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Summary

The analysis of human motion from visual data is a central issue in the computer
vision research community as it enables a wide range of applications and it still remains
a challenging problem when dealing with unconstrained scenarios and general conditions.
Human motion analysis is used in the entertainment industry for movies or videogame
production, in medical applications for rehabilitation or biomechanical studies. It is also
used for human computer interaction in any kind of environment, and moreover, it is used
for big data analysis from social networks such as Youtube or Flickr, to mention some of
its use cases.

In this thesis we have studied human motion analysis techniques with a focus on its
application for smart room environments. That is, we have studied methods that will
support the analysis of people behavior in the room, allowing interaction with computers
in a natural manner and in general, methods that introduce computers in human activity
environments to enable new kind of services but in an unobstrusive mode. The thesis is
structured in two parts, where we study the problem of 3D pose estimation from multiple
views and the recognition of gestures using range sensors.

First, we propose a generic framework for hierarchically layered particle filtering (HPF)
specially suited for motion capture tasks. Human motion capture problem generally involve
tracking or optimization of high-dimensional state vectors where also one have to deal with
multi-modal pdfs. HPF allow to overcome the problem by means of multiple passes through
substate space variables. Then, based on the HPF framework, we propose a method to
estimate the anthropometry of the subject, which at the end allows to obtain a human
body model adjusted to the subject. Moreover, we introduce a new weighting function
strategy for approximate partitioning of observations and a method that employs body
part detections to improve particle propagation and weight evaluation, both integrated
within the HPF framework.

The second part of this thesis is centered in the detection of gestures, and we have
focused the problem of reducing annotation and training efforts required to train a specific
gesture. In order to reduce the efforts required to train a gesture detector, we propose a
solution based on online random forests that allows training in real-time, while receiving
new data in sequence. The main aspect that makes the solution effective is the method
we propose to collect the hard negatives examples while training the forests. The method
uses the detector trained up to the current frame to test on that frame, and then collects
samples based on the response of the detector such that they will be more relevant for
training. In this manner, training is more effective in terms of the number of annotated
frames required.






Resum

L’analisi del moviment huma a partir de dades visuals és un tema central en la recerca
en visio per computador, per una banda perque habilita un ampli espectre d’aplicacions i
per altra perque encara és un problema no resolt quan és aplicat en escenaris no controlats.
L’analisi del moviment huma s’utilitza a l’'industria de I’entreteniment per la produccié de
pel-licules i videojocs, en aplicacions mediques per rehabilitacié o per estudis bio-mecanics.
També s’utilitza en el camp de la interaccié amb computadors o també per ’analisi de grans
volums de dades de xarxes socials com Youtube o Flickr, per mencionar alguns exemples.

En aquesta tesi s’han estudiat tecniques per I'analisi de moviment huma enfocant la
seva aplicacio en entorns de sales intel-ligents. Es a dir, s’ha enfocat a metodes que puguin
permetre I'analisi del comportament de les persones a la sala, que permetin la interaccio
amb els dispositius d’'una manera natural i, en general, metodes que incorporin les com-
putadores en espais on hi ha activitat de persones, per habilitar nous serveis de manera
que no interfereixin en la activitat.

A la primera part, es proposa un marc generic per 1'is de filtres de particules jerarquics
(HPF) especialment adequat per tasques de captura de moviment huma. La captura de
moviment huma generalment implica seguiment i optimitzacié de vectors d’estat de molt
alta dimensio on a la vegada també s’han de tractar pdf’s multi-modals. Els HPF permeten
tractar aquest problema mitjancant multiples passades en subdivisions del vector d’estat.
Basant-nos en el marc dels HPF, es proposa un metode per estimar ’antropometria del
subjecte, que a la vegada permet obtenir un model acurat del subjecte. També proposem
dos nous metodes per la captura de moviment huma. Per una banda, el APO es basa
en una nova estrategia per les funcions de cost basada en la particié de les observacions.
Per altra, el DD-HPF utilitza deteccions de parts del cos per millorar la propagacié de
particules i I'avaluacié de pesos. Ambdds metodes sén integrats dins el marc dels HPF.

La segona part de la tesi es centra en la deteccié de gestos, i s’ha enfocat en el prob-
lema de reduir els esforcos d’anotacié i entrenament requerits per entrenar un detector
per un gest concret. Per tal de reduir els esforcos requerits per entrenar un detector de
gestos, proposem una solucié basada en online random forests que permet ’entrenament
en temps real, mentre es reben noves dades sequencialment. El principal aspecte que fa la
solucio efectiva és el metode que proposem per obtenir mostres negatives rellevants, mentre
s’entrenen els arbres de decisié. El metode utilitza el detector entrenat fins al moment per
recollir mostres basades en la resposta del detector, de manera que siguin més rellevants
per I'entrenament. D’aquesta manera l'entrenament és més efectiu pel que fa al nombre
de mostres anotades que es requereixen.
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CHAPTER 1

Introduction

The analysis of human motion from visual data is a central issue in the computer vi-
sion research community as it enables a wide range of applications and it still remains
a challenging problem when dealing with unconstrained scenarios and general conditions.
Human motion analysis is used in the entertainment industry for movies or videogame
production, in medical applications for rehabilitation or biomechanical studies. It is also
used for human computer interaction in any kind of environment, and moreover, it is used
for big data analysis from social networks such as Youtube or Flickr, to mention some
of its use cases. The requirements of the analysis depend on the application. One may
need the exact pose of the bones and articulations of the human body, or a classification
of gestures, or the recognition of certain actions involving elements of a specific context.
These issues have been studied from the beginning of computer vision research evolving in
wide research fields such as pose estimation, motion capture or action recognition.

In this thesis we have studied human motion analysis techniques with a focus on its
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Chapter 1. Introduction

application for smart room environments. That is, we have studied methods that will
support the analysis of people behavior in the room, allowing interaction with computers
in a natural manner and in general, methods that introduce computers in human activity
environments to enable new kind of services but in an unobstrusive mode. The proposed
methods have been used in three European and Spanish research projects: VISION [5],
which focused on immersive communication systems, ACTIBIO [I] dedicated to activity
recognition and biometrics and FASCINATE [2] dedicated to new forms of interaction with

broadcasting content.

1.1 Objectives

Human pose conveys relevant information of what is happening in a visual scene and it is
a basic description than can facilitate a higher level understanding of the scene, such as
the actions, activities or events occurring in the scene. The pose can also be associated to
other semantic meanings to enable new human computer interfaces, for example to activate
actions in graphical user interfaces.

The objectives of this thesis are:
e Investigate techniques to obtain the pose of the subject in the scene, to provide such

information to higher level applications.

e Study the application of the techniques in real world scenarios, thus with an emphasis

in approaches robust to clutter, capable to perform with limited set of views.
e Propose methods that could be used by non experienced users, taking the approach
closer to the end-user application.

We consider that these are main challenges in human motion analysis research, as it is
a field that has reached certain level of maturity but methods are still hardly implemented

out of laboratories.
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Chapter 1. Introduction

1.2 System Input/Output Perspective: Human Pose from Visual Data

From the perspective of the input and output of the system, this thesis focuses on the
computation or classification of the human pose given image data. On the one side, in
the first part of the thesis, human pose is described by the position of the articulations or
joints of the human body. The goal of the proposed methods is to determine these points
or, equivalently, the rotational angles that adopts each skeleton bone with respect to the
joint where it is attached. In the second part of the thesis, we restrict ourselves to a subset
of human poses that involve certain configurations of arms and hands, which we denote
as static gestures. The goal of the methods proposed in the second part is to localize and
classify instances of these poses to the class they belong or, otherwise, to classify them as
the background class. If we consider it from the point of view of the input data, we deal
with color video data from multiple cameras and with depth data captured from a single

camera. In the following we define these concepts within the context of this work.

Motion Capture The obtention of the position of the joints of the human body is
commonly known as motion capture. Motion capture has been usually achieved by means
of optical sensors and markers attached to the body of the performer. When the system uses
color video cameras and the performer does not wear any marker, it is called Markerless
Motion Capture (See Figure . The concept pose estimation is also widely used in
computer vision literature, but it usually refers to methods that determine the pose of a
subject in 2D from a single image, that is described with body part bounding boxes or stick
figures (See Figure [I.1lc ), which is not the goal of this thesis. Thus, we will refer to the
methods proposed in this thesis as Markerless Motion Capture (MMC) systems. Motion
capture data can be an input for activity recognition or can be used for avatar animation.

Therefore, it is a basic step for several human motion analysis systems.
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Chapter 1. Introduction

Figure 1.1:  (a) Motion capture suit and application from VICON [4] (b) Markerless
motion capture scene in the Organic Motion setup [3] (¢) 2D pose estimation from a single
image by Ferrari et. al [43]

Gesture Localization Pose estimation has also been approached as a pixel classification
problem, where the goal of the method is to classify each pixel of the image as belonging
to a body part. This approach obtains the pose with an ensemble of body part detectors
or a single body part classifier [I08]. Pixel -or part- based classification techniques have
achieved best performance with the development of depth cameras. From depth data, the
bones positions and joint angles can be obtained by exploiting the 3D information per pixel.
These techniques have a strong background coming from the object detection and image
parsing and classification research fields. The recognition of the hand and arms pose that
conform a static gesture is a problem that can also be approached as pixel classification. In
this thesis, we call this problem gesture localization. The methods we propose determine
the position in the image and the type of gesture that is performed, which inherently is
a hand and arms pose. Gesture localization is a building block of gesture-based human

computer interfaces.

Multi-view video Capturing video from multiple cameras simultaneously has advan-
tages with respect to monocular video, as it facilitates the extraction of 3D information
from the scene and people, and allows to overcome occlusions. In this thesis, we make use

of multi-camera setups for the motion capture experiments. Such settings require synchro-
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nized cameras and a calibration [2I] that will permit projections and back-projections to
obtain 2D-3D correspondences. Some recording studios use a high number of cameras (8
to 16 cameras or more) with high frame rate (=~ 60 fps) and high resolution, as their goal is
to obtain accurate 3D reconstructions of the performers. In our case, we consider settings
with lower number of cameras (4 to 6) and regular frame rate (25 fps), in order to propose
solutions that may bring motion capture out of studios, in scenarios with less technical
resources. Note that this introduces new challenges, as some approaches employed in the
former case may not be applied to the latter case due to occlusions, lack of resolution and
difficulties to deal with abrupt motion. The methods proposed in this thesis are specially

designed to overcome these problems.

Depth cameras Depth cameras have recently evolved to provide good resolution at af-
fordable cost. Common difficulties in human motion analysis when using color images such
as illumination changes, color and texture variability, foreground background segmentation
or scale, are not present or become straightforward when using depth data. Thus, recent
methods proposed for motion capture use depth data to take advantage of its potential to
describe human body shape and its parts. Motion capture using depth sensors is a very
robust and accurate solution for certain scenarios, but depth sensors have a limited range
(usually <5m), and its usage outdoors is still limited. Also, multi-camera setup is limited
due to interferences between sensors. Thus, in outdoor scenarios or large spaces one should
rely on color cameras. Even though, depth sensors are ideally suited for human computer

interaction and we demonstrate its usage by means of a gesture localization method as

described in Chapter [3]
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1.3 Probabilistic Model Perspective:

Generative and Discriminative Models

With respect to the probabilistic models adopted to infer the pose of the human body, one
can rely on generative or discriminative models, or a combination of both [93]. In this
thesis we have explored both approaches: in the first part we adopt a generative model

and, in the second part, we rely on a discriminative model.

Generative model In the motion capture problem, we define a state representation (a
3D human model with joint positions or angles) and the goal is to compute the conditional
distribution for the model state given image observations. When adopting a generative
model, we require a constructive form of the observation (the observation likelihood or
cost function) and the 3D model is explicitly used for inference. Then, the process consists
in exploring the search space to locate the peaks of the likelihood function. The model state
conditional distribution is obtained using the Bayes rule with the observation conditional

and the state prior.

Discriminative model In discriminative methods the state conditional distribution is
estimated directly, such that it simplifies inference. To do so, a supervised approach is
adopted by using a set of examples of 3D human configurations paired with their images
appearances (observations). Most of monocular pose estimation research follows discrimi-
native approaches, in scenes where generative approaches fail due to the ambiguities present
when only a single viewpoint of the actor is available. But in these cases, the performance
of the discriminative approaches is limited either to viewpoints or to the type of actions
present in the training examples of the dataset. The amount of data required to gener-
alize in viewpoints and actions is massive and, even in the case when data was available,

obtaining accurate results is still a problem that requires further study.
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Chapter 1. Introduction

We rely on a generative model for motion capture in multi-camera setups, as it allows to
cover an unconstrained set of actions, taking advantage of the multiple viewpoints to solve
inference. On the other side, we adopt a discriminative model in the gesture localization
task, as in this case the viewpoints are constrained to a frontal view, and the set of poses

to recognize is limited to a small number of gestures.

Training data Human motion analysis by means of supervised approaches requires large
amount of training data, mainly because pose, viewpoint and clothing introduce high vari-
ability in the appearance of body parts, which makes harder the generalization of detectors
or classifiers. Collecting training data requires expensive setups, with optical sensors or
range scanners, and recording long sequences of actors performing desired actions. More-
over, one should add the time dedicated to annotation tasks. This issue is relevant for all
the techniques proposed in this thesis. In the first part of the thesis, dedicated to motion
capture, a generative approach is proposed in order to overcome the difficulties of col-
lecting the massive amount of training data required to employ supervised discriminative
approaches. In the second part, an interactive learning approach for gesture recognition is
proposed, which reduces considerably the amount of time needed to record, annotate and

train the classifiers, by fusing all these steps in a single semi-automatic interactive loop.

1.4 Contributions

In this thesis we study the problem of 3D pose estimation from multiple views and from
range sensors towards the obtention of full body pose or the recognition of gestures. The

thesis is structured in two parts:

1. Stochastic Optimization for Motion Capture We focus on the problem of mark-

erless motion capture from multiple views, and these are the contributions:
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e An stochastic optimization framework called layered particle filtering (LPF) that
generalizes existing approaches of the state-of-the-art and can be employed in

distinct motion capture multi-modal multi-dimensional optimization problems.

e A method for human body anthropometry estimation from silhouettes in mul-

tiple views that uses the LPF optimization.

e An approach to approximate partitioning of observations used in LPF optimiza-

tion towards motion capture from multiple views.

e A detector-driven approach in the LPF framework where body part detectors

are used to guide the optimization.

2. Interactive Machine Learning for Gesture Localization We focus on the prob-
lem of gesture localization using depth data, and we propose an approach to reduce
the efforts in the task of recording, annotating and training classifiers by using an

interactive machine learning perspective. These are the contributions:

e A depth clipping test for a random forests approach to gesture localization that

improves performance in presence of background objects or clutter.

e A gesture localization approach using online random forests with hard negatives
mining by means of on-the-fly detection. Training is performed online and the
time for training is considerably reduced. The experiments show improvements
in performance compared to the offline version, when both are trained with

datasets with a low number of examples.

e An interactive machine learning method for gesture localization training using

online random forests.

A comprehensive list of the contributions of this thesis, including related references of

journal papers and conference publications is detailed in the conclusions chapter.
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1.5 Thesis organization

The thesis is divided in two chapters that describe the contributions of each part.

In chapter 2, the Layered Particle Filtering stochastic optimization framework is de-
scribed. Then, the contributions towards markerless motion capture using LPF are pre-
sented with their corresponding experimental results.

Chapter 3 presents the approaches towards gesture localization. First, we introduce
the method to localize gestures on depth data using random forests and the depth clipping
test and the corresponding experimental results. Then, we present the gesture localization
method using online training and we compare it experimentally with the offline counterpart.
Finally, we introduce the interactive machine learning approach.

Chapter 4 draws the conclusions of this dissertation.
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CHAPTER 2

Stochastic Optimization for Markerless Motion Capture

The markerless motion capture task from multiple views in unconstrained scenarios is a
complex problem that has been addressed by a great number of researchers. It is a high
dimensional estimation problem where the observation models density distributions are
multimodal due to the nature of image features together with viewpoint ambiguities and
human body parts self-occlusions. Using a high number of cameras at high capturing
frame rate the problem can be solved by means of local optimization, starting from the
pose estimated at the previous frame. But the local optimization approach is not suitable
when the number of views is low (4 to 6) and capturing frame rates are relatively low (25
fps) because the methods are not able to capture abrupt motion and self occlusions, and do
not recover from errors. In this thesis, we propose an stochastic optimization framework
that allows to deal with multimodal densities in high dimensional estimation problems.
The framework, called Layered Particle Filtering (LPF) is explained in Section 2.2, The

LPF method has been employed successfully for motion capture tasks in environments with
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Chapter 2. Stochastic Optimization for Markerless Motion Capture

few cameras and unconstrained background.

One of the tasks where LPF is used is anthropometry estimation. In model-based
markerless motion capture a human body model is needed in order to infer the pose of
the subject by means of cost functions. Motion capture is improved if an accurate human
body model of the subject being tracked is available. Some research studies assume that a
body scan of the subject is available, and the methods rely on such scan to construct an
articulated model useful for inference. For certain applications or scenarios such human
body scans are not available. In this thesis, we propose a method to adjust a generic
human body model to the subject being tracked using multiple views, so that we obtain
the anthropometry and the articulated model adjusted to the subject. The method is
presented in Section [2.3]

An advantage of using a layered approach to multi-dimensional optimization, where
each layer focus to a substate space vector, is that the weighting functions can be configured
to measure the cost in the specific subspace region of the layer. In human motion capture,
measuring substate space variables (pose variables) independently is not possible. Due to
the nature of the observation space (image features) weighting functions usually perform
measurements along the whole observation space. In Section [2.4] we propose a method to
partition this observation space such that weighting functions can measure approximately
the cost of substate space variables. Experimental results show better accuracy in motion

capture tasks, specially in presence of clutter or body part self-occlusions and ambiguities.

In particle filtering based estimation, usually the propagation of particles is governed
by Gaussian diffusion, which makes the search blind with respect to evidence. In order
to perform a more efficient search we propose the use of body part detections that will
guide the propagation of particles. Such approach is presented in Section together with
experimental results that demonstrate better accuracy than an equivalent method using

Gaussian diffusion with the same number of particles.
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Part of the work presented in this chapter has been published in [§8], [81] and [87]. This
work has been done in collaboration with Adolfo Lépez-Méndez.

Next section reviews related work on markerless motion capture.

2.1 Related Work

Markerless vision-based human motion analysis has received much interest over the last
two decades, and it continues to be an active research domain. Several surveys have
been written within the domain of human motion analysis [86], [51], [92] and they present
different taxonomies. We can distinguish, as presented in a recent publication by Sigal
and Black [112], generative methods (model-based), discriminative methods (model-free)
and methods using part-based models (body parts detection). We will focus the review in
generative approaches and in methods using body parts detection, as they are more related
to our work.

In discriminative approaches, an explicit human body model is not available. In these
cases, the pose estimation is based on machine learning techniques using training data, and
current approaches do not generalize well to complex motions not present in the training
data. Generative approaches, also called model-based approaches, use a body model and
a synthesis-and-test strategy to infer the pose at each frame. We will describe the recent
work in generative markerless human motion analysis in section [2.1.1]

Pose inference in a generative method requires solving an optimization problem in a
high-dimensional space, which is a computationally expensive task. A better alternative
for certain applications due to its reduced computational cost is the detection of body parts
directly from image data and then inferring the pose with inverse kinematics. We review
recent work in body parts detection and inverse kinematics in section [2.1.1}

The presence of objects or people occluding parts of the human body may interfere

with the motion capture task. In section we review recent methods concerning the
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Figure 2.1: Generative MMC System Diagram

problem of occlusions.

2.1.1  Generative Markerless Motion Capture

In a generative MMC system, the pose estimation process can be split in a modeling
phase and an estimation phase. The modeling phase consists in the construction of the
likelihood function using image features, the human body model and a matching function.
The estimation phase consists in finding the most likely pose using the likelihood function.

Figure [2.1] shows a diagram of the components involved in a generative MMC system.

Modeling Phase

The parameters involved in the construction of the likelihood function are, first, those
related to the body model used: the body configuration parameters, body shape and
appearance parameters. The likelihood is also related to the kind of observations that we
have, the camera viewpoint and the image features that we use. Model-based approaches

use a body model which includes the kinematic structure and the body dimensions.

Human Body Models The human body models describe the kinematic properties and

the shape and appearance.
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Kinematic structure: Most of the models describe the kinematics of the skeleton as a
tree, consisting of segments that are linked by joints. Every joint contains a number of
degrees of freedom (DOF) depending on the possible rotations at the joint. The number
of DOF of the skeleton varies between the methods from 25 DOF until more than 50
when considering hand and feet movements. The range of the rotation angles is usually
restricted by kinematic constraints, in order to limit the pose space to human feasible
poses. Constraints to avoid interpenetration of the body parts also are useful, but in this

case we need additional information of the shape of the body.
Model shape and appearance: The human body shape is modeled in different ways.

On one side, we have models based on separate rigid shapes, as cylinders [36], ellip-
soids [85], and more generally as a combination of tapered super-quadrics [52]. These

volumetric shapes depend on only a few parameters.

On the other side, surface-based models employ a single surface for the entire body.
These models consist usually on a mesh of polygons than can be deformed by changes on
the underlying skeleton. Several studies use a mesh obtained from a 3D scan (Cyberware
technology [32]) of the specific individual to track, as in [14], [28]. Vlasic et al. [123] use
either meshes from a 3D scan, or meshes obtained from a 3D multiview stereo reconstruc-
tion algorithm. Anguelov et al. [10] propose the SCAPE method to model deformable
surfaces, which is based on models of pose and body shape variation that are learned from
a database of 3D scans. The SCAPE model is used for human motion analysis in [13].
Bandouch et al. [15] use the RAMSIS model [115] which is widely used in the automotive
industry. Its design has been guided by ergonomic considerations and it is precise in the
inner joint locations. Plénkers and Fua [01] use a more complex model based on three lay-
ers: skeleton; ellipsoidal balls to simulate muscles and fat tissue; and a polygonal surface

representation for the skin.

The deformation process of the skin mesh according to the pose parameters is performed
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using techniques such as Skeletal Subspace Deformation also called Linear Blend Skinning
(LBS) [63]. LBS determines the new position of a vertex of the mesh by linearly combining
the results of the vertex transformed rigidly with each bone. A scalar weight is given to
each bone, and the weighted sum gives the final vertex position. LBS has a number of
shortcomings, such as the “elbow collapsing” effect. The technique is improved by using
data-interpolation techniques using a number of example meshes, as proposed in [76] and
[114], which allow correcting the error in the vertex positions introduced by the LBS. Some
models, as for example the SCAPE model [I0], obtain the example meshes from a database
of 3D scans of the same individual adopting distinct poses. Then, the deformation model
is based on a linear blend skinning corrected according to some parameters learned from
the database. Vlasic et al. [123] improve the LBS results using an iterative framework that
deform the shape to better approximate the silhouette contours of the actual image data.

Model initialization: In case of using scanned models the parameters of the shape model
(lengths, widths, etc.) may be assumed fixed. However, when using a generic model, the
parameters should be adjusted to the specific individual in order to avoid innaccurate
pose estimations. Carranza et al. [20] propose an initialization phase to adjust these
parameters, where the subject has to adopt a specified pose. Plankers and Fua [91] perform
the estimation of the parameters during motion over a sequence to determine more precisely

the position of the articulations inside the skin surface.

Image Features and Matching Functions We are interested in methods that recover
the kinematic configuration of a person, using image data captured from several views. The
appearance of people in images varies due to distinct clothing or lighting. To generalize
over these varying conditions, motion tracking systems use cost functions which evaluate

the model configuration against extracted image features or descriptors.

Several approaches use silhouettes of the active people in the scene as image descriptors
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to define the matching functions [36], [14], [26]. Silhouettes are insensitive to variations in
the surface, such as color, and encode great information to recover 3D poses. The matching
functions account for the difference between the projection of the model into a certain view
and the silhouette in this view. However, sometimes it is not possible to recover certain
DOF, when using only silhouettes, due to the ambiguities inherent in the shape described

by a silhouette.

Edges are image descriptors also used to construct the matching functions [36]. Edges
appear in the image at the sharp changes in intensity. Within a silhouette usually provide a
good outline of visible arms and legs. However, when the subject is wearing baggy clothes
edges may lose usefulness. Matching functions take into account the normalized distance

between model’s synthesized edges and the closest edge found in the image.

Edges and silhouettes lack depth information which makes hard to detect self-occlusions.
A 3D reconstruction can be created from the silhouettes of each view, and then use this
reconstruction to build a matching function. The visual hull is the volume obtained from
the intersection of the silhouette cones [75]. Several methods use matching functions that
account for the intersection between the model and the visual hull of the individual [123],
[28], [85]. Instead of using the visual hull, Plankers and Fua [91] use depth maps, computed
by stereometry using two or more cameras. The matching function in this case is based on

closest point distance between the model and the points extracted from the depth map.

Motion measurements such as optical flow are also used as image descriptors. The
optical flow information consists in a set of correspondences between pixels of consecutive
frames. The pixel displacement in the image is used by Bregler et al. [23]. Ballan and
Cortelazzo [14] compare the pixel correspondences in consecutive frames with the projection
of the vertices of a deformable model in the same consecutive frames.

Color and texture is also used to describe the appearance of individual body parts.

Skin color can be a good cue for finding head and hands and is used as feature by Lopez
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and Casas [79].
Image descriptors are usually combined to build more robust likelihood functions. Sil-

houettes are combined with edges [36], with optical flow [14], with depth maps [91] or color
[79].

Estimation Frameworks

The estimation process is concerned with finding the set of pose parameters that maximize
the likelihood function. Often, instead of a likelihood function, we define a cost function
or error function, and we search for minima instead of maxima. In the following we will
consider that we search for minima.

Cost functions usually have many local minima. Also, the dimensionality of the search
space is high. Some methods rely on a estimation based on a single hypothesis, focusing
on the efficiency of a local search. On the other side, we have approaches maintaining

multiple hypothesis in order to reduce the probability of getting stuck at a local minimum.

Single Hypothesis Tracking Assuming that the time between subsequent frames is
small, the distance between body configurations is likely to be small as well. This assump-
tion provides us with an initial pose estimate, using the estimated pose of the previous
frame. Single-hypothesis based tracking performs a local search around the initial pose
estimate.

Several authors use local-optimization methods to perform the tracking. A common
approach is to define an objective function in a least-squares framework [14], and then
minimize the function using a gradient descent approach, using for example the Levenberg-
Marquardt method [94]. Carranza et al. [26] use Powell’s method and a simple downhill
method [94] that does not need derivatives of the objective function. In our previous

work in [7], we compared Powell’s method with a multiple hypothesis tracking approach.
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Delamarre and Faugeras [33] perform the search in the image domain, using forces between
extracted silhouettes and the projected model to refine the pose estimation. Stoll et.
al. [116] propose a method that performs nearly real-time with very accurate results,
using local optimization and a body model based on spatial Gaussians specially suited for

computational efficiency.

Multiple Hypothesis Tracking Single hypothesis tracking may introduce an accumu-
lation of errors. If a wrong pose is obtained, due to ambiguities such as self-occlusions,
maintaining a single hypothesis may propagate the error, and the recovery becomes diffi-
cult. To solve this problem, several approaches maintain multiple hypothesis.

Sampling-based approaches, such as particle filtering [62], [I2], are able to track non-
linear motion, as in the human motion case. In a particle filtering scheme, each particle
or hypothesis has an associated weight, that is updated according to the cost function.
The particles are propagated in time according to certain dynamics and including a noise
component. In the case of human motion, the high dimensionality requires the use of many
particles to sample with sufficient density the pose space.

A solution to deal with the high dimensionality is to spread the particles efficiently
where a local minimum is more likely. For example, Deutscher et al. [36] use simulated an-
nealing to focus the particles to the global maxima of the posterior. Another solution to the
problem of the dimensionality is to partition the space into a number of lower-dimensional
spaces [83], [25], considering the underlying hierarchical structure of the kinematic tree.

Gall et al. propose a framework in [48] that combines a multiple hypothesis method with
local optimization and provide an experimental comparison of the method with particle

filtering, annealed particle filtering and local optimization methods.

Body Parts Detection and Inverse Kinematics An alternative to full-body synthesis-

and-test strategies, is to detect body parts and then infer the skeleton pose using this in-
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formation. Some of these techniques are widely studied in the field of pose detection from a
single image. An advantatge of those approaches is that they do not require initialization.
Besides, in case of ambiguites due to lack of information, as in monocular settings, they

can provide better results than synthesis-and-test tracking strategies.

Several methods use part-based models. In these methods, the human body is repre-
sented as a probabilistic graphical model, where nodes of the graph represent body parts
and the edges model the relation between these distinct parts. Body parts may be detected
using discriminative techniques widely studied in the field of object detection [122]. Also,
some methods generate hypothesis for the body parts locations and evaluate the likelihood
of the distinct body parts independently. Pictorial structures [42] is a part-based model
commonly used [96][113]. Recently, Bergtholdt et. al. [I8] presented a generic framework
that allows detection of any class of part-based objects, which achieve relevant results in
human body pose detection in a multiview setting. Sigal et. al. [110] presented a model
specific for human body parts detection that is included in a tracking framework: it ex-
ploits temporal and spatial information by modeling the relationships between joints at a
given time instant and over time. In [98] the detection of body parts is performed using
depth maps obtained from range scans. They use a detector that matches the 3D model

parts with the surface and edges discontinuites in the depth data.

In order to take advantage of the efficiency of body part detections, Ganapathi et. al.
[50] include the detection of limbs and head in a synthesis-and-test tracking framework. The
method achieves real-time performance and uses a single time-of-flight camera. The body
parts detection used is based on geodesic distances computed from the depth maps captured
[90]. Then, they propose probabilistic inverse kinematics to combine the detections with a
generative tracking approach. In case of failure of detection of a part, the pose is estimated
only considering the generative part of the system. Also based in a single depth camera,

Shotton et. al. [I0§] presented a method for detection of body parts from single depth
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images, that performs in real-time with accurate results, and is the building block of the

pose recognition system implemented in the Microsoft Kinect SDK.

This kind of methods described above require a training phase using annotated data
in order to learn the models parameters or to detect and classify the distinct body parts.
The motion capture method proposed by Correa et. al. [29] extracts positions of the body
extremities from 2D silhouettes using geodesic distances and mathematical morphology
and does not require any training data. Alternatively, the extraction of the position of
the extremities may be computed from 3D data obtained from multiview reconstruction
or range scans. FExtraction of features points from 3D data as polygonal meshes has
been studied as a requirement for computer graphics methods for segmentation or shape
matching and retrieval. Some authors propose to extract feature points from meshes using
geodesic distances [67][132]. Hu et. al. [61] presented a method for extraction of salient

features in the spectral domain using the Laplace-Bertrami operator.

Focusing in 3D interaction through full body movements, several methods rely on de-
tecting the 3D position of hands, head and feet and then recovering the body posture using
inverse kinematics. The inverse kinematics problem is under-constrained, so the resulting
pose will depend on the inverse kinematics method employed. In [22], Boulic et. al. evalu-
ate the efficiency and accuracy of several numerical and analytical methods. Jaume-i-Capd
et. al. [64] propose a method to add image constraints to the inverse kinematics estimation
such that image features guide the reconstruction of the pose. An alternative to numerical
or analytical inverse kinematics solvers is to formulate the problem in a probabilistic frame-
work, such as using inverse kinematics particle filtering [30]. In this case, constraints (e.g.
image constraints or arbitrary constraints) may be considered also in the pose estimation.
The method proposed in [58] performs tracking of the distinct end-effectors using particle
filters, and then solves the pose using inverse kinematics with a numerical approach. In

this manner, the number of DOF of the tracking search space is reduced which results in
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a reduction in the computational cost.

2.1.2 Tracking in Cluttered Scenes

Although several probabilistic methods presented in the previous sections are motivated
to face the problems that appear in cluttered scenes, we review in this section some papers
that have presented techniques focusing specifically in the problem of occlusions or multiple
people interacting in the scene.

Bandouch et. al. [16] propose solutions to deal with dynamic objects and with static
occluders in a fullbody tracking framework based on foreground silhouettes. In this method,
they use a color-based appearance model for the human body that is used to mask out
the foreground detections of objects that do not resemble the human model appearance.
For static objects they manually set masks in the image regions that are candidate for
occlusion by static objects in the scene such as tables.

Egashira et. al. [40] focus on motion capture of multiple people interacting. The
method proposed performs a 3D voxel based reconstruction using foreground silhouettes,
and labels the voxels that belong to each person using color information. Then, a body
tracking system for a single person is used using the multiview projection of the segmented
3D voxel data.

In multiview settings, the usage of 3D data obtained by reconstruction methods facil-
itates the task of resolving occlusions caused by other people or moving objects present
in the scene. Unfortunately, 3D reconstruction methods tend to fail in presence of static
occluders. Some authors have presented reconstruction methods robust to foreground de-
tection misses, as it occurs in case of presence of occluders, by using the reprojection error
[74][56]. From another point of view, some methods reconstruct the static occluders by
analysing the foreground detection misses during a period of time [68][54]. Schick et. al

[104] propose a fast reconstruction method using GPU that considers static occluders if its
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3D position is known in advance.

A distinct approach focusing the problem of background clutter, dynamic background or
occlusions is to perform segmentation and pose estimation jointly in an iterative manner
[99][73]. In these methods, the shape of the model is used as a prior to improve the
image segmentation, and then the image segmentation is used to estimate the pose. The
segmentation is accurate as it uses a precise shape model of the object to segment. Also,
these methods allow to give more relevance to the shape prior than to the image contours
in order to improve robustness to occlusions. In [57], a method for joint segmentation and

pose estimation is used for human motion capture using moving cameras.

2.2 Stochastic Optimization Framework

Markerless motion capture has been widely studied from a visual tracking perspective.
In this context, a common approach is to formulate the problem as a Bayesian tracking
problem. Let us denote the configuration of the target at time ¢ as x; (e.g. human body

pose parameters at time t), which evolve according to an underlying stochastic process

Xep1 = fe(xe) + Vi, (2.1)

where f; is a possibly nonlinear function and v; is noise. Measurements acquired up to

frame t are denoted as Z; = zq, ..., 2;, with

Z; — ht(xt) + n;, (22)

where h; is again a possibly nonlinear function and n; is noise.
The Bayesian tracking problem, also called the filtering problem, consists in apply-

ing Bayes theorem at each time step, obtaining a posterior p;(x;|Z;) based on available
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observations as

pe(xe| Z1) = pt(Zt|Xt>]it<th<)Xt|Ztl) ) (2.3)

where we can write p;(z;|x;) instead of py(z;|x;, Z;_1) because the measurements Z; are
assumed to be conditionally independent. A model for the expected motion or the dynamics

of the system is introduced with the form of a conditional distribution p;(x¢|x;_1) such that

eq. (2.3 becomes

pt(zt’Xt> fpt(xt‘xt—l)pt—l(Xt—1|Zt—1)dXt—1

pt(Xt‘Zt) N pt(zt)

(2.4)

Particle filters [12] are introduced to approximate the solution of this equation for the case
of non-Gaussian observation densities. The idea behind particle filtering is to simulate the
operations on density functions in eq. by means of a weighted particle set: a list of
n pairs (x, 7)) i = 1,...,n, where x®) € X (the configuration space) and 7 € [0, 1]
with Y7 7(® = 1. The particle set represents a probability distribution p(x) in the sense
that choosing one of x(* with probability 7(*) is approximately the same as drawing a
random sample from the distribution p(x). Such representation is convenient as it allows
to easily perform operations (e.g. products, convolution) between distributions that are

not Gaussian.

In a markerless motion capture system, models for f;, h; and noise (v;, w;) usually are
not available, so methods rely on approximations or weak models which lead to a poor
performance of particle filtering for the motion capture task. Although models for the
observation process and noise are difficult to obtain, it is easier to design a weight function
w; which measures the quality of particles using image features. In this manner, methods
combine particle filtering with optimization techniques in order to guide the particles to the
maximum of such weight function w;. Such approaches are not solving anymore the filtering

problem but an optimization problem, so can be seen as multiple-hypothesis stochastic
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optimization methods.

So, markerless motion capture can be formulated also from an optimization perspective.
An error function measures the correspondence between the human body model and input
images, and the goal is to find the optimal model parameters x € X(the configuration
space) that minimize such function. Such error function can be formulated inversely such
that it behaves as a weight function (i.e. w; introduced above), so the goal would be to
maximize the weight function. In optimization literature, authors usually formulate the
problem as a minimization problem. In this work, in general we will formulate the problem
as maximization of a weight function, but we may use minimization when introducing well-
known optimization techniques.

Local optimization methods such as gradient descent approaches may work if the start-
ing point is close to the global minimum, but if it is not the case, the solution obtained
by these methods frequently would be a local minimum far from the best solution. In the
articulated tracking problem, the pose parameters of previous frames in the sequence may
be used as starting point in current frame pose optimization. In case of fast movements or
occlusion the optimization error will accumulate.

In this work, we build on multiple-hypothesis stochastic optimization methods in or-
der to exploit the advantages of filtering based approaches such as temporal correlation,
robustness to noise and recovering from errors, combined by the precision obtained by
optimization techniques when reaching the maximum of the weight function. We will
first describe more in detail the particle filtering principles to then proceed to stochastic

optimization based on these principles.

2.2.1 Particle Filtering

Particle filtering is a Monte Carlo or random sampling method to recursevely estimate the

posterior py(x;|Z;) (eq. based on the importance sampling technique. The posterior is
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represented by a weighted particle set (XEZ), 7T§ )), 1t =1,..., N, so that the posterior density

can be approximated as

(x| Z)) ~ Zwt (x, — x\). (2.5)

Following the importance sampling principle, samples xgi) are generated from a proposal
distribution q(x;|Z;, x;—1) from which it is easy to draw samples. The weights are computed
recursively as

Wt(i) o ng)lpt(zﬁxt)rgi) (2.6)

where Tt(i) is a factor given by

(3) pt(Xt|Xt—1)
ry == 2.7
Q(Xt|Zt7Xt—1) ( )

that corrects the bias introduced by sampling from a wrong distribution. It is a common
choice to use the motion prior as a proposal distribution (i.e q(x¢| 2, %;-1) = pe(X¢|x¢-1))
so that ry) = 1 and weights are easily evaluated. The drawback of this choice is that the
proposal distribution is blind to the current observation, so samples may be placed far

from the modes of the likelihood and in consequence from the modes of the posterior.

As introduced above, in the motion capture task, the likelihood is approximated by a
weighting function designed to achieve maximum values when a human body model fits
observation data. Moreover, the motion prior and proposal distribution are also design

choices validated experimentally because its models are not available in a closed form.

In this work, we propose methods based on particle filtering principles, but we rely
also on approximated forms of the likelihood, motion prior and proposal. For this reason
we formulate the technique from a more generic perspective, where the common parti-
cle filtering run is considered a building component for further development of stochastic

optimization methods. We follow the concepts introduced by Gall et. al [49] about inter-
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active particle filtering strategies, but we rely on heuristically justified algorithms rather
than studying the convergence and mathematical properties of the transition kernels and
weighting functions as it is done in [49].

In this context, the generic particle flltering run requires two main design choices:

e to define the Markov transition kernels K; on X.

e to define the weighting functions w; : X — R.

With such functions defined, the basic algorithm, which runs for each iteration param-

eter ¢, can be divided in three steps as described in algorithm

Algorithm 1: Generic particle filtering run (GPFRun)
Input: initial unweighted particle set (scf))i:l,,,.,Ns, Ky, wy

Output: next unweighted particle set (igl)izl’._JW

1. Update:
o Set 7V « w,(x\") Vi

o Set 7" _m Vi
t D e
2. Resample:

e Set (Xﬁi))ifl ~. by drawing N, times with replacement

from the set (}“{EJ )) j=1,...N, With probabilities Wt(j )

3. Propagate:
e Sample )"(gl from Kt(xii)) Vi

return (igl)zle

Note that in general, the weighting function w; will depend on images Z;, but also
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the kernel K; may consider Z; in order to take into account data in the propagation step.
Following an optimization perspective, the propagation step is related with the concept
of exploration of the search space used in metaheuristics optimization literature [20]. The
update step evaluates the samples with the actual weight function. The resample step
reduce the so called effect of degeneracy of the particles: after several iterations of propagate
and update steps, a large proportion of the particles would have negligible weight, and
the computational effort would focus in updating particles with no contribution to the
posterior approximation. By introducing the resample step, such degeneracy problem is
avoided, particles that have small weights are eliminated and replaced by particles with
large weights. The resample step takes the role of exploitation, a term introduced in
metaheuristics optimization algorithms design, that is to focus the search in local regions
of the search space knowing that a good solution is found in this region. In fact, the generic
particle filtering algorithm has close similarities with Particle Swarm Optimization [69], a
metaheuristics optimization method which also makes use of a particle system. These
similarities have been described by Zhang et. al. [I30] in the context of visual tracking.
Figure shows a graphic example of the operation of the steps of a generic particle
filtering run.

The baseline kernel and weighting functions that would be used for motion capture

tasks throughout this work are the following functions:

e Gaussian kernel function: the simpler approach to propagate particles would
employ a Gaussian transition kernel. Thus, in this case Kt(xf)) = xl(ti) + N, where
N would be a multi-variate Gaussian distribution with zero mean and a diagonal

covariance matrix.

e Silhouette XOR weighting function: the basic weighting function for motion

capture tasks would be the Silhouette XOR weighting function. Consider input
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Figure 2.2: Graphical example of the generic particle filtering steps. Extracted from [62].

images from which the silhouette of the subject can be computed, for instance through
background subtraction. Then the weighting function is defined in terms of a pixel-
wise XOR between the silhouette S, in each view v and the projection of the outer
shape of a human body model in the corresponding views, M, configured according
to the pose parameters x € X. Then we have the following definition for the weighting

function

wy = exp(— ; C(}SW)XOR(MZ”&)) (2.8)

where XOR denotes the number of non-zero pixel values after a pixel-wise XOR and
C(S,) is the number of pixels of the silhouette on the v-th view. Figure[2.3/shows an

example of pixel-wise XOR.

A well known problem of the standard particle filtering method is that it fails to ap-
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Figure 2.3:  Silhouette XOR weighting function example. (a) Subject view. (b) Foreground
silhouette. (c) Model outer shape superposed. (d) Silhouette pixel-wise XOR

proximate well the pdfs when dealing with a high dimensional state space. The number of
particles required to represent well the pdf grows exponentially respect to the number of
dimensions, which makes the method computationally infeasible. This is the case for body
tracking approaches as the number of variables involved in the human body pose is high.
Two main strategies have been proposed to overcome this drawback: the annealed particle
filter (APF) [36] and partitioned sampling (PS) [83]. We describe in the following sections

the main ideas of both techniques as they will be used throughout this work.

2.2.2 Annealing strategy

Deutscher et. al. [36] proposed a particle based stochastic method, the annealed particle
filter, which uses the ideas of simulated annealing [71] within a particle filtering framework.
The strategy focuses on moving the particles towards the maximum of the weighting func-
tion wy. This is achieved by performing several particle filtering runs, where particles are
weighted by smoothed versions of the weighting function. Such smoothing factor is de-
creased while running iterations such that at first the influence of local maxima is reduced,
but it increases gradually to obtain more peaked functions at the end. This help that

particles do not get stuck in local maxima.

The common way to obtain this behavior is by defining a series of weighting functions
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of the form

wi (x) = wy(x)°" (2.9)

where 0 < (k) < 1 is a monotonic increasing function that determines the annealing
rate, so as k grows, (k) grows producing more peaky functions.

The APF is presented for body tracking application. In this tracking context, the
method performs a particle filtering run for each layer £ = 0, ..., K and the whole set of
layered filtering runs is repeated for each time step t. The method is designed to make a
distinction between the propagation at layers k € [0, K — 1], which relates to the amount
of diffusion of particles in order to reach the local maxima, and the propagation at layer
k = K, which involves the propagation between time steps, which is related with the body
motion model. Let us term them inter-layer propagation and inter-frame propagation
respectively in order to make more clear the distinction. We describe the APF method
with the formulation introduced for the generic particle filtering (in algorithm , where
the inter-layer propagation is achieved by means of a series of transition kernel denoted as
KFfort € Nand k € [0, K — 1], and the inter-frame propagation is denoted with a series of

transition kernels (K;);en. Note that it uses the function GPFRun presented in algorithm

Algorithm 2: Annealed particle filtering run (APFRun)

Input: initial unweighted particle set (igi))izlw.’m, (K¢)ien, (WF)ien,

(Kf>teN,ke[0,K—1] ‘
Output: next unweighted particle set (igl)izl’._J%
foreach k € [0, K — 1] do

t (ﬁgi))izl,...,m < GPFRun( (Xii))izl,...,Ns, KF, wp);

)it v, ¢ GPFRn( (7). Ko, wl):
return (f(gﬂi:l,...,zvs

=

[

w

I

In the original APF proposed in [36] the transition kernels for inter-layer propagation
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K} are multi-variate Gaussian kernels with a covariance matrix specific for each layer as

Ek =g X+ X Op—1 X 20 (210)

where ay, ..., ar < 1 are a variance decay rate, and X is the default variance that accounts
for reasonable motion from frame to frame. Such variance decay rate is related with the
rate of annealing, with the idea that at initial layers the diffusion applied to particles is
greater, and as k grows the variance of the Gaussian diffusion is reduced to concentrate

the particles at the maxima of the weighting function, just when it becomes more peaked.

2.2.3 Partitioned sampling strategy

Partitioned Sampling (PS) was introduced by McCormick et al. [83] to overcome the
problem of tracking in high-dimensional state space. The approach is based on dividing
the state space into partitions an sequentially applying simple particle filter runs to each
partition. In such way, the number of particles required to sample the state space is
reduced. Given a partitioning of the state space as a Cartesian product X = X} x ... x &}

with £ the number of partitions, the following conditions should hold:

1. The dynamics model p;(x¢|x¢—1) = d can be decomposed as d = d; * ... * dy with
each d; acting on X = &; x ... x &}. For example, given X = X} x &y x A3, such
condition means that if x = (x1,x9,x3) and x' = (x], x},x}) with x;,x} € A}, and
x’" is a random draw from ds(-|x), then x| = x;. By means of such partitions of the
dynamics, dynamics at each filtering run do not change the values of the projection

of any particle into the preceding partitions of the configuration space.

2. Weighting functions wy, ws, . .., w,_; are available with w; peaked in the same region

as the posterior restricted to Xj.
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Such partitioning strategy in the dynamics model is convenient for articulated objects
tracking because pose variables have an inherent ordering within kinematic chains. By
setting the partitioning according to the kinematic chain ordering the first condition for
dynamics is straightforward. The second condition is a hard requirement because designing
weight functions that measure the matching of a particular part of the object would require
a segmentation of the input data features to separate the features belonging to each part,
which is not easily achieved in unconstrained image-based tracking conditions.

Duffner et al. [39] proposed a relaxed partitioning strategy in order to allow more
precise weight functions. The approach performs a partitioning related to the available
image feature cues, such that subspaces of the state space may not be independent (in
PS they are independent) but are grouped such that a weight function can measure with
reliability the particle variables for the particular subspace. In order to manage the fact
that substates are no more independent they introduce a prior in the dynamical model to

define the pair-wise interaction between substate spaces [39)].

2.2.4 Layered Particle Filtering

Both strategies, annealing and partitioned sampling, can be combined in a single method
to take profit of its benefits. On one side to move particles towards the maximum of
the weight function, and on the other side to reduce the number of required particles to
efficiently sample high dimensional search spaces.

Let us introduce some notation. Let us denote X = (xy,...,%,,...,zy) the random
vector that conforms the state space, where z,, are real-valued random variables. Let us
denote ¥, = {4g,...,Ya,...,¥p}, with ¢y € {1,..., N}, the set of coordinate indices that

conform a sub-state space vector of X. We denote such sub-state space vector X¥i =
(.I‘wo, e ,xwd, Ce ,SL’wD).
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A layered filtering strategy consists on performing several particle filtering runs, each
of them focusing on different sub-state space vectors. Each of these runs is called a layer.
For each layer [ a sub-state space vector is defined by W;. The algorithm is similar to the
annealed particle filtering run, except that in this case the Kernel and weighting functions
will be dependent on the sub-state space of the current layer. In fact, the annealed particle

filter can be considered a particular case of the layered particle filter.

In this case, we should choose particular transition kernels that consider the sub-state
space vector at each layer. For instance, a baseline choice is to define the transition kernel

as a multivariate Gaussian distribution with zero mean, and a covariance matrix computed

as follows. Let’s denote Xg = diag{c?,...,0%,...,0%}, where ? are default variances for
each state variable. The covariance matrix ¥’ = diag{c??, ..., 0/, ..., 0%} of the Gaussian

distribution for the layer {, K' = A(0,%) is computed as in Algorithm [3}

Algorithm 3: Compute X'
Input: current level [, decay rate v, coordinate indices (V. )mep,z—1], 20

Output: X' = diag{c?,..., 0%, ... 0%

=

foreach v € [1, N] do

2 if v € U, and ¢ ¢ ¥, then
2 _ 2.
3 05 =0y
4 else
5 foreach m € [1,] — 1] do
6 if v € U, then
7 op =V "oy)?;
8 else
2 _
9 i oy =0;
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Similarly, we restrict resampling to variables that have been already filtered (see Algo-
rithm ). By doing so, the sample set is able to retain some diversity on dimensions of the
state space for which neither dynamics nor observations have been introduced yet in the

filtering process.

Algorithm 4: Layered Resampling

Input: current level I, weighted particle set (x@, 7(),_; v,
coordinate indices (W, )mep

Output: resampled particle set (X9);_; .

[y

CDF = {cdfy,...,cdfng} = 0;

2 foreach i € [1, N do

3 L cdf; = edfi—1 + 7,

a41=1;

5 ug ~ U y-1 ; // Draw a starting point

6 foreach j e [1,N,| do

7 u; =ug+ N;'(j—1);// Move along the CDF

8 while u; < cdf; do

9 1=141;
10 foreach m € [1,/] do // Assign variables up to layer [
11 foreach ¢ € ¥,, do j;g) “ xf;);

Let us denote GPFRUN —with — 1ayerea — resampring, the generic particle filtering run introduced in
section with the particularity that it employs the layered resampling method described
in algorithm[d Then, the Layered Particle Filtering method is summarized by the following

algorithm:
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Algorithm 5: Layered particle filtering run (LPFRun)

Input: initial unweighted particle set (fcf))i:l _____ Noy (Kp)ten, (wzlt)tGNJE[O,L])

(wa)tGN,le[O,L—I]
Output: next unweighted particle set (5(521)1:1 N.

1 foreach [ € [0,L — 1] do

L (&gl))Z:L’NS <— GPFRun—with—layered—resampling( (igZ))l:L’NS, Kg(\:[ll), U)é),

N

(figl)i:L...,NS < GPFRun ( (figi))i:L...,NS, K, wh);

NG
4 return (X}, )1, N,

w

In the following sections we introduce our proposed methods for motion capture tasks,
which use the LPF framework configured according to the requirements of the task. When
the LPF layering configuration follows a hierarchy of sub-state space vectors we denote the

strategy Hierarchical Particle Filtering HPF.

2.3 Anthropometry estimation using multiple view silhouettes

In this section we introduce a method to estimate the anthropometry of a subject using
multiple views. The goal is to adjust a generic human body model to fit the shape of the
subject being tracked, and in this way improve the accuracy of motion capture methods
that employ the resulting body model for inference.

First, the approach used to build the articulated body model and how it is deformed to
adopt distinct poses is explained. Then, we present the skeleton based shape deformation
framework. This approach allows to obtain a range of human shapes according to a set of
body part scale parameters.

The skeleton based shape deformation framework is used for inference of the anthro-

pometric parameters of the subject body in LPF optimization using weighting functions
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based on multiple view silhouettes.

2.3.1 Human Body Modeling

The human body model comprises two components: an articulated skeleton that describes

the kinematic properties and a triangular surface mesh that describes the shape.

The body skeleton can be described by the kinematic tree concept. A kinematic tree is
a set of D reference systems organized in a tree structure, and it represents the connectivity
of the joints and bones of the skeleton. A kinematic chain is an ordered subset of joints
such that all joints are father and son of each other. We call A; the kinematic chain that
ends at joint j.

The rigid body motions associated to each joint can be represented by twists §;. The
homogeneous matrix M € SE(3), which represents the transformation from the model
reference system to the joint reference system, may be constructed from a given twist by
computing the exponential map as M = exp(@f ), where 05 is the matrix representation of
a twist & [23].

The rigid body motion associated to a joint can be obtained as the product of the
exponential maps along the corresponding kinematic chain,

n;
M; = [ [ exp(O,6)én,0) (2.11)

i=1
where n; is the number of joints involved in the kinematic chain A; and A;(7) is a mapping
that represents the order in the kinematic chain. The parameters of éj are known, as
the location of the rotation axes for each joint is part of the model. Thus, the state of
the kinematic tree, i.e the pose of the body, is defined by the joint angles state vector

and the 6 parameters of the twist &, associated to the model reference system, ® :=
{(017 SR eD) U <£0)}
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We model the skin with a 3D triangular mesh whose vertices can move in space ac-
cording to weights assigned to each vertex. The mesh deformation is achieved with the
linear blend skinning (LBS) technique [76]. If v, is the position of the vertex ¢, M; is the
transformation of the bone j, and ¢; ; is the weight of the bone j for vertex ¢, the position

of the transformed vertex is given according to LBS as
D
vi=> i (M;vy) (2.12)
j=1

The skinning weights ¢; ; are generated with the automatic rigging software Pinoc-
chio [I7]. The weights are proportional to the distance from the vertex to the bone, and

vary smoothly along the surface. These weights are normalized such that Z]D:1 wi; = 1.

2.3.2 Skeleton based Shape Deformation

In order to obtain different configurations of the shape and pose of the model, the LBS
technique for deformation of the skin mesh is applied for three types of transformations M

(see Figure related to the bones of the skeleton:

e Pose deformation: The mesh is deformed to achieve a specific pose represented by
the state vector ®, where the bone transformations M; are obtained by the product
of maps described in equation Then the final position for each vertex can be

computed using equation [2.12]

e Scale deformation: In this case, the mesh is deformed according to the scaling of
a bone of the skeleton. Consider a bone j with length S that is scaled such that
its final length is S = (1 + ;)S. Then, the transformation associated to a bone
M; corresponds to a translation along the direction of the bone, by an amount of

translation S’ — S. Note that scaling a bone implies that the resulting translation
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must be applied also to the child joints along the corresponding kinematic chain.
Once the translation matrices for each bone are already defined, the new position for

the vertices of the mesh can be computed again as in equation [2.12]

o Deformation in radial direction: The mesh also can be deformed along the radial
direction of the bone. In this case, we compute a translation direction t;; for each
vertex of the mesh ¢ and bone j, defined as the direction from the vertex position v;
to the closest point on the considered bone j. For each vertex and bone we obtain
M, ;, as the transformation equivalent to the translation 3;t; ;. The parameter 3;
is the radial scale associated to the bone j. In this case, the vertex positions are
obtained in the same way than for LBS described in equation but, in this case

the transformation matrix M, ; is specific for each vertex and bone.

This type of deformation is slightly modified to account for radial deformations pre-
dominant along a certain direction. This is useful for example for the torso, where
we can apply deformations along x or y independently, to describe torso width or
depth. To obtain this type of deformation, the translation t;; is weighted by its

scalar product with the main direction of the deformation.

,.
—e

— O

Figure 2.4: Shape deformations associated with left upper arm bone (in red, edges whose
vertices have w; ; > 0.1) (a) Model at default configuration. (b) Pose deformation. (c)
Scale deformation . (d) Deformation in radial direction.
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CI)k Mk 0',% q)k Mk 0']%
shoulder height 140.0 | 17.0 upperarms 25.5 | 4.0
head 25.0 | 5.0 lowerarms  30.5 | 10.0
clavicles 35.0 | 7.0 legs 90.5 | 17.0
arms 55.5 | 10.0 torso 52.0 | 8.0

Table 2.1:  Anthropometric entities size parameters (mean M; and variance o7) used to
model the probability of acceptance of a particle.

2.3.3 Anthropometry Estimation using LPF

We formulate the problem of estimation of the body shape as an optimization problem
where the variables to optimize are the shape parameters and pose parameters. The
number of parameters that conform the shape of the body is high, as they consist in the
shape deformation parameters v;, f; for each bone, that we described in section [2.3.2]
There is also a dependence of these parameters with the pose, in the way that the pose
should be refined in order to obtain the optimal bone scale parameters.

The shape variables are grouped to conform meaningful anthropometric entities and
to respect symmetry. We define the set of anthropometric entities denoted in table
For example, a meaningful anthropometric entity commonly considered in anthropometric
studies is the shoulders height. To estimate the shoulders height all bones of the torso and
legs are scaled together with the same parameter. In a similar manner, for example, vari-
ables are defined for clavicles, arms, legs and head scale. We denote by ® = {®y,..., P}
the anthropometric entities configuration vector, which consists of mappings to the vari-
ables «; and ;. To consider pose and shape parameters in the optimization the state

vector is defined as X € {® U ®}, where © are the pose parameters described in section

231

To tackle this estimation problem we combine a local optimization method with a
hierarchical layered filtering strategy.

To initialize we perform a sequence of optimization steps using Powell’s method [94] to
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Uy Anthropometric entity and Pose Annealing rate
Uy | Head, Upper Arms, Shoulder Height and © 0.1
. . 0.3
0.8
e e 1.0
Wy Head and &, 1.0
Uy Upper Arms anthropometry and pose 1.0
U Lower Arms anthropometry and pose 1.0
v, Legs lenght and upper legs pose 1.0
Ug Lower legs anthropometry and pose 1.0
Uy Torso, legs and hip width 1.0

Table 2.2: Layering configuration

adjust the pose and global scale of the model, assuming a known initial pose. In this case,
we split the variables of each limb in separate optimization steps, which helps avoiding
local minima, as proposed in [26].

Next, the the pose and shape parameters X are optimized by means of hierarchical
layered filtering. To set the layered filtering optimization we should define the layering of

the search space, the transition kernel functions and the weighting functions.

Layering The partition of the search space for each layer [, denoted by

\Ijl:{wm"'awda"'?wD}

(see Section , is designed such that the scaling of the bones does not affect hier-
archically preceding scale parameters. To do so the ordering is established following the
traversal of the kinematic tree starting from the root. The resulting layering configuration
is detailed in Table 2.2 Note that the first 4 layers implement an annealing scheme with

its corresponding annealing rate.

Kernel functions The Kernel functions K!(¥;) for each partition or layer should be

defined. We propose a set of functions based on the rejection sampling concept [19] that
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Figure 2.5: Model adjustment. (a) Model set at the initial configuration. (b) Model
after global scale and pose estimation using Powell method. (¢) Model after shape and
pose parameters estimation ({® U ©®}) using LPF. (d,e,f) Model adjustment for distinct
subjects.

are configured according to an anthropometric measurements database. For a given layer

[, with its corresponding partition ¥;, and given the current particle X,Ei), the function

K! should generate a new particle Xgl. The procedure K! to draw new samples is the

following;:

1. Create a candidate particle )“(ii) by adding Gaussian noise as 5’<§“ = xgi) + N.

2. Given igi), calculate the actual size Sj for each anthropometric entity

k€ {0,...,M — 1}, and compute the candidate propability as
. k=M-1 B (Sk,]\/fk)2
P = ] e T (2.13)
k=0

“

3. If P()vcgi)) > Tp(iii) ) the candidate particle is accepted, thus xl(le = xgi). Otherwise,

jump again to step 1, to generate another candidate. (For practical reasons this
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process is executed for a limited number of trials).

Note that in this way, the size of each anthropometric entity k is modeled with a
Gaussian distribution N'(My,07), where its parameters are set according to Table
These values were obtained from the anthropometric studies presented in the project

DinBelg2005 [38]. The acceptance rate 7 is set experimentally to 0.7.

Weighting functions the weighting functions w; are defined as Silhouette XOR cost

functions as introduced in section 2.2.11

2.3.4 Experimental Tests

The method presented has been tested in a smart room environment with 5 cameras. For
the model adjustment, the subject is expected to adopt a pose with the hands up, the
legs slightly open, looking at a predefined direction. The initial position is computed from
the visual hull centroid (generated with the available silhouettes) [75], and the model is
scaled to fit the visual hull height. In figure 2.5la we show the model set at the initial
position and scale. Note that, as the initial pose is not exactly the subject pose, placing
the model at the visual hull centroid is not accurate. After the optimization of the pose
and global scale using Powell’s method (Figure .b) the model is better adjusted, but for
example, arms length and head size do not correspond with subject anthropometry. After
the estimation of the shape parameters using the LPF (Figure .c) the model accurately
fits the subject. Note that the model does not consider wrist joints and hands, thus those

parts are less accurate. Figure (d,e,f) shows the adjusted model for different subjects.

2.4 Human Body Tracking using Approximate partitioning of observations

This section presents a markerless motion capture system that incorporates a novel class of

weighting functions based on a variable bounding box system, that allows to approximately
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partition the observations. The method aims at defining regions where pixels are likely to
be representing the body part of interest, thus reducing the influence of errors in regions
where information is irrelevant. The proposed technique is generic in the sense that it can
be applied to any hierarchical particle-based inference method for human pose estimation.
The technique is introduced to increase the robustness of a hierarchical LPF method and
addresses the problem of estimating the pose of humans in broad multi-view environments
using a low number of fixed views. Experiments on the challenging TennisSense dataset
[27], using silhouettes as observation model and at most 4 cameras per player show the
effectiveness of the proposed method. In addition, we conducted experiments on the Hu-
manEva dataset [I11] to show that the approximate partitioning of observations based on

silhouettes improves the performance even in a more controlled scenario.

In order to measure the weight of a particle, our algorithm defines an observation model
with foreground silhouettes in multiple views, which are obtained by means of a single-
Gaussian version of the algorithm proposed by Xu et. al. [I2§]. In most cases, having
multiple views makes silhouettes a useful cue to retrieve the pose. Nonetheless, they also

present several problems.

Let us recall that in section we have presented the sampling strategy of a LPF
as a particular case of Partitioned Sampling. It is worth mentioning that Partitioned
Sampling requires a set of likelihood functions, one per partition, that must be properly
peaked around the same region of the posterior restricted to the partition [83]. In practice,
this requirement is difficult to fulfill with observation models based on silhouettes due
to several reasons. First, in a wide base-line multi-camera scenario, the appearance of
humans in distinct views may change considerably, causing the ratio between the number
of pixels representing the human shape and the total number of pixels in an image to
change drastically between views. Furthermore, this might be a reason for possible spurious

detections of foreground objects to have more impact on the likelihood function (Fig.
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2.6h). In the case of human body, silhouettes are rather incomplete as evidence; it is
difficult to ensure that a body part is being matched with a set of pixels that constitute
the actual representation (or a very good approximation) of that body part (Fig. [2.6b).
This phenomenon is especially remarkable when self-occlusions between body parts occur.

In existing HPF's [16], a common solution is to render the body parts that are affected
by variables being sampled in a partition or hierarchical level and the preceding ones. Our
proposal is to go one step further by defining approximate partitions of the silhouettes in
multiple views. The goal is to restrict the cost function to image regions that are likely to
represent the body parts being affected by variables in a given hierarchical level. By doing
so, we reduce the impact of pixels that are not providing meaningful information about
variables in the hierarchical level of interest.

Similarly to the approach for anthropometry estimation presented in section [2.3] the
layered filtering optimization comprises a definition of a layering of the search space, the
transition kernel functions and the weighting function. In this case, the approach focus in

the use of a novel type of weighting functions that exploit the current state and layers.

2.4.1 Weighting function by approximate partitioning of observations

The weighting function that we propose evaluates the cost of a particle on a partition of
the observation space. Let us define the partitioning of observations as a set of hidden
variables {2 per pixel that take value 1 if the pixel is relevant given a set of state-space
variables and 0 otherwise. In human motion capture, we can translate the problem into a
graphical model comprising two subgraphs: a first graph IC(X, £,) that encodes the state
space variables and a second graph G(Z,£,) encoding the observed variables (Fig. [2.7)).
The edges between nodes from both graphs are determined by the projective transfor-
mations and the human mesh model. In existing partitioned and hierarchical sampling

approaches, all the pixels from all images are used to define the likelihood functions: this
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Figure 2.6: Examples where only a small region of the images may be relevant for specific
state-space variables. a: Only a small region of the image is representing the target player.
Overlapping the model projection onto the pixels enclosed by the bounding box yields
error masks like the one shown on the rightmost, thus avoiding severe errors due to false
positives. b: Pixels in the marked region are expected to be relevant for estimating the
right arm pose. Note that errors due to leg configurations will not affect if pixels on the
rightmost mask are used.

is equivalent to say that always exists an edge between K and G for any variable x in X
and any pixel z in Z. In our proposal, the hidden variables €2 in each hierarchical partition
are introduced to block edges between X and Z with low influence on the variables of the

hierarchical level.

Let us recall the silhouette XOR weighting function introduced in section The
weight of a particle is defined in terms of a pixel-wise XOR between the silhouettes S, in
each view v and the projection of the mesh modeling the outer shape of the body in the

corresponding views, M,,. Then, for the case in which all the observed variables (pixels)
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K(X,&2) Exz G(Z2,E2) KX, &) Q G(2,¢&2)

Figure 2.7: Graphical model detailing the influence of the bounding box system in the
weighting function. The pose estimation problem can be split into two subgraphs: K
represents the hierarchical relation between human model variables and G models the
pixels in multi-view images (for simplicity, only 2 images, Z, and Z;, and 2 pixels per
image are depicted). Left: general case where all the pixels have influence over all the
human model variables. Right: Hidden variables {2 measure how likely is a pixel to belong
to a body part. Consequently, low values of €2 decouple pixels from human model variables.

have influence on the cost, we have the following definition for the weight measurement:

wi&f) = erp(~ Y év)XOR(Mf),SU)) (2.14)

where XOR denotes the number of non-zero pixel values after a pixel-wise XOR and

C(S,) is the number of pixels of the silhouette on the v-th view.

Our objective is to define the hidden variables €2 to restrict the pixel domain in equation
to a set of pixels with an expected relevance for the body part associated to variables
in the [-th partition. To estimate the relevancy of a pixel in a given partition we simply
use a measure based on spatial criteria. Let us recall that we have a human body model
that provides us the necessary information to compute joint positions from state-space
variables, and that we have also a set of projective transformations p,, given by the camera

calibration, that map points in R? onto each view v. These elements allow us to know the

63



Chapter 2. Stochastic Optimization for Markerless Motion Capture

pixels onto which a joint is projected and thus, how far is a pixel from any projected joint.
For a given hierarchical partition I, we have a set of particles x} ; and associated importance
weights Wi,r Using this information and the fact that we have already filtered the parent

variables (variables for partitions 0 to [ — 1), we compute hidden variables €); as follows:

Ns

1. Compute the sample mean Xy = » ;" 7}, X}, ; and obtain the 3D position of

the joints in the [-th partition, say ).

2. Compute a 3D Bounding Box centered at the mean joint location py, and with fixed
sizes proportional to the estimated anthropometric sizes of parts involved in the [-th
partition. Compute a 2D Bounding Box on each image enclosing the projected 3D

Bounding Box corners.

3. Set w =1 for pixels inside the 2D Bounding Box and w = 0 otherwise.

Restricting these partitions to have the form of bounding boxes in every view makes
the algorithm computationally simple, suitable for GPU processing and allows avoiding
explicit 3D reconstructions of the data.

The hidden variables defining the partitioning are computed at the beginning of every
layer of the hierarchical particle filter and used in the domain of the likelihood measure:

1

wt(j\(gl)) = efL‘p(— Z mXOR(M;, SU, {Qt,lﬂ) = 1})) (215)

where €2;;, = 1 stands for the set of relevant pixels at time ¢, for layer [ and v-th view.
Note that the proposed partitioning method does not solve the problem of self-occlusions
between body parts, but in some sense, alleviates it. Suppose that the arm is being oc-
cluded in one view by the torso. One must take into account that, when using silhouettes,
views behaving in such a way are not informative and should have a marginal impact on

the likelihood measurement. Since the proposed partitioning will often manage to block
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errors originated by unrelated body parts, such as legs or the other arm, the final likelihood
will be, in general, better defined in the presence of occlusions.

An important consideration of the proposed weight function is the fact that particle
weights may reflect the posterior distribution of a partition y; rather than the whole state-
space. This is due to the local nature of the measurement on the partition domain. To
overcome this issue, we add an additional layer at the end of the HPF algorithm, in which
we simply re-evaluate the weights of the particles using a bounding box that encloses the

whole body model.

2.4.2 Experimental Results

In order to test the proposed algorithm, we conducted experiments on two different datasets:
the TennisSense dataset [27] and the HumanEva dataset[I1I]. While in the case of the
tennis dataset we take a clear benefit of the bounding boxes by suppressing errors caused
by false positives, the HumanEva experiments show that with good observation models
the approximate partitioning of observations yields a better performance of a hierarchical

particle-based inference method.

HumanEva DataSet

We evaluate the performance of the proposed approximate partitioning of observations
using variable bounding boxes with several HumanEva video sequences. Specifically, we
carry the experiments using the HumanEva II Combo sequence performed by Subject 2
and several HumanEva I complete sequences of Subject 3. We test our implementation
of the HPF using the Variable Bounding Box Approximate Partitioning of Observations
(HPF+VBB-APO) using the weighting function as formulated in equation 2.15] We com-
pare this algorithm with our implementation of the Annealed Particle Filter (APF) [37]

and the HPF - using the weighting function in equation All the available cameras

65



Chapter 2. Stochastic Optimization for Markerless Motion Capture

are used in order to have the best observation model (4 in HumanEva II and 7 in Hu-
manEva I). In order to remove the influence of the anthropometric variables on the 3D
error, we perform the same anthropometric estimation for all the tests, using the method
presented in Section In our experiments, the APF uses adaptive diffusion [37] and
is configured with 15 layers and 240 particles per layer. The HPF, using the likelihood
measurement in equation [2.14} has 7 layers with 572 particles per layer while the variable
bounding box HPF has an extra layer - to compute a better estimate of the posterior in
the whole state space - and 500 particles per layer. In overall, the three schemes perform
almost the same number of evaluations per frame. The computational time for each ap-
proach are 21 sec/frame for APF, 21 sec/frame for HPF and 14 sec/frame for the HPF +
VBB-APO.

Results in Table show that the proposed partitioning of the silhouettes consistently
outperforms the common weighting function definition. Although the provided error im-
provement is about 1 ¢m in mean, the results in boxing action objectively show that there
is a major improvement on the arm pose estimation when using approximate partitioning
of observations (Fig. 2.§). In addition, we found that our algorithm enhances the robust-
ness to false positives in the silhouettes. On the contrary, a burst of misses in the pixels
of an extremity will have a higher importance when using the variable bounding boxes.
However, although the extracted foreground is noisy (due to the use of gray scale images)

and there are important misses, they do not suppose a major impact on the final results.

In the light of this observations, and because there is some bias when registering the
markers to the ground truth, we argue that standard deviation becomes a highly important
indicator of the consistency of the tracking algorithm (whenever the mean 3D error is
sufficiently low). The HPF + VBB-APO error standard deviation is lowered to the half

with respect to the APF, which denotes better tracking stability.
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HPF+VBB-APO

Figure 2.8: Examples of tracking for the Annealed Particle Filter (APF), the Hierarchical
Particle Filter (HPF) and the Hierarchical Particle Filter using Variable Bounding Box
- Approximate Partitioning of Observations (HPF+VBB-APO). Using the partitioning
yields a better estimation of the arm pose.

TennisSense DataSet

Four of the nine available cameras in the TennisSense dataset [27] are used to track one of
the players in the game. We use a set of available ground points to calibrate the extrinsic
parameters of each one of the cameras. For each of the views, we pick four background

frames to learn the background model.

The available videos of the dataset are timestamped but not synchronized, as the
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Action APF HPF HPF + VBB-APO
S2 Combo (34 sec.)  116.36(26.13)  104.86(13.24) 98.80(9.27)
S3 Walking (13 sec.)  92.69(15.34)  84.00(6.67) 76.29(7.00)
S3 Box (12 sec.)  126.32(56.87) 125.32(55.88)  100.93(31.27)
S3 Jog (14 sec.)  109.58(16.94)  97.74(9.68) 90.87(8.61)

Table 2.3: Means (and standard deviations) of the 3D tracking errors (in millimeters)
for each of the algorithms on the Combo Sequence of Subject 2 in HumanEva II and on
several actions of Subject 3 in HumanEva I dataset. Duration of the sequences is indicated
in seconds.

Figure 2.9: Selected frames showing pose estimates on different phases of the tennis games.
The skeletal model is overlaid on the four views used for the player tracking. For clarity,
we only show a wired version of the mesh body model in the second view.

capture was performed at different frame rates. For improved synchronization, we manually
locate some distinctive events in each one of the views to determine the shift in the provided
timestamps. Then, once the timestamps are shifted to the same reference, we fix a master
camera with a frame rate of 22 fps and select frames in other views having the closest
timestamp. By visual inspection, we have noticed a remaining synchronization error of «~2
frames after applying this procedure.

The tracking is triggered at the beginning of each point (just before the service takes

place) and the results are obtained up to the time when the current point is finished.
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After the beginning of each sequence, the system waits a fixed number of frames until the

anthropometrics estimation is performed.

Since no ground truth is available, we provide a number of snapshots with the obtained
results (see Figure . The system is able to track the pose of the player for a variety of
complex movements, such as serves, and several kinds of strokes. In some fast movements,
the system is not accurate in the estimation due to the low frame rate and the inaccuracy
in the synchronization. Even though, once the fast movement is finished, it is able to
recover from the error. The system fails when the player is going outside of the court
and the visibility is reduced to less than 3 cameras because the information provided by
the silhouettes is too ambiguous. In any case, using the proposed Variable Bounding Box

system yields a higher successful number of tracked frames than the APF or the simple

HPF.

2.5 Human Body Tracking using Part Detectors

In Layered Particle Filters, the propagation of particles by means of Gaussian diffusion
makes the filter blind with respect to evidence. Some research trends focus on tackling
such a problem by introducing priors based on trained motion models. This approach,
however, has a limited scalability, as one needs to know which motions are performed in
the scenario. Hence, it seems more reasonable to resort to image cues related to body parts
in order to address the blindness problem. In such a context, partitioned or hierarchical
definition of layers emerges as the most efficient approach towards drawing particles, since
one can constrain the propagation and filtering to a subset of variables that are related
to a particular body part. For that matter, we propose the Detection-Driven Hierarchical
Particle filter, a novel Layered Particle filter combining hierarchical layers and body part

detectors.
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2.5.1 Multi-View Body Parts Detection

We present a method for 3D localization of body parts from multiple views. In this work,
we focus on body extremities (hands, head and feet), as they are usually easier to detect and
provide sufficient information to estimate the pose variables related to a kinematic chain.
Our method takes advantage of 3D information to deal with occlusions and visibility issues,
hence we can robustly fuse the outcomes of one or several image-based detectors working
in different views. To achieve such a goal, we first obtain a set of points on the surface
of the human body. Second, we compute the probability of each surface point to be an
extremity, using the detections on multiple views. Then, the surface points are filtered
using a threshold and clustering technique in order to obtain the most likely extremity
locations.

The choice of the image-based detectors affects not only the performance, but how the
probabilities in each surface point should be treated. We demonstrate and exemplify the
method using a simple yet effective image-based hand detector. Provided that evaluations
are performed in IXMAS dataset [126], where all the subjects have their hands uncovered,
we employ the skin detector proposed by Jones and Rehg [65]. Note that this particular
choice implies that we cannot distinguish left from right hand and that head is also detected.
Hence, an additional classification step is proposed in order to robustly detect 3D hand

positions.

Probability Surface

To robustly fuse detections in multiple views, we employ a set of points q with associated
normals n, lying on the surface of the human body. A suitable set Q comprising such
oriented points can be estimated in a two-step fashion by reconstructing a 3D volume and
then computing normals on the volume surface. Alternatively, we opt for the method of

Salvador et al. [I02] that jointly estimates surface points and normals.
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Then, we compute the wisibility factor n.(q), a value representing the visibility of each

oriented point q with respect to the camera c:

—2.-0q, if qis visible
ne(a) = (2.16)
0, otherwise

We determine if q is visible from camera ¢ by means of a standard z-buffering test.
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Figure 2.10: Visibility example for a surface point q (best viewed in color). The best
oriented cameras are green whereas the red cameras have few or null visibility

This visibility factor serves to estimate the probability that a surface point q is repre-

senting an extremity:

Prob(q) =Y n.(a)T (proj.(a)) (2.17)

where C' is the total number of cameras, proj.(q) € R? are the pixel coordinates
resulting from the projection of the surface point q in camera ¢, and T (proj.(q)) is the
probability that the pixel at proj.(q) is representing an extremity according to an image-
based detector. Note that the visibility factor has to be normalized, so chzl Ne(w) = 1.
We show an example in Figure [2.10

Due to the visibility factor, the proposed method effectively handles occlusions and

inconsistencies of the visual cones computed directly from detections in multiple views.
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Moreover, since only the best oriented cameras determine the probabilities of the surface
points, our method can infer a 3D extremity location even if it is reliably detected only in a
few views. In addition, as the probabilities of surface points are computed from detections

inside the silhouettes, all false positives outside them are not taken into account.

Filtering

The filtering step aims at estimating candidate 3D locations of the detected extremities
and it is analogous to finding relevant modes of the probability distribution lying on the

surface manifold Q . We start by computing the subset Q’ of likely surface points:

Q' ={aecQ|Prob(q) =T} (2.18)

where 0 < T' <1 is a threshold.

Then, we cluster the points in Q' using an efficient method [100] based on a kd-tree
representation [46]. The parameters of the clustering method are distance tolerance, ¥,
and the minimum and maximum cluster size, ¥,,;, and ¥,,4., respectively. These param-
eters are very suitable for our problem, since they can be set by using anthropometric
proportions. Finally, cluster centroids are taken as candidates for 3D extremity locations.

We illustrate the process in Figure [2.11}

Extremes Classification

In order to determine if any candidate location represents an extremity location, we rely on
the pose X;_; estimated on the previous frame. Let us denote y’; = F;(X;_1) the position
of the end-effector in the i-th kinematic chain at previous time instant, where Fj(.) is the
Forward Kinematic operator for the chain ¢ [59].

We formulate the classification problem as an optimal assignment problem. Let D €
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S (. f

3
4
&

(a) (b) ()

Figure 2.11: Filtering process (best viewed in color). Probability values are represented
with the red channel (a) Probability surface. (b) Probability surface after the threshold.
(c) Cluster centroids (cyan crosses)

R*E be the matrix gathering the distances between the I target end-effectors and the
E point candidates, and let ¥ = {Y;,..., Y} denote the vector of maximum distance
assignments (each T; models both the expected movement and the size of a specific body

X1 guch that each row

part). Assignments are noted as an assignment matrix P € {0, 1
contains at most a 1 indicating to which end-effector is the candidate assigned. We consider
that an assignment is valid if it exists at least one detected point that satisfies a maximum

assignment constraint Y;. In that case, the problem has a non-trivial solution (P # 0) and

is formulated as :

tr(DP
min r( )

—/ 2.19
P ]_%P]_[ ( )

s.t. diag(DP) <X 7T

s.t. P € {0,1}¥*is a valid assignment matrix

where tr(DP) denotes the trace of the matrix resulting of the product between distances

and assignments, diag(DP) denotes the vector formed with the diagonal elements of the
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same matrix, and 1; is a vector of ones of length I. The inequality constraint is formulated
as a component-wise inequality between two vectors. Hence, we aim at minimizing the
overall distance between candidates and end-effectors while maximizing the number of
assignments (subject to the maximum distance constraint). In practice, we solve this
problem for head and hands by iteratively assigning pairs with minimum distance until a
minimum of Eq. is attained. We experimentally set the left and right hand maximum

distances T; = T9 = 35¢m and the head maximum distance to T35 = 25¢m.

2.5.2 Detector-Driven Hierarchical Particle Filter

In our method, the role of estimated end-effectors within the layered filtering is two-fold.
On the one hand, they are used in a novel kernel function to enhance the particle propa-
gation, thus reducing the blindness of the filter with respect to data. On the other hand,
detections are used to enhance the observation model. The weighting function uses the

detections in the last layer that we denote as refinement layer.

Detector-Driven Propagation

In order to benefit from the localization of end-effectors we define a Layered PF such that
the set of variables related to each particular end-effector are filtered in different layers. In
this manner, the position of a certain end-effector is used in the Kernel function K!(¥;)
of the corresponding layer [. The proposed Kernel function combines two proposals for

drawing particles:

1. Detector-driven proposal: pose variables from the appropriate layer are drawn by
means of Inverse Kinematics [66] using the detected end-effector locations. Particles

drawn from this proposal are termed IK particles.

2. Gaussian proposal : particles are generated by Gaussian diffusion in the angle space,
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in order to account for the uncertainty of having erroneous detections.

The combination of both proposals should consider the error rate of the extremity
detections. Instead of estimating such an error rate offline, we propose an online approx-
imation of the detection accuracy by using the IK survival rate, i.e., the estimated ratio
of IK particles that will be resampled after weighting function evaluation. Whenever this
rate is above 0.5, we mutate a small fraction of regular particles into IK particles. On the
contrary, when the rate is lower, IK particles are transformed into regular particles. We

constrain the algorithm to keep a minimum of 25% of particles of one kind.

Refinement Layer

The weighting function w! is defined such that the last layer L the pose estimation is
refined by introducing the set of end-effector detections, namely C; = {c}, ..,c¥, ...,cV}, in
the weighting computation. We add a new cost function taking into account the distance

between the observed detections and the model end-effectors. This cost is computed as:

U
D(Cuxt) = 17 > min || ¢ — F(xpy) || (2.20)
u=1

and it is introduced in the weighting function in the following manner:

wy (24, X}) oc e i) TrPlCx) (2.21)

where C(z, 1) is a silhouettes-based cost function and  is a scaling factor. & is chosen
to balance the importance of both cost terms. By using this weighting function, we improve
the final pose estimate at each frame, solving mismatches produced by the classification
algorithm.

The refinement layer implies a re-weighting of all the particles according to an improved

observation model, and does not involve any propagation step, since we do not want to
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add noise to particles that have been drawn after layered filtering. If no detections are

found at time instant ¢, the refinement layer in t is not used.

Detection Driven Particle Filtering Evaluation

In order to evaluate our method, we conduct several experiments on the IXMAS dataset
[126]. This dataset was recorded for action recognition and hence it does not contain
pose ground truth. For this reason, we manually annotate the hands, head and feet of
different sequences belonging to 6 different subjects. In particular, we are interested in
the evaluation of the performance of our method for actions involving arm movements (i.e
crossing arms, hand waving, punching, etc.), so we skip actions not involving relevant arms
motion such as walking or turning. Annotations are performed in 1 of every 5 frames.

We compare our method with two state-of-the-art Layered Particle Filters: the APF
and the HPF. In particular, we evaluate our method with (DD HPF*) and without (DD
HPF) the refinement layer. In order to perform the comparative, the APF is run with 14
layers and 250 particles per layer, HPF and DD HPF are run using 7 layers and 500 particles
per layer, and the DD HPF™ is run with a maximum of 8 layers (7+ refinement layer) and
500 particles per layer (recall that if no detections are found in a frame, the refinement
layer is discarded). The 7 layers contain the variables related to torso (and head), left leg,
right leg, left shoulder, right shoulder, left elbow and right elbow respectively. Since adding
the refinement layer generally implies computing more particle weights, we also provide
results for a DD HPF™ using a total of 6 layers (5 + refinement layer) and 500 particles
per layer. Using 5 layers implies filtering shoulder and elbow variables of one arm in the
same layer.

We compute the mean and standard deviation of the 3D error using all available ground
truth data. Results are shown in Table 2.4, The average computational time for each

approach are 21 sec/frame for APF, 21 sec/frame for HPF and 25 sec/frame for the DD
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[ Sequence (Frames) APF HPF DD HPF DD HPFT | DD HPFT (5+1) |
Alba 1 (53-350) (11 sec.) 2386 (14.79)  14.38(7.31) _ 11.68(5.73) _ 10.32(6.02) 11.73(7.37)
Alba 1 (658-1120) (19 sec.) 17.13 (7.93)  11.84(6.87)  10.86(6.03)  9.37(5.82) 10.38(7.96)
Chiara 3 (20-202) (11 sec.) 16.05 (7.14)  13.89(8.12)  10.87(6.40)  9.85(4.43) 10.08(5.03)
Chiara 3 (576-955) (15 sec.) | 19.16 (10.16)  11.29(5.81) 8.36(5.88) 6.76(3.22) 7.98 (5.89)
Julien 1 (47-315) (11 sec.) 18.30 (8.37)  15.18(7.21)  13.86(6.85)  13.30(6.85) 12.09(7.46)
Julien 1 (596-957) (14 sec.) | 26.01 (14.70)  11.85(6.06) 9.43(3.63) 7.87(2.73) 7.57(3.35)
Daniel 2 (15-306) (11 sec.) 20.13 (10.52) 16.60(11.41)  14.24(10.09)  11.04(3.49) 11.74 (7.16)
Daniel 2 (631-1119) (20 sec.) | 16.92 (8.35)  10.22(3.74) 7.29(3.33) 6.73(2.53) 11.00 (8.35)
Srikumar 1 (43-368) (13 sec.) | 20.06 (10.48)  15.77(9.84)  14.20(11.22) 14.58(12.14) 15.59 (16.56)
Srikumar 1 (704-1035) (13 sec.) | 18.59 (10.23)  13.60(9.99)  13.46(8.47)  10.62(5.59) 12.07 (8.87)
Amel 1 (51-385) (13 sec.) 20.30 (9.32)  16.00(3.02)  16.76(3.47)  14.40(6.11) 15.08 (5.88)
Amel 1 (796-1295) (19 sec.) 22.97 (8.05)  13.07(7.07)  11.55(5.79)  11.40(6.90) 11.35 (5.99)

Table 2.4: Comparative results between the state-of-the-art methods and our proposals.
We provide mean 3D error (and standard deviation) in centimeters. Bold figures highlight
the result of the best method for each sequence.

HPF.

Figure 2.12: Tracking example of subject 3 “punching”action (set 2) for the HPF and DD

HPF

DD HPF

HPF using 7 layers and 500 particles per layer for both schemes.
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The proposed framework consistently outperforms both the APF and HPF. Apart from
reporting a better accuracy in terms of mean error, the standard deviation is consistently
reduced, thus reflecting the stability gain and the increased robustness in front of tracking
failures. Experimental results show the effectiveness of the proposed DD HPF in reducing
the blindness of the prior. In Figure we provide a visual example for a fast arm action
(action 6) and we compare the outcomes of the best state-of-the-art PF, the HPF, with the
DD HPF. As we can see, the HPF gets lost whereas the DD HPF perfectly tracks the arm.
The experimental validation also shows the impact of the refinement layer, which is able to
filter erroneous particles originated by weaknesses of the silhouette-based observation model
and erroneous classifications of extremities. Even when using less particle evaluations, the

proposed method outperforms the state-of-the-art approaches.

2.6 Conclusions

In this chapter we have presented a stochastic optimization framework applied to motion
capture tasks. We have demonstrated its practical use for estimation of the anthropometric
proportions of a subject and for tracking of body pose.

We have demonstrated with experimental results that the hierarchically layered particle
filtering strategy outperforms both local optimization and annealed particle filtering in
HumanEva and IXMAS datasets.

Moreover, we have studied the weighting functions and transition kernel functions and
we have proposed two distinct approaches that improve the baseline approach.

On the one side, the APO approach presented in section defines a new kind of
weighting functions. These functions evaluate samples taking into account only the region
of the observation space that is relevant to the subspace currently filtered. We demon-
strated that APO outperforms the standard Silhouette XOR weighting function in Human

Eva dataset. Specifically it improves the accuracy when tracking arms under self-occlusion
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for certain views, which is the typical case where weighting functions that evaluate through
the whole image cause failures. Also, the APO is effective in scenarios such as the one pre-
sented in the Tennis Sense Dataset. In this case, the subject being tracked is far from the
cameras, thus its apparent size is small. The APO method is specially suited for such sce-
narios, as the particle evaluation dynamically adapts to viewpoint particularities exploiting
actual tracking data.

The DD-HPF approach overcomes the blindness to data in the propagation of particles
by proposing new transition kernels that take in to account end-effector positions. We
demonstrated the effectiveness of the proposed solution in the IXMAS dataset, which is
a dataset that comprises challenging arm gestures and whole body actions. By using an
end-effector detector we obtain arms and head positions that can are used in a kernel
transition function that favors particles with low distance to the end-effector. This tech-
nique in combination with the Silhouette XOR weighting function improves significantly
the accuracy with respect to the use of a Gaussian kernel transition function. While the
Layered Particle Filtering strategy is essentially a generative approach, with this solution
we end up with an hybrid approach that takes advantage of a discriminative method for

end-effector detection and fuses this detections to obtain the whole body pose.
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CHAPTER 3

Interactive Machine Learning for Gesture Localization

Human motion analysis from visual data has a wide range of applications in the human
computer interaction field. Among its applications, gesture detection or recognition is a
main research area probably because gestures are particularly suited to use as inputs for an
interactive system for several reasons. First, they are commonly used in natural conversa-
tion an non-verbal communication, thus, in general people feel comfortable when gesturing.
Moreover, gestures form a vocabulary or language, so they can be used to convey specific
information directly interpretable by the computer, for example, to activate distinct events
in an interactive application. Also this kind of interaction would be naturally understood
and easily remembered by the user, as again, it is our form of non-verbal communica-
tion and we feel familiar with its usage. For this reason, interfaces based on gestures can
be more simple than other kinds of interaction where the user feels less comfortable and
require a longer learning curve.

Recently, gesture recognition methods have become part of commercial systems such
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as smart tv [I03] or gaming applications [84]. Omne of the key elements towards their
deployment in real systems is the irruption of low-cost or consumer depth cameras, which
overcome critical illumination and depth perception problems of classical vision approaches.

As introduced by Wachs et. al. [124], the design of gesture-based interfaces must address
two major issues: intuitiveness and gesture spotting.

By intuitiveness, one means that the types of gesture selected should have a clear
cognitive association with the functions they perform. However, it should be taken into
account that a gesture natural to one user may be unnatural to others, due to the strong
associations with cultural background and experience. Gesture spotting [124] consists of
distinguishing useful gestures from unintentional movement. This problem may be afforded
by the recognition technique, by performing a temporal segmentation to determine where
the gesture start and ends. However, this is a difficult problem and often the recognition
methods assume temporally segmented actions [34]. Also the recognition may require
spatial segmentation of the body parts (e.g hands) which may be also a task prone to
erTors.

To overcome gesture spotting difficulties, Lopez-Méndez et. al [82] propose an interface
based on still gestures. By relying on still gestures, the problem is then formulated as
an object detection problem, thus the method learns the local appearance of gestures and
neither temporal or spatial segmentation are required. The gesture localization method
uses range data and it is based on class-specific (one-vs-all) random forests.

In this thesis, we extend the approach proposed in [82] to improve its performance in
cluttered scenes by introducing the Depth Clipping Test. We explain this method in section
and several experiments and evaluation are described in section |3.2.6]

In this gesture localization application, the main difficulty is that the training data
is highly unbalanced, the training set is composed by few positive examples and a huge

amount of negative examples. While the approach from [82] relies on a boosted learning
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technique to overcome this issue, and automatically choose the best training samples,
the performance of the method is still highly influenced by the set of negative examples
available in the training set. In case that the detector tests fail for certain samples, an
experimental solution to this problem is to introduce more data based on the test failures,
and train again the detector. This process can be tedious, as training can be slow, and once
it finishes one would require to manually test and record new data, and then train again
and so, in an iterative manner. Also the training set will grow and, as a consequence, the
training process will be slower and the memory requirements will also grow. We propose
an alternative using online learning, such that in this case the selection of the apropiate
training data can be done during the training phase, according to the prediction provided
by the random trees on-the-fly. In this case, recording data, annotation and training is
fused in a single interactive application which allows to reduce the efforts required in its
off-line counterpart. The interactive machine learning approach to gesture localization
allows to reduce dramatically the time dedicated to recording, annotation and training. It
is described in sections and Part of the work in section has been published
in [6]. The work in sections [3.3] and [3.4] has not been published.

3.1 Related Work

The recent commercialization of new game console controllers as Kinect or Wiimote, has
been rapidly followed by the release of proprietary or third part drivers and SDKs suitable
for implementing new forms of 3D user interfaces based on gestures [45]. On the one side,
several authors propose gesture control interfaces based on accelerometers as the Wii con-
troller [I05][77]. On the other side, the Kinect depth sensor allows for device-less interfaces.
Some solutions as ZigFu [I31] or GesturePak [53] use the skeleton tracking SDKs [70][8§]
as input for gesture recognition based on skeletal poses. Thus, such approaches require a

human pose estimation step, which is a complex task with high computational cost, often
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prone to errors in presence of clutter. Alternatively, several approaches make use of raw
Kinect depth data as input for hand pose and gesture recognition methods [97][121][95].
In contrast to 2D color video, the use of depth data makes such methods robust to illu-
mination changes and suitable for dark environments. Moreover, depth data provides 3D
information valuable to account for scale invariance of human body parts. In general, these

features make depth based methods perform better than its color-based counter part.

3.1.1  Random Forests for Object Detection

Regarding object detection and localization methods, random forests and their variants
have attracted the attention of the image processing and computer vision community
[24, 1109, [47] due to its excellent performance for classification and regression tasks. Demird-
jian and Chenna [34] proposed a temporal extension of random forests for the task of gesture
recognition and audio-visual speech recognition. However, as before, their gesture recogni-
tion approach strongly relies on spatial and temporal segmentation. In fact, this approach
is not shown to work properly in real applications, since experiments are performed on
temporally and spatially segmented sequences. Shotton et al. [I08] use random forests on
range data to detect body parts. Their ultimate goal is to estimate human poses, which at
the same time may pave the way towards pose-based gesture recognition. However, their
approach relies on a dense labeling of the human body in order to detect each part. Gall
et al. [47] propose a Hough forest framework for dealing with different tasks, including
object detection and localization. Although they overcome the problem of the dense label-
ing, their Hough forest framework is tested on standard datasets where objects of interest

(positive) have a relatively large size compared to background (negative).
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3.1.2 On-line Learning

For some applications, on-line learning has several advantages. Usually, off-line training
methods require that the entire training data is given in advance, but in some cases this is
not possible. For example in tracking applications, data arrives sequentially and predictions
should be given as data is acquired, while the entire training set is still not available. Also
on-line learning is also interesting in case that training data cannot be stored, for instance
if a huge amount of data is required or data should be discarded just after the on-line data
generation process. In general, on-line training is faster and the memory requirements are
much lower.

Saffari et. al. [I01I] proposed an on-line learning algorithm for random forest and
showed usage examples for tracking and for interactive image segmentation. Random
forests on-line learning has been further studied by Denil et. al [35] where they introduce a
theoretically consistent algorithm and it is evaluated for classification tasks in comparison
with its off-line counterpart. An online algorithm for Hough forests has been introduced by
Schulter et. al. [I06] and they show how it outperforms off-line Hough Forests in detection
tasks.

Yao et. al. [129] use On-line Hough Forests to help the annotation task in an interactive
system. In such approach, the object detector is trained with recently annotated examples,
and then the detector is used on-the-fly to propose the annotation to the user, thus reducing

the annotation cost.

3.1.3 Interactive Machine Learning

Interactive Machine Learning (IML) is a research field that emerges at the intersection of
machine learning and human-computer interaction disciplines. Although machine learning

systems usually deal with human inputs such as labels, demonstrations or feedback, the
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classical machine learning model does not consider usability issues and the user capabilities.
In the classical setting, to train a classifier requires an expert user and long training time.
This implies that the model is hard to use for example by developers that want to include
machine learning systems in new machine interfaces. Early research has focused IML
towards the development of machine learning systems which include human interaction
in the training loop by means of graphical interfaces that show visual information about
parameters, performance or system predictions [11][41][125]. Fails et. al. in [41] introduce
an IML model for a visual image classifier generator to be used by designers of perceptual
user interfaces that may not have expertise in machine learning. In this model the designer
corrects and teaches the classifier by rapidly generating training data (manually classifying
pixels), then examining the feedback received, to continue generating more training data
and so on in a cycle, until the final classifier is created. IML systems can also be used
by domain experts to get deeper insights of the method and improve the accuracy of the
classifiers. Examples of interfaces intended for expert users, that can also facilitate the
task to non experts, have been presented by Ware et. al [125] and Ankerst et. el. [11],
where in this case, the user can construct decision trees graphically. Both systems present
data visualization, trees visualization and allow to tune parameters and report results.
The following table compares the main characteristics of the classical and the interactive

machine learning models:

Classical ML Interactive ML
One-pass process Iterative process
No users feedback Users control the behavior

Long time to train the model | Latency sensitive for training

Numerical evaluation Friendly visualization evaluation
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IML has been employed for diverse applications such as tools for image retrieval (Cue-
Flik [44]), helping community content creation using information extraction [60], group
creation in social networks [9] or visualization of confusion matrices to understand various
classifiers (EnsembleMatrix [117]).

IML has also evolved in robotics research, where interactive systems are used to teach
robots [31] [I18], where the robots apart from learning on their own, they also learn in-
teractively from people who is unfamiliar with machine learning. Several robotics IML

applications are based on the reinforcement learning model [119] [72].

Another research field that has strong links with IML is active learning [107]. In
active learning, the learning algorithm is able to interactively query the user or other
information source to obtain the desired outputs at new data points. Active learning
principles have been used throughout the whole range of machine learning applications
[107]. Image retrieval is a research field that relies strongly on active learning concepts.
For example, Tong and Chang [120] combine active learning with support vector machines
in order to implement a relevance feedback algorithm, i.e to interactively determine a users
desired output or query concept by asking the user whether certain proposed images are
relevant or not. These kind of techniques are effective with image databases, where it is

difficult to specify queries directly and explicitly.

3.2 Random Forests for Gesture Detection

In this section we first describe the method for gesture localization proposed in [82], that
we will use as baseline method for further comparisons and evaluations. Then the depth
clipped binary test that we propose to reduce potential clutter is introduced in section[3.2.5]

Experimental results and comparisons with baseline method are presented in section [3.2.6]

We first review the main notions on random forests, for the sake of completeness.
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3.2.1 Random Forests

Random forests [24] are an ensemble of m randomized trees, which are binary trees. Nodes
n in each tree have a learned probability distribution p,(c|I;,x) that reflects how likely
is a class ¢ given a pixel x in the image I,. These probability distributions are learned
by recursively branching left or right down the tree, according to some node-specific weak
classifier, until some stopping criteria are met and thus a leaf node is reached. Weak
classifiers associated to each node are binary functions of feature vectors obtained from
images Z. The robustness of forests is based on the combination of several classification

trees. Usually, one performs this combination by averaging the distributions over the leaf

nodes {ly,---,lp} reached in all the M trees:
M
ple|Ly,x) = Z (c|L;, %) (3.1)

Each tree is trained separately with a small subset of the training data obtained by
sampling with replacement. Learning is based on the recursive splitting of training data
into left £ and right R subsets, according to some binary test f and a threshold #. The

binary test is a function of the feature vector v obtained from each training example.

At each node, a test f and a threshold 6 are randomly generated, and the one that
maximizes some criteria is selected. We employ the information gain as a test selection

criterion:

_ A
L]+ IR

R

AIG = T
L]+ R

H(L) - H(R) (3.2)

where | | denotes the number of elements of the subset and H () is the Shannon entropy
of the classes in a subset. The process continues until a maximum depth D is reached or

the information gain cannot be further maximized.
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3.2.2 Depth Binary Tests

The binary tests used in [82] are based on the binary tests initially proposed in [108].

Specifically, for a given pixel x the test f has the following expression:

fo(1,x) = dp (x + $> — dy (x + ﬁ) (3.3)

where dy is the depth map associated to image I and u and v are two randomly generated
pixel displacements that fall within a patch size. Pixel displacements are normalized with

the depth evaluated at pixel x in order to make the test features invariant to depth changes.

3.2.3 Boosted Learning of Random Forests

In a gesture localization problem, positive and negative classes are naturally unbalanced.
On the one hand, in real applications users are not constantly performing gestures. On
the other hand, the actual appearance of a gesture may be represented by a relatively low
number of pixels. Summing up, the distribution of gesture classes (positive) with respect
to non-gesture (negative) is biased towards the latter. This unbalance makes that low
false positive rates constitute actually a large number of false positive votes. Taking into
account this phenomenon is important during the training phase of a random forest since,
under such unbalance, it will be difficult to optimize the information gain.

To address this problem, Shotton et. al. [I09] introduce a weighted random forest
scheme based on weighting the positive examples with the inverse class frequency. Alter-
natively, Lépez-Méndez et. al. [82] propose to constrain the training data sampling such
that each class obtains approximately the same number of training samples, i.e., the dis-
tribution at the root node is approximately uniform. In the gesture localization problem,
balancing the number of training samples presents better performance than weighting since

the unbalance is so large that weighted random forest overpowers the response on positive
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(b)

Figure 3.1: Gesture Localization with Random Forests (best viewed in color). (a) A
number of votes (green dots) are casted for the target gesture (b) votes are aggregated to
estimate a probability density (overlaid in red on the input depth map) and a localization
is estimated (green square).

classes, thus increasing the false positive rate.

While balancing reduces the bias, one typically ends up sampling highly correlated
positive samples while loosely sampling the negative class. This drawback has a greater
impact on class-specific (or one-vs-all) learning schemes, where loose sampling has the
effect of missing relevant samples of the negative class that may effectively improve the
localization accuracy. In order to overcome this problem, a boosted learning scheme is

introduced.

The method performs training of random forests as follows. The first tree is trained
with a balanced set of samples from each class. Once the tree is trained, it is evaluated
against the out-of-bag set [24]. The wrongly classified samples are added to the training
set of the second tree (up to a maximum number of training samples). This new training
set is completed by sampling with replacement from the full training set until balance is
achieved. The second tree is then trained with this training subset and the process is

repeated until the forest is fully trained.
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In the proposed approach, there is no attempt to balance the wrongly classified samples.
This is because the majority of wrongly classified samples are false positives that one
want to incorporate into training subsets, in order to have a more relevant set of negative
examples.

A boosted learning scheme for random forests has been presented also in [47]: in [47]
base learners are subforests, while in the approach in [82] presented above base learners are
decision trees. Another difference with respect to [47] is that Lopez-Mendez et. al. [82]
exclusively use the out-of-bag set. This increases the efficiency (we evaluate less samples)
and, together with the tree-wise approach, produces less correlated trees, which helps in

reducing the generalization error [24].

Patch collection For each annotated image a set of patches are collected for training.
Collecting patches for all the pixels in the image would require greater run-time memory in
the training process and many of them would be redundant. For this reason, only a small
subset of patches are sampled from the annotated image. In a positive example, a fixed
number of positive samples N, are obtained by randomly sampling within a bounding box
centered in the annotated point. Negative samples are obtained randomly choosing pixels
from outside such bounding box. In a negative example, N_ sample patches are obtained

randomly from the whole image.

3.2.4 Gesture localization

For gesture detection and localization, a set of patches are provided to the detection forest,
which casts a vote whenever a positive class has more probability than the negative class
and other positive classes. Figure illustrates the casted votes for a positive class in
a class-specific learning example. To detect a gesture, we first estimate a probability

density using the votes within a frame and we take into account temporal consistency by
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recursively updating this distribution with votes aggregated from past time instants. In
order to construct the probability density, we use a Parzen estimator with Gaussian kernel.
In order to account for the time component of the approximated density, we sequentially

update such density p(c|I;) as follows:

P (L) = ap(c|L;) + (1 — a)p'(c]I;1) (3.4)

This is a simple yet effective method to keep temporal consistency of the casted votes,
as it requires storing a single probability map. An adaptation rate a = 0.8 works well in
practice, as it prevents several false positives while avoiding a delayed response.

Finally, we compute the pixel location g. of a gesture class ¢ > 0 as the pixel location
with maximum probability. We ensure that such a maximum represents a target gesture
by thresholding the probability volume V' computed by locally integrating the estimated

pseudo-probability measure :

V=> p(cl(x)) (3.5)

x€eS
where § is a circular surface element of radius inversely proportional to the depth, and

centered at the global maximum. In this way, the localization is depth-invariant.

3.2.5 Depth Clipped Binary Tests

Although the proposed boosted learning yields an improved sampling of the negative class,
modeling the appearance of clutter, distractors or accidental gestures from a limited set of
training data is an ill-posed problem. Typically, one may resort to spatial segmentation [55].
However, segmentation on depth data usually assumes a certain distance with respect to
several background objects, as well as prominent motion to accurately obtain the silhouette

of humans in a scenario. Furthermore, the segmentation step can be computationally costly.
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] &

Figure 3.2: Three-dimensional representation of binary tests (best viewed in color). With-
out clipping, the algorithm is prone to learning binary decision tests that consider the
actual depth of the training data (red arrow). Clipping avoids this problem by producing
an artificial depth value that can be reproduced in test time (green arrow).

In this work, we advocate the avoidance of a segmentation step. Instead, we introduce
an auxiliary parameter that clips the depth of the available training examples.

If we represent the binary tests (Equation in the 3D space (see Fig. [3.2), we see
that displacements may point to background pixels. This implies that the binary tests used
during training may yield forests that detect gestures with the backgrounds observed in the
training data. To avoid this, the proposed auxiliary clipping parameter defines a maximum
displacement in the Z axis, i.e., depth values. Specifically, the clipping parameter is a value
that represents the maximum and minimum relative depth with respect to the depth value
of the center pixel. Formally, let x denote the clipping parameter. Then, the binary tests

are re-formulated as follows:

fo(I,x) =
max (min (dI (x + ﬁ) ,dp(x) + /1) ,dyp(x) — /{) (3.6)
—max <min (dl <x + ﬁ) ,dr(x) + /1) ,dr(x) — /ﬁ:)
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Figure 3.3: Examples of successful localization results using our approach (k = 15 cm)
Silence, Audio, Tee, Mute and Pause.

Table 3.1: Average Area Under the Curve (AUC) for different learning approaches.

Method Silence Audio Tee Mute Pause Average
Boosted [47] 0.17 0.10 0.31 0.14 0.02 0.15
Method in [82] 0.17 0.10 0.31 0.20 0.25 0.21
Ours + k= 15cm  0.58 0.53 0.81 0.47 0.11 0.50
Ours + k =30cm  0.69 0.50 0.54 0.27 0.14 0.42
Ours + kK =50cm  0.59 0.46 0.61 0.24 0.18 0.41

Similarly to the depth invariant displacements, the auxiliary clipping parameter renders
tests that are more robust to changes in the background. This can be also regarded as
an improved characterization of training examples by its local appearance, where local is

understood in the 3-dimensional world, and not only in the image domain.

3.2.6 Experimental results

We conduct experiments of the gesture localization method to provide a quantitative per-
formance of the approach and determine optimal clipping parameters. We focus on the
gestures defined in Figure [3.3] We record 5 training sequences where 5 different actors
perform a set of gestures and actions, including the 5 target gesture classes. Additionally,
we record 6 test sequences with 4 additional actors that were not included in the training
set.

The employed detection forests have 15 trees with maximum depth 20, and each tree

is trained with approximately 20000 examples per class.

94



Chapter 3. Interactive Machine Learning for Gesture Localization

In all cases, we employ squared patches of size 85x85 pixels. We train class-specific
forests with the boosted learning method. Additionally, in order to compare the learning
method, we implement a boosted approach based on [47].

To measure the accuracy of the proposed methods, we consider a correct localization if
the estimated gesture and the actual gesture belong to the same class and if the estimated
location is within a radius of 10 pixels. We compute the curves representing 1-precision
vs recall to then compute the Area Under the Curve (AUC). Average AUC’s per gesture
class are shown in Table

The comparison of different training approaches shows that the proposed clipping depth
test improves the results with respect to [82]. These improvements are specially significant
for the gesture classes that can be potentially more affected by background clutter, i.e
the gestures that are not performed in front of the chest. For example, for silence and
audio gestures. In pause gesture we do not appreciate improvement. This is due to the
computation of the reference depth for such gesture. As the reference depth is obtained

from the center of the patch, in this gesture such point results not precise enough to perform

proper clipping.

3.3 Online Random Forests for Gesture Localization

Still gesture localization using a random forest classifier based on range data has good ac-
curacy and is computationally efficient, which enables the technology to be used for human
computer interaction applications. Even though, a cumbersome aspect of the method, as
in general happens in supervised learning methods, is that it requires a relatively large
amount of annotated examples. Moreover, in order to keep low false positive rates, a set of
negative examples should be carefully chosen for each specific gesture in order to keep the
method robust in real life scenarios. In practice, this means more recording and annotation

which is a slow process that requires a lot of human effort. Also, it is not clear in advance
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which set of negative examples would be relevant in order to improve the classifier accu-
racy, so in general, one would train the classifier with an initial dataset, then test it, and
realize that it fails with certain examples. So more instances of those examples would be
recorded and annotated and included in the dataset. In this thesis, we advocate for the use
of an interactive machine learning approach to ease the recording, annotation and training
procedure of the gesture classifier. So in a single process the user would record examples,
the classifier would be trained, and then by testing on-the-fly, relevant negative examples
would be added to the training set. In order to automatically annotate the examples, the
scenario will be subject to certain constraints to facilitate the task. This process requires a
classifier suited for online learning or incremental learning. As random forests has demon-
strated accurate results for the gesture localization task with rely on online random forest

learning. We base our method on the algorithm proposed by Saffari et. al. [I01].

3.3.1 Online Random Forests

Random forests online learning has relevant differences with its offline counterpart. On
the one side, bagging should be performed differently. In the offline case, given a standard
training set D of size n, bagging generates m new training sets, each of size n’ < n, by
sampling from D uniformly and with replacement. Trees are trained with these sets, in
order to improve accuracy and to help avoiding over-fitting. In the online case, the whole
training set is not available. For such case, Oza et. al. [2] proposed a method that is proved
to converge to off-line bagging. Following such method, each tree is updated on each sample
k times in a row where k is a random number generated by a Poisson distribution.

On the other side, the tests assigned at each node of the tree also could not be computed
in the same manner that for the offline case. In the offline case, initially a set of random
tests is generated for each node. During training, the best tests are selected such that they

maximize the information gain. As the whole training dataset is available, such statistics
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can be robustly estimated.

In the online mode, trees are grown upon arrival of new data. A tree starts with only
one root node with a set of randomly selected tests. A node is split, so the best test
according to the information gain is chosen, when two conditions apply: 1) a minimum
number of samples o has been already seen by the node, 2) the split achieves a minimum
information gain . Such process is applied to the right and left newly generated leaf
nodes, and so until the tree has grown to the required depth. At each split, the statistics
for each class label of the parent node are propagated to children such that leaf nodes can
perform classification on-the-fly, even before observing new samples. In Algorithm [6] we
present the pseudo-code of the forest updating method which is executed for each sample

x with label y.

Algorithm 6: Online RF proposed by Saffari et. al.[101]

1 for t from 1 to T do

2 k < Poisson(\);

3 if k£ > 0 then

4 for u from 1 to k do

5 j =findLeaf(z);

6 updateNode(j, {z,y});
7 if shouldSplit(j) then
8 findBestTest(5);

9 createLeftChild();
10 createRightChild();

In the following the functions in the algorithm are further explained:
o findLeaf(x) recursively traverse the tree starting at root node until a leaf is found,
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it applies best selected test at each node.

e updateNode(j, {z,y}) updates the following statistics at node j. Statistics of class
labels p; = [p{, cee pﬁ(] where p{ is the label density of class ¢ and K is the number
of classes. For each random test compute also the statistics of class labels of samples

falling at left or right partitions according to the test. These statistics will be used

to select the best test.

e shouldSplit(j) check if node j should be split. Denote S; the set of samples that
arrive at node j. The node is split when |S;| > o and exists a test ¢ € T such that

the information gain with respect to t AI(S;) > .

Note that, once the decision for a split is performed and the test selected it cannot
be further corrected. Thus, parameter « should be properly adjusted to maintain the
tree growing process while new training data is still arriving, and not performing splitting
decisions too early. If alpha is too low, trees will grow to the maximum depth early, and
maybe relevant data arriving later will not have influence in training and the classifier
would be over-fitted to a small part of the training set. In the opposite case, if a is too
large the training process may end with the trees not grown to its maximum depth, which

will affect to the detector accuracy and precision.

3.3.2 Hard negative mining using on-the-fly detection

The set of negative samples used for training is highly relevant for the performance of a
detector. From the annotated images, collecting all the patches of the whole image is not
practical, so methods rely on randomly sampling patches, as it is not clear in advance which
patches from this images would be more useful as training samples. A common approach
usually employed in order to improve the performance is to train the detector with a

randomly selected set of examples, and then use the detector for mining hard negative
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examples from the training images, i.e collecting the examples where the detector fails.
This procedure is performed iteratively until some criterion is met. The boosted learning
approach described above (sec. follows this principle, where decision trees are used
as base detectors.

Alternatively, in this thesis we propose a method to collect the negative patches from
the training images using the prediction of the online forest during the training phase. In
this manner, the training process is done in a single iteration and the set of examples used
to update the trees is reduced, so that redundant or non informative patches are not used.

The procedure is applied during training for each negative training image /¢, as follows:

1. The probability for the positive class ¢ for each pixel x in I,.q, p(c|z) is computed

on-the-fly using the statistics collected at the current leaf nodes.

2. A pseudo-probability value for each pixel is computed using a Parzen estimator with
a Gaussian kernel. Then we obtain the location with maximal probability m.. We

denote maxp the probability at m..

3. A set of N, patches are collected within a neighborhood centered at m.. The
number of patches collected is proportional to mazp, so in this manner the worse is
the failure of the detector, more negative samples which produce the failure are used

for training.

In section we show the improvement in average precision using this approach in

comparison with random sampling of negative examples.

3.3.3 Experiments: Offline vs Online Comparison

The purpose of the following experiments is to validate the online random forest method
for the gesture localization task, to analyze some of its parameters and to compare its

performance with the offline counterpart.
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Figure 3.4: Gestures performed by distinct subjects of the dataset. Gestures are respec-
tively Audio, Cross, Ok, Pause, Silence and Tee.

We recorded several sequences of 8 actors performing 6 distinct gestures and also neg-
ative examples. We used the sequences of 4 actors for training, and the sequences of the
other 4 were used for testing. Figure shows example images of the dataset where the
subjects are performing a gesture. The dataset recorded has a significant variability of

viewpoints and scenarios.

We noticed an improve of performance of the online learning method when iterating the
training process several times on the same dataset. Thus we iterate 5 times the method
over the same dataset (The same procedure is employed in [I0I] iterating 10 times for
evaluation on standard machine learning datasets). Summing up the 5 iterations, we end

up using about 240K samples.

First we evaluated the influence of the parameter « for such sequences, i.e. the minimal
number of samples visiting a node required to perform a split of the node. We found that
a value of & = 300 was the best performance. Although there were not big differences in
average precision it was the best when considering also that memory usage was greater
when using lower values of a. In Figure |3.5| we show the precision-recall curves, together

with average precision values for the gesture pause and a range of « values.
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Figure 3.5: Performance curves for the Pause gesture for different values of parameter a.
Average precision in parenthesis.

Method Tee Pause Silence Vol up Cross Ok
Offline Boosted 0.66 0.71 0.23 0.26 0.75  0.27
Online random 0.80 0.81 0.27 0.21 0.56 0.35

Online hard mining 0.88 0.74 0.58 0.56 0.76 0.59

Table 3.2: Average precision obtained for each of the gestures.

We also analyzed the influence of parameter (5, i.e. the minimum information gain
required to make a node split. We noticed that this condition did not improve the perfor-
mance of the detector. This fact has also been reported by Schulter et.al. in [106] for a
similar method for online-hough forests. We show the performance curves of gesture pause
for several values of § in Figure [3.6] Note that, while the performance is not significantly
different, the average precision is slightly better for g = 0.

We conducted further experiments to evaluate the performance of the online detector in
comparison with the offline detector, both trained with the same dataset. Table [3.2] shows
the average precision results obtained for the test sequences of each of the gestures. The
performance of the online detector is better for most of the gestures evaluated or at least

equivalent. Figure [3.7| show examples of successful detections using the online detector.
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Figure 3.6: Performance curves for the Pause gesture for different values of parameter .
Average precision in parenthesis.

Figure 3.7: Successful detections for gestures Cross and Silence using the online detector,
represented on the depth map.

Moreover, the proposed solution for hard negatives mining using on-the-fly detection
improves significantly the results obtained. The improvement is more relevant for the
gesture classes which are distinguishable by subtle or small shape differences, such as
the ok or the silence gesture, where its main feature is the finger pose. In such cases,
selectively collecting hard negative samples allows to train the detector more effectively

with less amount of data, when compared with randomly sampling negative samples.

We have also analyzed the topology of the trees obtained. While it is not clear the
influence of the topology of the trees in the accuracy of the detector, it has relevant

impact in computational performance and memory usage. We have observed substantial
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Figure 3.8: Graphical representation of a tree of the random forests trained offline and
online.

differences between the topologies of the trees obtained when using the offline training

approach compared to the trees obtained with online learning.

On the one side, as one could expect, the number of nodes of the trees increases as the
parameter « decreases, i.e. when the number of required samples to make a split is lower.

This implies more memory usage which is relevant in training time, because the number of
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Figure 3.9: Histograms of the balance factor of the nodes of a tree for different training
approaches.

bytes required per node is high, as we should maintain the statistics of the samples visiting
the node while the split is not made. In test time the memory usage becomes relevant
depending of the platform where the system would be deployed, and also when several

classes should be detected.

Figure [3.8 shows a graphical representation of trees of the random forests trained on-
line or offline and with distinct « values. Besides from the differences in the number of
nodes, one can appreciate from the figures that trees resulting from the online learning
approach are more balanced than the trees obtained offline, i.e. for each node the height
of the left brach is similar or equal to the height of the right branch. Balanced trees are
computationally more efficient. In general, when comparing trees with the same number
of nodes, if the tree is balanced, less nodes should be visited to reach a leaf in comparison

with its unbalanced equivalent.
To measure the balance of the trees we have computed the balance factor f of example
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trees trained with distinct parameters. The balance factor accounts for each node, the
difference between the height of the left branch and the height of the right branch. So, if
the balance factor is 0, such node is balanced. In Figure|3.9|we show normalized histograms
of the balance factor per node for three example trees trained in distinct manner. One can
notice that the online approach result in more balanced trees, and such balance increases
with a. Thus, greater alpha parameter favor computational efficiency and memory usage,
but, as described above, greater o value reduces the precision and recall of the detector,

which at the end compromises the final choice.

3.4 Interactive Machine Learning method for Gesture Localization Train-
ing

In this section we introduce an interactive machine learning (IML) method that allows to
record and annotate data, and train the detector in a single step. The method focuses
two main goals. On the one side, it reduces the effort and time usually required to record
data, annotate and train an offline gesture detector. On the other side, it enables new
related applications such as gesture customization, i.e. to enable the end-user of a gesture
controlled application to define his own gestures to use them within the application. Such
gesture customization can have a more generic usage such as online training of a custom

object detector.

3.4.1 Training loop

The interactive gesture learning method consists of a main loop that captures depth frames
from the camera, and it process such data to update the classifier and display some infor-
mation depending on the state of the internal state machine. The user visualizes the depth

map and some information overlaid such as text or bounding boxes. We have defined the
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following set of states, with transitions described in Figure |3.10}

1. do gesture. The user is asked to perform the gesture to train centered in the
bounding box suggested. The display shows a bounding box with a cross in the

center.

2. update positive. The user is asked to keep the gesture centered in the bounding box
while performing minor pose variations to introduce variability. During this phase
the display shows the bounding box centered. Positive patches are extracted in the
neighborhood of the bounding box center, and they are used to update the random

forest with positive samples as explained in section [3.3.1]
3. release. The user is asked to release the gesture, and wait for more instructions.

4. do negative examples. The user is asked to perform other gestures that should
be distinguished by the system. This phase can also be used to capture backgrounds
and other kinds of negative examples. Negative patches are extracted using on-the-
fly detection as described in section and the random forest is updated with
the corresponding negative samples. These patches are shown to user by means of a

bounding box.

This sequence of states is executed several iterations to capture more variability of the
gesture, such as distinct contexts, backgrounds, distances or slightly modified poses. Also
more negative examples can be added at each iteration, which also improves generalization
of the detector. At the end of a training session, the application launches a testing mode
that allows to check the performance of the current detector and realize its main failures.
The random forest also can be stored in disk, such that the application can be stopped, and
the user can change the settings, the scenario, and other users can continue the training.

The stored random forest is loaded and can be updated again with new data, so the
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t(l) > Bs
[1. Do Gesture] [ 2. U}.)(.iate ]
Positive
t4) > 10s and still training t2) > 10s
[4. Update Negative] [ 3. Release ]
t(3) > 5s

t) > 10s and end training

[5. Store Forest and Test]

Figure 3.10: State diagram

trees continue growing from the point they were left in the previous iteration. This is
a clear advantage of the online approach, so its incremental nature permits these pauses
within the training period, that allow to test the current detector, and to continue training
specifically with the settings and examples that induced more failures. Figure shows
example frames of the feedback displayed by the system. Note that in Fig. [B.11}b the
online detector is detecting a maximum on the hand of the user, so the patch is used to
update the forest with a negative sample. 6 frames after (Fig. [3.11}c) the detection is
not on the hand of the user, thus the detector has been updated and this hand pose is
not anymore a relevant patch. Such feedback is useful to the user as in real-time suggests

which kind of poses are more informative for training the detector.

Obtaining the threshold For certain applications it might be convenient to automat-
ically obtain a detection threshold, such that the user can use the detector immediately
after training without manual adjustments. In this case, we can rely on the training phase

to compute a threshold. Towards this goal, the detector is evaluated in the update positive
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Figure 3.11: Images of the feedback shown to the user by the IML interface. The user
is training the Tee gesture. (a) Feedback shown during update positive state. (b) and (c)
Feedback shown during do negative state, where (c) is 6 frames after (b).

state, and the maximum pseudo-probability value obtained for each frame 7 is stored as
th; . Also, the detector is evaluated for each frame during the update negative state, and
the maximum pseudo-probability value is stored as th; . We compute at each frame the

exponential moving average of both thresholds, such that

thy = othf + (1 —o)th, ,

th, = oth; + (1 —o)th,_,

with ¢ = 0.9 for fast adaptation. Then the detection threshold is computed as a
weighted mean of both th = ptAh+ +(1— p)tAif where p can be used to tune the sensitivity

of the detector (e.g. p = 0.8 for low false positive rate).

3.4.2 Experiments

In order to evaluate the interactive machine learning method we have conducted a series
of experiments to compare the presented method with the offline approach. On the one
side we have evaluated the performance of the trained detector and on the other side we

have measured the time required to train a detector for a single gesture in both cases.
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Figure 3.12: Average precision of the detector for gestures Tee, Silence and Cross. De-
tectors are trained from data captured on three consecutive sessions of about 500-700
frames per session. Figures show the precision obtained with the detector trained after
each session, using offline training or the interactive machine learning (IML) approach.

To compare the performance of the method with the offline approach we have configured
the interactive machined learning loop to record the captured frames and corresponding
annotations. In this manner, the offline method can be trained with exactly the same

images than the online approach for a fair comparison.

We have recorded test sequences of the same subject performing the selected gestures.
Note that testing with the same subject than the training subject would require less gener-
alization of the detector, thus less training data and training time. In this manner we can
validate the approach for its usage in a custom gesture learning application. In the custom

gesture learning use case, the focus is an application where the user would introduce a new
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Training Session Avg Prec Record and Auto-Annotation Training Total Time
Offline (short session) 0.34 3:00 1:51 4:51
Offline (medium session) 0.64 6:00 4:16 10:16
Offline (long session) 0.87 9:00 7:59 16:59
IML (short session) 0.54 3:00 - 3:00
IML (medium session) 0.78 6:00 - 6:00
IML (long session) 0.82 9:00 - 9:00

Table 3.3: Average Precision and time employed for each of the learning tasks (min:sec).
Mean average precision and times for gestures Tee, Silence and Cross.

gesture in the gesture-based interface, and in this case the requirements usually would be

a short training period and robustness for a single subject.

The interactive method has been used to train a a gesture during three sessions of 3 min
each. At the end of a session the random forest is stored and can be used for testing. The
following session loads the stored random forest and continues the online training. Figure
shows the average precision of the detector trained using the interactive machine
learning (IML) method, and the precision obtained when training the detector offline using
the same frames and annotations. The figure shows results obtained after each of the three

sessions for three distinct gestures, Tee, Silence and Cross.

In average, the results with respect to accuracy are comparable between the online and
offline training approach, but the time spend for the whole training process is consider-
ably shorter. In table the average precision results are summarized for the gestures
evaluated, together with the training time employed. Note that we consider automatic an-
notation for both offline and IML. Such automatic annotation simply consists in providing
the user a bounding box overlayed on the camera view, and asking the user to perform the
gesture centered in the bounding box. Then the frame captured is stored together with
the bounding box position. This strategy substantially reduces the annotation effort usu-

ally required for object detection datasets, for instance, first recording and then marking

110



Chapter 3. Interactive Machine Learning for Gesture Localization

the gesture positions by hand on the stored frames. Also note that the fact that in the
IML approach all tasks are performed at once, the time devoted to the task is constant,
and would be increased always by the same constant (3min) to include more data with
each extra session. On the other side, in the offline case one will be switching tasks, from
recording, waiting the training process to finish, testing and recording more data if needed,

which in general is more tedious and require a more experienced user.

3.4.3 Conclusions

In this chapter we have proposed solutions to the problem of gesture localization on depth
data. Mainly we focused on reducing the effort required to train the detectors. At the
end, solving this issue can habilitate the development of new applications such as custom
gesture training by non experienced users.

First of all, we have analyzed the solution for gesture localization proposed in [82]
and we have introduced depth clipping in the random forests tests. Experimental results
demonstrate an improvement in precision, mainly due to an increase of robustness in
presence of clutter or people in background.

Towards the goal of an interactive machine learning approach to gesture detector train-
ing, we have studied an online random forest learning approach. Within such online learn-
ing framework, we have proposed a method for hard negative mining using the detector
on-the-fly while training. On-the-fly hard negative mining have demonstrated superior pre-
cision than random sampling negative samples. Also, the results obtained in the recorded
datasets show better precision of the online approach than using offline learning.

We have proposed an interactive machine learning (IML) method that allows to reduce
the time and effort required to train a new gesture detector. Experimental results towards
custom gesture training for a single user demonstrate that the IML approach have almost

equivalent precision than the offline training approach, and it contrast requires less time
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and can be employed by a non experienced user.
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CHAPTER 4

Conclusions

In this thesis we have studied the problem of human motion analysis from visual data,
where the main goal has been the obtention of the body pose. In the first part, the human
pose has been described by a full body skeleton. In the second part, we have focused the
problem to the detection of specific poses, mainly involving hand and arm pose, also seen

as gestures.

4.1 Contributions

1. Marker-less Human Motion Capture Human pose estimation is a complex prob-
lem that has been studied from the whole range of pattern analysis and machine
learning perspectives. We have made contributions to the field focusing on specific

parts of the whole problem. The contributions are summarized as follows:

e We propose a generic framework for hierarchically layered particle filtering
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(HPF) specially suited for motion capture tasks. Human motion capture prob-
lem generally involve tracking or optimization of high-dimensional state vectors
where also one have to deal with multi-modal pdfs. HPF allow to overcome the
problem by means of multiple passes through substate space variables. Such
framework provides a guide for a practical implementation which can be config-
ured to resolve distinct tasks such as pose tracking or anthropometry estimation.
It is formulated taking into account the flexibility to exchange its main compo-
nents, the transition kernel and the weighting function, in order to adapt them

to new features or cues related to specific scenarios.

Based on the HPF framework, we have proposed a method to estimate the an-
thropometry of the subject, which at the end allows to obtain a human body
model adjusted to the subject. Such body model will be used in subsequent
motion capture tasks. The method optimize the pose and anthropometric pa-

rameters of the subject using silhouettes from multiple views.

We propose a new weighting function strategy for approximate partitioning
of observations which is integrated within the HPF framework. The APO-
HPF allows to partition the observation space for specific body parts, which
has demonstrated an improvement in accuracy because it ends up with more

robustness to self-occlusions of parts and presence of background clutter.

Alternatively, we propose the DD-HPF, which employ body part detections to
improve particle propagation and weight evaluation. This technique has demon-
strated better accuracy in tasks involving tracking of complex arms movements,
where the baseline method using propagation based on Gaussian transition ker-

nel failed to track the motions.

114



Chapter 4. Conclusions

Publications The publications related to the marker-less motion capture contribu-

tions are:

- M. Alcoverro, J. Casas, and M. Pardas, Skeleton and shape adjustment and tracking

in multicamera environments, in 6th Int. Conf. AMDO 2010, 2010, pp. 88-97.

- M. Alcoverro, A. Lépez-Méndez, J. Casas, and M. Pardas, A real-time body tracking
system for smart rooms, in ICME - 2011 IEEE International Conference on Multi-

media and Expo, 2011, pp. 1-6.

- A. Lépez-Méndez, M. Alcoverro, M. Pardas, and J. Casas, Approximate partitioning
of observations in hierarchical particle filter body tracking, in 2011 IEEE Conf. on

Computer Vision and Pattern Recognition Workshops, 2011, pp. 19-24.

- A. Lépez-Méndez, M. Alcoverro, M. Pardas, and J. Casas, Real-time upper body
tracking with online initialization using a range sensor, in 2011 IEEE International

Conference on Computer VIsion Workshops (ICCV Workshops), 2011, pp. 391398.

- S. Navarro, A. Lépez-Méndez, M. Alcoverro, and J. Casas, Multi-view Body Tracking
with a Detector-Driven Hierarchical Particle Filter, in 7th International Conference

AMDO 2012, Port d’Andratx, Mallorca, 2012.

2. Interactive Machine Learning for Gesture Localization The second part of
this thesis is centered in the detection of specific poses, mainly gestures, and we have
focused the problem of reducing annotation and training efforts required to train a
specific gesture. The gesture localization solution proposed by Lépez-Méndez and
J. Casas [82] based on random forests learning from depth data is the starting point

of our proposed methods. The contributions are summarized as follows:

e First, we propose the depth clipping test. Clipping depth in the sample patch
has demonstrated improvement in accuracy in presence of background clutter.

Given that the body parts conforming a gesture can be delimited by a bounding
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box, by clipping depth according to such bounding box parameters the infor-

mation obtained by a sample is more relevant to the gesture.

e In order to reduce the efforts required to train a gesture detector, we propose
a solution based on online random forests that allows training in real-time,
while receiving new data in sequence. The main aspect that makes the solution
effective is the method we propose to collect the hard negatives examples while
training the forests. The method uses the detector trained up to the current
frame to test on that frame, and then collects samples based on the response of
the detector such that they will be more relevant for training. In this manner,
training is more effective in terms of the number of annotated frames required.
We have demonstrated better accuracy on comparison with the offline random

forest approach when using the same dataset.

e We propose a method for training a gesture interactively. The method defines
an application loop that allows to annotate and train the detector at the same
time. Such, approach is specially suited for gesture customization within gesture
based interfaces, and can be used by a non experienced user. In single user tests,
we have demonstrated that training time and effort is substantially reduced in

comparison with and offline approach, and the accuracy is equivalent.

Publications The following publication propose an interface using the gesture de-

tector based on depth-clipping tests:

- M. Alcoverro, X. Suau, J. R. Morros, A. Lépez-Méndez, A. Gil-Moreno, J. Ruiz-
Hidalgo, and J. Casas, Gesture Control Interface for immersive panoramic displays,

Multimedia Tools and Applications, pp. 1-27, 2013.
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4.2 Side Contributions

During the development of this thesis we have contributed with other methods in the

human motion analysis field that have been reported in the following publications:

e Voxel occupancy with viewing line inconsistency analysis and spatial reg-
ularization Shape reconstruction from multiple cameras enables further analysis of
the 3D scene. We proposed a method for volume reconstruction from silhouettes
where we use a new viewing line based inconsistency analysis within a probabilistic
framework. Our method adds robustness to errors by projecting back to the views
the volume occupancy obtained from 2D foreground detections intersection, and then

analysing this projection.

- M.Alcoverro and M. Pardas. Voxel Occupancy with Viewing Line Inconsistency Anal-
ysis and Spatial Regularization. in VISAPP 2009 - Fourth International Conference

on Computer Vision Theory and Applications, Lisboa, Portugal, February 5-8, 2009.

e Connected Operators on 3D data for human body analysis We have stud-
ied the problem of detection of salient points in 3D data. The proposed algorithm
consists in processing the geodesic distances on a 3D surface representing the human
body in order to find prominent maxima representing salient points of the human
body. We introduce a 3D surface graph representation and filtering strategies to
enhance robustness to noise and artifacts present in this kind of data. Such approach
has been successfully employed for end-effector detection within the HPF method

proposed in [80].

- M. Alcoverro, A. Lépez-Méndez, M. Pardas, and J. Casas, Connected Operators on
3D data for human body analysis, in 2011 IEEE Conference on Computer Vision and

Pattern Recognition Workshops, 2011, pp. 9-14.
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e Fingertip Localization and Hand Gesture Classification In addition to the
gesture localization approach presented in this thesis, we have also proposed another
approach related to gesture classification using depth data, in the context of the
thesis of X. Suau. In this case, we focus the problem of fingertip localization. The
method obtains the most probable fingertip locations conditioned on the obtained

hand gesture by means of KNN search.

- X. Suau, M. Alcoverro, A. Lépez-Méndez, J. Ruiz-Hidalgo, J. Casas, Real-time Fin-
gertip Localization Conditioned on Hand Gesture Classification, Image and Vision

Computing, vol. 32, no. 8, 2014.

4.3 Future Work

In this thesis we have proposed methods that provided good results for a set of human
motion analysis problems. Even though, there is still problems that require more research
in order to find good solutions, where our work can serve as basis.

Markerless motion capture in controlled scenarios with an accurate video capturing in-
frastructure is a solved problem, at least with respect to the capture of the pose [78],[116].
Research in this field is moving towards accurate capture of shape, clothing movements
and illumination [127]. However, pose estimation under general conditions, where back-
ground is not controlled and few views are available, is still a challenging problem. These
would be the requirements of human motion analysis systems in outdoor scenarios or in
presence of occluders. Solving pose estimation in such conditions would enable the appli-
cation of human motion analysis techniques in fields such as sports, safety in industrial
facilities, video surveillance or elderly and handicapped assistance. In such scenarios, the
combination of stochastic optimization and body part detectors seems a promising line

of research. The DD-HPF method presented in this thesis can be used combined with
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the state-of-the-art body part detectors that have been recently proposed for single view
pose estimation [89]. Such combination of discriminative and generative approaches fusing
the information of distinct viewpoints can add robustness to occlusions and background
clutter. Also it could be an step forward into a lesser dependency on silhouettes, which
are not reliable in presence of background clutter.

Current depth sensors facilitate the task of pose estimation in close range scenarios
where the user is facing the camera. This fact is enabling new kinds of interfaces with
computers or other devices based on hand gestures. The approach for interactive learning
of gestures presented in this thesis could be used to bring gesture localization solutions
closer to interface designers. Towards this goal, a line of research would be required to
fully automate the annotation process such that the user would not require to perform the
gesture within the bounding box presented in screen. That would allow a generalization
of the approach to learn other kind of shapes or events, as for example objects, or com-
binations of a pose and an object, not being constrained to perform the action, or place
the object in a specific point. A method would be required to extract the relevant positive
patches during the training phase. Using other cues such as skeleton pose or motion flow
could bring insights on the location of the positive patch, in combination of data previously
learned.

Moreover, extending the gesture localization framework to dynamic gestures would be
also an interesting line of research. Usually our natural forms of gesture communication
involve a dynamic component, so including such gestures in gesture-based interfaces could

make them more intuitive.
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