

Nuevas Aplicaciones de la L-Serina Hidroximetiltransferasa y la Benzaldehído Liasa en Síntesis Orgánica

Karel Hernández Sánchez

Aquesta tesi doctoral està subjecta a la llicència **Reconeixement- CompartIgual 3.0. Espanya de Creative Commons**.

Esta tesis doctoral está sujeta a la licencia <u>Reconocimiento - Compartirlgual 3.0. España de</u> <u>Creative Commons.</u>

This doctoral thesis is licensed under the <u>Creative Commons Attribution-ShareAlike 3.0. Spain</u> <u>License.</u>

Nuevas Aplicaciones de la L-Serina Hidroximetiltransferasa y la Benzaldehído Liasa en Síntesis Orgánica.

Instituto de Química Avanzada de Cataluña (IQAC). Consejo Superior de Investigaciones Científicas (CSIC).

Facultad de Farmacia, Universidad de Barcelona. Departamento de Bioquímica y Biología Molecular. Programa de Biotecnología.

Karel Hernández Sánchez 2014

Contenido

Figura1S(3.1) Aliniamiento multiple de secuencia (ClustalW) de SHMT de diferentes
organismos7
Figura2S(3.1) Representación del posible mecanismo de "desactivación" de la SHMT
causado por D,L-Cys10
Figura3S(3.1) Variación del espectro de absorción de la SHMT _{Sth} nativa y las variantes11
Figura4S(3.1) Resultados de la secuenciación del producto de la mutación por saturación de
sitio en el codón 55 de la SHMT $_{sth}$ nativa. El cromatograma de la secuenciación es
representado utilizando el programa Chromas versión 2.0112
Figura5S(3.1) Análisis de la librería de mutantes de la SHMT _{Sth} Y55X. La reacción entre D-Ser
(1a) y el (benciloxi)acetaldehído (2a) se siguió por HPLC12
Tabla15(3.1). Datos cuantitativos de la reacción a escala analítica de adición aldólica de D-
Ser (1a) a diferentes aldehídos (2a-p), catalizado por la SHMT _{sth} nativa y las variantes Y55T,
Y55S y Y55C16
Tabla2S(3.1). Datos cuantitativos de la reacción de adición aldólica a escala analítica de D-
Ala (1b) a diferentes aldehídos (2a-p), catalizado por la SHMT _{sth} nativa y las variantes Y55T,
Y55S y Y55C17
Tabla3S(3.1). Datos cuantitativos de la reacción de adición aldólica a escala analítica de GLY
(1c) a diferentes aldehídos (2a-p), catalizado por la SHMT _{sth} nativa y las variantes Y55T, Y55S
y Y55C17
Tabla4S(3.1) Reacciones ensayadas para modificar los productos 3a sintetizados por la
adición aldólica de D-Ser a diferentes aldehídos catalizado por SHMT _{sth} Y55T18
Tabla55(3.1)Masa molecular de las variantes de la SHMT
Figura6S(3.1) Espectros MS ESI/TOF y espectros deconvolucionados de las variantes de
SHMT _{<i>sth</i>}
Figura7S(3.1). Espectros de RMN (D_2O) de los productos 3cb y 4cb de la reacción aldólica
catalizada por SHMT _{<i>sth</i>} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC23
Figura8S(3.1). Espectros de RMN (D_2O) de los productos 3ch y 4ch de la reacción aldólica
catalizada por SHMT_{\it Sth} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC25
Figura9S(3.1). Espectros de RMN (D_2O) de los productos 3ci y 4ci de la reacción aldólica
catalizada por SHMT $_{sth}$ nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC27
Figura10S(3.1). Espectros de RMN (D_2O) de los productos 3cj y 4cj de la reacción aldólica

Figura11S(3.1). Espectros de RMN(D₂O) de los productos 3ck y 4ck de la reacción aldólica Figura12 S(3.1). Espectros de RMN (D₂O) de los productos 3cl y 4cl de la reacción aldólica Figura13S(3.1). Espectros de RMN (D₂O) de los productos 3cm y 4cm de la reacción aldólica Figura14S(3.1). Espectros de RMN (D_2O) de los productos3cn y 4cn de la reacción aldólica catalizada por SHMT $_{sth}$ nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) 1D-NOESY Tabla6S(3.1). Resumen de los desplazamientos químicos (ppm) de 1H y 13C para los **Figura15S(3.1)**. Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos 3cb y 4cb de la reacción aldólica catalizada por SHMT_{sth} nativa: a) ¹H ; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC......40 Figura16S(3.1). Espectros RMN (DMSO-d₆) de las oxazolidin-2-onas obtenidas por derivatización de los productos 3ch y 4ch de la reacción aldólica catalizada por SHMT_{sth} Figura17S(3.1). Espectros RMN (DMSO-d₆) de las oxazolidin-2-onas obtenidas por derivatización de los productos 3ci y 4ci de la reacción aldólica catalizada por SHMT_{sth} **Figura19S(3.1)**. Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos **3ck** y **4ck** de la reacción aldólica catalizada por SHMT_{sth} **Figura20S(3.1)**. Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos **3cl** y **4cl** de la reacción aldólica catalizada por SHMT_{sth} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC......51 Figura21S(3.1). Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos **3cm** y **4cm** de la reacción aldólica catalizada por SHMT_{sth} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC......53 **Figura22S(3.1)**. Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos 3cn y 4cn de la reacción aldólica catalizada por SHMT_{sth} **Tabla7S(3.1)**. Desplazamiento químico de ¹H y ¹³C (ppm) y constantes de acoplamiento

Figura23S(3.1). Espectros de RMN (D_2O) de 3ba de la reacción aldólica catalizada por
SHMT _{<i>sth</i>} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC
Figura24S(3.1). Espectros de RMN (D_2O) de 3bb y 4bb de la reacción aldólica catalizada por
SHMT _{<i>Sth</i>} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC61
Figura25S(3.1). Espectro de RMN (D ₂ O) de 3bc de la reacción aldólica catalizada por SHMT _{Sth}
Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC63
Figura26S(3.1). Espectro de RMN (D ₂ O) de 3bd de la reacción aldólica catalizada por SHMT _{Sth}
Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC65
Figura27S(3.1). Espectro de RMN (D ₂ O) de 3bg y 4bg de la reacción aldólica catalizada por
SHMT _{<i>sth</i>} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC67
Figura28S(3.1). Espectro de RMN (D ₂ O) de 3bh y 4bh de la reacción aldólica catalizada por
SHMT _{<i>sth</i>} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC69
Figura29S(3.1). Espectro de RMN (DMSO- d_6) de 3bi y 4bi de la reacción aldólica catalizada
por SHMT _{sth} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC71
Figura30S(3.1). Espectro de RMN (D ₂ O) de 3bk y 4bk de la reacción aldólica catalizada por
SHMT _{<i>sth</i>} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC73
Figura31S(3.1). Espectros de RMN (DMSO- d_6) de 3bl y 4bl de la reacción aldólica catalizada
por SHMT _{sth} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC75
Figura32S(3.1). Espectro de RMN (D ₂ O) de 3bn y 4bn de la reacción aldólica catalizada por
SHMT _{<i>sth</i>} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC77
Figura33S(3.1). Espectro de RMN (D ₂ O) de 3ba y 4ba de la reacción aldólica catalizada por
Figura33S(3.1) . Espectro de RMN (D ₂ O) de 3ba y 4ba de la reacción aldólica catalizada por SHMT _{sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC79
Figura33S(3.1). Espectro de RMN (D ₂ O) de 3ba y 4ba de la reacción aldólica catalizada por SHMT _{sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC79 Figura34S(3.1). Espectro de RMN (D ₂ O) de 3bb y 4bb de la reacción aldólica catalizada por
Figura33S(3.1) . Espectro de RMN (D ₂ O) de 3ba y 4ba de la reacción aldólica catalizada por SHMT _{<i>sth</i>} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC
Figura33S(3.1) . Espectro de RMN (D ₂ O) de 3ba y 4ba de la reacción aldólica catalizada por SHMT _{<i>sth</i>} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC
Figura33S(3.1) . Espectro de RMN (D ₂ O) de 3ba y 4ba de la reacción aldólica catalizada por SHMT _{<i>sth</i>} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC
Figura33S(3.1). Espectro de RMN (D2O) de 3ba y 4ba de la reacción aldólica catalizada porSHMT _{sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC.79Figura34S(3.1). Espectro de RMN (D2O) de 3bb y 4bb de la reacción aldólica catalizada porSHMT _{sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC.81Figura35S(3.1). Espectro de RMN (D2O) de 3bc y 4bc de la reacción aldólica catalizada porSHMT _{sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC.81Figura35S(3.1). Espectro de RMN (D2O) de 3bc y 4bc de la reacción aldólica catalizada porSHMT _{sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC.83Figura36S(3.1). Espectro de RMN (D2O) de 3bd y 4bd de la reacción aldólica catalizada por
Figura33S(3.1) . Espectro de RMN (D ₂ O) de 3ba y 4ba de la reacción aldólica catalizada por SHMT _{<i>sth</i>} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC
Figura33S(3.1) . Espectro de RMN (D ₂ O) de 3ba y 4ba de la reacción aldólica catalizada por SHMT _{<i>sth</i>} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC
Figura33S(3.1) . Espectro de RMN (D ₂ O) de 3ba y 4ba de la reacción aldólica catalizada por SHMT _{<i>sth</i>} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC
Figura33S(3.1) . Espectro de RMN (D ₂ O) de 3ba y 4ba de la reacción aldólica catalizada por SHMT _{<i>sth</i>} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC
Figura33S(3.1) . Espectro de RMN (D ₂ O) de 3ba y 4ba de la reacción aldólica catalizada por SHMT _{sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC
Figura33S(3.1) . Espectro de RMN (D ₂ O) de 3ba y 4ba de la reacción aldólica catalizada por SHMT _{<i>sth</i>} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC

Figura40S(3.1). Espectro de RMN (D ₂ O) de 3bk y 4bk de la reacción aldólica catalizada por
SHMT _{sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC93
Figura41S(3.1). Espectro de RMN (DMSO- d_6) de 3bl y 4bl de la reacción aldólica catalizada
por SHMT _{sth} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC95
Figura42S(3.1). Espectro de RMN (D_2O) de 3bm y 4bm de la reacción aldólica catalizada por
SHMT _{sth} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC97
Figura43S(3.1). Espectro de RMN (D_2O) de 3bn y 4bn de la reacción aldólica catalizada por
SHMT _{sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC99
Tabla8S(3.1). Desplazamientos químicos (ppm) de ¹ H y ¹³ C de los productos 3b y 4b101
Figura44S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3ba de la
adición aldólica catalizada por SHMT _{sth} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y e)
NOESY
Figura45S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3bb de la
adición aldólica catalizada por SHMT _{sth} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y e)
NOESY
Figura46S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3bc de la
adición aldólica catalizada por SHMT _{sth} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y e)
NOESY
Figura47S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3bd de la
adición aldólica catalizada por SHMT _{sth} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y e)
NOESY
Figura48S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3bg y 4bg
de la adición aldólica catalizada por SHMT _{<i>sth</i>} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y
e) NOESY114
Figura49S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3bh y 4bh
de la adición aldólica catalizada por SHMT _{sth} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y
e) NOESY
Figura50S(3.1). Espectros de RMN(CDCl ₃) de las oxazolidin-2-onas derivadas de3bi de la
adición aldólica catalizada por SHMT _{sth} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY; d) HSQC y e)
NOESY
Figura51S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3bk y 4bk
de la adición aldólica catalizada por SHMT _{sth} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y
e) NOESY

Figura52S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3bl y 4bl de
la adición aldólica catalizada por SHMT _{sth} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y e)
NOESY
Figura53S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3bn de la
adición aldólica catalizada por SHMT _{sth} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY, d) HSQC y e)
NOESY
Figura54S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3ba de la
adición aldólica catalizada por SHMT _{sth} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y e)
NOESY
Figura55S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3bb y 4bb
de la adición aldólica catalizada por SHMT _{sth} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y
e) NOESY
Figura56S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de $3bc$ de la
adición aldólica catalizada por SHMT _{sth} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y e)
NOESY
Figura57S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3bd de la
adición aldólica catalizada por SHMT _{sth} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y e)
NOESY
Figura58S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3bh y 4bh
de la adición aldólica catalizada por SHMT _{sth} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y
e) NOESY
Figura59S(3.1). Espectros de RMN (CDCl ₃) de las oxazolidin-2-onas derivadas de 3bi de la
adición aldólica catalizada por SHMT _{sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY, d) HSQC y e)
NOESY
Figura60S(3.1). Espectros de RMN (D_2O) de las oxazolidin-2-onas derivadas de 3bj y 4bj de la
adición aldólica catalizada por SHMT _{sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY, d) HSQC y e)
NOESY
Figura61S(3.1). Espectros de RMN (D ₂ O) de las oxazolidin-2-onas derivadas de 3bk y 4bk de
la adición aldólica catalizada por SHMT _{Sth} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y e)
NOESY
Figura62S(3.1). Espectros de RMN (D ₂ O) de las oxazolidin-2-onas derivadas de 3bl y 4bl de la
adición aldólica catalizada por SHMT _{sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY, d) HSQC y e)
NOESY

Figura63S(3.1). Espectros de RMN (D ₂ O) de las oxazolidin-2-onas derivadas de 3bm y 4bm
de la adición aldólica catalizada por SHMT _{Sth} nativa: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY, d) HSQC y
e) NOESY
Figura64S(3.1). Espectros de RMN(D ₂ O) de las oxazolidin-2-onas derivadas de 3bn y 4bn de
la adición aldólica catalizada por SHMT _{Sth} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC, e)
NOESY y f) 1D-NOESY selectivo
Tabla9S(3.1). Desplazamiento químico (ppm) de ¹ H y ¹³ C de las oxazolidin-2-ones derivadas
de 3b y 4b 219
Figura65S(3.1). Espectros de RMN (D_2O) de 3aa de la adición aldólica catalizada por SHMT _{sth}
Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY, d) HSQC y e) 1D-NOESY selectivo
Figura66S(3.1). Espectros de RMN (D_2O) de 3ab de la adición aldólica catalizada por SHMT _{Sth}
Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC224
Figura67S(3.1). Espectros de RMN (D_2O) de 3ac de la adición aldólica catalizada por SHMT _{sth}
Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC227
Figura68S(3.1). Espectros de RMN (D_2O) de 3ad de la adición aldólica catalizada por SHMT _{sth}
Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC230
Figura69S(3.1). Espectros de RMN (D_2O) de 3ag y 4ag de la adición aldólica catalizada por
SHMT _{sth} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY, d) HSQC y e) 1D-NOESY selectivo233
Figura70S(3.1). Espectros de RMN (D ₂ O) de 3ah y 4ai de la adición aldólica catalizada por
SHMT _{sth} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY, d) HSQC y e) 1D-NOESY selectivo237
Figura71S(3.1). Espectros de RMN (DMSO- d_6) de 3ai de la adición aldólica catalizada por
SHMT _{<i>sth</i>} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y e) 1D-NOESY selectivo241
Figura72S(3.1). Espectros de RMN (D_2O) de 3ak y 4ak de la adición aldólica catalizada por
SHMT _{<i>sth</i>} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC245
Figura73S(3.1). Espectros de RMN (D_2O) de 3al y 4al de la adición aldólica catalizada por
SHMT _{<i>sth</i>} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC249
Figura74S(3.1). Espectros de RMN (D ₂ O) de 3an y 4an de la adición aldólica catalizada por
SHMT _{sth} Y55T: a) ¹ H; b) ¹³ C; c) 2D ¹ H- ¹ H COSY y d) HSQC253
Tabla10S(3.1) Desplazamiento químico (ppm) de ¹ H, ¹³ C de los productos 4a257

Figura1S(3.1) Alineamiento múltiple de secuencia (ClustalW) de SHMT de diferentes organismos. SHMT de *B. stearothermophilus* (**SHMT**_{*Bst*}, código (NCIB): S30382), SHMT de *B. subtilis* (**SHMT**_{*Bsb*}, WP_014115504), SHMT de *S. thermophilus* (**SHMT**_{*Sth*}, EHE87326), SHMT de *E. coli* (**SHMT**_{*Eco*}, ACA76793), MSHMT de *Aminobacter sp.* AJ110403 (**MSHMT**_{*Ab*}, BAG31001), MSHMT de *Paracoccus sp.* AJ110402 (**MSHMT**_{*Pc*}, BAG 31000), MSHMT de *Ensifer sp.* AJ110404 (**MSHMT**_{*Ef*}, BAG 31004), SHMT de *O. aries*, citosólica (**SHMT**_{*Oac*}, NP_001009469). SHMT de *O. cuniculus*, citosólica (**SHMT**_{*Occ*}, NP_001095187), SHMT de *O. cuniculus*, mitocondrial (**SHMT**_{*Ocm*}, A33696), SHMT de *H. sapiens*, mitocondial (**SHMT**_{*Hsm*}, NP_001159829), SHMT de *P. falciparum*, (**SHMT**_{*Pf*}, AAF07198.1), SHMT de *M. jannaschii* (**SHMT**_{*Mj*}, Q58992), SHMT de *S. tokodaii* (**SHMT**_{*St*}; Q971K4.1). Un * (asterisco) indica posiciones con residuos muy conservados. A: (dos puntos) indica conservación entre grupos con propiedades muy similares (> 0.5 en una matriz PAM 250). A. (punto) indica conservación entre grupos con propiedades poco similares (< 0.5 en una matriz PAM 250).

\mathtt{SHMT}_{Bst}	MKYLPQQDPQVFAAIEQERKRQHAKIELIASE	32
\mathtt{SHMT}_{Bsb}	MKHLPAQDEQVFNAIKNERERQQTKIELIASE	32
SHMT _{Sth}	MIFDKEDYKAFDPELWNAIDAEAERQQNNIELIASE	36
\mathbf{SHMT}_{Eco}	MRMLKREMNIADYDAELWQAMEQEKVRQEEHIELIASE	38
MSHMT _{Ab}	MTEQTKAYFNTPVHERDPLVAQALDNERKRQQDQIELIASE	41
\mathbf{MSHMT}_{Pc}	ANELTRTFFNSSVHDTDPLIAQALDDERARQKNQIELIASE	41
$ extsf{MSHMT}_{Ef}$	MDHATRAHFTMTVGEVDPLLADALASERGRQQNQIELIASE	41
SHMT_{Oac}	MAAPVNKAPRDADLWSLHEKMLAQPLKDNDVEVYNIIKKESNRQRVGLELIASE	54
$\mathtt{SHMT}_{\mathit{Occ}}$	MATAVNGAPRDAALWSSHEQMLAQPLKDSDAEVYDIIKKESNRQRVGLELIASE	54
$\mathtt{SHMT}_{\mathit{OC}}$	KAAQTQTGEASRGWTGQESLSDTDPEMWELLQREKDRQCRGLELIASE	48
$\mathtt{SHMT}_{\mathit{Hsm}}$	GSGQLVRMAIRAQHSNAAQTQTGEANRGWTGQESLSDSDPEMWELLQREKDRQCRGLELIASE	63
\mathbf{SHMT}_{Pf}	MFNNDPLQKYDKELFDLLEKEKNRQIETINLIASE	35
SHMT _{Mj}	DVSIKQHEWMR-ESIKLIASE	31
\mathtt{SHMT}_{St}	MSQIPKELEKVIELTREQNRWRRTEVINLIASE	33
	• • • • • • • • • • • • • • • • • • •	

VCE

VEE

	<u>155</u> <u>165</u>	
\mathtt{SHMT}_{Bst}	NFVSRAVMEAQGSVLTNK Y AEGYPGRRY <mark>Y</mark> GGCEYVDIVEELARERAKQLFGAEHANVQP	91
\mathbf{SHMT}_{Bsb}	NFVSEAVMEAQGSVLTNK Y AEGYPGKRY Y GGCEHVDVVEDIARDRAKEIFGAEHVNVQP	91
SHMT _{Sth}	NVVSKAVMAAQGTLLTNKYAEGYPGKRYYGGTAVIDVVETLAIERAKKLFGAKFANVQP	<mark>95</mark>
SHMT_{Eco}	NYTSPRVMQAQGSQLTNK Y AEGYPGKRY Y GGCEYVDIVEQLAIDRAKELFGADYANVQP	97
MSHMT _{Ab}	NIVSRAVLDALGHEMTNKTLEGYPGNRFHGGGQFVDVVEQAAIDRAKELFGCAYANVQP	100
\mathbf{MSHMT}_{Pc}	NIVSQAVLDALGHEMTNKTLEGYPGNRFHGGGQFVDVVEQAAIDRAKQLFNCGYANVQP	100
$ extsf{MSHMT}_{Ef}$	NIVSRAVLDALGHEITNKTLEGYPGNRFHGGGQFVDIAEQAAIDRAKQLFNCGYANVQP	100
SHMT _{Oac}	NFASRAVLEALGSCLNNK Y SEGYPGQRY Y GGTEFIDELEVLCQKRALQVYGLDPECWGVNVQP	117
$\mathtt{SHMT}_{\mathit{Occ}}$	NFASRAVLEALGSCLNNK Y SEGYPGQRY Y GGTEHIDELETLCQKRALQAYGLDPQCWGVNVQP	117
$\mathtt{SHMT}_{\mathit{OCM}}$	NFCSRAALEALGSCLNNK Y SEGYPGKRY Y GGAEVVDEIELLCQRRALEAFDLDPAQWGVNVQP	111
$\mathtt{SHMT}_{\mathit{Hs}\mathtt{m}}$	NFCSRAALEALGSCLNNK Y SEGYPGKRY Y GGAEVVDEIELLCQRRALEAFDLDPAQWGVNVQP	126
\mathbf{SHMT}_{Pf}	NLTNTAVRECLGDRISNK Y SEGYPHKRY Y GGNDYVDKIEELCYKRALEAFNVSEEEWGVNVQP	98
SHMT _{Mj}	NITSLAVREACATDFMHR Y AEGLPGKRL Y QGCKYIDEVETLCIELSKELFKAEHANVQP	90
SHMT _{st}	NVMSPLAETVYMSDFMSR Y AEGKPYKRY Y QGTKYVDEVETLAMQLMNEITNTKFCDLRA	92

\mathtt{SHMT}_{Bst}	HSGAQANMAVYFTVLEHGDTVLGMNLSHGGHLTHGSPVNFSGVQYNFVAYGVDPETHV	149
\mathbf{SHMT}_{Bsb}	HSGAQANMAVYFTILEQGDTVLGMNLSHGGHLTHGSPVNFSGVQYNFVEYGVDKETQY	149
SHMT _{Sth}	HSGSQANAAVYMSLIQPGDTVMGMDLSAGGHLTHGAPVSFSGKTYNFVSYNVDKESEL	153
\mathbf{SHMT}_{Eco}	HSGSQANFAVYTALLEPGDTVLGMNLAHGGHLTHGSPVNFSGKLYNIVPYGID-ATGH	155
MSHMT _{Ab}	HSGTQANLAVFFLLLKPGDKVLSLDLAAGGHLSHGMKGNLSGRWFESHNYNVDPETEV	158
\mathbf{MSHMT}_{Pc}	HSGTQANLAVFFLLVKPGDRILSLDLAAGGHLSHGMKGNLSGRWFEAHNYNVDPQNEV	158
$ extsf{MSHMT}_{Ef}$	HSGTQANLAVFFLLLKPGEKVLSLDLAAGGHLSHGMKANLSGRWFDATNYNVNPQNEV	158
SHMT _{Oac}	YSGSPANFAVYTALVEPHGRIMGLDLPDGGHLTHGFMTDKKKISATSIFFESMPYKVNPDTGY	180
$\mathtt{SHMT}_{\mathit{Occ}}$	YSGSPANFAVYTALVEPHGRIMGLDLPDGGHLTHGFMTDKKKISATSIFFESMAYKVNPDTGY	180
$\mathtt{SHMT}_{\mathit{OCM}}$	YSGSPANLAAYTALLQPHDRIMGLDLPDGGHLTHGYMSDVKRVSATSIFFESMPYKLNPQTGL	174
$\mathtt{SHMT}_{\mathit{Hsm}}$	YSGSPANLAVYTALLQPHDRIMGLDLPDGGHLTHGYMSDVKRISATSIFFESMPYKLNPKTGL	189
\mathtt{SHMT}_{Pf}	LSGSAANVQALYALVGVKGKIMGMHLCSGGHLTHGFFDEKKKVSITSDLFESKLYKCNSE-GY	160
SHMT _{Mj}	TSGVVANLAVFFAETKPGDKLMALSVPDGGHISHWKVSAAGIRGLKVINHPFDPEEMN	148
\mathtt{SHMT}_{St}	TSGTIANAAVFRVLANPGEKALIAPVQAGAHVSHTKFGTLGALGIEHIELPYDADKMN	150
	** ** . : : *.*::* . : :	
SHMT _{Bst}	IDYDDVREKARLHRPKLIVAAASAYPRIIDFAKFREIADEVGAYLMVDMAHIAGLVAAGLHPN	212
SHMT _{Bsb}	IDYDDVREKALAHKPKLIVAGASAYPRTIDFKKFREIADEVGAYFMVDMAHIAGLVAAGLHPN	212
SHMT _{Sth}	LDYDAILAQAKEVRPKLIVAGASAYSRIIDFAKFREIADAVGAYLMVDMAHIAGLVASGHHPS	216
SHMT _{Eco}	IDYADLEKQAKEHKPKMIIGGFSAYSGVVDWAKMREIADSIGAYLFVDMAHVAGLVAAGVYPN	217
MSHMT _{Ab}	IDYDEMERIAEEVRPTLLITGGSAYPRELDFERMGKIAKKVGAWFLVDMAHIAGLVAGGAHPS	221
\mathbf{MSHMT}_{Pc}	INYDEMERIAEEVKPKLLITGGSAYPRELDFARMAQIAKKVGAFFMVDMAHIAGLVAGGAHPS	221
$ ext{MSHMT}_{Ef}$	IDLDEMERLAEEIRPKLLITGGSAYPRELDFERMSRIAKKVGAYFLVDMAHIAGLVAGGVHPS	221
\mathbf{SHMT}_{Oac}	INYDQLEENARLFHPRLIIAGTSCYSRNLDYARLRKIADDNGAYLMADMAHISGLVAAGVVPS	243
SHMT _{Occ}	IDYDRLEENARLFHPKLIIAGTSCYSRNLDYGRLRKIADENGAYLMADMAHISGLVVAGVVPS	243
SHMT _{Ocm}	IDYEQLALTARLFRPRLIIAGTSAYARLIDYARMREVCDEVKAHLLADMAHISGLVAAKVIPS	237
$\mathtt{SHMT}_{\mathit{Hsm}}$	IDYNQLALTARLFRPRLIIAGTSAYARLIDYARMREVCDEVKAHLLADMAHISGLVAAKVIPS	252
\mathbf{SHMT}_{Pf}	VDMESVRNLALSFQPKVIICGYTSYPRDIDYKGFREICDEVNAYLFADISHISSFVACNLLNN	223
SHMT _{M7}	IDADAMVKKILEEKPKLILFGGSLFPFPHPVADAYEAAQEVGAKIAYDGAHVLGLIAGKQFQD	211

Н229

\mathtt{SHMT}_{Bst}	PVPY-AHFVTTTTHKTLRGPRGGMILCQ	EQFAKQIDKAIFPGIQGGPL 2	259
$SHMT_{Bsb}$	PVPY-ADFVTTTTHKTLRGPRGGMILCR	EEFGKKIDKSIFPGIQGGPL 2	259
SHMT _{Sth}	PVPY-AHVTTTTTHKTLRGPRGGLILTDD	EDIAKKLNSAVFPGLQGGPL	<mark>264</mark>
$SHMT_{Eco}$	PVPH-AHVVTTTT H KTLAGPRGGLILAKGGS	EELYKKLNSAVFPGGQGGPL 2	267
MSHMT _{Ab}	PFPH-ADIVTCTTTKTLRGPRGGLILTNN	EAWFKKLQSAVFPGVQGSLH 2	269
MSHMT _{Pc}	PFPH-ADIVTCTTTKTLRGPRGGLILTNN	EEWYKKLQTAVFPGVQGSLH 2	269
$ extsf{MSHMT}_{Ef}$	PFPH-ADIVTCTTTKTLRGPRGGLILTNN	EEWYKKLQAAVFPGVQGSLH 2	269
SHMT _{Oac}	PFEH-CHVVSTTT H KTLRGCRAGMIFYRKGVRSVDP	KTGKETRYNLESLINSAVFPGLQGGPH 🤇	305
SHMT _{Occ}	PFEH-CHVVTTTT H KTLRGCRAGMIFYRRGVRSVDP	KTGKEILYNLESLINSAVFPGLQGGPH 🤇	305
SHMT _{Ocm}	PFKH-ADVVTTTT H KTLRGARSGLIFYRKGVRTVDP	KTGQEIPYTFEDRINFAVFPSLQGGPH 2	299
SHMT _{Hsm}	PFKH-ADIVTTTT H KTLRGARSGLIFYRKGVKAVDP	KTGREIPYTFEDRINFAVFPSLQGGPH 🤇	314
\mathbf{SHMT}_{Pf}	PFTY-ADVVTTTTHKILRGPRSALIFFNKKRNP	GIDQKINSSVFPSFQGGPH 2	274
SHMT _{Mj}	PLREGAEYLMGST H KTFFGPQGGVILTT	KENADKIDSHVFPGVVSNHH	259
SHMT _{st}	PLEEGADIMTSST H KTFPGPQGGAVFSNE	EEIFKKVADTIFPWFVSNHH 2	262
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	

\mathtt{SHMT}_{Bst}	MHVIAAKAVAFGEALQDDFKAYAKRVVDNAKRLASALQNE-GFTLVSGGTDNHLLLVDLR	318
\mathbf{SHMT}_{Bsb}	MHVIAAKAVSFGEVLQDDFKTYAQNVISNAKRLAEALTKE-GIQLVSGGTDNHLILVDLR	318
SHMT _{Sth}	EHVIAAKAVALKEALDPAFKEYGENVIKNAAAMADVFNQHPDFRVISGGTNNHLFLVDVT	323
SHMT _{Eco}	MHVIAGKAVALKEAMEPEFKTYQQQVAKNAKAMVEVFLER-GYKVVSGGTDNHLFLVDLV	326
MSHMT _{Ab}	SNVLAAKAVCLGEALRPDFKVYAAQVKANARVLAETLIAR-GVRIVSGGTDTHIVLVDLS	328
MSHMT _{PC}	SNVLAAKAICLGEALRPEFRDYVAQVVKNAKVLAETLTSR-GIRIVSGGTDTHIVLLDLS	328
	SNVLAAKAICLGEAMLDDFKVYAROVVANAKVLANTLAER-GVRIVSGGTDTHIVLLDLA	328
SHMT	NHAIAGVAVALKOAMTPEFRAYOROVVANCRALAEALMGL-GYRVVTGGSDNHLILVDLR	364
SHMT	NHATAGVAVALKOAMTPEFKEYOROVVANCRALSAALVEL-GYKTVTGGSDNHLTLVDLR	364
SHMT	NHATAAVAVALKOACTPMFREYSLOVLKNARAMADALLER-GYSLVSGGTDNHLVLVDLR	358
SHMT	NHATAAVAVALKOACTPMFREYSLOVLKNARAMADALLER-GYSLVSGGTDNHLVLVDLR	373
SHMT-	NNKIAAVACOLKEVNTPEEKEYTKOVLLNSKALAECLLKR-NLDLVTNGTDNHLLVVDLR	333
SHMT	LHHKACLATALAFMLEFC-FAVAKOVIKNAKALAOALYFR-CENVLCEHKDETESHOVIIDIE	320
SIIMI MJ		323
Shhist		525
CUM		277
SIMI Bst		211
SHMT _{Bsb}		3//
SHMT _{Sth}		305
SHMTEco	DKNLTGKEADAALGRANITVNKNSVPNDPKSPEVT-SGIRVGTPAITKRGFKEAEAKELA	385
MSHMT _{Ab}	, SKGLNGKQAEDLLARANITANKNPIPNDSPRPAEW-VGMRLGVSAATTRGMKEDEFRTLG	387
MSHMT _{Pc}	SKGLNGKQAEDALARANITSNKNPIPNDSPRPAEW-VGMRLGVSAATTRGMKEDEFRKLG	387
MSHMT_{Ef}	SKGLLGKQAETLLAKANITSNKNPIPGDSPRPPEW-VGMRLGSSAATTRGLKEAEFRVLG	387
SHMT _{Oac}	SKGTDGGRAEKVLEACSIACNKNTCPGD-KSALRP-SGLRLGTPALTSRGLLEEDFRKVA	422
SHMT _{Occ}	SKGTDGGRAEKVLEACSIACNKNTCPGD-KSALRP-SGLRLGTPALTSRGLLEKDFQKVA	422
SHMT _{Ocm}	PKGLDGARAERVLELVSITANKNTCPGD-RSAITP-GGLRLGAPALTSRQFREDDFRRVV	416
\mathtt{SHMT}_{Hsm}	PKGLDGARAERVLELVSITANKNTCPGD-RSAITP-GGLRLGAPALTSRQFREDDFRRVV	431
\mathbf{SHMT}_{Pf}	KYNITGSKLQETCNAINIALNKNTIPSD-VDCVSP-SGIRIGTPALTTRGCKEKDMEFIA	348
\mathtt{SHMT}_{Mj}	SSPDIEFSASELAKMYEEANIILNKNLLPWDDVNNSDNPSGIRLGTQECTRLGMKEKEMEEIA	383
\mathtt{SHMT}_{St}	NLGGGAKIAKLFEDANIITNKNLLPYDPPSAVKDPSGIRLGVQEMTRFGMKEEEMREIA	382
	· · · * * * · · · · · · · · · · · · · ·	
SHMT _{Bst}	AIIGLVLKNVGSEQALEEARQRVAALTDPTSRSAAGTME	416
SHMT _{Bsb}	AIIALALCKNHEDEGKLEEARQRVAALTDKFP-LYKELD 4	14
SHMT _{Sth}	EWMVEALENHDKPEVLERIRGDVKVLTDAFP-LY	416
SHMT _{Eco}	GWMCDVLDSINDEAVIERIKGKVLDICARYPVY	419
MSHMT _{Ab}	, TVIADLIVYAH	425
\mathbf{MSHMT}_{Pc}	NVVADLLVYAH	425
$ extsf{MSHMT}_{Ef}$	TVIADLIVYGQ	425
\mathbf{SHMT}_{Oac}	HFIHRGIELTLQIQDAVGVKATLKEFMEKLAGAEEHQRAVTALRAEVESFATLFPLPGLPG	483
$\mathtt{SHMT}_{\mathit{Occ}}$	HFIHRGIELTVQIQDDTGPRATLKEFKEKLAGDEKHQRAVRALRQEVESFAALFPLPGLPG	483
$\mathtt{SHMT}_{\mathit{OC}}$	DFIDEGVNIGLEVKRKTAKLQDFKSFLLKDPETSQRLADLRRRVQQFARAFPMPGFPE	474
$\mathtt{SHMT}_{\mathit{Hs}\mathtt{m}}$	DFIDEGVNIGLEVKSKTAKLQDFKSFLLKDSETSQRLANLRQRVEQFARAFPMPGFDE	489
\mathbf{SHMT}_{Pf}	DMLLKAILLTDELQQKYGKKLVDFKKGLVNNPKIDELKKEVVQWAKNLPFA	442
\mathbf{SHMT}_{Mj}	EFMKRIADG	424
\mathtt{SHMT}_{St}	KLMREVAIDGKDPNEVKKKVIEFRKNYLEVKYTFSVDLSKYSN	425

:

\mathtt{SHMT}_{Bst}	FEA	419
\mathtt{SHMT}_{Bsb}	Ү	415
SHMT _{Sth}		
$SHMT_{Eco}$		419
MSHMT _{Ab}		425
\mathbf{MSHMT}_{Pc}		425
\texttt{MSHMT}_{Ef}		425
SHMT _{Oac}	F	484
SHMT _{Occ}	F	484
SHMT _{Ocm}	Н	475
SHMT _{Hsm}	Н	490
\mathbf{SHMT}_{Pf}		
SHMT _{Mj}	FKYLRFY-	429
\mathtt{SHMT}_{st}	GKMLPLLI	433

Figura2S(3.1) Representación del posible mecanismo de "desactivación" de la SHMT causado por D,L-Cys.

Figura3S(3.1) Variación del espectro de absorción de la SHMT_{*Sth*} nativa y las variantes Y55T, Y55S y Y55C). Enzima (6 mg mL⁻¹) en 0,1 M tampón fosfato, pH 8,0 , Gly (0,4 M) o D,L-Cys (0,4 M) a 25°C. Curva 1 (verde) espectro de absorción de la SHMT_{*Sth*} sin aminoácidos; curva 2 (negro) con Gly; curva 3 (rojo) con D,L-Cys. La absorbancia fue medida inmediatamente después de añadir el aminoácido en cubetas de paso óptico de 1 cm. A: SHMT_{*Sth*} nativa; B: SHMT_{*Sth*} Y55S; C: SHMT_{*Sth*} Y55C; D: SHMT_{*Sth*} Y55T.

Figura4S(3.1) Resultados de la secuenciación del producto de la mutación por saturación de sitio en el codón 55 de la SHMT_{*Sth*} nativa. El cromatograma de la secuenciación es representado utilizando el programa Chromas versión 2.01.

Figura5S(3.1) Análisis de la librería de mutantes de la SHMT_{*Sth*} Y55X. La reacción entre D-Ser (**1a**) y el (benciloxi)acetaldehído (**2a**) se siguió por HPLC.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	-	-	-	-	-	-	-	-	-	-	-	-
в	-	-	-	-	Y55T	-	-	-	-	-	-	-
С	-	-	-	-	Y55T	-	-	-	-	-	-	-
D	-	-	-	-	-	-	Y55C	-	-	-	-	Y55T
E	-	-	Y55S	-	-	-	-	-	-	-	-	-
F	-	-	-	-	-	-	-	-	-	-	Y55C	-
G	-	-	-	-	-	-	-	-	-	-	-	-
н	-	-	-	-	-	-	-	Y55G	-	-	Y55T	Y55T

Tabla1S(3.1). Datos cuantitativos de la reacción a escala analítica de adición aldólica de D-Ser (**1a**) a diferentes aldehídos (**2a-p**), catalizado por la SHMT_{*Sth*} nativa y las variantes Y55T, Y55S y Y55C.

\mathbb{R}^1			a	
	Producto formado (%) ^[a]			
\mathbf{R}^2	Nativa	Y55T	Y55S	Y55C
а	0	46	11	46
b	0	43	16	23
c	0	38	0	27
d	0	38	12	33
e	0	0	0	0
f	0	0	0	0
g	0	36	8	21
h	0	43	16	32
i	0	26	0	11
j	0	0	0	0
k	0	12	10	12
1	0	18	15	18
m	0	0	0	0
n	13	11	12	11
0	0	0	0	0
р	0	0	0	0

^[a]Determinado por HPLC después de 24 h.

Tabla2S(3.1). Datos cuantitativos de la reacción de adición aldólica a escala analítica
de D-Ala (1b) a diferentes aldehídos (2a-p), catalizado por la SHMT _{Sth} nativa y las
variantes Y55T, Y55S y Y55C.

R ¹		b			
		Producto formado (%) ^[a]			
\mathbf{R}^2	Nativa	Y55T	Y55S	Y55C	
a	27	50	18	35	
b	27	11	6	6	
c	18	21	3	15	
d	28	36	12	25	
e	0	0	0	0	
f	0	0	0	0	
g	12	25	6	7	
h	16	33	12	22	
i	18	18	6	9	
j	21	9	22	12	
k	23	24	21	15	
1	90	41	40	37	
m	85	43	27	15	
n	62	20	59	24	
0	0	0	0	0	
p	0	0	0	0	

^[a]Determinado por HPLC después de 24 h.

Tabla3S(3.1). Datos cuantitativos de la reacción de adición aldólica a escala analítica de GLY (1c) a diferentes aldehídos (2a-p), catalizado por la SHMT_{Sth} nativa y las variantes Y55T, Y55S y Y55C.

\mathbf{R}^{1}	c					
	Nativa	Y55T	Y55S	Y55C		
\mathbf{R}^2		Producto formado (%) ^[a]				
a	89	21	10	18		
b	25	30	19	12		
c	41	6	0	6		
d	4	11	9	10		
e	42	0	0	0		
f	24	0	19	0		
g	9	14	9	6		
h	50	35	26	22		
i	98	6	22	21		
j	25	20	21	19		
k	27	31	37	24		
1	63	38	81	54		
m	81	5	36	14		
n	39	47	23	39		
0	0	0	0	0		
р	0	0	0	0		

^[a]Determinado por HPLC después de 24 h.

Reacciones	Condiciones	Comentarios
$\begin{array}{c} OH \\ R_1 \\ +H_3N \\ OH \end{array} \xrightarrow{COO^-} (BOC)_2O, Et_3N \\ \hline \\ CH_2Cl_2 \\ HN \\ CH_2Cl_2 \\ \hline \\ t-BuO \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ COO^- \\ HN \\ -OH \\ \hline \\ t-BuO \end{array}$	Aminoácido, 1 eq (20 mg). (BOC) ₂ , 2 eq. Et ₃ N, 4 eq. CH ₂ Cl ₂ , 5 mL. 25°C, 12h.	No hay reacción o descomposición del aminoácido.
$R_{1} \xrightarrow{+H_{3}N} OH \xrightarrow{COO^{-}} (BOC)_{2}O, NaHCO_{3} (10\%) \xrightarrow{OH} R_{1} \xrightarrow{OH} OH \xrightarrow{COO^{-}} OH \xrightarrow{+H_{3}N} OH \xrightarrow{I} OH $	Aminoácido, 1 eq (20 mg). (BOC) ₂ °, 5 eq. Dioxano/ NaHCO ₃ 10% (1:1, v/v), 5 mL. 25°C, 12h	No hay reacción o descomposición del aminoácido. Hidrólisis del (BOC)2O.
$\begin{array}{c} OH \\ R_1 \\ + H_3 N \\ OH \end{array} \xrightarrow{+} COO^- \\ OH \end{array} \xrightarrow{CbzOSu, Et_3 N} \\ CH_2 Cl_2 \\ CH_2 Cl_2 \\ BnO \end{array} \xrightarrow{OH} COO^- \\ HN \\ HN \\ OH \end{array}$	Aminoácido, 1 eq (20 mg). CbzOSu, 2 eq. Et_3N , 4 eq. CH_2Cl_2 , 5 mL. 25°C, 12h.	No hay reacción o descomposición del aminoácido.
$\begin{array}{c} OH \\ R_1 \\ +H_3N \\ OH \end{array} \xrightarrow{COO^-} CbzOSu, Et_3N \\ \hline DMF \\ DMF \\ BnO \end{array} \xrightarrow{OH} COO^- \\ HN \\ BnO \end{array}$	Aminoácido, 1 eq (20 mg). CbzOSu, 2 eq. Et ₃ N, 4 eq. DMF, 5 mL. 25°C, 12h.	No hay reacción o descomposición del aminoácido.
$\begin{array}{c} OH \\ R_{1} \\ + H_{3}N \\ OH \end{array} \xrightarrow{COO^{-}} \underbrace{CbzOSu, NaHCO_{3} (10\%)}_{\text{Dioxane} (50\%)} \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ R_{1} \\ + OH \\ OH \end{array} \xrightarrow{OH} \begin{array}{c} OH \\ HN \\ OH \end{array}$	Aminoácido, 1 eq (20 mg). CbzOSu, 5 eq. Dioxano/ NaHCO ₃ 10% (1:1, v/v), 5 mL. 25°C, 12h.	No hay reacción o descomposición del aminoácido. Hidrólisis del CbzOSu.
$\begin{array}{c} OH \\ R_1 \\ +H_3N \\ OH \end{array} \xrightarrow{COO^-} C_6H_5COCI, Et_3N \\ CH_3CN \text{ or } CH_2CI_2 \end{array} \xrightarrow{OH} \\ CH_2CI_2 \\ OH \end{array} \xrightarrow{OH} OH \\ OH \\ OH \end{array}$	Aminoácido, 1 eq (20 mg). Benzyl chloride, 2 eq. Et ₃ N, 4 eq. Solvent, 5 mL. 25°C, 2 h or 24 h.	No hay reacción o descomposición del aminoácido.
$\begin{array}{c} OH \\ R_1 \xrightarrow{COO^-} \\ ^*H_3N \xrightarrow{I} \\ OH \end{array} \xrightarrow{COO^-} \\ CH_3CN \text{ or } CH_2Cl_2 \end{array} \xrightarrow{OH} \\ \begin{array}{c} OH \\ HN \\ OH \end{array} \xrightarrow{OH} \\ OH \end{array}$	Aminoácido, 1 eq (20 mg). Anhydride acetic, 2 eq. Et ₃ N, 4 eq. Solvent, 5 mL. 25°C, 2 h or 24 h.	No hay reacción o descomposición del aminoácido.
$\begin{array}{c} OH \\ R_1 \\ +H_3 N \\ OH \end{array} \xrightarrow{COO^-} Ac_2 O, AcOH \\ HN \\ OH \end{array} \xrightarrow{OH} COO^- \\ HN \\ OH \\ OH \end{array}$	Aminoácido, 1 eq (20 mg). Anhydride acetic, 2 eq. Acetic acid, 5 mL. 25°C, 2 h or 24 h.	No hay reacción o descomposición del aminoácido.

Tabla4S(3.1) Reacciones ensayadas para modificar los productos **3a** sintetizados por la adición aldólica de D-Ser a diferentesaldehídos catalizado por SHMT_{Sth} Y55T.

SHMT _{Sth}	Mw calculated/Da	Mw observed/Da	Error/Da
Nativa	46484.68	46484.0	0.7
Y55T	46422.60	46422.0	0.6
Y55C	46424.64	46424.0	0.6
Y55S	46408.58	46408.0	0.6

Tabla5S(3.1) Masa molecular de las variantes de la SHMT_{Sth}.

Figura6S(3.1) Espectros MS ESI/TOF y espectros deconvolucionados de las variantes de SHMT_{*Sth*}. a) SHMT_{*Sth*} nativa

Figura7S(3.1). Espectros de RMN (D₂O) de los productos **3cb** y **4cb** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura8S(3.1). Espectros de RMN (D₂O) de los productos **3ch** y **4ch** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC. a)

Figura9S(3.1). Espectros de RMN (D₂O) de los productos **3ci** y **4ci** de la reacción aldólica catalizada por SHMT _{*sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

27

Figura10S(3.1). Espectros de RMN (D₂O) de los productos **3cj** y **4cj** de la reacción aldólica catalizada por SHMT _{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura11S(3.1). Espectros de RMN(D₂O) de los productos **3ck** y **4ck** de la reacción aldólica catalizada por SHMT _{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura12 S(3.1). Espectros de RMN (D₂O) de los productos **3cl** y **4cl** de la reacción aldólica catalizada por SHMT _{*Sth*} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC.

Figura13S(3.1). Espectros de RMN (D₂O) de los productos **3cm** y **4cm** de la reacción aldólica catalizada por SHMT _{*Sth*} nativa: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC.

Figura14S(3.1). Espectros de RMN (D₂O) de los productos**3cn** y **4cn** de la reacción aldólica catalizada por SHMT _{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) 1D-NOESY selectivo. a)

Tabla6S(3.1). Resumen de los desplazamientos químicos (ppm) de 1H y 13C para los productos 3c y 4c.

				H_3 R ² *H3	OH 1 2 COO-	HO, 3. R ² ⁺ H ₃ N	H 2 COO ⁻ H				
					3		4				
			3					4			
R ²	δH2	δC2	δH₃	δC₃	δC1	δH_2	δC2	δH_3	δC₃	δC1	RMN solvente
BnO(CH ₂) ₃ (3cb, 4cb)	3.83	59.44	4.10	69.43		3.62	59.44	4.10	69.43		D_2O
Ph(CH ₂) ₂ (3ch, 4ch)	3.67	59.44	3.92	68.56		3.49	59.44	3.92	68.96		D_2O
PhOCH₂ (3ci, 4ci)	4.06	57.34	4.53	67.43		3.96	56.79	4.53	67.35		D_2O
Ph (3cj, 4cj)	4.11	60.35	5.38	71.04		3.93	60.81	5.31	71.21		D ₂ O
4-CIC ₆ H ₄ (3ck, 4ck)	3.93	60.19	5.21	70.43		3.75	60.61	5.12	70.70		D_2O
2-FC₀H₄ (3cl, 4cl)	3.95	59.00	5.37	66.28		3.86	59.19	5.37	66.28		D ₂ O
C₀F₅ (3cm, 4cm)	4.15	58.58	5.67	63.98		4.14		5.33			D_2O
4-O₂NC ₆ H₄ (3cn, 4cn)	3.99	60.08	5.32	70.38		3.83	60.40	5.27	70.63		D ₂ O

			3					4		
	δH_2	δC_2	δH₃	δC_3	δC_1	δH_2	δC_2	δH_3	δC_3	δC_1
δ(media)	3.96	59.30	4.94	68.44		3.82	59.53	4.87	69.22	
SD(δ)	0.16	1	0.66	2.42		0.2	1.37	0.60	1.84	

Figura15S(3.1). Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos **3cb** y **4cb** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H ; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura16S(3.1). Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos **3ch** y **4ch** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b)¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura17S(3.1). Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos **3ci** y **4ci** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b)¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

a)

Figura18S(3.1). Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos **3cj** y **4cj** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura19S(3.1). Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos **3ck** y **4ck** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura20S(3.1). Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos **3cl** y **4cl** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

a)

Figura21S(3.1). Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos **3cm** y **4cm** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura22S(3.1). Espectros RMN (DMSO- d_6) de las oxazolidin-2-onas obtenidas por derivatización de los productos **3cn** y **4cn** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) 1D-NOESY selectivo.

d)

Tabla7S(3.1). Desplazamiento químico de ¹H y ¹³C (ppm) y constantes de acoplamiento (³J(H_a,H_b), Hz) de las oxazolidin-2-onas derivadas de **3c** y **4c**.

oxazolidin-2-ona de 3c oxazolidin-2-ona de 4c

R ²	3							4			
	δ(H _a)	δ(H _b)	³ J(H _a ,H _b)	δ(C _a)	δ(C _b)	δ(H _a)	δ(H _b)	³ <i>J</i> (H _a ,H _b)	δ(C _a)	δ(C _b)	RMN solvente
BnO(CH ₂) ₃ (3cb, 4cb)	4.27	4.69	8.5	57.87	77.30	4.02	4.49	4.8	58.67	78.48	DMSO-d ₆
Ph(CH ₂) ₂ (3ch, 4ch)	4.31	4.67	8.8	57.54	76.48	4.11	4.44	5.4	58.39	77.73	DMSO-d ₆
PhOCH₂ (3ci, 4ci)	4.50	5.11	9.8	55.32	75.00	4.26	4.87	5.0	55.40	76.11	DMSO-d ₆
Ph (3cj, 4cj)	4.59	5.86	8.9	59.59	78.12	4.24	5.57	4.9	60.92	78.81	DMSO-d ₆
4-CIC ₆ H₄ (3ck, 4ck)	4.69	6.09	8.9	59.22	77.11	4.28	5.8	4.9	60.59	77.51	DMSO-d ₆
2-FC ₆ H ₄ (3cl, 4cl)	4.61	6.08	9.0	58.70	73.02	4.32	5.74	5.0	59.84	74.52	DMSO-d ₆
C ₆ F₅ (3cm, 4cm)	4.90	6.27	10.0	57.82	69.22	4.55	5.95	5.9	58.72	69.22	DMSO-d ₆
4-O ₂ NC ₆ H ₄ (3cn, 4cn)	4.59	5.89	9.0	59.45	77.52	4.24	5.61	5.0	60.81	77.89	DMSO-d ₆

Figura23S(3.1). Espectros de RMN (D₂O) de **3ba** de la reacción aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

a)

60

Figura24S(3.1). Espectros de RMN (D₂O) de **3bb** y **4bb** de la reacción aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura25S(3.1). Espectro de RMN (D₂O) de **3bc** de la reacción aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura26S(3.1). Espectro de RMN (D₂O) de **3bd** de la reacción aldólica catalizada por SHMT_{*Sth*} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC.

Figura27S(3.1). Espectro de RMN (D₂O) de **3bg** y **4bg** de la reacción aldólica catalizada por SHMT_{*Sth*} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC.

Figura28S(3.1). Espectro de RMN (D₂O) de **3bh** y **4bh** de la reacción aldólica catalizada por SHMT_{*Sth*} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC.

b)

Figura29S(3.1). Espectro de RMN (DMSO- d_6) de **3bi** y **4bi** de la reacción aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura30S(3.1). Espectro de RMN (D₂O) de **3bk** y **4bk** de la reacción aldólica catalizada por SHMT_{*Sth*} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC.

Figura31S(3.1). Espectros de RMN (DMSO- d_6) de **3bl** y **4bl** de la reacción aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura32S(3.1). Espectro de RMN (D₂O) de **3bn** y **4bn** de la reacción aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura33S(3.1). Espectro de RMN (D₂O) de **3ba** y **4ba** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura34S(3.1). Espectro de RMN (D₂O) de **3bb** y **4bb** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura35S(3.1). Espectro de RMN (D₂O) de **3bc** y **4bc** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura36S(3.1). Espectro de RMN (D₂O) de **3bd** y **4bd** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura37S(3.1). Espectro de RMN (D₂O) de **3bh** y **4bh** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura38S(3.1). Espectro de RMN (DMSO- d_6) de **3bi** y **4bi** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

89

Figura39S(3.1). Espectro de RMN (D₂O) de **3bj** y **4bj** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

91

Figura40S(3.1). Espectro de RMN (D₂O) de **3bk** y **4bk** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura41S(3.1). Espectro de RMN (DMSO- d_6) de **3bl** y **4bl** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura42S(3.1). Espectro de RMN (D₂O) de **3bm** y **4bm** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Figura43S(3.1). Espectro de RMN (D₂O) de **3bn** y **4bn** de la reacción aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Tabla8S(3.1). Desplazamientos químicos (ppm) de ¹H y ¹³C de los productos **3b** y **4b**.

H OH_1 R^2 2 COO^-	HO H^{1} COO^{-} R^{2}
⁺ H ₃ N [•] Me	[⁺] H ₃ N Mge
3	4

	3						4							
R ²	SHMT	δH ₃	δ C 3	δH_4	δC_4	δ C 1	δ C 2	δH_3	δ C 3	δH_4	δ C 4	δ C 1	δ C 2	RMN solvente
BnOCH₂ (3ba)	Y55T	1.54	20.50	4.01	71.06	174.45	64.10							D_2O
BnO(CH ₂) ₃ (3bb)	Y55T	1.50	19.94	3.80	73.03	174.83	65.16	1.39	16.59	3.76	72.70			D_2O
CbzNHCH₂ (3bc)	Y55T	1.52	19.94	3.88	72.36	173.97	63.47							D_2O
CbzNH(CH ₂) ₂ (3bd)	Y55T	1.49	19.89	3.86	70.79	174.74	66.78							D_2O
PhCH ₂ (3bq, 4bq)	Y55T	1.58	19.82	4.09	74.31	174.83	65.13	1.52	16.28	4.16	74.15			D_2O
Ph(CH ₂) ₂ (3bh, 4bh)	Y55T	1.45	20.06	3.74	72.11	174.85	65.20	1.37	16.68	3.89	72.11			D_2O
PhOCH₂ (3bi)	Y55T	1.33	20.99	4.00	71.85	171.36	62.17	1.30	19.09	4.31	69.38			DMSO-d ₆
4-CIC ₆ H ₄ (3bk, 4bk)	Y55T	1.61	19.94	5.05	74.04	173.96	65.77	1.30	18.24	5.14	74.25	175.25	64.82	D_2O
2-FC ₆ H ₄ (3bl, 4bl)	Y55T	1.15	18.68	4.99	69.14	171.69	61.45	1.11	20.22	5.26	67.90	172.49	63.11	DMSO-d ₆
4-O ₂ NC ₆ H ₄ (3bn, 4bn)	Y55T	1.65	20.03	5.17	73.97	173.53	65.75	1.33	18.08	5,27	73.97			D ₂ O
BnOCH₂ (3ba, 4ba)	nativa	1.54	20.49	4.02	71.04	174.44	64.11	1.40	17.73	4.02	70.70			D_2O
BnO(CH ₂) ₃ (3bb, 4bb)	nativa	1.50	20.01	3.80	73.02	174.84	65.16	1.39	16.66	3.92	72.68	175.34	65.21	D_2O
CbzNHCH ₂ (3bc)	nativa	1.52	19.81	3.89	72.27	174.00	63.48	1.45	16.71	4.04	71.51			D_2O
CbzNH(CH ₂) ₂ (3bd, 4bd)	nativa	1.48	19.87	3.85	70.77	174.80	65.00	1.37	16.80	3.97	70.55			D_2O
Ph(CH ₂) ₂ (3bh, 4bh)	nativa	1.46	19.99	3.73	72.22	174.81	65.22	1.38	16.67	3.89	72.22	175.27	65.20	D_2O
PhOCH ₂ (3bi, 4bi)	nativa	1.33	20.91	4.00	72.10	171.45	62.24	1.30	19.27	4.00	71.51		61.79	DMSO-d ₆
Ph (3bj, 4bj)	nativa	1.63	19.90	5.08	74.55	174.17	64.93	1.30	18.59	5.16	74.85	175.27	65.85	D_2O
4-CIC ₆ H ₄ (3bk, 4bk)	nativa	1.62	19.74	5.06	74.31	173.93	64.80	1.29	18.21	5.15	74.31	175.02	65.75	D_2O
2-FC ₆ H ₄ (3bl, 4bl)	nativa	1.14	18.79	4.99	69.21	171.63	61.45	1.11	20.40	5.27	67.99	171.75	63.27	D ₂ O
C ₆ F ₅ (3bm, 4bm)	nativa	1.63	20.11	5.37	68.30			1.35	17.53	5.64	68.05	174.02	65.21	D ₂ O
4-O ₂ NC ₆ H ₄ (3bn, 4bn)	nativa	1.65	19.87	5.17	73.97	173.55	65.76	1.33	17.85	5.28	73.97	174.61	64.80	D ₂ O

	3						4						
	δH₃	δC₃	δH₄	δC₄	δC₁	δC2	δH₃	δC₃	δH₄	δC₄	δC1	δC2	
δ(media)	1.49	19.97	4.36	72.12	173.79	64.36	1.33	18.87	4.56	71.82	174.34	64.50	
SD(δ)	0.15	0.53	0.61	1.81	1.24	1.52	0.10	1.27	0.67	2.31	1.34	1.33	

Figura44S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3ba** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY.

Figura45S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bb** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b)¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY.

Figura46S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bc** de la adición aldólica catalizada por SHMT_{*sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY.

Figura47S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bd** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY, d) HSQC y e) NOESY.

Figura48S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bg** y **4bg** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b)¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY.

Figura49S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bh** y **4bh** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY. a)

Figura50S(3.1). Espectros de RMN(CDCl₃) de las oxazolidin-2-onas derivadas de**3bi** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY; d) HSQC y e) NOESY.

Figura51S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bk** y **4bk** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b)¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY. a)

Figura52S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bl** y **4bl** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY. a)

Figura53S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bn** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY. a)

Figura54S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3ba** de la adición aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY.

Figura55S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bb** y **4bb** de la adición aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY. a)

Figura56S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bc** de la adición aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY. a)

Figura57S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bd** de la adición aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY.

Figura58S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bh** y **4bh** de la adición aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY. a)

Figura59S(3.1). Espectros de RMN (CDCl₃) de las oxazolidin-2-onas derivadas de **3bi** de la adición aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY. a)

Figura60S(3.1). Espectros de RMN (D₂O) de las oxazolidin-2-onas derivadas de **3bj** y **4bj** de la adición aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY.

e)

Figura61S(3.1). Espectros de RMN (D₂O) de las oxazolidin-2-onas derivadas de **3bk** y **4bk** de la adición aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY. a)

Figura62S(3.1). Espectros de RMN (D₂O) de las oxazolidin-2-onas derivadas de **3bl** y **4bl** de la adición aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY.

Figura63S(3.1). Espectros de RMN (D₂O) de las oxazolidin-2-onas derivadas de **3bm** y **4bm** de la adición aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) NOESY. a)

Figura64S(3.1). Espectros de RMN(D₂O) de las oxazolidin-2-onas derivadas de **3bn** y **4bn** de la adición aldólica catalizada por SHMT_{*Sth*} nativa: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC, e) NOESY y f) 1D-NOESY selectivo.

Tabla9S(3.1). Desplazamiento químico (ppm) de ¹H y ¹³C de las oxazolidin-2-ones derivadas de **3b** y **4b**.

\mathbb{R}^1	SHMT	δH₃	δC₃	δH₄	δC₄	NOE (H3-H4)	δH₃	δC₃	δH₄	δC₄	NOE (H3-H4)	RMN solvent
D 0011	1.C.C.T.	4 50	00 50	4.00	70.00	OTDONIO						
BnOCH₂ (3ba)	¥551	1.56	20.52	4.03	72.03	STRONG						CDCI ₃
BnO(CH ₂) ₃ (3bb)	Y55T	1.56	21.11	3.71	74.25	STRONG						CDCl ₃
CbzNHCH ₂ (3bc)	Y55T	1.54	19.46	4.74	76.22	STRONG						CDCl ₃
CbzNH(CH ₂) ₂ (3bd)	Y55T	1.60	21.67	3.72	70.73	STRONG						CDCl ₃
PhCH ₂ (3bg 4bg)	Y55T	1.65	21.16	3.95	75.12	STRONG	1.57	19.32	4.01	74.47	WEAK	CDCl ₃
Ph(CH ₂) ₂ (3bh 4bh)	Y55T	1.52	20.30	3.70	74.23	STRONG	1.41	19.05	3.79	73.38	WEAK	CDCl ₃
PhOCH ₂ (3bi)	Y55T	1.65	20.95	4.24	72.18	STRONG						DMSO-d ₆
4-CIC ₆ H ₄	Y55T	1.70	20.95	4.93	75.83	STRONG	1.36	20.40	4.96	75.11	WEAK	CDCl ₃
$2-FC_6H_4$	Y55T	1.64	20.14	5.28	70.24	STRONG	1.41	19.75	5.42	69.05	WEAK	CDCl ₃
4-O ₂ NC ₆ H ₄	Y55T	1.74	21.11	5.07	75.48	STRONG						CDCI ₃
BnOCH ₂ (3ba)	wild-type	1.55	20.52	4.02	72.13	STRONG						CDCl ₃
BnO(CH ₂) ₃	wild-type	1.55	21.04	3.70	74.27	STRONG	1.40	18.91	3.77	73.74	WEAK	CDCl ₃
CbzNHCH ₂ (3bc)	wild-type	1.55	19.49	4.74	76.40	STRONG						CDCI ₃
CbzNH(CH ₂) ₂ (3bd)	wild-type	1.58	25.32	3.72	70.92	STRONG						CDCl ₃
Ph(CH ₂) ₂ (3bh 4bh)	wild-type	1.52	20.55	3.72	74.02	STRONG	1.41	18.92	3.80	73.25	WEAK	CDCI ₃
PhOCH ₂ (3bi)	wild-type	1.65	20.84	4.24	72.23	STRONG						CDCl ₃
Ph (3bi 4bi)	wild-type	1.66	24.41	5.45	87.56	STRONG	0.99	20.48	5.83	84.79	WEAK	$D_2O^{[a]}$
$4-CIC_6H_4$ (3bk 4bk)	wild-type	1.64	24.21	5.43	86.57	STRONG	0.96	20.59	5.80	84.03	WEAK	$D_2O^{[a]}$
2-FC ₆ H ₄ (3bl 4bl)	wild-type	1.68	24.35	5.76	81.70	STRONG	1.06	19.68	6.07	80.57	WEAK	$D_2O^{[a]}$
C_6F_5	wild-type	1.32	21.64	5.22	72.09		1.24	19.94	6.29	77.22	WEAK	D ₂ O ^[a]
$4-O_2NC_6H_4$ (3bn 4bn)	wild-type	1.69	24.29	5.60	85.82	STRONG	0.98	20.56	5.95	83.41	WEAK	D ₂ O ^[a]

^[a]La oxazolidin-2-ona derivada de 4, para estos productos, es parcialmente soluble en $CDCl_3$, por ello se realizó los experimentos de RMN en D_2O .

Figura65S(3.1). Espectros de RMN (D₂O) de **3aa** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) 1D-NOESY selectivo. a)

Figura66S(3.1). Espectros de RMN (D₂O) de **3ab** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC.

170

171

Figura67S(3.1). Espectros de RMN (D₂O) de **3ac** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC.

Figura68S(3.1). Espectros de RMN (D₂O) de 3**ad** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC.

Figura69S(3.1). Espectros de RMN (D₂O) de **3ag** y **4ag** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) 1D-NOESY selectivo.

Figura70S(3.1). Espectros de RMN (D₂O) de 3ah y 4ai de la adición aldólica catalizada por SHMT_{Sth}
Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) 1D-NOESY selectivo.
a)

b)

e)

Figura71S(3.1). Espectros de RMN (DMSO- d_6) de **3ai** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY, d) HSQC y e) 1D-NOESY selectivo. a)

Figura72S(3.1). Espectros de RMN (D₂O) de **3ak y 4ak** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC.

Figura73S(3.1). Espectros de RMN (D₂O) de **3al y 4al** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) 1 H; b) 13 C; c) 2D 1 H- 1 H COSY y d) HSQC.

Figura74S(3.1). Espectros de RMN (D₂O) de **3an** y **4an** de la adición aldólica catalizada por SHMT_{*Sth*} Y55T: a) ¹H; b) ¹³C; c) 2D ¹H-¹H COSY y d) HSQC.

Tabla10S(3.1) Desplazamiento químico (ppm) de ¹H, ¹³C de los productos **4a**.

	3							4					
R ²	δH_3	δC ₃	δH₄	δC4	δ C 1	δ C 2	δH_3	δC ₃	δH_4	δC₄	δ C 1	δ C 2	RMN solvente
BnOCH₂ (3aa)	3.90 4.03	63.23	4.08	68.37	172.11	65.63							D_2O
BnO(CH ₂) ₃ (3ab)	3.86 4.02	63.08	3.88	69.91	172.35	69.99							D_2O
CbzNHCH ₂ (3ac)	3.87 4.03	62.69	3.98	69.24	171.76	68.24							D_2O
CbzNH(CH ₂) ₂ (3ad)	3.85 4.02	62.92	3.93	67.80	172.50	69.90							D_2O
PhCH₂ (3ag, 4ag)	3.94 4.09	63.12	4.17	71.43	172.72	70.10	3.94 4.12	60.73	4.23	72.32			D_2O
Ph(CH ₂) ₂ (3ah, 4ah)	3.82 3.97	63.06	3.82	69.22	172.46	70.23	3.76	60.90					D_2O
PhOCH₂ (3ai)	3.55 3.59	62.50	4.11	68.76	170.39	65.63							DMSO- d ₆
4-CIC₀H₄ (3ak, 4ak)	4.01 4.15	62.94	5.15	71.58	171.29	70.74	3.27 3.87	61.60	5.00	71.63			D_2O
2-FC₀H₄ (3al, 4al)	3.98 4.12	62.22	5.34	67.29	171.07	70.03	3.29 3.94	61.36	5.35	66.48			D_2O
4-O₂NC ₆ H₄ (3an, 4an)	4.03 4.15	62.70	5.27	71.31	170.95	70.50	3.31 3.90	61.38	5.14	71.92			D_2O

	3							4						
	δH₃	δC₃	δH_4	δ C 4	δ C 1	δC2	δH₃	δC₃	δH_4	δ C 4	δ C 1	δC ₂		
δ(media)	3.88 4.02	62.85	4.37	69.49	171.76	69.10	3.51 3.96	61.19	4.93	70.59				
SD(δ)	0.14 0.16	0.32	0.62	1.54	0.79	1.94	0.31 0.11	0.36	0.49	2.75				