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Prefacio

Hace años me di cuenta que queŕıa hacer ciencia, dado que siem-
pre me ha gustado cuestionar la manera en cómo se hacen las cosas,
entender y descubrir por qué se hacen y al final diseñar nuevas mane-
ras de hacer las mismas. Un d́ıa me di cuenta que los pensamientos
anteriores al mismo tiempo se pueden clasificar desde un punto de
vista filosófico como pensamientos subversivos o revolucionarios. Y
por mis años de estudio de la historia, los pensamientos subversivos
y revolucionarios siempre son dif́ıciles de asimilar y en muchas oca-
siones llevan a conflictos sociales. Aśı que por lo mismo, en el mo-
mento tienes una gran idea que vaya a revolucionar alguna causa, sin
lugar a dudas te espera un gran camino por recorrer, no solo para
implementar la idea, sino para implantarla y hacerla que se acepte.

Durante mi doctorado en el Instituto de Ciencias Fotónicas (ICFO),
aprend́ı mucha tecnoloǵıa láser y óptica, además de que aprend́ı el
marco del método cient́ıfico en la sociedad. El cient́ıfico tiene que ser
un revolucionario por naturaleza, aśı que aún después de descubrir,
entender o desarrollar algo, todav́ıa le queda la mitad del camino por
recorrer. Tiene que explicar, demostrar y probar para que al final la
sociedad acepte sus ideas.
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Abstract

To measure quantum features in a classical world constrains us to
extend the classical technology to the limit, inventing and discovering
new schemes to use the classical devices, while reducing and filtering
the sources of noise. Balanced detectors, e.g. when measuring a low-
noise laser, have become an exceptional tool to attain the shot-noise
level, i.e., the standard quantum limit for measuring light. To detect
light pulses at this level requires to decreasing and also to filtering
all other sources of noise, namely electronic and technical noise.

The aim of this work is to provide a new tool for filtering technical
and electronic noises present in the pulses of light. It is especially rel-
evant for signal processing methods in quantum optics experiments,
as a means to achieve shot-noise level and reduce strong technical
noise by means of a pattern function. We thus present the theoreti-
cal model for the pattern-function filtering, starting with a theoretical
model of a balanced detector. Next, we indicate how to recover the
signal from the output of the balanced detector and a noise model
is proposed for the sources of noise and the conditions that should
satisfy the filtering algorithm. Finally, the problem is solved and the
pattern function is obtained, the one which solves the problem of
filtering technical and electronic noises.

Once the pattern function is obtained, we design an experimental
setup to test and demonstrate this model-based technique. To accom-
plish this, we produce pulses of light using acousto-optics modulators,
such light pulses are precisely characterized together with the detec-
tion system. The data are then analyzed using an oscilloscope which
gathers all data in the time domain. The frequency-domain repre-
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sentation is calculated using mathematical functions. In this way, it
is proved that our detector is shot-noise limited for continuous-wave
light. Next, it is shown how the technical noise is produced in a
controlled manner, and how to gather the necessary information for
calculating the pattern function. Finally, the shot-noise-limited de-
tection with pulses without technical noise introduced is shown first,
and next, an experimental demonstration where 10 dB of technical
noise is then filtered using the pattern function.

The final part of this research is focused on the optimal signal re-
covery for pulsed polarimetry. We recall the Stokes parameters and
how to estimate the polarization state from a signal. Next, we intro-
duce a widely used signal processing technique, the Wiener filter. For
the final step, we show how to retrieve, under the best conditions, the
polarization-rotation angle with a signal that has 10 dB of technical
noise. Obtaining that our technique outperforms the Wiener estima-
tor and at the same time obtaining the standard quantum limit for
phase/angle estimation. Because of the correlation between pulsed
polarimetry and magnetic estimation using magnetic-atomic ensem-
bles via Faraday effect, this pattern-function filtering technique can
be readily used for probing magnetic-atomic ensembles in environ-
ments with strong technical noise.



Resumen

Medir las caracteŕısticas cuánticas en un mundo clásico no solo re-
quiere llevar al ĺımite la tecnoloǵıa clásica, sino también, inventar
y descubrir nuevos esquemas para utilizar los dispositivos clásicos,
reduciendo y filtrando las fuentes de ruido. Los detectores balancea-
dos, cuando miden un láser de bajo ruido, se han convertido en una
herramienta excepcional para alcanzar el nivel del ruido de disparo,
que es el ĺımite estándar clásico para medir la luz. Detectar pulsos
de luz al nivel de ruido de disparo requiere reducir y filtrar todas las
otras fuentes de ruido, es decir, el ruido electrónico y el técnico.

El objetivo de este trabajo es crear una nueva herramienta para
filtrar ruido tanto técnico como electrónico de pulsos de luz, que es
especialmente relevante para los métodos de procesamiento de señales
en los experimentos de óptica cuántica, como una manera de alcan-
zar el nivel de ruido de disparo y reducir fuertemente el ruido técnico
por medio una función patrón. Presentamos, por lo tanto, el modelo
teórico para el filtrado por una función patrón. Primeramente damos
el modelo teórico de un detector balanceado, luego exponemos cómo
se recupera la señal de la salida del detector balanceado. A conti-
nuación proponemos un modelo para las fuentes de ruido y las condi-
ciones que debe satisfacer el algoritmo de filtrado. Finalmente, se
resuelve el problema y se obtiene la función patrón que nos permite
filtrar los ruidos técnico y electronico.

Una vez que la función patrón se puede calcular, diseñamos un
montaje experimental para probar y demostrar esta técnica basada
en un modelo. Para tal propósito, producimos pulsos de luz usando
moduladores acusto-ópticos que producen pulsos de luz que están
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precisamente caracterizados, junto con el sistema de detección. Los
datos se analizan a continuación con un osciloscopio, reuniendo todos
los datos en el dominio del tiempo. La representación del dominio
de la frequencia se calcula utilizando funciones matemáticas. De esta
manera, se prueba que nuestro detector está limitado por el ruido de
disparo para luz continua. Después, se muestra cómo se produce el
ruido técnico de manera controlada, y cómo se reune la información
necesaria para calcular la función patrón. Finalmente, se muestra
la detección limitada por el ruido de disparo para pulsos sin ruido
técnico introducido primero, y luego, se hace una demostranción ex-
perimental con 10 dB de ruido técnico, que se filtra a continuación
usando la función patrón.

La parte final de esta investigación está enfocada a la recuperación
óptima de la señal para polarimetŕıa pulsada. Recordamos los pará-
metros de Stokes y cómo estimar el estado de polarización de una
señal. Luego, introducimos el filtro de Wiener, que es una técnica
ampliamente usada en el procesamiento de señales. Para el paso fi-
nal, mostramos cómo se recupera, bajo las mejores condiciones, el
ángulo de rotación de polarización con una señal que tiene 10 dB de
ruido técnico. Obteniendo el ĺımite estándar cuántico para la esti-
mación fase/ángulo y superando aśı el estimador de Wiener. Debido
a la correlación entre polarimetŕıa pulsada y la estimación magnética
usando conjuntos atómicos magnéticos via el efecto de Faraday, esta
técnica de filtraje de función patrón puede ser fácilmente usada para
sondear conjuntos atómico-magéticos en ambientes con fuerte ruido
técnico.
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Chapter 1

Introduction

Balanced detection provides a unique tool for many physical, biolog-
ical and chemical applications. In particular, it has proven useful
for improving the coherent detection in telecommunication systems
[1, 2], in the measurement of polarization squeezing [3, 4, 5, 6, 7],
for the detection of polarization states of weak signals via homodyne
detection [8, 9], and in the study of light-atom interactions [10]. Inter-
estingly, balanced detection has proved to be useful when performing
highly sensitive magnetometry [11, 12], even at the shot-noise level,
in the continuous-wave (CW) [13, 14] and pulsed regimes [15, 16].

The detection of light pulses at the shot-noise level with low
or negligible noise contributions, namely from detection electronics
(electronic noise) and from intensity fluctuations (technical noise),
is of paramount importance in many quantum optics experiments.
While electronic noise can be overcome by making use of better elec-
tronic equipment, technical noise requires special techniques, such as
balanced detection and spectral filtering.

Even though several schemes have been implemented to overcome
these noise sources [17, 18, 19], an optimal shot-noise signal recovery
technique that can deal with both technical and electronic noises,
has not been presented yet. In this document, we provide a new tool
based both on balanced detection and on the precise calculation of a
specific pattern function that allows the optimal, shot-noise limited,
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signal recovery by digital filtering. To demonstrate its efficiency, we
implement a pattern-function filtering in the presence of strong tech-
nical and electronic noises. We demonstrate that up to 10 dB of
technical noise for the highest average power of the beam, after bal-
anced detection, can be removed from the signal. This is especially
relevant in the measurement of polarization-rotation angles, where
technical noise cannot be completely removed by means of balanced
detectors [20]. Furthermore, we show that our scheme outperforms
the Wiener filter, a widely used method in signal processing [21].

Optical readout of magnetic atomic ensembles have become the
most sensitive instrument on Earth for measuring the magnetic field
[11, 12]. Most prominent among the magneto-optical effects are the
Faraday and the Voigt effects, which interactions of near-resonant
light with the atomic vapor have demonstrated sensitivities better
that 1ft/

√
Hz [22, 23]. The magnetic field is retrieved monitoring

the polarization of the transmitted light beam [10], and when is used
a balanced detector for measuring the polarization, the method has
intrinsic advantages, in the sense that this configuration can be used
to performed shot-noise limited measurements [13, 16], and also has
the intrinsic ability to detect very small polarization-rotation angles.
Also Faraday rotation, in the last years, have been used for spectral
filtering using several schemes and techniques [24, 25, 26, 27] making
relevant to measure with high accurancy those angles.

This thesis is organized as follows. In chapter 2 we present the
theoretical model of our model-based technique for pattern-function
filtering technical an electronic noise. In chapter 3 we show the op-
eration of this tool by designing and implementing an experiment,
where high amount of noise (technical and electronic) is filtered. In
chapter 4 we show how can be used our tool for pulsed polarime-
try, retrieving and optimal estimation on the polarization-rotation
angle. Finally in chapter 5 we present the conclusions, summarizing
the main results and the possible implications of this work.
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and M. W. Mitchell, Quantum metrology with atoms and pho-

tons, Opt. Pura Apl. 44, (2) 315–323 (2011).

• F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cerè
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Chapter 2

Theoretical model for
optimal signal recovery

In this chapter, we introduce the theoretical framework of the fil-
tering technique and show how optimal pulsed signal recovery can
be achieved. In order to optimally recover a pulsed signal in a bal-
anced detection scheme, it is necessary to characterize the detector
response, as well as the “electronic” and “technical” noise contribu-
tions [33].

This chapter is organized as follows. In section 2.1 we present
the model that we use for a balanced detector. In section 2.2, we
introduce the form of the signal recovery estimator, together with the
pattern function. In section 2.3, we obtain the conditions that should
satisfy the pattern function. In section 2.3.1, we introduce the noise
model that describes the technical noise in our system. In section
2.4, we obtain an analytical expression for the pattern function.

We leave for chapter 3 an experimental test on the pattern func-
tion together with all the experimental considerations.
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2.1 Model for a balanced detector

To model a balanced detector, see Fig. 2.1, we assume that it consists
of 1) a polarizing beam splitter (PBS), which splits the H and V
polarization components heading toward 2) two detectors PDH and
PDV , whose output currents are directly subtracted, and 3) a linear
amplifier.

Diode
Laser

Computer

Spectrum
Analyzer

HWP

Acousto−Optic
Modulator Setup

Light Pulses

Light Attenuator

RF
Input

FC

FC

Polarizer

HWP

PBS

M PD

PD

vout

Oscilloscope

Data Analysis

PBS

V

H

Balanced Detector 

Balancing Waveplate

Figure 2.1: Experimental setup. M, mirror, FC, fiber coupling, HWP,
half-wave plate. See section 3.4.3 for details on the experimental
setup.

Because the amplification is linear and stationary, we can describe
the response of the detector by impulse response functions h(τ). If
the photon flux at detector X is φX(t), the electronic output can be
defined as
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vout(t) ≡ hH ∗ φH + hV ∗ φV + vN(t), (2.1)

where vN is the electronic noise of the photodiodes, including am-
plification. Here, h ∗ φ stands for the convolution of h and φ, i.e.,
(h ∗ φ)(t) ≡

�∞
−∞ h(t − τ)φ(τ)dτ . For clarity, the time dependence

will be suppressed when possible. It is convenient to introduce the
following notation: φS ≡ φH +φV , φD ≡ φH −φV , hS ≡ hH +hV and
hD ≡ hH − hV . Using these new variables, Eq. (2.1) takes the form

vout(t) =
1

2
(hS ∗ φS + hD ∗ φD) + vN(t). (2.2)

From this signal, we are interested in recovering the differential
photon number S with minimal uncertainty, where S is defined as

S ≡
�

T
φH(t)dt−

�

T
φV (t)dt, (2.3)

where T is the time interval of the desired pulse. More precisely, we
look for an unbiased estimator Ŝ[vout(t)], i.e. Ŝ = S with minimal
variance var (Ŝ).

2.2 Signal recovery estimator

To meet the unbiased condition on Ŝ, it must be a linear function of
vout. This because S and vout —Eqs. (2.3) and (2.1)— are linear in
both φH and φV , meaning that it must be given by

Ŝ =

� ∞

−∞
vout(t)γ(t)dt. (2.4)

In Eq. (2.4), γ(t) stands as the pattern function describing the
most general linear estimator. In this work, we will consider three
cases: 1) a raw estimator, γ(t) = 1; 2) a Wiener estimator, which
makes use of a Wiener-filter-like pattern function, γ(t) = w(t), where
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w(t) represents the Wiener filter in the time domain [21], and 3) a
model-based pattern function estimator γ(t) = g(t). Notice that both
w(t) and g(t) are defined in (−∞,∞), allowing to properly choose a
desired pulse. In what follows, we explicitly show how to calculate
the model-based pattern function estimator g(t).

2.3 Conditions of the pattern function

We assume that φS, φD have known averages (over many pulses)
φ̄S(t), φ̄D(t), and similarly the response functions hS(τ), hD(τ) have
averages h̄S(τ), h̄D(τ). Then the average of the electronic output
reads as

v̄out(t) =
hS ∗ φS + hD ∗ φD

2
, (2.5)

and Ŝ =
�∞
−∞ dt g(t)

�

h̄S ∗ φ̄S + h̄D ∗ φ̄D

�

/2. In writing Eq. (2.5),
we have assumed that the noise sources are uncorrelated.

From this we observe that if a balanced optical signal is intro-
duced, i.e. φ̄D = 0, the mean electronic signal v̄out(t) is entirely due
to hS ∗ φS. In order that Ŝ correctly detects this null signal, g(t)
must be orthogonal to hS ∗ φS, i.e.

� ∞

−∞
g(t) ·

�

hS ∗ φS

�

(t)dt = 0. (2.6)

Our second condition may be seen to follow from

� ∞

−∞
g(t) ·

�

hD ∗ φD

�

(t)dt =

�

T
φD(t)dt, (2.7)

which is in fact a calibration condition: the right-hand side is a
uniform-weight integral of φD, while the left-hand side is a non-
uniform-weight integral, giving preference to some parts of the signal.
If the total weights are the same, the above condition gives Ŝ = S.
We note that this condition is not very restrictive. For example, given
h̄, φ̄, and given g(t) up to a normalization, the equation simply spec-
ifies the normalization of g(t).
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Notice that the condition given by Eq. (2.7) may still be some-
what ambiguous. If we want this to apply for all possible shapes
φ̄D(t), it would imply g(t) = const., and would make the whole exer-
cise trivial. Instead, we make the physically reasonably assumption
that the input pulse, with shape φ̄S is uniformly rotated to give φ̄H(t),
φ̄V (t) ∝ φ̄S. Similarly, it follows that φ̄D(t) ∝ φ̄S. We note that this
assumption is not strictly obeyed in our experiment and is a matter
of mathematical convenience: a path difference from the PBS to the
two detectors will introduce an arrival-time difference giving rise to
opposite-polarity features at the start and end of the pulse, as seen
in Fig. 3.5(a). A delay in the corresponding response functions h is,
however, equivalent, and we opt to absorb all path delays into the
response functions. In our experiment the path difference is ≈ 5 cm,
implying a time difference of less than 0.2 ns, much below the small-
est features in Fig. 3.5(a). Absorbing the constant of proportionality
into g(t), which comes from Eq. (2.7) and the relation φ̄D(t) ∝ φ̄S,
we find

� ∞

−∞
g(t) ·

�

hD ∗ φS

�

(t)dt =

�

T
φS(t)dt, (2.8)

which is our calibration condition.

2.3.1 Noise model

We consider two kinds of technical noise: fluctuating detector re-
sponse and fluctuating input pulses. We write the response functions
in the form hX = h̄X + δhX , for a given detector X, where the
fluctuating term δhX is a stochastic variable. Similarly, we write
φY = φ̄Y + δφY , where Y is H, V, S or D. By substituting the corre-
sponding fluctuating response functions into Eq. (2.2), the electronic
output signal becomes
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vout(t) =
1

2

�

hS ∗ φS + hD ∗ φD

�

+ vN(t)

+
1

2

�

δhS ∗ φS + δhD ∗ φD

�

+
1

2

�

hS ∗ δφS + hD ∗ δφD

�

+O(δh δφ) (2.9)

≈ 1

2

�

hS ∗ φS + hD ∗ φD

�

+ vN(t) + vT (t), (2.10)

where vT (t) ≡ 1
2
(δhS ∗ φS + δhD ∗ φD + hS ∗ δφS + hD ∗ δφD) is

the summed technical noise from both δh and δφ sources. We note
that the optical technical noise, in contrast to optical quantum noise,
scales as var (δφ) ∝ φ̄2, so that var (vT ) ∝ φ̄2. In passing to the last
line we neglect terms O(δh δφ) on the assumption δh ≪ h̄, δφ ≪ φ̄.
We further assume that vN and vT are uncorrelated.

We find the variance of the model-based estimator, Nσ ≡ var (Ŝopt),
is

Nσ =

�

�

�

�

�

� ∞

−∞
g(t)vT (t)dt

�

�

�

�

2
�

+

�

�

�

�

�

� ∞

−∞
g(t)vN(t)dt

�

�

�

�

2
�

, (2.11)

with the first term describing technical noise, and the second one
electronic noise.

To compare against noise measurements, we transform Eq. (2.11)
to the frequency domain. We note the inner-product form of Parse-
val’s theorem

� ∞

−∞
g∗(t)x(t)dt =

� ∞

−∞
G∗(ω)X(ω)dω, (2.12)

where the functionsG(ω), X(ω) are the Fourier transforms of g(t), x(t),
respectively. For any stationary random variable x(t), X(ω)X(ω′) =
δ(ω − ω′) (if this were not the case, there would be a phase relation
between different frequency components, which contradicts the as-
sumption of stationarity). From this, it follows that

�

�

�

�

�

� ∞

−∞
g(t)x(t)dt

�

�

�

�

2
�

=

� ∞

−∞
|G(ω)|2|X(ω)|2dω. (2.13)
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Then, using Eq. (2.13), we can write the noise power as

Nσ =

� ∞

−∞
|G(ω)|2|VT (ω)|2 + |VN(ω)|2dω. (2.14)

Our goal is now to find the G(ω) that minimizes Nσ satisfying the
conditions in Eqs. (2.6) and (2.8), which in the frequency space are

Ior ≡
� ∞

−∞
dω G∗(ω)HS(ω)ΦS(ω) = 0, (2.15)

Ical ≡
� ∞

−∞
dω G∗(ω)HD(ω)ΦS(ω) = ΦS(0). (2.16)

Equations (2.15) and (2.16) describe, in the frequency domain,
the orthogonality and the calibration conditions, respectively.

2.4 Solution

We will minimize the noise power Nσ (see Eq. (2.14)) with respect to
the pattern function G(ω) using the two conditions (see Eq. (2.15)
and Eq. (2.16)). We solve this by the method of Lagrange multipliers.
For this, we write

L(G, λ1, λ2) = Nσ + λ1(Ior − 0) + λ2(Ical − ΦS(ω = 0)), (2.17)

and then solve the equations

∂G∗L = 0,

∂λ1
L = 0,

∂λ2
L = 0. (2.18)



12 2.4 Solution

The first equation reads

∂G∗L = G(ω)|VT (ω)|2 + |VN(ω)|2 (2.19)

+λ1HS(ω)ΦS(ω) + λ2HD(ω)ΦD(ω) = 0,

with formal solution

G(ω) =
λ1HS(ω)ΦS(ω) + λ2HD(ω)ΦD(ω)

|VT (ω)|2+ |VN(ω)|2
. (2.20)

The second and third equations from Eq. (2.18) are the same as
Eq. (2.15) and Eq. (2.16) above. The problem is then reduced to
finding λ1, λ2 which (through the above), make G(ω) satisfy the two
constraints.

Substituting Eq. (2.20) into Eq. (2.15) and Eq. (2.16), we find

O1λ1 +O2λ2 = 0, (2.21)

and
C1λ1 + C2λ2 = Φ0. (2.22)

where

O1 ≡
� ∞

−∞

|HS(ω)|2|ΦS(ω)|2
|VT (ω)|2+ |VN(ω)|2

dω, (2.23)

O2 ≡
� ∞

−∞

H
∗
D(ω)Φ

∗
S(ω) ·HS(ω)ΦS(ω)

|VT (ω)|2+ |VN(ω)|2
dω, (2.24)

C1 ≡
� ∞

−∞

H
∗
S(ω)Φ

∗
S(ω) ·HD(ω)ΦS(ω)

|VT (ω)|2+ |VN(ω)|2
dω, (2.25)

C2 ≡
� ∞

−∞

|HD(ω)|2|ΦS(ω)|2
|VT (ω)|2+ |VN(ω)|2

dω, (2.26)
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with Φ0 ≡ ΦS(ω = 0). The solution to the set of Eqs. (2.21) and
(2.22) is then given by

λ1 =
Φ0O2

C1O2 − C2O1

, λ2 =
Φ0O1

C2O1 − C1O2

. (2.27)

It should be noted that quantum noise is not explicitly considered
in the model. Rather, it is implicitly present in φH , φV which may
differ from their average values φ̄H , φ̄V due to quantum noise. Note
that the point of this measurement design is to optimize the mea-
surement of

�

T φH(t)− φV (t)dt, including the quantum noise in that
variable. For this reason, it is sufficient to describe, and minimize,
the other contributions.
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Chapter 3

Experiment on optimal
signal recovery

In this chapter we review the techniques and methods used for doing
the experiment on “optimal signal recovery for pulsed balanced de-

tection”. The aim of this experiment is to test and demonstrate the
theory shown in chapter 2.

This chapter is organized as follows. In section 3.1, we show how
to produce the pulses of light, presenting their shapes and properties.
In section 3.2, we present the detector that we use to measure the
pulses and how it is characterized. In section 3.3, we introduce the
theory for computing a power spectral density using a time-domain
instrument like an oscilloscope. In section 3.4, we show experimen-
tally that our detector is shot-noise limited using CW light. In sec-
tion 3.5, we illustrate how to introduce technical noise in a controlled
manner in our system. In section 3.6, we calculate the optimal pat-
tern function for different optical power. In section 3.7, we show
shot-noise limited detection using pulses and also the measurement
of technically-noise limited pulses. In section 3.8, we demonstrate
that using the pattern function we filter the 10 dB of technical noise,
after balanced detection.

We leave for chapter 4 a comparison with the Wiener filter, a
widely used method in signal processing [21]. Also this experimental
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system can be used for measuring Faraday rotation on ensembles of
Rubidium atoms, or to determining polarization-rotation angles, such
results are on chapter 4.

Although some of the steps to perform the experiment are well
known in the area of quantum optics, we decide to present a short
definition or introduction in each of them.

3.1 Production of pulses of light

In our experimental setup, pulsed signals are produced using an ex-
ternal cavity diode laser at 795 nm (Toptica DL100), modulated by
two acousto-optic modulators (AOMs) in series. We have used two
AOMs to prevent a shift in the optical frequency of the pulses, and
also to ensure a high extinction ratio (re > 107). In what remains of
the section we detail how we produce the optical pulses, from a short
introduction to the AOMs to the different shapes and properties.

Acousto-Optic Modulators

An acousto-optic modulator (AOM) consists of an optical medium, a
piezoelectric transducer (PZT) and a sound absorber [34, 35]. Such
devices are used for several applications: shifting of the main fre-
quency by a radio-frequency (RF), deflection of the beam, producing
light pulses, and attenuation of beams. A RF signal is sent into the
PZT attached to the crystal, creating sound waves with frequencies
of the order of 100 MHz, the sound absorber is used to eliminate the
residual mechanical wave.

The physical principle in which is based the functioning of an
AOM is Bragg diffraction. Light is diffracted at the traveling peri-
odic refractive index grating generated by the sound wave, as can be
seen in Fig. 3.1. Where we have represented the crests of the trav-
eling sound waves that increase the refractive index (with a sound
velocity v and a wavelength Λ). For an optical wavelength λ and
θ the angle of the incident (scattered) ray with the acoustic wave-
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Figure 3.1: Bragg construction

front, the constructive interference on the scattered light is satisfied,
in what is called the Bragg’s law:

nλ = 2Λ sin θ. (3.1)

The deflected photons experience a change of frequency, this change
of frequency is proportional to the deflection angle. The deflection
angle Θ is equal to 2θ, from the Bragg’s condition. A change in the
deflection angle ΔΘ is connected with a change in the frequency Δf
of the scattered light in the following way:

ΔΘ =
λ

v
Δf, (3.2)

where v is the velocity of sound in the material.

The deflected beam is produced each time that there is an acous-
tic wave present in the material, so we can produce pulses of light
using this fact, modulating or chopping the RF input signal, of course
with the sound speed of the material as ultimate limit. We use two
“Gooch & Housego” 46080-1-LTD acousto-optic deflectors. The in-
teraction material is TeO2, the sound speed for the shear wave is
617 m/s, limiting the rise time of the pulse to 150 ns/mm beam di-
ameter [36, 37]. This device is polarization-independent due that the
acoustic movement is in the direction of the light (shear wave), how-
ever the diffracted light compared to the input power is less efficient,
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also depending on the beam shape, it is more efficient with a larger
beam diameter that with a shorter one. Still the measured diffraction
efficiency of each AOM is about 70%.
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M

1st Order
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B
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TTL Trigger
Signal

(a) (b)

Figure 3.2: (a) Setup for producing pulses of light without a frequency
shift using two Acousto-Optic Modulators. M: Mirror, L: Lens, B:
Beam Blocker, FC: Fiber Coupling, AOM: Acousto-Optic Modulator.
See Fig. C.1 for a picture of the lab setup. (b) Basic circuit for feeding
the AOMs. VCO: Voltage Controlled Oscillator, TTL: Transistor-
Transistor Logic.

Producing Pulses of Light without a frequency shift using
two Acousto-Optic Modulators (AOM System)

It is possible to produce pulses of light at the deflection angle Θ, but
because of Eq. (3.2), these pulses experience a change in frequency.
For producing pulses of light of the same frequency of the input beam
we use two AOMs, we align the first one optimizing the first order
of the diffraction of the Bragg modes, and we align the second one
optimizing the minus first order of the diffraction, see Fig. 3.2(a). In
this way, the output pulses have the same frequency as the input ones.
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The advantage of producing pulses of the same input frequency is that
we could use these pulses in an homodyne measurement, because for
an homodyne measurement both the local oscillator and the probe
beam should have the same frequency.
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Figure 3.3: Different shapes of pulses and close up from the rise and
fall times. (a) Asymmetrical pulse with fast rise time and slow fall
time, (b) Symmetrical pulse, with both fast rise and fall times (steep
pulse), (c) Close up of the fast rise time, (d) Close up for the slow
fall time (relaxed pulse: a pulse with both slow rise and fall times).

We exploit and characterize two potential advantages of this AOM
system that uses two AOMs. The first one is that we can create three
different shapes of the output pulses, and the second one is that we
have a high extinction ratio between the pulse on and the pulse off.
We measure the whole efficiency of this setup from input fiber to
output fiber, of course it depends on the alignment. The maximum
efficiency that we can obtain is about 35%.
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Different shapes of the output pulses. We design a setup for
producing three different shapes of pulses, with different rise and fall
times: both fast rise and fall times, both slow rise and fall times,
fast rise time and slow fall time. The setup was calculated using the
“ray transfer matrix analysis” [38]. The optical setup is composed of
lenses L, mirrors M, beam blockers B and the two AOMs. It is shown
in Fig. 3.3(a) and (b) two different shapes of pulses and in Fig. 3.3(c)
and (d) the fast rise time and the slow fall time, respectively.

High extinction ratio of the pulse on versus the pulse off.
For measuring the extinction ratio of the pulse on versus the pulse
off, we use a lock-in amplifier (Stanford Research Systems model
SR830 DSP), we obtained the following extinction ratios:

Asymmetrical Pulse. The light is deflected (in the first one into
the 1st order and in the second one into the -1st order) and
pulsed in both AOMs. Extinction ratio better than 1 × 10−7,
this measurement was limited by the instrument sensitivity, the
signal for the pulse was smaller that the minimum sensitivity:
1× 10−7.

Steep Pulse. The first AOM is used to deflect (into the 1st or-
der) and to pulse the light, but the second one is only used
for deflecting the light (into the -1st order) without pulsing.
Extinction ratio 6.4± 0.2× 10−6.

Relaxed Pulse. The first AOM is used to deflect (into the 1st order)
without pulsing, and the second AOM is used for deflecting
(into the -1st order) and pulsing the light. Extinction ratio
1.24± 0.3× 10−5.

3.2 Pulse detection and detector charac-

terization

Balanced detection is performed by using a Thorlabs PDB150A de-
tector [39] that contains two matched photodiodes wired back-to-
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back for direct current subtraction, amplified by a switchable-gain
transimpedance amplifier. We use the gain settings 103 V/A and
105 V/A, with nominal bandwidths of 150 MHz and 5 MHz, respec-
tively. Figure 3.4(a) shows the average pulse shapes p(t) and p′(t),
observed with bandwidth settings 150 MHz and 5 MHz, respectively.
These shapes are obtained by blocking one detector and averaging
over 1000 pulse traces (280 ns width).
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Figure 3.4: Average pulse shapes of the original pulse p(t) at 150 MHz
(blue dashed line) and the amplified one p′(t) at 5 MHz (green solid
line). For the sake of comparison, both pulses are normalized.

In this way, to determine the impulse response functions hH(t),
hV (t) of the photodiodes PDH and PDV , respectively, we first assume
the form

hX(t) =
e−t/τTIA − e−t/τX

τTIA − τX
, (3.3)

where X ∈ {H, V } indicates the photodiode. This describes a single-
pole filter with time constant τX for the photodiode [40, 41] followed
by a single-pole filter with time-constant τTIA for the transimpedance
amplifier. We choose the parameters τTIA, τX by a least-squares fit of

p̃′(t) ≡
� ∞

−∞
p(τ)hX(t− τ)dτ. (3.4)

to the measured traces p′(t) [42].
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Figure 3.5: Example of pulses seen by the balanced detector (a)
without technical noise, and (b) with technical noise introduced.

As seen in Fig. 3.5(a), a small difference in the speeds of the two
detectors leads to electronic pulses with a negative leading edge and
a positive trailing edge, even when the optical signal is balanced, i.e.
even when the average electronic output is zero.
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3.3 Power spectral density using the scope

The scope is a time-domain instrument, it is very useful to visualize
time signals and to acquire data in the time domain. The standard
approach for data analysis in the frequency domain is to use a Spec-
trum Analyzer or a new generation scope that incorporates utilities
for computing the spectral density estimation. Nevertheless for the
new tool that we want to develop, since it is a filter in the time do-
main, we use the scope and Matlab together for extracting the power
spectral density (PSD). In the end we use the same instrument for
the noise characterization and the optimization.

Matlab is very useful for processing lab data, and at least for the
whole experiment was proved that was more suitable than Labview
and Mathematica. Matlab has already functions that computes the
Power Spectral Density (PSD) or mean-square spectrum estimate.
We use the next two ones: periodogram and pwelch, these two func-
tions are very robust and fast (in fact periodogram is faster, but has
larger variances on the estimate). They need as inputs the string of
the signal for which you want to obtain the PSD estimate, the sam-
pling frequency of the data, a window function that is used to im-
prove the fast Fourier transform process, and the overlap for pwelch
function. Now, we sketch the main ideas of the calculation of the
PSD and how to interpret the results of a PSD. The ideas presented
in the next sections, and used for the calculations, were taken from
[43, 21, 44, 45].

First, we define the basic concepts: Fourier transform, fast Fourier
transform and the time and frequency resolutions. These concepts are
inside the definitions of the functions that compute the PSD estimate.
Secondly, we define the periodogram and the average periodograms,
known as Bartlett Method and Welch Method, that leads to the pwelch
function from Matlab.
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3.3.1 Fourier transform and other definitions

The following definitions are only needed by consistency, we did all
the calculations using Matlab, and using their definitions.

The Fourier transform, denoted by F (ω), of the function f(t) is
defined by

Definition 3.3.1 (Fourier Transform)

F (w) =

� ∞

−∞
f(t)e−iwxdx (3.5)

The inverse Fourier transform is defined by

Definition 3.3.2 (Inverse Fourier Transform)

f(t) =
1

2π

� ∞

−∞
F (w)eiwxdx. (3.6)

Definition 3.3.3 (Fast Fourier Transform (Matlab))
The functions X=fft(x) and x=ifft(X) implement the transform and
inverse transform pair given for vectors of length N by:

X(k) =
N
�

m=1

x(m)w
(m−1)(k−1)
N , (3.7)

x(m) =
1

N

N
�

k=1

X(k)w
−(m−1)(k−1)
N , (3.8)

where wN = e
−2πi

N is an N th root of the unity.

Definition 3.3.4 (Frequency and Time Resolutions)
The scope has a intrinsic maximum sampling frequency and a specific
sampling frequency FS depending on the scale and the number of
points that one can take. The Nyquist frequency is the half of the
FS. Referring to specific sampling frequency FS and to the N number
of points that one takes, one obtains the frequency resolution by

Δf =
FS

N
. (3.9)
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The time resolution, in a period T , or in window of time T , is given
by

Δt =
T

N
(3.10)

These quantities are coupled in the next way

Δt =
1

FS

, Δf =
1

T
. (3.11)

3.3.2 Periodogram and averaged periodograms

For a given signal f(t), we can define the instantaneous power of the
signal as f 2(t), then the total energy of the signal is the integral of
f 2(t) over all time:

POW [f(t)] =

� ∞

−∞
f(t)2dt. (3.12)

Using the Parseval’s relation we obtain:

POW [f(t)] =

� ∞

−∞
|F (ω)|2dω. (3.13)

Now, let us define a filtered function H(ω) of the function F (ω)
in the following way

H(ω) =

�

F (ω) w ∈ [w1, w2]
0 otherwise

�

. (3.14)

We can calculate the total energy in the filtered function H(ω)

POW [h(t)] =

� ∞

−∞
|H(ω)|2dt =

� ω2

ω1

|F (ω)|2dω. (3.15)
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This is why, it makes sense to call |F (ω)|2 the spectral power

density of the signal f(t) [46]. We denote the task of obtaining the
power spectral density from a signal f(t) as PSD[f(t)]. The function
periodogram in Matlab computes this spectral power density from a
discrete signal [44, 21].

We can average K periodograms PSD[f(t)] taken from K simi-
lar signals f(t) and then obtaining an average. The resulting trace
is known as Bartlett periodogram, having a strong reduction in the
fluctuations of the trace.

Another averaged periodogram is obtained by the Welch’s method,
averaging periodograms from overlapped and windowed segments.
The signal is divided into overlapping segments. The overlapping
segments are windowed, enhancing the influence of the data at the
central parts and reducing the influence of the data at the edges. For
more details check the sources [45, 21].

We use Welch’s method for characterizing our detection system,
as can be seen in Fig. 3.6.

3.4 Shot-noise-limited detection for CW

light

A balanced-amplified detector (Thorlabs PDB150A) with switchable-
gain was used to detect squeezing in our lab in the past. A previous
step to measure squeezing using a detector is to check that the detec-
tor is shot-noise limited. Step that was done by another PhD student
[6, 47].

In the present section, first we verify that our detector is theoret-
ically shot-noise limited using the parameters of the manufacturer,
next we show experimentally that the detector is shot-noise limited.
We test again that the detector is shot-noise limited and also we
test the method of calculating the PSD presented in section 3.3, for
checking consistency.
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Figure 3.6: Power spectral density using the Welch’s method for dif-
ferent input light powers. Here, it is shown frequencies from 0 to
2.5 MHz.

In Fig. 3.6 is shown the PSD for each power and each frequency
from our detector showing that our detector is shot-noise limited.
Now we proceed to detail the theory, definitions and the experimental
test.

3.4.1 Theoretical description: Shot-noise-limited
detection

The fundamental source of noise [33], the shot noise ΔIshot [A], in
the current arises because of the corpuscular character of the photons.
The shot noise of an average current I is given by

ΔIshot =
√
2eIB (3.16)

Where e is the electron charge and B is the bandwidth. Normally
the bandwidth of the detector, or the bandwidth of the lowest filter
involved in the measurement.
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The optical shot noise ΔPshot [W] is

ΔPshot =
�

2hνPB. (3.17)

Where h is the Plank constant, ν the frequency of the beam and P
is the average optical power of the beam, and B is the bandwidth.

The second source of noise is the thermal or Johnson noise ΔIthermal.

ΔIthermal =

�

4kBTB

Rsh

(3.18)

Where kB is the Boltzmann constant, T is the temperature and Rsh

is the shunt resistance.

There is another shot-noise contribution, dark noise, for the noise
that produces the dark current Idark, current produced in the absence
of light in the detector.

ΔIdark =
�

2eIdarkB (3.19)

The last contribution is the amplifier noise ΔIamplifier.

ΔIamplifier =
√
2eGBF (3.20)

G is the voltage gain and F is the excess noise factor, a composite of
different contributions inside the amplifier. The excess noise factor
is normally quoted in the technical specifications.

The total noise is

ΔItot =
�

ΔI2shot +ΔI2dark +ΔI2thermal +ΔI2amplifier. (3.21)

Definition 3.4.1 (Shot-noise-limited detection)
A detector for which ΔI2electronic = ΔI2dark +ΔI2thermal +ΔI2amplifier ≤
ΔI2shot is named as “shot-noise-limited” detector. Because the noise
is going to be limited by the shot noise of the input light, and not by
the electronic noise.

A detector that is electronic-noise limited cannot be used for a
quantum optics experiment, because you cannot detect the shot-noise
of the light.
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3.4.2 Experimental description: shot-noise-limited
detection

In order to check that our detector is shot-noise limited we need to
see the noise equivalent power (NEP) reported by the manufacturer
and to see what is the threshold of optical power for producing the
same amount of noise. Now we proceed to do this calculation.

The one-sided power spectral density of the optical power in the
case of shot noise is PSDoptical = 2hνP [W2/Hz] [35]. The shot noise
per square root of bandwidth is ΔPshot/

√
B =

�

PSDoptical [W/
√
Hz].

The noise equivalent power reported by the manufacturer in the
manual is 0.6 pW/

√
Hz [39]. Therefore from the table 3.1 our detector

is shot noise limited for powers higher that 0.8 µW.

P [mW] ΔPshot/
√
B [pW/

√
Hz]

0.4 14.14
0.1 7.069

0.001 0.707
0.0008 0.6323

Table 3.1: Shot noise per
√
B (ΔPshot/

√
B) vs optical power (P )

Predojević [6, 47] measured the noise of our detector finding that
the electronic noise of the whole system with 400 µW of input power
was 14 dB below the shot-noise limit. This result is consistent with
these calculations.

3.4.3 Experimental setup

From the Fig. 2.1, we use a DL-100 Toptica Laser [48], the central
frequency is set to λ = 794.9 nm (D1 transition of Rubidium 87) [49].
It is relevant to be at this wavelength for the potential applications of
light interacting with 87Rb [13, 47, 7, 50]. We couple the light into a
single-mode fiber (for spacial cleaning of the mode), and we send this
light to the AOM setup, described in section 3.1. Here, we produce
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the light pulses using a basic RF circuit. The setup and the circuit
are shown at Figs. 3.2(a) and 3.2(b), respectively. The output light
of the AOM setup is coupled into a single-mode fiber, and sent to a
polarizer, a Half-Wave Plate (HWP) and a Polarizing Beam Splitter
(PBS). These three last elements are used for controlling the power of
the beam. Next, we have a balancing HWP and finally the balanced
detector is composed by a PBS, and the two photodiodes ( PDH and
PDV ), which are inside the Thorlabs detector PDB150A.

As a summary, this setup can produce pulses of light without a
frequency shift of the input light, these pulses are resonant with D1
line of 87Rb, producing pulses with repetition rates from few mHz
to 4 MHz, and three different shapes of pulses as shown in section
3.1. We can control the input power (Polarizer+ HWP+PBS) that
is sent to the balanced detector (PBS + Balanced Detector). We
can analyze the voltage produced at the balanced detector with a
Spectrum Analyzer or with an Oscilloscope.

3.4.4 Shot-noise-limited detection

From Eq. (3.17), we can see that the variance of the optical power
(the shot-noise squared) is proportional to the optical power:

ΔP 2
shot ∝ P . (3.22)

From Eqs. (3.18), (3.19), (3.20) we can deduce that the electronic
noise power does not depends on the optical power, we can write it
like:

ΔP 2
elec ∝ P

0
. (3.23)

Then, making use of the setup presented in Fig. 2.1, and to-
gether with the technique presented in section 3.3 for obtaining the
PSD using the scope. We obtain that our detector is shot-noise lim-
ited with a very good margin for high frequencies. The results of this
measurement are presented in Fig. 3.6. Such results are consistent
with previous observations done by Predojević [6, 47]. The obser-
vations done before were limited by the Spectrum Analyzer whose
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Figure 3.7: Power spectral density estimate using the Welch method
for different input light powers. Here, it is shown frequencies from
0 to 1 kHz, it can be seen that below 300 Hz, it is not shot-noise
limited.

minimum frequency was 9kHz [51]. Nevertheless, for us it is possible
to go lower calculating the PSD using the data acquired using the
scope, see section 3.3. Having data that is barely shot-noise limited
for higher frequencies than 300 Hz, see Fig. 3.7.

Equations (3.22) and (3.23) can be combined into one equation

ΔP 2
total = A+ B · P . (3.24)

Nevertheless, this last equation is not complete. There is another
noise called technical noise, which are form by intensity-noise fluc-
tuations, which are proportional to the optical power square [33].
Therefore the total noise power is

ΔP 2
total = A+ B · P + CP

2
. (3.25)
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In the next section we show how we produce technical noise in
controlled way.

3.5 Producing technical noise in a con-

trolled manner

In order to prove that it is possible to remove technical noise, first we
need to produce it in a controlled manner. To this end, we introduce
technical noise in our system perturbing the main frequency of the
AOMs using the circuit described in Fig. 3.8. The main frequency
is produced by a voltage controlled oscillator (VCO) set to 80 MHz.
Then, it is split with a power splitter, one of the arms is mixed with
a signal from an arbitrary wave generator (AWG) and attenuated,
whereas in the other arm the signal is passed by a phase shifter.
Finally, both signals are put back together with a power combiner.
In this way, we have a main frequency of 80 MHz and sidebands at
the frequency of the signal introduced with the AWG. We can then
program the AWG with technical noise for a particular frequency and
bandwidth, as illustrated in Fig. 3.9, for introducing an arbitrary
functions into the AWG we follow the protocol from the appendix B.

AWG

AOM

AOM

VCO

Phase
Shifter

Attenuator

Switch
Amplifiers

Combiner
PowerPower Splitter

Figure 3.8: Scheme of the electronic circuit used to introduce tech-
nical noise into the AOMs. See text for details. See Fig. C.2 for a
picture of the lab setup.

In our setup, we have fixed the parameters of the circuit and the
AWG for generating about 10 dB of technical noise for an optical
power of 400 µW with a duty cycle of the pulses of 1/3.
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Figure 3.9: Illustration of noise contributions in the power spectrum
of a train of pulses. Thin red curve shows the electronic noise of
the detector, i.e., with no optical signal introduced. Blue medium
curve shows power spectrum with no introduced technical noise. This
shows narrow peaks at harmonics of the pulse repetition frequency
rising from a shot-noise background. The roll-off in signal strength
is due to the 5 MHz bandwidth of the detector. Thick green curve
shows power spectrum with an introduced technical noise with central
frequency of 5 MHz and FWHM bandwidth of 1 MHz.

3.6 Calculating the optimal pattern func-

tion

To measure the noise spectra upon which the pattern function will
be based, we use an oscilloscope (Lecroy Wavejet-324), rather than
a spectrum analyzer. This allows us to use the same instrument for
noise characterization and optimization as we will later use to acquire
signals to process by digital filtering.

We collect 5×105 samples in a 1000 µs acquisition time containing
a total of 800 pulses ∼400 ns duration, with a duty cycle of 1/3. For
this train of pulses we compute the power spectral density (PSD) for
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Figure 3.10: Power spectral density from a train of 800 pulses, con-
sidering three cases: signal without technical noise (blue line), signal
with technical noise (bold green line), and electronic noise (red thin
line).

three cases: 1) signal without added technical noise, 2) signal with
added technical noise, and 3) the electronic noise. Figure 3.10 shows
an example of PSD calculated for these cases. From these PSDs we
can then extract the parameters necessary for computing the opti-
mal pattern function, namely electronic background, technical noise
power and shot-noise power. Using these parameters, and following
the method explained in section 2, we have calculated the optimal
pattern function g(t) for different average powers of the beam, from
0 to 400 µW in steps of 20 µW.

3.7 Shot-noise-limited detection with pulses

Because the pulses are non-overlapping, as seen in Fig. 3.5, we can
isolate any single pulse by keeping only the signal in a finite window
containing the pulse, to get a waveform as illustrated in Fig. 3.11.
Also shown there is the optimal pattern function. This illustrates
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Figure 3.11: Example of cutting of the pulses (blue thin line) and the
corresponding pattern function (red thick line).

some qualitative features of the optimal pattern function, which is
1) orthogonal to the residual common-mode signal hS ∗ φS, which
first goes negative and then positive, 2) well overlapped with the
differential-mode signal hD∗φD, which is positive, and 3) smooth with
some ringing, to suppress both high-frequency and low-frequency
noise.

Definition 3.7.1 (Estimators)
For each pulse we compute the estimators Ŝraw, ŜW and Ŝopt, using
pattern functions γ(t) = 1 (raw estimator), γ(t) = w(t) (Wiener
estimator) and γ(t) = g(t) (optimal model-based estimator), respec-
tively.

Definition 3.7.2 (Wiener filter)
The Wiener filter w(t) can be defined as the Fourier transform of the
frequency domain representation of the Wiener filter W (ω), given by
the ratio of the cross-power spectrum of the noisy signal with the
desired signal over the power spectrum of the noisy signal [21]. For
more details see the appendix A.3.
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3.7.1 Shot-noise limited detection with pulses

We first show that the system is shot-noise limited in the absence of
added technical noise. For this, we compute the variance of Ŝraw, this
variance is a noise estimation, computed from a pulse train without
technical noise, as a function of optical power P . We fit the resulting
variances with the quadratic var (Ŝraw) = A+BP +CP 2, and obtain
A = (4.5 ± 0.3) × 10−20J2, B = (2.4 ± 0.1) × 10−22J2/µW and
C = (6.7 ± 0.6) × 10−26J2/µW 2. The data and fit are shown in
Fig. 3.12(a), and clearly show a linear dependence on P , a hallmark
of shot-noise limited performance.

3.7.2 Measuring technical noise with pulses

Now, we proceed as before with the exception that in this case we
introduce technical noise to the signal. We obtain the following fitting
parameters: A = (4.5±0.3)×10−20J2, B = (1.9±0.1)×10−22J2/µW
and C = (4.12± 0.05)× 10−24J2/µW 2.

We observe from Fig. 3.12(b) that the noise estimation for the
data that has technical noise exhibits a clearly quadratic trend, in
contrast to the linear behavior where no technical noise is introduced.
The results shown in Figs. 3.12(a) and 3.12(b) prove that, with
our designed system, it is possible to introduce technical noise in a
controlled way.

3.8 Filtering 10 dB of technical noise us-

ing an optimal pattern function

To illustrate the performance of our technique when filtering technical
noise, we introduce a high amount of noise —about 60 dB above
the shot noise level at the maximum optical power— to the light
pulses produced by the AOMs. After balancing a maximum of 10 dB
remains in the electronic output, which is then filtered by means of
the optimal pattern function technique.
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Figure 3.12: Computed noise estimation as a function of the optical
signal power (a) without and (b) with technical noise introduced.
Circles: experimental data, solid line: quadratic fit.

We have verified the correct noise filtering by comparing the re-
sults with shot-noise limited pulses. For this purpose, we compute
var (Ŝopt), the variance of the optimal estimator for each power, and
for each data set, the shot-noise limited and the noisy one. Figure
3.13 shows the computed noise estimation as function of the optical
power for both. Notice that the two noise estimations are linear with
the optical power. Moreover, we observe that both curves agree at
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∼ 91± 5%, using the ratio of the slopes, which allows us to conclude
that, by using this technique, we can retrieve shot-noise limited pulses
from signals bearing high amount of technical noise.
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Figure 3.13: Computed noise estimation, using the optimal pattern
estimator, as a function of the optical power for shot-noise limited
pulses (blue circles) and pulses with technical noise (green stars).
Their corresponding quadratic fits are shown in red dashed and cyan
lines, respectively.



Chapter 4

Optimal signal recovery for
pulsed polarimetry

Optical readout of magnetic atomic ensembles have become the most
sensitive instrument on Earth for measuring the magnetic field [11,
12]. Most prominent among the magneto-optical effects are the Fara-
day and the Voigt effects, which interactions of near-resonant light
with the atomic vapor have demonstrated sensitivities better that
1ft/

√
Hz [22, 23]. The magnetic field is retrieved monitoring the po-

larization of the transmitted light beam [10], and when is used a
balanced detector for measuring the polarization, the method has in-
trinsic advantages, in the sense that this configuration can be used to
performed shot-noise limited measurements [13, 16], and also has the
intrinsic ability to detect very small polarization-rotation angles, see
Fig. 4.1. Also Faraday rotation, in the last years, have been used for
spectral filtering using several schemes and techniques [24, 25, 26, 27]
(the first and the last two references uses Faraday anomalous disper-
sion optical filter -FADOF-) making relevant to measure with high
accurancy those angles.

The pattern function developed in chapter 2 and tested in chap-
ter 3 can also be used for optimally recover the polarization from
a pulsed of light. In this chapter, we recall the foundations of the
characterization of the polarization state of the light, namely the
Stokes parameters —see section 4.1. For a further introduction in
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Figure 4.1: The Faraday effect and the balanced detection. Lin-
ear polarized light passes through an atomic medium, the circular
components of linearly polarized light (equal in amplitude) acquire
different phase shifts, leading to a rotation ϕ of the linearly polarized
light. Also, a different in absorption between the components causes
ellipticity in the transmitted light beam.

the subject and more details about polarimetry and ellipsometry see
[52, 53]. Later, we show how to estimate the polarization state and
the polarization-rotation angle —see sections 4.2 and 4.3. Finally, it
is calculated the noise angle estimation for the polarization-rotation
angle using the pattern function —see section 4.5.

4.1 Stokes parameters

The determination of the polarization state from a light beam can be
described in terms of four observables, known as the Stokes parame-
ters. Such parameters describe completely any polarization state of
the light. The S0 parameter expresses the total optical intensity. The
S1, S2, S3 parameters describe the polarization state [54, 55].

The same task can be done using pulses of light. In the context of
classical optics, it is possible to fully determined the polarization state
of a single pulse, for example using the technique of the four-detector
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photo-polarimeter [56]. Nevertheless for quantum optics, it is not
possible to fully determined the polarization state of a quantum pulse,
due to uncertainties and expected values from the Stokes parameters
are connected [57, 58, 59, 60, 61].

To measure with high precision the polarization state from a pulse
of light can be a critical task [61, 62] that can lead to applications on
measuring magnetic fields. Optical magnetometers, based on optical
readout of magnetic atomic ensembles, are currently the most sensi-
tive devices [11, 12]. The optical readout is done by a polarimeter
that is prepared to measure the rotation angle from a linear polarized
beam.

The polarization state of the light can be described using the
Stokes parameters, and visualized using the Poincaré Sphere, see Fig.
4.2. It is a set of four parameters {S0, S1, S2, S3} that fully charac-
terizes the polarization state of the light, they were defined by G. G.
Stokes in 1852 [54]. They describe the preference of the light for a
given polarization:

S0. Corresponds to the total intensity I or energy density in the light.

S1. Quantifies how H (linear horizontally polarized light) or V (linear
vertically polarized light) is the light,

S2. Quantifies how 450 (linear 450 polarized light ) or −450 (linear
−450 polarized light ),

S3. Quantifies how R (right circularly polarized light) or L (left cir-
cularly polarized light) is the light.

The mathematical description of the Stokes parameters is given by:

S0 ≡ EHE∗
H + EV E

∗
V ,

S1 ≡ EHE∗
H − EV E

∗
V ,

S2 ≡ EHE∗
V − EHE∗

V ,
S3 ≡ i (EHE∗

V − EV E
∗
H) .

(4.1)

Where EH and EV are the complex amplitudes of the electric field E
in the polarization basis (ǫ̂H , ǫ̂V ).



42 4.1 Stokes parameters

2ψ

2ζ
ρ

S

S2

3

S1
Figure 4.2: Representation of the Stokes parameters in the Poincaré
sphere showing the polarized beam defined by the set of coordinates
(ρ, 2ψ, 2ζ).

In the case of fully polarized light S0 is given by:

S0 =
�

S2
1 + S2

2 + S2
3 . (4.2)

The Stokes parameters can be written in spherical coordinates
(ρ, ψ, ζ) as follows:

S0 ≡ ρ
P ,

S1 ≡ ρ cos(2ψ) cos(2ζ),
S2 ≡ ρ sin(2ψ) cos(2ζ),
S3 ≡ ρ sin(2ζ).

(4.3)

Where we have introduced the parameter

P =

�

S2
1 + S2

2 + S2
3

S0

, (4.4)

as the degree of polarization. Note that the effective polarization-
intensity ρ is written ρ = PI. For a beam that is fully polarized
ρ = I.
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The Stokes parameters, in spherical coordinates, can easily be
represented in the Poincaré sphere [55], see Fig. 4.2.

4.2 Estimation of the polarization state

To measure the Stokes parameters is needed an apparatus capable of
separating orthogonal pairs of polarizations. It is possible to measure
the S1 and the S2 using a setup like the one in Fig. 2.1, varying the
angle of the half-wave plate.

Fixing the half-wave plate angle-position for retrieving the S1

Stokes parameters we send a V (linear vertically polarized) pulse
followed by a H (linear horizontally polarized) pulse. Measuring the
signal depicted in Fig. 4.3.
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Figure 4.3: Example of linearly polarized pulses seen by the balanced
detector. Voltage[V] vs time[µs].

To estimate the polarization state of each pulse is computed its
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time integral. Obtaining e1 = 0.0268 for the first pulse and e2 =
−0.0279 for the second one, that corresponds to S1/S0 = −0.97 and
S1/S0 = 0.99 respectively.

4.3 Estimation of the polarization-rotation

angle

Now, we focus our attention in estimating the polarization-rotation
angle ϕ from a linear polarized beam, see Fig. 4.1. As a particular
case of Eq. (2.1), and introducing the rotation-angle ϕ explicitly we
obtain

vout(t) = hH ∗ φS sin
2
�π

4
+ ϕ

�

− hV ∗ φS cos
2
�π

4
+ ϕ

�

+ vN(t).

(4.5)

Where for ϕ = 0, we have the “balanced condition”.

As a further simplification we take hH ≈ hV ≈ hS

2
, and neglecting

the electronic noise, thus the main component of the signal is

vout(t) ≈
hS

2
∗ φS sin(2ϕ) (4.6)

Remark 4.3.1
The estimators Ŝraw, ŜW and Ŝopt, previously defined in definition
3.7.1 can be approximately calculated using the last expression Eq.
(4.6) as electronic output. Also is a good approximation to calculate

the derivative of the estimator with respect to the rotation-angle (dŜ
dϕ
)

using Eq. (4.6), although for a computer is the same to calculate the
derivative of the full expression in Eq. (4.5).
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4.4 Wiener estimator

In order to apply the Wiener filter it is needed to construct and ideal
version of the signal or the desired signal, according to the definition
of the Wiener filter, see in definition 3.7.2.

In order to create the ideal signal we take the model of the im-
pulse response functions in Eq. (3.3), together with the model of the
output voltage in Eq. (2.1) without electronic noise, this lead us to an
expression of the idealized signal. Then we can compute the Wiener
filter for each signal, and in such way obtaining the Wiener estima-
tor, see definition 3.7.1. The details for computing the Wiener filter
are found in the book of Saeed Vaseghi [21], a short description is
presented in the appendix A.3.

In Fig. 4.4(a) is shown the idealized signal, together with a signal
with no technical noise, in Fig. 4.4(b) we have a signal that has a
couple of dBs of technical noise and together with the one that is
Wiener-filtered.

4.5 Optimal estimation of the polarization-

rotation angle

The experimental setup that we have implemented, see Fig. 2.1,
can perform also as a pulsed signal polarimeter. For instance, it is
possible to determine a small polarization-rotation angle ϕ from a 45◦

linear polarized light pulse. Along these lines, we make use of three
estimators Ŝraw, ŜW and Ŝopt to determine the amount of noise on
the estimation of the polarization-rotation angle. From the obtained
results, we show that the model-based estimator outperforms the
other two.

We proceed to calculate the noise on the polarization-rotation
angle ϕ estimation, for this determination we calculate the variance
of ϕ. We notice that the Taylor approximation of the variance of
Ŝ(ϕ) is
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Figure 4.4: Wiener filtering of pulses of light. (a) Construction of the
ideal signal from a pulse that has not technical noise, (b) Wiener-
filtered pulse from one that has a couple of dBs of technical noise.

var (Ŝ) ≈
�

dŜ

dϕ

�2

var (ϕ). (4.7)
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For small angles ϕ, the function Ŝ(ϕ) is approximately linear on ϕ,
so the contribution from higher order terms can be disregarded.

Therefore, the noise on the angle estimation is

var (ϕ) =
var (Ŝ)
�

dŜ
dϕ

�2 . (4.8)

We can then compute this expression using the three before men-
tioned estimators. For such task we use the experimental data to-
gether with an analytical approximation of the derivative, that takes
as input the measured data, see the remark 4.3.1 for details. Figure
4.5 depicts the noise angle estimation, showing that the optimal pat-
tern function performs better than the other estimators when elimi-
nating the technical noise and reducing the electronic noise. In par-
ticular, the based-model estimator surpasses the Wiener estimator,
which is a widely used method in signal processing [21].
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Figure 4.5: Noise angle estimation as a function on the optical power.
Raw estimators with technical noise (green bold line) and without
(blue medium line). Wiener estimator with technical noise (pink
diamonds). Model-based estimators with technical noise (green stars)
and without (blue circles). For the sake of visualization the results
are presented in a semi-log graph.



Chapter 5

Conclusions

We have studied in theory and with an experimental demonstration,
the optimal recovery of light pulses via balanced detection. We devel-
oped a theoretical model for a balanced detector and the noise related
to the detection of optical pulses. We minimized the technical and
electronic noise contributions obtaining the optimal (model-based)
pattern function. We designed and implemented an experimental
setup to test the introduced theoretical model. In this experimental
setup, we produced technical noise in a controlled way, and retrieved
shot-noise limited signals from signals bearing about 10 dB of techni-
cal noise after balanced detection. Finally, we compare against näıve
and Wiener filter estimation for measuring rotation angles, and con-
firm superior performance of the model-based estimator.

The results presented here might lead to a better polarization-
rotation angle estimations when using pulses leading to probe mag-
netic atomic ensembles in environments with technical noise [15, 63].
This possibility is especially attractive for balanced detection of sub-
shot-noise pulses [6, 13], for which the acceptable noise levels are still
lower.
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5.1 Outlook

The first application that we had in mind from the beginning of the
project is to combine the theory and the calculation procedure for
estimate the noise of the pulses of light for producing Pulsed Polar-

ization Squeezing, see more details in the appendix A.4. It is possible
to produce squeezing using the techniques that were developed here
using the setup shown in Fig. 5.1.
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Figure 5.1: Production of pulsed polarization squeezing.

The setup, and all the characterization procedures are ready to
undertake this task, the only negative input is that our optical para-
metric oscillator (OPO) that produces the polarization squeezing is
a little degraded from its initial state, as a normal consequence of
aging.

At this time, several tasks have been planned for improving again
the production of squeezing and so, in the near future produce pulsed
polarization squeezing with a good degree of squeezing.
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The other in house application will be magnetic field estimation
using pulses of light that can be undertaken by Vito-Giovanni Lu-
civero another PhD student that was working with me in the exper-
imental realization of the present project.

The setup of two acousto-optic modulators is currently used by
Federica Beduini because of the high extinction ratio higher that
1×10−7 that we can obtain from the pulses on and off, see section
3.1. She is using the setup for an experiment on “entanglement and
squeezing”.

The knowledge obtained programing the arbitrary waveform gen-
erator will be available for other members of the group, but also is
now spreading on other experimental groups. Since the production
of noise, even if is not perfect, has several applications for testing
prototypes and proof-of-principle experiments.
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Appendix A

Background Information
and detail calculations

A.1 Signal processing methods

From the book of Saeed Vaseghi [21].

A signal can be defined as the variation of a quan-
tity by which information is conveyed regarding the state,
the characteristics, the composition, the trajectory, the
course of action or the intention of the signal source: “A

signal is a means to convey information”.

The need of extracting a piece of information from a weak or noisy
or complex signal have created the field of: signal processing theory.

Signal processing methods have evolved in algorithmic complexity
aiming for optimal utilization of the information in order to achieve
the best performance. In general the computational requirement of
signal processing methods increases, often exponentially, with the
algorithmic complexity. Depending on the method used, digital signal
processing algorithms can be categorized into one or a combination
of four broad categories. These are non-parametric signal processing,
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model-based signal processing, Bayesian statistical signal processing
and neural networks.

Non-parametric methods. As the name suggests, they do not use
a parametric model. They process the signal as a whole wave-
form or sequence. As a drawback, these methods do not use
any parametric form of the signal so they do not take advantage
of this information.

Model-based methods. These methods uses the structures on the
signals to process them. As a drawback, these methods process
badly a signal that do not fulfill the pattern or the structure
that was assumed.

Bayesian statistical methods. These methods are based on Bayesian
interference theory, see [21] for more information.

Neural networks. These methods resemble the biological neurons,
where each neuron can perform a simple task, but the process-
ing of the signal is done by the network, where several neurons,
interconnected and with a hierarchically structured, process the
signal.

A.2 Parseval’s theorem and

Wiener-Khinchin’s theorem

Theorem A.2.1 (Parseval’s theorem)
Let F (ω) and G(ω) be the Fourier transform of f(t) and g(t), respec-
tively. Then
� ∞

−∞
f(t)ḡ(t)dt =

� ∞

−∞

�
� ∞

−∞
F (ω)e2πiωtdω

� �
� ∞

−∞
G(ω′)e−2πiω′tdω′

�

dt,

=

� ∞

−∞
F (ω)

� ∞

−∞
G(ω′)

�
� ∞

−∞
e2πit(ω−ω′)dt

�

dω′dω.

=

� ∞

−∞
F (ω)

�
� ∞

−∞
G(ω′)δ(ω − ω′)dω′

�

dω,

=

� ∞

−∞
F (ω)G(ω)dω.�
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We can show a partial demonstration of the Wiener-Khinchin’s
theorem that states that the Fourier transform of the auto-correlation
function is the power spectral density of the process. The Wiener-
Khinchin theorem is proved using stochastic processes [64], here we
will prove the particular case of deterministic functions.

From the definition of the Fourier Transform we find that:

� ∞

−∞
|F (w)|2dt =

�
� ∞

−∞
f(t)e2πiωtdt

� �
� ∞

−∞
f(t)e−2πiωtdt

�

,

=

� ∞

−∞

�
� ∞

−∞
f(t)f(t+ τ)dt

�

e−2πiωτdτ.

=

� ∞

−∞
h(t, τ)e−2πiωτdτ.�

For obtaining the second line we made the transformation t →
t + τ , we have defined implicitly the auto-correlation function for
deterministic signals.

h(t, τ) =

� ∞

−∞
f(t)f(t+ τ)dt. (A.1)

We want to clarify some potential confusions, PSDs can be spec-
ified as one-sided functions of only positive frequencies, or as (two
times smaller) two-sided functions of positive and negative frequen-
cies. Noise PSDs are mostly one-sided in the engineering disciplines,
since we measure them using an electronic spectrum analyzer, but
often two-sided in physics and in maths, since we obtain them using
the Fourier transform. But having this clarification in mind it is easy
to make theory and experimental data compatible.

A.3 Wiener filter estimator

The Wiener filter estimator ŜW can be derived from the frequency
domain Wiener filter output X̂(ω) [21] define as
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X̂(ω) ≡ W (ω)V (ω), (A.2)

where W (ω) and V (ω) are the Wiener filter and the electronic output
in frequency domain, respectively.

We define W ′(ω) ≡ W ∗(ω) and w′(t) ≡ w∗(t) and make use of
the inner product of the Parseval’s theorem (see theorem A.2.1), see
Eq. (2.12)

� ∞

−∞
W ′(ω)Vout(ω)dω =

� ∞

−∞
w′(t)vout(t)dt. (A.3)

Then the Wiener filter estimator ŜW is
�∞
−∞ w′(t)vout(t)dt corre-

sponding to Eq. (2.4) for γ(t) = w′(t).

The Wiener filter W (ω) is

W (ω) =
|V ∗

ideal(ω)Vout(ω)|
|Vout(ω)|2

. (A.4)

In order to compute the Wiener filter it is necessary to construct
the ideal signal Videal(ω), a signal without all noise contributions.

A.4 Theory of pulsed polarization squeez-

ing

In this section, it is characterized some features of “pulsed polariza-
tion squeezing”. We show a formal proof that a state with zero aver-
age field and quadrature squeezing, when is combined with a strong
coherent state of the orthogonal polarization, quantum features of
the quadrature variables are transferred onto the polarization vari-
ables. Obtaining in this way, that each pulse satisfies the definition
of polarization squeezing.

Firstly, we need the definitions of quadrature operators, quadrature
squeezing, Stokes operators, and the generalized uncertainty principle
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to motivate the definition of polarization squeezed state. Secondly, the
commutator relations, and a way to split the operator into “classical
amplitude” plus a “noise operator”.

Definition A.4.1 (Quadrature operators)
The quadrature operators (X̂+

j , X̂
−
j ) of mode j, in terms of the cre-

ation â†j and annihilation âj (âj and â†j satisfy the commutation re-

lations [âj, â
†
k] = δjk, [â

†
j, â

†
k] = 0, [âj, âk] = 0) are

X̂+
j ≡ â†j + âj, X̂−

j ≡ i(â†j − âj), j = x, y. (A.5)

The generalized quadrature operator is:

Xj(θ) ≡ X+
j cos θ +X−

j sin θ. (A.6)

Remark A.4.1
The commutation relation of the quadrature operators (X̂+

j , X̂
−
k ) is

[X̂+
j , X̂−

k ] = 2iδjk. (A.7)

XX
+ +

(b)(a)

X
−

X
−

Figure A.1: Example of Quadrature Squeezing. Uncertainty cir-
cle/ellipse for (a) coherent state (output from a standard laser) and
(b) squeezed state (output from the OPO).

Definition A.4.2 (Quadrature squeezing)
Quadrature squeezing means that the level of quantum fluctuations
of one quadrature component (X+ or X−) is less than level corre-
sponding to the coherent state (VX+ = VX− = 1), see Fig. A.1.
Mathematically

VX+ < 1 or VX− < 1. (A.8)
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Where VA is the variance of the operator A defined by

VA ≡ (ΔÂ)2 ≡ Â2 − Â2. (A.9)

And finally X̂+, X̂− are the quadrature operators, see definition
A.4.1 for details.

In order to produce polarization squeezing we combine the pulsed
local oscillator and the quadrature squeezed in a polarization beam
splitter (PBS), see Fig. 5.1. The Stokes operators describe the
polarization state after the PBS, written in terms of the creation
â†x/y and annihilation âx/y operators of two orthogonal modes x and
y.

Ŝ0 ≡ â†xâx + â†yây,

Ŝ1 ≡ â†xâx − â†yây,

Ŝ2 ≡ â†xây + â†yâx,

Ŝ3 ≡ i
�

â†yâx − â†xây
�

.

(A.10)

The Ŝ0 corresponds to the total coherent excitation, whilst the others
describe the polarization state. The Ŝ0 operator commutes with the
others: [Ŝ0, Ŝj ] = 0, j = 1, 2, 3, whereas the remaining operators
satisfy the commutator:

[Ŝ1, Ŝ2] = 2iŜ3, (A.11)

and the cyclic ones thereof.

Theorem A.4.1 (The generalized uncertainty principle)
If two operators Â and B̂ satisfy the commutation relation [Â, B̂] =

iĈ, it follows that

VAVB ≥ 1

4
|C|2. (A.12)

The commutator Eq. (A.11) leads (from the theorem A.4.1) to a
restriction on the means and variances by uncertainty relations.

V1V2 ≥ |Ŝ3|2, V3V1 ≥ |Ŝ2|2, V2V3 ≥ |Ŝ1|2. (A.13)
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Where Vj ≡ VSj
and VSj

is defined in Eq. (A.9). This give rise to
the formal definition of a polarization squeezed state, in analogy to
definition A.4.2.

Definition A.4.3 (Polarization squeezed state)
A state is called polarization squeezed if

Vj < |Ŝk|, j = k. (A.14)

An intuitive definition of a polarization squeezed state is a quantum
state of light in which the level of quantum fluctuations of one Stokes
operator lies below the level corresponding to the coherent polariza-
tion state.

The quantum description of the output of an Acousto-Optic Mod-
ulator (AOM) is similar to the description of a Beam Splitter (BS).
We have that the x-mode (horizontally polarized mode) in the Fig.
5.1 is

âx(t) = R(t)â1 + T (t)âv. (A.15)

Where the 1-mode is a coherent state and the v-mode is a vacuum
state, R(t) and T (t) are the reflectance and the transmittance that
must satisfy the following relations: |R|2 + |T |2 = 1, and R∗T −
RT ∗ = 0, in order to satisfy the commutation relations.

We can write âj as classical amplitude or coherent excitation
αj plus the noise operator δâj. We can observe that αj|δâj|αj =
0. In this notation â1 = α1 + δâ1 and âv = δâv. The y-mode (verti-
cally polarized mode) ây will be limα2→0 α2 + δâ2.

In this notation with R ≡ R(t) and T ≡ T (t), the Stokes param-
eters become:
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Ŝ0 = R2α2
1 + α2

2 +R2α1δX
+
1 + α2δX

+
2 + α1RTδX+

v ,

Ŝ1 = R2α2
1 − α2

2 +R2α1δX
+
1 − α2δX

+
2 + α1RTδX+

v ,

Ŝ2 = 2Rα1α2 cosφ+ α1RδX2(−φ) + α2(TδXv(φ) +RδX1(φ)),

Ŝ3 = 2Rα1α2 sinφ+ α1RδX2(
π
2
− φ) + α2(TδXv(φ− π

2
) +RδX1(φ− π

2
)).

(A.16)
Where δX̂+

j ≡ δâ†j + δâj, δX̂−
j ≡ i(δâ†j − δâj) are the quadrature-

noise operators, and the generalized quadrature-noise operator is
δXj(θ) ≡ δX+

j cos θ + δX−
j sin θ.

The mean values of Eq. (A.16) are:

Ŝ0 = α2
1R

2 + α2
2, Ŝ1 = α2

1R
2 − α2

2,

Ŝ2 = 2Rα1α2 cosφ, Ŝ3 = 2Rα1α2 sinφ.
(A.17)

From Eq. (A.16), we compute the variances of the Stokes param-
eters.

V0 = α2
1R

4(δX+
1 )

2+ α2
2(δX+

2 )
2+ α2

1(RT )2(δX+
v )

2,

V1 = α2
1R

4(δX+
1 )

2+ α2
2(δX+

2 )
2+ α2

1(RT )2(δX+
v )

2,

V2 = α2
1R

2(δX2(−φ))2+ α2
2T

2(δXv(φ))
2+ α2

2R
2(δX1(φ))

2,

V3 = α2
1R

2(δX2(
π
2
− φ))2+ α2

2T
2(δXv(φ− π

2
))2+ α2

2R
2(δX1(φ− π

2
))2.

(A.18)

For the case φ = 0 they become
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V0 = α2
1R

4VδX+
1
+ α2

2VδX+
2
+ α2

1(TR)2VδX+
v
,

V1 = α2
1R

4VδX+
1
+ α2

2VδX+
2
+ α2

1(TR)2VδX+
v
,

V2 = α2
1R

2VδX+
2
+ α2

2T
2VδX+

v
+ α2

2R
2VδX+

1
,

V3 = α2
1R

2VδX−

2
+ α2

2T
2VδX−

v
+ α2

2R
2VδX−

1
.

(A.19)

Where V
δX̂

+/−
j

is (the variance) (δX̂+/−
j )2−δX̂+/−

j 2 = (δX̂+/−
j )2.

The v-mode and 1-mode are vacuum and coherent states, respec-
tively, then VδX̂+

1
= VδX̂−

1
= VδX̂+

v
= VδX̂−

v
= 1. The 2-mode is a

quadrature squeezed state VδX̂+
2
< 1, VδX̂−

2
> 1.

V0 = α2
1R

2 + α2
2VδX+

2
,

V1 = α2
1R

2 + α2
2VδX+

2
,

V2 = α2
1R

2VδX+
2
+ α2

2.

V3 = α2
1R

2VδX−

2
+ α2

2.

(A.20)

Finally, using Eqs. (A.17) and (A.20), and limα2→0 we can satisfy
definition A.4.3 (V2 < |S1|) as

limα2→0(α
2
1R

2VδX+
2
+ α2

2) < limα2→0(α
2
1R

2 − α2
2)

α2
1R

2VδX+
2

< α2
1R

2 (A.21)

Whenever R(t) = 0, because VδX̂+
2
< 1. �
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Appendix B

Introducing functions into
the Arbitrary Waveform
Generator (AWG)

The Arbitrary Waveform Generator can produce, in time domain,
any waveform with some limitations. The model TGA1242 has a
maximum frequency of 40 MHz. And this gives at the same time the
minimum time interval:

Δt =
1

40 MHz
. (B.1)

Another important parameter is the number of points Npoints
that will have the arbitrary waveform, we observed that is better to
give numbers that are a power of two: Npoints = 2n. Typically, we
used 2048 or 4096 points.

We design the waveform in the frequency space, and we inverse
Fourier transform for obtaining the time-domain sequence. Both in
frequency space and in time domain we use the same Npoints, for a
reasonable definition of the functions it is needed to use at least 1024
points, but is better to use 4096 points. We do not see an substantial
improvement putting more points.
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We prepare the obtained values as input for a LabView program
that helps to transfer the values to the AWG. The values should
be prepared as follows: the minimum value inside the AWG is “0”,
and this corresponds to -1, the maximum inside the AWG is “4096”,
and this corresponds to 1. We prepare all this using a Mathematica
program called Arbitrary Function Production.nb, that was develop
by us.1

We introduce the obtained values using the “GPIB port” of the
AWG, and a computer in which we have installed LabView and the
GPIB card. We used the LabView program (project): tga1240.llb
for transferring the values to the AWG. For doing the transfer, after
opening the LabView project, one needs to open the subprogram test
tga 1240 driver.vi, and later initialize the program. Be sure to have in
both, the AWG and the subprogram, the same address for the GPIB
port. Using this program one should create blank arbitrary functions
with the name and the corresponding number of points. Next, one
need to open the subprogram tga ARBITRARYINPUT.vi, using this
program one can read the output of the Mathematica program and
introduce the values into the AWG.

1ArbitraryNoiseProduction.nb also works
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Experimental setup in the
lab

Figure C.1: Picture of the optical setup for producing pulses in the
lab.
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Figure C.2: Picture of the electronic setup for driving the AOMs. It
is not show the arbitrary waveform generator.
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