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Abstract

Decisions are the result of a deliberative process that evaluates the suitabil-
ity of specific options. In most cases, decisions are reported through actions
that allow for an interaction with the physical world. Studies about deci-
sion making have been mainly conducted by using restricted tasks in which
humans or animals are requested to discriminate between two options, such
discrimination being based either on a perceptual property of a stimulus or
on the voluntary control of motor responses. However, the influence that
factors related to embodiment, such as experience during a task or motor
cost, might have on this process has frequently been ignored. In this thesis,
we adopt a combined experimental and theoretical approach to examine
the effect that such factors have on decision making, even when optimal
decisions do not depend on them. Our results confirm an important bias of
behavior and neural activity resulting from factors related to embodiment
that are external to the goal of the task itself. In our studies, we enhance
existing computational models of binary decision making to account for this
bias that, in turn, shed some light on the neural mechanisms producing it.
The thesis concludes with the presentation of a single model that integrates
all the findings presented and that could be used as a new framework for
the conducting of future research. Altogether, the results included here
translate into significant progress in the understanding of embodied deci-
sion making, providing new insights into neural mechanisms and theoretical

models.
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Resumen

Las decisiones son el resultado de un proceso de deliberacién que evalia
la idoneidad de opciones especificas. En la mayoria de los casos, las deci-
siones son comunicadas a través de acciones que permiten una interaccién
con el mundo fsico. Los estudios acerca de la toma de decisiones han estado
principalmente dirigidos usando tareas restringidas en las que, a humanos
o animales, se les pide escoger entre dos opciones. La eleccién se basa en
una propiedad perceptual de un estimulo o en el control voluntario de res-
puestas motoras. Sin embargo, la influencia que factores relacionados con
la corporificacion de la toma de decisiones podrian tener en este proceso se
ha ignorado frecuentemente. En esta tesis, adoptamos un enfoque experi-
mental y tedérico combinado para examinar la influencia que estos factores
tienen en la toma de decisiones, incluso cuando las decisiones éptimas no
dependen de ellos. Nuestros resultados confirman un importante sesgado
del comportamiento y de la actividad neuronal causados por factores que
son externos al objetivo de la tarea en si. En nuestros estudios, realzamos
modelos computacionales existentes de tomas de decisiones binarias para
interpretar este sesgado que, a su vez, nos da una intuicién del mecanismo
neuronal que los estd produciendo. La tesis concluye con la presentacién de
un unico modelo que integra todos los hallazgos presentados y que podria
utilizarse como nuevo marco tedrico para investigaciones futuras. En gene-
ral, los resultados incluidos aqui se traducen en un significante progreso en
la comprension de la toma de decisiones corporificada, aportando nuevos

conocimientos sobre los mecanismos neuronales y modelos tedricos.
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Resum

Les decisions son el resultat d’un procés de deliberacié que avalua la ido-
neitat d’opcions especifiques. A la majoria dels casos, les decisions sén
comunicades a través d’accions que permeten una interaccié amb el mén
fisic. Els estudis sobre la presa de decisions han estat principalment diri-
gits fent servir tasques restringides a les quals, a humans o animals, se’ls
demana escollir entre dues opcions. L’eleccié es basa en una propietat per-
ceptual d’un estimul o al control voluntari de respostes motores. No obstant
aix0, la influéncia que factors relacionats amb la corporificacié de la presa
de decisions podrien tenir en aquest procés s’ha ignorat freqiientment. En
aquesta tesi, adoptem un enfocament experimental i teoric combinat per tal
d’examinar la influéncia que aquests factors tenen en la presa de decisions,
fins i tot quan les decisions optimes no depenen d’ells. Els nostres resultats
confirmen un important esbiaixat del comportament i de I'activitat neuro-
nal degut a factors externs a l’objectiu de la tasca en si. Als nostres estudis,
realcem models computacionals existents de preses de decisions binaries per
tal d’interpretar aquest esbiaixat que, a la vegada, ens déna una intuicié del
mecanisme que l'esta produint. La tesi conclou amb la presentacié d’un tinic
model que integra tots els descobriments presentats i que podria utilitzar-se
com a nou marc teoric per a recerques futures. En general, els resultats
inclosos aqui es tradueixen en un significant progrés en la comprensié de
la presa de decisions corporificada, aportant nous coneixements sobre els

mecanismes neuronals 1 models teorics.
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CHAPTER ].

Introduction

A problem can’t be solved with the same level of
thinking that created it
Albert Einstein

Even in an apparently simple case of behavior, such as that of a
rat exploring and exploiting a new environment, the brain must properly
perceive, learn, act and remember. But how are body, brain and mind
connected to achieve simple and complex patterns of behavior? Finding an
answer to this question has been the central goal of psychology, physiology
and neuroscience over the past centuries. However, it seems that interest
has normally been focused on problems related to the mind and brain and
their unilateral communication with the body, while the potential influence
of the body on the mind-brain processes has been usually ignored. Over the
course of the last centuries, the brain and mind problem has been addressed
from many perspectives, whereas the body has mainly been seen as the end
point of their interactions. It is commonly believed by modern scientists
that the mind is a process emerging from the brain and, in turn, providing
an answer to part of the ancient question. But what is the role of the body
in behavior? Is it a pure receptor of motor commands or does it also bias
the selection of actions, thus determining the way we act and the flow of

information we perceive, learn and remember? Recent neuroscience research



2 INTRODUCTION

has invested great efforts into investigating the influence of embodiment in
decision making. However, there is still much to be discerned. In this thesis,
we will focus on the implications that some factors related to embodiment

have in neural activity and behavior during decision making.

In neuroscience, decision making has been widely studied using spe-
cific tasks, usually in a controlled environment such as a lab. These tasks
generally consist in problems which are less complex than those confronted
by humans or animals every day. However, there is a common belief that
these initial results will provide the basis for future research about more
complex decision-making situations. To cite an example, today we get a
good understanding of how the brain makes decisions under well-constrained
cases of constant sensory information or motor costs presented in isolation
(see Section 1.3 and 1.4). Activity of neurons recorded in certain brain
regions has shown to be correlated with decisions, and some models have
been proposed to account for this correlation and behavior (see Section 1.2).
This way, experimental and theoretical neuroscience creates a closed loop in
which experimental data is explained by models, and models predict neural
data and behavior to motivate future experimental research. In this thesis,
we contribute to the investigation of decision making; more concretely, we
address the question of how factors related to the embodiment of an agent,
including experience within a task or motor cost, could influence decision
making. First, we use a specific artificial embodied system to investigate
how acquisition of information in memory could be influenced by decision
making, and how it could change the way in which it is later retrieved from
it (Chapter 2). Next, we describe the neural correlates of the behavioral
bias caused by memory, context and motor cost in previous published tasks
(Chapter 3 and Chapter 4) as well as in our own experimental paradigm
(Chapter 5).

Using robot experiments, we equip a mobile agent with a cognitive
architecture that enables it to explore, learn and exploit novel environments
to survive. The cognitive system is provided with one of the best-known

and most broadly accepted decision-making models, an integrator model
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(see Section 1.5). In this study, our aim was to investigate the generaliza-
tion of such a model in a real-world situation and to assess the possible
implications that it might have, in terms of behavioral performance and ac-
quisition of knowledge. In Chapter 2, we start by comparing an integrator
model with a model that does not accumulate information to make deci-
sions. This comparison leads to the detection of a fundamental difference
in the way that information is gathered from the environment and might
be further used. As opposed to the non-accumulator model, that stores
and retrieves discrete actions from memory, the integrator model gathers
information from goals and the actions to reach them are self-generated.
Next, we extend the cognitive architecture with a reactive control system
that is able to regulate the internal drives of the artificial agent. We use
this new extended system to investigate the integrator model with an even
more realistic system. Several questions arise from this theoretical study;
among them are the following: what is the neural mechanism that allows the
retrieval of information from memory in its specific temporal order? How
do the physical constraints of an agent influence action selection? How are
actions represented in the brain? Does context itself influence the way we
act? To what extent are internal drives attached to the physical body? We

approach some of these questions in subsequent chapters.

In order to succeed foraging, the artificial agent needed to solve one
fundamental problem (among others): to perform the appropriate behavior
based on the sequentiality of the external events. In the cognitive archi-
tecture (DAC, see Section 1.7), this is achieved by a proper chaining of
the memory space based on perceptual information. Hence, information
stemming from both, memory and perception, is integrated in the service
of the goal oriented action of the agent, causing a bias in its behavior. The
specific neural mechanism underlying this biasing, however, is not well un-
derstood. This is the question that we intend to address in Chapter 3. To
this purpose, we begin by examining the behavioral bias provoked by trial
history that has been previously observed in monkeys performing a motor
decision-making task (see Section 1.4) in which two kinds of trials requir-

ing opposite behavior (cancel a movement or move) can occur. Then, we
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investigate the neural substrate (related to memory) causing that bias in
behavior during decision formation. Interestingly, we find that the firing
rate of neurons in the dorsal premotor cortex (PMd) involved in decision
making do not exhibit any modulation, whereas the across-trial variability
of their response does. To further understand the mechanism causing such
modulation of behavior and neural activity we use a mean-field approxima-
tion of a cortical decision-making model. The computational study predicts
the existence of a system that monitors trial history and biases competition
between populations of neurons. This bias in the competition generates the
aforementioned modulation in the behavior and in the across-trial response

variability, while the mean-firing rate does not vary.

Once we have provided a neural substrate of the bias that experience
within a task has in decision formation, we assess the way in which the con-
text (task) itself can also affect experience within a task and, subsequently,
decisions. In Chapter 4, we comprehensively expound two decision-making
experiments that have shown to provide apparently contradictory results
(see also Section 1.3) when subjects or monkeys are presented with stimuli
that change over time. Using the same decision-making model as in Chapter
3 we provide a plausible mechanism by which the behavioral policy adopted
in each context might operate. Both experimental datasets can be explained
through the same neural mechanism: the apparently opposed results can
be captured with a context-dependent signal that evolves differently within
each task, possibly due to an optimization of the speed-accuracy trade-off
that requires a different policy in each context. This study is pioneering
in the sense that, for the first time, it interprets and unifies the results of
two separate decision tasks that seemed to be paradoxical until now. We
also add experimental data recorded at the University of Montreal that ver-
ifies one of the predictions of our model, thus proving the validity of our

approach.

The final contribution of this thesis consists of both experimental and
modeling work. First, we use an experimental paradigm to assess the influ-

ence that motor cost of actions might have on perceptual decision making.



1.1. HISTORICAL PERSPECTIVES 59

To this end, we manipulate the cost of actions required to report perceptual
decisions. Our results show that human subjects exhibit a significant bias
towards the actions requiring less biomechanical cost, even when it reduces
the overall performance accuracy. Next, we use a spiking neural model of
binary decision making, sharing the same principles of our previous models,
to reproduce the obtained experimental data. We predict that the motor
cost of each action is represented in the weight of the lateral connectivity
of the population of neurons involved in decision formation, and that this
weight is learned over life experience. To account for trials in which subjects
simply give up reporting that they are unable to make a decision, we use the
response variance that emerges from the neural populations. In our model,
the giving up occurs when the variance is above a predefined threshold. In
this way, we also elaborate on a plausible mechanism to interpret the role

of the neural response variability in decision making.

In summary, this thesis has meant significant progress in the research
of decision making due to the description of neural substrates correlated
with behavior and the resulting advance in the development of biologically
constrained decision-making models that might lead to the design of future
research. In what follows, we will provide a brief overview of the different
ways in which the mind, brain and body issue has been addressed in the
past. Next, we provide the necessary background for the reader to fully
understand the basis of our studies and their particular contributions. We
review, although non-exhaustively, the state of the art in decision making
by delineating some of the experimental paradigms and models used, as
well as some of the neural correlates that have already been shown. This
introduction finishes with the definition of embodied decision making and

how we approach it in this thesis.

1.1 Historical perspectives

During the Middle Ages and the early Renaissance, the work of the Ro-
man physician Galen of Pergamon (AD 129 - AD 210/216) was the most

influential in the fields of anatomical and medical belief and practice (Ergil,
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1997; Said, 1975). Galen proposed that mind and body could not be sep-
arated, and that the complex actions performed by the body were caused
by material interactions between its parts and by forces produced by the
mind. From Galen’s point of view, sensations were collected by the body
and sent to the mind for further analysis. After this process, the mind sent
the appropriate instructions back to the body in order to activate the cor-
responding nerves and muscles that would trigger complex behaviors. He
stated that the link between body and mind is the brain, as opposed to
what Aristotle had suggested centuries before: that the heart was respon-
sible for this connection. Galen also provided comprehensive and accurate
(in comparison with the ones preceding it) descriptions of the anatomy of
the brain, as well as of the structure and function of the ventricular system
(Rocca, 1997).

Prior to Galen’s work, the ancient Greek philosophers Epicurus and
Democritus had argued that the world is composed of small tiny particles,
which Democritus called atoms (Kirk, 1983), and that the behaviors that
we observe are caused by the physical interactions of those particles (like
the duck that Vaucanson built in 1739, see Fig. 1.1). Therefore, they pos-
tulated that human or animal behavior is deterministic, -just as any other
physical phenomena- and that free will does not exist. It was Plato who,
by presenting his Theory of forms, declared that the world that we see is

)

not the real one but a "copy” of it, and that the true world only exists
in a metaphysical level that we cannot penetrate (Cooper and Hutchinson,
1997). It is in that world, Plato proposed, that mind and behavior are
connected. A contemporary Greek physician, Hippocrates, also suggested
a compromise between the material and nonmaterial views, and so he in-
ferred that humans are composed of material and nonmaterial processes.
He suggested that the physical behaviors produced by the human body are
governed by a nonphysical process, namely the mind (Grammaticos and
Diamantis, 2008). He was also the first known person to believe that psy-
chopathologies were caused naturally, due to factors such as living habits,
and not by external entities such as gods. Galen interpreted and extended

Hippocrates’ theories, hence becoming the most important reference during
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Figure 1.1: Vaucanson’s digestive duck. The duck is an automaton created by
Jacques Vaucanson in 1738. Once activated, it was difficult to tell the difference
between it and a real duck. It could flap its wings, move and digest grain. The
duck was able to produce a complex pattern of behavior just by means of physical
interactions of its parts. Sketch of how the digestive apparatus of the automaton
duck might look like, done from an American observer (From Chapuis and Gélis
(1928))

the rise of medieval universities in Europe. To Galen, the body was a com-
plex physical machine and the mind the nonmaterial unit sending causal
forces to it. For several centuries, the work of Galen was largely accepted
without question. It was in the sixteenth century, though, when Andrea
Vesalius revised and corrected some of the anatomical work done by Galen,

thus marking the beginning of modern anatomical science (O’Malley, 1964).

In the seventeenth century, René Descartes played a critical role in
defining the way in which brain and behavior should be studied, and pro-
vided neural science with an important impetus and a shift of direction.
He was a firm believer that our body actions as well as those of animals
could be understood in terms of physical cause and effect (Aristotle theory
of efficient cause). To account for involuntary, reflexive behavior of humans
and animals, Descartes proposed that a physical chain of cause and effect
takes place unintentionally: a sensory stimulus activates specific organs that
connect with the brain which, in turn, prompts muscle response (Clarke,
982). Later, Pavlov described this finding as the starting point of his exper-

iments about classical conditioning (Pavlov, 1927). Descartes believed that



8 INTRODUCTION

animals were purely driven by reflexive behavior and that, therefore, they
are merely biological automata. From Descartes point of view, voluntary
actions can only be performed by humans because they possess a mind that
is independent from the body (mind-body or Cartesian dualism) and that
connects with it at a specific location in the brain, known as the pineal
gland (De Rosa, 2009).

By the end of the eighteenth century, the functioning of the nervous
system had been thoroughly detailed, and the speculation that the brain
might be functionally divided appeared for the first time. Moreover, neu-
rophysiological studies had revealed that nerve cells produced electricity,
and that this electricity was used by cells to communicate between them-
selves. Advances in the development of technology for microscopy along
the early 1800s provided the necessary tools for the histology of the ner-
vous system that culminated with the investigations of Camillo Golgi and
Santiago Ramén y Cajal (Droscher, 1998). Golgi developed an impregna-
tion method that makes all the parts of a neuron -the body, the dendrites
and the axon- visible, thus allowing neuroanatomists to track connections
between neurons (Golgi, 1873). This is the technique that Ramén y Cajal
used to gain new insights into the organization of the nervous system, there-
fore postulating that it is made up of many individual signaling elements:
the neurons (Fig. 1.2), as opposed to being a mass of fused cells as it was
believed until then (Ramon y Cajal, 1977). Ramén y Cajal is considered

the father of the modern neuroscience by many.

Although the study of brain, mind and behavior has been of great
interest for a long time, most of the progress towards their understanding
has been achieved during the last two centuries. One of the reasons for this
was the lack of technology that limited the study of the brain to behavioral
observations and speculations until that time. Another reason was the ab-
sence of a proper scientific methodology, which made theories weak in some
cases and difficult to integrate. What neuroscience aims to do is precisely to
provide a common scientific methodology, so that the nervous system can

be investigated and related to cognition and behavior. To that end, it splits
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Figure 1.2: Drawing of a retinal neuron by Ramén y Cajal (1899)

the problem into subproblems or levels of analyses that range from molecu-
lar to cognitive types. In the last century, neuroscience has become one of
the leading scientific fields thanks to the advances attained in molecular bi-
ology and electrophysiology. The new technology has provided a wide range
of new possibilities that allows, for instance, the detailed study of complex
processes occurring within a single neuron. In this way, the interest has
focused on the activity of neurons forming the brain and their correlation
with behavior. Out of this emerging field, decision making has been of par-
ticular interest and a great effort has been made towards the description of
its basic underlying neural mechanisms. Decisions are seen as the ability to
select a proper action in order to reach specific goals which, in most cases,
culminate in a physical movement. Accordingly, human movements are not
always just a mere result of deterministic physical interactions between tiny

particles without free will, but the consequence of intended behavior.

1.2 Decision making

A decision can be defined as a choice between alternatives resulting in an
action or proposition. A deliberative process assessing the suitability of
each alternative option is known as the decision-making process. To study
the neural mechanisms underlying this process and the resulting behavioral
outcome, research has followed two approaches: theoretical and/or experi-

mental research. Experiments have mainly focused on perceptual and motor
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decision making in which humans or animals have to make decisions based
on the discrimination of a perceptual feature of a stimulus or on the se-
lection between reaching movements, respectively. Neurophysiological data
have shown that the activity of neurons in areas such as the superior collicu-
lus(Munoz et al., 2000; Ratcliff et al., 2007; Shen and Paré, 2007), the lateral
intraparietal area (Roitman and Shadlen, 2002; Leon and Shadlen, 2003),
the frontal eye fields (Gold and Shadlen, 2003), the prefrontal cortex (Kim
and Shadlen, 1999), the supplementary motor area (Scangos and Stuphorn,
2010) and the dorsal premotor cortex (Mirabella et al., 2011) is modulated
during the decision-making process. Theoretical research focused on com-
putational models has helped to explain the observed behavioral and neural
data, and has been very useful to inspire new experiments, therefore pro-

ducing a closed loop between experimental and theoretical studies.

Both experimental and theoretical approaches have been evaluated
by using controlled situations in which the decision usually depends solely
on one variable. However, in real-world situations, this is unlikely to be
the case. First, to make a perceptual decision reported with an action, one
cannot easily neglect the potential influence that the physical constraints
of our body might have in the assessment of each alternative, probably bi-
asing the value of each option (Sabes et al., 1998; Cos et al., 2011, 2012).
Second, the decision-making process might also be influenced by past expe-
rience with an adaptation of preferences that depend on previous outcomes
(Emeric et al., 2007). And last, the context or situation in which decisions
are made might also have an impact in the process. That is, even if the
decisions should solely be based on one variable (for instance, one of the
visual properties of a stimulus), other factors such as memory or motor cost

should not be ignored.

In order to explain the experimental data, many models have been
proposed. A branch of well-accepted models are, for example, the ”sequen-
tial sampling” or ”integrator” models (Stone, 1960; Laming, 1968; Ratcliff,
1978; Usher and McClelland, 2001; Mazurek et al., 2003; Bogacz and Gur-
ney, 2007; Link and Heath, 1975). These models propose that sensory in-
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formation is sampled and accumulated in favor or against each alternative
option. When a certain level of activity is reached, the decision towards the
option is made. The dynamics of these models follow the trend observed
in the activity of neurons recorded in brain areas involved in the decision
process. Alternatively, more biologically plausible models known as attrac-
tor models have been widely used to understand the connections, dynamics
and interactions between neural populations (Wang, 2002; Albantakis and
Deco, 2009). Although all these models have been of great help in the
development of an accurate explanation for behavioral and neural data in
constrained tasks, their generalization to real-world situation has not been

proven yet.

1.3 Perceptual decision making

Deciding on the basis of noisy perceptual information is a common situa-
tion with which the brain is confronted every day. A proper classification
of the noisy sensory input is fundamental to guide behavior in a daily ba-
sis. This is the reason why tasks in which humans or animals have to
discriminate a perceptual property of a stimulus and to report it with an
action (sensory-motor tasks) have become increasingly popular in decision-
making research (Mountcastle et al., 1990; Britten et al., 1992; Maunsell and
Van Essen, 1983; Uka and DeAngelis, 2006; Allred et al., 2005; Baylis et al.,
2003; Dolan et al., 1997; Freedman et al., 2002, 2003; Grill-Spector et al.,
2000; Op de Beeck et al., 2001; Rainer et al., 2004; Uchida and Mainen,
2003). One example of these tasks is the vibrotactile frequency discrimina-
tion task, developed by Mountcastle et al. in the 60s. Subjects are required
to compare the frequencies of two tactile stimuli separated by a time gap
and decide which of the two is the greatest. Neurons in the primary so-
matosensory areas have shown to increment their firing rate with increasing
tactile frequency. Another example is the face/object discrimination tasks
in which subjects are asked to classify whether a noisy image contains a
face or not. Responses of neurons in the inferior temporal cortex are highly

correlated with complex visual stimuli such as faces (Afraz et al., 2006). In
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the following sections, we review a well-established task for visual discrimi-
nation, the so-called ”Random-dot Motion (RDM) Discrimination”, which
is considered to be a standard in the study of decision making and is the

basis for our studies in Chapter 4 and Chapter 5.

RDM task and variations

The RDM task has been widely used to study binary decision making (Brit-
ten et al., 1992, 1993; Roitman and Shadlen, 2002; Shadlen et al., 1996). In
this task, subjects are required to detect the net direction of motion (they
commonly have to discriminate between two possible motion directions) of
some dots displayed in a screen (Fig. 1.3). Only a restricted amount of dots
move coherently in the same direction, whereas the remaining dots change
direction randomly. The difficulty of the trial depends on the percentage
of dots that move coherently towards the same direction. Generally, the
direction identified has to be reported either with a saccade or a reaching
movement towards one of the two targets that are placed on opposite sides

of the screen (commonly right/left or bottom/up).

Experiments have been typically conducted using a ”reaction time”
(RT) version of the task (Fig. 1.3A) (Roitman and Shadlen, 2002), or a
"fixed duration” (FD) version of it instead (Fig. 1.3B) (Shadlen et al., 1996;
Shadlen and Newsome, 2001). In the first case, subjects or monkeys have to
report the detected motion as fast as possible. On the contrary, in the FD
version, subjects or monkeys report their choice when they are instructed
to do so (for instance, by means of a visual cue). The FD task allows
researchers to study the accuracy of choices and its neural correlates whereas
the RT task also provides an additional behavioral measurement: the speed
in the selection of choices. It has been shown that RT and accuracy of
choices have an inverse relationship, i. e. RT decreases as the difficulty
of the trial increases, while the opposite occurs with accuracy (Fig 1.4A).
An additional advantage that the RT task has over the FD one is that the
decision formation process can be more easily separated from any motor

planning activity.
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Figure 1.3: Illustration of a RDM task. The trial starts with the appearance of
a central visual stimulus. Human subjects or monkeys are requested to hold the
stimulus with their arm or fixate their gaze (reaching/saccade task). After some
random delay, two targets indicating the possible directions of motion appear on
the screen, followed by the moving dots. (A) Reaction time task. Humans or
monkeys have to report their choice by selecting one of the two targets as fast
as they can. (B) Fixed duration task. After a fixed duration, the moving dots
disappear from the screen informing humans or monkeys that they must report
their choice.

The activity of neurons in the middle temporal area (MT/V5) has
shown to be tuned to the direction of visual motion and causally linked with
task performance (Ditterich et al., 2003; Newsome and Paré, 1988; Salzman
et al., 1990, 1992). MT and medial superior temporal (MST) areas project
to the lateral intraparietal cortex (LIP) that is connected to the frontal eye
fied (FEF) and the superior colliculus (SC) (Andersen et al., 1990, 1992;
Asanuma et al., 1985; Blatt et al., 1990; Fries, 1984; Lewis and Van Essen,
2000). Because of its anatomical placement between the sensory and the
motor areas, LIP has been the focus of most neurophysiological research in
decision making. LIP is involved in high order processes such as selection of
saccade targets, working memory or representation of elapsed time (Chafee
and Goldman-Rakic, 2000; Friedman and Goldman-Rakic, 1994; Janssen
and Shadlen, 2005; Leon and Shadlen, 2003). Using both the FD and RT
versions of the RDM task with monkeys, Shadlen et al. (Shadlen et al., 1996;
Shadlen and Newsome, 2001; Roitman and Shadlen, 2002) provided evidence

of the implication of LIP in decision formation. Single neurons and target
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locations were selected based on the response fields (RF) of the neurons; i.
e. targets were arranged in such a way that the activation of a neuron under
study indicated the monkeys’ choice. Neurons with their RF in the selected
target increased their activity during the decision formation, reached a peak
of maximum activation some milliseconds before movement execution, then
declining again to baseline levels. Same neurons showed a decrease in their
activity when the opposite target was selected. Moreover, the slope of the
activity build-up depended on the amount of motion coherence (motion
strength) present on the stimulus (Fig. 1.4B). Difficult trials implied longer
RTs and a smoother slope in the build-up activity as opposed to easy trials.
The time course of the activation of LIP neurons suggests that sensory
evidence is integrated before a decision is made. When the accumulation of

evidence reaches a decision bound, the selection is made.

In the recent years, several variations of the RDM task have been
proposed. On the one hand, Churchland et al. (2008) and Niwa and Dit-
terich (2008) augmented the difficulty of the task by increasing the number
of possible motion directions. In particular, Churchland et al. (2008) used
both a two-choice RDM task and a four-choice RDM task with the aim to
compare behavioral and neural results between them and to generalize the
observations of binary decision making to decision making with multiple
alternatives that are more similar to what a living organism generally faces.
Similar to what was observed in the binary RDM task, the behavior of mon-
keys directly depended on the motion strength in terms of speed-accuracy,

and neurons in LIP exhibited a similar modulation of their activity.

Huk and Shadlen (2005) studied the temporal integration of visual
evidence by perturbing the strength of motion during short periods of time
(100ms) within a trial (motion pulses). Behavioral results showed that the
motion pulses exerted an effect over the RTs and the accuracy of monkeys
performing the task. Positive pulses (pulses that favored the net base di-
rection of motion) increased the probability of the monkeys of selecting the
correct target, whereas negative pulses (pulses that favored a direction op-

posite to the base direction of motion) had the opposite effect. Moreover,
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Figure 1.4: Behavioral and neural modulation in the RDM task. (A) Percentage
of correct responses and mean RTs for one monkey along different values of motion
coherence (strength). (B) Activity of neurons in LIP during decision formation.
The plot shows the average firing rate of 54 neurons for three different values of
motion coherence. Left panel, responses are aligned to the onset of the moving
dots. Shaded box shows activity of neuron in MT for preferred (solid lines) and
anti-preferred (dashed lines) directions. Right panel, responses are aligned to move-
ment onset for same values of motion strength as in Left panel. Activity of LIP
neurons resembles an integration of the difference between MT neurons response
for preferred and anti-preferred directions. Adapted from Gold and Shadlen (2007)

monkeys responded faster in trials with positive pulses in comparison with
trials with negative pulses. Neural activity in LIP showed a sustained bi-
ased due to the presence of the pulse, thus supporting the idea that neurons
in LIP integrate sensory evidence. Interestingly, early pulses had a greater

effect in performance and neural activity than late pulses.

A recent study by Thura et al. (2012) questioned the observed effect
that early and late information seemed to exert on the decision process.
The authors conducted an experiment that they called the variable coher-
ence motion discrimination task (VMD). As it is the case with the RDM

task, subjects are required to either detect or predict the current or final
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direction of the majority of moving dots presented on a screen. The main
difference with respect to the RDM task is that the strength of motion
increases (positive pulse) or decreases (negative pulse) many times during
the course of a trial. The results suggest that, in this case, subjects are in-
fluenced to a greater extent by late information than by early information,
contrary to what was observed by Huk and Shadlen (2005). In a subsequent
study where a task similar to the VMD was used (Thura and Cisek, 2014),
neurons of monkeys recorded from the dorsal premotor cortex (PMd) and
the primary motor cortex (M1) reflected the time course of sensory evidence.
In Chapter 4, we propose a mechanism by which the two paradoxical results

with early/late information can be explained.

1.4 Motor decision making

The implication of the motor cortex in decision making is of particular
relevance. One of the reasons is that cognitive abilities were necessarily
preceded by motor skills, and, consequently, they contributed to the de-
velopment of the specific brain structure that we possess nowadays (Butler
and Hodos, 1996; Redgrave et al., 1999). Motor decision making has been
mainly studied by looking at two main issues: the ability to suppress a
movement already planned and the influence that the intrinsic properties

of our body have on the selection of movements.

One of the experimental paradigms most commonly used to study the
ability to cancel a planned movement is the countermanding task (Logan
and Cowan, 1984; Verbruggen and Logan, 2008). It investigates the behavior
and neural correlates of movement suppression instructed by an infrequent
Stop signal. The task consists of two kinds of trials: Go trials (Fig. 1.5A)
and Stop trials (Fig. 1.5B). Both kinds of trials start with a cue signal
(Go signal) that instructs subjects or monkeys to execute a movement. In
some trials (generally a third of the total number of trials), after the Go
signal, a Stop signal appears indicating that, in order to correctly perform
the trial, the movement has to be cancelled. The performance during this

task depends on the delay between the Go and Stop signals (Stop Signal
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Figure 1.5: Ilustration of a countermanding task. (A) and (B) Temporal se-
quence of Go (A) and Stop (B) trials. A trial begins with the presentation of a
central stimulus. After a variable fixating/holding time (500-800 ms.) it disappears
and, simultaneously, a target, i.e. Go signal, appears on one side of the screen. In
Go trials, the human subject/monkey has to accelerate the saccade/finger move-
ment in order to reach the target. In a small fraction of trials (commonly 33%), the
central visual stimulus reappears after a Stop Signal Delay (SSD). In these trials,
the monkey has to stop the planned movement and continue fixating/holding the
central stimulus. (C) Illustrative example of the probability of failure for different
values of SSD.

Delay, SSD). Fig. 1.5C shows an illustration of the probability of failure
generally observed during the performance of the task for different values
of SSDs. As perceived, the probability of failing to cancel the movement
is higher for longer values of SSDs than for shorter values. Neural data
recorded in a countermanding task requiring saccade movements revealed
the involvement of the frontal eye field (FEF) (Hanes et al., 1998) and the
superior colliculus (SC) (Paré and Hanes, 2003) in the control of saccade
cancellation. In the arm reaching version of the task, neural recordings
have been made from the supplementary motor area (SMA) and pre-SMA
of monkeys (Scangos and Stuphorn, 2010; Chen et al., 2010). Activity
of neurons in these regions did not seem to control movement initiation
but could contribute to movement cancellation. An investigation of neural
recordings from the dorsal premotor cortex (PMd) by Mirabella et al. (2011)
showed a modulation in the activity of reaching related neurons that might
be related to the suppression of planned movements. Neurons exhibiting

this modulation were classified into two types (Fig. 1.6). The most common
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Figure 1.6: Example of activity of two neurons (Type A and Type B neurons)
recorded from PMd during a countermanding task. The activity is aligned to
the target onset (Go-signal). Shaded areas indicate the estimated SSRT period.
Both neurons increase their firing rate after the presentation of the Go-signal and
behave similarly during Go trials. Neuron Type A decreases its firing rate after
the appearance of the Stop signal, whereas neuron Type B increases its activity.
Adapted from Mirabella et al. (2011)

neurons were called type A neurons, and they showed a decrease in their
activity in correct Stop trials before the end of the estimate of movement
cancellation (stop signal reaction time, SSRT) with respect to the activity
recorded during Go trials. Neurons classified as type B neurons exhibited a
temporary increase of their activity when compared to their response during
Go trials. Type A neurons followed a similar pattern of activation to those
observed in FEF and SC (Hanes et al., 1998; Paré and Hanes, 2003).

Recent studies have revealed that behavioral performance during the
countermanding task does not only depend on the SSD in a current trial,
but also on the previous sequence of trials that has been experienced (Rieger
and Gauggel, 1999; Mirabella et al., 2006; Emeric et al., 2007; Verbruggen
and Logan, 2008; Nelson et al., 2010). In general, reaction times tend to be
longer and the probability of properly suppressing the planned movement
higher when many Stop trials have recently been experienced than when
many Go trials have been encountered. In Chapter 3, we use the neural data

recorded by Mirabella et al. (2011) to investigate the response modulation
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of neurons in PMd caused by trial history and its correlation with the

behavioral outcome.

Other studies have looked at the influence of factors such as arm
biomechanics in decisions involving a motor response. Sabes and Jordan
(1997) and Sabes et al. (1998) provided evidence that arm morphology and
its impedance parameters are taken into account to plan movements around
obstacles. However, the question of whether these factors are considered
before or during movement execution remained unclear. Recently, Cos et al.
(2011) and Cos et al. (2012) extended this study to investigate the issue.
The investigation reveals that human subjects are able to predict the cost
of potential movements and use this information to bias their movement
choices (Cos et al., 2011, 2012). Specifically, when subjects are asked to
freely choose between two potential actions, they are more likely to select
the one that requires less biomechanical cost. Fig. 1.7 shows an example
that illustrates two kinds of trials: Transverse, T1-Major and T1-Minor
trials. The biomechanical cost of each action required to reach T1 and T2
targets mainly depends on the alignment of the trajectory with the axes
of the ellipse of movement (minor or major), being less costly a movement
with its trajectory aligned with the major axis of the ellipse than with the
minor one. Therefore, in this case, subjects select significantly more often
T1 when the targets are aligned following the T1-Major configuration than
when they are arranged in the T1-Minor configuration. These two trials
are the basis for our experimental paradigm, which is described and used
in Chapter 5, and where we study the influence of motor cost in perceptual

decision making.

1.5 Decision-making models

Sensory-motor decision making is thought to be a form of statistical infer-
ence (Rao, 1999; Tenenbaum and Griffiths, 2001). Signal detection theory
(SDT) provides a well-established formalism to study perception. It clas-
sifies a single observation of sensory noisy data into a categorical choice

(Gold and Shadlen, 2007). Decisions are the result of a competition be-
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Figure 1.7: Free motor choice task (Cos et al., 2011). Example of target ar-
rangement in two different trials. The trajectory to reach a target requires less
biomechanical cost when its end is aligned with the major axis of the ellipse of
movement (T1 in Transverse T1-Major and T2 in transverse T1-Minor).

tween hypotheses that need to be inferred from sensory noisy data, e. g.
hi, ha,... hy, with n=2 for binary decision making. Information favoring
each hypothesis is called ”evidence” (e). Within the context of conditional
probability (”likelihood”), P(e|h;) is the probability of observing e given
that h; is true. Because the sensory information is noisy, the value of e
is obtained from a distribution with mean h; and variance ;. According
to SDT, in order to make a decision, a decision variable (DV) has to be
constructed from e. For binary decisions, DV is defined as the ratio of the
likelihood (LR;2) for each option as:

= Plelhy) (1)

Following Bayes’ theorem, the conditional probability P(e|h;) can be

described as:

P(hile)P(e)

P(elh) = =505

(1.2)
where P(h;) is the prior probability of h;, p(e) is the total probability of
e and P(h;|e) is the probability that h; is true given e. SDT states that
a decision is made when a criterion is satisfied, for instance, h; is selected
when DV (e) > 1 when the prior probabilities of hy and hg are the same. On
the contrary, if the prior probabilities of the alternatives are not the same,

but the reward is the same, then the criterion to select hy to maximize
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accuracy is DV (e) > ig?g Further mathematical analyses of this criterion

are reported in Green and Swets (1966).

The sequential analysis (SA) extends the SDT to the case of multiple
samples of evidence that are available over time (like, for instance, in the
RDM task). By assuming that the samples e, eg,... e, are independent,

the "likelihood” ratio can be calculated as:

P(ee,€2,...em|h1) ~=, Pl(eghy)
DV (e) =logLR2 = lOgP(el, e emla) z; logP (cilho) (1.3)
DV(e) is updated with each new sample. The sequential probability
ratio test (SPRT) proposes that the decision process ends when DV(e) is
greater than a specific positive or negative decision bound (Laming, 1968;
Stone, 1960; Wald, 1947). The SPRT solves the problem of optimality in
some cases, such as ensures the shortest time for a given success rate or the

best success rate for a given time (Wald, 1947).

Following the SPRT procedure, models called ”sequential sampling”
or ”integrator” models have been widely accepted and employed to analyze
the behavioral and neural data observed in previous research (Stone, 1960;
Laming, 1968; Ratcliff, 1978; Usher and McClelland, 2001; Mazurek et al.,
2003; Bogacz and Gurney, 2007; Link and Heath, 1975). Although many
different integrator models have been proposed, all of them generally follow

the same dynamics:

4(t) = g / Y ety (1.4)
to

where x describes the state of the process, g is the gain of the integration

process and e is the sensory evidence provided to make a decision. The

difference between variations of decision-making models lies on the way

they define these three variables. For instance, the ”drift-diffusion” model

(Stone, 1960; Laming, 1968; Ratcliff, 1978; Ratcliff et al., 2003; Smith and
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Figure 1.8: Simulation of the drift-diffusion model, using 20 trials. For this
example, we used the parameters: g = 0.01, a decision bound of 50 (for option h;)
and -50 (for option hg), and a Gaussian noise with mean 0 and standard deviation
of 1 added to the sensory evidence. Left panel, probability density function of
the distribution from which the sensory evidence (e) is sampled. Right panel,
accumulated evidence over time. When infinitesimal temporal steps are used to
sample the evidence and accumulate it, the process is called drift diffusion. One
correct trial is marked in blue and one incorrect trial is marked in green.

Ratcliff, 2004) suggests that there is only one variable x(¢) that accumulates
sensory evidence e in favor or against each alternative. An example of this
model is illustrated in Fig. 1.8. The decision-making process is considered to
be terminated when the accumulated process reaches a predefined decision
bound. Another variation of this model considers that two independent
variables x1(t) and z5(t) accumulate sensory evidence separately and that
the decision is made when the difference between the two variables reaches
a decision bound. Yet another variation of an integrator model is called
the ”leaky competing accumulator” model (Usher and McClelland, 2001),
which proposes that evidence is also independently accumulated by using
two variables that mutually inhibit each other and that contain a leaky term

so that information is ”forgotten” over time.

The ”urgency” models (Ditterich, 2006) can be considered as alter-
natives to the integrator models. These models propose that there is also a
build-up activity that governs the decision formation, though the increase
of activity is actually due to a multiplication between sensory evidence and

an urgency signal that grows over time as follows:
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i(t) = gei(t)u(t) (1.5)

where z;(t), g and e;(t) represent the same as in the integrator models and
u(t) is a function of time that is not related to the sensory evidence but to
some internal urgency (timer) to make a decision (Ditterich, 2006; Church-
land et al., 2008). Although integrator and urgency models propose different
mechanisms by which decisions are made both theories lead to equivalent
predictions when the sensory evidence is constant over time (Cisek et al.,
2009). However, recent studies with variable sensory evidence (Huk and
Shadlen, 2005; Thura et al., 2012) have shown that the two branch of mod-
els make clearly different predictions when this is not the case. For instance,
in the VMD task introduced in Section 1.3, the drift-diffusion model pre-
dicts an influence of early information in reaction time, as opposed to a
prediction of no influence by urgency models. Therefore, urgency models
could properly explain the experimental data in this case, but conversely,
they failed to do so with the RDM task with pulses (Huk and Shadlen, 2005)
(see also Section 1.3). We will further elaborate on this issue in chapter 4,
where we propose an alternative model to explain both: tasks with constant

and with variable sensory evidence.

The ”independent race” model (Logan and Cowan, 1984) is also an
integrator model. It has mainly been used to explain the countermanding
task stating that, to decide to either move or cancel a movement, there is a
race between two accumulator variables (x4,(t) and 2gp(t)) that integrate
evidence in favor of each alternative in an independent way. When one of the
two process, which are called Go and Stop, reaches a threshold, the decision
is made (Fig. 1.9). Boucher et al. (2007) extended this model to account
for neurophysiological studies (Munoz and Schall, 2003) asserting that the
neural systems that control movements are formed by layers of inhibitory
interactions between neurons that, in turn, are responsible for movement
initiation and movement inhibition. In this version of the race model, which

is called the ”interactive race” model, there is a competition between the Go
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Figure 1.9: Simulation of the race model, using 20 trials. For this example,
we used the parameters g; = 0.01, go = 0.015 and Gaussian noise added to the
sensory evidence with mean 0 and standard deviation of 0.2. Left panel, probability
density function of the distribution from which the sensory evidences (ep, and ep,)
are sampled. Right panel, two independent processes accumulate evidence in favor
of hy or hg over time. Whenever one of the two processes reaches a threshold, the
decision is made towards the hypothesis associated with that process. One trial
in which h; was selected is marked in blue and one in which hs was selected is
marked in green.

and Stop processes and a leaky term within each that prevents the activity

to grow boundless.

A Dbiophysically constrained spiking neural model that successfully
explains behavioral and neural data in the RDM task was proposed by
Wang (2002). It is based on attractor dynamics and a competition between
two neural populations representing each alternative option. The advantage
of this model over the integrator and urgency models lies in its constraints
of parameter values and dynamics, which provide a very specific network
to make accurate neural predictions and to explore the cellular and circuit
mechanisms that result in long integration times along the decision process.

This model is the basis for our theoretical work in Chapter 5.
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However, the large number of neurons, interaction and nonlinear dy-
namics make the spiking neural model a difficult network to analyze and
understand. Consequently, mean-field models have been proposed as an
alternative to the high dimensional spiking neural model when the interest
of the study is mainly focused on the mean response of a population of
neurons and on the behavioral outcome of the network. Wong and Wang
(2006) created a reduced version of the spiking neural network of Wang
(2002) with only two dynamical variables able to reproduce most of the
behaviors of the original spiking neural network. In Chapter 3, we used
a well established and reduced mean-field rate model based on the Wilson
and Cowan equations (Wilson and Cowan, 1972). This version cuts down
the complexity of a spiking neural model to two differential equations. It
differs from the mean-field approach proposed by Wong and Wang (2006)
mainly in that it does not account for synaptic dynamics, which in our case

could be simplified.

1.6 Role of variance in decision making

A method frequently used in neuroscience to characterize the neural mech-
anisms that cause specific activations in the brain consists in repeatedly
activating it with same stimuli, so that many observations are obtained out
of the same process. Since behavior is stochastic, even if the repetition is
exactly the same, varying responses are obtained. To lessen the problem,
the approach most commonly employed is to calculate the average response
from the recorded neural activity. With this approach, the neural response
variability is considered to be just noise and non informative about the
underlying neural mechanisms. Although this might be true in some occa-
sions, it can also be informative in others. To give an example, the neural
response might become more or less variable before or after the presentation
of a stimulus, and this might suggest a signature of additional processes not

explained by the mean neural response.

In recent research, it has become increasingly more common to expand

the study of neural correlates to across-trial variability, in addition to the
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mean firing rate. In particular, it has been of great interest to investigate
whether the measured mean response of neurons comes from a narrow (low
variance) or wide (high variance) distribution of firing rates. Two measures
of across-trial response variability as a function of time have been commonly
applied to calculate the spike count variance of the neural data: the Fano
Factor (FF) and the Variance of the Conditional Expectation (VarCE). FF
and VarCE seem to be qualitatively consistent and to give, in most cases,
equivalent results (Churchland et al., 2011). The fundamental advantage of
VarCE over FF is that it is principled and, therefore, more robust than FF.

Both measurements of variability intend to remove any variance caused
by the neuron’s intrinsic variability in spike generation and, in that way,
completely isolate the variance attributed to the underlying firing rate on
each trial. The FF achieves this by dividing the total calculated variance
of each neuron by its mean firing rate. The scientific concept behind this
approach is that the generation of spikes by cortical neurons follows a Pois-
son like process and thus, its variance scales linearly with the mean. If the
variance is totally attributable to the variability of the spike generation,
the FF would be 1; in accordance, any value of FF greater than 1 means
that there is some variability in the underlying mean firing rate that is not
caused by the Poisson process. An analysis of many recorded datasets by
Churchland et al. (2010) revealed a stimulus driven decrease in FF in the
across-trial response of cortical neurons, despite the definite stimulus or be-
havioral state. The authors refer to this observation as a general property

of the cortex that is non-specific to the task.

In the case of VarCE, the spike variance caused by the Poisson process

is estimated and subtracted from the total calculated variance as follows:

VarCE = Var[N;] — ¢N; (1.6)

where a scaled value (¢) of the mean spike count represents the approx-
imated Poisson variance. ¢ represents the minimum FF of a neuron to
ensure that VarCE never gets negative values (see Chapter 3 for details).

Churchland et al. (2011) applied this measurement to neurons recorded in
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Figure 1.10: Fano Factor and VarcCE in the drift-diffusion model. (A) Few
trials simulating a Drift-diffusion model with g = 0.08, mean e; — e = 3.2 and an
added Gaussian noise with a mean of 0 and a standard deviation of 8. (B) Fano
Factor and (C) VarCE aligned to stimulus onset and calculated over 1,000 trials
using a temporal window of 60ms. Spikes are generated following a Poisson process
from the mean rate obtained from the model.

LIP while monkeys performed a two and four-choice RDM task with sac-
cade responses. VarCE was shown to increase during decision formation
and to decline at the end of the decision process. Therefore, VarCE pro-
vides a signature of decision formation. In general, decision-making models
exhibited the same pattern of across-trial response variability (Churchland

et al., 2011), thus proving their validity to describe neural responses.

An example of FF and VarCE is illustrated in Fig. 1.10. Both FF
(1.10B) and VarCE (1.10C) show and increase of their value after the stim-
ulus onset showing a signature of decision formation, as it was observed in
monkeys data (Churchland et al., 2011). Qualitatively, both measurements
show the same effect, they only differ in their specific values. This is due
to the method employed to remove the variability generated by the Poisson
process, i. e. a neuron presenting variability solely because of its Poisson
spike generation would have a FF of 1, but a VarCE of 0. Values of FF
greater than 1 mean that there is an across-trial variability resulting from
a process which is different from that generating spikes. The same is true
for values of VarCE greater than 0. In our Fig. 1.10 example, FF and
VarCE show an across-trial variability that is independent from the Poisson

process.

It is commonly believed that across-trial variability originates from
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two sources of noise: internal and external noise. The internal noise relates,
among others, to the noise associated with neurons or sensory areas (Faisal
et al., 2008). The external noise refers to the variability of the external
world. Besides, a third cause of across-trial variability has been lately at-
tributed to the deterministic approximations in the complex computations
performed by the nervous system (Beck et al., 2012). Anyhow, even if the
reasons for neural response variability are not well settled, it seems that
its correlation with behavioral variability has been highly proven (Osborne

et al., 2005), hence becoming a great focus of attention.

As we have seen, across-trial variability can be useful to describe neu-
ral processes more thoroughly. However, since it is a measure obtained from
a large number of trials, the question of how this information might be used
by the brain in a single trial -if this were the case- remains unclear. One of
the possible solutions to overcome this limitation would be to analyze the
neural data from a population of neurons recorded simultaneously. Never-
theless, this is normally not the case since most of the recordings are done
over single units. In this thesis, we contribute to a better understanding of
the role of variance in decision making in two ways. First, in Chapter 3, we
investigate the possible signature that trial history could have in the across-
trial variability of single unit recordings of neurons from dorsal premotor
cortex during a decision-making task. Later on, in Chapter 5, we use a
spiking neural model to suggest a mechanism by which response variance of
a population of neurons might be used by other areas of the brain to form
decisions. With this second study, we overcome the problem of multiple

unit recordings through a realist decision-making model.

1.7 Embodied decision making

The central idea of embodied decision making is that actions -or, in gen-
eral terms, the motor apparatus- influence decision making even when the
decision itself does not depend on them. Most studies on decision making
ignore this issue and focus exclusively on specific features of a task, such as

the perceptual discrimination tasks introduced above (Section 1.3), treat-
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ing them in isolation and completely neglecting the possible effect that the
action to report the decision might have over the process itself. Most of the
models introduced above (see Section 1.5) consider decision making a serial
process: firstly, the perceptual discrimination is made, and then the action
is selected. Classical views on cognitive functions (Fodor, 1983; Pylyshyn,
1984) support the idea that cognitive processes and sensorimotor control
are functionally segregated. However, recent neurophysiological and behav-
ioral studies have shown growing evidence that areas involved in decision
(at least, when the decision is reported by an action) are also part of the
planning and execution of the subsequent action (Cisek and Kalaska, 2005;
Gold and Shadlen, 2007; Pesaran et al., 2008; Hernandez et al., 2002; Romo
et al., 2002, 2004). For instance, Wallis and Miller (2003) demonstrated
that, when monkeys were asked to release or hold a lever based on the
match or non-match of a sequence of visual stimuli, neurons in the premo-
tor regions showed stronger and earlier correlation with the behavioral rule
than those in the prefrontal cortex. Similarly, neurons in the LIP (Dorris
and Glimcher, 2004; Gold and Shadlen, 2007; Yang and Shadlen, 2007), the
FEF (Coe et al., 2002) and the SC (Carello and Krauzlis, 2004; Horwitz
et al., 2004; Thevarajah et al., 2009) seemed to be correlated with both the
formation of the decision and the execution of eye movements. Analogous
functional organization has also been found in the motor system (Hernan-
dez et al., 2002; Romo et al., 2002, 2004). In short, these results suggest
that both processes, perceptual decision making and action selection, do
not necessarily occur in a serial manner but in an integrative loop (Pezzulo
et al., 2011; Barca and Pezzulo, 2012).

Contrary to what happens in most laboratory experiments, it is highly
unlikely to find a situation in which perception and action are detached in
the real world. The general practice of simplifying the problem by using
experimental paradigms (as introduced in Section 1.3 and 1.4) that are
highly controlled in the lab has the advantage of providing an isolation of
one specific problem in such a manner that it can be deeply analyzed and
understood in detail. Nonetheless, even if these studies are the basis for

further general cases, we cannot ignore that, in order to solve more com-
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plex problems, the different isolated elements need to be integrated. Even
so, the experimental cases that would allow for the study of this integration
are, in most of the cases, difficult to control and therefore experimentally
intractable. Embodied systems have been used to bypass this limitation and
have been very useful to provide a theoretical framework to make predic-
tions, and to quantify behavior and neural activity in real-world situations.
To cite an example, Verschure et al. (2003) used a mobile robot to examine
the interaction between behavior and perception, and showed that percep-
tual learning progressively structures behavior. This shaping of behavior
causes a bias in the sampling of sensory inputs that eventually results in
a macroscopic feedback loop. The cognitive architecture that enabled re-
searchers to investigate these dynamics is the Distributed Adaptive Control
(DAC) architecture (Verschure et al., 2003; Duff et al., 2010; Marcos et al.,
2013c). In this thesis, we use this architecture to study the generalization
of an integrator decision-making model when an embodied system is used

in foraging tasks.

DAC is a multi-layered architecture that has been examined by means
of formal approaches (Verschure and Coolen, 1991) and robots (Verschure
et al., 1993, 2003), and has proven to be a suitable framework to study
biological systems (Verschure and Althaus, 2003; Verschure et al., 2014). To
properly solve a task, it needs to acquire information from the environment
and select the proper actions based on perceptual evidence. Both perceptual
decision making and action selection processes interact and influence each
other, following the principle of embodied decision making (Verschure et al.,
2003).

DAC is a robot based neuronal model of classical and operant condi-
tioning (Verschure and Coolen, 1991; Verschure and Althaus, 2003). Clas-
sical conditioning is a form of associative learning (Pavlov, 1927) where the
presentation of a neutral stimulus (conditioned stimulus CS) together with
a significant stimulus (unconditioned stimulus, US) leads to an association
of the initially neutral stimulus to a, so called, conditioned response (CR).

In one of the interpretations, the CS substitutes the US because the behav-
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Figure 1.11: Schematic representation of the DAC architecture. It is based on
the assumption that behavior results from three tightly coupled layers of control:
reactive, adaptive and contextual. Squared boxes stand for neuronal groups; ar-
rows stand for static (solid) and adaptive (dashed) synaptic connections between
cell groups. Abbreviations mean: US, unconditioned stimulus; CS, conditioned
stimulus; IS , internal states; A, action group; UR, unconditioned response; CR,
conditioned response; STM, long-term memory; LTM, long-term memory

iorally significant stimulus (US) triggers an unconditioned response as an
innate automatic response that forms a template for the CR. If CS and US
are repeatedly paired, the two stimuli become associated and the organism
begins to behaviorally respond to the presence of CS alone. One typical
paradigm is eyeblink conditioning, where an air-puff (US)-after which in-
evitably the animal reacts with an eyeblink response- is paired with the
presentation of a tone (CS). After a number of trials, the animal begins to
react to the CS with a CR similar to the UR, even if the air-puff (US) is not
present anymore (Mackintosh, 1990). Operant, or instrumental, condition-
ing is also a form of associative learning. However, the association is not
always as direct as it is in classical conditioning, since series of actions are
needed to reach a reward or punishment (Thorndike, 1911). These actions
are weighted with different values depending on the US resulted from an
action -i.e. with an appetitive or aversive US-, so the ones that leaded to a
reward will occur much more frequently that the ones that were paired with

punishment. DAC proposes that Classical and Operant Conditioning reveal



32 INTRODUCTION

a fundamental scaffolding of learning that advances through three stages.
First, sensor statistics based on perceptual learning provide a 'neutral’ rep-
resentation of the state space. Second, mechanisms underlying classical
conditioning provide for a biasing of this state space representation with re-
spect to its immediate survival value (construction of CS representations),
plus the shaping of discrete actions (tuning of the amplitude time course
of the UR to define the CR). Subsequently, operant conditioning builds on
the representational building blocks provided by the preceding two stages
to construct plans for actions, apart from settling a foundation for cognition

and problem solving.



CHAPTER 2

Generalization of integrator
models to foraging

A robot is made not born
Tony Stark

We begin by studying the generalization of a well-established accu-
mulator model of decision making, the race model (see Section 1.5), to
real-world foraging. To this purpose, we use an embodied artificial agent,
equipped with a cognitive architecture (DAC), that is required to explore
and exploit novel environments to reach specific goal positions on them.
In Section 2.1, we investigate the implications of the race model in these
tasks by comparing it with a non-accumulator model of decision making.
Our results show a fundamental difference in the way that information is
represented in memory and might be further retrieved from it. Specifically,
the race model suggests that goals are stored in memory and the actions are
self-generated by the agent when this information is retrieved from mem-
ory. In Section 2.2, we investigate the implications of this self-generation
of actions by studying how reactive and contextual control systems com-
plement each other. Actions triggered by the reactive control systems are
egocentric whereas the ones triggered by the contextual control system are

generated during recall from memory. We demonstrate that reactive behav-

33
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ior is enough when a task is not very demanding, but contextual control is

fundamental when task complexity increases.

2.1 The influence of the decision-making process
in the representation of information in

memory

This sections reproduces the paper ” Generalization of integrator models to
foraging: a robot study using the DAC9 model” published in the proceedings
of the Living Machine conference (Marcos et al., 2012b). The abstract reads:

Experimental research on decision making has been mainly
focused on binary perceptual tasks. The generally accepted
models describing the decision process in these tasks are the in-
tegrator models. These models suggest that perceptual evidence
is accumulated over time until a decision is made. Therefore, the
final decision is based solely on recent perceptual information.
In behaviorally more relevant tasks such as foraging, it is how-
ever probable, that the current choice also depends on previous
experience. To understand the implications of considering pre-
vious experience in an integrator model we investigate it using a
cognitive architecture (DAC9) with a robot performing foraging
tasks. Compared to an instantaneous decision-making model
we show that an integrator model improves performance and
robustness to task complexity. Further we show that it com-
presses the information stored in memory. This result suggests
a change in the way actions are retrieved from memory leading

to self-generated actions.

Introduction

Binary perceptual tasks have been widely used to study the neural mech-

anisms underlying decision making (Gold and Shadlen, 2007; Smith and
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Ratcliff, 2004). This kind of task involve a simple decision about a feature
of a stimulus that is expressed as a choice between two alternative options.
Many models have been proposed to explain this decision-making process
predicting the relationship between reaction time and accuracy (Logan and
Cowan, 1984; Ratcliff and Rouder, 1998). Most of them explain decision
making as an accumulation process that takes place over time until a de-
cision bound is reached. These models are known as integrator models
and have been generally accepted as an explanation for decision making in
perceptual tasks where learning is not required to successfully perform the
task. Here, we investigated the interaction between an integrator model
and memory in foraging tasks using a well establish cognitive architecture

as a framework (Verschure et al., 2003).

One largely used perceptual experimental paradigm is defined by a
random-dot motion (RDM) task where humans or monkeys have to select
between two possible stimulus categories, such as leftward or rightward
motion (Shadlen and Newsome, 2001). Integrator models, such as race
models (Logan and Cowan, 1984) and drift-diffusion models (Ratcliff and
Rouder, 1998), provide a straightforward account of the speed-accuracy
trade-off. These models suggest that evidence is accumulated over time
until this accumulation reaches a bound, i. e. criterion level, and a decision
is made. As the RDM task, many of the experimental paradigms used
to study the decision-making process are simple perceptual tasks where the
correct performance of a trial depends exclusively on the current perceptual
information, e. g. color. The proposed integrator models assume that
the alternative options are known a priori and therefore learning during
the task is not required. However, this would not be the case in more
realistic foraging tasks where the information about different targets have
to be acquired from the environment and many alternative choices might
be available at each decision point. Therefore, a two-fold problem has to
be solved during foraging: the appropriate learning of the environment and
actions and the appropriate retrieval of information to achieve goal states
(targets), i. e. sequences of perception and action need to be learned and

retrieved to reach goal positions in an environment.
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To study the interaction between decision making and memory, we
worked in the framework of the Distributed Adaptive Control (DAC) ar-
chitecture (Verschure and Althaus, 2003; Verschure et al., 2003). The deci-
sion making in DAC follows the Bayesian principle (Bayes, 1763; Verschure,
2012). We extended the architecture with an integrator decision-making
model (DACY; see (Verschure and Althaus, 2003; Duff and Verschure, 2010;
Mathews et al., 2012) for details about previous versions of DAC), based
on the race model, to investigate its implications during foraging tasks and
we further compared it with the decision making in DAC (instantaneous
model). We show that the integrator model resulted in a new mechanism of
storing and recalling information from memory suggesting that the actions
are not stored in memory but self-generated during retrieval of information.
In a previous study (Marcos et al., 2010a), we assessed the impact of these
two decision-making models in the learning of event order and interval in
a sequence in two foraging tasks. In the current study, we go one step fur-
ther quantifying (1) the scalability of the two models with task complexity
in five different foraging tasks and (2) the implications on the information
stored in memory and proposing (3) a new working memory mechanism

that accounts for a continuous action space.

Materials and Methods
Cognitive Architecture

The DAC architecture has already proven its suitability to study the prob-
lems encountered in biology helping to investigate perception, cognition
and behavior in foraging situations in which the access to real neuronal and
behavioural data is difficult (Verschure et al., 2003). DAC is based on the
assumption that learning consists of the interaction of three layers of control:
reactive, adaptive and contextual, as illustrated in Fig. 1.11. The reactive
layer provides pre-wired responses that allows for a simple interaction with
the environment and accomplish simple automatic behaviours. The adap-
tive layer provides mechanism for the classification of the sensory events

(internal representations) and the shaping of responses in simple tasks as in
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classical conditioning (Pavlov, 1927). The internal representations (proto-
types; see (Duff and Verschure, 2010) for details) generated by the adaptive
layer are stored in the contextual layer as couplets of sensory-motor states
and used to plan future behaviour, as in operant conditioning (Thorndike,
1911).

In this study, we mainly focused on the contextual layer of DAC that
provides mechanisms for memorizing and recalling information. It consists
of two memory structures: the short-term memory (STM) and the long-term
memory (LTM), for permanent storage of information. During learning,
pairs of prototype-action are stored in the STM as the robot interacts with
the environment. When a goal state is reached, i. e. reward or punishment,
the content of the STM is copied into the LTM and the STM is reset.
The LTM has sequences of pairs of prototype-action that lead the robot
to goal states. The prototype-action pairs that form a sequence are called
segments. During the recall process, the prototypes stored in LTM are
matched against the generated prototypes from ongoing sensory events. The
degree of matching of segment [ in sequence ¢ determines the input to its,

so called, collector unit, cq:

ciq = (1 —d(e, €19))tiq (2.1)

where d(e, e;4) is calculated as the Euclidean distance between stored pro-
totype e;q and current prototype e and t;, is called trigger. The trigger value
biases the sensory matching process of the segments and allows chaining
through a sequence, i. e. its default value is 1 and it is set to a higher value

if the previous segment | — 1 is activated.

The activity of the collectors contribute to the action proposed by the
contextual layer. We only consider the collectors’ activity that satisfy both
conditions: (1) its activity is above a certain threshold (6¢), (2) its activity
is inside a predefined percentage range from the maximum collector’s ac-
tivity, i.e. the collectors compete in an E%-Max Winner Take All (WTA)
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mechanism (de Almeida et al., 2009). The actual action proposed by the

contextual layer (a.) is calculated as:

cigH (cjqg — 0°)
ac= > iq5—alq (2.2)

lq
1L,gqeLTM lq

where H(.) is a step function that is 0 for values lower than 6 and is 1 for
values higher than 6¢, 014 is the distance measured in segments between the
selected segment [ and the last segment in the sequence, i.e. the distance
to the goal state and a4 is the action stored in segment [ of sequence ¢. By
doing this division the segments closer to the goal state have more impact
on the contextual action. The sign is positive if the segment belongs to an

appetitive sequence and negative if it belongs to an aversive sequence.

The actions triggered by each of the three different layers are filtered
by priority, giving more priority to reactive actions (a,), then to contextual
actions (a.) and finally to adaptive actions (a,). The one that takes the
control of the motor is stored in STM and afterwards in LTM (see Supple-
mentary Material and Methods for further details).

Integrator models

Many integrator models have been proposed, but mainly, in all of them, the
change in the accumulation of evidence in favor of one alternative (z;(t))

can be described as:

dl‘i
dt

= nEi(t) + ¢ (2.3)

where p is the growth rate of the accumulation, F;(t) is the internal estimate
of evidence at time ¢ and £ is a Gaussian noise with mean of zero and
variance of o2. The proposed models consider the variables x;(t), E;(t), p
and £ in a different manner. We implement a rise-to-threshold model based
on the race model. The race model (Logan and Cowan, 1984) suggests that

there are separate variables x;(t) for each option that accumulate evidence
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independently until one of them reaches a decision bound and a decision is

made.

Our implementation of the race model consisted of a number of in-
dependent variables that compete to take the control of the robot. Each
variable accumulated evidence in favor of one action, such as right or left.
When the value of a variable grew above a criterion level, i. e. decision
bound, the action associated with it was performed by the robot. The

change in the activity of the variables within a time step dt was defined as:

das(t) = {dt(,urari F flaGa, + ficae; + &) if t—tiy > Theg 2.0

0 aift_tlaSTref

where a,, aq, a. are the actions triggered by the reactive, adaptive and
contextual layer respectively, i € NV and it is the subindex of the N different
possible actions, ., ttq, e are the mean growth rates of the variables units,
¢ is a Gaussian noise term with a mean of zero and a variance of o2, t;, is
the time at which the last action was executed and T, is the refractory
period. In our experiments dt = lms and & = 0. When the value of a;
reaches a predefined threshold the associated action is executed. In biology,
the refractory period is the amount of time a excitable membrane needs to be
ready for a second stimulus once it returns to the resting state. Consistent
with this, the T,.; term referred to the amount of time necessary to start

again the competition between actions after one of them was executed.

An illustration of the dynamics of the two deision-making models is
shown in Fig. 2.1. As observed, in the case of the instantaneous model many
actions might be executed for same visual input whereas in the integrator

model only one is executed.

Foraging tasks

The mobile agent was simulated in C++ and wSim (Wyss, 2003) using
the 3D Open Graphics Library approximating a Kephera robot !. Different

'K-Team, Lausanne, Switzerland
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Figure 2.1: Decision-making dynamics. (a) Decision making in the instantaneous
model. The different actions generated by the reactive, adaptive and contextual
layers are filtered by priority as in a Winner Take All competition. Only one of
them defines the final action. The robot performs an action during the interval
that the selected action is above a predefined threshold. (b) Decision making in
the integrator model. The different actions generated by the reactive, adaptive and
contextual layer are continuous in time. When the sum of the actions over time
reaches a predefined threshold an action is performed. The three layers contribute
to the integration with different growth rates (r, fiq, ftc). Time integration leads
to only one action per sensory state triggered by a colored patch in the environment.

priority selection

previous studies have proven the validity of this simulated robot with respect
to a real one (Wyss, 2003; Wyss et al., 2006). The robot has a radio of
5.5 cm and 8 proximity sensors and 8 light sensors. The values captured
by both light and proximity sensors decay exponentially. The proximity
sensors measure the distance to obstacles while the light sensors measure
the intensity of light sources. The robot is equipped with a color camera
with a visual angle of 45 deg. of amplitude. The image from the camera
is color separated such that there are three channels: red, green and blue,
each of them with a resolution of 36x36 pixels. Except otherwise specified
the camera is always pointing to the floor with a tilt angle of -60 deg. with
respect to the horizontal axis. The robot translates with a speed of 0,1 X

robot radius and it rotates with a speed of 10 deg.

To study the interaction between an integrator model and memory
we defined a number of foraging tasks where not only perceptual but also

memory information was essential to achieve a performance about chance.
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The tasks had different rated complexity to assess how the decision-making
models scaled to it (Fig. 2.2). In all the environments the goal of the task
was to go to the light source, i. e. reward. Every trial started from one of the
positions shown in Fig. 2.2, randomly selected. The trial ended when the
robot hit the light or collided with the wall. A successful trial ended when
the light was hit. The environments contained colored patches that served
as cues. The light was detected by the light sensors of the robot. However,
the light was not strong enough to trigger a reactive action from the side
patches. The adaptive layer used reactive layer sub-threshold activity to
generate the prototypes and to learn the associations between prototype-
action. Once the prototypes were stable the contextual layer started storing
sequences of prototype-action that leaded to a goal state. The goal state
occurs when the robot reaches the light or collides with the wall. When a
collision occurred it was stored as an undesirable state in memory and had

a negative influence on the action proposed by the contextual layer.

The complexity of the tasks was rated taking into account the number

of patches and how ambiguous they were as follows:

TC = "2p, (2.5)

¢
where n,, is the number of patches, n. is the number of different colors and
ng is the number of different turning angle amplitudes needed to be learned.
This measure was then useful to compare the robot performance in each of
the tasks for the two proposed models. The complexity of the task 1 is 3,
the complexity of the task 2 is 4.5 and 5, 7.5 and 11.7 for the tasks 3, 4 and

5, respectively.

The first task was an unambiguous restricted open arena foraging
task, i.e. no context information was needed because the location of the
target was uniquely predicted by the color patches (Fig. 2.2a). Therefore,
this task could be correctly solved by the adaptive layer, but still we tested
the performance at the contextual layer level. The rest of the four tasks

consisted of ambiguous restricted open arenas, because, in all cases, con-
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Figure 2.2: Foraging tasks ordered by task complexity. (a) Task 1. Un-
ambiguous restricted open arena, TC = 3. (b) Task 2. Ambiguous restricted open
arena, TC' = 4.5. (c) Task 3. Ambiguous restricted open arena, TC = 5. (d) Task
4. Ambiguous restricted open arena, TC = 7.5. (e) Task 5. Ambiguous restricted
open arena, TC = 11.7.

text information was needed to reach a performance above chance. The
actions associated with the patches closest to the light were not unique but
depended on the previous context (Fig. 2.2b, 2.2¢, 2.2d and 2.2¢) and there-
fore the problem could only be solved at the contextual layer level. These
experiments allowed us to study the detailed performance of each model
and its dynamics as well as to evaluate the results in tasks where different
kind of actions were required. In all the foraging tasks, when the contex-
tual layer was enabled, the actions from the reactive and the adaptive layers

were deactivated to avoid any influence they could have on the results.

To test the system for robustness we added 5% of noise to the motors,
following a Gaussian random distribution and we varied the initial position
of each trial according to a two dimensional normal distribution with mean
0 and variance 0,1x robot radius. Moreover, to assess the impact of the

camera noise in the information stored in memory, in Task 2 (Fig. 2.2b and
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2.2e), we added noise to the hue sensed by the camera from 0% to 10% in
steps of 1%, following a Gaussian random distribution. For every condition,

we ran 10 experiments with 1000 trials each.

To investigate what was the impact on memory of the interaction
between the decision-making models and memory itself we calculated the
degree of compression of information in memory through the entropy of the

stored information as follows:

Ear == p(s)logs(p(s)) (2.6)

seS

where s is one segment in memory and p(s) is the probability that the
segment is selected in a current experiment. This measurement allows us
to assess the amount of information needed to encode a visual stimulus in

memory.

Results

In this study, we investigated the generalization of an integrator model in
foraging tasks. We designed a number of foraging tasks with increased com-
plexity to assess the generalization of the integrator model in more realistic
tasks. The results in these tasks suggested a new mechanism to store and
recall information from memory. We further tested the implications of this
new mechanism in a foraging task and we show that it resulted in a more

optimal way of learning and exploiting the environment

Foraging tasks

In all the tasks, we recorded the performance of the robot after LTM acqui-
sition. As shown in Fig. 2.3, as task complexity increased the performance
of the robot decreased dramatically in the case of the instantaneous model
where it dropped to a mean value of 0.55 for the most complex task. It kept
stable in the integrator model, maintaining a mean value of performance

above 0.9.
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Figure 2.3: Robot performance along different task complexity. Ratio tar-
gets/trials with instantaneous and integrator models as task complexity increases.
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In order to evaluate the impact of the camera noise in the information
stored in memory due to the influence of each decision-making models, we
used Task 2 (T'C' = 4.5) because it was the simplest one that requires the
use of the contextual layer. For clarity we also report here the performance
of the robot with varying camera noise (Marcos et al., 2010a). As previously
reported in (Marcos et al., 2010a), the performance of the robot decreased
as the camera noise increased in both models (Fig. 2.4a). The difference
between the performance of the two models was significantly different along
the different values of camera noise (KolmogorovSmirnov test, p < 0.01).
From 0% of camera noise to 6% the instantaneous model was incrementally
more affected by the noise than the integrator model. However, from 6% to
10% the noise had an important impact on the integrator model, resulting in
a smaller difference in performance with respect to the instantaneous model.
Once the noise of the camera started to critically affect the sequentiality of
the actions the performance decayed in both models with a similar slope
(Fig. 2.4a).

To assess the impact of both models at the memory level we calculated
the entropy of the stored information, Fjy; (see Eq. 2.6). As shown in Fig.
2.4b, Ej; with the integrator model was higher along the different camera

noise compared to the instantaneous model (K-S test, p < s0.001). More-
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Figure 2.4: Performance and entropy along different camera noise. (a)
Ratio Targets / Trials distribution for instantaneous and integrator models. (b)
Entropy of the memory along different camera noise. In both figures bars represent
means =+ sem.

over, the dynamics in both cases were opposite: FEj; decreased as camera
noise increased in the integrator model whereas it increased as camera noise
increased in the case of the instantaneous model. Low values of Ej; means
that segments of memory respond to a small fraction of the stimuli resulting
in a higher number of segments in memory. The opposite occurs for high
values of ;. Therefore, the integrator model compressed the memory and
less number of segments were necessary to encode same stimulus. As a
drawback, explicit representation of time in memory, i. e. the number of

steps needed to cross a patch, is lost.

Self-generated actions

The compression of information in memory due to the use of the race model
changes the way information is stored in memory suggesting a new mech-
anism to recall it. Instead, of a recall of actions from memory it suggests
the recall of goals. Consequently, we hypothesize that the actions are self-
generated rather than stored in memory. During the recall period, visual
information is retrieved from memory and actions are performed depending
on the position of perceptual target with respect to the robot. When the

information is selected from memory, we distinguish between two different
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recall methods: (1) the next prototype in the sequence is retrieved, i.e.
sub-goals are progressively achieved; (2) the prototype associated with the
final goal is retrieved. In both cases, the retrieved information is stored
in working memory and the robot searches for it. To do so, it moves the
tilt angle of the camera from -60 deg. to -20 deg. and rotates over its
own axis. In this way, the robot can see the visual cues that are far away
from its current position. Once the robot sees the sub-goal or final goal it
moves again the tilt angle from -20 deg. to -60 deg. and goes straight to
the goal, i. e. self-generating the actions. We test this new way of retriev-
ing information from memory in the Task 1 and compare the results to the
non-self-generated actions investigated in the section. As shown in Fig. 2.5a
and 2.5b, the robot follows a different path depending on the mechanism it
uses to recall information from memory. We observed that the ratio targets
divided into travelled distance was significantly higher in the case of the
final goal search mechanism of self-generated actions (Fig. 2.5¢; K-S test,
p < 0.001), i. e. the robot follows a shorter path to hit the target. On the
contrary, there is no significant difference between the sub-goal search and
the non-self-generated actions (K-S test, p > 0.05). This result shows an
optimal way of using the compressed information of the memory when the
actions are not stored but self-generated during the retrieval of information
from memory. It results in more flexibility in the actions to be taken and

allows to account for a continuous action space.

Conclusions

We tested the implications of an integrator decision-making model in se-
quence learning tasks with multiple alternatives using a cognitive architec-
ture that we called DACY, evolving from previous implementations (Ver-
schure and Althaus, 2003). We compared the results with a Bayesian
decision-making model which is thought to be optimal for action selection.
As a framework we used a robot based architecture which allowed us to un-
derstand the behavioural and architectural implications of these alternative
models during foraging tasks. We showed that the race model has a more

robust task-related performance when perceptual noise is added (Marcos
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Figure 2.5: Robot trajectories and performance. (a) Trajectories generated
during sub-goals search. (b) Trajectories generated during final goal search. (c)
Ratio Targets / Travelled distance for the integrator model with non-self-generated
actions recall, sub-goals search recall and final goal search recall. Bars represent
means + sem.

et al., 2010a) and when task complexity increases compared to the Bayesian
model. Moreover, the race model also implied a compression of information
in memory suggesting an alternative way of storing information, i. e. only
perceptual information is acquired and the actions are self-generated dur-
ing recall. The self-generation of actions during the retrieval from memory

shows a mechanism able to account for a continuous action space.

In a previous study (Marcos et al., 2010a), we reported the differences
in the storage of information in memory due to both models and the impact
they have in performance. Here, we quantified the difference in the infor-
mation stored in memory by calculating the memory entropy. We showed
that the entropy is higher in the integrator model than in the instantaneous
model. In the instantaneous model the actions are continuously recalled and
performed. Therefore, in this case, the robot executes a number of actions,
generally greater than one, each time it crosses a visual cue. In the case
of the integrator model, we proposed a new mechanism to optimally use
the information from memory. We implemented a goal oriented mechanism
that retrieves visual cues from memory instead of actions. Once the visual
cue, i. e. goal, is selected from memory the robot searches for it in the
environment. Whenever the robot sees the goal it goes towards it. This

new mechanism can be seen as the storage of an abstract object in memory,
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i. e. a door. If a person wants to leave a room she/he has to first localize

the door and then go towards it.

So far the integrator models have been used to explain simple decision-
making tasks, such as RDM task (Shadlen and Newsome, 2001) or the
countermanding task (Hanes and Schall, 1996a). The implementation of
the integrator model was based on the race model. Generally, the race
model has been mainly used to explain behavior in a countermanding task
(Hanes and Schall, 1996a), predicting probability of failure and reaction
time. Here, we showed the implication of this decision-making model in a
more general framework. We observed that it has an important impact on
how the memory is constructed and therefore on how the information is

used later on.

The main assumptions we made in our proposal of self-generated ac-
tions during the recall from memory is that visual cues can always be seen
from the current position of the robot. However, in wide open field envi-
ronments, when this is not the case, our assumption would fail. In those
situations, we would rely on head direction accumulator (Mathews et al.,
2009) cells. The heading direction information would be stored in memory
together with the visual information. During the recall from memory the
actions would be also self-generated. Similar to the search of visual proto-
types tested in this study, the robot would rotate around its own axis until
its current head direction is equal or close enough to the retrieved head

direction.

Physiological studies have shown that granular and pyramidal cells
in the hippocampus encode information with high sparsity (low entropy), i.
e. neurons respond to a small fraction of stimuli (Jung and McNaughton,
1993). In contrast, cells in the PFC have shown to be selective to par-
ticular cues with less sparsity (higher entropy) than the hippocampus and
also with distinct temporal profile (Asaad et al., 1998). We observed that
these two mechanisms of encoding memory have some similarity with the
implications shown in this study due to the two decision-making models, i.

e. higher entropy in the integrator model compared to the instantaneous
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model. One could speculate that there is a distributed control system for
sequence learning involving the hippocampus and the PFC connected to an
external area which accumulates evidence, as found in the superior colliculus
(Ratcliff et al., 2007), the lateral intraparietal area (Roitman and Shadlen,
2002), the frontal eye fields (Gold and Shadlen, 2003) and the PFC itself
(Kim and Shadlen, 1999).

2.2 The complementary roles of allostatic and

contextual control systems in foraging tasks

This sections reproduces a paper entitled ” The complementary roles of al-
lostatic and contextual control systems in foraging tasks” published in the
proceedings of From Animals to Animats, Simulation of Adaptive Behavior
(SAB) conference (Marcos et al., 2010b). The abstract reads:

To survive in an unknown environment an animal has to
learn how to reach specific goal states. The animal is firstly
guided by its reactive behavior motivated by its internal needs.
After exploring the environment, contextual information can be
used to optimally fulfill these internal needs. However, how a
reactive and a contextual control system complement each other
is still a fundamental question. Here, we address this problem
from the perspective of the Distributed Adaptive Control archi-
tecture (DAC). We extend DAC’s reactive layer with an allo-
static control system and integrate it with its contextual control
layer. Through robot foraging tasks we test the properties of the
allostatic and contextual control systems and their interaction.
We assess how they scale with task complexity. In particular,
we show that the behavior generated by the contextual control
layer is of particular importance when the system is facing con-

flict situations.
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Introduction

One of the main challenges an animal faces when exploring a novel environ-
ment is how to learn about it and exploit it. Firstly, reactive behaviors drive
animal exploration motivated by the animal’s internal needs. Reactive be-
haviors also allows the exploration and acquisition of the state space. Once
the states of the environment are learned and appropriate behaviors shaped,
the animal is able to use this information to reach goal states, e.g. food.
However, how these low and high level systems complement each other when
the task difficulty increases is not clear yet. Here, we exploit this question in

the basis of a combined robotics and computational neuroscience approach.

We investigate a robot model of self-regulatory processes based on
the behavior of rodents. Rodents are optimal real-world foragers that can
smoothly regulate complex sets of behaviors (Drai et al., 2000) based on
their internal motivation, maintaining a dynamic stability with the environ-
ment while learning about it. Our model tackles exactly these two issues:

self-regulation and learning about the environment.

Self-regulation is provided by a reactive layer that is based on the
concept of allostasis (McEwena and Wingfield, 2003). This reactive layer
drives the robot behavior while information about the environment is ac-
quired and retained in a long-term memory. This memory is part of the
contextual control (CC) system which will be capable of driving the robot’s

behavior based on the robot previous experience.

The allostatic control system (AC) of our model allows the robot to
not only explore the environment but also to acquire its salient states. The
robot locally senses different reward gradients present in the environment
and can reach its desired values in the gradient by performing instantaneous
reactive motor actions. The CC system picks up information about the
environment. Both systems need each other and are fundamental for solving
navigation tasks. The CC system will be able to solve tasks when the cues,
e.g. gradients, that guide the behavior of the reactive layer is incomplete or

contains conflicts. In addition, it can optimize the content of the long-term
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memory system thanks to the states that are classified and the behaviors

triggered by the AC system.

Many models deal with the problem of realizing an artificial rodent
(Meyer et al., 2005; Sheynikhovich et al., 2009). Generally, it is usually
tackled in a bottom up approach solving the navigation problem using a
cognitive map. Our approach differs from these models in that our first
building block integrates many regulatory subsystems and on top of it we

add a cognitive system able to learn about the environment.

The AC and CC systems integration will be made in the context
of the biomimetic Distributed Adaptive Control architecture (DAC) (Ver-
schure and Althaus, 2003; Verschure et al., 2003; Duff et al., 2010). In this
paper we make two new contributions. Firstly, we will augment the DAC
reactive layer in order to support self-regulation on the basis of the phys-
iological principle of allostasis. The AC orchestrates different homeostatic
subsystems achieving stability at a meta-level (see Section 2.2). However,
during this study, we will use only one homeostatic subsystem at a time thus
bypassing the question of how multiple homeostatic subsystems affect opti-
mal performance. The second contribution of this study is that we extend
the contextual layer to be able to exploit the different internal states of the
agent in its memory structures. The long-term memory stores sequences
that belong to different goal states, i. e. desired values in the gradient. In
the recall phase, information is retrieved based on the internal motivation
of the robot, e.g. hunger (see Section 2.2). We integrate these two con-
trol systems and investigate the main implications of their integration (see
Section 2.2). Our results show a successful integration which gives rise to
realistic foraging in a variety of benchmark tasks using a simulated robot
(see Section 2.2). In addition, it also indicates how low level predefined be-
havior control systems of the brain can be integrated with more advanced

neuronal systems.
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Methods

To understand how AC and CC systems complement each other we work
with the DAC architecture. DAC distinguishes three coupled layers that in-
teract between each other: reactive, adaptive and contextual. The reactive
layer contains a pre-wired repertoire of reflexes, which creates a behavior
that allows an interaction with the environment. Originally, this reactive
layer implements collision avoidance and light appetitive mechanisms. We
will extend this layer to provide it with an AC system. The adaptive layer
processes and classifies the sensory input. This classification together with
the actions executed by the robot are sequentially stored in the contextual
layer which is equipped with a short and a long-term memory. These rep-
resentations are used to plan ongoing behavior, and have been shown to be
compatible with formal Bayesian models of decision making (Verschure and
Althaus, 2003). In the original DAC, the contextual layer stores positive
or negative sequences that lead to goal states defined by reward or punish-
ment respectively. We extend the contextual layer to equip it with labeled
information where the content of the memory can lead to different kinds of

rewards or punishments.

We will test our model in different foraging tasks where gradients are
projected into the environment and visual cues are placed on the floor. The
gradients are gaussian functions sensed by the robot. The AC system will
steer the motors of the robot depending on the desired and actual value of
the gradient. Sequences of sensory-motor contingencies are learned by the
CC system from the robot’s interaction with the environment. We will show
that AC system alone is not always sufficient to reach goal states when the

gradient has a conflict information.

The allostatic control system

In our self-regulation model approach, different simpler homeostatic sub-
systems coexist (Sanchez-Fibla et al., 2010). Each homeostatic subsystem
is associated to one reward gradient and has access to an actual (V,) and

desired (Vj) value in that gradient. The actual value is determined by the
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Figure 2.6: Contextual and allostatic integration in the framework of DAC. Ab-
breviations mean: p, perception; a, action; v, value. Blue and green colors at the
end of the sequences mean different reward associated with them. Action selection
is done by priority: contextual layer actions have more priority than reactive layer
actions.

actual position of the robot in the gradient and the desired value represents
the goal state in the gradient. The homeostatic subsystem acts in a closed
loop trying to bring close the actual to the desired value and thus achieving
stability (see Fig. 2.6). An integrator mechanism orchestrates the different
homeostatic subsystems. All the subsystems compete to control the robot.

In this study, only one homeostatic subsystem is activated at a time.

Imagine, as an example, an animal placing itself in an optimal distance
to a heating source in order to achieve a desired temperature (lizuka and

Di Paolo, 2008). The gradient would correspond to the temperature map
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which would have its highest peak around the source. The agent is able to
sample the temperature gradient locally. The homeostatic subsystem could
bring the agent closer to or further away from the heating source depending

on the difference between the desired and actual value.

Short and long term memory

The contextual layer of DAC contains a short-term memory (STM) and
a long-term memory (LTM). Sequences of sensory-motor contingencies are
learned from the robot’s interaction with the environment. Perception-
action associations are stored in STM. When a goal state is reached, the
sequences of associations are copied into the LTM labeled with the reached
goal state (see Fig. 2.6). When the robot is exposed to a perception, it is
classified by the adaptive layer and compared with the perceptions stored
in LTM. The stored perceptions that match this comparison, and belong to
a sequence with a goal state coincident with its current internal motivation,
are selected and an action is executed. For further explanation about the

memory structure in DAC see (Verschure et al., 2003).

Allostatic and contextual integration

We integrate AC and CC systems using the framework of DAC (see Fig.
2.6). The reactive layer of DAC is provided with an AC system. This AC
system steers the motor of the robot driven by the gradient in the environ-
ment and the internal motivation of the robot. This results in egocentric
actions executed. These egocentric actions are converted into allocentric
ones by the CC system. To do the conversion, we added a path integration
computation that calculates the vector between visual perceptions using the
head orientation of the robot. In this way, the information in memory con-
tains visual cues and the vector connecting two visual cues or visual cue to

a goal state.
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