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1 Summary 

Summary 

The biocompatible, biodegradable and non-immunogenic nature of liposomes, together with 

their ability to encapsulate both hydro- and lipo-philic molecules in the aqueous core and within 

the lipid membrane, results in remarkably attractive structures for many scientific disciplines. In 

addition, liposomes are incredibly versatile structures that can be easily produced and 

functionalized in order to fit requirements for a large number of different applications. 

The overall objective of the present doctoral thesis is to exploit the advantageous properties of 

liposomes and demonstrate their versatility as multifaceted tools in several applications. 

This doctoral thesis is divided in seven chapters. A general introduction which covers the 

liposome state of the art as well as different topics of the thesis is presented in Chapter I. The 

following Chapter II, III and IV are related with the use of liposomes as nanoreactors for the 

controlled synthesis of metallic nanoparticles. Chapter V and VI involve the study of the zinc-

ionophore activity of dietary polyphenols exploiting liposomes as cell membrane systems. 

Finally, Chapter VII covers the development of an enzyme-sensitive liposome carrier for the site-

specific delivery of chemotherapeutics for cancer therapy. 

In Chapter II, the use of glycerol within liposomal nanoreactors was explored for the green 

synthesis of gold nanoparticles. The liposomal nanoreactors composed of DOPG lipids were 

demonstrated to provide a nanoenvironment surrounded by a fluid-like membrane where semi-

mobile glycerol molecules provide nucleation sites for subsequent controlled nanoparticle 

growth. In addition, reaction parameters such as temperature, glycerol concentration and the 

effect of additional capping agent were studied in terms of their effect on the size and the 

homogeneity of nanoparticles formed and were compared to the solution-based synthesis 

studied under the same conditions. 

Chapter III explores the use of liposomes as nanoreactors for the development of an 

environmentally-friendly method for preparation of very small palladium nanoparticles 

exploiting glycerol as both reducing and capping agent. The synthesised palladium nanoparticles 

were compared in terms of size, shape and homogeneity between the ones produced via 

solution-based methods and within liposomal nanoreactors under the same conditions. In 

addition, we have demonstrated the strong influence of the membrane composition 

characteristics of the nanoreactors, such as transition temperature, head group and surface 

charge, in modulating the reduction kinetics of the nanoparticle synthesis, thus affecting their 

final size, shape and homogeneity. Furthermore, glycerol was postulated to act as a capping 

agent to stabilize small nanoparticles and prevent nanoparticle growth. The palladium 

nanoparticles were characterized using transmission electron microscopy, selected area 

electron diffraction, Fourier transform infrared and Raman spectroscopies, X-ray diffraction and 

dynamic light scattering to determine their morphology, size, charge, surface chemistry and 

crystal structure. The catalytic activity of the nanoparticles was also demonstrated for the 

reduction of p-nitrophenol to p-aminophenol as a model reaction. 

Lipid molecules are also known to form a wide number of supramolecular structures by self-

assembly. The ability of lipid molecules to form such polymorphic arrangements was explored 

in Chapter IV for the preparation of lipid templates by carefully selecting lipids with specific 

shapes and transition temperatures, in which the reduction of gold nanoparticles by citrate was 

shaped by those structures. The prepared lipid templates, including rectangular, hexagonal and 

twisted ribbons nanostructures, were demonstrated to function as effective templates for the 
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synthesis of shape-tuned gold nanoparticles, such as planar or hexagonal disks, and twisted 

ribbons or chain-like structures. 

Dietary polyphenols have been reported to modulate the intracellular levels of labile zinc, 

consequently affecting the activity of numerous signalling and metabolic cellular pathways. In 

Chapter V we have demonstrated the capacity of two of the most consumed phenolic 

compounds present in the human diet, quercetin and epigallocatechin-gallate, to increase the 

amount of labile zinc within mouse hepatocarcinoma Hepa 1-6 cells, and compared the results 

with the well-reported ionophore clioquinol. However, in order to confirm that the polyphenols 

transport zinc cations across the plasma membrane independently of cell transport 

mechanisms, such as zinc transporters or endocytosis, we explored the use of FluoZin-3 loaded 

liposomes as simple membrane systems that mimic the cell membrane. The zinc ionophore 

activity was determined as the capacity of polyphenols to transport zinc inside the liposomes 

and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-3. 

Characterization studies including dynamic light scattering, zeta potential, and confocal and 

transmission electron microscopy were also performed in order to confirm that the fluorescent 

signal emerges from the inner part of the liposomes and to check their stability after treatments. 

In Chapter VI we studied the zinc ionophore activity of a selected library consisting of the most 

relevant dietary polyphenols by exploiting the same liposomal system. The zinc ionophore effect 

relies on the ability of the compounds to bind zinc cations and facilitate its transport across the 

lipid bilayer. Therefore, we first evaluated the zinc-chelating strength of the phenolic 

compounds in a competition assay based on the fluorescence quenching of zinc-dependent 

fluorescence emitted by zinc-FluoZin-3 complex, and in the second part of the work, we 

classified the phenolic compounds according to their ionophore activity by means of 

fluorescence emanating from FluoZin-3 encapsulated within liposomes. The correlation 

between the chelation capacity and ionophore activity underlines the different behaviours 

phenolic compounds can display, sequestering or ionophoric, thus, giving us a better knowledge 

of the importance of the structural conformation versus their biological activity. 

Finally, Chapter VII consists of the work carried out in the group of Thomas L. Andresen (Colloids 

& Biological Interfaces Group) at the Technical University of Denmark (DTU). In this work, an 

enzyme-sensitive pegylated liposome drug delivery system was developed for the site-specific 

delivery of oxaliplatin, a chemotherapeutic agent, to treat colon cancer. Long circulating 

pegylated liposomal oxaliplatin confirmed to have the ability to confine the drug, thus limiting 

its’ toxic side-effects, and to enhance drug accumulation in the tumor tissue by the EPR effect. 

In addition, the membrane of the liposome carrier was designed to be enzyme-sensitive towards 

its degradation by secretory phospholipase A2 (sPLA2), an overexpressed enzyme in many cancer 

cells, thus resulting in a site-specific release of oxaliplatin only in cancer tissue. At first, we have 

demonstrated in a calcein release study that by modulating the ratio between DPPC and DPPG 

lipid present in the liposome membrane, we were able to tune its’ sensitivity towards sPLA2 

activity and modify the drug release profile. In vitro treatment of cancer cell lines with sPLA2-

sensitive liposomes loaded with oxaliplatin resulted in a superior growth inhibition compared to 

free drug or drug loaded within conventional liposomes. In addition, we have shown that the 

hydrolysis by-products formed by sPLA2, lysolipids and fatty acids, are capable of acting as cell 

permeability enhancers and display toxic effect. Finally, in vivo studies performed in mice with 

sPLA2-secreting human colon cancer xenograft models resulted in an improvement in tumor 

growth delay compared to the free drug, but not to conventional liposomal drug. In conclusion, 

the developed enzyme-sensitive liposomal oxaliplatin carrier was able to effectively enhance the 
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3 Summary 

pharmacokinetics of the drug, but suffered from a reduced triggered release response in the 

complex in vivo scenario.  
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Resumen  

La propia naturaleza biocompatible, biodegradable y no inmunogénica de los liposomas, junto 

con su capacidad para encapsular tanto moléculas hidrofílicas como lipofílicas en el núcleo 

acuoso o dentro de la membrana lipídica, dan como resultado estructuras muy atractivas para 

numerosas disciplinas científicas. Además, los liposomas son estructuras muy versátiles que 

pueden ser fácilmente producidos y funcionalizados con el fin de ser adaptados a los requisitos 

de un gran número de aplicaciones diferentes.  

El objetivo principal de la presente tesis doctoral es aprovechar las propiedades ventajosas de 

los liposomas y demostrar su versatilidad como herramienta multifacética en varias 

aplicaciones.  

Esta tesis doctoral se divide en siete capítulos. Una introducción general que cubre el estado del 

arte sobre los liposomas, así como diferentes temas tratados a lo largo de la tesis, se presentan 

en el capítulo I. Los siguientes capítulos II, III y IV están relacionados con el uso de liposomas 

como nanoreactores para la síntesis controlada de nanopartículas metálicas. Capítulos V y VI 

envuelven el estudio de la actividad de ionófora de zinc que poseen ciertos polifenoles presentes 

en la dieta mediante el uso de liposomas como sistemas de membrana celular. Finalmente, el 

Capítulo VII cubre el desarrollo de liposomas que son sensibles a la degradación por una enzima 

como vehículos para la entrega específica de agentes quimioterapéuticos para el tratamiento 

del cáncer.  

En el Capítulo II, se exploró el uso de glicerol dentro nanoreactores liposomales para la síntesis 

de nanopartículas de oro de forma respetuosa para el medio ambiente. Los nanoreactores 

compuestos de lípidos DOPG se demostró que proporcionan un nano-espacio rodeado por la 

membrana en un estado fluídico donde las moléculas de glicerol se desplazan semi-libremente 

proporcionando sitios de nucleación para el crecimiento posterior de nanopartículas de una 

forma más controlada. Además, ciertos parámetros de la reacción se estudiaron, tales como la 

temperatura, concentración de glicerol y el efecto de la presencia adicional de un agente de 

protección, y sus consecuencias fueron analizadas en relación a su efecto sobre el tamaño y la 

homogeneidad de las nanopartículas formadas. Además las nanopartícluas producidas fueron 

comparadas con las producidas en solución bajo las mismas condiciones estudiadas.  

El capítulo III explora el uso de liposomas como nanoreactores para el desarrollo de un método 

respetuoso con el medio ambiente para la preparación de nanopartículas muy pequeñas de 

paladio usando glicerol como agente reductor y protector. Las nanopartículas de paladio 

sintetizadas se compararon en términos de tamaño, forma y homogeneidad, y bajo las mismas 

condiciones, con las producidas a través del método de síntesis en solucion y con el metodo de 

nanoreactores liposomales. Además, se ha demostrado la fuerte influencia que las 

caracteristicas de la membrana de los nanoreactores, tales como la temperatura de transición, 

el grupo presente en la cabeza de los lipidos y la carga de la superficie, tienen en la modulación 

de la cinética de reducción de la síntesis de nanopartículas, lo que afectará a su tamaño, su 

forma y la homogeneidad de la poblacion final. Por otra parte, el glicerol se postuló como posible 

agente de protección para estabilizar las pequeñas nanopartículas y evitar su crecimiento. Las 

nanopartículas de paladio producidas se caracterizaron mediante microscopía electrónica de 

transmisión, difracción de electrones en área seleccionada, espectroscopía de Raman e 

infrarrojos por transformada de Fourier, difracción de rayos X y dispersión de luz dinámica para 

la determinación de su estructura en términos de morfología, tamaño, carga, química de 
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5 Resumen 

superficie y estructura cristalina. La actividad catalítica de las nanopartículas también se 

demostró para la reducción de p-nitrofenol a p-aminofenol como reacción modelo.  

Las moléculas de lípidos también son conocidas por formar, gracias a sus propiedades de auto-

ensamblaje, un gran número de estructuras supramoleculares. La capacidad de estas moléculas 

lípidicas para formar tales configuraciones polimórficas se exploró en el Capítulo IV para la 

preparación de plantillas de lípidicas, seleccionando cuidadosamente los lípidos con formas y 

temperaturas de transición específicas, en los que la reducción por citrato de nanopartículas de 

oro ocurre de forma guiada por dichas estructuras. Las plantillas de lípidos preparadas, 

incluyendo nanoestructuras rectangulares, hexagonales y cintas retorcidas, han demostrado 

funcionar como eficaces plantillas para la síntesis de nanopartículas de oro con una forma 

específica, como discos planos, hexagonales, cintas retorcidas o estructuras en forma de cadena.  

Los polifenoles presentes en la dieta han sido descritos como moduladores de los niveles 

intracelulares de zinc lábil, en consecuencia, afectando a la actividad de numerosas vías 

celulares de señalización y rutas metabólicas. En el capítulo V hemos demostrado la capacidad 

de dos de los compuestos fenólicos presentes y más consumidos en la dieta humana, la 

quercetina y el epigalocatequina-galato, de aumentar la cantidad de zinc lábil dentro de células 

de hepatocarcinoma en ratón Hepa 1-6. Dichos resultados se compararon con los resultados 

obtenidos con clioquinol, un bien conocido ionóforo del zinc. Sin embargo, con el fin de 

confirmar que los polifenoles son capaces de transportar los cationes de zinc a través de la 

membrana plasmática de forma independiente a los mecanismos de transporte celular, tales 

como transportadores de zinc o endocitosis, hemos explorado el uso de liposomas con FluoZin-

3 encapsulado como simples sistemas de membrana que imitan la membrana celular. La 

actividad ionófora de zinc se determinó como la capacidad de los polifenoles para transportar 

zinc dentro de los liposomas y, en consecuencia, aumentar la fluorescencia producida por el 

fluoroforo encapsulado, FluoZin-3, al interactuar con el zinc. Diferentes estudios de 

caracterización incluyendo dispersión de luz dinámica, el potencial zeta, y microscopía confocal 

y electrónica de transmission, se realizaron con el fin de confirmar que la señal fluorescente 

emerge de la parte interior de los liposomas y para verificar su estabilidad después de los 

tratamientos.  

En el capítulo VI se presenta un estudio de la actividad ionófora de zinc de una biblioteca de los 

polifenoles más relevantes mediante la explotación del mismo sistema liposomal. El efecto 

ionóforo de zinc se basan en la capacidad de los compuestos para unirse a cationes de zinc y 

facilitar su transporte a través de la bicapa lipídica. Por lo tanto, primeramente se ha evaluado 

la fuerza de quelación entre el zinc y los compuestos fenólicos en un ensayo de competición 

basado en la disminución de la fluorescencia específica emitida por el complejo zinc-FluoZin-3. 

En la segunda parte del trabajo, se han clasificado el compuestos fenólicos por su actividad 

ionófora por medio del incremento en la fluorescencia procedente del FluoZin-3 encapsulado 

dentro de liposomas. La correlación entre la capacidad de quelación y la actividad ionóforo 

subraya los diferentes comportamientos que dichos compuestos fenólicos pueden mostrar, 

secuestradores o ionóforos del zinc, por lo tanto, mostrando un mejor conocimiento de la 

importancia entre la conformación estructural y su actividad biológica.  

Por último, el capítulo VII consiste en el trabajo llevado a cabo en el grupo de Thomas L. 

Andresen (Grupo de Coloides y Biologia de Interfaces) de la Universidad Técnica de Dinamarca 

(DTU). En este trabajo, un sistema de suministro de medicamento basado en liposomas 

pegilados sensibles a una enzima fue desarrollado para la entrega específica de oxaliplatino, un 

agente quimioterapéutico, para el tratamiento d cáncer de colon. Liposomas de larga circulación 
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y que encapsulan oxaliplatino tienen la capacidad de confinar el fármaco, lo que limita sus 

efectos secundarios tóxicos, y mejora la acumulación del fármaco en el tejido del tumor gracias 

a el efecto EPR. Además, la membrana de los liposomas fue diseñado para ser sensible a la 

degradación por una enzima, la secretada fosfolipasa A2 (sPLA2), enzima que se sobreexpresa en 

muchas células cancerosas, lo que resulta en una liberación deliberada y específica de 

oxaliplatino solamente en el tejido de canceroso. Primeramente, se ha demostrado en un 

estudio de liberación de calceína que la modulación de la cantidad de lípidos DPPC y DPPG 

presentes en la membrana del liposoma es capaz de afinar su sensibilidad hacia la actividad de 

la sPLA2 y por lo tanto modificar el perfil de liberación del fármaco. En el tratamiento in vitro de 

líneas celulares cancerosas con liposomas sensibles a la sPLA2 cargados con oxaliplatino da lugar 

a una inhibición del crecimiento superior en comparación con el fármaco libre o encapsulado 

dentro de liposomas convencionales. Además, hemos demostrado que los subproductos 

formados por la hidrólisis causada por la sPLA2, lisolípidos y ácidos grasos, son capaces de actuar 

como potenciadores de la permeabilidad celular y también muestran un efecto tóxico para las 

células. Finalmente, los estudios in vivo realizados en ratones con modelos xenoinjertados de 

células de cáncer de colon humanas secretoras de sPLA2 demostraron una mejoría en el retraso 

del crecimiento tumoral en el ratón en comparación con el fármaco libre, pero no en relación al 

fármaco encapsulado en liposomas convencional. En conclusión, el desarrollo de oxaliplatino 

encapsulado en liposomas sensibles a la enzima fue capaz de mejorar de manera efectiva la 

farmacocinética del compuesto, pero sin embargo, la liberación del fármaco, en el complejo 

escenario in vivo, sufre una reduccción en la velocidad de liberación.  
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17 Chapter I: Introduction 

1.1.  Liposomes 

Liposomes, from Greek etymology lipos meaning fat and soma meaning body, are spherical-

shaped lipid vesicles that have garnered enormous interest due to their unique properties since 

they were discovered in the early 1960’s by Alec D. Bangham1. Due to the amphiphilic nature of 

their lipidic building blocks, liposomes are formed by closed membrane-like bilayers that arrange 

concentrically around a hydrophilic cavity (Figure 1.1). This particular structural organization, 

offering hydrophilic (core) and hydrophobic (within the membrane) environments, as well as 

their biocompatible, biodegradable and non-immunogenic own nature, make liposomes one of 

the cornerstones of nanobiotechnology. 

 

Figure 1.1. Schematic illustration of a liposome encapsulating both hydrophilic (blue) and hydrophobic 
(orange) molecules. 

Liposomes are structurally and functionally some of the most versatile supramolecular 

assemblies in existence, thus offering advantageous properties that have positioned liposomes 

as well established structures in a large number of applications including drug/gene delivery 

platforms in pharmaceutics2 and cosmetics3, food technology4, models as biological cell 

membranes5, in analytical sciences as signal amplifiers (immunoassays)6 amongst a plethora of 

further applications7. 

1.1.1. Lipids 

Lipids constitute part of the essential naturally-occurring biomolecules for the structure and 

function of any living organism, presenting a key biological role in energy storage, signalling and 

as structural membrane components. The main characteristic of lipids group together a diverse 

classification of organic molecules with appreciable structural differences, including fats, oils, 

hormones and phospholipids, that are related by their solubility in organic solvents and display 

water-insoluble properties. 

Phospholipids are amphiphilic molecules containing both a hydrophilic and hydrophobic moiety 

that act as the main building blocks of biological membranes. In general, they are composed of 

four components, the fatty acids, a glycerol or sphingosine backbone, a phosphate and an 

alcohol attached to it. In the case of phosphoglycerids, two of the hydroxyl groups present in 
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the glycerol-backbone (at C-1 and C-2 positions) are esterified to the carboxyl groups of the fatty 

acid chains (saturated or unsaturated) forming the non-polar tails of the lipid that acts as a 

hydrophobic barrier. The remaining hydroxyl group of the glycerol backbone (at C-3) is esterified 

to the phosphoric acid, which at the same time, could be further linked by an ester bond 

between its phosphate group to the hydroxyl group of one of different alcohols, thus offering 

the hydrophilic properties required to enable interaction with the environment. Figure 1.2 

depicts the structural formula of the phosphoglycerides with the common alcohol components, 

choline, ethanolamine, glycerol, inositol and serine. 

 
Figure 1.2. Structural representation of a phospholipid with the different alcohol head groups and one 
saturated and mono-unsaturated fatty acid chains. 

Lipids can form an extraordinarily rich multitude of polymorphic structures through their self-

assembly properties when surrounded in aqueous environments and, as highlighted by Luzzati8, 

lead a class of molecules displaying such a variety of structures in such a narrow range of 

physicochemical parameters. 

1.1.2. Vesicle formation 

The amphiphilic nature of phospholipids can be explained by their dual preference for water. In 

1972, Singer and Nicholson presented the “fluid mosaic model” in which they reported that the 

lipids head groups can be exposed to aqueous environments due to their hydrophilic nature, 

while the lipids tails are hydrophobic and therefore orientate towards each other9. In aqueous 

solution, very low concentrations of lipids tend to be dissolved, but as the lipid concentration 

increases beyond the critical micelle concentration (CMC), they spontaneously self-assemble 

due to the increasing unfavourable entropy of the water-hydrocarbon interactions. This lipid 
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organization produces a rich diversity of non-covalent lipid architectures, such as lamellar and 

non-lamellar structures including micelles, tubes, bilayers, liposomes, disks, ribbons, hexagonal 

phases and cubic phases10,11,11b,12. The resulting structures reflect the optimal packing of the 

lipids at a minimum energy balancing the hydrophobic forces and the repulsive forces between 

the confined head groups. Thermodynamic interactions mentioned above, as well as the 

attractive-repulsive forces described in the DLVO Theory (named after Derjaguin, Landau, 

Verwey and Overbeek) are not the only governing factors (Mouritsen 2005), since the molecular 

parameters of the lipids, such as their chemical and geometrical properties, as well as physical 

conditions, e.g. temperature, pH, salinity and pressure are decisive factors affecting the resulting 

lipid structures.  

The self-assembly of lipids into liposome vesicles relies on two main phenomena, spontaneous 

vesiculation and the curvature theory. The spontaneous vesiculation process is mainly governed 

by thermodynamics and intermolecular forces. From a thermodynamic point of view, the 

hydrophobic effect that drives the assembling of lipid molecules into supramolecular structures 

by reducing the overall Gibbs free energy of the system does not, however, specify the final 

aggregation structure. The hydration of the polar head groups by hydrogen bonding produces 

an enthalpic gain in solvation that minimizes the potential energy and a gain in entropy of bulk 

water, thus increasing the stabilization of the phospholipids within the aggregated structures13. 

In addition, attractive-repulsive London forces (ion-dipole) between charged head groups and 

water molecules plays an important role in the aggregation process and further stabilization of 

the polar head groups (Tomohiro, Shoko and Masahiko 2006).  

In 1976, Israelachvili et al.14 introduced the concept of a molecular packing parameter (P) as a 

first attempt to correlate the molecular structure of the amphiphile with the curvature of a 

membrane. The concept describes the geometry of the volume occupied by a lipid and its ability 

to pack into different structures. Simplified as P value, the packing parameter is defined by the 

ratio between the volume occupied by the hydrophobic tails (v) with respect to their length (l) 

and the surface of the polar head group (a), equation 1. These three parameters depend on the 

lipid geometry as well as on the attraction and repulsion forces between them once packed into 

aggregates15, and will directly influence the resulting lipid aggregation structure.  

 

P = v / l · a    Equation 1 

(P) is the packing parameter, (v) is the effective volume occupied by the hydrocarbon tails,  

(l) is the length of the tails and (a) is the head group surface area. 

 

In that sense, when P < 1/3 the lipid exhibits a cone-like shape and will pack into micelles. If 1/3 

< P < 1/2, the lipid adopts a truncated cone shape and forms cylindrical micelles (hexagonal 

phases). If 1/2 < P ≤ 1, the shape of the lipid is between a truncated cone and a cylinder, and will 

pack into vesicles or lamellar bilayers. Finally, if P > 1, the lipid displays an inverted truncated 

cone shape and inverted micelles will form (Figure 1.3). 
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Figure 1.3. Schematic showing the different lipid shapes, their packing parameters and related structures 
of aggregates. Lamellar phases forming liposome structures by the process called spontaneous 
vesiculation is also depicted. 

The spontaneous vesiculation process has been described recently as a multi-step process, 

starting from the formation of lamellar disk-likes structures that bend once they have grown 

above a critical dimension in order to minimize the high energy at their edges, therefore, forming 

enclosed vesicles16. This bending energy or elastic energy, plays a fundamental role in reducing 

the edges’ energy but also implies an energy cost due to the modification of the Gaussian 

curvature of the sheet. In this sense, membranes with higher spontaneous curvatures minimize 

the energy required to curve them and form vesicles under a spontaneous process, but 

symmetric membranes (spontaneous curvature = 0) prefer to be flat and energy is required to 

curve them17. The bending elasticity per unit area (Eb) with both principal curvatures being equal 

is approximated by equation 2. 

 

Eb = ½ K (2C - Co)2 + kC2  Equation 2 

(Eb) is the elastic binding energy, (Kb) is the binding elastic constant, (C) is the curvature of the 

radius (C = 1/radius), (C0) is the spontaneous curvature and (k) is the Gaussian curvature 

modulus. 

 

In addition to the considerations mentioned above, other important factors should also be 

addressed as they have a strong effect on the final size and shape of the lipid aggregates. These 
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factors include the lipid chemical structure, the concentration ratio between lipid and water 

molecules, the temperature and others such as pH, salinity (Seddon and Templer 1995). 

The chemical structure of the lipids is one of the most important parameters impacting on the 

aggregate structure. For instance, the lipid chain length has a strong effect on the 

hydrophobicity, thus lowering the CMC value, increasing the lipid transition temperature and 

favouring the formation of inverse non-lamellar phases18. In addition, the presence of cis- or 

trans-double bonds in the hydrocarbon chains lead to a drastic decrease of the chain melting 

transition temperature19. A major effect on the lipid polymorphism is also caused by the head 

group of the lipid, in which its’ polarity, charge and steric characteristics play a very important 

role20.  

The lipid concentration in the aqueous solution has also a great effect on their supramolecular 

organization and can be mainly explained by the CMC value. Below the CMC, the very low 

concentrations of lipids are dissolved as monomers first and as the lipid concentration increases 

beyond the CMC value, the lipids organize into micelles, hexagonal phases, cubic phases, 

lamellar phases, inverted cubic phases, inverted hexagonal phases and inverted micelles 

respectively (figure 1.4). The CMC value decreases as the hydrophobic hydrocarbon lipid chains 

increase in size and therefore it is strongly dependent on the lipid architecture13,21. 

 

Figure 1.4. Schematic lipid phase transition diagram driven by the water concentration. 

In addition to the lipid concentration or water content, the temperature is also a critical variable 

that influences the resulting lipid supramolecular structures. Each lipid molecule has a specific 

phase transition temperature (also called melting temperature or Tm) in which the lipid changes 

its’ physical state from solid-gel phase to liquid phase. This temperature-dependent behaviour 

correlates with the degree of lipid organization within a lamellar bilayer, from ordered solid-gel 

phases when the temperature is below the Tm, to disordered liquid phase when the 

temperature is above the Tm (Figure 1.5). In solid-gel phases the lipids are packed together in a 

regular and rigid arrangement, whilst in liquid phases the disorder in the membrane enhances 
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the relative fluidity or mobility of their single lipid molecules within the bilayer, thus increasing 

its’ permeability to small molecules21,22,23. 

 

Figure 1.5. Schematic representation of the lipid phase transition temperature (Tm). Schematic 
representation of the lipid phase transition temperature (Tm). If the temperature of the system is below 
the main Tm, the lipid bilayer will be a solid-gel phase with ordered configuration, whilst if the temperature 
of the system is above the main Tm, the lipid bilayer will be a liquid phase with a higher degree of disorder. 

Lipid vesicles or liposomes are one of the most studied polymorphic lipid structures, however, 

the full understanding and control on the vesicle formation is still a matter of research in the 

scientific and industrial community. These soft aggregates composed of flexible lipid bilayers, 

display a multitude of varying morphologies with diverse sizes and shapes. 

1.1.3. Classification 

Liposomes can be classified into a wide number of varying categories. Due to their flexible 

possibilities to easily modulate their structural and physicochemical characteristics, liposomes 

may surpass other colloidal carrier systems. This versatility offers researchers the possibility to 

fine-tune the liposome properties towards specific applications. Most frequently, liposomes are 

classified based on structural parameters, but other alternative classifications rely on their 

composition or sensitivity.  

1.1.3.1. Structural parameters 

Taking into account structural parameters, liposomes are divided depending on the number of 

lipid bilayers (lamellae) and the size of the vesicle. Unilamellar liposomes are of major interest 

in research due to their facile preparation and the simplicity in understanding their membrane 

properties. These single-bilayer vesicles are, at the same time, classified into three size subtypes 

(Figure 1.6). Vesicles smaller than hundred nanometres are called small unilamellar vesicles 

(SUV), when ranging from hundred nanometres to one micrometre large unilamellar vesicles 

(LUV), and larger than one micron giant unilamellar vesicles (GUV). Although unilamellar vesicles 

have been largely studied in many fields, the ones smaller than two hundred nanometres are 

the most explored and of particular interest as drug/gene delivery carriers in pharmaceutical 

applications, whilst the GUV are mostly used as simple membrane models to study properties 

of living cell membranes. In addition to the single-lamellae vesicles, alternative larger structures 

are formed when composed of many bilayers, i.e. oligolamellar vesicles (OLV), multilamellar 

vesicles (MLV) and multivesicular vesicles (MVV). All these multi-lamellar vesicles usually adopt 

very different behaviours from the unilamellar species due to the changes in their physical 

properties. In addition, the difficulties in producing homogeneous specimens of those multi-
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layered structures place this liposomes in a less explored category as compared to the 

unilamellar liposomes. 

 

Figure 1.6. Schematic classification of liposomes taking into account structural parameters, the size and 
the number of lamellar. 

1.1.3.2. Liposome composition and functionalization 

Liposomes are often distinguished from each other taking into account their surface 

functionalization, and therefore their further applicability. In this case, the different membrane 

compositions giving distinctive features to the entire liposome are used to classify as: 

conventional, cationic, targeted and stealth liposomes (Figure 1.7).  

 

Figure 1.7. Schematic illustration of different types of liposomes classified by their composition and surface 
functionalization. 
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Conventional liposomes are the simplest liposomes which are generally composed by one, or a 

mixture, of neutral or negatively charged phospholipids forming a bilayer surrounding the 

aqueous inner core. On the other hand, when the net charge of the vesicle is positive, they are 

called cationic liposomes, and this subgroup is of particular interest as genetic delivery systems, 

as the cationic lipids interact with the negatively-charged DNA/RNA forming stable lipid-

DNA/RNA complexes24. Target liposomes group together all the liposomes that are 

functionalized with some ligand to direct them towards a specific receptor. This is commonly 

done by functionalizing a few phospholipids of the membrane with an antibody or antibody 

fragment, so called immunoliposomes. Liposomes offered great versatility for the design of 

functional surface groups exploiting several surface chemistry approaches25. Generally, the 

ligand coupling is achieved by three different strategies: covalent binding to the lipid in organic 

solvent, preparation of lipid-conjugate micelles which will transfer to the outer liposome 

membrane after co-incubation (post-insertion method)26 or direct conjugation on preformed 

liposomes (post-functionalization approach). A summary of several strategies are outlined in 

table 1.1. 

Table 1.1. Summary of several surface chemistry approaches for the functionalization of liposomes. 

Surface functionalization References 

Aldehyde-modified liposomes 27 

Alkyne-modified liposomes 28, 29 

Amine-modified liposomes 30, 31 

Bromoacetyl-modified liposomes 32, 33 

Carboxyl-modified liposomes 34, 35 

Cyanur-modified liposomes 36 

Cysteine-modified liposomes 37 

Hydrazide-modified liposomes 38, 39 

Maleimide-modified liposomes 40, 41 

p-Nitrophenylcarbonyl-modified liposomes 42 

Thiol-modified liposomes 43, 44 

Triphosphine-modified liposomes 45 

 

Last but not least, the stealth liposomes, also known as stearic liposomes or long-circulating 

liposomes, represent one of the cornerstones in liposomal drug delivery research. They benefit 

from a coat of hydrophilic polyethylene glycol (PEG) chains covalently attached to the outer 

phospholipids to massively decrease their fast and efficient clearance from the body by the 

phagocytes of the mononuclear phagocyte system (MPS), or also called reticuloendothelial 

system (RES), and by creating a stearic layer around the liposome that protects it from 

destabilization46. 
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1.2. Methods for liposome preparation and characterization 

1.2.1. Preparation of liposomes 

Since the pioneering demonstration by Alec D. Bangham that dispersions of phospholipids in 

aqueous environments form enclosed arrangements1, a multitude of potential methods have 

been widely described in the literature for the preparation of liposomes47,47b. Some of the 

mechanisms involve more complex procedures than others but the selection of the correct 

method will influence the size and lamellarity of the resulting liposomal vesicles. In that sense, 

the correct selection should depend on: i) the physicochemical properties and concentrations of 

the lipids and the substance to be encapsulated, ii) the size, polydispersity and lamellarity of the 

vesicles, iii) the medium composition of the liposomal dispersion and iv) batch to batch 

reproducibility. 

Most of the procedures are based on the preparation of a dry lipid film followed by hydration 

with an aqueous solution containing the encapsulating material (Bangham method)48 to obtain 

MLV dispersions, and then, taking advantage of size reducing and homogenization techniques, 

such as sonication49, extrusion50 or pH jump51 to obtain LUV or SUV. In addition, other commonly 

reported methodologies involve the use of solvent microinjection techniques52, detergent 

dialysis53 and reverse-phase evaporation methods (REV)54. Moreover, alternative methods 

reported on the literature are based on electroformation55, heating56, microfluidic methods57, 

supercritical fluidic technology58, dual asymmetric centrifugation59, membrane contactor 

technology60, freeze-drying double emulsions61 

Despite the vast amount of literature regarding liposome preparation, the common preparation 

techniques are outlined in Figure 1.8, but only the methodology used to prepare liposomes 

throughout this thesis is going to be further discussed. 

 

Figure 1.8. Techniques for the preparation of liposomes of different sizes and lamellaes. 
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1.2.1.1. Curvature-tuned method 

Taking into consideration the phenomenon of spontaneous vesiculation and the theory of 

curvature, in 2009 Genç et al.62 presented a rapid and simple, solvent-free method for the 

preparation of SUV solutions using both charged and zwitterionic lipids. The method obviates 

the time-consuming prerequisite of preparing a lipid film, and therefore, the use of organic 

solvents (i.e. chloroform or methanol). The formation of the liposomes is based on the 

synergistic effect of a rapid change in pH, from pH 7.4 to 11 and back to 7.4, termed “pH jump”, 

as the main driving force followed by a defined equilibration time where lipids curl into vesicles, 

and a centrifugation step to obtain the SUV (Figure 1.9). The fine-tuning of the pH jump time 

interval, the equilibration time, the temperature, the buffer type and lipid characteristics 

determines the final liposome size and homogeneity. 

 

Figure 1.9. Preparation of liposomes using the curvature-tuned method. 

This method was used through the thesis work for the preparation of liposomal nanoreactors 

for the synthesis of nanoparticles (Chapter II, III and IV) and for the preparation of zinc-

fluorophore loaded liposomes as membrane models (Chapter V and VI). However, when 

preparing liposomes composed of complex mixtures of lipids, the lipids must first be dissolved 

and mixed in an organic solvent, such as chloroform:methanol 9:1 (v/v) solution, to ensure a 

perfect homogenization, and therefore, homogeneous organization in the membrane of the 

liposome. This is the case of the liposomes prepared for drug delivery (Chapter VII), where a 

complete homogeneous membrane of the carrier plays special importance for the drug release. 

Thus, the liposomes were prepared using the thin-film hydration method followed by extrusion. 

1.2.1.2. Lipid thin-film hydration and extrusion method 

The thin-film method is the most widely used method for liposome preparation and forms MLV 

with high encapsulation efficiency but yields heterogeneous populations of varying sizes and 

shapes. In this method, a lipid mixture is dissolved in an organic solvent until homogenization is 

complete (note that several lipids may need some heat to be completely dissolved). The organic 

solvent is then evaporated and a dried film of lipids starts to form in a glass flask. Finally, the 

dried lipid film is hydrated with an aqueous solution containing the molecules to be 

encapsulated under vigorous agitation and vortexing at a temperature above the main lipid 

transition temperature. The formed heterogeneous MLV is then extruded in order to obtain a 

well-defined size of homogeneous unilamellar vesicles. MLV are thus forced to pass through the 
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pores of a polycarbonate membrane filter while maintaining the temperature above the 

transition temperature until unilamellar liposomes of uniform size are obtained63 (Figure 1.10). 

 

Figure 1.10. Preparation of liposomes employing the thin-film method. 

 

1.2.2. Characterization of liposomes 

In order to validate the batch-to-batch reproducibility and quality of liposome samples, various 

parameters should be carefully controlled. Therefore, a full physicochemical characterization is 

required to assess liposome size, particle distribution, lamellarity, lipid concentration, lipid 

formulation composition, surface charge of the vesicles, membrane phase transition and 

encapsulation efficiency. 

1.2.2.1. Size and particle distribution  

Liposome mean size, size distribution and particle dispersion are among the most relevant 

parameters when describing a liposome sample. Several techniques have been described 

including dynamic light scattering (DLS)64, microscopy techniques65, size-exclusion 

chromatography (SEC)66, field-flow fractionation (FFF)67, centrifugation68, flow-cytometry69, 

capillary electrophoresis70 and turbidity71. Among those commonly used techniques, DLS is the 

most broadly used for the determination of liposome size distribution, and it is based on the 

time-dependent fluctuations of the light scattered at 90º from the particles undergoing 

Brownian motion. However, DLS analysis does not allow the determination of the liposomes 

shape, whilst microscopy techniques do. In this sense, a set of diverse electron microscopic (EM) 

techniques, such as transmission electron microscopy (TEM)72, freeze-fracture EM73, cryo-TEM74, 

environmental scanning electron microscopy (ESEM)75 and atomic force microscopy (AFM)76, act 

as complementary methods to provide valuable information on the liposome morphology, as 

well as resolving different particle sizes.  

1.2.2.2. Lamellarity 

The lamellarity of the liposomes is an important parameter to investigate whether the vesicles 

are unilamellar (UV) or multilamellar (MLV or MVV), and also, to obtain a quantifiable signal to 

estimate the number of bilayers that the liposomes contain. The lamellarity value is often 

measured by 31P-NMR, in which the addition of Mn2+ ions quenches the 31P-NMR signal of the 

phospholipids pointing the outer face of the liposome bilayer by broadening their resonance 

beyond detection77. Taking into account that the fraction of phospholipids exposed to the 
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external medium ranges from 5% in large MLV to 70% in SUV78, liposome lamellarity can be 

calculated by the ratio of 31P-NMR signal before and after addition of Mn2+. The lamellarity can 

also be determined by EM techniques, such as freeze-fracture EM79 or cryo-EM80, and by 

spectroscopic techniques, such as X-ray diffraction (XRD)81 or small-angle X-ray spectroscopy 

(SAXS)82. 

1.2.2.3. Lipid composition and concentration  

The characterization of the final lipid formulation present in the liposomes should be analysed, 

since often it may not correlate with the starting lipid mixtures, in both qualitative and 

quantitative terms, however, most of the literature focuses on the quantitative studies and 

obviates qualitative analysis. The lipid concentration is commonly determined by wet chemistry 

protocols that estimate the total phosphorous content, such as the Bartlett method83, or the 

Stewart assay through the formation of a coloured complex between the phospholipid and 

ammonium ferrothiocyanate84. In addition, more accurate results can be obtained by measuring 

the phospholipids content using high-performance liquid chromatography coupled with 

evaporative light scattering detection (HPLC-ELSD)85 or inductively coupled plasma mass 

spectrometry (ICP-MS)86. While these methods provide information on the concentration of 

phospholipids, the accuracy in lipid composition is not addressed. The exact lipid composition 

present in the liposomes membrane can be qualitatively assessed by firstly disrupting the lipid 

bilayers prior to their analysis using HPLC87 or thin-layer chromatography (TLC)88. 

1.2.2.4. Surface charge 

The stability and interaction of the liposome vesicles with the environment can be critically 

accentuated by the surface charge present in the lipid membrane. The control over the surface 

charge of the liposomes has always garnered huge importance, especially in pharmaceutical 

applications where the correct surface charge may revoke the therapeutic potential. For 

example, cationic liposomes are widely used as transfection vectors in gene therapy due to their 

attractive surface interactions with negatively charged DNA/RNA and cell membranes.89 The 

liposome charge is often related with the zeta-potential value, an indicator of the surface 

potential of the particle in suspension that gives information regarding the overall charge that 

the particle acquires in a particular medium. Zeta-potential analysis are commonly done in the 

liposome field due to its easiness.90,90b In addition, zeta-potential is also used as an indicator of 

liposome aggregation, due to the fact that vesicles with a zeta-potential value of above/below 

+/- 30mV will suffer from strong electrostatic repulsive interactions, thus enhancing their 

stability as a colloidal dispersion.91  

1.2.2.5. Phase transition temperature 

The phase transition temperature, also referred as melting temperature (Tm), is the 

temperature at which a lipid changes its’ physical state from an ordered solid phase to a 

disordered liquid phase. This temperature is therefore an essential parameter to be aware of 

since it affects the behaviour of the liposome membrane and thus its’ fluidity and permeability 

to small molecules. Generally, this transition temperature is studied using differential scanning 

calorimetry (DSC) technique, based on the amount of heat needed to increase the temperature 

of the sample92. 
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1.2.2.6. Encapsulation efficiency 

The encapsulation efficiency (EE) is a measure of the percentage of total encapsulated material, 

and is defined as the total amount of encapsulating material found in the liposome solution 

versus the total amount of the encapsulate. Encapsulation efficiency is commonly measured by 

spectrophotometry93, fluorescence spectroscopy94, enzyme-based methods95, electrochemical 

techniques96, NMR spectroscopy97 and ICP-MS98.  

The EE value depends not only on the initial amount of the encapsulate or the ability of the 

liposomes to entrap the molecules, but also if a remote-loading technique is used. The general 

methods for the preparation of loaded liposomes are based on passive loading of the drug 

during the liposome formation, whilst active loading techniques take advantage of 

transmembrane pH gradients to actively entrap protonable molecules.99 The trapping 

effectiveness can vastly differ from less than 30% to almost 100% of the starting material when 

using remote-loading techniques.  

 

1.3. Applications 

Since the early discover by Alec D. Bangham, liposomes were firstly proposed as models of lipid 

membranes, however it was not until few years later when Gregory Gregoriadis expanded their 

future applicability by establishing the idea that liposomes can entrap molecules and outlining 

their huge potential as carriers in different fields100. In addition, their particular structural 

organization offering the possibility to carry and protect both hydro- and lipo-philic compounds 

in the core and within the bilayer respectively, as well as their biocompatible, biodegradable and 

non-immunogenic nature, have positioned liposomes as incredibly versatile tools in a vast range 

of scientific disciplines (Figure 1.11). 

 

Figure 1.11. Application of liposomes in many diverse fields. 

Liposome research mainly focuses on medical and pharmacological applications. They have been 

extensively explored as carriers for the delivery of a vast range of different drugs, including anti-

cancer chemotherapeutics101, bactericides102, fungicides103, hormones104, enzymes105, genetic 
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material106 amongst others. Within the therapeutic field, it has been widely reported that 

encapsulating a drug within liposomal nanocarriers can prevent its’ toxic side-effects and 

enhance its’ efficacy by optimizing the drug biodistribution and pharmacokinetic dynamics, thus 

helping the delivery of the drug to a desired target and reducing the amount of drug needed to 

achieve a therapeutic effect. Liposomes are currently the most used and promising drug delivery 

carriers, as demonstrated by the large number of clinically approved liposomal drugs (Table 1.2), 

with many more in clinical trials, due to their accomplishment in drug-protection, long-

circulation in blood, specific-targeting and specific drug release107,108.  

Table 1.2. List of liposomal drugs clinically approved for marketing. 

Product Drug Indication Year approved References 

AmBisome Amphotericin B 
Fungal infections 

Leishmaniasis 
1990 I.M. Hann and H.G. Prentice (2001) 

Doxil/Caelyx Doxorubicin 

Karposi’s sarcoma 

Ovarian cancer 

Breast cancer 

Myeloma 

1995 

1999 

2003 

2007 

N.D. James et al. (1994) 

DaunoXome Daunorubicin Karposi’s sarcoma 1996 C.E. Petre and D.P. Dittmer (2007) 

Myocet Doxorubicin Breast cancer 2000 G. Batist et al. (2001) 

Amphotec Amphotericin B Fungal infections 1996 R. Bowden et al. (2002) 

Abelcet Amphotericin B Fungal infections 1995 T.J. Walsh et al. (1998) 

Visudyne Verteporphin Wet macular degeneration 2000 N.M. Bressler (2001) 

DepoDur Morphine sulfate Pain following surgery 2004 D. Gambling et al. (2005) 

Depocyt Cytarabine Lymphomatous meningitis 1999 M.J. Glantz et al. (1999) 

Diprivan Propofol Anesthesia 1986 M.R. Patrick et al. (1985) 

Estrasorb Estrogen Menopausal therapy 2003 J.A. Simon (2006) 

Exparel Bupivacaine Analgesia 2011 S.R. Gorfine et al. (2011) 

Marqibo Vincristine Lymphoblastic leukemia 2012 A.H. Sarris et al. (2000) 

 

Liposomes have also been widely explored in the field of vaccination109,110 and as immunological 

adjuvants to enhance the immunogenicity of small antigens111, of particular interest when used 

as carriers of genetic material. Cationic liposomes have been largely used in gene therapy as 

effective candidates for the easy encapsulation, protection and delivery of genetic material due 

to the ability of cationic lipids to bind and carry polyanionic DNA/RNA molecules112,113, often 

called lipoplexes114, and as non-viral transfecting vectors115. The application of liposomes as 

cosmetic carriers started with the first proposal in 1980 by Mezei and Gulasekharam as skin 

delivery platforms116. Since then, intensive research on the cosmetic and cosmoceutic fields 

have placed liposomes as efficient delivery carriers due to their ability to protect the carrying 

molecule from degradation and enhance its’ skin penetration through their transdermal 

properties117,118,119,120. 

In addition to the therapeutic purposes, liposomes are also widely studied as useful imaging 

tools for diagnosis. It has been shown that liposomes are valuable tools that enhance the target-

specificity of image-based diagnosis for the effective screening of diseases, such as in computed 

tomography (CT), single photon emission computed tomography (SPECT) and magnetic 

resonance (MR), by encapsulating contrast agents121, radioactive tracers122 and paramagnetic 
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agents123 within the targeted liposomes. The alliance of both diagnostic and therapeutic fields, 

referred to theranostics, has resulted in a revolutionary new field pursuing personalized 

medicine, in which liposomes emerge with great potential as multifunctional carriers124,125,126.   

Although liposome research is mainly focused on medical applications, it should be emphasised 

that liposomes are also largely explored in numerous scientific disciplines. They have been used 

as mathematical models for modelling the drug release from liposomes127 and in theoretical 

physics, for the analysis of aggregation behaviour, membrane phase segregation, vesicle 

morphology128. In colloidal science, liposomes are used for the study of aggregation processes, 

colloidal stability and DLVO theory129. Application of liposomes in chemical disciplines, include 

their use in catalysis130, energy conversion131,132, and as reactors or templates for controlled 

chemical reactions133,134. In addition, due to the fact that liposomes are synthetic analogues of 

biological membranes, they have been extensively used as membrane models for understanding 

many cell membrane functions135,136.  

The food industry has also exploited the use of liposome technology due to their ability to 

encapsulate hydrophilic and hydrophobic molecules. Biocompatible and biodegradable 

liposomes have been extensively used for entrapping and shielding the functionality of unstable 

compounds, such as enzymes, vitamins, antioxidants and flavours, as well as for the delivery of 

toxins and pesticides, in the nutritional and agricultural fields137. The textile industry has also 

joined the trend of applying liposome technology to their processes, mainly in wool dyeing, 

durable fragrance, protective textile, insect repellents, antimicrobial agents and phase-change 

materials138. 

Liposomes have demonstrated to have huge potential in many analytical applications. In 

biosensors or bioanalysis, where the detection sensitivity is of essential importance, liposomes 

offer the ability to entrap large quantities of signalling molecules and, therefore, amplify the 

signal. A multitude of different variations in liposome-based bioassays has been described in the 

literature, including liposome immunoassay (LIA)139, liposome immunolysis assay (LILA)140, 

liposome immunosorbent assay (LISA)141 and flow-injection liposome immunoanalysis (FILIA)142, 

as well as in biosensors143. 

 

1.3.1. Liposomes as nanoreactors for the controlled synthesis of metal nanoparticles 

During the last decades, metallic nanoparticles (NP) with controlled size and shape have 

witnessed enormous research interest due to their exceptional unique chemical, electronic, 

magnetic and optical properties, which are not observable in their bulk state144. Those nano-

dependent features have resulted in their extensive application in many diverse disciplines, 

including catalysis145, electronics146, plasmonics147, sensors148 and biomedical fields149.   

The development of synthesis methods to produce homogeneous size- and shape-tunable NPs 

is still a challenge. Many different techniques have been reported in the literature, including 

photolytic150 and thermal151 decomposition, sonochemical152 and hydrogen reduction153, 

electrochemical deposition154, one-phase155 and two-phase156 reduction methods, and biogenic 

methods157. The most common methods utilize reducing agents such as borohydrides, 

aminoboranes, hydrazine, formaldehyde, hydroxylamine, saturated and unsaturated alcohols, 
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citric and oxalic acids, polyols, sugars, hydrogen peroxide, sulphites, carbon monoxide, 

hydrogen, acetylene and mono-electronic reducing agents, often in combination with capping 

agents such as citrates, sulphur ligands, phosphorus ligands, nitrogen-based ligands, oxygen-

based ligands, dendrimers, polymers and surfactants, to mediate the reduction reaction and 

avoid uncontrolled aggregation into larger particles158,159. 

Despite the large variety of methods described, very few techniques allow a precise and fine 

control over the size and shape of the resulting NPs. The use of templates or reactors offer the 

possibility to confine the reduction reaction in a controllable environment, thus modifying the 

reduction and growth kinetics of the NPs as compared to bulk solution. Surfactants and reverse 

micelles used as templates were shown to provide good control over the produced NPs. The use 

of the surfactants cetyltrimethylammonium bromide (CTAB) or dioctylsulfosuccinate sodium 

salt (AOT) for the preparation of size- and shape-tuned NPs have been widely reported160,161,162. 

Polyelectrolytes have also been described as nanoreactors for the synthesis of Pd NPs163. 

Regarding the use of reverse micelles, a large number of studies are available but among a vast 

variety, polyvinylpyrrolidone (PVP) polymer micelles are the most commonly used for the 

preparation of small NPs164,165,166. 

The structure of liposomes also offers a system to compartmentalise chemical reactions in order 

to control the reduction of NPs. In this sense, they can be used as nanosized reactors for the 

synthesis of colloid NPs in a more controlled way within the confined environment. There are 

few studies in the literature using liposomes as nanoreactors for the synthesis of metallic NPs, 

e.g. the use of liposomes for the synthesis and stabilization of Au NPs167, the synthesis of Au NPs 

via phospholipid membrane-bound Pd catalysed reduction by hypophosphite168, the use of 

liposomes for the preparation of several platinum nanostructures inside169,170, or the 

preparation of Au NPs by ascorbic acid in liposomes of several compositions (GUVs)171. It has 

been also described that phosphoglycerol lipids can act as stabilizers for Au and Cu nanoparticles 

and Au−Cu bimetallic nanoparticles172,173.  

Liposomes appear as suitable candidates as nanoreactors for the controlled synthesis of NPs in 

an environmentally-friendly manner, however the fine tuning of critical parameters involved in 

the control of the kinetics of the reduction reaction, such as the permeability of the nanoreactor 

membrane, are still required in order to reveal their full potential as templates. 

 

1.3.2. Liposomes as cell membrane models for the study of zinc ionophores 

Liposomes are one of the simplest cell models consisting only of a spherical lipid bilayer 

enclosing an aqueous buffer. Being synthetic analogues of biological membranes, liposomes 

have been extensively used as membrane models for understanding many of the cell membrane 

functions135,136,174. One of those membrane functions, is the ability to control the internalization 

of different compounds across the bilayer into the cytosol. This uptake can be achieved by 

means of membrane transporters or endocytosis processes. However, there are a class of 

molecules called ionophores which are able to bind small ions and transport them across lipid 

membranes without the help of any cell transporting mechanisms. These ionophore molecules 

generally are lipo-soluble compounds that can be found in nature or chemically synthesised, and 
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have been widely explored as therapeutic agents since they can modulate the concentration of 

metal ions within the cells, such as clioquinol or pyrithione175. 

Interestingly, a class of phenolic compounds found in several human diet products, such as in 

fruits, wine and green tea, have been reported to modulate the levels of labile zinc metal ions 

within the cells. Zinc labile ions are known to modulate the activity of numerous enzymes and 

thus signalling and metabolic pathways and cellular processes, including cell fate and 

apoptosis176,177. Therefore, polyphenols have been considered bioactive micronutrients whose 

regular consumption either as food components or as dietary supplements (nutraceuticals)178, 

entails benefits for human health including cancer prevention179, diabetes180, and 

cardiovascular181 and neurodegenerative182 diseases. However no effort has been made in order 

to understand whether polyphenolic compounds can modulate cell levels of zinc ions by 

transporting them across the lipid membrane without the help of any cell transport mechanism. 

Few publications in the literature have reported the use of liposomes as simple cell membrane 

systems for the demonstration of ion transport across lipid bilayers, known as the ionophore 

effect183,184,185,186. Therefore, liposomes show great potential and can be exploited as simple 

membrane models for the determination of the ionophore activity of various molecules, 

including the phenolic compounds, in order to characterize them as independent ion 

transporters. 

 

1.3.3. Liposomes as drug delivery carriers for anti-cancer therapy 

Liposomes started to attract notable clinical acceptance and to be recognized as leading drug 

delivery platforms after the first liposomal anti-cancer drug, Doxil®, was clinically approved by 

the FDA in 1995187. Since then, the field has continuously progressed in the development of 

bioengineered liposomes to fulfil the needs of a robust and effective drug delivery system. In 

that sense, one of the major advances was the ability to overcome their relatively rapid 

clearance from the body by the reticuloendothelial system (RES), by modifying the liposome 

surface with a polyethylene-glycol (PEG) layer188. The PEGylation of liposomes demonstrated a 

prolonged circulation behaviour by enhancing their stability and avoiding their opsonisation and 

clearance46. In addition, these long circulating liposomes benefits from increased accumulation 

in the tumor tissue (passive-targeting) via the enhanced permeability and retention (EPR) effect, 

in which particles smaller than 200 nm are able to exploit the EPR effect and diffuse across the 

leaky tumor blood vessels to accumulate in the tumour tissue189 (Figure 1.12).  
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Figure 1.12. Schematic illustration of the liposome passive-targeting phenomena via EPR effect. 

Other methodologies based on active-targeting, imply the modification of the liposome surface 

to specifically-bind the target and minimize unspecific interactions. Liposomes offer great 

advantages due to their facility to functionalize their lipid membrane by attaching different 

target ligands, including proteins, peptides, polysaccharides, glycolipids, glycoproteins, 

antibodies and pro-drug molecules, that can actively modify the liposome biodistribution 

patterns and enhance their cellular internalization190,191,192. However, enough drug 

bioavailability in the target cell to perform its therapeutic effect still depends on the drug release 

from the liposomes and further uptake by the cells. Several strategies are based on specific 

stimuli that triggers the degradation of the membrane and therefore the release of the cargo. 

The main specific triggered-release mechanisms are based on the sensitivity of the liposome 

membrane towards its degradation by acid pH193, heat194, light195 or enzyme196 (mainly proteases 

such as phospholipases197, phosphatases198, elastases199, metalloproteinases200).  

The enzyme-driven release of the drug from enzyme-sensitive liposome carriers is probably the 

most selective and robust drug release system to effectively achieve site-specific release by 

enzymes secreted by the target cells. However, a careful design of the liposome membrane 

sensitivity towards enzyme-degradation is of crucial importance to ensure complete and full 

drug release without compromising their stability in non-targeted environments.  
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1.4. Concluding remarks 
 

Amphipathic lipid molecules have been shown to display the ability to self-assemble into diverse 

polymorphic structures due to their dual preference for solvents. One of those supramolecular 

arrangements, liposomes, result from the curling process of lamellar aggregates into vesicles 

due to several physicochemical phenomena including spontaneous vesiculation and curvature 

processes.  

The biocompatible, biodegradable and non-immunogenic nature of liposomes, together with 

their ability to encapsulate both hydro- and lipo-philic molecules in the aqueous core and within 

the lipid membrane, results in remarkably attractive structures for many scientific disciplines. In 

addition, liposomes are incredibly versatile structures that can be easily produced and 

functionalized in order to fit requirements in a large number of different applications. 

Current efforts in the controlled synthesis of metallic nanoparticles focus on the use of 

templates to provide confined nanoenvironments in which the reduction, nucleation and 

nanoparticle growth happens in a restricted way. The use of liposomal nanoreactors has been 

postulated to offer similar conditions, modulating the reduction kinetics and having a direct 

effect on the final characteristics of the produced nanoparticles. 

Dietary polyphenols have been demonstrated to have direct effect on the modulation of the 

labile zinc levels within the cells, thus affecting many zinc related metabolic pathways including 

apoptosis. However the ability of polyphenols to bind zinc cations and transport them across 

biological membranes devoid of cell transport mechanisms, thus acting as zinc ionophores, still 

remind unknown. Therefore, the use of liposomes as simple cell membrane systems could be 

exploited to determine the zinc ionophore effect displayed by several phenolic compounds. 

Although the use of chemotherapy in cancer therapy is widely recognized, it is often restricted 

by the dose-limiting toxic side-effects and also from rapid circulatory removal. Long circulating 

pegylated liposomes offer the ability to confine and enhance drug exposure specifically to target 

cancer tissue. In addition, the development of site-specific triggered release systems, such as 

enzyme-degradable liposomes, results in a local drug release only where high expression levels 

of the enzyme appear. The application of enzyme-sensitive liposomal drug delivery carriers for 

anti-cancer treatment aim to improve chemotherapeutic indexes. 
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1.5. Thesis objectives 

 

The overall objective of the present doctoral thesis is to demonstrate the versatility of liposomes 

and explore their use as multifaceted tools in different applications, including nanoreactors, 

membrane models and smart drug delivery carriers. To accomplish this, the following specific 

objectives have been set: 

 

 Evaluation of different liposomal nanoreactors for the glycerol-mediated synthesis of 

metallic nanoparticles to provide confined nanoenvironments thus modulating the 

nanoparticle reduction kinetics and having a direct effect on the final size, shape and 

homogeneity of the nanoparticles produced. 

 

 Determination of the zinc ionophore activity of a library of dietary polyphenols by 

exploiting zinc-specific fluorophore loaded liposomes as a simple cell membrane system. 

 

 Development of a liposomal drug delivery system that exploits increased secretory 

phospholipase A2 type IIA (sPLA2) enzyme activity found in a wide variety of cancers to 

mediate the deliver and release of chemotherapeutics specifically in the tumor 

interstitium.  
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2.1. Abstract 

There has been enormous interest in the last decade in development methods for the inorganic 

synthesis of metallic nanoparticles of desired sizes and shapes because of their unique 

properties and extensive applications in catalysis, electronics, plasmonics, and sensing. Here we 

report on an environmentally friendly, one-pot synthesis of metallic nanoparticles, which avoids 

the use of organic solvents and requires mild experimental conditions. The developed method 

uses liposomes as nanoreactors, where the liposomes were prepared by encapsulating 

chloroauric acid and exploited the use of glycerol, incorporated within the lipid bilayer as well 

as in its hydrophilic core, as a reducing agent for the controlled preparation of highly 

homogeneous populations of gold nanoparticles. The effects of temperature, the presence of a 

capping agent, and the concentration of glycerol on the size and homogeneity of the 

nanoparticles formed were investigated and compared with solution-based glycerol-mediated 

nanoparticle synthesis. Well-distributed gold nanoparticle populations in the range of 2-8 nm 

were prepared in the designed liposomal nanoreactor with a clear dependence of the size on 

the concentration of glycerol, the temperature, and the presence of a capping agent whereas 

large, heterogeneous populations of nanoparticles with amorphous shapes were obtained in the 

absence of liposomes. The particle morphology and sizes were analysed using transmission 

electron microscopy imaging, and the liposome size was measured using photon correlation 

spectroscopy. 

 

Figure 2.1. Table of contents figure 

 

2.2. Introduction 

Metal nanoparticles with diverse sizes and shapes have garnered great interest in the past 

decade because of their exceptional unique optical, electronic, and chemical properties, which 

are not displayed in the bulk state of the metal.1,2 Among those metals, gold (Au)-based 

nanoparticles (NPs) have been of particular interest because of their widespread applications in 

catalysis, plasmonics, sensors, and biomedical technologies (e.g., drug delivery) as well as 

electronics.3,4 The development of synthesis methods to obtain homogeneous size- and shape-

tunable nanoparticles for specific application requirements is a priority in nanoparticle-based 

technology development.1 In the majority of the reported chemical synthesis methods of gold 

NPs, the basic principle is the reduction of Au(III) to Au(0), often exploiting sodium citrate and 

sodium borohydride as reducing agents in aqueous solutions. Subsequently, reduced gold atoms 
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assemble in small clusters, and finally these clusters provide nucleation sites for other molecules 

to adhere to and grow nanoparticles.5 To avoid uncontrolled aggregation into larger particles, 

stabilizing or capping agents are usually added to the mixture.6 By addressing environmentally 

friendly methods of producing nanoparticles, renewable reagent sources such as alcohols,6 

bacteria,7 plant extracts,5 and polyols8 have been demonstrated as successful reducing agents 

and/or capping agents. 

Glycerol is a known polyol used as a moistening agent and a preservative to extend shelf life, as 

well as a sweetener in food technology and in the manufacture of many drugs. Oxidation 

products of glycerol are also of great interest, and the development of new cost-effective 

methodologies for their production, using gold or palladium nanoparticles as catalysts, have 

been reported.9-12 However, there have been very few attempts to exploit the reverse reaction, 

where the metals are reduced by glycerol, thus forming nanoparticles. To date, the synthesis of 

nanoparticles with polyols (most often ethylene glycol) is based on heating a polyol-inorganic 

salt mixture typically to high temperatures of over 100 ºC depending on the melting 

temperature of the polyol under continuous stirring conditions.13 In their recent study, Grace 

and Pandian reported on the synthesis of gold nanoparticles and nanoprisms using glycerol as a 

reducing agent under both reflux and microwave conditions, where the glycerol HAuCl4 mixture 

was heated to its boiling point, resulting in the synthesis of spherical or prism-shaped 

nanoparticles depending on the reaction time.14 Nisaratanaporn and Wongsuwan prepared 

silver powders with particle sizes of larger than 63 nm from silver alkoxide using glycerol as a 

reducing agent, again heating the metal and undiluted glycerol solution to high temperatures 

(150-180 ºC),15 and Sarkar et al. achieved the glycerol-mediated reduction of silver to form 

nanoparticles of 25 nm at room temperature but the reduction required the addition of NaOH.16 

To the best of our knowledge, there is no report to date demonstrating the formation of 

extremely small nanoparticles using glycerol as a reducing agent at low temperatures and not 

requiring any additional reactants. 

A widely reported method for the preparation of nanoparticles is the reverse micelle method, 

which exploits water-in-oil droplets stabilized by a surfactant (most often AOT (aerosol OT, 

sodium bis(2-ethylhexyl) sulfosuccinate)).17,18 They have been used as nanoreactors for the 

synthesis of structures having the same shapes as the micelle nuclei such as metal 

nanoparticles19 or metal hybrids,20 ceramic materials,21 and quantum dots22 as well as polymer 

composites.23 Reverse micelles tend to fuse and disperse randomly because of Brownian motion, 

and the content exchange between two fused reverse micelles results in the formation of 

nanosized particles, with their size being defined by the micelle volume.24  

As an alternative to reverse micelles as nanoreactors, liposomes are promising candidates for 

the synthesis of metal nanoparticles because they provide a controllable environment, not only 

in the core but also within the lipid bilayer.25 However, the preparation of nanosized liposomes 

is labor-intensive. In a previous study carried out in our group, nanosized liposomes have been 

prepared using a one-step preparation method based on a pH jump26 that was not only 

environmentally friendly because it avoids the use of organic solvents but also extremely rapid 

because it requires no homogenization steps such as extrusion and sonication, with the 

preparation of a highly uniform population of nanosized liposomes being achieved in less than 

an hour. 

In this work, we report a new environmentally friendly, low temperature method to obtain a 

homogeneous population of ultrasmall gold nanoparticles using liposomes incorporating 

glycerol. Glycerol, which is incorporated on both the external and internal polar surfaces of 
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liposomes encapsulating chloroauric acid, HAuCl4, facilitates the reduction of Au(III) to form 

Au(0) atoms and subsequent nanoparticles. The effect of parameters such as the temperature, 

the use of a capping agent, and the glycerol concentration was investigated in terms of the 

particle size and monodispersity. The resulting nanoparticles were characterized by 

transmission electron microscopy (TEM). Highly monodisperse Au NPs in a size range of 2-8 nm 

were obtained after 1 day of incubation at room temperature depending on the conditions used. 

 

2.3. Experimental section 

2.3.1. Materials 

PBS buffer (10 mM, pH 7.4) supplied as a sachet of prepared lyophilized buffer, glycerol, HAuCl4, 

and 6-mercapto-1-hexanol (MCH) was purchased from Sigma. Liposomes were prepared using 

phospholipids supplied by Avanti Polar Lipids Inc. All lipids were supplied as powders and were 

used without further purification. Sodium hydroxide and hydrochloric acid (ACS reagent grade) 

were also purchased from Scharlau Chemie SA. 

2.3.2. Preparation of encapsulating nanoliposomes 

Twenty milligrams of HAuCl4 or MCH/HAuCl4 encapsulating liposomes were prepared via the 

curvature-tuned preparation (CTP) method as reported previously.26 Briefly, 50 mg of a 

phospholipid formulation of 1, 2-dioleoyl-sn-glycero-3-[phosphor-rac-(1-glycerol)] (DOPG) and 

1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (lyso-PPC) in an 88:12 molar ratio was 

dissolved in 10 mL of a previously prepared HAuCl4 solution (2 mg/mL) in the presence or 

absence of 6-mercapto-1-hexanol (MCH, 1:50 HAuCl4/MCH molar ratio) in PBS buffer (10 mM, 

pH 7.4) at various concentrations of glycerol. The solution was stirred at room temperature 

under argon. The mixture was then treated with a rapid pH jump (pH 7.4  pH 11  pH 7.4) 

followed by an equilibration period of 25 min, where lipid clusters curl into encapsulating 

liposomes of 20 nm diameter. The resulting liposomes were purified using a Sephadex G-25 

column and used freshly prepared.  

2.3.3. Synthesis of Gold Nanoparticles in the Presence of Liposomes  

Solutions of nanoliposomes prepared as explained in section 2.2 were incubated at 

predetermined temperatures under shaking conditions. Following incubation, nanoparticles 

were purified by centrifuging at 1000 rpm for 5 min and three times with a methanol/ethanol 

mixture (1:4 v/v), and the collected pellet was resuspended in toluene and stored at 4 ºC for 

further characterization studies. 

2.3.4. Synthesis of Gold Nanoparticles in the Absence of Liposomes 

(I) Twenty milligrams of HAuCl4 was resuspended in a constant-concentration of glycerol 

solution (3-15 % v/v) in PBS (10 mM, pH 7.4) and incubated at predetermined temperatures for 

24 h. (II) Twenty milligrams of HAuCl4 was resuspended in a constant concentration of glycerol 

solution in PBS (10 mM, pH 7.4), and the mixture was exposed to a rapid pH jump from pH 7.4 

to pH 11 and a subsequent decrease to pH 7.4. The solution was again incubated at 

predetermined temperatures. (III) HAuCl4 and capping agent 6-mercapto-1-hexanol (MCH) were 

mixed with a constant-concentration of glycerol solution (3-15 % v/v) in PBS (10 mM, pH 7.4), 
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and the mixture was exposed to a rapid pH jump from pH 7.4 to pH 11 and a subsequent 

decrease to pH 7.4 and further incubated at predetermined temperatures. Solutions were 

continuously shaken in a temperature-controlled shaker, and nanoparticles were purified by 

centrifuging at 1000 rpm for 5 min and three times with a methanol/ethanol mixture (1:4 v/v). 

The collected pellet was resuspended in toluene and kept at 4 ºC for further characterization 

studies. 

2.3.5. Photon Correlation Spectroscopy (PCS)  

The mean diameter of nanoreactor liposomes was measured using Zeta Sizer 3000H from 

Malvern Instruments, Inc., (He-Ne laser (633 nm), detector angle of 90º), which measures the 

rate of fluctuation of the light scattered from the particles using photon correlation 

spectroscopy (PCS). Standard deviations were calculated from the mean of the data of a series 

of experiments (n ≥ 3). 

2.3.6. Transmission Electron Microscopy (TEM) Imaging 

Using a glass pipette we added a drop of sample to a 200 mesh copper grid with a thin film of 

Formvar polymer and carefully dried it using filter paper. The sample was left at room 

temperature until a dried film was obtained. Transmission electron microscopy (TEM) analyses 

were performed using a JEOL 1011 transmission electron microscope operated at 80 keV with 

an ultrahigh resolution pole piece providing a point resolution of 2 Å. Micrographs (1024 pixels 

x 1024 pixels) were acquired using a Megaview III multiscan CCD camera. Images were analysed 

with an iTEM image analysis platform, and the mean diameter was calculated by measuring at 

least 100 particles from the series of experiments (n ≥ 3). 

 

2.4. Results and discussion 

2.4.1. Solution-based synthesis of gold nanoparticles in glycerol 

We have previously reported on an environmentally friendly method for the rapid (< 1 h) 

preparation of highly homogeneous spherical liposome populations, the size of which can be 

carefully controlled via a combination of lipid composition and temperature applied during an 

equilibration stage following a rapid pH jump from pH 7.4 to pH 11 and back to pH 7.4, which 

we term the curvature-tuned liposome preparation (CTLP).26 To demonstrate the concept of 

producing gold nanoparticles by the use of the glycerol-mediated reduction of chloroauric acid 

(HAuCl4), the solution-based synthesis of nanoparticles was primarily studied under the same 

conditions as in the absence of lipids. Briefly, 20 mg of chloroauric acid was mixed with glycerol 

in solution (15 % v/v) at 25 ºC in PBS (pH 7.4, 10 mM) in the absence of liposomes. As illustrated 

in Figure 2.2, after 1 day of incubation at room temperature, relatively large, heterogeneous 

particles (10-50 nm or more) with an amorphous shape were obtained. 
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Figure 2.2. TEM images of the particles synthesized using the direct synthesis of gold nanoparticles using 
glycerol in PBS after 24 h of incubation: (a) glycerol-HAuCl4 mixture in PBS (10 mM, pH 7.4) incubated at 
25 ºC without a capping agent, (b) glycerol-HAuCl4 mixture in PBS (10 mM, pH 7.4) incubated at 25 ºC 
without a capping agent after an instant pH jump (arrows indicate the particle chains), and (c) glycerol-
HAuCl4 mixture in PBS (10 mM, pH 7.4) incubated at 25 ºC at a constant concentration of the capping 
agent after an instant pH jump. Insets are magnified images of corresponding particles. (d) UV-vis spectra 
of the sample in part c, with the band observed at 546 nm. 

 

Polyol-based reduction-oxidation reactions mainly depend on the reaction pH, thus one of the 

important parameters of the curvature-tuned liposome preparation method, which exploits a 

pH jump, will have an impact on the reaction kinetics.27,28 Thus, solution-based synthesis was 

also carried out at a constant concentration of glycerol (15 % v/v) after an instant pH jump to 

pH 11 and a subsequent drop back to pH 7.4, followed by incubation at room temperature for 

24 h. TEM images of the nanoparticle population following the elimination of excess glycerol by 

centrifugation with a methanol:ethanol solution (1:4 v/v, Figure 2.2b) demonstrated that there 

was a decrease in the particle size and an increase in the number of particles (Figure 2.2b). 

However, the particles were still amorphous and mainly aligned as chains of several particles 

(inset of Figure 2.2b) with a length of around 20 nm. 

Further studies on the effect of a capping agent at a glycerol concentration of 15 % v/v in the 

absence of liposomes resulted in smaller particles (5-10 nm) compared to those obtained 

without MCH (around 20 nm). These results clearly show that the reduction of Au(III) to Au(0) 

at room temperature using glycerol produces relatively small nanoparticles when they are 

exposed to an instant pH change compared to those formed directly in PBS solution (10 mM, pH 

7.4) in the absence of a capping agent. 
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2.4.2. Liposomal nanoreactor design 

As an alternative to the well-established technique of the reverse micelle method for the 

preparation of nanoparticles, liposomes were exploited as a nanoreactor for nanoparticle 

synthesis. It was expected that in the presence of liposomes the nanoenvironment of the interior 

core would provide a semisolid reaction environment by keeping glycerol semimobile, thus 

facilitating the formation of nanoparticles in a more controlled manner than their synthesis in 

solution, and we thus incorporated glycerol into the nanoliposomes formulation. Glycerol is 

commonly used in liposomal formulations because it increases the solubility of lipids and 

encapsulated materials in water and enhances the stability of formed liposomes via interaction 

with the polar head groups of the phospholipids.29 Furthermore, glycerol can be used to reduce 

chloroauric acid to form gold nanoparticles. There are many reports on the polyol-mediated 

synthesis of metal nanoparticles, but there is not extensive information available on the 

underlying mechanism. Leiva et al. postulated that although the exact mechanism is not fully 

understood the gold reduction reaction in the presence of alcohols most likely occurs because 

of the OH groups of the reducing agent.30 Like all other redox reactions, the reduction of the 

metal is driven by the difference between the redox potentials (ΔE) of the oxidation capacity of 

the metal salt and the reductivity of the polyol. 

The preparation of nanoliposomes encapsulating chloroauric acid, while also incorporating 

glycerol in the lipid bilayer as a reducing agent, to produce gold nanoparticles both in the lipid 

bilayer and in the liposome core was explored.  

In the designed nanoreactor, hydrophilic Au(III) would be expected to be encapsulated in the 

aquatic core of the membrane and glycerol would be located on the internal and external 

surfaces of the liposomes as well as within the aquatic core, providing nucleation sites for gold 

nanoparticle formation (Figure 2.3). 

 

 

Figure 2.3. Schematic of the designed liposomal nanoreactor. 

 

Liposomal nanoreactors of 24 ± 1 nm radius, as measured by photon correlation spectroscopy 

(PCS), were prepared using a formulation of 1,2-dioleoyl-sn-glycero-3-phospho-(10-rac-glycerol) 

(DOPG) and 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (lyso-PPC) in an 88:12 molar 

ratio using our previously reported CTP method18 at 25 ºC in the presence of a constant 

concentration of HAuCl4 and at varying concentrations of glycerol (0-15 % (v/v)). Figure 3.4 
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depicts the TEM images showing the stages of the reduction reaction in the presence of glycerol-

incorporated liposomal nanoreactors before reduction and during the reaction with a clear 

appearance of nanoparticles within the nanoreactor as well as the homogeneous nanoparticle 

population observed following the elimination of the lipidic membrane by centrifugation with a 

methanol:ethanol mixture.  

 

Figure 2.4. Formation stages of gold nanoparticles inside the glycerol-incorporated (15 % v/v) liposomes: 
liposomes before reaction (top left), liposomes during the reaction (middle) (scale bars = 10 nm), and 
purified gold nanoparticle synthesized in the nanoreactor (bottom right, scale bar 20 nm). Photon 
correlation spectroscopy graph of the liposome size distribution before the reaction, PI = 0.232 (bottom 
left corner) and graph of the calculated nanoparticle size distribution using iTEM (top right corner). 

 

Particle formation occurs mostly throughout the liposome membrane, where the glycerol 

molecules are less mobile, as well as inside the liposome core, as was expected. Although 

liposomes were purified using gel chromatography, because the system is dynamic trace 

amounts of gold and/or glycerol could diffuse into the bulk solution. As can be seen from the 

TEM image of liposomal nanoreactors after 24 h of incubation (Figure 2.4), some particles are 

located close to the liposomal membrane. Thus, it is likely that this small number of gold 

nanoparticles have grown from some free gold impurities remaining after the purification. 

Moreover, no particle formation was observed in control experiments carried out with HAuCl4 

encapsulating liposomes in the absence of glycerol under the same conditions studied. 
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2.4.3. Evaluation of the effect of the reducing agent concentration and capping agent 

In previous reports, 3 % v/v glycerol was found to be optimum for the long-term storage of 

liposomes.26,29 However, because the reducing agent concentration is an important parameter 

for a well-defined method of metal nanoparticle synthesis, the effect of glycerol concentration 

in the range from 3 to 15 % v/v was studied. (Note that at higher concentrations of glycerol no 

liposomes were formed.) In addition to the glycerol concentration, the influence of the presence 

of a capping agent was also evaluated using a short-chain alkanethiol, 6-mercapto-1-hexanol 

(MCH), as a model; this was encapsulated in liposomes with HAuCl4 in an excess of 1:50 

HAuCl4:MCH (mol/mol). The formed liposomes were incubated in sealed glass bottles at room 

temperature under stirring. In the absence of MCH, the solution color changed from pale yellow 

to green-brown, with the color intensity proportional to the glycerol concentration, which over 

time deepened to a very dark brown, indicative of the oxidation by-product of glycerol formed 

from the reaction between Au(III) and glycerol. As can be seen in Table 2.1, no significant change 

in size was observed (from 7.7 ± 1.7 to 6.4 ± 1.3 nm) with increasing glycerol concentrations of 

3 and 15 % v/v (Figure 2.5, first line). However, the presence of the MCH capping agent 

encapsulated in the liposomes together with the HAuCl4 lead to a sharp decrease in the particle 

size, with particles of 2.9 to 4.9 nm obtained using MCH with glycerol concentrations of 15 and 

3 % v/v, respectively (Figure 3.5, second line).  

 

Table 2.1. Particle size after 24 h of incubation at different glycerol concentrations in the presence and 
absence of a capping agent at 25 ºCa. 

Glycerol concentration  
(v/v %) 

Absence of capping agent  
(nm) 

Presence of capping agent 
(nm) 

15 6.4 ± 1.3 2.9 ± 0.2 

10 7.3 ± 1.5 3.5 ± 0.3 

3 7.7 ± 1.7 4.9 ± 1.4 

a Standard deviations were calculated from the mean of the data of a series of experiments (n ≥ 3). 

 

This decrease in particle size in the presence of MCH can also be attributed to the fact that MCH 

can, to a minor extent, act as a reducing agent because of the presence of the alcohol group. 

Similar correlations between the particle size and the stabilizer and/or the reducing agent have 

been reported elsewhere.33 In a recent study on the use of poly (ε-caprolactone)/poly(N-vinyl-

2-pyrrolydone) triblock copolymer as a stabilizer and reducing agent for the Au NPs, a decrease 

in the particle size with an increased ratio of copolymer to gold salt was reported.31 In another 

study on the effect of the Au/thiol ratio by Frenkel et al. where they used X-ray absorption fine-

structure EXAFS spectroscopy, they concluded that the mean cluster size strongly depends on 

the Au/thiol ratio, with the lower the Au/thiol ratio, the smaller the nanoparticles formed.32 
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Figure 2.5. Effect of capping agent and glycerol concentration. Calculated particle size distribution and 
corresponding TEM images of particles prepared (a-c) in liposomes in the absence of a capping agent 
(MCH) and (d-f) in the presence of MCH using changing concentrations of glycerol: (a, d) 3 %, (b, e) 10 %, 
and (c, f) 15 % after 24 h of incubation at 25 ºC. Scale bars are 50 nm. 

 

2.4.4. Influence of temperature  

In addition to the reactant concentration, the reaction kinetics are also governed by 

temperature and pH.30 Thus, polyol-driven synthesis reactions are more efficient at high 

temperatures, although at optimized concentrations of metal salt slow reduction might occur at 

low temperatures.33 Therefore, it is crucial to study the effect of temperature on the particle 

properties because the parameters influencing the reaction will control the shape and size of 

the particles formed. Here, we investigated the effect of temperature (in the range of 4-50 ºC) 

on the particles formed. MCH/HAuCl4-encapsulating liposome solutions (15 % v/v glycerol) were 

incubated for 24 h under constant stirring conditions at a defined constant temperature. As 

shown in Figure 2.6, decreasing particle sizes were obtained with increasing temperature over 

the range of 4-50 ºC, with a significantly larger nanoparticle size observed at 4 ºC compared to 

the particles obtained at 50 ºC (6.3 and 1.9 nm, respectively). As the temperature increases, the 

reaction rate increases as a result of rapid nucleation, and thus the amount of metal consumed 

in the nucleation increases, resulting in a decrease in the number of molecules available for the 

further growth of nanoparticles, thus producing smaller nanoparticles (Figure 2.6e).32,33 
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Figure 2.6. Effect of temperature on the particle size and shape synthesized in glycerol (15% v/v)-
incorporated liposomes in the presence of capping agent MCH at changing temperatures: (a) 4, (b) 25, (c) 
35, and (d) 50 C after 24 h of incubation and (e) a graph presenting the calculated mean diameter of the 
particles (n g 3, scale bars = 20 nm). 

 

2.5. Conclusions 

The synthesis of metal nanoparticles using polyols is an environmentally friendly method that 

often proceeds both under reflux and microwave conditions, where the undiluted polyol-metal 

mixture is heated to temperatures higher than the boiling point of the polyol used, achieving 

nanoparticles of 10-100 nm depending on the operational conditions. In this report, glycerol, a 

renewable and natural polyol, was studied as a green catalyst for the reduction of gold to 

assemble in nanoparticles without the use of any harsh chemicals. Moreover, by exploiting the 

ability of glycerol to be incorporated within a liposomal membrane, here we report a functional, 

nanosized liposomal nanoreactor exploiting glycerol incorporated in both the external and 

internal surfaces of the lipid bilayer. The liposomal membrane keeps the reducing agent 

semimobile in its nanoenvironment, exposing nucleation sites for subsequent particle growth in 

a controlled manner. Reaction parameters such as the temperature, the glycerol concentration, 

and the effect of the capping agent were studied in terms of their effect on the size and the 

homogeneity of nanoparticles formed and were compared to solution-based synthesis under 

the same conditions studied. Increased concentrations of glycerol resulted in a slightly 

decreased size of the nanoparticles; furthermore, nanoparticles synthesized in the presence of 

a capping agent showed an almost 2-fold decrease in the particle size leading to ultrasmall gold 

nanoparticles of around 2 nm. Moreover, a decrease in the nanoparticle size at constant 

concentrations of capping agent and glycerol was observed when the temperature was 

increased in the range of 4 to 50 ºC. Comparison studies of gold nanoparticle synthesis in 

solution under the same conditions without the use of nanoliposome reactors resulted in highly 

heterogeneous nanoparticles with an amorphous shape, where in the presence of a capping 

agent and a pH jump step relatively finer results were obtained. These results indicate that with 

the designed liposomal nanoreactors, with glycerol integrated into the membrane as a reducing 

UNIVERSITAT ROVIRA I VIRGILI 
LIPOSOMES AS VERSATILE TOOLS: NANOREACTORS, MEMBRANE MODELS AND DRUG DELIVERY CARRIERS. 
Gael Clergeaud Veiga 
Dipòsit Legal: T 154-2015



 

 

63 Chapter II: Green synthesis of gold nanoparticles using glycerol-incorporated nanosized liposomes 

agent, a one-pot synthesis of highly homogeneous nanoparticles was successfully achieved as a 

result of the semisolid reaction environment provided by the liposome. The functional 

nanoreactors presented here could provide inspiration for the development of new and greener 

synthesis methodologies in order to produce metallic nanoparticles in a safer and more efficient 

way.  

 

2.6. Associated content 

Supporting Information. Size distribution of the particles synthesized using a liposome-free 

solution-based method and a TEM image representing gold aggregates obtained in the presence 

of MCH alone. This material is available free of charge via the Internet at http://pubs.acs.org. 
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3.1. Abstract 

The synthesis of highly stable ultrasmall monodisperse populations of palladium nanoparticles 

in the range of 1−3 nm in size was achieved via polyol reduction within 1,2-dioleoyl-sn-glycero-

3-phosphor-rac- (1-glycerol) liposomal nanoreactors exploiting glycerol as both reducing and 

stabilizing agent. The liposome-based green method was compared with synthesis in solution, 

and the reducing agent concentration and the lipidic composition of the liposomal nanoreactors 

were demonstrated to have a strong effect on the final size and homogeneity of the palladium 

nanoparticles. Glycerol molecules acting as capping agent demonstrated the ability to stabilize 

the palladium nanoparticles over a long period of time, maintaining their homogeneity in size 

and shape. The obtained palladium nanoparticles were characterized using transmission 

electron microscopy, selected area electron diffraction, Fourier transform infrared and Raman 

spectroscopies, X-ray diffraction, and dynamic light scattering to determine their morphology, 

size, charge, surface chemistry, and crystal structure. The catalytic activity of the palladium 

nanoparticles was also tested for a reduction reaction. 

 

Figure 3.13. Table of contents figure 

 

3.2. Introduction 

The past decade has witnessed an increased interest in the development of uniform metallic 

nanosized particles due to their unusual size dependent chemical, electronic, magnetic, and 

optical properties, which are not achievable in their bulk state.1−3 Among other noble metals, 

palladium (Pd) nanoparticles (NPs) have been exploited in an extensive number of applications 

including catalysis, electronics, plasmonics, and sensors.4−6  

The development of synthesis methods to obtain homogeneous size- and shape-tunable Pd 

nanoparticles is a grand challenge, and different techniques, including photolytic6 and thermal 

decomposition,7 sonochemical8 and hydrogen reduction,9 electrochemical deposition,10 one-

phase11 and twophase12 reduction methods, and biogenic methods13,14 have been reported. The 

most common methods utilize reducing agents such as citrates, ascorbic acid, or borohydrides, 

often in combination with capping agents such as surfactants, polymers, or organic ligands to 

mediate the reduction reaction and avoid aggregation.15  

The synthesis of nanoparticles using the so-called polyol process is one of the most widely used 

methods to produce colloidal nanoparticles, in which a boiling polyalcohol acts as both solvent 
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and mild reducing agent as well as a stabilizer, for the reduction of a suitable metal salt 

precursor.16−20 The most commonly used polyols for nanoparticles preparation are ethylene 

glycol,21 diethylene glycol,22 ethanol,23 and glycerol,24 with glycerol being particularly attractive. 

Glycerol, a nontoxic, nonhazardous, nonvolatile, biodegradable, recyclable, and cheap liquid, 

has been reported as a solvent and reducing agent for the synthesis of many different 

nanoparticles including Au,24,25 Ru,26 Ag,25−28 Pd,26,29,30 Pt,26,31 Pt−Ru,31 Pt−Pd,32 TiO2,33 Mn(OH)2, 

and MnCO3.34 

Regarding the production of Pd nanoparticles, Lee et al. have demonstrated the ability of 

glycerol, together with PVP as a capping agent, to form Pd NPs at 100 °C with an average size of 

∼60 nm.29 Grace et al. reported the synthesis of 7 nm Pd nanoparticles employing glycerol at its 

boiling point (290 °C) as a solvent and reducing agent also combined with PVP to stabilize and 

avoid particle aggregation.26 In addition, Marquardt et al. achieved the synthesis of 1.5 nm sized 

Pt nanocrystals in glycerol without any additional stabilizer.35 

There are several reports detailing the utilization of nanoreactors to control the reduction 

reaction and synthesize small homogeneous nanoparticles. An environmentally friendly report 

presented by Puvvada et al. uses mild experimental conditions to produce Pd nanoparticles of 

3.3 nm in size at room temperature using a controlled sponge like structure of bicontinuous 

cubic phase of glycerol monooleate.30 It has been reported that glycerol can act as a soft capping 

agent, and Bakshi et al. have demonstrated that phosphoglycerol lipids act as stabilizers for Au 

and Cu nanoparticles36 and Au−Cu bimetallic nanoparticles.37 In another example, dendrimer 

mediated synthesis of nanoparticles has been reported for monometallic38 and bimetallic39,40 Pd 

nanostructures. In addition, Coulter et al. reported the use of functional polyelectrolytes as 

nanoreactors to produce Pd nanoparticles using NaBH4 with an average size of 5 ± 1.5 nm.41  

A wide number of reports using reverse micelles for the synthesis of palladium nanoparticles 

inside the reverse micelle cores, exploiting the water-in-oil microemulsions stabilized by 

surfactant molecules, most frequently cetyltrimethylammonium bromide (CTAB)42−44 or 

dioctylsulfosuccinate sodium salt (AOT),45−47 have been reported. In a novel approach, Sanchez- 

Dominguez described the synthesis of Pd nanoparticles of 6 nm using NaBH4 within oil-in-water 

microemulsions.48  

As detailed in Table 3.1, most of the previously reported methodologies to produce Pd 

nanoparticles require the use of harsh reducing agents, lengthy preparation time, or high 

reaction temperatures under stringent process control. There is thus a need for a 

straightforward method for the synthesis of highly homogeneous small Pd nanoparticles using 

a simple green system obviating the need for additional reactants and omitting harsh 

procedures with extreme temperatures or utilizing no environmentally friendly chemicals. 

In our recently reported work, liposomes were used as nanoreactors for the preparation of 

homogeneous small gold nanoparticles49 and were demonstrated to provide an excellent control 

over the nanoparticle synthesis process within their internal core. Moreover, the lipidic 

membrane of the liposomes can act as permeable nanoreactor walls offering both an enhanced 

and restricted mobility for different reactants of the synthesis reaction. Glycerol-incorporating 

liposomes are promising candidates for the synthesis of nanoparticles via glycerol reduction, as 

they provide a specific space inside their internal hydrophilic cavity, as well as a hydrophobic 

environment within the lipid bilayer, where the polyol reduction reaction can occur in a more 

controlled manner. 
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Table 3.1. Methodologies to produce palladium nanoparticles. 

Reducing agent  
(reaction conditions) 

Stabilizing/capping agent 
Pd NPs 

diameter (nm) 
References 

NaBH4 (RT) TOAB ~1-4 3 

Glycerol (290ºC) PVP 7 26 

Glycerol (100ºC) PVP ~60 29 

Glycerol monooleate (RT) - ~3 30 

Dendrimer amino groups (50ºC) Dendrimer ~6 38 

NaBH4 (RT) Dendrimer ~2 40 

NaBH4 (RT, UV-light) Poly (acrylic acid) ~5 41 

Hydrazine (RT) CTAB ~4 42 

Ascorbic acid (UV-light) CTAB ~7-50 43 

Hydrazine (RT) AOT ~10 45 

Hydrazine (RT) AOT ~6-13 47 

NaBH4 (RT) Oil-in-water ~6 48 

 

Herein, we exploit our previously reported method for the rapid preparation of highly 

homogeneous nanosized liposomes50 to introduce an environmentally friendly, solvent free, 

one-pot method for the synthesis of Pd nanoparticles using glycerol as both reducing and 

capping agent under mild experimental conditions. The method involves the encapsulation of 

[PdCl4]2− with glycerol molecules within nanosized liposomes for the controlled production of 

highly homogeneous populations of ultrasmall glycerol-stabilized Pd nanoparticles. 

Furthermore, we have systematically investigated the effect of the experimental conditions, 

including the type and concentration of reducing agent, the membrane lipid composition, and 

the effect of the addition of a capping agent on the homogeneity and size evolution of the Pd 

nanoparticles. 

 

3.3. Experimental section 

3.3.1. Materials 

All the chemicals were used without further purification. The phospholipids 1,2-dipalmitoyl-sn-

glycero-3-phosphorac-( 1-glycerol) (DPPG), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

(DOPE), and 1,2-dioleoyl-sn-glycero-3-phosphor-rac-(1-glycerol) (DOPG) were purchased as 

powders (Figure 3.2) from Avanti Polar Lipids. The phospholipid 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC) as well as the palladium(II) chloride (PdCl2), sodium borohydride 

(NaBH4), p-nitrophenol, sodium citrate, and phosphate buffer saline (PBS: 10 mM prepared 

lyophilized buffer with NaCl 0.138 M, KCl 0.0027 M, pH 7.4) were purchased from Sigma-Aldrich. 

Glycerol, toluene, ethanol, and methanol were supplied by Scharlau. A Simplicity 185 Millipore-

Water System was used to obtain Milli-Q water (1.82 MΩ cm−1) for the preparation of buffers 

and liposomes. 
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Figure 3.2. Structure of the lipid molecules used for the liposomal nanoreactor study. 

 

3.3.2. Synthesis of Pd NPs 

3.3.2.1 Synthesis within liposomal nanoreactors  

The liposomal nanoreactors were prepared employing the method previously reported by our 

group to produce homogeneous populations of liposomes.50 Briefly, 20 mg of PdCl2 was 

dissolved in 10 mL of PBS with 10 % (v/v) glycerol under continuous stirring conditions and in 

the presence of bubbling argon gas. Because of the presence of NaCl, the suspension of non-

water soluble PdCl2 changed to a reddish-brown solution of [PdCl4]2− after 15 min. Then 50 mg 

of different lipid formulations (DPPC, DPPG, DOPE or DOPG) was added and maintained under 

stirring conditions and argon at 25 °C for another 15 min. The well homogenized mixture was 

then subjected to a rapid pH jump from pH 7.4 to pH 11 and then back to pH 7.4 within a 3 s 

time frame, followed by an equilibration step of 25 min where lipids curl into [PdCl4]2− 

encapsulating liposomes. Large lipid aggregates that do not assemble into liposomes were 

discarded by centrifuging at 2000 rpm for 5 min, and the nanoliposomes present in the 

supernatant were then incubated for 24 h in a temperature-controlled shaker (25 °C, 400 rpm). 

Following incubation, the nanoparticles formed inside the liposomal nanoreactors were purified 

by centrifuging 3 times at 5000 rpm for 5 min with a methanol/ethanol solution (1:4 v/v) to 

break up the liposomes and recover the pellet that contains the Pd NPs. The pellet was 

resuspended in toluene and stored at 4 °C for further characterization studies. 

3.3.2.2. Solution-Based Synthesis.  

Pd NPs were synthesized via reduction, in the absence of liposomal nanoreactors, in the 

presence of three different reducing agents, sodium citrate (1.4 M), NaBH4 (0.1 M), and glycerol, 

which was used at different concentrations (5%, 10%, and 20% v/v). In all cases, 20 mg of PdCl2 

was mixed with each of the reducing agents in 10 mL of 10 mM PBS (pH 7.4) and then incubated 

for 24 h in a temperature-controlled shaker (25 °C, 400 rpm). The nanoparticles formed were 

purified by centrifuging first at 2000 rpm for 5 min, and the collected supernatant was then 

centrifuged three times at 5000 rpm for 5 min, as described in the previous section. Following 
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the first centrifugation, the pellet formed was resuspended in a methanol:ethanol solution (1:4 

v/v), and after the final centrifugation, the pellet was resuspended in toluene and stored at 4 °C. 

 

3.3.3. Characterization studies 

3.3.3.1. Dynamic light scattering and Zeta potential analysis  

The Zeta Sizer 3000H (Malvern Instruments Inc. He−Ne laser of 635 nm, detector angle of 90°) 

was used to measure the mean diameter of the liposome nanoreactors via dynamic light 

scattering (DLS). The zeta potential was used to determine the surface charge of the liposomes 

and the Pd NPs. The standards deviations were calculated from the mean data of experiments 

(n ≥ 3). 

3.3.3.2. Transmission electron microscopy studies 

The morphology characterization and measurement of the mean diameter of the Pd NPs and 

liposome nanoreactors were performed using a transmission electron microscope (TEM) JEOL 

1011 operated at 100 keV with an ultrahigh-resolution pole piece providing 2 Å of point  

resolution. A drop of each sample was placed using a glass pipet onto a 200 mesh copper grid 

with a Formvar polymer thin film and left at room temperature to dry. The TEM images or 

micrographs (1024 pixels × 1024 pixels) were acquired using a CCD camera (Megaview III 

multiscan) and analysed with the iTEM image analysis software. The mean diameter of the 

nanoparticles was calculated measuring at least 100 particles from multiple experiments (n ± 3). 

In addition, the crystal structure of the Pd NPs was elucidated using the selected area electron 

diffraction technique (SAED) by observing the diffracted patterns of the electrons scattered from 

the Pd NPs. 

3.3.3.3. X-ray diffraction investigation 

X-ray diffraction (XRD) was used to reveal the crystal structure of the Pd NPs. The XRD 

measurements were made using a Siemens D5000 diffractometer (Bragg−Brentano 

parafocusing geometry and vertical goniometer) fitted with a curved graphite diffracted-beam 

monochromator and diffracted-beam Soller slits, a 0.06° receiving slit, and scintillation counter 

as a detector. The angular 2θ diffraction range was between 35° and 90°. The sample was dusted 

on to a low background Si(510) sample holder. The data were collected with an angular step of 

0.05° at 20 s per step and sample rotation. Cu K radiation was obtained from a copper X-ray tube 

operated at 40 kV and 30 mA. 

3.3.3.4. Ultraviolet-Visible spectroscopy 

The formation of the Pd NPs was monitored measuring the ultraviolet-visible (UV−vis) 

absorbance at 450 nm recorded in a Cary 100 Bio spectrophotometer (Varian) in 1 cm quartz 

cells. 

3.3.3.5. Study of the catalytic properties 

The UV−vis spectrum of a 6 × 10−5 M p-nitrophenolate solution in 0.1 M NaOH was recorded in 

1 cm quartz cell. An aliquot of a concentrated solution of NaBH4 (prepared immediately before 

use) was added to a final concentration of 0.2 M, and the spectrum was recorded again. Finally, 

10 μL of Pd NPs suspension was added, and the spectra were recorded until the band at 400 nm 

disappeared. A similar experiment in the absence of Pd NPs was used as a control. 
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3.3.3.6. Fourier transform infrared spectroscopy 

Fourier transform infrared (FTIR) spectra was recorded on a Jasco FT/IR- 600 PlusATR Specac 

Golden Gate spectrometer. 128 scans at 2 cm−1 resolution were recorded. 

3.3.3.7. Raman spectroscopy 

Raman spectra were recorded using a Renishaw 2003 spectrometer operating at wavelength of 

633 nm of HeNe laser and using CCD camera as detector. The spectra were analysed using Wire 

3.2 version software (Renishawplc, New Mills, Wotton-underEdge, and Gloucestershire, GL12 

8JR, United Kingdom). 

 

3.4. Results and discussion 

3.4.1. Synthesis of Pd NPs in solution 

As mentioned previously, glycerol was used as a component in the liposomal nanoreactor 

formulation as well as for the synthesis of Pd NPs. To date, the reported methods that employ 

glycerol to reduce Pd(II) to form Pd nanoparticles are usually based on the use of elevated 

working temperatures and additional capping agent molecules.26,29 We have previously reported 

that glycerol can act as a reducing agent to produce extremely small Au NPs at low temperatures 

without requiring additional reagents.49 In order to demonstrate that glycerol can reduce Pd(II) 

to Pd(0), palladium chloride (PdCl2) was mixed with 10 % (v/v) glycerol at 25 °C in 10 mL of PBS 

(10 mM + 0.138 M NaCl, pH 7.4) and left for 24 h. The presence of NaCl in the buffer solution 

facilitates the solubilization of Pd(II) salt by forming the complex anion [PdCl4]2−. The formation 

of Pd NPs was monitored using UV−vis (Figure 3.3). The spectrum of [PdCl4]2− in solution 

exhibited an absorption band at 425 nm, and when the Pd(II) was reduced to Pd(0), the 

absorption band disappeared and a broad spectrum was observed, in agreement with that 

reported in the literature indicating the formation of nanoparticles.26 

 

Figure 3.3. UV-vis spectra of [PdCl4]2- and Pd NPs produced by glycerol in solution. 

The TEM characterization studies (Figure 3.4) clearly confirm that glycerol is able to reduce Pd(II) 

to Pd(0), producing small Pd NPs under mild conditions.  
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Figure 3.4. Effect of the concentration of glycerol on the solution-based synthesis of Pd nanoparticles. 
Effect of the concentration of glycerol on the solution-based synthesis of Pd nanoparticles. TEM images 
show the Pd nanoparticles produced in PBS solution containing 5 %, 10 %, and 20 % (v/v) glycerol at 25 °C 
and their correspondent size distribution graphs calculated using iTEM (n = 100). Scale bars are 50 nm 

Once it had been demonstrated that Pd NPs can be produced using glycerol as a reducing agent, 

the effect of using a lower and higher concentration of glycerol (5 % and 20 % v/v) was 

investigated to observe how the ratio between glycerol/Pd(II) affects the formation of the Pd 

NPs. At higher glycerol/Pd(II) ratios the number of particles obtained increased, and their mean 

size was smaller and more homogeneous (5 % = 14 ± 7; 10 % = 4 ± 1, 7 ± 2 and 20 % = 3 ± 1). 

However, the particles were amorphous without a well-defined shape. A 10 % (v/v) 

concentration was selected as optimal as while a marked effect on the size was observed 

changing the glycerol concentration from 5 % to 10 %, no considerable change was seen at 

higher concentrations, and above 15 % (v/v), the liposomes were not formed properly.  

 

3.4.2. Synthesis of Pd NPs inside liposomes 

The described method for the preparation of homogeneous liposomal nanoreactors was used 

to provide nanoenvironments in the internal core where glycerol molecules are maintained 

semimobile and the reduction kinetics are less governed by random processes, thus facilitating 

the formation of Pd nanoparticles in a more controlled manner than their synthesis in solution. 

The formation of nanoparticles in solution is often irreproducible as well as difficulties in 

restricting the freedom of components that can interact and govern the reduction kinetics in a 

bulky state reaction. As described in the Introduction, reduction kinetics plays a key role in 

controlling the nucleation and growth of nanocrystals, and in the work reported here, we 

addressed this by providing a confined nanoenvironment in the liposomal internal core where 

the formation of nanoparticles can take place in a more controlled manner than in solution. 

Taking advantage of the use of glycerol in liposomal formulations as a stabilizer, it was also 

exploited for the polyol mediated reduction of Pd(II) to Pd(0) within the liposomal nanoreactors. 

The small glycerol molecule adsorbed on the surface of the liposome could assist in increasing 
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the solubility of the vesicle. Typically, the [PdCl4]2− ions are encapsulated inside the hydrophilic 

core while glycerol molecules are distributed, in the external and internal part of the lipid 

membrane, as well as in the aqueous core forming small clusters from Pd atoms in the 

encapsulated solution (Figure 3.5). 

 

Figure 3.5. Schematic design of the glycerol-incorporated DOPG liposomal nanoreactor for the synthesis 
of Pd NPs. 

As a proof of concept, the Pd NPs produced via glycerol reduction inside DOPG liposomes were 

compared in terms of size, shape, and homogeneity with those prepared in solution (i.e., in the 

absence of the liposome nanoreactors) using the same concentration of glycerol. 

As can be seen in Figure 3.6, the Pd NPs obtained in solution were bigger in size compared with 

those obtained within the liposomes. Both systems were able to produce Pd NPs. But in the case 

of those prepared within the liposomes, the Pd NPs were highly homogeneous, while in the 

solution-based reaction the NPs appear to have a tendency to aggregate, resulting in more 

dispersive populations of NPs with amorphous shapeless structures. 

 

Figure 3.6. TEM images of Pd NPs obtained in solution (A) and within DOPG liposomes (B) using 10 % (v/v) 
glycerol and their corresponding size distribution graphs calculated using iTEM (n = 100). Scale bars are 50 
nm. 

In addition, the results obtained within glycerol-incorporated DOPG liposomes were compared 

with standard reducing agents used for NP synthesis under the same experimental conditions. 

The same 10 % (v/v) concentration was used with monosodium citrate (1.4 M) while a lower 

concentration of NaBH4 (0.1 M) was employed as it is a much more powerful reducing agent. As 

UNIVERSITAT ROVIRA I VIRGILI 
LIPOSOMES AS VERSATILE TOOLS: NANOREACTORS, MEMBRANE MODELS AND DRUG DELIVERY CARRIERS. 
Gael Clergeaud Veiga 
Dipòsit Legal: T 154-2015



 

 

79 Chapter III: Liposomal nanoreactors for the synthesis of monodisperse palladium nanoparticles using glycerol 

expected, both reducing agents were able to form Pd NPs. Citrate-encapsulated DOPG 

liposomes produced highly dispersive populations of Pd NPs with heterogeneous sizes and 

shapes (11 ± 4 nm), and triangular- and decahedron-shaped Pd NPs were also observed which 

can be attributed to the citrate preferred binding sites to the (111) facets of Pd and, therefore, 

giving different growth rates to each of the facets.51 

When sodium borohydride was used as reducing agent in the DOPG liposomal nanoreactors, the 

Pd particle size synthesized was reduced (5 ± 2 nm), but dispersive and heterogeneous 

populations were present. However, homogeneous populations of monodisperse Pd 

nanoparticles of 0.9−3.5 nm in size produced with NaBH4 in solution have been reported, but 

TOAB was required to act as capping agent and control reaction kinetics to avoid nanoparticle 

aggregation.3 

Control experiments were carried out in the absence of glycerol. PdCl2 was mixed with different 

lipids (DPPC, DPPG, DOPE or DOPG) at 25 °C in PBS (pH 7.4) under stirring conditions and argon, 

followed by a pH jump from pH 7.4 to 11 and back to 7.4 and left for 24 h of incubation. It is 

believed that the presence of the strong acid and base reagents required for the pH jump (NaOH 

and HCl), even at very low concentrations, could be responsible for the presence of the small 

amounts of Pd NPs observed when DOPG was used (data not shown). In order to investigate if 

the pH jump can produce Pd NPs, control experiments were carried out mixing PdCl2 with DPPC 

or glycerol-coated DOPG lipids in PBS (pH 7.4) at 25 °C. TEM characterization confirmed that in 

the absence of the pH jump step no liposomes are formed as expected, and furthermore, no Pd 

NPs were produced in the case of DPPC lipids, while with DOPG lipids an extremely low number 

of NPs were formed, which can be attributed to the polyol reduction of the Pd(II) by the glycerol 

head groups present in DOPG lipids. 

 

3.4.3. Lipid composition effect 

The membrane of the liposome plays a very important role in nanoparticle synthesis, acting as 

route for the precursors to enter the nanoreactor. The membrane properties, such as 

permeability, surface charge, and functional group, can be modulated by changing the lipidic 

composition.52 

The membrane permeability is a decisive parameter for the enhancement of the mobility of 

glycerol molecules through the lipid bilayer, providing a semimobile nanoenvironment for 

glycerol and facilitating access to the encapsulated palladium ions for the formation of 

nanoparticles in a highly controlled manner. The fluidic characteristics of the membrane are a 

result of the lipid melting temperature (Tm), where the lipids undergo a transition from a gel 

phase to a liquid phase, rendering a phase behaviour to the entire bilayered system. Taking 

advantage of this membrane permeability given by the phase behaviour, different lipidic 

formulations were tested with transition temperatures above and below the working 

temperature (25 °C). 

Liposomes prepared with DPPC and DPPG lipids (Tm 41 °C) have a gel phase behaviour that 

provides highly ordered and dense bilayers reducing the capacity of glycerol to flow inside the 

liposome core, leading to a lower OH/Pd ratio and thus producing larger Pd NPs. As can be seen 

from the TEM images in Figure 3.7, the fixed number of glycerol molecules encapsulated within 

DPPC liposomes produces a narrow particle size distribution due to the rigid ratio of OH/Pd (16 

± 2 nm), whereas in the case of DPPG lipids, the higher OH/Pd ratio given by the glycerol-capped 
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lipids leads to high, but irregular, reductive conditions within the liposome core producing 

smaller but randomly dispersed Pd NPs with irregular shapes (4 ± 2 and 16 ± 6 nm). 

 

Figure 3.7. Lipid composition effect on the synthesis of Pd nanoparticles. TEM images show the Pd NPs 
synthesized inside different liposomes and their correspondent size distribution graphs calculated using 
iTEM. Scale bars are 200 nm in top and bottom-left images and 50 nm in bottom-right (insets scale bars 
are 20 nm). In the case of DPPG there are clearly two populations of NPs. 

On the other hand, DOPE and DOPG liposomes have lower melting temperatures of −16 and −18 

°C, respectively, and a higher degree of disorder induced by the carbon−carbon double bond in 

their oleic fatty acid chain. These properties confer flexible membranes where glycerol 

molecules can easily diffuse into the nanoreactor, producing Pd NPs smaller in size (Figure 3.7). 

The Pd NPs produced within DOPE liposomes are bigger and shapeless compared to the ones 

synthesized within DOPG, 9 ± 3 and 2.6 ± 0.7 nm, respectively, and that can be explained due to 

the instability that ethanolamine head groups confer to the liposome system, promoting 

liposome fusion or membrane disruption. 

As seen in Table 3.2, DOPG liposomes were optimal for the generation of small and 

homogeneous populations of Pd NPs. The presence of phosphoglycerol DOPG lipid provides an 

internal core coated with glycerol groups providing a confined reducing environment for the 

reaction and a semipermeable membrane for glycerol to diffuse inside the nanoreactor core, 

thus forming notably smaller Pd NPs with a narrow particle size distribution. This suggests that 

reduction kinetics can be modulated by an optimal selection of the lipid composition of 

liposomal nanoreactor. 
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Table 3.2. Effect of the lipidic composition of the liposomal nanoreactor on the size and distribution of the 
palladium nanoparticles produced. 

Lipid Tm (ºC) Charge Size of Pd NPs (nm) 

DPPC 41 Zwitterion 16 ± 2 

DPPG 41 Negative 4 ± 2 ; 16 ± 6 

DOPE -16 Zwitterion 9 ± 3 

DOPG -18 Negative 2.6 ± 0.7 

 

The head charge of the lipids gives both the internal and external regions a specific charge. These 

electrostatic forces not only prevent the fusion of liposomes into larger reactors but could also 

contribute to the synthesis of smaller sized NPs if the NPs are negatively charged as the repulsive 

forces between the lipids and the NPs will facilitate a tighter size control. Zeta potential 

experiments were carried out to measure the charge of the synthesized Pd NPs, and they were 

observed to be negatively charged with a Z-Pot of −23.8 ± 0.9 (n = 3). This repulsive interaction 

can also help in avoiding aggregations between lipids and nanoparticles, particularly in the final 

separation process where the liposomes are broken and the purified nanoparticles are obtained. 

TEM images of the produced nanoparticles clearly show the smallest Pd NPs in size with the 

narrowest dispersive distribution (2.6 ± 0.7 nm) when the liposome nanoreactor is composed 

with glycerol head groups at the inner and outer part of the membrane, as in the case of DOPG 

liposomes. This can be explained by the presence of a higher number of glycerol molecules in 

the lipid headgroup which gives a higher number of available hydroxyl groups to reduce the 

palladium ions and stabilize the synthesized Pd NPs inside the nanoreactors. Moreover, stability 

studies from those nanoparticles demonstrated that were highly stable over time, maintaining 

homogeneity in size and shape as was observed in the TEM images from 3 months after the Pd 

NPs preparation (data not shown). 

Since DOPG liposomes provide the most monodisperse Pd nanoparticle populations, XRD tests 

were carried out to confirm their crystal structure. The synthesized Pd NPs were observed to 

have a single-crystalline face-centered-cubic (fcc) structure which was confirmed by the XRD 

results shown in Figure 3.8. The XRD peaks correlated with the electron diffraction pattern 

obtained in TEM (SAED) confirmed that the nanoparticles show a cuboctahedron predominant 

structure with (100), (200), (220), (310) and (222) planes present in the FTT pattern. 

 

Figure 3.8. XRD pattern and SAED of the prepared Pd nanoparticles from glycerol-incorporated DOPG 
liposomes. 
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3.4.4. Effect of glycerol 

Since the catalytic activity of nanoparticles is clearly modulated by their surface properties, we 

explored the role of the capping or stabilizing agent.53,54 As previously reported, glycerol has 

been shown to reduce Pd(II) to form Pd(0) through the oxidation of the free hydroxyl groups. 

This oxidation might occur in all or in part of the alcohol groups in the glycerol molecules, and if 

any hydroxyl group remains in its oxidized form, they could therefore be participating in the 

stabilization of the Pd(0) atoms avoiding nanoparticle aggregation. We believe that glycerol-

stabilized Pd nanoparticles occurs via one hydroxyl-end group or via the two hydroxyls from the 

ends or with the middle one, as we illustrate in Figure 3.9. 

 

Figure 3.9. Schematic illustration of glycerol acting as a capping agent for nanoparticle stabilization. 

To address our hypothesis, Pd NPs obtained in the absence of lipids were analysed using FTIR 

(Figure 3.10). The FTIR spectrum demonstrated the presence of glycerol on the surface of the 

formed nanoparticles, as reflected by the bands corresponding to the asymmetric and 

symmetric C-H vibration between 2970 and 2845 cm−1, as well as the bands corresponding to 

alcohol groups such as −OH band centered in 3300 cm−1 and C-O at 1035 cm−1. The presence of 

weak bands at 1749/1724 cm−1 was of particular interest as it indicates the presence of C-O 

groups resulting from the oxidation of glycerol during the formation of nanoparticles. The low 

intensity of this band suggests that glycerol in a reduced form acts as a capping agent. 

 

Figure 3.10. FTIR spectra of (A) glycerol and (B) Pd NPs. 

The Pd nanoparticle surface was also analysed by Raman spectroscopy, taking the advantage of 

the already surface enhanced Raman scattering (SERS) properties of these particles.55 Figure 

3.11 shows the Raman spectra of glycerol, DOPG, and Pd NPs prepared in the liposomal 
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nanoreactor. As can be observed, the prepared nanoparticles show several bands in the region 

where the bands of glycerol and lipid appear, making a careful assignation difficult, although the 

presence of both reducing agent and phospholipid is clear. These bands are not observed when 

the nanoparticles were prepared in the absence of liposomes, perhaps due to a lower 

concentration of organic layer on the surface. This can also explain the higher stability of the 

particles obtained with the liposome method and the importance of the selection of lipids for 

the nanoreactor synthesis. 

 

Figure 3.11. Raman spectra of glycerol, DOPG, and Pd nanoparticles. 

After preparation, Pd NPs were reconstituted in toluene. From that solution, they could be 

precipitated with ethanol and reconstituted again in toluene or in water. In the case of the 

reconstitution in water, some aggregation was observed. The reconstitution in water affects the 

stabilizing layer of Pd NPs, probably by breaking the interactions between Pd and OH groups, at 

least at levels no detectable by Raman. It can be a method for removing the capping agent from 

the particles in case the presence of glycerol is not desirable, but these nanoparticles will not be 

as stable as those reconstituted in toluene and should be used as soon as possible. 

 

3.4.5. Catalytic activity of Pd NPs 

Stevenson56 has recently reported the reduction of p-nitrophenol to p-aminophenol in the 

presence of sodium borohydride catalysed by bimetallic nanoparticles, demonstrating that the 

reaction takes place on the surface of the particles and not in the solution phase, even in the 

presence of an excess of reducer. We have preliminarily evaluated the catalytic activity of the 

ultrasmall Pd NPs obtained with the liposome nanoreactor using this model reaction. 

Figure 3.12 shows the UV−vis spectra for the reaction of p-nitrophenolate with sodium 

borohydride in the presence and absence of Pd NPs. The absorption band at 400 nm decreased 

rapidly when Pd NPs were added due to the reduction of p-aminophenolate and, at the same 

time, an absorption band at 315 nm corresponding to p-aminophenolate appeared and 

increased in intensity. As can be observed in the inset of Figure 3.12, no reaction took place in 

the absence of Pd NPs, demonstrating the catalytic properties of the nanoparticles. Further 

applications of the catalytic properties of Pd NPs are under study. 
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Figure 3.12. Reduction of p-nitrophenalate (pNP) catalysed by palladium nanoparticles (Pd NPs) studied 
by UV−vis. Inset: UV−vis spectra of p-nitrophenalate (pNP) + NaBH4 in the absence of palladium 
nanoparticles (Pd NPs). 

 

3.5. Conclusions 

A liposomal nanoreactor system was demonstrated to provide a confined nanoenvironment in 

which the synthesis of palladium nanoparticles proceeds in a controlled manner. The method 

uses environmentally friendly conditions, such as low temperature, avoiding the use of organic 

solvents or harsh chemicals, only exploiting glycerol, a renewable and natural polyol as reducing 

agent, as well as capping agent, to produce small homogeneous palladium nanoparticles. 

Moreover, the importance of critical parameters in the procedure was evaluated, including type 

and/or concentration of reducing agent, lipid composition of the liposomes, and presence of 

glycerol as capping agent to elucidate their effect on the homogeneity and size of the palladium 

nanoparticles produced in the absence and presence of nanosized liposomal reactors. In 

addition, we have demonstrated for the first time the use of glycerol as both reducing and 

stabilizer agent to produce palladium nanoparticles. 

Homogeneous highly stable palladium nanoparticles of ∼2 nm in size inside DOPG liposomes 

were obtained without additional capping agents due to their contribution to form bilayers that 

allow glycerol to move semi-freely through the liposome membrane. The contribution of more 

glycerol molecules present in the DOPG formulation gives the entire system the best conditions 

to form extremely small monodisperse Pd NPs. The glycerol group of DOPG also participates in 

the stabilization of the nanoparticles. 

The functional liposomal nanoreactors reported herein demonstrate that the controlled 

conditions created in the liposome core provide a greener, safer, and more efficient system for 

the production of monodisperse ultrasmall palladium nanoparticles with catalytic properties for 

organic reaction. 
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4.1. Abstract 

As one of the building blocks of the cell membrane, lipids and their interaction with neighbouring 

lipids and other molecules, as well as their ability to form different kinds of structures, have 

garnered immense interest. By exploiting the effective shape and thermal-phase behaviour of 

lipids, we have prepared lipid superstructures such as twisted ribbons and rectangular and 

hexagonal shaped lipidic nanostructures using the curvature tuned preparation method. These 

lipidic superstructures were then used as nanoreactor templates for the inorganic synthesis of 

diversely shaped and sized gold nanostructures exploring different administration routes of 

reducing agents, citrate, and tetrachloroauric acid, which as a result formed different 

organizations of gold nanoparticles aligned and guided by the template structure. Tailor-

designed metallic nanostructures can be obtained through a careful selection of lipids and 

conditions for lipid superstructure preparation and their consequent use as template 

nanoreactors. The diversely sized and shaped gold nanostructures obtained have great potential 

for catalysis and plasmonics. 

 

4.2. Introduction 

As one of the building blocks of cell membranes, lipids and their interaction with neighbouring 

lipids and other molecules, as well as their ability to form different kinds of structures, have 

garnered immense interest.1 There are several structural factors and environmental conditions 

that affect the self-assembly of lipids into nano-sized structures, influencing the phase behaviour 

and the curvature of the lipid. Lipid superstructures have been studied intensively over the last 

30 years2 with the recent increasing interest in these nanostructured materials formed by self-

organisation.3 Vesicles, or liposomes, are the most widely known lipid based structures; 

however, lipids are also known to be able to self-assemble into several other structures, such as 

lipid tubes and rods,4 lipid ribbons,5,6 hexasomes7 as well as cubosomes8 and non-lamellar 

mesophase lipid aggregations.9 Aside from being used as model systems to understand the cell 

membrane nature,6 these nano- and micro-structures are attractive as substrates for protein 

crystallization,10 as templates for the synthesis of one-dimensional inorganic materials,11,12 and 

as vectors for drug delivery.4,13 

In parallel, there is enormous interest in the development of methods for the preparation of 

metallic nanoparticles of diverse sizes and shapes, particularly for application in catalysis, where 

structures such as cubes,14 disks,15 tubes,16 stars,17 and nanocages18 provide crystal plane 

architectures that can be tailor-designed according to the specific application. Spherical 

nanoparticles are, to a large extent, synthesized by wet-state preparation methods such as the 

Turkevich method (1951)19 or the Schmidt method (1981),20 which are based on 

reduction/oxidation reactions. However, further control of the one and two-dimensional shapes 

of nanoparticles is still largely unaddressed. The seed mediated synthesis of rod-like structures 

exploiting the use of a growth-directing agent (hexadecyltrimethylammonium bromide 

(CTAB)),21 as well as vapour phase synthesis,22 vapour-solid-liquid synthesis methods,23 or 

patterning on a solid surface by etching or lithography methods24 are some of the methods 

reported to achieve particle growth of specific shapes.25 However, those methods often reveal 

nanoparticle populations with different sizes and shapes and require strong reaction conditions, 

e.g. high temperature, high pressure, extreme pH or organic solvents.26,27 As an alternative, 

template directed synthesis using self-assembled structures offers several advantages in 

UNIVERSITAT ROVIRA I VIRGILI 
LIPOSOMES AS VERSATILE TOOLS: NANOREACTORS, MEMBRANE MODELS AND DRUG DELIVERY CARRIERS. 
Gael Clergeaud Veiga 
Dipòsit Legal: T 154-2015



 
94 Liposomes as versatile tools: nanoreactors 

comparison, not only because of the relative inexpensiveness of the technique and its simplicity 

and inherent applicability to scale-up, but also due to the unlimited potential combinations of 

biomaterials to form diverse template structures.4,11,28–30 

A highly reported method that has been used for the preparation of nanoparticles is the so-

called reverse micelle method. In this method, the inner core of the reverse micelles is 

considered as a nanoreactor,25 within which controlled reactions leading to the formation of 

nanosized metallic and metal halide particles are carried out,31 where the size of the micelle core 

is controlled by the molar ratio of water to surfactant/lipid molecules in solution. Typically, 

individual reverse micelle populations are prepared containing metallic precursors e.g. metallic 

salts and reducing agents. An exchange process occurs when the micelles collide due to both 

Brownian motion and attractive forces between the micelles, resulting in a fusion of the reverse 

micelles, an exchange of the contents within the cores, followed by a re-dispersion of the 

micelles.32,33 As a result the reduction of the metal salt results in the growth of metallic 

nanoparticles within the core of the micelle. This method has found widespread applications 

and has been used, for example, for the synthesis of semi-conductor materials,34 metallic 

nanoparticles35 and nanoalloys.36 

Phospholipids are naturally occurring amphipathic molecules that can form bilayer structures 

with a high aqueous interior volume. Their capacity to encapsulate a wide range of molecules 

makes lipid based structures efficient nanoreactors for inorganic synthesis of metal 

nanostructures under milder and greener reaction conditions.37,38 Moreover, the use of lipid 

based templates could overcome the problems faced with soft-template strategies, such as poor 

stability of the template during the synthesis and removal following particle synthesis, since they 

can be formulated to be stable in aqueous media and easily dissolved in organic solvents.39 

However, unlike micelle forming surfactants (e.g. CTAB), lipids often prefer to self-assemble in 

spherical vesicles which limits their use in the synthesis of differently shaped inorganic 

nanoparticles.40 Recently, we reported on an ultra-rapid and environmentally friendly method 

for the preparation of highly stable liposomes using both charged and zwitterionic lipids, with 

different phase transition melting (Tm), exploiting a combination of a rapid pH change followed 

by a defined period of equilibration, resulting in monodisperse and stable liposome populations 

and also differently shaped lipid mesostructures depending on the properties of lipids used.41 In 

previous studies, those nanoliposomes were used to synthesize tiny gold and palladium 

nanoparticles with catalytic properties.39,42 In the work described here, we exploit the curvature-

tuned liposome preparation method for the formation of several lipidic nanostructures using 

different formulations of phospholipids leading to the self-assembly of the lipids into structures 

different from liposomes, such as twisted ribbons, rectangular and hexagonal shaped lipid 

nanostructures. Inspired from reverse-micelles, we proposed to use these nanostructures for 

the production of metallic nanoparticles with the size and shape of the resulting nanoparticle 

dictated by the lipid templates. Analysis of the lipid nanostructures and the metallic 

nanostructures formed was carried out by biological transmission electron microscopy (TEM), 

scanning electron microscopy (SEM), and X-ray diffraction analysis and the feasibility of the 

approach for the preparation of ribbons, hexagonal and cubical metallic nanostructures was 

clearly demonstrated. 
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4.2. Experimental section 

4.2.1. Materials 

Phospholipids were supplied as a powder by Avanti Polar Lipids, Inc. and used without further 

purification. Sodium hydroxide, hydrochloric acid, di-sodium hydrogen phosphate (anhydrous, 

reagent grade, Na2HPO4), sodium dihydrogen phosphate (anhydrous), extra pure, (NaH2PO4) and 

glycerol 99.5 %, reagent grade, were purchased from Scharlau Chemie SA. Sodium chloride was 

provided by Riedel-de Haën. Milli-Q water (1.82 MΩ cm−1) used to prepare buffers and 

liposomes was obtained using a Simplicity 185 Millipore-Water System. 

 

4.2.2. Preparation of lipid based nanostructures and template directed synthesis 

4.2.2.1. Preparation of lipid nanostructures using the curvature tuned preparation method41 

Different lipid mixtures (50 mg) were directly hydrated in 4 mL of buffer (0.1 M PBS, pH 7.4), 

which had previously been heated to a pre-determined temperature, T0 (Table 4.1). The 

temperature was kept constant by placing a glass flask (15 mL) in a water jacket connected to 

an UltraTerm 200 Model (P-Selecta) thermocycler. The mixture was vortexed in a 10 mL falcon 

tube (with glass beads) for 1-3 min and added to 6 mL of preheated and degassed buffer solution 

(0.1 M PBS, pH 7.4) in order to prepare empty lipid templates. In the case of the encapsulating 

lipid nanostructures, the lipid mixture was mixed with 6 mL of preheated and degassed buffer 

solution (0.1 M PBS, pH 7.4) including either HAuCl4 (20 mg) or sodium citrate (115 mg) and was 

left to stir for 15 min while the temperature was kept constant at T0. As used in the 

nanoliposome preparation, lipid nanotemplates were prepared by the use of an immediate “pH 

jump” to produce a fast protonation and deprotonation induced lipid self-assembly.41 For this, 

the pH was subsequently increased to pH 11 using NaOH and immediately readjusted to pH 7.4 

using HCl. The resulting mixture was left to mix for a 25 min equilibration period under the same 

conditions. Finally, the stirring and heating process was stopped, and the solution was left to 

cool to room temperature for 25 min, and, subsequently, samples were stored at 4 °C before 

use. All steps were conducted under argon. Unless otherwise described, all lipid formulations 

consisted of phospholipid and lyso-PPC (88:12 molar ratio). The final lipid mass concentration 

was kept constant for all lipid formulations at 0.5 % (w/v) (see the ESI† for the formation of lipid 

nanotemplates). 

Table 4.1. Properties of the phospholipids studied and conditions for the preparation of differently shaped 
lipid templates. 

Lipid (tail length) Head group Molecule charge Final shape (operation T0
a) 

DPPC (18C)  
(1,2-dipalmitoyl-sn-glycero- 

3-phosphocholine)  

Neutral 
Hexagonal (25 ºC) 

Rectangular (45 ºC) 

DMPG (14C) 
(1,2-dimyristoyl-sn-glycero- 
3-phospho-(1′-rac-glycerol))  

Negative Twisted ribbon (25 ºC) 

Lyso-PC (16C) 
(1-palmitoyl-2-hydroxy-sn- 
glycero-3-phosphocholine)  

Neutral  

a It should be noted that the sample preparation method includes a cooling step to room temperature 

afterwards and all analyses were carried out at room temperature. 
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4.2.2.2. Gold nanostructure synthesis patterned by lipid structures 

In the case of the hexagonal and square shaped lipid structures, two individual populations of 

the lipid template either encapsulating citrate or tetrachloroauric acid were mixed, or, as a 

control, tetrachloroauric acid encapsulating lipid structures were immersed in PBS. In the case 

of the twisted ribbon shaped lipid templates, tetrachloroauric acid encapsulating lipids were 

immersed in PBS or citrate solution in PBS, or, alternatively were mixed with citrate 

encapsulating ribbons. In addition, citrate encapsulating lipid ribbons were immersed in 

tetrachloroauric acid solution in PBS. Mixtures were incubated at room temperature and 

samples were taken every 24 hours and purified by centrifugation with methanol:ethanol (1:4 

v/v) and kept in toluene at 4 °C until analysed. 

 

4.2.3. Characterization of structural changes and determination of size 

4.2.3.1. Transmission electron microscopy (TEM) imaging via phos-photungstic acid hydrate 

staining 

Encapsulating and empty lipid templates were analysed structurally using a transmission 

electron microscope. Using a glass pipette, a drop of sample was added to a 200 mesh copper 

grid with a thin film of Formvar polymer and was kept at room temperature for 1 min, followed 

by addition of a drop of 2 % v/v phosphotungstic acid hydrate (PA) (Panreac) solution (pH 7.2) 

in distilled water for 2 min. Subsequently, excess liquid was carefully dried using filter paper and 

the sample was left at room temperature until a dried film was obtained. Transmission electron 

microscopy (TEM) analyses were performed using a JEOL 1011 transmission electron microscope 

operated at 80 keV with an ultrahigh-resolution pole piece providing a point resolution of 2 Å. 

Micrographs (1024 pixels × 1024 pixels) were acquired using a Megaview III multiscan-CCD 

camera. Images were analysed with an iTEM image analysis platform, measuring the dimensions 

of particles from the photos captured at different parts of the grid and calculating the mean 

diameter from the series of experiments (n ± 3) conducted using the same parameters. 

4.2.3.2. Determination of the reaction yield of the gold nanoparticle synthesis 

An ICP-OES instrument Spectro Arcos FHS16 was used to measure the mass fractions of Au in 

the nanostructures using calibration curves generated from standard solutions (0-40 ppm 

dilutions of transition metal mix 3 which was purchased from Sigma-Aldrich) with an R value of 

0.999. The samples and standards were dissolved in 1 % aqua regia (3HCl:1HNO3). The analytical 

line used for the determination of Au was 242.795 nm. The synthetic yield for the different Au 

nanostructures was calculated as the difference between the Au mass determined by ICP-OES 

and the starting Au mass, corrected with the dilution factors and expressed in percentage (n = 

3). The formula used was X % = (C/Ci) × 100 where C is the Au concentration (mg L-1) measured 

by ICP in the samples containing the nanostructures and Ci is the starting concentration of Au 

(mg L-1). 

4.2.3.3. Scanning electron microscope (SEM) 

Scanning electron microscopy studies were carried out using a scanning electron microscope, 

SEM (Jeol JSM 6400, 40 kV). Spectrometric measurements were performed by the 

spectrophotometer UV-Vis-NIR, Cary 500-Varian. 

4.2.3.4. X-ray diffraction measurements 

X-ray diffraction measurements were performed with a Rigaku X-ray diffractometer. 
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4.3. Results and discussion 

There have been a plethora of reports detailing the reverse micelle method,25,31–35 where a clear 

correlation between the template size and the resulting nanoparticles formed has been 

established. Reverse micelles are dynamic lipid clusters where they continuously fuse and re-

disperse due to Brownian motion, exchanging their contents.43 However, in the case of lipid 

bilayers, fusion is a more complex process where the membrane fluidity and hydrophobic 

interactions have been reported to be important factors for liposome membrane fusion, and is 

mostly an irreversible process.44 Zwitterionic lipids fuse at temperatures below their critical 

melting temperature while fusion of charged lipids occurs at higher temperatures.45 The 

mechanism of the 2D growth of rigid particles is proposed to be due to a shape patterned by a 

single template due to fusion of the two lipid structures encapsulating HAuCl4 and citrate in their 

aqueous core, respectively. In the proposed model depicted in Figure 4.1, the electrostatic 

interaction occurring between AuCl4
- with a net negative charge and the zwitterionic–PC head 

with mobile positive charge (Table 1) provides nucleation sites for the synthesis. Subsequent to 

the fusion of two lipid structures, citrate molecules slowly diffuse into the bilayer and reduce 

the Au(III) to Au(0) resulting in the formation of solid gold hexagonal and rectangular 

nanoparticles. However, possible transport of tetrachloroauric acid in the reverse direction 

should be taken into account as this would possibly result in amorphous aggregates as the 

reaction will occur faster in that direction. 

 

Figure 4.1. Proposed growth path of nanoparticle formation through membrane fusion of reactant 
encapsulating lipid structures. 

To explore the proposed usage of the prepared lipid superstructures as templates and 

nanoreactors for the preparation of metallic nanostructures of controlled size and shape, the 

aforementioned lipid nanostructures were prepared from DPPC and DMPG lipids (Table 1) as 

described above, to form rectangular, hexagonal as well as ribbon shaped nano-architectures. 

Rectangular-shaped lipid templates were prepared at an operating temperature of 45 °C from 

DPPC lipids and cooled down to RT before purification and analysis. The formed lipid structures 

were then used as templates (Figure 4.2a) afterwards, and nanoparticle synthesis was carried 

out by mixing HAuCl4 encapsulating and citrate encapsulating lipid nano-templates in a 1:1 ratio, 
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and particle formation was monitored over 72 h at room temperature. For control experiments, 

the citrate was replaced by PBS. Figure 4.2b shows the metallic nanoparticles formed within the 

lipid template and obtained following the lipid removal via centrifugation in a methanol:ethanol 

mixture. The metallic nanostructures prepared were disk-like with 200 ± 11 nm length and 80 ± 

7 nm width (aspect ratio between 1 and 1.5), which is 10-20 nm smaller (both length and width) 

than the average template size. As depicted in Figure 4.2c, a large proportion of the 

nanoparticles is oriented in the (111) crystal plane ((2Θ) at 38°) with a relatively poor signal in 

(200) and (220) which is coherent with the crystal structure of the disk-like metal 

nanoparticles.46  

 

 

Figure 4.2. TEM images representing the square shaped templates, the purified gold nanoparticles and 
their XRD pattern: (a) the square shaped DPPC based lipid templates encapsulating AuCl4- prepared at an 
operating temperature of 45 °C, (b) purified gold nanoparticles in toluene which were prepared after 72 h 
of incubation at room temperature. Inset: a magnified image highlighting the smooth edges of the gold 
nano-rectangle, and (c) their XRD pattern. Scale bars are 200 nm. 

The reaction yield of the gold nanoparticle synthesis was measured by inductively coupled 

plasma optical emission spectrometry (ICP-OES). After the sample was subjected to 

centrifugation, the Au NPs were effectively separated from the unreacted Au(III). Results 

showed a moderate turn-over with a calculated yield of 25.6 %. As with the rectangular shaped 

lipids, lipidic hexagonal structures encapsulating tetrachloroauric acid and sodium citrate were 

prepared, respectively, from the DPPC lipid at 25 °C. Again, a 1:1 molar ratio of each was mixed 

and monitored for over 72 h and analysed by transmission electron microscopy (TEM) and 
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scanning electron microscopy (SEM) before synthesis, during synthesis and following separation 

of the lipids from the formed gold nanostructures by centrifugation. Even though the yield was 

not very high (18.9 %), a heterogeneous population, mostly of rectangular and hexagonal shaped 

gold nanoparticles, was obtained after 24 h where the number of particles increased after 72 h 

(Supp. Fig. ESI1 and Fig. ESI2†). A better control over the template shape could reveal more 

homogeneous distribution in the particle shape and size. In the absence of sodium citrate 

encapsulating liposomes, no nanoparticle structures were observed. The template size was 

measured as ca. 250 nm (Figure 4.3a), and the resulting particles were approximately 200-250 

nm (Figure 2c and Supp. Fig. ESI1†). As can be seen from the inset of Figure 4.3b, a lipid bilayer 

surrounding the produced nanoparticles can be observed prior to purification. The particles 

produced had a tendency to grow in the (111) crystal plane (Figure 4.3c) and with the (111), 

(200), (220), (311) and (222) planes, equal to that of a typical XRD pattern of the face-centered 

cubic (fcc) structure was obtained.47,48 A SEM image of a single hexagon is depicted in Figure 

4.3d. 

 

Figure 4.3. TEM images representing the hexagonal shaped templates, the purified gold nanoparticles and 
their XRD pattern: (a) the hexagonal shaped lipid templates formed from DPPC:LysoPPC prepared at an 
operating temperature of 25 °C, (b) a single hexagonal shaped gold nanoparticle before purification from 
lipids (inset shows a magnified TEM image in which the lipid layer on the particle is highlighted by the 
arrows), (c) XRD pattern and (d) SEM image of a purified gold nanostructure demonstrating the (111) face 
of a single hexagonal gold nanoparticle. 
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Whilst there are many studies on the use of nanotubes28,49 as templates for inorganic particle 

synthesis, there are very few studies on the use of ribbons as templates for ribbon shaped metal 

nanostructures. Jung et al., reported self-assembled helical lipid ribbons as templates for the 

synthesis of palladium nanoparticles using ascorbic acid as a reducing agent, where they 

observed either tiny nanoparticles embedded on the template surface or solid nanostructures 

depending on the patterning method used.50 Jin et al., in another study, reported the 

preparation of silica nanostructures patterned from lipid structures including ribbons, hollow 

spheres and other chiral materials.5 

In this study, we analysed the template capacity of twisted ribbon-like lipid nanowires prepared 

from the DMPG lipid (Figure 4.4, Table 4.1) for the biomineralization of metal salts as 

demonstrated with the rectangular and hexagonal lipid templates. However, due to the multiple 

fusion sites available on the ribbons, which could lead to aggregation and collapse of the 

template, alternative routes were also considered and compared since the exchange of the 

lipidic contents would not occur by membrane fusion, but rather diffusion of the respective 

reagents across the lipid bilayer into the interior core of the ribbon-like structure would occur. 

 

Figure 4.4. TEM images of twisted ribbon-shaped DMPG lipid self-assembly prepared at an operating 
temperature of 25 °C. Inset images are representative drawings of the twisted ribbon shape and chemical 
structure of the DMPG lipid. 

Of the four different approaches used, in Method I, tetrachloroauric acid encapsulating lipid 

templates were directly immersed in PBS buffer and monitored for over 72 h of incubation at 25 

°C as a control. Ribbon-like thin rods with slight appearance were spontaneously formed, even 

in the absence of a reducing agent (Figure 4.5a) with no apparent signal in XRD measurements 

(data not shown). This is attributed to the ability of the DMPG to act as a capping agent on gold 

nanoparticles and –OH groups present on the glycerol head of the lipid might act as initiators of 

the slow reduction of gold ions (Table 1) which took 72 h to complete.29,51 

However, when HAuCl4 encapsulating twisted lipid ribbons were immersed in a solution 

containing sodium citrate (Method II), ribbon shaped nanostructures with a more solid 

appearance and a stronger resemblance to the template were obtained (Figure 4.5b). The 

reaction yield of gold nanoribbons synthesized with this approach was calculated to be 30.5 %. 

In the third approach (Method III), tetrachloroauric acid and citrate encapsulating lipid 

structures were mixed and small nanoparticles of 2 to 5 nm, arranged in a one-dimensional 

ribbon shape (Figure 4.5b inset), were observed after 24 h of incubation at 25 °C. As depicted in 

the scheme represented in Figure 4.5-III, when two twisted encapsulating lipid ribbons are 

mixed, the tetrachloroauric acid and citrate interact at the contact points, and particles form at 
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these points due to the reduction of the Au(III) to Au(0), resulting in a nanoparticle chain which 

resembles the template. 

 

Figure 4.5. Schemes outlining the different strategies for the use of twisted ribbon shaped lipid templates 
for the preparation of ribbon-like gold nanostructures and TEM images of gold nanostructures formed as 
a result of the methodology used. (a) Method I: tetrachloroauric acid encapsulating the lipid template 
alone after 72 h, (b) Method II: tetrachloroauric acid encapsulating the lipid template immersed in citrate 
solution, (c) Method III: the tetrachloroauric acid encapsulating and citrate encapsulating lipid template 
were mixed and left for 24 h at room temperature, and (d) Method IV: the citrate encapsulating lipid 
template was immersed directly into the tetrachloroauric acid solution. 

The same type of one-dimensional particle alignment as obtained in Method III was observed 

when the citrate encapsulating lipid template was immersed in chloroauric acid solution in PBS 

(pH 7.4, 10 mM, 25 °C) (Method IV). The particles were around 15 nm (Figure 4.5d), and were 

arranged in a nanoparticle chain type structure guided by the dimensions of the lipid template. 

These structures were formed due to the interaction between the tetrachloroauric acid and the 

citrate diffusing from the bilayer core. This facilitated rapid nucleation of particles on the 
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diffusion sites of the template where they further aggregated to form chains aligned one after 

the other (Figure 4.5d). Both chain shaped and ribbon shaped gold nanostructures were stored 

at room temperature for a month. TEM studies showed no apparent aggregation during that 

period of time, demonstrating the stability of the resulting nanostructures. 

When we analysed the crystal properties of the metallic nanostructures obtained using the 

different methods, nanostructures obtained in the presence of a lipid template (Method I) and 

by mixing lipid structures encapsulating citrate and tetrachloroauric acid (Method III) showed 

no apparent signal. On the other hand, the ribbon-like structures obtained in Method II and 

nanochains obtained in Method IV showed a typical pattern of the face centered cubic structure 

with higher and distinctive signal dominated at a 2Θ of 38° assigned to the (111) face and also a 

distinctive peak at a 2Θ of 44.5° assigned to the (200) face (Figure 4.6). Twisted Au nanoribbons 

demonstrated a pattern of a two-fold symmetry with an additional lattice spacing at (222). These 

results suggest that both samples mostly consist of one dimensional arrangement that were 

preferentially oriented with their (111) planes, therefore attributing to a significantly high (111) 

reflection intensity. 

 

Figure 4.6. XRD pattern of nanostructures synthesized. Both ribbon shaped gold nanostructures (a) and 
nanochains (b), prepared via Method II and Method IV, respectively, positioned dominantly in the (111) 
crystal plane with a more distinctive intensity at (111) and (200) faces in the case of gold nanoribbons. 

 

4.4. Conclusions 

The work reported here examines the potential of the lipid nanostructures as soft matter 

templates for metal biomineralization. Unusual lipid nanostructures including rectangular, 

hexagonal and twisted ribbons were formed via the curvature tuned preparation method and 

used as templates for gold nanostructures. The resulting nanostructures’ shape was mostly 

patterned by the template and the homogeneity of the particles formed was directly dependent 

on the homogeneity of the template shape. Ribbon shaped lipidic nanostructures resulted in 

diverse types of nanostructures where atomic alignment was strongly dependent on the 

biomineralization approach chosen and the direction was driven by the template shape (e.g. 

ribbon and chain-like alignments). Resulting twisted gold nanoribbons showed a typical face 

centered cubic structure primarily dominated by (111) facets. In conclusion, self-assembled lipid 

based nanostructures were demonstrated to be promising tools for the synthesis of metal 

nanoparticles of controlled morphology and size. The possibility to prepare diversely shaped and 
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sized nanoparticles under mild conditions should find a plethora of potential applications in 

catalysis, plasmonics and electronics. 
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5.1. Abstract 

Labile zinc, a tiny fraction of total intracellular zinc that is loosely bound to proteins and easily 

interchangeable, modulates the activity of numerous signaling and metabolic pathways. Dietary 

plant polyphenols such as the flavonoids quercetin and epigallocatechin-gallate act as 

antioxidants and as signaling molecules. Remarkably, the activities of numerous enzymes that 

are targeted by polyphenols are dependent on zinc. We have previously shown that these 

polyphenols chelate zinc cations and hypothesized that these flavonoids might be also acting as 

zinc ionophores, transporting zinc cations through the plasma membrane. To prove this 

hypothesis, herein, we have demonstrated the capacity of quercetin and epigallocatechin-

gallate to rapidly increase labile zinc in mouse hepatocarcinoma Hepa 1-6 cells as well as, for the 

first time, in liposomes. In order to confirm that the polyphenols transport zinc cations across 

the plasma membrane independently of plasma membrane zinc transporters, quercetin, 

epigallocatechin-gallate, or clioquinol, alone and combined with zinc, were added to unilamellar 

dipalmitoylphosphocholine:cholesterol liposomes loaded with membrane-impermeant FluoZin-

3. Only the combinations of the chelators with zinc triggered a rapid increase of FluoZin-3 

fluorescence within the liposomes, thus demonstrating the ionophore action of quercetin, 

epigallocatechin-gallate, and clioquinol on lipid membrane systems. The ionophore activity of 

dietary polyphenols may underlay the raising of labile zinc levels triggered in cells by polyphenols 

and thus many of their biological actions. 

 

Figure 5.1. Table of contents figure 

 

5.2. Introduction 

Quercetin (QCT), a water-insoluble flavonoid present in onions, nuts, and many other 

vegetables, and epigallocatechin-3-gallate (EGCG), a water-soluble flavonoid present in green 

tea, are among the most consumed and most studied polyphenols present in the human diet.1 

Flavonoids are considered bioactive micronutrients whose regular consumption, either as food 

components, or as dietary supplements and nutraceuticals,2 entails benefits for human health, 

including prevention and amelioration of cancers,3 diabetes, and cardiovascular4 and 

neurodegenerative5 diseases. Many of the health benefits of flavonoids have historically been 

ascribed to their antioxidant activity, which they exert directly by scavenging reactive oxygen 
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species (ROS) and by chelating the redox-active transition metals iron and copper, which may 

act as ROS generators in biological systems.6 Flavonoids also act as antioxidants indirectly by 

inhibiting redox-sensitive transcription factors and pro-oxidant enzymes as well as through 

induction of phase II and antioxidant enzymes.7 However, it is currently believed that the levels 

of polyphenols achieved through ingestion are not enough to justify their wide array of biological 

actions. Beyond their antioxidant actions, flavonoids are also known to act as signaling 

molecules that, either directly or indirectly, interact with proteins and nucleic acids, thus 

modulating multiple cell signaling pathways, gene transcription, metabolic fluxes, and cell fate 

including apoptosis.8,9 

Diverse polyphenols have been shown able to form complexes with the redox-inactive transition 

metal zinc.10 Zinc is an essential micronutrient for humans, the deficiency of which causes 

multiple dysfunctions, including alterations of glucidic and lipidic metabolisms.11 Within cells, 

the vast majority of zinc cations (in concentrations usually ranging from 100 to 300 μM for most 

cells) are tightly bound to proteins, functioning as a catalytic or structural component of an 

estimated 3000 mammalian proteins involved in virtually all cellular processes.12 A minor 

fraction of intracellular zinc, termed labile zinc, exists in its free ionic form (picomolar 

concentrations) or loosely bound to proteins (in nanomolar concentrations). This pool of zinc is 

detectable by specific fluorophores with very high affinities for zinc cations at neutral pH such 

as Zinquin and FluoZin-3. Zinc ionophores such as pyrithione and clioquinol (CQ) have been used 

to increment labile zinc within cells and determine the fundamental roles that this zinc pool 

plays in cellular biology. Thus, free and labile zinc acts as second messenger molecule, which 

modulates the activity of many enzymes and thus signaling and metabolic pathways and cellular 

processes, including cell fate and apoptosis.13,14 While many enzymes are inhibited by small 

elevations of zinc concentrations, others are activated.15,16 Mammalian cells tightly control the 

subcellular distribution of zinc cations and the levels of labile zinc through the coordinated 

action of dedicated transmembrane zinc transporters and zinc-chelating metallothioneins. 

Zinc from the extracellular milieu and from intracellular compartments enters the cytoplasm 

through 14 specialized transmembrane proteins of the ZIP/SLC39 family, whereas cytoplasmic 

extrusion of zinc toward organelles or the extracellular environment is performed by 10 

transporters of the ZnT/SLC30 family, being ZnT1, located at the plasma membrane, the main 

regulator of cellular zinc efflux and export of excess zinc in most cells.17 Within the cytoplasm, 

zinc may bind to metal free apo-metallothionein (apo-MT) to generate Zn-MT complexes. The 

apo-MT/Zn-MT ratio controls free and labile zinc concentrations. MT also serves as a ROS 

scavenger and heavy metal chelator, and the transcription of MT responds, in addition to zinc, 

to stress stimuli such as ROS, heavy metals, and pro-inflammatory cytokines.18 In response to 

elevations of intracellular zinc, the zinc-sensor transcription factor MTF1 coordinately up-

regulates the expression of MT and ZnT1,19 thus keeping zinc levels within a functional range. 

Excessively high levels of labile zinc are associated with cellular death through apoptosis.20 

Dysfunctions of MT and zinc transporters are promoting factors in cardiovascular diseases,21 

diabetes,22 Alzheimer’s disease,23 and cancer.24 

Several studies have shown that flavonoids affect zinc metabolism. For instance, rats fed during 

long periods with bicalain and rutin showed reduced hepatic levels of total zinc, as well as iron 

and copper, implying that flavonoids may sequester these metals and render them unavailable 

for absorption in a similar way as phytate.25 Consistent with this, feeding obese rats with 

proanthocyanidins reverse dyslipidemia and lower protein levels of ZnT1 in the liver, reflecting 

lower levels of hepatic zinc.26 Early in vitro studies showed that, in human intestinal Caco-2 cells, 

UNIVERSITAT ROVIRA I VIRGILI 
LIPOSOMES AS VERSATILE TOOLS: NANOREACTORS, MEMBRANE MODELS AND DRUG DELIVERY CARRIERS. 
Gael Clergeaud Veiga 
Dipòsit Legal: T 154-2015



 

 

113 Chapter V: Zinc ionophore activity of QCT and EGCG: From Hepa 1-6 cells to a liposome model 

genistein enhanced the expression of MT, here regarded as an antioxidant enzyme,27 while QCT 

increased the copper-induced expression of MT.28 More recently, QCT was shown to enhance 

zinc uptake by Caco-2 cells, increasing total zinc accumulation and MT expression.29 In contrast, 

grape seed flavonoids, produced a reduction in apical zinc uptake in Caco-2 cells, similar to that 

produced by phytate, whereas EGCG did not alter zinc absorption.30 In prostate cancer cells, 

EGCG accelerated the accumulation of total zinc in the cytosol and mitochondria.31 Two reports 

have shown that polyphenols may produce an increase of intracellular labile zinc. A water-

soluble glycoside of the isoflavone genistin enhanced MT expression in human hepatocarcinoma 

HepG2 cells concomitantly increasing labile zinc and cellular death.32 Furthermore, the stilbene 

resveratrol was shown to enhance total and labile zinc in normal human prostate epithelial cells, 

while not significantly affecting MT expression, and this was accompanied by increased cellular 

death. These authors suggested that the increment of labile zinc elicited by resveratrol might be 

due to the uptake of resveratrol-zinc complexes, followed by the dissociation of the complexes 

in the cytoplasm.33 

Conversely, zinc may affect the bioactivity of flavonoids, as detailed in a few reports, including 

one that outlines the stimulating effect of zinc on the apoptotic effect of genistein in osteoclastic 

cells.34 Zinc also yields EGCG effective in protecting cultured rat hepatocytes against 

hepatotoxin-induced cell injury35 and enhances the antiproliferative, proapoptotic effects of 

EGCG on various lines of prostate cancer cells.36 Zinc was also shown to affect the uptake of 

EGCG by prostate carcinoma cells, where Zn-EGCG chelates were less internalized by cells than 

EGCG alone, while mixtures of EGCG with zinc enhanced the transport of EGCG into the cells. 

These authors also showed that zinc enhances the incorporation of EGCG into liposomes.37 

We have previously reported that the water-soluble flavonoid EGCG and the water-insoluble 

flavonoid QCT profoundly alter zinc homeostasis in cultured human and mouse 

hepatocarcinoma cells. Whereas EGCG reduced the levels of total intracellular zinc and the 

expression of MT and ZnT1,38 QCT enhanced total zinc accumulation as well as MT and ZnT1 

expression (M. Bustos, personal communication, 2011, Universitat Rovira i Virgili). However, 

both QCT and EGCG dose-dependently prevented zinc-induced toxicity, suggesting that most 

zinc cations in the culture medium are rendered unavailable to cells due to their chelation by 

flavonoids and the formation of flavonoid-zinc concatemers, as shown for iron and copper 

complexed with diverse polyphenols.39 In addition, both polyphenols enhanced cytoplasmic 

levels of Zinquin-detectable labile zinc, suggesting that a fraction of the flavonoid molecules in 

the culture medium formed complexes with zinc that cross the plasma membrane; that is, the 

flavonoids may also act as zinc ionophores, transporting zinc cations across the plasma 

membrane independently from zinc transporters. 

The aim of this work was to evaluate the capacity of QCT and EGCG to act as zinc ionophores. 

CQ was also tested in this study as it is a synthetic antitumor drug recently reported to induce 

apoptosis in diverse cells lines by enhancing intracellular labile zinc and therefore inferred to act 

as a water-soluble zinc ionophore.40 We evaluated the ability of QCT, EGCG, and CQ to chelate 

zinc cations and the subsequent formation of a complex with FluoZin-3, a fluorophore that 

displays a very high affinity for zinc cations (Kd = 15 nM).41 The uptake of zinc by mouse 

hepatocarcinoma cells was measured fluorescently using FluoZin-3 in the presence and absence 

of QCT, EGCG, and CQ. This study was repeated using unilamellar liposomes with encapsulated 

FluoZin-3 to investigate whether the transport of the zinc cations across the cytoplasmic 

membrane to form a complex with FluoZin-3 was indeed enhanced by the presence of QCT, 

EGCG, or CQ or was simply due to the activity of cellular zinc transporters. 
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5.3. Materials and methods 

5.3.1. Chemicals 

The lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol, zinc chloride (ZnCl2), 

QCT, EGCG, CQ, dimethyl sulfoxide (DMSO), ethanol, and phosphate-buffered saline (0.01 M 

PBS, pH 7.4) were bought from Sigma-Aldrich. Cell-impermeant FluoZin-3 tetrapotassium salt 

and cell permeant FluoZin-3 AM were bought from Molecular Probes. A Simplicity 185 Millipore 

water system was used to obtain Milli-Q water (18.2 mΩ·cm−1) for the preparation of buffers 

and liposomes. The compounds QCT, EGCG, and CQ were dissolved as 100 μM solutions in 100% 

DMSO, aliquoted, and stored at -20 °C. ZnCl2 was stored as 1 M solution in ethanol/PBS 

(50%/50% v/v). FluoZin-3 indicators were used at 10 μM in 100% DMSO. 

5.3.2. Cell culture and treatments 

The mouse hepatoma cell line Hepa 1-6 was obtained from the European Collection of Cell 

Cultures (BW7756 ECACC) and propagated in Dulbecco’s Modified Eagle medium (DMEM; 

BioWittaker) supplemented with 10% fetal bovine serum (BioWittaker), 2 mM glutamine in 

0.85% NaCl, 1000 U/mL penicillin/streptomycin, and 1.25 M HEPES. This medium contains 4.9 ± 

0.2 μM zinc, as determined by flame atomic absorption spectroscopy (FAAS). Cells were cultured 

at 37 °C in a humidified, 5% CO2-enriched atmosphere and routinely split every 3-4 days at a 1:5 

ratio upon reaching approximately 80% confluence. For treatments, cells at 80% confluence 

were detached with Accutase (Sigma−Aldrich) and resuspended at a density of 5 × 105 cells/mL; 

500 μL of this cell suspension (25 × 104 cells) was then seeded per well in 24-well plates (Orange 

Scientific). Twenty four hours after plating, medium was removed, and the cells were treated by 

adding 100 μL of fresh medium containing either 50 μM ZnCl2, 100 μM QCT, 100 μM EGCG, 100 

μM CQ, or the combination of 50 μM ZnCl2 with each chelator for 1 and 4 h, respectively. As a 

control experiment, untreated cells were incubated just with medium and vehicle (final 0.1% 

DMSO and 0.05% ethanol). 

5.3.3. Measurements of cytoplasmic labile zinc in Hepa 1-6 cells 

The intracellular levels of free and labile zinc cations were measured as the fluorescence 

emission of cells upon loading them with the membrane-permeant zinc specific detector 

FluoZin-3, using fluorescence microscopy as described.42 Briefly, following cell treatment 

(Section 2.2), culture media were replaced with a fresh one containing 1.5 μM FluoZin-3 (AM, 

cell permeant) and incubated for 30 min at 37 °C. This medium was then removed, and the cells 

were washed three times with PBS, and the zinc-dependent FluoZin-3 fluorescence within cells 

was measured using a Nikon Eclipse TE2000-S microscope, with excitation set at 494 nm and 

emission at 516 nm. Fluorescent intensities were quantified using the NIS-Elements AR software 

(Nikon Instruments) and the software ImageJ, a Java-based image processing program 

developed at the NIH (National Institutes of Health).43 

5.3.4. Liposomes as cell membrane models 

Homogeneous populations of liposomes were prepared using a previously reported method.44 

FluoZin-3 in a final concentration of 3 μM was mixed with 5 mL of PBS (0.01 M, pH 7.4) in a glass 

reactor protected from light induced degradation, under stirring conditions and a blanket of 

argon gas. After 15 min, a mixture of DPPC and cholesterol (9:1 molar ratio) was added and 

maintained under stirring conditions and argon at 25 °C for another 15 min. The homogeneous 
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mixture was then treated with a rapid pH jump from pH 7.4 to pH 11 and then back to pH 7.4 

within a 3 s frame, followed by an equilibration step of 25 min where lipid clusters curl into 

FluoZin-3 encapsulating liposomes. The resulting FluoZin-3 loaded liposomes were purified using 

a Sephadex G-100 size-separation column and used immediately. Liposomes with encapsulated 

FluoZin-3 were separately incubated with 10 μM QCT, EGCG or CQ, in the presence and absence 

of 10 μM ZnCl2. All the solutions were allowed to incubate at 25 °C for 30 min before measuring 

their fluorescence. For the kinetic experiment, liposomes loaded with FluoZin-3 were added to 

three different cuvettes, the fluorescence was measured for 15 min, followed by addition of 

ZnCl2 (final 10 μM) to each cuvette, and the fluorescence emission was measured for another 

15 min. Finally, QCT, EGCG, or CQ was added (final 10 μM) to each sample, and fluorescence 

emission was monitored over the duration of 1 h until the fluorescent intensity reached a 

plateau. 

5.4. Results 

5.4.1. QCT, EGCG, and CQ increase the cytoplasmic labile zinc in Hepa 1-6 cells 

The increase of cytoplasmic labile zinc is modulated by the cellular zinc transporters, where the 

zinc ions are transported to the cytoplasm through specific channels of the ZIP family, bound to 

ionophore molecules that independently cross the lipid bilayer, or liberated from zinc binding 

proteins such as metallothioneins (Figure 5.2). 

 

Figure 5.2. Schematic representation of zinc homeostasis. Intracellular labile zinc is modulated by the 
coordinated activity of a large family of zinc transporters (ZnT and ZIP) and zinc-binding proteins, such as 
metallothionein or ionophore molecules. 

In order to assess the effect of QCT, EGCG, CQ and zinc on cytoplasmic labile zinc, Hepa 1-6 cells 

were treated for 1 and 4 h with the chelators and supplemental zinc, and variations in the 

intracellular levels of labile zinc were measured as changes in the FluoZin-3 fluorescence 

intensity as described in Section 2.3. Figure 5.3 shows the fluorescent images of the Hepa 1-6 
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cells after 1 and 4 h of treatment. No significant increase in fluorescence was obtained when 

QCT or EGCG were added to the culture medium without additional zinc. Only CQ insignificantly 

enhanced the fluorescence in these conditions, that is, with basal zinc concentration in the 

culture medium, which is roughly 5 μM. 

 

Figure 5.3. Effect of QCT, EGCG, and CQ on the cytoplasmic pool of labile zinc in Hepa 1-6 cells. Hepa 1-6 
cells were first treated with 100 μM QCT, EGCG, or CQ, in the presence or absence of 50 μM ZnCl2 for 1 and 
4 h. The medium was then removed, and 3 μM FluoZin-3 (AM, cell permeant) was added. After 30 min 
incubation, cells were washed and examined using a confocal fluorescence microscope. Control cells were 
treated with vehicle (final 0.05% ethanol, 0.1% DMSO). Scale bars are 50 μm. 

However, when 50 μM ZnCl2 was added, both QCT and EGCG doubled the amount of FluoZin-3-

detectable zinc after 1 h, and CQ increased this pool of zinc 10-fold with respect to the control 

(50 μM ZnCl2 in the absence of any of QCT, EGCG or CQ) (Figure 5.4), suggesting a slower 

ionophore action of the flavonoids as compared to CQ. After 4 h treatment with additional 50 

μM ZnCl2, all treatments triggered a significant increase in fluorescence intensity. In the case of 

the control, the increase of the cytoplasmic labile zinc is associated with the plasma membrane 

ZIP transporters, whereby zinc ions are transported into the cell. QCT doubled the amount of 

labile zinc attained with only 50 μM zinc, EGCG quadrupled this value, and CQ increased it 7-

fold.  

A closer view of intracellular distribution of FluoZin-3 fluorescence (Figure 5.5) after 4 h of 

treatment shows a similar punctuated pattern of labile zinc for CQ, EGCG and QCT, suggesting 

similar ways of action for the three compounds. 
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Figure 5.4. Intensity of FluoZin-3 fluorescence signal from images in Figure 5.3 was quantified using quanta 
program and considering an equal number of cells in each field. All values are mean ± SEM of three 
independent experiments. Significant differences between treatments were determined using one-way 
ANOVA (Tukey test). *P ≤ 0.05; **P ≤ 0.01. 

 

Figure 5.5. Subcellular localization of FluoZin-3 detectable zinc in Hepa 1-6 cells after 4 h treatment in the 
same samples as in Figure 5.3 showed at a greater magnification. Scale bars are 10 μm. 

 

5.4.2. Zinc ionophore activity of QCT, EGCG, and CQ using liposomes as membrane 

models 

Increases of cytoplasmic labile zinc levels triggered by CQ and pyrithione in a variety of cell lines 

have been attributed to their ionophore activity, that is, to the capacity of CQ-zinc and 

pyrithione-zinc complexes to cross the plasma membrane. To our knowledge, however, the 

classification of CQ and pyrithione as zinc ionophores is based on their functional effect in cells, 

that is, the rapid increase in Zinquin-detectable or Fluozin-3-detectable intracellular zinc, but no 

direct biochemical assay has been performed to discard the involvement of plasma membrane 

zinc importers or the origin of labile zinc from intracellular components on this effect. 

Furthermore, there is no report confirming that polyphenols are able to transport zinc across 
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the plasma membrane independently of cell transport mechanisms, such as zinc transporters or 

endocytosis. To directly prove the ionophore action of the flavonoids and CQ, we tested their 

capacity to transport zinc cations across the lipid bilayer of protein-free liposomes as a model 

system that mimics a cell membrane devoid of protein and polysaccharide fractions. Taking 

advantage of our previously reported method for the rapid preparation of liposomes,44 3 μM 

concentration of cell impermeant FluoZin-3 was encapsulated within unilamellar liposomes 

composed of DPPC:cholesterol in a 9:1 molar ratio. The resulting FluoZin-3-loaded liposomes 

were purified by passing the sample through a Sephadex G-100 size-separation column to 

remove the unencapsulated FluoZin-3 molecules. Dynamic light scattering (DLS) and ζ potential 

analysis were performed to clearly confirm the presence of stable liposomes within a size range 

1−2 μm and surface charge around zero (Table 5.1). 

Table 5.1. Dynamic light scattering and ζ Potential Measurements of liposomes loaded with FluoZin-3 
before and after treatments with 10 μM quercetin (QCT10), 10 μM epigallocatechin-3-gallate (EGCG10) or 
10 μM clioquinol (CQ10) in the presence and absence of 10 μM quercetin (QCT10), 10 μM epigallocatechin-
3-gallate (EGCG10) or 10 μM clioquinol (CQ10) in the presence and absence of 10 μM zinc chloride (Zn10)a 

Sample Size average (µM) ζ potential (mV) 

FluoZin-3 loaded liposomes 1.4 ± 0.3 -4.7 ± 2.5 

FluoZin-3 loaded liposomes + Zn10 1.1 ± 0.7 -5.0 ± 5.9 

FluoZin-3 loaded liposomes + QCT10 1.2 ± 0.5 -1.9 ± 4.1 

FluoZin-3 loaded liposomes + EGCG10 1.5 ± 0.4 -6.9 ± 7.6 

FluoZin-3 loaded liposomes + CQ10 1.4 ± 0.2 -3.0 ± 3.7 

FluoZin-3 loaded liposomes + Zn10 + QCT10 1.8 ± 0.2 -1.2 ± 2.5 

FluoZin-3 loaded liposomes + Zn10 + EGCG10 1.6 ± 0.3 -3.5 ± 3.2 

FluoZin-3 loaded liposomes + Zn10 + CQ10 1.4 ± 0.2 -9.0 ± 2.7 
a Final concentrations of solvents in the samples were 0.05 % ethanol and 0.1 % DMSO. Standard deviations 

were calculated from the mean data of a series of experiments (n ≥ 3). 

The zinc ionophore activity of polyphenols was then tested as their capacity to transport zinc 

cations into the liposome cavity, interacting with the encapsulated zinc-dependent FluoZin-3 

and consequently increasing the fluorescence signal within the liposomes (Figure 5.6). ZnCl2 (10 

μM) was added to the liposomal suspension in the absence and presence of 10 μM QCT, EGCG 

and CQ, respectively, and zinc-dependent fluorescence intensity was measured over time. 

 

Figure 5.6. Schematic design of the FluoZin-3 loaded liposomes and the ionophore-like effect 
interpretation. 
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Following the addition of QCT, EGCG or CQ, the Zn-polyphenol chelation complex is formed and 

transported across the bilayer, followed by interaction with the encapsulated FluoZin-3 probe, 

resulting in a significant and immediate increase in the fluorescence intensity. Following the 

addition of 10 μM ZnCl2 to the liposomes, a very small increase in the fluorescence appears due 

to the presence of a few free FluoZin-3 molecules that were not removed during the purification 

process and represent the background fluorescent signal. Even so, the fluorescent signal 

remains very low as zinc ions alone cannot cross the liposome membrane. The results from the 

kinetic experiment demonstrate that QCT, EGCG and CQ present different ionophore properties. 

CQ showed the strongest ionophore activity, producing a 35-fold increase in the zinc-dependent 

FluoZin-3 fluorescence intensity. Moreover, the maximum fluorescence is achieved rapidly after 

reaching the equilibrium in less than 15 min. QCT and EGCG also display a high ionophore activity 

in the system, although to a lesser extent as compared to the strong ionophore CQ, with 8- and 

16-fold increases in fluorescence signal observed for QCT and EGCG, respectively. It can also be 

observed that both QCT and EGCG required more time (> 60 min) to achieve the plateau phase, 

displaying slower chelation and transport kinetics (Figure 5.7). 

 

Figure 5.7. Effect of QCT, EGCG and CQ on the uptake of zinc cations by liposomes. Zinc-dependent 
fluorescence emission of FluoZin-3 encapsulated within liposomes treated with zinc cations, polyphenols, 
and CQ. The fluorescence emission (λex = 494 nm; λem = 516 nm) of purified FluoZin-3-loaded liposomes 
was recorded continuously. Background fluorescence (0-15 min) was negligible (I). Upon the addition of 
10 μM ZnCl2 to the liposomal suspensions (II), a small fluorescence signal was detected, presumably due 
to the presence of trace amounts of unencapsulated FluoZin-3 in the liposomal solutions. At time point 30 
min, 10 μM quercetin (QCT10), epigallocatechin-3-gallate (EGCG10), clioquinol (CQ10), or vehicle (control, 
final 0.1% DMSO) were added to the liposomal solutions, and the fluorescence was monitored for one 
additional hour (III). 

Confocal microscopy analysis was also performed in order to visualize and corroborate that the 

fluorescence produced by the interaction between zinc and FluoZin-3 was attributable to 

fluorescence in the inner part of the liposomes. As can be seen in Figure 5.8, fluorescence is only 

observed when the combination of ZnCl2 with QCT, EGCG or CQ is present, and the fluorescent 

signal comes from the inside part of the liposomes and not from the lipid membrane or the 

background solution. To further support this, stability studies were carried out in order to check 

whether the QCT, EGCG or CQ can destabilize and break the lipid vesicles. All the liposomes were 

characterized using TEM, DLS and ζ potential to check that their stability was maintained 

following exposure. 
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Figure 5.8. Three-dimensional confocal microscopy images of zinc dependent fluorescence emission of 
FluoZin-3 loaded within liposomes treated with zinc cations, polyphenols and CQ. 

As shown in Figure 5.9, TEM images of the liposomes before and after treatments clearly 

demonstrate that liposome stability was not affected with the morphology and mean size (1-2 

μm) being maintained. Moreover, the DLS and ζ potential results presented in Table 5.1, 

confirmed that the size of the liposomes and their surface charge were not significantly affected 

by the addition of zinc and/or the ionophores, thus demonstrating that FluoZin-3-loaded 

liposomes were not destabilized and their around-zero charge, due to the zwitterionic nature of 

main lipid component DPPC, was maintained, thus confirming that the fluorescence signal is due 

to transport of the Zn-QCT/EGCG/CQ complex across the lipid membrane. 

 

Figure 5.9. Transmission electron micrographs of liposomes with encapsulated FluoZin-3 after treatment 
with ZnCl2, QCT, EGCG and CQ. 

 

5.5. Discussion 

The consequences that zinc chelation by flavonoids may have on zinc availability to the cells may 

in principle be dual: sequestering or ionophore, as shown for other well-characterized zinc-

binding compounds.45 On the one hand, the formation of zinc-flavonoid complexes may render 

zinc unavailable for cells, as do other dietary phytochemicals such as phytatesc46 and zinc-
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chelator drugs such as TPEN that induce zinc deficiency in vitro and in vivo.47 Metal chelating 

therapy using CQ has been proposed for neurodegenerative disorders that course with high 

levels of metal accumulation such as Alzheimer’s and Parkinson.48 On the other hand, flavonoids 

may form water-insoluble membrane-permeant complexes with zinc that cross the plasma 

membrane, and thereby act as zinc ionophores. The ionophore effect of zinc binding compounds 

has been characterized for pyrithione and CQ. Both drugs chelate zinc cations and, when applied 

to cells, trigger a rapid increase of the intracellular pool of zinc that is detectable with different 

fluorophores such as Zinquin or FluoZin-3. Thereafter, it is assumed that these chelators form 

membrane-permeable complexes that are transported into the cell and that, once within the 

cell, chelator−zinc complexes dissociate into the single compounds due to the low concentration 

of intracellular free and labile zinc, thus providing labile zinc cations. Although FluoZin-3 has 

been widely accepted as a fluorophore that specifically interacts with zinc,49−52 a recent report 

has indicated that this marker may in fact suffer from a lack of specificity.53 However, this has 

no impact on the proof-of-concept study reported here as zinc is the only ion present and 

studied and thus no interfering effect from other ions will occur. We have shown here that 

treatment of Hepa 1-6 cells with zinc together with QCT, EGCG or CQ elicits a rapid and drastic 

increase in FluoZin-3-detectable intracellular zinc. The same effect was previously observed 

using Zinquin upon treatments of HepG2 cells with combinations of zinc and EGCG or zinc and 

QCT.38 In these cells, the upregulation of MT and ZnT1 by zinc was enhanced by QCT. In contrast, 

EGCG decreased the intracellular zinc accumulation. Similar to QCT, the stilbene resveratrol 

efficiently chelates zinc in solution and enhances total and Zinquin-detectable cytoplasmic zinc 

in cultured human prostate epithelial cells, and this correlated with the antiproliferative action 

of resveratrol on cells.33 

While an increasing effort has been made to understand the interaction of flavonoids with lipid 

bilayers,54 no report has been published reporting the use of liposomes to demonstrate the zinc 

ionophore activity of polyphenols. Liposomes have been widely used as the simplest cell 

membrane systems in order to study the ionophore activity of molecules across the lipidic 

bilayer.55 We have herein used a liposomal system to prove that zinc can transverse lipid bilayers 

when combined with flavonoids. It is not necessary to evoke the intervention of zinc 

transporters in the plasma membrane or the mobilization of zinc from intracellular 

compartments to account for the elevation of intracellular zinc levels in cells treated with 

flavonoids. The flavonoid-dependent transport of zinc cations into the liposomal cavity also 

implies that polyphenols may cross biological membranes when conjugated with metal cations. 

The mechanisms by which polyphenols enter the cells are largely unknown, but our results imply 

that complexation with metals may increase the bioavailability of polyphenols to cells. 

There are several reports that strongly suggest that the demonstrated zinc ionophore effect on 

polyphenols will be observed in real physiological conditions if studied in vivo. Lee et al.56 in 2002 

has reported that a minor part of the EGCG found in plasma conserved its native form, and it 

has also been reported that the polyphenol metabolites still maintain their ability to chelate and 

form complexes with metal ions30 and furthermore that nanomolar concentrations of 

polyphenols or their metabolites are able to modulate some metabolic pathways,5,57,58 as does 

labile zinc in a picomolar to nanomolar concentration range.14 While all these reports point 

toward the same ionophore effect being observed under physiological conditions, in a recent 

report by Oyama et al.,59 the authors suggest the dual effect of CQ depending on the 

extracellular zinc concentration, where the known ionophore effect of CQ was only observed 

when extracellular zinc was available, and when zinc was not available in the extracellular 

environment, CQ could cross the membrane and chelate the intracellular zinc ions. To this end, 
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ongoing work is looking at extending the proof-of-concept reported and demonstrated here 

with both liposomes and cellular models to true physiological conditions exploring the 

interactions between a range of polyphenols and polyphenol metabolites and zinc in a lower 

concentration range of picomolar to micromolar.  

In conclusion, we have demonstrated that QCT, EGCG and CQ rapidly increase intracellular labile 

zinc in Hepa 1-6 cells and that they function as ionophores for zinc in a liposomal system. Thus, 

natural flavonoids can be added to an arsenal of drugs that may be used to modulate zinc 

homeostasis and regulate zinc-dependent biological pathways. 

 

5.6. Acknowledgements 

This work was supported by grant AGL2008-00387 from the Spanish Ministry of Education and 

Science. H.D. was granted a predoctoral grant from the University Rovira i Virgili. 

 

5.6. References 

(1) Aron, P. M.; Kennedy, J. A. Flavan-3-ols: Nature, occurrence andbiological activity. Mol. Nutr. 

Food Res. 2008, 52, 79−104. 

(2) Egert, S.; Rimbach, G. Which sources of flavonoids: Complex diets or dietary supplements? 

Adv. Nutr. 2011, 2, 8−14. 

(3) Ramos, S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling 

pathways. Mol. Nutr. Food Res. 2008, 52, 507−526. 

(4) Jagtap, S.; Meganathan, K.; Wagh, V.; Winkler, J.; Hescheler, J.; Sachinidis, A. 

Chemoprotective mechanism of the natural compounds, epigallocatechin-3-O-gallate, quercetin 

and curcumin against cancer and cardiovascular diseases. Curr. Med. Chem. 2009, 16, 

1451−1462. 

(5) Williams, R. J.; Spencer, J. P. E. Flavonoids, cognition, and dementia: Actions, mechanisms, 

and potential therapeutic utility for Alzheimer disease. Free Radical Biol. Med. 2012, 52, 35−45. 

(6) Selvaraj, S.; Krishnaswamy, S.; Devashya, V.; Sethuraman, S.; Krishnan, U. M. 

Flavonoid−metal ion complexes: A novel class of therapeutic agents. Med. Res. Rev. 2014, 34, 

677−702. 

(7) Na, H.-K.; Surh, Y.-J. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme 

induction by the green tea polyphenol EGCG. Food Chem. Toxicol. 2008, 46, 1271−1278. 

(8) Williams, R. J.; Spencer, J. P. E.; Rice-Evans, C. Flavonoids: Antioxidants or signalling 

molecules? Free Radical Biol. Med. 2004, 36, 838−849. 

(9) Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer 

chemoprevention. J. Nutr. Biochem. 2007, 18, 427− 442. 

(10) Le Nest, G.; Caille, O.; Woudstra, M.; Roche, S.; Burlat, B.; Belle, V.; Guigliarelli, B.; Lexa, D. 

Zn−polyphenol chelation: Complexes with quercetin, (+)-catechin, and derivatives: II 

Electrochemical and EPR studies. Inorg. Chim. Acta 2004, 357, 2027−2037. 

UNIVERSITAT ROVIRA I VIRGILI 
LIPOSOMES AS VERSATILE TOOLS: NANOREACTORS, MEMBRANE MODELS AND DRUG DELIVERY CARRIERS. 
Gael Clergeaud Veiga 
Dipòsit Legal: T 154-2015



 

 

123 Chapter V: Zinc ionophore activity of QCT and EGCG: From Hepa 1-6 cells to a liposome model 

(11) Prasad, A. S. Discovery of human zinc deficiency: 50 years later. J. Trace Elem. Med. Biol. 

2012, 26, 66−69. 

(12) Maret, W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv. Nutr. 

2013, 4, 82−91. 

(13) Fukada, T.; Yamasaki, S.; Nishida, K.; Murakami, M.; Hirano, T. Zinc homeostasis and 

signaling in health and diseases. J. Biol. Inorg. Chem. 2011, 16, 1123−1134. 

(14) Maret, W. Metals on the move: Zinc ions in cellular regulation and in the coordination 

dynamics of zinc proteins. Biometals 2011, 24, 411−418. 

(15) Wilson, M.; Hogstrand, C.; Maret, W. Picomolar concentrations of free zinc(II) ions regulate 

receptor protein-tyrosine phosphatase β activity. J. Biol. Chem. 2012, 287, 9322−9326. 

(16) Maret, W. Inhibitory zinc sites in enzymes. Biometals 2013, 26, 197−204. 

(17) Cousins, R. J.; Liuzzi, J. P.; Lichten, L. A. Mammalian zinc transport, trafficking, and signals. 

J. Biol. Chem. 2006, 281, 24085−24089. 
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6.1. Abstract 

An efficient liposomal system for screening the zinc ionophore activity of a selected library 

consisting of the most relevant dietary polyphenols is presented. The zinc ionophore activity was 

demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 loaded liposomes as 

simple membrane tools that mimic the cell membrane. The zinc ionophore activity was 

demonstrated as the capacity of polyphenols to transport zinc cations across the liposome 

membrane and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-

3. In addition, the zinc chelation strength of the polyphenols was also tested in a competition 

assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by zinc-

FluoZin-3 complex. Finally, the correlation between the chelation capacity and ionophore 

activity is demonstrated, thus underlining the sequestering or ionophoric activity that the 

phenolic compounds can display, thus, providing better knowledge of the importance of the 

structural conformation versus their biological activity. Furthermore, the developed assays can 

be used as tools for rapid, high-throughput screening of families of polyphenols. 

 

Figure 6.1. Table of contents figure 

 

6.2. Introduction 

Zinc ions have long been known to mimic the actions of hormones, growth factors, 
neurotransmitters and cytokines, and it is believed that zinc may act on intracellular signalling 
molecules.1-3 In fact, zinc is a known inhibitor of protein tyrosine phosphatases4 with a constant 
of inhibition in the nanomolar range.5 In addition, zinc affects the regulation of transcription 
factors, and can induce the expression of some genes, including those coding for molecules 
involved in zinc homeostasis, such as zinc transporters and metallothioneins.6 The gene 
expression of metallothioneins by zinc is regulated by metal response element–binding 
transcription factor-1.7 The chemical properties of zinc that differentiate it from other transition 
metals, such as copper and iron, which display several different oxidation states in biological 
systems, is that zinc exists as a redox inert Zn2+ cation, which does not undergo redox reactions 
at physiological redox potentials.8,9 Additionally, zinc can induce the expression and maintain 
the levels of potentially radical scavenging proteins such as metallothionein (MT), the major zinc 
binding protein associated with zinc homeostasis,10 DNA protection, oxidative stress, and 
apoptosis.11,12 Furthermore, it can act through stabilization of cell membranes13 or as a structural 
component of anti-oxidant enzymes.14 

On the other hand, recent studies have focused on dietary phenolic compounds as natural 
improvers of health and more than 8000 dietary polyphenols have been identified.15 The 
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growing interest in these compounds resides in the accumulating evidence regarding their ability 
to trigger several cellular pathways leading to the prevention and/or amelioration of 
pathological conditions, acting as anti-oxidants,16 anti-carcinogenics,17,18 anti-inflammatories,19 
neuroprotectors,20 anti-lipidemic and vaso-relaxing agents.15 

In the last decades, it has been demonstrated and understood that phenolic compounds interact 
with different metals, including zinc, and because of their distinctive chemical structure, they 
can easily form complexes through metal ion chelation21 in a manner similar to that of other 
well-known metal chelators such as the drug clioquinol (CQ) and also exerts a ionophore activity 
comparable to pyrithione (Pyr).22,23 The first evidence of polyphenol-metal complexes was 
reported in 1962 between aluminium ions and flavonoids. Since then, more than 40 metal-
flavonoid complexes have been investigated.24 

One of the mechanisms by which flavonoids exert their anti-oxidant activity is via the chelation 
of redox-active transition metals,25 which are known to catalyze many biological processes 
leading to the production of free radicals.26 The essential sites for metal chelation are hydroxyl 
groups, and the most suitable cations for chelation are Fe(II), Fe(III), Cu(II) and Zn(II) as they high 
charge density, stimulating the interaction with the phenoxide groups that have a high negative 
charge density.21 The structure of the formed complexes depends on the type of flavonoid and 
metal ion involved, which in turn can influence its' biological interactions that may be different 
from the native flavonoid.27-31 Depending on the polyphenol and its' potential binding sites, 
different structures could be formed with different stoichiometries, thus affecting the biological 
function of the complex.32 Experimental data has indicated that the chelated compounds are 
more effective free radical scavengers than flavonoids alone, suggesting that the Zn-Polyphenol 
complexes not only exert singular biological properties, but can also enhance the effects of both 
compounds individually.33 

Further studies have revealed that polyphenols not only interact with metal ions, but also deeply 
modulate expression of MTs, cellular zinc transporters, extracellular zinc carriers, and 
intracellular zinc accumulation which are key factors in zinc homeostasis.10 Zinquin is a 
fluorescent zinc-specific indicator and an increase in Zinquin-detectable cytoplasmic levels of 
zinc in a HepG2 cell line has been monitored when treated with phenolic compounds.10 This 
increment in intracellular zinc levels have been reported to induce apoptosis of tumour cells,34,35 
suggesting that zinc ionophores may serve as anticancer agents.36 

Although the ionophore activity of natural occurring compounds has not been well established, 
there is strong evidence of their interaction and complex formation with zinc ions,33 suggesting 
that they could be potential candidates as zinc ionophore molecules. The interaction of 
quercetin (QCT) and epigallocatechin-3-gallate (EGCG) with zinc, as well as their ionophore 
activity has been confirmed in a liposome model using the specific zinc indicator FluoZin-3.37 
Luteolin (LUT) and naringenin (NAR) interact with zinc ions, forming complexes and exerting a 
biological function acting as strong radical scavengers.38,39 The ability of genistein (GEN) to bind 
zinc ions has not been well elucidated, although its' ability to bind iron is well known and these 
complexes exert a strong anti-oxidant role, and this suggests that it could have a similar action 
with other metals such as zinc.40 There is also evidence of the ability of catechin hydrate (CAT 
HYD), which is the one of the main bioactive components in green tea, to interact and form 
complexes with zinc ions,41,42 exerting an anti-oxidant activity, but also having an essential role 
in treatment of different cancers, such as prostate cancer.43 Several reports have confirmed that 
rutin (RUT) forms complexes with zinc,44 also acting as a free radical scavenger in a much more 
effective way than the free flavonoid.45 The anti-inflammatory activity of this bioflavonoid is also 
enhanced when complexed with zinc.28 Taxifolin (TAX) is also able to interact and form 
complexes with zinc ions, being an effective radical scavenger too.46 Most phenolic acids are 
good metal chelators, due to their structure with several catechol and/or galloyil moieties.47 To 
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our knowledge, there are no reports to date on interactions and complex formation with zinc 
ions with phloretin (PHLO) or the stilbene resveratrol (RSV), although for RSV there are some 
evidences on complex formation with copper, suggesting that maybe similar structures can be 
formed with other metal ions.48 Catechol (CAT) is one of the simplest naturally occurring 
polyphenols, and also one of the most important moieties in a high variety of polyphenols, 
responsible for the interaction with metal ions. CAT forms complexes with Ruthenium, a rare 
transition metal, suggesting that it could have the same behaviour with other transition metals 
like zinc.49 Thus, a high proportion of polyphenols present some kind of interaction with zinc or 
other metal ions, although for the majority of polyphenols the ionophore activity is still 
undescribed. 

The aim of this work was to evaluate the capacity of fourteen different phenolic compounds to 
bind and chelate zinc ions in solution. We focused on fourteen phenolic compounds grouped 
according to their chemical structure, including the flavonoids quercetin (QCT), epigallocatechin-
3-gallate (EGCG), luteolin (LUT), naringenin (NAR), phloretin (PHLO), genistein (GEN), catechin 
hydrate (CAT HYD), rutin (RUT) and dihydroquercetin or taxifolin (TAX); the phenolic acids gallic 
acid (GAL), tannic acid (TAN) and caffeic acid (CAF); the stilbene resveratrol (RSV); and other 
polyphenols such as catechol (CAT). Two different zinc ionophore agents, clioquinol and 
pyrithione, were used to compare the ionophore activity of the selected polyphenols, as well as 
the zinc sequestrant molecule, TPEN (N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine).  

Binding/chelation of the zinc ions by the polyphenols was evaluated using a competition assay 
based on the fluorescence quenching of zinc-dependent fluorescence emitted by FluoZin-3. In 
this competition assay the zinc chelation strength of each phenolic compound was correlated 
with the decrease in the fluorescence signal due to the dissociation of the zinc-FluoZin-3 
complex as zinc cations are sequestered from the fluorophore complex by the polyphenol. In 
addition, we present a simple and rapid liposome assay for demonstrating the ionophore activity 
of common polyphenols and compared them to strong, well-established ionophores, such as 
clioquinol and pyrithione. The correlation between the chelation capacity and ionophore activity 
underlines the different behaviours the phenolic compounds can display and the developed 
assays can be used as tools for rapid, high-throughput screening of families of polyphenols. 

 

6.3. Experimental section 

6.3.1. Materials 

All the phenolic compounds, pyrithione (PYR), quercetin (QCT), epigallocatechin-3-gallate 
(EGCG), genistein (GEN), taxifolin (TAX), luteolin (LUT), phloretin (PHLO), catechol (CAT), 
naringenin (NAR), rutin (RUT), catechin (CAT HYD), caffeic acid (CAF), tannic acid (TAN), gallic 
acid (GAL), resveratrol (RSV) and clioquinol (CQ) were purchased from Sigma-Aldrich, as well as 
the lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol, dimethyl sulfoxide 
(DMSO), ethanol, zinc chloride (ZnCl2), N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine 
(TPEN) and the phosphate buffered saline (0.01M PBS, pH 7.4). Cell impermeant FluoZin-3 
tetrapotassium salt was obtained from Molecular Probes. A Simplicity 185 Millipore-Water 
System was used to obtain Milli-Q water (18.2 mΩ.cm-1) for the preparation of buffers and 
liposomes. The phenolic compounds PYR, QCT, EGCG, GEN, TAX, LUT, PHLO, CAT, NAR, RUT, CAT 
HYD, CAF, TAN, GAL, RSV and CQ were dissolved as 100 µM solutions in 100 % DMSO and 
aliquoted of at -20 ºC. ZnCl2 was stored as 1 M solution in ethanol/PBS (50/50 % v/v). FluoZin-3 
zinc indicator was used at 10 µM in 100 % DMSO. 

UNIVERSITAT ROVIRA I VIRGILI 
LIPOSOMES AS VERSATILE TOOLS: NANOREACTORS, MEMBRANE MODELS AND DRUG DELIVERY CARRIERS. 
Gael Clergeaud Veiga 
Dipòsit Legal: T 154-2015



 
134 Liposomes as versatile tools: membrane models 

6.3.2. Measurement of the interaction of the polyphenols with zinc cations in solution 

A competition assay was carried out to test the ability of the polyphenols PYR, QCT, EGCG, GEN, 
TAX, LUT, PHLO, CAT, NAR, RUT, CAT HYD, CAF, TAN, GAL, RSV and CQ to chelate zinc cations in 
solution, thus reverting their binding with the zinc specific fluorophore FluoZin-3. TPEN was also 
included as a positive control, to compare with a well-recognized zinc chelator.50 FluoZin-3 
tetrapotassium salt was used to demonstrate the capacity of the flavonoids and of clioquinol to 
form complexes with zinc. First, a fluorescence titration curve was constructed using a range of 
zinc concentrations (from 0 to 1.25 μM) to establish where the fluorescence of 3 μM FluoZin-3 
is not saturated by zinc cations. The relative capacity of the polyphenols and clioquinol to quench 
the zinc-dependent fluorescence of FluoZin-3 at 1 μM zinc concentration was then monitored. 
The final concentration of test substances in the competition reaction with FluoZin-3 was 10 μM.   

Briefly, 3 μM FluoZin-3 was mixed with 1 μM zinc in PBS (0.01 M, pH 7.4) and incubated for 15 
minutes at room temperature to facilitate formation of the zinc-complex. Subsequently, 10 μM 
(final concentration) of the test substances (PYR, QCT, EGCG, GEN, TAX, LUT, PHLO, CAT, NAR, 
RUT, CAT HYD, CAF, TAN, GAL, RSV, CQ or TPEN), were added, mixed vigorously and incubated 
at 37 °C for 30 minutes under shaking conditions, protected from light. All fluorescence 
measurements were performed in an Eclipse fluorescence spectrophotometer from Varian 
coupled with a Cary temperature controller at 25 °C using quartz cuvettes with 1 cm path length 
and with a maximum volume of 150 µL. The excitation and emission wavelengths used were 494 
nm and 516 nm with slits of 5 nm. 

6.3.3. Preparation of FluoZin-3 loaded liposomes 

Liposomes were prepared using the curvature-tuned method previously reported.51 Briefly, 
FluoZin-3 (final concentration 3 μM) was mixed with 2 mL of PBS (0.01 M, pH 7.4) in a glass 
reactor protected from light-induced degradation, under stirring conditions and bubbling argon 
gas. After 15 minutes, a previously homogenized mixture of DPPC and cholesterol (9:1 molar 
ratio) in 3 mL PBS was added and maintained under stirring conditions and argon at 25 °C for 
another 15 minutes. The homogeneous mixture was then subjected to a rapid pH jump from pH 
7.4 to pH 11, and then back to pH 7.4 within a 3 seconds frame, followed by an equilibration 
step of 25 minutes where lipid clusters curl into liposomes entrapping the buffer containing the 
FluoZin-3 molecules. The resulting FluoZin-3-loaded liposomes were purified to remove any 
unencapsulated material by size exclusion chromatography (SEC) using a Sephadex G-100 
column and the size and charge of the formed liposomes was determined using dynamic light 
scattering (DLS) and zeta-potential. Prepared liposomes were used immediately. 

6.3.4. Liposome assay to assess zinc ionophore activity 

The zinc ionophore activity of the different polyphenols and clioquinol was demonstrated by the 
increase in zinc-dependent fluorescence of FluoZin-3 loaded liposomes. Freshly prepared 
liposomes loaded with FluoZin-3 were placed in separate vials and their fluorescence measured. 
Subsequently, ZnCl2 was added to each solution to a final concentration of 10 μM, the solution 
was softly vortexed, incubated at 25 ºC for 30 minutes and the fluorescence was measured 
again. Finally, 50 μM of PYR, QCT, EGCG, GEN, TAX, LUT, PHLO, CAT, NAR, RUT, CAT HYD, CAF, 
TAN, GAL, RSV or CQ was added to each vial respectively, softly vortexed and allowed to incubate 
at 25 ºC for 30 minutes under shaking conditions before measuring their fluorescence. The 
evaluation of the ionophore behavior of each polyphenol was tested in a time-dependent assay 
to further understand the velocity of the zinc transport. The kinetic experiment was carried out 
by continuously measuring the fluorescence of the FluoZin-3 loaded liposomes over a period of 
time of 70 minutes, with the addition of ZnCl2 (final 10 μM) after 5 minutes and the addition of 
the test substances (50 μM) to each cuvette respectively after 10 minutes. All fluorescence 
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measurements were performed in an Eclipse fluorescence spectrophotometer from Varian 
coupled with Cary temperature controller at 25 °C using quartz cuvettes with a 1 cm path length 
and with a maximum volume of 150 µL. The excitation and emission wavelengths used were 494 
nm and 516 nm with slits of 5 nm. Control experiments were performed by adding to the cuvette 
FluoZin-3 loaded liposomes with 10 μM ZnCl2 and the solvent used to dissolve the ionophores 
(final DMSO concentration 0.1 % v/v) after 10 minutes. 

 

6.4. Results and discussion 

6.4.1. Zinc chelation strength of polyphenols in solution 

Several polyphenols have been widely reported to chelate metals through their deprotonated 
hydroxyl groups, in which the oxygen possesses a high charge density offering a strong ligand 
for metal-binding. As expected, the chelation strength depends on the number of hydroxyl 
ligands, but also on their proximity, thus bi- or poly-dentate ligands are stronger scavengers than 
mono-dentate ligands. A detailed structure of the identified chelating groups of each of the 
polyphenols tested in this work, as well as their classification and food source, is presented in 
Table 1. 

In order to quantify the relative capacity of the phenolic compounds tested in the work reported 
here (QCT, EGCG, GEN, TAX, LUT, PHLO, CAT, NAR, RUT, CAT HYD, CAF, TAN, GAL and RSV), in 
addition to the established ionophore (CQ and PYR) and sequestrant (TPEN) agents, to bind zinc 
cations in aqueous solutions at physiological pH, their capacity to retrieve zinc cations from 
FluoZin-3-zinc complexes was measured, by monitoring the decrease in zinc-dependent 
fluorescence emitted by the FluoZin-3-zinc complexes upon addition of the polyphenols to the 
solution.  

Firstly, an assay was carried out showing that the fluorescence of FluoZin-3 (3 μM) increments 
linearly with increasing amounts of zinc cations up to 1.25 μM Zn2+, where a plateau is reached 
(Figure 6.2 inset). Therefore, a zinc concentration of 1 μM was selected as optimal to 
demonstrate the decrease in fluorescence of 3 μM FluoZin-3-Zn complexes upon addition of the 
phenolic compounds. As can be seen in Figure 6.2, all 14 polyphenols, together with clioquinol, 
pyrithione and TPEN, at 10 μM concentrations, resulted in a decrease in the zinc-dependent 
FluoZin-3 fluorescence to some extent, due to sequestering of the zinc ions. The highest zinc-
chelating strength was observed to be produced by TPEN, followed by CQ, with an almost 
complete decrease of the FluoZin-3 fluorescent signal. Similarly, PYR caused an almost 80% 
reduction of the fluorescence signal. These observations are anticipated, as they are well-known 
powerful zinc chelators. Regarding the phenolic compounds, TAN surprisingly also quenched 100 
% of the fluorescence signal, which can be explained by its' complex molecular structure having 
25 hydroxyl groups, most of them positioned in a powerful bi-dentate configuration (Table 6.1), 
ready to bind and sequester zinc cations from the fluorescent zinc-FluoZin-3 complex. Regarding 
the rest of the polyphenols, the fluorescence quenching capacity was smaller and similar, within 
a range from 30 to 15%, and in agreement with the number and position metal-binding sites of 
present on each compound. For example, the flavonoids having -OH groups positioned together 
offering a bi-dentate ligand (QCT, EGCG, LUT, GAL, TAX) instead of having the -OH groups 
positioned on different sides of the molecule (NAR, PHLO, GEN), were observed to have a higher 
chelating strength. However, containing more hydroxyl groups alone does not result in improved 
chelation. As it was observed there are other important factors affecting the chelating strength, 
including the three-dimensional conformation of the potential binding groups, as well as the 
formed stoichiometry between the polyphenols and the metal. Therefore, the structure of the 
studied polyphenols does not always correlate with their chelating efficiency. The very low 
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capacity of some of the studied polyphenols to quench the FluoZin-3 fluorescence despite 
containing several -OH groups, as well as some compounds being observed to have a high ability 
to chelate zinc ions, whilst only possessing few hydroxyl groups can thus be attributed to their 
3-D conformation and stoichiometry. 

Table 6.1. Summary of the phenolic compounds used within this work and divided according to class, food 
source, chemical structure with the proposed chelating groups highlighted and the number of hydroxyl 
groups present. 

 

Compound Class  Dietary source Structure 
# Hydroxyl 

groups 

Tannic acid 
Hydroxybenzoic 

acids 

-Grape 
-Persimmon 
-Black berry 
-Myrobalan 

-Walnut 
-Maple 
-Sumac 
-Tarragon 

 

25 

Quercetin Flavonols 
-Cocoa 
-Onion 
-Elderberry 

-Wine 
-Black plum 
-Kale  

5 

(−)-Epigallocatechin 
gallate (EGCG) 

Flavanols 
(Flavan-3-ols) 

-Green tea 
-Black tea 
-Apple 

-Blackberry 
-Hazelnut 
-Pecan nut 

 

8 

Resveratrol Stilbenes 
-Muscadine 
grape 
-Lingonberry 

-Cranberry 
-Red wine 

 
3 

Luteolin Flavones 
-Olive 
-Mexican 
oregano 

-Globe artichoke 
-Green pepper 

 
4 

Gallic acid 
Hydroxybenzoic 

acids 
-Chestnut 
-Black tea 

-Blackberry 
-Green chicory 

 
4 

Dihydroquercetin 
(Taxifolin) 

Dihydroflavonols 
-Mexican 
oregano 

-Acai berry 

 
5 

Catechol Other polyphenols 
-Argan oil 
-Coffee 
beverage 

-Cocoa 

 
2 

Genistein Isoflavonoids -Soy -Red clover 

 
3 

Caffeic acid 
Hydroxycinnamic 

acids 

-Coffee 
-Black 
chokeberry 

-Plum 

 
3 

Phloretin Dihydrochalcones -Apple -Apricot 

 
4 

Rutin Flavonol 
-Buckwheat 
-Black olive 
-Black tea 

-Plum 
-Capers 
-Tomato 

 

11 

Naringenin Flavanones 
-Mexican 
oregano 
-Grapefruit 

-Orange 
-Tomato 

 
3 

Catechin hydrate Flavonol 
-Cocoa 
-Strawberry 

-Grape 
-Broad bean 

 
5 
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Figure 6.2. Chelation strength of zinc cations by the polyphenols, clioquinol, pyrithione and TPEN in 
solution. The quenching of the zinc-dependent fluorescence of FluoZin-3 indicates the capacity of the 
compounds at 10 μM to retrieve zinc cations from the zinc-FluoZin-3 complex formed between 3 μM 
FluoZin-3 and 1 μM ZnCl2. Inset: 3 μM FluoZin-3 calibration plot. λex 494nm / λem 516nm. All values are 
means ± SD of three independent experiments. 

 

6.4.2. Zinc ionophore activity of polyphenols 

Polyphenols are known to interact with lipid bilayers and actively modify their membrane 
fluidity.52-54 It is believed that the fluidization of the bilayer is due to the intercalation of the 
lipophilic domains of the molecules within the ordered structure of the lipid membranes. This 
interaction strongly depends on several characteristics of the polyphenolic molecule, such as its' 
degree of hydroxylation and their stereochemistry, the polarity and the 3-D structural features. 
However, the transport phenomena of molecules across lipid membranes is still not fully 
understood. The permeabilization of the membrane to low-molecular-weight molecules by 
ionophore molecules has been suggested to also be dependent on the concentration of 
monovalent ions thus creating a gradient of ions and modifying the membrane potential, thus 
inducing its' depolarization.55,56 In addition, other several factors may play an important role and 
modulate the ionophore strength, such as the type of ion-ionophore complex formed, the 
different ratios, the kinetic reaction of complexation/decomplexation, the ion-ionophore 
membrane interaction as well as its' transmembrane diffusion constant.57 For example, Yang et 
al. reported that the behavior of EGCG was modified due to the formation of zinc-EGCG 
complexes, resulting in an enhancement of the incorporation of EGCG into the liposome 
membrane, which could cause the formation of ion passages.58 
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A wide number of publications have reported the use of liposomes as simple membrane systems 
for the demonstration of ion transport across lipid bilayers.59-61 However, there is only one 
previous report of the use of a liposomal system to study the ionophore properties of phenolic 
compounds to demonstrate the zinc ionophore activity of QCT and EGCG,37 where they also 
investigated that the flavonoid compounds did not induce the release of the liposome load, as 
was also reported by Ollila et al.62 

A simple liposome system with zinc-dependent fluorophore FluoZin-3 encapsulated in the inner 
cavity was used to determine if the polyphenols can transport zinc across the cell membrane. 
Using the liposome also limited the transport pathway to be solely due to transmembrane 
transport as no other transduction mechanisms normally present in cells would contribute to 
the transport of the zinc cations. The zinc ionophore effect was extrapolated as a function of the 
increase in fluorescence due to the capacity of the polyphenols to carry zinc cations across the 
liposome membrane to interact with the encapsulated FluoZin-3. Liposomes with a mean size 
of 1.3 ± 0.2 µm and a net charge of 0.8 ± 0.2 mV loaded with FluoZin-3 before and after the 
addition of 10 μM ZnCl2 showed a negligible fluorescence signal due to the impermeability of 
the DPPC:Cholesterol liposome membrane at 25 ºC to zinc cations. The subsequent addition of 
the phenolic compounds, caused an increase in the fluorescence signal due to the zinc 
complexation, transport and consequent interaction with FluoZin-3. The well-reported CQ and 
PYR zinc ionophores, resulted in a marked increase in the fluorescence signal, as expected, whilst 
each of the other phenolic compounds studied presented very different ionophore properties 
(Figure 6.3).  

 

Figure 6.3. Liposome assay for the determination of zinc ionophore activity of polyphenols, clioquinol and 
pyrithione. The increase in the zinc-dependent fluorescence of FluoZin-3 indicates the capacity of the 
compounds at 50 μM to interact with 10 μM zinc cations, transport them across the liposome membrane 
and present them to 3 μM FluoZin-3 in the liposome inner cavity. Control are FluoZin-3 loaded liposomes 
in the presence of 10 μM zinc cations with 0.1% DMSO. FluoZin-3 loaded liposomes in the absence of zinc 
(Lipo-FZ3) and in the presence of 10 μM ZnCl2 (Zn10). λex 494nm / λem 516nm. All values are means ± SD 
of three independent experiments.  
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In the case of EGCG and QCT, both presented a notable zinc ionophore activity, EGCG > QCT, as 

previously reported.37 In agreement with the results obtained in the chelation assay, the 

fluorescence increment (Δ) observed, can be clearly correlated with their chelation strength 

towards zinc. The polyphenols analyzed can be classified into three groups: strong, soft and no 

zinc ionophore activity. The polyphenols exhibiting a strong ionophore activity include EGCG (36-

fold Δ), QCT (18-fold Δ), LUT (12-fold Δ), TAN (12-fold Δ) and GAL (8-fold Δ); those displaying a 

soft zinc ionophore activity were RUT (4-fold Δ), TAX (4-fold Δ), CAF (3-fold Δ), CAT HYD (2-fold 

Δ), CAT (2-fold Δ) and GEN (2-fold Δ), whilst those resulting in no fluorescence were RSV, PHLO 

and NAR, indicative of a complete lack of zinc ionophore activity. In addition, control 

experiments demonstrated that the addition of a final concentration of 0.1 % DMSO, as present 

in the tested samples, did not affect or destabilize the liposomes, thus keeping the FluoZin-3 

within the liposomes and not resulting in an increase in fluorescence. Furthermore, TPEN was 

also tested and displayed a soft zinc ionophore activity as it caused a 10-fold increase in the 

fluorescent signal (data not shown). 

An evaluation of the kinetics of the ionophore behavior of each polyphenol was tested in a time-

dependent assay to further understand the zinc transport strength (Figure 6.4). The results 

showed that the increase of the zinc-FluoZin-3 fluorescence produced by PYR until reaching the 

maximum fluorescence was instantaneous. CQ also produced a very high increase in the 

fluorescence and rapidly achieved the maximum fluorescence reaching equilibrium in less than 

15 minutes. Regarding the kinetics of the polyphenols studied, almost none of the ionophore 

active compounds showed a markedly time-dependent increase of the fluorescence. Only in the 

case of EGCG and QCT a plateau was reached after ca. 40 and 20 minutes respectively, exhibiting 

a slower, but efficient, chelation and transport kinetics. In addition, control experiments carried 

out by adding the different compounds to the FluoZin-3 loaded liposomes in the absence of 

ZnCl2 did not show any increase in the fluorescence signal (data not shown). 

 

Figure 6.4. Time-dependent fluorescence emission of FluoZin-3 loaded liposomes before (minute 0) and 
after (minute 5) addition of 10 μM ZnCl2. The fluorescence increased upon the addition of the compounds 
(50 μM) at minute 10, and the fluorescence was monitored over the period of an hour. λex 494nm / λem 
516nm. Results are representative of at least three experiments. In the control sample, only the solvent 
used to dissolve the ionophores (0.1 % DMSO) was added at minute 10 without showing any fluorescent 
increase. 
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In order to confirm the stability of all the liposomes immediately after the fluorescent 
experiments, DLS and Zeta potential analysis of the vesicles were carried out and the results are 
presented in Table 6.2. The DLS results confirmed the presence of stable liposomes that had not 
leaked the fluorophore following exposure to the polyphenols, maintaining roughly the same 
size as compared with the starting FluoZin-3 loaded liposomes (1.3 ± 0.2 µm) or the control 
sample (FluoZin-3 loaded liposomes with 10 µM ZnCl2 at final 0.1 % v/v DMSO) (1.1 ± 0.2 µm) in 
the absence of the tested compounds. The surface charge of the liposomes following exposure 
to the polyphenols also demonstrated that the main net charge of the FluoZin-3 loaded 
liposomes (0.8 ± 2.2 mV) was not significantly affected by the zinc-complexes as all 
measurements indicated approximately a zero charge. Both size and charge results confirmed 
that the liposome vesicles were maintained intact and the fluorescence signal was solely due to 
the transport of the zinc-ionophore complex through the lipid bilayer. 

Table 6.2. Dynamic light scattering and Zeta-potential measurements of the liposomes loaded with 
FluoZin-3, as well as the fluorescence increment (Δ) caused by each compound, after the treatment with 
10 µM ZnCl2 and polyphenols, clioquinol, pyrithione and TPEN at 50 µM (0.1 % DMSO final concentration). 
Standard deviations were calculated from the mean data of a series of experiments (n ≥ 3). 

Compound Δ Fluorescencea 
Liposome parameters 

Size (µm) Charge (mV) 

Clioquinol (CQ) 57.2 1.3 ± 0.2 2.4 ± 2.9 

Pyrithione (PYR) 53.6 1.4 ± 0.1 0.8 ± 1.1 

Epigallocatechin-gallate (EGCG) 35.5 1.3 ± 0.1 1.6 ± 2.5 

Quercetin (QCT) 18.1 1.3 ± 0.1 2.1 ± 1.8 

Luteolin (LUT) 12.2 1.4 ± 0.3 1.1 ± 0.8 

Tannic Ac. (TAN) 12.2 1.2 ± 0.1 -2.1 ± 3.6 

TPEN 10.4 1.1 ± 0.2 0.0 ± 2.6 

Gallic Ac. (GAL) 7.5 1.3 ± 0.3 -3.5 ± 2.8 

Rutin (RUT) 4.3 1.6 ± 0.3 -2.0 ± 3.3 

Taxifolin (TAX) 4.3 1.0 ± 0.3 3.6 ± 3.0 

Caffeic Ac. (CAF) 2.5 1.4 ± 0.4 3.6 ± 1.6 

Catechin (CAT Hyd) 2.4 1.2 ± 0.2 3.3 ± 0.6 

Catechol (CAT) 1.9 1.4 ± 0.3 2.1 ± 1.3 

Genistein (GEN) 1.8 1.4 ± 0.4 -2.1 ± 2.2 

Phloretin (PHLO) 1.3 1.4 ± 0.2 2.6 ± 1.1 

Resveratrol (RSV) 1.1 1.3 ± 0.2 -1.5 ± 4.1 

Naringenin (NAR) 1.1 1.3 ± 0.2 4.6 ± 1.2 

Controlb 0.9 1.1 ± 0.2 -2.1 ± 3.1 

a Increment of fluorescence is calculated by the signal obtained from the FluoZin-3 loaded liposomes 

in the presence of 10 µM ZnCl2 and the respective compound at 50 µM divided by the signal obtained 
from the FluoZin-3 loaded liposomes with 10 µM ZnCl2. 
b Control contains the FluoZin-3 loaded liposomes with ZnCl2 (10 µM) in the solvent vehicle (0.1 % 

DMSO) 

 

The compounds analyzed have been demonstrated to interact to different extents with zinc 
cations in solution, as well sequestering zinc from fluorescent zinc-FluoZin-3 complexes, forming 
metal-chelation complexes. In addition, polyphenols were also tested as zinc-carriers across a 
liposome membrane, and not all compounds were observed to be zinc ionophores. The results 
from the comparison of both chelating strength capacity and ionophore activity are presented 
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in figure 6.5, highlighting some interesting observations. Generally, the compounds with a 
higher chelating capacity, also presented a high ionophore activity. However, some of the 
polyphenols did not follow this general trend. It is important to note that all the ionophore 
compounds could chelate the molecule, but not all the chelators have the ability to act as 
ionophores. The physicochemical properties of each of the polyphenols will directly have an 
effect on its' ionophore activity, consequently defining the compound as metal sequestering 
agent or ionophore agent. However a deeper study is still needed to fully understand their 
mechanism of action. 

 

Figure 6.5. Schematic comparison between zinc chelating strength and ionophore activity. 

 

6.5. Conclusions 

It is confirmed that most of the natural occurring phenolic compounds used in this study have 
the ability to directly interact and form new structures (complexes) bound with zinc. In many 
cases these complexes act in a similar way to the control ionophores. We have reported a 
liposome assay that can be used as a tool the for rapid, high-throughput screening of families of 
polyphenols. In addition, this liposome system can be used to screen the ionophore activity 
towards other ions such as Ca, Fe or Mg among others. Zinc-specific FluZin-3 loaded liposomes 
were used to screen the zinc-ionophore activity of a selected library consisting of the most 
relevant dietary polyphenols, classified according to their zinc-ionophore strength capacity and 
their chelation efficiency, giving us a better knowledge of the importance of the structural 
conformation versus biological activity. Synthetic ionophore molecules are currently being used 
as potential drugs against several chronic diseases including Alzheimer’s and different types of 
cancer, and as demonstrated, one of the mechanisms by which polyphenols exert their 
beneficial activity is by acting as zinc ionophores. Polyphenol-zinc ion complexes are yet to be 
investigated and more extensive studies are needed in order to elucidate their possible clinical 
potential. 
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7.1. Abstract 

In this study we investigate the in vitro and in vivo potential of oxaliplatin formulated in 

unilamellar phosphatidylcholine/phosphatidylglycerol/PEG2000-phosphatidylethanolamine 

liposomes with varying degree of sensitivity towards secretory phospholipase A2 type IIA (sPLA2) 

activation for treating colorectal carcinoma xenografts. From in vitro release studies using 

encapsulated calcein as a drug surrogate, the sensitivity of the formulations towards sPLA2 

activity was tuned by adjusting the fatty acid chain length of the diacyl lipids and the fraction of 

negatively charged lipid in the liposome lipid bilayer. Treatment of cancer cell lines with these 

liposomes resulted in efficient in vitro growth inhibition compared to non-sensitive liposomes 

in the presence of sPLA2. We demonstrate that membrane perturbation and cytolysis was linked 

to the sensitivity of the formulation and the ratio between the amount of lysolipids generated 

and amount of serum proteins present. Using sPLA2-secreting human colon cancer xenografts in 

nude mice as a model, we evaluated the in vivo therapeutic potential of sPLA2-sensitive 

liposomes. All of the formulations tested failed to display significant therapeutic efficacy in the 

evaluated xenografts and the median survival time was not significantly increased. Additionally, 

sPLA2-sensitive liposomes displayed increased toxicity, which at high doses induced diffuse 

cutaneous hemorrhaging and excessive weight loss. 

Despite a clear benefit of including a sPLA2-triggered release mechanism in vitro, the therapeutic 

efficacy was not improved compared to conventional liposomes in Colo205 xenografts. In turn, 

excessive sensitivity of the liposomes can lead to a compromise in their safety making them less 

tolerogenic and toxic. These findings have implications for the rational design of liposomal drug 

carriers employing sPLA2-triggered drug release. 

 

Figure 7.1. Table of contents figure 

 

7.2. Introduction 

Specific delivery and release of chemotherapeutics within diseased tissue may increase both the 

therapeutic efficacy and minimize therapy-associated side effects. Delivery strategies that are 

able to confine and maximize drug exposure specifically to diseased sites are therefore essential 
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to improve efficacy and tolerability. Long-circulating pegylated liposomes are designed to retain 

encapsulated drugs, altering drug deposition and improve efficacy and drug toxicity profiles.1,2 

In many cases, insufficient release rates of hydrophilic drugs at the target site limits their 

therapeutic potential and more advanced liposomal delivery systems are therefore warrented.3 

In general, drugs that benefit from a high peak concentration of bioavailable drug are expected 

to benefit from triggered release.4 Several popular approaches exist to trigger drug release by 

employing environmentally-sensitive liposomes that respond to either external stimuli, e.g. 

induced hyperthermia,5,6 or take advantage of pathological changes that arise in the diseased 

state. The elevated expression of endogenous enzymes in cancerous tissue represents promising 

strategies to control and obtain a site-specific drug burst release.7-9 From a therapeutic point of 

view secretory phospholipase A2 type IIa (sPLA2) is an attractive target, as it is significantly 

upregulated and highly active in various types of cancer including breast, pancreatic, prostate, 

and colon.10-14 Additionally, sPLA2 exhibits a preferential substrate specificity for organized lipid 

structures (such as bilayers) over monomeric lipids in solution, thus making it particularly 

suitable for liposomal drug delivery.15 Examples of a proof of principle of this concept have been 

previously reported in both in vitro and in vivo.9,16,17 

sPLA2 catalyzes the hydrolysis of the ester linkage in the sn-2-acyl chain of phospholipids, which 

yields free fatty acids and 1-acyl-lysophospholipids.3,18 Liposome membrane destabilization by 

sPLA2 is thought not only to liberate the encapsulated drug, but also yield high local 

concentrations of lysolipids and free fatty acids. These can serve as permeability enhancers 

across biological membranes, or at high amounts, directly induce cellular toxicity by forming 

aggregated structures with detergent-like properties.9,16,19 

The sPLA2 enzyme has a high specificity for anionic lipids, such as phosphatidylglycerol (PG), 

potentially due to the many positively charged amino acid residues present in the sPLA2 protein 

sequence that allows the enzyme to interact with the negatively charged phospholipid head 

groups.18 Thus, for controlled delivery purposes the sensitivity of the drug carrier to sPLA2 and 

the level of drug release can be modulated by producing liposomes with high amounts of 

negatively charged lipids.18  

Encapsulating cisplatin in long-circulating liposomes, similar to the formulation used in Doxil®, 

eliminated the dose-limiting severe nephrotoxicity and peripheral neuropathy commonly 

associated with cisplatin. However, the liposomal formulation failed to improve therapeutic 

efficacy, which was believed to be due to inefficient release of the drug (reviewed in Lui et al.).20 

Based on the success from pre-clinical studies, the first liposomal formulation with a sPLA2-

triggered release mechanism, LiPlaCis® entered clinical Phase I trial in patients with advanced or 

refractive solid tumors to address this issue. The original formulation was, however, reported to 

be too unstable, with high levels of platinum excreted via urine along with a high incidence of 

dose-related renal toxicity that is characteristic of free cisplatin. The reason for this stability issue 

was not clear, but appeared not to be related with a premature activation of the liposomes 

during circulation, since no correlation was found between serum sPLA2 levels and the plasma 

half-life of the particles.21 Additionally, an unusually high incidence of complement-related acute 

infusion reactions (39 %) was observed. In comparison, other clinically relevant liposome 

formulations induce similar symptoms as well, but at a much lower rate of up to 9 %,21 indicating 

that the high negative charge of the liposome may have activated the complement system. 

Despite these obstacles, LiPlaCis has re-entered clinical development after it was temporarily 

ceased in the clinical Phase I stage in 2009 due to safety issues that required reformulation.  

UNIVERSITAT ROVIRA I VIRGILI 
LIPOSOMES AS VERSATILE TOOLS: NANOREACTORS, MEMBRANE MODELS AND DRUG DELIVERY CARRIERS. 
Gael Clergeaud Veiga 
Dipòsit Legal: T 154-2015



 

 

153 Chapter VII: Activity and tolerability of oxaliplatin formulated in sPLA2-sensitive liposomes as anticancer drugs 

The aim of the present work was to investigate the potential of highly sensitive sPLA2-responsive 

liposomes as drug carriers for the encapsulation of the platinum-based drug oxaliplatin (L-OHP) 

for treatment of colon cancer. L-OHP has been shown to be particularly effective against 

colorectal cancers and is not associated with nephrotoxicity.20 We compare formulations with 

varying degrees of sensitivity towards sPLA2 and assess their in vitro cytotoxicity against human 

tumor cell lines, and their efficacy, as well as tolerability in vivo using human colorectal tumor 

xenografts. 

 

7.2. Methods 

7.2.1. Materials 

The lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-

phospho-(1'-rac-glycerol) (DPPG), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-

distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DSPG), 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) were 

purchased from Avanti Polar Lipids, Inc. (Alabama, USA). Lyophilized mixture of hydrogenated 

L-α-phosphatidylcholine (HSPC), cholesterol (chol), and DSPE-PEG2000 (57:38:5 mol %) was 

acquired from Lipoid GmbH (Ludwigshafen, Germany). Oxaliplatin was purchased from Shanghai 

Yingxuan Chempharm (Shanghai, China). 

7.2.2. Preparation of liposome vesicles 

Liposomes were prepared following a previously reported method.22 Briefly, accurate amounts 

of lipids were dissolved in chloroform:methanol (9:1 v/v), followed by  solvent evaporation at 

room temperature (RT) under a gentle stream of nitrogen. To ensure complete solvent removal, 

the lipid films formed were placed under vacuum overnight. Multilamellar vesicles (MLV) were 

prepared by hydrating the lipids for 30 minutes with a buffered solution (10 mM HEPES, 5 % 

glucose, pH = 7.4), containing (if desired) the encapsulate molecule, at a temperature 15 ºC 

above the main phase transition temperature with vortexing every 5-10 minutes. For the 

preparation of calcein loaded liposomes, calcein was firstly dissolved in water and then the pH 

was adjusted to pH = 7.4 prior to addition to the hydrating solution to a final calcein 

concentration of 20 mM. The preparation of oxaliplatin-loaded liposomes was carried out by 

previously dissolving 15 mg/mL oxaliplatin in the buffered solution at 65 ºC for 1 hour under 

stirring conditions. The MLV suspensions were extruded 21 times through two-stacked 100 nm 

pore size polycarbonate filters at 55 ºC forming homogeneous large unilamellar vesicles (LUV) 

(< 130nm) with a narrow size distribution (PDI < 0.15). For in vivo applications liposomes were 

extruded using a high-pressure extrusion device (Northern Lipids Inc., Burnaby, Canada) and 

were sequentially downsized through 400/200/100 nm polycarbonate filters. Calcein containing 

liposomes were purified by gel filtration through a Sephadex G-50 size exclusion column using 

HEPES buffer as eluant and liposomes loaded with oxaliplatin were purified by dialysis for 3 days 

using cassettes of 100 kDa molecular cut-off and HEPES buffer containing 1 mM CaCO3 (>99% 

encapsulation). All liposomes were stored at 4 ºC. 
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7.2.3. Physicochemical characterization of liposomal drug carriers 

7.2.3.1 Size and surface charge 

Liposome size and size distribution was analyzed using dynamic light scattering (DLS) and the 

vesicles surface charge was determined by zeta-potential using a ZetaPALS system (Brookhaven 

Instruments Corporation, New York, USA). Liposome solutions were diluted 100-fold in filtered 

(0.2 µm) buffer, placed in plastic cuvettes and degassed for 5 minutes to expel any air in the 

samples before performing the DLS and zeta-potential analysis. The standard deviations were 

calculated from the mean data of experiments (n ≥ 3). 

7.2.3.2. Lipid and drug concentration  

The lipid concentration was determined by measuring the total phosphorous content and the 

oxaliplatin concentration by determining the amount of platinum present in the liposomes using 

inductively coupled plasma mass spectrometry (ICP-MS) using a DionexTM ICS-5000+ system 

(Thermo ScientificTM, Dreieich, Germany). For the phosphorous measurements, samples were 

analyzed by diluting 5000-fold in 2% v/v HCl containing 10 ppb of Gallium as an internal standard. 

To accurately measure the platinum-based chemotherapeutic, samples containing oxaliplatin 

were diluted 500000-fold in 2% v/v HCl containing 0.5 ppb of Iridium as an internal standard. 

7.2.4. Calcein release assay 

Specificity and sensitivity of liposomes toward sPLA2 was determined by the calcein release 

assay. Fluorescent calcein was entrapped inside liposomes at a self-quenching concentration 

following the procedure described above and the time-resolved sPLA2-specific release of the 

fluorophore was recorded as a rise in the fluorescent intensity (FI). Briefly, calcein-loaded 

liposomes were diluted to 75 µM lipid concentration in Calcein-Release Buffer (CRB, 10 mM 

Hepes, 110 mM KCl, 30 µM CaCl2, 10 µM Na EDTA, pH 7.4) and transferred to a glass quartz 

cuvette (1 mL) and the fluorescence (Ex. 495 nm, Em. 515 nm) was recorded under magnetic 

stirring at 37 °C using a SLM8000 spectrophotometer (OLIS Inc., Georgia, USA). Once the signal 

had stabilized for at least 1000 seconds, the sPLA2 enzyme was added to the sample (5 µL human 

tears; 20 µL conditioned cell growth medium (CCM) of Colo205). Triton X-100 (TX-100) was 

added to obtain maximal fluorescent signal from complete release of calcein. The percentage 

release was calculated by the formula 100 % × (Ft – F0)/(FTX-100 – F0), where Ft represents the FI at 

a specific time point, F0 represents FI at time zero, and FTX-100 the FI the total FI after addition of 

TX-100. All studies were done in triplicate. 

7.2.5. Cell culture and cytotoxicity 

The HT-29 human colon carcinoma and Colo205 human colon carcinoma cell lines were 

purchased from American Type Culture Collection (Virginia, USA). HT-29 cells were maintained 

in DMEM supplemented with 10 % heat-inactivated FBS, 1 % penicillin/streptomycin (pen/strep) 

in a humidified 5 % CO2 atmosphere at 37 °C. Colo205 cells were maintained in RPMI-1640 

supplemented with 10 % heat-inactivated FBS, 1 % pen/strep. Both cells were sub-cultured every 

2-3 days. Colo205 CCM was prepared under serum-starved conditions using the following 

procedure: The growth media of the cells, was exchanged after 48 hour incubation of 15-20×106 

cells in a T-75 culture flask with 20 mL fresh RPMI-1640 supplemented only with 1 % pen/strep. 

Following additional 48 hours of growth, the CCM was collected and stored at -20 °C until 

needed.  
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The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-te-

trazolium (MTS) assay (Promega Biotech AB, Stockholm, Sweden) was used to determine the in 

vitro anti-proliferative effect.  Cells (HT-29 and Colo205) were plated in 96-well plates at a 

density of 1×104 cells per well in their respective complete growth media. After overnight 

incubation to allow cell attachment, the media was removed and replaced with either complete 

growth media or Colo205 CCM containing varying concentrations of free drug (1.6-100 µM) or 

liposomal samples (1.6-100 µM drug, or in the case of empty vesicles, a lipid concentration 

equivalent to the drug-loaded liposomal sample), and the cells were further incubated for 6 

hours at 37 °C. After this co-incubation period, the cell media was exchanged with fresh growth 

media and the cells were allowed to grow for an additional 66 hours (72 hours in total). Values 

for cell survival are expressed as the percentage reduction in metabolically active cells relative 

to the solvent controls. All studies were repeated three times. 

7.2.6. Time-lapse micrographs 

HT-29 cells (30.000 cells) were seeded in 8-well chamber slides (Sigma-Aldrich) in 0.3 mL of 

RPMI-1640 medium containing 10% FBS and pre-incubated for 24 h. Hereafter, the media was 

aspirated and the liposomes (100 µL/well) were added to the cells at a final drug concentration 

of 100 µM in Colo205 CCM. The cells were recorded for 4 h and images were captured on a Leica 

TCS SP5 AOBS confocal microscope with a 20X air-objective (Heidelberg, Germany). The 

microscope was equipped with an incubator box and CO2 supply for optimal growth conditions 

during imaging (Life Imaging Services GmbH, Basel, Switzerland). 

7.2.7. In vivo antitumor activity of liposomal L-OHP in human colorectal tumor 

xenografts in nude mice 

Colo205 (7.5 × 106) cells collected in 100 µL culture medium was injected subcutaneous into the 

right flank of 6-week old female NMRI-nu mice (Taconic, Lille Skensved, Denmark). Once tumor 

masses reached app. 150 mm3 (10 days) animals were randomized into 5 groups of 8 mice and 

received intravenous treatment every 4 days. Treatment groups received a dose of oxaliplatin 

(5 mg/kg), alone or encapsulated in liposomes, and control mice were injected with isotonic 

glucose solution at a compatible volume. Tumor size measured by electronic caliper and body 

weight was monitored two to three times a week. The tumor volume was calculated using the 

formula: Volume = (length × width2) / 2, where width was the shortest measurement in 

millimeter. The animals were sacrificed upon a tumor size of 1000 mm3, loss of body weight > 

15 % or mice displaying clear signs of misthriving. Tumor-to-control (T/C) ratios were calculated 

for all time points and T/C ratios < 0.15 was considered highly effective, T/C ratios 0.15 – 0.45 

was considered moderately efficient. Kaplan-Meier plots were constructed based on the above-

specified end-points and median survival time determined for all groups and compared log-rank 

(Mantel-Cox) test, respectively. Differences were considered significant if the p value was less 

than 0.05. Statistical analysis was performed using GraphPad Prism version 6.0 for Mac OS X 

(California, USA).    

 

7.3. Results and discussion 

The enzymatic activity of sPLA2 towards liposomes can be significantly modulated by the 

composition of the target lipid bilayer and its morphological and physicochemical properties. 

Thus, it is of great interest to bioengineer liposome carriers that are sufficiently responsive 
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towards sPLA2 hydrolysis to cause complete load release within a short period of time. sPLA2-

sensitive liposomes were composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 

1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), 1,2-distearoyl-sn-glycero-3-

phosphocholine (DSPC), 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DPPG), N-(carbonyl-

methoxypolyethyleneglycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-

polyethyleneglycol 2000 (DSPE-PEG2000). As controls, non-hydrolysable liposomes were 

prepared from hydrogenated soybean phosphocholine (HSPC), cholesterol and DSPE-PEG2000. 

The liposomes were produced using standard thin film hydration with subsequent downscaling 

through polycarbonate filters. For in vivo applications we used a high-pressure extruder device 

to obtain highly homogenous particles (Table 7.1). L-OHP was passively loaded into the 

liposomes by dispersing the lipid films with a saturated solution of the drug (15 mg/mL) followed 

by dialysis to remove any excess drug. The size distribution, polydispersity index, and zeta 

potential of the particles was characterized, along with the lipid and drug concentration and the 

encapsulation efficiency. Homogenous liposomes were obtained exhibiting particle sizes of ca. 

100 nanometers that carried a negative surface charge between -20 to -27 mV. All of the 

liposomes exhibited drug-loading efficiencies above 99 %, signifying a highly effective 

intravesiculary encapsulation of oxaliplatin in these liposomes. For in vitro release studies 

calcein was used at self-quenching concentrations as a drug surrogate to produce equivalent 

calcein-loaded liposomes. This allowed the enzymatically-triggered release to be monitored 

over time from an increase in calcein fluorescence.  

Table 7.1. In vivo evaluated liposomal formulations of oxaliplatin. 

 

Size 
(nm) 

PDIa Zeta-potentialb 
(mV) 

L-OHPc 
(mg/mL) 

Lipid 
(mg/mL) 

EEd (%) 
Drug-to-lipid 
weight ratio 

HSPC/Chol/DSPE-
PEG2000 (57:38:5) 
+ L-OHP 

106 ± 1.0 0.04 -20 ± 1 1.1 17.1 99.7 1:16 

DPPC/DPPG/DSPE-
PEG2000 (70:25:5) 
+ L-OHP 

94 ± 1.0 0.04 -21 ± 1 1.6 16.3 99.6 1:10 

DPPC/DPPG/DSPE-
PEG2000 (55:40:5) 
+ L-OHP 

98 ± 0.1 0.04 -27 ± 1 1.9 22.2 99.9 1:12 

a Polydispersity index (PDI) determined by dynamic light scattering 
b Zeta-potential was determined using comparable liposomes without any drug loaded  
c Oxaliplatin (L-OHP) 
d Encapsulation efficiency (EE) is the percentage of liposomal to free fraction of L-OHP  

 

The sPLA2 enzyme has been largely reported to have a moderate and a rapid mode of action 

separated by a particular lag-time, in which the enzyme accumulate over the lipid membrane 

and begin to insert within the bilayer.23 The results presented in figure 7.2 illustrate the 

differences in lag-time and enzyme activity of sPLA2 present in human tear fluid from healthy 

subjects, as well as in the conditioned cell growth medium (CCM) of human Colo205 cancer cells 

towards calcein-loaded liposomes with different lipidic formulations. The molar ratio of 

negatively charged lipid present in the liposome membrane played a key role in the enzyme 

activity and calcein release profiles. In membranes composed of DPPC/DPPG/DSPE-PEG2000, 

when 25 % of the negatively charged lipid DPPG was present in the bilayer the sPLA2 was only 

able to cause partial calcein release irrespective of the enzyme source, whereas increasing the 

percentage of DPPG lipid to 40 %, the membrane became fully enzyme-degradable and calcein 

was completely released within 1500 seconds (Fig 7.2). More negatively charged membranes 
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are also feasible for the sPLA2-triggered release concept; however, a compromise exists between 

the membrane charge and the well-described opsonization by the immune system. In addition, 

the sensitivity of the liposome towards sPLA2-degradation can also be tuned by using 

membranes composed of phospholipids with different phase transition temperatures (Tm). The 

results showed that liposomes made of 16-carbon chain lipids with an overall Tm of 41 °C were 

highly sensitive towards sPLA2-degradation, whilst in 18-carbon lipid membranes with a higher 

Tm of 55 °C, the enzyme activity was almost suppressed, mainly due to the limited fluidity 

rendered by the solid-phase behavior of the membrane. This was evident from the time it took 

to reach 50 % release of calcein with DPPC/DPPG/DSPE-PEG2000 (55:40:5 mol %) liposomes 

(70.1 sec) being > 10 and > 30 times faster than DPPC/DPPG/DSPE-PEG2000 (70:25:5 mol %) 

liposomes (857.7 sec) and DSPC/DSPG/DSPE-PEG2000 (55:40:5 mol %) liposomes (>2000 sec), 

respectively (Fig 7.2). Incorporation of small amounts of pegylated lipids (5 mol % DSPE-

PEG2000) into the sPLA2-sensitive formulation, which is necessary for intravascular administered 

liposomes to avoid clearance by the reticulo-endothelial system,24 did not sterically hinder the 

enzymatic hydrolysis of the liposome membrane, which is consistent with earlier reports9,16,25 

(Fig. 7.2). It was previously shown using snake PLA2 that pegylation does in fact facilitate the 

binding of the enzyme presumably from slightly reducing the zeta potential of the lipid bilayer.19  

 

Figure 7.2. In vitro sPLA2-dependent release kinetic of calcein from liposomal formulations incubated at 37 
°C. Human tear fluid and cell conditioned media (CCM) from human Colo205 cancer cells is used as enzyme 
sources of sPLA2. All results are expressed relative to 100 % release observed in the presence of Triton X-
100 (TX-100) and are indicative of at least three experiments. Insert shows the time-intersect for the 
individual formulations reaching 50 % release in seconds. 

Levels of sPLA2 have previously been reported in both tear fluid of healthy subjects (55 ± 34 

µg/mL),26 and in the CCM of Colo205 cancer cells following 72 hours of in vitro culture (75 ± 20 

ng/mL).16 As sPLA2 from two different enzyme sources induced comparable leakage behavior, 

this supports the specificity of the concept towards sPLA2-sensitivity. Importantly, the 
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substantially lower concentration of sPLA2 present in CCM relative to tear fluid, would explain 

the differences observed in the release kinetics between the two enzyme sources seen here. 

However, even though increasing the sensitivity of the formulation would lower the threshold 

where the liposomes become activated inside the tumor, it also bears a risk of premature 

activation of the particles before reaching the cancerous tissue. As serum sPLA2-levels are 

frequently seen to be elevated in cancer patients (1-14 ng/mL) compared to cancer-free subjects 

(1-2 ng/mL),27-29 an aberrant serum level of sPLA2 in combination with excessive sensitivity could 

potentially cause intravascular drug release and result in an undesired redistribution of the drug 

during circulation. 

The in vitro cytotoxicity of L-OHP encapsulated in sPLA2-sensitive liposomes shown in figure 7.3 

was assessed by MTS staining. The compounds were tested in sPLA2-secreting Colo205 cells and 

non-secreting HT-29 cells with added exogenous sPLA2 using CCM from Colo205 cells as a source 

of enzyme. In both colorectal cancer cell lines sPLA2-sensitive liposomal L-OHP were highly 

cytotoxic, with drug concentrations able to inhibit cell growth by 50 % (IC50) of around 10 to 

12.5 µM (Fig 7.3A and 7.3B). In Colo205 cells, sPLA2-sensitive liposomal L-OHP induced a 

comparable anti-proliferative effect as the free drug (Fig 7.3A), whereas for HT-29 cells the 

sPLA2-degradable liposomes exceeded that of unencapsulated L-OHP at identical drug 

concentrations (Fig 7.3B). In accordance with the substrate specificity of sPLA2 shown in figure 

7.2, efficient growth inhibition of HT-29 cells was observed only when the liposomes were 

activated by sPLA2 (Fig 7.3C). However, increasing the concentration of drug-loaded liposomes, 

partial growth inhibition was seen even in the absence of enzyme (data not shown).  

 

Figure 7.3. In vitro cytotoxicity of sPLA2-labile liposomes loaded with L-OHP against sPLA2-secreting 
Colo205 cells (A) and sPLA2-deficient HT-29 cells in the presence of Colo205 cell conditioned medium 
(contain sPLA2) (B). L-OHP in free form or encapsulated in non-degradable liposomes are used as controls. 
Lack of cytotoxicity of sPLA2-sensitive liposomes against non-sPLA2-secreting HT-29 cells in the absence 
of exogenous sPLA2 show the specificity of the concept towards sPLA2 and dependence of sPLA2 activation 
(C). Representative plots of studies done in triplicate. Results are means ± SD of triplicate measurements. 
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Flow cytometry demonstrated that up to 60 % of the treated cells stained positive for the 

liposomes labeled with lipid-anchored rhodamine B following 6 h incubation, and exhibited 

enhanced mean fluorescence intensity upon extended co-incubation times (Supporting 

information, Section A1). On the other hand, assessing the amount of unspecific drug leakage 

from the liposomes determined by inductively coupled plasmon mass spectrometry and by use 

of spin-filtration in order to separate free and liposomal platinum fractions, we found that the 

liposomes only leaked negligible (<10 % on average) amounts of drug following 24 h in the 

presence of high amounts of serum, i.e. 50 % fetal bovine serum (Supporting information, 

Section A2). Taken together, this would imply that the unspecific cytotoxicity was most likely 

caused by cellular uptake and subsequent intracellular drug release, and not drug leakage from 

unstable liposomes. 

Since a triggered release strategy based on sPLA2 activity is known to generate permeability 

enhancing lysolipids and free fatty acids, we investigated the contribution of membrane 

disruption to the cytotoxic effect, as opposed to the anticancer activity of the released drug. The 

in vitro growth inhibition of sPLA2-degradable liposomes was evident to arise predominantly 

from the carrier upon sPLA2-catalyzed hydrolysis. This was demonstrated by measuring the 

growth inhibition of HT-29 cells treated with unloaded sPLA2-sensitive liposomes with and 

without added sPLA2 (Fig 7.4A).  

 

Figure 7.4. In vitro cytotoxicity of unloaded sPLA2-sensitive liposomes comes predominantly from cellular 
lysis following sPLA2-driven hydrolysis and formation of permeability enhancing components. In the 
absence of sPLA2, unloaded sPLA2-sensitive liposomes are nontoxic, while in presence of sPLA2, they 
effectively inhibit HT-29 cell growth (A). Results are mean ± SD of triplicate measurements. Time-lapse 
micrographs show complete lysis of HT-29 cells following 3 hours of incubation with DPPC/DPPG/DSPE-
PEG2000 (55:40:5 mole %) in the presence of sPLA2-proficient Colo205 cell conditioned medium (B). 
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Consistent with earlier reports, the empty carriers alone acted as prodrugs that upon enzymatic 

activation efficiently induced growth inhibition without the presence of an encapsulated 

drug.9,16 For HT-29 cells, both of the DPPC/DPPG/DSPE-PEG2000 formulations were able to 

induce complete growth inhibition of the tumor cells irrespective of the amount of PG present 

in the membrane (Fig 7.4A). The DSPC/DSPG/DSPE-PEG2000 only induced partial growth 

inhibition despite the presence of 40 % PG (Fig 7.4A). Thus, based on the evidence from the 

calcein release experiments and the in vitro cytotoxicity, we found that low enzyme sensitivity 

of liposomes leads to a more slow generation of membrane permeable products that is related 

to the slower rate of hydrolysis, however over prolonged periods these can accumulate and lead 

to release of the encapsulated drug under the investigated conditions. Furthermore, time-lapse 

micrographs of HT-29 cells during treatment with DPPC/DPPG/DSPE-PEG2000 (55:40:5 mole %) 

and sPLA2-containing cell conditioned media revealed complete disruption of the cellular 

membranes following 3 hours of incubation with the cells. This supports a dependence of 

liposome hydrolysis and cytolytic lipid component generation upon sPLA2 activity and showed 

the fast temporal onset of the process using highly sensitive liposomes (Fig 7.4B). 

Serum albumin has previously been shown to bind up to five lysophospholipids per albumin 

molecule30 and therefore the presence of high amounts of plasma proteins can strongly 

modulate the permeability enhancing properties of sPLA2-sensitive liposomes. Even though this 

can be an advantage during circulation to avoid disruption of blood-borne cells as well as ensure 

vessel integrity, it may have implications for activating the particles inside tumors. With respect 

to the intratumoral activation and considering the disrupted nature of the endothelial barrier 

found in tumor blood vasculature, plasma proteins that under normal circumstances are 

sterically hindered from crossing the endothelium and extravasate into the surrounding tissues 

and thereby help to establish the colloidal osmotic pressure of the circulatory system, are likely 

to be present in abnormally elevated concentrations inside the tumor interstitial space due to 

the structural defects present in the malignant state.31 In order to address the effect of serum 

on the anti-proliferative effect of sPLA2-sensitive liposomes, HT-29 cells were treated with sPLA2-

sensitive liposomal L-OHP, together with Colo205 CCM either without any serum present or 

spiked with either 10 % (low) or 50 % (high) fetal bovine serum (Fig 7.5). The data demonstrate 

that a high level of serum proteins can influence the cytotoxic effect of the carrier.  

 

Figure 7.5. Inhibitory effect of sPLA2-sensitive liposomes on HT-29 cell proliferation is modulated by 
presence of serum components. Adding serum to Colo205 cell conditioned medium (A: 10 % FBS; B: 50 % 
FBS) cytotoxicity induced by sPLA2-sensitive liposomal L-OHP falls to same level as free L-OHP. 
Antiproliferative effect of L-OHP is independent of the presence of serum in the conditioned medium. 
Colo205 cell conditioned medium (black columns) and with serum (white columns). Results are mean ± SD 
of three experiments. 
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In addition, for in vivo purposes this would entail that a high intratumoral lipid concentration is 

necessary to overcome the enzymatically generated membrane permeable products becoming 

fully sequestered and neutralized by serum albumin. However, leakage of macromolecules such 

as plasma proteins, and nanoparticulates across the blood endothelium, is not a trivial matter. 

This is to a large extent influenced by a multitude of factors, such as luminal surface area, blood 

flow, concentration, hydrostatic and osmotic gradients, which arise from the high fluid escape 

from blood vessels combined with low lymphatic drainage and high interstitial pressure that 

limit the movement of large particles by convection.31,32 Therefore, the in vivo potential of the 

generated permeability-enhancing enzymatic products of sPLA2-catalyzed hydrolysis is closely 

related to the concentration present of various plasma proteins in the interstitial compartment 

of the cancer, which can vary enormously and is difficult to predict. Additionally, to rule out that 

the presence of serum affected the sPLA2 enzyme activity, we measured the amount of lysolipids 

generated after treatment of sPLA2-sensitive liposomes with enzyme in the presence of serum 

using mass spectroscopy. We found that the level of lysoPPG generated was unchanged from 

DPPC/DPPG/DSPE-PEG2000 (55:40:5) liposomes in the presence of serum (Supporting 

information, Section A3). This demonstrated that even though components in serum can 

sequester the generated permeability enhancing components from sPLA2-sensitive liposomes, 

the encapsulated drug could become released as the enzyme hydrolyzes the liposomes, 

irrespective of the presence of serum proteins.     

To evaluate the clinical potential of the sPLA2-sensitive formulations, we used human Colo205 

colon cancer xenografts in nude mice. Earlier studies have confirmed the continued expression 

of sPLA2 by Colo205 cells following implantation in mice, which allowed us to use this system as 

a sPLA2-proficient human cancer model.16 Furthermore, Colo205 xenografts have been shown 

to be relatively responsive to oxaliplatin following three weekly i.p. injections at a dose of 5 

mg/kg.33 For tumors that express sPLA2 the expression level is shown to be highest in the tumor 

periphery. This were the case both in clinical tumors10,34,35 and also in human cancer xenograft 

models.16 To induce triggered-release using liposomal drug delivery, this is of great significance, 

since the region with highest liposome accumulation tends to be within the tumor periphery. 

Usually liposomes that extravasate into the tumor parenchyma are restricted to the perivascular 

region due to poor penetration of the particles that relates to the size of the particles and the 

high intratumoral pressure build-up.36 The invasive region of solid tumors is localized in the 

periphery of the tumor; therefore this region is also the most densely vascularized.37 For this 

reason a triggered release strategy based on sPLA2 is highly feasible as accumulated particles are 

thought to co-localize with the site of enzyme expression within the tumor.  

Despite a clear in vitro anti-proliferative effect of L-OHP against Colo205 cells as shown in figure 

7.3, the free drug was not able to significantly improve tumor growth delay of Colo205 

xenografts in mice following four i.v. injections of 5 mg/kg at four day intervals (Fig. 7.6). Even 

though, the antitumor activity was slightly higher for the liposomal formulations of oxaliplatin, 

it was not possible to show a statistically significant improvement in neither growth inhibition 

nor median survival relative to the free drug (p values > 0.05). In fact, all of the tested 

formulations exhibited > 40 % treatment-to-control ratios (% T/C) and were therefore classified 

as therapeutically inactive (Table 7.2; Supporting information, Section A4).  Furthermore, the 

DPPC/DPPG/DSPE-PEG2000 (55:40:5) formulation was observed to be highly toxic with 37.5 % 

(3 out of 8) of the mice exhibiting excessive weight loss and fatal drug-related toxicity. The cause 

of this systemic toxicity we suspect is in part related to an excess concentration of permeability 

enhancing components at high doses is likely to become released into the blood stream.  
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Figure 7.6. Effect of sPLA2-degradable liposomal L-OHP against colorectal tumor growth in vivo. Growth 
inhibition of human Colo205 colorectal carcinoma xenografts subcutaneous in female nude mice after 
treatment with free L-OHP or sPLA2-degradable liposome encapsulated L-OHP (5 mg/kg) intravenous every 
4 days for two weeks. Eight or nine mice were included in each group. Tumor volume of individual 
treatment groups (A), comparison of antitumor activity of treatment groups (B), and survival (C) is shown. 
Results are presented as mean ± SEM. sPLA2-degradable liposomal L-OHP did increase tumor growth delay 
and median survival compared to untreated controls, however were not found to be significantly better 
than unencapsulated L-OHP or L-OHP formulated in non-sensitive liposomes. Statistical analysis was done 
by ANOVA test for tumor growth delay and Log-rank test for survival (p < 0.05 is significant). 

We found that by increasing the dose of oxaliplatin formulated in DPPC/DPPG/DSPE-PEG2000 

(55:40:5) liposomes to 8 mg/kg (equivalent to a lipid dose of 113 mg/kg) in NMRI-nu mice grafted 

with non-sPLA2-secreting FaDu human head and neck squamous cell carcinoma xenografts led 

to petechial cutaneous hemorrhages in the skin of the mice and concurrent weight loss and 

dehydration requiring immediate euthanasia (Supporting information, Section A5). Previous 

findings have shown that several inbred mouse strains have an intact murine group-II sPLA2 

gene, which raises the possibility that sPLA2 may have been present even though the grafted 

tumor cells do not secrete the enzyme.38 In the clinical setting, serum levels of sPLA2-IIA are 

frequently found to be elevated in cancer patients compared to healthy controls.27-29 Thus, an 

aberrant serum level of sPLA2 could potentially lead to premature activation of the particles 

during circulation, particularly for formulations that are highly sPLA2-sensitive. In contrast, 
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patients treated with LipPlaCis showed no sign of premature activation during systemic 

circulation, as no correlation was found between serum levels of sPLA2 and the plasma half life 

of the liposomes despite plasma sPLA2 levels were highly variable between the patients.21 

However, as LipPlaCis was comprised of DSPC/DSPG/DSPE-PEG2000 (70:25:5 mol %) the 

formulation would be expected to be less sensitive towards sPLA2 than the formulations tested 

here, with reference to the lower sensitivity of these types of liposomes with up to 40 % PG 

demonstrated in our in vitro release experiments. This could explain why, despite the high 

incidence of acute infusion reaction, no compatible side effects were observed in patients that 

received an escalated dose of 120 mg/m2 during the course of their treatment.21 In the case of 

intravascular activation, we would expect a portion of the drug being released before passive 

tumor accumulation would be significant. In turn, the drug would reach the tumor as a 

combination of residual L-OHP still entrapped in liposomes and free drug that has been released 

from liposomes and has redistributed to tissues including tumor tissue. As we found the 

antitumor activity of DPPC/DPPG/DSPE-PEG2000 (55:40:5) and HSPC/Chol/DSPE-PEG2000 

(57:38:5) to be comparable, it might suggest that only some of the drug was released from the 

sPLA2-sensitive formulation during systemic circulation, while the remaining fraction 

accumulated in the tumors and became bioavailable following site-specific activation. Yang et 

al.39 showed that treating human colorectal carcinoma SW480 xenografts in nude mice with L-

OHP formulated in conventional pegylated liposomes achieved a better therapeutic response 

than the equivalent dose of free L-OHP. Apart from accumulating in tumors the liposomal drug 

was able to induce apoptosis in the tumor cells associated with the upregulation of proapoptotic 

Bax and downregulation of antiapoptotic Bcl-2, respectively, as well as induce tumor growth 

inhibition without having a triggered release mechanism. We believe this effect may be specific 

for tumor cells with high capacity for taking up the accumulated particles, as other studies using 

long-circulating liposomes show that most of the accumulated drug remains associated to the 

liposomes and is not readily released in the tumor interstitium.40 Also, we show only minor 

antitumor activity using conventional liposomes against human colorectal carcinoma Colo205 

xenografts despite being pegylated.  

Table 7.2. Comparison of oxaliplatin and liposomal oxaliplatin against early-stage human Colo205 
colorectal carcinomaa 

Antitumor activity of oxaliplatin 

i.v. agent 

Dosage 
(mg/kg 

/injection) 
Schedule 

(days) 

Drug 
death 
(days) 

Mean body weight 
change [g/mouse 

(day of nadir)] 

Median tumor 
volume [mm3 on 
day 19 (range)] 

Time for median 
tumor to reach 

500 mm3 

Time for median 
tumor to reach 

1000 mm3 

Opt.  
% T/C 
(day) Comments 

Free L-OHPb 5 
11, 15, 
19, 23 

0/9 -0.11 (25) 398 (91-1140) 23 35 69 (13) Inactivec 

HSPC/Chol/DSPE-
PEG2000 (57:38:5)  
+ L-OHP 

5 
11, 15, 
19, 23 

2/8  334 (101-1010) 30 45 49 (27) Inactive 

DPPC/DPPG/DSPE-
PEG2000 (70:25:5)  
+ L-OHP 

5 
11, 15, 
19, 23 

2/9 -0.72 (25) 306 (136-542) 32 38 50 (30) Inactive 

DPPC/DPPG/DSPE-
PEG2000 (55:40:5)  
+ L-OHP 

5 
11, 15, 
19, 23 

3/8 -2.39 (25) 332 (91-522) 25 45 52 (35) Toxicd 

Control   0/8 -0,59 (23) 525 (106-881) 19 32   

aColo205 colon carcinoma  implanted s.c., 7.5 x 106 cells, female NMRI-Nu/Nu; mouse median weight; L-OHP, 25.4 g; HSPC/Chol/DSPE-PEG2000 (57:38:5),  25.8 g; 
DPPC/DPPG/DSPE-PEG2000 (70:25:5), 26.4 g; DPPC/DPPG/DSPE-PEG2000 (55:40:5), 26.3 g. 
bOxaliplatin (L-OHP). 

cAntitumor activity was based on T/C ratios;  < 0.15 is highly efficient; 0.15-0.45 is moderately efficient; > 0.45 is inactive. 
dToxicity based on the total body weight loss above 15% over 1 week considered to be excessively toxic according to national ethical standards 
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In addition to intravascular activation of the particles, a high presence of permeability-enhancing 

components inside the blood compartment, could possibly also originate from lysolipids and 

free fatty acids reentering the blood circulation following accumulation and intratumoral 

activation of the particles. Since sPLA2 is preferentially localized in the peritumoral tissue of 

colon cancer,10,16,34 the site of activation may pose a risk of releasing the components back into 

the blood stream once generated. Despite reducing the dose to 5 mg/kg (equivalent to a lipid 

dose of 50 mg/kg for DPPC/DPPG/DSPE-PEG2000 (70:25:5) and 58 mg/kg for DPPC/DPPG/DSPE-

PEG2000 (55:40:5), respectively), the DPPC/DPPG/DSPE-PEG2000 (55:40:5 mol %) formulation 

was still poorly tolerated, with three treatment associated deaths and the group displayed the 

largest loss in body weight during the treatment period (Fig 7.6, Table 7.2). In contrast, the less 

sensitive DPPC/DPPG/DSPE-PEG2000 (70:25:5 mol %) formulation was well tolerated with no 

mice displaying systemic toxicity and very limited weight loss was observed relative to controls 

(Fig 7.6, Table 7.2). However, despite a lower toxicity this formulation did not improve the 

therapeutic efficacy, which may signify that the formulation was not sensitive enough to become 

hydrolyzed in the tumor xenografts. In order to clarify the pharmacokinetics of sPLA2-sensitive 

liposomal L-OHP degradation in the blood circulation and at the target tumor site, further 

studies with labeled liposomes are required.    

 

7.4. Conclusions 

We did not find evidence of an increased sensitivity of liposomal formulations towards sPLA2-

triggered drug release was able to increase drug efficacy compared to conventional liposomes. 

In turn, our findings indicate that systemic toxicity of sPLA2-sensitive liposomes is a combined 

effect of both their sensitivity towards the enzyme and the amount of the lipid that is dosed. 

Increasing the amount of PG to 40 % to render the formulation more sensitive also increases the 

rate of systemic toxicity and inevitably limit their use in clinical applications, whereas 25 % PG 

despite no detectable systemic toxicity in our preclinical model, did not induce higher growth 

inhibition than STEALTH® liposomes. 

 

7.5. Supporting information 

Section A1 

Cell uptake study 

HT-29 cells (200.000 cells) were plated in 12-well plates in 2 mL of RPMI-1640 medium 

containing 10% FBS and pre-incubated for 24 h. After removal of culture medium, 2 mL of fresh 

medium containing rhodamine B (RhB)-labeled liposomes (300 µM lipid) was added, followed 

by incubation at 37 °C. At 1, 6 and 24 hours post-incubation, the cells were trypsinized and 

washed twice with cold phosphate buffered saline (PBS). The cells were resuspended in 0.5 mL 

of PBS and the cellular uptake of RhB-labeled liposomes was quantified using a GalliosTM flow 

cytometer (Beckman Coulter, California, USA), equipped with an argon-ion (488 nm) laser and 

575/30 bandpass filter for emission measurements. A total of 10.000 events were collected 

based on a large forward and side scatter. The histograms of untreated cells and cells treated 

with RhB-labeled liposomes are shown after 1, 6 and 24 hours incubation, and the percentage 

of Rhodamine B-positive cells is included. 
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Section A2 

In vitro serum leakage  

The in vitro leakage of liposome-encapsulated oxaliplatin in serum was assessed following 

incubation with 50 % (v/v) FBS in 10 mM Hepes, 5 % glucose, pH 7.4 at 37 °C. Briefly, liposomes 

were diluted in serum-containing solvent to a final lipid concentration of 0.5 mM and incubated 

for 24 hours at 37 °C. Immediately after drawing aliquots to determine the amount of platinum 

released using ICP-MS, the samples were diluted 100-fold in Hepes-buffer and fractionated using 

Amicon spin-filters of 30 kDa molecular cutoff (1000×g, 15 min), which separate the free fraction 

from the liposome-associated fraction. Hereafter, the total and free fractions were further 

diluted in 2 % HCL containing 0.5 ppb of Iridium (app. 500000-fold for total platinum, sample 

before running spin-filtration; app. 100000-fold for free platinum, the run-through sample) 

before being analyzed by ICP-MS. The percentage of leakage was calculated using the formula 

100 % × ( [free] / [total] ). Both formulations exhibited low degree of drug leakage (<20 %) in the 

presence of serum and were therefore considered relatively stabile. 
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Section A3 

Lipid hydrolysis 

Liposomes were diluted in cell conditioned growth media (CCM) from Colo205 cells, containing 

0, 10 or 50 % FBS, to a final concentration of 4 mM, and incubated at 37 °C for 6 h with gentle 

magnetic stirring. 0 h samples were prepared by mixing liposomes with heat inactivated CCM. 

Lipid hydrolysis and consequent formation of lyso-PPG was analyzed by MALDI-TOF MS. Briefly, 

samples were mixed 1:10 with matrix/POPC (2,5-dihydroxybenzoic acid (DHB) spiked with 

sodium trifluoroacetate (NaTFA) in methanol as matrix, with 500 µM POPC as internal 

reference), spotted in triplicates and analyzed by Bruker autoflex speed (Bruker Daltonics, 

Bremen, Germany). Observed MW: 507.4 (M+H++Na+) and 529.4 (M+2Na+). Expected MW: 507.3 

(M+H++Na+) and 529.3 (M+2Na+). All peak intensities corresponding to lyso-PPG were 

normalized to all peak intensities corresponding to POPC. Values are mean of triplicates 

plus/minus standard deviation. All samples showed formation of lyso-PPG after incubation with 

sPLA2 (6 h), and no lyso-PPG was present before incubation (0 h). The formation of lyso-PPG did 

not seem to be dependent on the presence of serum. 
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Section A4 

Overview of T/C ratios of oxaliplatin against Colo205 xenografts 

Treatment-to-control (T/C) ratios for free oxaliplatin (5 mg/kg) and liposomal oxaliplatin (5 

mg/kg) against human Colo205 colorectal carcinoma xenografts following 4 injections given 

every 4 days. The median tumor volume and number of mice for each group is presented, along 

with the calculated T/C rations using the formula: % T/C = 100 x (median tumor size of treatment 

group at day x) / (median tumor size of control group at day x). The optimal % T/C for each 

formulation is highlighted in red and T/C ratios < 0.15 were considered highly effective, T/C 

ratios 0.15 - 0.45 were considered moderately efficient, and T/C ratios > 0.45 were considered 

inactive.     

Day Median tumor volume (mm3) % T/C ratio 

  Control N L-OHP N HSPC/Chol/DSPE-

PEG2000 (57:38:5) + 

L-OHP 

N DPPC/DPPG/DSPE-

PEG2000 (70:25:5)  

+ L-OHP 

N DPPC/DPPG/DSPE-

PEG2000 (55:40:5) 

+ L-OHP 

N L-OHP HSPC/Chol/DSPE-

PEG2000 (57:38:5) + 

L-OHP 

DPPC/DPPG/DSPE-

PEG2000 (70:25:5) 

+ L-OHP 

DPPC/DPPG/DSPE-

PEG2000 (55:40:5) 

+ L-OHP 

11 163 7 140 8 180 9 153 9 178 8 86 110 93 109 

13 277 7 192 8 177 9 170 9 225 8 69 64 61 81 

15 390 7 389 8 303 9 251 9 281 8 100 78 64 72 

17 459 7 377 8 293 9 248 9 308 8 82 64 54 67 

19 525 7 398 8 335 9 307 9 333 8 76 64 58 63 

21 585 7 443 8 444 9 331 9 346 8 76 76 57 59 

23 692 6 630 8 416 8 413 9 434 7 91 60 60 63 

25 858 6 689 8 473 8 438 9 528 7 80 55 51 62 

27 929 6 856 8 458 7 477 9 568 6 92 49 51 61 

30 986 6 913 8 537 7 488 9 531 6 93 55 50 54 

32 1024 6 957 8 611 7 519 9 569 6 93 60 51 56 

35 1024 6 1082 8 682 7 800 8 536 6 106 67 78 52 

38    1082 8 685 6 1015 7 677 5       

40    1082 8 789 6 1015 7 765 5       

42    1082 8 801 5 1023 7 989 5       

45    1082 8 1014 5 1023 7 1047 5       

47    1082 8 1014 5 1038 7 1047 5       

49    1128 8 1014 5 1038 7 1047 5       

52      1014 5 1050 7 1047 5       

54          1047 5       

56          1047 5       

59          1047 5       

62          1047 5       

65          1047 5       

66          1047 5       

 

 

 

 

Section A5 

Antitumor activity of sPLA2-degradable liposomal L-OHP against non-sPLA2-secreting FaDu 

human head and neck squamous cell carcinoma xenografts 

Growth inhibition of human FaDu tumor xenografts implanted subcutaneous in female nude 

mice after treatment with free L-OHP or sPLA2-degradable DPPC/DPPG/DSPE-PEG2000 (55:40:5 

mol %) liposome-encapsulated L-OHP at 4 or 8 mg/kg drug doses (equivalent to 57 and 113 

mg/kg lipid dose, respectively) i.v. every 4 days for two weeks. Eight mice were included in each 

group. Comparison of antitumor activity of treatment groups (A) and survival (B) is shown. 

Results are presented as means ± SE. sPLA2-degradable liposomal L-OHP did not increase tumor 

growth delay or median survival to a noteworthy degree compared to equivalent doses of free 

drug. At the high dose tested the sPLA2-sensitive liposome formulations became toxic and led 

to diffuse petechial cutaneous hemorrhages manifested in the skin of the mice that was 

associated with weight loss, dehydration and required euthanasia when observed (C). 
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173 General conclusions 

General conclusions 
 

Lipid molecules can form numerous supramolecular structures through their self-assembly 

properties displayed within aqueous environments. One of the most explored structures, the 

liposome, are formed when lamellar bilayers bend into closed vesicles containing an aqueous 

core. This particular structural organization, offering hydrophilic (core) and hydrophobic (within 

the membrane) environments to carry both polar and non-polar molecules, have garnered 

enormous interest among scientists of several disciplines. In addition, as lipids constitute part of 

the naturally-occurring biomolecules present in any living organism, liposomes benefit from 

biocompatible, biodegradable and non-immunogenic properties. Consequently, liposomes have 

been extensively established as versatile tools in a large number of applications including 

pharmaceutics, cosmetics, food technology, models as biological membranes, signal amplifiers 

in analytical sciences, nanoreactors, and diagnosing tools amongst others.  

Metallic nanoparticles have garnered huge interest in the last decades due to their size- and 

shape-dependant unique properties. Several strategies have been proposed for the controlled 

synthesis which rely in the use of surfactant templates for the preparation of nanoparticles in a 

more controlled way. However, these approaches commonly exploit non-sustainable 

procedures using harsh chemicals and elevated temperature conditions. As an alternative, we 

have developed an environmentally-friendly method for the controlled synthesis of metallic 

nanoparticles exploiting the use of liposomes and other lipid supramolecular structures as nano-

sized reactors or templates.  

We have firstly proposed the use of glycerol as green catalyst for the reduction of palladium into 

small nanoparticles within liposomal nanoreactors, and demonstrated that the functional 

liposomal nanoreactors with glycerol incorporated within the core were able to modulate the 

reduction kinetics by confining a determined number of palladium ions per glycerol molecules. 

The produced palladium nanoparticles were compared with those prepared without the use of 

liposomal nanoreactors under the same conditions, and a clear control of the nanoparticle’s size 

and shape was rendered by the liposome nanoreactors. 

The membrane of the liposome plays a very important role in nanoparticle synthesis, acting as 

a route for the precursors to enter the nanoreactor. The membrane permeability of the 

liposomal nanoreactors towards glycerol molecules provides a semi-mobile environment to 

glycerol for modulating the reaction by increasing the reducer-to-palladium ratio, thus 

increasing the number of nucleation points and moderating the nanoparticle growth. 

Nanoreactor membranes in their liquid phase at a working temperature above their main Tm, 

were demonstrated to yield nanoparticles with reduced sizes due to their enhanced 

permeability towards glycerol to move from the bulk solution inside the liposomes and keep a 

high glycerol/palladium ratio. However, liposomes prepared with lipids displaying a gel phase 

behaviour that provides highly ordered and dense bilayers reduced the capacity of glycerol to 

flow inside the liposome core, leading to a lower OH/Pd ratio and thus producing larger 

palladium nanoparticles. Small and homogeneous palladium nanoparticles (2.6 ± 0.7 nm) were 

produced within glycerol-incorporated DOPG liposomes. This can be explained by the presence 

of a higher number of glycerol molecules in the lipid headgroup which gives a higher number of 

available hydroxyl groups to reduce the palladium ions and stabilize the synthesized palladium 

nanoparticles inside the nanoreactors. In addition, we have explored the role of glycerol acting 
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as capping agent by demonstrating the presence of glycerol over the palladium nanoparticles 

using FTIR and SERS. Finally, we have also demonstrated the catalytic activity of the prepared 

palladium nanoparticles in the reduction of p-nitrophenalate to p-aminophenol in the presence 

of sodium borohydride. 

A similar green glycerol-incorporated liposomal nanoreactor system was employed for the 

preparation of gold nanoparticles. After optimization of the liposomal membrane composition, 

DOPG liposomes were used in order to provide the best nanoreactor conditions. In this case, 

several reaction parameters including temperature, glycerol concentration, presence of capping 

agent, were also studied to elucidate their effect on the final size and homogeneity of the gold 

nanoparticles produced. Increasing concentrations of glycerol incorporated to the liposomal 

nanoreactors resulted in a decrease in nanoparticle size, and in contrast with palladium 

nanoparticles, the further addition of MCH as strong capping agent reduced the gold 

nanoparticle size almost by half. Moreover, a drastic decrease in the nanoparticle size at 

constant concentrations of capping agent and glycerol was observed when the temperature was 

increased from of 4 to 25 ºC, and very few until 50 ºC. Overall, small and homogeneous gold 

nanoparticles (2.9 ± 0.2 nm) were prepared within DOPG liposomal nanoreactors with 15 % 

glycerol concentration (v/v) in the presence of MCH capping agent. 

Once the ability of glycerol-incorporated liposomal nanoreactors to control the size during the 

synthesis and produce very small nanoparticles was demonstrated, different lipid structures 

were explored as templates for the shape controlled synthesis of gold nanoparticles. Several 

lipid structures with changing polar head groups and different tail lengths were demonstrated 

as templates for the preparation of gold nanoparticles, where their shape was directly linked to 

the template geometry.  

Templates were prepared of DPPC and LysoPC at 45 and 25 ºC for the rectangular and 

hexagonal-shaped templates, and of DMPG and LysoPC at 25 ºC for the ribbon-like lipid 

nanowires. The synthesis of rectangular and hexagonal-shaped gold nanoparticles was 

performed through the content exchange after fusion of preformed lipid structures containing 

citrate and gold loaded lipid structures, forming homogeneous populations of disk-like gold 

nanoparticles and heterogeneous mix of hexagonal gold disks respectively. 

In the case of lipid twisted ribbons made up of negatively charged DMPG lipids, different 

approaches were carried out: HAuCl4 loaded twisted lipid ribbon template was immersed in (1) 

PBS, (2) citrate in PBS or (3) mixed with citrate encapsulating twisted lipid ribbons. The last 

method (4), consisted in citrate encapsulating twisted ribbons template immersed in HAuCl4 in 

PBS. Template immersed in PBS gave ribbon-like shaped structures (1) in which the addition of 

citrate to the template increased the appearance of the ribbon shape gold structures as a result 

of reduction reaction (2). Mixing both templates encapsulating the gold and citrate (3), as well 

as when immersing the citrate loaded template in the HAuCl4 solution (4), resulted in 

organizations of tiny gold nanoparticles aligned in a way guided by the lipid template structure. 

The possible assembling mechanism showed a high dependence in the administration route of 

the reactants and thus were discussed in terms of the resulting gold nanostructures obtained. 

In conclusion, self-assembled lipid based nanostructures were demonstrated to be promising 

tools for the synthesis of metal nanoparticles of controlled morphology and size. The possibility 

to prepare diversely shaped and sized nanoparticles under mild conditions should find a plethora 

of potential applications in catalysis, plasmonics and electronics. 
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Dietary polyphenols have been reported to modulate the intracellular levels of labile zinc, in 

consequence affecting the activity of numerous signalling and metabolic cellular pathways. 

Numerous studies have suggested the therapeutic effect of several of those dietary polyphenols 

in the prevention of cancers, diabetes, and cardiovascular and neurodegenerative diseases. We 

have demonstrated the capacity of two of the most consumed phenolic compounds present in 

the human diet, quercetin and epigallocatechin-gallate, to increase the amount of labile zinc 

within mouse hepatocarcinoma Hepa 1-6 cells, and compared the results with the well-reported 

ionophore clioquinol. However, in order to confirm that the polyphenols transport zinc cations 

across the plasma membrane independently of cell transport mechanisms, such as zinc 

transporters or endocytosis, we explored the use of FluoZin-3 loaded liposomes as simple 

membrane systems that mimic the cell membrane. The zinc ionophore activity of quercetin and 

epigallocatechin-gallate was demonstrated as their capacity of polyphenols to transport zinc 

inside the liposomes and increase the zinc-specific fluorescence of the encapsulated fluorophore 

FluoZin-3. Both polyphenols displayed a strong zinc ionophore activity and thus was confirmed 

by dynamic light scattering, zeta potential, and confocal and transmission electron microscopy 

in order to confirm that the fluorescent signal emerges from the inner part of the liposomes and 

to check their stability after treatments. 

The efficient liposomal system was also used for screening the zinc ionophore activity of a 

selected library consisting of the most relevant dietary polyphenols. At first, the zinc-chelating 

strength of the phenolic compounds was tested in a competition assay based on the 

fluorescence quenching of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. On 

the other hand, we have classified the phenolic compounds by their ionophore activity by means 

of fluorescence coming from FluoZin-3 encapsulated within liposomes. Finally we were able to 

show the correlation between the chelation capacity and ionophore activity, thus underlining 

the different behaviours that the phenolic compounds can display, sequestering or ionophore, 

thus, giving us a better knowledge of the importance of the structural conformation versus their 

biological activity. 

Exploiting the application of liposomes as drug delivery carriers, an enzyme-sensitive pegylated 

liposome drug delivery system was developed for the site-specific delivery of oxaliplatin, a 

chemotherapeutic agent, for the treatment of colon cancer. Long circulating pegylated 

liposomal oxaliplatin confirmed to have the ability to confine the drug, thus limiting its toxic 

side-effects, and to enhance drug accumulation in the tumor tissue by the EPR effect. The 

membrane composition of the liposome carrier was carefully formulated to enhance the 

enzyme-sensitivity towards its degradation by secretory phospholipase A2 (sPLA2), an 

overexpressed enzyme in many cancer cells, thus resulting in a site-specific release of oxaliplatin 

only in cancer tissue. At first, we demonstrated in a calcein release study that modulating the 

ratio between DPPC and DPPG lipid present in the liposome membrane we were able to tune its 

sensitivity towards sPLA2 activity and modify the drug release profile. In vitro treatment of 

cancer cell lines with sPLA2-sensitive liposomes loaded with oxaliplatin resulted in a superior 

growth inhibition compared to free drug or loaded within conventional liposomes. In addition, 

we have shown that the hydrolysis by-products formed by sPLA2, lysolipids and fatty acids, are 

capable of acting as cell permeability enhancers and display toxic effect. Finally, in vivo studies 

performed in nude mice with sPLA2-secreting human colon cancer xenograft models resulted in 

an improvement in tumor growth delay compared to the free drug, but not to conventional 

liposomal drug. In conclusion, the developed enzyme-sensitive liposomal oxaliplatin carrier was 

able to effectively enhance the pharmacokinetics of the drug, but suffered from a reduced 

triggered release response in the complex in vivo scenario. 
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In summary, the work presented in this doctoral thesis strengthens the view of liposomes as 

versatile tools that can be used in many different applications. Liposomes were exploited as 

nanoreactors or templates for the shape and size controlled synthesis of metal nanoparticles. 

Furthermore, liposomes were used as membrane models that mimic the cell plasma membrane 

for the determination of zinc ionophore activity of several dietary phenolic compounds. 

Ultimately, the ability of liposomes to carry and delivery drugs was explored in order to 

investigate the potential of enzyme-degradable liposomes as drug carriers for the encapsulation 

of oxaliplatin for the treatment of colon cancer. 
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