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To César Rennó-Costa for our trips in USA and around Europe. To Nina

Valkanova for the first year in the lab and for all the others that came later.

To Sytse Wierenga for being there from the beginning till the end of this

thesis. To Inma Silla, for saying ”it’s done, just finish it” at the right time

giving me that little push that I needed, one year ago! To Anna Carreras

for her encouragement during these years. To Maŕıa Piles, for being like my
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Abstract

Decisions are the result of a deliberative process that evaluates the suitabil-

ity of specific options. In most cases, decisions are reported through actions

that allow for an interaction with the physical world. Studies about deci-

sion making have been mainly conducted by using restricted tasks in which

humans or animals are requested to discriminate between two options, such

discrimination being based either on a perceptual property of a stimulus or

on the voluntary control of motor responses. However, the influence that

factors related to embodiment, such as experience during a task or motor

cost, might have on this process has frequently been ignored. In this thesis,

we adopt a combined experimental and theoretical approach to examine

the effect that such factors have on decision making, even when optimal

decisions do not depend on them. Our results confirm an important bias of

behavior and neural activity resulting from factors related to embodiment

that are external to the goal of the task itself. In our studies, we enhance

existing computational models of binary decision making to account for this

bias that, in turn, shed some light on the neural mechanisms producing it.

The thesis concludes with the presentation of a single model that integrates

all the findings presented and that could be used as a new framework for

the conducting of future research. Altogether, the results included here

translate into significant progress in the understanding of embodied deci-

sion making, providing new insights into neural mechanisms and theoretical

models.

xi





Resumen

Las decisiones son el resultado de un proceso de deliberación que evalúa

la idoneidad de opciones espećıficas. En la mayoŕıa de los casos, las deci-

siones son comunicadas a través de acciones que permiten una interacción

con el mundo fsico. Los estudios acerca de la toma de decisiones han estado

principalmente dirigidos usando tareas restringidas en las que, a humanos

o animales, se les pide escoger entre dos opciones. La elección se basa en

una propiedad perceptual de un est́ımulo o en el control voluntario de res-

puestas motoras. Sin embargo, la influencia que factores relacionados con

la corporificación de la toma de decisiones podŕıan tener en este proceso se

ha ignorado frecuentemente. En esta tesis, adoptamos un enfoque experi-

mental y teórico combinado para examinar la influencia que estos factores

tienen en la toma de decisiones, incluso cuando las decisiones óptimas no

dependen de ellos. Nuestros resultados confirman un importante sesgado

del comportamiento y de la actividad neuronal causados por factores que

son externos al objetivo de la tarea en śı. En nuestros estudios, realzamos

modelos computacionales existentes de tomas de decisiones binarias para

interpretar este sesgado que, a su vez, nos da una intuición del mecanismo

neuronal que los está produciendo. La tesis concluye con la presentación de

un único modelo que integra todos los hallazgos presentados y que podŕıa

utilizarse como nuevo marco teórico para investigaciones futuras. En gene-

ral, los resultados incluidos aqúı se traducen en un significante progreso en

la comprensión de la toma de decisiones corporificada, aportando nuevos

conocimientos sobre los mecanismos neuronales y modelos teóricos.
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Resum

Les decisions són el resultat d’un procés de deliberació que avalua la ido-

nëıtat d’opcions espećıfiques. A la majoria dels casos, les decisions són

comunicades a través d’accions que permeten una interacció amb el món

f́ısic. Els estudis sobre la presa de decisions han estat principalment diri-

gits fent servir tasques restringides a les quals, a humans o animals, se’ls

demana escollir entre dues opcions. L’elecció es basa en una propietat per-

ceptual d’un est́ımul o al control voluntari de respostes motores. No obstant

això, la influència que factors relacionats amb la corporificació de la presa

de decisions podrien tenir en aquest procés s’ha ignorat freqüentment. En

aquesta tesi, adoptem un enfocament experimental i teòric combinat per tal

d’examinar la influència que aquests factors tenen en la presa de decisions,

fins i tot quan les decisions òptimes no depenen d’ells. Els nostres resultats

confirmen un important esbiaixat del comportament i de l’activitat neuro-

nal degut a factors externs a l’objectiu de la tasca en śı. Als nostres estudis,

realcem models computacionals existents de preses de decisions binàries per

tal d’interpretar aquest esbiaixat que, a la vegada, ens dóna una intüıció del

mecanisme que l’està produint. La tesi conclou amb la presentació d’un únic

model que integra tots els descobriments presentats i que podria utilitzar-se

com a nou marc teòric per a recerques futures. En general, els resultats

inclosos aqúı es tradueixen en un significant progrés en la comprensió de

la presa de decisions corporificada, aportant nous coneixements sobre els

mecanismes neuronals i models teòrics.
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Chapter 1

Introduction

A problem can’t be solved with the same level of

thinking that created it

Albert Einstein

Even in an apparently simple case of behavior, such as that of a

rat exploring and exploiting a new environment, the brain must properly

perceive, learn, act and remember. But how are body, brain and mind

connected to achieve simple and complex patterns of behavior? Finding an

answer to this question has been the central goal of psychology, physiology

and neuroscience over the past centuries. However, it seems that interest

has normally been focused on problems related to the mind and brain and

their unilateral communication with the body, while the potential influence

of the body on the mind-brain processes has been usually ignored. Over the

course of the last centuries, the brain and mind problem has been addressed

from many perspectives, whereas the body has mainly been seen as the end

point of their interactions. It is commonly believed by modern scientists

that the mind is a process emerging from the brain and, in turn, providing

an answer to part of the ancient question. But what is the role of the body

in behavior? Is it a pure receptor of motor commands or does it also bias

the selection of actions, thus determining the way we act and the flow of

information we perceive, learn and remember? Recent neuroscience research

1
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has invested great efforts into investigating the influence of embodiment in

decision making. However, there is still much to be discerned. In this thesis,

we will focus on the implications that some factors related to embodiment

have in neural activity and behavior during decision making.

In neuroscience, decision making has been widely studied using spe-

cific tasks, usually in a controlled environment such as a lab. These tasks

generally consist in problems which are less complex than those confronted

by humans or animals every day. However, there is a common belief that

these initial results will provide the basis for future research about more

complex decision-making situations. To cite an example, today we get a

good understanding of how the brain makes decisions under well-constrained

cases of constant sensory information or motor costs presented in isolation

(see Section 1.3 and 1.4). Activity of neurons recorded in certain brain

regions has shown to be correlated with decisions, and some models have

been proposed to account for this correlation and behavior (see Section 1.2).

This way, experimental and theoretical neuroscience creates a closed loop in

which experimental data is explained by models, and models predict neural

data and behavior to motivate future experimental research. In this thesis,

we contribute to the investigation of decision making; more concretely, we

address the question of how factors related to the embodiment of an agent,

including experience within a task or motor cost, could influence decision

making. First, we use a specific artificial embodied system to investigate

how acquisition of information in memory could be influenced by decision

making, and how it could change the way in which it is later retrieved from

it (Chapter 2). Next, we describe the neural correlates of the behavioral

bias caused by memory, context and motor cost in previous published tasks

(Chapter 3 and Chapter 4) as well as in our own experimental paradigm

(Chapter 5).

Using robot experiments, we equip a mobile agent with a cognitive

architecture that enables it to explore, learn and exploit novel environments

to survive. The cognitive system is provided with one of the best-known

and most broadly accepted decision-making models, an integrator model
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(see Section 1.5). In this study, our aim was to investigate the generaliza-

tion of such a model in a real-world situation and to assess the possible

implications that it might have, in terms of behavioral performance and ac-

quisition of knowledge. In Chapter 2, we start by comparing an integrator

model with a model that does not accumulate information to make deci-

sions. This comparison leads to the detection of a fundamental difference

in the way that information is gathered from the environment and might

be further used. As opposed to the non-accumulator model, that stores

and retrieves discrete actions from memory, the integrator model gathers

information from goals and the actions to reach them are self-generated.

Next, we extend the cognitive architecture with a reactive control system

that is able to regulate the internal drives of the artificial agent. We use

this new extended system to investigate the integrator model with an even

more realistic system. Several questions arise from this theoretical study;

among them are the following: what is the neural mechanism that allows the

retrieval of information from memory in its specific temporal order? How

do the physical constraints of an agent influence action selection? How are

actions represented in the brain? Does context itself influence the way we

act? To what extent are internal drives attached to the physical body? We

approach some of these questions in subsequent chapters.

In order to succeed foraging, the artificial agent needed to solve one

fundamental problem (among others): to perform the appropriate behavior

based on the sequentiality of the external events. In the cognitive archi-

tecture (DAC, see Section 1.7), this is achieved by a proper chaining of

the memory space based on perceptual information. Hence, information

stemming from both, memory and perception, is integrated in the service

of the goal oriented action of the agent, causing a bias in its behavior. The

specific neural mechanism underlying this biasing, however, is not well un-

derstood. This is the question that we intend to address in Chapter 3. To

this purpose, we begin by examining the behavioral bias provoked by trial

history that has been previously observed in monkeys performing a motor

decision-making task (see Section 1.4) in which two kinds of trials requir-

ing opposite behavior (cancel a movement or move) can occur. Then, we
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investigate the neural substrate (related to memory) causing that bias in

behavior during decision formation. Interestingly, we find that the firing

rate of neurons in the dorsal premotor cortex (PMd) involved in decision

making do not exhibit any modulation, whereas the across-trial variability

of their response does. To further understand the mechanism causing such

modulation of behavior and neural activity we use a mean-field approxima-

tion of a cortical decision-making model. The computational study predicts

the existence of a system that monitors trial history and biases competition

between populations of neurons. This bias in the competition generates the

aforementioned modulation in the behavior and in the across-trial response

variability, while the mean-firing rate does not vary.

Once we have provided a neural substrate of the bias that experience

within a task has in decision formation, we assess the way in which the con-

text (task) itself can also affect experience within a task and, subsequently,

decisions. In Chapter 4, we comprehensively expound two decision-making

experiments that have shown to provide apparently contradictory results

(see also Section 1.3) when subjects or monkeys are presented with stimuli

that change over time. Using the same decision-making model as in Chapter

3 we provide a plausible mechanism by which the behavioral policy adopted

in each context might operate. Both experimental datasets can be explained

through the same neural mechanism: the apparently opposed results can

be captured with a context-dependent signal that evolves differently within

each task, possibly due to an optimization of the speed-accuracy trade-off

that requires a different policy in each context. This study is pioneering

in the sense that, for the first time, it interprets and unifies the results of

two separate decision tasks that seemed to be paradoxical until now. We

also add experimental data recorded at the University of Montreal that ver-

ifies one of the predictions of our model, thus proving the validity of our

approach.

The final contribution of this thesis consists of both experimental and

modeling work. First, we use an experimental paradigm to assess the influ-

ence that motor cost of actions might have on perceptual decision making.
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To this end, we manipulate the cost of actions required to report perceptual

decisions. Our results show that human subjects exhibit a significant bias

towards the actions requiring less biomechanical cost, even when it reduces

the overall performance accuracy. Next, we use a spiking neural model of

binary decision making, sharing the same principles of our previous models,

to reproduce the obtained experimental data. We predict that the motor

cost of each action is represented in the weight of the lateral connectivity

of the population of neurons involved in decision formation, and that this

weight is learned over life experience. To account for trials in which subjects

simply give up reporting that they are unable to make a decision, we use the

response variance that emerges from the neural populations. In our model,

the giving up occurs when the variance is above a predefined threshold. In

this way, we also elaborate on a plausible mechanism to interpret the role

of the neural response variability in decision making.

In summary, this thesis has meant significant progress in the research

of decision making due to the description of neural substrates correlated

with behavior and the resulting advance in the development of biologically

constrained decision-making models that might lead to the design of future

research. In what follows, we will provide a brief overview of the different

ways in which the mind, brain and body issue has been addressed in the

past. Next, we provide the necessary background for the reader to fully

understand the basis of our studies and their particular contributions. We

review, although non-exhaustively, the state of the art in decision making

by delineating some of the experimental paradigms and models used, as

well as some of the neural correlates that have already been shown. This

introduction finishes with the definition of embodied decision making and

how we approach it in this thesis.

1.1 Historical perspectives

During the Middle Ages and the early Renaissance, the work of the Ro-

man physician Galen of Pergamon (AD 129 - AD 210/216) was the most

influential in the fields of anatomical and medical belief and practice (Ergil,



6 introduction

1997; Said, 1975). Galen proposed that mind and body could not be sep-

arated, and that the complex actions performed by the body were caused

by material interactions between its parts and by forces produced by the

mind. From Galen’s point of view, sensations were collected by the body

and sent to the mind for further analysis. After this process, the mind sent

the appropriate instructions back to the body in order to activate the cor-

responding nerves and muscles that would trigger complex behaviors. He

stated that the link between body and mind is the brain, as opposed to

what Aristotle had suggested centuries before: that the heart was respon-

sible for this connection. Galen also provided comprehensive and accurate

(in comparison with the ones preceding it) descriptions of the anatomy of

the brain, as well as of the structure and function of the ventricular system

(Rocca, 1997).

Prior to Galen’s work, the ancient Greek philosophers Epicurus and

Democritus had argued that the world is composed of small tiny particles,

which Democritus called atoms (Kirk, 1983), and that the behaviors that

we observe are caused by the physical interactions of those particles (like

the duck that Vaucanson built in 1739, see Fig. 1.1). Therefore, they pos-

tulated that human or animal behavior is deterministic, -just as any other

physical phenomena- and that free will does not exist. It was Plato who,

by presenting his Theory of forms, declared that the world that we see is

not the real one but a ”copy” of it, and that the true world only exists

in a metaphysical level that we cannot penetrate (Cooper and Hutchinson,

1997). It is in that world, Plato proposed, that mind and behavior are

connected. A contemporary Greek physician, Hippocrates, also suggested

a compromise between the material and nonmaterial views, and so he in-

ferred that humans are composed of material and nonmaterial processes.

He suggested that the physical behaviors produced by the human body are

governed by a nonphysical process, namely the mind (Grammaticos and

Diamantis, 2008). He was also the first known person to believe that psy-

chopathologies were caused naturally, due to factors such as living habits,

and not by external entities such as gods. Galen interpreted and extended

Hippocrates’ theories, hence becoming the most important reference during
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Figure 1.1: Vaucanson’s digestive duck. The duck is an automaton created by
Jacques Vaucanson in 1738. Once activated, it was difficult to tell the difference
between it and a real duck. It could flap its wings, move and digest grain. The
duck was able to produce a complex pattern of behavior just by means of physical
interactions of its parts. Sketch of how the digestive apparatus of the automaton
duck might look like, done from an American observer (From Chapuis and Gélis
(1928))

the rise of medieval universities in Europe. To Galen, the body was a com-

plex physical machine and the mind the nonmaterial unit sending causal

forces to it. For several centuries, the work of Galen was largely accepted

without question. It was in the sixteenth century, though, when Andrea

Vesalius revised and corrected some of the anatomical work done by Galen,

thus marking the beginning of modern anatomical science (O’Malley, 1964).

In the seventeenth century, René Descartes played a critical role in

defining the way in which brain and behavior should be studied, and pro-

vided neural science with an important impetus and a shift of direction.

He was a firm believer that our body actions as well as those of animals

could be understood in terms of physical cause and effect (Aristotle theory

of efficient cause). To account for involuntary, reflexive behavior of humans

and animals, Descartes proposed that a physical chain of cause and effect

takes place unintentionally: a sensory stimulus activates specific organs that

connect with the brain which, in turn, prompts muscle response (Clarke,

982). Later, Pavlov described this finding as the starting point of his exper-

iments about classical conditioning (Pavlov, 1927). Descartes believed that
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animals were purely driven by reflexive behavior and that, therefore, they

are merely biological automata. From Descartes point of view, voluntary

actions can only be performed by humans because they possess a mind that

is independent from the body (mind-body or Cartesian dualism) and that

connects with it at a specific location in the brain, known as the pineal

gland (De Rosa, 2009).

By the end of the eighteenth century, the functioning of the nervous

system had been thoroughly detailed, and the speculation that the brain

might be functionally divided appeared for the first time. Moreover, neu-

rophysiological studies had revealed that nerve cells produced electricity,

and that this electricity was used by cells to communicate between them-

selves. Advances in the development of technology for microscopy along

the early 1800s provided the necessary tools for the histology of the ner-

vous system that culminated with the investigations of Camillo Golgi and

Santiago Ramón y Cajal (Dröscher, 1998). Golgi developed an impregna-

tion method that makes all the parts of a neuron -the body, the dendrites

and the axon- visible, thus allowing neuroanatomists to track connections

between neurons (Golgi, 1873). This is the technique that Ramón y Cajal

used to gain new insights into the organization of the nervous system, there-

fore postulating that it is made up of many individual signaling elements:

the neurons (Fig. 1.2), as opposed to being a mass of fused cells as it was

believed until then (Ramon y Cajal, 1977). Ramón y Cajal is considered

the father of the modern neuroscience by many.

Although the study of brain, mind and behavior has been of great

interest for a long time, most of the progress towards their understanding

has been achieved during the last two centuries. One of the reasons for this

was the lack of technology that limited the study of the brain to behavioral

observations and speculations until that time. Another reason was the ab-

sence of a proper scientific methodology, which made theories weak in some

cases and difficult to integrate. What neuroscience aims to do is precisely to

provide a common scientific methodology, so that the nervous system can

be investigated and related to cognition and behavior. To that end, it splits
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Figure 1.2: Drawing of a retinal neuron by Ramón y Cajal (1899)

the problem into subproblems or levels of analyses that range from molecu-

lar to cognitive types. In the last century, neuroscience has become one of

the leading scientific fields thanks to the advances attained in molecular bi-

ology and electrophysiology. The new technology has provided a wide range

of new possibilities that allows, for instance, the detailed study of complex

processes occurring within a single neuron. In this way, the interest has

focused on the activity of neurons forming the brain and their correlation

with behavior. Out of this emerging field, decision making has been of par-

ticular interest and a great effort has been made towards the description of

its basic underlying neural mechanisms. Decisions are seen as the ability to

select a proper action in order to reach specific goals which, in most cases,

culminate in a physical movement. Accordingly, human movements are not

always just a mere result of deterministic physical interactions between tiny

particles without free will, but the consequence of intended behavior.

1.2 Decision making

A decision can be defined as a choice between alternatives resulting in an

action or proposition. A deliberative process assessing the suitability of

each alternative option is known as the decision-making process. To study

the neural mechanisms underlying this process and the resulting behavioral

outcome, research has followed two approaches: theoretical and/or experi-

mental research. Experiments have mainly focused on perceptual and motor
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decision making in which humans or animals have to make decisions based

on the discrimination of a perceptual feature of a stimulus or on the se-

lection between reaching movements, respectively. Neurophysiological data

have shown that the activity of neurons in areas such as the superior collicu-

lus(Munoz et al., 2000; Ratcliff et al., 2007; Shen and Paré, 2007), the lateral

intraparietal area (Roitman and Shadlen, 2002; Leon and Shadlen, 2003),

the frontal eye fields (Gold and Shadlen, 2003), the prefrontal cortex (Kim

and Shadlen, 1999), the supplementary motor area (Scangos and Stuphorn,

2010) and the dorsal premotor cortex (Mirabella et al., 2011) is modulated

during the decision-making process. Theoretical research focused on com-

putational models has helped to explain the observed behavioral and neural

data, and has been very useful to inspire new experiments, therefore pro-

ducing a closed loop between experimental and theoretical studies.

Both experimental and theoretical approaches have been evaluated

by using controlled situations in which the decision usually depends solely

on one variable. However, in real-world situations, this is unlikely to be

the case. First, to make a perceptual decision reported with an action, one

cannot easily neglect the potential influence that the physical constraints

of our body might have in the assessment of each alternative, probably bi-

asing the value of each option (Sabes et al., 1998; Cos et al., 2011, 2012).

Second, the decision-making process might also be influenced by past expe-

rience with an adaptation of preferences that depend on previous outcomes

(Emeric et al., 2007). And last, the context or situation in which decisions

are made might also have an impact in the process. That is, even if the

decisions should solely be based on one variable (for instance, one of the

visual properties of a stimulus), other factors such as memory or motor cost

should not be ignored.

In order to explain the experimental data, many models have been

proposed. A branch of well-accepted models are, for example, the ”sequen-

tial sampling” or ”integrator” models (Stone, 1960; Laming, 1968; Ratcliff,

1978; Usher and McClelland, 2001; Mazurek et al., 2003; Bogacz and Gur-

ney, 2007; Link and Heath, 1975). These models propose that sensory in-
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formation is sampled and accumulated in favor or against each alternative

option. When a certain level of activity is reached, the decision towards the

option is made. The dynamics of these models follow the trend observed

in the activity of neurons recorded in brain areas involved in the decision

process. Alternatively, more biologically plausible models known as attrac-

tor models have been widely used to understand the connections, dynamics

and interactions between neural populations (Wang, 2002; Albantakis and

Deco, 2009). Although all these models have been of great help in the

development of an accurate explanation for behavioral and neural data in

constrained tasks, their generalization to real-world situation has not been

proven yet.

1.3 Perceptual decision making

Deciding on the basis of noisy perceptual information is a common situa-

tion with which the brain is confronted every day. A proper classification

of the noisy sensory input is fundamental to guide behavior in a daily ba-

sis. This is the reason why tasks in which humans or animals have to

discriminate a perceptual property of a stimulus and to report it with an

action (sensory-motor tasks) have become increasingly popular in decision-

making research (Mountcastle et al., 1990; Britten et al., 1992; Maunsell and

Van Essen, 1983; Uka and DeAngelis, 2006; Allred et al., 2005; Baylis et al.,

2003; Dolan et al., 1997; Freedman et al., 2002, 2003; Grill-Spector et al.,

2000; Op de Beeck et al., 2001; Rainer et al., 2004; Uchida and Mainen,

2003). One example of these tasks is the vibrotactile frequency discrimina-

tion task, developed by Mountcastle et al. in the 60s. Subjects are required

to compare the frequencies of two tactile stimuli separated by a time gap

and decide which of the two is the greatest. Neurons in the primary so-

matosensory areas have shown to increment their firing rate with increasing

tactile frequency. Another example is the face/object discrimination tasks

in which subjects are asked to classify whether a noisy image contains a

face or not. Responses of neurons in the inferior temporal cortex are highly

correlated with complex visual stimuli such as faces (Afraz et al., 2006). In
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the following sections, we review a well-established task for visual discrimi-

nation, the so-called ”Random-dot Motion (RDM) Discrimination”, which

is considered to be a standard in the study of decision making and is the

basis for our studies in Chapter 4 and Chapter 5.

RDM task and variations

The RDM task has been widely used to study binary decision making (Brit-

ten et al., 1992, 1993; Roitman and Shadlen, 2002; Shadlen et al., 1996). In

this task, subjects are required to detect the net direction of motion (they

commonly have to discriminate between two possible motion directions) of

some dots displayed in a screen (Fig. 1.3). Only a restricted amount of dots

move coherently in the same direction, whereas the remaining dots change

direction randomly. The difficulty of the trial depends on the percentage

of dots that move coherently towards the same direction. Generally, the

direction identified has to be reported either with a saccade or a reaching

movement towards one of the two targets that are placed on opposite sides

of the screen (commonly right/left or bottom/up).

Experiments have been typically conducted using a ”reaction time”

(RT) version of the task (Fig. 1.3A) (Roitman and Shadlen, 2002), or a

”fixed duration” (FD) version of it instead (Fig. 1.3B) (Shadlen et al., 1996;

Shadlen and Newsome, 2001). In the first case, subjects or monkeys have to

report the detected motion as fast as possible. On the contrary, in the FD

version, subjects or monkeys report their choice when they are instructed

to do so (for instance, by means of a visual cue). The FD task allows

researchers to study the accuracy of choices and its neural correlates whereas

the RT task also provides an additional behavioral measurement: the speed

in the selection of choices. It has been shown that RT and accuracy of

choices have an inverse relationship, i. e. RT decreases as the difficulty

of the trial increases, while the opposite occurs with accuracy (Fig 1.4A).

An additional advantage that the RT task has over the FD one is that the

decision formation process can be more easily separated from any motor

planning activity.
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Figure 1.3: Illustration of a RDM task. The trial starts with the appearance of
a central visual stimulus. Human subjects or monkeys are requested to hold the
stimulus with their arm or fixate their gaze (reaching/saccade task). After some
random delay, two targets indicating the possible directions of motion appear on
the screen, followed by the moving dots. (A) Reaction time task. Humans or
monkeys have to report their choice by selecting one of the two targets as fast
as they can. (B) Fixed duration task. After a fixed duration, the moving dots
disappear from the screen informing humans or monkeys that they must report
their choice.

The activity of neurons in the middle temporal area (MT/V5) has

shown to be tuned to the direction of visual motion and causally linked with

task performance (Ditterich et al., 2003; Newsome and Paré, 1988; Salzman

et al., 1990, 1992). MT and medial superior temporal (MST) areas project

to the lateral intraparietal cortex (LIP) that is connected to the frontal eye

fied (FEF) and the superior colliculus (SC) (Andersen et al., 1990, 1992;

Asanuma et al., 1985; Blatt et al., 1990; Fries, 1984; Lewis and Van Essen,

2000). Because of its anatomical placement between the sensory and the

motor areas, LIP has been the focus of most neurophysiological research in

decision making. LIP is involved in high order processes such as selection of

saccade targets, working memory or representation of elapsed time (Chafee

and Goldman-Rakic, 2000; Friedman and Goldman-Rakic, 1994; Janssen

and Shadlen, 2005; Leon and Shadlen, 2003). Using both the FD and RT

versions of the RDM task with monkeys, Shadlen et al. (Shadlen et al., 1996;

Shadlen and Newsome, 2001; Roitman and Shadlen, 2002) provided evidence

of the implication of LIP in decision formation. Single neurons and target
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locations were selected based on the response fields (RF) of the neurons; i.

e. targets were arranged in such a way that the activation of a neuron under

study indicated the monkeys’ choice. Neurons with their RF in the selected

target increased their activity during the decision formation, reached a peak

of maximum activation some milliseconds before movement execution, then

declining again to baseline levels. Same neurons showed a decrease in their

activity when the opposite target was selected. Moreover, the slope of the

activity build-up depended on the amount of motion coherence (motion

strength) present on the stimulus (Fig. 1.4B). Difficult trials implied longer

RTs and a smoother slope in the build-up activity as opposed to easy trials.

The time course of the activation of LIP neurons suggests that sensory

evidence is integrated before a decision is made. When the accumulation of

evidence reaches a decision bound, the selection is made.

In the recent years, several variations of the RDM task have been

proposed. On the one hand, Churchland et al. (2008) and Niwa and Dit-

terich (2008) augmented the difficulty of the task by increasing the number

of possible motion directions. In particular, Churchland et al. (2008) used

both a two-choice RDM task and a four-choice RDM task with the aim to

compare behavioral and neural results between them and to generalize the

observations of binary decision making to decision making with multiple

alternatives that are more similar to what a living organism generally faces.

Similar to what was observed in the binary RDM task, the behavior of mon-

keys directly depended on the motion strength in terms of speed-accuracy,

and neurons in LIP exhibited a similar modulation of their activity.

Huk and Shadlen (2005) studied the temporal integration of visual

evidence by perturbing the strength of motion during short periods of time

(100ms) within a trial (motion pulses). Behavioral results showed that the

motion pulses exerted an effect over the RTs and the accuracy of monkeys

performing the task. Positive pulses (pulses that favored the net base di-

rection of motion) increased the probability of the monkeys of selecting the

correct target, whereas negative pulses (pulses that favored a direction op-

posite to the base direction of motion) had the opposite effect. Moreover,
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Figure 1.4: Behavioral and neural modulation in the RDM task. (A) Percentage
of correct responses and mean RTs for one monkey along different values of motion
coherence (strength). (B) Activity of neurons in LIP during decision formation.
The plot shows the average firing rate of 54 neurons for three different values of
motion coherence. Left panel, responses are aligned to the onset of the moving
dots. Shaded box shows activity of neuron in MT for preferred (solid lines) and
anti-preferred (dashed lines) directions. Right panel, responses are aligned to move-
ment onset for same values of motion strength as in Left panel. Activity of LIP
neurons resembles an integration of the difference between MT neurons response
for preferred and anti-preferred directions. Adapted from Gold and Shadlen (2007)

monkeys responded faster in trials with positive pulses in comparison with

trials with negative pulses. Neural activity in LIP showed a sustained bi-

ased due to the presence of the pulse, thus supporting the idea that neurons

in LIP integrate sensory evidence. Interestingly, early pulses had a greater

effect in performance and neural activity than late pulses.

A recent study by Thura et al. (2012) questioned the observed effect

that early and late information seemed to exert on the decision process.

The authors conducted an experiment that they called the variable coher-

ence motion discrimination task (VMD). As it is the case with the RDM

task, subjects are required to either detect or predict the current or final
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direction of the majority of moving dots presented on a screen. The main

difference with respect to the RDM task is that the strength of motion

increases (positive pulse) or decreases (negative pulse) many times during

the course of a trial. The results suggest that, in this case, subjects are in-

fluenced to a greater extent by late information than by early information,

contrary to what was observed by Huk and Shadlen (2005). In a subsequent

study where a task similar to the VMD was used (Thura and Cisek, 2014),

neurons of monkeys recorded from the dorsal premotor cortex (PMd) and

the primary motor cortex (M1) reflected the time course of sensory evidence.

In Chapter 4, we propose a mechanism by which the two paradoxical results

with early/late information can be explained.

1.4 Motor decision making

The implication of the motor cortex in decision making is of particular

relevance. One of the reasons is that cognitive abilities were necessarily

preceded by motor skills, and, consequently, they contributed to the de-

velopment of the specific brain structure that we possess nowadays (Butler

and Hodos, 1996; Redgrave et al., 1999). Motor decision making has been

mainly studied by looking at two main issues: the ability to suppress a

movement already planned and the influence that the intrinsic properties

of our body have on the selection of movements.

One of the experimental paradigms most commonly used to study the

ability to cancel a planned movement is the countermanding task (Logan

and Cowan, 1984; Verbruggen and Logan, 2008). It investigates the behavior

and neural correlates of movement suppression instructed by an infrequent

Stop signal. The task consists of two kinds of trials: Go trials (Fig. 1.5A)

and Stop trials (Fig. 1.5B). Both kinds of trials start with a cue signal

(Go signal) that instructs subjects or monkeys to execute a movement. In

some trials (generally a third of the total number of trials), after the Go

signal, a Stop signal appears indicating that, in order to correctly perform

the trial, the movement has to be cancelled. The performance during this

task depends on the delay between the Go and Stop signals (Stop Signal
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Figure 1.5: Illustration of a countermanding task. (A) and (B) Temporal se-
quence of Go (A) and Stop (B) trials. A trial begins with the presentation of a
central stimulus. After a variable fixating/holding time (500-800 ms.) it disappears
and, simultaneously, a target, i.e. Go signal, appears on one side of the screen. In
Go trials, the human subject/monkey has to accelerate the saccade/finger move-
ment in order to reach the target. In a small fraction of trials (commonly 33%), the
central visual stimulus reappears after a Stop Signal Delay (SSD). In these trials,
the monkey has to stop the planned movement and continue fixating/holding the
central stimulus. (C) Illustrative example of the probability of failure for different
values of SSD.

Delay, SSD). Fig. 1.5C shows an illustration of the probability of failure

generally observed during the performance of the task for different values

of SSDs. As perceived, the probability of failing to cancel the movement

is higher for longer values of SSDs than for shorter values. Neural data

recorded in a countermanding task requiring saccade movements revealed

the involvement of the frontal eye field (FEF) (Hanes et al., 1998) and the

superior colliculus (SC) (Paré and Hanes, 2003) in the control of saccade

cancellation. In the arm reaching version of the task, neural recordings

have been made from the supplementary motor area (SMA) and pre-SMA

of monkeys (Scangos and Stuphorn, 2010; Chen et al., 2010). Activity

of neurons in these regions did not seem to control movement initiation

but could contribute to movement cancellation. An investigation of neural

recordings from the dorsal premotor cortex (PMd) by Mirabella et al. (2011)

showed a modulation in the activity of reaching related neurons that might

be related to the suppression of planned movements. Neurons exhibiting

this modulation were classified into two types (Fig. 1.6). The most common
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Figure 1.6: Example of activity of two neurons (Type A and Type B neurons)
recorded from PMd during a countermanding task. The activity is aligned to
the target onset (Go-signal). Shaded areas indicate the estimated SSRT period.
Both neurons increase their firing rate after the presentation of the Go-signal and
behave similarly during Go trials. Neuron Type A decreases its firing rate after
the appearance of the Stop signal, whereas neuron Type B increases its activity.
Adapted from Mirabella et al. (2011)

neurons were called type A neurons, and they showed a decrease in their

activity in correct Stop trials before the end of the estimate of movement

cancellation (stop signal reaction time, SSRT) with respect to the activity

recorded during Go trials. Neurons classified as type B neurons exhibited a

temporary increase of their activity when compared to their response during

Go trials. Type A neurons followed a similar pattern of activation to those

observed in FEF and SC (Hanes et al., 1998; Paré and Hanes, 2003).

Recent studies have revealed that behavioral performance during the

countermanding task does not only depend on the SSD in a current trial,

but also on the previous sequence of trials that has been experienced (Rieger

and Gauggel, 1999; Mirabella et al., 2006; Emeric et al., 2007; Verbruggen

and Logan, 2008; Nelson et al., 2010). In general, reaction times tend to be

longer and the probability of properly suppressing the planned movement

higher when many Stop trials have recently been experienced than when

many Go trials have been encountered. In Chapter 3, we use the neural data

recorded by Mirabella et al. (2011) to investigate the response modulation
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of neurons in PMd caused by trial history and its correlation with the

behavioral outcome.

Other studies have looked at the influence of factors such as arm

biomechanics in decisions involving a motor response. Sabes and Jordan

(1997) and Sabes et al. (1998) provided evidence that arm morphology and

its impedance parameters are taken into account to plan movements around

obstacles. However, the question of whether these factors are considered

before or during movement execution remained unclear. Recently, Cos et al.

(2011) and Cos et al. (2012) extended this study to investigate the issue.

The investigation reveals that human subjects are able to predict the cost

of potential movements and use this information to bias their movement

choices (Cos et al., 2011, 2012). Specifically, when subjects are asked to

freely choose between two potential actions, they are more likely to select

the one that requires less biomechanical cost. Fig. 1.7 shows an example

that illustrates two kinds of trials: Transverse, T1-Major and T1-Minor

trials. The biomechanical cost of each action required to reach T1 and T2

targets mainly depends on the alignment of the trajectory with the axes

of the ellipse of movement (minor or major), being less costly a movement

with its trajectory aligned with the major axis of the ellipse than with the

minor one. Therefore, in this case, subjects select significantly more often

T1 when the targets are aligned following the T1-Major configuration than

when they are arranged in the T1-Minor configuration. These two trials

are the basis for our experimental paradigm, which is described and used

in Chapter 5, and where we study the influence of motor cost in perceptual

decision making.

1.5 Decision-making models

Sensory-motor decision making is thought to be a form of statistical infer-

ence (Rao, 1999; Tenenbaum and Griffiths, 2001). Signal detection theory

(SDT) provides a well-established formalism to study perception. It clas-

sifies a single observation of sensory noisy data into a categorical choice

(Gold and Shadlen, 2007). Decisions are the result of a competition be-
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Figure 1.7: Free motor choice task (Cos et al., 2011). Example of target ar-
rangement in two different trials. The trajectory to reach a target requires less
biomechanical cost when its end is aligned with the major axis of the ellipse of
movement (T1 in Transverse T1-Major and T2 in transverse T1-Minor).

tween hypotheses that need to be inferred from sensory noisy data, e. g.

h1, h2,... hn, with n=2 for binary decision making. Information favoring

each hypothesis is called ”evidence” (e). Within the context of conditional

probability (”likelihood”), P (e|hi) is the probability of observing e given

that hi is true. Because the sensory information is noisy, the value of e

is obtained from a distribution with mean hi and variance σi. According

to SDT, in order to make a decision, a decision variable (DV) has to be

constructed from e. For binary decisions, DV is defined as the ratio of the

likelihood (LR12) for each option as:

DV (e) = LR12 =
P (e|h1)

P (e|h2)
(1.1)

Following Bayes’ theorem, the conditional probability P (e|hi) can be

described as:

P (e|hi) =
P (hi|e)P (e)

P (hi)
(1.2)

where P (hi) is the prior probability of hi, p(e) is the total probability of

e and P (hi|e) is the probability that hi is true given e. SDT states that

a decision is made when a criterion is satisfied, for instance, h1 is selected

when DV (e) ≥ 1 when the prior probabilities of h1 and h2 are the same. On

the contrary, if the prior probabilities of the alternatives are not the same,

but the reward is the same, then the criterion to select h1 to maximize
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accuracy is DV (e) ≥ P (h2)
P (h1) . Further mathematical analyses of this criterion

are reported in Green and Swets (1966).

The sequential analysis (SA) extends the SDT to the case of multiple

samples of evidence that are available over time (like, for instance, in the

RDM task). By assuming that the samples e1, e2,... em are independent,

the ”likelihood” ratio can be calculated as:

DV (e) = logLR12 = log
P (ee, e2, ...em|h1)

P (e1, e2, ...em|h2)
=

m∑
i=1

log
P (ei|h1)

P (ei|h2)
(1.3)

DV(e) is updated with each new sample. The sequential probability

ratio test (SPRT) proposes that the decision process ends when DV(e) is

greater than a specific positive or negative decision bound (Laming, 1968;

Stone, 1960; Wald, 1947). The SPRT solves the problem of optimality in

some cases, such as ensures the shortest time for a given success rate or the

best success rate for a given time (Wald, 1947).

Following the SPRT procedure, models called ”sequential sampling”

or ”integrator” models have been widely accepted and employed to analyze

the behavioral and neural data observed in previous research (Stone, 1960;

Laming, 1968; Ratcliff, 1978; Usher and McClelland, 2001; Mazurek et al.,

2003; Bogacz and Gurney, 2007; Link and Heath, 1975). Although many

different integrator models have been proposed, all of them generally follow

the same dynamics:

xi(t) = g

∫ tf

t0

ei(t)dt (1.4)

where x describes the state of the process, g is the gain of the integration

process and e is the sensory evidence provided to make a decision. The

difference between variations of decision-making models lies on the way

they define these three variables. For instance, the ”drift-diffusion” model

(Stone, 1960; Laming, 1968; Ratcliff, 1978; Ratcliff et al., 2003; Smith and
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Figure 1.8: Simulation of the drift-diffusion model, using 20 trials. For this
example, we used the parameters: g = 0.01, a decision bound of 50 (for option h1)
and -50 (for option h2), and a Gaussian noise with mean 0 and standard deviation
of 1 added to the sensory evidence. Left panel, probability density function of
the distribution from which the sensory evidence (e) is sampled. Right panel,
accumulated evidence over time. When infinitesimal temporal steps are used to
sample the evidence and accumulate it, the process is called drift diffusion. One
correct trial is marked in blue and one incorrect trial is marked in green.

Ratcliff, 2004) suggests that there is only one variable x(t) that accumulates

sensory evidence e in favor or against each alternative. An example of this

model is illustrated in Fig. 1.8. The decision-making process is considered to

be terminated when the accumulated process reaches a predefined decision

bound. Another variation of this model considers that two independent

variables x1(t) and x2(t) accumulate sensory evidence separately and that

the decision is made when the difference between the two variables reaches

a decision bound. Yet another variation of an integrator model is called

the ”leaky competing accumulator” model (Usher and McClelland, 2001),

which proposes that evidence is also independently accumulated by using

two variables that mutually inhibit each other and that contain a leaky term

so that information is ”forgotten” over time.

The ”urgency” models (Ditterich, 2006) can be considered as alter-

natives to the integrator models. These models propose that there is also a

build-up activity that governs the decision formation, though the increase

of activity is actually due to a multiplication between sensory evidence and

an urgency signal that grows over time as follows:
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xi(t) = gei(t)u(t) (1.5)

where xi(t), g and ei(t) represent the same as in the integrator models and

u(t) is a function of time that is not related to the sensory evidence but to

some internal urgency (timer) to make a decision (Ditterich, 2006; Church-

land et al., 2008). Although integrator and urgency models propose different

mechanisms by which decisions are made both theories lead to equivalent

predictions when the sensory evidence is constant over time (Cisek et al.,

2009). However, recent studies with variable sensory evidence (Huk and

Shadlen, 2005; Thura et al., 2012) have shown that the two branch of mod-

els make clearly different predictions when this is not the case. For instance,

in the VMD task introduced in Section 1.3, the drift-diffusion model pre-

dicts an influence of early information in reaction time, as opposed to a

prediction of no influence by urgency models. Therefore, urgency models

could properly explain the experimental data in this case, but conversely,

they failed to do so with the RDM task with pulses (Huk and Shadlen, 2005)

(see also Section 1.3). We will further elaborate on this issue in chapter 4,

where we propose an alternative model to explain both: tasks with constant

and with variable sensory evidence.

The ”independent race” model (Logan and Cowan, 1984) is also an

integrator model. It has mainly been used to explain the countermanding

task stating that, to decide to either move or cancel a movement, there is a

race between two accumulator variables (xgo(t) and xstop(t)) that integrate

evidence in favor of each alternative in an independent way. When one of the

two process, which are called Go and Stop, reaches a threshold, the decision

is made (Fig. 1.9). Boucher et al. (2007) extended this model to account

for neurophysiological studies (Munoz and Schall, 2003) asserting that the

neural systems that control movements are formed by layers of inhibitory

interactions between neurons that, in turn, are responsible for movement

initiation and movement inhibition. In this version of the race model, which

is called the ”interactive race” model, there is a competition between the Go



24 introduction

Figure 1.9: Simulation of the race model, using 20 trials. For this example,
we used the parameters g1 = 0.01, g2 = 0.015 and Gaussian noise added to the
sensory evidence with mean 0 and standard deviation of 0.2. Left panel, probability
density function of the distribution from which the sensory evidences (eh1

and eh2
)

are sampled. Right panel, two independent processes accumulate evidence in favor
of h1 or h2 over time. Whenever one of the two processes reaches a threshold, the
decision is made towards the hypothesis associated with that process. One trial
in which h1 was selected is marked in blue and one in which h2 was selected is
marked in green.

and Stop processes and a leaky term within each that prevents the activity

to grow boundless.

A biophysically constrained spiking neural model that successfully

explains behavioral and neural data in the RDM task was proposed by

Wang (2002). It is based on attractor dynamics and a competition between

two neural populations representing each alternative option. The advantage

of this model over the integrator and urgency models lies in its constraints

of parameter values and dynamics, which provide a very specific network

to make accurate neural predictions and to explore the cellular and circuit

mechanisms that result in long integration times along the decision process.

This model is the basis for our theoretical work in Chapter 5.
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However, the large number of neurons, interaction and nonlinear dy-

namics make the spiking neural model a difficult network to analyze and

understand. Consequently, mean-field models have been proposed as an

alternative to the high dimensional spiking neural model when the interest

of the study is mainly focused on the mean response of a population of

neurons and on the behavioral outcome of the network. Wong and Wang

(2006) created a reduced version of the spiking neural network of Wang

(2002) with only two dynamical variables able to reproduce most of the

behaviors of the original spiking neural network. In Chapter 3, we used

a well established and reduced mean-field rate model based on the Wilson

and Cowan equations (Wilson and Cowan, 1972). This version cuts down

the complexity of a spiking neural model to two differential equations. It

differs from the mean-field approach proposed by Wong and Wang (2006)

mainly in that it does not account for synaptic dynamics, which in our case

could be simplified.

1.6 Role of variance in decision making

A method frequently used in neuroscience to characterize the neural mech-

anisms that cause specific activations in the brain consists in repeatedly

activating it with same stimuli, so that many observations are obtained out

of the same process. Since behavior is stochastic, even if the repetition is

exactly the same, varying responses are obtained. To lessen the problem,

the approach most commonly employed is to calculate the average response

from the recorded neural activity. With this approach, the neural response

variability is considered to be just noise and non informative about the

underlying neural mechanisms. Although this might be true in some occa-

sions, it can also be informative in others. To give an example, the neural

response might become more or less variable before or after the presentation

of a stimulus, and this might suggest a signature of additional processes not

explained by the mean neural response.

In recent research, it has become increasingly more common to expand

the study of neural correlates to across-trial variability, in addition to the
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mean firing rate. In particular, it has been of great interest to investigate

whether the measured mean response of neurons comes from a narrow (low

variance) or wide (high variance) distribution of firing rates. Two measures

of across-trial response variability as a function of time have been commonly

applied to calculate the spike count variance of the neural data: the Fano

Factor (FF) and the Variance of the Conditional Expectation (VarCE). FF

and VarCE seem to be qualitatively consistent and to give, in most cases,

equivalent results (Churchland et al., 2011). The fundamental advantage of

VarCE over FF is that it is principled and, therefore, more robust than FF.

Both measurements of variability intend to remove any variance caused

by the neuron’s intrinsic variability in spike generation and, in that way,

completely isolate the variance attributed to the underlying firing rate on

each trial. The FF achieves this by dividing the total calculated variance

of each neuron by its mean firing rate. The scientific concept behind this

approach is that the generation of spikes by cortical neurons follows a Pois-

son like process and thus, its variance scales linearly with the mean. If the

variance is totally attributable to the variability of the spike generation,

the FF would be 1; in accordance, any value of FF greater than 1 means

that there is some variability in the underlying mean firing rate that is not

caused by the Poisson process. An analysis of many recorded datasets by

Churchland et al. (2010) revealed a stimulus driven decrease in FF in the

across-trial response of cortical neurons, despite the definite stimulus or be-

havioral state. The authors refer to this observation as a general property

of the cortex that is non-specific to the task.

In the case of VarCE, the spike variance caused by the Poisson process

is estimated and subtracted from the total calculated variance as follows:

V arCE = V ar[Ni]− φNi (1.6)

where a scaled value (φ) of the mean spike count represents the approx-

imated Poisson variance. φ represents the minimum FF of a neuron to

ensure that VarCE never gets negative values (see Chapter 3 for details).

Churchland et al. (2011) applied this measurement to neurons recorded in
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Figure 1.10: Fano Factor and VarcCE in the drift-diffusion model. (A) Few
trials simulating a Drift-diffusion model with g = 0.08, mean e1 − e2 = 3.2 and an
added Gaussian noise with a mean of 0 and a standard deviation of 8. (B) Fano
Factor and (C) VarCE aligned to stimulus onset and calculated over 1,000 trials
using a temporal window of 60ms. Spikes are generated following a Poisson process
from the mean rate obtained from the model.

LIP while monkeys performed a two and four-choice RDM task with sac-

cade responses. VarCE was shown to increase during decision formation

and to decline at the end of the decision process. Therefore, VarCE pro-

vides a signature of decision formation. In general, decision-making models

exhibited the same pattern of across-trial response variability (Churchland

et al., 2011), thus proving their validity to describe neural responses.

An example of FF and VarCE is illustrated in Fig. 1.10. Both FF

(1.10B) and VarCE (1.10C) show and increase of their value after the stim-

ulus onset showing a signature of decision formation, as it was observed in

monkeys data (Churchland et al., 2011). Qualitatively, both measurements

show the same effect, they only differ in their specific values. This is due

to the method employed to remove the variability generated by the Poisson

process, i. e. a neuron presenting variability solely because of its Poisson

spike generation would have a FF of 1, but a VarCE of 0. Values of FF

greater than 1 mean that there is an across-trial variability resulting from

a process which is different from that generating spikes. The same is true

for values of VarCE greater than 0. In our Fig. 1.10 example, FF and

VarCE show an across-trial variability that is independent from the Poisson

process.

It is commonly believed that across-trial variability originates from
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two sources of noise: internal and external noise. The internal noise relates,

among others, to the noise associated with neurons or sensory areas (Faisal

et al., 2008). The external noise refers to the variability of the external

world. Besides, a third cause of across-trial variability has been lately at-

tributed to the deterministic approximations in the complex computations

performed by the nervous system (Beck et al., 2012). Anyhow, even if the

reasons for neural response variability are not well settled, it seems that

its correlation with behavioral variability has been highly proven (Osborne

et al., 2005), hence becoming a great focus of attention.

As we have seen, across-trial variability can be useful to describe neu-

ral processes more thoroughly. However, since it is a measure obtained from

a large number of trials, the question of how this information might be used

by the brain in a single trial -if this were the case- remains unclear. One of

the possible solutions to overcome this limitation would be to analyze the

neural data from a population of neurons recorded simultaneously. Never-

theless, this is normally not the case since most of the recordings are done

over single units. In this thesis, we contribute to a better understanding of

the role of variance in decision making in two ways. First, in Chapter 3, we

investigate the possible signature that trial history could have in the across-

trial variability of single unit recordings of neurons from dorsal premotor

cortex during a decision-making task. Later on, in Chapter 5, we use a

spiking neural model to suggest a mechanism by which response variance of

a population of neurons might be used by other areas of the brain to form

decisions. With this second study, we overcome the problem of multiple

unit recordings through a realist decision-making model.

1.7 Embodied decision making

The central idea of embodied decision making is that actions -or, in gen-

eral terms, the motor apparatus- influence decision making even when the

decision itself does not depend on them. Most studies on decision making

ignore this issue and focus exclusively on specific features of a task, such as

the perceptual discrimination tasks introduced above (Section 1.3), treat-
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ing them in isolation and completely neglecting the possible effect that the

action to report the decision might have over the process itself. Most of the

models introduced above (see Section 1.5) consider decision making a serial

process: firstly, the perceptual discrimination is made, and then the action

is selected. Classical views on cognitive functions (Fodor, 1983; Pylyshyn,

1984) support the idea that cognitive processes and sensorimotor control

are functionally segregated. However, recent neurophysiological and behav-

ioral studies have shown growing evidence that areas involved in decision

(at least, when the decision is reported by an action) are also part of the

planning and execution of the subsequent action (Cisek and Kalaska, 2005;

Gold and Shadlen, 2007; Pesaran et al., 2008; Hernandez et al., 2002; Romo

et al., 2002, 2004). For instance, Wallis and Miller (2003) demonstrated

that, when monkeys were asked to release or hold a lever based on the

match or non-match of a sequence of visual stimuli, neurons in the premo-

tor regions showed stronger and earlier correlation with the behavioral rule

than those in the prefrontal cortex. Similarly, neurons in the LIP (Dorris

and Glimcher, 2004; Gold and Shadlen, 2007; Yang and Shadlen, 2007), the

FEF (Coe et al., 2002) and the SC (Carello and Krauzlis, 2004; Horwitz

et al., 2004; Thevarajah et al., 2009) seemed to be correlated with both the

formation of the decision and the execution of eye movements. Analogous

functional organization has also been found in the motor system (Hernan-

dez et al., 2002; Romo et al., 2002, 2004). In short, these results suggest

that both processes, perceptual decision making and action selection, do

not necessarily occur in a serial manner but in an integrative loop (Pezzulo

et al., 2011; Barca and Pezzulo, 2012).

Contrary to what happens in most laboratory experiments, it is highly

unlikely to find a situation in which perception and action are detached in

the real world. The general practice of simplifying the problem by using

experimental paradigms (as introduced in Section 1.3 and 1.4) that are

highly controlled in the lab has the advantage of providing an isolation of

one specific problem in such a manner that it can be deeply analyzed and

understood in detail. Nonetheless, even if these studies are the basis for

further general cases, we cannot ignore that, in order to solve more com-
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plex problems, the different isolated elements need to be integrated. Even

so, the experimental cases that would allow for the study of this integration

are, in most of the cases, difficult to control and therefore experimentally

intractable. Embodied systems have been used to bypass this limitation and

have been very useful to provide a theoretical framework to make predic-

tions, and to quantify behavior and neural activity in real-world situations.

To cite an example, Verschure et al. (2003) used a mobile robot to examine

the interaction between behavior and perception, and showed that percep-

tual learning progressively structures behavior. This shaping of behavior

causes a bias in the sampling of sensory inputs that eventually results in

a macroscopic feedback loop. The cognitive architecture that enabled re-

searchers to investigate these dynamics is the Distributed Adaptive Control

(DAC) architecture (Verschure et al., 2003; Duff et al., 2010; Marcos et al.,

2013c). In this thesis, we use this architecture to study the generalization

of an integrator decision-making model when an embodied system is used

in foraging tasks.

DAC is a multi-layered architecture that has been examined by means

of formal approaches (Verschure and Coolen, 1991) and robots (Verschure

et al., 1993, 2003), and has proven to be a suitable framework to study

biological systems (Verschure and Althaus, 2003; Verschure et al., 2014). To

properly solve a task, it needs to acquire information from the environment

and select the proper actions based on perceptual evidence. Both perceptual

decision making and action selection processes interact and influence each

other, following the principle of embodied decision making (Verschure et al.,

2003).

DAC is a robot based neuronal model of classical and operant condi-

tioning (Verschure and Coolen, 1991; Verschure and Althaus, 2003). Clas-

sical conditioning is a form of associative learning (Pavlov, 1927) where the

presentation of a neutral stimulus (conditioned stimulus CS ) together with

a significant stimulus (unconditioned stimulus, US ) leads to an association

of the initially neutral stimulus to a, so called, conditioned response (CR).

In one of the interpretations, the CS substitutes the US because the behav-
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Figure 1.11: Schematic representation of the DAC architecture. It is based on
the assumption that behavior results from three tightly coupled layers of control:
reactive, adaptive and contextual. Squared boxes stand for neuronal groups; ar-
rows stand for static (solid) and adaptive (dashed) synaptic connections between
cell groups. Abbreviations mean: US, unconditioned stimulus; CS, conditioned
stimulus; IS , internal states; A, action group; UR, unconditioned response; CR,
conditioned response; STM, long-term memory; LTM, long-term memory

iorally significant stimulus (US ) triggers an unconditioned response as an

innate automatic response that forms a template for the CR. If CS and US

are repeatedly paired, the two stimuli become associated and the organism

begins to behaviorally respond to the presence of CS alone. One typical

paradigm is eyeblink conditioning, where an air-puff (US )-after which in-

evitably the animal reacts with an eyeblink response- is paired with the

presentation of a tone (CS ). After a number of trials, the animal begins to

react to the CS with a CR similar to the UR, even if the air-puff (US ) is not

present anymore (Mackintosh, 1990). Operant, or instrumental, condition-

ing is also a form of associative learning. However, the association is not

always as direct as it is in classical conditioning, since series of actions are

needed to reach a reward or punishment (Thorndike, 1911). These actions

are weighted with different values depending on the US resulted from an

action -i.e. with an appetitive or aversive US-, so the ones that leaded to a

reward will occur much more frequently that the ones that were paired with

punishment. DAC proposes that Classical and Operant Conditioning reveal
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a fundamental scaffolding of learning that advances through three stages.

First, sensor statistics based on perceptual learning provide a ’neutral’ rep-

resentation of the state space. Second, mechanisms underlying classical

conditioning provide for a biasing of this state space representation with re-

spect to its immediate survival value (construction of CS representations),

plus the shaping of discrete actions (tuning of the amplitude time course

of the UR to define the CR). Subsequently, operant conditioning builds on

the representational building blocks provided by the preceding two stages

to construct plans for actions, apart from settling a foundation for cognition

and problem solving.



Chapter 2

Generalization of integrator
models to foraging

A robot is made not born

Tony Stark

We begin by studying the generalization of a well-established accu-

mulator model of decision making, the race model (see Section 1.5), to

real-world foraging. To this purpose, we use an embodied artificial agent,

equipped with a cognitive architecture (DAC), that is required to explore

and exploit novel environments to reach specific goal positions on them.

In Section 2.1, we investigate the implications of the race model in these

tasks by comparing it with a non-accumulator model of decision making.

Our results show a fundamental difference in the way that information is

represented in memory and might be further retrieved from it. Specifically,

the race model suggests that goals are stored in memory and the actions are

self-generated by the agent when this information is retrieved from mem-

ory. In Section 2.2, we investigate the implications of this self-generation

of actions by studying how reactive and contextual control systems com-

plement each other. Actions triggered by the reactive control systems are

egocentric whereas the ones triggered by the contextual control system are

generated during recall from memory. We demonstrate that reactive behav-

33
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ior is enough when a task is not very demanding, but contextual control is

fundamental when task complexity increases.

2.1 The influence of the decision-making process

in the representation of information in

memory

This sections reproduces the paper ”Generalization of integrator models to

foraging: a robot study using the DAC9 model” published in the proceedings

of the Living Machine conference (Marcos et al., 2012b). The abstract reads:

Experimental research on decision making has been mainly

focused on binary perceptual tasks. The generally accepted

models describing the decision process in these tasks are the in-

tegrator models. These models suggest that perceptual evidence

is accumulated over time until a decision is made. Therefore, the

final decision is based solely on recent perceptual information.

In behaviorally more relevant tasks such as foraging, it is how-

ever probable, that the current choice also depends on previous

experience. To understand the implications of considering pre-

vious experience in an integrator model we investigate it using a

cognitive architecture (DAC9) with a robot performing foraging

tasks. Compared to an instantaneous decision-making model

we show that an integrator model improves performance and

robustness to task complexity. Further we show that it com-

presses the information stored in memory. This result suggests

a change in the way actions are retrieved from memory leading

to self-generated actions.

Introduction

Binary perceptual tasks have been widely used to study the neural mech-

anisms underlying decision making (Gold and Shadlen, 2007; Smith and
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Ratcliff, 2004). This kind of task involve a simple decision about a feature

of a stimulus that is expressed as a choice between two alternative options.

Many models have been proposed to explain this decision-making process

predicting the relationship between reaction time and accuracy (Logan and

Cowan, 1984; Ratcliff and Rouder, 1998). Most of them explain decision

making as an accumulation process that takes place over time until a de-

cision bound is reached. These models are known as integrator models

and have been generally accepted as an explanation for decision making in

perceptual tasks where learning is not required to successfully perform the

task. Here, we investigated the interaction between an integrator model

and memory in foraging tasks using a well establish cognitive architecture

as a framework (Verschure et al., 2003).

One largely used perceptual experimental paradigm is defined by a

random-dot motion (RDM) task where humans or monkeys have to select

between two possible stimulus categories, such as leftward or rightward

motion (Shadlen and Newsome, 2001). Integrator models, such as race

models (Logan and Cowan, 1984) and drift-diffusion models (Ratcliff and

Rouder, 1998), provide a straightforward account of the speed-accuracy

trade-off. These models suggest that evidence is accumulated over time

until this accumulation reaches a bound, i. e. criterion level, and a decision

is made. As the RDM task, many of the experimental paradigms used

to study the decision-making process are simple perceptual tasks where the

correct performance of a trial depends exclusively on the current perceptual

information, e. g. color. The proposed integrator models assume that

the alternative options are known a priori and therefore learning during

the task is not required. However, this would not be the case in more

realistic foraging tasks where the information about different targets have

to be acquired from the environment and many alternative choices might

be available at each decision point. Therefore, a two-fold problem has to

be solved during foraging: the appropriate learning of the environment and

actions and the appropriate retrieval of information to achieve goal states

(targets), i. e. sequences of perception and action need to be learned and

retrieved to reach goal positions in an environment.



36 generalization of integrator models to foraging

To study the interaction between decision making and memory, we

worked in the framework of the Distributed Adaptive Control (DAC) ar-

chitecture (Verschure and Althaus, 2003; Verschure et al., 2003). The deci-

sion making in DAC follows the Bayesian principle (Bayes, 1763; Verschure,

2012). We extended the architecture with an integrator decision-making

model (DAC9; see (Verschure and Althaus, 2003; Duff and Verschure, 2010;

Mathews et al., 2012) for details about previous versions of DAC), based

on the race model, to investigate its implications during foraging tasks and

we further compared it with the decision making in DAC (instantaneous

model). We show that the integrator model resulted in a new mechanism of

storing and recalling information from memory suggesting that the actions

are not stored in memory but self-generated during retrieval of information.

In a previous study (Marcos et al., 2010a), we assessed the impact of these

two decision-making models in the learning of event order and interval in

a sequence in two foraging tasks. In the current study, we go one step fur-

ther quantifying (1) the scalability of the two models with task complexity

in five different foraging tasks and (2) the implications on the information

stored in memory and proposing (3) a new working memory mechanism

that accounts for a continuous action space.

Materials and Methods

Cognitive Architecture

The DAC architecture has already proven its suitability to study the prob-

lems encountered in biology helping to investigate perception, cognition

and behavior in foraging situations in which the access to real neuronal and

behavioural data is difficult (Verschure et al., 2003). DAC is based on the

assumption that learning consists of the interaction of three layers of control:

reactive, adaptive and contextual, as illustrated in Fig. 1.11. The reactive

layer provides pre-wired responses that allows for a simple interaction with

the environment and accomplish simple automatic behaviours. The adap-

tive layer provides mechanism for the classification of the sensory events

(internal representations) and the shaping of responses in simple tasks as in
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classical conditioning (Pavlov, 1927). The internal representations (proto-

types; see (Duff and Verschure, 2010) for details) generated by the adaptive

layer are stored in the contextual layer as couplets of sensory-motor states

and used to plan future behaviour, as in operant conditioning (Thorndike,

1911).

In this study, we mainly focused on the contextual layer of DAC that

provides mechanisms for memorizing and recalling information. It consists

of two memory structures: the short-term memory (STM) and the long-term

memory (LTM), for permanent storage of information. During learning,

pairs of prototype-action are stored in the STM as the robot interacts with

the environment. When a goal state is reached, i. e. reward or punishment,

the content of the STM is copied into the LTM and the STM is reset.

The LTM has sequences of pairs of prototype-action that lead the robot

to goal states. The prototype-action pairs that form a sequence are called

segments. During the recall process, the prototypes stored in LTM are

matched against the generated prototypes from ongoing sensory events. The

degree of matching of segment l in sequence q determines the input to its,

so called, collector unit, clq:

clq = (1− d(e, elq))tlq (2.1)

where d(e, elq) is calculated as the Euclidean distance between stored pro-

totype elq and current prototype e and tlq is called trigger. The trigger value

biases the sensory matching process of the segments and allows chaining

through a sequence, i. e. its default value is 1 and it is set to a higher value

if the previous segment l − 1 is activated.

The activity of the collectors contribute to the action proposed by the

contextual layer. We only consider the collectors’ activity that satisfy both

conditions: (1) its activity is above a certain threshold (θC), (2) its activity

is inside a predefined percentage range from the maximum collector’s ac-

tivity, i.e. the collectors compete in an E%-Max Winner Take All (WTA)
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mechanism (de Almeida et al., 2009). The actual action proposed by the

contextual layer (ac) is calculated as:

ac =
∑

l,q∈LTM
±
clqH(clq − θC)

δlq
alq (2.2)

where H(.) is a step function that is 0 for values lower than θC and is 1 for

values higher than θC , δlq is the distance measured in segments between the

selected segment l and the last segment in the sequence, i.e. the distance

to the goal state and alq is the action stored in segment l of sequence q. By

doing this division the segments closer to the goal state have more impact

on the contextual action. The sign is positive if the segment belongs to an

appetitive sequence and negative if it belongs to an aversive sequence.

The actions triggered by each of the three different layers are filtered

by priority, giving more priority to reactive actions (ar), then to contextual

actions (ac) and finally to adaptive actions (aa). The one that takes the

control of the motor is stored in STM and afterwards in LTM (see Supple-

mentary Material and Methods for further details).

Integrator models

Many integrator models have been proposed, but mainly, in all of them, the

change in the accumulation of evidence in favor of one alternative (xi(t))

can be described as:

dxi
dt

= µEi(t) + ξ (2.3)

where µ is the growth rate of the accumulation, Ei(t) is the internal estimate

of evidence at time t and ξ is a Gaussian noise with mean of zero and

variance of σ2. The proposed models consider the variables xi(t), Ei(t), µ

and ξ in a different manner. We implement a rise-to-threshold model based

on the race model. The race model (Logan and Cowan, 1984) suggests that

there are separate variables xi(t) for each option that accumulate evidence
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independently until one of them reaches a decision bound and a decision is

made.

Our implementation of the race model consisted of a number of in-

dependent variables that compete to take the control of the robot. Each

variable accumulated evidence in favor of one action, such as right or left.

When the value of a variable grew above a criterion level, i. e. decision

bound, the action associated with it was performed by the robot. The

change in the activity of the variables within a time step dt was defined as:

dai(t) =

{
dt(µrari + µaaai + µcaci + ξ) , if t− tla > Tref

0 , if t− tla ≤ Tref
(2.4)

where ar, aa, ac are the actions triggered by the reactive, adaptive and

contextual layer respectively, i ε NN and it is the subindex of the N different

possible actions, µr, µa, µc are the mean growth rates of the variables units,

ξ is a Gaussian noise term with a mean of zero and a variance of σ2, tla is

the time at which the last action was executed and Tref is the refractory

period. In our experiments dt = 1ms and ξ = 0. When the value of ai

reaches a predefined threshold the associated action is executed. In biology,

the refractory period is the amount of time a excitable membrane needs to be

ready for a second stimulus once it returns to the resting state. Consistent

with this, the Tref term referred to the amount of time necessary to start

again the competition between actions after one of them was executed.

An illustration of the dynamics of the two deision-making models is

shown in Fig. 2.1. As observed, in the case of the instantaneous model many

actions might be executed for same visual input whereas in the integrator

model only one is executed.

Foraging tasks

The mobile agent was simulated in C++ and wSim (Wyss, 2003) using

the 3D Open Graphics Library approximating a Kephera robot 1. Different
1K-Team, Lausanne, Switzerland
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Figure 2.1: Decision-making dynamics. (a) Decision making in the instantaneous
model. The different actions generated by the reactive, adaptive and contextual
layers are filtered by priority as in a Winner Take All competition. Only one of
them defines the final action. The robot performs an action during the interval
that the selected action is above a predefined threshold. (b) Decision making in
the integrator model. The different actions generated by the reactive, adaptive and
contextual layer are continuous in time. When the sum of the actions over time
reaches a predefined threshold an action is performed. The three layers contribute
to the integration with different growth rates (µr, µa, µc). Time integration leads
to only one action per sensory state triggered by a colored patch in the environment.

previous studies have proven the validity of this simulated robot with respect

to a real one (Wyss, 2003; Wyss et al., 2006). The robot has a radio of

5.5 cm and 8 proximity sensors and 8 light sensors. The values captured

by both light and proximity sensors decay exponentially. The proximity

sensors measure the distance to obstacles while the light sensors measure

the intensity of light sources. The robot is equipped with a color camera

with a visual angle of 45 deg. of amplitude. The image from the camera

is color separated such that there are three channels: red, green and blue,

each of them with a resolution of 36x36 pixels. Except otherwise specified

the camera is always pointing to the floor with a tilt angle of -60 deg. with

respect to the horizontal axis. The robot translates with a speed of 0,1 ×
robot radius and it rotates with a speed of 10 deg.

To study the interaction between an integrator model and memory

we defined a number of foraging tasks where not only perceptual but also

memory information was essential to achieve a performance about chance.



2.1. decision making and memory 41

The tasks had different rated complexity to assess how the decision-making

models scaled to it (Fig. 2.2). In all the environments the goal of the task

was to go to the light source, i. e. reward. Every trial started from one of the

positions shown in Fig. 2.2, randomly selected. The trial ended when the

robot hit the light or collided with the wall. A successful trial ended when

the light was hit. The environments contained colored patches that served

as cues. The light was detected by the light sensors of the robot. However,

the light was not strong enough to trigger a reactive action from the side

patches. The adaptive layer used reactive layer sub-threshold activity to

generate the prototypes and to learn the associations between prototype-

action. Once the prototypes were stable the contextual layer started storing

sequences of prototype-action that leaded to a goal state. The goal state

occurs when the robot reaches the light or collides with the wall. When a

collision occurred it was stored as an undesirable state in memory and had

a negative influence on the action proposed by the contextual layer.

The complexity of the tasks was rated taking into account the number

of patches and how ambiguous they were as follows:

TC =
np
nc
na (2.5)

where np is the number of patches, nc is the number of different colors and

na is the number of different turning angle amplitudes needed to be learned.

This measure was then useful to compare the robot performance in each of

the tasks for the two proposed models. The complexity of the task 1 is 3,

the complexity of the task 2 is 4.5 and 5, 7.5 and 11.7 for the tasks 3, 4 and

5, respectively.

The first task was an unambiguous restricted open arena foraging

task, i.e. no context information was needed because the location of the

target was uniquely predicted by the color patches (Fig. 2.2a). Therefore,

this task could be correctly solved by the adaptive layer, but still we tested

the performance at the contextual layer level. The rest of the four tasks

consisted of ambiguous restricted open arenas, because, in all cases, con-
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Figure 2.2: Foraging tasks ordered by task complexity. (a) Task 1. Un-
ambiguous restricted open arena, TC = 3. (b) Task 2. Ambiguous restricted open
arena, TC = 4.5. (c) Task 3. Ambiguous restricted open arena, TC = 5. (d) Task
4. Ambiguous restricted open arena, TC = 7.5. (e) Task 5. Ambiguous restricted
open arena, TC = 11.7.

text information was needed to reach a performance above chance. The

actions associated with the patches closest to the light were not unique but

depended on the previous context (Fig. 2.2b, 2.2c, 2.2d and 2.2e) and there-

fore the problem could only be solved at the contextual layer level. These

experiments allowed us to study the detailed performance of each model

and its dynamics as well as to evaluate the results in tasks where different

kind of actions were required. In all the foraging tasks, when the contex-

tual layer was enabled, the actions from the reactive and the adaptive layers

were deactivated to avoid any influence they could have on the results.

To test the system for robustness we added 5% of noise to the motors,

following a Gaussian random distribution and we varied the initial position

of each trial according to a two dimensional normal distribution with mean

0 and variance 0, 1× robot radius. Moreover, to assess the impact of the

camera noise in the information stored in memory, in Task 2 (Fig. 2.2b and
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2.2e), we added noise to the hue sensed by the camera from 0% to 10% in

steps of 1%, following a Gaussian random distribution. For every condition,

we ran 10 experiments with 1000 trials each.

To investigate what was the impact on memory of the interaction

between the decision-making models and memory itself we calculated the

degree of compression of information in memory through the entropy of the

stored information as follows:

EM = −
∑
sεS

p(s)log2(p(s)) (2.6)

where s is one segment in memory and p(s) is the probability that the

segment is selected in a current experiment. This measurement allows us

to assess the amount of information needed to encode a visual stimulus in

memory.

Results

In this study, we investigated the generalization of an integrator model in

foraging tasks. We designed a number of foraging tasks with increased com-

plexity to assess the generalization of the integrator model in more realistic

tasks. The results in these tasks suggested a new mechanism to store and

recall information from memory. We further tested the implications of this

new mechanism in a foraging task and we show that it resulted in a more

optimal way of learning and exploiting the environment

Foraging tasks

In all the tasks, we recorded the performance of the robot after LTM acqui-

sition. As shown in Fig. 2.3, as task complexity increased the performance

of the robot decreased dramatically in the case of the instantaneous model

where it dropped to a mean value of 0.55 for the most complex task. It kept

stable in the integrator model, maintaining a mean value of performance

above 0.9.
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Figure 2.3: Robot performance along different task complexity. Ratio tar-
gets/trials with instantaneous and integrator models as task complexity increases.
Bars represent means ± sem

In order to evaluate the impact of the camera noise in the information

stored in memory due to the influence of each decision-making models, we

used Task 2 (TC = 4.5) because it was the simplest one that requires the

use of the contextual layer. For clarity we also report here the performance

of the robot with varying camera noise (Marcos et al., 2010a). As previously

reported in (Marcos et al., 2010a), the performance of the robot decreased

as the camera noise increased in both models (Fig. 2.4a). The difference

between the performance of the two models was significantly different along

the different values of camera noise (KolmogorovSmirnov test, p < 0.01).

From 0% of camera noise to 6% the instantaneous model was incrementally

more affected by the noise than the integrator model. However, from 6% to

10% the noise had an important impact on the integrator model, resulting in

a smaller difference in performance with respect to the instantaneous model.

Once the noise of the camera started to critically affect the sequentiality of

the actions the performance decayed in both models with a similar slope

(Fig. 2.4a).

To assess the impact of both models at the memory level we calculated

the entropy of the stored information, EM (see Eq. 2.6). As shown in Fig.

2.4b, EM with the integrator model was higher along the different camera

noise compared to the instantaneous model (K-S test, p < s0.001). More-
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Figure 2.4: Performance and entropy along different camera noise. (a)
Ratio Targets / Trials distribution for instantaneous and integrator models. (b)
Entropy of the memory along different camera noise. In both figures bars represent
means ± sem.

over, the dynamics in both cases were opposite: EM decreased as camera

noise increased in the integrator model whereas it increased as camera noise

increased in the case of the instantaneous model. Low values of EM means

that segments of memory respond to a small fraction of the stimuli resulting

in a higher number of segments in memory. The opposite occurs for high

values of EM . Therefore, the integrator model compressed the memory and

less number of segments were necessary to encode same stimulus. As a

drawback, explicit representation of time in memory, i. e. the number of

steps needed to cross a patch, is lost.

Self-generated actions

The compression of information in memory due to the use of the race model

changes the way information is stored in memory suggesting a new mech-

anism to recall it. Instead, of a recall of actions from memory it suggests

the recall of goals. Consequently, we hypothesize that the actions are self-

generated rather than stored in memory. During the recall period, visual

information is retrieved from memory and actions are performed depending

on the position of perceptual target with respect to the robot. When the

information is selected from memory, we distinguish between two different
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recall methods: (1) the next prototype in the sequence is retrieved, i.e.

sub-goals are progressively achieved; (2) the prototype associated with the

final goal is retrieved. In both cases, the retrieved information is stored

in working memory and the robot searches for it. To do so, it moves the

tilt angle of the camera from -60 deg. to -20 deg. and rotates over its

own axis. In this way, the robot can see the visual cues that are far away

from its current position. Once the robot sees the sub-goal or final goal it

moves again the tilt angle from -20 deg. to -60 deg. and goes straight to

the goal, i. e. self-generating the actions. We test this new way of retriev-

ing information from memory in the Task 1 and compare the results to the

non-self-generated actions investigated in the section. As shown in Fig. 2.5a

and 2.5b, the robot follows a different path depending on the mechanism it

uses to recall information from memory. We observed that the ratio targets

divided into travelled distance was significantly higher in the case of the

final goal search mechanism of self-generated actions (Fig. 2.5c; K-S test,

p < 0.001), i. e. the robot follows a shorter path to hit the target. On the

contrary, there is no significant difference between the sub-goal search and

the non-self-generated actions (K-S test, p > 0.05). This result shows an

optimal way of using the compressed information of the memory when the

actions are not stored but self-generated during the retrieval of information

from memory. It results in more flexibility in the actions to be taken and

allows to account for a continuous action space.

Conclusions

We tested the implications of an integrator decision-making model in se-

quence learning tasks with multiple alternatives using a cognitive architec-

ture that we called DAC9, evolving from previous implementations (Ver-

schure and Althaus, 2003). We compared the results with a Bayesian

decision-making model which is thought to be optimal for action selection.

As a framework we used a robot based architecture which allowed us to un-

derstand the behavioural and architectural implications of these alternative

models during foraging tasks. We showed that the race model has a more

robust task-related performance when perceptual noise is added (Marcos
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Figure 2.5: Robot trajectories and performance. (a) Trajectories generated
during sub-goals search. (b) Trajectories generated during final goal search. (c)
Ratio Targets / Travelled distance for the integrator model with non-self-generated
actions recall, sub-goals search recall and final goal search recall. Bars represent
means ± sem.

et al., 2010a) and when task complexity increases compared to the Bayesian

model. Moreover, the race model also implied a compression of information

in memory suggesting an alternative way of storing information, i. e. only

perceptual information is acquired and the actions are self-generated dur-

ing recall. The self-generation of actions during the retrieval from memory

shows a mechanism able to account for a continuous action space.

In a previous study (Marcos et al., 2010a), we reported the differences

in the storage of information in memory due to both models and the impact

they have in performance. Here, we quantified the difference in the infor-

mation stored in memory by calculating the memory entropy. We showed

that the entropy is higher in the integrator model than in the instantaneous

model. In the instantaneous model the actions are continuously recalled and

performed. Therefore, in this case, the robot executes a number of actions,

generally greater than one, each time it crosses a visual cue. In the case

of the integrator model, we proposed a new mechanism to optimally use

the information from memory. We implemented a goal oriented mechanism

that retrieves visual cues from memory instead of actions. Once the visual

cue, i. e. goal, is selected from memory the robot searches for it in the

environment. Whenever the robot sees the goal it goes towards it. This

new mechanism can be seen as the storage of an abstract object in memory,
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i. e. a door. If a person wants to leave a room she/he has to first localize

the door and then go towards it.

So far the integrator models have been used to explain simple decision-

making tasks, such as RDM task (Shadlen and Newsome, 2001) or the

countermanding task (Hanes and Schall, 1996a). The implementation of

the integrator model was based on the race model. Generally, the race

model has been mainly used to explain behavior in a countermanding task

(Hanes and Schall, 1996a), predicting probability of failure and reaction

time. Here, we showed the implication of this decision-making model in a

more general framework. We observed that it has an important impact on

how the memory is constructed and therefore on how the information is

used later on.

The main assumptions we made in our proposal of self-generated ac-

tions during the recall from memory is that visual cues can always be seen

from the current position of the robot. However, in wide open field envi-

ronments, when this is not the case, our assumption would fail. In those

situations, we would rely on head direction accumulator (Mathews et al.,

2009) cells. The heading direction information would be stored in memory

together with the visual information. During the recall from memory the

actions would be also self-generated. Similar to the search of visual proto-

types tested in this study, the robot would rotate around its own axis until

its current head direction is equal or close enough to the retrieved head

direction.

Physiological studies have shown that granular and pyramidal cells

in the hippocampus encode information with high sparsity (low entropy), i.

e. neurons respond to a small fraction of stimuli (Jung and McNaughton,

1993). In contrast, cells in the PFC have shown to be selective to par-

ticular cues with less sparsity (higher entropy) than the hippocampus and

also with distinct temporal profile (Asaad et al., 1998). We observed that

these two mechanisms of encoding memory have some similarity with the

implications shown in this study due to the two decision-making models, i.

e. higher entropy in the integrator model compared to the instantaneous
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model. One could speculate that there is a distributed control system for

sequence learning involving the hippocampus and the PFC connected to an

external area which accumulates evidence, as found in the superior colliculus

(Ratcliff et al., 2007), the lateral intraparietal area (Roitman and Shadlen,

2002), the frontal eye fields (Gold and Shadlen, 2003) and the PFC itself

(Kim and Shadlen, 1999).

2.2 The complementary roles of allostatic and

contextual control systems in foraging tasks

This sections reproduces a paper entitled ”The complementary roles of al-

lostatic and contextual control systems in foraging tasks” published in the

proceedings of From Animals to Animats, Simulation of Adaptive Behavior

(SAB) conference (Marcos et al., 2010b). The abstract reads:

To survive in an unknown environment an animal has to

learn how to reach specific goal states. The animal is firstly

guided by its reactive behavior motivated by its internal needs.

After exploring the environment, contextual information can be

used to optimally fulfill these internal needs. However, how a

reactive and a contextual control system complement each other

is still a fundamental question. Here, we address this problem

from the perspective of the Distributed Adaptive Control archi-

tecture (DAC). We extend DAC’s reactive layer with an allo-

static control system and integrate it with its contextual control

layer. Through robot foraging tasks we test the properties of the

allostatic and contextual control systems and their interaction.

We assess how they scale with task complexity. In particular,

we show that the behavior generated by the contextual control

layer is of particular importance when the system is facing con-

flict situations.
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Introduction

One of the main challenges an animal faces when exploring a novel environ-

ment is how to learn about it and exploit it. Firstly, reactive behaviors drive

animal exploration motivated by the animal’s internal needs. Reactive be-

haviors also allows the exploration and acquisition of the state space. Once

the states of the environment are learned and appropriate behaviors shaped,

the animal is able to use this information to reach goal states, e.g. food.

However, how these low and high level systems complement each other when

the task difficulty increases is not clear yet. Here, we exploit this question in

the basis of a combined robotics and computational neuroscience approach.

We investigate a robot model of self-regulatory processes based on

the behavior of rodents. Rodents are optimal real-world foragers that can

smoothly regulate complex sets of behaviors (Drai et al., 2000) based on

their internal motivation, maintaining a dynamic stability with the environ-

ment while learning about it. Our model tackles exactly these two issues:

self-regulation and learning about the environment.

Self-regulation is provided by a reactive layer that is based on the

concept of allostasis (McEwena and Wingfield, 2003). This reactive layer

drives the robot behavior while information about the environment is ac-

quired and retained in a long-term memory. This memory is part of the

contextual control (CC) system which will be capable of driving the robot’s

behavior based on the robot previous experience.

The allostatic control system (AC) of our model allows the robot to

not only explore the environment but also to acquire its salient states. The

robot locally senses different reward gradients present in the environment

and can reach its desired values in the gradient by performing instantaneous

reactive motor actions. The CC system picks up information about the

environment. Both systems need each other and are fundamental for solving

navigation tasks. The CC system will be able to solve tasks when the cues,

e.g. gradients, that guide the behavior of the reactive layer is incomplete or

contains conflicts. In addition, it can optimize the content of the long-term
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memory system thanks to the states that are classified and the behaviors

triggered by the AC system.

Many models deal with the problem of realizing an artificial rodent

(Meyer et al., 2005; Sheynikhovich et al., 2009). Generally, it is usually

tackled in a bottom up approach solving the navigation problem using a

cognitive map. Our approach differs from these models in that our first

building block integrates many regulatory subsystems and on top of it we

add a cognitive system able to learn about the environment.

The AC and CC systems integration will be made in the context

of the biomimetic Distributed Adaptive Control architecture (DAC) (Ver-

schure and Althaus, 2003; Verschure et al., 2003; Duff et al., 2010). In this

paper we make two new contributions. Firstly, we will augment the DAC

reactive layer in order to support self-regulation on the basis of the phys-

iological principle of allostasis. The AC orchestrates different homeostatic

subsystems achieving stability at a meta-level (see Section 2.2). However,

during this study, we will use only one homeostatic subsystem at a time thus

bypassing the question of how multiple homeostatic subsystems affect opti-

mal performance. The second contribution of this study is that we extend

the contextual layer to be able to exploit the different internal states of the

agent in its memory structures. The long-term memory stores sequences

that belong to different goal states, i. e. desired values in the gradient. In

the recall phase, information is retrieved based on the internal motivation

of the robot, e.g. hunger (see Section 2.2). We integrate these two con-

trol systems and investigate the main implications of their integration (see

Section 2.2). Our results show a successful integration which gives rise to

realistic foraging in a variety of benchmark tasks using a simulated robot

(see Section 2.2). In addition, it also indicates how low level predefined be-

havior control systems of the brain can be integrated with more advanced

neuronal systems.
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Methods

To understand how AC and CC systems complement each other we work

with the DAC architecture. DAC distinguishes three coupled layers that in-

teract between each other: reactive, adaptive and contextual. The reactive

layer contains a pre-wired repertoire of reflexes, which creates a behavior

that allows an interaction with the environment. Originally, this reactive

layer implements collision avoidance and light appetitive mechanisms. We

will extend this layer to provide it with an AC system. The adaptive layer

processes and classifies the sensory input. This classification together with

the actions executed by the robot are sequentially stored in the contextual

layer which is equipped with a short and a long-term memory. These rep-

resentations are used to plan ongoing behavior, and have been shown to be

compatible with formal Bayesian models of decision making (Verschure and

Althaus, 2003). In the original DAC, the contextual layer stores positive

or negative sequences that lead to goal states defined by reward or punish-

ment respectively. We extend the contextual layer to equip it with labeled

information where the content of the memory can lead to different kinds of

rewards or punishments.

We will test our model in different foraging tasks where gradients are

projected into the environment and visual cues are placed on the floor. The

gradients are gaussian functions sensed by the robot. The AC system will

steer the motors of the robot depending on the desired and actual value of

the gradient. Sequences of sensory-motor contingencies are learned by the

CC system from the robot’s interaction with the environment. We will show

that AC system alone is not always sufficient to reach goal states when the

gradient has a conflict information.

The allostatic control system

In our self-regulation model approach, different simpler homeostatic sub-

systems coexist (Sanchez-Fibla et al., 2010). Each homeostatic subsystem

is associated to one reward gradient and has access to an actual (Va) and

desired (Vd) value in that gradient. The actual value is determined by the
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Figure 2.6: Contextual and allostatic integration in the framework of DAC. Ab-
breviations mean: p, perception; a, action; v, value. Blue and green colors at the
end of the sequences mean different reward associated with them. Action selection
is done by priority: contextual layer actions have more priority than reactive layer
actions.

actual position of the robot in the gradient and the desired value represents

the goal state in the gradient. The homeostatic subsystem acts in a closed

loop trying to bring close the actual to the desired value and thus achieving

stability (see Fig. 2.6). An integrator mechanism orchestrates the different

homeostatic subsystems. All the subsystems compete to control the robot.

In this study, only one homeostatic subsystem is activated at a time.

Imagine, as an example, an animal placing itself in an optimal distance

to a heating source in order to achieve a desired temperature (Iizuka and

Di Paolo, 2008). The gradient would correspond to the temperature map
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which would have its highest peak around the source. The agent is able to

sample the temperature gradient locally. The homeostatic subsystem could

bring the agent closer to or further away from the heating source depending

on the difference between the desired and actual value.

Short and long term memory

The contextual layer of DAC contains a short-term memory (STM) and

a long-term memory (LTM). Sequences of sensory-motor contingencies are

learned from the robot’s interaction with the environment. Perception-

action associations are stored in STM. When a goal state is reached, the

sequences of associations are copied into the LTM labeled with the reached

goal state (see Fig. 2.6). When the robot is exposed to a perception, it is

classified by the adaptive layer and compared with the perceptions stored

in LTM. The stored perceptions that match this comparison, and belong to

a sequence with a goal state coincident with its current internal motivation,

are selected and an action is executed. For further explanation about the

memory structure in DAC see (Verschure et al., 2003).

Allostatic and contextual integration

We integrate AC and CC systems using the framework of DAC (see Fig.

2.6). The reactive layer of DAC is provided with an AC system. This AC

system steers the motor of the robot driven by the gradient in the environ-

ment and the internal motivation of the robot. This results in egocentric

actions executed. These egocentric actions are converted into allocentric

ones by the CC system. To do the conversion, we added a path integration

computation that calculates the vector between visual perceptions using the

head orientation of the robot. In this way, the information in memory con-

tains visual cues and the vector connecting two visual cues or visual cue to

a goal state.
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Foraging tasks

We test the integrated model in foraging tasks using 3D environment with a

mobile agent. The simulated agent is implemented in C++ and wSim (Wyss

et al., 2006) using the Open Graphics Library approximating a Khepera

robot 2 widely used for behavioral modeling. The validity of the simulated

robot with respect to a real one has been demonstrated in several studies

(Wyss et al., 2006). The robot has a radius of 5.5 cm and it is equipped with

three blocks of eight light sensors and eight proximity sensors. The sensors

integrate an exponential decay function with respect to the distance to the

light sources or to the obstacles respectively. The robot is also equipped

with a color camera pointing to the floor (with an angle of 45). Therefore,

the 3rd dimension of the environment is limited to the walls. The action

group from the architecture is connected to the motor group of the robot.

Each cell of the motor group maps a direction of movement. A winner-take-

all (WTA) takes place at the motor map level and selects the neuron with

highest activity. The default movement of the robot is to go forward.

Our aim is to test the model in tasks with increasing difficulty to

understand how AC and CC systems scale with task complexity, i. e. tasks

where gradients and visual cues have coherent information and tasks where

this information is contradictory. This will allow a better understanding on

when AC system would be enough to fulfill the robot’s internal motivation

and when CC system would be necessary to optimally fulfill this internal

motivation.

We run experiments in three different environments. Every environ-

ment contains visual cues and rewards. The visual cues are patches on the

floor whereas the rewards are gradients. The internal motivation of the

robot is set to the highest value in a way that the desired value is reached

at the center of the gradient. The first foraging task is an open field en-

vironment with one kind of gradient, a light. We vary the weight of the

gradient from 0 to 1 in steps of 0.1 (see Fig. 2.7A). When the robot reaches

the reward, i. e. its desired value in the gradient, the gradient is turned

2K-Team, Lausanne, Switzerland
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Figure 2.7: Foraging tasks environments. (A) Open field task. Yellow lines
indicate the lowest and the highest value of the gradient. Red line indicates the
limit the robot has to cross so the gradient is activated again after reaching the
reward. (B) Maze with one reward. Yellow line indicates the area covered by the
gradient of the reward. (C) and (D) Maze with three different rewards. Yellow,
red and blue lines indicate the area covered by each of the reward gradients.

off to avoid that the robot stays next to the reward during the whole ex-

periment. It is activated again when the robot is far away from it. For

high weights of gradient it covers almost the whole foraging space, there-

fore we expect a similar performance in both AC and CC systems, since

gradient and patches have coherent information. Secondly, we set an en-

vironment also with one kind of gradient, a light, with obstacles that do

not allow a direct path between the initial position of the robot and the

reward (see Fig. 2.7B). This environment is remotely based on the Tolman

maze (Tolman and Honzik, 1930) as in (Hartland et al., 2009). We expect

to have a significantly better performance with the CC system, due to its

capability of learning sequences of perception-action to reach goal states. In

this case, every trial finishes when the robot reaches the reward and starts

again from same spatial position and a random orientation selected from
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Figure 2.8: Allostatic and contextual performance. Ratio targets/distance for
the allostatic and contextual control systems for different gradient values.

a two dimensional normal distribution N(0, 1). As a final step, we set a

third environment with three different gradients (see Fig. 2.7C and Fig.

2.7D). The robot searches for one reward or other depending on its internal

motivation which is randomly selected at the beginning of every trial. We

expect a significantly better performance in the case of the CC system due

to the presence of obstacles as in the previous task. To see the influence

in performance in the CC system due to the number of visual cues we run

experiments with four and eight patches in the environment. In the three

tasks, we keep constant the size of the memory, with 40 sequences of a

maximum of 120 perception-action associations.

To simulate real conditions, we added 5% of noise to the motors of

the robot. For every condition, we run 10 experiments with 20000 cycles

each of them.

Results

Open field task

To compare performance between AC and CC systems we record data only

when the AC system is activated. Later on, we activate the CC system and

when the memory is full we record data again. We look at the ratio between
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Figure 2.9: Trajectory plots. (A) Trajectories of the robot with allostatic be-
havior. (B) Trajectories of the robot for contextual behavior.

the number of targets reached and the distance explored by the robot (see

Fig. 2.8). We observe that when the gradient is not present, i. e. the weight

of the gradient is 0, the CC system performance is significantly higher than

the AC system performance (Wilcoxon rank sum test, p < 0.001). However,

as the weight of the gradient increases the AC system performs better than

the CC system. This is expectable since the gradient gradually occupies the

whole environment and the AC system can optimally calculate next action

to perform. Thus, the CC system improves performance for a low value

of the gradient but for values higher than 0.3 the AC system performance

is significantly better than the CC system performance (Wilcoxon rank

sum test, p < 0.01). Therefore, when there is not conflict in the gradient

information the CC system is not fundamental and the AC system can

properly perform the task.

Maze one gradient task

Firstly, ee test the AC system performance. We observe that the gradient

of the reward drives the robot to a wrong path in some occasions (see Fig.

2.9A). When the CC system is also activated, we observe that the robot is

not driven to the wrong path (see Fig. 2.9B). This difference in the paths

selected in both cases is translated to a significant increase in the number

of cycles needed by the robot to reach the reward with the AC system in

comparison to the CC system (mean in the AC system is 222 cycles Vs. 141

in the CC system).
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Figure 2.10: Allostatic and contextual performance II. (A) Ratio real dis-
tance/optimal distance for allostatic and contextual control systems for each of
the three rewards present in the environment: RW 1, reward 1; RW 2, reward 2,
RW 3, reward 3. (B) Number of times that each patch is stored in memory for
each of the three rewards.

Maze three gradients task

We start testing the integration model with 4 patches in the environment.

As in previous tasks, we first record data with the AC system alone and then

we activate the CC system. We calculated the optimal distance the robot

should cover to reach each of the rewards (see Fig. 2.7C and 2.7D). In Fig.

2.10A, we plot the ratio between the real distance covered by the robot and

the optimal one for each of the rewards with the AC and CC systems. We

observe that the CC system performance is significantly better for the three

rewards (Wilcoxon rank sum test, p < 0.001). The results also show that the

performance decreases as the distance to the reward increases. This is to be

expected since the probability to leave the optimal path increases. However,

we observe that the slope of the performance for the three rewards is lower

in the CC system than in the AC system suggesting that the performance

will decrease faster in the AC system as the distance to rewards increases.

To test the influence of the number of patches in the CC system

performance we increase the number of the patches in the environment, from

4 patches to 8. We observe in Fig. 2.10A that the performance at the AC
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Figure 2.11: Trajectory plots II. (A) Trajectories of the robot with allostatic
behavior. (B) Trajectories of the robot for contextual behavior.

system level keeps constant since the patches are not used by it. However,

we observe an increase in performance in the CC system. Due to the increase

in the number of patches the CC system has a more accurate knowledge of

the environment, i. e. greater number of internal representations leading to

a greater number of actions that the memory might trigger.

To better understand how the CC system picks up information about

visual cues, we look at the content of the memory. In Fig. 2.10B we plot

the number of times each visual cue appears in memory for the different

rewards. We observe that the last two patches are used only for reach-

ing the third reward whereas the rest of patches are part of the sequences

corresponding to the three different rewards. As an example, in Fig. 2.11

we see the trajectories followed by the robot with the AC and CC systems

when the internal motivation of the robot is to reach the reward 3. The

AC behavior guides the robot to a wrong path in some occasions. The CC

system trajectories are more accurate than the AC system ones.

Conclusions

We investigated how allostatic and contextual control systems complement

each other. In order to do that, we extended the DAC architecture. On the

one hand, we equipped its reactive layer with an allostatic control capability.

On the other hand, we extended the memory content allowing the storage

and retrieval of information related to different goal states. Furthermore,

we integrated both systems converting the egocentric actions from the allo-
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static control system in allocentric ones for the contextual control system.

We tested the model in a variety of foraging tasks. We show that allostatic

control system is able to succeed fulfilling the robot’s needs when the infor-

mation from the reward does not contain conflicts. When obstacles in the

environment do not allow a direct path to the reward a contextual control

system is needed. Our results show that in these cases the contextual con-

trol system is able to pick up salient information from the environment and

use it to fulfill the robot’s needs.

The model integration proposed here can be reminiscent of taxon Vs.

route navigation strategies (Redish, 1999). On the one hand, the allostatic

control system is capable of solving taxon task, i. e. tasks where the goal

is visible. On the other hand, as the complexity of the task increases, i.e.

the goal is not visible, the contextual control system is capable of solving

it through route navigation, i. e. chaining taxon strategies. A number of

robotics and artificial intelligence algorithms have been proposed to solve

the taxon chaining problem (Kuipers, 2000; Mallot and Basten, 2009). Our

approach differs from them in that our first building block is self-regulation

and on top of it we add a contextual control system able to learn about the

environment. Different internal states leading to different goal states can

be handled achieving self-regulation.

Further experiments would need to be done in order to better un-

derstand how allostatic and contextual systems interact. For instance, the

possibility of multiple homeostatic subsystems activated at the same time

might influence the information learned by the contextual control system.

The implications of this influence in the memory content should be tested.

To integrate allostatic and contextual systems in a model allow us

to better understand how they complement each other and how they scale

with task complexity. Moreover, we propose that these implications might

be extended to the biological brain and its multi-level architecture.
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Supplemental Experimental Procedures

DAC architecture

The DAC architecture distinguishes between three different layers of con-

trol: reactive, adaptive and contextual layers. The most basic behavior is

generated at the reactive layer and allows interaction with the environment

while acquiring information that is furthered used and processed by the

higher adaptive and contextual layers.

Reactive and adaptive layers The reactive layer provides predefined

automatic responses (UR) triggered when an unconditioned stimulus (US )

is encountered. Static and prewired connections from sensory stimuli to

actions implement the reactive behavior, i. e. aversive or appetitive. This

reactive behavior allows the sampling of data from the environment which

are learned and classified in terms of their valence and associated actions

by the adaptive layer. The adaptive layer creates internal representations

of the data, i. e. transforms data into information, and learns to associate

these internal representations with actions, i. e. learns to associate between

conditioned stimuli (CS ) and unconditioned responses (UR) triggered by

the unconditioned stimulus (US ). Later on the anticipation of the adap-

tive response to a conditioned stimulus in the absence of US will be called

conditioned response (CR). Therefore, the interaction between reactive and

adaptive layers implements classical conditioning, where there is a trans-

formation from information into knowledge. The knowledge created at the

adaptive layer is accumulated in the contextual layer.

Following the abbreviations from Fig. 2.12, the actions generated by

the reactive (ar) and adaptive (aa) layers are defined as:

ar = UT rH(r − θA) (2.7)

aa = UT yH(y − θA) (2.8)

where r stands for the contribution of the US to IS ∈ RK , y stands for

the contribution of the CS to IS ∈ RK , U is the weight matrix from the
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IS to the A cell group and H(.) is the Heaviside or step function 3. Their

mathematical expression is: r = V T s and y = W Tx, where V is the weight

matrix from US to IS cell group ∈ RNxK and W is the weight matrix from

CS to IS cell group ∈ RNxK . The weight matrix W changes following a,

so called, predictive Hebbian learning rule (Verschure and Pfeifer, 1992).

The changes in the associations between CS dependent states and internal

states depend on the difference between actual CS x and predicted CS e.

e is the backwards projection of y to the CS cell group. It is described as

e = Wy and and it is the sensory information stored in the internal state

population of the adaptive layer. With these definitions W changes as (Duff

and Verschure, 2010):

∆W = η(x− γe)((1− ζ)y + (1 + ζ)r)T (2.9)

where the parameter η is the learning rate and ζ, ζ ∈ [−1, 1], balances the

influence of the xyT and xrT , i. e. ζ balances the influence of behavioral

and perceptual learning. The negative normalization term −e depresses the

weights and assures convergence, while the γ controls the influence of this

normalization term. This learning rule directly captures the Rescorla and

Wagner laws of associative competition that essentially state that animals

only learn when events violate their expectations (Rescorla and Wagner,

1972).

Contextual layer The contextual layer provides mechanism for mem-

orizing and recalling behavioral sequences. It consists of two structures:

short-term memory (STM) and long-term memory (LTM).

The contextual control is based on the following assumptions:

• Memorize:

– STM stores sensory-motor events generated by the adaptive layer.

3H(x) is 1 if x ≥ 1 and 0 if x < 0



64 generalization of integrator models to foraging

Figure 2.12: Reactive and adaptive layer. Squared boxes stand for neuronal
groups. Arrows stand for static (solid) and adaptive (dashed) synaptic connec-
tions between cell groups. Abbreviations mean: US, unconditioned stimulus; CS,
conditioned stimulus; IS, internal states; A, action; UR, unconditioned response;
CR, unconditioned response; W, V and U are connection matrix.

– When a goal state is reached the content of the STM is stored in

the LTM and the STM is initialized.

• Recall

– The content of LTM is compared with ongoing sensory events.

– Matching elements contribute to action selection.

– Chaining through sequences is achieved by biasing LTM match-

ing.

The STM is a ring buffer with fixed size NS . Every element of this memory

is called a segment. A series of consecutive segments is called sequence.

The STM is formed by one sequence of NS segments. At each moment the

generated CS prototype e and the action a executed by the robot are stored

in the STM. When a goal state is reached, the sequence stored in the STM

is copied into the LTM and the STM is reset. The LTM has a NL number

of sequences. The size of the LTM is, therefore, NLxNS . The sequences in

the LTM are defined by their different goal states (e.g. -1 for an aversive

events such as a collision, +1 for an appetitive event such as a reward).

The contextual layer integrates the representations of sensor states

and actions formed at the level of the adaptive layer and the activation of

its segments depends on the matching between the predicted CS prototype e
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Figure 2.13: Contextual layer. (1) The CS prototype e and the executed action
a are stored in the STM as a segment. (2) When a goal state is reached the content
of the STM is copied in the LTM as a sequence and the STM is reset. (3) The
values of the generated CS prototype e are matched against those stored in the
LTM (4) The A population receives as an input the action response calculated as
a weighted sum over the memory segments. (5) The actions proposed by reactive,
adaptive and contextual layers compete in a priority selection mechanism to control
the robot.

generated by the adaptive layer and the actual CS prototype x. This quality

of matching is defined by an internally generated discrepancy measure (D)

that is running an average distance between the prototypes CS x and CS e.

D(t+ 1) = αDD(t) + (1− αD)d(x, e) (2.10)

where αD defines the integration time constant and the distance d(x,e)

between actual CS x and estimated CS e prototypes is calculated as:

d(x, e) =
1

N

N∑
j=1

∣∣∣∣∣ xj
max(x)

− ej
max(e)

∣∣∣∣∣ (2.11)

Initially only the reactive and adaptive layers are active. The contex-

tual layer is activated when D falls bellow a certain confidence threshold.

During the recall all the CS e prototypes stored in the LTM are

matched against the generated CS e prototype. The degree of matching of

segment l in sequence q determines the input to its, so called, collector :
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c = (1− d(e, elq))tlq (2.12)

The collector determines the contribution of the segment to the action

selection. Its activity depends on the distance d(.) of the generated CS e

prototype to the CS e prototype stored in the segment and on a, so called,

trigger value t.

The trigger value biases the sensory matching process of the segments

and allows chaining through a sequence. Its value depends on the previous

activity of neighbouring segments inside the sequence. Its default value is

1 and does not bias the collector value. When a segment l-1 in sequence q

is activated the trigger of segment l is set to a value higher than 1. This

means that a segment, following a previously effective one, will be given

higher priority in future decision making. This trigger decreases its value

to 1 asymptotically with a defined time constant according to:

tlq(t+ 1) = αt + (1− αt)tlq(t) (2.13)

where αt ∈ [0; 1]. The trigger of a selected segment resets its value to 1.

The activity of the collectors will contribute to the action proposed

by the contextual layer. We will only consider the collectors’ activity that

satisfy that (1) its activity is above a certain threshold (θC) and (2) its

activity is inside a predefined percentage range from the maximum collec-

tor’s activity, i.e. the collectors compete in an E%-Max Winner Take All

(WTA) mechanism (de Almeida et al., 2009), where at each moment the

maximum collector’s activity and all collectors’ activity distance to this

maximum activity is calculated. The percentage range from the maximum

collector’s activity is a parameter that reflects the certainty or uncertainty

of the robot, i. e. when the robot is not enough certain about which action

to perform more suggestions from collectors are listened. The collectors se-

lected from the WTA will contribute to the contextual action. All collector

units are connected to the action group A. The actual action proposed from

the contextual layer is calculated as:
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ac =
∑

l,q∈LTM
±
clqH(clq − θC)

δlq
alq (2.14)

where δlq is the distance measured in segments between the selected segment

l and the last segment in the sequence, i.e. the distance to the goal state.

By doing this division the segments closer to the goal have more impact

on the contextual action. The sign is plus if the segment belongs to an

appetitive sequence and minus if it belongs to an aversive sequence. After

summing up all the selected actions and having the calculated action (ac)

if it results in a negative action it is not triggered and therefore only final

positive actions are triggered. This avoids having backwards actions.

The action selection that defines the final action performed by the

agent in order of priority executes one of the actions triggered by the re-

active (ar), adaptive (aa) or contextual layer (ac), giving more priority to

reactive actions, then to contextual actions and finally to adaptive actions.

The actions generated by the contextual layer are those that find the most

support by the knowledge available in LTM and its matching to sensory

events.





Chapter 3

Neural response variability in
premotor cortex is modulated
by trial history and predicts

behavioral performance

The problem is, they’re variable

Steve Rhode

In the previous chapter, an embodied artificial agent, provided with a

cognitive architecture, was able to gather information from the environment

and use it to reach specific goals. In order to do so, the behavior of the robot

was biased by the temporal order in which external events were encountered.

The DAC architecture achieves this by biasing the retrieval of information

from memory based on previous perceptual inputs. However, the neural

mechanisms underlying this bias are not well known yet. To elucidate this

issue, we investigate the neural correlates causing a bias in behavior due to

experience (trial history) during a motor decision-making task. Our main

result shows that behavior in a given trial is influenced by the recent trial

history and that the across-trial response variability of neurons recorded

from the dorsal premotor cortex (PMd) closely correlates with it, whereas

69
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the mean firing rate does not. This suggests that the mean firing rate

reflects the strength of the perceptual input, which is the same for all trials,

on the decision-making process while the across-trial variability reflects the

variable influence of memory. To validate this, we perform an additional test

with a theoretical model of binary decision-making and we observe that, if

the perceptual input was fixed, the modification of a memory related signal

directly caused changes in the variability of the across-trial response, while

the mean firing rate did not exhibit significant variation. This result raises

two questions: whether there really is a monitoring signal capturing previous

history and whether the origin of it is internal or external to PMd.

In this chapter we reproduce a manuscript called ”Neural variability

in premotor cortex is modulated by trial history and predicts behavioral

performance” published in Neuron (Marcos et al., 2013b). The abstract

reads:

In the study of decision making, emphasis is placed on differ-

ent forms of perceptual integration, while the influence of other

factors, such as memory, is ignored. In addition, it is believed

that the information underlying decision making is carried in the

rate of the neuronal response, while its variability is considered

unspecific. Here we studied the influence of recent experience

on motor decision making by analyzing the activity of neurons

in the dorsal premotor area of two monkeys performing a coun-

termanding arm task. We observe that the across-trial variabil-

ity of the neural response strongly correlates with trial history-

dependent changes in reaction time. Using a theoretical model

of decision making, we show that a trial history-monitoring sig-

nal can explain the observed behavioral and neural modulation.

Our study reveals that, in the neural processes that culminate

in motor plan maturation, the evidence provided by perception

and memory is reflected in mean rate and variance respectively.
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3.1 Introduction

Two-choice perceptual and motor tasks have been widely used to explore

the neural mechanisms underlying decision-making processes (Logan and

Cowan, 1984; Smith and Ratcliff, 2004; Gold and Shadlen, 2007; Verbruggen

and Logan, 2008). Neural activity in parietal and frontal cortical areas

has been shown to be correlated with behavioral performance of monkeys

trained in specifically designed tasks (Platt and Glimcher, 1999; Gold and

Shadlen, 2000, 2007; Cisek and Kalaska, 2005; Mirabella et al., 2011). In

the last years, these binary simple tasks have been extended to account for

multiple choices (Churchland et al., 2008; Albantakis and Deco, 2009). Al-

though there has been progress in the understanding of the decision-making

process in these tasks, little is known about how the recent history of the

task influences the neural mechanisms underlying this process. In a previ-

ous theoretical investigation of the dynamics of working memory in optimal

decision making, we have proposed that the integration of information from

perception and memory requires temporal integration, supporting percep-

tion, and dynamic modulation of this temporal integration, serving memory

(Verschure et al., 2003). A specific neural mechanism explaining such mem-

ory biasing, however, has not yet been described. One could argue that the

across-trial variance of the neuronal response could reflect effects of task his-

tory. It has been proposed that variance of neuronal responses is correlated

with the progress of motor preparation (Churchland et al., 2006) and that

it is a general feature of cortical dynamics that is nonspecific with respect

to the behavioral task at hand (Churchland et al., 2010). Here we investi-

gate the possible signature of recent trial history in the variance of neuronal

responses by analyzing the single-unit activity recorded in the dorsal pre-

motor (PMd) area of two macaque monkeys performing a countermanding

arm task (Mirabella et al., 2006).

The countermanding task has been extensively used to study motor

decision mechanisms. It evaluates the ability to cancel a planned cued move-

ment in response to the presentation of an infrequent Stop signal presented

at variable delays (Stop signal delay, SSD; Fig. 3.1A) from the time of
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presentation of the visual target Logan and Cowan (1984); Verbruggen and

Logan (2008). The overall behavioral performance in this task has been ex-

plained with the so-called race model (Logan and Cowan, 1984). The race

model proposes that the behavioral outcome of the countermanding task is

the result of a competition between a Go and a Stop process that evolves,

driven by the accumulated sensory evidence, toward a decision threshold.

Neuronal correlates of the movement generation process, as predicted by

the race model, have been found in the modulation of firing rate (FR) of

single-unit activity in the frontal eye field (FEF) and the superior colliculus

(SC) for countermanding saccade tasks (Hanes and Schall, 1996b; Paré and

Hanes, 2003) and in the supplementary motor area (SMA) and PMd for

countermanding arm tasks (Scangos and Stuphorn, 2010; Mirabella et al.,

2011). However, all these results ignore the role of trial history in the

task. After each trial in which a Stop cue is delivered (Stop trials), sub-

jects increase their movement reaction time (RT), purportedly reflecting an

increase in uncertainty about the current trial (Rieger and Gauggel, 1999;

Mirabella et al., 2006; Emeric et al., 2007; Verbruggen and Logan, 2008;

Nelson et al., 2010).

Here, using the data set reported in Mirabella et al. (2011), we in-

vestigate the behavioral adaptation and the modulation of the activity of

reaching related neurons dependent on the temporal order of a trial in a

sequence, i.e., the recent history of a trial. We observed that both behavior

and variability of the neuronal responses were modulated by trial history.

Using a computational model, we show that these effects can be explained

in terms of a competitive process that is modulated by a monitoring signal.

3.2 Results

To quantify the biasing of the neuronal response due to the history of a trial,

we calculated the mean FR and the across-trial spike variability during Go

trials that were sorted by different history conditions. We observed a signif-

icant and systematic difference in RT and neural response variability that

held over a wide range of trial history conditions. These results suggested
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that, other than perceptual signals, neurons in PMd are also influenced by

an additional input related to the history of the trial, i.e., memory. To

validate this hypothesis, we studied the response of a mean-field approxi-

mation of a spiking neural model (Wilson and Cowan, 1972) in a simulated

countermanding task. We observed that an additional monitoring-related

signal can directly account for the observed changes in the neural response

variability and the behavioral performance.

Behavioral Responses

We analyzed the behavioral responses of the monkeys looking at their RT

in Go trials and probability of failure to cancel a planned movement in

Stop trials. Consistent with previous work (Emeric et al., 2007; Pouget

et al., 2011), we observed that the mean RT of the monkeys increases when

the current Go trial was preceded by a Stop trial (Fig. 3.1B), in contrast

to when it was preceded by a Go trial. This confirms that performance is

modulated by trial history. In addition, the SD of the RT was higher when a

Go trial was preceded by a Stop trial than when preceded by a Go trial (see

Fig. 3.5). Moreover, a longer RT was associated with a lower probability

of failure in the following trial (Fig. 3.1C), i.e., successful cancellation was

more likely in a Stop (t) trial that followed a sequence of Go (t-1) and Stop

(t-2) as opposed to a sequence comprising two Go trials.

Neural Correlate of the Decision Process

To assess the neural correlate of the decision process, we analyzed the modu-

lation of the mean FR of the neurons and their across-trial spike variability,

as measured by the variance of conditional expectation (VarCE) (Church-

land et al., 2011) during motor preparation. For this analysis we used only

Go trials from the time of the presentation of the Go signal until arm move-

ment onset. We sorted the data with respect to the type of trial that was

preceding the current Go trial: a Go or a Stop trial. We observed that after

the presentation of the Go signal, both the FR and the VarCE increased

until they reached a peak value at about 150 ms before movement onset
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Figure 3.1: The countermanding task. (A) In a countermanding task, visual
cues are presented either to induce movements (Go trial) or to prevent movements
initiated by the Go signal (Stop trial). A central stimulus signals the start of the
trial and the monkey is required to touch this cue with its hand. The start cue is
followed (usually after 500800 ms) by a visual cue (Go signal) that indicates the
location to which a movement must be made. In the Go trials, the monkey has to
execute a speeded reaching movement toward this peripheral target. During the
Stop trials (33% of the trials), the central stimulus reappears after a variable delay,
or Stop signal delay (SSD), instructing the monkey to withhold the planned move-
ment, keeping the hand on the central stimulus. (B and C) Behavioral performance
in a countermanding task relative to task history (53 experimental sessions). Error
bars indicate SEM. (B) RT in Go trials when preceded by a Go or a Stop trial
(Go + Go trial, 16,060 trials; Stop + Go trial, 6,671 trials; Kolmogorov-Smirnov
test, ∗ = p < 0.01). (C) Probability of failure in a Stop trial when preceded by Go
+ Go trial or Stop + Go trial (Go + Go + Stop trial, 4,601 trials; Stop + Go +
Stop trial, 2,116 trials; Kolmogorov-Smirnov test, ∗ = p < 0.01). See also Fig. 3.5.

(Fig. 3.2A and Fig. 3.2B). After this peak, the mean FR and the VarCE

gradually decreased to their baseline (right panels of Fig. 3.2A and Fig.

3.2B). The mean FR in the analysis epoch did not significantly differ be-

tween the two conditions, i.e., whether the current Go trial was preceded by

a Stop or a Go trial. In contrast, VarCE displayed a strong modulation by

the task history and was significantly higher in case the preceding trial was

a Stop as opposed to a Go trial (Fig. 3.2B). Single-unit analyses showed a

consistent effect across the whole population (Fig. 3.6A). We also tested the

correlation of task history with VarCE during Stop trials in two different
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contexts: when a Stop trial was preceded by Go (t - 1) and Stop (t - 2)

trials or by two consecutive Go trials. We observed the same modulation in

VarCE by task history (Fig. 3.6B).

Interestingly, the difference in VarCE between both conditions disap-

peared about 70 ms after the presentation of the Stop signal. This latency

is consistent with the average processing delay of visual information in PMd

(Cisek and Kalaska, 2005).

In a next analysis, we assessed the relationship between task history,

VarCE, and performance (Fig. 3.2C, 3.2D, and 3.6C). This analysis revealed

that mean and SD of RT closely mirrors the effect of task history on VarCE

over a wide range of task history conditions. The three factors, mean RT,

SD of RT, and VarCE, increased with an increase in the number of previous

Stop trials, while they decreased with an increase in the number of preceding

Go trials. Moreover, changes in mean RT over a range of trial history

conditions are due to systematic shifts of the entire RT distributions (Fig.

3.6D). We observe that the mean RTs are very well correlated with VarCE

(Fig. 3.3A) and that RT and VarCE distributions seem to have similar

shape (Fig. 3.3B). The mean FR for the same conditions did not show any

variation (Fig. 3.6E). Interestingly, the modulation of VarCE also depends

on the difficulty of the previous trial (Fig. 3.6F), so that its value increased

as the SSD in the Stop trial preceding the Go trial increased. Thus, these

results suggest that the influence of task history is reflected in the variance of

neuronal activity in PMd and that both variables, VarCE and trial history,

are linearly correlated with performance.

Mean-Field Approximation

In order to understand the neural mechanisms causing the observed behav-

ioral and across-trial neuronal response variability differences due to varying

trial history conditions, we used a mean-field approximation (Wilson and

Cowan, 1972) of a biophysically based binary decision-making model (Fig.

3.4A). The model receives two segregated inputs: perceptual evidence pro-

vided by the visual cues (Stop and Go signals) and a task history signal
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Figure 3.2: Neuronal dynamics during the countermanding task. (A) and (B)
Neural activity is aligned to Go signal (left) and arm movement (right) onsets.
Shaded areas indicate SEM. A) Mean FRs in Go trials when preceded by a Stop
(red) or Go (blue) trial (Kolmogorov-Smirnov test, p > 0.05). Results are obtained
from 142 neurons (Go + Go trial, 16,060 trials; Stop + Go trial, 6,671 trials). (B)
VarCE for the same two conditions as in (A). VarCE is significantly different from
80 to 410 ms after the onset of the Go signal (Kolmogorov-Smirnov test, ∗ =
p < 0.01) and from -350 to 70 ms when aligned to movement onset (Kolmogorov-
Smirnov test, ∗ = p < 0.01). (C) and (D) RT (C) and VarCE (D) during a Go
trial in six different trial history conditions when it was preceded by three or more
(+3) Stop trials (850 trials), two Stop trials (1,353 trials), one Stop trial (4,468
trials), one Go trial (4,578 trials), two Go trials (3,257 trials), and three or more
(+3) Go trials (8,225 trials). Error bars indicate SEM. Data are obtained from
same 142 neurons. See also Fig. 3.6.

provided by a monitoring system. The model has two populations of ex-

citatory neurons: one population is sensitive to the appearance of the Go

signal (λgo; Go pool), while the other population is sensitive to the appear-

ance of the Stop signal (λstop; Stop pool). The two populations mutually
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Figure 3.3: The relationship between performance and VarCE. (A) Mean RT is
fitted by VarCE using a linear regression (R = 0.93 and p < 0.01). Data points are
as in Fig. 3.2C and 3.2D. Error bars indicate SEM. (B) Quantile-Quantile plot of
the interquartile range of RT and VarCE distributions formed by pooled data from
all conditions. The data points are linearly correlated (R = 0.99 and p < 0.01),
suggesting a high similarity in the shape of the distributions.

inhibit each other. In the absence of any of the two visual signals, both

λgo and λstop are equal to 0. A monitoring process modulates the strength

of the input (λ) to each group of neurons simulating different trial history

conditions: λ increases its value as the number of Stop trials preceding a Go

trial increases and decreases its value as the number of Go trials preceding

a Go trial increases (Fig. 3.4B). We observe that the model reproduces the

same relationship between the probability of failure and SSDs as observed

during the countermanding task, i.e., the probability of failing in the Stop

trials increases as the SSD increases (Mirabella et al., 2006) (Fig. 3.7A).

To compute decision times in the simulations, we considered that the

decision process was terminated when the difference in activity between Go
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Figure 3.4: Mean-Field approach. (A) Network structure of the binary decision
model. The ’Go’ pool is selective for the Go signal (λgo), while the ’Stop’ pool
is selective for the Stop signal (λstop). The two pools mutually inhibit each other
(ω−) via inhibitory pools (not represented) and have self-excitatory recurrent con-
nections (ω+). The ’Monitoring system’ is connected with the two selective pools.
The synapses that connect the ’Monitoring system’ with the ’Go’ and ’Stop’ pools
have different strength ωgo+ and ωstop+. (B) Firing rate value of the signal pro-
vided by the monitoring system. The value of this signal depends on the history of
the current trial. The value of λ increases as the number of Stop trials preceding
a Go trial increases and decreases as the number of Go trials preceding a Go trial
increases. (C) and (D) RT (C) and VarCE (D) of the response of the ’Go’ pool
sorted by the recent history of a trial. Simulation results were obtained from 10,000
trials grouped in ten sessions of 1,000 trials each. Error bars indicate SEM. See
also Fig. 3.7.

and Stop pools was above a fixed threshold (Roxin and Ledberg, 2008). The

RT was calculated by adding 150 ms to the decision time, consistent with the

peak in FR observed 150 ms before movement onset in the physiological data

(Fig. 3.2A). The mean and SD of RT obtained from the simulations (Fig.

3.4C and Fig. 3.7B) exhibit the same trend as observed in the physiology
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of PMd (Fig. 3.2C and Fig. 3.6C): the mean and SD of RT in a Go trial

are longer/shorter as the number of preceding Stop/Go trials increase.

Consistent with our analysis of the physiological data, the different

simulated trial history conditions have a similar impact on the variability of

the Go pool response (Fig. 3.4D). This impact of the monitoring signal λ on

RT and VarCE can be intuitively understood in terms of the competition

between the two neuronal pools Stop and Go through mutual inhibition

(Fig. 3.4A). The model is tuned such that the firing rate of the Go pool is

not affected by this neuronal competition (Fig. 3.7C), as observed in the

response of the neurons we have analyzed (Fig. 3.6E). We observe that,

given these assumptions that reflect the physiological properties of PMd,

the addition of the monitoring signal leads to the modulation of the effect

that the Stop pool has on the dynamics of the overall network, leading to a

change in the mean RT. In addition, when the influence of the Stop pool on

the dynamics is increased, the intrinsic noise of the system starts to have a

larger impact on the performance and dynamics of the network, resulting in

an increase in VarCE and RT variability. Indeed, it has been demonstrated

that the neural response variability changes with the strength of the input

to this model, due to a shift in the distance from the working point of

the system to the bifurcation point (Deco and Hugues, 2012; Roxin and

Ledberg, 2008). Here we exploit this effect through the monitoring signal.

Hence, perceptual input defines the mean rate, while the history dependent

monitoring signal defines a modulation around this rate expressed in VarCE.

These results confirm that the response variability we observed in PMd can

be seen as a signature of trial history and predict the existence of a system

that both monitors the recent history of a task and modulates competition

between pools of neurons dedicated to Go and Stop.

3.3 Discussion

We have investigated the hypothesis that perceptual cues and memory of

trial history are integrated in the decision-making process underlying the

countermanding task. Our analyses of the responses of neurons in PMd of
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monkeys performing a countermanding arm task show the influence of re-

cent trial history on both the performance of monkeys and on the variability

of neuronal responses in PMd. We show that the behavior of the monkeys

becomes increasingly more conservative (longer RT) when a Go trial was re-

cently preceded by one or more Stop trials and increasingly hastier (shorter

RT) when it was recently preceded by one or more Go trials, as previously

reported (Rieger and Gauggel, 1999; Emeric et al., 2007; Verbruggen and

Logan, 2008; Nelson et al., 2010; Mirabella et al., 2006). We show that the

behavioral performance is linearly correlated with changes in the variability

of the neural response. To validate the possible signature of trial history

in neural response variability, we performed an additional theoretical study

using a mean-field approximation of a spiking neural model. We show that

changes in the strength of a modulatory input that reflects trial history ac-

counts for the observed changes in behavior and neural response variability,

suggesting the existence of a trial history monitoring system in the brain.

Our study provides a neural correlate for task history and its impact on

the neuronal substrate of decision making and is a further example of how

adaptive behavior is monitored and orchestrated in the brain (Walton et al.,

2004; Ito et al., 2003).

One of the weaknesses of using VarCE as a measurement of the across-

trial variability lies in the estimation of the scaling factor f. We computed it

separately for each neuron (see Experimental Procedures), and the obtained

distribution of the values of φ was consistent with the ones previously re-

ported for the neocortex (Fig. 3.6G) (Shadlen and Newsome, 1998; Nawrot

et al., 2008). To check the robustness of our results to variations in the

value of f, we repeated our analyses (Fig. 3.2B) but setting the same value

of f for each neuron. We observed that the difference in VarCE between

history conditions is independent on the value of f used (Fig. 3.6H).

Similar to VarCE, the Fano Factor (spike count variance divided by

spike count mean) has been used to calculate the across-trial variability of

neural responses. Although in most cases both measurements are considered

to be equivalent, for significant changes in mean FR, the VarCE has shown



3.3. discussion 81

to be more robust than the Fano Factor (Churchland et al., 2011). However,

our conclusions hold for both the Fano Factor and the VarCE (see Fig. 3.6I

and 3.6J) and are further supported by the equivalent histogram obtained

from the interspike interval observed in a Go trial preceded by different

sequences of trials, i.e., with different history (see Fig. 3.6K). Hence, our

results are robust with respect to the specific method used to obtain a

measure of variability.

Our results suggest that the observed change in strategy during the

task might be due to an increase or decrease in the uncertainty about Stop

cue appearance in the current trial, suggesting a relationship between trial

history and uncertainty. Under this interpretation, one might speculate that

the degree of the monkeys uncertainty is updated based on the trial history

and increases as a function of the number of Stop trials. Subsequently,

this relationship implies a direct link between uncertainty and variability:

higher uncertainty is related to a higher variability in the neural response

and a longer and more variable RT. Our simulation predicts the existence

of a system that monitors either trial history itself or uncertainty based on

trial history and updates its value according to new incoming information,

i.e., actions and their outcome in a new trial. This definition of uncertainty

is consistent with previous work in which uncertainty is defined in terms

of the accuracy to predict the possible consequences of actions (Huettel

et al., 2005; Yoshida and Ishii, 2006). For instance, in the countermanding

task, after a Stop trial both humans and monkeys increase their expectation

about the probability of a next trial including a Stop signal (Emeric et al.,

2007).

The use of a mean-field approximation of a realistic network of integrate-

and-fire neurons (see Experimental Procedures and Supplemental Experi-

mental Procedures) allows us to study the dynamics of the decision-making

process from the perspective of the neuronal substrate. We have shown

that the biasing of the neural responses and the consequent changes in the

behavioral strategy during different trial history conditions could be caused

by a signal coming from a system that monitors the recent history of a
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trial and that directly changes the strength of the competition between the

neural populations involved in the decision making. This modulation in the

competition influences the variability of the across-trial average activity,

while the average response of the population correlated with the execution

of movement (Go pool) is the same due to the balance in the excitatory and

inhibitory connections of the network.

Changes in the behavioral strategy could be explained with the same

mechanism, i.e., due to a modulation in the strength of the competition

between neuronal populations, a suprathreshold difference in their activ-

ity will take varying amounts of time to be generated. Hence, according

to our proposal, VarCE is a derived measure caused by a difference in the

strength of the competitive process with different trial history conditions.

Because our neural data are based on single-unit recordings, it is difficult

to conceive how VarCE could be read out. However, areas like primary mo-

tor cortex, posterior parietal cortex, SMA, and cingulate cortex (Johnson

and Ferraina, 1996; Johnson et al., 1996) that read information from PMd

would have access to the population and, in this case, an instantaneous

measure of variability could be possible by trading off temporal integration

for spatial integration. This would raise the question of whether this redun-

dant representation of trial history would be necessary. The answer to this

question is, however, out of the scope of this study. Changes in the initia-

tion of activity accumulation in FEF and SC have shown to be correlated

with task history-dependent changes in performance (Pouget et al., 2011).

We did not observe, at the population level, any modulation of firing rate

in PMd after adaptive response time adjustment. A possible explanation

is that the functional organization of the neural network controlling eye

movements is very different of that controlling limb movements (see also

Discussion in Mirabella et al. (2011). We exclude that the modulation of

FEF could be a source of the neural response variability we observed. In

fact, our recording region included the more rostral portion of PMd but

not supplementary eye fields (Mirabella et al., 2011). Only this last portion

receives input from FEF, while the rostral PMd is preferentially connected

with dorsolateral prefrontal regions (Luppino et al., 2003). A monitoring
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signal could be provided by the connection of PMd with cingulate cortex

(Johnson and Ferraina, 1996; Luppino et al., 2003). The anterior portion of

cingulate cortex has been shown, in humans, to display trial history mod-

ulation of baseline activity (Domenech and Dreher, 2010). Further studies

are needed to clarify all these aspects in detail.

Our study shows a key role of the across-trial variability of the firing

rates as a signature of trial history during decision making, confirming an

earlier theoretical prediction (Verschure et al., 2003) and adding an extra

variable to be considered in future experimental and theoretical studies.

In the context of the countermanding arm task, the information provided

by perception and memory to the decision-making process is reflected in

different aspects of the neuronal activity: mean FR and acrosstrial variance

respectively. We have shown that the latter is linearly related to the RT and

the trial history experienced by the monkeys. Our results imply that there

is a continuous monitoring of trial history that, combined with the current

perceptual evidence, is used to make a decision. An important question is

now whether the origin of this monitoring process is internal (Domenech

and Dreher, 2010) or external (Zandbelt and Vink, 2010) to the PMd and

its immediate cortical efferent and afferent areas.

3.4 Materials and Methods

Behavior and Physiology

Two adult male rhesus macaques (Macaca mulatta; monkey S and monkey

L) weighing 78 kg were used. Details of the experimental procedures have

been provided in Mirabella et al. (2011). Monkeys were trained to perform a

countermanding reaching task. It consists of a random mix of 67% Go trials

and 33% Stop trials. All trials began with the appearance of a stimulus at

the center of a touch screen (Fig. 3.1A). Monkeys were required to touch

the stimulus with their fingers, within 2 s, and hold it for a variable period

of 500800 ms. Thereafter, in the Go trials, the central stimulus disappeared

and, simultaneously, a target appeared (Go signal) randomly at one of two
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possible opposite peripheral positions. To get a juice reward, monkeys had

to reach the target within a maximum time, named upper reaction time

(to discourage monkeys from adopting the strategy of excessively slowing

down the RTs), and to maintain their fingers on it for 300 ms. Stop trials

differed from the Go trials because at a variable delay (SSD) after the Go

signal was presented, the central stimulus reappeared (Stop signal). In

these instances, to earn the juice, the monkeys had to inhibit the pending

movements, holding the central target for 300 ms. Monkeys were given

an auditory feedback when their responses in either Go or Stop trials were

correct. A countermanding session consisted of 480 trials. In the Stop trials,

the successful inhibition of the planned movement critically depends on

the duration of SSD. Cancelling the movements becomes increasingly more

difficult as the SSD is larger. In the two monkeys, we used different values

of SSDs (see (Mirabella et al., 2011) for details) with the goal to obtain a

good performance, i.e., an average probability of successful suppression of

the movement close to 0.5.

Data Analysis

Behavioral Performance

Probability of failure and RT distributions were calculated from the mean

values obtained for each experimental session. The SD of RT distribution

was obtained from the SD of RT for each experimental session.

Estimation of Mean Firing Rate

Starting from the original data set (Mirabella et al., 2011), we selected

142 neurons obtained from 53 experimental sessions in the two monkeys.

Neurons selected are those with reaching-related modulation, i.e., their av-

erage FR in the RT was significantly higher (Tukey Kramer test, p < 0.05)

than the activity measured 400 ms before target appearance. We computed

mean FR responses (Fig. 3.2A) using windows of 60 ms over trials with

same recent history. All references to time correspond to the midpoint

of the window. Varying the size of the window did not result in significant
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changes (data not shown). The significance test (Kolmogorov-Smirnov test)

was computed using a 60 ms nonoverlapping window.

Estimation of Neural Variability

To calculate the across-trial variability of the neural response, we follow the

method in (Churchland et al., 2011) in which the total calculated variance

is approximated as the sum of the VarCE and the point process variance

(PPV). VarCE is then estimated (S2
〈Ni〉) by subtracting an estimated value

of PPV from the total calculated variance:

S2
〈Ni〉 = V ar[Ni]− φNi (3.1)

where Ni and Ni are spike counts and the mean spike counts in epoch i for

one neuron and trial history condition and f is a scaled factor that corre-

sponds to the minimum value of the calculated Fano Factor for each neuron

(see (Churchland et al., 2011) and Supplemental Experimental Procedures

for details). To compute VarCE, we used the same time window as in the

estimation of the mean.

To calculate VarCE in the six history conditions shown in Fig. 3.2D,

we averaged the value of VarCE in the interval between 80 ms and 410 ms

after the Go signal onset. We used this range because it is the time interval

in which VarCE in a Go trial is significantly different when preceded by a Go

trial than when preceded by a Stop trial (Fig. 3.2B). The significance test

(Kolmogorov-Smirnov test) was computed using a 60 ms nonoverlapping

window.

Model and Simulations

We used a standard neuronal model proposed by (Wilson and Cowan, 1972).

It is a mean-field approximation of a realistic complex network of spiking

integrate-and-fire neurons. The dynamics of the network can be described

through two differential equations each of them referring to each population

(pool) of neurons (in our case ’Go’ and ’Stop’ pools):
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τ
dUgo(t)

dt
= −Ugo + f(ωgo+λ+ λgo + ω+Ugo − ω−Ustop) + σξ(t) (3.2)

τ
dUstop(t)

dt
= −Ustop + f(ωstop+λ+ λstop +ω+Ustop−ω−Ugo) + σξ(t) (3.3)

where U stands for the average firing rate of a pool, u stands for the different

weight of the connections, λ defines external inputs to the network, and the

function f(.) is a sigmoidal function defined as:

f(x) =
Fmax

1 + exp −(x−θ)
k

(3.4)

where Fmax denotes the firing rate value to which the population of neurons

will saturate independently of the strength of the external input signal. In

this study, we have used the values of: τ = 20 ms, ωgo+ = 0.70, ωstop+ = 1,

ω+=1, ω− = 1.5, Fmax = 40 spikes/s, k = 22 spikes/s, θ = 15 spikes/s, and

λgo = 7.3 spikes/s when the appearance of the Go signal is simulated, λstop

= 0, and λ linearly varies its value from condition to condition following the

trend in Fig. 3.4B. It can be described by the equation: λ = −0.35x+ 18,

where x goes from 1 to 6 to describe the trial history conditions: +3Stop,

2Stop, 1Stop, 1Go, 2Go, and +3Go. The decision was considered to end

when the difference between Go and Stop pools response was above 15

spikes/s.

The fluctuations of the network are modeled by the term ξ, which

adds an additive Gaussian noise (with mean 0 and variance 1) to the average

firing rate. This noise represents the effects of a finite number of neurons

in the network. The term σ = 2 spikes/s in our simulations.

VarCE of the simulated response of the network was calculated by

estimating the spike counts from the mean firing rate of the Go pool. The

spike counts were estimated by using a scale factor of 12, which depends on

the population size, following a standard procedure (Albantakis and Deco,

2009; Wang, 2002). We did this scaling in order to fit quantitatively the

experimental data.
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Supplemental Experimental Procedures

Behavior and Physiology

Before starting the training, under aseptic surgical conditions, a head hold-

ing device, and a scleral eye coil (Robinson, 1963) were implanted. Antibi-

otics and analgesics were administered postoperatively. In each monkey, at

the end of the training period, again under general anesthesia, a recording

cylinder (18mm in diameter) was implanted in the frontal lobe in order to

allow recordings over the arm representation of the dorsal premotor cortex

(PMd; see (Mirabella et al., 2011)). The location of the neural recordings

was confirmed by structural MRI on one monkey (monkey S) and visual

inspections of the anatomical landmarks, such as the central (CS) and the

arcuate sulcus (AS), on the other monkey (monkey L), after dura removal.

In the present paper we will deal only with recordings obtained from PMd

(see (Mirabella et al., 2011)).

During recording, animals were placed in a darkened, sound attenu-

ated chamber and seated in a primate chair, with their head fixed in front of

21” PC monitor (CRT non interlaced, refresh rate 85 Hz, 800x600 resolution,

32 bit color depth; distance monitor-eye: 21 cm), equipped with a touch

screen (MicroTouch, sampling rate 200 Hz) for touch positions monitoring.

A non-commercial software package, CORTEX 1, was used to control stim-

uli presentation, behavioral responses and to collect neural (1000 Hz) and

eye-movement (200 Hz) data. Eye movements were unconstrained but mon-

itored by using a magnetic search coil technique (Robinson, 1963). Neural

activity of single units was recorded extracellularly using a seven channel

multielectrode system (Thomas Recording, Giessen, Germany). Electrodes

were quartz insulated platinum-tungsten fibers (80m diameter, 0.8-2.5M

impedance) and were inserted transdurally, one at a time, using microdrives

(Thomas Recording, Giessen, Germany). Electrical signals were amplified,

filtered (Thomas Recording, Giessen, Germany), and single unit were iso-

lated on-line exploiting a dual time amplitude window discriminator (BAK

electronics, Mount Airy, MD).

1www.cortex.salk.edu
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Animal care, housing, and surgical procedures were in conformity

with European (Directive 86/609/ECC) and Italian (D.L. 116/92) laws on

the use of nonhuman primates in scientific research and were approved (no.

58/2005-B) by the Italian Ministry of Health.

Neural variability (VarCE)

To estimate the variability of the neural response we followed the method

proposed by (Churchland et al., 2011). The total calculated variance from

the neural response is decomposed into two components: the variance of the

conditional expectation (VarCE) and the point process variance (PPV):

σ2
Ni

= σ2
〈Ni〉 + 〈σ2

Ni|λi〉 (3.5)

where Ni is the count of spikes in epoch i and λi is the mean firing rate

in that epoch. In the right part of the equation the first term is VarCE

and the second term is PPV. The term we are interested in is the VarCE

(spikes2) because it defines the across-trial variability of the count of spikes.

To compute its value we first have to estimate the value of PPV, i.e. the

within trial variability, that can be defined as the average over variances of

each λi. To estimate its value from the observed neural response we based

our calculations on the renewal theory and assume that the variance of λi is

proportional (scaled by a factor of φ) to the mean spike count observed in

that condition and epoch (Geisler and Albrecht, 1995; Nawrot et al., 2008).

The value of VarCE was calculated by subtracting from the total measured

variance the estimated value of PPV (Churchland et al., 2011):

s2
〈Ni〉 = s2

Ni
− φN̄i (3.6)

where s is used to refer to an estimation of the value of σ. The value of phi

is specific to each neuron and corresponds to the highest value that ensures

that VarCE is always positive. As in (Churchland et al., 2011), we calculate
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the value of φ for each neuron and it corresponds to the minimum value of

the calculated Fano Factor (Eq. 3.8) for that neuron.

The VarCE is the variance of the spike counts for each neuron and trial

history minus the scaled average of the mean spike count for that neuron

and trial history (PPV estimate):

s2
〈Ni〉 = V ar[Ni]− φN̄i (3.7)

where Ni and N̄i is the count and mean count for a given neuron, trial

history and epoch i. Similar results (not reported) were obtained when

we calculated VarCE using the union of normalized spike counts from all

neurons sharing the same condition (Churchland et al., 2011).

Using the same notations as in Eq. 3.7, the Fano Factor was computed

as:

FF〈Ni〉 =
V ar[Ni]

N̄i
(3.8)

Mean-field approximation

Simulation of a network of integrate-and-fire neurons allows the study of the

dynamics of neuronal activity, but are computationally expensive and their

results probabilistic, which makes them rather unsuitable for systematic

parameter explorations. Thus, in this study we adopt a well established

reduced mean field rate model. The essence of the mean-field approximation

is to simplify the integrate-and-fire equations by replacing after the diffusion

approximation, the sums of the synaptic components by the average DC

component and a fluctuation term. (Tuckwell, 1988) The dynamics of each

population can be described by the population transfer function, which

provides the average population rate as a function of the average input

current (Brunel and Wang, 2001; Amit and Brunel, 1997; Del Giudice et al.,

2003; Renart et al., 2003). Therefore we used a mean-field approximation
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to explore how the different operational regimes of the network depend on

the values of certain parameters.

Rate based models are used to approximate the mean response of a

population of spiking neurons with similar properties. This approximation

is supported by the fact that in different areas of the brain neurons are

organized in populations comprising neurons with similar properties. Gen-

erally, the neurons from the same population receive similar external inputs

and are coupled by synapses with a similar weight (Wilson and Cowan,

1972; Abbott, 1991). Therefore, the rate model approach must exclusively

be used when describing the response of neurons of the same type and co-

localized in a small volume. This small volume is called a computational

unit or neuronal pool.

To obtain the equations describing the average response of a neuronal

pool one has to start from the individual spiking neurons. Therefore, for

simulating large-scale processes the population code is the relevant compu-

tational unit. From the spikes of a single neuron we derive a dynamical

model that describes the mean activity of each pool of neurons. In a pool of

neurons the mean activity U(t) is defined by the number of spikes (nspikes)

that occur in a small time interval (∆t) divided by the number of neurons

M contained in that pool and by that time interval ∆t:

U(t) = lim∆t→0
nspikes(t, t+ ∆t)

M∆t
(3.9)

Note that the concept of mean activity of a neuronal population is

very different from the mean firing rate of a single neuron. The computa-

tion of mean firing rate of a single neuron requires that the input changes

its value in a way comparable to the time window used to calculate the

firing rate of the neuron. To use the mean activity of the pool avoids this

problem and allows a rapid adaptation to rapid changes in the input. The

meanfield approximation adds to this equation the average DC component

of the synapses and a fluctuation term, simplifying the integrate-and-fire

equations. The activity of the pool can then be described with a transfer
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function that provides the average rate of the group of neurons as a function

of their average input current. The changes in the activity of the population

without external input can be described as:

τ
dU(t)

dt
= −U(t) + f(U(t)) + σξ(t) (3.10)

where U(t) is a decay term, f(U(t)) is the activity of the neuronal pool due

to the recurrent connections of the network and σξ(t) is a fluctuation term

that simulates the noise of the population affected by its finite size.

3.5 Supplemental figures

Figure 3.5: Behavioral adaptation. Standard deviation (SD) of RT in the two
conditions shown in Fig. 3.1B: Go trial when preceded by a Go trial (left) or by
a Stop trial (right). SD of RT is significantly different (Go + Go trial, 16,060
trials; Stop + Go trial, 6,671 trials; 53 experimental sessions for each condition;
Kolmogorov-Smirnov test, ∗ = p < 0.01). Error bars are SEM.
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Figure 3.6: Neural response dynamics and properties. (A) Comparison of single
unit VarCE (left) and FR (right) for 142 neurons during a Go trial when it was
preceded by either a Go (x-axis) or a Stop trial (y-axis). Data points are based
on the interval between 80ms and 410ms after presentation of the Go signal. The
arrows indicate the mean difference in VarCE and FR between the two trial history
conditions. Left panel, VarCE was higher when a Stop trial was preceding a Go
trial, most of the data points are above the diagonal. Right panel, mean FR was
not different in both conditions, most of the data points are on the diagonal. This
figure confirms that our main results are not due to an artefact of outliers or to
changes in the mean FR for each condition, but instead it shows a clear effect for
the whole population in VarCE and no effect in FR.
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Figure 3.6: (B) VarCE in the two conditions displayed in Fig. 3.1C of the main
text: VarCE in a Stop trial when it was preceded by Go + Go trials or by Stop +
Go trials. Neural activity is aligned to the Stop-signal onset. VarCE was calculated
counting the spikes in a sliding window of 60 ms. Same 142 neurons, number of
trials and experimental sessions as in Fig. 3.1C of the main text were considered.
Shaded areas are SEM. VarCE is significantly different in the range from 190 ms
before and 70 ms after the stop-signal appearance (Kolmogorov-Smirnov test, ∗ =
p < 0.05). Since Go trials and Stop trials are undistinguishable until stop signal
presentation, the result shows that VarCE, influenced by trial history in the Stop
trials, is also informative about the recent presence of a stop signal. In fact, after
a stop signal is presented, the VarCE difference is not evident anymore. (C)
Standard deviation (SD) of RT in the same six trial history conditions as in Fig.
3.2C and 3.2D. The SD of RT follows the same trend along history conditions
as VarCE: the RT in a Go trial is more variable as the number of Stop trials
preceding that Go trial increases as opposed to an increase in the number of Go
trials preceding that Go trial. Error bars are SEM. (D) Distribution of normalized
RT for the same trial history conditions as shown in Fig. 3.2C and 3.2D of the
main text. The distributions consist of the RT minus the mean RT of the history
condition and session they belong to. A Kruskal-Wallis test across conditions
showed no-significant difference between the distributions (p = 0.98). This result
shows that the changes in mean RT reported in Fig. 3.2C are caused by a shift
of the whole distribution and not by a change in the shape of the distribution, i.
e. the skewness, or outlier values. (E) Mean FR for six different kinds of Go trial
sequences (as shown in the main text for VarCE, Fig. 3.2D). Error bars are SEM.
The FR was averaged in the period between 80ms and 410ms after the presentation
of the Go-signal. Contrary to the modulation found in VarCE, the mean FR is not
modulated by the task history. This result validates our main finding: RT changes
due to different task history conditions are not reflected in FR but rather in VarCE.
(F) VarCE during a Go trial when it was preceded by a Stop trial with different
SSD. The SSDs were classified in four groups based on its relative duration inside
an experimental session. The averaged values across sessions are: SSD1: 234ms;
SSD2: 275ms; SSD3: 307ms; SSD4: 347ms. This figure shows that VarCE in a
Go trial depends on the difficulty of the previous stop trial with larger VarCE for
more difficult preceding trials (longer SSD in the Stop trial preceding the Go trial).
VarCE for the shortest SSD (SSD1) might be seen as a special case since it has
been shown that the race model fails to accurately predict RT in this kind of trials
when they are incorrect (Logan and Cowan, 1984; Mirabella et al., 2011). Error
bars are SEM.
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Figure 3.6: (G) Histogram of the values of φ calculated as the minimum value of
the Fano Factor that satisfies that VarCE is positive for a neuron over all trial his-
tory cases. This is the value used to estimate PPV for each neuron and, therefore,
to scale the value of the total measured variance. (H) Robustness of the difference
between VarCE for two different conditions: Go + Go and Stop + Go (Fig. 3.2B in
the main text) for different values of φ. When φ = 0, VarCE is equal to the total
measured variance of the normalized spike count (PPV is zero). Except for the
values of φ the calculations are identical to those reported in Fig. 3.2B in the main
text. Left panel, data is aligned to the Go signal. Right panel, data is aligned to
arm movement. (I) Fano Factor (variance of the spike count divided by its mean)
for Go + Go and Stop + Go conditions (as in Fig. 3.2A and 3.2B in the main text)
measured in sliding windows of 60ms. The difference between both conditions was
not affected by varying the size of the sliding window. Kolmogorov-Smirnov test,
∗ = p < 0.05 from 290 ms to 410 ms when the data are aligned to the go-signal
onset and ∗ = p < 0.05 from 130 ms to 70 ms before the movement onset when the
data are aligned by the arm movement. Consistent with the VarCE measure the
value of the Fano Factor is higher in condition Stop + Go as compared to Go + Go
over a wide time interval both when the neuronal responses are aligned to the Go
signal (Left panel) or to the movement onset (Right panel). VarCE estimates the
specific component of the across-trial variable responses removing its non-specific
contributions due to point process variance (PPV). In contrast, the Fano Factor
also considers the PPV when estimating the across-trial variability. Therefore,
although both results are consistent in our case, the VarCE is a more principled
measurement of the specific across-trial neural variability (Churchland et al., 2011).
Left panel, when aligned to the Go-signal we observe a decrease in the value of the
Fano Factor after Go-signal onset in both conditions. Right panel, when aligned to
the movement onset the Fano Factor decreases before the movement onset. Sim-
ilar patterns have been observed in the parietal area LIP during a decision task
(Churchland et al., 2011). Shaded areas indicate SEM. (J) Fano factor calculated
in a Go trial for same history conditions as in Fig. 3.2C and 3.2D of the main text.
The Fano factor was calculated as the average Fano Factor in the time interval
from 290ms to 410ms, that corresponds to the period in which the Fano factor is
significantly different for Go + Go trial and Stop and Go trial conditions. Error
bars are SEM. (K) Inter-spikeinterval (ISI) for six different kinds of task sequences
(as shown in the main text for VarCE, Fig. 3.2C and 3.2D). Left panel, histogram
of quantities of ISI found. Right panel, temporal dynamics of the ISI. Both panels
are obtained with the data aligned to Go signal. These results show that there
is no difference in the ISI distribution between the six task conditions supporting
the main finding that the difference in neural variability expressed in the VarCE
cannot be due to changes in the within-trial variability.
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Figure 3.7: Simulated behavioral results. (A) Inhibition function, i.e. the prob-
ability of failure to cancel a movement for different stop signal delays (SSD). The
data points are from the simulations and the curve is the best fit using a Weibull
function. The results are the average over 1,000 Stop trials preceded by: 3 or more
Stop trials (+3S), 2 Stop trials (2S), 1 Stop trial (1S), 1 Go trial (1G), 2 Go trials
(2G), 3 or more Go trials (+3G). The value of λ varies according to each trial
history condition (see Fig. 3.4B). Each condition was simulated with four possible
SSDs (160 ms, 260 ms, 370 ms and 470 ms). The parameters are the same as those
defined in Methods section. λstop is set to 7.3 when the Stop signal appears, i.e.
after the SSD. (B) Standard deviation (SD) of RT in the simulations (scaled to
the range of the real data, correction factor of 8) shows the same trend as observed
in the real data for different trial history conditions (Fig. 3.6C). The SD of RT
was modulated by trial history consistent with the impact of VarCE itself. Error
bars are SEM. (C) Mean firing rate along six different sequences observed in the
simulations. As in Fig. 3.6E, the firing rate was averaged in the period between
80 ms and 410 ms after the onset of the Go-signal. As in the physiological data,
the FR was not modulated by trial history. Error bars are SEM.





Chapter 4

Decision-making depends on
an urgency signal modulated

by context

How wonderful that we have met this paradox. Now

we have some hope of making progress

Niels Bohr

The content of this chapter has not been published yet; it is part of a

manuscript in preparation (Marcos et al., 2014a). The present study aims to

provide a plausible mechanism that is able to explain two new experimental

datasets that seem to lead to contradictory results (Huk and Shadlen, 2005;

Thura et al., 2012). So far, decision making has been generally examined in

tasks in which decisions are based on a perceptual property of a constant

stimulus. In contrast, these new experimental paradigms intend to broaden

the understanding of decision making into two different contexts where sen-

sory evidence changes over time. However, while early evidence seems to

have a stronger impact on decision making than late evidence in one context,

the contrary occurs in the other. What is more, to date, it has been difficult

to reconcile these two findings, and so that is what we intend to do in this

study. We suggest that experimental results can be explained through the

97
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same neural mechanism that is regulated by context. We use the theoret-

ical decision-making model seen in the previous chapter (Chapter 3), and,

besides, we extend it with a task-dependent urgency signal. Thus, decisions

are the result of combined integration and urgency mechanisms which en-

able us to demonstrate that the apparently paradoxical results simply arise

from differences in the strategy adopted by monkeys/subjects according to

context, and at the same time- this strategy is regulated by the urgency sig-

nal. To validate our approach, we have designed a new experimental task

where human subjects engaged in one context are confronted with trials

from a different context. The experimental data confirms the predictions of

our model.

The abstract has been published as a Society for Neuroscience ab-

stract (Marcos et al., 2012a):

In most real world situations we have to make decisions while

information changes over time. Many models have successfully

explained decision-making in tasks with constant information,

but not in some tasks where the information varies over time.

Here, we propose that behavior in any task depends on both the

dynamics of the decision making network driven by perception

and memory combined with a context-dependent regulation of

urgency.

Two recent experimental paradigms have been especially im-

portant for distinguishing between decision-making models: the

variable motion discrimination (VMD) task and the pulse task.

In both, subjects are required to detect the net direction of dots

moving on a screen. In the VMD task the net motion increases

or decreases every 225ms whereas in the pulse task this only

occurs during 100ms pulses early or late in the trial. Subjects

engaged in the VMD task do not show any difference in their per-

formance between trials when a long positive or negative pulse,

i.e. in favor or against the final net motion, is presented in the

early epoch. In contrast, in the pulse task subjects do show a
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change in their performance between trials with a short early

positive and negative pulse, but not when the pulse is presented

late in a trial. These results suggest that in the VMD task

early information has weaker influence on the decision than late

information, while the opposite occurs in the pulse task. Exist-

ing decision-making models make different predictions for each

task: bounded integrator models predict that early information

has more or same impact on the decision process whereas linear

urgency models predict the opposite.

Using an attractor network for decision-making we show that

a task-dependent urgency signal could explain the two paradox-

ical experimental results. The model is based on the Wilson

and Cowan equations and comprises two populations of inter-

connected excitatory neurons that compete to select between

two motion directions. It has an urgency signal that over time

changes the energy needed to push the network to an attractor

state. We show that to explain the behavior in each task, the

urgency signal has to be regulated depending on the context.

A signal with high starting value of urgency can explain the

pulse task whereas a signal with low starting value of urgency

explains data in the VMD task. We hypothesize that such a

task-dependent change in urgency is related to a subjects expe-

rience of how accuracy improves over time, which is faster in the

pulse task than in the VMD task. This has been tested using

experiments in which trials of one task are interleaved with the

other.

4.1 Introduction

Decision making has been an important focus of attention in the last decades

(Roitman and Shadlen, 2002; Gold and Shadlen, 2007). It has been mainly

studied in tasks in which monkeys or human subjects have to discriminate

between two or more options based on a perceptual feature of a stimulus
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(Roitman and Shadlen, 2002; Palmer et al., 2005; Churchland et al., 2008).

Although these tasks have proven to be fundamental to understand the basic

mechanisms of the decision-making process, they consider that the sensory

evidence remains constant over time. However, this is not the case in most

real-world situation where, not infrequently, information varies over time.

In some of these cases, choices that might seem to be clearly supported

by sensory evidence could be dismissed because of new upcoming evidence

supporting an alternative one. Imagine a situation in which, for instance,

you are planning to take the next exit (exit A) in the roadway to go home.

Just when you are about to do it, you see a long queue of cars stopped in

that exit. You might change your mind and continue until the next exit (exit

B) so as to avoid a long retention and the subsequent delay. So, even if you

were about to take exit A, this new information might make exit B become

your final choice. Now, here is a critical question: do the mechanisms that

have proven to explain decisions with constant information generalize in

these cases?

Many models have successfully explained decision making in tasks

with constant information (exit A being always better option than exit

B). On the one hand, ”bounded integrator” models (Stone, 1960; Laming,

1968; Ratcliff, 1978; Usher and McClelland, 2001; Wang, 2002; Mazurek

et al., 2003; Bogacz and Gurney, 2007; Link and Heath, 1975) propose that

evidence is sampled from the environment and accumulated over time until

the accumulation reaches a threshold and the decision is made. In contrast,

the urgency-gating model (Reddi and Carpenter, 2000; Cisek et al., 2009)

proposes that the process of decision making is the result of a multiplication

between sensory evidence and an urgency signal that is internal to each

subject and grows linearly over the course of time. When the result of

this multiplication is above a threshold, the decision is made. Even if both

views propose a different mechanism by which decisions are formed, they can

both explain the behavioral and neural data that has been observed in tasks

with constant sensory information (Roitman and Shadlen, 2002; Churchland

et al., 2008). For this reason, the mechanisms underlying decision making

are not well-known yet. To shed some light on this issue, experiments



4.1. introduction 101

with information that varies over time have been proposed during the last

years, but interestingly, in these cases both theoretical views have failed to

completely explain the data (Huk and Shadlen, 2005; Cisek et al., 2009).

That is why we propose a reconciled view in which decision making depends

on the two of them: integration and urgency, i. e. the accumulation of

sensory evidence is modulated by a context-dependent urgency signal.

One of the generally accepted standard tasks to study perceptual de-

cision making is the random motion discrimination (RDM) task (Roitman

and Shadlen, 2002; Hanks et al., 2006; Britten et al., 1992). In this task,

dots moving in different directions are presented on a screen. In each trial,

the experimenter controls the percentage of dots that coherently move to-

wards the same direction (motion coherence), which is kept constant during

the course of the trial. In the last years, to distinguish between decision-

making models, this task has been extended by making the amount of sen-

sory evidence dynamic over the course of a trial, i. e. the amount of motion

coherence changes at different time onsets along the duration of a trial (Huk

and Shadlen, 2005; Thura et al., 2012). Following this new line of research,

two experimental tasks have been especially relevant because of their ap-

parently paradoxical results: the RDM task with pulses (Huk and Shadlen,

2005) and the variable motion discrimination (VMD) task (Thura et al.,

2012). In both tasks, subjects are required to detect the net direction of

dots moving on a screen. In the RDM task with pulses, the net amount of

motion coherence either increases or decreases throughout one short period

of time. In contrast, in the VMD task, the net amount of motion coherence

changes more than once within a single trial. Performance in the RDM task

with pulses directly depends on the time onset of the pulse, thus being more

influenced by an early appearance of a pulse than by a late one. Contrarily,

performance of subjects in the VMD task is not affected by long pulses ap-

pearing early in a trial. These results suggest that, in the RDM task with

pulses, late information has weaker influence on the decision than early in-

formation, while the opposite occurs in the VMD task. Likewise, existing

decision-making models make different predictions for each task: bounded

integrator models predict that early information has more or equal impact



102 decision-making depends on a context-dependent signal

than late information on the decision process (Huk and Shadlen, 2005),

whereas linear urgency models predict the contrary (Cisek et al., 2009).

To explain the two paradoxical experimental results, we use an attrac-

tor network of binary decision making with a task-dependent urgency signal

added. The model is based on the Wilson and Cowan equations (Wilson

and Cowan, 1972) and comprises two populations of interconnected excita-

tory neurons that compete through mutual inhibition to choose one motion

direction from two possibilities. It has an urgency signal which gradually

adjusts the energy needed to push the network to an attractor state. By

means of this, we corroborate that a regulation of the urgency signal ac-

cording to context explains the observed behavior in each task. A signal

with a high starting value of urgency (the network can be pushed into an

attractor relatively easy from the start of the trial) explains the RDM task

with pulses, whereas a signal with low urgency (the network needs high

amount of energy to be pushed into an attractor state at the beginning

of each trial) accounts for data in the VMD task. We presume that such

a task-dependent change in urgency is related to the subjects experience

during the task. They might try to increase the speed-accuracy trade-off

by slowing down their decisions during the VMD task. One possible expla-

nation for this would be that they need longer time to accumulate sensory

evidence, since it continuously changes within a trial. In contrast, in the

RDM task with pulses, the amount of motion coherence changes less often,

and so it probably leads to a different decision strategy.

In order to test our theoretical approach, we designed an experimental

task in which participants have to detect motion in VMD trials. During the

execution of this task, a few number of pulse trials are interleaved. This

way we proved that, in coherence with our hypothesis, the effect that pulses

exert on performance reverses. In other words, late pulses have a stronger

impact than early pulses, it being consistent with the idea that subjects

modulate their urgency based on the context they experience.
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4.2 Materials and Methods

Decision making with information that varies over time

Activity of neurons in areas such as the lateral intraparietal cortex (LIP)

(Roitman and Shadlen, 2002; Churchland et al., 2008), the superior col-

liculus (Hanes and Schall, 1996b; Schall and Thompson, 1999), the frontal

eye field (Thompson et al., 1997; Bichot et al., 2001) or prefrontal cortex

(Kim and Shadlen, 1999) has shown to be correlated with the formation of

a decision. However, it is not clear if the build-up activity of these neurons

responds to an accumulation of evidence or to an urgency to commit to a de-

cision as time progresses. With a view to further clarifying the mechanisms

underlying decision-making, two new experiments have been proposed: the

RDM task with pulses (Huk and Shadlen, 2005) and the VMD task (Thura

et al., 2012). Both experimental paradigms deal with non-constant percep-

tual information, which allows us to investigate how performance and neural

activity are biased according to the temporal dynamics of the perceptual

input.

Huk and Shadlen (2005) analyzed the impact of modifying, for a short

period of time, the total net motion coherence during a RDM task. Two

monkeys performed the task while behavior and neural activity from neu-

rons in LIP were recorded. A dynamic random-pixel texture appeared as

a background to the moving dots presented on a screen (Fig. 4.1A). In all

trials, the texture contained noisy pixels moving like dark television snow

(no-pulse trials). In two thirds of the trials, the texture was moving during

100 ms either in the same direction (positive-direction pulse trials) as the

moving dots or in the opposite direction (negative-direction pulse trials).

The pulse in the texture occurred at one of five possible onsets: 100 ms, 150

ms, 211 ms, 287 ms and 392 ms. As it could be observed, the behavior of

monkeys was indeed influenced by the motion direction of the texture: their

responses became more accurate and the reaction time (RT) became shorter

when the texture moved in the same direction as the total net motion of the

moving dots, while, when the texture moved towards the opposite side, the
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contrary occurred. It should be noted that an early pulse trial generated a

stronger modulation of the activity of neurons in LIP than a late one.

Figure 4.1: Experimental tasks. (A) RDM task with motion texture (Huk and
Shadlen, 2005). All trials started with the appearance of a circular dot. After
fixation, two targets appeared in opposing sides of the screen. After a random delay,
the moving dots appeared in a 5 diameter aperture. Monkeys had to indicate, with
a saccadic eye movement to one of the two targets, the net direction of the moving
dots (RT task). In all trials, a texture with noisy pixels randomly moving (motion
texture) was shown in the background. In one third of the trials, the pixels of the
texture favored (for a short period) either the same direction of motion of the dots
(positive-direction pulse trials) or the opposite direction (negative-direction pulse
trials). The pulses had a duration of 100ms and occurred at one of five possible
time onsets. (B) VMD task (Thura et al., 2012). Similar to what happened in the
RDM task, a trial started with a circular central stimulus on the screen. Subjects
were requested to place a cursor inside it. Then, two targets appeared in its
perimeter. Immediately, random moving dots came into view on the center of the
screen (within a 6-cm diameter circle). After 200ms, the dots started to increase
their total net motion direction in steps of 3% of coherence that occurred every
225ms (with a maximum number of 15 steps). At that point,subjects were asked
to make a prediction about towards which direction the dots would be moving at
the end of the trial.
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Thura et al. (2012) investigated the behavior of human subjects per-

forming a VMD task. In this case, the amount of motion coherence was

increased by 3% towards one of two possible directions of motion every 225

ms (Fig. 4.1B). Subjects were asked to predict the direction towards which

most of the dots would be moving at the end of the trial. Moreover, trials

with specific profiles where interleaved with trials where the motion coher-

ence changed randomly. For instance, in easy trials the motion coherence

incremented consistently towards one direction whereas, in an ambiguous

trial, both directions of motion were similarly favored for almost the whole

duration of the trial (small panel in Fig. 4.1B). Out of these special cases,

two trial profiles were especially relevant because they leaded to contradic-

tory behavioral results when compared to the ones observed in Huk and

Shadlen (2005): bias-for and bias-against trials (small panel in Fig. 4.1B).

In the bias-for trials, the amount of motion coherence increased towards the

same direction in the first three steps; nevertheless, the motion coherence

increased towards the opposite direction during the following three steps

and, in the end, the motion coherence increased towards the same direc-

tion as it has done in the first three steps. The bias-against trials shared

the same dynamics from the seventh step onwards although, in the first

six steps, the behavior of the moving dots was reversed. Interestingly, hu-

mans did not show any bias in their behavior based on how the perceptual

information was presented at the beginning of the trial. Neither RT nor

accuracy were significantly different in these two kinds of trials. In Thura

et al. (2012), subjects could be under time-pressure or non-time pressure

conditions in which they had a maximum of 3s or 8s to respond, but we

did not consider these two conditions in the development of our study, since

its aim is merely to explain the main results, which do not depend on this

distinction.

Decision-making models

The build-up activity observed in neurons recorded while monkeys perform

a RDM task (Roitman and Shadlen, 2002) has been consistent with a vari-

ety of already existing decision-making models. Even though these models
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give different explanations of the same observed phenomena, they can be

described in general terms as:

dxi(t)

dt
= −Lxi(t) + λi(t)u(t) + σξ(t) (4.1)

where xi is the decision variable that accumulates evidence in favor of one

choice and against an opposite one, L is a leaky term that defines how

quickly the decision variable can change its value, λ is the net sensory

evidence, u(t) is an urgency signal, ξ represents Gaussian noise with mean

0 and variance 1 and σ modulates the variance of the noise. The proposed

models only differ from one another on the way they define each term of

the equation. In all cases, the decision process is considered to end when a

specific level of activity is reached (θ).

For instance, a well-known ”bounded integrator” model is the drift-

diffusion model (Stone, 1960; Laming, 1968; Ratcliff, 1978; Ratcliff et al.,

2003; Smith and Ratcliff, 2004). In this model, L = 0 (infinite constant of

integration) and u(t) = C where C is a constant. In this case, xi integrates

sensory evidence with equal weight for the whole duration of a trial. An

alternative ”bounded integrator” model is called the leaky integrator model

(Usher and McClelland, 2001) where L ∈]0, 1]. Therefore, the decision

variable in this model forgets about early sensory evidence in a trial as time

progresses. Yet another alternative view is the urgency model (Reddi and

Carpenter, 2000; Cisek et al., 2009), which is an extreme case of the leaky

integrator. It defines that L = 1 and hence xi does not depend on past

sensory information but exclusively on current available information; thus,

the urgency signal is described as u(t) = gt where g defines the slope and t

refers to time from the start of the decision process onwards.

In our simulations, we used the drift-diffusion model with parameters:

θ = ±100 and σ = 2; and the leaky integrator model with parameters:

L = 0.02, θ = ±8 and σ = 0.45. The trials simulated bias-for, bias-against

and ambiguous cases, in accordance with the profile in the small panel in



4.2. materials and methods 107

Fig. 4.1B, using steps of 0.032 occurring every 225ms. The aforementioned

simulations consisted of 1,000 trials per condition.

Attractor network with urgency

We propose an alternative mechanism to make decisions based on a com-

bination of attractor dynamics and urgency. The model is an extension of

the Wilxon and Cowan equations (Wilson and Cowan, 1972). It consists of

two groups of excitatory neurons that have recurrent connections and that

are connected to each other through an inhibitory group of neurons. Each

excitatory group of neurons is sensitive to one of two possible motion direc-

tions, that is, left or right in our simulations (Fig. 4.2). An urgency signal

changes the way the activity of the neural groups evolves over time, directly

adjusting the energy needed to reach an attractor state. The activity of each

of these neural populations is defined as:

τ
dUleft(t)

dt
= −Uleft(t) + f(λleft + ω+Uleft − ω−Uright) + σξ(t) (4.2)

τ
dUright(t)

dt
= −Uright(t) + f(λright + ω+Uright − ω−Uleft) + σξ(t) (4.3)

where U defines the mean neural activity, τ is the time constant that de-

termines how quickly the activity of the neural group changes its activity,

λleft and λright are the inputs associated with left and right respectively,

ω+ is the recurrent connection, ω− is the inhibitory connection and f(.) is

a sigmoid function defined as:

f(x) =
Fmax

1 + e(−(x−b)u(t))
(4.4)

where Fmax is the maximum value that the function can achieve, b is the

center of the function and u(t) is the urgency signal that defines the slope of

the sigmoid function at time t. u(t) changes its value according to a linear

equation:
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Figure 4.2: Attractor network with urgency. (A) Scheme of the architecture of
the network. Two excitatory neural populations with recurrent excitatory connec-
tions that mutually inhibit each other. The neural populations are sensitive to
either left or right motion. (B) Illustration of how the sigmoid slope changes as
time progresses. Small panel, urgency signal in the RDM task with pulses (black)
and in the VMD task (gray).

u(t) = u0 + ust (4.5)

where u0 is the initial value of u, us is its slope and t relates to time. Fig.

4.2B illustrates the influence of the value of u(t) in the sigmoid function. As

u increases, the slope of the sigmoid also does, implying that the variation

in the activity of the neural groups is more sensitive to changes in their

input as time progresses. Fig. 4.13 shows the changes in the state of the

network when u changes.

MT neurons have shown to be tuned to a specific motion direction of

the dots, increasing their activity for a concrete direction and decreasing it

for the opposite one. Area MT projects to LIP where the decision seems to

be formed. The perceptual input to our decision-making model simulates

the increase and decrease in activation observed in MT neurons:

λ = λ0(1± c

100
) (4.6)

where c is the total motion coherence, λ0 is the baseline activity that be-

comes modulated, and the signs + and - refer to the preferred or non-
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preferred direction of motion. When a positive-direction pulse is simulated,

a specific amount of motion is added to the total net motion coherence input

of the neural population sensitive to that direction and subtracted from the

other one. In our simulations, we used pulses of 10% of motion coherence

as in the modeling work of Huk and Shadlen (2005) and steps of motion of

3.2% for the VMD task.

The noise of the network was modeled with an additive Gaussian noise

of mean 0, variance 1 defined by ξ(t) and a scaled factor of σ = 8 spikes/s.

The decision process was considered terminated when the difference in

activity between the two neural populations was above a predefined thresh-

old (θ). In our simulations, we used the parameters: ω+ = 1, ω− = 1.5,

τ = 20ms, Fmax = 60 spikes/s, b = 60 and θ = 57 spikes/s. The initial value

of the urgency signal u0 and its slope us were different in each condition:

u0 = 0.0337 spikes/s and us = 0.0072 spikes/s in the RDM task with pulses

and u0 = 0.012 spikes/s and us = 0.0122 spikes/s in the VMD task. Small

panel in Fig. 4.2B shows how the urgency signal changes over time for each

context. Each condition was simulated using 5,000 trials.

Two different procedures were used in order to compare the results

of our simulation with the data published in Huk and Shadlen (2005) and

in Thura et al. (2012). To account for RTs in the RDM task with pulses,

we added non-decision delays to the decision times (DTs) obtained from

the model. To that purpose, we used the same procedure as in (Thura

et al., 2012), adding 500ms to the results because this is the average time

it took monkeys to make their decisions in the easiest trial (51% of motion

coherence). This amount of motion coherence is thought to be nearly non-

ambiguous and, therefore, the response is produced immediately. Any delay

observed in these trials is considered to be due to non-decision latencies

(Thura et al., 2012). In the case of the VMD task, we directly compare our

results with the results published in Thura et al. (2012) since they report

DTs in their study (the authors subtract non-decision time delays from their

data).
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Experimental paradigm

Together with the University of Montreal, we designed an experiment to val-

idate the predictions obtained with our model. The experiment and data

analyses were performed in Montreal. We show the results here to demon-

strate that human subjects behave as predicted by our model (Carland

et al., 2014).

n=32 subjects (17 females) participated in a RDM task with pulses

and in a VMD task with interleaved pulse trials (positive-direction pulses

in both cases). All participants gave their consent and the experimental

procedure was approved by the University of Montral ethics committee.

Each trial started when the subject placed the cursor in a small starting

circle of 1cm diameter. This action was followed by the appearance in the

center of the workspace of 200 dots randomly moving inside a circle of 6cm

diameter together with 2 circle targets of 3.5 cm diameter placed 180 apart

at a distance of 6cm from the center. In a VMD trial, after 200m the motion

strength was increased by 3% towards one of two possible directions (top or

bottom), 6 dots changed their direction of movement accordingly. The same

procedure was applied every 225ms up to a maximum of 15 times. Only

the resultant net motion was displayed; in other words, the dots always

moved coherently towards one possible direction of motion. Subjects had

to respond by choosing one of the two circle targets that were associated

with the two potential directions of movement within 3s after the start of

a trial. Subjects responded by doing an arm planar movement, using a

cordless stylus pen embedded within a plastic cylinder on a digitizer tablet

(CalComp). The tablet recorded the position of the pen with a temporal

precision of 125Hz and a spatial accuracy of 0.013cm. All information from

the task was shown using the reflection of a LCD monitor (60Hz refresh)

in a half silvered mirror suspended 16cm above and parallel to the digitizer

tablet so as to create the illusion that the image was floating on the plane

of the tablet.

All subjects participated in 3 sessions: a session where they performed

a RDM task with pulses (”blocked” condition”), and two sessions consisting
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in a VMD task with interleaved pulse trials (”interleaved” condition). They

had to achieve a total of 560 correct trials in the blocked condition and a

total of 500 correct trials in the interleaved condition. The blocked condition

consisted in trials with common baseline motion coherence of 3%. In 40% of

trials the motion did not vary (no-pulse trials), but the remaining 60% of the

trials contained a positive-direction pulse that doubled the motion coherence

(to 6%) for 100ms, and that could occur at one of four possible onsets:

100ms, 200ms, 400 ms or 1600ms. In the VMD task, 20% of the trials

were RDM trials, including no-pulse and pulse trials, that were identical

(in percentage, duration and pulse onsets) to those in the RDM task with

pulses. The remaining 80% of the trials comprised typical VMD trials.

The sequence of trials in each session was pseudorandomized (pre-

defined sequence that was equal for all subjects). Subjects were given a

maximum of 3000ms to report their decision, although they did not gener-

ally take more than 1800ms. All sessions started with 40 trials of 50% of

motion coherence, that were used as baseline to compute decision times.

Data analyses

The psychometric functions are fits of the logistic equation:

Pcorrect =
1

1 + e(−(β0+β1c+β2I))
(4.7)

where β are fitted parameters, c is the total net motion of the dots and I is 0

for no-pulse trials, −1 for negative-direction pulse trials and 1 for positive-

direction ones. The shift of the psychometric function was calculated by

dividing the coefficient related to motion β2 into the one related to the

pulses effect β1.

In the VMD task, the probability that the motion of the dots will

favor right (R) at the end of the trial is given by (Cisek et al., 2009):

P (R|SR, SL, SC) =
SC !min(SC ,7−SL)

2SC

∑
i=0

1

i!(SC − i)!
(4.8)
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where SR is the number of steps that favored right, SL is the number of

steps that favored left and SC is the number of steps that still remain.

To compare RTs in bias-for and bias-against trials, we consider RTs

that are longer than 1125ms. This way, responses produced during the first

six steps are not taken into account (Cisek et al., 2009; Thura et al., 2012).

4.3 Results

First, we briefly expound and explain the reasons why previous linear mod-

els of decision-making cannot account for the data obtained in these two

experimental paradigms. Second, we show the results obtained with our

proposed model. Our simulations are focused on the main results shown

in Huk and Shadlen (2005) and Thura et al. (2012). On the one hand, for

the RDM task with pulses, we prove that our model is able to explain the

effect of pulses in RT and accuracy, as well as their influence on behavior

according to its time onset (early pulses have greater influence than late

ones). On the other hand, for the VMD task, we show that our model can

explain the absence of differences between RT in bias-for and in bias-against

trials. Consequently, our model predicts that RT and accuracy are greater

affected by late pulses than by early ones in this context. Last, we provide

experimental evidence supporting the validity of our model.

Linear models of decision making

The drift-diffusion model has been used in an attempt to explain the effect

that pulses exert on behavior (Huk and Shadlen, 2005). In spite of the

fact that the model could explain the overall effect of pulses, it could not

account, however, for the greater effect on behavior and neural activity that

early pulses had when compared to late pulses. Instead, the drift-diffusion

model predicted that the effect of pulses is nearly the same regardless of

their time onset. Consistent with this time-shift invariance, (Cisek et al.,

2009) revealed that the drift-diffusion model fails to explain the lack of

effect on RT due to bias-for and bias-against trials. Fig. 4.3A presents a
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Figure 4.3: Simulations of two linear models. (A) Drift-diffusion model. Left
panel, activity of drift-diffusion model during bias-for and bias against trials. Mean
activity in bias-for trials (red) is higher than mean activity in bias-against trials
(blue) in the 6th step (1125ms). At that point, the evidence towards each direction
is the same, but it should be noted that the model inclines towards a different one
in each type of trial. This inequality in activation results in different predicted
behavior. Right panel, distributions of RT when only trials that finished after
1125ms are considered (K-S test, p < 0.001). (B) Drift-diffusion model with leak.
Left panel, activity of the model during bias-for and bias against trials. A strong
leak accounts for the same mean activity in bias-for (red) and bias-against (blue)
trials. Middle panel, RT time distribution for decisions made after 1125ms in
these two kind of trials (KS test, p > 0.05). Right panel, Simulation of the model
in ambiguous trials. It is very unlikely that the accumulation reaches a decision
threshold due to the high leak value needed to account for RTs in bias-for and
bias-against trials.

simulation of this model using bias-for and bias-against trials. As observed,

the model predicts shorter RTs for bias-for trials than for bias-against trials.

The reason for this is that, when the same level of sensory evidence has been

reached for both directions of motion (step 6, see Small panel in Fig. 4.1B),

the accumulation of evidence favors the correct option in bias-for trials, but
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the opposite option for bias-against trials. Hence this leads to a significant

difference in RTs (KolmogorovSmirnov test, p < 0.001, in our simulations).

One could think that a leaky integrator, in which early information is

forgotten, may account for the main result in the VMD task. Nevertheless,

though this could be the case (Fig. 4.3B), the leak would need to be so

strong that the accumulation of evidence would hardly reach the threshold

when ambiguous trials were encountered (see small panel in Fig. 4.1B and

right panel in Fig. 4.3B).

An urgency gating model has successfully explained the lack of effect

of an early long pulse (bias-for and bias-against trials) on behavior (Cisek

et al., 2009). However, in disagreement with Huk and Shadlen (2005), this

model predicts that late information has greater impact on the decision-

making process than late information, since the sensory evidence is directly

multiplied by a growing signal.

So far, there is no consistency between the new experimental data

with changing sensory evidence and decision-making models. That is why

we propose a model which, by means of a combination of integration and

urgency signal, is able to reconcile the experimental and theoretical views.

Task-dependent urgency

Our model was simulated in two conditions: the pulse task and the VMD

task. All parameters excepting the initial value of urgency, u0 and its slope,

us, were kept constant in both tasks. We propose that these two values

change due to the context/task in which subjects are involved. More specif-

ically, we suggest that during the RDM task with pulses, the initial state of

the urgency (u0) should be higher than it is in the VMD task, as the amount

of changes in the information provided is very low. On the contrary, the

slope of this function (us) is steeper in the VMD task than in the RDM task

with pulses. Both signals intersect in a high value of u towards the end of

the trial, forcing the system to make a decision. The mechanism by which

the urgency signal is formed over experience has not been addressed here,
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Figure 4.4: Pulse effects on behavior during the RDM task for positive-direction
pulse (green), negative-direction pulse (red) and no-pulse trials (black). (A)
Pyschometric functions. Probability of correct along different values of motion co-
herence. Positive-direction pulses shifted the pyschometric function by an amount
equivalent to adding 1.41% or 1.54% of motion in the positive and negative-
direction pulse trials respectively. (B) Chronometric functions. Mean reaction
times along different values of motion coherence.

since it is out of the scope of the current study.

RDM task with pulses

To simulate the same conditions as in (Huk and Shadlen, 2005) we used

six levels of motion coherence (0%, 3.2%, 6.4%, 12.8%,25.6% and 51.2%),

pulses of 100ms at one of five possible time onsets (100ms, 150ms, 211ms,

287ms and 392ms) after the start of the trial. As it is the case with the real

data (Huk and Shadlen, 2005), the probability of correct increases when the

motion pulse has the same direction as the correct one (positive-direction

pulse) and decreases when the opposite occurs (negative-direction pulse).

This can be observed in the shift of the psychometric function towards the

left, when a positive-direction pulse is simulated, and by a shift towards the

right when a negative-direction pulse is simulated, in comparison with the

no-pulse condition (Fig. 4.4A). In our simulations, the shift is equivalent to
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Figure 4.5: Pulse onset effect during the RDM task. (A) Increase or decrease in
performance due to the time onset of a positive (green) or negative-direction (red)
pulse when compared to no-pulse trials. Positive-direction pulses augment the
probability of success while the opposite effect is observed with negative-direction
pulses. (B) Changes in activity under the same conditions as in (A). Same effect
as with performance observed on the mean activity of the neural population.

1.41% of motion coherence, added to the whole duration of the trial in the

positive-direction pulse, and to an addition of 1.54% of motion coherence

in the negative-duration pulse condition (± 1.6% in (Huk and Shadlen,

2005)). Likewise, RTs are shorter in trials containing a positive-direction

pulse and longer in trials with a negative-direction pulse in comparison with

the no-pulse condition (Fig. 4.4B)

The effect that pulses had on the performance of subjects directly

depended on the time onset of the pulse. Early pulses produced a greater

shift of the psychometric function than late pulses (Fig. 4.5A). Similarly,

Fig. 4.5B shows the same effect on the mean response of the neural popu-

lation favoring the correct option. A similar trend is observed in the mean

activity along different values of motion coherence (Fig. 4.10). In addition,

the effect that pulses had on the mean activity of the neural population

persisted for at least 600ms from its time onset (Fig. 4.11).
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Figure 4.6: RT and success probability in VMD trials. (A) RTs and SPs in easy
(black) and ambiguous (gray) trials. RTs and SPs are significantly different (KS
test, p < 0.001). (B) RTs and SPs in bias-for and bias-against trials (K-S test,
p > 0.05). Dashed lines are the means of the RT distributions.

VMD task

Our simulations were focused on trials with specific profiles: easy, ambigu-

ous, bias-for and bias-against trials (see 4.2). As observed in the behavioral

performance (Thura et al., 2012), in our simulations (Fig. 4.6A) RTs in easy

trials are significantly shorter than in ambiguous trials (KS test, p < 0.001)

whereas the success probability is significantly higher in easy trials than in

ambiguous ones (K-S test, p < 0.001). On the other hand, RTs and prob-

ability of success in bias-for and bias-against trials were not significantly

different (two-sample K-S test, p > 0.05). This lack of behavioral differ-

ence between the two cases is due to the low level from which the urgency

function starts -i. e. the network does not easily falls into an attractor
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state, and therefore most of the early information is ”forgotten” after some

time-. Yet, in 4% of the trials, the decision is made early in the trial

(RT < 1125ms, data not shown). Fig. 4.12 shows performance accuracy

based on the step in which the decision is made, consistent with experimen-

tal data (Thura et al., 2012). For bias-against trials, waiting is necessary

to succeed, whereas in the ambiguous case longer RTs do not lead to more

accurate responses.

VMD task with RDM trials with pulses

The results from the RDM task with pulses and the VMD task might seem

contradictory. In the first task, early pulses have greater influence on behav-

ioral performance and neural activity, while the opposite occurs in second. A

question that rises from this paradox is: how can the same model reproduce

both results? We hypothesize that, in order to increase the speed-accuracy

ratio, subjects modulate their urgency signal. In the VMD task, the sensory

evidence changes its strength much more often than in the RDM task with

pulses. To increase the speed-accuracy ratio, subjects adopt different strat-

egy policies: they become more conservative (slowing down their response

time) in the VMD task than in the RDM task with pulses. This, on aver-

age, generates different urgency signals defined by context. Providing this

is really the case, if RDM trials with pulses are interleaved when subjects

perform a VMD task, the effect of pulses should be reversed. In other words,

late pulses would have greater influence on behavior than early pulses when

trials are interleaved in the VMD task. We simulated this condition using

pulses of 100ms and 10% of motion coherence at five different pulse onsets

(100ms, 200ms, 400ms, 800ms and 1600ms). As shown in Fig. 4.7, RTs

became significantly shorter only when they occurred either at 800ms or

1600ms (2-way ANOVA, p < 0.001).

The effect that early and late pulses have on the performance accuracy

and neural activity is also reversed when compared to the RDM task with

pulses. Fig. 4.9A shows the change in probability of correct due to the

pulse onset. As observed, late pulses have a greater effect on accuracy than
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Figure 4.7: Pulse onset effect on RT during the VMD task. Cumulative distri-
butions of RTs for five different pulse onsets: 100ms, 200ms, 400ms, 800ms and
1600ms. Positive-direction pulses are indicated in green and negative-direction
pulses in red. The last panel shows the distributions in a single graph. Only pulses
that appear late in the trial (800ms and 1600ms) have a significant effect on RT
(2-way ANOVA, ∗ = p < 0.001)

early pulses. Likewise, the change in the mean neural activity shows the

same effect (Fig. 4.9B).

Experimental data

At first, we analyzed whether the contexts led to different adopted decision

policies. To this end, we looked at RTs in trials with constant stimulus -i.

e. RDM trials experienced under blocked or interleaved conditions-. Fig.

4.9A shows the mean RTs (± SEM) of individual subjects for these two

cases. All individual data points are above the diagonal line, indicating that

subjects are slower when constant stimulus trials are encountered within the

interleaved condition than when they appear in the blocked one (p < 0.001).

Next, we assessed the influence that positive-direction pulses had on RTs

depending on the time onset and context in which they appear. To this
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Figure 4.8: Pulse onset effect on performance and mean activity during the VMD
task. (A) Change in the probability of correct due to pulse onset when a positive-
direction (green) or a negative-direction (red) pulse appear in a trial in comparison
with no-pulse trials. Late pulses have greater effect on accuracy than early pulses.
(B) Change in mean neural activity of the model along different pulse onsets. Same
trend as in (A) is observed in the mean activity.

purpose, we pooled together data from different subjects with similar RTs.

Trials with pulses occurring at 1600ms were not considered in the analyses

because most of the RTs were shorter than that. Cumulative distributions

of RTs for the subset indicated in Fig. 4.9A are shown in Fig. 4.9B for

blocked (Left panel) and interleaved conditions (Right panel). The 200ms

pulse onset was the only effective one in both conditions (p < 0.001 in the

block condition, p < 0.002 in the interleaved condition). The 100ms pulse

onset influenced RTs only in the blocked condition (p < 0.001) whereas the

400ms pulse onset affected RTs in the blocked condition (p < 0.001). Hence,

pulses that appeared early in the trial had an effect on the context in which

RTs were faster (blocked condition), while they did not in the context of

slower RTs (interleaved condition).

These experimental results validate the fact that, when subjects slow

down their response times, early pulses do not influence decision-making

any more, but late pulses do. Therefore, the effect of early and late pulses

in behavior reverses, contrarily to contexts in which response times are

faster. Thus, these results confirm the predictions of our model and strongly
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Figure 4.9: Experimental results in blocked and interleaved conditions. (A) RTs
of individual subjects in the blocked (x-axis) and interleaved (y-axis) conditions.
The dotted rectangle indicates the RTs from subjects that were pooled together.
Errorbars are SEM. (B) Cumulative distributions of RTs and mean RTs for no-
pulse (black), 100ms pulse onset (red), 200ms pulse onset (magenta), and 400ms
pulse onset(green) for blocked (Left panel) and interleaved (Right panel) conditions.

support our proposal of the existence of a task-dependent urgency signal

which modulates the integration of evidence during decision formation.

4.4 Discussion

Decision making in tasks with noisy but constant sensory evidence has been

successfully explained by integrator and linear urgency models. The behav-

ioral and neurophysiological data have been fitted following two different

hypotheses: sensory information is accumulated over time until a decision

bound is reached or, in contrast, it is not accumulated but directly multi-

plied by an urgency signal that grows over time. However, new experimental

paradigms with noisy though not constant sensory evidence have critically

challenged these models. In this study, we have proved that decision-making

regarding both constant and non-constant information can be explained by

an attractor model extended with an urgency signal. So, we suggest that the

paradoxical results from Huk and Shadlen (2005) and Thura et al. (2012)

respond to an integration of evidence modulated by a context-dependent

urgency signal. To support it, we proceeded to perform an experiment

with human subjects where we observed that, when RDM trials with pulses

are interleaved in the VMD task, the effect that pulses have on behavior
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reverses.

An attractor network with urgency had been previously proposed by

(Standage et al., 2011) to control speed-accuracy trade-off in a way that is

consistent with existent neural and behavioral data. The modulation of the

gain of the urgency signal controlled the time constant of the integration

during the course of a trial. Our study shows that, by using the same

principles, we can reconcile previous experimental data with information

that changes over time.

The possibility of the existence of an urgency signal modulating the

decision-making process had been proposed previously (Reddi and Carpen-

ter, 2000). It had been proposed that when we are confronted with decisions

that have to be made as fast as possible, we implicitly encode an internal

urgency signal. This signal causes a time-dependent increase in the neural

activity associated with an imminent deadline to decide regardless of the

sensory evidence itself (Churchland et al., 2008).

Although Wong et al. (2007) could explain the data of Huk and

Shadlen (2005) with a standard attractor network (without urgency), the

very same model would fail to explain the experimental data of Thura et al.

(2012). The reason for this is that early sensory evidence has a stronger in-

fluence on the attractor dynamics than late one. This will inevitably result

in a bias of the neural response between bias-for and bias-against trials, due

to the difference in the six first time steps.

Consistent with our study, Tsetsos et al. (2012) showed that, in some

cases, pulse effects in success probability were weaker or reversed when the

time of observation of the stimulus became longer, in comparison with what

was observed in Huk and Shadlen (2005). With a leaky competing accumu-

lator (LCA) model (Usher and McClelland, 2001), they could account for

primacy, recency and equal effects produced by pulses through modulation

of the impact of inhibition or leakage in the decision process. However, as

we have shown in Fig. 4.3B, the leakage has to be very strong to equalize

the effect of long early pulses (bias-for and bias-against) during the VMD
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task. This strong leakage would make the network to hardly reach an at-

tractor state when trials with low motion coherence are interleaved. This

way, although the LCA model proposes a plausible mechanism by which

decision are made, it cannot account for situations in which the amount of

sensory evidence changes within the same context.

In summary, our study proposes a mechanism by which decisions

based on information that changes over time can be made. It advances

the understanding of decision-making in two ways: first, we reconcile two

apparently paradoxical results that have been segregated for the last years

and, second, we propose a robust framework that can account for constant

and dynamic information over time. Yet, the question that remains open

is how the urgency signal is actually implemented by the brain. In the fol-

lowing chapter, we elaborate on an intrinsic neural mechanism based on the

variance of the neural response that could answer this question.

4.5 Supplemental figures

Figure 4.10: Effect of pulses along different amounts of motion coherence. Change
in mean activity along different values of motion coherence for positive-direction
(green) and negative-direction (red) pulses when compared to no-pulse trials.
Pulses have a greater impact on the mean activity for low levels of coherence
than when the stimulus is easy.
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Figure 4.11: Persistent effect of pulses in mean activity. Mean effect of positive-
direction (green) and negative-direction (red) pulses in the activity of the model
when all conditions are averaged. The effect of pulses lasts for at least 600ms.

Figure 4.12: Accuracy at decision time. Probability of correct at the time of
decision for easy/ambiguous trials (A) and for bias-for/bias-against trials ((B).
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Figure 4.13: Urgency bifurcation diagram. Example of how the state of the
network evolves within a trial for an arbitrary urgency signal. As observed, as
time progresses, it is more likely that one of the two neural populations would fail
into an attractor state.





Chapter 5

The cost of embodiment in
decision making

Never let the body tell the mind what to do

George S. Patton

In the final contribution of this thesis we investigate the possible in-

fluence that the constraints of embodiment has in decision making. In other

words, is there a cost to embodiment that biases perceptual decision mak-

ing? If so, what is its neuronal substrate? In a combined experimental

and theoretical study, we investigate this question demonstrating such an

effect exists in humans performing a reaching task. We use a biologically

constrained spiking neural model of binary decision making and show that

it reproduces the human performance data we present. It does this by ad-

vancing two novel physiologically motivated principles. First, our model

integrates perceptual evidence biased by motor cost through the lateral

synaptic connections reflecting the learning history of the behaving system.

Thus, our model shows that cost does not need to be computed locally and

explicitly but rather can be expressed implicitly in the distributed neuronal

dynamics. Second, in order to explain trials in which subjects give-up, the

execution of an action is realized only when the variance across the neuronal

pools is below a specific threshold. In this way, showing that the variance of

127
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neuronal activity is functionally relevant, as opposed to recent suggestions

to the opposite. Hence, we explain human performance data that reflects

the cost of embodiment on the basis of implicit neuronal factors as opposed

to depending on explicit computations of cost and or timing pointing to

the key role of neuronal variability in the transformation of perception into

action.

This study has been published in an abstract form in BMC Neuro-

science (Marcos et al., 2013a) and is part of a manuscript in preparation

(Marcos et al., 2014b). The abstract reads:

Perceptual decision making has been widely studied using

tasks in which subjects are asked to discriminate a visual stim-

ulus and instructed to report their decision with an action. In

these studies, performance is dependent on the accuracy of the

choice and the action is merely a means of reporting. However,

actions differ in their execution costs, and even subtle differ-

ences can influence how we choose between them. Can such

execution costs influence decisions, even about purely percep-

tual discriminations? Here we show the results of a psychophys-

ical experiment in which human subjects were presented with

a random dot motion discrimination task and asked to report

the perceived motion direction using movements that differed

in biomechanical costs. We found that the pattern of decisions

exhibited a significant bias towards the movement requiring the

lower biomechanical cost, even when this bias reduced perfor-

mance accuracy. These results can be reproduced with a realis-

tic spiking neural model of binary decision making that accounts

for motor and perceptual information in its synaptic connections

and input respectively. With this assumption the model further

predicts a link between neural response variance and the cer-

tainty/uncertainty of the decision being made.



5.1. introduction 129

5.1 Introduction

Many studies of perceptual decisions have shown that the timing and accu-

racy of choices are well predicted by a model in which neural activity builds

up to a decision threshold at a rate related to stimulus strength (Gold

and Shadlen, 2007; Heekeren et al., 2004; Smith and Ratcliff, 2004). For

example, when subjects discriminate the direction of coherent motion in a

random-dot motion (RDM) display, reaction time gets shorter and accuracy

improves as the coherence of motion is increased. Furthermore, both the

timing and accuracy of decisions can be biased by the prior probability that

a given choice is correct or asymmetries in the expected payoff associated

with a given choice (Hanks et al., 2011; Mulder et al., 2012). These effects

are all consistent with the notion that during perceptual decision making

the brain employs a strategy aimed at maximizing the expected value of the

choices it makes (Gold and Shadlen, 2007).

In a previous theoretical study, we showed that the embodiment of an

agent directly influences the flow and processing of perceptual information

or behavioral feedback (Verschure et al., 2003). This raises the question

whether embodiment and its constraints influences decision making in a

similar way as prior probabilities and/or expected payoff. In other words,

is there a cost to embodiment that biases decision making and perception?

In a combined experimental and modeling study, we investigate whether

the biomechanical costs of movement execution can influence perceptual

decisions in a manner comparable to known factors such as prior probability

or expected payoff. In addition, we use our theoretical study to answer the

question whether such embodiment-derived costs are computed explicitly

or can be accounted for in implicit terms and to asses which aspects of the

neuronal dynamics are predictive of acting versus giving up.

Actions are executed at the expense of a variety of metabolic and tem-

poral costs. The motor system is exquisitely sensitive to such costs, which

influence not only the implementation of a movement (Dounskaia et al.,

2011) but also the choice of movement itself. For example, when subjects

are faced with a choice between two movements that differ in biomechanical



130 the cost of embodiment in decision making

Figure 5.1: Experimental setup. (A) Biomechanics trials. The two possible
configurations of targets are illustrated: Left, T1-Low configuration; Right, T1-
High configuration. The arrows indicate the ideal trajectory that subjects are
requested to perform to select either target T1 or target T2. Starting from the red
central circle the movement must pass over the via-point (small blue circle) to reach
T1 or T2. The ellipse that surrounds the red circle (not shown to subjects) indicates
the arms mobility ellipse. In both configurations, the trajectory of the movements
towards both targets is equally aligned with respect to the ellipse. However, in the
T1-Low configuration the final trajectory of the movement to T1 is aligned with
major axis of the ellipse whereas the movement to T2 ends aligned with the minor
axis. The opposite occurs in the T1-High configuration. (B) RDM-biomechanics
trials. Subjects are required to detect the net motion coherence of the moving
dots that appear on the screen and to report it reaching T1 (right motion) or T2
(left motion) in one of the two possible configurations (T1-Low) or T1-High. An
additional third target (give-up) placed in the same position in both configuration
allowed the subjects to report that they were unable to detect the net motion of the
stimulus. Numbers next to the targets indicate the total estimated muscle work
needed to reach that target (in Joules).

costs (e.g. energetic demand), they tend to choose the one with a smaller

cost (Cos et al., 2011, 2012). This occurs even if the candidate movements
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Figure 5.2: Index of asymmetry, ratio of T1 and T2 choices. (A) Number of
trials where target T1 is selected divided by the number of trials where T2 is
selected in T1-Low and T1-High configurations. Target T1 is selected significantly
more often when the targets are placed in a T1-Low configuration (Wilcoxon paired
signed rank test,∗ = p < 0.05).Error bars are SEM. (B) Comparison of the ratio T1
choices/T2 choices in T1-High (x-axis) and T1-Low (y-axis) for individual subjects.
Consistent with (A) the majority of the dots are above the diagonal, meaning that
most of the subjects (9 out of 11) select more often T1 when the trajectory follows
a T1-Low configuration.

have identical launching costs and differ only at the end of the movement,

implying that subtle biomechanical costs can be predicted well ahead of

movement onset and influence action selection. We build our experiment

on this the classic random-dot motion discrimination task (RDM; Britten

et al. (1992)) in which subjects are asked to report their choices with a right-

or leftward movement of opposite biomechanical cost (Cos et al., 2011). We

allowed subjects a give-up option that they could select when they were not

confident enough to make an informed guess.

Importantly, our task was explicitly defined as a purely perceptual

discrimination task. That is, subjects were instructed to detect the direction

of motion in a visual display and their movement was merely a means to

report that decision. Therefore, if in a given trial a subject perceived motion

to the right and made a leftward movement we consider this an error of

perceptual decision making. In summary, if subjects in our task exhibit a

biomechanical bias in their choices it means that rather than performing the

perceptual discrimination task only, they were also allowing task irrelevant
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biases to influence decisions that rendered their performance sub-optimal

relative to the task instruction. To explain our experimental results, we

used a spiking neural model of decision making (Wang, 2002; Marcos et al.,

2013b). This model allowed us to investigate the neural dynamics of the

potential mechanisms that integrate perceptual evidence and motor cost, as

well as the mechanisms triggering decisions towards the give-up option. In

particular, the model demonstrates that motor cost can be accounted for

implicitly in PFC networks in terms of how the body schema is reflected in

the lateral interaction among the elements of PFC decision-making circuits.

In addition, our model demonstrates that it is the variance of neuronal

activity that can be used as a criterion in deciding between action and

inaction.

5.2 Results

Behavioral results

To quantify the effect of biomechanical cost in the selection of movement,

we first assessed the subjects preference for either of two target in free choice

trials (biomechanics trials). The two targets (T1 and T2) were presented in

two possible configurations: T1-Low and T1-High (Fig. 5.1A; for details see

Materials and Methods). Briefly, in the T1-Low configuration the biome-

chanical cost of moving to T1 was lower than the cost of moving to T2,

and the opposite was true in the T1-High configuration. As expected, when

allowed to choose freely subjects tended to select T1 more often in the T1-

Low configuration compared to the T1-High configuration (mean value T1

choices/T2 choices of 1,24 and 0,95 in T1-Low and T1-High arrangements

respectively; Fig. 5.2), consistent with previous studies (Cos et al., 2011,

2012).

We investigated whether this biomechanical cost dependent bias influ-

ences decision making during the RDM task, in which the perceived motion

of the dots was reported by moving to either T1 or T2 in either the T1-Low

or T1-High configurations (Fig. 5.1B). We observed that subjects exhibited
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Figure 5.3: Behavioral performance during RMD-biomechanics trials. (A) Pro-
portion of correct trials (black) and give-up (GU) choices (green) for different levels
of motion coherence, data from all subjects. The performance starts at chance level
(0.5) for 0% coherence and it reaches its maximum value of 1 for trials with 100%
coherence. Experimental data (dots) were fitted with a logistic function (see Mate-
rials and Methods). In contrast, the number of GU choices decreases with motion
coherence reflecting the decrease in the difficulty of the trial. (B) Mean reaction
time for different levels of motion coherence for correct trials and trials where the
give-up option was selected. RT was longer when subjects selected the give-up tar-
get than when they correctly detected the direction of motion and selected either
T1 or T2 (repeated measures ANOVA with Bonferroni correction, ∗∗ = p < 0.001).
Experimental data (dots) were fitted with a hyperbolic tangent (see Materials and
Methods). (C) Mean RTs for correct versus give-up trials. Each data point cor-
responds to one subject and one level of motion coherence (only the cases that
contained more than four give-up trials are plotted). Error bars are SEM.

an increase of accuracy and decrease of their reaction rime (RT) as a function

of increasing coherence of the motion cue (Fig 5.3A). Furthermore, consis-

tent with previous studies they chose the give up option less frequently as

the coherence increased (Fig. 5.3A), (Kiani and Shadlen, 2009), and these

choices always had a longer mean RT (Fig. 5.3B and Fig. 5.3C). Individual

RTs in Fig. 5.3C indicates a clear tendency for all subjects. These results

confirm that subjects used the give-up target to report their impossibility

to detect the dominant motion direction of the moving dots.

Most importantly, the difference in selecting T1 versus T2 targets

to report the direction of motion also differed between the T1-Low versus

T1-High configurations in the RMD-biomechanics. The probability of T1

choices for left- and rightward motion depended on the targets arrangement



134 the cost of embodiment in decision making

Figure 5.4: Behavioral influence of motor cost during RMD-biomechanics trials.
(A) Probability of T1 choice for right and left motion along different values of
motion coherence for the two biomechanical configurations (T1-Low and T1-High).
The probability of selecting T1 is higher when the targets are placed in the T1-Low
configuration compared with the T1-High configuration for both left (Left panel)
and right (Right panel) motion direction (Wilcoxon signed rank test, p < 0.05; see
Materials and Methods). In both biomechanical configurations the probability of
selecting T1 is above 0,5 for 0% of motion coherence indicating a small perceptual
bias towards right. (B) Comparison of individual performance for left (Left panel)
and right (Right panel) direction of motion. Each dot corresponds to an individual
probability of being correct for a specific level of motion coherence, solid black
circles for 0%, 2%, 5% and 10% amount of motion coherence and solid gray circles
for 20% and 100%. As observed, the majority of the dots are below the diagonal
for left motion direction (Left panel), meaning that subjects are in general better
at detecting left motion in the T1-High configuration, whereas the opposite occurs
for right motion. These figures are consistent with the general behavior observed
in (A). Red arrows indicate the mean of the population for all motion coherences.
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(Fig. 5.4A). Subjects selected more often T1 for both directions of motion,

left and right, when the targets were set in the T1-High configuration as

opposed to T1-Low. We interpret this result as a tendency to detect more

often right motion when the targets are placed on the T1-Low configuration

in comparison to when they follow the T1-High configuration. This effect

could be explained by fitting the probability of T1 selection with a psycho-

metric function with three free parameters related to an initial bias, level

of motion coherence and biomechanical configuration. The use of the third

parameter was necessary to correctly explain the data (Wilcoxon signed

rank test, p < 0.05, see Materials and Methods). The effect of the motor

cost was equivalent to an addition of 6,6% of right motion to the stimulus in

T1-Low with respect to T1-High. Fig 5.4B shows a consistent effect across

individual subjects.

Is it possible that the influence of the biomechanical bias we observe in

perceptual decision making (Fig. 5.4) is due to a strategy of simply choosing

the easier movement by default during trials in which the subject is unsure

of the direction of motion? This is unlikely because of two reasons. First,

the presence of the give up option, whose biomechanical cost was lowest of

all. That is, if a subject was unable to detect motion in a particular trial,

they could just select the give up option and move on to the next trial.

As expected, give up choices decreased in frequency as a function of motion

coherence (Fig. 5.3A) and tended to be made with long reaction times (Fig.

5.3B). Second, we observe that the modulation of the selection modulation

systematically varies with the motion coherence throughout the full range

of coherence values (Fig. 5.4A and 5.4B). Hence, subjects decide to choose

biased by biomechanical cost and thus not to give up for coherence values

where the probability of giving up is very low (Fig. 5.3A). Thus, when

subjects did choose T1 or T2, they presumably acted on the basis of a non

negligible certainty on the motion coherence.
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Modeling results

To investigate how the biomechanical cost of each movement may influence

the perceptual decision-making process we used a realistic neural model of

leaky integrate-and-fire neurons (Wang, 2002). The model consists of NE

excitatory neurons and NI interneurons. The structure of the network is il-

lustrated in Fig. 5.5A. Excitatory neurons are subdivided into two selective

populations that encode the two possible directions of motion, left or right,

and a population of non-selective neurons that simulates the activity of

neighboring neurons that are not selective for any of the two motions. The

three groups of excitatory neurons are connected to an inhibitory group that

mediates the competition in the network (see Materials and Methods). The

biomechanical preference of movements is reflected in the model by different

weight in the recurrent connections of the selective pools (ω+T1, ω+T2). The

decision-making process was considered to be terminated when the differ-

ence in activation between the two selective neural populations was above

a predefined threshold (Roxin and Ledberg, 2008). We also propose that,

in parallel, an additional system integrates the variance of the population

response. Whenever the difference in activity between the two competing

populations reaches the decision bound the value of the integrated variance

is assessed: if the variance is above a predefined threshold the choice is con-

sidered to be ”give-up” (an example of the model dynamics is illustrated

in Fig. 5.9). As observed in the experimental data (Fig. 5.2A), the differ-

ence in the strength of the recurrent connections biases the selection of the

targets in each biomechanical configuration (Fig. 5.5B, p < 0.001) when

biomechanics trials (no motion coherence) are simulated. When the per-

ceptual input is activated (RMD-biomechanics trials), the model shows the

same asymmetry in the probability of T1 choices for right/left motion dur-

ing T1-Low/T1-High configurations (Fig. 5.5C) as observed in Fig. 5.4A.

This is due to the unbalanced weight of the recurrent connection of the neu-

ral populations that biases the competition between the neural populations

favoring the one with the strongest recurrent connection.

We propose that the network decides to give-up when the accumulated
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Figure 5.5: Decision-making neuronal model. (A) Layout of the spiking neural
network. The network consists of one population of excitatory pyramidal neurons
and one population of inhibitory interneurons. The excitatory population is subdi-
vided into two selective populations (T1 and T2) and one non-selective population
(NS). The ’T1’ population is selective for right motion (λright) and generates ac-
tions towards target T1 whereas the ’T2’ population is selective for leftward motion
(λleft) and is associated with a movement towards T2. Both selective populations
compete through shared inhibition from the inhibitory population (I). The network
comprises a total of 2,000 neurons that follow all to all connectivity. (B) T1/T2
ratio for both the high and low cost biomechanical condition, T1-Low and T1-High
(binomial test, ∗∗ = p < 0.001). (C) Probability of T1 choices for leftward (Left
panel) and rightward (Right panel) motion. The results show a higher probability
of selecting T1 for both, leftward and rightward, motion directions when the sim-
ulated targets are in the T1-Low configuration (ω+T1 = 1.6991, ω+T2 = 1.7003 for
T1High and ω+T1 = 1.703, ω+T2 = 1.699 for T1-Low). (D) Relationship between
RTs and variance of the neural response of the motion selective populations at the
time of the decision. The data have been fitted using linear regression, with a slope
of 1,15s and an offset of 0,32s (r = 0.97 and p < 0.001). Small figure shows GU
choices obtained with the model for different levels of motion coherence.

variance at the time of the decision is high. This mechanism can correctly

explain the longer RT in give-up trials compared to correct trials (Fig.

5.7A) and results in a number of give-up trials that falls to 0 for non-
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ambiguous trials (100% of motion coherence) (small panel in Fig. 5.5D),

following a similar trend as the real data (Fig. 5.3A). RT and variance of

the response of the population are highly correlated and the later can be

used as a predictor of the former. These results suggest that a measure of

the variance of the population can be directly linked with uncertainty about

the current decision to be made, i. e. the higher the variance the higher

the uncertainty (Marcos et al., 2013b).

5.3 Discussion

Here, we investigated the influence of biomechanical factors in a percep-

tual decision-making task. In agreement with previous studies (Cos et al.,

2011, 2012), our results showed that subjects tend to select more often the

choice that requires a movement demanding less effort. Furthermore, here

we show that this same tendency is present when subjects had to detect the

direction of random dot motion. The bias in the perceptual decision mak-

ing is equivalent to an additional amount of motion coherence favoring the

direction that required a movement with lower motor cost (virtual increase

motion towards right in the T1-Low case compared to the T1-High case).

We interpret this bias as a result of a embodied decision-making process in

which motor cost influences the flow of perceptual information, consistent

with our previous theoretical work (Verschure et al., 2003). These results

were reproduced by a spiking neural model of a binary decision-making task

which showed that asymmetric recurrent connections related to each move-

ment bias the selection of the movement that requires less cost. Our model

also predicts that give-up options can be explained by the neural variance of

the population response, suggesting a link between neural response variance

and uncertainty.

Previous studies showed that biomechanical factors influence decisions

between reaching movements (Cos et al., 2011, 2012). Other factors being

equal, the target selected most frequently was the one with the lowest as-

sociated biomechanical cost. Here we have extended these results to show

that biomechanical costs may also bias decisions in visual discrimination
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tasks when decisions are reported with reaching movements. This shows

that the motor system may unduly influence visual decisions even during

tasks in which motor costs are completely unrelated to sensory evidence.

Our simulated results were also consistent with this claim.

One of the critical points of this study was to distinguish whether the

observed bias caused by the asymmetry in the biomechanical cost of move-

ments in the perceptual decision-making process was due to an integration

of sensory evidence and motor cost in the decision process or due to a se-

lection of the default and less costly action when subjects are simply not

able to detect the net motion of the dots. To overcome this issue, we added

a give-up option that subjects were instructed to select if they were unable

to distinguish the direction of motion. The presence of this option suggests

that T1 or T2 selections occurred only when the subjects had detected

rightward or leftward motion, respectively (Kiani and Shadlen, 2009).

The main result of the biomechanical influence in perceptual decision

making also indicates that choices exhibit a mild lateral bias towards T1

in both T1-Low and T1-High, in a similar fashion to the bias reported by

Resulaj et al. (2009). As a control for this, we performed an additional

experiment in which subjects used the keyboard to report the motion di-

rection of the moving dots. As in our main results they have a tendency to

report that they detected right motion over left motion as indicated by a

proportion of right choices above 0.5 (Fig. 5.8). Therefore, in our case, this

bias may not be attributed to any conflict between motor and perceptual

costs.

The spiking neural model allowed us to investigate the neural dynam-

ics involved in the integration of biomechanical cost and sensory evidence

during a perceptual decision-making task. Our results show that we can

explain the observed behavioral bias by an asymmetry in the strength of

the recurrent connection of the two selective populations. Moreover, our

model suggests the existence of a variance monitoring system that assesses

the certainty of the choice at the time of the decision and that can ac-

count for give-up choices and their associated long RTs. In Marcos et al.
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(2013b), we showed that trial history and across-trial neural response vari-

ance were highly correlated and that the later could be used as a predictor

of the former. Here, we have extended this study to show a possible link

between variance of the neural response of the population with uncertainty

(Churchland et al., 2011; Marcos et al., 2013b). In this study, to calculate

the neural response variance within a trial, we have used the variance of the

spike count observed in a time window, i.e., the deviation of a single neuron

spike count from the mean spike count of the population. Although less bio-

logically grounded than measures of variance for across-trial variability, this

measure is equivalent to the variance of conditional expectation (VarCE)

when the point process variance (PPV) is not considered in the calculation

(theoretical value Φ = 0). This assumption has shown to lead to equivalent

results than the ones observed when PPV is not zero (Churchland et al.,

2011; Marcos et al., 2013b) and has been widely used previously (Gur et al.,

1997).

To explain the motor bias during a perceptual decision-making task

observed in our experimental data, we asymmetrically changed in our model

the recurrent connection of the two neural populations in a manner depen-

dent on the simulated target configuration. Since the movements that are

required to report the direction of the moving dots in our task are very com-

mon we suppose that subjects do not require any motor learning but instead

they already tend to perform more often the less costly movement. We have

modeled this by assuming that the strengths of the synaptic connections are

asymmetric and constant during the task.

Kiani and Shadlen (2009) showed that an intermediate level of activ-

ity of neurons in the lateral intraparietal cortex (LIP) recorded from two

monkeys was associated with their later selection of the give-up option in

their study. To explain this mechanism, they used a bounded accumula-

tion model and argued that at the time of the decision the mean firing rate

activity is informative about the certainty of the monkeys, low activation

meaning low certainty and vice versa. A similar explanation is suggested

by the urgency-gating model (Cisek et al., 2009). For simplicity, here we
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show that with a fixed threshold and using both firing rate and variance

of the neural response we could also explain the results. This suggests a

concrete role to the neural response variance and predicts that it reflects

the certainty of the decision.

Neurons in parietal and frontal areas have shown to be involved in two-

choice perceptual and motor decision-making tasks (Platt and Glimcher,

1999; Gold and Shadlen, 2000; Cisek and Kalaska, 2005; Gold and Shadlen,

2007; Mirabella et al., 2011). The mean firing rate activity of neurons in

these areas have shown to be correlated with decision that is being made.

An open question is now whether these same neurons show the modulation

in their neural response variance with the uncertainty of the decision being

made as predicted by our model and if this variance can be used as a

predictor of the outcome of the decision, i. e. right/left choice or give-up.

5.4 Materials and Methods

Characterization of motor cost

To estimate the cost of movement (Fig. 5.1A and 5.1B) needed to reach

T1 and T2 in the two biomechanical configurations we followed the same

procedure as in previous studies (Hogan, 1985a,b,c). Motor cost was calcu-

lated using the alignment of the movement with the major or minor axis of

the ellipse of movement and the structure of the arm and its distribution of

mass (Fig. 5.6; see Supplemental Experimental Procedures).

Experimental design

Eleven subjects (7 females and 4 males, aged 24-34 years) performed the

biomechanics trials of the experiment (Fig. 5.2A) and eight of these eleven

subjects (5 females and 3 males, aged 24-34 years) also performed two more

sessions that contained biomechanics and RMD-biomechanics trials (Fig.

5.2A and 5.2B). The experiment was approved by the Universitat Pompeu

Fabra ethical committee.
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The experimental setup consisted of a touchscreen computer (Sony

VAIO L Series Touchscreen AIO PC 24”, resolution of 1920x1080). Subjects

made movements using a digitizing stylus whose position was sampled at 60

Hz. The control of the behavioural task, stimulus display, and synchroniza-

tion of task events and signal recordings were performed by a custom written

C/C++ program using the Openframeworks library 1. The data from each

session was transferred to a MySQL database (Oracle, Santa Clara, CA) for

further analysis using custom designed Matlab scripts (Mathworks, Natick,

MA).

The experiment consisted of two kinds of trials divided into three

sessions: the biomechanics trials and the random motion discrimination-

biomechanics trials (RMD-biomechanics trials). The first session consisted

of a baseline experiment, aimed at characterizing the influence of biome-

chanics on the subjects decision, in the absence of any other sensory infor-

mation than the potential directions of movement. To this end, we defined

two kinds of biomechanicals configurations that we call: ’T1-Low’ and ’T1-

High’. To independently influence biomechanical factors associated with

each of the two targets, we arranged them such that the path of the trajec-

tory approaching a target was approximately aligned with either the major

or minor axis of the arms biomechanical mobility ellipse calculated at the

target (Fig. 5.2A). In the arrangement shown on the top of Fig. 5.2A,

which we call the T1-Low condition, reaching movements to target 1 (T1)

would arrive on a path aligned with the major axis of the mobility ellipse,

while movements to target 2 (T2) would arrive on a path aligned with the

minor axis. In contrast, in the T1-High arrangement shown on the bottom

of Fig. 5.2A, movements to T1 would arrive along the minor axis and move-

ments to T2 would arrive along the major axis. The session was divided

into three blocks all of them exclusively containing biomechanics trials with

a total of 100, 80 and 80 trials respectively. There were two types of tri-

als: two-target trials (N=140) which were used to assess subject choices;

and one-target trials (N=120), which were used to ensure that subjects had

1http://www.openframeworks.cc/
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substantial experience performing all of the movements.

Each individual trial began when the central cue, or origin cue, (red

central dot, Radius 0.47cm) was shown on the screen. Time started counting

when the subject moved the stylus into the origin cue and held it there for

a 500ms which we call Centre Hold Time (CHT). Next, the stimuli defining

the potential trajectories were shown, either in the T1-Low or T1-High

configurations. Each potential trajectory was defined by the central cue,

a via-point (cyan dot, Radius 0.55cm), and a target (cyan dot, Radius

0.85cm). The via-point and target cues changed to a lighter cyan as the

stylus moved over them.

The two remaining sessions consisted of both biomechanics trials and

RMD-biomechanics trials. Each session was divided into four blocks of tri-

als: the first block contained biomechanics trials (40 trials) whereas the

other three blocks had exclusively RMD-biomechanics trials. In each ex-

perimental session, the first block was used as an exploratory task to allow

subjects to experience the biomechanical cost of each motor action and con-

tained 24 two-target trials and 16 one-target trials. The remaining three

blocks had RMD-biomechanics trials. The dynamic random dots were dis-

played in a 5 circular aperture with a dot density of 16,7 dots per deg2 per s

(Roitman and Shadlen, 2002; Hanks et al., 2006; Britten et al., 1992). Dots

were placed in a random position or in a subsequent right or left position

every three frames (50 ms). Coherently moving dots were displaced to pro-

duce 6◦s−1 motion. Six motion strengths were used: 0%, 2%, 5%, 10%,

20% and 100%. Each RMD-biomechanics trial started with a red central

cue that subjects were required to reach with the stylus and hold during

500ms. After that period one of the two configurations of choices, T1-Low

or T1-High, appeared on the screen during 200ms followed by dots moving

on the screen with one of the predefined amounts of coherence towards right

or left that randomly changed from trial to trial. Subjects were required to

detect the direction of the moving dots and to report it as fast as possible

performing one of the two possible movement trajectories that appeared in

each trial or to select a ’give-up’ option meaning that they were not able to
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detect the dots direction of movement. This option ensured that subjects

reported the direction of motion when they were convinced that they had

detected it. Each of these three blocks contained a starting amount of 96

trials. When subjects selected the give-up option in a given trial that trial

was placed at the end of the sequence of the block so that it appeared again.

With this procedure we ensured that we had enough trials with responses

that reflected the detection of motion coherence. To avoid that the dura-

tion of the session was dramatically increased by this procedure we limited

the number of trials in each block to 120 trials. A trial had a fixed total

duration of 4s, which means that if subjects selected a target before the

end of the trial the screen appeared white for the remaining time. This was

used to discourage random guessing. The inter-trial interval had a duration

of 500ms.

Fits to behavioral data

Psychometric functions (Fig. 5.3A) were fitted by a logistic function (Wong

et al., 2007):

Pcorrect =
1

1 + exp(−(β0 + β1c′))
(5.1)

where c′ is the motion coherence level and β0 and β1 are free parameters.

Chronometric (Fig. 5.3B) curves were fitted by:

RT =
β2

β3c′
tanh(β2β3c

′) + tR (5.2)

where β2 and β3 and tR are free parameters.

Statistical test

To assess the bias in the probability of T1 choices for right/left motion

direction between T1-Low and T1-High during the RMD-biomechanics tri-

als we fitted the behavioral performance relative to the motion direction,
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adding a third parameter to Eq. 5.1 related to the cost associated with the

trajectory required to reach the specific target:

PT1 =
1

1 + exp(−(β0 + β1c′ + β2I))
(5.3)

where I has a value of 1 when the targets are arranged in the T1-High

configuration and 0 when they are placed in the T1-Low configuration. To

investigate the bias in performance due to the configuration of the targets we

evaluated the null hypothesis that the arrangement of the targets does not

bias choices made by the subject (this occurs when the related parameter

has a value of 0, β2 = 0). The significance of the effect was calculated by

comparing the distribution of the parameters β2 to a distribution of median

0 (Wilcoxon signed rank test, p < 0.05). We estimated the strength of the

effect in terms of motion coherence with the ratio β2/β1.

Spiking neural network

The spiking model comprise 2000 leaky integrate-and-fire neurons (Tuck-

well, 1988). That represent pools of neurons in prefrontal cortex that im-

plement decision-making mechanisms underlying the motor task we study

(Wang, 2002). All parameters are identical to those presented in (Wang,

2002) except the weight of the recurrent connections of the excitatory pop-

ulations. Briefly, it consists of NE = 1600 excitatory pyramidal neurons

(80% of total) and NI = 400 interneurons (20% of total) (Braitenberg and

Schtz, 1991). Of the excitatory neurons, 240 (15% of NE) are activated

by right motion, 240 (15% of NE) by left motion, and the remaining 1120

neurons (70% of NE) are not activated by any of the two motion direc-

tions. The network has all-to-all connectivity via three types of receptors:

AMPA, NMDA and GABAA. The two motion selective neural populations

compete with each other though shared recurrent inhibitory connections

mediated by the interneurons. All neurons in the network receive an exter-

nal input via excitatory connections (AMPA mediated) that simulates the

background activity with a mean rate νext = 2.4kHz, according to a Pois-
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son process independent for each neuron (Wang, 2002). The mean motion

dependent input, λ, to the two motion selective excitatory populations was

defined by modulating a baseline of spontaneous activity, µ0, by adding or

subtracting a motion dependent neuronal response, ρc′, for preferred, µp,

or non-preferred, µnp, motion direction respectively:

µp = µ0 + ρc′ (5.4)

µnp = µ0 − ρc′

with an added noise with standard deviation σ, following a Gaussian distri-

bution. This modulation of activity simulates the effect of different levels of

motion coherence on the activation of MT neurons that in turn project to

the PFC decision-making network we model here (Britten et al., 1993, 1996).

For simplification, we did not consider pooling or noise correlation between

MT neurons (Zohary et al., 1994; Shadlen et al., 1996; Bair et al., 2001),

since it does not affect the behavior of the model (Wang, 2002). In our

simulations, µ0 = 40Hz, ρ = µ0/4Hz and σ = 10Hz and µright = µp and

µleft = µnp when right motion is simulated and µleft = µp and µright = µnp

for left motion (Fig. 5.5A). At every 50ms the values of µp and µnp are

resampled from the Gaussian distribution. We added a value of 2,3 Hz to

the T1 pool input to account for the observed bias towards right motion

detection (probability of T1 choice greater than 0,5 in T1-Low and T1-High

for 0 motion coherence; Fig. 5.4A) (Resulaj et al., 2009).

The decision generated by the model was considered to be realized

when the difference in activation between the two competing pools reached

a fixed threshold (Σ) of 35 Hz. In order to decide between giving up and

executing the decision, a monitoring system integrated, in parallel, the to-

tal normalized spiking variance of the decision-making population over the

course of the trial. The action to move towards T1 or T2 was executed only

when the integrated value of variance was below a predefined threshold

(φ = 0, 9Hz2) at the time of the decision or ”give-up” otherwise.
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The mean firing rate and the variance of the populations were com-

puted using a time window of 60ms and a sliding window of 5ms. Other

window sizes yielded similar results.

Supplemental Experimental Procedures

Characterization of biomechanics and muscle work

There is a variety of biomechanical factors associated with any given move-

ment, including passive inertial properties of the arm (Sabes and Jordan,

1997; Sabes et al., 1998), interaction torques (Gritsenko et al., 2011), and

muscle visco-elastic properties (Goble et al., 2007; Dounskaia et al., 2011).

Previous studies determined that the biomechanical costs associated to

movements along different directions were predicted in anticipation of move-

ment onset and biased the selection between movements (Cos et al., 2011,

2012). For consistency with these previous studies, we characterized biome-

chanics by using the alignment of the end-point trajectory with the major

or minor axis of the ellipse of mobility and admittance, calculated for planar

movements (Hogan, 1985a,b,c), as a metric of biomechanics. End-point mo-

bility depends on joint configuration and captures the spatial anisotropies

that result from the structure of the arm and its distribution of mass. For

movements on the plane, mobility can be mathematically expressed as a

2x2 tensor matrix and can be visually represented as an ellipse whose ma-

jor/minor axes indicate the directions of maximal/minimal sensitivity to

perturbations. Eq. 5.5 describes the transformation from arm inertia to

end-point mobility.

W (θ) = J(θ)I−1(θ)J ′(θ) (5.5)

The mobility tensor W (θ) is the inverse of the inertia tensor I(θ). Eq.

5.5 transforms the mobility tensor from joint space into end-point space by

using the Jacobian J(θ) of the arm. Since measures of arm inertia are not

directly available, we have used a planar, simplified two-segment model of

the arm, which describes each segment as a centre of mass, m1 and m2,
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located at a fraction c1 or c2, along the respective segment length. Eq. 5.6

shows the resulting formulation the inertia tensor.

I(θ) =

(
m1c

2
1l

2
1 +m2c

2
222

1 + 2m2c2l1l2cos(θ2) m2c2l1l2cos(θ2) +m2b
2
2l

2
2

m2c2l1l2cos(θ2) + c2
2l

2
2 m2c

2
2l

2
2

)
(5.6)

In Eq. 5.6, θ1 and θ2 are the shoulder and elbow angles as defined in

Fig. 5.1. The remaining parameters are averaged mass and mass cen-

ter distances, which have the following average values: m1 = 1.76Kg,

m2 = 1.65Kg, c1 = 0.475, c2 = 0.42 (Sabes and Jordan, 1997). Arguably,

there are more complex metrics that could be used to characterize the cost

of biomechanics, e.g., a model of the arm that includes the main muscle

groups. However, mobility provides an easily interpretable visual represen-

tation in the form of an ellipse, as the metric to capture the main features

of the anisotropies of the arm in the plane. Our experimental paradigm was

designed to vary the biomechanical cost (alignment of the trajectory with

the major and minor axes of the mobility ellipse) to study their interactions

on subjects response choices and perceptual decision making. We parame-

terized the movements from the origin to one of two targets and created two

geometrical arrangements in which the movement to T1 and to T2 always

implied opposite biomechanical costs. Specifically, in the first arrangement

we aligned the arrival to T1 with the major axis of the ellipse and to T2

with its minor axis (T1-Low arrangement), and in the second we aligned the

arrival to T1 with the minor axis and to T2 with the major axis (T1-High

arrangement). Furthermore, we selected the movement initial directions to

imply equal launching biomechanical costs by adding via-points along direc-

tions anti-symmetrical to the mobility axes (see Cos et al. (2011) for further

detail).

Despite this qualitative characterization of biomechanical costs, biome-

chanics itself is an intrinsic cost of movement and can be best quantified

from the consequence of moving along each specific direction. For exam-

ple, moving along the major or minor axis of the mobility ellipse means
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following a ridge or a valley of the biomechanical cost function, and con-

sequently of the energetic demand of moving along those directions. Since

we do not have direct access to a measure of the energy consumption, we

used instead the muscle work over each entire movement to the target at

each arrangement to quantify the cumulative biomechanical cost associated

to a movement. To that end, τm predicted for the subjects trajectories (Eq.

5.7) necessary to perform each reaching movement (see Cos et al. (2011)

for a detailed account of this calculation). Muscle work (W) was calculated

by integrating the net torques along the trajectory from the origin to the

target, as described by Eq. 5.7.

W =

∫ Target

Origin
τmdθ (5.7)

The resulting estimates of muscle work for each movement and con-

figuration are shown above the targets of Fig. 5.1B.

Spiking neural model

Our decision-making model follows the descriptions in Wang (2002). In

this supplementary material we present its main characteristics. Except for

the recurrent connections of the selective excitatory populations we use the

same parameters as selected in Wang (2002).

The spiking neural model consists of 2,000 neurons from which 20%

are inhibitory interneurons (NI = 400) and 80% are excitatory pyramidal

neurons (NE = 1600). The excitatory neurons are subdivided into three

populations: two selective populations each of them with fNE neurons

(f = 0.15) responsive for either right or left motion and a non-selective

population formed by the remaining (1−2f)NE neurons that is not selective

for any of the two stimuli. A neural population is formed by neurons sharing

the same inputs and connectivity. Neurons are all-to-all connected.
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Neurons

All the simulated neurons are modeled as leaky integrate-and-fire neurons

(Tuckwell, 1988). The subthreshold activity of these kind of neurons can

be described as:

Cm
dV (t)

dt
= −gm (V (t)− VL)− Isyn(t) (5.8)

with a membrane capacitance Cm = 0.5nF for pyramidal neurons and

Cm = 0.2nF for interneurons, a membrane leak conductance gm = 25nS for

pyramidal neurons and gm = 20nS for interneurons and a resting potential

VL = −70mV . Isyn represents the total input current flowing into the neu-

ron (see Eq. 5.9). When the membrane potential V reaches a membrane

threshold of Vth = −50mV a spike is emitted and the membrane poten-

tial drops to a reset potential Vreset = −55mV with a refractory period

τref = 2ms for pyramidal neurons and τref = 1ms for interneurons.

Synapses

The connections of the network are mediated by three types of recep-

tors: AMPA, NMDA and GABA for the inhibitory connections. Recur-

rent excitatory post-synaptic currents (EPSCs) are mediated by AMPA

(IAMPA,rec) and NMDA (INMDA,rec) receptors. External inputs send to

the network either from stimuli information or by background noise from

neurons connected to the network are considered to be driven only by AMPA

(IAMPA,ext) receptors. All inhibitory post-synaptic currents (IPSCs) are ex-

clusively driven by GABA receptors (IGABA). Therefore, the total synaptic

current can be described as:

Isyn (t) = IAMPA,rec (t) + INMDA,rec (t) + IAMPA,ext (t) + IGABA (t) (5.9)

where the currents follow the dynamics:
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IAMPA,rec (t) = gAMPA,rec (t) (V (t)− VE)

NE∑
j

ωjs
AMPA,rec
j (t) (5.10)

INMDA,rec (t) =
gNMDA,rec (V (t)− VE)

1 + [Mg2+]
(
−0.062V (t)

3.57

) NE∑
j

ωjs
NMDA,rec
j (t) (5.11)

IAMPA,ext (t) = gAMPA,ext (t) (V (t)− VE)

Next∑
j

sAMPA,ext(t) (5.12)

IGABA (t) = gGABA(V (t)− VI)
NI∑
j

ωjs
GABA
j (t) (5.13)

where VE = 0mV and VI = −70mV and ωj is the strength of synap-

tic connection j. NMDA currents have a voltage dependency that is con-

trolled by extracellular concentration of magnesium ([Mg2+=1mM]) (Jahr

and Stevens, 1990). The synaptic conductances have values close to those

experimentally measured (Destexhe et al., 1998): gAMPA,rec = 0.05nS,

gNMDA,rec = 0.165nS, gAMPA,ext = 2.1nS and gGABA = 1.3nS for pyrami-

dal neurons and gAMPA,rec = 0.04nS, gNMDA,rec = 0.13nS, gAMPA,ext =

1.62nS and gGABA = 1nS for interneurons. Each receptor has a fraction of

open channels that is defined by s. For AMPA (external and recurrent) and

GABA sj changes over time as:

dsj(t)

dt
= − sj(t)

τdecay
+
∑
k

δ(t− tkj ) (5.14)

where the decay time of AMPA receptors for recurrent and external con-

nections is τAMPA,decay = 2ms (Hestrin et al., 1990; Spruston et al., 1995)

and for GABA receptors τGABA,decay = 5ms (Salin and Prince, 1996; Xi-

ang et al., 1998). The sum over k represents the sum of spikes emitted by
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presynaptic neuron j at time tkj . The fraction of open channels for NMDA

receptor mediated currents are described by:

dsNMDA
j (t)

dt
= −

sNMDA
j (t)

τNMDA,decay
+ αxj (t) (1− sNMDA

j (t)) (5.15)

dxj(t)

dt
= − xj(t)

τNMDA,rise
+
∑
k

δ(t− tkj ) (5.16)

where τNMDA,decay = 100ms, α = 0.5ms−1 and τNMDA,rise = 2ms (Hestrin

et al., 1990; Spruston et al., 1995).

Network connectivity

The network is fully connected and the weight of their connection follows a

Hebbian rule: it is strong if the neurons are highly coupled in their response

or weak otherwise. We assume that the weights were already learned be-

fore so we keep them constant over the simulations (only the weight of the

recurrent connections change from conditions) Therefore, within each selec-

tive population the neurons have strong connection between them (ω+ > 1,

ω+ = 1.7; ω+T1 = ω+ − 0.0009, ω+T2 = ω+ + 0.0003 for T1-High and

ω+T1 = ω+ +0.003, ω+T2 = ω+−0.001 for T1-Low). The connection weight

between two selective populations and from the non-selective population to

the selective ones have weaker values (ω− < 1; 1−f(ω+−1)/(1−f)). Since

the deviation from ω+ of the recurrent connections is very low we neglect

its effect on the calculation of ω− (it does not affect our results). The rest

of the connections have a value of 1.

Model inputs

To simulate spontaneous noise due to neighboring external neurons all neu-

rons in the network receive an AMPA mediated external current that simu-

late uncorrelated Poisson spike trains of νext = 2, 4kHz. The motion stimuli

was simulated using the procedure explained in the main text Material and

Methods.
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5.5 Supplemental figures

Figure 5.6: Model of the right arm. The modeled arm is a two-segment rigid
body rotating around the shoulder and elbow joints. θs and θe are the shoulder
and elbow angles, ls and le are the upper arm and forearm lengths, and τs and τe
are the shoulder and elbow torques, respectively.

Figure 5.7: RT and neural response variance in simulations. Mean RT (A) and
neural variance response (B) for correct (black) and give-up (red) trials. (A) Mean
RTs are longer for give-up than for correct trials, as shown in the experimental data
(Fig. 5.3B). (A) Neural response variance is higher in give-up trials compared to
correct trials, following the same trend as in (A).
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Figure 5.8: Behavioral performance in a control experiment. (A) Proportion
of right motion detection in a control experiment. 3 of the 8 subjects from the
main experiment performed a control experiment in which they were required to
detect the direction of motion of the moving dots and to indicate it using the
keyboard, where ’j’ meant left direction, ’k’ meant right direction and the ’space
bar’ was used as the ’give-up’ option. The proportion of right motion detection
was above 0,5 along all motion coherences showing a bias towards this direction.
As in the main experiment, the number of times that subjects selected the ’give-
up’ option decreased as the difficulty of the trial also decreased: 25,14%, 23,43%,
15,73%, 18,18%, 3,37% and 0% of the trials for 0%, 2%, 5%, 10%, 20% and 100%
of motion coherence respectively. (B) Probability of correct for different levels of
motion coherence. As in the main experiment the probability of being correct is
around chance level for 0% coherence and reaches its maximum value of 1 for 100%
coherence.
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Figure 5.9: Example of the model dynamics in two trials resulting in different
outcome: correct choice (A) and give-up choice (B). Red dashed horizontal line
indicates the decision threshold for mean firing rate (Top panel) and the threshold
for the neural variance to select the give-up choice. Top panel shows the mean
firing rate activity for each selective population (T1 and T2) and the difference
in their activation (T1 mean firing rate minus T2 mean firing rate, cyan color).
Bottom panel shows the neural variance of the two selective populations (T1 and
T2) and the sum of these variances integrated over time and normalized by the
number of neurons in the population (cyan color). When the difference in mean
firing rate activity between T1 and T2 populations reaches the decision threshold
the decision is considered to be terminated. At that same moment in time the
value of the integrated variance is assessed: if it is above the variance threshold
the choice is considered to be give-up, otherwise it is considered to be T1 or T2
depending on the population with the highest value of mean firing rate. (A) A trial
that ended in a T1 choice. As observed, at the time of the decision the variance of
the population response is below threshold and therefore T1 will be selected. (B)
A trial that led to give-up choice is illustrated. In this case, at the time of the
decision the integrated variance is above threshold resulting in the selection of the
give-up option.





Chapter 6

Conclusions

The important thing is not to stop questioning.

Curiosity has its own reason for existing

Albert Einstein

In this thesis, we have used a combined experimental and theoretical

approach to make progress towards a better understanding of embodied

decision making. To this end, the studies presented here have focused on

the influence that key elements related to embodiment -such as motor cost

or experience- have in the neural correlates of decision making and the

subsequent behavior. More specifically, we have addressed the following

questions: how do existing decision-making models generalize to real-world

situations in which an embodied agent is situated? (Chapter 2)What are

the underlying mechanisms that cause a bias in behavior based on previous

experience during a task? (Chapter 3) Does decision making depend on

the context in which the embodied system is situated? (Chapter 4)Do

the physical constraints of a body influence decision making even when it

compromises accuracy? (Chapter 5). To shed some light on these issues,

we have as stated before- analyzed them in a combined manner, by using

experimental data and by working on the development of a decision-making

model.

In the following sections, we revisit the specific contribution of each

157
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study in the same order as they appear in this thesis and, furthermore,

we propose new opportunities for future research they may originate. We

finish this chapter by suggesting a model that integrates all the key elements

related to embodiment as examined in this thesis.

6.1 Contributions

Generalization of integrator models to foraging

In a first stage, we have used a cognitive architecture to investigate the

generalization of a well-known decision-making model to real-world situa-

tions (Chapter 2). To this purpose, we have extended the DAC architecture

with an integrator model, called race model, and we have provided an arti-

ficial embodied agent along with it. The DAC architecture consists of three

layers of different complexity that interact with one another and need to

be orchestrated in order to produce proper behavioral patterns which lead

to achieve specific goals. The added race model consisted of multiple pro-

cesses that independently accumulated evidence in favor of each possible

action proposed by each layer, and limited to the physical constraints of

the embodied agent. Only when one of the accumulator processes reached

a certain level of activation (threshold) was the decision made and, subse-

quently, the action triggered. The system was tested in foraging tasks with

increased difficulty; in each task, the goal of the agent was to learn about

a new environment and to use the acquired information to reach specific

positions on it. Our study has revealed that the accumulation of evidence

before committing to an action led to a highly robust system against sen-

sory noise; additionally, it directly implied a compression of information

stored in the memory. Interestingly, in comparison with a non-accumulator

model of decision-making, this compression prompted a change in the way

that information about a task was stored. In other words, it has opened a

debate about the kind of information that is really relevant and therefore

should be memorized, i. e., is it formed by the discrete components of each

action? Or is it, in contrast, related to the goal itself and the action self-

instantaneously generated? A further robot experiment suggested that the
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latter might be the case.

In a second study included in the same chapter, we have gone one

step further by enhancing the reactive layer of the DAC architecture with

a homeostatic system, which regulated the internal drives of the artificial

agent. The reactive control produced continuous actions triggered by direct

stimulation of specific sensors associated with external events. The sequence

of actions was converted into one unique goal by the contextual control. The

goals were retrieved from memory and the actions required to reach them

were self-generated. The study has shown an integrated manner in which

both reactive and contextual controls could operate to control behavior in

an optimal way. Reactive control was shown to be sufficient in tasks in which

there was a direct path between the artificial agent and the next goal, but

it proved to be insufficient when this was not the case. The self-generation

of actions performed by the contextual control played a fundamental role

in the success of tasks where obstacles were placed between goals and the

agent.

Further research could be focused on a dynamical modulation of the

accumulation of evidence for the race model. The mechanism could be

based on the certainty/uncertainty that the embodied agent has about a

specific location or goal. For instance, when a task is still being learned,

actions proposed by the reactive or adaptive layer could have a greater

impact on the decision-making process. This impact might systematically

decrease as the agent learns about the task, in favor of the actions proposed

by the contextual control. We predict that this modulation could lead to an

optimal integration of information from the different layers where different

levels of learning are considered.

Trial history modulates neural variability and performance

Once a task has been learned, perception and memory need to be inte-

grated in order to properly make a decision. In the DAC architecture, this

is achieved by biasing the behavior of the artificial agent according to the

sequential order in which external events are encountered. In Chapter 3,
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we have examined the neural mechanism causing this bias in behavior. To

this end, we used a countermanding reaching task because it had previously

been corroborated that the behavior in a current trial was modulated by

the recent history of that trial (Emeric et al., 2007). Using experimental

data from Mirabella et al. (2011), where two monkeys performed a coun-

termanding reaching task, we have concluded that the same modulation of

behavior as previously reported- was also found in our case. With the aim

to find the neural substrate causing that bias in behavior, we have looked at

the mean firing rate of single neurons recorded from PMd as well as at their

across-trial variability. Our analyses have shown that the mean firing rate

of the neuron did not show any modulation due to trial history, whereas

their across-trial response variability (as measured by VarCE) did show a

modulation. In addition, we have also demonstrated that VarCE could be

used as a predictor of RTs, since both variables have proven to be strongly

correlated.

Already existing decision-making models that are based on accumula-

tion of sensory evidence propose that, to account for changes in RT, either

baseline activity, decision threshold or the rate of the accumulation have to

be modulated. However, we did not find any of these modulations in our

neural data. For this reason, in order to explain the differences in RTs, we

have used an attractor network for binary decision making in which two neu-

ral populations of excitatory neurons compete through mutual inhibition.

We have enhanced this model with a monitoring system that modulated

the strength of the input to the two competing populations, while the one

related to perception was kept constant. Our simulations have shown that

the addition of a memory-related signal could directly account for changes

in the variability of the across-trial response, while the mean firing rate did

not exhibit significant variation. Moreover, by using the difference in ac-

tivation between neural populations, we could find an explanation for the

variations in RT.

This study has contributed to the investigation of decision making

with two important advances: first, it has demonstrated that neurons in
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PMd encode trial history in their across-trial neural response variability

and, second, it has predicted the existence of a trial history monitoring

system that modulates neural activity and behavior. Further research could

be focused on trying to confirm whether this monitoring system exists or

not and -providing it does-, in which area of the brain it is originated. In

addition, neural data simultaneously recorded from neurons in PMd could

shed some light on the possible specific role of the neural response variance in

a single trial. We have also intended to find an answer to the latter question,

about the possible functional role of the neural response variability, in the

theoretical study presented in Chapter 5.

Task-dependent modulation of decision-making

In Chapter 4, we have contributed to the study of decision making by rec-

onciling two experimental results that seemed to be contradictory. The

experiments were based on tasks in which the stimulus changed over time;

in both tasks, monkeys or human subjects were requested to detect the di-

rection of motion of the majority of dots presented on a screen. These new

experimental paradigms resulted in sharply opposite conclusions. One of

the tasks proved that short changes in the amount of coherent motion di-

rection of the dots (pulses) altered the response time of monkeys performing

the task, thus observing a higher impact on the responses when the pulses

occurred early in the trial. On the contrary, the other task showed that the

response time in human subjects did not vary when a long pulse occurred

early in the trial. So far, none of the previously existing decision-making

models had been able to explain the reason for this difference in the results.

We have enhanced the model from Chapter 3 with a task-dependent

urgency signal and we have demonstrated that it could explain the appar-

ently contradictory results, since the urgency signal changed the gain of

the integration process during the course of a trial. Our study indicates

that the only difference between both tasks was the starting level and the

slope of that urgency signal, which depended on the given context. A high

value of urgency made it more likely for the network to reach an attractor
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state, whereas the opposite happened when the urgency value was low. In

an extreme case, a low value of urgency could lead to a loss of information

after some time. Hence, the high starting value of urgency could justify the

observed results in the RDM task with pulses -i. e. high impact of early

pulses on behavior- whereas low values of urgency could provide reasons for

the absence of effect of long early pulses on RT (like the lack of impact of

early information on behavior) during the VMD task. The way in which the

urgency signal was acquired in each context still remains unknown, though

future research could focus on a detailed analysis of the behavior of human

subjects or monkeys during the first part of the tasks in order to ascertain

it. The different manner in which they confronted the first trials could clar-

ify how the decision-making strategy was adopted in each context, aside

from provide further information about the adoption of different strategies

in each specific context.

Our model made a strong prediction: if such a task-dependent urgency

really exists, then when trials from one task are interleaved during the

performance of the other, a reverse effect of pulses must be observed in

behavior. In order to validate our model, we designed a new experimental

paradigm which enables us to test this prediction. The experiment was run

and the data analyzed in the University of Montreal as a collaborative work.

The experimental results confirmed that human subjects had a bias caused

by early pulses in their RT when they performed a RDM task with pulses.

Additionally, the study revealed that, when subjects encountered the very

same trials during the performance of a VMD task, they did not have a bias

in their RT due to early pulses; however, they did have a bias when late

pulses were presented. These experimental results confirmed the validity of

our approach.

We suggest that further research could be focused on the specific

neural modulation, implementing the task-dependent urgency signal that

our model proposed. Making recordings from neurons in areas involved

in the decision-making process, such as LIP (Roitman and Shadlen, 2002;

Leon and Shadlen, 2003) or PMd (Mirabella et al., 2011), while monkeys
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perform the RDM task with pulses and the VMD task could help to clarify

this issue.

Motor cost in decision making

The final contribution of this thesis has highlighted the importance of motor

cost in decision making. We performed an experiment with human subjects

in which they were presented with RDM trials and had to report their

decision with a planar movement towards one of two targets presented on

the screen. The actions required to reach each distinct target differed in

their biomechanical cost. Our experimental results revealed that subjects

significantly tended to select the option that required less biomechanical

cost more often, even if that tendency compromised their performance. An

additional theoretical study, using a spiking neural model of binary decision

making, proved that an asymmetric weight in the lateral connectivity of the

neurons involved in the decision process could explain the observed bias. We

therefore inferred an association between this asymmetry and the experience

that a behaving system has during life. Particularly, we proposed that an

embodied system generally tends to perform certain actions more frequently

than others because of its physical constraints, and that this tendency is

intrinsically represented at the neural level.

Our study has also revealed the potential functional role of neural

response variability in behavior. We could explain trials in which subjects

reported, by selecting a third target (give-up target), that they could not

detect the motion coherence of the dots with the response variability of the

neural network. The model generated actions towards one of the two targets

connected to a specific motion direction only when the mean firing rate

of the population related to it was above threshold and the accumulated

response variability of the populations was bellow threshold. When the

latter did not occur, the trial was classified as a give-up trial.

Simultaneous recordings from neurons in areas involved in decision

making, such as the parietal and frontal areas (Platt and Glimcher, 1999;

Gold and Shadlen, 2000; Cisek and Kalaska, 2005; Gold and Shadlen, 2007;
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Mirabella et al., 2011), during tasks with a give-up option could verify the

functional role of variability in this process. Following this line of research,

the question whether a link between uncertainty and neural response vari-

ability exists, as predicted by our studies in Chapter 3 and Chapter 5),

could be answered.

6.2 Concluding remarks

The studies conducted in this thesis have contributed to the advance in the

understanding of embodied decision making by providing the field with new

experimental results both at the behavioral and the neural level-, and by

helping to develop a decision-making model that could explain each finding.

Overall, the experimental results together with the theoretical approaches

followed in this research have allowed for an improved knowledge of the

behavioral and neural mechanisms implicated in embodied decision making.

In Fig. 6.1, we highlight the main contributions of our studies in

a single integrated model. The decision-making process is represented by

populations of excitatory and inhibitory neurons with recurrent connec-

tions. All excitatory connections inhibit one another through the inhibitory

neural population, and each excitatory population is sensitive to a specific

perceptual feature of a stimulus. The competition between the neural pop-

ulations is biased in three ways: by a trial history monitoring system, by

the physical constraints of an embodied system and by the context in which

the behaving system is placed. On the one hand, the monitoring system

modulates the input into the neural populations based on recent experience,

causing a bias in behavior due to memory. On the other hand, the physical

constraints of a body are represented in the lateral recurrent connections of

the excitatory neurons. Neural populations associated with movements that

have proven to be less costly during life experience have stronger recurrent

connections. This way, their chances of winning the competition are higher

than in the case of movements associated with high cost. And then again,

the given context directly influences the gain of the integration of excitatory

populations. This gain varies over the course of a trial differing in starting
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Figure 6.1: Integrated model. Summary of the main contributions of this thesis
from a theoretical point of view. The core part of the model consist in a network of
excitatory neurons that mutually inhibit each other through a group of inhibitory
neurons. All the neural groups have recurrent lateral connections. The activity
of the neural network is biased in three ways: through a monitoring system that
modulates the perceptual input based on the recent trial history, through the motor
cost of actions that are represented in the lateral recurrent connections and through
the given context that varies the gain of the integration process within a trial and
dependent on the current context. The read-out of the network consists of two
processes: a variance (Var) and a firing rate (FR) monitoring processes. Monitoring
system and context regulate their modulation based on the outcome of the decision.
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value and slope according to context. The modulation produced by the

monitoring system and by the context changes is based on the outcome of

the decision-making process. In the former case, recent experience updates

the value of the signal provided by the monitoring system; in the latter,

the outcome of the decision modulates the starting and slope values of a

task-dependent signal that, in turn, modifies the way in which the gain of

the integration process changes within a trial. In order to make a decision,

our integrated model looks at both mean firing rate and accumulated re-

sponse variance. When the mean firing rate reaches a threshold, the level

of the accumulated variance is checked and, if it is, besides, above a specific

threshold, the model decides to give-up, or else the decision is made towards

the action associated with the winning neural population.

The model clearly shows the contribution of many different processes,

involving different brain areas, to decision making. LIP (Roitman and

Shadlen, 2002; Leon and Shadlen, 2003), FEF (Gold and Shadlen, 2003),

SC (Munoz et al., 2000; Ratcliff et al., 2007; Shen and Paré, 2007) or PMd

(Mirabella et al., 2011) have shown to be some of these areas, in which the

activity of neurons is correlated with the formation of decisions. In addition,

activity of neurons in MT/V5 has shown to be tuned to visual motion (Dit-

terich et al., 2003; Newsome and Paré, 1988; Salzman et al., 1990, 1992) and

to project into LIP, in this way, providing perceptual input to LIP. An open

question is where the processes that bias the activity in decision-making

related areas, such as the trial history monitoring system, might take place.

Further research, conducted with areas recorded simultaneously, could shed

some light on this issue.

The integrated model summarizes our contributions to the under-

standing of the neural mechanisms underlying embodied decision making.

What is more, it also provides a new framework for future theoretical re-

search that may lead to the design of new experimental paradigms, and

so the loop of experimental-theoretical approaches is restarted. It equally

demonstrates the implications of our work not only in biological science and

neuroscience but also in applied sciences such as robotics. This denotes the
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multidisciplinary character of the studies conducted here, also /visible in

the diversity of conferences and workshops where they have been presented

(see Publications).

To conclude, the behavioral and neural findings and the theoretical

models included in this thesis, as well as the future lines of research pro-

posed, complement and improve our understanding of embodied decision

making. Indeed, we believe that these studies may constitute an important

impetus for an increased shift of main focus, in which embodiment will be

considered a highly relevant factor for decision making, to such an extent

that the process cannot be completely understood without it.





Bibliography

Abbott, L. F. Realistic synaptic inputs for model neural networks. Network,

2:245–258, 1991. 90

Afraz, S-R., Kiani, R., and Esteky, H. Microstimulation of inferotemporal

cortex influences face categorization. Nature, 442:692–695, 2006. 11

Albantakis, L. and Deco, G. The encoding of alternatives in multiple choice

decision making. Proceedings of the National Academy of Sciences USA,

106(25):10308–10313, 2009. 11, 71, 86

Allred, S., Liu, Y., and Jagadeesh, B. Selectivity of inferior temporal neu-

rons for realistic pictures predicted by algorithms for image database

navigation. Journal of Neurophysiology, 94:4068–81, 2005. 11

Amit, D. J. and Brunel, N. Model of global spontaneous activity and local

structured activity during delay periods in the cerebral cortex. Cerebral

Cortex, 7(3):237–52, 1997. 89

Andersen, R. A., Asanuma, C., Essick, G., and Siegel, R. M. Corticocorti-

cal connections of anatomically and physiologically defined subdivisions

within the inferior parietal lobule. Journal of Comparative Neurology,

296:65–113, 1990. 13

Andersen, R. A., Brotchie, P. R., and Mazzoni, P. Evidence for the lateral

intraparietal area as the parietal eye field. Current Opinion in Neurobi-

ology, 2:840–46, 1992. 13

169



170 bibliography

Asaad, W. F., Rainer, G., and Miller, E. K. Neural activity in the primate

prefrontal cortex during associative learning. Neuron, 21:1399–1407, 1998.

48

Asanuma, C., Andersen, R. A., and Cowan, W. M. The thalamic relations

of the caudal inferior parietal lobule and the lateral prefrontal cortex in

monkeys: divergent cortical projections from cell clusters in the medial

pulvinar nucleus. Journal of Comparative Neurology, 241:357–81, 1985.

13

Bair, W., Zohary, E., and Newsome, W.T. Correlated firing in macaque

visual area MT: time scales and relationship to behavior. Journal of

Neuroscience, 21:1676–1697, 2001. 146

Barca, L. and Pezzulo, G. Unfolding visual lexical decision in time. PLoS

ONE, 7(4):e35932, 2012. 29

Bayes, T. Towards solving a problem in the doctrine of chances. Philo-

sophical Transactions of the Royal Society of London, 53:370–418, 1763.

36

Baylis, V., Salter, L., and Locke, R. Pathways for continence care: an audit

to assess how they are used. British Journal of Nursing, 12:857–63, 2003.

11

Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E., and Pouget, A. Not

noisy, just wrong: the role of suboptimal inference in behavioral variabil-

ity. Neuron, 74:30–39, 2012. 28

Bichot, N. P., Chenchal Rao, S., and Schall, J. D. Continuous processing

in macaque frontal cortex during visual search. Neuropsychologia, 39:

972–982, 2001. 103

Blatt, G. J., Andersen, R. A., and Stoner, G. R. Visual receptive field

organization and cortico- cortical connections of the lateral intraparietal

area (area LIP) in the macaque. Journal of Comparative Neurology, 299:

421–45, 1990. 13

Bogacz, R. and Gurney, K. The basal ganglia and cortex implement optimal

decision making between alternative actions. Neural Computation, 19:

442–477, 2007. 10, 21, 100



bibliography 171

Boucher, L., Palmeri, T. J., Logan, G. D., and Schall, J. D. Inhibitory

control in mind and brain: an interactive race model of countermanding

saccades. Psychological Review, 114(2):376–97, 2007. 23

Britten, K.H., Shadlen, M.N., Newsome, W.T., and Movshon, J.A. The

analysis of visual motion: a comparison of neuronal and psychophysical

performance. Biophysical Journal, 12:4745–4765, 1992. 11, 12, 101, 131,

143

Britten, K.H., Shadlen, M.N., Newsome, W.T., and Movshon, J.A. Re-

sponses of neurons in macaque MT to stochastic motion signals. Visual

Neuroscience, 10:1157–1169, 1993. 12, 146

Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S., and Movshon,

J.A. A relationship between behavioral choice and the visual responses

of neurons in macaque MT. Visual Neuroscience, 13:87–100, 1996. 146

Brunel, N. and Wang, X. J. Effects of neuromodulation in a cortical net-

work model of object working memory dominated by recurrent inhibition.

Journal of Computational Neuroscience, 11(1):63–85, 2001. 89

Butler, A. and Hodos, W. Comparative Vertebrate Neuroanatomy: Evolu-

tion and Adaptation. Wiley, 1996. 16

Carello, C. D. and Krauzlis, R. J. Manipulating intent: evidence for a causal

role of the superior colliculus in target selection. Neuron, 43(4):575–83,

2004. 29

Carland, M., Marcos, E., Thura, D., and Cisek, P. Perceptual decisions

are better explained by urgency-gating than by sensory accumulation. In

prep., 2014. 110

Chafee, M. V. and Goldman-Rakic, P. S. Inactivation of parietal and pre-

frontal cortex re- veals interdependence of neural activity during memory-

guided saccades. Journal of Neurophysiology, 83:1550–66, 2000. 13

Chapuis, A. and Gélis, E. Le monde des automates; étude historique et

technique, volume 2. E. Gélis, 1928. 7

Chen, X., Scangos, K. W., and Stuphorn, V. Supplementary motor area

exerts proactive and reactive control of arm movements. Journal of Neu-

roscience, 30(44):14657–75, 2010. 17



172 bibliography

Churchland, A.K., Kiani, R., and Shadlen, M.N. Decision-making with

multiple alternatives. Nature Neuroscience, 11:693–702, 2008. 14, 23, 71,

100, 103, 122

Churchland, A.K., Kiani, R., Chaudhuri, R., Wang, X.-J., Pouget, A., and

Shadlen, M.N. Variance as a signature of neural computations during

decision making. Neuron, 69(4):818–831, 2011. 26, 27, 73, 81, 85, 88, 89,

94, 140

Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen,

M. R., Corrado, G. S., Newsome, W.T., Clark, A.M., Hosseini, P., Scott,

B.B., Bradley, D. C., Smith, M. A., Kohn, A., Movshon, J. A., Armstrong,

K. M., Moore, T., Chang, S. W., Snyder, L. H., Lisberger, S. G., Priebe,

N. J., Finn, I. M., Ferster, D., Ryu, S. I., Santhanam, G., Sahani, M., and

Shenoy, K. V. Stimulus onset quenches neural variability: a widespread

cortical phenomenon. Nature Neuroscience, 13:369–378, 2010. 26, 71

Churchland, M.M., Yu, B.M., Ryu, S.I., Santhanam, G., and Shenoy, K.V.

Neural variability in premotor cortex provides a signature of motor prepa-

ration. Journal of Neuroscience, 26(14):3697–3712, 2006. 71

Cisek, P. and Kalaska, J.F. Neural correlates of reaching decisions in dor-

sal premotor cortex: specification of multiple direction choices and final

selection of action. Neuron, 45(5):801–814, 2005. 29, 71, 75, 141, 163

Cisek, P., Puskas, G. A., and El-Murr, S. Decisions in changing conditions:

the urgency-gating model. Journal of Neuroscience, 29(37):11560–71,

2009. 23, 100, 101, 102, 106, 111, 112, 114, 140

Clarke, D. M. Descartes’ philosophy of science (Studies in intellectual his-

tory). Pennsylvania State Univ. Pr. (Txt), 982. 7

Coe, B., Tomihara, K., Matsuzawa, M., and Hikosaka, O. Visual and antic-

ipatory bias in three cortical eye fields of the monkey during an adaptive

decision-making task. Journal of Neuroscience, 22(12):5081–90, 2002. 29

Cooper, J.M. and Hutchinson, D.S. Plato: complete works. Hackett Pub.,

1997. 6

Cos, I., Bélanger, N., and Cisek, P. The influence of predicted arm biome-

chanics on decision-making. Journal of Neurophysiology, 105(6):3022–



bibliography 173

3033, 2011. 10, 19, 20, 130, 131, 132, 138, 147, 148, 149

Cos, I., Medleg, F., and Cisek, P. The modulatory influence of end-point

controllability on decision-making of motor actions. Journal of Neuro-

physiology, 105(6):1764–1780, 2012. 10, 19, 130, 132, 138, 147

de Almeida, L., Idiart, M., and Lisman, J.E. A second function of gamma

frequency oscillations: An E%-max winner-take-all mechanism selects

which cells fire. Journal of Neuroscience, 29(23):7497–7503, 2009. 38,

66

De Rosa, R. Cartesian sensations. Philosophy Compass, 4(5):780–792, 2009.

8

Deco, G. and Hugues, E. Neural network mechanisms underlying stimulus

driven variability reduction. PLoS Computational Biology, 8(3):e1002395,

2012. 79

Del Giudice, P., Fusi, S., and Mattia, M. Modelling the formation of working

memory with networks of integrate-and-fire neurons connected by plastic

synapses. Journal of Physiology, 97(4-6):659–81, 2003. 89

Destexhe, A., Mainen, Z.F., and Sejnowski, T.J. Kinetic models of synaptic

transmission. Methods in Neuronal Modeling, page 126, 1998. 151

Ditterich, J. Stochastic models of decisions about motion direction: behav-

ior and physiology. Neural Networks, 19:981–1012, 2006. 22, 23

Ditterich, J., Mazurek, M., and Shadlen, M. N. Microstimulation of visual

cortex affects the speed of perceptual decisions. Nature Neuroscience, 6:

891–98, 2003. 13, 166

Dolan, R. J., Fink, G. R., Rolls, E., Booth, M., Holmes, A., Frackowiak,

R. S. J., and Friston, K. J. How the brain learns to see objects and faces

in an impoverished context. Nature, 389:596–99, 1997. 11

Domenech, P. and Dreher, J.C. Decision threshold modulation in the human

brain. Journal of Neuroscience, 30(43):14305–14317, 2010. 83

Dorris, M. C. and Glimcher, P. W. Activity in posterior parietal cortex is

correlated with the relative subjective desirability of action. Neuron, 44

(2):365–78, 2004. 29



174 bibliography

Dounskaia, N., J., Goble, and W., Wang. The role of intrinsic factors in

control of arm movement direction: Implications from directional prefer-

ences. Journal of Neurophysiology, 105:999–1010, 2011. 129, 147

Drai, D., Benjamini, Y., and Golani, I. Statistical discrimination of natural

modes of motion in rat exploratory behavior. Journal of Neuroscience

Methods, 96:119–131, 2000. 50
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Mathews, Z., Bermúdez i Badia, S., and Verschure, P. F. M. J. PASAR:

An integrated model of prediction, anticipation, sensation, attention and

response for artificial sensorimotor systems. Information Sciences, 186

(1):1–19, 2012. 36

Maunsell, J. H. R. and Van Essen, D. C. Functional properties of neurons

in the middle temporal visual area (MT) of the macaque monkey: II.

binocular interactions and the sensitivity to binocular disparit. Journal

of Neurophysiology, 49:1148–67, 1983. 11

Mazurek, M.E., Roitman, J. D., J., Ditterich, and Shadlen, M. N. A role

for neural integrators in perceptual decision making. Cerebral Cortex, 13:

1257–1269, 2003. 10, 21, 100

McEwena, B. S. and Wingfield, J. C. The concept of allostasis in biology

and biomedicine. Hormones and Behavior, 2:2–15, 2003. 50

Meyer, J.-A., Guillot, A., Girard, B., Khamassi, M., Pirim, P., and Berthoz,

A. The psikharpax project: towards building an artificial rat. Robotics



182 bibliography

and Autonomous Systems, 50(4):211–223, 2005. 51

Mirabella, G., Pani, P., Par, M., and Ferraina, S. Inhibitory control of

reaching movements in humans. Experimental Brain Research, 174(2):

240–255, 2006. 18, 71, 72, 77, 80

Mirabella, G., Pani, P., and Ferraina, S. Neural correlates of cognitive

control of reaching movements in the dorsal premotor cortex of rhesus

monkeys. Journal of Neurophysiology, 106(3):1454–1466, 2011. 10, 17,

18, 71, 72, 82, 83, 84, 87, 93, 141, 160, 162, 164, 166

Mountcastle, V. B., Steinmetz, M. A., and Romo, R. Frequency discrim-

ination in the sense of flutter: psychophysical measurements correlated

with postcentral events in behaving monkeys. Journal of Neuroscience,

10:3032–44, 1990. 11

Mulder, M. J., Wagenmakers, E. J., Ratcliff, R., Boekel, W., and

Forstmann, B. U. Bias in the brain: a diffusion model analysis of prior

probability and potential payoff. Journal of Neuroscience, 32(7):2335–

2343, 2012. 129

Munoz, D. P. and Schall, J. D. Concurrent, distributed control of saccade

initiation in the frontal eye field and superior colliculus. In Hall, W. T.

and Moschovakis, A., editors, The superior colliculus: New approaches for

studying sensorimotor integration, pages 55–82. New York: CRC Press,

2003. 23
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