete vaults (Fig. 1.1). 

 

Figure 1.1. El Cabril disposal facility. 
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Hydrated Portland cement is one of the fundamental materials for this kind of 

construction because of its high-quality performance in many environments and well known 

chemical-barrier behavior. The barrier behavior is due to (i) the pH of about 13 of the pore 

solution which limits the solubility of many radionuclides (Olson et al., 1997; Harris et al., 

2002), and (ii) the high surface area for the sorption of the radionuclides (Harris et al., 2002; 

Sugiyama, 2008). 

However, cement paste may be attacked by water with a low mineral content and 

approximately neutral pH (Faucon et al., 1998). The dissolution and decalcification reactions 

can promote the destruction of the microstructure of the material. This dissolution may affect all 

the phases present in the cement, being portlandite (Ca(OH)2) the first phase to dissolve. 

Afterwards, the next phase to dissolve is the calcium silicate hydrate (C-S-H gel). In this 

manner, a series of reaction fronts are formed. These reactions cause changes in the barrier 

properties of the cement. Obtaining information about the process of degradation of the cement 

and concrete, and more specifically regarding the C-S-H gel, will eventually allow a more 

rigorous assessment of the service life of the disposal facility. This time is directly related to the 

time necessary for the radioactivity to reach natural background levels, which is typically 

around 300–400 years for the case of low- and intermediate-level nuclear waste. 

1.2. Statement of the problem 

Since the summer of 2003 water has been collected in the water collection system of 

some cells at El Cabril. The volume of flow shows a seasonal behavior; water is accumulated in 

the second part of the summer and during a longer period of time in winter. The initial volume 

was a few milliliters per day but this value was increasing until near 400 mL per day at the end 

of August of the same year. In the period from November of 2003 to March of 2004 the 

phenomenon was repeated and 83 liters were recollected. In the summer and winter periods of 

2004 the collected volumes were 28 and 169 liters, respectively (Fig. 1.2). 
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Figure 1.2. Water collected in vault number 16. 

The recollected water is alkaline, with a pH near 10. The major ions in solution are OH
-
, 

SO4
2-

, K
+
 and Na

+
. The concentrations of these ions initially showed a seasonal behavior, but 

later on the concentrations remained approximately constant during the different periods of the 

year. 

The Hydrogeology group of the UPC (Polytechnic University of Catalonia) carried out 

studies about the source and the inflow mechanisms of this water (Saaltink et al., 2005; Zuloaga 

et al., 2006). From these studies, a first reactive transport model was developed. It was 

concluded that the source of collected water is groundwater and the air gap between containers 

and vault walls produced seasonal differences of temperature of a few degrees, causing water 

vapor diffusion from the walls to the concrete containers in summertime or vice versa in winter 

(Saaltink et al., 2005). The existence of this flow across the concrete of the cells can provoke the 

dissolution of concrete. The chemical and mechanical alterations may affect the durability of the 

material and the barrier properties (Fig. 1.3). 
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Figure 1.3. Conceptual model of water flow in the wall and the concrete containe. After Saaltink 

et al. (2005). 

Subsequent reactive transport modeling of this system using the Retraso-CodeBright 

code (Ayora et al., 2007; Zuloaga et al., 2009) emphasizes a significant lack of data in the 

literature regarding the dissolution kinetics of C-S-H gel, which had a significant impact on 

model results.  

This limitation in the understanding of the chemistry of the Portland cement, the lack of 

experimental data and the unknown kinetic reaction rate laws induce great uncertainties in any 

calculations regarding the durability of concrete during long periods of time. 

1.3. Objectives 

1.3.1 General objective 

This project concerns the study of processes relevant for the durability of the concrete, 

and more specifically those processes more relevant at El Cabril. 

1.3.2 Specific objectives 

The present work covers three specific objectives. 

The first objective is to determine the dissolution kinetics of the C-S-H gel by means of 

flow-through experiments. These experiments take place in cells which are designed to allow 

the reaction between powdered C-S-H and water. The release of aqueous Ca and Si from the 
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dissolving C-S-H and pH are monitored during the reaction. It is possible to measure the 

variation of the molar Ca/Si ratio of the C-S-H with time, to calculate dissolution rates, to assess 

the effect of the solution saturation state on the rates and to obtain a C-S-H dissolution rate law. 

C-S-H microstructural changes during dissolution were analyzed using several techniques 

(XRD (X-ray Diffraction), 
29

Si-NMR, SEM, EPMA, and SANS). The first six techniques were 

applied at IDAEA (Institute of Environmental Sciences and Water Research, Barcelona-Spain) 

and EMPA (Swiss Federal Laboratories for Materials Science and Technology, Zurich- 

Switzerland). SANS measurements were conducted at ILL (Institut Laue-Langevin, Grenoble- 

France) and NIST (National Institute of Standards and Technology, Gaithersburg- USA). 

The second objective focuses on applicability of the C-S-H reaction rate laws in a 

context of flux in porous media under controlled conditions. Hence, column experiments with 

ground mortar are carried out with a forced advective flow to accelerate water-solid interaction. 

The geochemical variation is modeled using the CrunchFlow reactive transport code (Steefel, 

2009). 

The third specific objective is to assess the extent of alteration in the concrete walls at 

El Cabril caused by evaporation-induced water flow. Evaporation essays were performed under 

conditions similar to those at the inner side of the walls of the disposal cells. The geochemical 

changes of the mortar test cylinders were modeled using the Retraso-CodeBright code (Olivella, 

1996; Saaltink et al., 2004). 

1.4. Thesis outline 

The thesis is composed of six chapters including introduction and conclusions. All the 

chapters are based on manuscripts that are published or in preparation for publication (Trapote 

et al., 2013; Trapote et al., 2014). The thesis is divided into two parts. The first one corresponds 

to the first objective and the second one covers the second and third objectives. 

Part I (Chapters 2 and 3) deals with kinetics of the C-S-H gel dissolution. Chapter 2 

describes the conducted experimental methodology, based on flow-through experiments run 

under N2 atmosphere, and the characterization of the solid samples by SEM-EDX and 
29

Si-

NMR. A C-S-H dissolution rate law is proposed based on reactive transport modeling of the 

experiments using CrunchFlow. Chapter 3 deals with the study of the associated structural 

changes in the C-S-H by means of SANS technique. 
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In Part II, Chapter 4 deals with the influence of C-S-H dissolution on the properties of 

mortar and concrete. Chapter 4 describes the experimental methodology for column experiments 

filled with ground mortar and run under advective-flux conditions. Geochemical variations in 

the solution and mortar are assessed by comparing with the chemistry of the unaltered samples. 

The CrunchFlow code is used to simulate the geochemical variation along the columns using 

the C-S-H dissolution rate law previously obtained. Chapter 5 is devoted to study the 

evaporation-induced processes. Chemical variation along a cylindrical mortar sample during the 

experiment is assessed by comparing to the unaltered sample. Quantification of the evaporation-

induced processes is performed by reactive transport modeling. 

Chapter 6 is a summary of the main conclusions and contributions of this thesis. 

1.5. State of the art 

In the first part, the theoretical background concerning the composition and structure of 

the C-S-H gel as the main phase of the hydrated cement is described. In the second part of the 

state of the art, the theoretical background related to the SANS technique to characterize C-S-H 

gel is described. Finally, included is a brief description of the cement composition, porosity, 

reactions involved in the degradation of the cement microstructure, transport mechanisms and a 

compilation of the previous studies on cement reactivity and hydration. 

 

1.5.1 An overview of calcium silicate hydrate (C-S-H gel) 

1.5.1.1 Composition of C-S-H gel 

Calcium silicate hydrate (C-S-H) gel is the main binding phase in all Portland cement-

based materials. High resolution techniques such as Transmission Electron Microscopy (TEM) 

or EPMA, where C-S-H can be analysed free of admixture with other phases, show that the C-

S-H present in hardened pastes of C3S or neat Portland cements generally has a mean Ca/Si ratio 

of about 1.75, with a range of values within a given paste from around 1.2 to 2.1 (Richardson, 

1999). Higher values of Ca/Si in the literature could be explained by mixtures of C-S-H with 

portlandite (Ca(OH)2, in cement chemistry notation, C= CaO, S= SiO2, H= H2O) (Chen et al., 

2004). Richardson and Groves (1992) state that for aged pastes the range of Ca/Si ratio is 

approximately 1.6-1.85 with a mean value of 1.78 (Taylor, 1997). 
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1.5.1.2 Structure of C-S-H gel 

C-S-H gel is often described as a poorly crystalline or nearly X-ray amorphous phase. 

The XRD patterns show that no long-range order exists in their structures. It is generally 

accepted that C-S-H has a disordered layer structure formed by silicate chains of varying lengths 

held together by layers of calcium (Gaitero et al., 2008). Experimentally, it is observed that 

these silicate chains are formed of both dimeric silicate units and polymeric units. Polymeric 

species are chains having lengths of 2, 5, 8 . . . (3n-1) tetrahedra, where n is integer for 

individual structural units (Richardson, 2008). With age, polymeric units form at the expense of 

existing dimers although the dimers remain in the pastes when the reactions are essentially 

completed. 

The most accepted structure for C-S-H, which explains better the experimental 

observations, considers that C-S-H has a broad similarity with the crystalline calcium silicate 

hydrates 1.4 nm tobermorite and jennite (Richardson, 2008; Richardson, 2004). Their structures 

are described below. 

1.4 nm Tobermorite  

The crystal structure of 1.4 nm tobermorite has a central Ca-O sheet that has silicate 

chains on both sides. The silicate chains have dreierketten structure and so are linked in a 

manner that they repeat at intervals of three tetrahedra. Every third tetrahedron is a bridging 

tetrahedron, which could be absent to yield the (3n-1) chain lengths. 

Two of these tetrahedra, the paired tetrahedral, share two oxygen atoms with the central 

Ca-O sheet, while the third, the bridging tetrahedra, shares only one. The interlayer spaces 

contain water molecules and additional Ca
2+

 ions to balance the negative charge of the 

composite layer (Chen et al., 2004). The chemical composition of the complex layer is 

[Ca5Si6O16(OH)2·7(H2O)] (Bonaccorsi et al., 2005) and the Ca/Si ratio is 0.83 being a higher 

value in less crystalline forms. The structure is illustrated in Figure 1.4a. 

Jennite 

Jennite is a crystalline calcium silicate hydrate whose structure is based on layers. 

Acording to Chen et al. (2004), as with 1.4 nm tobermorite, the structure is based on layers in 

which a central Ca–O sheet is flanked on both sides by rows of single dreierketten, together 

with interlayer Ca atoms and water molecules. An important difference between 1.4 nm 

tobermorite and jennite is that every other dreierkette is replaced by a row of OH groups. This 

substitution causes a considerable corrugation of the Ca–O layers in jennite, which have the 
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empirical formula Ca2O5; some of the O atoms in this layer are shared with dreierketten, the 

paired tetrahedra of which are inset within the corrugations, whereas others form parts of water 

molecules and OH groups. These OH groups are balanced entirely by Ca, thus creating Ca–OH 

bonds; there are no Si–OH bonds in well-crystallized jennite. The chemical formula of jennite is 

Ca9(Si6O18)(OH)6·8H2O (Richardson et al., 2008), and the Ca/Si ratio of jennite is 1.5 which can 

increase in less crystalline forms. The structure is shown in Figure 1.4b. 

 

 

Figure 1.4. Schematic diagram showing (a) 1.4 nm tobermorite structure (after Richardson, 2008) 

and (b) jennite structure (after Richardson, 2004). P and B denote “paired” tetrahedra and 

“bridging” tetrahedra, respectively. 

 

1.5.1.3 Structural models of C-S-H gel 

The no long-range order existent in the C-S-H structure makes the term ‘crystal 

structure’ inapplicable, the term ‘nanostrucure’ is more appropriate for describing the structure 

at this level (Taylor, 1997). Up to date a large number of models have been developed to 

explain the observed silicate nanostructure, although not all of them can explain the observed 

experimental distribution of 3n-1 silicate anions. Most of these models were described by 

Richardson (2008) and are summarized in Table 1.1. 
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Year Author Based on the structure of:

Silicate anion 

structure Comments

1952 Bernal et al. Tobermorite Infinite

The model is not consistent with the experimentally observed 

distribution of silicate anions.i.e. 3n-1, where n is integer for 

individual structural units.

1954 Bernal Tobermorite Monomer

The model is not consistent with the experimentally observed 

distribution of silicate anions.i.e. 3n-1, where n is integer for 

individual structural units.

1956 Taylor and Howison Tobermorite 3n-1 

The Ca/Si ratio of the structure above 0.83 is explained by the 

removal of some "bridging" Si tetrahedraand replacement by 

interlayer Ca2+ ions.

1960-1962
Kurezyk and 

Schwiete
Ca(OH)2 infinite

Layers of tobermorite are sandwiched between layers of calcium 

hydroxide.

1967 Shpynova et al. Tobermorite Monomer

The model is not consistent with the experimentally observed 

distribution of silicate anions.i.e. 3n-1, where n is integer for 

individual structural units.

1980-1987
Stade and                                      

co-workers

Ca(OH)2,1.4nm 

Tobermorite and jennite

Dimer and 

polysilicate

Extension of Kurezyk and Schwiete's model (1960) with the 

particularity that this model considers dimers to fit the 

composition studied.

1984 Grudemo et al. Tobermorite Monomer 

The model is not consistent with the experimentally observed 

distribution of silicate anions.i.e. 3n-1, where n is integer for 

individual structural units.

1986 Taylor 
 Tobermorite, jennite, 

Ca(OH)2 
3n-1 

The structure is based on 1.4 nm tobermorite and jennite. This 

model is so-called T/J model.

1987 Glasser et al. Tobermorite and jennite Dimer Derived from Stade et al. (1980) dimeric model.

1992-1993
Richardson and 

Groves
Tobermorite 3n-1 

The model includes tobermorite, jennite and portlandite-based 

structures that co-exist.

1993 Taylor  Tobermorite and jennite 3n-1 
T/J model with some modifications (e.g. variable protonation and 

substituents).

1996 Cong and Kirkpatrick Tobermorite 3n-1 
It is a "defect tobermorite" model that is equivalent to Richardson 

and Groves's model (1992).

1997-1999 Grutzeck Tobermorite, sorosilicate
Long-chain, 

dimer

Model with two based phases: T-based phase with low Ca/Si ratio 

and a sorosilicate based-phase with high Ca/Si.

1998 Nonat and Lecoq Tobermorite 3n-1 

Similar to Richardson and Groves model (1992) in the T units and 

Kurezyk and Schwiete and Stade and co-workers in the interlayer 

region.

2004
Chen, Thomas, 

Taylor and Jennings
 Tobermorite and jennite 3n-1 Similar to Richardson and Groves model (1992) in the T units.

2004 Nonat  Tobermorite and jennite 3n-1 
Update of Nonat and Lecoq (1998) model with jennite-based 

structure.

Table 1.1  Summary of C-S-H models (after Richardson, 2008).  

 

 

Table 1.1 shows that the models can be grouped into two categories: one where the 

silicate anion structure is entirely monomeric, and the other where a dreierketten based model, 

derived from the linear silicate chain present in 1.4 nm tobermorite and jennite. Also, the 

models are divided upon the type of structure used to describe the C-S-H. In this case, the so-

called tobermorite/jennite (T/J) model considers the C-S-H as an assembly of tobermorite 

regions followed by jennite domains. The tobermorite-calcium hydroxide (T/CH) models 

consider solid solutions of tobermorite layers sandwiching calcium hydroxide to achieve a 

higher Ca/Si ratio. 

The models proposed by Bernal (1954), Shpynova et al. (1967) and Grudemo (1984) 

fall in the first category, in which the hydrated calcium silicates are formed by monomeric 

silicate anions ([SiO2(OH)2]
2−

) and do not consider the (3n-1) distribution of silicate anions. 

This model was used to explain the anomalous XRD peak intensities for Ca(OH)2 in hardened 

cements, being derived from the structure of Ca(OH)2 (Richardson, 2008). 
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The first dreierketten-based model to account for the C-S-H gel structure was originally 

proposed by Bernal et al. (1952) from XRD studies of hydrated C3S pastes and diluted 

suspensions of C-S-H. It was concluded that the two types of formed C-S-H phases were similar 

and were called C-S-H(I) and C-S-H(II), having low and high Ca/Si ratios, respectively. C-S-

H(I) had a layer and fibrous structure and showed similarities to tobermorite. 

Kurczyk and Schwiete (1962) studied C3S and C2S- pastes and proposed a model for 

the C-S-H structure that formed in both studied systems, which they referred to as a 

‘tobermorite-like phase’. Their model considers the tobermorite-like layers and included Si-OH 

groups and infinite silicate chain lengths. To explain the Ca/Si ratios observed (between 1.80 

and 1.92) they postulated that the structure has excess of Ca
2+

 and OH
-
 ions in an interlayer 

region together with water molecules. A similar model was proposed by Kantros et al. (1962) in 

which the layers of tobermorite are sandwiched between layers of calcium hydroxide (Kantros’ 

model). 

Later, Stade and Wieker (1980) suggested that amorphous C-S-H phases present in 

cement paste are built up from CaOx polyhedra sandwiched between two silicate layers. These 

three-layer sequences are separated by an intermediate layer containing H2O, Ca
2+

 and OH
−
. 

They expressed their model in two forms, one purely dimeric, and the other incorporating both 

dimer and polysilicate chains (Fig. 1.5), where y represents the studied composition. These 

authors and later Grutzeck (1989), by means of 
29

Si-NMR spectra, described the transition 

between the two phases of C-S-H gel, tobermorite-type structure with long chains to a jennite-

type structure containing shorter chains and dimeric silicate groups with a Ca/Si ratio of 1.0. 

 

Figure 1.5. Schematic representation of C-S-H- gel structures. After Stade and Wieker’s model 

(1980). 
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Taylor (1986) proposes a model that considers that C-S-H exists as C-S-H(I) that it is 

structurally similar to 1.4 nm tobermorite and C-S-H(II) similar to jennite. These structures are 

composed of structural units derived from imperfect tobermorite and jennite, respectively. 

Accordingly, the Ca/Si ratio of C-S-H(I) varies from 0.67 to 1.5 by omission of a part of the 

bridging tetrahedra or variations in the contents of interlayer Ca and protons attached to Si-O 

units. C-S-H(II) has Ca/Si ratios between 1.5 to 2.2. Taylor (1993) described a transition phase 

between both C-S-H gels taking place at around a Ca/Si ratio of 1.5. This transition phase was 

also observed by Klur et al. (1998). Hence, the observed composition (Ca/Si = 1.7-1.8) and 

structure of the C-S-H gel in hardened C3S or Ordinary Portland Cement (OPC) pastes might be 

achieved by an intimate mix of these structural units having a mainly jennite-type structure. 

Currently this model (the T/J model) is the most accepted one for its plausibility in 

morphological terms, it is incompatible with two basic characteristics of real C-S-H: the Ca/Si 

ratio and C-S-H density (Pellenq et al., 2009). 

Glasser et al. (1987) proposed a compositional model for C-S-H derived from the 

dimeric model proposed by Stade and Wieker (1980). Their thermodynamic treatment was 

strictly only applicable to precipitated gels with Ca/Si ratio between 1.0 and 1.4. 

EDX analysis of C-S-H in hardened Portland cement pastes reveals a Ca/Si ratio that 

varies from approximately 1.2 to 2.3 with a mean value of 1.7. To account for this variability, 

Richardson and Groves (1992) proposed a model based on isolated silicate chains of variable 

length and OH
-
 content and intergrown with Ca(OH)2. This model included a two-fold 

classification to clarify C-S-H chemistry that could be interpreted from either the T/J 

(tobermorite/jennite-like structure) or T/CH (tobermorite-‘solid solution’ Ca(OH)2) viewpoints 

(Richardson, 2004). On the T/CH model the structure is a layer of CH sandwiched between 

silicate layers of tobermorite-like (solid solutions) structure whilst on the T/J model the main 

layer is formed of jennite-based structural units (as Si–O–Ca–OH) assembled with tobermorite 

regions. The model also considers the possibility that tobermorite, jennite and CH occur in the 

same system and the maximum flexibility in the possible degree of protonation of the silica 

chains (Richardson, 2008).  

The so-called layer-structure model (Richardson and Groves 1992) has been widely 

accepted, but other researchers such as Cong and Kirkpatrick (1996) and Fujii and Kondo 

(1981) argue that the occurrence of jennite-type C-S-H(II) is extremely difficult to synthesize 

and subsequently characterize and this is why they proposed a ‘defect tobermorite-like’ model 

for C-S-H, which exists as a solid solution between tobermorite and Ca(OH)2. 
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Grutzeck (1999) proposed another two-phase C-S-H model that embraces the idea that 

C-S-H consists of intergrowths of sorosilicate-like and tobermorite-like C-S-H, which describes 

the observed data better than the existing C-S-H models. Sorosilicate is not a silicate layer 

structure; it is comprised of columns of dimers (Si2O7)
6-

 ions surrounded by chains of 

octahedrally coordinated CaO which hold the structure together. Also, the sorosilicates normally 

contain rather large cavities in 2D that form channels in 3D that can host water molecules, Ca
2+

, 

OH
-
 and possibly other ions as well. 

Nonat and Lecoq (1998) proposed another different model based on equilibrium data 

obtained from both CaO–SiO2 mixes and fully hydrated C3S samples in solution in which the 

lime concentration is maintained constant. The model is also based on a tobermorite-like 

structure and applicable to a whole range of Ca/Si (from 0.66 to 2). However, this model does 

not assume a disordered structure and the layers would not contain jennite-like regions. To 

reach high Ca/Si values the model assumes that most of the interlayer crystallographic sites of 

the tobermorite model are occupied by calcium ions balanced by OH- in interlayer positions 

(Richardson, 2008). Klur et al. (1998) obtained clear evidences of a transition phase at Ca/Si 

ratio of 1.5 and propose three types of C-S-H gel: C-S-H () for Ca/Si ratio below 1, C-S-H () 

for Ca/Si ratio between 1 and 1.5 and C-S-H () for Ca/Si ratio larger than 1.5. 

Later, Nonat (2004) proposed a model based on the preceding structural model. 

According with this model, the main layer of C-S-H consists of a silicate dimeric unit charge 

balanced by two calcium ions and the two free extremities bear two protons, Ca2H2Si2O7. Two 

successive dimeric units may be bridged by a silicate tetrahedron and Ca(OH)2 units may be 

accommodated in place of missing bridging tetrahedra. 

Kalliopi (2004) compiled the latter models of cement gel structure that describe the 

nanostructure of C-S-H gel and its porosity. These models were proposed by Powers and 

Brownyard (1948), Feldman and Sereda (1970), Wittmann (1977) and Jennings and Tennis 

(1994). The first two are based on a layered structure for the C-S-H gel, while another are based 

on a colloidal model (Fig. 1.6). 

Powers and Brownyard (1948) proposed a model commonly known as Power Model 

supported by water adsorption test. According to the model, C-S-H gel is composed of particles 

with a layered structure of thin sheets, made of two or three layers randomly arranged and 

bonded together by surface forces. The C-S-H layers are separated by a maximum average 

distance of 3 nm and a minimum average distance of 0.4 nm. The model theorized that the loss 

of water is irreversible. Feldman and Sereda (1970) proposed that the sheets composing the C-

S-H gel do not have an ordered layered structure creating a interlayer space with different 
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shapes and sizes (between 0.5 and 2.5 nm), and these layers may come together by means of 

Van der Waals forces. Water can be adsorbed in the solid surface or being like interlayer water 

associated with the C-S-H structure. They also suggest the irreversibility of loss of water during 

the adsorption and desorption processes.  

On the other hand, Wittmann (1977) proposed the so-called Munich model, which is 

based on concepts of colloidal science. This model describes the C-S-H gel structure as a three 

dimensional network of amorphous colloidal particles, called a xerogel. The particles are held 

together by chemical bonds as well as Van der Waals bonds. Finally, the Jennings-Tennis model 

(Jennings and Tennis, 1994) is made up of basic building blocks formed of spheres that group 

together to form globules of 5 nm in diameter. The internal structure of the spheres is layered 

similarly to the Taylor model. The model considers two types of C-S-H gel, one with lower 

density (LD) and the other with higher density (HD). The structure is fractal and the model 

defines the size, density and packing efficiency of each of the mentioned structures (Chatterjee, 

2004). 

 

Figure 1.6. Schematic representation of C-S-H models (after Kalliopi, 2004). a) Powers and 

Brownyard (1948); b) Feldman and Sereda (1970); c) Wittmann (1977); d) Jennings and Tennis 

(1994). 
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1.5.1.4 Morphology of C-S-H gel 

There are two types of hydration products (Taplin, 1959): the ‘inner’ products (Ip) 

which lie within the original boundaries of the clinker particles, and the ‘outer’ products (Op) 

which lie ‘outside’ the original grain boundaries”. Later, Thomas et al. (2004), by means of 

SANS identified and classified these two types of C-S-H as HD and LD, respectively. 

Inner product (Ip C-S-H) has a compact and homogeneous morphology at the fine-scale. 

The pores in Ip product are smaller than 10 nm and it appears to consist of aggregates of small 

globular particles 4-6 nm in diameter. The Op C-S-H present in hardened C3S or OPC pastes 

has a fibrillar and directional morphology. This morphology is a function of space constraint: 

when it forms in large pore spaces, the fibrils form with a high length to width aspect ratio 

(which will be referred to as coarse fibrillar); in smaller spaces, it retains a directional aspect but 

forms in a more space-efficient manner (fine fibrillar). The space between the fibrils of Op C-S-

H forms a three-dimensional interconnected pore network commonly known as the capillary 

porosity. The Op present in a hardened C3S paste presents a coarse fibril about 100 nm wide, 

which appears to consist of a large number of long thin particles aligned along their length. But 

the Op C-S-H present in neat PC pastes typically has a finer morphology (Taylor, 1993; 

Richardson, 2004). 

1.5.1.5 Synthesis of C-S-H gel 

There are several successful methods to synthesize C-S-H gel that differ basically in the 

selected starting materials and in the Ca/Si ratio and structure obtained in the synthesized C-S-H 

(Fuji and Kondo, 1981; Cong and Kirpatrik, 1996; Nonat and Lecoq, 1988; Chen et al., 2004). 

It is possible to obtain a disordered variety of C-S-H gel, like that present in hydrated 

cement and concrete, from the hydration of tricalcium silicate and dicalcium silicate (Garrault 

and Nonat, 2001). The hydration reactions of the cement can be considered a complex process 

of dissolution-precipitation of the phases present in the cement. In the particular case of 

hydration of C3S or C2S, system development is simple in comparison with that of cement, 

because the system presents only two components, the C-S-H gel and CH, although some grains 

of non-hydrated C3S or C2S could be present depending on the degree of hydration (Costolla et 

al., 2008). After a few hours of hydration, the aqueous ionic phase formed is saturated in CH 

and then starts to nucleate and precipitate. The grains of C3S start to be surrounded by a layer of 

C-S-H gel that grows with time. Both Ip and Op products form. The difference between this gel 

and the gel present in the cement is in how CH precipitates. In cement, CH grows with a 

variable shape and is deposited throughout the matrix, while in C3S hydration CH grows in 
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clusters that nucleate in the capillary pores and on the semi-hydrated C3S grains, randomly 

stopping or decelerating the reaction (Gallucci and Scrivener, 2007). 

C3S is prepared according to the conventional solid-phase reaction from reagent-grade 

CaCO3 and high-purity silica gel (reaction 1.1). The mixture is heated at high temperatures, e.g. 

slightly exceeding 1420 ºC (Harris et al., 2002) or 1500 ºC for 24 hours (Rodger et al., 1988). 

However, Thomas et al. (2004) synthesized C3S using a 3:1 mixture by mass of CaO and SiO2 

powder at 1430 ºC without liberation of CO2 (reaction 1.2). 

3𝐶𝑎𝐶𝑂3 + 𝑆𝑖𝑂2
∆𝑇
→ 𝐶𝑎3𝑆𝑖𝑂5 + 3𝐶𝑂2 

Reaction 1.1 

3𝐶𝑎𝑂 + 𝑆𝑖𝑂2
∆𝑇
→ 𝐶𝑎3𝑆𝑖𝑂5 

Reaction 1.2 

The process is repeated 3 times. In the first step most of the CO2 is liberated. To 

facilitate the overall process, the sample is not pressed into discs. At the second and third 

burnings, samples are quenched to room temperature, ground to powder, and then pressed into 

discs to enhance homogeneity. The final product is ground to powder with different particle 

sizes, e.g. 45 m (Chen et al., 2004) or ca. 10 m (Garrault et al., 2006). It is possible to 

monitor the whole process by XRD to ensure the reaction is complete. 

Hydrated C3S pastes are prepared with deionized water (reaction 1.3), with a water-to-

solid mass ratio of 0.5 at room temperature to obtain C-S-H gel according to the following 

idealized reaction (Chen et al., 2004).  

2𝐶𝑎3𝑆𝑖𝑂5 + 7𝐻2𝑂 → 𝐶𝑎3𝑆𝑖2𝑂3(𝑂𝐻)8 + 3𝐶𝑎(𝑂𝐻)2 Reaction 1.3 

Samples are manually mixed and poured in vials. All the processes are carried out under 

a CO2-free atmosphere in a glove box. According to Chen et al. (2004) and Thomas et al. 

(2004), after 3 days the hardened pastes are demolded and stored in a CH-saturated solution. 

Pastes are hydrated for approximately 8 months at 22 ± 1ºC (Chen et al., 2004) or from 3.5 to 6 

months (Thomas et al., 2004). Once hydration is completed the samples are dried by D-drying 

(vacuum drying to the equilibrium vapor pressure above ice at –79˚C (194 K) (Chen et al, 2004) 

or pouring propanol upon the paste and dried in vacuum desiccators (Rodger et al., 1988). 

Using the stoichiometry of C-S-H proposed by Kulik and Kersten (2001), the hydration 

of C3S can be written as  

2𝐶𝑎3𝑆𝑖𝑂5 + 4𝐻2𝑂 → 𝑆𝑖𝑂2 ∙ 1.67𝐶𝑎3(𝑂𝐻)2 ∙ 𝐻2𝑂 + 1.33𝐶𝑎(𝑂𝐻)2 Reaction 1.4 
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This is the reaction assumed in the present work. The Ca/Si ratio of the C-S-H is 1.67 

that is close to the mean value measured in the C-S-H gel present in the cement pastes. 

Likewise, C-S-H gel can also be obtained from hydration of highly reactive C2S- 

(reaction 1.5; Cong and Kirkpatrick, 1996): 

2𝐶𝑎2𝑆𝑖𝑂4 + 5𝐻2𝑂 → 𝐶𝑎3𝑆𝑖2𝑂3(𝑂𝐻)8 + 𝐶𝑎(𝑂𝐻)2 Reaction 1.5 

After C3S hydration, a hardened paste containing two products (C-S-H gel and CH) is 

produced (reactions 1.3 or 1.4). The C-S-H gel shows a more disordered structure than C-S-H(I) 

and C-S-H(II). Based on these observations and the measured variations in Ca/Si ratio, together 

with selected area electron diffraction patterns, thermogravimetric curves and density 

measurements, Chen et al. (2004) concluded that the structure of the obtained C-S-H gel is a 

mixture of tobermorite and jennite-like structures where that of jennite is dominant. 

Determination of the content of CH and residual C3S by XRD and microanalyses using 

Electron Microprobe and TEM indicates a Ca/Si ratio of C-S-H gel of 1.7-1.8 (Taylor, 1986; 

Richardson, 1999; Costoya, 2008), which is the Ca/Si ratio of C-S-H in fresh Portland cement 

paste. 

There are some other routes to synthetize C-S-H (Table 1.2): (1) from the reaction of 

silica and calcium hydroxide (portlandite) solution (Atkinson et al., 1989; Martínez-Ramírez 

and Blanco-Varela, 2008; Garrault-Gauffinet et al., 1999; Lesko, 2001; Plassard et al., 2004; 

Chen et al., 2004; Greenberg and Chang, 1965; Sugiyama, 2008; Fujii and Kondo, 1981) to 

obtain an imperfect version of 1.4 nm tobermorite (C-S-H(I)) with Ca/Si ratio from 0.41 to 1.85 

(Cong and Kirkpatrick, 1996). This synthesis is also used by Labbez (2007) to obtain a C-S-H 

of Ca/Si ratio = 0.66. (2) Mechanochemical and hydrothermal methods are very useful to obtain 

C-S-H with a wide range of Ca/Si ratios between 0.2 and 2 (Mitsuda et al., 1986; Ishida et al., 

1992a; Ishida et al., 1992b; Okada, 1994; Sasaki et al., 1996; Saito, 1997; Singh et al., 2002; 

Black et al., 2006; Black et al., 2008;).  

 

 

 

 

 



17 
 

Table 1.2  Methods and starting materials to synthesize C -S-H with different Ca/Si 

ratio (after Chen et al., 2004) .  

 

 

1.5.1.6 C-S-H solubility 

To predict the long-term behavior of cement-based systems in contact with an aqueous 

phase is essential to know the solubility of the C-S-H gel. The thermodynamic modeling of C-S-

H solubility started with the use of empirical or semi-empirical models and evolved to the 

application of solid-solution models. Different models for the solubility of C-S-H gel have been 

proposed, mostly based on solubility data of the CaO-SiO2-H2O system. The present section is 

based on the literature review of thermodynamic description of the solubility of C-S-H gel in 

hydrated Portland cement (Soler, 2007). 

Jennings (1986) and Gartner and Jennings (1987) compiled experimental C-S-H 

solubility data and made a diagram ([SiO2]vs.[CaO]). All the measurements were matched using 

two curves, A and B, which were calculated according to an equilibrium formation initially 

developed by Fujii and Kondo (1981). The lower curve A was interpreted as corresponding to a 

tobermorite-like phase (C-S-H(I). The Ca/Si ratio of the C-S-H ranged from 0.8 to 1.3. The 

upper curve B was interpreted as corresponding to a mixture of tobermorite-like and jennite-like 

phases (C-S-H(I)-C-S-H(II)) (Fig. 1.7).  
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Figure 1.7. C-S-H solubility data on a [SiO2] vs. [CaO] plot. After Jennings (1986). 

 

Reardon (1990, 1992) formulated an empirical solubility model based on the 

experimental data compiled by Jennings (1986) to obtain the curve A. The model is applicable 

over a Ca/Si range from 0.9 to 1.7. The basis of the model is the empirical fitting of the 

solubility of C-S-H as a function of the solution composition. 

Atkinson et al. (1989) formulated a non-ideal solid solution model to describe the 

solubility of C-S-H based on experimental data from their own data and data from Greenberg 

and Chang (1965), whose experimental data indicate that the phase diagram (Figs. 1.8 and Fig. 

1.9) can be split into three subsidiary regions: (i) Ca/Si ≥ 1.8, (ii) 0.8 ≤ Ca/Si ≤ 1.8, and (iii) 

Ca/Si ≤ 0.8. This zone corresponds to a different solid solution (a different C-S-H). 
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Figure 1.8. Total calcium in aqueous solution in equilibrium with solids in the CaO – SiO2 – H2O 

system at 25°C as a function of the Ca/Si atom ratio in the solids. The curves are computed from 

thermodynamic modeling and the points correspond to experimental data. The curve labelled Model 

 is a variant of the same model. After Atkinson et al. (1989). 

  

Figure 1.9. Total silica (a) and pH (b) in aqueous solution in equilibrium with solids in the CaO – 

SiO2 – H2O system at 25°C as a function of the Ca/Si atom ratio in the solids. The curves are 

computed from thermodynamic modeling and the points correspond to experimental data. The curve 

labelled Model  is a variant of the same model. After Atkinson et al. (1989). 
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Also, Berner (1988, 1990, 1992) formulated an empirical model based on 

thermodynamic considerations of non-ideal solid solutions and was used to predict the 

behaviour of cement structures which degrade in groundwater, including the chemical evolution 

of their pore water. This model reproduces a lot of solubility data for the C-S-H-water system in 

a satisfactory manner and in a whole range of possible C-S-H-gel compositions. It takes into 

account the incongruent solubility behaviour of C-S-H-gel, thermodynamic properties and their 

solubility products, which depend on the Ca/Si ratio of the C-S-H. 

Later, Kersten (1996) proposed a non-ideal binary solid solution Ca(OH)2-

CaHSiO3.5·1.5H2O to describe C-S-H solubility, based on the experimental data from Greenberg 

and Chang (1965) and Fujii and Kondo (1981).  

Börjesson et al. (1997) formulated a non-ideal solid solution model based on C-S-H 

solubility data from Kalousek (1952). The end-members are Ca(OH)2 and CaH2SiO4 for 1 < 

Ca/Si ≤ 1.43. For 1.43 < Ca/Si ≤ 1.7, equilibrium with respect to portlandite is forced in the 

model.  

Afterward, Rahman et al. (1999) formulated a non-ideal solid solution model very 

similar to the model proposed by Börjesson et al. (1997), based also on C-S-H solubility data 

from Kalousek (1952). The end-members of this solid solution are Ca(OH)2 and CaH2SiO4. For 

1 < Ca/Si ≤ 1.5, only the Ca(OH)2–CaH2SiO4 solid solution is applied. For Ca/Si > 1.5 

equilibrium with respect to portlandite is forced in the model due to the saturation concentration 

of total Ca in solution for portlandite. The solubility results predicted by the proposed model are 

comparable with experimental data. 

Later, Kulik and Kersten (2001) described the solubility of C-S-H system with two ideal 

C-S-H(I) (SiO2-tobermorite) and C-S-H(II) (tobermorite-jennite) binary solid solution phases. 

Equilibrium with respect to portlandite is also added for Ca/Si > 1.7-1.8. The experimental data 

from Greenberg and Chang (1965) was used to calibrate the model, which is applicable to a 

wide range of Ca/Si ratios of the C-S-H. Figure 1.10 shows a comparison between model and 

experimental data. 
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Figure 1.10.  (a) Ca concentration, Si concentration and pH vs. Ca/Si ratio of the solid. Points are 

experimental data (Greenberg and Chang, 1965). Lines correspond to model calculations. Dotted 

and dashed lines correspond to different variants of the model. (b) Mole fractions of the end-

members of the two solid solutions as a function of the Ca/Si ratio of C-S-H. The presence of 

portlandite is indicated by a horizontal line (out of scale). After Kulik and Kersten (2001). 

 

The model included an explicit dependence of temperature (log K = a + b/T + c lnT) 

argued to be valid from 0 to 50 °C.  

Harris et al. (2002) studied the leaching of synthetic C-S-H gels in demineralised water 

in static dissolutions. The results demonstrated that the initial stages of the dissolution of C-S-H 

gels in demineralised water are apparently incongruent decreasing the pH between 12.5 to 10.5, 

followed by an approach to congruent behavior where the pH remains constant around 10.5. In 

the same year, Gérard et al. (2002) elaborated a solubility diagram, with the data compiled by 

Berner (1992), representing the Ca/Si ratio of the hydrated phases against Ca in solution. In the 

diagram the author differentiates three stages: dissolution of portlandite up to 20 mmol/L of 

aqueous Ca; gel decalcification and leach of alkalis (between 2 and 20 mmol/L of aqueous Ca). 

Finally, dissolution of the gel (below 2 mmol/L of aqueous Ca), which becomes rich in Si.  

Carey and Lichtner (2006, 2007) proposed a non-ideal binary solid solution (SiO2 – 

Ca(OH)2) to describe the solubility of C-S-H gel. The two end-members are SiO2 and Ca(OH)2. 

The model was calibrated using the experimental data from Chen et al. (2004).  

Recently, using a multi-site (sublattice) concept, Kulik (2011) revised the 2001 ideal 

solid solution model of C-S-H to make it consistent with the Richardson–Groves structural 

model of C-S-H and with the modern interpretation of spectroscopic (
29

Si MAS NMR) and 

solubility data. According to the author, consideration of two site substitutions, (1) coupled 
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H2OCa
2+

 for SiO2H2
2+

 replacement in bridging tetrahedral and adjacent interlayer sites, and (2) 

substitution of interstitial Ca(OH)2 for a vacancy, leads to a new C-S-HQ model of (A,B) 

(C,D)X type composed of two tobermorite-like and two jennite-like end members. Because this 

ideal sublattice SS model cannot fit solubility data well at 0.8 < Ca/Si < 1.1, a simpler C-S-H3T 

model is constructed from a polymeric TobH (CaO)2(SiO2)3(H2O)5, a dimeric T2C 

(CaO)3(SiO2)2(H2O)5, and an ordered pentameric T5C (CaO)2.5(SiO2)2.5(H2O)5 tobermorite-like 

end members. This solid solution model, limited to the range 0.67 < Ca/Si < 1.5, has a correct 

built-in dependence of the mean silicate chain length on Ca/Si and yields quite realistic fits to 

the solubility data, providing a basis for extensions with foreign cations whose sites in the 

defect-tobermorite structure of C-S-H are known. To account for C-S-H compositions with 

Ca/Si > 1.5, C-S-HQ end members were downscaled to one tetrahedral site and used within the 

simple mixing model. Despite some loss of structural consistency, the solubility and mean 

silicate chain length data can be reproduced well with this downscaled C-S-HQ model, capable 

of temperature corrections and dependencies of density and water content in fully-hydrated C-S-

H on Ca/Si ratio. 

In this Thesis, the Kulik and Kersten (2001) model will be applied in the study of the 

kinetics of C-S-H dissolution since it provides the necessary C-S-H gel thermodynamic 

parameters (e.g., solubility data of the discrete C-S-H gel composition, logK-T dependence, 

etc.) 

1.5.2 SANS/USANS theoretical background 

In recent years, considerable research on cement degradation has been conducted to 

understand the relevant mechanisms governing this complex process. To satisfy such 

demanding research different methodologies and techniques have been applied. A common 

methodology used for its simplicity are the laboratory leaching experiments (i.e., closed 

systems) to study the effect of decalcification on the C-S-H microstructure and cement 

mechanical properties (Carde et al., 1996; Thomas et al., 1998, 2004; Ulm et al., 1999; Allen 

and Thomas, 2007; Gonzalez-Teresa et al., 2010). Among the techniques used to study the 

cement and concrete structures, SANS and Ultra-small Angle Neutron Scattering (USANS) are 

particularly useful for investigating porous structures like C-S-H gel, given that the amorphous 

nature of C-S-H renders diffraction ineffective. In addition, specimens can be studied in their 

natural saturated state, thus avoiding complications associated with drying the C-S-H gel (Allen 

et al., 2007). 

 



23 
 

a)

b)

1.5.2.1 SANS technique  

SANS is a technique of choice for the characterization of structures in the nanoscale 

size range (Hammouda, 1995). This covers structures from the near Angstrom to the near 

micrometer sizes. The small angles are typically from 0.2° to 20 ° and cover two orders of 

magnitude in two steps. A low-Q configuration covers the first order of magnitude (0.2° to 2°) 

and a high-Q configuration covers the second one (2° to 20°). A coherent collimated beam of 

neutrons passes through a thin specimen (2 mm thickness) where distance between the detector 

and the sample is bigger than the distance between the dispersive centres (Fig. 1.11).  

 

Figure 1.11. Schematics of the SANS technique (it is not to scale) and (b) schematics of a 30 m SANS 

instrument at NIST. After Hammouda (2010). 

This fact provokes that a small fraction of the beam may be elastically scattered out of 

the incident beam direction by a small angle due to interfaces between the microstructural 

inhomegeneities within the sample (outer-product C-S-H gel particles and other features like 

CH crystals including pores) (Bumrongjaroen et al., 2009; Thomas et al., 1998b). The scattering 

variable is defined as Q = (4π/λ) sin(θ/2) where λ is the neutron wavelength and θ is the 

scattering angle. At small angles, Q is considered to be Q = 2πθ/λ. 

The scattered neutron intensity (I (Q)) is registered, which is essentially a Fourier 

transform of the microstructure, as a function of the scattering angle , and plotted against the 

scattering vector Q (Fig. 1.12) 



24 
 

Porod

Surface Fractal Volume Fractal

Surface Area

)()()( QSQP
V

N
QI   Eq. 1.1 

where N/V is the number density of the scatter centres, P(Q) is the form factor that 

describes the scattering from a single particle, which strongly depends on its size and shape, and 

S(Q) is the structure factor containing all of the information about the spatial arrangement of the 

particles relative to an arbitrary origin, i.e. the correlations (Allen, 1991). 

SANS thus provides a quantitative estimate of the fractal aspects of the microstructure, 

such as particle size, shape, surface area, and fractal properties. In general, the scattering from 

fine microstructure features occurs at relatively large scattering angles or Q values (SANS) and 

the coarse features occur at small Q (USANS). The upper-limit in Q for obtaining data from 

hydrating cement is about 2 nm
-1

, due to the decrease in SANS intensity with increasing Q 

(Thomas et al., 2010). The fractal model (Allen and Thomas, 2007) (Eq. 1.9) is applied over the 

SANS Q range (Q> 0.035nm
-1

). The model does not fit well to SANS data for Q < 0.035nm
-1

 

because other non-fractal microstructure component dominates the scattering at length scales 

above 0.1 m like micrometer-scale Ca(OH)2 (Allen and Thomas, 2007). 

 

Figure 1.12. Experimental SANS I(Q) data versus Q for the unreacted C-S-H gel of this 

study. 
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1.5.2.2 The concept of a fractal 

In Euclidean geometry, forms are grouped into lines, surfaces and volumes. Each of 

them has a characteristic number of dimensions to describe it: lines have one dimension, 

surfaces have two dimensions and volumes have three dimensions. Also they are considered to 

be smooth and well defined (Winslow 1985).  

Irregular forms occurring in nature cannot be described by simple Euclidean ones. For 

example, the irregularities present in the surface of a hydrated cement grain. These irregularities 

observed to higher magnification reveal that they are composed at the same time of a series of 

additional, irregular features. When these irregularities continue to all levels of magnification 

and appear to be exactly or approximately similar to a larger viewer at a lesser magnification 

(concept of self-similarity), it is considered fractal geometry. The fractal geometry is divided 

into the same categories as Euclidean geometry: lines, surfaces and volumes with the difference 

that the dimensions can have non-integer numbers. Then, an irregular surface (fractal surface) 

with a fractal dimension of 2.4 is more irregular than one with a dimension of 2.2 and of course 

more irregular than an Euclidean smooth surface.  

However, the self-similarity present in the fractals needs not to be extended over all 

ranges of magnification. There are scale limits of fractality above or below which the self-

similarity ceases and where geometry may be considered to be Euclidean. 

1.5.2.3 Models to interpret the C-S-H gel structure 

Previous SANS studies combined with other structure-characterization results (e.g., 

from Transmission Electron Microscopy (TEM)) show that C-S-H gel has fractal-scaling 

characteristics (Allen, 1991). It is described as aggregates of nanometric particles that package 

in a fractal manner (the distribution of microscopic details is similar to that of macroscopic 

ones) (Fig. 1.13). In physic-chemical studies two main types of fractals are essentially 

encountered: mass fractal and surface fractal (Zarzycki, 1987). 
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Figure 1.13. Fractal multiple cluster like an example of fractal structure where the big sphere is 

filled with 13 small spheres. At the same time, the small spheres are also filled with 13 minispheres. 

After Zarzycki (1987).  

The mass of the fractal structure (or volume fractal) is typically represented by colloidal 

aggregates of individual particles size, which form clusters of size R. The mass of these fractal 

particles and the surface area increase more slowly with R than for a dense solid particle. 

However, the density decreases with R (Jennings et al., 2007; Zarzycki, 1987) being a typical 

behavior for a fractal structure. The surface fractals are characterized by a roughness of the 

interface (Fig. 1.14). 

 

Figure 1.14. a) Smallest fractal unit of ∼ 5 nm globules of C-S-H. b) the fractal structure has grown 

with a reduced packing density. c) uniform structure of C-S-H gel. After Jennings et al., (2007). 
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For an object with fractal geometry, SANS-USANS can be used to determine the fractal 

dimension and the nature of fractal morphology at large scale and these can be quantified 

through application of a fractal microstructure model (Allen et al., 1987; Jennings, 2000). This 

model considers spheroidal C-S-H particles with fixed aspect ratios that can be varied from 0.5 

(oblade) to 2 (prolate). But the size and the shape of the particles is a matter of active research. 

Based on these observations and on a previous Jennings-Tennis model (1994), Jennings (2000) 

described a “colloid” model, so-called Colloidal Model I (CM-I), to explain the nanostructure of 

C-S-H (1 to 100 nm) from SANS measurements of density, pore size distribution and surface 

area (SSA). The model predicts that the smallest unit of C-S-H is a small tobermorite-like or 

jennite-like particle that has a radius of 1.2 nm (BBB-Basic Building Blocks). These 

fundamental units are packed together irregularly into structures called globules with a radius of 

2.5 nm approximately (Jennings, 2000) (Fig. 1.15). The existence of these gel globules of 5 nm 

in diameter was confirmed by TEM images in the inner C-S-H gel product (Allen, 1991). The 

density of the smallest units is fixed to values close to 2.8 g cm
-3

 and the density of the globules 

is between 2.0 to 2.4 g cm
-3

 depending on the “intra-globular” water content. Later, Jennings et 

al. (2007) showed more exact calculations for the size of the smallest units, which are 4.4 nm in 

diameter. This fractal structure is bounded internally by a coarse system of capillary pores.  

At larger scale, the globules pack together to form a dense volume fractal structure with 

two distinct densities: LD and a HD C-S-H gel that differ only in the porosity (Fig. 1.15). The 

density for the LD ranges from 1.440 to 2.013 g cm
-3

 and from 1.750 to 2.195 g cm
-3

 for the 

HD. The model CM-I makes good estimations of the surface area of the C-S-H units. The model 

assumes that the 5 nm gel globules are the fundamental building blocks of an aggregated Op 

product phase, that the Ip product is more compacted and gives very little scattering and the 

large features such as anhydrous clinker cores and CH add a Q
-4

 Porod scattering component. 

CM-I was recently refined (Colloid Model II (CM-II) (Jennings, 2008)) incorporating new 

values of density (2.6 g cm
-3

), composition (C1.7-S-H1.8) (Allen and Thomas, 2007) and globule 

size (4.2 nm) (Jennings, 2008). However, several questions remain unanswered about the C-S-H 

nanostructure. For example, it is still unclear how tobermorite-like structure crystals can 

reorganize to form the basic building blocks of the colloidal models. Another open question is 

why HD C-S-H seems to be invisible to SANS measurement. Finally, there is a lack of 

knowledge concerning the effect of the colloidal packing on the appearance and disappearance 

of short-range ordering. 

 



28 
 

a) b)
 

Figure 1.15. Schematic representation of the C-S-H gel: low-density (LD) C-S-H (a) and high-

density (HD) C-S-H (b). After Jennings (2000). 

 

1.5.2.4 SANS data analysis 

The neutron scattering produced by the interaction with the structure can be 

mathematically explained by non-integral power laws with respect to the scattering vector Q 

(Allen, 1991). 

Power laws 

Three different scattering models or approximations for interpreting the data within the 

whole Q range, obtaining microstructural parameters of interest by means of standard plots and 

characteristics slopes and intercepts, are briefly described here. They are the Guinier 

approximation for well-defined discrete inhomogeneities, the Porod scattering Law for 

determining the surface area (Sv) and the volume-fractal structure and surface-fractal structure 

model to determine the volume fractal exponent (Dv) and the volume fractal scaling exponent 

(Ds). 

 Guinier Law 

The Guinier law applied at the low Q range (0.8-1.2 nm
-1

) where QRg ≤ 1 for diluted 

systems. In this range, scattering from much larger particles like C-S-H gel particles is 

measured, for which it is possible to calculate the size of individual scattering objects (Guinier 

and Fournet, 1955). The intensity of scattering is related with the radius of gyration (Rg), 

associated with the size and shape of the particles. For the particular case of spheres or radius R, 

Rg is related with the radius of individual particles by means of R = (5/3)
1/2

Rg, yielding: 
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The presence of a linear stage in the limits of low Q for Ln I(Q) vs. Q
2
 informs about 

the existence of scattering centers with well-defined sizes. Otherwise, the absence of this linear 

zone informs of the polidispersity in size of the scattering centers. 

 Surface-fractal and Volume-Fractal (or mass fractals) structure.  

The analysis of intensity versus Q at higher values of Q means to check how the matter 

of the scattering centres fulls the volume. The surface fractal regime is associated with 

deposition of hydration products (C-S-H Op) onto the originally smooth surface of the cement 

clinker grains. While this structure co-exists with the volume-fractal, the scattering associated 

with it is only observable at lower Q, below 0.002 nm
-1

. The surface fractal dimension, DS, may 

be determined from the gradient of a log-log plot of I against Q where is characterized by non-

integral power law (dΣ/dΩ  Q
-(6-Ds)

) and may vary between 2 < DS < 3 for non-smooth surfaces. 

A steeper power law of Q
-3.2

 is observed for Q < 0.15 nm
-1

 and this is believed to be 

associated with surface fractal behavior, arising from the deposition of C-S-H gel on the 

clinker/pore boundary and roughening as water intrudes to form the Ip (Thomas et al., 2004). Ds 

value close to 2 implies a smooth surface (Mazumder et al., 2002). 

The surface-fractal component is associated with two surface area values: a smooth 

surface area So (m
2
cm

-3
) and rough surface area per unit paste volume (SSF; m

2
cm

-3
) that are 

related as: 

2

0 exp















sD

c

s
sf

R
SS


 Eq. 1.3 

where Rc is the correlation-hole radius (Å), that is the minimum center-to-center 

distance between particles, and ξS is the correlation length (Å). 

The volume-fractal regime is a relatively high Q range (0.002 - 0.01 nm
-1

). The 

scattering is produced by packing of primary C-S-H gel particles. It is characterized by the non-

integral power law dΣ/dΩ  Q
-Dv

, for 1 < DV < 3 (usually 2 to 3) in the case of C-S-H gel. In the 

case of LD and HD C-S-H gel (Figs. 1.14 and 1.15), the fractal exponent can be calculated 

considering that the spheres are filled with 13 globules (Fig. 1.13). Then, D is defined as D = 

lim (LnN()/Ln(1/)) where N() is the number of the parts which divides the sphere, and l is 
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the globule that it is possible to observe in the diameter of the big sphere. Hence, D equals to 

2.33 (Zarzycky et al. 1987) and is close to the value 2.5-2.7 reported by Thomas et al. (2008). 

The amount of cement paste volume that may be occupied by the volume-fractal C-S-H 

morphology (C-S-H; LD C-S-H gel without the gel pores) and the gel pores is given by MAX 

𝜙𝑀𝐴𝑋 = 𝜙𝐶−𝑆−𝐻 (
𝜉𝑉
𝑅𝑐
)
3−𝐷𝑉

 Eq. 1.4 

where ξV is the correlation length(Å). The ratio C-S-HAX provides a measure of the 

overall C-S-H particle packing density. 

The volume-fractal component is quantified in terms of the surface area of the volume-

fractal component per unit volume of paste (SVF), which is defined as SVF = ST-SSF (Allen et al., 

2007; Livingston, 2009). 

 Porod Law 

The Porod law applied at the Q range from 0.01 to 0.02 nm
-1

, i.e. the Porod Regime. 

The total internal surface area, ST, can be determined. The equation of intensity for this region 

of Q’s can be expressed as: 

𝐼 =
𝐶𝑝

𝑄4
+𝐵𝐺𝐷 Eq. 1.5 

𝐶𝑝 = 2𝜋|∆𝜌|
2𝑆𝑇 

Eq. 1.6 

|∆𝜌|2 = (𝜌𝐶−𝑆−𝐻 − 𝜌𝐻2𝑂)
2

 
Eq. 1.7 

where Cp is the Porod constant (Å
-5

) that is the constant of proportionality for the Porod 

scattering, BGD is the background intensity caused by incoherent flat background scattering and 

2
 is the scattering contrast. The scattering contrast is the parameter that measures the intrinsic 

strength of the neutron scattering interaction between the two phases: C-S-H gel and H2O. For 

the system C-S-H gel and CH, the surface area is that between the C-S-H gel and the pore H2O 

with small contributions of CH. 

The C-S-H and H2O are the neutron scattering length densities of C-S-H and water, 

respectively, that give an idea of the scattering capacity of a compound. This parameter is 

calculated from the density and the chemical composition of each phase using published tables 
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for the bound coherent scattering length (bi) of the different atoms of the compound with the 

following expression (Thomas et al., 1998a):  

M

xb
N ii

Ab


   Eq. 1.8 

where  (g cm
-3

) is the density of the compound, NA is the Avogadro number, M (g mol
-

1
) is the molecular weight, bi (cm

-1
) is bound coherent scattering length (each atom’s capacity to 

scatter neutrons) and xi is the stoichiometric index. For the C-S-H gel phase the composition and 

the density are not known a priory because it is not known how much water should be included 

in the structure. For this, the contrast matchpoint method (Thomas et al., 2010) and the 

exchanges between H2O and D2O are used. 

The linear fit of the data in the Porod regime plotted as IQ vs.Q
4
 yields Cp as the 

intercept at Q
4 
= 0 and BGD as the slope of the fitting. Large features, such as anhydrous clinker 

cores and Ca(OH)2 crystals, simply add a Q
-4

 Porod scattering component. The Porod 

approximation is applied for coherent data (background substracted) to obtain a direct 

measurement of the total internal surface area (ST) as Cp is obtained (Thomas et al., 1998a).  

SANS model to characterize the C-S-H gel structure 

The full fractal model combines a mass or volume fractal scattering term, attributed to 

the Op between the grains, and a surface-fractal scattering term, attributed to Op deposited at 

the clinker grain boundaries and on inert surfaces, such as those of micrometer scale Ca(OH)2 

crystallites. Nonetheless, the surface fractal may include some inner product formed 

topochemically (Fig. 1.14). The full expression of the model is (Bumrongjaroen et al., 2009): 

𝐼(𝑄) = ∅𝐶−𝑆−𝐻𝑉𝑃∆𝜌
2 {
𝜂𝑅𝐶

3

𝛽𝑅0
3 (
𝜉𝑉
𝑅𝐶
)
𝐷𝑉

×
𝑠𝑖𝑛[(𝐷𝑉 − 1)𝑎𝑟𝑐𝑡𝑎𝑛(𝑞𝜉𝑉)]

(𝐷𝑉 − 1)𝑞𝜉𝑉[1 + (𝑞𝜉𝑉)
2]
(𝐷𝑉−1)
2

+ (1 − 𝜂)2}𝐹2(𝑞)

+
𝜋𝜉𝑆

4∆𝜌2𝑆0𝛤(5 − 𝐷𝑆)𝑠𝑖𝑛[(3 − 𝐷𝑆)𝑎𝑟𝑐𝑡𝑎𝑛(𝑞𝜉𝑆)]

[1 + (𝑞𝜉𝑆)
2]
(5−𝐷𝑆)
2 𝑞𝜉𝑆

+ 𝐵𝐺𝐷 

 

 

Eq. 1.9 

where the most important parameters are summarized in Table 1.3. 
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Table 1.3  Parameter definitions for the fractal microstructure model (Eq.1.9).  

Parameters 

C-S-H Volume fraction of solid C-S-H gel globules within the entire specimen volume penetrated 

by the neutron beam. It is essentially a measure of the amount of LD C-S-H (without gel 

pores) in the paste. 

𝑉𝑃 Volume of a single C-S-H globules. (Vp= 4πβR0
3
/3) where  is the particle aspect ratio. 

𝑅𝐶 Correlation-hole radius. Is the minimum center-to-center distance between C-S-H globules. 

𝑅0 The radius of the building block C-S-H gel globules. 

𝜂 Local packing fraction for nearest neighbour C-S-H gel globules. 

𝐷𝑉 Volume fractal scaling exponent. An intensive property of matter that offers a quantitative 

measure of the volume fractal. 

𝐷𝑆 Surface fractal scaling exponent. An intensive property of matter that offers a quantitative 

measure of the degree of surface roughness. 

V Upper-limit length scales (correlation lengths) over which volume fractal scaling apply. Is 

the maximum size up-to which a volume can be viewed as a fractal. 

S Upper-limit length scales (correlation lengths) over which surface fractal scaling apply. Is 

the maximum size up-to which a surface can be viewed as a fractal.  

𝑆0 Smooth geometric surface area on which the surface fractal microstructure is deposited. 

𝛤(𝑥) Mathematical Gamma function. 

F
2
(q) Single-particle form factor for C-S-H gel globule. 

∆𝜌2 Neutron scattering contrast factor. In this paper, the contrast factors of interest are those 

between solid C-S-H and H2O, solid C-S-D and D2O, solid C-S-H/D and H2O/D2O with 

same given H/D ratios in each, CH and H2O, CH and D2O, CH and H2O/D2O with any 

given H/D ratio. 

BGD Background intensity. 

 

With the appropriate scattering contrast, the C-S-H and Ca(OH)2 contributions to the 

scattering can be separated to apply the model to each component. The model incorporates a 

significant number (9) of adjustable parameters (Eq. 1.9). However, different terms dominate at 

different parts of the scattering curve, and hence only around three parameters are needed to 

determine the fit in any one region (Bumrongjaroen et al., 2009). A first term gives the volume-

fractal and single-globule scattering (Q range between 0.003 and 0.020 Å) and a second term 

covers the surface fractal scattering (Q range between 0.020 and 0.1 Å).  

Model fitting in the regime of volume fractal structure yields the volume fraction of 

scatterers (C-S-H), the radius of the building block particles (R0), the volume fractal exponent 

(DV), the volume-fractal correlation length and BGD, which was subtracted by Porod scattering 
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fits and is simply used to refine this subtraction when necessary. The model allows setting but 

not varying the particle aspect ratio (), the scattering contrast factor and volume filling () 

because the fit does not converge to a stable result if , BGD and R0 vary simultaneously 

(Thomas et al., 2008). In the regime of surface fractal (low Q) the model allows to fit the 

smooth surface area (So), the surface fractal exponent (DV) and the surface-fractal correlation 

length, and set but not vary the scattering contrast factor. Other three microstructure parameters 

of interest can be derived from the previous ones: the upper-limit volume fraction (MAX) that 

gives a measure of how much of the cement paste volume may be occupied by the volume-

fractal C-S-H morphology, the fractally rough surface area (SSF) and the surface fractal of the 

volume-fractal morphology (SVF). 

Curve fitting of the obtained SANS data, assuming C-S-H fractal structure, can be 

performed using the Irena-package (Ilavsky and Jemian, 2009). 

 

1.5.3 Cement properties and experimental studies on cement reactivity 

1.5.3.1 Cement composition 

Ordinary Portland Cement  

The cement is composed basically by C3S (alite ≈ 58%), C2S (belite ≈ 13%), C3A 

(tricalcium aluminate ≈ 8%) and C4AF ≈ 7%. During hydration, the silicates and aluminate 

phases that compose the Portland cement react with water and generate hydration products. 

With time these products generate a hard mass (setting) and the mechanical resistance increases. 

In general, hydrated cement consists of 40-50 wt.% C-S-H gel, 20-25 wt.% CH, 10-20 wt.% 

AFt (ettringite) and AFm (monosulfate), 10-20 wt.% pore solution and 0-5 wt.% minor 

components (NaOH, KOH, Mg(OH)2) (Berner, 1992; Taylor, 1997).  

C3S, the most unstable silicate present in the cement, and the C2S-, less reactive than 

C3S, react with water to produce C-S-H gel and CH. The C-S-H gel configures the pore 

structure of the hydrated cement and agglutinates the rest of the phases. The Ca/Si ratio of the 

C-S-H gel is 1.75 in average, but if the paste contents any addition of fly ash or silica fume 

(both are pozzolans), metakaolin or slag, the Ca/Si ratio decreases to values below 1 

(Richardson et al., 1999) or close to 1.4 (De Weerdt et al., 2011).  
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C3A reacts with water and gypsum to produce ettringite (AFt, 

3CaO.Al2O3.3CaSO4.32H2O), whose crystals have prismatic or acicular morphology. Ettringite 

is poorly soluble in water (Alexander et al., 2013). After 24 hours of hydration, as calcium 

sulphate is consumed, ettringite transforms into calcium monosulfoaluminate (AFm, 

3CaO.Al2O3.CaSO4.12H2O) (Garcia Vílchez, 2004), which has hexagonal crystals. At 25 °C the 

presence of carbonate stabilises AFm and displaces OH
-
 and SO4

2-
. However, in the presence of 

portlandite, the reaction results in changes in the amount of both portlandite and ettringite 

(Matschei et al., 2007). At approximately 50 °C, thermodynamic calculations predicted the 

conversion of ettringite and monocarbonate to monosulphate (Lothenbach et al., 2008b). C4AF 

(ferrite) reacts with water to produce iron oxide, hydrogarnet and portlandite and also with 

sulphate to generate ettringite.  

CH constitutes the 20-25 wt.% of the hydrated cement paste. CH is a crystalline phase 

with a well-defined composition that precipitates heterogeneously in the cement paste in 

hexagonal or prismatic crystals.  

Mineral additions to Ordinary Portland Cement 

The use of mineral additions (e.g., gypsum, fly ash or limestone) is common to improve 

durability, mechanical properties and workability of cement, as well as to reduce the impact of 

CO2 produced in the decalcification process. Gypsum is mainly added to regulate the cement 

early hydration so that setting is delayed and workability improved. 

Addition of fly ash alters the composition of the pore solution due to puzzolanic 

reactions with CH, decreasing the content of Ca in the pore solution. As fly ash is added to 

cement, the content of CH lowers as it is consumed by fly ash hydration. The pore solution of 

fly-ash-containing cements has lower pH and alkali concentrations than OPC and OPC-

limestone mixes. Also, fly ash brings additional alumina, which reduce the sulphate to alumina 

ratio and therefore increases the impact of limestone powder (De Weerdt et al., 2011). An 

observed effect of the lower Ca/Si ratio and lower pH on the C-S-H gel structure is that C-S-H 

becomes more polymerized: Q
2
, and eventually Q

3
, is the dominant peak in the 

29
Si NMR 

spectra (Matsuyama and Young, 2000). 

Without limestone powder, C3A and C4AF react with gypsum to form ettringite, which 

can react with remaining C3A and C4AF to form monosulphate or hydroxyl-AFm solid solution 

(De Weerdt et al. 2011). With limestone, AFt and AFm-carbonate can be formed.  
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1.5.3.2 Porosity 

Hydrated cement is a porous material filled with pore solution of pH around 13. The 

pore solution is in equilibrium with the C-S-H gel, being an open thermodynamic system. The 

equilibrium is a function of the external media, the relative humidity and/or the penetration of 

the external agents (Lagerblad, 2001).  

Porosity (macroporosity and capillary porosity) in cement-based materials is created 

during hydration. Macropores are due to captured air during the mix, creating spherically shape 

pores with a size ranging between 10 and 200 m, but can be as large as 2 to 3 mm. Macropores 

remain dry (in non-fully saturated cement) and therefore are not involved in ion transport, but 

are important in mechanical strength. Capillary porosity is the free space generated when the 

hydration products replace the space initially filled by water and cement. The size is directly 

proportional to the w/c ratio and the grade of hydration. Capillary porosity is known as 

macroporous porosity when the pore size is between 10 and 0.05 m, mesoporous when it is 

between 0.05 and 0.01 m, and microporous when the size is less than 0.01 m. The latter 

porosity is interconnected filled with alkaline solution, and responsible of ion transport. 

Permeability, sorptivity, mechanical resistance, diffusion or ionic interchange, in fact, are 

function of the pore size and pore connectivity of the capillary porosity. In mortar pastes, one of 

the zones with major capillary porosity (15-30 %) is the zone between the aggregates and the 

cement (wall effect), that is known as an interfacial transition zone. Around aggregates the 

amount of cement grains is low. An increment of the w/c ratio is originated generating a zone 

with high porosity, CH and ettringite around the aggregates. Bourdette et al. (1995) indicated 

that this zone can be percolated increasing the porous system connectivity and thus the 

permeability. 

The C-S-H gel shows an inherent porosity within its structure, known as interlayer 

porosity. The pores are also known as gel pores with spaces from 5 to 25 Å between gel layers. 

Gleize et al. (2003) showed that the gel porosity is refined when the gel is formed by calcium 

hydroxide and silica fume (or fly ash) instead of the conventional hydration of C3S and C2S. 

Finally, hollow-shell pores form when the Op precipitate, generating a shell of 

precipitate, in which exists an empty space. These pores can be partially or completely empty 

(Kjellsen et al., 1997). 
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1.5.3.3 Degradation of microstructure of cement-based materials 

Cement microstructure is essential to understand the physicochemical properties of the 

cement-based materials and the processes involved in the cement degradation. For example, 

cement microstructure plays a fundamental role as a barrier to storage radioactive as the porous 

structure generates a high surface in which sorption of the radionuclides takes place (Harris et al 

2002; Sugiyama, 2008), and the high porewater pH limits radionuclide solubility (Olson et al., 

1997; Harris et al., 2002). Cements and concretes can be attacked and, as a result, exhibit a 

reduced service life (Glasser el at., 2008). Therefore, whatever evolution of the microstructure 

submitted to degradation affects the durability of these materials. 

The porewater of cementitious materials is in equilibrium with the phases present in the 

hydrated cement and contains mainly K, Na, Ca, Si, S, Fe and Al in solution and is 

characterized by a high pH values. Replacement of the porewater will perturb the local 

equilibrium, causing dissolution and precipitation reactions (Faucon et al., 1998). Cement paste 

degradation is therefore induced by a combination of diffusion-transport effects and chemical 

reactions and the degradation kinetics depends thus upon the kinetics of each of these two 

phenomena (Faucon et al., 1997). The final result is a process of chemical changes and 

dissolution of the phases present in cement increasing the porosity and the degree of penetration 

(Fig. 1.16; Lagerblad, 2001). The first phase to dissolve is CH because of its high solubility, and 

its dissolution delimits the front of degradation. After CH dissolution, dissolution of other 

hydrated compounds like C-S-H gel, AFt (ettringite) or AFm (i.e. monosulfoaluminates) takes 

place, depending on their solubility (Rémond et al., 2002). Dissolution creates a front of 

dissolution/precipitation and zonation in the degraded material (Faucon et al., 1997). Berner 

(1992) shows that the C-S-H gel has different Ca/Si ratio values from 1.7, for the unaltered 

zone, to lower values, for the degraded zone. The dissolution of a phase influences the rest as it 

changes the equilibrium conditions of the porewater. Thus the process of dissolution in the 

cement occurs when a concentration gradient of ions such as Ca
2+ 

and OH
-
 exists in the aqueous 

phase from poorly degraded zones to the more degraded zones (Lagerblad, 2001). If the 

leaching persists the zone directly in contact with water can be completely depleted in CH. The 

concrete surface is deteriorated to hydrous silica gel without presence of calcium (Duchesne et 

al., 2013). The 
29

Si-NMR results show that C-S-H gel polymerises to greater chain length and 

the Ca/Si ratio lowers (Lagerblad, 2001). 

The main process that takes places during leaching is decalcification of the system. 

Leaching is an acid-base reaction where input water (low pH) neutralizes the pore solution. 

Also, components of the input water like carbonate, chloride, sulfate, etc. can penetrate in the 

system and react with the phases present in the cement. The remaining non-hydrated products 
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start to hydrate during the leaching and consequently Ca is released and C-S-H gel is formed 

(Lagerblad, 2001).  

 

 

 

 

Figure 1.16. Ionic movement across the cement paste by leaching effect. After Lagerblad (2001). 

 

1.5.3.4 Transport mechanisms in cement-based materials  

The main leaching mechanism is ionic diffusion (Lagerblad, 2001). Other transport 

mechanisms, such as water movement (advection caused by a flow of the aqueous solution), 

advection phenomenon due to capillary suction, and chemical reactions, i.e. dissolution and 

precipitation, take place in the cement degradation. Diffusion is related to Fick’s Law and flow 

through capillary pores in saturated concrete is bound to Darcy’s Law. 

The diffusion coefficient (Di) is a proportionality constant (m
2
/s) and it can be affected 

by the degree of saturation of the material, ambient temperature or the pore structure of the 

material (Glasser et al., 2008). Diffusion mainly occurs in the open connected capillary pores in 

the water phase. The structural changes in the paste, promoted by chemical reactions during the 

leaching, affect the porosity of cement and its transport properties (Glasser et al., 2008). 

Formation of new phases can lead to porosity reduction and contributes to reduce the transport 

properties. Dissolution of the existing phases can open the pore structure, increasing 

permeability and diffusivity and decreasing sorptivity, as well as loss of mechanical strength 

(Dow and Glasser, 2003). The sorptivity coefficient (k) is essential to predict the service life of 

concrete as a structural material and to improve its performance (Martys and Ferraris, 1997). 

The presence of aggregates in the system increases tortuosity, which generates a 

decrease in diffusion. Added particles of limestone or fly ash react with CH, resulting in a 
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greater amount of hydrated products in the porous phase, increasing tortuosity and generating a 

dense matrix (Cruz et al., 2011). 

1.5.3.5 Studies of cement degradation  

In the last twenty five years, numerous studies of the reactivity of hydrated cement are 

found in the literature. The studies are classified into three categories according to the objective 

of the research: leaching of cement pastes, reactive transport modeling and thermodynamics of 

cement hydration processes.  

Leaching of cement pastes  

Adenot and Buil (1992) performed leaching experiments with ordinary Portland cement 

(OPC) specimens and deonized water. It was observed the formation of an uncorroded central 

core surrounded by three corroded zones with progressive decrease of Ca/Si ratio. The 

outermost zone no longer contained any portlandite. To account for the observed zoning 

degradation, a model based on solubility data by Berner (1988, 1992) was proposed by 

considering Ca diffusion and local chemical equilibrium 

𝑒𝐷 = √𝐷𝑎𝑝 · 𝑡 Eq. 1.10 

where eD is the degraded depth zone, Dap is the apparent diffusion coefficient and t is time.  

Buil et al. (1992) proposed a mass balance equation of calcium to describe the Ca 

leaching experiments 

𝜕(𝐶𝐶𝑎𝜙)

𝜕𝑡
= −𝑑𝑖𝑣 (−𝐷(𝜙) 𝑔𝑟𝑎𝑑 (𝐶𝐶𝑎)) −

𝜕𝑆𝐶𝑎
𝜕𝑡

 
Eq. 1.11 

where SCa is the solid calcium concentration, CCa is the liquid calcium concentration, D is the 

calcium effective diffusivity in porous material and  is the porosity.  

Revertegat et al. (1992) studied the effect of pH on the durability of cement pastes to 

conclude that the degree of C-S-H gel decalcification was related to the pH gradient and the 

ionic character of the pore solution. Also, a model to deal with the progressive decrease in the 

solid C-S-H gel Ca/Si ratio was proposed in which leaching of calcium was expressed as  

𝜒 = 𝑎 · √𝑡 Eq. 1.12 

where  is the depth of the degradation process, a is an experimental constant and t is time.  
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Delagrave et al. (1997) proposed an empirical relation between the calcium 

concentration of the pore solution with the calcium concentration of the cementitious skeleton. 

The equilibrium between the solid calcium phases and the calcium concentration of the pore 

solution is characterized by a curve with two steps. From a physical point of view, and agreeing 

with Adenot and Buil (1992), this phenomenon is driven by diffusion of the calcium ions from 

the reaction sites. Alteration of cement is due to dissolution of a layered system composed of an 

unaltered core delineated by total dissolution of CH, different zones separated by dissolution or 

precipitation fronts (AFm, Aft), and progressive decalcification of C-S-H gel, which induces 

silicate polymerization. Carde et al. (1997) observed that alteration of the structure of the gel is 

due to an increase in the length of the silicate chains with its decalcification and dissolution, and 

stabilization of the C-S-H gel structure occurs at Ca/Si ratio of 0.8.  

Faucon et al. (1997, 1998) studied the leaching in cement paste by means of static 

dissolution experiments and controlling the Ca/Si ratio in the C-S-H, which continuously 

decreased between the intact and degraded zones. Calcium concentration gradient continuously 

decreased from the unaltered zone to the surface of the material, due to CH dissolution before 

and leaching of C-S-H gel later. C-S-H of low Ca/Si precipitated during degradation and 

dissolved by contact with the aggressive solution. This gradient caused the development of a 

degraded zone in the cement paste and diffusion of calcium in the interstitial solution toward the 

attacking solution. The decrease in the concentration of calcium in this zone induced secondary 

precipitations (AFm, ettringite and calcite) in the innermost part of the degraded zone, and 

dissolution in the outermost part of the degraded zone. Trivalent iron and aluminum, released 

from crystallized hydrates during dissolution, are partially incorporated into the C-S-H gel, 

enhancing the stability of these C-S-H gels (low Ca/Si ratio gels). It was observed that two 

different regimes (diffusion versus surface dissolution) occurred during demineralized-solution 

induced degradation of cement pastes, and it was deduced that the kinetics of degradation is 

proportional to the square root of time when the rate of superficial layer dissolution is negligible 

(diffusion regime). This situation would persist only if the solubility of the C-S-H in the 

superficial layer is low.  

Mainguy et al. (2000) proposed a numerical solution for the non-linearity of the mass 

balance equation that describes the leaching of cement reported in Buil et al. (1992). It was 

based on a finite volume method. Another model was proposed by Gérard et al. (2002) using the 

solubility data by Berner (1988, 1992), based also on the criteria of diffusion and local 

equilibrium. Ca concentration as a variable of state is considered and Newton-Raphson 

approximation incorporates the non-linearity. However, none of the both models take into 

account reprecipitation of phases during the degradation process. 
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Moranville et al. (2004) and Maltais et al. (2004) proposed a more complex model by 

coupling the interaction between the ions of the aqueous phase and the solid phases, present in 

the cement paste, and considering the effect of the differences in concentration between the 

porous solution and the external solution. It was assumed that the porous solution was saturated, 

the process was controlled by diffusion, and chemical equilibrium persisted in the system. This 

proposed reactive transport model considered that species can dissolve and precipitate 

simultaneously. Haga et al. (2005) leached OPC in deionized water to study the effect of pore 

volume on the progress of dissolution. Experimental data was modeled using a basic mass 

conservation formula and considering one-dimensional diffusion of Ca and equilibrium between 

the solid and the liquid phase. It was concluded that leaching of portlandite generated porosity. 

Kamali et al. (2008) degraded cement pastes using continuously renewed water as a 

function of temperature, water/cement ratio, percentage of silica fume content and pH. The 

experimental data was modeled using a simplified model earlier proposed by Revertegat et al. 

(1992)  

𝐿𝑑 = 𝑎 · 𝑡
1
𝑛⁄  Eq. 1.13 

where Ld is the leached depth (mm), t (days), n = 2 for degraded in absence of electric field and 

n = 1 on presence of electric field, a is a constant parameter determined as  

𝑎 = 𝑏 ·∏𝑓(𝑖)

𝑛

𝑖=1

 

Eq.1.14 

where b is a constant value, f(i) are the functions that correspond to the influence of one of the 

various parameters i considered. These functions are built by means of linear regressions from 

the experimental data. Also, Yang et al. (2012) performed leaching experiments in cement 

pastes following the model by Revertegat et al. (1992) to model the evolution of the hardness in 

leached cement. De Larrad et al. (2010) argued that the non-linearity of the mass balance 

equation of calcium to describe the leaching proposed by Buil et al. (1992) is mainly due to the 

diffusivity which depends on the porosity, itself depending on the solid calcium concentration, 

and on the non-linearity between SCa and CCa. 

Since the calcium leaching kinetics in water is slow, some studies used different 

strategies to accelerate the leaching process by using acidized solutions instead of deionised 

water (Carde et al., 1997; Heukamp et al., 2001; Thomas et al., 2004; Kamali et al., 2008). 

Ammonium nitrate solution was selected to be representative of an aggressive solution. Thomas 

et al. (2004) argued that NH4NO3 leaching preferentially removes calcium from the C-S-H even 

at very low Ca/Si. The preservation of the Si structure allows very low Ca/Si ratios (near 0.1) to 
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be reached while maintaining the integrity of the specimen. Other solutions with organic acids 

(acetic, propionic, butyric or isobutyric acids) were also used, observing that the alteration of 

the cement paste occurs by an almost complete decalcification, the disappearance of the 

crystallized or amorphous hydrated phases and the probable formation of a silica gel containing 

aluminum and iron, which acts to limit the kinetics of further alteration (Bertron et al., 2005). A 

different option to accelerate the calcium leaching process was application of a potential 

gradient across the mortar specimen (Saito et al., 2000). 

Reactive transport modeling  

Van der Lee and De Windt (2001) proposed a reactive transport model which considers 

the geochemically complex systems in a hydrodynamic context and accounting for unsaturated 

flow and transport processes in the gas phase. Samson et al. (2007) performed multiionic 

transport model for saturated/unsaturated cementitious materials to account for degradation of 

cement-based materials exposed to aggressive environments. The classical Fick’s diffusion 

mechanism was contemplated, as well as the electrical coupling between the various ions and 

the chemical activity effect. Advection phenomenon due to capillary suction and chemical 

reactions typical to cement-based materials were also included. As Moranville et al. (2004), the 

model considers that the species can dissolve and precipitate. 

Galíndez and Molinero (2010) developed a model to simulate degradation of cement 

injected in a granite fracture under assumptions of local equilibrium and diffusion of ions as 

transport process. Soler and Mäder (2010) and Soler (2013) simulated concrete-rock interactions 

between an hyperalkaline solution and a granite rock and a high-pH solution and a clay-rich 

rock, respectively, using the CrunchFlow code (Steefel, 2009). 

Thermodynamics of the cement hydration processes  

Thermodynamic modelling has been applied to study the hydration processes of 

Portland cement (Lothenbach and Winnefeld, 2006; Lothenbach and Wieland, 2006; 

Lothenbach et al., 2007, 2008; Gruskovnjak et al., 2008). Application of thermodynamics to 

cement hydration has been shown to be successful if used with an understanding of its 

underlying principles and limitations and gives important parameters used to assess the kinetics 

of reactions (Damidot et al., 2011). Winnefeld and Lothenbach (2010) investigated by 

experimental means and thermodynamic modeling the hydration mechanisms of calcium 

sulfoaluminate cements (CSA cements). The authors used the thermodinamic model GEMS 

(Kulik et al., 2004) with the cement chemical composition, the dissolution kinetics of the clinker 
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phases and the thermodynamic equilibria for the solid phases involved. Lothenbach et al. (2010) 

modeled successfully the ingress of sulfates in mortar by assuming interaction of mortar with 

sulfate solutions and coupling the thermodynamic model with transport codes. Leemann et al. 

(2010) studied the deterioration of the concrete surface by acid attack after two years of 

exposure caused by a nitrifying biofilm covering the concrete. The thermodynamic modeling of 

the changes induced in concretes was carried out. Good agreement with the experimental results 

was observed and was explained the observed profiles of porosity and chemical composition. 

Ben Haha et al. (2012) investigated the effect of Al2O3 in the slag on the hydration properties of 

alkali activated slag varying the Al2O3 content. Thermodynamic calculations indicate that the 

Al2O3 content of the slag is not expected to have a significant influence on the volume of the 

hydrated samples. Le Saoût et al. (2013) used GEMS to predict the composition of the liquid 

and the solid phase as function of hydration time for OPC with two additions calcium 

sulfoaluminate and an amorphous calcium aluminate. Kunther et al. (2013) investigated the 

influence of bicarbonate ions on the deterioration of cementitious material exposed to sodium 

sulfate solution and to solutions containing simultaneously sodium sulfate and sodium 

bicarbonate. Thermodynamic modeling of the changes caused by the interaction predicts that 

ettringite becomes unstable in the presence of bicarbonate ions and gypsum does not form. 

Zajac et al. (2014) studied the hydration of three limestone cements containing different 

amounts of CaSO4 as well as industrially produced cements with different quantities of CaCO3 

in order to assess the influence of calcium sulphate and calcium carbonate on hydration.  
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PART I. C-S-H gel dissolution 
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CHAPTER 2 

Dissolution kinetics of C-S-H gel 

This chapter focuses on the C-S-H gel dissolution kinetics. It consists of two parts. The 

first part describes the protocols to synthesize C3S to obtain C-S-H gel, the characterization of 

the C-S-H gel, the experimental methodology to study the dissolution kinetics by means of 

flow-through experiments and the modeling of the experimental results using the reactive 

transport code CrunchFlow (Steefel, 2009). The second part presents the interpretation of the 

changes in aqueous chemistry and C-S-H gel structure to derive and propose a C-S-H gel 

dissolution rate law. 

2.1. Introduction 

C-S-H can be synthesized by hydration of C3S as it occurs in OPC. Hydrated C3S 

pastes are prepared with deionized water at a mass water-to-solid ratio of about 0.5 at room 

temperature and under CO2-free atmosphere (Chen et al., 2004). Using the stoichiometry of 

C-S-H proposed by Kulik and Kersten (2001), the hydration of C3S can be written as  
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𝐶𝑎3𝑆𝑖𝑂5 +  4𝐻2𝑂 → 𝑆𝑖𝑂2 ∙ 1.67𝐶𝑎(𝑂𝐻)2 ∙ 𝐻2𝑂 + 1.33𝐶𝑎(𝑂𝐻)2 

      C3S                          67wt% C-S-H                     33wt% CH 
Reaction 2.1 

To predict the long-term behavior of cement-based systems in contact with an 

aqueous phase it is essential to know the solubility of the C-S-H gel. C-S-H solubility initially 

considered empirical or semi-empirical descriptions of C-S-H gel and evolved to the 

application of solid-solution models. For the purpose of this experimental study, the model by 

Kulik and Kersten (2001) was adopted.  

Flow-through experiments are used to study the dissolution kinetics of C-S-H gel. 

The flow of demineralized water causes the dissolution of C-S-H and changes in the 

composition of the solutions. The changes in Ca and Si concentrations and pH have been 

monitored during the reaction, allowing the measurement of the variation in the atomic Ca/Si 

ratio of the solution, the calculation of dissolution rates, the assessment of the effect of the 

solution saturation state on the rates and the derivation of a C-S-H dissolution rate law. 

Additionally, C-S-H compositional and microstructural changes during dissolution have been 

analyzed using several techniques (XRD, SEM, EPMA and 
29

Si MAS-NMR). 

2.2. Materials and Methods 

The scheme depicted in Figure 2.1 summarizes the experimental tasks performed in 

this study to obtain C-S-H gel and its characterization, before (unreacted) and after the 

experiments (reacted). In the first stage C-S-H was synthesized by hydration of C3S. It the 

second stage, flow-through experiments were carried out to determine the dissolution kinetics 

of the C-S-H gel under two different flow-rate ranges. Changes in solution chemistry and 

microstructural characterization of the solids are shown below.  
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Figure 2.1. Scheme of the tasks carried out to obtain and characterize the C-S-H gel. 

 

2.2.1. C-S-H gel  

C-S-H gel was prepared by C3S hydration. Synthesis of pure C3S was performed 

together with Dr. Salvador Martínez and Dr. Salvador Galí at the Department of 

Crystallography, Mineralogy and Mineral Deposits of the Faculty of Geology at the 

University of Barcelona. The basis of the synthesis is similar to that described in Chapter 1. 

Firing a stoichiometric mixture of reagent-grade CaO and high-purity silica gel with a solid 

ratio of 3:1 at temperature around 1350 ºC for 72 hours (electrical oven). Reagent-grade CaO 

was obtained by decarbonising CaCO3 for two hours at 950 ºC. XRD was used to confirm that 

all CaO had reacted to form C3S. Before the second and third firings, the sample was quickly 
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5 15 25 35 45 55

angles2qCuKa (degrees)

cooled to room temperature in a water bath to avoid formation of C2S which is less reactive 

than C3S during hydration. After cooling, the sample was ground and compacted to discs to 

enhance homogeneity. Commercial C3S was also purchased from Mineral Research 

Processing (France). According to the specifications it was also synthesized by burning 

CaCO3 and silica gel at high temperature. 

Purity of the final products was determined by XRD using Cu Ka radiation over a 2q 

range from 0 to 60 degrees and quantified by Rietveld analysis (Young, 1995). XRD patterns 

of both samples showed that the C3S presents triclinic T1 polymorphism (Figure 2.2). 

Rietveld analysis showed that the content of synthesized C3S was 98.35 % with 0.02 % of 

residual quartz, 0.80 % of calcite and 0.83 % of portlandite; commercial C3S consisted of 97 

% of C3S, 1 % of SiO2, 1 % of calcite and 1 % of portlandite.  

  

Figure 2.2. X-Ray diffraction patterns of the synthesized and purchased C3S samples. 

 

Both C3S samples were ground in a ball agate mortar to a particle size smaller than 10 

m. Grinding was controlled by continuous performance of laser granulometry analyses using 

the LS 13320 laser diffraction size analyser (Beckman Coulter) (Scientific and Technical 

Services of Barcelona University) after ultrasonic disaggregation in ethanol for 5 min to 

prevent particle hydration. Grinding was stopped when the particle size distribution did not 

change significantly. In both C3S samples the particle size distribution fell between 2 and 15 

m. For the purchased C3S sample 90% of the particles were smaller than 10 m, presenting 

two main size populations: one around 0.3 m and the other around 3 m. In the case of 



61 

 

20.0 kV 100 m WD 15 20.0 kV 100 m WD15 

0

1

2

3

4

5

6

0.04 0.4 4 40 400

D
if

fe
re

n
ti

al
 v

o
lu

m
e

 (
%

)

Particle size  (m)

Syntherized C3S Commercial C3S

synthesized C3S 90% of the particles were also smaller than 10 m with two main size 

populations (0.3 m and 7 m) (Figure 2.3). 

 

Figure 2.3. Particle size distribution of the synthesized and purchased C3S samples. 

 

The morphology of the particles was examined by Scanning electron Microscopy 

(SEM) using a JEOL JMS-840 electron microscope (Scientific and Technical Services of 

Barcelona University) (Figure 2.4). Particles showed rounded shapes and formed clusters (or 

agglomerates). The particle size ranged from 2 to 15 m. 

 

Figure 2.4. SEM images of the initial C3S. 
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2.2.2. Hydration of C3S 

C3S hydration was carried out using Milli-Q water (18.2 MΩ·cm at 25 °C) and a 

water/solid ratio of 0.5 in a N2 filled glove box to avoid carbonation of the hydration 

products.  

In the CO2-free glove box, the Milli-Q water used to hydrate the C3S was gently purged 

with a low flux of N2 for 5 minutes to further avoid carbonation. Both C3S samples, 

synthesized and purchased, were manually mixed. When both mixtures were considered to be 

homogeneous, mixing was stopped. Thereafter, the containers with the mixtures were covered 

with caps to prevent water evaporation and stored. The samples were stored for 28 days in the 

glove box at room temperature. 

After 28 days, hydration was stopped using isopropanol. The pastes were retrieved from 

the containers, cut into small pieces and wet abundantly with isopropanol. When it was totally 

evaporated, and the mixtures were dried, the retrieved pastes were crushed in an agate mortar 

and sieved through a 25 m sieve. All these manipulations were performed inside the glove 

box.  

The powdered samples were examined by XRD and analyzed using the Rietveld method 

to quantify the amount of formed C-S-H and remaining C3S. The XRD patterns showed the 

presence of C3S (27%) indicating that hydration was not complete. C-S-H only accounted for 

about 43 % of the mass of the samples.  

The Ca/Si ratio of the particles was analyzed by EPMA using a Cameca SX-50 device (4 

WD spectrometers + 1 EDS) with an accelerating voltage of 20 kV and a beam current of 15 

nA. The sample was embedded into epoxy resin, dried and cured in vacuum to extract the air 

and further polished and coated with a thin layer of graphite. The backscattered electron 

images show particles that are totally hydrated (C-S-H gel with a Ca/Si = 1.65) (Figure 2.5 a), 

and others that consist of partially hydrated C3S zones (cores) (Ca/Si ≈ 3) with some zones 

rich in portlandite (Ca/Si >> 3) (Figure 2.5 b). 
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HT= 20.04KV                              2m 

a)

HT= 20.04KV                              2m 

b)
 

Figure 2.5. Backscattered images that show the Ca/Si ratios in the hydrated C3S samples: a) 

grain of C-S-H with a Ca/Si ratio of 1.65 and b) grain with a region of non-well hydrated C3S 

(Ca/Si ratio of 2.94) and a zone of CH (Ca/Si ratio of 23.06). 

 

In order to obtain a complete C3S hydration, a second hydration was carried out with the 

purchased C3S. In this case, grinding was improved using isopropanol to obtain finer 

particles. 90% of the particles were smaller than 8 m with only one main size (≈ 1.9 m) 

(Figure 2.6). 

 

Figure 2.6. Particle size distribution of the purchased C3S sample. 

 

The samples were stored for 120 d in the glove box at room temperature (23 ± 2ºC). C3S 

hydration was monitored by examining the samples after 45, 62, 83, 99 and 120 d by XRD 

and Rietveld analysis to quantify the amount of formed C-S-H and remaining C3S. After 120 

days, the reaction was stopped since XRD (with a detection limit below 1% wt.) could not 
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detect the presence of C3S. 1.5 wt % content of quartz was detected. The sample was then 

ground inside the glove box in a N2 atmosphere. Laser granulometry was performed after 

ultrasonic disaggregation in ethanol for 5 min to prevent particle hydration and 

agglomeration. 97 % of the particles were smaller than 100 m, presenting a main size 

population with a peak around 20 m and another small population around 5 m (less than 

25% of the sample). 

Semi-quantitative analysis of the Ca/Si ratio of the C-S-H gel sample was performed by 

SEM-EDX using FEI NovaNanoSEM 230 Scanning Electron Microscope (Electron 

Microscopy Center of EMPA-Switzerland) employing an acceleration voltage of 15-20kV. 

The sample was not polished and was coated with a thin layer of graphite. Quantitative 

analysis was made with EPMA using Electron Microprobe CAMECA SX-50 instrument (4 

WD spectrometers + 1 EDS) (Microprobe Unit of the University of Barcelona) under a 20 kV 

accelerating potential and 20 nA beam current. The sample for EPMA was embedded into 

epoxy resin, dried and cured in vacuum to extract the air and further polished and coated with 

a thin layer of graphite. Working at 20 kV should be adequate to ensure satisfactory analysis 

for Ca and produce an electron beam-sample interaction volume sufficiently small that single 

phases (e.g., C3S, C-S-H and CH) can be analysed on areas of about 2 microns in size 

(Taylor, 1997). SEM and EPMA analysis results (atomic % values) did not add to 100%; they 

only added up to 60% - 75%. Factors affecting this lack of mass balance include the porosity 

of the analyzed region, retention of organic liquids used in preparing the polished sections, 

presence of carbonaceous residues formed under the action of the electron beam and 

superficial carbonation (Taylor and Newbury, 1984). However, it has been argued by Taylor 

(1997) that the measured Ca/Si ratios are still reliable. Section 1.01(a)(i)Figure 2.7 shows 

SEM and secondary electrons EPMA images of the hydrated C3S.  

 

Figure 2.7. a) SEM image of the initial C-S-H gel and b and c) Backscattered electron images of 

the initial C-S-H gel showing the EPMA multiple points. 
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The analytical results indicate that three different ranges of Ca/Si ratio exist in the 

measured particles: (1) Ca/Si ratio between 1.68 and ca. 1.8, assigned to C-S-H gel; (2) Ca/Si 

ratio between ca. 1.8 and 2.34, corresponding to C-S-H gel particles with precipitated 

portlandite between the grains; (3) Ca/Si ratio larger than 6, indicating a large proportion of 

portlandite. 

Rietveld analysis of the hydrated C-S-H paste showed that it is composed of 67 wt % C-

S-H, 27.5 wt% portlandite, 1.5 wt% quartz and 4 wt% calcite, the latter probably due to some 

sample carbonation. This is in agreement with the amount of C-S-H and portlandite expected 

from the C3S hydration reaction (67 wt % C-S-H and 33 wt % portlandite). Therefore, the C-

S-H gel sample obtained in the second C3S hydration (fully hydrated) was used in all the 

flow-through experiments of this study. The specific surface area of the sample was 

determined by the BET method (Brunauer et al. 1938) with a Micromeritics ASAP 2000 

surface area analyzer using 5-point N2 adsorption isotherms. The BET specific surface area 

was found to be 11.7 ± 1.7 m
2
 g

-1
, which is similar to determined values for ordinary Portland 

cement after 28 days of hydration (Odler, 2003). No attempt to remove microparticles (< 

1m) resulting from grinding attached to grain surfaces was made. In long-term flow-through 

experiments, it is not necessary to pre-treat the samples since the possible effect of the 

particle size is corrected by normalizing the rates to the final specific surface area. The BET 

surface area of the samples retrieved after the experiments ranged from 14.5 ± 1.5 to 142 ± 14 

m
2
 g

-1
. The increase in BET surface area after the experiments could be attributable to an 

increase in pore space that facilitates N2 penetration (Odler, 2003). 

2.2.3. Flow-through experiments  

Flow-through experiments were carried out to determine the C-S-H dissolution kinetics. 

Measurement of the changes in solution chemistry and microstructural characterization of the 

solids were carried out. Stirred and non-stirred Plexiglas reaction cells of 40 mL in volume, 

with two chambers separated by a fine mesh (5m), were used. The powder samples were 

placed on the fine mesh (upper chamber). In the two stirred experiments the sample was in 

contact with a small teflon stir bar, a bigger teflon stir bar was placed in the lower chamber 

(Fig. 2.8). The flow rate was controlled by a peristaltic pump and ranged from 0.036 to 0.112 

mL min
-1

 in a first set of experiments. A second set of experiments was performed by 

lowering the flow rate, which ranged from 0.0036 to 0.0112 mL min
-1

. Residence times 

ranged from 6 to 185 h, respectively. Input and output solutions circulated through 0.45m 

nylon and teflon membranes placed at the bottom and top of the reactor, respectively. The 

input solution was N2-bubbled Milli-Q water (pH 7). 
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Figure 2.8. Schematic representation of the flow-through experiments carried out under CO2-

free conditions (N2 atmosphere) inside a glove box. 

 

All the experiments were carried out at room temperature in a glove box under N2 

controlled atmosphere to avoid carbonation of the samples. The N2 gas (99% purity) was first 

bubbled through a NaOH 12 M solution before entering the glove box. The CO2 content 

inside the glove box was indirectly controlled with an O2 detector. During the experiments O2 

concentration ranged between 0.1 to 0.4% O2, which according to the CO2 content of 

atmospheric air corresponded to 2-8 ppm of CO2.  

Different experiments were stopped at different times. In some experiments, steady 

state was reached (dCa/dt and dSi/dt = 0). Steady-state conditions were considered to be 

attained when differences in the Si and Ca concentrations in output solutions were within ± 

10 and ± 15 % in consecutive leachate samples for at least 200 hours. After the steady-state 

conditions were reached, steady-state C-S-H dissolution rates were calculated. Other 

experiments were stopped before reaching steady state with the aim of determining Ca/Si 

ratios in the solid at early stages. Output solutions were collected during the experimental 

runs. The saturation indexes of the steady-state output solutions (SI) was calculated at 25 °C 

using the PhreeqC code (Parkhurst and Appelo, 1999) and MINTEQ database (Allison et al., 

1991) and CEM07 DATABASE (Matschei et al., 2007; Lothenbach et al., 2008). C-S-H 

solubility data from Kulik and Kersten (2001) was also included.  

After the experiments, the retrieved solid samples were dried with isopropanol and 

kept in closed vials to be stored in the glove box at room temperature until examination by 

SEM, EPMA, BET and 
29

Si MAS-NMR. 
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2.2.4. Calculation of the C-S-H gel dissolution rate  

Based on a simple mass balance equation, the dissolution rate (mol m
-2

s
-1

), R, in a 

well-mixed flow-through experiment is given by (e.g Lasaga, 1998): 

𝑅 = −
𝑑𝑐𝑖
𝑑𝑡

·
𝑉

𝑚 · 𝑆 ∙ 𝑣𝑖
− 𝑞

(𝑐𝑖 − 𝑐𝑖
0)

𝑚 · 𝑆 ∙ 𝑣𝑖
 

Eq. 2.1  

where, 𝑐𝑖
0 and 𝑐𝑖 (mol m

-3
) are concentrations of element 𝑖 in the inflowing and 

outflowing solution, 𝑣i is the stoichiometric coefficient of element i in the mineral, V is the 

volume of the reaction cell (m
3
), q (m

3
·s

-1
) is the fluid volumetric flux through the reactor, m 

is the mass of mineral (g), and S (m
2
 g

-1
) is the specific (BET measured) surface area of the 

mineral. Reaction rates were normalized to the final surface area (steady state is achieved in 

the last stage of some of the experiments). Note that in our formalism, the rate is defined to be 

negative for dissolution and positive for precipitation.  

The dissolution rate at steady state (dci/dt = 0) is readily calculated from the last term 

of the previous equation and is given by 

𝑅 = −𝑞
(𝑐𝑖 − 𝑐𝑖

0)

𝑚 ∙ 𝑆 ∙ 𝑣𝑖
 

Eq. 2.2  

The error associated with the calculated dissolution rates (ΔR) was estimated using 

the Gaussian error propagation method (Barrante 1974):  

∆𝑅 =

√
  
  
  
  
  

(
(𝑐𝑖 − 𝑐𝑖

0)

𝐴 ∙ 𝑣𝑖
)

2

∙ ∆𝑞2 + (
𝑞 ∙ (𝑐𝑖 − 𝑐𝑖

0)

𝐴2 ∙ 𝑣𝑖
)

2

∙ ∆𝐴2

 + (
𝑞

𝐴 ∙ 𝑣𝑖
)
2

∙ (∆𝑐𝑖
2 + ∆(𝑐𝑖

0)
2
)

 

Eq. 2.3  

Usually, the propagated error in the calculated rates is dominated by the uncertainty 

originated in the BET surface area measurements (± 15%).  
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2.2.5. Solid sample analyses  

SEM imaging of unreacted and reacted C-S-H gel powders was performed on C-

coated samples using a JEOL JSM-840 instrument and a field-emission SEM Hitachi H-

4100FE instrument. 

Small fractions of unreacted and reacted C-S-H powder samples were mounted in 

resin and polished for electron microprobe (EPMA) analyses, which were performed on 

multiple points using a CAMECA SX50 microprobe under a 20 kV accelerating potential and 

20 nA beam current. The composition was dominated by Si and Ca. From the microprobe 

analyses, the Ca/Si atomic ratio can be calculated.  

29
Si MAS-NMR spectra of approximately 2 mg of unreacted and reacted powdered 

samples were recorded on a Bruker Avance 400 NMR spectrometer (field strength of 9.4 T, 

Bruker Biospin AG, Fällanden, Switzerland) at 79.49 MHz applying 4.5 kHz spinning rates 

were applied on a 7 mm CP MAS probe using ZrO2 rotors. Single-pulse experiments were 

carried out by applying 30 ° pulses of 2.9 ms with 1H decoupling of 31.3 kHz (TPPM15) and 

recycle delays of 20 s. The 
29

Si chemical shift was referenced externally relative to 

tetramethylsilane at 0.0 ppm. The observed 
29

Si resonances were analyzed using the standard 

Q
n
 nomenclature (Taylor, 1997), where one Si tetrahedron is connected to n Si tetrahedra with 

n varying from 0 to 4. In the following 
29

Si MAS-NMR spectra, the tetrahedral coordination 

is expressed by means of Q
0
, Q

1
, Q

2
, Q

2v
, Q

2i
, Q

2p
 , Q

3
-defect, Q

3
-gel and Q

4
-gel, denoting the 

chemical shift (ppm) of a silicon atom bonded to n bridging oxygens. Q
0 

denotes an isolated 

monomer tetrahedron (Si(OH)4), Q
1
 is a chain-end tetrahedron, Q

2
 is a chain-intermediate 

tetrahedron (silicate tetrahedra coordinated to the calcium ions). Bridging tetrahedra can be 

distinguished between Q
2p

, which denotes a bridge tetrahedron bonded to two protons, and 

Q
2i
, a bridge tetrahedron bonded to a proton and a calcium ion. Q

3
-defect is a tetrahedron 

surrounded by three silica tetrahedra where two are Q
2
 and the third is another Q

3
-defect 

(linking two silicate chains in the interlayer space). A Q
2
 tetrahedron linked to a Q

3
-defect is a 

Q
2v

. Q
3
-gel (also called Q

3
OH) is a tetrahedron connected to three Q

3 
tetrahedra. Q

4
-gel 

corresponds to silica gel (Si-rich domain in the C-S-H gel) where a tetrahedron is connected 

to four tetrahedra forming a 3D structure (
29

Si MAS-NMR allows to distinguish differences 

between silica gel –amorphous– and quartz –crystalline–). Figure 2.9 shows a diagram of the 

C-S-H gel structure indicating the type of signal attributed to each type of tetrahedron.  
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Figure 2.9. Schematic representation of C-S-H gel and the assignment of the peaks in the        
29

Si MAS- NMR (Gwenn Le Sâout; personal communication). 

 

The relative proportions of silicon associated with the Q
n
 units were determined by 

the deconvolution of the spectra using the Dmfit program (Massiot et al., 2002). 

2.2.6. Solution analyses  

The input and output solution pH was measured at 25ºC using a Thermo Orion 

Ag/AgCl electrode. Calibration was made with Crison © standard buffer solutions of pH 7.00 

(K and N phosphate) and pH 9.21 (borax). The uncertainty was ±0.05 pH units. After the pH 

measurements, output solutions were acidified to pH 3 to prevent precipitation of calcium 

carbonate in the solutions. 

Total concentrations of Ca and Si of the output solutions were analyzed by 

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES, thermo Jarrel-Ash 

with CID detector and a Perkin Elmer Optima 3200RL). The accuracy of ICP-AES 

measurements is estimated to be around 3%. The detection limit of the analysis for Ca and Si 

concentration was 0.5 ppm. 

the "dreierketten" unit 

Q1 

Q2p 

OH- 

Interlayer space 

Q3 defect 

Q2
 

Ca2+ 
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Ca 
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2.2.7. Reactive transport modeling  

Modeling was performed to allow the calculation of the dissolution rate constants (k) 

for the different C-S-H compositions. The experimental variation of the output concentrations 

with time was modeled using the CrunchFlow reactive transport code (Steefel, 2009). 

CrunchFlow solves numerically the advection-dispersion-reaction equations 

𝛿 (𝜙(𝐶𝑖
𝑚𝑜𝑏 + 𝐶𝑖

𝑖𝑛𝑚𝑜𝑏))

𝛿𝑡
= ∇ · (𝐷∇𝐶𝑖

𝑚𝑜𝑏) − ∇ · (𝑞𝐶𝑖
𝑚𝑜𝑏) + 𝑅𝑖    

(𝑖 = 1,2, . . . , 𝑁𝑡𝑜𝑡) 

Eq. 2.4  

where 𝜑 is porosity, 𝐶𝑖
𝑚𝑜𝑏 is the total concentration of mobile component or primary 

species i in solution (mol m
-3

), 𝐶𝑖
𝑖𝑛𝑚𝑜𝑏 is the total concentration of immobile component i in 

solution (sorbed by surface complexation or ion exchange; mol m
-3

), D is the combined 

dispersion-diffusion coefficient (m
2
 s

-1
), q is Darcy velocity (m

3 
m

-2
 s

-1
), Ri is the total reaction 

rate affecting component i (mol m
-3

 s
-1

), t is time (s) and Ntot is the total number of 

independent aqueous chemical components (primary species). The expression of the total 

reaction rate for component i, Ri, is  

𝑅𝑖 = −∑𝜐𝑖𝑚𝑅𝑚
𝑚

 
Eq. 2.5  

where Rm (mol m
-3

bulk s
-1

) is the rate of precipitation (Rm > 0) or dissolution (Rm < 0) 

of solid phase m per unit volume of rock, and im is the number of moles of i per mole of 

mineral m. Since the C-S-H gel dissolution reaction is described using a kinetic rate law, the 

dissolution rate constants of the discrete compositions defined from the C-S-H solid solution 

are obtained by fitting the model to the experimental variation of the output concentrations 

with time in the flow-through experiments. In the simulations, the reaction rate law that has 

been used is of the form  

𝑅𝑚 = −𝐴𝑚𝑘𝑚(1 − Ω) Eq. 2.6  

where Rm is the reaction rate for a given mineral (mol m
-3

 s
-1

), Am is the mineral 

surface area (m
2
 m

-3
), km is the reaction rate constant (mol m

-2
 s

-1
) and (1-) is the term 
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describing the dependence of the rate on the solution saturation state. is the ionic activity 

product (IAP) of the solution with respect to the mineral divided by Keq (equilibrium constant 

for that mineral reaction). This (1-) term corresponds to a formulation of the rate law based 

on Transition State Theory (TST) for a single elementary reaction controlling the reaction 

mechanism (Lasaga, 1998). Data for steady-state dissolution (see below) are consistent with 

this simple formulation. 

The flow-through experiments were modelled using a 1 D representation of the 

reaction cell. The length of the flow-through cell was discretized in three nodes, and grid 

spacing was 1 cm. Dispersivity was set to 1 m, which ensured homogeneous solution 

composition in the 3 nodes (well-mixed conditions). 

The initial mineralogical composition, porosity and flow rate used in the model for 

representative experiments are given in Table 2.1. Mass fraction was calculated based on the 

C-S-H and portlandite contents (67.2% and 32.8%, respectively) and the total mass; the 

mineral volumetric fractions were calculated using the density of C-S-H and CH (2.7580 and 

2.2414 g cm
-3

, respectively). Porosity values (volume of solid per volume of reaction cell) 

ranged from 98.83% to 99.42%. The initial BET surface area of the C-S-H gel was used to 

calculate the mineral surface area (m
2
 m

-3
). Additional calculations were also performed 

considering the small amounts of calcite (4%) and quartz (1.5%) in the system and their 

geometric surface areas. Results showed a negligible effect from these phases.  

Table 2.1.  Model parameters used in the calculations.  

experiment 

 

total mass 

(g) 

 

mass 

(g) 

volumetric 

fraction 
residence 

time 

(h) 

flow rate 

(m/h) 

C-S-H CH C-S-H CH 

CSH-25_19 2.9976 2.016 0.984 0.018 0.011 57.8 5.04E-04 

CSH-25_20 1.4961 1.008 0.492 0.009 0.005 58.7 5.04E-04 

CSH-25_21 3.0034 1.008 0.492 0.009 0.005 182.5 1.62E-04 

CSH-25_22 1.4975 2.016 0.984 0.018 0.011 179.8 1.62E-04 

CSH-25_23 2.9855 2.016 0.984 0.018 0.011 57.8 5.04E-04 

CSH-25_3 1.5027 1.008 0.492 0.009 0.005 18.2 1.62E-03 

CSH-25_2 1.5011 1.008 0.492 0.009 0.005 18.2 1.62E-03 

CSH-25_1 1.5031 1.008 0.492 0.009 0.005 18.2 1.62E-03 

The composition of the injected solution is that of deionized water in a CO2-free 

atmosphere (pH = 7). The initial solution in the reactor is at equilibrium with the C-S-H gel 

and portlandite with an initial pH of ca. 12.5. The C-S-H solid solution was discretized into 

19 different stoichiometries, ranging from Ca/Si ratio = 1.67 to Ca/Si ratio = 0.83 (Table 2.2). 

All the chemical equilibria in solution are listed in Table 2.3. All the equilibrium constants 
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were taken from the database included in CrunchFlow, which is based on the EQ3/6 database 

(Wolery, 1990), except for the C-S-H phases calculated from the data in Kulik and Kersten 

(2001). Activity coefficients were calculated using the extended Debye-Hückel formulation 

(b-dot model) using parameters from the same database. The activity of water is taken to be 

unity. 

Initial C-S-H (Ca/Si ratio = 1.67) surface area was calculated from the measured BET 

data and the initial mass of C-S-H. Surfaces of all the other compositions (C-S-H with Ca/Si 

< 1.67) are assumed to be the same as the initial surface area of C-S-H with Ca/Si = 1.67. The 

surface area of portlandite was fitted to reproduce the high initial Ca concentration. The rate 

constant for portlandite (k) is 10
-5.4

 mol m
-2

 s
-1

 as reported in Bullard et al. (2010). The rate 

constants for the discrete cementitious C-S-H phases were obtained by fitting the model to the 

experimental variation of the output Ca and Si concentrations. 

Table 2.2.  Equilibrium constants (log K e q) and stoichiometric coefficients for  solid 

dissolution reactions . Reactions are written as the dissolution of 1 mol of the solid 

phase. 

mineral log K 

stoichiometric coefficients 

Ca
2+

 SiO2 H
+
 H2O 

CSH-167 2.9133E+01 1.67 1 -3.34 4.34 

CSH-165 2.8724E+01 1.65 1 -3.3 4.3 

CSH-160 2.7572E+01 1.60 1 -3.2 4.19 

CSH-155 2.6443E+01 1.55 1 -3.1 4.08 

CSH-150 2.5328E+01 1.50 1 -3 3.97 

CSH-145 2.4222E+01 1.45 1 -2.9 3.86 

CSH-140 2.3124E+01 1.40 1 -2.8 3.75 

CSH-135 2.2034E+01 1.35 1 -2.7 3.64 

CSH-130 2.0950E+01 1.30 1 -2.6 3.53 

CSH-125 1.9873E+01 1.25 1 -2.5 3.42 

CSH-120 1.8801E+01 1.20 1 -2.4 3.31 

CSH-115 1.7736E+01 1.15 1 -2.3 3.19 

CSH-110 1.6678E+01 1.10 1 -2.2 3.08 

CSH-105 1.5627E+01 1.05 1 -2.1 2.97 

CSH-100 1.4583E+01 1.00 1 -2 2.86 

CSH-095 1.3550E+01 0.95 1 -1.9 2.75 

CSH-090 1.2529E+01 0.90 1 -1.8 2.64 

CSH-085 1.1531E+01 0.85 1 -1.7 2.53 

CSH-083 1.1150E+01 0.83 1 -1.66 2.49 

Portlandite 2.2800E+01 1.00 0 -2 2 

SiO2 (am) -2.7200E+00 0 1 0 0 

Quartz -4.0056E+00 0 1 0 0 
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Table 2.3.  Equilibrium constants (log K e q) and stoichiometric coefficients for 

equilibria in solution. Reactions are written as the destruction of 1 mol of the 

species in the first column.  

species Log K 

stoichiometric coefficients 

Ca
2+

 SiO2 H
+
 H2O 

CaOH
+
 1.2850E+01 1 0 -1 1 

H2SiO4
2-

 2.2960E+01 0 1 -2 2 

HSiO3
-
 9.9422E+00 0 1 -1 1 

OH
-
 1.3991E+01 0 0 -1 1 

2.3. Results and discussion 

2.3.1. C-S-H dissolution reaction 

Table 2.4 shows the experimental conditions of the flow-through experiments run at 

room temperature (23 ± 2 ºC). Experiments were repeated with different durations (from 433 

to 5754 h) to evaluate changes in the solid composition with time. Therefore, steady-state 

conditions were not always reached. Usually, steady state was attained after 1200-1500 h, 

always exceeding 200 h. The output pH was both measured and calculated by charge balance 

fixing the measured Ca and Si concentrations using the PhreeqC code (Parkhurst and Appelo, 

1999) and the CEM07 database (Matschei et al., 2007; Lothenbach et al., 2008). As Ca was 

released from both the dissolution of CH and C-S-H gel, the output Ca concentration was not 

used to calculate the C-S-H dissolution rates. Dissolution rates were only calculated based on 

the Si output concentration and normalized to both the final mass (rates expressed mol g
-1

 s
-1

) 

and the final surface area (rates expressed mol m
-2

 s
-1

). Three sets of experiments were carried 

out according to the flow rate (Table 2.4). In the first set (flow rate ≈0.046 mL min
-1

), to 

examine whether the C-S-H dissolution could be affected by stirring (solute transport 

control), three stirred flow-through experiments were carried out at different stirring rates (0 

rpm in C-S-H_25-1, 600 rpm in C-S-H_25-2 and 1200 rpm in C-S-H_25-3;Table 2.4). In the 

three experiments, the evolution of pH and Ca and Si concentrations with time allowed 

distinction of three stages during the C-S-H dissolution (Fig. 2.10). The output Ca 

concentration was initially high and decreased sharply until ≈ 250 h (stage 1; Fig. 2.10a). 

Thereafter a gradual Ca decrease was observed (up to 1500 h, stage 2) until steady state was 

attained (up to 2000 h, stage 3). During stages 1 and 2, Si concentration increased until steady 

state was reached in stage 3 (Fig. 2.10b). 
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experiment time flow rate initial mass initial CSH mass final CSH mass Ca Si
aqueous 

Ca/Si
BET area RSi RSi log R |Si| SI DG (kcal mol

-1
) SI

(h) (mL min
-1

) measured calculated (m
2

g
-1

) (mol g
-1

s
-1

) CSH_083 CSH_083 quartz

FIRST SET 0.046

C-S-H_25-1 2011 0.045 1.5031 1.0101 0.7698 10.31 10.50 626.96 501.15 0.92 52.7 -4.9E-10 -9.3E-12 -11.0 -0.23 -0.31 -0.33

C-S-H_25-2 
(1) 2011 0.041 1.5011 1.0087 0.7031 10.42 10.82 712.26 505.36 1.29 48.9 -4.9E-10 -1.0E-11 -11.0 -0.14 -0.19 -0.41

C-S-H_25-3 
(2) 2011 0.038 1.5027 1.0098 0.7401 10.53 11.00 708.67 666.16 1.06 50.9 -6.0E-10 -1.2E-11 -10.9 -0.07 -0.10 -0.20

C-S-H_25-4 2011 0.055 3.0707 2.0635 1.6986 10.49 10.85 779.07 613.46 1.27 42.9 -3.0E-10 -7.0E-12 -11.2 -0.05 -0.07 -0.33

C-S-H_25-5 493 0.043 1.5009 1.0086 0.9912 10.80 10.79 647.73 115.32 5.62 52.7 -8.4E-11 -1.6E-12 -11.8 -1.19

C-S-H_25-6 1755 0.055 1.5033 1.0010 0.8250 9.67 10.50 347.98 271.68 1.28 142.0 -3.0E-10 -2.1E-12 -11.7 -0.83 -1.13 -0.38

C-S-H_25-7 910 0.047 1.4998 1.0079 1.0040 11.12 11.13 377.29 2.74 137.79 46.1 -2.1E-12 -4.7E-14 -13.3 -2.60

C-S-H_25-8 1756 0.041 2.9951 2.0127 1.8747 10.21 10.02 694.91 388.89 1.80 61.7 -1.4E-10 -2.3E-12 -11.6 -0.57

C-S-H_25-9 1049 0.054 2.9934 2.0116 1.9861 10.74 10.67 375.55 6.09 61.62 63.3 -2.8E-12 -4.4E-14 -13.4 -2.25

C-S-H_25-10 433 0.041 2.9013 1.9497 1.9468 11.48 11.46 325.81 5.62 57.97 25.0 -2.0E-12 -7.9E-14 -13.1 -2.23

SECOND SET 0.12

C-S-H_25-11 717 0.132 0.5007 0.3355 0.2168 9.92 10.18 126.69 144.35 0.88 77.9 -1.6E-09 -2.1E-11 -10.7 -1.82 -2.48 -0.29

C-S-H_25-12 717 0.130 0.5004 0.3353 0.2150 9.99 10.46 266.36 275.79 0.97 60.1 -1.8E-09 -3.0E-11 -10.5 -1.03 -1.40 -0.23

C-S-H_25-13 1755 0.123 1.5018 1.0092 0.3832 9.75 10.46 260.16 246.25 1.06 131.0 -1.3E-09 -1.0E-11 -11.0 -1.08 -1.47 -0.29

C-S-H_25-14 1049 0.126 1.5011 1.0087 0.2934 10.03 10.44 383.25 372.02 1.03 74.0 -2.7E-09 -3.6E-11 -10.4 -0.67 -0.92 -0.23

C-S-H_25-15 432 0.102 1.5097 1.0145 0.9973 11.00 10.99 726.17 31.16 23.06 54.2 -5.3E-11 -9.8E-13 -12.0 -1.85

C-S-H_25-16 570 0.120 2.9994 2.0153 1.8544 10.60 10.41 682.55 195.78 3.49 14.5 -2.1E-10 -1.5E-11 -10.8 -0.95

C-S-H_25-17 1049 0.118 2.9951 2.0127 1.8129 10.08 10.71 143.05 58.60 2.44 28.8 -6.4E-11 -2.2E-12 -11.7 -0.82

C-S-H_25-18 1617 0.097 2.998 2.0147 1.8247 10.68 10.63 636.37 12.69 50.63 15.9 -1.1E-11 -7.1E-13 -12.1 -2.18

THIRD SET 0.008

C-S-H_25-19 4534 0.013 2.9976 2.0144 1.8842 9.36 10.9 830.68 806.13 1.03 54.6 -9.5E-11 -1.7E-12 -11.8 -0.02 -0.03 -0.17

C-S-H_25-20 4534 0.012 1.4961 1.0054 0.9282 10.12 10.9 597.79 733.16 0.82 62.9 -1.6E-10 -2.6E-12 -11.6 -0.19 -0.26 0.00

C-S-H_25-21 5754 0.005 3.0034 2.0183 1.9917 9.98 11.6 610.87 215.52 2.84 38.2 -8.0E-12 -2.1E-13 -12.7 -0.83

C-S-H_25-22 5754 0.004 1.4975 1.0063 0.9337 9.04 11.0 771.93 586.47 1.32 93.0 -4.0E-11 -4.4E-13 -12.4 -0.04 -0.06 -0.36

C-S-H_25-23 4534 0.012 2.9855 2.0063 1.8946 9.58 11.0 590.48 673.84 0.88 48.3 -7.2E-11 -1.5E-12 -11.8 -0.21 -0.29 -0.06

C-S-H_25-24 5754 0.005 1.5062 1.5062 1.4426 9.42 11.0 849.38 602.28 1.41 85.3 -3.4E-11 -4.0E-13 -12.4 -0.07 -0.10 -0.41

Propagated error in the dissolution rate is approximately 15 %

Experiments in italics indicate equilibrium with respect to quartz

Calculated output pH using the PHREEQC code (see text)

RSi is calculated according to the Si release (see text)

(1)
stirred (600 rpm) and

(2)
stirred (1200 rpm)

pH

(g) M (mol m
-2

s
-1

)

Bold indicates experiments that approached steady state and dissolution was congruent 

Table 2.4.  Experimental conditions and steady-state C-S-H gel dissolution rates.  Initial BET area of the unreacted C-S-H gel is 11.7±1.7 m
2
g

-1
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The high Ca concentration at the start of the experiments was mainly due to fast 

dissolution of CH (Haga et al., 2002; Galan et al., 2011). In contrast, at the start of the 

experiments the Si released from C-S-H dissolution was low due to a common-ion effect. 

Because fast portlandite dissolution results in large Ca concentrations, Si can only be present 

at very low concentrations (limited by the equilibrium with respect to C-S-H). As portlandite 

was consumed, released Si increased with time (stage 1). In stage 2, portlandite was mostly 

dissolved, and the C-S-H dissolution was incongruent, showing preferential Ca release and 

consequent gradual decrease in the aqueous Ca/Si ratio. In stage 3, C-S-H dissolution reached 

steady state, i.e., the output Ca and Si concentrations were constant with time for more than 

500 h, and the Ca and Si output concentrations were similar within error (Fig. 2.10c). 

The stoichiometric Ca/Si ratio is defined as the ratio between the output 

concentrations of Ca and Si. Variation in the Ca/Si ratio in solution with time in experiments 

C-S-H_25-1, C-S-H_25-2 and C-S-H_25-3 is shown in Figure 2.10d. Usually, the output Si 

concentration is lower than that of Ca until steady state is approached. In stage 1 the Ca/Si 

ratio is very high due to preferential dissolution of portlandite. In stage 2, as the portlandite 

content diminishes, a gradual decrease in Ca and increase in Si is observed, indicating an 

enhancement of the C-S-H gel dissolution rate, resulting in an increase in the Ca/Si ratio. At 

the third stage, concentration of Ca and Si reached steady state. The Ca/Si ratio in the aqueous 

phase tended to be constant (Ca/Si ≈ 0.9 ± 0.1), indicating congruent C-S-H dissolution of a 

tobermorite-like phase (Ca/Si ≈ 0.83). 
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Figure 2.10. Variation of the output (a)Ca and (b)Si concentrations with time in experiments      

C-S-H_25-1, C-S-H_25-2 and C-S-H_25-3; c) variation of Ca and Si concentration in experiment 

C-S-H_25-3;d) variation of the aqueous Ca/Si ratio in experiments C-S-H_25-1, C-S-H_25-2 and 

C-S-H_25-3. 1, 2 and 3 represent the three different stages mentioned in text. Empty symbols 

represent steady-state output concentrations. 

 

At the stage of congruent dissolution, the steady-state C-S-H gel dissolution rates 

were calculated based on the steady-state Si release (Eq. (2.2), Table 2.4). The average rate 

from the three experiments is - 1.02x10
-11

 ± 1.0x10
-12

 mol m
-2

 s
-1

 with a coefficient of 

variation (CV) of 10 %. This error is smaller than the uncertainty in the measurements (15%), 

which indicates that the dissolution reaction was not transport-controlled (not affected by the 

stirring). Based on this result, the rest of the experiments were performed using non-agitated 

cells to prevent possible stirring-induced abrasion of the particles that could affect the C-S-H 

dissolution rates (Metz and Ganor, 2001).  

Figure 2.11a depicts the output pH variation with time in the three experiments. In 

stage 1, the initial pH of about 12 is caused by portlandite dissolution. pH decreases as 

portlandite is consumed and C-S-H dissolution becomes dominant (stage 2). Output pH 
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values below 10.5 are likely affected by undesired carbonation of the collected output 

solution prior to analysis as is suggested by the higher calculated pH values (PhreeqC, Fig. 

2.11b). Solutions with high pH values (10-12.5) are highly sensitive to carbonation. However, 

the pH decrease will be larger in a solution with a pH of approx. 10.5. In stage 3, the output 

pH is fairly constant (around 10) indicating that C-S-H dissolution reaches steady state.  

 

Figure 2.11. (a) Output pH variation with time in experiments C-S-H_25-1, C-S-H_25-2 and      

C-S-H_25-3; (b) measured and calculated output pH variation in experiment C-S-H_25-3. Error 

bars are within the symbol size. The PhreeqC code was used to calculate the output pH (charge 

balance). 

 

These results (stage 3) indicate that (i) the C-S-H gel was the main dissolving phase 

and (ii) the dissolution reaction was stoichiometric with respect to a phase with a Ca/Si ratio 

similar to that of tobermorite. In this third stage the solid and aqueous Ca/Si ratios would be 

expected to be approximately the same. The results agree with those reported by Harris et al. 

(2002) and Carey and Lichtner (2006, 2007) who showed that the leaching of C-S-H gels in 

demineralized water could initially be described as an incongruent dissolution, tending 

gradually to a congruent dissolution. 

The second and third sets of experiments were carried out by respectively increasing 

and decreasing the flow rate (≈ 0.12 and ≈ 0.008 mL min
-1

) with respect to the first set (≈ 

0.046 mL min
-1

; Table 2.4). Faster flow yields lower output concentrations and slower flow 

yields higher output concentrations. With time, behaviour of output pH and output 

concentration of Ca and Si was similar to that observed in the first set of experiments with a 

mere change in the time to achieve steady state (longer time to steady state in slower-flow 

experiments; Fig. 2.12). 
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Figure 2.12. Variation of the output concentrations with time in experiment C-S-H_25-11(≈ 0.132 

mL min
-1

) and C-S-H_25-20 (≈ 0.012 mL min
-1

). Steady state was reached earlier in the 

experiment with faster flow rate. 

 

2.3.2. The C-S-H gel dissolution rate at steady state 

In the experiments where the output solution concentrations did not reach steady 

state, the dissolution rate was calculated based on the output Si concentrations according to 

Eq. (2.1) at room temperature (23 ± 2˚C) and normalized to final mass and final surface area 

(Table 2.4). In these experiments, the aqueous Ca/Si ratio ranged from 1.8 to 137.8 (stage 2). 

In the experiments where the steady state was attained, the dissolution rate of the C-

S-H gel was also calculated based on Si release (Eq. 2.2). In this case, the aqueous Ca/Si ratio 

equals approximately the stoichiometric value expected for a congruent dissolution of the C-

S-H gel with a tobermorite-like composition (Ca/Si ratio ≈ 0.83). The steady-state dissolution 

rates of the C-S-H gel ranged from -3.4x10
-11

 to -2.70x10
-9

 mol g
-1

 s
-1

 or -4.0x10
-13

 to -3.0x10
-

11
 mol m

-2
 s

-1
 (see values in bold in Table 2.4). 

Variation in SI with time in a representative experiment (e.g., C-S-H_25-1) is shown 

in Figure 2.13. A similar behavior is obtained in the different calculations. Initially, the 

solution is nearly saturated with respect to jennite (C-S-H_1.667) and portlandite, even 

slightly supersaturated, and undersaturated with respect to amorphous SiO2 and quartz. With 

time SI decreases, the solution is becoming undersaturated with respect to C-S-H_1.67 and 

highly undersaturated at steady state. In turn, SI increases with respect to SiO2 amorphous and 

quartz. Regarding the discrete cementitious composition between the two end-members 

jennite and tobermorite, the associated SI values showed an increase in undersaturation with 
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time. With respect to tobermorite (C-S-H_0.83), the calculated SI showed slight 

undersaturation during all the experiments. 

 

Figure 2.13. SI variation with time in a representative experiment (C-S-H_25-1) using PhreeqC 

code with MINTEQ and CEM07 databases. 

 

The saturation state of the solution was calculated in terms of the Gibbs energy, DG, 

according to 

𝛥𝐺 = 2.303𝑅𝑇 · 𝑆𝐼        𝑎𝑛𝑑 𝑆𝐼 = log
𝐼𝐴𝑃

𝐾𝑒𝑞
      Eq. 2.7  

where R is the gas constant, T is the absolute temperature, SI is the saturation index of 

the solution with respect to C-S-H_0.83 and IAP is the ion activity product. Figure 2.14 plots 

the steady-state dissolution rates obtained in this study against DG. 
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Figure 2.14. Variation of the steady-state dissolution rates (C-S-H_0.83) with the solution 

saturation state in terms of the Gibbs energy, DG (22 ± 2°C). The solid and dotted lines are the 

best fitting curves using Eq. (2.8) in which the Temkin’s number, σ, equals 1 or 0.86, respectively. 

The respective R
2
 values are around 0.8. The two fitting curves lie within the area between the 

dashed white lines that corresponds to the 15% error associated to the rates. Rates in empty 

symbols are not accounted for the rate-DG fitting (see text). 

 

Two groups of rates represented by empty and solid symbols are depicted in Figure 

2.14. The former includes experiments where dissolution rates are small and diminish in 

magnitude as DG increases to equilibrium (from DG ≈ -1.5 to 0 kcal mol
-1

). In contrast, the 

rates included in the latter are faster and also decrease as equilibrium is approached (from DG 

≈ -2.5 to 0 kcal mol
-1

). Thus, it appears that over the same range of solution saturation states, 

pH (10.5 - 11) and temperature (23 ± 2°C), some of the steady-state dissolution rates were 

noticeably slower (empty symbols in Fig. 2.14). If, as it was shown above, the C-S-H 

dissolution rate is not transport controlled (dominated by diffusion), different dissolution rates 

should not be obtained at the same DG. The evolution of aqueous chemistries was similar in 

all and it cannot explain the slow rates. However, the output solution was at equilibrium with 

respect to quartz and close to equilibrium with respect to amorphous SiO2 in two experiments 

showing large Q
4
-gel peaks (C-S-H_25-20 and C-S-H_25-23, Table 2.6 and section 2.3.5 

below). The NMR spectra of the reacted samples suggest the formation of Si-rich domains 

during C-S-H dissolution in most of the slow dissolution-rate experiments (see section 2.3.5). 

Hence, the steady-state rates calculated from these experiments were not taken into account 

the derive a dissolution rate law for the C-S-H_0.83 gel. However, the inhibitory effect that 
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formation of Si-rich domains might exert on the C-S-H dissolution rates has to be highlighted. 

Further studies should address this issue.  

In order to account for the solution saturation effect on the C-S-H_0.83 gel 

dissolution rate, a transition state theory (TST)-derived rate law is proposed 
















 D


RT

G
kRate


exp1

 

Eq. 2.8  

where k stands for the dissolution rate constant and σ is known as the Temkin’s 

stoichiometric number (Cama et al., 2010). Likewise, Eq. (2.8) can be expressed in terms of 

the saturation state, Ω, that is used in the CrunchFlow code  

 /11  kRate  
Eq. 2.9  

where Ω = IAP/Keq. 

A reasonable fit to the experimental data at pH 10.50 to 11 and temperature 23 ± 2°C 

can be obtained with σ = 1 or σ = 0.86 (Fig. 2.14), yielding respective k values of 3.1 ± 0.4 

x10
-11

 and 3.0 ± 0.3 x10
-11

 mol m
-2

 s
-1

. Considering the similarity in the values of the fitted 

kinetic parameters, it is suggested to use the simplest TST-form (i.e., σ = 1) and the average 

rate constant k of 3.1 ± 0.4 x10
-11

 mol m
-2

 s
-1

 for the rate law 

𝑅𝑎𝑡𝑒𝐶−𝑆−𝐻_0.83 (𝑚𝑜𝑙 𝑚
−2 𝑠−1) = −3.1 ± 0.4 × 10−11 ∙ (1 − Ω) Eq. 2.10  

Moreover, the TST-form of this rate law supports the use of Eq. (2.9) in the reactive 

transport modeling to derive the rate constants for the discrete C-S-H compositions used to 

represent the solid solution. 
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2.3.3. C-S-H dissolution rate at different Ca/Si ratio. Modeling 

CrunchFlow simulations of the variation of Ca and Si output concentration and output 

pH with time in a representative experiment, C-S-H_25-3, are shown in Figure 2.15. Table 

2.5 lists the derived rate constants associated to the variable C-S-H composition (Ca/Si ratio 

between 1.67 and 0.83) from fitting the model to experimental data. The rate constants ranged 

from 10
-7.5

 to 10
-11

. The value of the coefficients decreases with decreasing Ca/Si ratio of the 

C-S-H gel. 

 

Figure 2.15. Experimental and calculated variation of a) the output Ca concentration; b) the 

output Si concentration, and c) output pH in experiment C-S-H_25-3. Symbols correspond to 

experimental data and lines to model results. 

 

To obtain a reasonable fit between model and experimental output Ca concentration 

(Fig. 2.15a), the amount of portlandite and its reactive surface area are fitted to adjust the 

initial Ca concentrations (the first 200 hours). Thereafter, portlandite is mostly dissolved, and 

dissolution of the C-S-H dominates (Fig. 2.15b). The progress of the reaction is marked by 

release of Ca and Si, evolving to lower Ca/Si ratios. Microprobe analyses show higher solid 

Ca/Si ratios in C-S-H particles after shorter experiments and lower Ca/Si ratios in those where 

steady state was achieved. Fitted rate constants associated to discrete cementitious 

compositions with high Ca/Si ratios are larger than those related to compositions with low 

Ca/Si ratio. Regarding pH (Fig. 2.15c), a successful fit between model and experimental 

output pH is obtained up to 800 h. Thereafter, the experimental pH is lower than the 

calculated one. The reason of this apparent discrepancy is that these output solution samples 

underwent carbonation prior to pH measurement. 

In the simulations, the volumetric fraction of portlandite and associated surface area 

varied between 0.0017 and 0.0018 and 0.07 and 0.09 m
2
 g

-1
, respectively (Table 2.5). The 
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obtained values of the dissolution rate constants of the different C-S-H gel compositions 

considered (0.83 ≤ Ca/Si ratio ≤ 1.67) to fit the experimental results of Ca and Si in solution 

range from about 10
-8

 to10
-11

 mol m
-2

 s
-1

. The fastest rate coefficients are associated with the 

C-S-H_1.67 end-member with Ca/Si of 1.67 (jennite-like phase). The rates decrease by 

decreasing the Ca/Si ratio so that the end-member C-S-H_0.83 with Ca/Si of 0.83 

(tobermorite-like phase) is the slowest (Table 2.5). 

A polynomial fit to the derived rate constants from the three experiments (Table 2.5) 

yields a continuous function that can be more easily implemented in reactive transport 

modeling 

𝐿𝑜𝑔 𝑘 (𝑚𝑜𝑙 𝑚−2 𝑠−1) = 202.55 (
𝐶𝑎

𝑆𝑖
)
5

− 1283.97 (
𝐶𝑎

𝑆𝑖
)
4

+ 3191.77 (
𝐶𝑎

𝑆𝑖
)
3

−

3883.10 (
𝐶𝑎

𝑆𝑖
)
2

+ 2312.78
𝐶𝑎

𝑆𝑖
− 550.97  

Eq. 2.11  

Since the form of the rate laws used in the modeling does not explicitly include the 

effect of pH (e.g. an aH+
n
 term), it is possible that the observed variation of the rate constants 

(k) with Ca/Si ratio of the solid is due (at least partially) to the lower pH associated with the 

smaller values of Ca/Si ratio. Two points should be mentioned: (1) most experimental results 

correspond to close-to-equilibrium conditions (region where the rate in not independent of 

DG) and therefore a pH effect cannot be clearly separated from a DG effect. (2) If a rate law 

of the form Rm = -Am km aH+
n
 (1- ) were used in the modeling of the experiments, it would 

not be possible to decouple km from aH+
n
, yielding infinite possible combinations of km and 

aH+
n
. Therefore, the simple form of the rate law (Eq. 2.6) was used. However, it is indeed 

possible that the variability in k reflects (at least partially) an actual dependency on pH. 
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Parameters 

Experiments  

C-S-H_25-3 C-S-H_25-2 C-S-H_25-1 
Polynomial 
form 

Initial Mass (g) 1.5027 1.5011 1.5031 1.5 

Experimental Flux (mL min
-1

) 0.04 0.04 0.04 0.04 

Volumetric fraction of C-S-H gel 0.009 

C-S-H Fitted parameters (log k, mol m
-2

 s
-1

)  

CSH-1667 -9.01 -7.50 -8.50 -8,4 
CSH-165 -9.12 -7.50 -9.01 -8,47 
CSH-160 -9.28 -7.50 -8.76 -8,53 
CSH-155 -9.30 -7.60 -8.93 -8,53 
CSH-150 -9.07 -7.67 -8.96 -8,56 
CSH-145 -9.06 -7.80 -8.90 -8,67 
CSH-14 -9.28 -7.80 -9.32 -8,89 

CSH-135 -9.45 -9.00 -9.10 -9,2 
CSH-130 -9.79 -9.10 -10.13 -9,58 
CSH-125 -10.49 -9.00 -10.92 -9,98 

CSH-120 -10.70 -9.10 -11.12 -10,36 
CSH-115 -10.45 -10.4 -11.20 -10,67 
CSH-110 -10.40 -10.5 -11.20 -10,88 
CSH-105 -10.90 -10.9 -11.30 -10,97 
CSH-10 -10.95 -10.9 -11.00 -10,95 

CSH-095 -10.95 -10.9 -10.70 -10,86 
CSH-090 -10.90 -10.9 -10.65 -10,79 
CSH-085 -10.90 -11.0 -10.88 -10,87 
CSH-083 -10.90 -11.1 -10.80 -10,99 

CH volumetric fraction 0.0017 0.0018 0.0017 0.0017 

CH surface area (m
2
 g

-1
) 0.0800 0.0700 0.0900 0.0800 

C-S-H_1.667 and C-S-H_0.83 are the jennite-like and tobermorite-like end-members of the solid solution. 

The calculated initial volumetric fraction of portlandite (CH) was 0.005. 

Table 2.5.  Fitting parameters used in the simulations of the representative 

experiments.  

 

 

Variation of dissolution rates (RSi) with pH for some representative experiments is 

shown in Figure 2.16. At ≈ pH 12.5 preferential dissolution of portlandite takes place, and C-

S-H gel with Ca /Si ratio of 1.667 dissolves under close-to-equilibrium conditions. The values 

of the dissolution rate at this stage are around 10
-14

-10
-13

 mol m
-2

 s
-1

 and the rate constant (k) 

is 10
-8

 mol m
-2

 s
-1

. With time, the content of portlandite diminishes increasing the C-S-H gel 

dissolution. At the end of the experiments, when the pH is around 10.5 and the Ca/Si ratio of 

the gel is close to 0.83, the dissolution rate is about 9.3·10
-12

-1.0·10
-11

 mol m
-2

 s
-1

 and the rate 

constant (k) becomes smaller ( 10
-11

 mol m
-2

 s
-1

). 
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Figure 2.16. Variation of the dissolution rates (C-S-H_0.83) with pH for 3 representative 

experiments.  

 

2.3.4. Morphology and composition of the C-S-H gel 

2.3.4.1 Morphology of C-S-H gel (SEM-EDX measurements) 

The SEM images show the aspect of unreacted C-S-H gel particles and reacted ones 

retrieved from experiment C-S-H_25-3 (Fig. 2.17). It is observed that the unreacted particles 

have irregular round shapes (Fig. 2.17a). EDX analyses revealed that some of the particles are 

CH as Ca was the only element detected (Fig. 2.17b). After dissolution (Fig. 2.17c), the C-S-

H particles show similar morphology, and particles of CH are not detected.  
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Figure 2.17. SEM images of C-S-H samples: a) overall view of the unreacted C-S-H gel powder; 

b) close-up view of the portlandite (see arrows) and C-S-H  particles and c) retrieved C-S-H gel 

sample in experiment C-S-H-25_3. 

2.3.4.2 Composition of the C-S-H gel (EPMA analyses) 

EPMA analyses were performed on multiple points of the unreacted and reacted C-S-

H samples and were used to calculate the solid Ca/Si ratio. Ca/Si ratio greater than 1.70 ± 

0.10 suggest portlandite-rich regions, and Ca/Si ratios equal or smaller than 1.70 ± 0.10 

indicate that the analyzed particles is exclusively formed of C-S-H (see Fig. 2.7). In principle, 

considering that these particles were retrieved after achieving steady-state, no portlandite 

should be found. However, some portlandite remained unreacted, likely due to the fact that 

some portandite-rich regions could remain coated by C-S-H-rich domains during dissolution. 

Also, the solid Ca/Si ratio of the C-S-H particles retrieved after the steady state should be 

close to 0.9 ± 0.1, which is the stoichiometric Ca/Si ratio of the tobermorite-like C-S-H and is 

inferred by the aqueous Ca/Si ratio of 0.9 ± 0.1. The observed compositional variability 

within the C-S-H particles could be caused by heterogeneous dissolution from the particle 

surface to the unreacted core. Figure 2.18 shows the backscattered electron images of some 

reacted particles retrieved after the steady state was achieved (experiments C-S-H_25-1, C-S-

H_25-2 and C-S-H_25-23). The EPMA multipoint analysis shows that the solid Ca/Si ratio 

varies within a range in the analyzed particles. The values of the solid Ca/Si ratio of the 

particles indicate that the analyzed particles are exclusively formed of C-S-H with a solid 

Ca/Si ratio that varies from 0.44 and 1.60.  
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Figure 2.18. Backscattered-electron images of the reacted C-S-H gel in experiments C-S-H_25-2 

(a), C-S-H_25-1 (b) and C-S-H_25-23 (c).  

Measurements of the solid Ca/Si ratios were also performed on samples from 

experiments not reaching steady state (C-S-H_25-8 of ≈ 1756 h, C-S-H_25-9 of ≈ 1049 h, C-

S-H_25-10 of 433 h, C-S-H_25-16 of 570 h and C-S-H_25-6 of 1755 h; Fig. 2.19). The 

analyses show that the solid Ca/Si ratio decreases with reaction time, as expected, since the 

Ca/Si ratio of the longer-reacted particles at steady state is lower (i.e., around 0.9 ± 0.1) than 

that of reacted particles that did not reach steady state. 

 

Figure 2.19. Backscattered-electron (a,b) and secondary-electron (c) images of the reacted C-S-H 

sample in experiments (a) C-S-H_25-8 (1756 h), (b) C-S-H_25-9 (1049 h), and (c) C-S-H_25-10 

(433 h). Numbered points correspond to the analyzed particle micro-regions. 

2.3.5 Structure of the C-S-H gel (
29

Si MAS-NMR spectra) 

Quantitative information on the connectivity of the silicate tetrahedra is provided by 

29
Si MAS-NMR. The relative proportions of silicon associated with the Q

n
 units were 

determined by the deconvolution of the different peaks in the spectra using the Dmfit program 

and the Gaussian/Lorentzian model (Massiot et at., 2002). The results of the dipolar 

correlation model of C-S-H obtained by Klur et al. (1998) were used to improve the spectra 

interpretation. The model considers the following chemical shifts: Q
1
 at -78.9 ppm, Q

1p
 at -76 

ppm (for Ca/Si ratio > 1; Fernández et al., 2008), Q
2p

 at -82.1 ppm, Q
2i
 at -83.9 ppm (the 

difference between Q
2p

 and Q
2i
 is in the tetrahedron connection to protons with a resonance at 
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lower field than those connected to calcium atoms; Klur et al., 1998), Q
2
 at -85.3 ppm, Q

3
-

defect at -91.5 ppm, Q
2v

 at -87.3 ppm, Q
3
-gel at -93 ppm and Q

4
-gel at -111.7 ppm.  

Based on the intensity of the peaks, the mean chain length (MCL) of the C-S-H gel is 

calculated using the following expression (Chen et al., 2004) 

𝑀𝐶𝐿 =
2 ∙ (𝑄1 + 𝑄2)

𝑄1
 

Eq. 2.12  

where Q
1
 and Q

2
 are the relative intensities of these deconvoluted peaks expressed in 

%. This expression is valid as Q
1
 and Q

2
 are the only peaks present in the spectra. The length 

of the chain can also be estimated from the Q
2
/Q

1
 ratio (Haga et al., 2002). In general, the 

Q
2
/Q

1
 ratio of the C-S-H gel in Portland cement is about 0.68, though Beaudoin et al. (2009) 

reported a Q
2
/Q

1
 ratio of 0.6 for a C-S-H gel sample with Ca/Si ratio of 1.6. This low Q

2
/Q

1
 

ratio indicates that the sample has short chain lengths. A Q
1
 intensity higher than Q

2
 denotes 

high quantity of end-chain silicates in the sample. The polymerization of the C-S-H gel is 

expressed by the Q
1
/ΣQ

i
 (i = 1-3) ratio, which decreases as Ca/Si ratio decreases (Q

1
/ΣQ

i
 > 

0.5 in C-S-H gels with Ca/Si ratio > 1.67; Cong and Kirpatrick, 1996). 

Concerning the presence of other peaks in the spectra, due to changes in the C-S-H 

structure after dissolution, Fernández and Puertas (2003) suggest that the presence of Q
3
 and 

Q
4
 peaks precludes the utilization of expressions derived for MCL and propose an expression 

that accounts for the tetrahedral condensation ratio 

Σ𝑄2

𝑄Total
 

Eq. 2.13  

where QTotal = ΣQ
n
 and Q

n
 stands for Q

1
, Q

2
 and Q

3
 units.  

Gaitero et al. (2008) explicitly included all peaks in a calculated average segment 

length (SL), which is a measure of the number of unit lengths (silicate tetrahedra) in all 

possible geometric combinations leading to chains of tetrahedral. SL is calculated according 

to 

〈𝑆𝐿〉 =
(2 ∙ (𝑄1 + 𝑄2 + 1.5𝑄2(𝐴𝑙) + 3𝑄3 + 4𝑄4))

𝑄1 + 3𝑄3 + 4𝑄4
 

Eq. 2.14  
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where Q
i
 represents the area of the peak i. Q

2
 (Al) is not present in the measurements reported 

here (no Al in the system). 

A Q
3
/Q

2
 ratio of 0.5 indicates a crosslinked tobermorite structure with Ca/Si ratio 

near to 0.83 (Houston et al., 2009; Myers et al., 2013). The Q
3
/Q

2
 ratio is calculated according 

to 

(𝑄3𝑑𝑒𝑓𝑒𝑐𝑡 + 𝑄2𝑖 + 𝑄2𝑝)

𝑄2
=
1

2
 

Eq. 2.15  

2.3.5.1 Unreacted C-S-H gel 

The 
29

Si MAS-NMR spectrum of the unreacted C-S-H gel shows two peaks 

corresponding to Q
1
 and Q

2
 at -78.88 and -85.24 ppm, respectively (Fig. 2.20). Cong and 

Kirkpatrick (1996) and Haga et al. (2002) showed that the C-S-H gel structure is formed of 

dimers and short silicate chains. It was not possible to deconvolute between Q
1
 and Q

1p
 in 

these samples. The obtained spectrum with the lack of Q
3
 and Q

4
 peaks indicates a non-three-

dimensional silicate structure for the initial C-S-H gel. Presence of SiO2 (quartz) is detected at 

nearly -107 ppm. This amount of SiO2 could either be some remanent reactant or some 

byproduct of the ball milling process. Q
2p

 and Q
2i
 are also observed at -81.65 and -83.92 ppm, 

respectively. The MCL is calculated according to Chen et al. (2004) to be 3.35 (Table 2.6).  

2.3.5.2 Reacted C-S-H gel 

Representative 
29

Si MAS-NMR spectra of the reacted C-S-H gel samples are shown 

in Figure 2.20. Table 2.6 lists the peak shifts and integral relative intensities (%). The 

spectrum of experiment CSH-25-18 is very similar to that of initial C-S-H gel (Fig. 2.20); Q
1
 

and Q
2
 peaks prevail, indicating that the C-S-H gel structure is similar to that of the unreacted 

C-S-H gel, even after 1617 h. In fact, the high aqueous Ca/Si ratio indicates that portlandite 

and C-S-H still coexist (Table 2.6), and that the composition of the latter should be close to 

that of jennite-like C-S-H structure. In contrast, the spectra of the other reacted C-S-H gel 

samples show a decrease in Q
1
 and Q

2i
 peaks, an increase in Q

2
 peak, better resolved Q

2p
, and 

the appearance of new peaks (Q
3
-defect, Q

3
-gel and Q

4
-gel). According to Chen et al. (2004) 

the hydroxylated Q
3
(OH) (Q

3
-gel) (-101ppm) and Q

4
-gel (-110 ppm) can be assigned to silica 

gel. Experimental solutions (Table 2.4) were undersaturated with respect to quartz, except 

those corresponding to the samples showing large Q
4
-gel peaks (CSH-25-20 and CSH-25-23), 

which were at equilibrium with respect to quartz. It was not possible to model SiO2 (quartz) 

precipitation in the experiments, since the solutions were at most at equilibrium with this 
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phase, suggesting that these silica-rich domains may be formed during incongruent 

dissolution (preferential release of Ca), rather than by precipitation from the bulk solution. 

However, precipitation cannot completely be discarded.  

These C-S-H gel samples show a solid Ca/Si ratio fairly close to 0.9 (the expected 

solid Ca/Si ratio of tobermorite-like structure) that corresponds to steady-state samples. Q
3
-

gel and Q
4
-gel appears at low Ca/Si ratios (below 0.8 (Cong and Kirkpatrick, 1996) and 0.6 

(Beaudoin et al., 2009)). The presence of Q
3
 defect, Q

3
-gel and Q

4
-gel peaks indicates the 

existence of bonds between chains, cross-linked chains and silicate polymerization. The 

observed increase in polymerization of the reacted C-S-H samples, as Ca/Si ratio decreases, 

indicates that the gel dissolution tends to condense the evolving C-S-H structure (Table 2.6). 

This observation agrees with the tendency of Q
2
/Q

1
 ratio, Q

1
/ΣQ

n
 ratio and <SL>. 

Experiments with the lowest aqueous Ca/Si ratio show the highest Q
2
/Q

1
 ratio and the lowest 

Q
1
/ΣQ

n
 ratio. Cong and Kirkpatrick (1996) reported Q

1
/ΣQ

n
 ratio values below 0.2 for a C-S-

H with a Ca/Si ratio < 0.8. This suggests the C-S-H structure changes from short chains (high 

intensity of Q
1
 peak in the jennite-like phase) to long chains (high intensity of Q

2
 peak).These 

results are in agreement with those in the study by Grutzeck et al. (1989) who showed that 

lime-rich C-S-H consists of mixture of dimer and shorter chains and the silica-rich C-S-H 

consists of long chains of tetrahedra. Moreover, the decrease in Q
1
/ΣQ

n
 ratio with dissolution 

shows that silica gel may form at low solid Ca/Si ratio (Table 2.6). The value of average 

segment length, <SL>, increases as Ca/Si ratio decrease due to the formation of long chains 

(e.g long segments). When the ramifications take place in the structure, the value of <SL> 

decrease due to the chain length between cross-linkers (Q
3
-gel or Q

4
-gel tetrahedra) decrease 

and the structure evolves more dense. The obtained Q
3
/Q

2
 values near to 0.5 for some of the 

C-S-H samples indicate that the resulting structures are that of a tobermorite-like phase, 

except for the C-S-H_25-20 and C-S-H_25-23 samples that showed high contribution of a 

silica-rich C-S-H gel.  
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Table 2.6.  Chemical shift (ppm), relative peak intensity (%) and Q relations from 
29

SiMAS-NMR spectra.  

Q
n
 

Experiments 

C-S-H initial C-S-H_25-13 C-S-H_25-18 C-S-H_25-6 C-S-H_25-8 C-S-H-20 C-S-H-21 C-S-H-22 C-S-H-23 

  t 1755 h  t 1617 h  t 1755 h  t 1756 h  t 4534 h  t 5754 h  t 5754 h  t 4534 h  

aq Ca/Si =1.06 aq Ca/Si =50.63 aq Ca/Si =1.28 aq Ca/Si =1.80 aq Ca/Si =0.82 aq Ca/Si =2.84 aq Ca/Si =1.32 aq Ca/Si =0.88 

Peaks 
(ppm) %   

Peaks 
(ppm) %   

Peaks 
(ppm) %   

Peaks 
(ppm) %   

Peaks 
(ppm) %   

Peaks 
(ppm) % 

Peaks 
(ppm) %   

Peaks 
(ppm) %  

Peaks              
(ppm) %   

Q
1p

 - - - - - - -76.42 3.36 -76.21 1.97 - 0 - 0 - 0 - 0 

Q
1
 -78.88 58.66 -79.53 5.87 -78.98 48.64 -79.39 13.48 -79.42 13.73 -79.7 0.96 -79.25 14.29 -79.59 5.48 -79.61 2.27 

Q
2p

 -80.96 2.94 -82.49 11.06 -81.91 2.66 -83.02 22.51 -83.08 22.56 -82.84 0.36 -82.18 8.59 -82.21 6.29 -82.34 2.09 

Q
2i

 -83.92 7.91 -84.01 1.29 -83.95 12.72 -84.38 0.87 -84.42 0.43 -84.2 0.48 -83.95 15.82 -83.75 7.37 -83.66 1.47 

Q
2
 -85.26 28.88 -85.8 43.46 -85.21 34.85 -85.52 48.67 -85.48 51.52 -85.84 16.33 -85.47 48.83 -85.61 43.15 -85.76 22.5 

Q
2v

 - 0 -87.32 1.77 - 0 -86.95 0.49 -86.83 1.73 -87 1.24 - 0 -87.22 0.93 -86.98 0.86 

Q
3
 defect  - 0 -89.96 4.86 - 0 -90.66 3.2 -90.85 1.76 -91.5 13.07 -91.4 6.53 -90.93 12.39 -91.37 10.61 

Q
3
 gel - 0 -94.7 17.56 - 0 -93.52 5.6 -93.23 4.73 -100.7 27.25 -93.81 5.42 -97.55 17.41 -99.83 26.3 

Q
4
 gel - 0 -109 6.07 - 0 - 0 - 0 -111.1 38.67 - 0 -110.2 5.97 -110.6 33.39 

Q
4
 SiO2(quartz) -107.2 1.61 -107.3 8.06 -107.3 1.13 -107.2 1.82 -107.3 1.59 -107.3 1.64 -107.1 0.52 -107.1 1.03 -107.2 0.52 

MCL 
 

3.35 
 

- 
 

- 
 

- 
 

- 
 

- 
 

- 
 

- 
 

- 

Q
2
 

 
39.73 

 
57.58 

 
50.23 

 
72.54 

 
76.24 

 
18.41 

 
73.24 

 
57.74 

 
26.92 

Q
2
/Qtotal 

 
0.40 

 
0.63 

 
0.51 

 
0.74 

 
0.77 

 
0.19 

 
0.74 

 
0.58 

 
0.27 

Q
2
/Q

1
 

 
0.68 

 
9.81 

 
1.03 

 
4.31 

 
4.86 

 
19.18 

 
5.13 

 
10.54 

 
11.86 

Q
3
/Q

2
   -   0.43   -   0.55   0.51   0.927   0.63   0.62   0.66 

Q
1
/Q

n
      

n=1 and 4 
 

0.60 
 

0.06 
 

0.49 
 

0.17 
 

0.16 
 

0.01 
 

0.14 
 

0.06 
 

0.02 

 <SL> 
 

3.35 
 

3.15 
 

4.07 
 

5.33 
 

6.24 
 

2.12 
 

4.92 
 

2.96 
 

2.21 

 <SL> (average segment length) is a generalization of the average chain length to the case containing also planar and three-dimensional structures (including also atoms with 
Q

3
 and Q

4
 type connectivities).  

“aq” denotes aqueous; “t” denotes duration 

Bold (integral relative intensity) indicates high signal. 
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Figure 2.20. Deconvolution of the 
29

Si MAS-NMR spectra of the unreacted (initial) C-S-H sample 

and some reacted C-S-H samples (see experimental conditions in Table 2.4).  
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2.4. Conclusions 

To fully understand the process of cement degradation it is essential to understand the 

dissolution kinetics of C-S-H gel, which constitutes at least 60 % of fully hydrated Portland 

cement paste. In this study, the kinetics of the C-S-H gel dissolution has been studied at room 

temperature, conducting twenty-four flow-through experiments with variation of the flow rate 

and the C-S-H gel mass. Milli-Q water circulated through the C-S-H gel powdered samples 

(grain size between 5 and 100 m). Therefore, no solutes, other than H
+
, OH

-
, Ca and Si, the 

two latter released by the gel, intervened in the reaction. 

The presence of portlandite in the initial C-S-H gel sample after C3S hydration 

affected C-S-H gel dissolution during the experimental runs. The evolution of pH, Ca and Si 

concentrations showed three distinct stages during the experiments. In the first stage, Ca 

concentration was much larger than Si, indicating preferential dissolution of portlandite and 

slow close-to-equilibrium dissolution of C-S-H. The initial Ca/Si ratio in solution was much 

larger than in the solid and the pH was around 12. In the second stage, as the portlandite 

content diminished, a gradual decrease in Ca and increase in Si was observed, indicating an 

increase in C-S-H gel dissolution. The aqueous Ca/Si ratio decreased to values below 10 and 

the ratio also decreased in the solid. pH decreased to values about 11.5 - 11. In the last stage, 

concentrations of Ca and Si and pH ( 11) reached steady state. At this stage the Ca/Si ratio in 

the solid and in the aqueous phase tended to a constant value of about 0.9 indicating that (i) 

the C-S-H gel was the main dissolving phase and (ii) the dissolution reaction evolved to the 

congruent dissolution of a phase with tobermorite stoichiometry (Ca/Si ratio = 0.83), which is 

consistent with current C-S-H solubility models (e.g. Kulik and Kersten, 2001).  

In the experiments where steady state was attained and congruent dissolution 

occurred, the dissolution rate of the C-S-H gel phase with tobermorite stoichiometry (namely 

C-S-H_0.83 with Ca/Si ratio = 0.83) was calculated based on the Si release and at different 

solution saturation states. The dissolution rate of C-S-H_0.83 slows down as equilibrium is 

approached. Based on these results, a rate law accounting for the saturation effect on the C-S-

H_0.83 dissolution rate (i.e., a rate-DG dependency), was obtained and is expressed as 

 

 

 1  x100.7±6.2)( 11-12

83.0_ smmolRate HSC  

 

where Ω is the saturation degree (ionic activity product divided by equilibrium 

constant). The form of this expression indicates that the simplest TST-derived rate law 



94 

 

suitably accounts for the C-S-H_0.83 dissolution kinetics. In accordance to these results, the 

experimental variation of the output concentrations with time were modeled with the 

CrunchFlow reactive transport code, assuming a dissolution rate law of the form R = -A·k·(1-

Ω) , where R is rate (mol m
-3

 s
-1

), A is surface area (m
2
 m

-3
), and k is the rate constant (mol m

-2 

s
-1

). The surface area of portlandite was calculated to reproduce the high initial Ca 

concentration, and the surface area of the C-S-H gel was based on the initial specific surface 

area. Results were consistent with rate constants of about 10
-8

 mol m
-2 

s
-1 

for the C-S-H with 

jennite stoichiometry (Ca/Si ratio = 1.67) to 10
-11

 mol m
-2 

s
-1

 for the C-S-H with tobermorite 

stoichiometry (Ca/Si ratio = 0.83), when normalizing to BET specific surface area. No pH 

effect is included in the rate law. Therefore, it is only applicable to the pH conditions of the 

study (pH 11 – 12.5), which is relevant in cement media. It is possible that the variability in 

the rate constants reflects (at least partially) at pH dependency. 

Although an apparent change in morphology was not observed after dissolution, the 

specific surface area increased from about 12 to 14-142 m
2
 g

-1
. SEM-EDX and EPMA 

multipoint analyses showed that the solid Ca/Si ratio of the initial C-S-H particles was 

approximately 1.7 ± 0.1. Ca/Si ratio of 2.2 ± 0.2 corresponded to C-S-H gel particles with 

precipitated portlandite. Ca/Si ratios larger than 6 were an evidence of the presence of 

portlandite. The solid Ca/Si ratio of the C-S-H particles decreased to values about 0.9 ± 0.1 as 

dissolution progressed.  The obtained Ca/Si ratios from the multipoint analyses indicate some 

compositional variability over the analyzed particles, suggesting the existence of 

compositional domains with variable Ca/Si ratio. 
  

29
Si MAS NMR spectra showed that the reacted C-S-H structure evolves to longer 

chain length (high Q
2
/Q

1
 ratio and low Q

1
/ΣQ

n
 ratio) with the appearance of cross-linked 

chains (Q
3
 defect peak). Also, Si-rich domains (high intensity of Q

3
 and Q

4
 signals) were 

identified in samples reacted under a slow flow regime. These domains are probably 

associated to the formation of leached diffusion layers over the course of the incongruent 

dissolution, although precipitation cannot completely be discarded.  

The implementation of the proposed rate law for C-S-H gel dissolution in reactive 

transport codes could result in a substantial gain of reliability of the predictions of 

cement/concrete durability when advective flow through cementitious materials is expected 

(reaction control of the dissolution). 
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 CHAPTER 3 

 SANS characterization of the C-S-H gel 

dissolution 

3.1  Introduction 

SANS is particularly useful for investigating porous structures like C-S-H gel, given that 

the amorphous nature of C-S-H renders diffraction ineffective. In addition, specimens can be 

studied in their natural saturated state, thus avoiding complications associated with drying the C-

S-H gel (Allen and Thomas, 2007). SANS data are effective in probing features in the 10 Å to 

1000 Å (1 nm to 100 nm) size range (short-ranged crystalline order) that defines critical aspects 

of the solid C-S-H structure within the gel (Thomas et al., 2004), providing quantitative 

information about microstructural features (e.g., particle size, shape, surface area and fractal 

properties). SANS covers the range of scattering q values from 0.002 Å
-1

 to 0.2 Å
-1

, where q = 

(4/)sin(),  is the neutron wavelength and 2 is the scattering angle. SANS data permit 

determination of the fractal exponent and fractal morphology of the C-S-H gel over a large scale 

range, and this can be quantified through application of a fractal microstructure model (Winslow 
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1985; Allen et al., 1998; Jennings 2000; Allen and Thomas; 2007Allen et al., 2007; Thomas et 

al., 2012). 

In this study powdered C-S-H gel samples were dissolved for up to 74 days in Milli-Q 

water (18.2 MΩ·cm at 25 ºC) using flow-through reactors, under a CO2-free atmosphere at room 

temperature (23 °C ± 2 ºC). The evolution of C-S-H gel dissolution with time was monitored by 

the solution chemistry variation, which allows understanding the kinetics of dissolution of the C-

S-H gel (Chapter 2). In parallel, the reacted C-S-H gel samples were characterized using the 
29

Si 

MAS-NMR and SANS techniques to evaluate the changes in the dissolving solid C-S-H 

nanostructure (particle size, shape, surface area and fractal exponents). The SANS contrast 

matchpoint of the starting solid C-S-H was obtained from the measured change in the scattering 

contrast as a function of D2O content. The content of both solid C-S-H and fine CH crystals in 

the initial composition of C-S-H gel was evaluated. This combined approach allowed 

investigation of the changes in structure of the C-S-H gel related to changes in solution 

composition with time. The advantage of this kinetic approach is that it yields a full 

understanding of the overall C-S-H gel dissolution reaction, and contributes to the assessment of 

cement durability. 
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Initial C-S-H gel 

(67 % mass C-S-H gel, 27.5 % mass CH, 1.5 % mass quartz and 4 % mass calcite)

Flow-through experiments

• Flow rate: 0.112- 0.036 mL min-1

• Milli-Q water

• Glove box-N2 atmosphere

Solid characterization

SANS measurements for starting C-S-H gel

Porod regime 

• 0.11- 0.2 Å-1 q range

• Linear fit of Iq4vs.q4

• H2O/0,20,40,60,80 and 100 vol. % D2O 

Neutron scattering contrast (Dr2),

density and composition of the C-S-H gel

Parabola of Cp for each C-S-H gel 

sample vs. % D2O

Sum of two parabolas: 

31% MP for CH and 

81% MP for CSH gel

C-S-H gel parabola

81% MP for CSH gel

Porod regime 

• 0.11- 0.2 Å-1

• Linear fit of 

IQ4.vs.Q4

• H2O/31%D2O 

CP for each 

reacted C-S-H 

gel sample

SV

Surface-fractal 
regime

• 0.002- 0.02 Å-1

• H2O/31%D2O 

DS , xS and So

At 31% D2O 

CHscattering is 

not considered 

Fractal model

Volume-fractal 
regime

• 0.02- 0.1 Å-1

• H2O/31%D2O 

SANS measurements for reacted C-S-H gel

DV , f C-S-H, xV

and Do

3.2  Experimental methodology 

The scheme depicted in Figure 3.1 summarizes the experimental tasks. 

 

Figure 3.1. Scheme that summarizes the experimental tasks performed in SANS characterization 

of C-S-H gel dissolution. 

3.2.1 Sample characterization 

The C-S-H gel used to perform the flow-through experiments and SANS measurements 

is described in Chapter 2. The initial specific surface area of the C-S-H gel was measured using 

the 5-point BET (N2) method. The BET surface area was 11.7 m
2
 g

-1
. 

3.2.2 Dissolution experiments 

Powder samples of the starting hydrated paste with mass between 1.5 g and 3.0 g and 

powder particle size ≈ 10 m were placed in the flow-through reactors under CO2-free 

atmospheric conditions and room temperature (23 ± 2 °C; Table 3.1). See details of the setup in 

Chapter 2. Note that experiments C-S-H-4, C-S-H-6, C-S-H-7 and C-S-H-8 are the same 

experiments as C-S-H-25-10, C-S-H-25-9, C-S-H-25-18 and C-S-H-25-8 described in Chapter 2. 

These masses were sufficient to allow us to retrieve enough reacted sample to perform BET, 
29

Si 

MAS-NMR, XRD and SANS measurements. Milli-Q water (18 MΩ·cm at 25 °C) reacted with 

the starting C-S-H gel, while being supplied at a constant flow rate over the course of the 

experiment. The flow rates were increased from 0.040 mL min
-1

 to 0.126 mL min
-1

 shortening 
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residence times from ≈ 16 h to 5 h. The output solutions were periodically collected. The 

evolution of the dissolution reaction with time was monitored by measuring the output solution 

pH and the output aqueous concentrations of Ca and Si, which were released from the 

dissolution of the C-S-H and portlandite. Variation of Ca/Si ratio with time was determined from 

the periodical variation in the Ca and Si output concentrations (Chapter 2). Experiments with 

different masses and flow rates were repeated with different time durations (from 16 d to 74 d) 

to evaluate changes in the solid composition with time. Therefore, steady-state conditions were 

not always reached. As explained in Chapter 2, based on a simple mass balance equation, the 

dissolution rate (mol m
-2

 s
-1

), R, in a flow-through experiment is obtained from Eq. (2.1). 

Likewise, the dissolution rate in the experiments where the composition of the output solution 

reaches steady state is calculated from Eq. (2.2). In the experiments where the composition of 

the output solutions did not reach a constant value, the dissolution rate was calculated from the 

last output concentration. Dissolution rates (Ri) were only calculated based on the Si output 

concentrations and normalized to both the final mass (RSi expressed in mol g
-1

 s
-1

) and the final 

surface area (RSi expressed in mol m
-2

 s
-1

). The uncertainty associated with the calculated 

dissolution rates was estimated using the Gaussian uncertainty propagation method (Barrante, 

1974) to be 15% (standard deviation).  

Table. 3.1    Experimental conditions for the flow-through experiments.  

 

 

 

 

 

 

 

The powder samples from these experiments were retrieved after the dissolution reaction 

times specified in Table 3.1, and the measured final BET surface areas ranged from 14.5 m
2
 g

-1
 

to 63.3 m
2
 g

-1
, which represent an increase in the reactive surface area by a factor of between 1.5 

and 6 relative to the initial BET surface area (Table 3.2). Initial and retrieved powders were 

dried with isopropanol under a CO2-free atmosphere and examined by SEM in order to identify 

Experiment 
Time Flow rate 

Mass 

(C-S-H gel + CH) C-S-H gel 

(day) (mL min-1) (g) 

C-S-H-1 16 0.126 3.0000 2.0100 

C-S-H-2 16 0.046 1.5000 1.0050 

C-S-H-3 16 0.054 3.0000 2.0100 

C-S-H-4 17 0.041 2.9013 1.9497 

C-S-H-5 31 0.042 1.5039 1.0076 

C-S-H-6 44 0.054 2.9934 2.0116 

C-S-H-7 67 0.097 2.9980 2.0147 

C-S-H-8 74 0.041 2.9951 2.0127 

Experiments are ordered according to their duration. 
C-S-H gel mass is 67 % of that of C-S-H+CH mass. 
C-S-H-4, C-S-H-6, C-S-H-7 and C-S-H-8 experiments are the same as C-S-H-25-10, C-S-H-25-9,    
C-S-H-25-18 and C-S-H-25-8 from Chapter 2, respectively. 
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the major residual phases (C-S-H and CH) and characterize their morphology, and by XRD and 

Rietveld Analysis to quantify their content. 
29

Si MAS-NMR and SANS analyses were performed 

to determine the structural variation and examine the evolution of the surface area and 

morphology of the C-S-H gel within the powdered paste sample. 

Table. 3.2    Experimental results of the flow-through experiments.  

Experiment 
Time pH out Ca out Si out aqueous 

Ca/Si  

BET 
Dissolution rate 

Log RSi RSi 

(day) 
 

(M) (m2 g-1) (mol g-1 s-1) (mol m-2 s-1) 

C-S-H-1 16 10.96 735.6 12.93 56.88 14.5 1.36E-11 9.35E-13 -12.0 

C-S-H-2 16 11.29 1824.9 4.05 450.56 52.7 3.11E-12 5.91E-14 -13.2 

C-S-H-3 16 11.52 1748.04 4.26 409.88 18.6 1.89E-12 1.02E-13 -13.0 

C-S-H-4 17 11.48 325.81 5.62 57.97 25.0 2.00E-12 7.90E-14 -13.1 

C-S-H-5 31 11.09 1290.31 229.6 5.62 46.1 1.63E-10 3.54E-12 -11.5 

C-S-H-6 44 10.74 375.55 6.09 61.62 63.3 2.77E-12 4.40E-14 -13.4 

C-S-H-7 67 10.68 636.37 12.69 50.63 15.9 1.07E-11 7.10E-13 -12.1 

C-S-H-8 74 10.21 694.91 388.89 1.80 61.7 1.40E-10 2.30E-12 -11.6 

Aqueous Ca/Si ratio is computed from the Ca and Si output concentration (Ca out and Si out). 

BET represents the measured specific surface area after the experiments (associated uncertainty is approximately 10 % (1σ). 

Dissolution rate is calculated according to Eqs. (2.1) and (2.2). LogRSi is calculated from dissolution rate expressed in mol m-2 s-1. 

 

3.2.3 
29

Si MAS-NMR 

The 
29

Si MAS-NMR spectra of approximately 2 mg of unreacted and reacted powder 

samples that underwent different degrees of dissolution were recorded on a Bruker Avance 400 

NMR spectrometer (field strength of 9.4 T, Bruker Biospin AG, Fällanden, Switzerland) 

following the procedure described in Chapter 2. 

3.2.4 SANS 

The SANS experiments were performed on powder samples of unreacted (starting) and 

reacted C-S-H gel, taken from the flow-through experiments at room temperature in a CO2-free 

atmosphere using the NG7 30-m SANS Instrument (Barker et al., 2005) at the NIST Center for 

Neutron Research (NCNR), Gaithersburg, Maryland, USA. The SANS neutron wavelength, λ, 

was 8.09 Å and using three different configurations of the instrument, the overall measured q 

range extended from 0.001 Å
-1 

to 0.22 Å
-1

 (0.01 nm
-1 

to 2.2 nm
-1

). This q range is sufficient to 

characterize morphological features of particles with a size ranging from ≈ 10 Å to ≈ 1000 Å. 

Scattered neutron intensities were recorded on a two-dimensional detector. These data were 

corrected for the background and empty-cell scattering and calibrated against a standard 
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Porod

Surface Fractal Volume Fractal

Surface Area

attenuator. The 2D SANS data set was reduced to 1D by circular averaging to obtain the 

scattered intensity or scattering cross-section (d/d as a function of the magnitude of the 

scattering vector q (Bumrongjaroen et al., 2009). At small scattering angles (small q values) the 

largest features are probed, whereas the smaller features are probed at higher q values. Owing to 

a decrease in SANS intensity with increasing q, the q upper limit to obtain scattering data from 

hydrated cement is just over 0.2 Å
-1

 (Thomas et al., 2010; Fig. 3.2). 

 

Figure 3.2. Experimental SANS I(q) data versus q for the starting cement paste sample (prior to 

dissolution) of this study. As the scattering vector (or angle) increases, scattering occurs from 

smaller features in the microstructure. Data plotted as a line with erratic oscillations associated 

with the statistical uncertainties at each point. 

To fit the scattered intensity data, I(q), a fractal microstructure model of Allen et al. 

(2007) was applied over the SANS q range where q > 0.0035 Å
-1

. Below this q other non-fractal 

components dominate the scattering like micrometer-scale Ca(OH)2 (Allen et al., 2007). As 

given in Appendix II, the full expression of the model is: 
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(𝑞) = ∅𝐶−𝑆−𝐻𝑉𝑃∆𝜌2 {
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Eq. 3.1  

where the various fit parameters are summarized in Table 3.3. 

Table. 3.3    Parameters definitions (Eq. 3.1) for the fractal microstructure model 

(Allen and Thomas, 2007). For full explanation see Table 1.3. 

Parameters 

fC-S-H Volume fraction of solid C-S-H gel globules within the entire specimen volume 

penetrated by the neutron beam. It is essentially a measure of the amount of LD C-S-

H (without gel pores) in the paste. 

VP Volume of a single C-S-H globules. (Vp= 4πβR0
3
/3) where  is the particle aspect 

ratio. 

RC Correlation-hole radius (minimum center-to-center distance between particles. 

RO The radius of the building block C-S-H gel globules. 

 Local packing fraction for nearest neighbor C-S-H gel globules. 

DV Volume fractal scaling exponent. 

DS Surface fractal scaling exponent. 

xV Upper-limit length scales (correlation lengths) over which volume fractal scaling 

apply. 

xS Upper-limit length scales (correlation lengths) over which surface fractal scaling 

apply. 

SO Smooth geometric surface area on which the surface fractal microstructure is 

deposited. 

(x) Mathematical Gamma function. 

F
2
(q) Single-particle form factor for C-S-H gel globule. 

Dr2
 Neutron scattering contrast. 

BGD Background intensity. 

 

Eq. (3.1) consists of three component terms: volume fractal incorporating a single 

globule (F
2
(q)) term, surface fractal and flat background scattering. Allen et al. (2007) have 

shown that the model results confirm that the volume-fractal nature of hydrated cement is 

mainly attributable to the C–S–H component. This model combines the volume-fractal and the 

surface-fractal scattering terms. The former is attributed to random agglomeration of the outer-

product C-S-H nanoparticles between grains, and the latter to deposition of the outer-product C-

S-H nanoparticles at the clinker grain boundaries and on inert surfaces such as the micrometer 

scale CH crystallites. Also, the surface fractal may include some inner product formed 

topochemically (Bumrongjaroen et al., 2009), that is, at the boundary of clinker phases (C3S and 

C2S). The Irena program package (Ilavsky and Jemian, 2009), together with the model by Allen 
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et al. (2007), was used to analyze the SANS scattering data to obtain the solid C-S-H structure 

parameters: Do, DV, fCSH, SO, DS, ξV and ξS, as well as the upper-limit volume fraction (fMAX), the 

fractally rough surface area (SSF), which is define as SSF= SO·((ξS/Rc)
( Ds-2)

), and the surface area 

of the volume-fractal morphology (SVF =ST-SSF). Note that fMAX is defined as a measure of the 

total volume fraction occupancy of the volume-fractal phase. It is necessarily a rough estimate 

based on fMAX = fC-S-H·((ξv/Rc)
(3-Dv)

) and may be an over-estimate if the volume fractal 

structures actually grow into each other. 

A set of six SANS experiments was carried out on the initial hydrated pastes prior to the 

dissolution measurements in order to obtain the contrast matchpoint (MP) of the starting solid C-

S-H from the measured change in the scattering contrast as a function of D2O content. 0.25 g of 

initial (unreacted) C-S-H gel sample was poured in 5 mL of mixed D2O-H2O solutions of 0 %, 

20 %, 40 %, 60 %, 80 % and 100 % D2O (by mole) under CO2-free atmospheric conditions in a 

N2-filled glove box to avoid C-S-H carbonation. The mixtures were stirred for 12 h to ensure full 

exchange of H2O and D2O. Thomas et al. (1998a) showed that in thin cement specimens full 

H2O-D2O exchange occurred within hours, in both the pore fluid and the C-S-H. The relative 

scattering contrast was obtained by calculating the Porod constant (Cp) after plotting the SANS 

scattering data as Iq
4
 versus q

4
 in the Porod regime (q ranges from 0.11 to 0.2 Å

-1
). The Cp 

values can be obtained from the unconstrained intercepts of linear fits of Iq
4
 versus q

4
, and the 

flat background scattering, BGD, is obtained from the slopes as (Thomas et al., 1998a): 

 

𝐼𝑞4 = 𝐶𝑝 + 𝐵𝐺𝐷 𝑞4 
Eq. 3.2  

The highest Cp value obtained (0 % of D2O water) was used to normalize the derived 

(lower) CP values at higher D2O water contents (Table 3.4). In a two-phase system, such as C-S-

H and water, the relative scattering contrast is a parabola in relative scattering contrast vs. % 

D2O with a minimum value of zero contrast at the MP (Thomas et al., 2004). The presence of an 

additional phase (e.g. CH) with a different contrast MP within the gel increases the minimum 

value in the C-S-H/D relative scattering contrast curve and displaces it with respect to D2O 

content. 

A second set of SANS experiments was performed on the reacted samples to study the 

changes in the C-S-H gel structure due to dissolution. According to the decreasing aqueous 

Ca/Si ratio and decreasing pH of the output solutions (Table 3.2), for the samples retrieved after 

16 to 17 days, 31 to 44 days and 67 to 74 days, the C-S-H and CH coexisted but with a 

decreasing content of the latter with increasing dissolution time. It is known that the CH contrast 
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matchpoint occurs in a H2O/D2O fluid mixture of 31 % D2O (Allen et al., 2007). Therefore, in a 

system with H2O/D2O fluid, C-S-H/D and CH, to obtain the relative scattering contrast of the C-

S-H/D, solid samples must be mixed in a 31 % D2O solution. 0.25 g each of unreacted or reacted 

samples from 16 to 74 days, were immersed in 5 mL of solution (31% D2O) for 24 h to allow 

full exchange of H2O and D2O. Thereafter, sufficient amounts of wet powder samples were 

placed into 1 mm quartz optical cells to prevent sample drying during the measurements. The 

wet powders were allowed to settle for 2 h before the SANS experiments.  

Table. 3.4    Cp  values (obtained from the Porod scattering region) and the relative 

scattering contrast factor for the initial hydrated C3S paste with pore fluid.  

% D2O 
Cp Relative scattering contrast of 

initial C-S-H gel 
(10

-12
 Å

-5
) 

0 0.69 ± 0.03 1 

20 0.36 ± 0.02 0.53 

40 0.18 ± 0.02 0.26 

60 0.04 ± 0.01 0.06 

80 0.03 ± 0.01 0.04 

100 0.10 ± 0.01 0.14 

Initial hydrated C3S paste is composed of 67 % mass of C-S-H, 27.5 % mass of portandite (CH), 
 1.5 % mass quartz and 4 % mass calcite 

3.3  Results and discussion 

3.3.1 C-S-H gel dissolution 

The flow-through experiments were performed with different time durations (from 16 

days to 74 days) to evaluate changes in the liquid and solid composition with time. Steady-state 

conditions were only reached in the longest experiments (Figs. 3.3a,b,d and e). The observed 

decrease in output Ca concentration and decrease in output pH with time, together with the 

increase in Si, indicate that portlandite and C-S-H gradually dissolved. The decrease in the 

aqueous Ca/Si ratio indicates that the high Ca concentration at the start of the experiments was 

mainly due to an initial dissolution of portlandite (Figs. 3.3 c and f). As portlandite was mostly 

dissolved, the C-S-H gel dissolution was incongruent, showing preferential Ca release and 

consequent gradual decrease in the aqueous Ca/Si ratio (Table 3.2). In the longest experiments, 

C-S-H dissolution reached steady state, i.e., the output Ca and Si concentrations were constant 

with time (Figs. 3.3 d and e), and the Ca and Si output concentrations were similar within the 

measurement uncertainties, yielding aqueous Ca/Si ratio of 1.8 ± 0.2 (congruent dissolution) 
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(Figs. 3.3 c and f). The results agree with those reported by Harris et al. (2002) and Carey et al. 

(2006, 2007) who showed that the leaching of C-S-H gels in demineralized water could initially 

be described as an incongruent dissolution, tending gradually to a congruent dissolution. Overall, 

the observed behavior suggests that after ≈ 70 days, the reacted samples merely consisted of C-

S-H powder grain particles. This fact was corroborated by XRD analyses, which showed the 

samples to be only composed of C-S-H, as no portlandite XRD peaks were observed, thus 

indicating that portlandite was mostly exhausted. Moreover, the composition of the remaining C-

S-H powder grain particles showed a solid Ca/Si ratio of 1.03±0.10 (1σ), which is close to that 

of a tobermorite-like phase (molar Ca/Si = 0.83) (Fig. 3.3f). BET measurements showed 

significant variation in reactive surface area during C-S-H gel dissolution, which has 

implications in the quantification of the C-S-H dissolution kinetics (Chapter 2). As the Ca/Si 

ratio decreased to a value close to a tobermorite stoichiometric value of 0.83, the C-S-H 

dissolution rate, based on the Si release (RSi), increased from 4.50x10
-14

 mol m
-2

 s
-1

 (log RSi = - 

13.3) to 2.30x10
-12

 mol m
-2

 s
-1

 (log RSi = - 11.5; Table 3.2). Figure 3.4 depicts the variation of 

log RSi as a function of the Ca/Si aqueous ratio. It is observed that as the aqueous Ca/Si ratio 

diminishes to around 60, the dissolution rates are the same within the estimated uncertainty of 15 

%. However, the rates increased as long as the C-S-H gel was the main dissolving phase, which 

implies a change from the initial C-S-H composition to that of a tobermorite-like phase. 

Electron Microprobe CAMECA SX-50 instrument (4 WD spectrometers + 1 EDS) 

(Microprobe Unit of the University of Barcelona) under a 20 kV accelerating potential and 20 

nA beam current was used to acquire SEM images and determine the C-S-H gel in the unreacted 

and the reacted samples. Comparison of SEM images and EPMA between the unreacted and the 

reacted samples shows that most of the portlandite dissolved during the experiments (Fig. 3.5). 
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Figure 3.3. Two representative experiments: left (experiment C-S-H-5): steady state was not 

approached (see text); variation of output concentration of Ca and Si (a), output pH (b) and 

aqueous Ca/Si ratio (c) with time. Right (experiment C-S-H-8): steady state was approached (see 

text); variation of output concentration of Ca and Si (d), output pH (e) and aqueous Ca/Si ratio 

(f) with time. Dashed red lines indicate steady state. Data scatter and vertical bars indicate 

statistical standard deviation uncertainties. Uncertainties associated to with measured 

concentrations and Ca/Si ratios are 3 % and 10 %, respectively. The insets in c) and f) show the 

variation of the aqueous Ca/Si ratio with time in the last 17 and 30 days, respectively. 
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Figure 3.4. Logarithm of the final state dissolution rates (RSi) versus aqueous Ca/Si ratio (see 

results presented in Table 3.2). Vertical bars represent statistical standard deviation 

uncertainties. As the aqueous Ca/Si ratio diminishes from around 450 to around 60 (i.e., 

dissolution of portlandite is mainly taking place), the dissolution rates are the same within the 

estimated uncertainty of 15 %. And the rates increased as long as the C-S-H gel was the main 

dissolving phase. 

 

Figure 3.5. Comparison between SEM images of unreacted and reacted samples (a) particles of    

C-S-H gel and Ca(OH)2 in the initial (unreacted) sample (see Figure 2.7). The microprobe analysis 

shows that the Ca/Si ratio of the C-S-H particles is 1.74 ± 0.10; Ca/Si ratio higher than 2.5 

indicates the presence of portlandite; (b) after 73 d of reaction most of the particles shown are C-

S-H with a Ca/Si ratio of 1.02 ± 0.09. 
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3.3.2 
29

Si MAS-NMR: C-S-H gel and portlandite 

Q
2
/Q

1
 ratio indicated that the solid C-S-H polymerization increased with time (Q

1
 

intensity decreases and Q
2
 intensity increases resulting in a Q

2
/Q

1
 ratio increase; Fig. 3.6). 

Likewise, Figure 3.7a shows that the Q
2
/Q

1
 ratio increased with decreasing aqueous Ca/Si ratio. 

Figure 3.7b shows pH and Q
2
/Q

1
 ratio as a function of time multiplied by flow rate and divided 

by sample mass. Overall, Figure 3.7b indicates that as pH decreased to a constant value (ca. 

10.50), the Q
2
/Q

1
 ratio (C-S-H gel polymerization) tended to increase with dissolution. This is 

evidence that the partial dissolution of solid C-S-H leaves a residual structure that may be 

similar to a more ordered tobermorite structure. The attainment of similar aqueous and solid 

Ca/Si ratio values, respectively (Ca/Siaqueous = 1.80 ± 0.2 (1σ) and Ca/Sisolid = 1.03 ± 0.16 (1σ)), 

close to that of tobermorite (Ca/Sisolid ratio = 0.83) strongly supports this trend (Table 3.2, Fig. 

3.5). This fact implies both a gradual change in solid C-S-H composition accompanied by a 

gradual change from non-stoichiometric C-S-H dissolution to stoichiometric dissolution. 

 

Figure 3.6. Deconvolution of  the 
29

Si MAS-NMR spectra of the hydrated C3S sample prior to 

dissolution and the reacted samples in experiment C-S-H-7 and C-S-H-8 and experiments C-S-

H-25-6 and C-S-H-25-13 (Chapter 2) that underwent different degrees of dissolution. This figure 

is slightly modified from Figure 2.20 and shows the Q
2
/Q

1
 ratio values. 
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Figure 3.7. Variation of (a) Q
2
/Q

1
 ratio as a function of aqueous Ca/Si ratio and (b) output pH 

and Q
2
/Q

1
 ratio as a function of flow rate x time / sample mass. Arrow indicates an outlier value 

of Q
2
/Q

1
 ratio (see text). The values of Q

2
/Q

1
 ratio were calculated from the values given in 

Table 2.6 (Chapter 2) and are shown in Figure 3.6. 

3.3.3 Neutron scattering contrast: initial C-S-H gel 

It is necessary to determine the scattering contrast from the composition and density of 

the C-S-H gel to calculate the SANS surface area. As both, the composition and density of the 

gel are a priori unknown and needed to calculate the neutron scattering length density (ρC-S-H), 

the relative scattering contrast of the starting C-S-H was obtained from calculation of the Porod 

constants, which were normalized to that obtained at 100% H2O (contrast variation method; Fig. 

3.8). Using six specimens in varying H2O/D2O fluid mixtures the Porod constants were 

calculated from the linear fit of Iq
4
 vs. q

4
 according to Eq. (3.2) in the Porod regime data (0.11 

Å
-1

 < q < 0.2 Å
-1

), where the scattering is dominated by the nanoscale C-S-H gel-water interface 

(Allen et al., 2007; Table 3.4). 

In a system with H2O/D2O fluid and solid C-S-H, the scattering intensity drops to zero at 

the contrast matchpoint (81 % D2O; Fig. 3.8). This occurs when the solid scattering-length 

density (ρC-S-H/D) of C-S-H where the H content has partially exchanged for D content and the 

pore fluid density (ρliquid) with an identical H2O/D2O mix as in the C-S-H/D solid are the same, 

resulting in a zero scattering contrast (Fig. 3.8). 
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Figure 3.8. Schematic representation of the contrast matchpoint of the system formed of C-S-H 

and CH with different D2O molar fraction (%). Fluid mixtures of 100, 81 and 31 vol.% D2O give 

scattering of C-S-H gel and CH, CH and C-S-H gel, respectively. Fluid mixture of 100 vol. % of 

H2O gives scattering of C-S-H gel and CH and the CH scattering predominates.  

However, in a system with H2O/D2O, solid C-S-H/D and CH when ρliquid = ρC-S-H/D, the 

experimentally measured contrast never goes to zero because scattering contributions from 

nanoscale CH become non-negligible (Thomas et al., 1998b). Figure 3.9 shows the C-S-H gel 

non-zero contrast minimum, which indicates the presence of both solid C-S-H and fine CH 

crystals as expected from the initial composition of C-S-H gel ( 67 % mass solid C-S-H and  

27.5 % mass CH). 
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Figure 3.9. Relative SANS intensity (scattering contrast) data versus molar D2O content 

(triangles with experimental uncertainties smaller than the size of the symbols), together with the 

two-component parabola fit for the initial C-S-H gel sample (line) and calculated scattering 

curve of pure portlandite, Ca(OH)2, (CH) (dotted line). 

When scattering contributions at high-q are from two solid phases (C-S-H and CH), the 

measured contrast curve can be fitted with two component parabolas, yielding a single parabola 

with a minimum value greater than zero. The first parabola accounts for CH with a 31 % (molar) 

D2O matchpoint and the second one for C-S-H gel constrained only by requiring zero intensity at 

contrast match (Allen et al., 2007). The two fitting parameters are (1) the small fractional 

intensity contribution from nanoscale CH (fCH), which is calculated from the known neutron 

scattering length density of CH, and (2) the contrast matchpoint of the C-S-H gel. The C-S-H gel 

mass density, the H/D ratio (from the H2O/D2O exchange), and the C-S-H gel composition are 

obtained from Allen et al. (2007).The calculated contrast curve for CH (ρCH = 1.643 x10
14

 m
-2

) is 

shown in Figure 3.9 and the computed scattering contrast data are listed in Table 3.5. 

Table. 3.5  Calculated neutron scattering length density and contrast values for the CH.  

Molar % D2O 

Neutron scattering length 
density H2O/D2O 

Neutron scattering 
contrast factor between 

CH and pore fluid 

Relative scattering 
contrast factor between 

CH and pore fluid 

(x 10
14

 m
-2

) (x 10
28

 m
-4

) 

0 -0.561 4.837 1 
20 0.816 0.677 0.140 
31 1.573 0.044 0 
40 2.192 0.305 0.063 
60 3.568 3.719 0.769 

80 4.944 10.92 2.258 

100 6.320 21.91 4.529 

Neutron scattering contrast of CH was calculated based on the length density of Ca(OH)2 (1.64·10
14

 m
-2

). 
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The solid C-S-H/D contrast matchpoint with H2O/D2O fluid takes place with 81 % D2O 

(Fig. 3.9). This value was obtained by subtracting the intensity contribution from nanoscale CH 

(fCH = 1.66 %). To determine the correct C-S-H/H2O scattering contrast, the measured relative 

scattering contrast data were fitted using different values of C-S-H chemical composition and 

density published in previous C-S-H hydration studies (Table 3.6). Early studies (Allen et al., 

1987, 1989) using the C3S2H2.5 composition and density of 2.15 g cm
3
 obtained a reasonable 

match between the experimental contrast data and the predicted curve. Thomas et al. (1998b) 

obtained experimental contrast data and relative scattering contrast as a function of D2O content, 

using four theoretical C-S-H gel formula (the previous one by Allen et al. (1987) and three new 

ones which were derived under three different conditions: D-dried, water-saturated and 

equilibrated to 11% RH). The best match was obtained with the latter one (C1.7SH2.1) and density 

of 2.18 g cm
3
). Recently, Allen et al. (2007) suggested a new C-S-H composition and density 

(C1.7SH1.8 and 2.604 g cm
3
) to be more precise as it was able to distinguish water within the C-S-

H nanostructure, which includes water physically bound within the internal structure of the 

nanoparticles.  

Table. 3.6  Composition and density of the C-S-H gel according to the literature 

values.  

Bulk formula 
  

Density Contrast MP 
  

Relative scattering contrast Reference 
  (g cm

-3
) (100 % D2O) 

C3S2H2.5 2.15 58.3 0.513 (Allen et al., 1987, 1989) 
C1.67SH 2.10 76.2 0.115 (Zarzycki, 1987) 

C1.5SH2.5 2.15 72.7 0.141 (Thomas et al., 1998b) 
C1.7SH4 1.90 57.7 0.600 (Thomas et al., 1998b) 

C1.7SH2.1 2.18 66.2 0.260 (Thomas et al., 1998b) 
C1.7SH1.8 2.604 81.0 0.045 (Allen et al., 2007) 

The values of bulk formula and density used in this study are from Allen et al. (2007) 

 

An evaluation of the quality of the fit curves of the experimental data was made 

following Thomas et al. (1998b). Best fit parabola was obtained using the C-S-H gel chemical 

composition and density of C1.7SH1.8 and 2.604 g cm
-3

 reported by Allen et al. (2007) and is 

shown in Figure 3.9. For a H2O saturated C-S-H gel specimen, the neutron scattering length 

density (rC-S-H) and the neutron scattering contrast (Dr2
) are calculated as 

|∆𝜌|2 = (𝜌𝐶−𝑆−𝐻 − 𝜌𝐻2𝑂)
2
 

Eq. 3.3  

where rH2O is the neutron scattering length density of water. rC-S-H and Dr2
 values were 

2.572x10
14

 m
-2

 and 9.83x10
28

 m
-4

, respectively. Nonetheless, in the calculations the slightly 
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modified Dr2
 value of 9.64x10

28
 m

-4
 was used because it takes into account the presence of 

scattering from nanoscale CH at high q (Allen et al., 2007). 

Once C-S-H composition, density and the scattering contrast were known, SANS 

measurements on initial and reacted C-S-H samples were performed at 31 % D2O (CH match), 

and changes in the structure of the C-S-H could be quantified over a scale range from 10 Å to 

10
4
 Å (Allen et al., 2007). 

3.3.4 SANS data: reacted C-S-H gel 

Figure 3.10 shows the SANS data obtained in a H2O/D2O fluid mix with 31 % molar 

D2O (0.001 Å
-1

 < q < 0.22 Å
-1

) for the starting (unreacted) C-S-H gel (Fig. 3.10a) and reacted C-

S-H gel (Fig. 3.10b) samples in a log-log plot of I(q) versus q. Under these circumstances, the 

scattering contrast between CH and the pore fluid is matched out, and the scattering contrast is 

almost entirely that between solid C-S-H/D (with 31 % of the C-S-H bound H exchanged for D) 

and H2O/D2O with 31 % D2O. Changes with time in the shape of the SANS data in this plot 

suggest that microstructural changes occurred in the reacted samples. SANS is particularly 

useful for measuring the surface area of cement paste because it is noninvasive and is performed 

on saturated specimens (Thomas et al., 1998b). For cement based materials, the surface area is 

dominated by that between the C-S-H gel and the pore H2O (Allen et al., 2007), and with the CH 

matched out, the SANS Porod surface area should be entirely that between C-S-H/D and the 

H2O/D2O pore fluid. In a two-phase specimen, the specific surface area per unit specimen 

volume (ST), between the two phases as determined from small angle scattering can be written as 

(Allen et al., 1987) 

𝑆𝑇 =
𝐶𝑃

2𝜋|∆𝜌|2
 Eq. 3.4  

where Dr2
 is the scattering contrast, and the Porod constant (Cp) for each reacted sample 

was obtained from a linear fit of Iq
4
 vs. q

4
 in a q range from 0.15 Å

-1 
to 0.2 Å

-1
 (Thomas et al., 

1998a). A calculated specific surface area (SSA in m
2
 g

-1
) is computed by dividing ST by the 

solid C-S-H density (2.604 g cm
-3

). 
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a) b) 

Figure 3.10. SANS data for the initial (unreacted) C-S-H gel sample (a) and reacted C-S-H gel 

samples (b) in log-log plots of I(q) versus q. Data scatter representative of the standard 

deviation uncertainties (1 σ). In a) the SANS data given for the hydrated paste (prior to 

dissolution) immersed in a 100 % H2O solution, 31 % and 80 % D2O solutions illustrate that in a 

31 % D2O solution, the intensity is given by the C-S-H gel (same slope as that in 100 % H2O 

solution), and in 80 % D2O solution the intensity is given by CH (i.e., MP of C-S-H gel). In b) the 

SANS data for the C-S-H gel samples are rescaled to their predicted contrast in 100 % H2O 

according to Allen et al. (2007). 

Table 3.7 lists the obtained values of Cp, ST, SSA and the measured BET specific surface 

areas of the unreacted and reacted C-S-H gel samples, using the composition and density (2.604 

g cm
-3

) obtained by Allen et al. (2007). The derived ST for the initial C-S-H sample is lower than 

178 ± 4.8 m
2
 cm

-3
, which was obtained by Thomas et al. (1998a) with a density of 1.457 g cm

-3
. 

Table. 3.7 Porod constant (Cp), Porod surface area (ST), calculated total internal surface area 

(SSA) and specific surface area (BET) of the reacted C-S-H gel samples. 

Experiment 
Time CP ST SSA BET 
(day) (x 10

-12
 Å

-5
) (m

2
 cm

-3
) (m

2 
g

-1
) 

C-S-H_initial 0 0.49 ± 0.01 78.96 ± 1.70 30.32 ± 0.57 11.7 
C-S-H-1 16 0.88 ± 0.08 126.1 ± 11.6 48.41 ± 4.47 14.5 
C-S-H-2 16 0.68 ± 0.07 97.38 ± 10.7 37.39 ± 4.14 52.7 
C-S-H-3 16 0.71 ± 0.08 101.5 ± 12.7 38.99 ± 4.88 18.6 
C-S-H-4 17 0.59 ± 0.06 84.33 ± 9.38 32.38 ± 3.60 25.0 
C-S-H-5 31 1.16 ± 0.07 150.2 ± 10.2 57.67 ± 3.91 46.1 
C-S-H-6 44 1.01 ± 0.07 130.9 ± 9.10 50.26 ± 3.49 61.6 
C-S-H-7 67 0.79 ± 0.07 98.66 ± 9.16 37.88 ± 3.51 15.9 
C-S-H-8 84 0.70 ± 0.08 87.60 ± 9.22 33.64 ± 3.75 42.9 

Estimated standard deviation measurement uncertainty is 10 % for BET (1 σ) 

 

Figure 3.11a depicts the variation of ST, SSF and SVF with reacting time multiplied by 

flow rate and divided by sample mass. ST increases significantly from 78.96 ± 1.70 m
2
 cm

-3 
to 
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150.2 ± 10.2 m
2
 cm

-3
 after 0.86 mL min

-1
 d g

-1
 (31 days), thereafter decreasing to 87.60 ± 9.22 

m
2
 cm

-3 
as dissolution continues. This behavior is consistent with that shown by Thomas et al. 

(2004) in which the total internal surface area of leached OPC first increased from 120 m
2
 cm

-3 

to 200 m
2
 cm

-3
 as the Ca/Si ratio decreased to 1, with the surface area thereafter decreasing as 

the Ca/Si ratio decreased below 1, due to thickening of the (now sheet-like) fundamental C-S-H 

units. SVF shows similar tendency to that of ST. The significant stochastic variation and a rather 

large SSF suggest that the powdered nature of the samples may affect the obtained values in 

comparison to the values calculated from monolithic hydrated cement coupons used in previous 

studies (Thomas et al., 2004; Allen et al., 2007). 

 

Figure 3.11. Variation of surface area as a function of flow rate x time / sample mass: a) total 

surface area (ST), surface fractal surface area (SSF) and surface area of the volume-fractal 

morphology (SVF) and b) calculated specific surface area (SSA) and measured BET specific 

surface area. Vertical bars represent standard deviations. 

A working assumption is that the density for the unreacted and reacted C-S-H gel is 

constant (2.604 g cm
-3

), and the specific surface area (SSA) is calculated from the ST values. The 

resulting SSA ranged from 30.32 ± 0.57 m
2
 g

-1
 (initial C-S-H) to 57.67± 3.91 m

2
 g

-1
 in the 

reacted C-S-H (Table 3.7, Fig. 3.11b). The C-S-H gel is often conceived by simplification to be 

formed by two components, a high-density (HD) inner-product and a low-density (LD) outer-

product (Tennis and Jennings, 2000). Constantinides and Ulm (2004) argued that the C-S-H gel 

is formed of 30 vol. % HD C-S-H gel and 70 vol. % LD C-S-H gel. It is considered that the 

former product is a rough and dense disordered particulate matrix, and the latter is a less dense 

phase and SANS sensitive. The LD C-S-H gel is the component of the microstructure that 

remarkably contributes to the measured BET specific surface area (Morales-Florez et al., 2012). 

Figure 3.11 b depicts the measured BET specific surface area variation with time and compares 
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with the SSA variation. On the one hand, in terms of magnitude, the SSA and BET are fairly 

comparable, even though lower BET values could be systematically expected since nitrogen 

physisorption may not access the interlayer C-S-H porosity. It is found that SANS-based surface 

areas are remarkably consistent (Allen et al., 2007), providing the right criteria are used to 

extract the Porod constant. It is observed that the BET values tend to increase with time up to ≈ 

40 days and decrease thereafter. This behaviour, which is similar to that of ST, could be caused 

by an increase in LD product released as the HD C-S-H gel dissolves. This increase in LD 

product yields a large accessible surface area to nitrogen physisorption and neutron scattering. 

However, as more material is leached or dissolved away over longer times, the surface area 

declines. The trend of SSA and BET surface areas could also correspond to a change in the 

fundamental C-S-H gel units that evolve into a sheet-like morphology (Thomas et al., 2004). 

3.3.5 Volume-fractal and surface-fractal structure 

The measured SANS data intensity for the starting (unreacted) C-S-H gel and reacted C-

S-H samples were rescaled to the predicted contrast in H2O. The scattering contrast value for the 

unreacted C-S-H sample was 9.64x10
28

 m
-4

 (see section 3.3.3) and for the reacted C-S-H 

samples were those obtained by Thomas et al. (2004). Figures 3.12a and b shows the SANS data 

for the hydrated sample prior to dissolution and a hydrated sample after 44 days of flow-through 

dissolution, respectively, in log-log plots of I(q)
4
 vs. q with the fitted flat background scattering 

removed. The neutron scattering contrast assumed was 9.64x10
-28

 m
-4

. According to the fractal 

model (Allen et al., 2007), the scattering cross-section is separated into three component terms: 

volume fractal, surface fractal and Porod regime (Eq. 3.1). The surface fractal regime occurs at 

the q range from ≈ 0.002 Å
-1

 to ≈ 0.02 Å
-1

, and the volume-fractal regime ranges from ≈ 0.02 Å
-1

 

to ≈ 0.1 Å
-1

. Primarily, surface-fractal and volume-fractal model components were used 

independently to fit the data in these q-ranges to guarantee a physical significance of the 

components. With a reasonable fit, all parameters (Do, DV, fCSH, SO, DS, ξV and ξS) were varied 

together assuming prolate gel globules with an aspect ratio ( of 2 and then assuming oblate gel 

globules ( = 0.5). The obtained Ro values were converted to a sphere-equivalent radius and then 

are averaged (Allen et al 2007; Thomas et al., 2008). 

There is a covariance between So and xS that does not allow these parameters to be fitted 

independently to the data. Together they define the absolute intensity of the surface fractal 

scattering. xS has a value beyond where there is true information content in the scattering data. 

To obtain a reasonable fit, xS cannot be larger than a value between the mean clinker radius and 

the mean clinker diameter (as this would imply surface fractal scaling going beyond the 
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(A) 
UNREACTED SAMPLE

(B) 
REACTED SAMPLE

dimensions of the substrate upon which it is deposited). The mean size of the clinker grains is 

≈1.9 m and 90 % of the C-S-H gel sample has a particle size < 8 m. The detected So-xS 

covariance does not affect the overall rough surface-fractal surface area (SSF). Best fits were 

obtained with the xS value ranging from 700 Å to 9000 Å (Table 3.8). The best fractal model fits 

suggest changes in the microstructure of the reacted C-S-H gel during dissolution. This is also 

inferred from the variation of the fit parameters (Table 3.8). 

 

Figure 3.12. Small-angle neutron scattering data (solid lines) and fits using the fractal model (Eq. 

(3); open circles) for hydrated sample prior to dissolution (a) and hydrated sample after 44 days of 

flow-through dissolution (experiment C-S-H-6) (b). There is an excellent agreement between the 

experimental and fractal model data. 

The fitted values obtained in the volume or mass-fractal component are the volume 

fraction of solid C-S-H (fC-S-H), the volume or mass fractal dimension (DV), the volume or mass 

fractal correlation length (xV), and the mean radius of the volume fractal building block, Ro. Two 

additional terms, the local volume fraction () and the correlation hole radius (Rc), are sensitive 

to the nearest and next nearest neighbor globules and are necessary to create an acceptable fit 

where the volume fractal transitions at high q to single C-S-H particle scattering. 

From the surface fractal component the surface fractal dimension (DS), which varies 

from 2 to 3 for non-smooth surfaces, the surface fractal correlation length (xS) and the smooth 

surface (So) are determined. So shows monotonic increased with dissolution. Three other 

parameters of interest are obtained assuming that the C-S-H gel globule nanoparticle diameter 

(Do = 2Ro = Rc) is the building block particle size of the fractal morphology: the upper-limit 

volume fraction per unit sample volume of the whole volume-fractal morphology (fMAX), the 
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fractally-rough surface area (SSF), and the surface area of the volume-fractal morphology (SVF). 

They provide the relative amount of solid material within the two fractal morphologies. We note 

that the variation in So and SSF are likely dominated by the finest grains in the powder samples, 

since these have the highest surface area, and are likely to be more affected (in proportion to 

their volume) by the dissolution process. The stochastic variability in fine powder grain content 

among the samples may not be sufficient to break the observed monotonic increase in So with 

dissolution, but the variability in surface fractal created by different amounts of fine grain 

material may be sufficient to produce the observed stochastic SSF, assuming that stochastic 

variations are amplified in SSF, compared to So. 

For the initial C-S-H gel sample, the radius of the building block particles (Do) obtained 

is 47.37 Å, and the DV and DS values are 2.369 and 2.729, respectively (Table 3.8). The resulting 

initial diameter value, Do, is close to that for the fractal sphere (DV = 2.33) calculated by 

Zarzycky et al. (1987). The Do, DV and DS values for an unaltered C-S-H gel obtained by (Allen 

and Thomas, 2007) were 44.4 Å, 2.61 and 2.55, respectively. Thomas et al. (2004) obtained DV 

values that range from 2.01 to 2.28 for C-S-H gel in white Portland cement pastes (WPC) with 

Ca/Si ratio ranging from 1.47 to 2.4.  

In the reacted samples, Do decreases from an initial value of 47.37 Å to 35.089 Å after 

31 days. Thereafter, it increases to 72.72 Å (Table 3.8). Such a Do increase is consistent with the 

roughly equiaxed particles that build the solid C-S-H structure changing their shape with 

dissolution into sheet-like structures of increasing thickness (Thomas et al. 2004). Dv decreases 

for 44 days from 2.369 to 1.538 (Fig. 3.13a, Table 3.8) and thereafter to increase to 2.038. A 

decrease in the volume fractal scaling factor suggests that the unreacted C-S-H gel, composed of 

equiaxed ≈ 5 nm C-S-H gel globule building blocks, transforms to sheet-like structures during 

dissolution (as the Ca/Si ratio decreases to nearly 1), which is in agreement with the 
29

Si MAS-

NMR results of this study and those reported by Thomas et al. (2004) and Allen and Thomas 

(2007). Ds tends to be constant, merely changing from 2.844 to 2.559 (Ds value of 2 indicates 

smooth surface) (Fig. 3.13a), which would indicate decrease in surface roughness during 

dissolution. 
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Table. 3.8  Fit and derived microstructure parameters from the fractal model. Estimated uncertainties (standard deviation) for each value are 

given in parentheses. Fixed xS values from 700 Å to 9000 Å yield S 0 uncertainties lower than 10 % .  
Parameter (Local packing 

parameter  set to 0.5) C-S-H_initial  C-S-H-1 C-S-H-2 C-S-H-3 C-S-H-4 C-S-H-5 C-S-H-6 C-S-H-7 C-S-H-8 

Duration (day) 0 16 16 16 17 31 44 67 84 

Do=Rc (Å)=2Ro 
f 

47.37  
(2.15) 

43.37  
(3.74) 

41.89 
 (0.85) 

44.26  
(3.33) 

45.21 
(8.02) 

35.08  
(3.92) 

33.25 
(18.29) 

41.43 
(23.24) 

72.72 
(4.09) 

Ro (Å) f 

23. 68 
 (1.07) 

21.68 
 (1.87) 

20.94 
 (0.42) 

22.13  
(1.66) 

22.60 
(4.01) 

17.54  
(1.46) 

16.62 
(9.15) 

20.72 
(11.62) 

36.36 
(2.04) 

fC-S-H (%) f 

4.093 
 (0.289) 

4.025 
(1.245) 

5.757 
(0.759) 

6.022 
(0.802) 

4.930 
(1.404) 

5.855 
(1.107) 

2.887 
(0.737) 

2.007 
(2.409) 

3.184 
(0.866) 

DV f 

2.369 
 (0.078) 

2.132 
(0.335) 

2.045 
(0.129) 

2.244 
(0.109) 

1.955 
(0.154) 

1.907 
(0.158) 

1.538 
(0.178) 

1.821 
(0.927) 

2.038 
(0.305) 

xV (Å) f 

176 
 (52) 

60 
 (25) 

78 
 (26) 

198 
 (73) 

189  
(130) 

44 
(10) 

54 
(65) 

40 
 (46) 

124 
 (111) 

So (m
2 cm-3) f 

0.412 
 (0.005) 

0.471 
(0.038) 

0.676 
(0.049) 

0.711 
(0.033) 

0.671 
(0.024) 

2.011 
(0.159) 

2.163 
(0.049) 

5.725 
(0.0752) 

6.806 
(0.906) 

DS f 

2.729 
 (0.011) 

2.844 
(0.022) 

2.813 
(0.027) 

2.794 
(0.021) 

2.749 
(0.076) 

2.807 
(0.018) 

2.611 
(0.019) 

2.559 
(0.008) 

2.7878 
(0.013)  

xS (Å) 9000 9500 8800 9000 9000 1000 1500 700 800 

Total ST  
(m

2
 cm

-3
) (measured by 

Porod law) 
78.96  
(1.70) 

126.1 
(11.6) 

97.38  
(10.7) 

101.5 
(12.7) 

84.33 
(9.38) 

150.2  
(10.2) 

130.9 
(9.10) 

98.66 
(9.16) 

87.60 
(9.22) 

SSF (m2 cm-3) d 18.88 44.51 52.24 48.37 35.37 30.03 22.17 27.80 45.01 

SVF (m2 cm-3) d 60.07 81.56 47.25 53.18 48.96 120.16 108.72 50.90 42.59 

fMAX (%) d 9.37 5.27 10.43 18.71 21.97 4.60 5.94 1.94 5.31 

fMAX/fC-S-H (%) d 2.30 1.31 1.81 3.11 4.46 1.30 2.06 0.97 1.67 

f and d denote fitted and derived, respectively. 
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Figure 3.13. SANS scattering data: fit fractal parameters as a function of time. Vertical bars, 

where visible, represent the computed or estimated standard deviation uncertainties in the fit 

results. a) Variation of fractal exponents with dissolution expressed as a function of flow rate x 

time / mass and b) variation of outer C-S-H volume fraction with dissolution expressed as a 

function of flow rate x time / sample mass. 

Considering that the starting C-S-H gel is composed of 67 % mass of C-S-H and the 

amount of LD C-S-H gel is 70 vol. % with an estimated porosity of minimally 36 % (Jennings 

et al., 2007), the expected volume fraction (fC-S-H) of the starting C-S-H gel can be about 11 

%. The obtained fC-S-H value of about 8 % would imply an initial porosity of 43 %, which is a 

reasonable estimation. The trend in the volume fraction (fC-S-H) (Fig. 3.13b), which essentially 

is a measure of the amount of LD C-S-H gel (without gel pores) in the paste, is similar to the 

trend observed for the total internal surface area (ST). As dissolution progresses, the HD C-S-

H gel evolves into LD C-S-H gel, with a maximum after 31 days. Then, LD C-S-H gel 

continues to dissolve too leading to a volume fraction decrease. 
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3.4  Conclusions 

It is illustrated that SANS measurements were applicable to study the evolution of the 

C-S-H structure during C-S-H dissolution. SANS data obtained at 31 % D2O provided a 

scattering intensity dominated by the C-S-H structure. SANS data for the unreacted C-S-H gel 

indicated that the resulting contrast curve was consistent with a solid C-S-H phase with 

composition C1.7SH1.8 and density of 2.604 g cm
-3

 as suggested by Allen et al. (2007).  

The SANS total internal surface (ST) increased as the Ca/Si ratio decreased (for ≈ 31 

days) and thereafter decreased when the Ca/Si ratio was ≈ 1. These observations agree with 

the measurements reported by Thomas et al. (2004) and suggest that the accessibility of HD 

C-S-H gel increases with dissolution, contributing to the ST enhancement. The variation of 

surface area with time, i.e., when the Ca/Si ratio decreases to reach a tobermorite 

stoichiometric ratio, is similar for the measured specific surface area (BET) and comparable 

to the derived SANS surface area (SSA). This observed behavior suggests that, as C-S-H gel 

dissolves, the morphology of the HD C-S-H gel compound is being transformed to LD C-S-

H, increasing the measured specific surface area. Therefore, the use of the BET surface area 

to normalize the C-S-H gel dissolution rates is fully justified. 

The change of the C-S-H gel nanostructure (at the scale range from 10 Å to 1000 Å) 

during C-S-H gel dissolution was determined from the SANS experimental data fitted with 

the fractal model (Allen and Thomas, 2007), considering a fractal structure that is composed 

of a volume fractal structure, mainly LD C-S-H gel, and a surface fractal structure on the 

surface of the clinker grains. Using this model, fit parameters (D0, DV, DS, xV and fMAX/fC-S-H 

ratio) were obtained that describe the changes in the nanostructure of the C-S-H gel during 

dissolution. 

As dissolution progressed it was inferred that the roughly equiaxed C-S-H gel 

globules, which comprise the unreacted C-S-H gel structure, change their shape into a sheet-

like morphology with progressively increasing thickness (Do increase). This transformation 

was supported by the decrease in Dv values (≈ 2) which is expected for this structure (Thomas 

et al., 2004, Allen and Thomas, 2007). Surface roughness of the coarse features was inferred 

by the slight DS increase. In addition, a decrease in xV and increase in the fMAX/fC-S-H ratio 

indicate a loss of structural compaction and density during dissolution. 
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The C-S-H gel evolution deduced from the SANS experiments is in agreement with 

the 
29

Si MAS-NMR measurements that show an increase in polymerization with C-S-H gel 

dissolution, i.e., dissolution promotes the C-S-H gel structure transformation to a more 

ordered tobermorite structure. 
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PART II. Degradation of mortar 
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 CHAPTER 4 

 Mortar column experiments 

4.1. Introduction  

The porewater of cementitious materials, which contains K, Na, Ca, Si, S, Fe and Al 

in solution is characterized by pH values (≥ 13), is in equilibrium with the phases present in 

hydrated cement. Replacement of the porewater will perturb the local equilibrium, causing 

dissolution of the cementitious phases and precipitation of secondary phases. A brief 

description of cement composition is given in Chapter 1. 

In this study, column experiments using ground mortar were performed to study 

mortar alteration by flowing water. The experimental results were interpreted, first, by means 

of analyses of solutions and inspection of the solids that intervened in the experiments and, 

secondly, using reactive transport modeling. The full approach made it possible to check the 

applicability of the previously obtained dissolution rate law for the C-S-H gel in the context 

of real Portland cement material and to enhance the current knowledge of mortar alteration. 

In the research field that deals with the reactivity of cement-based materials (cement, 

mortar and concrete), the studies based on leaching of cement pastes are numerous (Adenot 
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and Buil, 1992; Revertegat et al., 1992; Mainguy et al., 2000; Gérard and Bellego, 2002; 

Haga et al., 2005; Kamali et al., 2008), and some of them present theoretical or multi-species 

reactive transport models that describe the leaching processes (Maltais et al., 2004; 

Moranville et al., 2004; Samson et al., 2007; Galíndez and Molinero, 2010; Soler and Mäder, 

2010; Soler et al., 2011; Soler, 2012, 2013). In turn, the use of reactive transport modeling to 

account for the studied cement degradation requires reliable thermodynamic and kinetic 

databases. Several works that deal with the thermodynamics of cement-based materials are 

found in the literature (Berner et al., 1992; Reardon et al., 1992; Kulik and Kersten, 2001; 

Matschei et al., 2007; Lothenbach et al., 2008b; Schmidt et al., 2008; Damidot et al., 2011; 

Dilnesa et al., 2014). Lack of knowledge of dissolution rate laws of the cementitious phases 

yields uncertain cement degradation predictions (Zuloaga et al., 2009; Lothenbach, 2010). A 

brief description of the most representative studies on cement degradation is given in Chapter 

1. Additionally, prominent research dealing with cement hydration processes and 

accompanying modeling is included. 

This chapter is structured into two parts. The first part describes the experiments with 

mortar columns under forced advective flow. The second part shows the two-dimensional 

reactive transport calculations using CrunchFlow (Steefel, 2009) in which the dissolution rate 

law for the C-S-H gel (see Chapter 2) has been applied. 

4.2. Materials and methods 

The scheme depicted in Figure 4.1 summarizes the experimental tasks carried out in 

this study, which included characterization of the mortar, performance of column experiments 

and solid and solution analyses. Reactive transport calculations were performed to interpret 

the experimental results and check the applicability of the C-S-H dissolution rate law. 
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MORTAR (1- 2 mm )

COLUMN EXPERIMENTS

• Flow rate: 0.036- 0.014 mL min-1

• Millipore MQ water
• Glove box-N2 atmosphere
• Room temperature

Solid Solutions

Characterization

• Visual inspection
• SEM-EDX
• XRF

Analyses/Measurements

• Concentration of Ca, Si, S, Al, Mg, K, Na, Fe
• pH

FITTING OF RATE 

CONSTANTS OF 

OTHER PHASES IN 

THE MORTAR 

RATE CONSTANTS 

OF C-S-H GEL 

CALCULATED IN 

CHAPTER 2 

REACTIVE TRANSPORT 

CODE (CRUNCHFLOW)

STUDY OF EVOLUTION OF 

MORTAR IN THE COLUMN

ENRESA performed the solid analysis. 
Composition of hydration products
was calculated by thermodinamic
modeling (GEMS).

 

Figure 4.1. Scheme of the main tasks carried out to study the degradation of mortar. 

4.2. 1 Characterization of the mortar 

The experiments were carried out with cylindrical samples provided by Enresa as 

representative of the mortar used in El Cabril walls (see characteristics in Table 4.1). The 

I42.5R/SR cement is made up by adding 5% limestone (CaCO3) to the clinker (95%) 

according to the UNE-80304 norm. Fly ash was added to this mixture (64% I42.5R/SR 

cement and 36 % fly ash). Sand and additives were finally added to obtain the mortar with the 

proportions shown in Table 4.1. Porosity was measured at the Eduardo Torroja Institute 

(CSIC) by mercury intrusion porosimetry at 28 days of hydration. The mortar was cured in a 

moisture room to ensure that hydration continued for as long as possible in order to reach 

maximum strength and durability, sufficient impermeability and reduced risk of cracking. 
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Table. 4.1  Characteristics and dosing (wt. %) of the El Cabril mortar samples.  

Characteristics Dimensions 11x10 cm 

Cured type moisture room 

Total porosity (%) 14.9 

Median pore diameter (m) 0.02 

Density (g mL
-1

) 2.0 

Mortar Dosing  
( wt. %)  

Cement I  42.5R/SR 20.0 

Water 13.7 

Sand (quartz) 54.6 

Fly Ash  11.2 

Additive (Rheobuild 1222) 0.5 

 

X-ray fluorescence (XRF) to obtain the chemical composition of the cement and fly ash 

(Table 4.2). The clinker composition, expressed as oxides, was measured by X-ray 

fluorescence following the UNE 80-210-94 norm and the normative phase composition of the 

clinker was calculated following the UNE 80304 norm. The mineralogical composition of the 

clinker is shown in Table 4.3. One of the mortar samples was crushed into grains of 1 to 2 

mm size. The specific surface area of the mortar grains was measured by BET, being the 

samples previously degassed for 10 h at 50 ºC. The BET specific surface area was 2.88 m
2
 g

-1
. 

The Blaine surface was calculated by the Blaine method that calculates the specific surface by 

means of the time that a fixed volume of air needs to pass through a bed of cement multiplied 

by a constant, which is determined by a known specific surface cement. D50 equal to 20.20 

means that 50 wt. % of the sample is smaller than 20 m. 

Table. 4.2  Chemical composition (wt. %) of the cement and fly ash of the El Cabril 

mortar, and physical characteristics of the cement . Error in XRF analysis is around 

5%. 
 

 Cement I 42.5R/SR 
(wt. %) 

Fly Ash  
(wt. %) 

SiO2 21.45 55.61 

Al2O3 2.30 30.10 

Fe2O3 4.85 6.56 

CaO 68.40 1.74 

MgO 0.77 2.01 

CaO free 1.78  

SO3 1.86  

K2O 0.34  

Na2O 0.09  

Alkali (Na2O equivalent) 0.31  

Cl 0.01  

Density (g/cm
3
) 3.13  

Blaine Surface (g/cm
2
) 3685  

D50 (μm) 20.20  
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Table. 4.3  Mineralogical composition of the clinker  (wt. %). 
 

Phases Composition (wt. %) 

C3S (alite)                                          78.7 ± 1% 

C2S (belite)                                          2.1 ± 1% 

C3A                                          0.0 

C4AF (ferrite) 11.0 ± 0.1% 

C2F                                          2.1 ± 0.1% 

Composition in cement notation C: CaO, S: SiO2, A: Al2O3, F: Fe2O3. 

 

4.2. 2 Mortar hydration 

The composition of the hydrate assemblage formed during the hydration of the OPC + fly 

ash mixtures was calculated based on the cement and fly ash composition (Table 4.2) using 

the GEM-Selektor (GEMS) software package (Lothenbach and Winnefeld, 2006; Lothenbach 

et al., 2008a; De Weerdt et al.; 2011; Wagner et al., 2012; Kulik et al., 2013). The hydration 

time of the products was 830 days. Reaction of fly ash was modelled according to (De Weerdt 

et al., 2011): 

𝐹𝐴 (𝑟𝑒𝑎𝑐𝑡𝑒𝑑) = 36𝑔 ∙ (10 ∙ ln(𝑡 + 4.5) − 15) 
Eq. 4.1  

where FA is fly ash, t is time in days, and g is grams of fly ash.  

Table 4.4 lists the calculated phases in the mortar. GEMS computes the equilibrium phase 

assemblage and speciation in a complex chemical system from its total bulk elemental 

composition. The chemical interactions involving pure solid phases, solid solutions, gas 

mixture, and aqueous electrolyte are considered simultaneously. The thermodynamic data for 

aqueous species, as well as for many solids, were taken from the PSI-GEMS thermodynamic 

database (Thoenen and Kulik, 2003 ; Hummel et al., 2002), whereas the solubility products 

for cement minerals were taken from the cemdata07 database (Lothenbach et al., 2008b; 

Matschei et al., 2007; Schmidt et al., 2008) completed with the recently determined solubility 

products of Fe-monocarbonate, Fe-monosulfate, and Si-hydrogarnet (C3(F,A)S0.84H4.32 in 

cement notation; Dilnesa et al., 2011, 2012, 2014). The extent of aluminium substitution in 

Si-hydrogarnet was limited to 1:1 Al:Fe. Formation of C3AS0.41H5.18 was excluded for its 

unlikely ocurrence at ambient temperature (Dilnesa et al., 2014). 

The small amounts of remnant unhydrated phases (C3S, C2S, C3A and C4AF) were not 

taken into account when calculating the volume fractions of the different phases used in the 

reactive transport model of the column experiment. Owing to the high Ca concentration in the 

output solutions in the first hours during the dissolution experiments, portlandite (CH) was 
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also included in the model. Additionally, to make the composition of the mortar consistent 

with the presence of portlandite, it was assumed that the initial C-S-H gel had a Ca/Si ratio 

equal to 1.667. Initial composition of the mortar in the reactive transport calculations is given 

in Table 4.5. More details about the calculations of the initial composition are given in section 

4.4.2.1. 

Table. 4.4  Phases initially present in the mortar (830 d) calculated using the 

GEMS code. 

Phase Wet process g/100g 

FA (bulk composition) 0.926SiO2·0.295Al2O3·0.041Fe2O3·0.031CaO·0.05MgO 6.9007 

C3S Ca3SiO5 0.8834 

C2S Ca2SiO4 0.1744 
C3A Ca3Al2O6 3.58E-05 
C4AF Ca4Al2Fe2O10 0.9624 
C-S-H 1.67Ca(OH)2·SiO2·H2O 30.3768 

Ettringite (AFt) Ca6[Al(OH)6]2(SO4)3·26H2O 3.3195 
Portlandite (CH) Ca(OH)2 0 
Gypsum CaSO4·2H2O 0 

Calcite CaCO3 0.0946 
Monosulphate (AFm) 4CaO·Al2O3·SO3·12H2O 0 

Brucite Mg(OH)2 0 
Hydrotalcite Mg6Al2CO3(OH)16·4H2O 1.0899 

Stratlingite Ca2Al2SiO2(OH)10·3H2O 0 
Monocarbonate (Hc) Ca4[Al(OH)6]2(CO3)·6H2O 7.7035 
Hemicarbonate(Mc) Ca4[Al(OH)6]2(CO3)1/2·5H2O 0 
Si-hydrogarnet  C3(A,F)S0.84H4.32 (Ca3Al2Fe2(SiO4)0.84(OH)8.64) 5.7445 
Quartz (sand) SiO2 66.037 
Solution  9.8734 

 

Table. 4.5  Average initial composition of the mortar in the reactive transport 

calculations. 

Phases of the mortar Initial volumetric fraction Initial area (m
2
m

-3
bulk) 

Fly ash 0.04704* 3.0 10
5
 

CSH-1667 0.20709 1.6 10
6
 

Ettringite 0.02263 1.2 10
5
 

Hydrotalcite-OH 0.00743 4.3 10
4
 

Monocarboaluminate 0.05251 3.3 10
5
 

Si-hydrogarnet (C3(A,F)S0.84H4.32) 0.03916 3.3 10
5
 

Portlandite 0.04750 2.9 10
5
 

Calcite 0.00064 5.1 10
3
 

Quartz 0.45020 5.4 10
3
 

Porosity 0.125 - 

*Value calculated using Eq 4.1 

 

The porewater composition was calculated to be in equilibrium with the hydrated 

phases of the mortar (Table 4.6). 
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4.2. 3 Mortar column experiments 

Three methacrylate (PMMA) columns of 2.6 cm in length and 3 cm in diameter -2.5 

cm of inner diameter- were filled with approximately 25 g of mortar grains (grain size 1-2 

mm; Fig. 4.2). 0.45 m Teflon ® filters were placed at the inlet and outlet of the columns to 

prevent any microparticle circulation through the inlet and outlet tubing. An extra filter was 

placed at the inlet of the column to homogenize the influent solution. The porosity of the 

columns was calculated from the difference in weight between dry and water saturated 

columns. This porosity does not include the internal porosity of the mortar grains which were 

previously saturated with water. Hence, in the saturated columns, the porosity corresponding 

to the water between mortar grains was about 42.5%. 

 

Figure 4.2. Photograph of a mortar column. 

A peristaltic pump was used to inject Millipore MQ water from the inlet of the 

columns at constant flow rate, which was different in each column (0.014, 0.028 and 0.036 

mL min
-1

) and yielded residence times of 6.9, 3.5 and 2.7 h, respectively. The entire 

experimental setup (input and output solutions, peristaltic pump, columns and tubing) was 

enclosed in a glove box purged with pure N2 (99% purity) at room temperature (23 ± 2 °C) 

(Fig. 4.3). Input Millipore MQ water was purged with N2 inside the glove box to avoid 

carbonation. Oxygen concentration was continuously monitored by an oxygen partial pressure 

detector and varied from 0.1 to 0.4% O2, being equivalent to 2-8 ppm of CO2 according to the 

CO2 content of atmospheric air. The output solutions were collected every two days and kept 

inside the glove box until analyzed.  
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Figure 4.3. Schematic representation of the mortar - column experimental setup. 

The three experiments lasted 3423 h and were carried out until steady state was 

reached. Steady state was considered to be attained when differences in the concentrations in 

output solutions were below 10% in consecutive leachate samples for at least 200 h.  

Once the experiments were finished, isopropanol was circulated through the columns 

to remove the retained solution. Isopropanol was allowed to evaporate, and thereafter epoxy 

resin was pumped into the columns to fill the pore volume. After resin solidification, column 

slices at different lengths were produced by diamond disc cutting. The surfaces of the slices 

were polished avoiding contact with water to be examined optically and by SEM-EDS. 

4.2. 4 Analysis of solutions 

Input and output solution pH was measured at room temperature using a Thermo 

Orion Ag/AgCl electrode. Calibration was made with Crison © standard buffer solutions of 

pH 7.00 (K and N phosphate) and pH 9.21 (borax). The reported uncertainty is ±0.05 pH 

units. After pH measurements, the output solutions were acidified to pH 3 to avoid any 

formation of calcium carbonate in the collected solutions. 

Total concentrations of Ca, Na, K, Fe, S, Al, Mg, and Si in the input and output 

solutions were analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy 

(ICP-AES using a thermo Jarrel-Ash with CID detector and a Perkin Elmer Optima 3200RL. 

The accuracy of ICP-AES measurements was estimated to be around 3%. Detection limits for 

Ca, Na, K, Fe, S, Al, Mg and Si were 1.25 10
−6

 mol L
−1

, 1.30 10
−4

 mol L
−1

, 1.28·10
−6

 mol L
−1

, 

3.58·10
−7

 mol L
−1

, 1.56·10
−6

 mol L
−1

, 1.85·10
−6

 mol L
−1

, 2.06·10
−6

 mol L
−1

 and 4.48·10
−7

 mol 

L
−1

, respectively.  
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4.2. 5 Analysis of solids 

Visual inspection of the surfaces was carried out using a Leica M125 

stereomicroscope. The surfaces of carbon-coated slices were examined by Scanning Electron 

Microscopy (SEM) using a JEOL JSM-840 microscope and a Hitachi H-4100FE field-

emission scanning microscope. X-ray fluorescence (XRF) analysis of the carbon-coated slices 

was carried out using a Bruker spectrometer model AXS-S2 Ranger. 

4.3. Reactive transport modeling 

4.3.1 Description of the reactive transport code 

Reactive transport modeling was performed using CrunchFlow (Steefel, 2009). 

CrunchFlow includes the simulation of advective, dispersive and diffusive transport, non-

isothermal transport-reaction, kinetically-controlled mineral dissolution and precipitation and 

reaction-induced porosity and permeability feedback to both diffusion and flow. Only a 

summary will be given here.  

CrunchFlow solves numerically the advection-dispersion-reaction equations 

𝜕 (𝜙(𝐶𝑖
𝑚𝑜𝑏 + 𝐶𝑖

𝑖𝑛𝑚𝑜𝑏))

𝜕𝑡
= ∇ · (𝐷∇𝐶𝑖

𝑚𝑜𝑏) − ∇ · (𝑞𝐶𝑖
𝑚𝑜𝑏) + 𝑅𝑖    

(𝑖 = 1,2, . . . , 𝑁𝑡𝑜𝑡) 

Eq. 4.2  

where  is porosity, 𝐶𝑖
𝑚𝑜𝑏 is the total concentration of mobile component or primary 

species i in solution (mol m
-3

), 𝐶𝑖
𝑖𝑛𝑚𝑜𝑏 is the total concentration of immobile component i in 

solution (sorbed by surface complexation or ion exchange; mol m
-3

), D is the combined 

diffusion-dispersion coefficient (m
2
 s

-1
), q is Darcy velocity (m

3
 m

-2
 s

-1
), Ri is the total 

reaction rate affecting component i (mol m
-3

 s
-1

), t is time (s) and Ntot is the total number of 

independent aqueous chemical components (primary species). 

The combined diffusion-dispersion coefficient D (m
2
 s

-1
) is defined as the sum of the 

mechanical or kinematic dispersion coefficient D* and the effective diffusion coefficient De 
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𝐷 = 𝐷∗ +  𝐷𝑒  Eq. 4.3  

The kinematic dispersion coefficient is written as 

𝐷𝑖𝑗
∗ = 𝛼𝑇|𝑞| + (𝛼𝐿 − 𝛼𝑇)

𝑞𝑖𝑞𝑗

|𝑞|
 

Eq. 4.4  

where L and T are the longitudinal and transverse dispersivities, respectively, and q 

is the magnitude of the Darcy velocity. The model assumes that the principal direction of flow 

is aligned with the grid, i.e. 𝐷𝑖𝑗
∗  is a diagonal matrix. 

Effective diffusion coefficient (De; m
2
 s

-1
) was calculated making use of the Archie’s 

Law with a cementation exponent (m) equal to 3 for cement (Trotignon et al., 2007). This 

parameter specifies a porosity-dependent tortuosity according to 

𝐷𝑒 = 𝜙𝑚 𝐷0 Eq. 4.5  

where Do is the molecular diffusion coefficient in pure water (10
-9

 m
2
 s

-1
) and  is the 

porosity.  

The expression of the total reaction rate for component i, Ri, is  

𝑅𝑖 = − ∑ 𝜐𝑖𝑚𝑅𝑚

𝑚

 
Eq. 4.6  

where Rm (mol m
-3

bulk s
-1

) is the rate of precipitation (Rm > 0) or dissolution (Rm < 0) 

of solid phase m per unit volume of rock, and im is the number of moles of i per mole of 

mineral m. Since mineral reactions are described using kinetic rate laws, initial mineral 

surface areas and several reaction rate parameters have to be supplied by the user as input. In 

the simulations, the reaction rate laws that have been used for the phases present in the mortar 

are of the form  
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𝑅𝑚 = −𝐴𝑚 ∑ 𝑘𝑚

𝑡𝑒𝑟𝑚𝑠

𝑎
𝐻+

𝑛
𝐻+

(∏ 𝑎𝑖
𝑛𝑖

𝑖

) 𝑓𝑚(∆𝐺) 
Eq. 4.7  

where Am is the mineral surface area (m
2

m m
-3

bulk), km is the reaction rate constant (mol 

m
-2

 s
-1

) at the temperature of interest, 𝑎
𝐻+

𝑛𝐻+
is the term describing the effect of pH on the rate, 

𝑎𝑖
𝑛𝑖  is a term describing a catalytic/inhibitory effect by another species on the rate and 

𝑓𝑚(∆𝐺) is the function describing the dependence of the rate on solution saturation state and 

is in the form 

𝑓𝑚(Δ𝐺) = (1 − (Ω)𝑚2)𝑚1 Eq. 4.8  

in which G is the Gibbs energy of the reaction (J mol
-1

), is the ionic activity 

product (IAP) of the solution with respect to the mineral divided by Keq (equilibrium constant 

for that mineral reaction), and m1 and m2 are empirical exponents. The summation term 

indicates that several parallel rate laws may be used to describe the dependence of the rate on 

pH or on other species. In the simulations, the reaction rate law for the C-S-H gel is in the 

form that was considered in Chapter 2 

𝑅𝑚 = −𝐴𝑚𝑘𝑚(1 − Ω) Eq. 4.9  

There are two options to calculate changes in mineral surface area due to reaction: (1) 

When specifying bulk surface area (m
2

m m
-3

bulk) as input parameter changes are calculated 

according to  

𝐴 = 𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (
𝜙𝑚

𝜙𝑚
𝑖𝑛𝑖𝑡𝑖𝑎𝑙⁄ )

2
3

(
𝜙

𝜙𝑖𝑛𝑖𝑡𝑖𝑎𝑙⁄ )

2
3

(𝑑𝑖𝑠𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 

Eq. 4.10  

𝐴 = 𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (
𝜙

𝜙𝑖𝑛𝑖𝑡𝑖𝑎𝑙⁄ )

2
3

(𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛) 

Eq. 4.11  
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where  refers to the porosity and m refers to the individual mineral volume fraction. 

The inclusion of a 2/3 dependence on porosity is chiefly to ensure that as the porosity goes to 

0, so too does the mineral surface area available for reaction. This formulation is used 

primarily for primary minerals (that is, minerals with initial volume fractions > 0). For 

secondary minerals which precipitate, the value of the initial bulk surface area specified is 

used as long as precipitation occurs—if this phase later dissolves, the above formulation is 

used, but with an arbitrary “initial volume fraction” of 0.01. 

(2) When specifying specific surface area (m
2
 g

-1
) as input parameter, reactive surface 

area is calculated according to 

𝐴𝑏𝑢𝑙𝑘 = 𝜙𝑚𝐴𝑠𝑝

𝑀𝑊𝑚

𝑉𝑚
 

Eq. 4.12  

where MWm and Vm are the molecular weight (g mol
-1

) and molar volume (m
3
 mol

-1
) 

of the solid phase, respectively. Additionally, for secondary phases (initial 𝜙𝑚 equal to 0) a 

“threshold mineral volume fraction” has to be specified, to be used when 𝜙𝑚 is smaller than 

the threshold value. This is the option used for the different C-S-H gel compositions. 

4.3.2 Modeling of mortar dissolution under advective flux  

4.3.2.1. Conceptual model 

To simulate the experimental column data with the 2D CrunchFlow model several 

considerations had to be taken into account. The system was divided into two parts: immobile 

zone (mortar grains where solute transport takes place only by diffusion) and mobile zone 

(pore space where water circulates across the mortar grains). In order to take these 

considerations into account, the column model was designed with two concentric cylinders. 

An internal one with mortar and an external one filled with water to allow diffusion through 

the mortar and advection along the pore space (Fig. 4.4). For the immobile zone, the radius 

was considered to equal the radius of a mortar grain (7.5x10
-4

 m). 
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*Value obtained from the mortar hydration calculations

 

Figure 4.4. Schematic representation of the experimental mortar column and the model setup. 

To calculate the dimensions of the model column (L’ and R2), the volume of both the 

experimental and model columns was considered to be the same 

𝑉𝑇𝑂𝑇 = 𝜋 · 𝑟2 · 𝐿 = 𝜋 · 𝑅2
2 · 𝐿′ Eq. 4.13  

where r and L are equal to 0.0125 m and 0.026 m, respectively. The volume for both 

columns equals 1.27·10
-5

 m
3
. R2 was calculated by means of the porosity of the system 

(0.425) 

𝜙 =
𝑉𝐻2𝑂

(𝑉𝐻2𝑂 + 𝑉𝑀𝑜𝑟𝑡𝑎𝑟)
=

𝜋(𝑅2
2 − 𝑅1

2)𝐿′

𝜋𝑅2
2𝐿′

=
(𝑅2

2 − 𝑅1
2)

𝑅2
2   

Eq. 4.14  

resulting in R2 equal to 9.89·10
-4

 m and L’ equal to 4.13 m. The width of the mobile 

zone was 2.39x10
-4

 m (the difference between R1 and R2). 
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The contact area between grains and flowing water in the experiment (area per bulk 

volume) is given by 

𝐴𝑔−𝑤−𝑒𝑥𝑝 =
𝐴𝑔

𝑉𝑔
(1 − 𝜙) =

3

𝑅1
(1 − 𝜙) 

Eq. 4.15  

where Ag is area of grains per bulk volume (m
2
m

-3
), Vg is volume of grains per bulk 

volume (m
3
m

-3
). Using the experimental value of R1, and , Ag-w-exp equals to 2300 m

2
m

-3
. 

In the model, this contact area (Ag-w-model) is given by 

𝐴𝑔−𝑤−𝑚𝑜𝑑𝑒𝑙 =
2𝜋𝑅1𝐿′

𝜋𝑅2
2𝐿′

=
2𝑅1

𝑅2
2  

Eq. 4.16  

which results in 1530 m
2
m

-3
. 

Therefore, there is slightly less contact area in the simplified model than in actuality. 

However, the difference is small and the error in reactivities and diffusive transport should be 

relatively insignificant. 

Figure 4.5 shows schematically the dimensions of the mesh which were calculated to 

represent the experimental column. This is a 2D mesh, with a cylindrical geometry around the 

y axis. The domain representing the mortar was divided into 10 and 25 nodes in the x and y 

directions, respectively, yielding a distance between nodes of 7.5·10
-5

 m and 0.1652 m in the 

x and y directions, respectively. The mesh in the mobile zone consisted of 1 node in the x 

direction and 25 nodes in the y direction. Flow velocities in the mobile water zone were 

calculated to obtain the same flow residence times as in the experiments. 



144 

 

y (m)

x (m)

0

7.5 10-5 1.5 10-4 2.25 10-4 2.63 10-4 3.75 10-4 4.5 10-4 7.5 10-46.75 10-46 10-45.25 10-4 9.89 10-4

0.1652

4.13

Mortar
(immobile zone)
porosity 12.5% 

2.6 cm

Output

Input

Output

Input

r

W
at

er
(m

o
b

ile
zo

n
e

)

p
o

ro
si

ty
1

0
0

%

 

Figure 4.5. Schematic representation of the numerical domain. 

The composition of the initial porewater was calculated with GEMS by considering 

the solution at equilibrium with respect to the phases present in the mortar (Table 4.6). Due to 

the fact that the experimental concentration of Ca during the first hours was higher than the 

concentration calculated by GEMS, portlandite and C-S-H gel with high Ca/Si ratio were also 

included in the system. This seems to indicate that the degree of hydration of the mortar was 

lower than predicted by GEMS. Feldman et al. (1990) found a similarly low degree of 

hydration in high-volume fly ash / cement pastes (fly ash/cement ratio of 1.27); considerable 

amounts of Ca(OH)2 and fly ash remaining unreacted after 91 days of hydration. The 

concentrations for the rest of the different ions were constrained by equilibrium with the solid 

phases (Table 4.6), except for Na and K, whose concentrations were considered to be those 

calculated with GEMS. The composition of the injected solution was that of Millipore MQ 

water in a CO2-free atmosphere (pH = 7). 

Table. 4.6  Considered composition of the initial  porewater in the column.  

Component Concentration (mol/L)  Equilibrium constraint 

Ca
2+

 4.176 10
-4

 Portlandite 
SiO2(aq) 2.852 10

-4
 CSH-1667 

HCO
3-

 2.751 10
-4

 Calcite 
SO4

2
- 2.935 10

-3
 Ettringite 

Al
3+

 5.806 10
-4

 Monocarboaluminate 
Fe

3+
 3.310 10

-7
 Si-hydrogarnet (C3(A,F)S0.84H4.32) 

Mg
2+

 1.000 10
-10

 Hydrotalcite 
Na

+
 4.575 10

-2
             - 

K
+
 0.118             - 

pH 13.076 Charge balance 
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36 species in solution and 26 solid phases were taken into account in the calculations. 

All the equilibrium constants at 25ºC for aqueous species (Table 4.7) and calcite and quartz 

(Table 4.8) were taken from the database included in CrunchFlow, which is based on the 

EQ/6 database (Wolery et al, 1990). The log Keq values for the C-S-H gel were obtained from 

the solid solution model in Kulik and Kersten (2001), and those for hydrotalcite-OH and 

monocarbonaluminate from Lothenbach et al. (2008). The log Keq value and the molar 

volume for Si-hydrogarnet (C3(A,F)S0.84H4.32) phase were calculated assuming an ideal solid 

solution between C3AS0.84H4.32 and C3FS0.84H4.32 from the CEMDATA2013 database (Dilnesa 

et al., 2014). The log Keq values for portlandite and ettringite were obtained from Hummel et 

al. (2002) and cemdata07 database (Matchei et al., 2007; Lothenbach et al., 2008b), 

respectively. Activity coefficients were calculated using the extended Debye-Hückel 

formulation (b-dot model), with parameters from the same database. The activity of water 

was taken as unity. 

The rate constant for portlandite (k) was 10
-5.4

 mol m
-2

 s
-1

 as reported in Bullard et al. 

(2010). The rate constants for quartz was obtained from Bandstra et al., (2008) and for calcite 

from Palandri and Kharaka (2004). Rate parameters are listed in Table 4.9 where the rates-pH 

dependence is specified. The C-S-H solid solution was discretized into 19 different 

stoichiometries, ranging from Ca/Si = 1.67 to Ca/Si = 0.83 (Table 4.8) as explained in 

Chapter 2. The dissolution rate constants of the discretized C-S-H gel were obtained in 

Chapter 2. For the rest of the minerals present in the mortar (ettringite, monocarboaluminate, 

Si-hydrogarnet, hydrotalcite-OH and fly ash) the rate constants were obtained from the fitting 

of the model to the experimental data. For the particular case of the fly ash, irreversible 

kinetics was assumed (no dependence on solution saturation state).The value of the rate 

constant for fly ash was fixed to be 10
-12

 mol m
-2

 s
-1

 to allow only minor variation in the fly 

ash content, as observed by SEM. Using this value, only 1.5 % of the fly ash volumetric 

fraction dissolves. Greater values generate non-realistic variations of its volumetric fraction. 

With a k value of 10
-11

 mol m
-2

 s
-1

 15% of fly ash dissolves. With k values smaller than 10
-12

 

mol m
-2

 s
-1

 dissolution is insignificant, but the Al and Fe output concentrations are 

underestimated. 



146 

 

Table. 4.7  Equilibrium constants (log K e q) and stoichiometric coefficients for equilibria in solution. Reactions are written as the destruction 

of 1 mol of the species in the first column.  

Species log K 

Stoichiometric Coefficient 
 

Ca
2+

 SiO2(aq) H
+
 HCO3

-
 SO4

2-
 Al

3+
 Fe

3+
 Mg

2+
 Na

+
 K

+
 H2O 

AlO2
-
 2.29E+01 0.00 0.00 -4.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 2.00 

Al(OH)3(aq) 1.64E+01 0.00 0.00 -3.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 3.00 
AlOH

2+
 4.96E+00 0.00 0.00 -1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 

CO2(aq) -6.34E+00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 
CO3

2-
 1.03E+01 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaCO3(aq) 7.01E+00 1.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
CaHCO3

+
 -1.04E+00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaOH
+
 1.29E+01 1.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

CaSO4(aq) -2.10E+00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
Fe(OH)2

+
 5.67E+00 0.00 0.00 -2.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 2.00 

Fe(OH)3(aq) 1.20E+01 0.00 0.00 -3.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 3.00 
Fe(OH)4

-
 2.16E+01 0.00 0.00 -4.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 4.00 

FeCO3
+
 6.18E-01 0.00 0.00 -1.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

FeOH
2+

 2.19E+00 0.00 0.00 -1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 
H2SiO4

2-
 2.30E+01 0.00 1.00 -2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 

HSiO3
-
 9.94E+00 0.00 1.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

KSO4
-
 -8.75E-01 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 

MgCO3(aq) 7.36E+00 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
MgHCO3

+
 -1.03E+00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

MgOH
+
 1.14E+01 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

MgSO4(aq) -2.41E+00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 
NaCO3

-
 9.82E+00 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

NaHCO3(aq) -1.56E-01 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
NaSO4

-
 -8.20E-01 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 

OH
-
 1.40E+01 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
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Table. 4.8  Equilibrium constants (log K eq) and stoichiometric coefficients for mineral reactions. Reactions are written as the dissolution of 1 

mol of mineral.  

Mineral log K 
V molar  Stoichiometric coefficient 

(cm
3
mol

-1
) Ca

2+
 SiO2(aq) H

+
 HCO3

-
 SO4

2-
 Al

3+
 Fe

3+
 Mg

2+
 Na

+
 K

+
 H2O 

CSH-1667 2.91E+01 73.10 1.67 1.00 -3.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.34 

CSH-165 2.87E+01 72.66 1.65 1.00 -3.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.30 

CSH-160 2.76E+01 71.38 1.60 1.00 -3.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.19 

CSH-155 2.64E+01 70.11 1.55 1.00 -3.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.08 

CSH-150 2.53E+01 68.83 1.50 1.00 -3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.97 

CSH-145 2.42E+01 67.55 1.45 1.00 -2.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.86 

CSH-14 2.31E+01 66.27 1.40 1.00 -2.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.75 

CSH-135 2.20E+01 64.99 1.35 1.00 -2.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.64 

CSH-130 2.10E+01 63.71 1.30 1.00 -2.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.53 

CSH-125 1.99E+01 62.43 1.25 1.00 -2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.42 

CSH-12 1.88E+01 61.16 1.20 1.00 -2.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.31 

CSH-115 1.77E+01 59.88 1.15 1.00 -2.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.19 

CSH-110 1.67E+01 58.60 1.10 1.00 -2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.08 

CSH-105 1.56E+01 57.32 1.05 1.00 -2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.97 

CSH-10 1.46E+01 56.04 1.00 1.00 -2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.86 

CSH-095 1.36E+01 54.77 0.95 1.00 -1.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.75 

CSH-090 1.25E+01 53.49 0.90 1.00 -1.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.64 

CSH-085 1.15E+01 52.21 0.85 1.00 -1.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.53 

CSH-083 1.12E+01 51.70 0.83 1.00 -1.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.49 

Calcite 1.85E+00 36.93 1.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Quartz -4.01E+00 22.68 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ettringite 5.68E+01 707 6.00 0.00 -12.00 0.00 3.00 2.00 0.00 0.00 0.00 0.00 30.00 

Hydrotalcite 7.37E+01 220 0.00 0.00 -14.00 0.00 0.00 2.00 0.00 4.00 0.00 0.00 5.00 

monocarboaluminate 8.06E+01 263 4.00 0.00 -13.00 1.00 0.00 2.00 0.00 0.00 0.00 0.00 3.00 

Si-hydrogarnet (C3(A,F)S0.84H4.32) 7.09E+01 145 3.00 0.84 -12.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.32 

Portlandite 2.28E+01 33.05 1.00 0.00 -2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 



148 

 

Table. 4.9  Rate constants (log k) and parameters of calcite (Palandri and 

Kharaka, 2004), quartz (Bandstra et al., 2008) , portlandite  (Bullard et al.,  2010)  

and fly ash. 

Mineral 
log k  

𝑎
𝐻+

𝑛
𝐻+

 m1 m2 
mol m

-2
 s

-1
  

Calcite 
-0.3  1 1.0 1.0 

-5.81  - 1.0 1.0 

Quartz 
-11.4  0.3 1.0 1.0 

-14.9  -0.4 1.0 1.0 

Portlandite -5.14  - 1.0 1.0 

Fly ash -12  - 1.0 1.0 

Two parallel rates laws are used for calcite and quartz to describe the different 

pH dependences under acid and alkaline conditions (see Eq. 4.7). 

4.4. Results and discussion 

4.4.1 Aqueous chemistry 

Variation with time of the output concentrations and output pH in the column 

experiments is depicted in Figure 4.6. The experimental conditions and steady-state results 

are summarized in Table 4.10. Overall, in the three experiments the temporal variation of the 

output concentrations and pH was similar. An initially high release of Ca was observed. The 

concentration of Ca sharply diminished for 1000 h to achieve steady state. The high 

concentration of Ca at early times can only be explained if some portlandite that did not react 

with the fly ash remained in the system. Si was slowly released mainly from the C-S-H 

dissolution as Ca decreased to approach steady state. The Al concentration initially increased 

to slightly decrease and reach steady state. The Fe concentration remained approximately 

constant. The Mg concentration was progressively increasing to reach steady state. Na 

concentration decreased abruptly. K concentration tended to decrease for 1000 h down to very 

small values. S increased initially to thereafter decrease and achieve steady state. Output pH 

decreased to reach steady state at an approximate value of 9. 
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Figure 4.6. Variation of the output concentrations and output pH with time in the three column 

experiments. 
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a) b)

Input Middle Outputc)

Table. 4.10  Experimental conditions and steady-state results of the column 

experiments.  

Experiment Mortar_1 Mortar_2 Mortar_3 
Time (days) 143 143 143 
Flow rate (mL min

-1
) 0.036 0.028 0.014 

pH out 9.75 ± 0.75 9.97 ± 0.81 9.92 ± 0.77 

Ca out (M) 792.12 ± 23.76 882.34 ± 26.47 1221.42 ± 36.64 

Si out (M) 315.86 ± 9.47 347.77 ± 10.43 291.61 ± 8.74 

Na out (M)         (*) 36.54 ± 1.09          (*) 

K out (M) 9.09 ± 0.27 28.16 ± 0.84 16.38 ± 0.49 

S out (M) 45.74 ± 1.37 78.06 ± 2.34 66.37 ± 1.99 

Al out (M) 42.58 ± 1.27 41.51 ± 1.24 38.53 ± 1.15 

Mg out (M) 7.19 ± 0.21 5.51 ± 0.16 2.60± 0.08 

Fe out (M) 0.33 ± 0.01 0.19 ± 0.006 0.12 ± 0.004 

(*) below detection limit 

The weight of the mortar grains was ≈10 g in the three columns 

 

4.4.2 Mortar grains 

Figures 4.7a and 4.7b show one of the columns before and after the experiment. 

After the experiments, the existence of some dark material was mostly observed at the 

inlet, between the column wall and the grains (Fig. 4.7c).  

 

Figure 4.7. Photographs of a column experiment: a) before, b) after the experiment, 

and c) slices cut at different column length after the experiment. 
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3mm3mm3mm

a) b) c)

Two zones along the length of the column could be distinguished: near the inlet 

with dark precipitates and near the outlet where no alteration of the grains was visually 

observed. From a detailed visual inspection, it was observed that the dark precipitates 

between the grains were mainly residing close to the column wall (Fig. 4.8). 

 

 

Figure 4.8. Photographs of reacted mortar using the Leica M125 stereomicroscope: a) at the 

inlet of the column (≈ 0.86 cm) deposition of dark precipitate was observed near the column 

wall. No precipitate was observed at the middle of the column (≈ 1.72 cm) (b) nor at the top 

(≈ 2.60 cm) (c). 

Qualitative XRF analysis of the polished surface of the column slices showed that 

differences in the Fe concentration at different lengths of the column could be observed 

(Fig 4.9). In the inlet of the column (Figs. 4.9a and b), zonation is observed as being the 

highest concentration of Fe close to the column wall corresponding with the dark 

precipitates (red and orange zones). In the middle of the column no high concentration of 

Fe is observed (blue and green zones; Fig 4.9c). 
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Mortar_2  inlet

Mortar_2  middle

a)

b)

c)

counts

counts

counts

 

Figure 4.9. Photographs and XRF analysis of the column slices for a) inlet of the experiment 

Mortar_3; b) inlet of the experiment Mortar_2 and c) middle of the experiment Mortar_2. 

The polished surface of the bottom slice of the column (input) was examined by 

SEM-EDX (Fig. 4.10). The images showed the presence of uniform distribution of quartz 

grains in a cement matrix (Fig. 4.10a). In the cement matrix, unreacted fly ash particles 

(small spheres) were observed. The dark precipitates were found to be iron-rich 

compounds deposited on the surface of the quartz grains (Fig. 4.10b). 
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Fe
Fly Ash

20.0 kV x60 BED                       100 m 20.0 kV x270  BED       100 m 

a) b)
 

Figure 4.10. SEM (backscattered electron-BSE) images of the polished bottom slice of the column 

experiment MORTAR_1: a) Cement paste, quartz aggregates and some fly ash particles and b) 

presence of iron-rich precipitates over the grains. 

4.4.2 Reactive transport modeling 

4.4.2.1 Fitting of the model parameters 

The reactive transport simulations, together with the experimental variation of the 

output concentrations and output pH of the representative experiment MORTAR_1, are 

shown in Figure 4.11. Table 4.11 gives the values of the parameters used in the 

simulations. The rate constant values obtained for ettringite, monocarboaluminate, fly ash 

and Si-hydrogarnet were those that allow fit the output concentrations. Nonetheless, these 

values of rate constant should be compared with values obtained experimentally (e.g., 

performance of flow-through experiments).  
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Figure 4.11. Experimental and simulated variation of the output concentration and output pH 

with time in experiment MORTAR_1. 

Due to the complexity of the system, reasonable fitting was assumed when the 

model fitted the concentrations of major elements (e.g. Ca, Si, Na and K). Thus, the 

temporal variation of the Ca, Si and Na concentrations was reasonably fitted. The 

concentrations of Al and S were underestimated. Iron was slightly overestimated 

(although concentrations are very small and close to the detection limit). Precipitation of 

secondary phases, such as ferrihydrite (Fe(OH)3), gibbsite (Al(OH)3) and amorphous 

SiO2, was included in the model. According to the predictions, ferrihydrite was in 

equilibrium near the inlet for the first three hours. In the rest of the column, the solution 

was undersaturated with respect to these phases. K concentration in the model results was 

understimated as the modeled depletion of K concentration occurs before (around 300 h) 

the experimental one. K was considered to be conservative in the model, but uptake by the 

C-S-H gel cannot be disregarded (Lothenbach et al., 2012). Fitting of Mg was not 

attempted because its concentration was also nearly that of the ICP-AES detection limit 
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Experimental parameters  

Experiments 

Mortar_1 Mortar_2 Mortar_3 

Experimental volumetric flux (mL min-1) 0.036 0.028 0.014 

Flow (mL min-1) 0.02749 0.02137 0.01034 

Fitted parameters 

Initial effective diffusion coefficient (De) (m2s-1) 1.12E-13 5.39E-14 1.95E-14 

Dispersivity, mobile water (m2s-1) 0.16612 

Phases 
Rate constants 

Initial volumetric fraction 
(log k, mol m-2 s-1)  

Fly ash 
(a)

 -12.00 0.04717 0.04692 

CSH-1667 (b) -8.40 0.20766 0.20652 

CSH-165 (b) -8.47 - - 

CSH-160 (b) -8.53 - - 

CSH-155 (b) -8.53 - - 

CSH-150 
(b)

 -8.56 - - 

CSH-145 
(b)

 -8.67 - - 

CSH-140 
(b)

 -8.89 - - 

CSH-135 
(b)

 -9.20 - - 

CSH-130 (b) -9.58 - - 

CSH-125 (b) -9.98 - - 

CSH-120 (b) -10.36 - - 

CSH-115 (b) -10.67 - - 

CSH-110 (b) -10.88 - - 

CSH-105 
(b)

 -10.97 - - 

CSH-100 (b)
 -10.95 - - 

CSH-095 
(b)

 -10.86 - - 

CSH-090 (b) -10.79 - - 

CSH-085 (b) -10.87 - - 

CSH-083 (b) -10.99 - - 

Ettringite(c) -8.80 0.02269 0.02257 

Hydrotalcite-OH (c) -8.50 0.00745 0.00741 

Monocarboaluminate (c) -13.50 0.05266 0.05237 

Si-hydrogarnet (C3(A,F)S0.84H4.32)
 (c)

 -12.80 0.03927 0.03905 

Portlandite (d) - 0.04500 0.0500 

Calcite
(d)

 - 0.00065 0.00064 

Quartz(d) - 0.45144 0.44897 
(a)

 fixed; 
(b)

 taken from Chapter 2; 
(c)

 fitted; 
(d)

Table 4.9 

 

(2.06·10
-6

 mol L
-1

). pH was adequately fitted up to ≈ 1300 h. Thereafter, the simulation 

overestimates the experimental output pH. As discussed previously, these lower pH values 

are more susceptible to be modified by carbonation after sampling. 

Table. 4.11  Experimental and model parameters.  

 

 

The volumetric fraction and the specific surface area of the portlandite were used 

to model Ca concentration at early stages. Volumetric fractions of the other phases were 

recalculated from the hydration calculation results (GEMS) after adding portlandite in the 

system, keeping the porosity of the mortar grains at 12.5 %. Initial mortar surface area 
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was calculated from the measured BET specific surface area. The specific surface areas of 

the different phases, including the discretized C-S-H phase (C-S-H with Ca/Si < 1.67), 

were assumed to be the same as the initial specific surface area of the mortar. The surface 

area of portlandite was fitted to reproduce the high initial Ca concentration and the quartz 

surface area was calculated considering the geometric area of the grains as spheres of 0.5 

mm of diameter. For portlandite the fitted area was 0.082 m
2
 g

-1
 (8270 m

2
 m

-3
) and for the 

quartz 5416 m
2
 m

-3
 mortar. 

The initial effective diffusion coefficient for the mortar was fitted. Values of 

1.12·10
-13

 m
2
 s

-1
, 5.39·10

-14
 m

2
 s

-1
 and 1.95·10

-14
 m

2
 s

-1
 were obtained by fitting the model 

to the experimental data of experiments Mortar_1, Mortar_2 and Mortar_3, respectively. 

Differences are the fitting to the K (and Na) data. Slower drop in concentrations for 

experiment Mortar_3 gives smaller De. 

4.4.2.2 Rates 

The calculated dissolution and precipitation rates of the solid phases that compose 

the mortar during the Mortar_1 experiment are shown from Figures 4.12 to 4.16. Positive 

rates indicate precipitation and negative rates dissolution. The rate of C-S-H gel is 

expressed as the sum of all rates of the discrete C-S-H gel compositions 

𝑅𝐶−𝑆−𝐻 𝑔𝑒𝑙 = ∑ 𝑅𝐶𝑎/𝑆𝑖

𝐶𝑎
𝑆𝑖⁄ =1.667

𝐶𝑎
𝑆𝑖⁄ =0.83

 

Eq. 4.17  

Also, considering the molar volume of each discrete C-S-H gel composition, the 

rate of C-S-H gel is expressed in volumetric terms, i,e., in dm
3
/L/y, in order to account for 

the C-S-H volume variation as it dissolves incongruently.  

Figure 4.12 shows rates at t = 0. It is worth mentioning that irreversible kinetics 

was imposed for the fly ash, which implies permanent far-from-equilibrium dissolution 

and release of Si, Ca, Al, Mg and Fe into solution. Thus, the consequent increase in 

solution concentration affects the saturation state of the rest of the mortar phases. Some 

rates are positive for precipitation (C-S-H gel and Si-hydrogarnet) or negative for 

dissolution (quartz and fly ash). In the mobile water region all the rates are zero by 

definition (zero surface areas). 
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Figure 4.12. Dissolution and precipitation rates of the solid phases at time 0. Dotted lines 

represent the rates of fly ash, CH and C-S-H gel that are referred to the right Ordinate. At the 

plot scale, monocarboaluminate, calcite, hydrotalcite, ettringite, Si-hydrogarnet and 

portlandite are not distinguished because their values are very close to 0. 

In early stages of the experiment (t ≤ 60 h) (Fig. 4.13), two reactions occur close 

to the surface of the grains all over the column (from the inlet to the outlet): dissolution of 

portlandite and C-S-H gel. Dissolution of C-S-H is readily visible in the inlet (Fig. 4.14). 

A small precipitation rate for C-S-H gel is calculated at the surface of the grains in the 

middle of the column (Fig. 4.13 middle). However, when is calculated in volumetric terms 

C-S-H actually dissolves (Fig. 4.14). This difference in the calculated rates (mol/L/y vs. 

dm3/L/y) is given by the variable molar volume of C-S-H gel, which depends on the Ca/Si 

ratio (large molar volume for larger Ca/Si ratio). 

The Ca/Si ratio of the C-S-H gel decreases from 1.667 to 1.623 at the inlet and to 

1.650 in the middle (Fig. 4.15). Notice that at this time, portlandite has already been 

dissolved close to the surface of the grains of the inlet and middle parts of the column, 

causing the portlandite dissolution peak to move toward the interior of the grains. 

However, at the outlet, portlandite still largely dissolves and C-S-H neither precipitates 

nor dissolves, its Ca/Si ratio remaining constant along the grain (Fig. 4.15). Note that the 

observed precipitation in volumetric terms at the outlet is very small since variation in C-

S-H volumetric fraction is negligible (Fig. 4.22). At the inlet, close to the surface of the 

grains, ettringite and calcite rates are also negative which indicate that these phases 

dissolve too (Fig. 4.13a). As a consequence, the Ca, Si, Al and sulfate concentrations in 

the mobile water increase, becoming oversaturated with respect to ettringite, and 
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promoting its precipitation in the middle and outlet parts of the column (Fig. 4.13b and c). 

Quartz and fly ash show a constant small dissolution rate. 

 

Figure 4.13. Dissolution and precipitation rates of the solid phases after 60 h at three column 

zones: inlet, middle and outlet. Dotted lines represent the rates of CH and C-S-H gel that are 

referred to the right Ordinate. 
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Figure 4.14. Dissolution and precipitation rates of the C-S-H gel (dm
3
/L/y) after 60 h in three 

column zones: inlet, middle and outlet. 

 

 

Figure 4.15. Ca/Si ratio of the C-S-H gel along the column (inlet, middle and outlet) after 

60 h (a). 

Over time (60 < t ≤ 3500 h) the dissolution front of portlandite moves to the 

interior part of the grains followed by slight formation of a low Ca/Si ratio C-S-H gel 

along the column (Fig. 4.16). At the end of the experiment, at the inlet of the sample and 

at the surface of the grains, the C-S-H gel is consumed (Figs. 4.17 and Fig. 4.23). 

Consequently, diffusion of the released Ca and Si from the dissolved portlandite and C-S-

H gel with high Ca/Si ratio goes in opposite directions (see section 4.4.2.3). The Ca/Si 

ratio of the gel starts to decrease at the surface of the grains in the inlet from 1.40 at 300 h 

to 1.00 after 100 h. It continues decreasing with time and advances to the interior or the 
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grain (Fig. 4.18). Ettringite dissolution takes place first at the inlet, releasing Ca, Al and S 

into solution, which moves downstream forward and promote its precipitation at the 

middle part and the outlet. After ca. 1000 h at the inlet and middle part of the column, 

ettringite is exhausted in the surface of the grains, but precipitates at the outlet, which, at 

the end of the experiment, starts to dissolve. The dissolution front of ettringite moves 

behind the dissolution front of portlandite. The formation of C-S-H gel with a low Ca/Si 

ratio continues to occur close to the surface of the grains. This front advances as does the 

dissolution front of the C-S-H gel with high Ca/Si ratio, yielding a remaining C-S-H with 

low Ca/Si ratio (Fig. 4.16).  

Figure 4.17 depicts dissolution and precipitation rates of the C-S-H gel in dm
3
/L/y 

along the column to show that a net C-S-H dissolution occurs from 60 h to the 

experimental conclusion. However, after 600 h, low Ca/Si ratio gel slightly forms at the 

outlet (Fig. 4.18) from Si and Ca diffused from the mobile zone and from the interior of 

the grains, respectively (Fig. 4.20 outlet).  

Precipitation rates of monocarboaluminate and Si-hydrogarnet are very slow. 

Calcite barely dissolves close to the interface at the late experimental stage. At the 

conclusion of the experiment (≈ 3500 h), dissolution of portlandite was still taking place 

in the interior part of the grains, along the length of the column. Close to the surface of the 

grains portalndite was totally consumed. C-S-H gel dissolves at the surface of the grains. 

Near the interface, ettringite dissolution is followed by a slight precipitation at the inner 

contiguous node due to the back-diffusion (Fig. 4.16). This is the trend that occurs along 

the column, with faster evolution close to the inlet. 

The rates of the minor phases (Si-hydrogarnet, hydrotalcite and 

monocarboaluminate) are nearly zero at the surface of the grains where the major mortar 

phases are reacting.  
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Figure 4.16. Dissolution and precipitation rates of the solid phases at the outlet of the column (2.6 cm) at different reaction time (300, 600, 1000 and 3500 h). Dotted 

lines represent the rates of CH and C-S-H gel that are referred to the right Ordinate. At the plot scale, monocarboaluminate, Si-hydrogarnet and hydrotalcite are not 

visible because their values are very close to 0. 
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Figure 4.17. Dissolution and precipitation rates expressed as (dm
3
/L/y) of the C-S-H gel at different reaction time (300, 600, 1000 and 3500 h) at three column zones: 

inlet, middle and outlet. 



163 

 

0.80

1.00

1.20

1.40

1.60

1.80

C
 a

/S
i 

ra
ti

o

Radial distance (m)

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70
C

 a
/S

i 
ra

ti
o

Radial distance (m)

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

C
 a

/S
i 

ra
ti

o

Radial distance (m)

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

C
 a

/S
i 

ra
ti

o

Radial distance (m)

300 h 600 h

1000 h 3500 h

0

10

20

30

40

50

60

70

80

90

100
Po

ro
si

ty
 (

%
)

Nodes (m)
100 h

Inlet Middle Outlet

 

Figure 4.18. Ca/Si ratio of the C-S-H gel along the column (inlet, middle and outlet) at different reaction times (300, 600, 1000 and 3500 h). 
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4.4.2.3 Solute concentrations (mortar grains) 

Figure 4.19a shows the solute concentration at time equal to 0. Regarding the solute 

concentrations at the early stage, it is observed that at the inlet of the experiment (e.g., t = 60 

h), Ca concentration increases close to surface of the grains due to dissolution of C-S-H with 

high Ca/Si ratio, calcite and ettringite. Contiguously, Ca concentration rises up to portlandite 

solubility (2.0 x 10
-2

 M) as portlandite dissolves (Fig. 4.19b). Overall, at the middle and 

outlet, the behaviour of the Ca concentration is similar to that of the inlet (Figs. 4.19c and d). 

Si concentration increases at the surface of the grains, caused by the C-S-H gel dissolution at 

the inlet and middle part of the column (Figs. 4.19b and c). At the outlet, Si concentration is 

nearly zero because of the lack of C-S-H dissolution and Si release (Fig. 4.19d). At the inlet, 

S concentration increases due to ettringite dissolution. The released sulfur is transported to the 

oulet parts of the column yielding aqueous sulfur enrichment that at the middle and the outlet 

sufficiently supersaturates the solution and allows ettringite precipitation. Concentrations of K 

and Na diminish all along the column from the centre of the grains toward the surface of the 

grains due to diffusion (Figs. 4.19b, c and d). 

The aforementioned processes persist until the conclusion of the experiment. The 

main difference is that exhaustion of portlandite occurs from the surface to the interior part of 

the grains, all along the column (Fig. 4.20). At the late stage of the experiment (t = 3500 h; 

Fig. 4.20bis), Ca concentration is 2.0 x 10
-2

 M, where portlandite still exists and drops to 

almost zero at the surface of the grains as it is consumed. K and Na run out before the end of 

the experiment by diffusion through the grain. At the inlet, Si concentration increases in the 

mobile zone mainly due to dissolution of the C-S-H gel. At the middle and outlet, because Si 

concentration is higher in the mobile zone that in the grains, back diffusion takes place toward 

the grains (Fig. 4.20). Likewise, with time (Fig. 4.20bis), the front of Si concentration moves 

toward the interior of the grains due to dissolution of the C-S-H gel. At the inlet and middle of 

the column, a peak of S concentration is observed at the interior part of the grain, attributable 

to ettringite dissolution. At the outlet, this peak approaches the grain surfaces. Precipitation of 

Si-hydrogarnet and monocarboaluminate and diffusion toward the mobile zone make Al 

decrease along the grains. 
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Figure 4.19. Variation of total solute concentrations at time 0 h and and 60 h at three column zones: inlet, middle and outlet. Dotted lines represent concentration of Ca, 

K and Na that are referred to the right Ordinate. 
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Figure 4.20. Variation of the total solute concentrations after 600 at three column zones: inlet, 

middle and outlet. Dotted lines represent concentration of Ca that is referred to the right 

Ordinate. K and Na are not visible because their values are 0. 
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Figure 4.20 bis. Variation of the total solute concentrations after 3500 h at three column 

zones: inlet, middle and outlet. Dotted lines represent concentration of Ca that is referred to 

the right Ordinate. K and Na are not visible because their values are 0.  
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4.4.2.4 Solute concentrations (mobile zone) 

Figure 4.21 shows the temporal variation of the aqueous solute composition along the 

column. Figure 4. 21a shows the initial aqueous solute composition along the column. At the 

early stage of the experiment (t = 60 h; Fig.4. 21b), Ca, K and Na concentrations increase 

along the column. The presence of Ca is mainly due to dissolution of portlandite. K and Na 

are leachates from the mortar porewater. Si concentration shows a maximum at the inlet zone 

due to C-S-H gel dissolution. After reaching a maximum value, the Si concentration tends to 

diminish due to slower dissolution of the C-S-H gel and back diffusion from the mobile zone 

to the mortar grains. S concentration increases at the inlet due to ettringite dissolution. In the 

rest of the column, S concentration gradually decreases as ettringite precipitates. Likewise, 

the Al concentration shows a maximum near the inlet as a consequence of dissolution of 

ettringite and slight dissolution of monocarboaluminate, and diminishes gradually as ettringite 

precipitates. Concentrations of Fe and Mg are close to the detection limit because the 

dissolution rates of fly ash, Si-hydrogarnet and hydrotalcite are very small. During the 

experiment, from the inlet to the outlet (Fig. 4. 21c, d, e and f), Ca concentration increases 

along the column but diminishes with time as portlandite is consumed. The Si concentration is 

highly dependent on the dissolution of the C-S-H gel with high Ca/Si ratio and the previously 

precipitated C-S-H with low Ca/Si ratio as well as back diffusion (concentration in the mobile 

zone larger than in the grains). The maximum Si concentration moves along the column as the 

C-S-H compositions with the higher Ca/Si ratios (e.g. Ca/Si from 1.40 to 1.67) dissolve. S 

and Al behave similarly depending on dissolution of ettringite. As happens with Si 

concentration, the maximum concentration of S and Al moves toward the outlet where 

ettringite still dissolves at the end of the experiment (t = 300h). With time (t = 600, 100 and 

3500 h) the concentration of Al and S decreases as dissolution of ettringite is less. The 

difference between the Al and S concentrations with time is associated to the slight 

dissolution of monocarboaluminate and Si-hydrogarnet. 
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Figure 4.21. Variation of solution composition along the column at four different times (0, 60 and 

300 h). Dotted lines represent concentration of Ca, K and Na that are referred to the right 

Ordinate. K and Na are not visible because their values are 0. 

 

a) 

b) 

c) 



170 

 

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

C
o

n
ce

n
tr

at
io

n
 C

a 
(m

o
l/

L)

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
L)

Nodes (m)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

C
o

n
ce

n
tr

at
io

n
 C

a 
(m

o
l/

L)

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
L)

Nodes (m)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

C
o

n
ce

n
tr

at
io

n
 C

a 
(m

o
l/

L)

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
L)

Nodes (m)

Ca

S Fe
Al

Si

Mg

t=1000h

Ca

S

Fe

Al

Si

Mg

t=600h

Ca

S FeAl

Si

Mg

t=3500h

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

C
o

n
ce

n
tr

at
io

n
 C

a 
(m

o
l/

L)

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
L)

Nodes (m)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

C
o

n
ce

n
tr

at
io

n
 K

 a
n

d
 N

a 
 (

m
o

l/
L)

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
L)

Nodes (m)

0.0E+00

2.8E-02

5.6E-02

8.4E-02

1.1E-01

1.4E-01

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

C
o

n
ce

n
tr

at
io

n
 K

 a
n

d
 N

a 
 (

m
o

l/
L)

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
L)

Column length (m)t=0 h

Ca

K

Na
S Fe Al Si Mg

Ca

S

Fe

Al

Si

t=300h

Mg

Ca

S FeAlSi

t=60h

Mg

K
Na

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

C
o

n
ce

n
tr

at
io

n
 C

a 
(m

o
l/

L)

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
L)

Nodes (m)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

C
o

n
ce

n
tr

at
io

n
 K

 a
n

d
 N

a 
 (

m
o

l/
L)

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
L)

Nodes (m)

0.0E+00

2.8E-02

5.6E-02

8.4E-02

1.1E-01

1.4E-01

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

C
o

n
ce

n
tr

at
io

n
 K

 a
n

d
 N

a 
 (

m
o

l/
L)

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
L)

Column length (m)t=0 h

Ca

K

Na
S Fe Al Si Mg

Ca

S

Fe

Al

Si

t=300h

Mg

Ca

S FeAlSi

t=60h

Mg

K
Na

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

C
o

n
ce

n
tr

at
io

n
 C

a 
(m

o
l/

L)

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
L)

Nodes (m)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

C
o

n
ce

n
tr

at
io

n
 K

 a
n

d
 N

a 
 (

m
o

l/
L)

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
L)

Nodes (m)

0.0E+00

2.8E-02

5.6E-02

8.4E-02

1.1E-01

1.4E-01

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

C
o

n
ce

n
tr

at
io

n
 K

 a
n

d
 N

a 
 (

m
o

l/
L)

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
L)

Column length (m)t=0 h

Ca

K

Na
S Fe Al Si Mg

Ca

S

Fe

Al

Si

t=300h

Mg

Ca

S FeAlSi

t=60h

Mg

K
Na

 

Figure 4.21 bis. Variation of solution composition along the column at four different times (600, 

1000 and 3500 h). Dotted lines represent concentration of Ca that is referred to the right 

Ordinate.  
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4.4.2.5 Volumetric fractions of solids 

The initial volumetric fractions of the phases are depicted in Figure 4.22a. After 60 h 

(Fig. 4.22b, c and d), the change in volumetric fraction of the mortar phases is observed along 

the column (at the inlet, middle and outlet of the column). At the inlet, the amount of 

portlandite highly decreased at the surface of the grains. The content of C-S-H gel also 

diminishes, as well as that of ettringite. At the middle and the outlet, the content of portlandite 

also decreases, but ettringite increases its content. The volumetric fraction of the C-S-H gel 

does not change as precipitation of C-S-H gel with low Ca/Si ratio balances the dissolution of 

the gel with high Ca/Si ratio. The content of the rest of the phases has not changed.  

Fig.4.23 shows the variation of the calculated volumetric fractions of the mortar 

phases at the inlet and the outlet of the column after 300 and 3500 hours. After 300 h (Fig. 

4.23a), the volumetric fraction of portlandite keeps on decreasing toward the interior of the 

grains. The C-S-H gel still decreases at the surface of the grains. Ettringite is exhausted at the 

surface of the grains, and it precipitates near the outlet (Fig. 4.23b). With time (from 300 to 

3500 h), portlandite and C-S-H gel keep on dissolving up to exhaustion from the surface of 

the grains (the respective volumetric fractions are zero) (Fig. 4.23 c and d). The volumetric 

fraction of ettringite is nearly exhausted at the surface of the grains but increases next to the 

dissolution front (towards the interior of the grains) due to back diffusion of S. Volumetric 

fraction of monocarboaluminate, Si-hydrogarnet and hydrotalcite keeps constant due to the 

slow dissolution.  
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Figure 4.22. Calculated volumetric fraction versus time at the outlet of the column at t = 0h (a) and t = 60h (b, c, d). Dotted lines represent concentrations of quartz and 

C-S-H gel that are referred to the right Ordinate. 
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4.4.2.6 Porosity 

The temporal variation of mortar porosity at three different positions along the 

column is shown in Figure 4.24.  

 

Figure 4.24. Variation of mortar porosity with time (100, 300, 600, 1000 and 3500 h) at different 

lengths of the column (a, b and c). Zoom up of the region where the porosity changes (d, e and f). 
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Overall, major dissolution of portlandite, C-S-H gel and ettringite, together with the 

minor dissolution of the monocarboaluminate and Si-hydrogarnet, contribute to the generation 

of porosity: an increase from 12.5 % to 40% up to the middle of the column and only up to 25 

% from the middle part to the outlet. Figure 4.25 compares the temporal variation of porosity 

at the inlet, middle and outlet of the column after 100 h and 3500 h. It can be clearly seen that 

the creation of porosity is noticeably taking place near the surface of the grains. 

 

Figure 4.25. Evolution of porosity of the mortar at different times of the experiment. 

 

4.4.2.7 pH 

The temporal variation of pH at three different positions along the column is shown 

in Figure 4.25 (mortar grains) and Figure 4.26 (mobile zone). 
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Figure 4.26. Variation of pH with time (0, 300, 600 and 3500 h) at different length of the column. 
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Figure 4.27. Evolution of pH at different times of the experiment along the column. 

At the beginning of the experiment, pH decreases near the grain surface where the 

reactions start to take place. Toward the interior of the grains, pH decreases with the advance 

of the reactions (Fig. 4 .26). In the mobile zone, pH is lower than the initial value and 

increases upwards (from the bottom to the top of the column) by an accumulative and 

transport effect (Fig. 4 .27). 

4.5. Conclusions 

To check the applicability of the previously obtained C-S-H gel dissolution rate law, 

column experiments using columns filled with mortar grains of ≈ 2 mm size were performed. 

Under these conditions, dissolution of the mortar (64% I42.5R/SR cement and 36 % fly ash) 

released Ca, Si, Al, S and Fe from the main mortar components (C-S-H gel phase, portlandite, 

fly ash, ettringite, monocarboaluminate and Si-hydrogarnet). 

A simplified two dimensional model with cylindrical symmetry was implemented in 

CrunchFlow to simulate the results of the experiments. The CrunchFlow reactive transport 

simulations reproduced the variation of the major components Ca, Si, Na and the output pH 

reasonably well. The behavior of the minor components (Al, S and Fe), as well as the 

diffusion of K, was difficult to match. To fully understand the processes involved in the 

mortar degradation was essential to integrate the dissolution rate law of the C-S-H gel 

obtained in this study (Chapter 2). 
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Experimental and modeling results showed that dissolution and decalcification of the 

C-S-H gel, dissolution of portlandite, ettringite, monocarboaluminate and Si-hydrogarnet 

were the main processes driving the mortar alteration. Diffusion of Na and K in the initial 

porewater was taken into account ignoring K-uptake by the C-S-H gel.  

Simulations showed that during the time span of the experiments the reactions started 

taking place near the surface of the grains. With time, the reaction front moved toward the 

interior part of the grains. Initially, a preferential dissolution of portlandite, that released a 

large amount of Ca in solution, slowed the dissolution of the C-S-H gel. The C-S-H gel with a 

high Ca/Si ratio started to dissolve, while the rest of the gel with low Ca/Si ratios formed due 

to incongruent dissolution (decalcification of the C-S-H gel). The dissolution of fly ash was 

uniform along the radius of the grains as a consequence of the assumed irreversible 

dissolution kinetics. Ettringite dissolved mostly at the inlet of the column, releasing S in 

solution that promoted ettringite precipitation near the column outlet. Reactivity of 

monocarboaluminate and Si-hydrogarnet was minor. Quartz and hydrotalcite did not react in 

any significant amount. 

Over time, portlandite kept on dissolving along the entire column, as well as the C-S-

H gel which tends to form a C-S-H gel with low Ca/Si ratio of 1.4 indicating a progressive 

decalcification. Dissolution of fly ash, monocarboaluminate and Si-hydrogarnet  took place 

along the column. At the final stage, the C-S-H gel kept on dissolving to form C-S-H gels 

with low Ca/Si ratio along the entire column. Continuous dissolution of ettringite, 

monocarboaluminate and Si-hydrogarnet diminished, resulting in lower concentration of 

sulfate and aluminum. Ettringite precipitation occurred close to the grain surfaces at the 

outlet. 

Mortar porosity close to the surface of the grains increased along the column, ranging 

from about 40% at the inlet to 25% in the outlet.  

In conclusion, the implementation of the C-S-H dissolution rate law in a reactive 

transport code, in addition to fitted rate constant values for ettringite, monocarboaluminate, 

fly ash and Si-hydrogarnet, allowed the interpretation of the column experiments (mortar 

grains) and confirmed the applicability of the C-S-H kinetic rate law. With the aim of 

improving the fitting of the model to the experimental data, future work should consider 

inclusion of Fe secondary phases and alkali uptake by C-S-H gel. 
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 Chapter 5  

 Evaporation experiments in the non 

saturated matrix  

This chapter deals with the laboratory evaporation experiments with mortar cylindrical 

samples which were made to investigate the geochemical processes that occur in the inner part 

of the El Cabril cell walls as a consequence of water flow driven by evaporation. It includes the 

full characterization of the unreacted and reacted mortar samples, as well as the coupled 

transient thermohydraulic and reactive transport model to interpret the geochemical variation in 

the evaporation experiments. 

5.1. Introduction 

After 10 years of operation in El Cabril, small quantities of water started to appear in the 

control tanks of some of the concrete vaults. Capillary rise was identified as the origin of this 

phenomenon, together with evaporation and condensation caused by temperature differences 

between the concrete blocks and the surfaces of the vaults walls. A set of experiments and 
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numerical modeling were carried out to study these processes in the concrete and the impact on 

the potential migration of radionuclides (Saaltink et al., 2005; Ayora et al., 2006; Zuloaga et al., 

2009). 

The conceptual flow model can be summarized by defining two seasonal cycles (Saaltink et 

al., 2005): in the summer cycle the outer wall of the vaults is heated. There is a delay and 

attenuation in the heating of the concrete containers inside the vault. There is a gap of 0.02 m 

between containers and the inner wall surface. This air gap provokes a gradient in temperature 

and allows a flux of water vapor from the wall surface to the containers surface. The balance of 

mass and energy in the system shows an evaporation at the wall pores, which provokes 

significant capillary suction and a capillary rise from the water table. The water vapor flows to 

the containers, condensing at the pores and increasing their saturation. When 100% humidity is 

reached at the surface the condensed water drips down the containers’ surface. In wintertime, 

the process is inversed. Walls are colder and there is evaporation in the containers, with 

diffusion of water vapor to the surface of the walls, increasing the saturation state, decreasing 

the capillary suction, and thus permitting liquid flow from the pores to the water table. Once 

100% saturation is reached, some liquid is condensed at the surface and collected in the control 

tank. This conceptual model was tested by Saaltink et al. (2005) with a numerical model using 

CodeBright (Olivella et al., 1996), which allows the simulation of water (liquid and vapor) and 

heat transport, in unsaturated media. The model showed that the seasonal behavior of the system 

has a good correlation with the amount of water collected. It also showed that the calculated 

temperature differences (5ºC) between inside and outside provoke evaporation and condensation 

inside the cells. 

To improve the preliminary models, a reactive transport model was developed by Ayora et 

al. (2007), based on the water flow model previously described, using the reactive transport 

code Retraso-CodeBright (Saaltink et al., 2004). A specific development was made for C-S-H 

dissolution kinetics by representing C-S-H as a solid solution (Lichtner and Carey; 2006), 

though the kinetic rate laws for C-S-H were not known. The Retraso-CodeBright calculations 

predicted a degraded thickness of 2 mm in concrete after 80 years. 

Considering the existing knowledge of the processes affecting the El Cabril concrete walls, 

the main goal of this study is to improve the current understanding of the effects that these 

physicochemical processes (capillary flow of water, conduction of heat, evaporation and 

condensation of vapor on the concrete surface, diffusion of solutes in the liquid of the pores, 

advective transport of solutes in the flowing water, mechanical dispersion of solutes associated 

with advective transport, chemical reactions between dissolved aqueous species, and dissolution 

and precipitation reactions of solid phases) exert on the El Cabril concrete.  



186 
 

To achieve this goal, a series of evaporation experiments were performed to reproduce this 

phenomenon at the laboratory scale as well as a thorough ex-situ examination of the mortar 

before and after the experiments. A second objective was to perform numerical simulations to 

evaluate the influence of water evaporation on the reacting mortar in a non-saturated matrix, 

using the CodeBright code, and to identify the geochemical processes governing the mortar 

reactivity. Retraso-CodeBright was used for this process. An improvement on the modeling 

presented compared to the previous ones is that the C-S-H dissolution kinetic approach 

previously used is the one obtained in this study (Chapter 2). Measurement of the chemical 

composition of the porewater after the experiment was not possible. Hence, the numerical 

simulations were the only possible approach to understand porewater chemistry. 
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MORTAR (cylindrical samples, 5 cm long)

EVAPORATION EXPERIMENTS

• Millipore MQ water
• Glove box-N2 atmosphere
• IR light to create evaporation
• MgCl.6H2O to keep constant moisture

Solid Experimental results

Characterization

• Visual inspection
• SEM

Experimental flux and temperature. 
Determination of the liquid and gas pressure and sample saturation

Rate constants of 
mortar phases taken 
from chapter 2 and 4 

REACTIVE TRANSPORT 

CODE (CODEBRIGHT)

STUDY OF INFLUENCE OF EVAPORATION ON THE MORTAR OF EL CABRIL

ENRESA performed the solid analysis. 
Composition of hydration products was
calculated by thermodinamic modeling (GEMS).

Determination of the 
mortar retention curve

REACTIVE TRANSPORT CODE (RETRASO)

5.2. Experimental methodology 

The scheme depicted in Figure 5.1 summarizes the experimental and modeling tasks performed 

in this study. 

 

Figure 5.1. Scheme of the tasks carried out to study the degradation of mortar in the evaporation 

experiments. 

 

5.2.1 Sample characterization 

ENRESA provided mortar samples (10 cm in length and 11 cm in diameter) as 

representative samples of the mortar used in El Cabril walls. The composition of the hydrate 

assemblage formed during the hydration of the OPC + fly ash mixtures was calculated based on 

the cement and fly ash composition (Table 4.2) using the GEM-Selektor (GEMS) software 

package (Lothenbach and Winnefeld, 2006; Lothenbach et al., 2008a; De Weerdt et al.; 2011; 

Wagner et al., 2012; Kulik et al., 2013). Table 4.4 in Chapter 4 lists the calculated phases in the 

mortar. 
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5.2.2 Experimental sample preparation 

For the evaporation experiments, two of the provided samples were saw-cut to be 5 cm 

long. In the experiments, evaporation was allowed to take place exclusively at the top surface. 

To this end the cylinder walls were thoroughly coated with latex paint. Once the paint was 

dried, the samples were weighted, and thereafter, fully immersed in 500 cm
3
 of Millipore MQ 

water in order to be totally saturated. Variation in weight of the samples was timed during this 

saturation stage. The two specimens were considered to be fully saturated when the weight 

ceased increasing with time (≈ 15 days). This stage was carried out inside a glove box under N2 

controlled atmosphere to avoid sample carbonation. Once the weight remained constant, the 

specimens were considered to be saturated with volumes of water of 64.7 cm
3
 and 62.4 cm

3
 (g), 

respectively. These resulting effective volumes were smaller than 77.8 cm
3
, which is the pore 

volume of the samples considering their total volume (522.4 cm
3
) and reported porosity (14. 9 

%). Possible reasons for this discrepancy were (i) that total displacement of pore air was not 

possible or (ii) that samples were already partially saturated before immersion in Millipore 

water. 

5.2.3 Sample solid analyses  

The unreacted surfaces of the bottom (inlet) and top (outlet) of the samples were visually 

inspected and SEM-EDS examined. The inspection was carried out using a Leica M125 

stereomicroscope with a 12.5:1 zoom, and SEM (Scanning Electron Microscopy) examination 

was performed using a JEOL JSM-840 microscope and a field-emission scanning microscope 

Hitachi H-4100FE. Figure 5.2 shows the top and bottom surfaces. It was observed that quartz 

grains were surrounded by the cement paste, and that the content of quartz grains appeared to be 

higher at the bottom. It is likely that grains dropped down by gravity during the mortar curing. 
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Figure 5.2. Photographs of the surfaces of the unreacted samples: (a) bottom surface (inlet) and (b) 

top surface (outlet). The content of quartz grains is higher at the bottom. 

After the experiments, the samples were cut with diamond disc in seven portions, whose 

surfaces, perpendicular to the flow, were likewise examined. The seven portions of each sample 

were impregnated in epoxy resin, and their surfaces polished and carbon coated.  

5.2.4 Mortar retention curve 

Retention curves represent the capillary suction (Pc in MPa) as a function of the state of 

saturation at a given temperature. The retention curve of the mortar was obtained by calculating 

the capillary suction from measurements of vapor pressure at dew-point temperature using a 

WP4-T potentiometer (range between 0 to 300 MPa with a resolution of 0.1 MPa). From the 

measured equilibrium vapor pressure, suction was calculated using the Kelvin equation: 

𝜓 =
𝜌𝑤𝑅𝑇
𝑀𝑤

ln⁡(
𝑝

𝑝𝑜
) 

Eq. 5.1  

where ψ is total suction, R is gas constant (8.314 J/mol), T is temperature (K), Mw is molar mass 

of water (18 g/mol), ρw is water density, p is vapor pressure and po is saturated vapor pressure 

(p/p0 is relative humidity). Capillary pressure (ψ in MPa) was expressed as a function of 

volumetric content of water (l) or effective saturation (Se, Van Genuchten model (1978), see 

Figure 5.3). 

Four mortar samples were used to determine the retention curve: two dry samples and two 

saturated samples. The dry samples were used to determine the retention curve from dry state to 

saturated state. Inversely, the saturated samples were used to obtain the retention curve from a 

saturated state to dry state. Owing to the complex nature of the liquid-phase configuration in an 

unsaturated porous medium such as mortar, the relationship between water pressure and water 

content is not unique and presents hysteresis effects, which can be attributed to four main 
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reasons (Maqsoud et al., 2004): i) geometric nonuniformity of individual pores, resulting from 

the so-called “Ink Bottle” effect, ii) different spatial connectivity of pores during drying or 

wetting process, iii) variation in liquid-solid contact angle, and iv) air entrapment. 

Two initially weighted samples (fragments of ≈ 1-2 cm of size) were dried in oven at 40 ºC. 

The loss of weight was timed, and total dryness was achieved when the weight remained 

constant. To obtain saturated samples, two mortar samples were immersed in a Ca(OH)2-

saturated solution (to avoid dissolution of portlandite of the mortar) inside the glove box under 

N2 controlled atmosphere until constant weight was reached. The Ca(OH)2-saturated solution 

was prepared with Millipore MQ water previously bubbled with N2 to prevent CO2 absorption. 

The solution pH was measured to be 12.23 ± 0.05. Thereafter, the solution was filtered with a 

0.45 m filter. 

To obtain the retention curve from dry state to saturated state, a drop of the filtered saturated 

Ca(OH)2 solution was poured onto the dry fragments and they were maintained under high 

relative humidity inside a box. After 24 h, when the drop of Ca(OH)2-saturated solution was 

absorbed by the mortar, the capillary pressure or suction was measured. Wet samples were 

isolatedly stored inside a box surrounded by Na(OH) pellets to keep the humidity level very 

low. After 24 h, the capillary pressure of the mortar sample was measured. This process was 

successively repeated until the retention curves were appropriately determined. 

The retention curves obtained are shown in Figure 5.3. The fit parameters for these curves 

are listed in Table 5.5. The parameters of the retention curve used in the CodeBright model were 

the average of the retention curve fits to the experimental data obtained starting from the dry 

and saturated samples. 
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Figure 5.3. Retention curve that fits the measured data of the El Cabril mortar. 

5.2.5 Experimental setup 

Two evaporation experiments (namely A and B) were carried out in a glove box under CO2-

free N2 controlled atmosphere to avoid sample carbonation. In each experiment, the paint-coated 

sample was partially immersed in Millipore MQ water (Fig. 5.4 a). The top surface was heated 

with an infrared lamp Philips Infrared PAR 38 IR 175 W to force porewater evaporation. The 

consequent decrease in water pressure induced a water flux from the inlet upwards by capillary 

ascension.  

The IR lamp was placed 60 cm above the top surface (Fig. 5.4 a). Temperature at the top 

surface was continuously measured by two thermal probes to be 62.6 ± 2 ºC (experiment A) and 

65.5 ± 2 ºC (experiment B). The bulk temperature inside the glove box was also controlled and 

was 40 ± 2 ºC (experiment A) and 44 ± 2 ºC (experiment B). A measured constant relative 

humidity of 34 % was guaranteed in the glove box during the experiment by placing an open 

container filled with a solution equilibrated with MgCl2·6H2O. The CO2 content in the glove 

box was indirectly controlled by measuring the O2 concentration, which never exceeded 2 % 

(corresponding to 38 ppm of CO2). 

The sample was placed into a polymethyl methacrylate (PMMA) cylindrical container. The 

1 mm gap between the top of the container wall and the sample walls was covered with a 

PMMA piece and sealed with silicon glue to prevent any water flux and evaporation from the 

water reservoir (Fig. 5.4). The sample was completely immersed in water in experiment A and 

half-immersed in experiment B (up to 2.5 cm in height). A tube connected the PMMA container 
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with a 5 L plastic jar placed in an adjacent CO2-free glove box (Fig. 5.4 b) to ensure the water 

level to be constant.  

CO2-free Millipore MQ water in the 5 L jar was constantly supplied to the PMMA 

container. Millipore MQ water evaporation from the 5 L jar bottle was observed to be 

negligible. An open container with 1 L of 12 M NaOH solution was placed inside this glove box 

to help minimize a CO2 contamination. The loss of Millipore MQ water with time, due to 

evaporation on the top surface of the mortar sample, was controlled by continuously weighting 

the 5 L bottle during the experiment (weight uncertainty was ± 0.01 g). Before evaporation 

started in the experiments, the initial Millipore MQ water weight in the 5 L jar decreased by 6.0 

g (experiment A) and 10.4 g (experiment B) during approximately four days, and remained 

constant afterwards. This fact indicated that the remaining pore air was totally displaced from 

the samples, which were now considered to be fully saturated. 

 

Figure 5.4. Setup of the evaporation experiments: a) scheme that shows the heated sample in the 

glove box and the Millipore MQ water supply inside an adjacent glove box; b) photographs 

showing the experimental components (IR lamp, sample, valves, thermoprobe, moisture sensor, 

water container, 5L jar and scale). Room temperature was 23 ± 2 ºC. 
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Experiment A lasted 96 days (92 days irradiated). After that time the sealed contact between 

the sample and the PMMA cylinder was damaged. Experiment B was stopped after 236 days 

(230 days irradiated) a period considered to be sufficient for a proper evaluation of the 

processes. 

Once the experiments were finished, the samples were retrieved, dried with isopropanol and 

stored in a desiccator. Thereafter, they were cut into two halves using the Brazilian test method 

(ASTM D3967 – 08) to guarantee a clean surface along the flux direction (Fig. 5.5a). One of the 

halves of each sample was sliced perpendicular to the flux direction into seven sub-samples by 

diamond-cutting. The seven portions were ordered from bottom upwards, according to the flux 

direction (slices 1 to 6 were fully immersed in Millipore MQ water and slice 7 was heated in 

experiment A; slices 1 to 3 were fully immersed in Millipore MQ water and slice 7 was heated 

in the experiment B; Figure 5.5). The surfaces parallel to the flux direction of the seven sub-

samples were examined optically and by EDS-SEM. 

 

Figure 5.5. Retrieved sample: a) photograph of the surface parallel to the flux direction and b) 

scheme of the seven sub-samples before diamond disc-cutting. 
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5.3. Model description 

5.3.1  Conceptual model 

The processes occurring in the evaporation experiments are depicted in Figure 5.6. 

 

Figure 5.6. Conceptual model for the physicochemical processes considered to occur: a) physical 

processes and b) chemical processes. 

The mortar samples were initially saturated. Water evaporation at the top surface induced 

porewater ascension by capillarity. Entering Millipore MQ water interacted with the mortar 

components (C-S-H gel, portlandite, ettringite, monocarboaluminate, hydrotalcite, fly ash, Si-

hydrogarnet, calcite and quartz). Dissolution of primary phases and precipitation of secondary 

phases were considered to be responsible for the change in the initial porewater composition 

with time. A working hypothesis was that as renewed porewater approached the top heated 

surface, evaporation could cause an increase in solute concentration to yield a supersaturated 

solution. Hence, precipitation of secondary phases could plausibly take place in the upper region 

(outlet), resulting in a decline in porosity and permeability. 

5.3.2 Thermohydraulic modeling 

The multiphase flow and heat transport code CodeBright (Oilvella et al., 1996) was used to 

simulate the water flux and temperature in the evaporation experiments. The model considers 

three phases: solid phase (mortar), liquid phase (liquid water) and gas phase (mixture of water 

vapor and dry air). Likewise, three components are considered: water, dry air and temperature. 

For each component a mass balance equation is formulated and resolved. CodeBright solves the 

energy mass balance in terms of temperature (heat transport equation) and the mass balance for 

water and dry air in terms of pressure (liquid and gas pressure, respectively). Change in phase 
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mass is related to the response to external inputs and outputs and to fluxes within the domain 

(mass redistribution). Phase storage is basically controlled by phase saturation; liquid saturation 

(Sl) is related to pressure by means of the retention curve (Table 5.1). Gas saturation (Sg) is 

defined as 1-Sl. 

The total mass balance of water is expressed as: 

𝜕

𝜕𝑡
(𝜔𝑙

𝑤𝜌𝑙𝑆𝑙𝜙 + 𝜔𝑔
𝑤𝜌𝑔𝑆𝑔𝜙) + ∇(𝑗𝑙

𝑤 + 𝑗𝑔
𝑤) = 𝑓𝑤 Eq. 5.2  

where subscripts l and g refer to liquid and gas, respectively. Superscript w refers to water, ω is 

the mass fraction (kg kg
-1

) of a component in the liquid phase or gas, j (kg m
-2

 s
-1

) is the total 

flux (advective, dispersive and diffusive),  is the density (kg m
-3

) of a phase, Sl is the hydraulic 

saturation (m
3
 m

-3
),  is the porosity (m

3
 m

-3
), and f

w
 is the term that considers an external 

source (kg m
-3

 s
-1

). A similar mass balance is solved for air. 

The heat transport equation expresses energy conservation. Heat is transported mainly by 

conduction (Fourier’s law) and by advection-dispersion. Specific enthalpies of each phase are 

obtained assuming constant heat capacities for solids, water and air and adding the latent heat of 

water vapor. Since thermal conductivity of liquid and solids is much larger than that of gases, 

the overall thermal conductivity varies with porosity and liquid saturation. 

With the internal energy defined as the product of heat capacity and temperature, the 

equation for internal energy balance in the porous medium is defined taking into account the 

internal energy in each phase (El, Eg and ES in J kg
-1

): 

𝜕

𝜕𝑡
⁡⁡(𝐸𝑠𝜌𝑠(1 − 𝜙) + 𝐸𝑙𝜌𝑙𝑆𝑙𝜙 + 𝐸𝑔𝜌𝑔𝑆𝑔𝜙) + 𝛻(𝑖𝑐 + 𝑗𝐸𝑠 + 𝑗𝐸𝑙 + 𝑗𝐸𝑔) = 𝑓𝑄 

Eq. 5.3  

𝐸𝑙 = 𝐸𝑙
𝑤𝜔𝑙

𝑤 + 𝐸𝑙
𝑎𝜔𝑙

𝑎 

𝐸𝑙
𝑤 = 4184⁡𝑇⁡⁡⁡⁡;⁡ 𝐸𝑙

𝑎 = 1000⁡𝑇 

Eq. 5.4  

𝐸𝑔 = 𝐸𝑔
𝑤𝜔𝑔

𝑤 + 𝐸𝑔
𝑎𝜔𝑔

𝑎 

𝐸𝑔
𝑤 = 2.5⁡ × 106 + 1900⁡𝑇      ; 𝐸𝑔

𝑎 = 1000⁡𝑇 

Eq. 5.5  

where ic is the energy flux (J m
-2

 s
-1

) due to conduction through the porous medium 

(Fourier’s law), jEs, jEl and jEg (J m
-2

 s
-1

) are advective fluxes of energy caused by mass motions, 

f
Q
 is an energy supply (J m

-2
 s

-1
) externally (radiation) or internally (chemical reaction),  is the 

density (kg m
-3

) of a phase, Sl is the hydraulic saturation (m
3
 m

-3
) and  is the porosity (m

3
 m

-3
). 

El
w
, El

a
 and Eg

a
 have a linear dependence with the temperature, given by the heat capacity. 
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A set of constitutive laws and equilibrium relationships are required to express the 

dependent variables (Se, , ic, q, etc; see Table 5.1) of the mass balance equations as a function 

of the state variables (Pl, Pg and T). Such constitutive laws are, for example, Fourier’s law 

relating conductive heat flux to temperature gradient, Darcy’s law defining the advective phase 

fluxes as a function of pressure gradients, Van Genuchten law to express the retention curve 

relating capillarity pressure with saturation, and Fick’s law to express the diffusive fluxes. Phase 

changes (e.g., water evaporation/condensation or air dissolution/degassing) are calculated 

according to equilibrium between phases. Henry’s Law expresses the solubility of air dissolved 

in water. The Psychrometrics law expresses the equilibrium between liquid water and vapor. 

The main laws controlling these balances are listed in Table 5.1 and briefly explained below.  
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Table 5.1.  Summary of constitutive laws and equilibrium relationships.  

Constitutive Laws 

Advective fluxes (qwhere = l for liquid and = g for gas) (Darcy’s 

Law)
(1)

 

𝑞𝛼 = −
𝑘𝑖𝑛𝑡 ∙ 𝑘𝑟𝛼

𝜇𝛼
∙ (∇𝑃𝛼 − 𝜌𝛼𝑔) 

𝜇𝛼 = 𝐴𝛼
(

𝐵𝛼
273.15+𝑇

)
 

𝑘𝑟𝑙 = √𝑆𝑒 (1 − (1 − 𝑆𝑒
1
𝑚)

𝑚

)

2

 

                      𝑘𝑖𝑛𝑡 = 𝑘𝑖𝑛𝑡,0
𝜙3

(1−𝜙)2

(1−𝜙0)
2

𝜙0
3     (Kozeny’s model) 

kint,0 = 4.2·10-18 m2 

0 = 14.9% 

Al = 1.48·10-12 MPa s 

Bl = 119.4 ºC 

Ag = 2.1·10-12 MPa s 

Bg = 1808.5 ºC 

Diffusive fluxes of air and vapor (𝑞𝛼
𝛽
⁡; where = l for liquid and = g 

for gas and = v for vapor and = a for air)(Fick’s Law)
(2)

 

𝑞𝛼
𝛽
= −(𝜏𝜙𝜌𝛼𝑆𝛼Dα

β
𝐈)∇ωα

β
 

𝐷𝛼
𝑣𝑎𝑝𝑜𝑟

= 𝐷𝑣 (
(273.15 + 𝑇)𝑛

𝑃𝑔
) 

𝐷𝛼
𝑎𝑖𝑟 = 𝜏𝐷𝑎

(
−𝑄

𝑅(273.15+𝑇)
)
 

 

 

 

 

Dv= 5.9·10-6 m2 s-1 K-n Pa 

n = 2.3  

 

Da= 1.1·10-4 m2 s-1 

Q = 24530  

 

Heat conductive Flux (ic) (Fourier’s Law)
(3)

 

𝑖𝑐 = −λ∇𝑇 

𝜆 = 𝜆𝑠𝑎𝑡
𝑆𝑙 𝜆𝑑𝑟𝑦

(1−𝑆𝑙) 

𝜆𝑠𝑎𝑡 = 𝜆𝑠𝑜𝑙𝑖𝑑
(1−𝜙)

𝜆𝑙𝑖𝑞
𝜙
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜆𝑑𝑟𝑦 = 𝜆𝑠𝑜𝑙𝑖𝑑

(1−𝜙)
𝜆𝑔𝑎𝑠
𝜙

 

solid = 1.56 WmK-1 

liq = 0.6 WmK-1 

gas = 0.024 WmK-1
 

Retention curve ( Sl) (Van Genuchten)
(4)

 

𝑆𝑒 =
𝑆𝑙 − 𝑆𝑟𝑙
𝑆𝑙𝑠 − 𝑆𝑟𝑙

= (1 + (
𝑃𝑔−𝑃𝑙

𝑃
)

1
1−𝑚

)

−𝑚

 

𝑃 = 𝑃0
𝜎

𝜎0
 

0 = 0.072 N m-1 at 20ºC 

Equilibrium relationships 

Henry’s Law 
(5)

 

𝜔𝑙
𝑎𝑖𝑟 =

𝑃𝑎𝑖𝑟
𝐻

𝑀𝑤

𝑀𝑎𝑖𝑟
 

Mass fraction of dissolved air 

(l
air) 

Psychometric’s Law
(6)

 

𝜌𝑔
𝑣𝑎𝑝𝑜𝑟

= 𝜌𝑔𝜔𝑔
𝑣𝑎𝑝𝑜𝑟

= 𝜌𝑔⁡,𝑠𝑎𝑡
𝑣𝑎𝑝𝑜𝑟

∙ 𝑒
(
𝑀𝑤𝑔𝜙𝑐
𝑅𝑇

)
 

Mass vapor fraction  

(g
vapor) 

(1) flow rate, q (m s-1); viscosity of the phase,  (Pa s); relative permeability of the phase, kr (m2); intrinsic 

permeability, kint (m
2); density of the phase,  (kg m-3); gravity vector, g (9.8 m s-2); effective saturation, Se; 

porosity, ; reference porosity, 0; intrinsic permeability at 0. 
(2) 𝑞𝛼

𝛽
 (m s-1); diffusion coefficient of species  in phase , Dm

 (m2 s-1); density ,  (Kg m-3); porosity, ; tortuosity, 

τ; degree of saturation, Smass fraction of species  in phase ,ωα
β
identity matrix 

(3) heat conductive flux, ic (J s-1); thermal conductivity,  
(4) saturation degree, Sl; effective saturation, Se; residual saturation, Srl ; maximum saturation, Sls; input pressure of 

gas and liquid respectively, Pg and Pl (Pa); measured pressure at 20 ºC, P0 (Pa); surface tension at temperature in 

which P0 was measured,  (N m-1) water surface tension at 20 ºC,  (N m-1); shape function for retention curve, m. 
(5)dry air pressure, Pair (Pa); molecular weight of water, Mw.(g mol-1); molecular weight of dry air, Mair (g mol-1), 

Henry’s constant, H (10000 MPa). 
(6) density of water in gas, g

vapor (kg m-3); density of water in saturated gas, g
vapor

sat (kg m-3); capillary potential,⁡
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Also boundary conditions are needed to take into account the exchange of vapor and heat 

between the sample and the environment. The boundary conditions and parameters used in the 

model are summarized in Table 5.2. The second term on the right-hand-side of the liquid and 

vapor fluxes represents the advective mass flow due to pressure difference between the sample 

and the environment. This term is considered when the gas or liquid pressure (Pg
0
 or Pl

0
) is 

prescribed. g and l are the leakage coefficients for advective flux and allow imposing the 

Cauchy-type boundary condition (Delahaye et al., 2002). In practical terms they fix the pressure 

at the boundary to a prescribed value (Chaparro et al., 2013). The last term represents a 

diffusive-type mass flow due to the differences of density between the boundary and the 

medium that take place when the mass fractions ((wl
w
)

0
, (wl

a
)

0
, (wg

w
)

0
 or (wg

a
)

0
) are prescribed at 

the boundary. g and l are the leakage coefficients for diffusive-type flux.  

Table 5.2.  Boundary conditions considered in the CodeBright model.  

Boundary Conditions Parameters 
required  

Units 

Liquid Flux 
 

  

𝑗𝑙
𝑤 = (𝜔𝑙

𝑤)0𝑗𝑙
0 + (𝜔𝑙

𝑤)0⁡𝛾𝑙(𝑃𝑙
0 − 𝑃𝑙) + 𝛽𝑙((𝜌𝑙𝜔𝑙

𝑤)0 − (𝜌𝑙𝜔𝑙
𝑤)) 𝑗𝑙

0 

l
w)0, l

a )0 (1) 

kg m-2 s-1 

kg kg-1 

𝑗𝑙
𝑎 = (𝜔𝑙

𝑎)0𝑗𝑙
0 + (𝜔𝑙

𝑎)0⁡𝛾𝑙(𝑃𝑙
0 − 𝑃𝑙) + 𝛽𝑙((𝜌𝑙𝜔𝑙

𝑎)0 − (𝜌𝑙𝜔𝑙
𝑎)) Pl

0 (2) 

l (3) 
l

(4)
 

l
(5)

 

MPa 
kg m-3 
kg s-1 MPa-1 m-2 

kg s-1 MPa-1 m-2 

Vapor Flux   
 g

w)0,g
a )0 (1)  

Pg
0 (2)

g (3)

g (4) 

g (5) 

kg kg-1  
MPa  
kg m-3  
kg s-1 MPa-1 m-2 
kg s-1 MPa-1 m-2 

𝑗𝑔
𝑤 = (𝜔𝑔

𝑤)
0
𝑗𝑔
0 + (𝜔𝑔

𝑤)
0
⁡𝛾𝑔(𝑃𝑔

0 − 𝑃𝑔) + 𝛽𝑔 ((𝜌𝑔𝜔𝑔
𝑤)

0
− (𝜌𝑔𝜔𝑔

𝑤)) 

Gas flux 

𝑗𝑔
𝑎 = (𝜔𝑔

𝑎)
0
𝑗𝑔
0 + (𝜔𝑔

𝑎)
0
⁡𝛾𝑔(𝑃𝑔

0 − 𝑃𝑔) + 𝛽𝑔 ((𝜌𝑔𝜔𝑔
𝑎)

0
− (𝜌𝑔𝜔𝑔

𝑎)) 

Energy flux 
 

  

𝑗𝑒 = 𝑗𝑒
0 +⁡𝛾𝑒(𝑇

0 − 𝑇) + 𝐸𝑔
𝑤(𝑗𝑔

𝑤) + 𝐸𝑙
𝑤(𝑗𝑙

𝑤) 𝑗𝑒
0 (6) J s-1m-2 
𝛾𝑒  (7) J s-1C-1 m-2 
T0 (8) ºC 

(1)g
w )0 and g

a )0 are mass fraction of water in gas and air in gas, respectively; values calculated by means of 

measured relative humidity during the experiments; l
w ), l

a ) are mass fraction of water in liquid and air in 

liquid, respectively; 
(2) Pg

0 and Pl
0 are the prescribed gas and liquid pressure; 

(3) l andg are the prescribed liquid and gas density (g = 1.12 kg m-3); 
(4) landg are leakage coefficients between the bottom of the sample and the bottom boundary or between the top 

of the sample and atmosphere for non-advective flux; 
(5) l and g are the leakage coefficients for liquid and vapor advective flux; 
(6)⁡𝑗𝑒

0 is inflow of radiant heat from lamp; 
(7) 𝛾𝑒 is leakage (surface transfer) coefficient for energy flux; 
(8) T0 is the external temperature. 
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5.3.2.1. Thermohydraulic parametrization  

To model the 5 cm long sample a 1D mesh was generated and divided into 51 nodes and 50 

elements in the flux direction (z axis). Nodes 1 and 51 correspond to the bottom (inlet) and the 

top (outlet) of the sample. 

The boundary conditions considered are shown schematically in Figure 5.7 and explained 

below. The boundary condition for energy flux at the top of the sample was fixed considering 

both the heat flux of the IR lamp (je
0
 = 400 J m

-2
 s

-1
) and the averaged measured temperature 

(T
0
) in the glove box (40 ºC and 44 ºC for the experiment A and B, respectively). The boundary 

condition for temperature at the bottom of the sample was fixed to 49 ºC and 52 ºC for 

experiments A and B, respectively. These values allowed fitting of the model to the measured 

temperatures at the top by adjusting the e parameters. Regarding the boundary conditions for 

liquid flux, at the bottom of the sample pressure was calculated to be 0.101815 MPa and 

0.101570 MPa for experiments A and B, respectively, by adding the corresponding water 

pressure to the atmospheric pressure and fixing a large l value. Regarding the boundary 

conditions for vapor flux, at the top the mass fraction of water in gas was calculated from the 

relative humidity inside the glove box (34 %) and T
0
 (40 ºC and 44 ºC for experiments A and B, 

respectively). g and g coefficients were fitted to reproduce the atmospheric pressure at the top 

of the sample (negligible advection of gas) and the flux of vapor, respectively. Tortuosity of 

vapor and air were kept at default values of 1. 

All the parameters considered in the model are listed in Table 5.3 and Table 5.4. The fitted 

parameters from the measured retention curve are shown in Table 5.5. The high pressure (P0) 

indicates a very retentive material due to its small pores. Although porosity measured at the 

Eduardo Torroja Institute (CSIC) by mercury intrusion porosimetry at 28 days of hydration was 

0.149, a hydration calculation estimated porosity to be 0.125 (see Chapter 4; Section 4.2.2). The 

latter value was used in the Retraso-CodeBright simulations. 
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Table 5.3.  Mortar parameters and constitutive laws considered in the model.  

Mortar parameters and Constitutive Laws  Units 

Porosity () 0.125 
(e) - 

Tortuosity (τa) diffusion air 1.0 
(d) - 

Tortuosity (τv) diffusion vapor 1.0 
(d)

  

Retention Curve (Van Genuchten)   
Po 3.85 

(e) Mpa 
m 0.42 

(e) - 
Slr 0 - 
Sls 1 - 

Density of the solid (sol) 2360 
(b)

 kg m
-3

 

Specific heat of the solid 789 
(b)

 J kg
-1

 K
-1

 
(b)

 from Saaltink et al. (2005) 
(e)

 hydration calculation 
(c)

 CodeBright value 
(d)

 Default CodeBright value 

 

Table 5.4.  Boundary conditions considered in the model.  

Boundary Conditions  Top (outlet) Bottom (inlet) Units 

Liquid Flux 
jliq 0.0 0 kg s-1m-2 
Pl (experiment A) - 0.101815 MPa 

 Pl(experiment B) - 0.101570 MPa 
 l  1.0 kg s-1 MPa-1 m-2 

Vapor Flux 

g
w )0

(experiment A) 1.54·10
-2

 - kg kg
-1

 

g
w )0

(experiment B) 1.88·10
-2

  kg kg
-1

 

Pg
0 0.101325 - MPa 

    

g  6.2·10
-6

 
(c)

 - m
3
 s

-1
m

-2
 

g 2.0·10
-3

 
(c)

 - kg s
-1

 Pa
-1

 m
-2

 

Energy flux 

𝑗𝑒
0  4·10

2
 0 J s

-1
m

-2
 

𝛾𝑒   0.01 
(c)

 1500 
(c)

 J s
-1

C
-1

 m
-2

 

T0 (experiment A) 40 49 ºC 

 T0 (experiment B) 44 52 ºC 
(c)

 CodeBright fit 

(-) not needed 

 

Table 5.5.  Parameters fitted for the retention curve . 

Parameters Wet process Dry process Average curve 

P (MPa) 1.7 6 3.85 

 0.44 0.39 0.42 

Srl 0 0 0 

Sls 1 1 1 
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5 cm

Dh = 2.5 cm 
experiment B

60 cm

Pl
0 = 101325+ g·Dh·l

Pl
0 = 101815 Pa (experiment A)

Pl
0 = 101570 Pa (experiment B)

•Boundary condition at the bottom : liquid flux 

calculatedFit parameter

•Boundary condition at the top: vapor flux 

calculatedFit parameters

N2 atmosphere

T0 = 40 ºC (experiment A)
T0 = 44 ºC (experiment B)
RH= 34%

Je
0= 400 J m-2 s-1

g
w

•Boundary condition: energy flux

5239.7
136075 exp

100 273.15
v

HR
P

T

   
    

   

40 ºC (experiment A)
44 ºC (experiment B)

Fit parameter

610

( 273.15)

v w
v

P M

R T
 



g
w= v/g = 0.021/1.12

g
w=  1.88·10-2 kg kg-1

0

0

34% HR and T0 = 40 ºC experiment A and T0 = 44 ºC experiment B:

Dh = 5 cm 
experiment A

Given by flux of water
(gas and liquid)

0

0 0

calculated

 

Figure 5.7. Scheme of the boundary conditions considered in the model. 

5.3.3 Reactive transport 

The multicomponent reactive transport code Retraso (Saaltink et al., 2004) which is coupled 

to the CodeBright code (Olivella et al., 1996), was used to simulate the variation of solution 

composition along the samples during the evaporation experiments. 

Regarding solute concentrations in the liquid, Retraso solves numerically the equation of 

mass conservation of the solute for every component or primary species (Saaltink et al., 2004): 

𝜕(𝜃𝑢𝑗)

𝜕𝑡
= ∇(𝐷∇𝑢𝑗) − ∇(𝑞𝑢𝑗) − Σ𝜈𝑗𝑚𝑅𝑚    (j= 1,2,…,Nc) 

Eq. 5.6  

where uj is the total concentration in solution of primary species j, θ is the volumetric 

content of water, t is the time, D is the effective diffusion coefficient plus the mechanic 

dispersion coefficient, q is the Darcy flux, Rm is the dissolution (-) or precipitation (+) rate of the 

mineral and υjm is the stoichiometric coefficient of j in mineral m. 

The total number of species (Ntot) involved in the various reactions, such as dissolution and 

precipitation, is divided into primary species (Nc) and secondary species (Nx). The number of 

primary species is equivalent to the number of independent chemical components in the system, 

which is equal to the total number of species in solution (Ntot) minus the number of reactions in 

equilibrium that relates them. These reactions in equilibrium can be written as 
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𝐴𝑖 = ∑ 𝜈𝑖𝑗
𝑁𝑐
𝑗=1 𝐴𝑗     (i= 1,2,…,Nx) 

Eq. 5.7  

where Aj and Ai are the chemical formulas of the primary and secondary species, 

respectively, and υij is the number of the moles of the primary species j in one mole of 

secondary species i. Chemical equilibrium provides an algebraic relationship between the 

concentrations of primary and secondary species by the law of mass action. Then, for every 

reaction, the concentration of secondary species is expressed as: 

𝑥𝑖 = 𝐾𝑖
−1𝛾𝑖

−1∏ (𝛾𝑗𝑐𝑗)
𝑣𝑖𝑗𝑁𝑐

𝑗=1     (i= 1,2,…,Nx) 
Eq. 5.8  

where Ki is the equilibrium constant of the reaction, cj is the molal concentration of primary 

species j, and i and j are the activity coefficients of the secondary and primary species, 

respectively. The activity coefficients are calculated by the extended Debye-Hückel model. The 

Pitzer model cannot be used due to the lack of data for silicates. Also, the total concentration of 

the component j in solution (uj) is defined as 

𝑢𝑗 = 𝑐𝑗 +∑𝜈𝑖𝑗

𝑁𝑥

𝑖=1

𝑥𝑖 Eq. 5.9  

The reactions between the aqueous and gaseous phases are fast enough and chemical 

equilibrium is assumed between these two phases. The gases close to atmospheric pressure are 

considered to behave similarly to ideal gases and their concentrations can be calculated from the 

partial pressure divided by temperature and by the gas constant. 

Regarding multiphase reactive transport, an equation of conservation of mass is written for 

each component: 

𝜕

𝜕𝑡
(𝜙𝑆𝐿𝑢𝑎 + (1 − 𝜙)𝑐𝑚 + 𝜙(1 − 𝑆𝐿)𝑐𝑔) = 𝐿𝐿(𝑢𝑎) + 𝐿𝐺(𝑐𝑔) + 𝑅(𝑐𝑖) 

Eq. 5.10  

where ua, cm and cg vectors are the concentrations of chemical species in the water, 

minerals and in the gaseous phase, respectively. R is a term which takes into account the mass 

of component that comes from chemical reactions between the phases. LL and LG are the 

operators for advection and dispersion/diffusion, respectively. These operators can be expressed 

as 



203 
 

𝐿𝐿(𝑢𝑎) = −∇𝑞𝐿𝑢𝑎 + ∇𝜙𝑆𝐿(𝐷𝑑𝑖𝑠,𝑎 + 𝐷𝑑𝑖𝑓,𝑎)∇𝑢𝑎 
Eq. 5.11  

𝐿𝐺(𝑐𝑔) = −∇𝑞𝐺𝑐𝑔 + ∇𝜙(1 − 𝑆𝐿)(𝐷𝑑𝑖𝑠,𝑔 + 𝐷𝑑𝑖𝑓,𝑔)∇𝑐𝑔 
Eq. 5.12  

In Eq. (5.11), the dispersive term is usually very significant, while in Eq. (5.12), the 

diffusive term is the most important. 

Some geochemical processes, such as dissolution and precipitation of many minerals, are 

known to progress so slowly with respect to fluid flow that they may never reach equilibrium. 

This is expressed through kinetic rate laws that are expressed as 

𝑅𝑚 = 𝑠𝑔𝑛 (𝑙𝑜𝑔 [
𝑄𝑚
𝐾𝑚

]) 𝐴𝑚∑𝑘𝑚𝑎𝐻+
𝑛 𝑓(∆𝐺) 

Eq. 5.13  

where the term 𝑠𝑔𝑛 (𝑙𝑜𝑔 [
𝑄𝑚

𝐾𝑚
]) defines the sign of the reaction (negative for dissolution and 

positive for precipitation), 𝑄𝑚 is the product of ionic activities, 𝐾𝑚 is the equilibrium constant 

corresponding to the dissolution reaction of a mineral m, 𝐴𝑚 is the surface of the mineral by 

volume of porous media, 𝑘𝑚 is the reaction rate constant, 𝑎𝐻+
𝑛  is the pH dependence of the 

dissolution/precipitation reactions and 𝑓(∆𝐺) is a function that describes the dependence of the 

reaction rate with respect on the saturation state of the solution and is in the form 

𝑓𝑚(Δ𝐺) = (1 − (Ω)𝑚2)𝑚1  
Eq. 5.14  

in which DG is the Gibbs energy of the reaction (J mol
-1

), is the ionic activity product 

(IAP) of the solution with respect to the mineral divided by Keq (equilibrium constant for that 

mineral reaction), and m1 and m2 are empirical exponents. 

The rate constant at temperature T (K) is calculated from 

𝑘𝑚,𝑇 = 𝑘𝑚,25𝑒𝑥𝑝 (
𝐸𝑎

𝑅
(
1

𝑇25
−
1

𝑇
)) Eq. 5.15  

where 𝑘𝑚,25 is the rate constant at 25 °C, 𝐸𝑎 is the apparent activation energy of the overall 

reaction (J mol
-1

), 𝑇 is temperature in Kelvin and 𝑅 is the gas constant (J mol
-1

 K
-1

).  
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The porosity is updated through the calculation and is calculated as 

𝜙 = 1 −∑𝜙𝑚

𝑚

 
Eq. 5.16  

where m is the volumetric fraction of a solid phase. 

The change in porosity (Δ⁡𝜙) is calculated from the change in the concentrations of the 

minerals (Δcm) through 

∆𝜙 = −∑𝑉𝑚,𝑖

𝑖

∆𝑐𝑚,𝑖 
Eq. 5.17  

where Vm is the molar volume of a mineral. The intrinsic permeability may depend on the 

porosity through the Kozeny model (see Table 5.1). 

 

5.3.3.1 Reactive transport parametrization 

Mortar composition was considered to be homogeneous along the sample. The composition 

of the formed hydrate assemblage during the hydration of the OPC + fly ash mixture was 

calculated using the GEM-Selektor (GEMS) software package (Lothenbach and Winnefeld, 

2006; Lothenbach et al., 2008a; De Weerdt et al.; 2011; Wagner et al., 2012; Kulik et al., 2013), 

as described in Chapter 4. The initial volumetric fractions (mi) of the mortar phases are the 

same as those given in Chapter 4. 

The spatial 1D domain was that used in the CodeBright model (51 nodes and 50 elements of 

equal length). The 10 primary aqueous species considered were Ca
2+

, SiO2(aq), K
+
, Na

+
, SO4

2-
, 

Al
3+

, Fe
3+

, Mg
2+

, CO3
2-

 and OH
-
. 25 secondary species and 27 minerals were considered to 

describe the system. 

All the equilibrium constants at the eight temperatures (0 ºC, 25 ºC, 60 ºC, 100 ºC, 150 ºC, 

200 ºC, 250 ºC and 300 ºC) for aqueous species and solid phases are listed in Table 5.6 and 

Table 5.7. Except for C-S-H, they were taken from the cemdata07 database (Matschei et al., 

2007; Lothenbach et al., 2008b), which is based on the Nagra/PSI thermodynamic database 

(Hummel et al., 2002) for the solutes. Constants for the C-S-H were calculated from the solid 

solution model by Kulik and Kersten (2001) and for quartz and calcite that were taken from the 

database included in Retraso, which is based on the EQ3/6 database (Wolery et al., 1990). The 

log Keq values and the molar volume for Si-hydrogarnet (C3(A,F)S0.84H4.32) were calculated 

assuming an ideal solid solution between C3AS0.84H4.32 and C3FS0.84H4.32 as reported by Dilnesa 
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et al. (2014). Activity coefficients were calculated using the extended Debye-Hückel 

formulation (b-dot model). The activity of water was taken to be unity. 

The composition of the C-S-H gel was discretized between C-S-H-1.667 and C-S-H-0.83 

(1.667 and 0.83 are Ca/Si atomic ratios). The equilibrium constants of the C-S-H gel end 

members as a function of temperature were calculated as (Kulik and Kersten, 2001) 

𝑙𝑜𝑔𝐾 = −15.283 +
9505.97

𝑇
+ 2.19963 · 𝑙𝑛𝑇         for C-S-H_1.667 

Eq. 5.18  

𝑙𝑜𝑔𝐾 = −6.818 +
3429.95

𝑇
+ 1.1345 · 𝑙𝑛𝑇         for C-S-H_0.83 

Eq. 5.19  

Keq values for the intermediate C-S-H gel compositions with temperature were calculated 

from the equilibrium constants of the end members according to: 

𝐾(𝐶𝑎 𝑆𝑖⁄ )(𝑇(°𝐶)) = (𝐾𝐶−𝑆−𝐻_1667(𝑇(°𝐶)) · 𝑥1)
𝑥1 · (𝐾𝐶−𝑆−𝐻_083(𝑇(°𝐶)) · (1 − 𝑥1))

(1−𝑥1) 
Eq. 5.20  

(𝐶𝑎 𝑆𝑖⁄ )
𝐶−𝑆−𝐻

= (1.667 · 𝑥1) + (0.83 · (1 − 𝑥1)) 
Eq. 5.21  

where K(Ca⁄Si) is the equilibrium constant for C-S-H gel with a composition between that of 

the end members, x1 is the mol fraction of the C-S-H_1667 end member and (1-x1) is the mole 

fraction of the C-S-H_083 end member. 

Regarding kinetics, the portlandite rate constant value at 25 ºC was 10
-5.4

 mol m
-2

 s
-1

 as 

reported in Bullard et al. (2010). The rate constants for quartz and calcite were obtained from 

Bandstra et al. (2008) and Palandri and Kharaka (2004), respectively. The rate parameters are 

shown in Table 5.8. The C-S-H gel solid solution was discretized into 15 different 

stoichiometries, in which the Ca/Si ratios ranged from 0.83 to 1.667 and are listed in Table 5.8. 

The dissolution rate constants of the discretized C-S-H gel were obtained in Chapter 2. The rate 

constants of the other phases present in the mortar (ettringite, monocarboaluminate, Si-

hydrogarnet, hydrotalcite and fly ash) were obtained from Chapter 4. Precipitation of secondary 

phases such as gibbsite, gypsum, anhydrite and arcanite was modeled in equilibrium. Given that 

monosulfate forms from ettringite and monocarboaluminate above 50 °C (Lothenbach et al., 

2008b), a second model was performed considering this phase. Irreversible kinetics was 

assumed (no dependence on solution saturation state) for the fly ash. Values of activation 

energies for quartz and calcite were taken from Bandstra et al. (2008) and Palandri and Kharaka 

(2004), respectively. For the rest of the mortar phases the apparent activation energy values 
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were set at 15 kcal/mol, which is a typical value for mineral dissolution/precipitation (Lasaga, 

1998). The parameters that relate the rate constant with pH variation are also given in Table 5.8. 

The initial effective diffusion coefficient (De) was considered to be 1.12·10
-13

 m
2
 s

-1
, which 

was obtained by fitting the CrunchFlow model to the experimental data from the mortar column 

experiments described in Chapter 4. The code then assumes a linear dependence of De with . 

Dispersivity was set to a large value of 0.02 m to avoid very high concentrations at the top of 

the sample. 

The specific surface area of the mortar was measured by the BET method, with samples 

previously degassed at 50 ºC for 10 h. The measured BET surface area was of 2.88 m
2
 g

-1
. The 

total surface area of the mortar phases was assumed to be proportional to 2.88 m
2
 g

-1
 according 

to the volumetric fraction of each phase (see Table 5.8). The quartz surface area was calculated 

considering the geometric area of the grains as spheres of 0.5 mm of diameter being 5416 m
2
 m

-

3
 mortar. For portlandite the area was considered to be the fitted one from Chapter 4 (0.082 m

2
 

g
-1 

or 8270 m
2
 m

-3
). 
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Table 5.6.  Equilibrium constants (log K eq) and stoichiometric coefficients for equilibria in solution . 

Reaction 
log Keq 

0ºC 25 ºC 60ºC 100ºC 150ºC 200ºC 250ºC 300ºC 

Al(OH)3 (aq) +3 H
+  
 Al

3+
 + 3 H2O 18.98 16.44 13.65 11.25 9.06 7.49 6.33 5.48 

Al(OH)
2+

 +1 H
+          

 Al
3+

 + 1 H2O 5.73 4.96 4.00 3.09 2.10 1.24 0.49 -0.17 
CO2(aq)  + 1 H2O      HCO3

-
 + H

+
 -6.58 -6.34 -6.27 -6.39 -6.86 -7.42 -8.06 -8.74 

CO3
2-

 +1 H
+                 

 HCO3
-
 10.62 10.33 10.14 10.12 10.30 10.60 10.98 11.40 

CaSO4  (aq)                       Ca
2+

 + SO4
2-

 -2.27 -2.30 -2.44 -2.69 -3.07 -3.51 -3.96 -4.41 
CaHCO3

+                         
 Ca

2+
 +HCO3

-
 -1.15 -1.11 -1.22 -1.51 -2.02 -2.62 -3.26 -3.92 

CaCO3 (aq) +1 H
+       
 Ca

2+
 +HCO3

-
 7.62 7.10 6.55 6.08 5.66 5.36 5.16 5.01 

CaOH
+
 +1 H

+              
 Ca

2+
 + 1 H2O 14.03 12.85 11.37 10.11 8.89 7.96 7.22 6.63 

MgOH
+
 +1 H

+            
 Mg

2+
 + 1 H2O 12.41 11.44 10.28 9.17 8.03 7.07 6.26 5.56 

Fe(OH)3(aq)  +3 H
+   
 3 H2O + Fe

3+
 14.89 12.56 10.10 8.09 6.40 5.32 4.65 4.26 

Fe(OH)2
+
 +2 H

+        
 2H2O + Fe

3+
 7.00 5.67 4.25 3.08 2.08 1.42 0.99 0.73 

Fe(OH)
2+

 +1 H
+        

 H2O + Fe
3+

 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.19 
FeCO3

+
 +1 H+         Fe

3+
 + HCO3- -0.26 0.61 1.42 1.90 2.01 1.72 1.07 0.03 

SiO2(OH)2
2-

 +2 H
+   
 Si(OH)4 24.34 23.14 21.76 20.50 19.26 18.28 17.49 16.84 

SiO(OH)3
-
 +1 H

+      
 Si(OH)4 10.32 9.81 9.34 9.04 8.90 8.92 9.05 9.25 

KSO4
-                                  

 K
+
 + SO4

2-
 -0.84 -0.85 -0.97 -1.22 -1.62 -2.07 -2.55 -3.04 

MgCO3(aq)  +1 H
+     
 Mg

2+
 + HCO3

-
 7.74 7.35 6.93 6.58 6.29 6.09 5.97 5.89 

MgHCO3
+                       

 Mg
2+

 + HCO3
-
 -1.10 -1.07 -1.20 -1.52 -2.06 -2.69 -3.36 -4.06 

MgSO4(aq)                         Mg
2+

 + SO4
2-

 -2.14 -2.41 -2.84 -2.35 -4.07 -4.96 -4.25 -4.74 
NaCO3

-
 +1 H

+              
 Na

+
 + HCO3

-
 8.94 9.06 9.23 9.42 9.64 9.86 10.06 10.25 

NaHCO3(aq)                      Na
+
 + HCO3

-
 -0.37 -0.15 0.11 0.41 0.79 1.21 -1.17 -1.61 

NaSO4
-                              

 Na
+
 + SO4

2-
 -0.69 -0.70 -0.82 -1.06 -1.44 -1.87 -2.32 -2.77 

Fe(OH)4
-
 +4 H

+          
 4H2O + Fe

3+
 24.51 21.60 18.42 15.72 13.29 11.58 10.35 9.48 

Al(OH)4
-
 +4 H

+           
 Al

3+
 + 4 H2O 25.73 22.88 19.64 16.74 13.93 11.76 10.04 8.66 

NaOH(aq)  +1 H
+         

 Na
+
 + 1 H2O 15.11 14.18 13.19 12.36 11.64 11.16 10.84 10.62 

KOH(aq) +1 H
+              

 K
+
 + 1 H2O 15.52 14.46 13.34 12.42 11.64 11.13 10.81 10.62 

OH
-
 +1 H

+                       
 H2O 14.94 14.00 13.04 12.29 11.71 11.40 11.25 11.23 
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Table 5.7.  Equilibrium constants (log K eq) and stoichiometric coefficients for mineral reactions . 

Reaction 

log Keq 

0ºC 25 ºC 60ºC 100ºC 150ºC 200ºC 250ºC 300ºC 

CSH-1667 + 3.34 H
+
  1.67 Ca

2+
 + 4.34 H2O+ 1 Si(OH)4 31.86 29.13 26.03 23.22 20.48 18.36 16.66 15.27 

CSH-165 + 3.3 H
+
  1.65 Ca

2+
+ 4.3 H2O + 1 Si(OH)4 31.41 28.72 25.66 22.89 20.19 18.09 16.41 15.05 

CSH-160 + 3.2 H
+
  1.6 Ca

2+
+ 4.19 H2O + 1 Si(OH)4 30.16 27.57 24.63 21.97 19.38 17.36 15.75 14.44 

CSH-155 + 3.1 H
+
  1.55 Ca

2+
+ 4.08 H2O + 1 Si(OH)4 28.92 26.44 23.62 21.07 18.58 16.65 15.11 13.85 

CSH-150 + 3 H
+
  1.5 Ca

2+
+ 3.97 H2O + 1 Si(OH)4 27.70 25.33 22.63 20.18 17.81 15.96 14.48 13.28 

CSH-145 + 2.9 H
+
  1.45 Ca

2+
+ 3.86 H2O + 1 Si(OH)4 26.49 24.22 21.64 19.31 17.04 15.27 13.86 12.72 

CSH-14 + 2.8 H
+
  1.4 Ca

2+
+ 3.75 H2O + 1 Si(OH)4 25.28 23.12 20.66 18.44 16.28 14.60 13.25 12.16 

CSH-135 + 2.7 H
+
  1.35 Ca

2+
 + 3.64 H2O + 1 Si(OH) 4 24.09 22.03 19.69 17.58 15.52 16.93 12.65 11.61 

CSH-130 +2.6 H
+
  1.3 Ca

2+
 + 3.53 H2O + 1 Si(OH)4 22.90 20.95 18.73 16.73 14.78 13.26 12.05 11.07 

CSH-125 + 2.5 H
+
  1.25 Ca

2+
 +  3.31 H2O + 1 Si(OH) 4 21.72 19.87 17.77 15.88 14.04 12.61 11.47 10.54 

CSH-12 + 2.4 H
+
  1.2 Ca

2+
 + 3.42 H2O + 1 Si(OH)4 20.54 18.80 16.82 15.04 13.30 11.96 10.88 10.01 

CSH-115 + 2.3 H
+
  1.15 Ca

2+
 + 3.19 H2O + 1 Si(OH)4 19.37 17.74 15.88 14.20 12.58 11.31 10.30 9.49 

CSH-110 +2.2 H
+
  1.1 Ca

2+
 + 3.08 H2O + 1 Si(OH)4 18.20 16.68 14.94 13.38 11.86 10.67 9.73 8.97 

CSH-105 +2.1 H
+
  1.05 Ca

2+
+ 2.97 H2O + 1 Si(OH)4 17.05 15.63 14.01 12.56 11.14 10.04 9.17 8.46 

CSH-10 +2 H
+
  1 Ca

2+
 + 2.86 H2O + 1 Si(OH)4 15.90 14.58 13.09 11.74 10.44 9.42 8.61 7.96 

CSH-095 + 1.9 H
+
  0.95 Ca

2+
 2.75 H2O + 1 Si(OH)4 14.76 13.55 12.18 10.94 9.74 8.81 8.07 7.47 

CSH-090 +1.8 H
+
  0.9 Ca

2+
 + 2.64 H2O + 1 Si(OH)4 13.63 12.53 11.28 10.15 9.06 8.21 7.54 6.99 

CSH-085 + 1.7 H
+
  0.85 Ca

2+
 + 2.53 H2O + 1 Si(OH)4 12.53 11.53 10.40 9.38 8.39 7.63 7.03 6.54 

CSH-083 + 1.66 H
+
  0.83 Ca

2+
 + 2.49 H2O + 1 Si(OH)4 12.10 11.15 10.07 9.09 8.15 7.42 6.84 6.37 

Ca(OH)2 + 2 H
+
  Ca

2+
 + 2H2O 24.90 22.81 20.42 18.26 16.16 14.53 13.22 12.16 

Quartz+ 2 H2O  Si(OH)4  -4.63 -4.00 -3.47 -3.08 -2.72 -2.44 -2.21 -2.02 
Calcite +H

+
  Ca

2+
 + HCO3

-
 2.23 1.85 1.33 0.77 0.10 -0.58 -1.33 -2.22 

Ettringite  6 Ca
2+

+ 2 Al(OH)4
-
 + 3 SO4

2-
 + 4 OH

-
 + 30 H2O -48.37 -44.84 -41.64 -39.69 -38.90 -39.29 -40.42 -42.02 

Hydrotalcite  4 Mg
2+

 + 2 Al(OH)4
-
 + 6 OH

-
 + 5 H2O -57.86 -56.02 -54.53 -53.87 -54.05 -54.93 -56.23 -57.80 

monocarboaluminate  4 Ca
2+

 + 2 Al(OH)4
-
 +1 CO3

2-
 + 4 OH

-
 +3 H2O -32.65 -31.47 -30.78 -30.95 -32.04 -33.73 -35.77 -37.99 

Si -hydrogarnet  3 Ca
2+

 + 1 Fe(OH)4
-
 +1 Al(OH)4

-
 +0.84 Si(OH)4 + 4 OH

-
 + 2.32 H2O -29.59 -29.60 -30.22 -31.50 -33.60 -35.99 -38.52 -41.10 

Gibbsite+ 3 H
+
  1 Al

3+
 + 3 H2O 9.38 7.75 5.83 3.99 2.08 0.44 -1.06 -2.47 

Gypsum  1 Ca
2+

+ 1 SO4
2-

 + 2 H2O -4.53 -4.48 -4.60 -4.90 -5.42 -6.12 -7.03 -8.30 
arcanite   1 SO4

2-
 + 2 K

+
 -2.27 -1.80 -1.46 -1.36 -1.50 -1.89 -2.53 -3.52 



209 
 

Table 5.8.  Rate constant (log k) at 25 ºC,  surface are (m
2
 mineral m

- 3
 mortar) 

apparent activation energy (Ea),pH-rate parameters(aH
n
)and DG-term parameters 

(m1 and m2).  

Mineral 
log k  Surface area  Ea 

𝑎
𝐻+

𝑛
𝐻+  m1 m2 

mol m-2 s-1  m2 mineral m-3 mortar  kcal mol-1 

Calcite 

-0.3  5073  3.44 1 1.0 1.0 

-5.81   5.62 0 1.0 1.0 

Quartz 

-11.4  5416  18 0.3 1.0 1.0 

-14.9   18 -0.4 1.0 1.0 

Portlandite -5.14  8270  15 
 

1.0 1.0 

Fly ash -12.00  298869  15 0 1.0 1.0 

Ettringite -8.80  116007  15 0 1.0 1.0 

Monocarboaluminate -13.50  327587  15 0 1.0 1.0 

Hydrotalcite -8.50  43236  15 0 1.0 1.0 

Si-hydrogarnet -12.80  332133  15 0 1.0 1.0 

CSH-083 -10.99  1649468  15 0 1.0 1.0 

CSH-085 -10.87  1649468  15 0 1.0 1.0 

CSH-090 -10.79  1649468  15 0 1.0 1.0 

CSH-095 -10.86  1649468  15 0 1.0 1.0 

CSH-100 -10.95  1649468  15 0 1.0 1.0 

CSH-105 -10.97  1649468  15 0 1.0 1.0 

CSH-110 -10.88  1649468  15 0 1.0 1.0 

CSH-115 -10.67  1649468  15 0 1.0 1.0 

CSH-120 -10.36  1649468  15 0 1.0 1.0 

CSH-125 -9.98  1649468  15 0 1.0 1.0 

CSH-130 -9.58  1649468  15 0 1.0 1.0 

CSH-135 -9.20  1649468  15 0 1.0 1.0 

CSH-140 -8.89  1649468  15 0 1.0 1.0 

CSH-145 -8.67  1649468  15 0 1.0 1.0 

CSH-150 -8.56  1649468  15 0 1.0 1.0 

CSH-155 -8.56  1649468  15 0 1.0 1.0 

CSH-160 -8.53  1649468  15 0 1.0 1.0 

CSH-165 -8.47  1649468  15 0 1.0 1.0 

CSH-1667 -8.40  1649468  15 0 1.0 1.0 
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5.4. Results and discussion 

5.4.1 The evaporation process 

Loss of water over time showed similar trends in experiments A and B (respective durations 

of 92 and 230 days considering only the irradiation period; Fig. 5.8). At the start of the 

experiments, before the top of the sample was irradiated, 6.0 and 10.2 g of water were taken up 

by mortar in experiments A and B, respectively (blue solid symbols in Fig. 5.8). Once 

irradiation started, water loss with time became linear (red solid symbols in Fig. 5.8). The total 

amounts of evaporated water were 87 cm
3
 and 223 cm

3
, respectively. Taking into account that 

the respective experiments lasted 92 and 230 days and the volume of pores in the sample was 

77.8 cm
3
, the flow rates were 0.94 cm

3
 d

-1
 and 0.97 cm

3
 d

-1
,
 
respectively, which yielded 

residence times of 82.7 days and 80.2 days, respectively. Therefore, porewater was renewed 1.1 

times and 2.8 times in experiments A and B, respectively. 

 

Figure 5.8. Water loss with time in the evaporation experiments: A (a) and B (b). Blue symbols 

show water taken up by mortar before IR light irradiation, and red symbols show water loss 

during IR light irradiation. 

Figure 5.9 shows that temperature at the top surface was fairly constant during all the 

experiment (62.6 ± 1.6 ºC for the experiment A and 65.5 ± 2.0 ºC for the experiment B) after 

96h (4 days) in experiment A and 190 h (8 days) in experiment B. The first 110 h in experiment 

A and 140 h in experiment B correspond with the time that the IR light was not irradiating the 

top of the samples. Inside the glove box, the bulk temperature reached a constant value of 40 ± 2 

ºC after 96 h (4 days) in experiment A and 44 ± 2 ºC after 96 h (8 days) in experiment B (Fig. 

5.10). The relative humidity (RH) was set at approximately 34 % (Fig. 5.11), which was 
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approximately maintained for 1500 h in experiment A and 3000 h in experiment B. Oscillations 

occurred when some N2 entered the glove box while purging (Fig. 5.11a). Oscillations were 

mostly avoided in experiment B after improving the glove box sealing. After this period of time, 

RH dropped below 34 % after MgCl2·6H2O salt converted to anhydrous MgCl2 while heated 

(Zondag et al., 2010). Nonetheless, the unexpected changes in relative humidity did not affect 

the water flux, which was constant during the experiments. To corroborate that the anhydrous 

MgCl2 salt caused the relative humidity drop, hydrated salt (MgCl2·6H2O) was used for the last 

five days in experiment B, and relative humidity went back to the expected value of 34 % (Fig. 

5.11b). 

 

Figure 5.9. Temporal variation of temperature at the top surface with time: (a) experiment A and 

(b) experiment B. 

 

Figure 5.10. Temporal variation of bulk temperature inside the glove box: (a) experiment A and (b) 

experiment B. 
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Figure 5.11. Temporal variation of relative humidity with time inside the glove box: (a) experiment 

A; (b) experiment B. Dashed line only illustrates tendency. 

5.4.2 Mineralogical changes  

As explained in Section 5.2.3, the visual inspection of the top and bottom surfaces of the 

samples before the experiment showed negligible differences in the appearance of the mortar. 

After the end of the experiments (Fig. 5.12), the quartz grains in the mortar appeared to be more 

visible at the bottom (0.5 cm) than in the middle (2.5 cm) and top (5 cm). However, 

morphological differences in the shapes of quartz grains were not observed between the 

unreacted and reacted specimens. 

 

 



213 
 

Bottom

10 mm

10 mm

10 mm

Bottom

10 mm

10 mm

10 mm

Middle Middle

Top Top
 

Figure 5.12. Photographs of the mortar surfaces of reacted experiment A (left) and experiment B 

(right): bottom (0.5 cm), middle (2.5cm) and top (5cm). At the scale of observation, quartz grains 

are less clear in the top and middle surfaces in comparison with those at the bottom surface of the 

sample. 

The bottom and top surfaces of the samples were examined by SEM (Fig. 5.13). The images 

taken from polished mortar slices showed a uniform cement matrix with the presence of quartz 

grains, fly ash particles (small spheres) and C3S particles. No differences in this configuration 

were observed between the bottom and top regions of the samples after reaction. 
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Figure 5.13. SEM images (secondary electrons (left) and backscattered electrons (right)) of polished 

mortar slices of the bottom and top of the mortar sample. 

5.4.3 Water flux simulation 

The coefficients of vapor exchange between the sample and the atmosphere (g and g) and 

heat exchange between the sample and the atmosphere (e) were fitted parameters in each 

experiment. g and the tortuosities allow the fixing of the gas pressure to the atmospheric value. 

Values of g lower than 5·10
-3

 kg s
-1

 Pa
-1

 m
-2

 give a lower gas pressure in the last node of the 

sample, producing a high gas pressure difference between the sample and the environment. The 

small value of g results in advection of gas not significant. g of 6.2·10
-6

 m
3
m

-2
s

-1
 allows fitting 

to the vapor flux of water (jg
w
). Although the value is small, jg

w
 is largely sensitive to this 

coefficient (see Table 5.2). In the end, vapor diffusion is the main water flux mechanism. A e of 

0.01 J s-1 C-1 m-2 at the top was small enough to fit the experimental values of temperature at the 

top of the sample. e equal to 1500 J s-1 C-1 m-2 was used at the bottom. This value is large enough 

to fix the temperature in the first node to the lowest temperature. A value of l of 1 kg s-1 MPa-1 

m-2 allows keeping the pressure of 0.101815 MPa (Pl) during the experiment A and 0.101570 

MPa (Pl) during the experiment B at the bottom of the sample. 
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Figure 5.14 shows the model fitting of the experimental water loss (kg of water per surface) 

in both experiments. Water loss at the beginning of the experiment was not considered in the 

fitting because evaporation was not yet taking place. 

 

Figure 5.14. Empty symbols and solid lines represent experimental and modeling results of the 

cumulative water flux with time; a) experiment A and b) experiment B. 

Figure 5.15 depicts the calculated variation of the liquid (Figs. 5.15 a and c) and gas 

pressure (MPa) (Figs. 5.15 b and d) in both experiments (A and B). At the bottom of the sample 

(0.0 cm) the liquid pressure was fixed to be 0.101815 MPa (experiment A) and 0.101570 MPa 

(experiment B) (boundary condition, see Fig. 5.7) and at the top atmospheric gas pressure was 

fixed for both experiments (0.101320 MPa).  
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Figure 5.15. Symbols represent the numerical variation of (a and c) liquid pressure and (b and d) 

gas pressure over time for both experiments A and B. 

Figure 5.16 shows the calculated and experimental temperature at the top surface. The 

temperature was fitted to the experimental values by fixing the e value considering the energy 

flux of the lamp (400 J s
-1 

m
-2

) (Table 5.2). Experimental data show some scattering around the 

average values of 62.6 ºC and 65.5 ºC in experiments A and B, respectively. In experiment B 

the experimental and calculated temperatures are slightly higher than those in experiment A. An 

explanation for this fact is that the glove box was insufficiently insulated during experiment A 

compared to experiment B, in which the glove box was wrapped in aluminum foil and coated 

with polyurethane expanding foam. Figure 5.17 shows the calculated variation of temperature 

along the sample, where temperature increases from bottom upwards as expected. 
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Figure 5.16. Variation of the experimental (open symbols) and numerical (solid line) temperature at 

the top of the sample: a) experiment A and b) experiment B. The numerical temperature corresponds 

to that obtained at node 50 (4.9 cm). 

 

Figure 5.17. Calculated variation of temperature along the sample: a) experiment A and b) 

experiment B. 

 

Finally, simulations showed that the calculated water saturation of the sample for both 

experiments was close to 1, indicating complete saturation all along the samples during the 

experiments and evaporation exclusively at the top surface of the samples. 
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5.4.4 Reactive transport simulations (Retraso-CodeBright Modeling) 

The reactive transport simulations were conducted to obtain an overall interpretation of the 

processes that took place in the mortar samples during evaporation. Only the fitted parameters 

for experiment B were used in the Retraso-CodeBright simulations. In fact, only slight 

differences were obtained in the fitted parameters for experiment A and B, and the same flux of 

water was observed. The evaporation experiment B lasted 230 days and the simulation time 

spans up to 1416 days (4 years). 

Figure 5.18 compares the model fitting of the experimental water loss (kg of water per 

surface) in experiment B calculated by CodeBright, which considers mass and heat flow (Fig. 

5.14), with that calculated by Retraso-CodeBright, which couples the chemical reactions with 

the flux calculation and updates flow properties affected by reactive transport (based on changes 

in the minerals by dissolution and precipitation) such as porosity and relative permeability.  

 

 

Figure 5.18.  Empty symbols represent experimental data of the cumulative water flux with time. 

Solid and dashed lines represent modeling results of the cumulative water flux with time using 

CodeBright and Retraso-CodeBright, respectively. 

As in the case of flux calculation, modeling results from the coupled Retraso-CodeBright 

match the experimental water loss (kg of water per surface; Fig. 5.18). The conclusion is drawn 

that the magnitude of the chemical reactions barely affects the flux. 
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5.4.4.1 Dissolution and precipitation of the mortar components  

Figures 5.19, 5.20, 5.22, 5.23, 5.24 and 5.25 show the calculated evolution of the mortar 

phases (m
3
 of mineral m

-3
 of mortar) along the length of the sample during the experimental 

time (230 days) and longer (4 years). A decrease or increase in the volumetric fraction value 

indicates dissolution or precipitation, respectively. 

With regard to the two major mortar components (portlandite and C-S-H gel), simulations 

show that, overall, portlandite dissolves along the sample (Figs. 5.19a and b), yielding a 

decrease in volumetric fraction (initially, 0.045 m
3
 mineral/m

3
 mortar) with time. Fast 

dissolution takes place at the very bottom as inflow MilliQ water is highly undersaturated with 

respect to it, and portlandite is exhausted after 100 days. Along the sample, as porewater 

becomes less undersaturated with respect to portlandite, it is more slowly consumed with time, 

allowing C-S-H gel formation. The increase in temperature with height causes an increase in 

portlandite dissolution by having a faster rate. At the very top (5 cm), during the first 50 days, 

portlandite precipitates from the dissolution and exhaustion of calcite and ettringite (Fig. 5.23), 

and with time Ca accumulation makes portlandite precipitate between 300 and 500 d. Thereafter 

portlandite dissolves since Ca is used by the precipitation of ettringite, Si-hydrogarnet and 

hydrotalcite. 

Simulations show that C-S-H gel with a Ca/Si ratio of 1.667 always precipitates from Si 

released by dissolution of quartz and fly ash and Ca released from portlandite and calcite and 

ettringite (at the very top) (Figs. 5.19c and d and Figs. 20a and b). After 3 years, C-S-H gel 

slightly dissolves only at the very bottom with a Ca/Si between 1.60 and 1.667 (Fig. 5.19d and 

Figs. 20a and b), where dissolution of ettringite diminishes and undersaturates the solution with 

respect to C-S-H gel (Fig. 5.19c). Along the sample, as portlandite is being exhausted, the Ca/Si 

ratio becomes lower than 1.667 at 4.5 cm after 1.5 years (Figs. 5.20a and b). 
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Figure 5.19. Variation of volumetric fraction of portlandite (top row) and C-S-H gel (bottom row) 

along the length of the sample (a and c) and over time (b and d).  

 

Figure 5.20. Variation of the Ca/Si ratio along the length of the sample (a) and over time (b).  
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The temporal variation of pH reflects the progress of the reactions throughout the sample 

(Figs. 5.21a and b). Along the sample, initial porewater is being renewed by Milli-Q water (pH 

= 7), resulting in a sharp pH drop (from 13.2 to around 12.5) and a displacement of Na
+
 and K

+
. 

Conversely, at the top region, the solution pH sharply increases due to an accumulative effect 

(Figs. 5.21a and b). After ca. 300 days the solution pH remains constant as calcite, portlandite 

and ettringite (only at the first node) dissolve. During this time span, pH decreases are related to 

portlandite exhaustion. 

 

 

Figure 5.21. pH variation along the length of the sample (a) and over time (b). 

Quartz dissolution is catalyzed by the high pH of the solution along the sample (from 12.5 

to 13.5; Figs. 5.22a and b). Two different stages are observed according to pH variation. In the 

first one (before 350 days) dissolution of quartz is larger than in the second stage (after 350 

days) as pH decreases while portlandite is being exhausted (Figs. 5.22a and b). Quartz 

dissolution also increases by the increase in temperature with height. The fly ash also dissolves 

throughout the sample (Figs. 5.22c and d). After 3 years, it is consumed at the very top, and 

after 4 years it is totally exhausted at 3.3 cm.  
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Figure 5.22. Variation of volumetric fraction of quartz (top row) and fly ash (bottom row) along the 

length of the sample (a and c) and over time (b and d). 

Calcite dissolves along the sample as precipitation of C-S-H, Si-hydrogarnet, hydrotalcite 

and monocarboaluminate occurs, undersaturating the porewater solution. Initially, at the very 

bottom, calcite precipitates when portlandite dissolves, and the former starts to dissolve only 

when portlandite is exhausted (Figs. 5.23a and b). Calcite is totally consumed after 250 days. 

Ettringite precipitates at the very bottom when portlandite dissolves and when portlandite is 

exhausted it dissolves (after 90 days). After 250 days, dissolution of ettringite lessens as the 

volumetric fraction of monocarboaluminate remains constant. Up to 4.5 cm, ettringite 

precipitates as porewater is enriched by Ca and SO4
2-

 accumulation. At the very top, ettringite is 

rapidly exhausted after 156 days owing to an increase in dissolution rate with temperature and 

with porewater undersaturation caused by precipitation of the Ca-bearing phases (C-S-H, Si-

hydrogarnet, hydrotalcite and monocarboaluminate) that consumes Ca, Al and CO3 (Figs. 5.23c 

and d).  
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Figure 5.23. Variation of volumetric fraction of calcite (top row) and ettringite (bottom row) along 

the length of the sample (a and c) and over time (b and d). 

 

Regarding the minor mortar components (hydrotalcite, Si-hydroganet and 

monocarboaluminate), the simulation shows that changes in their volumetric fractions are very 

small (Fig. 5.24). 

Hydrotalcite precipitates all over the sample, and its precipitation increases with height 

(Figs. 5.24a and b). Hydrotalcite precipitation occurs at expense of fly ash and ettringite 

dissolution, which releases Mg and Al into solution. Si-hydrogarnet precipitates all along the 

sample due to dissolution of portlandite, quartz, ettringite and fly ash that respectively releases 

Ca, Si and Al (Figs. 5.24c and d). Monocarboaluminate precipitates only during the first 250 

days as calcite dissolves, releasing Ca and CO3
2-

. Thereafter, as calcite is exhausted, volumetric 

fraction of monocarboaluminate keeps constant. At the very top, monocarboaluminate 

precipitation is larger due to Ca and CO3
2-

 accumulation (Figs. 5.24e and f). Note that such 
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amounts of precipitated mineral would be very difficult to be observed by optical and SEM 

inspections.    

 

Figure 5.24. Variation of volumetric fraction of hydrotalcite, Si-hydrogarnet and 

monocarboaluminate along the length of the sample (a, c and e) and over time (b, d and f). 
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Simulation shows that gibbsite (Al(OH)3) starts to form from 3cm to the top only after 615 

days from Al released by dissolution of ettringite and fly ash (Figs. 5.25a and b). Accordingly, 

gibbsite precipitation should not be expected over the course of the experiment. Anhydrite, 

arcanite and gypsum did not precipitate. When monosulfate is considered in the model, its 

precipitation occurs from 1 cm to the top after 300 h, barely affecting the dissolution and 

precipitation of C-S-H and portlandite, but affecting ettringite, which now tends to dissolve. 

However, from the experimental results of the evaporation experiments it is hard to detect the 

formation of monosulfate or any other secondary phase. Therefore, taking into account that only 

the water flux can be fitted with the model, the possible secondary phases to consider can be 

diverse. This type of experiments cannot be used to study the mineralogical evolution of the 

mortar. 

 

Figure 5.25. Variation of volumetric fraction of gibbsite, along the length of the sample (a) and over 

time (b). 

 

5.4.4.2 Total aqueous concentrations 

K and Na behave as conservative elements (Figs. 5.26a, b, c, and d) in the simulations. 

Entering Milli-Q water displace these elements from the bottom upwards. A maximum of 

concentration after 100 days is reached at the top by the accumulative and evaporation effects. 
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Figure 5.26. Variation in K concentration (top row) and Na concentration (bottom row) along the 

length of the sample (a and c) and over time (b and d). 

Variation in aqueous concentration of the elements is shown from Figure 5.27 to Figure 30. 

During the first year, concentration of Ca and Al is nearly zero due to the uptake of Ca (Figs. 

5.27a and b) and Al (Figs. 5.28a and b) by precipitation of C-S-H gel, ettringite, 

monocarboaluminate and Si-hydrogarnet, which partially consumes Si (Figs. 5.27c and d), S 

(Figs. 5.28c and d), Fe (Figs. 5.29a and b), CO3 (Figs. 5.29c and d) and Mg (Figs. 5.30a and b). 

After one year, Ca and Al concentrations increase along the sample as (1) 

monocarboaluminate and hydrotalcite cannot precipitate by the respective lack of CO3 and Mg, 

and (2) Si-hydrogarnet and C-S-H gel cannot precipitate by the lack of Si (Figs. 5.27a and b and 

Figs. 5.28a and b). Si concentration decreases all along the sample as quartz and fly ash 

dissolution is smaller because pH decreases and C-S-H gel and Si-hydrogarnet continues 

precipitating (Figs. 5.27c and d). S concentration is nearly zero because it has been used to 

previously precipitate ettringite (Figs. 5.28c and d). The Fe concentration drop to nearly zero is 



227 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 250 500 750 1000 1250 1500

C
o

n
c
e

n
tr

a
ti
o
n

 (
m

o
l 
L

-1
)

time (d)

Ca

0

2 10
-5

4 10
-5

6 10
-5

8 10
-5

0 250 500 750 1000 1250 1500

C
o

n
c
e
n

tr
a

ti
o

n
 (

m
o

l 
L

-1
)

time (d)

Si

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6

H
e

ig
h

t 
s
a
m

p
le

 (
c
m

)

Concentration (mol L
-1

)

Ca

0

1

2

3

4

5

0 1 10
-5

2 10
-5

3 10
-5

4 10
-5

5 10
-5

6 10
-5

H
e

ig
h

t 
s
a
m

p
le

 (
c
m

)

Concentration (mol L
-1

)

Si

a) b)

d)c)

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0 250 500 750 1000 1250 1500

0 cm
1 cm

2 cm
3 cm

4 cm
4.5 cm

4.8 cm
4.9 cm

5 cm

V
o

lu
m

e
tr

ic
 f

ra
c
ti
o

n

 (
m

3
 m

in
e

ra
l 
p

e
r 

m
3
 m

o
rt

a
r)

time (d)

Quartz

0

1

2

3

4

5

00.010.020.030.040.050.060.070.08

0 days

83 days

166 days

230 days

2 years

1 year

3 years

4 years

H
e

ig
h

t 
s
a

m
p

le
 (

c
m

)

Volumetric fraction

 (m
3
 mineral per m

3
 mortar)

Portlandite

0

1

2

3

4

5

00.010.020.030.040.050.060.070.08

0 days

83 days

166 days

230 days

2 years

1 year

3 years

4 years

H
e

ig
h

t 
s
a

m
p

le
 (

c
m

)

Volumetric fraction

 (m
3
 mineral per m

3
 mortar)

Portlandite

0

1

2

3

4

5

00.010.020.030.040.050.060.070.08

0 days

83 days

166 days

230 days

2 years

1 year

3 years

4 years

H
e

ig
h

t 
s
a

m
p

le
 (

c
m

)

Volumetric fraction

 (m
3
 mineral per m

3
 mortar)

Portlandite

caused by the continuous Si-hydrogarnet precipitation (Figs. 5.29a and b). CO3
2-

 drops to zero 

as all carbonate is consumed by monocarboaluminate precipitation and calcite exhaustion (Figs. 

5.29c and d). Mg concentration decreases as a result of continuous precipitation of hydrotalcite 

and slower dissolution of fly ash (Figs. 5.30a and b). The effects of evaporation and 

accumulation on the concentrations are observed at the very top, where the concentration 

increase is much higher than in the rest of the sample (Figs. 5.28a, b and c). 

High concentration of Al is obtained in the top of the sample. Inclusion of other phases in 

the model (e.g. bohemite, diaspore) could perhaps improve the results. 

 

Figure 5.27. Variation in Ca concentration (top row) and Si concentration (bottom row) along the 

length of the sample (a and c) and over time (b and d). 
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Figure 5.28. Variation in Al concentration (top row) and S concentration (bottom row) along the 

length of the sample (a and c) and over time (b and d). 
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Figure 5.29. Variation in Fe concentration (top row) and CO3
2-

 concentration (bottom row) along 

the length of the sample (a and c) and over time (b and d). 

 

Figure 5.30. Variation in Mg concentration along the length of the sample (a) and over time (b). 

 



230 
 

0

5

10

15

20

25

0 250 500 750 1000 1250 1500

p
o

ro
s
it
y
 (

%
)

time (d)

0

1

2

3

4

5

6 9 12 15 18

H
e

ig
h
t 
s
a
m

p
le

 (
c
m

)

porosity (%)

a) b)

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0 250 500 750 1000 1250 1500

0 cm
1 cm

2 cm
3 cm

4 cm
4.5 cm

4.8 cm
4.9 cm

5 cm

V
o
lu

m
e
tr

ic
 f

ra
c
ti
o

n

 (
m

3
 m

in
e
ra

l 
p

e
r 

m
3
 m

o
rt

a
r)

time (d)

Quartz

0

1

2

3

4

5

00.010.020.030.040.050.060.070.08

0 days

83 days

166 days

230 days

2 years

1 year

3 years

4 years

H
e
ig

h
t 

s
a
m

p
le

 (
c
m

)

Volumetric fraction

 (m
3
 mineral per m

3
 mortar)

Portlandite

0

1

2

3

4

5

00.010.020.030.040.050.060.070.08

0 days

83 days

166 days

230 days

2 years

1 year

3 years

4 years

H
e
ig

h
t 

s
a
m

p
le

 (
c
m

)

Volumetric fraction

 (m
3
 mineral per m

3
 mortar)

Portlandite

0

1

2

3

4

5

00.010.020.030.040.050.060.070.08

0 days

83 days

166 days

230 days

2 years

1 year

3 years

4 years

H
e
ig

h
t 

s
a
m

p
le

 (
c
m

)

Volumetric fraction

 (m
3
 mineral per m

3
 mortar)

Portlandite

0

1

2

3

4

5

00.010.020.030.040.050.060.070.08

0 days

83 days

166 days

230 days

2 years

1 year

3 years

4 years

H
e
ig

h
t 

s
a
m

p
le

 (
c
m

)

Volumetric fraction

 (m
3
 mineral per m

3
 mortar)

Portlandite

-1

0

1

2

3

4

5

6

6 8 10 12 14 16 18 20

Data 5 13:48:54  06/09/2014

430
580

K

B

Variation in porosity along the sample and time is shown in Figures 5.31 a and b. At the 

very bottom, porosity increases with time from 12.5% to 18% caused by dissolution of 

portlandite, quartz, calcite and ettringite. During the simulation, porosity increases up to 18 % 

along the sample up to 4.8 cm. In the upper region, porosity reaches a value between 16 % and 

18 % due to exhaustion of ettringite, calcite and portlandite. Only at 5 cm, at ≈ 500 days, 

porosity temporarily decreases to ≈ 5 % due to the large precipitation of portlandite along with 

precipitation of C-S-H gel, ettringite, Si-hydrogarnet, monocarboaluminate and hydrotalcite. 

 

Figure 5.31. Variation in porosity along the length of the sample (a) and over time (b). 

5.5. Conclusions 

Evaporation experiments at the laboratory scale were designed to reproduce the 

physicochemical processes in the inner part of the El cabril vault walls. Two samples of mortar 

with insulated lateral surfaces were irradiated with IR light at the top surface (outlet) to induce 

evaporation. Evaporation at the top causes water ascension from the bottom (inlet) upwards. To 

avoid carbonation the experiments were carried out under N2 controlled atmosphere and N2-

bubbled Millipore MQ water. The top surface and bulk temperatures, as well as bulk relative 

humidity, were kept approximately constant. 

Loss of water with time due to evaporation was linear at an approximate flow rate of 0.9 

cm
3
 d

-1
. One and three pore volumes were exchanged in experiments A and B, respectively. 

Inspection of the unreacted and reacted mortar was performed at the millimeter scale using a 

visual lens and at the micrometer scale using SEM. At the millimeter scale, possible 
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mineralogical alterations and changes in grain boundaries originated by dissolution or 

precipitation reactions could not be observed. Only in the lower 4 mm (inlet), quartz grains 

appeared to be more visible. At the micrometer scale, characteristic features of mineral 

dissolution and precipitation and changes in grain morphologies could not be distinguished. No 

mineralogical changes were observed in the very top region (outlet) of the samples, where 

evaporation was taking place.  

Using the CodeBright code and assuming constant porosity, the simulated water loss 

matched the experimental water loss by fitting e, g and g and using the experimentally 

obtained parameters associated with the retention curve (P0 and m). The calculations predicted a 

completely saturated sample throughout the experiment, and accordingly, evaporation only took 

place at the top surface. 

1-D reactive transport simulations were performed with the coupled Retraso-CodeBright 

code, which couples the chemical reactions with the flux calculation. The initial composition of 

the samples was calculated using GEMS (Lothenbach et al. 2008a). The BET specific surface 

area of the mortar was used to calculate the reactive surface areas of the mortar phases. The C-

S-H gel dissolution kinetic rate law as well as rate parameters for the mortar phases, were 

included in the calculations. The Retraso-CodeBright simulated water loss, taking into account 

porosity and permeability changes, also matched the experimental water loss.  

The simulations show small variation in the content of the mortar phases over the course of 

the experiment (≈ 2.8 pore volumes): 

1. During the simulation, dissolution of major phases (portlandite, calcite, ettringite, fly 

ash and quartz) and precipitation of C-S-H gel with a Ca/Si ratio of 1.667, Si-

hydrogarnet, hydrotalcite and monocarboaluminate occurs near the inlet.  

2. Along the sample, C-S-H gel (Ca/Si = 1.667), hydrotalcite, Si-hydrogarnet and 

monocarboaluminate precipitate all over the experiment. Precipitation of C-S-H gel 

with a Ca/Si ratio that varies from 1.60 to 1.667 occurs after three years and is 

associated to portlandite dissolution and exhaustion. Dissolution of portlandite, 

calcite, fly ash and quartz takes place and precipitated ettringite remains constant 

from the inlet to 4.5 cm. Approaching the top (up to 4.8 cm), dissolution of 

portlandite, calcite, ettringite, fly ash and quartz increases due to the temperature 

increase. Gibbsite precipitation occurs from 3 cm to the top only after 615 days. 

3. At the very top (4.9 to 5 cm), where temperature is higher (67 °C) than in the rest of 

the sample (53-60 °C), fast dissolution and exhaustion of calcite and ettringite 

originates solution supersaturation with respect to portlandite yielding portlandite 
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precipitation. Thereafter, Ca accumulation still promotes portlandite precipitation 

(between 350 and 500 days). Finally, portlandite dissolves as the amount of aqueous 

Ca is insufficient to supersaturate the solution and is consumed by precipitation of C-

S-H gel, Si-hydrogarnet and hydrotalcite.  

4. pH variation is mainly bound to portlandite dissolution. In the first 300 days, the 

dilution effect is caused by the inflow water, making the porewater pH reduce from 

13.15 to 12.7 at the bottom. The pH increase along the sample reaches a value of 13.5 

at the top by an accumulative effect. After 300 days, portlandite dissolves, and pH 

decreases down to 12.5 to remain fairly constant. 

During the experimental run, the small changes in the volumetric fraction of the mortar 

phases yield small variation in porosity. The largest increase in porosity (from 12.5 % to 18 %) 

is predicted to occur at the very bottom of the sample mainly due to dissolution of portlandite, 

quartz, calcite and ettringite. Along the sample, porosity increases with time up to around 18 % 

after 4 years. Near the sample top, porosity increases quickly from 15 % to 18 % due to 

exhaustion of ettringite, calcite and portlandite. At the very top porosity temporarily decreases 

to 5 % at ≈ 500 days due to large precipitation of portlandite. The little porosity variation at 230 

days accounts for the negligible changes in mortar composition and texture observed by optical 

and SEM inspections. 
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CHAPTER 6  

General conclusions 

 

The first part of the thesis is concerned with obtaining the dissolution kinetics 

applicable to the long-term dissolution behavior of C-S-H gel, which constitutes at least 60 % of 

hydrated cement paste, and studies the changes in the nanostructure to fully understand the 

process of cement degradation. 

The kinetics of the C-S-H gel dissolution has been studied at room temperature using 

flow-through experiments with variation of the flow rate and the C-S-H gel mass. pH, Ca and Si 

concentrations where monitored and showed three distinct stages during the experiments. In the 

first stage, Ca concentration was much larger than Si, indicating preferential dissolution of 

portlandite and slow close-to-equilibrium dissolution of C-S-H. The initial Ca/Si ratio in 

solution was much larger than in the solid and the pH was around 12. In the second stage, as the 

portlandite content diminished, a gradual decrease in Ca and increase in Si was observed, 

indicating an increase in C-S-H gel dissolution. The aqueous Ca/Si ratio decreased to values 

below 10 and the ratio also decreased in the solid. pH decreased to values about 11.5 - 11. In the 

last stage, concentrations of Ca and Si and pH (≈11) reached steady state. At this stage the Ca/Si 

ratio in the solid and in the aqueous phase tended to a constant value of about 0.9 suggesting 

that (i) the C-S-H gel was the main dissolving phase and (ii) the dissolution reaction evolved to 

the congruent dissolution of a phase with tobermorite stoichiometry (Ca/Si = 0.83), which is 

consistent with the C-S-H solubility model used in the current study. 

In the experiments where steady state and congruent dissolution were achieved it was 

feasible to obtain a rate law of the tobermorite-like C-S-H gel phase accounting for the effect of 

solution saturation state on the dissolution rate (i.e., a rate-G dependency) and is expressed as 

 

 1  x100.7±6.2)( 11-12

83.0_ smmolRate HSC  
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where Ω is the saturation degree (ionic activity product divided by equilibrium constant). The 

form of this expression indicates that the simplest TST-derived rate law suitably accounts for 

the C-S-H_0.83 dissolution kinetics. In accordance to these results, the experimental variation 

of the output concentrations with time were modeled with the CrunchFlow reactive transport 

code, assuming a dissolution rate law of the form R = -A·k·(1-Ω) , where R is rate (mol m
-3

 s
-1

), 

A is surface area (m
2
 m

-3
), and k is the rate constant (mol m

-2 
s

-1
). The obtained values of the rate 

constants change with Ca/Si ratio from about 10
-8

 mol m
-2 

s
-1 

at Ca/Si ratio = 1.67 to 10
-11

 mol 

m
-2 

s
-1

 at Ca/Si ratio = 0.83, when normalizing to BET specific surface area. No pH effect is 

included in the rate law. Therefore, it is only applicable to the pH conditions of the study (pH 11 

– 12.5), which is relevant in cement media. It is possible that the variability in the rate constants 

reflects (at least partially) an actual dependency on pH. 

The implementation of the proposed rate law for C-S-H gel dissolution in reactive 

transport codes could result in a substantial gain of reliability of the predictions of 

cement/concrete durability when advective flow through cementitious materials is expected 

(reaction control of the dissolution). 

As in the present study, no solutes other than H
+
, OH

-
, Ca and Si intervened in the 

reaction, a possible avenue for the future research could be to study the effect of other cations 

on the C-S-H dissolution kinetics, as well as at different T and pH. 

Related with change in composition of the C-S-H gel, variation in the C-S-H gel 

nanostructure through dissolution was investigated using SEM-EDX, EPMA, 
29

Si MAS-NMR 

and SANS techniques.  

Although an apparent change in morphology was not observed after dissolution, the 

specific surface area increased from about 12 to 14-142 m
2
 g

-1
. SEM-EDX and EPMA 

multipoint analyses showed that the solid Ca/Si ratio of the initial C-S-H particles was 

approximately 1.7 ± 0.1. Ca/Si of 2.2 ± 0.2 corresponded to C-S-H gel particles with 

precipitated portlandite. Ca/Si ratios larger than 6 evidenced the presence of portlandite. The 

solid Ca/Si ratio of the C-S-H particles decreased to values about 0.9 ± 0.1 as dissolution 

progressed. The obtained Ca/Si ratios from the multipoint analyses indicate some compositional 

variability over the analyzed particles, suggesting the existence of compositional domains with 

variable Ca/Si ratios.
 

29
Si MAS-NMR spectra showed that the reacted C-S-H structure evolved to longer 

chain length with the formation of cross-linked chains. Also, Si-rich domains were identified in 

samples reacted under a slow flow regime. These domains are probably associated to the 

formation of leached diffusion layers over the course of the incongruent dissolution. 
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SANS data for the unreacted C-S-H gel indicated that the resulting contrast curve was 

consistent with a C-S-H gel phase with composition C1.7SH1.8 and density of 2.604 g cm
-3

 as 

suggested by Allen et al. (2007). This is in agreement with the calculated relative scattering 

contrast and the applied matchpoint measurement. The SANS total internal surface (ST) 

increased as the Ca/Si ratio decreased (for ≈ 31 days) and thereafter decreased when the Ca/Si 

ratio was ≈ 1. These observations agree with the measurements reported by Thomas et al. 

(2004) and suggest that the accessibility of HD C-S-H gel increases with dissolution, 

contributing to the ST enhancement. The variation of surface area with time, i.e., when the Ca/Si 

ratio decreases to reach a tobermorite stoichiometric ratio, is similar to the measured specific 

surface area (BET) and comparable to the derived SANS surface area (SSA). This observed 

behavior suggests that, as C-S-H dissolves, the morphology of the LD C-S-H compound is 

being transformed and enhances the specific surface area. Therefore, the use of the BET surface 

area to normalize the C-S-H dissolution rates is fully justified. 

SANS experimental data were fitted with the fractal model (Allen et al., 2007), that 

considers a smallest unit of a radius of 1.2 nm formed by tobermorite-like or jennite-like 

structure packed together irregularly into structures called globules with a radius of 2.5 nm 

approximately. These globules group to compose a volume fractal structure (mainly LD C-S-H 

gel) and a surface fractal structure at the top of the C-S-H surface grains. This model allows the 

obtainment of the fit parameters which describe the changes in the nanostructure of the C-S-H 

gel during dissolution: Do increase indicates that the roughly equiaxed particles that build the C-

S-H structure change their shape into sheet-like structures of increasing thickness. The obtained 

decrease in DV values (≈ 2) also suggests such a structure transformation (tendency to form a 

sheet-like structure) as was proposed by Thomas et al. (2004) and Allen et al. (2007). DS 

slightly increases indicating enhancement of surface roughness. V decrease and MAX/C-S-H 

ratio increase indicate a loss of structural compaction and density during dissolution.  

The C-S-H evolution deduced from the SANS experiments is in agreement with the 
29

Si 

MAS-NMR measurements that show an increase in polymerization with C-S-H dissolution, i.e., 

dissolution promotes the C-S-H gel structure to tend to a more ordered tobermorite structure. 

 

The second part of the thesis deals with the applicability of the obtained C-S-H gel 

dissolution rate law (1) to interpret the column experiments filled with mortar fragments under 

forced advective flow and (2) to study the effect that a flow of water across the mortar, induced 

by evaporation, exerts on the evolution of its structure and composition.  
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The proposed model considers a flow of water by capillarity through the walls of the 

cells and the corresponding temperature gradient. The mortar used in the experiments was the 

same that is used in El Cabril and the composition of the formed hydrate assemblage during the 

hydration was calculated using the GEM-Selektor (GEMS) software package (Lothenbach and 

Winnefeld, 2006; Lothenbach et al., 2008; De Weerdt et al.; 2011; Kulik et al., 2013; Wagner et 

al., 2012). 

Regarding the column experiments, the columns were filled with mortar fragments of   

≈ 2 mm and the experiments were carried out at room temperature under forced advective flow 

and under N2 atmosphere to avoid carbonation. pH, Ca, Si, Na, K, S, Al, Fe and Mg 

concentrations were monitored and then, by means of implementation of the C-S-H dissolution 

rate law in the Crunchflow code and with addition of fitted rate constant values for ettringite, 

monocarboaluminate, fly ash and Si-hydrogarnet, were interpreted. Initially, a preferential 

dissolution of portlandite, that released a large amount of Ca in solution, only allowed slow 

dissolution of the C-S-H gel. The C-S-H gel with a high Ca/Si ratio started to dissolve 

incongruently (decalcification of the C-S-H gel). With time, portlandite kept on dissolving 

along the entire column, as well as the C-S-H gel with high Ca/Si ratio to form C-S-H gels with 

low Ca/Si ratio along the entire column. The dissolution of fly ash was uniform along the radius 

of the fragments as a consequence of the assumed irreversible dissolution kinetics and slowed 

down with time along the column. Reactivity of monocarboaluminate and Si-hydrogarnet was 

minor and took place along the column. Ettringite dissolved mostly at the inlet of the column, 

releasing S in solution that promoted ettringite precipitation in the grain surfaces at the column 

outlet. Quartz and hydrotalcite did not react in any significant amount. Mortar porosity 

increased along the column, between 40% at the inlet and 25% in the outlet. 

Evaporation experiments were performed at the laboratory scale under similar 

conditions (although more active) to those in El Cabril and under N2 atmosphere. The mortar 

was irradiated with IR light to provoke evaporation in the top of the test tube. The water used in 

the experiments was MilliQ water and was kept in a CO2-free glove box. The loss of water from 

the reservoir was monitored. The temperature and the %RH were kept constant and monitored 

throughout the experiments.  

Examination of the unreacted and reacted mortar samples was performed by hand lens 

inspection, optical microscopy and SEM. Regarding the mineralogical alterations produced by 

upward water flow generated by heating the top surface of the sample, no apparent changes 

were observed except in the 4 mm at the very bottom of the sample, where the aggregate were 

more visible.  
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Modeling of water flow and heat transport using CodeBright could reproduce the 

measured flow of water and temperature. The calculations predicted a completely saturated 

sample during all the experiment, and accordingly, evaporation only took place at the top 

surface. Porosity was assumed constant in this model. 

1-D reactive transport simulations were performed with the coupled Retraso-

CodeBright code to calculate the evolution of the mortar phases during 1460 days (4 years). The 

initial composition of the samples was calculated using GEMS (Lothenbach et al. 2008). The 

BET specific surface area of the mortar was used to calculate the reactive surface areas of the 

mortar phases. The C-S-H gel dissolution kinetic rate law as well as rate parameters for the 

mortar phases, were included in the calculations. The Retraso-CodeBright simulated water loss, 

taking into account porosity and permeability changes, also matched the experimental water 

loss.  

The simulations show small variation in the content of the mortar phases over the 

course of the experiment (≈ 2.8 pore volumes). During the simulation, dissolution of major 

phases (portlandite, calcite, ettringite, fly ash and quartz) and precipitation of C-S-H gel with a 

Ca/Si ratio of 1.667, Si-hydrogarnet, hydrotalcite and monocarboaluminate occurs near the inlet. 

Along the sample, C-S-H gel (Ca/Si = 1.667), hydrotalcite, Si-hydrogarnet and 

monocarboaluminate precipitate all over the experiment. Precipitation of C-S-H gel with a Ca/Si 

ratio that varies from 1.60 to 1.667 occurs after three years and is associated to portlandite 

dissolution and exhaustion. Dissolution of portlandite, calcite, fly ash and quartz takes place and 

precipitated ettringite remains constant from the inlet to 4.5 cm. Approaching the top (up to 4.8 

cm), dissolution of portlandite, calcite, ettringite, fly ash and quartz increases due to the 

temperature increase. Gibbsite precipitation occurs from 3 cm to the top only after 615 days. At 

the very top (4.9 to 5 cm), where temperature is higher (67 °C) than in the rest of the sample 

(53-60 °C), fast dissolution and exhaustion of calcite and ettringite originates solution 

supersaturation with respect to portlandite yielding portlandite precipitation. Thereafter, Ca 

accumulation still promotes portlandite precipitation (between 350 and 500 days). Finally, 

portlandite dissolves as the amount of aqueous Ca is insufficient to supersaturate the solution 

and is consumed by precipitation of C-S-H gel, Si-hydrogarnet and hydrotalcite. pH variation is 

mainly bound to portlandite dissolution. In the first 300 days, the dilution effect is caused by the 

inflow water, making the porewater pH reduce from 13.15 to 12.7 at the bottom. The pH 

increase along the sample reaches a value of 13.5 at the top by an accumulative effect. After 300 

days, portlandite dissolves, and pH decreases down to 12.5 to remain fairly constant. 

During the experimental run, the small changes in the volumetric fraction of the mortar 

phases yield small variation in porosity. The largest increase in porosity (from 12.5 % to 18 %) 
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is predicted to occur at the very bottom of the sample mainly due to dissolution of portlandite, 

quartz, calcite and ettringite. Along the sample, porosity increases with time up to around 18 % 

after 4 years. Near the sample top, porosity increases quickly from 15 % to 18 % due to 

exhaustion of ettringite, calcite and portlandite. At the very top porosity temporarily decreases 

to 5 % at ≈ 500 days due to large precipitation of portlandite.  

The small porosity variation after 230 days, due to the small changes in the volumetric 

fractions of the different phases, is consistent with the negligible changes in mortar composition 

and texture observed by visual and SEM inspections. 
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