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Preface

This thesis reports on the studies I have conducted during my doctoral years at
the Grup de Magnetisme of the University of Barcelona. My research has focused
primarily on the exploration of quantum dynamics and excitations modes at low
temperatures in type-I superconductors and magnetic vortices, two well-known
systems within condensed matter physics. The motivation for this topic of re-
search is twofold. First, both Prof. Javier Tejada and Prof. Eugene Chudnovsky
are pioneers in the observation and modeling of macroscopic quantum tunneling
in mesoscopic magnetic systems. Their unique ability to foresee the existence of
macroscopic quantum phenomena in the most unexpected physical systems has
played a crucial role in showing that macroscopic quantum tunneling is of rather
general character. Type-I superconductors and magnetic vortices are no exception
to this. Second, some unanticipated experimental results made us refocus the final
objectives of the doctoral research. In the case of type-I superconductivity, the
study of the topological irreversibility in disks made of lead with defects by means
of relaxation measurements led to the observation of a non thermal behavior of
the magnetic viscosity at very low temperatures, which opened the exciting field of
the quantum tunneling of normal-superconductor interfaces in type-I superconduc-
tors. We were suprised by the fact that no report on this quantum magnetization
dynamics of lead −or any other type-I superconductor− in the intermediate state
was found, even further if we take into account that the first studies of the inter-
mediate state by L. Landau date back to 1938. In the case of magnetic vortices,
for a flat disk geometry of the specimen the vortex state presents two well-defined
polarizations of the vortex core with the same ground-state energy at zero applied
transverse field. This bistability made the magnetic vortex a promising candidate
to observe quantum tunneling of the polarization of the vortex core, but the cor-
responding energy barrier setting apart both equilibrium states was high enough
to prevent the tunneling process to occur. On the other hand, low-temperature
dynamics of the vortex state −excited by the application of in-plane magnetic
fields− turned out to be very rich, especially with the discovery of the quantum
diffusion of the magnetic vortex core from pinning potentials during the gyrotropic
motion.
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The manuscript is organized as follows: The first two chapters are devoted
to the low-temperature dynamics of normal-superconductor interfaces in a type-I
superconductor. Chapter 1 illustrates the study of the magnetic irreversibility in
disk-shaped lead samples by means of hysteresis loops and relaxation measure-
ments along the descending branch within the intermediate state. The dynamics
of normal-superconductor interfaces were explored as a function of both the tem-
perature and the magnetic field, which led to the experimental evidence of the
phenomenon of quantum tunneling of these interfaces. In Chapter 2 a theoretical
model of quantum tunneling of normal-superconductor interfaces pinned by planar
defects is developed, which describes well the thermal dependence of the magnetic
viscosity discussed in the previous chapter at zero field. According to this model,
there would be the chance of a controlled measurement of quantum depinning of
the interface in a type-I superconductor.

Chapters 3 and 4 are devoted to the study of the excitations modes and low-
temperature dynamics of the vortex state. In Chapter 3, I discuss how the elastic
nature of the vortex core line −ignored in the vast majority of the previous re-
search− affects the excitation spectrum of magnetic vortices, which yields the
introduction of a novel family of spin waves related specifically to the gyrotropic
motion of the vortex. Effects of the magnetic field and dissipation have been con-
sidered. It is worth remarking that the predicted axial excitation modes have been
confirmed experimentally earlier this year. Chapter 4 deals with the exploration of
the magnetic irreversibility in flat disks with the vortex state at low temperatures
by means of hysteresis loops, zero-field-cooled and field-cooled measurements, and
relaxation measurements along the descending branch. This led to the experi-
mental discovery of the quantum depinning of the vortex core line. A theoretical
model describing this tunneling process is also developed in Chapter 4, from which
estimates of the parameters of the pinning potential can be obtained by fitting the
model to the experimental results.

In Chapter 5 superconductivity and magnetic vortices become intertwined.
A device consisting of a ferromagnetic Josephson junction with the vortex state
is proposed as a new tool to study the displacement of the vortex core in the
nanometric scale −due to the quantum diffusion from a pinning well, for instance.
I have calculated analytically the effect of the motion of the vortex core on the
Josephson current. In Chapter 6 an outline of the conclusions of the thesis is
presented and some perspectives of future work are proposed. The manuscript ends
with two appendices, a list of all the publications resulting from my work during
the doctoral years and a bibliography. In the appendices I have included a brief
description of the mathematical techniques concerning the functional derivation
and the Gaussian integration that are used in chapters 1−4.

I have attempted to write a self-contained thesis. Therefore, every chapter
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begins with an illustration of the state of the art in the corresponding field,
both experimentally and theoretically, if required. Then the experimental pro-
tocols/measurements are introduced and/or the theoretical models are developed.
Finally, discussion of the results is conducted. All derivations are either self-
contained within the chapters or use results discussed in previous chapters or in
the appendices. It is worth remarking that no ”Conclusions” section is present in
the chapters. The underlying reason is my preference in a more fluid structure
where the discussion and conclusions are intertwined. Furthermore, the first sec-
tion of Chapter 6 is devoted to the general conclusions of the thesis, so that a
”Conclusions” section in every other chapter would be redundant. To conclude, all
formulas appearing in the manuscript have been derived within the CGS unit sys-
tem. In doing so, appealing formulas are obtained and the reader can focus on the
intrinsic difficulties of the expression. On the contrary, explicit calculations and
estimates are given in SI units. The reason is that, nowadays, the International
System of units is commonly used worldwide by the scientific community. Finally,
in Chapters 1 and 2 an explicit difference between the magnetic field strength H
and the magnetic field −also known as magnetic induction− B is made due to
their relevance in the physical properties of superconductors (Meissner effect, for
instance). In the other chapters, the magnetic field strength will be referred to
simply as magnetic field.

Ricardo Zarzuela Fernández,
September 2014
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Resumen en castellano

Esta tesis recopila la amplia mayoría de los trabajos que he realizado durante mi
doctorado en el Grup de Magnetisme de la Universidad de Barcelona. Mi proyecto
de investigación doctoral se centró principalmente en la exploración de la dinámica
cuántica y de los modos de excitación a bajas temperaturas en los superconductores
tipo-I y en los vórtices magnéticos, dos sistemas físicos bien conocidos dentro de
la física de la materia condensada. La elección de este tema de investigación viene
motivada principalmente por el deseo de los doctores Javier Tejada Palacios y
Eugene Chudnovsky de explorar la fenomenología cuántica macroscópica en la más
amplia gama de sistemas físicos posibles. Entre esta fenomenología cabe destacar el
efecto túnel macroscópico, de cuyo descubrimiento y predicción teórica en sistemas
magnéticos son pioneros mis codirectores. El contenido de esta tesis se extiende a
lo largo de los primeros cinco capítulos. Los dos primeros están dedicados al efecto
túnel de interficies normal-superconductor (N-S) en superconductores tipo-I, tanto
desde un punto de vista experimental (Capítulo 1) como teórico (Capítulo 2). Los
siguientes dos capítulos están dedicados a los vórtices magnéticos, desarrollando el
modelo teórico de excitaciones axiales asociado al movimiento girótropo del núcleo
vorticial en el Capítulo 3 y estudiando experimental y teóricamente el efecto túnel
del núcleo vorticial a través de barreras de anclaje en el Capítulo 4. Finalmente,
en el Capítulo 5 se estudia teóricamente el efecto de la presencia del estado vórtice
en la capa ferromagnética (F) de una unión Josephson de tipo S/F/S sobre la
corriente Josephson. Especial atención se presta a la dependencia de esta corriente
con el desplazamiento del núcleo vorticial a lo largo de la capa ferromagnética
en forma de disco plano. Con este último capítulo se logra entrelazar los dos
sistemas anteriores, desconexos a priori. A continuación, se contextualizará el
trabajo brevemente y se expondrán de manera concisa tanto el estado del arte
como los resultados más relevantes obtenidos en esta tesis para cada uno de los
tres bloques recién comentados.
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Efecto túnel de interficies normal-superconductor en superconductores
tipo-I

La superconductividad ha demostrado ser uno de los campos más activos de la
física de la materia condensada desde su descubrimiento en 1911, tanto por sus
excepcionales propiedades físicas como por sus aplicaciones tecnológicas. Un su-
perconductor perfecto se caracteriza por mostrar resistencia cero ante el flujo de
corriente eléctrica y por comportarse como un diamagneto perfecto −expulsión
completa de la inducción magnética dentro del espécimen− cuando su temper-
atura es inferior a una temperatura crítica Tc. La existencia de un gap de energía
entre el estado fundamental y la banda de excitaciones (de cuasipartículas) repre-
senta la tercera característica asociada tradicionalmente a la superconductividad
perfecta. El estado superconductor representa un verdadero estado termodinámico
del sistema debido a su independencia de la historia magnética en el proceso de
transición de la fase normal a la fase superconductora. Por otra parte, éste puede
ser destruido mediante la aplicación de un campo magnético lo suficientemente
intenso, cuyo valor mínimo se conoce como campo magnético crítico Hc. La de-
pendencia térmica de este campo termodinámico determina el diagrama de fases
de un superconductor perfecto.

Esta caracterización de la superconductividad perfecta es estrictamente válida
para superconductores tipo-I puros − libres de defectos, impurezas, etc. Un super-
conductor tipo-I se define como todo aquel material superconductor cuya tensión
superficial en las interficies normal-superconductor resulta ser positiva, lo que se
traduce en una minimización del área total de estas interficies debido a que su
formación es desfavorable energéticamente. Cuando la geometría del espécimen
es tal que se producen efectos desmagnetizantes en la dirección del campo mag-
nético externo, existe un rango de campos magnéticos H ′c < H < Hc en el que la
inducción magnética penetra gradualmente dentro del superconductor. Esta fase
termodinámica se conoce como el estado intermedio y se caracteriza por una al-
ternancia de zonas normales y zonas superconductoras dentro del espécimen, cuya
estructura geométrica depende de su historia magnética y suele ser exótica.

El estado intermedio presenta una fuerte irreversibilidad magnética con dos
contribuciones complementarias. La primera de ellas está asociada a la presencia
de defectos en la muestra, de manera que el flujo magnético queda atrapado por la
acción de centros de anclaje. La segunda contribución tiene un origen puramente
geométrico y ocurre cuando el espécimen presenta una geometría planoparalela
con las superficies transversales al campo magnético externo −e.g. un disco plano
con el campo magnético aplicado a lo largo de su eje de rotación. El atrapamiento
de flujo sucede por la existencia de lo que se conoce como barrera geométrica.
La penetración de flujo magnético ocurre mediante una topología tubular cerrada
mientras que una topología laminar bien definida es observada durante el cor-
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respondiente proceso de expulsión. Cabe destacar el hecho de que la histéresis
magnética presente en muestras libres de estrés con estas geometrías es debida a
la diferencia topológica entre la fase de flujo tubular (topológicamente cerrada) y
la fase de flujo laminar (topológicamente abierta). Esta propiedad intrínseca del
estado intermedio se conoce como irreversibilidad topológica.

La fase de flujo tubular representa la topología de equilibrio del estado inter-
medio. Uno de los objetivos de esta tesis consistió en estudiar la robustez de la
metasestabilidad asociada al estado intermedio para discos planos de plomo (tipo-
I) con defectos de estrés y la dinámica inherente al decaimiento de una estructura
topológica metaestable hacia la correspondiente estructura de equilibrio. Para
ello se realizaron experimentos de relajación magnética en un amplio rango de
temperaturas y campos magnéticos, tomando como estado inicial las estructuras
multidominio presentes a lo largo de la rama descendiente de los ciclos de histéresis.
Se observó que la componente irreversible de la magnetización de estos sistemas
evoluciona con el tiempo según una dependencia logarítmica, lo cual implica la
existencia de una distribución amplia de barreras de energía asociadas a los defec-
tos presentes en los discos. La viscosidad magnética muestra dos régimenes bien
diferenciados para un campo magnético dado, los cuales se corresponden con las
dinámicas cuántica y térmica de la magnetización de la estructura multidominio.
La temperatura de transición entre ambos régimenes muestra una dependencia
decreciente con el incremento del campo magnético aplicado. Esta dinámica mag-
nética se atribuye al movimiento de interficies normal-superconductor a través
del paisaje de pozos de potencial asociados a la presencia de defectos, los cuales
tienden a ralentizar (bloquear) este movimiento.

Otro de los objetivos de esta tesis fue la modelización teórica de esta dinámica
y, en particular, del efecto túnel de las interficies normal-superconductor a través
de las barreras de anclaje. El modelo desarrollado trata la interficie normal-
superconductor como una variedad 2D elástica sometida a la atracción de un
potencial de pinning creado por un defecto planar. La barrera de anclaje puede
ser controlada mediante la inyección de una supercorriente que ejerce una fuerza
de tipo Lorentz sobre la interficie. El modelo se construye asumiendo la ausencia
de campo magnético aplicado. El ritmo de relajación a cualquier temperatura se
calcula mediante el método del instantón/termón dentro del marco de la teoría de
Caldeira-Leggett y la correspondiente dinámica euclídea de la interficie normal-
superconductor en un superconductor tipo-I resulta ser enteramente disipativa.
La temperatura de transición puede ser descrita en función de los parámetros
microscópicos del superconductor a partir de la teoría de Landau sobre las transi-
ciones de fase. La difusión cuántica de la interficie normal-superconductor a través
del pozo de potencial ocurre mediante la nucleación de una protuberancia en la
interficie. Por último, la anchura promedio del pozo de potencial resulta ser de

xvii



unos pocos nanómetros.

Modos de excitación axial en el estado vórtice y efecto túnel del núcleo
vorticial a través de barreras de anclaje

Los avances en litografía óptica y de haz de electrones producidos en los últi-
mos 10−20 años permiten hoy en día la fabricación de (matrices compuestas de)
estructuras magnéticas de tamaño (sub)micrométrico con propiedades magnéti-
cas bien definidas y controladas. Entre éstas cabe destacar los discos planos de
tamaño mesoscópico fabricados a partir de un material ferromagnético, debido
a sus inusuales propiedades magnéticas y sus potenciales aplicaciones tanto tec-
nológicas como biomédicas. Estos discos magnéticos muestran una amplia gama
de configuraciones de equilibrio debido a las restricciones geométricas impuestas
sobre su campo de espines. La mayoría de las aplicaciones de estos sistemas se basa
en las propiedades estáticas y dinámicas del estado fundamental conocido como
estado vórtice, el cuál se caracteriza por presentar un campo de magnetización
cuya circulación es no nula en el plano del disco y por la existencia del núcleo vor-
ticial −una pequeña área del plano del disco en la que los espines de la estructura
magnética presentan una componente no nula en la dirección transversal al mismo.
Formalmente hablando, este estado fundamental consiste en un solitón topológico
ajustado a la forma del disco. El tamaño de este núcleo es del orden de la longitud
de intercambio del material ferromagnético y muestra una débil dependencia con
la anchura del disco.

La dinámica del estado vórtice en el régimen de bajas frecuencias se caracteriza
por el movimiento espiral como un todo del núcleo vorticial. Esta excitación, cono-
cida como el modo girótropo del vórtice, es equivalente a la precesión uniforme del
momento magnético del disco debido al vórtice y puede ser inducida mediante la
aplicación de un campo magnético en el plano del disco. Este modo de excitación
es intrínsecamente distinto de las excitaciones magnónicas convencionales en fer-
romagnetos y presenta la menor de las energías dentro del espectro de excitaciones
del estado vórtice. Además, cabe remarcar el hecho de que el modo girótropo
influye en la estructura del espectro de magnones del vórtice magnético. La pres-
encia de defectos estructurales en estos discos magnéticos puede afectar tanto a
la dinámica como a la magnetización del estado vórtice: La detección cuantita-
tiva del efecto Barkhausen y la observación de fluctuaciones en la frecuencia del
movimiento girótropo del núcleo vorticial, las cuales están correlacionadas con
la distribución espacial de defectos, ejemplifican este fenómeno. La temperatura
también juega un papel relevante en las propiedades del estado vórtice puesto que
no solamente las magnitudes físicas que lo caracterizan dependen explícitamente
de ella, si no que al decrecer la temperatura el atrapamiento del núcleo vorticial
por parte de los pozos de potencial asociados a los defectos será más efectivo al
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disponer el sistema de menor agitación térmica.

Debido a cuán fuerte es la interacción de intercambio entre los espines que
constituyen el núcleo vorticial, éste se comporta como una entidad per se de tamaño
mesoscópico. La rigidez del núcleo vorticial a lo largo del eje de simetría del disco
ha sido una hipótesis inherente a la mayoría de modelos teóricos sobre excitaciones
magnónicas del estado vórtice en discos magnéticos. El hecho de que la presencia
de centros de anclaje afecte la dinámica girótropa del vórtice contradice dicha
hipótesis. Por el contrario, esto es indicativo de la naturaleza elástica del núcleo
vorticial en la dirección axial del disco. Con respecto al estado vórtice, el primer
objetivo de esta tesis fue estudiar bajo qué condiciones el modo girótropo era
compatible con una dispersión espacial semejante a las ondas de espín de longitud
de onda finita presentes en un ferromagneto. Una extensión de la ecuación de
Thiele ha sido obtenida mediante el formalismo Lagrangiano, la cual se caracteriza
por 1) presentar una elasticidad finita cuyo origen es la interacción de intercambio,
y 2) presentar una masa efectiva no nula asociada al núcleo vorticial, cuyo origen
radica en las interacciones dipolares de largo alcance. El correspondiente espectro
de excitaciones axiales presenta dos ramas bien definidas, una asociada al modo
girótropo cuyo gap es precisamente la frecuencia girótropa del disco, y la otra
originada por la masa efectiva. Este espectro también se puede derivar dentro del
marco de la mecánica cuántica, obteniendo una discretización explícita del vector
de onda. El efecto del campo magnético sobre el espectro de excitaciones también
ha sido estudiado, demostrando que tan solo la componente transversal afecta a
los modos axiales. La disipación es tenida en cuenta en este modelo mediante la
adición de un término disipativo −lineal con la velocidad del núcleo vorticial− a
la ecuación de Thiele elástica. Cabe destacar que los modos de excitación aquí
presentados han sido observados experimentalmente por primera vez este mismo
año.

El segundo de los objetivos en este bloque fue explorar la irreversibilidad mag-
nética en discos con el estado vórtice y su dinámica a bajas temperaturas, lo cual se
llevó a cabo mediante medidas de 1) ciclos de histéresis en un amplio rango de tem-
peraturas, 2) curvas de magnetización zero-field-cooled y field-cooled a diferentes
campos y, por último, 3) relajaciones magnéticas a bajas temperaturas tomando
los estados vórtice presentes a lo largo de la rama descendiente de los ciclos de
histéresis como estado inicial, en matrices de discos magnéticos hechos de permal-
loy. El campo magnético se aplicaba por defecto en el plano de los discos. Como
resultado de este estudio se observó que la curva de magnetización field-cooled
representa el equilibrio magnético del sistema. Además, la evolución temporal de
la componente irreversible de la magnetización de estos sistemas sigue una de-
pendencia logarítmica, lo cual implica de nuevo la existencia de una distribución
amplia de barreras de energía asociadas a los defectos presentes en los discos. El
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análisis de la viscosidad magnética asociada a estos procesos de relajación per-
mite distinguir de nuevo una transición entre los régimenes de dinámica térmica
y de difusión cuántica. El comportamiento no térmico a bajas temperaturas se
atribuye al efecto túnel de un segmento del núcleo vorticial a través de las bar-
reras de anclaje durante el proceso de relajación hacia su posición de equilibrio.
Experimentalmente no se ha observado ninguna dependencia de la temperatura
de transición con el grosor de los discos magnéticos −fijado su diámetro−, hecho
que refuerza la hipótesis de que tan solo un segmento del núcleo vorticial es el que
participa en el proceso de túnel cuántico mediante una deformación elástica del
mismo.

El último de los objetivos con respecto al estado vórtice fue modelizar este
efecto túnel. Para ello el núcleo vorticial se describe como una variedad 1D elástica
sometida a la atracción de un potencial de anclaje creado por un defecto lineal
−el cual proporciona el atrapamiento más intenso para este tipo de estructuras.
La validez del modelo se extiende a campos magnéticos externos que perturben
ligeramente el estado vórtice. El ritmo de relajación a cualquier temperatura
se calcula de nuevo mediante el método del instantón/termón dentro del marco
de la teoría de Caldeira-Leggett y la dependencia funcional de la temperatura
de transición con el campo puede ser derivada a partir de la teoría de Landau
sobre las transiciones de fase. La dinámica euclídea del núcleo vorticial resulta
ser disipativa. La amplitud de la deformación durante el proceso de túnel es de
décimas de nanómetros, compatible con la anchura del correspondiente pozo de
potencial.

Unión Josephson con el estado vórtice

Una unión Josephson consiste en dos regiones superconductoras separadas por una
capa de un material no superconductor, a través de la cual se acoplan débilmente.
Este dispositivo −pieza básica en el diseño de circuitos y dispositivos de alta sen-
sibilidad− muestra el que se conoce como efecto Josephson, consistente en el flujo
de supercorriente a través de la unión aun en el caso de no aplicar una diferencia
de potencial entre las dos regiones superconductoras. Este efecto tiene su origen
en el efecto túnel de pares de Cooper a través de la capa no superconductora. En
esta tesis se planteó estudiar cuál sería el efecto sobre la corriente Josephson si
como capa no superconductora se escogiera un disco magnético con el estado vór-
tice −las dos regiones superconductoras están compuestas por el mismo material.
Se ha calculado analíticamente la dependencia de la corriente Josephson con la
posición del núcleo vorticial en el plano del disco para desplazamientos pequeños
y se ha observado en las pertinentes simulaciones que la variación relativa de esta
corriente inducida por desplazamientos hasta la décima de la longitud de intercam-
bio del material ferromagnético es detectable experimentalmente. Por lo tanto, la
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unión Josephson podría utilizarse para medir el movimiento del núcleo vorticial a
escala atómica.
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Chapter 1

Superconductivity

1.1 Introduction

Superconductivity was discovered by Kamerlingh Onnes in 1911 in the course of
his studies of the electrical conductivity of pure metals at low temperatures [1].
This state of matter consists of the fermionic condensation of electrons in a solid:
Below a certain critical temperature, near the Fermi surface pairs of electrons of
opposite spin form a bound state called the Cooper pair. The net attraction be-
tween the (normally repulsive) electrons is provided by an interaction through the
lattice. Cooper pairs themselves form a condensate due to their boson-like behav-
ior. Therefore, superconductivity is a macroscopic quantum state characterized by
the existence of a non-zero collective wavefunction of the condensed Cooper pairs.

Three features have been traditionally considered to be the hallmarks of perfect
superconductors. Perfect conductivity is the first one: Below a critical tempera-
ture Tc, the superconducting material has zero electrical resistance (see Fig. 1.1a).
The complete disappearance of resistance is most sensitively probed by observ-
ing the persistence of supercurrents circulating in a superconducting ring. These
supercurrents have been observed to flow without measurable decrease for years.

The second hallmark, discovered by W. Meissner and R. Ochsenfeld in 1933,
is the perfect diamagnetism of superconductors (see Fig. 1.1b), that is, magnetic
flux is expelled from a superconducting material below Tc [2]. Meissner effect
leads to the definition of a true equilibrium thermodynamic state associated with
superconductivity, because of its independence on the magnetic history of the
specimen. As a consequence, the superconducting transition is indeed a phase
transition. Figure 1.2 shows the phase diagram of the normal-superconductor
(N-S) transition in the phase space (T,H). For each temperature T < Tc there
exists a thermodynamic critical magnetic field Hc(T ) at which superconductivity
is destroyed. This critical field is related to the difference in the Helmholtz free

1
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a b

Figure 1.1: Sketch of (a) the resistance vs. temperature and of (b) the first mag-
netization curve of a perfect superconductor.

energy density (at zero field) between the normal and the superconducting state
according to the identity

1

8π
H2
c (T ) = Fn(T, 0)−Fs(T, 0), (1.1)

where H2
c (T )/8π is referred to as the condensation energy of the superconducting

state and the subscript n(s) refers to the normal(superconducting) state.

Figure 1.2: Schematic phase diagram (T,H) of a perfect superconductor.

The last hallmark of perfect superconductivity is the existence of an energy
gap between the ground state and the band of quasiparticle excitations. An indi-
rect observation of this energy gap in superconductors comes from heat capacity
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measurements: A discontinuous increase in the specific heat at zero field is ob-
served through the N-S phase transition from the normal state. Furthermore, the
specific heat is supressed rapidly below Tc, showing an exponential decay at low
temperatures. This phenomenon is depicted in Fig. 1.3. The discontinuity in the
specific heat at the critical temperature is a signature of the second order nature
of the N-S phase transition. Microscopic theory predicts that the heat capacity
approaches zero asymptotically as C ∼ e−∆(0)/kBT due to the presence of the gap
in the energy spectrum, where ∆(0) is the value of such gap at zero temperature.

Figure 1.3: Sketch of the thermal dependence of the specific heat at zero field for
a perfect superconductor.

1.2 Ginzburg-Landau theory
The first theoretical framework capable of describing the experimental (electrody-
namic) features of superconductivity and predicting new ones was developed by
V.L. Ginzburg and L. Landau in 1950 [3]. The keystone of this theory of super-
conductivity is the concept of order parameter arising from the Landau theory of
second-order phase transitions [4]. Ginzburg and Landau introduced a complex
order parameter ψ(~r) associated with superconductivity, so that in the normal
state (the ordered phase) its value equals zero, whereas ψ(~r) becomes non-zero
when the system undegoes the N-S transition to the superconducting state (the
disordered phase). The exact physical significance of this order parameter is un-
known to the theory. A microscopic derivation of the Ginzburg-Landau equations
[Eqs. (1.6) and (1.7)] based on Gor’kov many-body extension of the BCS theory [5]
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leads the order parameter to be identified with the thermal average 〈Ψ̂↑(~r)Ψ̂↓(~r)〉,
where Ψ̂α(~r) is the Fermi field operator that destroys an electron of spin α at the
point ~r. Therefore, the order parameter can be understood as being the amplitude
probability of finding a Cooper pair at the point ~r, so that superconductivity turns
out to be a macroscopic quantum state characterized by the non-zero value of the
collective wavefunction of the superconducting carriers.

1.2.1 Ginzburg-Landau functional

The Helmholtz free energy is assumed to be a real analytic function and to preserve
the symmetry of the ordered phase. In the vicinity of the critical temperature Tc,
where ψ ' 0, one can therefore expand the free energy as a Taylor series of the
order parameter ψ. In the case of a homogenous superconductor in the absence of
a magnetic field, this expansion becomes

Fs(T, 0) = Fn(T, 0) + α(T )|ψ|2 +
1

2
β|ψ|4, (1.2)

where α(T ) = a(T − Tc) and a, β are positive constants. The positivity of β is
required to insure thermodynamic stability of the ground state. This expansion
must be generalized to describe situations where the superconducting state is inho-
mogenous, that is, where the order parameter varies in space, ψ(~r) = ψ0(~r)eiΦ(~r).
In this case, the expansion (1.2) holds for the free energy density.

With account of the correspondence ψ(~r) ↔ 〈Ψ̂↑(~r)Ψ̂↓(~r)〉 from microscopic
theory, the following self-correlation condition for the order parameter holds

ψ(~r) =

∫
d3~r′K(~r − ~r′)ψ(~r′), (1.3)

where the kernel of the integral operator stems from finite-range interactions. Near
a second-order phase transition not only is the order parameter small, but also its

spatial variation is slow. Thus the expansion ψ(~r′) ' ψ(~r) + ∇ψ(~r) · ~R +
1

2
~R ·(

∂2ψ

∂~r′∂~r′
(~r)

)
· ~R holds, where ~R = ~r ′−~r, and the self-correlation condition becomes

ψ(~r) '
[∫

d3 ~R K(~R)

]
ψ(~r) +

1

2

[
1

3

∫
d3 ~R R2K(~R)

]
∇2ψ(~r)

' µ̃0ψ(~r) +
1

6
µ̃2∇2ψ(~r), (1.4)

where µ̃i is the i-th moment of the kernel. The contribution of these nonlocal cor-

rections to the free energy density is given by the terms µ̃0|ψ(~r)|2 and 1

6
µ̃2|∇ψ(~r)|2,
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respectively. The former can be absorbed into the α term of Eq. (1.2). Normal-
ization of the coefficients in the free energy is chosen so that the prefactor of
|∇ψ|2 becomes ~2/2m?, with m? being an effective mass. In so doing, the gradient
term mimics the quantum mechanical kinetic energy and therefore it should be
regarded as the kinetic energy contribution of the superconducting carriers to the
free energy.

In the presence of a magnetic field, described by a vector potential ~A, the
expansion of the free energy density is generalized by adding the magnetic pressure

term, FH(~r) =
1

8π
~B2(~r), and by applying the minimal coupling ∇ → ∇− ie

?

~c
~A to

the kinetic energy term, with e? being an effective charge. Finally, the Ginzburg-
Landau free energy functional becomes

Fs[T, ψ, ~A] =Fn(T, 0) +

∫
V

d3~r

{
α(T )|ψ(~r)|2 +

1

2
β|ψ(~r)|4 +

1

8π
~B2(~r)

+
~2

2m?

∣∣∣∣[∇− ie?

~c
~A(~r)

]
ψ(~r)

∣∣∣∣2
}
. (1.5)

Minimization of the free energy functional with respect to ψ̄(~r) and ~A(~r) [see
Appendix A] yields the Ginzburg-Landau equations

− ~2

2m?

[
∇− ie?

~c
~A(~r)

]2

ψ(~r) + α(T )ψ(~r) + β|ψ(~r)|2ψ(~r) = 0, (1.6)

and
∇× ~B(~r) =

4π

c
~j(~r), (Ampère’s law) (1.7)

where

~j(~r) =
e?

m?
Re

{
ψ̄(~r)

[
−i~∇− e?

c
~A(~r)

]
ψ(~r)

}
(1.8)

= i
~e?

2m?

[
ψ(~r)∇ψ̄(~r)− ψ̄(~r)∇ψ(~r)

]
− e?2

m?c
|ψ(~r)|2 ~A(~r),

represents the supercurrent density. Cooper pairs are the superconducting carriers
according to the microscopic theory, which implies m? = 2me and e? = −2e for
the values of the effective mass and charge respectively.

A natural boundary condition on ψ arises from the surface term in the mini-
mization process of the Ginzburg-Landau functional with respect to ψ̄. It ensures
that no supercurrent flows through the boundary surface ∂V and is given by[

∇− ie?

~c
~A(~r)

]
ψ · n̂ = 0 on ∂V, (1.9)
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where n̂ denotes the normal vector to the boundary surface. This boundary con-
dition is only correct for an insulator-superconductor (I-S) interface according to
the microscopic theory [6]. A more general boundary condition is required for a
S-N metal interface, where proximity effects occur. It is given by [6][

∇− ie?

~c
~A(~r)

]
ψ · n̂ = −γψ on ∂V, (1.10)

where γ is a real-valued constant. This boundary condition also implies ~j · ~n = 0
on the boundary surface.

Thermodynamic fluctuations are neglected by the Ginzburg-Landau theory
due to its mean-field nature. The occurrence of fluctuations in phase transitions
is a universal phenomenon and their effects become important for some interval
of temperatures near the critical one. According to the Ginzburg criterion [3],
when fluctuations of the order parameter are of the same magnitude as the order
parameter itself the Ginzburg-Landau theory breaks down. This happens in the
temperature interval

|T − Tc|
Tc

∼
{

10−16 (clean superconductor)
10−6 (dirty superconductor) (1.11)

for typical 3D superconductors, so that it is not possible to observe fluctuations
in this case. For this reason the Ginzburg-Landau theory has been so successful
in describing superconductivity and the corresponding phase transition. On the
other hand, fluctuation effects are larger for lower dimensionality, so that it is
possible to observe the breakdown of the Ginzburg-Landau theory in one and two
dimensions.

1.2.2 Gauge invariance and characteristic lengths

The Ginzburg-Landau free energy functional (1.5) preserves global U(1) symmetry
by construction, which is the underlying symmetry of the ordered phase. In the
absence of a magnetic field it becomes

Fs[T, ψ] = Fn(T, 0) +

∫
V

d3~r

{
α(T )|ψ(~r)|2 +

1

2
β|ψ(~r)|4 +

~2

2m?
|∇ψ(~r)|2

}
. (1.12)

The value of the field ψ in the ground state is obtained via minimization of the
above functional, which requires homogeneity of the order parameter (the contri-
bution of the gradient term to the free energy is always positive) and minimization
of the potential term. The corresponding values are

|ψ| = 0 T > Tc,

|ψ| =
[
|α(T )|
β

]1/2

T < Tc.
(1.13)
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The high temperature phase shows a unique ground state at ψ = 0, sharing the
U(1) symmetry of the free energy. On the contrary, the ground state of the dis-
ordered phase is degenerate and the vacuum states are asymmetric under U(1):
The orientations in the complex plane define the vacuum states. Application of a
U(1) transformation to any of the vacuum states will lead to a different orientation
describing a different vacuum state.

Lowering the temperature below Tc leads the ground state ψ = 0 to become
unstable, and thus the field ψ to condensate into one of the vacuum states ψ0. This
spontaneous choice of ground state (among the set of equally likely vacuum states)
is known as spontaneous breaking of the global U(1) symmetry. Goldstone theorem
provides the appearance of one massless scalar particle (the Nambu-Goldstone
boson) in the spectrum of excitations due to symmetry breaking.

Another feature of the Ginzburg-Landau theory is its preservation of the U(1)
gauge symmetry: The free energy functional (1.5) is invariant under the gauge
transformations

~A(~r) → ~A(~r) +∇χ(~r) (1.14)

ψ(~r) → ψ(~r)ei
e?

~cχ(~r) (1.15)

of the order parameter ψ(~r) (Higgs field) and of the gauge field ~A(~r). A deep
insight into the physical content of the Ginzburg-Landau theory can be gained
by expanding the order parameter perturbatively around the ground state. For
T < Tc this expansion takes the form

ψ(~r) = [ψ0 + η(~r)] eiθ(~r), (1.16)

where η(~r) and θ(~r) are two real scalar fields that parametrize the perturbation of
the Higgs field. The vacuum state ψ0 = [|α(T )|/β]1/2 is chosen to be real. Intro-
duction of Eq. (1.16) into the Ginzburg-Landau functional leads to the following
expansion:

Fs[T, ψ, ~A] ' Fs[T, ψ0,~0] +

∫
V

d3~r

{
2|α(T )|η2 +

~2

2m?
|∇η|2 + 2

√
|α(T )|βη3

+
1

2
βη4 +

~2

2m?
(ψ0 + η)2

∣∣∣∣∇θ − e?

~c
~A

∣∣∣∣2 +
1

8π
|∇ × ~A|2

}
. (1.17)

Cubic and quartic terms in the above expansion can be neglected due to η being a
perturbation of the modulus of the order parameter. For this same reason ψ0 +η '
ψ0 also holds. The gauge transformation

~A(~r) → ~A(~r)− ~c
e?
∇θ(~r) (1.18)

ψ(~r) → ψ(~r)e−iθ(~r) = ψ0 + η(~r) (1.19)
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removes the gauge symmetry from the free energy functional, which now becomes

Fs[T, ψ, ~A] ' Fs[T, ψ0,~0] +

∫
V

d3~r

{
2|α(T )|η2 +

~2

2m?
|∇η|2 +

e?2ψ2
0

2m?c2
| ~A|2

+
1

8π
|∇ × ~A|2

}
. (1.20)

This expansion clearly shows that there is a massive gauge field and that the
Higgs field has one massive component (presence of quadratic terms on the fields).
Massification of the gauge field happens at the expense of the field θ (the Nambu-
Goldstone field), which dissapears in the process of gauge fixing. This is the
keystone of the Anderson-Higgs mechanism [7, 8].

Remarkably, some electrodynamic features of superconductivity emerge nat-
urally from the dynamical generation of the mass of the fields in the Ginzburg-
Landau theory: Minimization of the functional (1.20) with respect to the fields ~A
and η yields the following set of differential equations

∇×∇× ~A+
1

λ2
L

~A = 0, (1.21)

∇2η − 1

ξ2
GL

η = 0, (1.22)

where λL =

[
m?c2

4πe?2ψ2
0

]1/2

is the London penetration length and ξGL =

[
~2

4m?|α|

]1/2

is the Ginzburg-Landau coherence length. Application of the curl operator on Eq.
(1.21) leads to the differential equation

∇2 ~B − 1

λ2
L

~B = 0, (1.23)

where the second Maxwell equation ∇ · ~B = 0 has been taken into consideration.
Both Eqs. (1.22) and (1.23) are time-independent Klein-Gordon equations, so that
their respectives masses are mηc = ~/ξGL for the perturbation of the modulus of
the order parameter and mAc = ~/λL for the gauge field. Under the assumption
of an I-S interface along the Y Z plane, the solutions of these differential equations
are

~B‖(x) = ~B‖(0)e−x/λL , Bx = 0 and η(x) = η(0)e−x/ξGL , (1.24)

for a superconductor occupying the region x > 0. Therefore, the coherence length
measures the spatial response of the superconductor to a perturbation (generated
in this case by the interface). In other words, ξGL represents a measure of the
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distance over which self-correlation of the order parameter extends. Microscopic
theory relates the coherence length to the characteristic size of the Cooper pairs,
which means that the weak interaction coupling the electrons into the Cooper pair
is short-ranged. On the other hand, λL represents the length scale over which a
magnetic field (parallel to the superconductor surface) is able to penetrate into the
superconductor. Consequently, the Meissner effect is nothing but the massification
of the gauge field ~A through the onset of a finite condensate density.

The same perturbative expansion of the Ginzburg-Landau functional around
the ground state can be performed for T > Tc (normal phase), where the ground
state is ψ0 = 0. In this case, the quadratic expansion of the free energy on the per-
tubative fields yields a massless gauge field (the magnetic field is not screened from
the interior of the material) and a natural length scale for the spatial variation of

the field η, ξGL =

[
~2

2m?α

]1/2

, which corresponds to the coherence length. This

definition of ξGL differs by a prefactor from the former obtained in the supercon-
ducting case. From this point forward, the latter will be the standard definition
of the coherence length.

1.2.3 Classification of superconductors

In the Ginzburg-Landau theory the divergence of both λL and ξGL near the critical
temperature is characterized by the critical exponent ν = 1/2, that is

λL(T ) =

(
m?c2β

4πe?2aTc

)1/2 ∣∣∣∣1− T

Tc

∣∣∣∣−1/2

, (1.25)

ξGL(T ) =

(
~2

2m?aTc

)1/2 ∣∣∣∣1− T

Tc

∣∣∣∣−1/2

.

The Ginzburg-Landau parameter is defined as the ratio

κ ≡ λL

ξGL

=
m?c

e?~

(
β

2π

)1/2

, (1.26)

which is temperature independent. Its value plays a critical role in determining
the thermodynamic stability of the system to the formation of domains with N-S
interfaces, and hence in the classification of superconductivity.

The Gibbs free energy is an appropiate tool to study this thermodynamic sta-
bility: It is defined as the Legendre transform of the Helmholtz free energy of the
system with respect to the magnetic field ~B, G = F − ~H · ~B/4π. Within the
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framework of the Ginzburg-Landau theory it becomes

G(T, ψ, ~H) =Fn(T, 0) + α(T )|ψ(~r)|2 +
1

2
β|ψ(~r)|4 +

1

8π
~B2(~r)

+
~2

2m?

∣∣∣∣[∇− ie?

~c
~A(~r)

]
ψ(~r)

∣∣∣∣2 − 1

4π
~H · ~B(~r) (1.27)

Assume a homogenous bulk superconductor in a magnetic field (strength) ~H. In
the superconducting state, which is characterized by a non-zero order parameter
ψ =

√
|α|/βeiθ and ~B = 0, Eq. (1.27) takes the form

Gs = Fn + α|ψ|2 +
1

2
β|ψ|4 = Fn −

α2

2β
, (1.28)

where the London gauge ~A =
~c
e?
∇θ = 0 has been chosen. In the normal state ψ

vanishes and ~B = ~H, so that the Gibbs free energy density becomes

Gn = Fn +
~B2

8π
−

~H · ~B
4π

= Fn −
~H2

8π
. (1.29)

The system condenses into the superconducting state only if it minimizes the Gibbs
free energy, that is, if the condition

Gs − Gn =
~H2

8π
− α2

2β
< 0 (1.30)

holds. Consequently, there is a critical magnetic field above which superconduc-
tivity cannot occur,

Hc(T ) =

[
4πα2(T )

β

]1/2

. (1.31)

Consider a N-S interface along the Y Z plane with the superconductor occu-
pying the region x > 0 and with the magnetic field strength applied along the Y
axis (parallel to the phase boundary). Thus both the order parameter ψ(~r) and
the magnetic field ~B(~r) = B(~r)êy depend only on the coordinate x. Far from the
interface both normal and superconducting regions are homogeneous, which yields
the following boundary conditions for the order parameter:

lim
x→∞

ψ(x) = ψ0 = [|α|/β]1/2, lim
x→−∞

ψ(x) = 0. (1.32)

With regard to the magnetic field, the boundary condition lim
x→∞

B(x) = 0 applies
due to the Meissner effect. At the other boundary, condition lim

x→−∞
B(x) = Hc
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is imposed to guarantee the stability of the interface: if lim
x→−∞

B(x) < Hc, the

inequality (1.30) holds and therefore the normal region condenses into the super-
conducting state (stable phase). For lim

x→−∞
B(x) > Hc, penetration of the magnetic

field into the superconducting region according to Eq. (1.24) implies that some
material on the superconducting side close to the interface would be driven nor-
mal. This means that superconductivity would be unstable. In brief, the boundary
conditions for the magnetic field are

lim
x→∞

B(x) = 0, lim
x→−∞

B(x) = Hc. (1.33)

The surface tension σ of the N-S interface is defined as follows: the above
boundary conditions yield the equality lim

x→∞
Gn(x) = lim

x→−∞
Gs(x) between the nor-

mal and superconducting Gibbs free energy densities deep inside the corresponding
regions. This in turn leads to the definition of a bulk Gibbs free energy density as

GBulk ≡ lim
x→∞
Gn(x) = Fn −

H2
c

8π
. The presence of the N-S phase boundary results

in an additional contribution to the Gibbs free energy density, which is just the
difference G−GBulk with G being the total Gibbs free energy density of the sample.
Hence the surface tension of the N-S interface becomes

σA =

∫
V

d3~r {G − GBulk} , (1.34)

where A is the interface area. Equivalently,

σ =

∫
R

dx

{
H2
c

8π
+ α(T )|ψ(x)|2 +

1

2
β|ψ(x)|4 +

~2

2m?

∣∣∣∣[∇− ie?

~c
~A(x)

]
ψ(x)

∣∣∣∣2
+
B2(x)

8π
− HcB(x)

4π

}

=

∫
R

dx

{
α(T )|ψ(x)|2 +

1

2
β|ψ(x)|4 +

~2

2m?

∣∣∣∣dψ(x)

dx

∣∣∣∣2 +
e?2

2m?c2
A2(x)|ψ(x)|2

+
(B(x)−Hc)

2

8π

}
, (1.35)

where the gauge ~A(x) = A(x)êz [B(x) = −dA(x)/dx] has been chosen. Multipli-
cation of the first Ginzburg-Landau equation (1.6) by ψ̄ and integration over x
yields the identity∫

R
dx

{
α(T )|ψ(x)|2 + β|ψ(x)|4 +

~2

2m?

∣∣∣∣dψ(x)

dx

∣∣∣∣2 +
e?2

2m?c2
A2(x)|ψ(x)|2

}
= 0,

(1.36)
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which leads to the following simplification of Eq. (1.35):

σ =
H2
c

8π

∫
R

dx

{
−|ψ(x)|4

ψ4
0

+

(
B2(x)

H2
c

− 1

)2
}
. (1.37)

The surface tension of the interface is the result of the difference between the energy
gain due to the condensation into the superconducting state and the energy cost
of expelling the magnetic field from the superconducting region. In the regime
ξGL � λL (κ � 1), there is a region of thickness ξGL − λL > 0 where the second
term is already large but the first one is small due to the order parameter slowly
approaching its bulk value (see Fig. 1.4a). Therefore σ > 0 in this regime. On
the contrary, in the regime ξGL � λL (κ � 1) there is a region of thickness
λL − ξGL > 0 where the condensate is nearly fully developed and the magnetic
field is not completely expelled (see Fig. 1.4b), so that the first term of Eq. (1.37)
dominates and hence the surface tension is negative.

N SC

a b

N SC

Figure 1.4: Schematic diagram of a N-S interface for κ � 1 [panel (a)] and for
κ� 1 [panel (b)]. Decay of the magnetic field takes place on a scale λL, whereas
the variation of the Cooper-pair condensate density occurs on a scale ξGL.

A deep insight into the dependence of the surface tension on the Ginzburg-
Landau parameter requires the numerical solution of the Ginzburg-Landau equa-
tions (1.6) and (1.7) with the boundary conditions (1.30) and (1.33). Qualita-
tively, it has been shown that as κ increases the surface tension decreases from
positive values to negative ones. A detailed analysis of this functional depen-
dence shows that the critical value of the Ginzburg-Landau parameter at which
σ vanishes is κc = 1/

√
2. Superconductors for which the surface tension of N-S

interfaces is positive are called type-I, whereas type-II superconductors are those
for which this surface tension is negative. This classification can be done in terms
of the Ginzburg-Landau parameter according to the previous discussion, that is,
κ < 1/

√
2 or κ > 1/

√
2 determines whether the superconductor is type-I or type-II
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respectively. The electrodynamic properties of superconductors change dramati-
cally depending on the type of superconductivity.

Type-I superconductors

Formation of N-S interfaces is energetically unfavourable in type-I superconductors
due to their surface tension being positive. Therefore, such superconductors tend
to minimize the total area of these phase boundaries. The way this minimization
takes place is cumbersome because it strongly depends on the shape of the specimen
and so on the corresponding demagnetizing effects: in type-I superconductors the
penetration of the magnetic field happens in a way that minimizes the total Gibbs
free energy, which also contains the energy of the demagnetizing field generated
by the sample.

If the magnetic field strength is applied in a direction so that the resulting de-
magnetizing field vanishes, N-S interfaces are not allowed to form and the magnetic
field is expelled according to the Meissner effect. Furthermore, the equilibrium
state in the bulk is uniform and is described by the order parameter ψ0. Experi-
mentally, their behavior corresponds to that of perfect superconductors introduced
at the beginning of this chapter (see Figures 1.1-1.3).

On the contrary, when the demagnetizing field is non-zero there exists a mag-
netic field strength H ′c above which the magnetic field is able to penetrate the
superconductor. For field strengths H ′c < H < Hc the sample consists of alternat-
ing domains of normal-metal and superconductor. This multi-domain structure
shows exotic patterns that depend on the magnetic history of the specimen and
on its geometry. Such regime in a type-I superconductor is called the intemediate
state and will be extensively discussed in the next section.

Type-II superconductors

Surface tension of N-S interfaces is negative for type-II superconductors, which
tend to maximize the total area of these phase boundaries. Penetration of magnetic
field into the sample is energetically favourable and therefore the fall of perfect
diamagnetism, one of the hallmarks of perfect superconductivity, is a signature
of this type of superconductivity. Experimentally, there exists a critical field Hc1

(lower critical field) from which a continuous increase in magnetic flux penetration
is observed. The magnetic field reaches B = H at a second critical field Hc2 (upper
critical field) where the specimen becomes normal. This behavior is depicted in Fig.
1.5. The regime Hc1 < H < Hc2 represents a new thermodynamic superconducting
state called the (Abrikosov) mixed state.

A feature of type-II superconductivity is that magnetic flux does not penetrate
randomly the superconductor. On the contrary, it is quantized at the microscopic
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Figure 1.5: Sketch of the first magnetization curve for an ideal type-II supercon-
ductor.

scale: Let S be an arbitrary surface with its boundary ∂S lying inside the super-
conductor. Eq. (1.8) yields the identity∫

∂S

~j · d~l =
~e?

m?
|ψ|2

∫
∂S

∇θ · d~l − e?2

m?c
|ψ|2Φ(S), (1.38)

where Φ(S) =

∫
∂S

~A · d~l is the magnetic flux through the surface. The circulation

of ∇θ over ∂S represents the change of phase of the condensate wavefunction
along the closed path, which must be an integer multiple of 2π to guarantee the
continuity of ψ. Consequently,

Φ?(S) = Φ(S) +
m?c

e?2|ψ|2

∫
∂S

~j · d~l = nΦ0, n ∈ Z, (1.39)

where Φ0 = hc
|e?| is the flux quantum. In fact, it is not the magnetic flux but the

fluxoid Φ?(S) that is quantized. For a contour ∂S deep inside the superconduc-
tor, the second term of Eq. (1.39) can be neglected due to the Meissner effect
(the supercurrent vanishes far from interfaces) and then the magnetic flux is the
quantized magnitude. Therefore, the smallest amount of magnetic flux that can
penetrate a superconductor is one flux quantum Φ0 and it does so in the form
of a vortex line. The size of its core is of order the coherence length ξGL. The
resulting structure of vortex lines becomes stable under the spatial configuration
of a two-dimensional lattice.

For magnetic field strengths slightly above Hc1 the Gibbs free energy can be
expanded as

G(T,H) ' G(T, 0) + nL
Ev
L

+
1

V

∑
i<j

E ij − 1

4π
~H · ~B, (1.40)
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where nL represents the surface density of vortex lines, Ev = L

(
Φ0

4πλL

)2

K0

(
1

κ

)
is the energy of a vortex line and E ij represents the (repulsive) interaction energy
between the pair (i, j) of vortex lines. K0 is the zero-th order modified Bessel
function of imaginary argument. This expansion has been done considering a
rectangular geometry with cross section A and thickness L (V = AL) for the sake
of simplicity. The magnetic field strength is applied perpendicular to this cross
section.

Just above the lower critical field the interaction energy term can be neglected
because the vortex lines are far from each other (penetration of only a few vortex
lines in the superconductor) and E ij decreases exponentially for long distances.
The magnetic field due to the lattice of vortex lines is B = nLΦ0 and therefore the
Gibbs free energy becomes

G(T,H) ' G(T, 0) + nL

(
Ev
L
− 1

4π
HΦ0

)
. (1.41)

According to this expression, the onset of magnetic flux penetration happens at

the magnetic field strength H =
4π

Φ0

Ev
L
, which can be identified with Hc1,

Hc1(T ) =
Φ0

4πλ2
L(T )

K0

(
1

κ

)
κ�1−−→ Φ0

4πλ2
L(T )

lnκ. (1.42)

On the other hand, superconducting domains begin to nucleate for magnetic
field strengths just below Hc2, that is, the upper critical field determines the onset
of superconductivity. In this regime, the magnetic field is approximately uniform
across the sample. In the region of nucleation the order parameter is vanishingly
small, so that the first Ginzburg-Landau equation (1.6) can be linearized to obtain

− ~2

2m?

[
∇− ie?

~c
~A(~r)

]2

ψ(~r) + α(T )ψ(~r) = 0. (1.43)

This equation is formally identical to the Schrödinger equation for a particle with
energy −α, mass m? and charge e? in a uniform magnetic field ~B ' Hêz. Calcu-
lation of its spectrum for the case of an infinite medium yields the inequality

− α ≥
(
n+

1

2

)
~ωc, n ∈ N, (1.44)

where ωc = |e?|H/m?c is the cyclotron frequency of the particle. The highest field
at which superconductivity can occur corresponds to the lowest eigenvalue of the
above inequality, which is given by the expression

Hc2(T ) =
2m?c

~|e?|
|α(T )| = Φ0

2πξ2
GL(T )

. (1.45)
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Comparison of this field to the thermodynamic critical fieldHc leads to the identity

Hc2 =
√

2κHc, (1.46)

which for type-II superconductors implies Hc2 > Hc (κ > 1/
√

2). In the regime
Hc < H < Hc2 an ordered superconducting phase (ψ 6= 0) will appear in the
sample, which cannot correspond to the complete exclusion of magnetic field due
to this being energetically unfavorable according to Eq. (1.30). This phase is
the Abrikosov mixed state, which is characterized by a lattice arrangement of the
vortex lines (see Fig. 1.6a). The mean-field phase diagram in the (T,H) plane of
a conventional (low Tc) type-II superconductor is shown in Fig. 1.6b.

ba

Figure 1.6: (a) STM (scanning-tunneling-microscope) image at T = 1.8 K in
B = 1 T (top) and magneto-optical image at T = 4.0 K in H = 8 Oe (bottom)
of a NbSe2 crystal. The images have been adapted from Refs. [9] and [10]. (b)
Mean-field phase diagram in the (T,H) plane of a conventional (low Tc) type-II
superconductor.

So far no description of the order parameter has been provided for the mixed
state. The full non-linear Ginzburg-Landau equation is required to calculate ψ
in this superconducting phase. For magnetic field strengths slightly below Hc2,
analytical solutions of Eq. (1.6) can be obtained: A. Abrikosov considered that
ψ could be expressed as a linear superposition of the degenerate solutions of the
linearized Ginzburg-Landau equation (1.43) and that the probability density |ψ|2
should preserve the symmetry of the vortex lattice in theXY plane. The functional
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dependence chosen for the order parameter was [11]

ψ(x, y) =
∑
n∈Z

Cn exp (inky) exp

(
− 1

2ξ2
GL

[
x+ n

Φ0k

2πHc2

]2
)
, (1.47)

where Cn are complex coefficients. Periodicity of |ψ|2 is guaranteed by imposing
the periodicity condition Cn+ν = Cn with ν being an integer. In so doing, the
wavefunction (1.47) becomes quasiperiodic with a period b = 2π/k in the y direc-
tion and with a quasiperiod a = 2πνξ2

GL/b in the x direction. Clearly, the area of
the unit cell is ab = 2πνξ2

GL and so ν corresponds to the number of vortices per
unit cell.

The coefficients {Cn}νn=1 are fixed by imposing the stationariness of the free
energy with respect to a variation of ψ. Introducing the Abrikosov parameter
βA = V

∫
V
|ψ(~r)|4 d3~r/

(∫
V
|ψ(~r)|2 d3~r

)2, which depends on the symmetry of the
lattice and turns out to be field independent for H . Hc2, the magnetic induction
(volume average of the magnetic field) and the magnetization of the system become

B = H − Hc2 −H
βA(2κ2 − 1)

, M̄ =
H −Hc2

4πβA(2κ2 − 1)
. (1.48)

The lowest free-energy solution is obtained for a triangular (hexagonal) lattice,
characterized by ν = 2, b =

√
3a and C1 = iC0. The corresponding value of the

Abrikosov parameter is βA = 1.16. Some consequences of Abrikosov’s calculation
are worth to be pointed out: Slightly below Hc2, 1) the volume average of the
magnetization increases linearly with the magnetic field strength and its slope is
a function of the Ginzburg-Landau parameter κ; and 2) the magnetic field inside
the superconductor varies periodically according to the symmetry of the vortex
lattice.

Another interesting regime of the mixed state is given by Hc1 � H � Hc2,
which exists for type-II superconductors with κ � 1. In this regime there is
a densely packed lattice of vortex lines with vortex-vortex spacing d satisfying
ξGL � d � λL. Inequality d � ξGL implies that the magnetic field ~B(~r) is
described accurately by the solution of the inhomogenous London equation

~B(~r) + λ2
L∇×∇× ~B(~r) = Φ0

(∑
i

δ2(~r − ~ri)

)
êz, (1.49)

where i runs over all vortices in the lattice. Solution of this equation using Fourier
analysis yields the following expressions for the magnetic induction and the mag-
netization of the superconductor [12]:

B = H −Hc1

ln
(
γ d
ξGL

)
lnκ

, M̄ = −Hc1

4π

ln
(
γ d
ξGL

)
lnκ

, (1.50)
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where γ = 0.628 and d2 = 2Φ0/
√

3B for the triangular lattice. Thus M̄ increases
logarithmically with increasing magnetic field strength. The dependences of the
magnetization on H described by Eqs. (1.48) and (1.50) agree well with experi-
mental data for type-II superconductors (see Fig. 1.5).

The description of superconductivity made so far corresponds to the ideal (ho-
mogenous) case. The presence of various kinds of inhomogeneities (such as defects,
impurities, grain boundaries, etc.) in a real superconductor results in a nonideal
(inhomogenous) behavior. For a type-II superconductor in the mixed state, these
inhomogeneities act as pinning centers for the vortex lines due to the effective
interaction between them. Consequently, there is a distortion of the vortex lattice
from the ideal (triangular) case.

Interaction between vortex lines yields the Lorentz force density ~fL = 1
c
~js × ~B

acting on the vortex-line lattice, where~js is the total volume-averaged supercurrent
density and ~B is the magnetic induction. For a distorted vortex lattice, the total
supercurrent at the points corresponding to vortex lines is non-zero and therefore a
net transverse driving (Lorentz) force appears. On the contrary, ~js vanishes at the
points with vortex lines in the case of a uniform (undistorted) lattice. Application
of a transport current ~J makes the vortex lines to be subjected to the same kind of
driving force, 1

c
~J × ~B, so that even in this case a net force can be produced on the

vortex lattice. Vortex lines begin to move sideways for strong enough driving forces.
This motion of magnetic flux creates an electric field that, in the presence of the
transport current, creates a dissipation [13]. Thus the appearance of an Ohmic
resistance due to the motion of vortex lines in type-II superconductors means
the fall of perfect conductivity and a major setback in the possible technological
applications of this kind of materials.

With respect to the third hallmark of perfect superconductivity, when both
type-I and type-II superconductors are doped with magnetic impurities there exists
a concentration range where the material remains superconducting but the gap
vanishes. Hence superconductivity appears not to be connected with the existence
of the energy gap.

To conclude this section, it is important to remark that type-II superconduc-
tors are the most abundant in nature and the ones presenting the highest critical
temperatures. Furthermore, even bulk type-I superconductors can become type-II
by lowering its dimensionality (thin slabs) or by doping them with impurities, for
instance.
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1.3 The intermediate state in type-I superconduc-
tors

1.3.1 Theoretical description

Demagnetizing effects are responsible for the magnetic flux penetration in (pure)
type-I superconductors. Even though the surface tension is positive, a multi-
domain structure of normal-metal and superconducting regions appears for mag-
netic field strengths H ′c < H < Hc, where H ′c strongly depends on the shape of
the specimen. Complex geometric patterns of N-S interfaces occur for samples of
general shape due to the non-uniformity of the demagnetizing field. Therefore, a
rigorous (theoretical) description of this pattern formation is cumbersome.

Despite the complexity of this picture, the main features of the intermediate
state can be obtained by restricting its study to the special case of an ellipsoid:
such shape symmetry provides a uniform demagnetizing field across the sample,
whose linear dependence on the magnetization is given by

~Hd = −N̂ · ~M, (1.51)

where N̂ is the demagnetizing tensor due to dipolar fields. This tensor becomes
diagonal on the basis of main axes of the ellipsoid, N̂αβ = nαδαβ, with nα, α ∈
{x, y, z} being the demagnetizing factors along the Cartesian axes. Suppose that
a magnetic field strength ~H0 is applied along one of these axes and let n be the
corresponding demagnetizing factor. The field strength inside the ellipsoid is then
given by

~H = ~H0 + ~Hd = ~H0 − n ~M (1.52)

and, if the condition −4π ~M = ~H of perfect diamagnetism holds, it becomes

~H =
1

1− n
4π

~H0. (1.53)

This identity implies that the magnetic field strength inside the superconductor is
enhanced by a factor 1/(1− n

4π
) ≥ 1 compared to the applied one.

Let now the applied field strength be gradually raised from zero. When it
reaches the value H ′c ≡ (1 − n

4π
)Hc, the field strength inside the supercondutor

becomes equal to the critical field Hc and therefore the ellipsoid should be driven
into the normal state. But were this to happen the magnetization of the sample
would become zero and hence H = H0 = H ′c < Hc. This leads to a completely
normal sample in a field strength smaller than Hc, which cannot happen according
to Eq. (1.30). The so-called intermediate state represents the solution to this
paradox, that is, the coexistence of both normal and superconducting phases in
equilibrium.
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From the discussion leading to the boundary conditions (1.10) for the magnetic
field, it is clear that a stationary N-S phase boundary will only exist where the
internal field is exactly Hc and, consequently, the magnetic field on the normal
side will be B = Hc. On the other hand, the interfaces between normal-metal and
superconducting domains must lie parallel to the local direction of the magnetic
field: The interface can be locally identified with the Y Z plane via an appropiate
(point dependent) rotation of the axes, which implies that locally both ~H and ~B

depend only on the x coordinate. From the second Maxwell equation, ∇ · ~B = 0,
the identity Bx(x) ≡ const holds and the application of Eq. (1.23) to the x-
component of the magnetic field yields Bx ≡ 0 in the superconducting domain.
Finally, the continuity of the normal component of ~B across the interface implies
Bx ≡ 0 in both domains, which proves the above claim.

N

N

N

S

S

S

S

Figure 1.7: Multi-domain structure of alternating normal (N, chrome yellow) and
superconducting (S, blue) laminae for an ellipsoidal type-I superconductor in the
intermediate state.

The simple geometry of laminar domains will be considered from this point
forward, which still retains the main magnetic and thermodynamic features of
the intermediate state: For H ′c < H0 < Hc the type-I superconductor is assumed
to split into an arrangement of alternating normal and superconducting laminae,
whose sizes are small compared to the sample dimensions but large compared
to the London penetration length. The N-S interfaces lie parallel to the applied
magnetic field (see Fig. 1.7) and the internal field is equal to Hc across the sample.
Let dn(ds) be the average thickness of the normal (superconducting) laminae and
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ρs be the fraction of the maximum cross section being in the superconducting
state. Hence ρs = ds/(dn + ds) and the magnetic induction through the sample
becomes B = (1− ρs)Hc. The volume average of the magnetization is then given
by 4πM̄ = B −H = B −Hc and, with account of Eq. (1.52), the identity

Hc = H =
H0

1− n
4π
ρs

(1.54)

follows. This determines the dependence of the fraction ρs on the ratio H0/Hc and
thus the values of B and M̄ for applied field strengths H0 between H ′c and Hc.
These dependences are shown in Fig. 1.8.

Thermodynamic stability of the intermediate state stems from the fact that it
minimizes the Gibbs free energy of a type-I superconductor in the range of field
strengths H ′c < H0 < Hc: The differential of the Gibbs free energy density is given
by the expression dG = −M̄dH0 at constant temperature. This identity neglects
the energy term arising from the establishment of the applied field, H2

0

8π
, because

one is solely interested in the contribution from the superconducting sample. On
the other hand, the contribution to the Gibbs potential associated to the presence
of N-S interfaces is neglected for the time being. Consequently, the Gibbs free
energy density becomes

G(H0) = Gs(0)−
∫ H0

0

M̄ dH0, (1.55)

where Gs(0) is the free energy density of the superconducting state at zero field.
In the regime 0 < H0 < H ′c the ellipsoid is totally superconducting (ρs = 1), so
that with account of the identity 4πM̄ = −H = H0/(1− n

4π
) the Gibbs free energy

density becomes

G(H0) = Gs(0) +
1

1− n
4π

H2
0

8π
. (1.56)

In the range of field strengths H ′c < H0 < Hc the ellipsoid is in the intermediate
state and 4πM̄ = −ρsHc. Hence

G(H0) = Gn(0)− (H0 −Hc)
2

2n
, (1.57)

where Gn(0) = Gs(0) +
H2
c

8π
is the Gibbs free energy density of the normal state.

Finally, for H0 > Hc the sample is completely normal and M̄ = 0, which leads
to G(H0) = Gn(0). Figure 1.9 shows an sketch of the dependence of G on the
applied field strength, which clearly shows that the intermediate state (in this
simplified model of planar laminae) has a lower free energy than both the pure
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Figure 1.8: Sketches of the dependence on the applied magnetic field strength of
(a) the (internal) magnetic field strength H, (b) the magnetic induction B, (c)
the superconducting fraction of the sample ρs, and (d) the volume average of the
magnetization −4πM .
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NISSC

Figure 1.9: Schematic diagram of the Gibbs free energy density for a specimen
with non-zero demagnetizing factor.

superconducting and the pure normal states would have in the regime H ′c < H0 <
Hc.

In order to estimate the values of dn and ds within this simple model, both
the presence of N-S phase boundaries and the effects of the deformation of the
field lines near the surface of the sample must be considered: Interfaces between
normal-metal and superconducting domains contribute to the Gibbs free energy
density with an extra term σA, where A is the total area of the interfaces. The
surface tension (1.37) can be described in terms of a characteristic length ∆̄ as
σ = H2

c

8π
∆̄. A broadening of the normal laminae near the surface of the spec-

imen occurs to maintain the value Hc of the local field at the interfaces (see
Fig. 1.10a). This deformation translates into a loss of condensation energy and
a modification of the magnetic field energy (near the surface) with respect to the
ideal planar laminae model, see Eq. (1.57). A. Fortini and E. Paumier studied
this more realistic multi-domain structure under the assumption of semi-infinite
normal-metal/superconducting regions [14], and obtained the following expression
for the reduced free energy g = G/H

2
c

8π
:

g = −ρs +
ρsh

2
0

1− n
4π
ρs

+ 2

(
2∆̄

L
(gMh

2
0 + gC)

)1/2

, (1.58)

where h0 = H0/Hc is the reduced field and L is the thickness of the sample. The
functions gM and gC determine corrections to the Gibbs free energy (of the ideal
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laminar case) and correspond to the magnetic energy due to the domain ends and
to the increment of the condensation energy due to the increment of volume of the
normal-metal domains, respectively. Furthermore, the equilibrium value of the
period d = ds + dn of the multi-domain structure is

d =

(
2∆̄L

gMh2
0 + gC

)1/2

, (1.59)

where the restriction L� d must hold.
Minimization of the Gibbs free energy (1.58) with respect to ρs yields the

equlibrium value ρs = ρs,0 + δρs, where ρs,0 = (1− h0)/ n
4π

is the superconducting
fraction within the ideal laminar model [see Eq. (1.54)] and δρs is given by

δρs = − h0

n/2π

g′Mh
2
0 + g′C

(gMh2
0 + gC)1/2

(
2∆̄

L

)1/2

, (1.60)

where the functions gM , gC and their derivatives are evaluated at ρs,0 [this eval-
uation also occurs in Eq. (1.59)]. Neglecting the correction δρs, the identity
h = 1 − n

4π
ρs holds. The assumption of a semi-infinite geometry implies that the

validity of this model reduces to flat ellipsoidal samples (such as disks and thin
slabs), which in turn implies demagnetizing factors n/4π close to one. The Landau
limit corresponds to the case n

4π
= 1, where gMh2

0 +gC can be identified with twice
the Landau function

2ΨL(h0) = (gMh
2
0 + gC) n

4π
=1 =

1

π

[
(1 + h0)4

2
ln(1 + h0) +

(1− h0)4

2
ln(1− h0)

− (1 + h2
0)2

2
ln(1 + h2

0)− 2h2
0 ln(8h0)

]
. (1.61)

The correction δρs gives rise to deviations in both the magnetic field strengths in
the normal-metal laminae and the magnetic moment M̄ of the sample

δH

Hc

=
n/4π

1− n
4π
ρs,0

δρs, δM̄ = −Hc

h0

δρs. (1.62)

Therefore the effect of the deformation of the N-S interfaces near the surface on the
electrodynamic properties of the intermediate state is of order (∆̄/L)1/2. On the
other hand, the field strengths at the phase transitions PS-IS (pure superconductor-
intermediate state) and IS-NS (intermediate state-normal state) become slightly
modified with respect to their values H ′c and Hc in the ideal laminar model and
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are given by

HPS-IS = H ′c +H ′c

(
[2− ln (8 (1− n/4π))]

n∆̄

π2L

)1/3

, (1.63)

HIS-NS = Hc −O
((

∆̄/L
)1/2
)
. (1.64)

Hence, the deviation of the field strengths from their ideal values is of order
(∆̄/L)1/3 for the PS-IS phase transition and of order (∆̄/L)1/2 for the IS-NS phase
transition.

According to this model, the internal field strength is uniform across the sample
except for a region of size ∼ d near the external surface. Restricting the analysis
of this field distortion to the line ` (see Fig. 1.10a), the minimum value of the
field strength occurs at the point A and is given by HA = f(ρs)Hun, where Hun =
Hc+δH is the undistorted field strength far from the external surface. The function
f is a decreasing function of the superconducting fraction and satisfies f(0) = 1
and f(1) = 0.648. Consequently, the field strength HA at the point A is less than
Hun in the intermediate state. Assuming the identity Hun = Hc from the ideal
case (that is, neglecting the correction δH), this means that there exists a point
in every normal domain where the internal field strength is less than the critical
field, which contradicts the condition (1.30). This argument lead L. Landau to
develop the branched model, in which each normal domain splits recursively into
two laminae as it approaches the surface, becoming extremely thinner at the surface
itself [15]. Fortini and Paumier estimated that the spatial extension of the field-
distortion region is d at most, so that the branching of the normal laminae is most
likely to occur with a few splittings in the medium range of ρs.

1.3.2 Experimental description

Experimentally, the intemediate state has been revealed by means of different tech-
niques. The first resolution of its domain structure was due to A. Meshkovsky and
A. Shalnikov, who used a bismuth probe to explore the magnetic field distribution
between two hemispheres of tin of diameter 2R = 4 cm [16, 17]. Another tech-
nique relies on the tendency of ferromagnetic powders to accumulate in regions
of high magnetic flux density. B. Balashova and Yu. Sharvin observed rich and
complex patterns in the intermediate state by spreading 1 µm nickel powder on
the outside of a tin sphere [18]. Spreading superconducting powders on a type-I
sample, which tend to accumulate in regions with low flux density, represents the
complementary technique. Finally, magneto-optic methods based on the Faraday
effect have proved themselves to be a valuable technique to explore the intricacy
of the domain structure, especially the dynamic effects: W. De Sorbo et al. and B.
Goodman et al. recorded dynamic phenomena of the intermediate state through
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Figure 1.10: (a) Unbranched laminar model of the multi-domain structure of a flat
ellipsoidal specimen in the intermediate state. (b) Perspective view of a corrugated
normal-metal lamina. The amplitude of corrugation decreases with depth from the
surface of the sample.

motion pictures [19, 20] and high-speed photography [21, 22]. More recently, R.
Prozorov et al. used magneto-optic techniques to explore the topological hysteresis
in the intermediate state of lead for different shapes [23, 24]. It should be remarked,
however, that magneto-optic methods are best suited only to flat surfaces.

Experiments have unravelled the commonness of the unbranched multi-domain
structure in the intermediate state: for typical values of the surface tension (∆̄ ∼
10−4 − 10−5 cm), multiple branching only occurs for extremely thick samples,
whereas for typical specimen dimensions (L ∼ 1 cm) the normal laminae should
split into one or two branches at most. Therefore the unbranched model appears
to be more favourable energetically than the branched one, despite the fact that
there exist points in the normal domains (such as A) where the field strength may
be appreciably less than Hc. Nevertheless, branching cannot be excluded for type-I
superconductors with low values of ∆̄. Corrugations in the normal laminae near
the external surface (see Fig. 1.10b) are observed in practice, whose development is
the mechanism through which the unbranched multi-domain structure minimizes
its free energy. Rather than being an exception, nonequilibrium structures of the
intermediate state are often obtained experimentally. High reduced temperature
T/Tc, high reduced field and low Ginzburg-Landau parameter κ are found to favor
the attainment of equilibrium structures.

From this point forward, the analysis of the dynamics and the topology of the
intermediate state will be restricted to disk-shaped samples with small thickness-
to-radius aspect ratio β in a transverse field strength. First of all, a reversible
penetration of magnetic flux along the corners of the specimen is observed at the
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PS-IS transition as the field strength increases (see Fig. 1.11b). The opposite
normal domains in the corners are separated at the equator of the disk by a
Meissner phase and the peripheral N-S boundary moves inward during this stage.
The reversibility of this process is due to the high increase of interfacial area (and
the corresponding surface energy) with penetration. Figure 1.11c represents the
onset of irreversible flux penetration, where magnetic flux tubes can form and
migrate towards the center of the disk. The magnetic field strength Hp at which
this occurs is called the penetration field. A superconducting ring exists near the
edge of the sample even after considerable flux penetration and, as flux accumulates
in the center of the disk (due to the field being increased), the peripheral N-S
interface moves outward again. This Meissner phase, however, prevents the exit
of normal domains from inside the sample as the field strength is decreased and
therefore the flux penetration becomes irreversible.

It is worth remarking the concept of geometrical barrier: the formation of
an intermediate phase inside the superconducting sample becomes energetically
favorable above some field Hm, but a potential barrier arising at the sample edge
(the geometrical barrier) impedes the transition into this thermodynamic state.
Hence, metastability arises in the sample. The penetration field of the geometrical
barrier, Hg, is defined as the field strength up to which the geometrical barrier
prevents the penetration of normal domains into the inner part of the specimen.
It corresponds to the field strength above which the free energy of the Meissner
state exceeds the minimal energy of the state containing one magnetic flux tube
at the edge of the sample. Equivalently, it corresponds to the field strength above
which the internal field at the sample equator reaches the critical field (so that two
opposite normal domains nucleated at the corners can become linked through the
equator and form a flux tube). But were the flux tubes to overcome somehow this
geometrical barrier, the metastable state would decay. This situation can happen,
in principle, as soon as the metastability arises, so that inequalities Hm ≤ Hp ≤ Hg

among the above field strengths are expected to hold. The theoretical dependences
of the metastability field and the penetration field of the geometrical barrier on
the aspect ratio are Hm ' β and Hg '

√
β. Finally, the geometrical barrier is

gradually depressed by the formation of the intermediate phase inside the sample
and it is completely destroyed at some field called the irreversibility field of the
geometrical barrier, where the uniform intermediate state becomes the equilibrium
of the system.

As discussed in Ref. [25], thermal fluctuations are the most plausible mecha-
nism by which the magnetic flux tubes surmount the geometrical energy barrier:
(Thermal) fluctuations of the equilibrium shape of a normal domain are possible
provided that the energy of the domain remains the same. On the contrary, fluc-
tuations of the radial length of the domain are forbidden due to the increase of the
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Figure 1.11: (a) Sketch of the multi-domain structure for a disk-shaped specimen
with small β in the intermediate state. The bottom picture depicts the cross
section along the dashed line. (b) Part of the disk near its edge in the regime of
reversible penetration (top) and cross section along the dashed line (bottom). (c)
Part of the disk near its edge at the onset of irreversible flux penetration (top)
and cross section along the dashed line (bottom). Blue regions correspond to the
Meissner phase and chrome yellow ones to the normal domains. These figures have
been adapted from Ref. [25].
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energy associated to the change of the shielding current distribution. Therefore,
two opposite domains at the corners of the disk can become connected due to
fluctuations (increase) of their thickness at the equator and then begin to spread
from the edge for H ≥ Hm, where the intermediate phase is favorable inside the
sample. At this stage the equatorial (internal) field strength is lower than Hc, so
that a Meissner domain nucleates at the equator confining a part of the normal do-
main out of the edge of the sample. Finally, interaction with the shielding current
makes the confined flux experience a driving (Lorentz) force that moves it away
from the edge, therefore migrating afterwards towards the center. Figure 1.12
sketches the different stages of the magnetic flux tube nucleation. This picture is
valid in the case of weak pinning, because the pinning of N-S interfaces depresses
thermal fluctuations of the shape of normal domains. Strong pinning leads to a
complete suppresion of these fluctuations, which results in the penetration field
increasing up to Hg. This effect has been observed experimentally by DeSorbo
and Healy [26].

a

fed

cb

Figure 1.12: Schematic time sequence of a flux tube nucleation, where the pictures
correspond to cross sections along a part of the disk near its edge in analogy
with Figs. 1.11b and 1.11c. (a) The opposite normal domains in the corners are
separated at the equator by the Meissner phase. (b) These two domains become
connected and (c) begin to spread from the edge towards the center of the specimen.
(d) Meissner phase restores at the equator and (e) the normal domain expands
towards the center. (f) Finally, a magnetic flux tube separates from the normal
domains at the edge and migrates inside the sample. Blue regions correspond to
the Meissner phase and chrome yellow ones to the normal domains. These pictures
have been adapted from [25].

The formation of a honeycomb structure (a hexagonal array of flux tubes in
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three dimensions) is usually observed from the accumulation of magnetic flux tubes
inside the sample. Once such a structure is formed, it requires the coalescence or
splitting of the flux tubes to reach a new equilibrium under the change of any of
the thermodynamic variables (T,H0). This is the so-called suprafroth state [27].
On the other hand, the perfection of the sample governs the degree of supercool-
ing, the corresponding number of superconducting nuclei and their rate of growth
in the NS-IS transition. Superconducting domains tend to spread into laminae
after nucleation and normal regions migrate towards the edge of the disk, forming
complex (random) labyrinthine patterns. Finally, the flux expulsion from flat disks
is usually incomplete.

In recent years R. Prozorov and coworkers have pointed out a striking new fea-
ture of the intermediate state, the topological hysteresis: Measurements of M(H)
loops in type-I superconductors reveal the presence of magnetic hysteresis, which
has been generally atributted to impurities, grain boundaries, etc. In two seminal
works, the authors studied different samples made of pure 99.9999% lead with
different shapes [rectangles, disks, cones and (hemi)spheres] and with different
degrees of stress by means of both magnetometry and magneto-optic methods,
which allowed them to correlate the macroscopic hysteretic behavior with the ob-
served flux patterns [23, 24]. They observed that the more stressed the sample
is, the bigger the magnetic hysteresis becomes. This pinning-induced hysteresis is
characterized by becoming larger at the lower H0, with its maximum at zero field
strength. In the case of the stress-free (disk and rectangular) samples, however,
the observed magnetic hysteresis is characterized by vanishing in the limit H0 → 0
and by reaching its maximum at the ballpark of H ′c (see Fig. 1.13a). Therefore,
the origin of this hysteresis is of a different kind. Magneto-optic images showed
that tubular topology is destroyed by pinning, turning into a laminar pattern or
even into a nonequilibrium dendrite-like topology for strong disorder/pinning. In
the case of the above stress-free samples, the tubular (closed) topology is observed
upon flux penetration, whereas a well-defined laminar (open) topology is oberved
upon flux exit (see Fig. 1.13b). A remarkable conclusion from Prozorov’s work is
that the magnetic hysteresis exhibited by the disk-shaped and rectangular stress-
free samples at intermediate fields is due to the topological difference between the
(topologically closed) flux tube phase and the (topologically open) laminar phase,
therefore being an intrinsic property of the intermediate state.

Other shapes such as cones and (hemi)spheres were also studied by R. Prozorov
and coworkers, which show no magnetic hysteresis and with tubular topology dom-
inating both flux penetration and flux exit in the intermediate state. Unlike the
previous cases (disks and rectangles), these samples (ellipsoidal shape) have no
geometrical barrier and, furthermore, formation of flux tubes is always observed
through the process of field cooling/warming them. Therefore, the authors con-
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Figure 1.13: (a) Magnetization curves for a disk-shaped Pb single crystal at
T = 4.5 K (top) and for a rectangular Pb sample at T = 6 K (bottom). Both
are stress-free samples. The insets of the bottom image are the corresponding
magneto-optical images obtained at the field strengths indicated by the arrows.
The numbers indicate the sequence of images according to the magnetic field his-
tory. (b) Topology of the magnetic flux distribution for a disk-shaped Pb single
crystal in the intermediate state at T = 5 K. Left column corresponds to the pro-
cess of increasing the magnetic field strength after a zero field cooling (ZFC) and
the right column corresponds to the process of decreasing the field strength. These
images have been adapted from Refs. [23] and [24].
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cluded that the flux tubular pattern represents the equilibrium topology of the
intermediate state. On the other hand, the hysteretic descending branch coincides
with the field-cooled magnetization curve in stress-free samples, indicating that
the observed laminar structures correspond to a succession of equlibrium states
that would be followed during the flux expulsion as the magnetic field strength
decreases. This open topology is unstable in the presence of forces (Lorentz or
gradient of the condensation energy) and, in the particular case of flat samples,
this structure is formed as a flux-percolative state at high fields whereas it splits
into flux tubes at smaller fields.

As a final remark, observation of a (closed) tubular pattern on flux penetration
and an open topology on flux exit is quite typical for samples with two flat surfaces
perpendicular to the applied field.

1.4 Magnetic irreversibility and quantum dynam-
ics in lead

The intermediate state of type-I superconductivity offers a rich and wide variety of
nonequilibrium multi-domain structures, which depend, among other factors, on
the magnetic (temperature and field) history of the specimen. As discussed in the
previous section, it is experimentally found that a closed flux tubular structure is
a generic feature of the intermediate state of pinning-free samples upon flux pen-
etration, representing the equilibrium topology of this thermodynamic phase. A
natural question to arise is how robust metastability is and what kind of dynamics
will be observed when a metastable state decays towards the equilibrium.

Metastability arises in the form of laminar structures (open topology) along
the states of the hysteretic descending branch corresponding to the intermediate
phase for weak-pinning type-I superconductors with a flat disk-shaped geometry.
Relaxation measuments, based on the temporal measurement of the magnetization
after the sample is driven into a metastable state, are best suited for studying mag-
netic hysteresis (metastability) and for clarifying some of its dynamic properties.
E. Chudnovsky and coworkers conducted magnetic characterization and relaxation
experiments in the temperature range 1.8 − 8 K on two disk samples of octogo-
nal shape made of pure 99.999% lead and annealed at two different temperatures
[28]. The resulting isothermal magnetization curves made the authors conclude
that they were dealing with a pure type-I Pb superconductor in a weakly pinned
intermediate state. Once having applied a magnetic field strength H0 > Hc(T ),
isothermal temporal evolution of the remnant magnetization (in zero field) was
recorded. A logarithmic time dependence of the remnant magnetization was found
at all temperatures, which indicates the existence of a broad distribution of energy
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barriers acting as a source for metastability.
The so-called magnetic viscosity, which in the present case is defined as the

rate at which the normalized remnant magnetization decreases logarithmically,
shows a plateau for both samples in the limit T → 0, that is, it does not ex-
trapolate to zero as the samples are cooled down. This fact points towards the
underbarrier quantum tunneling as the mechanism of escape from the metastable
states. A phenomenological model was proposed by E. Chudnovsky to explain this
quantum process: Remnant magnetization corresponds to the zero-field point of
the hysteretic descending branch, which shows a (metastable) laminar topology.
Therefore, these nonthermal relaxations appear to be due to quantum diffusion
of the N-S interfaces via the formation (or decay) of mesoscopic surface bumps.
The rate of decay from the metastable state is proportional to exp(−B), where
the WKB exponent is given by B = U/kBT in the thermally assisted regime and
by B = Ieff/~ in the quantum regime. Ieff is a temperature-independent effective
action and U is the energy barrier to be overcome, which in the present case is
provided by local pinning associated to defects. The crossover temperature from
thermal to quantum regime can be defined as the temperature at which both ex-
pression of the WKB exponent coincide, TQ = ~U/kBIeff. The following rough
estimate of the effective action is considered

Ieff '
η

4π
(āL)2, (1.65)

where η is the drag coefficient and L and ā are the lateral size and the height of
the bump, respectively. Magnetic viscosity measurements lead to an experimental
value in the ballpark of 4 − 5 K for the crossover temperature, from which the
estimates L ∼ 90 nm (comparable to the coherence length of Pb) and a ∼ 1 nm
are obtained under the assumption of Ieff . 25~. These values are quite plausible
and yield the estimate U ∼ 100 K for the average pinning energy barrier.

1.4.1 Experimental results

As a natural extension of this work, experiments to investigate the effect of an ex-
ternal magnetic field on the low-temperature dynamics of N-S interfaces in type-I
Pb superconductors were conducted in collaboration with S. Vélez and A. García-
Santiago. The sample studied was a thin disk of extremely pure (99.999 at.%)
type-I superconducting Pb with a surface area of 40 mm2 and a thickness of 0.2
mm. It was annealed during one hour at 280 ◦C in glycerol and nitrogen at-
mosphere to reduce mechanical stress from defects. Magnetic measurements were
carried out in a commercial superconducting quantum interference device (SQUID)
magnetometer at temperature values from T = 1.80 K to T = 7.00 K with a low
temperature stability better than 0.01 K. A configuration of the applied mag-
netic field parallel to the revolution axis of the sample is used in this set-up, with
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strengths H0 up to 1 kOe. Isothermal magnetization curves, M(H0), were mea-
sured after the sample had been first zero-field-cooled (ZFC) from the normal state
down to the desired temperature. At each T value, the first magnetization curve,
M1st(H0), was measured by sweeping H0 from zero up to the normal state, and
the descending branch of the corresponding hysteresis cycle, Mdes(H0), was mea-
sured by subsequently sweeping H0 back to zero. The magnetic field dependence
of the field-cooled (FC) magnetization, MFC(H0), was also registered at different
temperatures by cooling the sample from the normal state down to each T value
under different values of H0. Finally, the isothermal time evolution of the rem-
nant magnetization obtained at different H0 values along Mdes(H0) was recorded.
The results were analyzed in terms of the reduced magnitudes h0 ≡ H0/Hc and
m ≡ M/Hc, with Hc(T ) = Hc0 (1− (T/Tc)

2)[29]. Fitting the expression of Hc(T )
to experimental data obtained from the M(H0) curves produced values of Hc0 =
802 ± 2 Oe and Tc = 7.23 ± 0.02 K for this sample, which agree fairly well with
typical values found in similar samples [30].

A detail of the m1st(h0) curves and mdes(h0) branches measured at T = 2.00 K
(solid squares) and T = 6.00 K (solid circles) is plotted in Fig. 1.14 for the range
of reduced field strengths 0 ≤ h0 ≤ 0.35, where the magnetic hysteresis cycles
exhibit the strongest irreversibility. In this region, the two m1st(h0) curves largely
superimpose whereas the mdes(h0) branches depend on the value of T . Actually,
the mdes(h0) branches obtained as T increases progressively from 2.00 K to 6.00
K (not shown) span the space bound by the two branches in the figure, whereas
all the corresponding m1st(h0) curves scale onto a single one, in good agreement
with previous results obtained in similar samples [31]. Fig. 1.14 also presents the
mFC(h0) values obtained at T = 2.00 K (open squares) and T = 6.00 K (open
circles). Both curves practically superimpose in this representation in a similar
way as the two m1st(h0) curves do.

As discussed in the previous section, in a defect-free sample m1st(h0) should
follow a series of equilibrium states corresponding to the flux penetration as h0

increases, whereas mdes(h0) and mFC(h0) should actually coincide. In the present
sample other sources of irreversibility, such as stress defects, are present. Thus,
the ability of the system to trap magnetic flux during the expulsion is enhanced
with respect to the defect-free case and is substantially influenced by temperature
[31]. This corroborates the differences observed in Fig. 1.14 among the mdes(h0)
branches at different T values and between these and mFC(h0). In this case, only
the latter would follow the energy minima for flux expulsion, whereas m1st(h)
would still define the equilibrium for flux penetration, as it is confirmed by the
fact that the magnetization did not evolve with time starting anywhere along this
curve [31].

In this context, the pinning energy barriers associated with defects should
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Figure 1.14: First magnetization curves (left-to-right arrow) and descending
branches (right-to-left arrow) of the hysteresis cycles measured at 2.00 K (solid
squares) and 6.00 K (solid circles) when the magnetic field is applied parallel to
the revolution axis of the sample after a ZFC process. The magnetic field depen-
dence of the FC magnetization at the same temperatures is included (open squares
for 2.00 K, open circles for 6.00 K). The data are plotted using the reduced m(h0)
representation. The region of h0 values up to 0.35 has been chosen to show the
irreversible part of the hysteresis cycles in detail.
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a

b

Figure 1.15: Logarithmic time evolution of the normalized reduced irreversible
magnetization of the sample, mirr(t)/mirr(0), (a) measured for different h0 values
from 0.027 (uppermost curve) to 0.323 (lowermost curve) in steps of 0.027 at T =
2.00 K, and (b) at different T values from 1.80 K (uppermost curve) to 6.60 K
(lowermost curve) in steps of 0.30 K for h0 = 0.10.
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provide a multiplicity of metastable states along mdes(h0) that would originate
time-dependent phenomena just as in magnetic materials [32]. For a broad dis-
tribution of barriers, as it should be expected in this sample according to the
preparation procedure, the reduced irreversible magnetization, mirr, should evolve
with time following a logarithmic dependence. Such magnetization is defined as
mirr(t) ≡ m(t) −meq and is considered as the amount of reduced magnetization,
m(t), that deviates from the magnetic equilibrium state, meq, which is given by the
appropriate mFC(h0) value. Panel (a) in Fig. 1.15 shows mirr(t)/mirr(0) as a func-
tion of ln(t) for several h0 values from 0.027 (uppermost curve) to 0.323 (lowermost
curve) in steps of 0.027 at T = 2.00 K, whereas panel (b) shows the same represen-
tation at different T values from 1.80 K (uppermost curve) to 6.60 K (lowermost
curve) in steps of 0.30 K for h0 = 0.10. A good linear dependence is observed for
all curves in both panels and is also found for all combinations of h0 and T values
explored. Fitting of the whole data set to the law mirr(t) = mirr(0)[1 − S ln(t)]
determines the dependence of the magnetic viscosity on temperature and reduced
magnetic field, S(T, h0).

Panel (a) in Fig. 1.16 shows the S(T ) curves obtained for h0 = 0.00 (squares),
h0 = 0.10 (circles), h0 = 0.15 (upward triangles), h0 = 0.20 (downward triangles),
and h0 = 0.25 (rhombuses), while panel (b) shows the S(h0) curves obtained at
T = 2.00 K (squares), T = 4.00 K (circles), and T = 5.00 K (upward triangles).
As T increases, two regimes can be identified in panel (a) for all h0 values but 0.25:
S exhibits a practically constant plateau, SQ, up to some critical temperature TQ,
above which it increases with T . The behavior of S(T ) in the second regime is
the common signature of thermal activation processes, while the occurrence of SQ
is an indication that magnetic relaxation in the first regime should be ascribed to
quantum phenomena instead [32]. The value of the plateau changes progressively
from SQ(0.00) ∼ 0.0005 to SQ(0.20) ∼ 0.0020, whereas the crossover temperature
tends to decrease from TQ(0.00) ∼ 5.4 K to TQ(0.20) ∼ 4.0 K. At the same time,
the slope of S(T ) above TQ grows as h0 increases. In particular, only the increasing
regime in S(T ) can be observed for h0 = 0.25 in the whole temperature range of
our experiments. The shape of the curve in this case prompts to estimate TQ at
somewhere around 2.0 K. On the other hand, two successive regimes can be also
distinguished in panel (b): as h0 increases, the three curves superimpose onto a
single one that rises slowly up to h0 ∼ 0.12, while above this value they separate
progressively and become steeper. In particular, the curve at T = 5.00 K deviates
at h0 ∼ 0.12, whereas the curve at T = 4.00 K deflects at h0 ∼ 0.17, indicating that
these h0 values determine the crossover reduced magnetic field strength, hQ, that
separates the quantum and thermal regimes at these temperatures. In conformity
with what has been remarked for panel (a), the first increasing region of S(h0)
in panel (b) shows actually the dependence of the tunneling rate on the reduced
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a

b

Figure 1.16: (a) Temperature dependence of the magnetic viscosity, S(T ), obtained
for h0 = 0.00 (squares), h0 = 0.10 (circles), h0 = 0.15 (upward triangles), h0 =
0.20 (downward triangles), and h0 = 0.25 (rhombuses). (b) Reduced magnetic field
dependence of the magnetic viscosity, S(h0), obtained for T = 2.00 K (squares),
T = 4.00 K (circles), and T = 5.00 K (upward triangles). The dashed lines are
guides to the eye.
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magnetic field strength, SQ(h0).

1.4.2 Discussion

The origin of a remnant magnetic state that relaxes towards equilibrium lies in
the capability of stress defects to pin the N-S interfaces when the magnetic field
is reduced from the normal state in a magnetic history dependent process. The
onset of such state along mdes(h0) takes place at a certain temperature-dependent
magnetic field strength, the so-called reduced irreversibility field, h?(T ), that can
be identified experimentally as the point at which mdes(h0) departs from m1st(h0)
[31]. According to the discussion conducted in Ref. [31], the decreasing dependence
of h? on temperature implies that the increment of the strength of the applied
magnetic field has an important influence on the reduction of the strength of
the pinning energy barriers that control metastability. Therefore, the motion of
normal-superconducting interfaces along the sample would be less obstructed by
defects and, as a consequence, the magnetization should evolve faster with time.
This would explain why the slope of S(T ) in the thermal regime and the value of
SQ grow as h0 increases in Fig. 1.15.

Within the framework of Chudnovsky’s model [28], magnetic relaxation in type-
I superconductors occurs due to the formation and decay of bumps at the N-S
interfaces when they are pinned at the defects. These bumps are characterized by
a lateral size L and a height ā, which should both depend on the field strength
h0. The energy barrier associated with the bump is independent of L(h0) and can
be generally expressed as UB(h) = σπ[ā(h0)]2, where σ = ξGLH

2
c /(3
√

2π) is the
surface tension of the interface, which actually does not depend on the magnetic
field. The theoretical expression for the magnetic viscosity in the quantum regime
is given by SQ(h0) = A(h0)e−Ieff(h0)/~, where the prefactor can be assumed to
contribute much less than the exponent, which is dominated by the dissipative
term of the Caldeira-Leggett effective action, Ieff(h) ≈ (η/4π)[L(h0)ā(h0)]2. Here
η =
√
λLξGLH

2
c /(2ρnc

2) is the drag coefficient and ρn is the normal-state resistivity,
which can be considered magnetic field independent in the present experimental
conditions [33]. Consequently, η does not depend on h0, and L(h0) and ā(h0) can
be established in terms of their zero magnetic field values as

UB(h0)

UB(0)
=

[
ā(h0)

ā(0)

]2

,
TQ(h0)

TQ(0)
=

[
L(0)

L(h0)

]2

, (1.66)

where the energy barrier and the crossover temperature are related via the expres-
sion TQ = ~UB/kBIeff. As it has been discussed, both UB and TQ decrease as h0

increases, and this translates through Eq. (1.66) into a reduction of the height
ā(h0) and an enlargement of the lateral size L(h0) of the bump. Therefore, the
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main effect of the increment of the magnetic field is to flatten the bumps of the
N-S interfaces pinned by the defects, so for large values of h0 the energy barrier
becomes weak enough to avoid the experimental observation of TQ, as it happens
in Fig. 1.16a for h0 = 0.25.

Finally, the increasing dependence observed experimentally for SQ(h0) in Fig.
1.16 implies that Ieff(h0) should be a decreasing function. Considering the expres-
sion given above for Ieff(h0) and taking into account Eq. (1.66), we may then infer
that the ratio UB(h0)/TQ(h0) should also show a decreasing dependence. As both
TQ and UB diminish with h0, if this relation is to be fulfilled in the h0 range of Fig.
1.16, the variation of UB(h0) should be steeper than that of TQ(h0). This appears
to be supported by the behavior of the curves in Fig. 1.16a: As h0 goes from 0.00
to 0.20, the decrease in the value of TQ turns out to be slower than the increase in
the slope of S(T ) above TQ, which should be in fact related with the decrease of
UB if thermal activation processes are positively involved in this regime. Further
experimental work is needed to confirm the validity of this conjecture.



Chapter 2

Quantum tunneling in type-I
superconductors

2.1 Macroscopic quantum tunneling

2.1.1 Introduction

Macroscopic quantum tunneling refers to the situation when an object consist-
ing of many degrees of freedom, coupled to a dissipative environment, escapes
from a metastable well via underbarrier quantum tunneling [34, 35]. In condensed
matter this phenomenon was first observed through measurements of tunneling
of the macroscopic magnetic flux created by a superconducting current in a cir-
cuit interrupted by a Josephson junction [36]. Another example is tunneling of
magnetization in solids [32]. In cases of the magnetic flux or the magnetic mo-
ment of a nanoparticle, the tunneling object is described by one or two macro-
scopic coordinates that depend on time, like in a problem of a tunneling particle
in quantum mechanics. The environment enters the problem through interac-
tion of these macroscopic coordinates with microscopic excitations of the medium.
Equally interesting, but significantly more involved, is the problem of tunneling of
a macroscopic field between two distinct configurations. Most common examples
are tunneling of vortex lines in type-II superconductors [37–39] and tunneling of
domain walls in magnets [40–42]. The essential difference between the last two
examples is that tunneling of vortex lines is determined by their predominantly
dissipative dynamics [43–47], while tunneling of the spin-field is affected by dissi-
pation to a much lesser degree. Recently, a conceptually similar problem of the
escape of a fractional vortex from the long Josephson junction has been studied
[48, 49]. Theory that describes quantum tunneling of extended condensed-matter
objects involves space-time instantons that are similar to the instantons studied
in relativistic field models [50, 51]. Examples that are available for experimental

41
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Figure 2.1: Metastable potential for a one-dimensional system.

studies are limited. Consequently, any new example of tunneling of an extended
object must be of significant interest.

Before proceeding to develop the theoretical framework concerning macroscopic
quantum tunneling, it is important to make some considerations about the prob-
lem itself. To simplify the discussion the case of a one-dimensional system will
be considered, but the conclusions can be straightforwardly extended to higher
dimensions or even to a field-theory description of the system. Therefore, consider
a macroscopic one-dimensional system (described by a variable q) in a potential
of the kind given by Fig. 2.1. In the present framework, the term ’macroscopic’
must be understood as the system being large enough to behave classically during
most of the measurement (observation) time. Equivalently, quantum transitions
must be very rare. With respect to the potential depicted in Fig. 2.1, this condi-
tion translates into the probability of underbarrier quantum tunneling being quite
small. Furthermore, the system is assumed to be weakly perturbed by the inter-
action with the measuring devices due to its macroscopic character. This means
that the value of q is not driven far away from its measured value as a result of
the observation process.

Secondly, the system is initially driven into metastability, so that it is prepared
in a state consisting of low-lying energy levels near the bottom of the metastable
well (q = 0 in Fig. 2.1). The very existence of this metastable state implies
that the probability of thermal barrier hopping is also small. The corresponding
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transition rate Γ at a temperature T , defined as the probability per unit time of
thermal fluctuations driving the system over the energy barrier, has the following
Arrhenius-like dependence on the ratio V0/kBT [52]:

Γ =
ω0

2π
exp

(
− V0

kBT

)
, (2.1)

where V0 is the height of the energy barrier and ω0 is the frequency associated
to the harmonic approximation of the energy potential near q = 0. Thus, a long
lifetime of the metastable state requires the thermal energy to be small compared
to V0. Thirdly, in the case of q representing a position of space, solution of the
Schödinger equation with account of the potential V (q) leads to a set of nonlocal-
ized eigenstates on the left-hand side of the barrier. Hence, the concept of ’energy
levels of the metastable state’ proposed in the second hypothesis of the macro-
scopic quantum tunneling problem appears to be misleading. In fact, this setback
can be overcome by considering the harmonic approximation of the potential well
in the case of Fig. 2.1 (see dashed line) or, in a more general situation, an infinite
barrier approximating the potential well to the left of the barrier near its bottom.
This guarantees the locality of the eigenstates and therefore a correct definition of
the energy levels.

To conclude, the last of the assumptions consists of the system being in thermal
equilibrium with a thermal bath at temperature T . This means by definition that
the system interacts with the environment and that this interaction is responsible
for the thermalization. Notice that it should be strong enough to bring the system
to (thermal) equilibrium during the lifetime of the metastable state, a requirement
equivalent to the condition ΓτR � 1, with τR being the thermal relaxation time.
For a macroscopic system this condition usually holds due to the exponential
smallness of Γ, as it will be shown later [Eq. (2.1) proves this statement in the
thermal regime case]. On the other hand, the time-energy uncertainty relation
yields the width ∆E ∼ ~/τR in the energy of the system, which is non-zero for
finite values of τR. The description of the system changes drastically depending
on whether the spacing between the energy levels (~ω0 according to the harmonic
approximation of the metastable well, Fig. 2.1) is greater than this width or not:
If the inequality ω0τR � 1 holds, the effect of the interaction with the environment
reduces to the system being in a mixed state according to the thermal (Boltzmann)
distribution over well-defined energy levels of finite width. On the contrary, the
condition ω0τR � 1 implies such a broad blurring of the energy levels that a
correct description of the system requires the environmental degrees of freedom
to be taken into consideration explicitely. The former represents the case of main
interest in the macroscopic quantum tunneling problem.
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2.1.2 Transition rate from a metastable state

Consider a macroscopic system described by a Hamiltonian Ĥs = Ĥ0+V̂ , where the
operator V̂ represents a perturbative potential. Let {|n〉} and {εn} be respectively
the set of eigenstates and eigenvalues of the time-independent hamiltonian Ĥ0.
For the sake of simplicity, a time-independent perturbation will be considered in
the following derivation. Assume that initially the system is prepared in the state
|Ψ(0)〉 = |n〉, where |ψ(t)〉 represents the system wavefunction at t ≥ 0. The
probability of remaining in the state |n〉 is given by

Pn,n(t) = |〈n|Ψ(t)〉|2 . (2.2)

The probability amplitudes can be factorized as the products 〈m|Ψ(t)〉 =
e−iεmt/~cm(t),∀m. The function cn satisfies the Schrödinger equation

i~ċn(t) =
∑
m

eiωnmtVnmcm(t), (2.3)

where ωnm = (εn − εm)/~ is the transition frequency between the (n,m)-th levels
and Vnm = 〈n|V̂ |m〉. According to the perturbative nature of the operator V̂ ,
perturbation theory leads to the following asymptotic expansions for the functions
cm:

cn(t) = 1 + c(1)
n (t) + c(2)

n (t) + . . . , (2.4)
cm(t) = c(1)

m (t) + c(2)
m (t) + . . . , ∀m 6= n

where c(p)
k (t) = O(V̂ p) ∀k describes the p-th order perturbative term. Notice that

the initial conditions cm(0) = δnm ∀m have been used. Therefore, Eq. (2.3)
becomes

i~
d

dt
ln cn(t) = i~

ċn(t)

cn(t)
= Vnn +

∑
m6=n

eiωnmtVnm
cm(t)

cn(t)
(2.5)

= Vnn +
∑
m6=n

eiωnmtVnm
c

(1)
m (t)

1
+O(V̂ 3),

where only the lowest orders in the perturbative expansions of the functions cm
have been considered. With account of the expressions for the first order terms in
Eq. (2.5) [53], the above equation becomes

i~
d

dt
ln cn(t) = Vnn +

∑
m6=n

|Vnm|2

i~

∫ t

0

du e−iωmnu. (2.6)
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At this point one consideration should be made: The above integrals diverge in
the regime t� 1 for the case of (quasi)resonant energy levels. Distribution theory
must be invoked to deal with these divergences, so that one obtains the identities

1

i~

∫ t

0

du e−iωmnu = lim
η→0

1

εn − εm + i~η
, t� 1, (2.7)

where the limit must be understood in a distributional sense. For transitions from
a discrete state to a continuum spectrum (which corresponds to the case of the
energy barrier depicted in Fig. 2.1), the Sokhotski-Plemelj theorem (see Appendix
B) leads to the identity between distributions

lim
η→0

1

εn − εm + i~η
= P

(
1

εn − εm

)
− iπδ(εn − εm), (2.8)

where P stands for the Cauchy principal value prescription. Therefore, Eq. (2.6)
becomes

i~
d

dt
ln cn(t) = ∆n ⇒ cn(t) = cn(0)e−i∆nt/~ = e−i∆nt/~ t� 1 (2.9)

Re ∆n = Vnn + P
∑
m 6=n

|Vnm|2

εn − εm
+O(V̂ 3) ≡ En − εn

Im ∆n = −~
2

(
2π

~
∑
m6=n

|Vnm|2δ(εn − εm)

)
≡ −~

2
Γn,

where the sums mean integration over the energy domain. Notice that En is
analogous to the perturbative correction (up to second order) for the energy of the
state |n〉 in the case of the non-degenerate time-independent perturbation theory
and that Γn represents Fermi’s second golden rule. Consequently, the probability
amplitude of the state |n〉 turns out to be

〈n|Ψ(t)〉 = e−iεnt/~cn(t) = e−iEnt/~e−Γnt/2 (2.10)

and hence the dwell probability becomes

Pnn(t) = exp (−Γnt), (2.11)

that is, it decays exponentially. This dependence is typical of the intermediate
time scale and is characterized by Γn, the rate of escape out of the state |n〉.
For practical purposes (time scale of observation/measurement) this dependence
remains always valid. Notice that the time evolution of |n〉 (eigenstate of Ĥ0) is
given by e−i(En−i~Γn/2)t/~|n〉 (plus other perturbative corrections associated with
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the remaining eigenstates). In analogy with the time evolution of the eigenstates
of Ĥs, |E〉 → e−iEt/~|E〉, the energy of the state |n〉 appears to be a complex scalar
with imaginary part −~Γn/2. This identification is rather formal and (along with
the analytical continuation of the free energy) provides a unified framework to
study both the true thermodynamic equilibrium and the long-living metastability.

The exponential decay with time of the dwell probability is a general feature of
the metastable states of macroscopic systems, whether the transition/escape mech-
anism is of (pure) quantum origin or thermally assisted: In the regime ω0τR � 1
considered, every metastable state is characterized by an energy En (with the
corresponding width ∆En due to the interaction with the environment) and by
a transition rate Γn. Furthermore, the decay of the metastable states occurs ac-
cording to the law (2.11) and this behaviour is found at any temperature T of the
bath. Two competing mechanisms contribute to the escape rate out of a metastable
state, namely the quantum diffusion through the energy barrier (for instance, see
the above derivation of Γn) and the barrier hopping assisted by thermal fluctu-
ations. The transition from the quantum to the thermal regime occurs at the
so-called crossover temperature Tcr.

A complex energy associated with the eigenstates of the metastable well, ∆n =
En− i~2Γn, can be formally introduced to treat both magnitudes in a unified man-
ner. This leads to a complex extension of the Hamitonian of the macroscopic
system over the basis {|n〉} of states corresponding to the energy levels of the
metastable well, which is given by Ĥs|n〉 = ∆n|n〉 ∀n. On the other hand, the
system of interest is not isolated but weakly coupled (in the sense specified in
the next subsection) to a dissipative system, namely the thermal bath. Such a
situation is properly described by means of the density matrix formalism: The
macroscopic system in consideration can be embedded into an extended one (sys-
tem + environment) that is described by the Hamiltonian H = Hs +Hb +Hint,
where Hb and Hint represent respectively the Hamiltonian of the thermal bath
and the weak interaction between the environment and the system. Only physical
observables measured on the macroscopic subsystem are of interest, so that the
reduced density operator for the subsystem, ρ̂s, provides a complete description
of the problem. It is obtained from the partial trace ρ̂s = TrWH

b
[ρ̂], where ρ̂ is

the density matrix operator for the extended system and WH
b is the Hilbert space

of states of the environment. Its time evolution is ruled by the density matrix
equation [54]

d

dt
ρ̂s = − i

~

[
Ĥs, ρ̂s

]
+R[ρ̂s], (2.12)

R[ρ̂s](t) ≡ − 1

~2

∫ t

0

dτ
1

Zb

TrWH
b

[
Ĥint,

[
Ĥint(−τ)I, ρ̂s exp(−βĤb)

]]
,
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where β = 1/kBT is the reciprocal of the thermal energy, Zb = TrWH
b

[
e−βĤb

]
is the partition function of the thermal bath, Ĥint(τ)I = Û †0(τ)ĤintÛ0(τ) is the
coupling Hamiltonian in the interaction picture and Û0(τ) = e−i(Ĥs+Ĥb)τ/~. The
commutator in the above equation represents the conservative term whereas the
second term describes the relaxation of the subsystem in consideration. A detailed
analysis of the projection of Eq. (2.12) onto the adiabatic basis of the macroscopic
subsystem leads to its equilibrium solution being

ρ̂eq
s =

e−βĤs

Zs

, Zs = TrWH
s

[
e−βĤs

]
, (2.13)

which is known as the statistical operator. As before, Zs and WH
s represent re-

spectively the partition function and the Hilbert space of states associated with
the mestastable well of the macroscopic subsystem. The transition rate can be

defined as the physical observable Γ̂ = −2

~
Im Ĥs. With account of the analytical

continuation of the partition function, the expectation value of the transition rate
out of the metastable state can be obtained by means of the expression

Γ ≡ 〈Γ̂〉 = TrWH
s

[
ρ̂sΓ̂
]

=

∑
n Γne−β∆n

Zs

, (2.14)

which is the Boltzmann average of the rates of escape Γn. The analytical continu-

ation of the Helmholtz free energy is obtained through the relation Fs = − 1

β
lnZs.

With account of the exponentially smallness of Im ∆n, expansion of the imaginary
part of the free energy leads to the identity ImFs =

∑
n Im(∆n)e−β∆n/Zs, from

which the following simple expression for the transition rate is obtained [50, 51,
55, 56]:

Γ = −2

~
ImFs. (2.15)

Taking into consideration the expansion of the complex logarithm for exponentially
small values of the imaginary part of its argument, the above formula can be recast
as

Γ =
2

~β
ImZs

ReZs

. (2.16)

As commented in the introduction, the applicability of these results extends
beyond the class of problems for which they have been derived. In fact, these
formulas allow the calculation of the transition rate out of any metastable state
within the framework of quantum field theory, provided that it is small and that
the system has thermalized with the environment. In the next subsection, a path-
integral formulation of these calculations is provided.
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2.1.3 Path-integral formulation

A profound connection between quantum field theory and statistical mechanics
arises from the notion of Wick rotation: This geometric transformation acts on
spacetime, leaving the n-dimensional coordinate space invariant and transforming
the time domain according to t → τ = it, where t is the ordinary time coordi-
nate. This shift of the time coordinate to pure imaginary values leads to a formal
equivalence between the geometries of the Minkowski manifold (Rn+1, gM) and
the Euclidean manifold (Rn+1, gE), where the corresponding metrics are given by
gM
αβ = diag(−1, 1, (n). . ., 1) (Minkowski) and gE

αβ = diag(1, (n+1). . . , 1) (Euclidean) on the
orthogonal basis. This fact was pointed out in 1906 by H. Poincaré in the context
of special relativity [57].

Let Û(t, t′) be the time evolution operator of the macroscopic subsystem. As-
suming the time independence of its Hamiltonian, the propagator has the form
Û(t, t′) = e−iHs(t−t′)/~. Application of the Wick rotation to the propagator of the
subsystem yields the correspondence

Û(t, 0) = e−iHst/~ Wick←→ e−Hsτ/~ τ≡~β←→ e−βHs , (2.17)

where the right-hand side term is the Boltzmann factor. Let {xα}α be the set
of coordinates of the thermal bath. A well-known result from Feynman’s path
integral formulation of quantum mechanics is that the transition amplitude for the
extended system to go from coordinates (qi, {xα,i}α) at time t = ti to (qf , {xα,f}α)
at time t = tf is given by the path integral〈

qf , {xα,f}α
∣∣∣e−iĤ(tf−ti)/~

∣∣∣ qi, {xα,i}α〉 =

∫ q(tf )=qf

q(ti)=qi

D[q(t)] (2.18)

∏
α

∫ xα(tf )=xα,f

xα(ti)=xα,i

D[xα(t)] exp

(
i

~

∫ tf

ti

dtL(q, q̇, {xα}, {ẋα}, t)
)
,

with L being the Lagrangian of the extended system and q̇ (ẋα) representing (ordi-
nary) time derivative of the coordinate q (xα). With account of the correspondence
(2.17) the euclidean version of the above Green’s function is obtained,〈

qf , {xα,f}α
∣∣∣e−Ĥ(τf−τi)/~

∣∣∣ qi, {xα,i}α〉 =

∫ q(τf )=qf

q(τi)=qi

D[q(τ)]× (2.19)

∏
α

∫ xα(τf )=xα,f

xα(τi)=xα,i

D[xα(τ)] exp

(
−1

~

∫ τf

τi

dτ LE(q, q̇τ , {xα}, {ẋα,τ}, τ)

)
,

where LE ≡ −L[t → −iτ ] is the euclidean version of the total Lagrangian and
q̇τ (ẋα,τ ) represents the derivative with respect to τ of the coordinate q (xα).
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The extended system is assumed to be very weakly coupled to some super-bath,
so that it does not behave like an isolated system in a pure quantum state but like
a system in a mixed state in equilibrium at the temperature of the bath. Then,
according to the discussion leading to Eq. (2.13), the density matrix operator
associated with the extended system is ρ̂ = e−βĤ/TrWH

[
e−βĤ

]
, withWH = WH

s ⊗
WH

b being the Hilbert space of states of the extended system. Therefore, the
reduced density matrix operator ρ̂s becomes

ρ̂s = TrWH
b

[ρ̂] =
TrWH

b

[
e−βĤ

]
TrWH

[
e−βĤ

] Equilibrium
=⇒ ρeq

s . (2.20)

With account of the identity TrWH [ · ] = TrWH
s

[
TrWH

b
[ · ]
]
and the definition (2.13)

of the equilibrium reduced density operator ρ̂eq
s , the correspondence TrWH

b

[
e−βĤ

]
≡

e−βĤs can be derived. Completeness of the bases of system and environmental
coordinates, {|q〉} and {|xα〉}α, yields the following expression for the partition
function of the macroscopic subsystem:

Zs = TrWH
s

[
e−βĤs

]
= TrWH

[
e−βĤ

]
(2.21)

=

∫
dq
∏
α

∫
dxα

〈
q, {xα}α

∣∣∣e−βĤ∣∣∣ q, {xα}α〉 ,
which, considering Eq. (2.19), leads to the formula

Zs =

∮
D[q(τ)]

∏
α

∮
D[xα(τ)] exp

(
−1

~

∫ ~β

0

dτ LE(q, q̇τ , {xα}, {ẋα,τ}, τ)

)
,

(2.22)
where the path-integrals are done over all periodic trajectories (q(τ), {xα(τ)}α) in
the coordinate space with imaginary-time period τp = ~β.

The Lagrangian of the extended system can be split into the sum L = Ls +
Lb + Lint, where Lb is the Lagrangian of the thermal bath and Lint describes the
weak interaction between the macroscopic subsystem and the environment. In
the case depicted in Fig. 2.1, the Lagrangian of the subsystem is of the form
Ls = 1

2
Mq̇2− V (q) with M being the corresponding mass. In the next subsection,

a concise but general description of both the environment and its interaction with
the system of interest will be provided, which in turn will lead to the derivation
of the transition rate for dissipative systems.
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2.1.4 Caldeira-Leggett theory

Linearity of the response of the environment to the macroscopic system is the
keystone of the Caldeira-Leggett theory [34, 35, 58]. It is in this sense that the
coupling between both physical systems is assumed to be weak. This assumption
leads to the environment being described as a set of harmonic oscillators, whose
Lagrangian is given by

Lenv ({xα}α, {ẋα}α, t) =
∑
α

(
1

2
mαẋ

2
α −

1

2
mαω

2
αx

2
α

)
, (2.23)

where mα, ωα and xα are the mass, the frequency and the coordinate of the α-th
oscillator. Furthermore, the Lagrangian representing the interaction can be chosen
linear in both q and {xα}α, that is

Lint (q, q̇, {xα}α, {ẋα}α, t) = −q
∑
α

Cαxα − q2
∑
α

C2
α

2mαω2
α

, (2.24)

where {Cα}α are coupling constants. The last term on the right-hand side has been
added to cancel the renormalization of the potential V due to the interaction of the
system with the set of oscillators modeling the environment. Euler-Lagrange equa-
tions for the Lagrangian of the extended system result in the classical equations
of motion for the coordinates q, {xα}α,

Mq̈ +
dV

dq
+ q

∑
α

C2
α

mαω2
α

+
∑
α

Cαxα = 0, (2.25)

mαẍα +mαω
2
αxα + Cαq = 0. (2.26)

A formal solution of Eq. (2.25) is obtained from the Langevin equation

Mq̈ +M

∫ t

0

dσγ(t− σ)q̇(σ) +
dV

dq
= ξ(t), (2.27)

where ξ(t) represents a fluctuating force (that depends on the initial conditions of
both systems) and the damping kernel is given by the expression

γ(t) =
1

M

∑
α

C2
α

mαω2
α

cos(ωαt). (2.28)

Within the framework of the present theory, it is also assumed that the expectation
value 〈q(t)〉 of the coordinate of the macroscopic system obeys an equation of the
form (2.27) when condition V0−E � ~ω0 holds for the energy E of this subsystem
[34].
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The Euclidean version of the Lagrangian of the extended system is given by

LE (q, q̇τ , {xα}α, {ẋα,τ}α, τ) =
1

2
Mq̇2

τ + V (q) +
1

2

∑
α

mα

(
ẋ2
α,τ + ω2

αx
2
α

)
(2.29)

+ q
∑
α

Cαxα + q2
∑
α

C2
α

2mαω2
α

.

Gaussian integration of the path integrals over xα(τ) [see Appendix B] in Eq.
(2.22) yields the following expression for the partition function of the system as a
path integral over periodic q(τ)-trajectories:

Zs ∝
∮
D[q(τ)] exp(−Seff/~), (2.30)

where the effective action is given by

Seff [q(τ)] =

∫ ~β

0

dτ

[
1

2
Mq̇2+V (q) + q2

∑
α

C2
α

2mαω2
α

]
(2.31)

−
∫ ~β

0

dτ

∫ ~β

0

dτ ′q(τ)q(τ ′)G(τ, τ ′).

The integral kernel G(τ, τ ′) splits into the sum G(τ, τ ′) =
∑

α
C2
α

2mα
Gωα(τ, τ ′), where

Gωα(τ, τ ′) is the Euclidean version of the Green’s function for the harmonic oscil-
lator of frequency ωα, [

−∂2
τ + ω2

α

]
Gωα(τ, τ ′) = δ(τ − τ ′). (2.32)

Matsubara representation of these imaginary-time propagators leads to the for-

mula Gωα(τ, τ ′) = 1
~β
∑

n∈ZDα(iνn)eiνn(τ−τ ′), where Dα(iνn) =
1

ω2
α − (iνn)2

are the

Fourier coefficients of the propagators and νn = 2πn/~β, ∀n ∈ Z are the Mat-
subara frequencies. These propagators can be split into the sum Gωα,1(τ, τ ′) +
Gωα,2(τ, τ ′), where

Gωα,1(τ, τ ′) =
1

ω2
α

∑
n∈Z

δ(τ − τ ′ − n~β) =
1

~βω2
α

∑
n∈Z

eiνn(τ−τ ′), (2.33)

Gωα,2(τ, τ ′) =
−1

~βω2
α

∑
n∈Z

ν2
n

ν2
n + ω2

α

eiνn(τ−τ ′). (2.34)

The second identity from Eq. (2.33) is derived using Poisson summation formula
over the periodic sum of delta functions. Therefore, the integral kernel admits the
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Fourier expansion

G(τ, τ ′) =

(∑
α

C2
α

2mαω2
α

)∑
n∈Z

δ(τ − τ ′ − n~β)−D(τ − τ ′), (2.35)

D(τ) =
1

~β
∑
n∈Z

D(iνn)eiνnτ , D(iνn) =
∑
α

C2
α

2mαω2
α

ν2
n

ν2
n + ω2

α

.

Evaluation of the double integral term in the effective action (2.31) with account
of the kernel G(τ, τ ′) +D(τ − τ ′) yields the local term

−

(∑
α

C2
α

2mαω2
α

)∫ ~β

0

q2(τ) dτ, (2.36)

which cancels with the third term on the right hand side of Eq. (2.31). Therefore,
the effective action of the macroscopic system becomes

Seff [q(τ)] =

∫ ~β

0

dτ

[
1

2
Mq̇2 + V (q)

]
+

∫ ~β

0

dτ

∫ ~β

0

dτ ′D(τ−τ ′)q(τ)q(τ ′). (2.37)

The spectral density of the bath is defined as J(ω) = π
∑

α
C2
α

2mαωα
δ(ω − ωα)

and comparison with Eq. (2.28) leads to the relation

γ(t) =
2

πM

∫ ∞
0

dω
J(ω)

ω
cos(ωt). (2.38)

Its Laplace transform gives rise to the identity

γ?(s) ≡ (Lγ) (s) =
1

M

∑
α

C2
α

mαω2
α

s

s2 + ω2
α

, (2.39)

from which the following Fourier expansion of the integral kernel can be derived:

D(τ) =
M

2~β
∑
n∈Z

|νn|γ?(|νn|)eiνnτ . (2.40)

In the Ohmic regime, characterized by the spectral density J(ω) = Mγω, the
damping kernel becomes γ(t) = 2γδ(t). Hence, the dissipative term of Eq. (2.27)
turns out to be Mγq̇(t), which means that the friction is linear with respect to the
velocity. Furthermore, the corresponding Laplace transform is given by γ?(s) = γ,
so that

D(τ) =
1

2~β
∑
n∈Z

η|νn|eiνnτ , (2.41)
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where η = Mγ is the friction coefficient of the system. Finally, with account of
the above expression for the integral kernel, the effective action becomes

Seff [q(τ)] =

∫ ~β

0

dτ

[
1

2
Mq̇2 + V (q)

]
+

η

4π

∫ ~β

0

dτ

∫
R

dτ ′
(q(τ)− q(τ ′))2

(τ − τ ′)2
. (2.42)

Therefore, the interaction of the macroscopic system with the environment trans-
lates into a non-local term in the effective action, known as the Caldeira-Leggett
dissipative term.

Calculation of the partition function of the macroscopic system [Eq. (2.30)]
can be done by the method of the steepest descent [59]: For a potential of the kind
given in Fig. 2.1, the set of stationary trajectories of the effective action consists
of three solutions. The first two are the imaginary-time-independent trajectories
q(τ) = 0 and q(τ) = q0, which correspond respectively to the relative minimum
and relative maximum of the energy barrier. The remaining stationary trajectory
satisfies the Euler-Lagrange equation of motion [see Appendix A]

q̈b −
dV

dq
(qb)−

η

π

∫
R

dτ ′
qb(τ)− qb(τ ′)

(τ − τ ′)2
= 0, (2.43)

with boundary conditions qb(−τp/2) = qb(τp/2) = 0 and qb(0) = q1 (periodic
trajectory with imaginary-time period τp). This trajectory is called instanton
in the zero-temperature case and thermon for T 6= 0 (see [32] and references
therein). Above the crossover temperature the thermon solution coincides with
the maximum of the energy barrier. With account of Eq. (2.16), the transition
rate can be written as Γ(T ) = A(T )e−B(T ) with B(T ) being Seff/~ evaluated at
the instanton/thermon qb(τ). The prefactor A(T ) is given by the formula [32, 51]

A(T ) =

(
B(T )

2π

)1/2
∣∣∣∣∣ detD̂0

det′D̂1

∣∣∣∣∣
1/2

, (2.44)

where D̂0 and D̂1 are the integro-differential operators

D̂0[q(τ)] =
[
−∂2

τ + ∂2
qV (q = 0)

]
q(τ) +

η

π

∫
R

dτ ′
q(τ)− q(τ ′)

(τ − τ ′)2
, (2.45)

D̂1[q(τ)] =
[
−∂2

τ + ∂2
qV (q = qb)

]
q(τ) +

η

π

∫
R

dτ ′
q(τ)− q(τ ′)

(τ − τ ′)2
, (2.46)

and det′ means omission of the eigenvalue λ1 = 0 in the product defining the
determinant of the corresponding operator.
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Figure 2.2: Interface between normal and superconducting domains in a type-I
superconductor, pinned by a planar defect in the XY plane. Transport current
parallel to the interface controls the energy barrier. Depinning of the interface
occurs through quantum nucleation of a critical bump described by the instan-
ton/thermon of the equations of motion in 2+1 dimensions.

2.2 Macroscopic Quantum Tunneling of Normal-
Superconductor Interfaces

2.2.1 Introduction

Measurements discussed in Sec. 1.4 have elucidated the possibility of macroscopic
quantum tunneling in type-I superconductors. Such superconductors (with lead
being a prototypical system), unlike type-II superconductors, do not develop vortex
lines when placed in the magnetic field. Instead, they exhibit the intermediate state
in which the sample splits into normal and superconducting regions separated by
planar interfaces of positive energy. Equilibrium states and dynamics of these
interfaces have been discussed in Sec. 1.3, where the interface was treated as a
classical object. In Sec. 1.4, however, it was noticed that slow temporal evolution
of magnetization in a superconducting Pb sample was independent of temperature
below a few kelvin. This observation points towards the possibility of quantum
tunneling of interfaces in the potential landscape determined by pinning. In general
the pinning potential would be due to random distribution of pinning centers or
due to properties of the sample surface. In a polycrystalline sample it may also be
due to extended pinning of interfaces by grain boundaries.

Modern atomic deposition techniques permit preparation of a pinning layer
with controlled properties. This fact motivates the study of a well-defined prob-
lem in which the interface separating normal and superconducting regions is pinned
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by a planar defect. The corresponding pinning barrier can be controlled by a su-
perconducting current that exerts a force on the interface. At low temperature the
depinning of the interface would occur through quantum nucleation of a critical
bump shown in Fig. 2.2. Somewhat similar problems in 1+1 dimensions have
been studied for a flux line pinned by the interlayer atomic potential in a lay-
ered superconductor [44], for a flux line pinned by a columnar defect [60], and for
fractional vortices in long Josephson junctions [48]. However, the two-dimensional
nature of the interface, as compared to a one-dimensional flux line, makes the
interface problem more challenging. Note that tunneling of two-dimensional ob-
jects has been studied theoretically in application to non-thermal dynamics of
planar domain walls [40] and quantum nucleation of magnetic bubbles [61, 62].
These studies employed non-dissipative dynamics of the magnetization field be-
cause corrections coming from dissipation are not dominant for spin systems. On
the contrary, the Euclidean dynamics of the interface in a type-I superconductor is
entirely dissipative, described by integro-differential equations in 2+1 dimensions.

2.2.2 The model

The N-S interface is described by a smooth function Z(x, y), see Fig. 2.2. The
dimensionless Euclidean effective action associated with the interface is

B(T ) =
σ

~

∮
dτ

∫
dx dy

[
1 + (∇Z)2

] 1
2 +

1

~

∮
dτ

∫
dx dy V [x, y, Z(x, y, τ)]

+
η

4π~

∮
dτ

∫
R

dτ ′
∫

dx dy
[Z(x, y, τ)− Z(x, y, τ ′)]2

(τ − τ ′)2
, (2.47)

where σ is the surface energy density of the interface and η is a drag coefficient.
The former can be estimated in the limit κ � 1 with account of Eq. (1.37): In
this limit the size of the region in the superconducting side where the exponential
decay of the magnetic field (from its critical value down to zero) occurs is much
smaller than the size of the region where the superconducting wavefunction varies
(see Fig. 1.4). Therefore, considering the geometry of the N-S interface given
in Sec. 1.2.3, the variation of B can be neglected in the domain x > 0, so that
B ' Hc for x < 0 and B ' 0 for x > 0. The functional dependence of the
wavefunction can be approximated as ψ(x) = ψ0 tanh

(
κx√
2λL

)
for x > 0 and zero

otherwise. Introducing these dependences into (1.37) one obtains

σ =
H2
c

8π

∫ ∞
0

dx

{
1− |ψ(x)|4

ψ4
0

}
=

H2
cλL

4
√

2πκ

∫ ∞
0

dy
[
1− tanh4(y)

]
=

H2
c ξGL

3
√

2π
. (2.48)
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The derivation of the drag coefficient follows that of Ref. [28]: A superconducting
current parallel to the planar defect (and to the interface pinned by the defect)
exerts a Lorentz force on the interface similar to the force acting on a vortex line in
a type-II superconductor. It is assumed that the magnetic field is applied in the ŷ
direction and that the transport current of density j flows in the x̂ direction. The
driving force experienced by the dxdy element of the interface in the ẑ direction
is given by

d2Fz
dxdy

=
1

c

∫
dzjB(z), (2.49)

Here B(z) = Hc exp(−z/δ) is the magnetic field inside the interface with δ =√
ξGLλL [63]. In terms of the normal-state resistivity, ρn, the density of transport

current can be expressed as j = E/ρn, where the electric field E = (V/c)B is
produced inside the interface moving at a speed V in the z direction. Thus, one
has

d2Fz
dxdy

=
V

ρnc2

∫
dzB2(z) ≡ ηV, with η =

H2
c

√
λLξGL

2ρnc2
. (2.50)

Note that both magnitudes depend on temperature via the London penetration
depth and the coherence length. As the crossover temperature is small compared
to the critical temperature of the type-I superconductor, it is fair to approximate
the surface energy density and the drag coefficient by their values at T = 0 due to
the asymptotic behaviour of λL and ξGL when T � Tc.

The first term in Eq. (2.47) is due to the elastic energy of the interface associ-
ated with its total area, the second term is due to the space-dependent potential
energy, V [x, y, Z(x, y, τ)], of the interface inside the imperfect crystal, and the
third term is the Caldeira-Leggett dissipative term [see Eq. (2.42)]. Same as for
the flux lines, the inertial mass of the interface is neglected. Its dynamics in a
type-I superconductor is dominated by friction. Pinning of the interface by a pla-
nar defect located in the XY plane is considered and the corresponding potential
is chosen in the form

Vp = pσ

∫
dx dy

(
1

2

Z2

a2
− 1

4

Z4

a4

)
, (2.51)

that is symmetric with respect to the sign of the local displacement Z. It will be
shown below that the effective potential becomes cubic on Z in the most interesting
case when the transport current is close to the depinning current. Here 2a is
roughly the width of the well that traps the interface and p . 1 is a dimensionless
constant describing the strength of the pinning. The interface separates the normal
state at Z < 0 from a superconducting state at Z > 0. Integration of Eq. (2.49)
for a given value j of the density of transport current gives d2Fz/(dxdy) = Hcδj/c,
so that the corresponding contribution to the potential can be obtained by writing
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Fz as −∇ZVL, yielding
d2VL(Z)

dxdy
= −Hcδ

c
jZ . (2.52)

The total potential, V (Z) = Vp(Z) + VL(Z) is

V (Z) = pσ

∫
dx dy

(
−j̄Z̃ +

Z̃2

2
− Z̃4

4

)
(2.53)

where we have introduced dimensionless Z̃ = Z/a and

j̄ =
aδHc

pcσ
j =

3π
√

2κa

pcHc

j. (2.54)

2.2.3 Effective action in the vicinity of the critical current

Measurable quantum depinning of the interface can occur only when the transport
current is close to the critical current jc that destroys the energy barrier. It
therefore makes sense to study the problem at j → jc. Maxima and minima of the
function

f(j̄, Z̃) = −j̄Z̃ +
Z̃2

2
− Z̃4

4
(2.55)

that enters Eq. (2.53) are given by the roots of the equation Z̃3 − Z̃ + j̄ = 0. At
j2 < 4/27 it has three real roots corresponding to one minimum and two maxima
of the potential on two sides of the pinning layer, whereas at j2 > 4/27 there
is one real root corresponding to the maximum of f . Consequently, the barrier
disappears at j2 = 4/27, providing the value of the critical current

j̄c =
2

3
√

3
, jc =

2pcHc

9π
√

6κa
. (2.56)

At j̄ = j̄c the minimum and the maximum of the potential combine into the
inflection point Z̃ = Z̃c given by the set of equations

0 = −Z̃3
c + Z̃c − j̄c, (2.57)

0 = −3Z̃2
c + 1,

that correspond to zero first and second derivatives of f . The value of Z̃c deduced
from these equations is 1/

√
3. It is convenient to introduce a small parameter

ε = 1− j/jc , (2.58)
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so that j = jc(1− ε) and

j̄ = j̄c(1− ε) =
2

3
√

3
(1− ε) . (2.59)

Let Z̃0(j̄) be the minimum of f (see Fig. 2.3) satisfying

Z̃3
0 − Z̃0 + j̄c(1− ε) = 0 . (2.60)

Consider Z̃ ′ = Z̃ − Z̃0. It is straightforward to find that the form of the potential
in the vicinity of Z̃0 is

f = f [Z̃0(j̄)] +
1

2
(1− 3Z̃2

0)Z̃ ′2 − Z̃0Z̃
′3 − Z̃ ′4

4
. (2.61)

At small ε one has Z̃0 → Z̃c = 1/
√

3, so that 1− 3Z̃2
0 in front of Z̃ ′2 in Eq. (2.61)

is small. The first term in Eq. (2.61) can be omitted as an unessential shift of
energy, while the last term proportional to Z̃ ′4 can be neglected due to its smallness
compared to other Z̃ ′-dependent terms. Consequently, one obtains the effective
potential

feff(j̄, Z̃) =
1

2
(1− 3Z̃2

0)Z̃2 − Z̃0Z̃
3 . (2.62)

The dependence of Z̃0 on ε can be obtained by substituting Z̃0(ε) = Z̃c[1 − β(ε)]

into Eq. (2.60), from which the identity β(ε) =
√

2ε/3 holds to the lowest order
on ε. Then 1− 3Z̃2

0 ≈ 2
√

2ε/3 and

feff(ε, Z̃) =

√
2ε

3
Z̃2 − Z̃3

√
3
. (2.63)

The height of the effective potential is
8

27

√
2

3
ε3/2 and the width is

√
2ε, see Fig.

2.3.
As follows from the equations of motion, smallness of ε results in |∇Z| ∼

pε � 1. This allows one to replace [1 + (∇Z)2]
1
2 in Eq. (2.47) with 1 + 1

2
(∇Z)2.

Introducing dimensionless variables

x0 =

(
2p
√
ε

3
√

3

ξGLH
2
c

ηa2

)
τ, (x1, x2) =

(√
2ε/3 p

)1/2 (x, y)

a
,

v = V (x, y, Z)/σp, u =
3√
2ε

(
Z/a− Z̃c(1−

√
2ε/3)

)
,

(2.64)
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Figure 2.3: Effective potential for ε = 0.15.

the WKB exponent of the transition rate becomes

B(T ) =

√
ε

3
√

6πp

ηa4

~

∮
dx0

∫
dx1 dx2

[
1

2
(∇u)2 + u2 − u3

3

+
1

2

∫
R

dx′0
[u(x0, x1, x2)− u(x′0, x1, x2)]2

(x0 − x′0)2

]
, (2.65)

where ∇ = (∂1, ∂2).

2.2.4 Instantons of the dissipative 2+1 model

Quantum depinning of the interface is given by the instanton (thermon) solution
of the Euler-Lagrange equations of motion of the 2+1 field theory described by
Eq. (2.65): ∑

µ=0,1,2

∂

∂xµ

[
δL

δ (∂u/∂xµ)

]
− ∂L
∂u

= 0 . (2.66)

This gives [see Appendix A]

∇2u− 2u+ u2 − 2

∫
R

dx′0
u(x0, x1, x2)− u(x′0, x1, x2)

(x0 − x′0)2
= 0 (2.67)
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with the boundary conditions

u(−Ω/2, x1, x2) = u(Ω/2, x1, x2) ∀(x1, x2) ∈ R2,

max
x0∈[−Ω/2,Ω/2]

u(x0, x1, x2) = u(0, x1, x2) ∀(x1, x2) ∈ R2,

(2.68)

that must be periodic on imaginary time with the period ~/(kBT ). The corre-
sponding period on x0 is

Ω =

(
2p
√
ε

3
√

3

ξGLH
2
c

ηa2

)
~
kBT

. (2.69)

This equation cannot be solved analytically, so we must proceed by means of
numerical methods.

Zero temperature

Application of the Fourier transform

û(~ω) =
1

(2π)3/2

∫
R3

u(~x)ei~ω·~x d3~x (2.70)

to equation (2.67) yields

û(~ω) =
(2π)−3/2

2 + 2π|ω0|+ ω2
1 + ω2

2

∫
R3

d3~ω′ û(~ω − ~ω′)û(~ω′), (2.71)

which is still an integral equation for û(~ω). The dimensionless effective action
(2.65) in terms of û(~ω) becomes

B(T ) [û] =

√
ε

3
√

6πp

ηa4

~

[∫
R3

d3~ω û(~ω)û(−~ω)
(1

2
(ω2

1 + ω2
2) + 1 + π|ω0|

)
−

1

3(2π)3/2

∫
R6

d3~ω d3~ω′û(~ω)û(~ω′)û(−~ω − ~ω′)

]
. (2.72)

Next, the field-theory extension of the algorithm introduced in Ref. [64] for
the problem of dissipative quantum tunneling of a particle will be used in the
computation of the instanton solution. It consists of the following steps:

1. Start with an initial aproximation û0(~ω). Define the operator

Ô : R× L2(R3)→ L2(R3) (2.73)

(λ, û(~ω)) 7→ λ

2 + 2π|ω0|+ ω2
1 + ω2

2

∫
R3

d3~ω′û(~ω − ~ω′)û(~ω′)
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2. Let û1(~ω) = Ô(λ0, û0(~ω)) for an initial λ0 ∈ R.

3. Calculate λ1 = λ0/ξ
2 with ξ = û1(~ω=0)

û0(~ω=0)
.

4. Find û2(~ω) = Ô(λ1, û1(~ω)).

5. Repeat steps (2) − (4) until the successive difference satisfies a preset con-
vergence criterion.

The output is the pair (λn, ûn(~ω)). Finally, a rescaling of ûn by a factor (2π)3/2λn
is applied to obtain the instanton solution.

Non-zero temperature

At T 6= 0 the period of the thermon solution is finite, given by Eq. (2.69). Hence,
a solution of the type

u(x0, x1, x2) =
∑
n∈Z

eiω0,nx0un(x1, x2) (2.74)

is considered, where ω0,n = 2πn/Ω. Introducing into (2.67) the above functional
dependence and applying a 2D Fourier transform one obtains

ûn(~ω) =
1

2 + 2π|ω0,n|+ ~ω2

(
1

2π

∑
p∈Z

∫
R2

d2~ω′ûn−p(~ω − ~ω′)ûp(~ω′)

)
, (2.75)

which is the integral equation for ûn with ~ω = (ω1, ω2). In terms of
{
ûn(~ω)

}
n
the

WKB exponent of the transition rate becomes

B(T )
[{
û
}
n

]
=

√
ε

3
√

6πp

ηa4

~

[∑
n∈Z

∫
R2

d2~ω ûn(~ω)û−n(−~ω)

(
~ω2

2
+ 1 + π|ω0,n|

)

− 1

6π

∑
n,m∈Z

∫
R4

d2~ω d2~ω′ûn(~ω)ûm(~ω′)û−n−m(−~ω − ~ω′)

]
Ω. (2.76)

The numerical algorithm used to calculate the thermon solution is analogous to
the one used in the T = 0 case, which is a field-theory extension of the Waxman-
Leggett algorithm [65].

Therefore, both procedures lead to the formula

B(T ) =
ηa4
√
ε

p~
I(T ), (2.77)
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Figure 2.4: Temperature dependence of the depinning exponent: I(T ) versus Ω at
zero field.

which is valid in the whole range of temperatures. The value of the integral depends
on the value of T in comparison with the temperature, Tcr, of the crossover from
quantum tunneling to thermal activation. Figure 2.4 shows the dependence of
I(T ) on the period Ω. At Ω� Ωcr (T � Tcr) the numerical value of I(T ) is very
close to I(0), while at Ω � Ωcr (T � Tcr) one has the dependence I(T ) ∝ Ω. In
the latter case, the Boltzmann exponent B(T ) = V0/(kBT ) is recovered with V0

being the energy barrier for depinning. Nevertheless, as it will be shown below,
the crossover temperature Tcr can be computed exactly.

2.2.5 Crossover temperature

The crossover temperature can be computed by means of theory of phase tran-
sitions [56, 58, 66]. Above Tcr the solution minimizing the instanton action is a
function u(x0, x1, x2) = ū0(x1, x2) that does not depend on x0. Just below Tcr, the
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instanton solution can be split into the sum of ū0 and a term that depends on x0,

u(x0, x1, x2) = ū0(x1, x2) + u1(x1, x2) cos

(
2π

Ω
x0

)
. (2.78)

This identity is obtained by expanding u(x0, x1, x2) over the complete set of peri-
odic functions {cos[(2πn/Ω)x0]}n∈Z+ and by using the fact that only the first term
of the expansion survives when temperature approaches Tcr from below. The value
of Tcr is independent of the choice of the basis of periodic functions [56, 58, 66].

The instanton action is proportional to∫
R2

dx1 dx2Φ(x1, x2;u,∇u) , (2.79)

where Φ(x1, x2;u,∇u) is the spatial action density. Using the expansion of u
introduced above, one obtains

Φ(x1, x2;u1,∇u1) = Ω

[
1

2
(∇ū0)2 + v(ū0)

]
+

Ω

4
(∇u1)2 + Λu2

1 +O(4) (2.80)

with v(u) = u2 − u3/3 and

Λ =
Ω

4
v′′(ū0) + π2 . (2.81)

If Λ > 0, the only (u1,∇u1) minimizing Φ is u1 ≡ 0, so the crossover temperature
is defined by the equation

min
~x∈R2

Λ = min
~x∈R2

Ωcr

4
v′′[ū0(x1, x2)] + π2 = 0 . (2.82)

Notice that this minimum corresponds to the minimum of v′′[ū0(x1, x2))]. The
equation of motion for ū0 is

∇2ū0 − 2ū0 + ū2
0 = 0 . (2.83)

The solution corresponding to the minimum is spherically symmetric,

ū0 = ū0

(
r =

√
x2

1 + x2
2

)
, (2.84)

satisfying boundary conditions: ū0 → 0 at r → ∞ and ū0(0) = 3, which is the
width of the potential. Consequently,

min
~x∈R2

v′′[ū0(x1, x2)] = min
ū0∈[0,3]

v′′(ū0)

= min
ū0∈[0,3]

2(1− ū0) = −4 . (2.85)
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Then, according to equations (2.81) and (2.82), the crossover temperature is de-
termined by the equation Ω(Tcr) = π2, which gives

Tcr =
2p
√
ε

3
√

3π2

~ξGLH
2
c

kBηa2
=

4p
√
ε

3π2
√

3κ

~ρnc2

kBa2
. (2.86)

2.2.6 Discussion

To guarantee the feasibility of the proposed experiment on quantum depinning
of the interface from a planar defect in a type-I superconductor, two conditions
must be satisfied: Firstly the dimensionless effective action of Eq. (2.77), which
is the WKB exponent of the transition rate, should not exceed 30 − 40 in order
for the tunneling to occur on a reasonable time scale. Secondly, the crossover
temperature determined by Eq. (2.86) better be not much less than 1 K. For a
known superconductor, the two equations contain three parameters: the parameter
p ≤ 1 describing the strength of pinning, the parameter a describing the width
of the pinning layer, and the parameter ε that controls how close the transport
current should be to the depinning current. Therefore, one has to investigate how
practical is the range of values of these parameters that can provide conditions
B ∼ 30 and Tcr ∼ 1 K.

Consider lead as the prototypical example. The values of λL and ξGL in lead
are 37 nm and 83 nm, respectively, giving κ = λL/ξGL = 0.45. The critical field
strength is Hc ≈ 802 Oe. The elastic energy of the interface is σ ≈ 0.4 erg/cm2.
The normal state resistivity in the K range is 5×10−11 Ω ·m = 5.6×10−21 s, while
the drag coefficient is η ≈ 0.35 erg·s/cm4. Then equations (2.77) and (2.86) with
conditions B ∼ 30 and Tcr ∼ 1 K give a/p1/3 ∼ 5.1 nm and a

√
ε ∼ 0.3 nm. Note

that these relations are specific for a two-dimensional elastic manifold pinned by
a two-dimensional layer. In principle one could study pinning of the interface by
a one-dimensional line of defects or even by a point defect. However, such choices
would be less practical due to very small pinning barriers and, thus, strong thermal
effects, even in the absence of the transport current.

If the pinning layer is not compatible with superconductivity, that is, it favors
the normal phase, then at 2a < ξGL one should expect p ∼ 2a/ξGL, giving a ∼ 1.79
nm and ε ∼ 0.03. This means that observation of quantum escape of the interface
from a pinning layer of thickness 2a ∼ 3.6 nm in a superconducting Pb sample at
T ∼ 1 K would require control of the transport current within three percent of
the critical depinning current. All the above parameters are within experimental
reach.
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The model presented here is a theoretical extension of the phenomenological
model introduced in Sec. 1.4: The expressions for the WKB exponent and the
crossover temperature [see Eqs. (4) and (8) respectively in Ref. [28]] can be
obtained from Eqs. (2.77) and (2.86) up to numerical factors with account of the
identifications a ∼ ā and p ∼ (a/L)2, where L and ā are respectively the lateral size
and the height of the bump in the phenomenological model. The estimate of the
lateral size is L ∼ ξGL according to Chudnovsky’s model, so that the corresponding
value of the strength of the pinning turns out to be p ∼ 4 · 10−4. On the other
hand, Ref. [28] provides the value ā ∼ 1 nm, which is compatible with condition
a ∼ ā and the value of a obtained via the argument of feasibility.

To conclude, notice that the theoretical model of quantum tunneling of N-S
interfaces presented in Sec. 2.2 is valid at zero magnetic field. Its extension to
arbitrary applied magnetic field strengths is beyond the scope of this manuscript,
but a qualitative description of the effect of the magnetic field strength on the
transition rate can be provided. This effect is twofold: First, the higher the mag-
netic field strength is the thinner the superconducting regions in the intermediate
state become [see Fig. 1.8c with H ′c ' 0]. This translates into the number of N-S
interfaces increasing as the magnetic field strength rises (up to a certain value)
and, thus, the formation of bumps becoming more probable. Equivalently, the
prefactor A(T ) of the transition rate is multiplied by an increasing −up to a cer-
tain reduced magnetic field strength− function N(h) accounting for the number
of N-S interfaces. Second, the higher the magnetic field strength is the more mag-
netic flux lines must fit into the normal regions of the flat disk. As a result, a
magnetic tension force is induced on the N-S interfaces that weakens the strength
of the pinning potential by the planar defect. Therefore, the depth of the effective
energy barrier v(x1, x2, u, h) appearing in the WKB exponent B(T ) decreases as
the reduced field strength h increases.
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Chapter 3

Magnetic vortex state

3.1 Introduction

Magnetic systems at the nanoscale are crucial within condensed matter physics
because a direct competition among interactions of pure quantum origin (such as
the exchange interaction, which results from the electrostatic interaction and the
overlap of one-electron orbitals), long-range interactions (for instance, magneto-
static/dipolar forces) and interactions with external fields arises, so that within
this length scale their physical properties differ remarkably from those of individual
systems (atoms, molecules, etc.) and bulk materials. Recent advances in optical
and electron-beam lithography offer possibility to fabricate arrays of nano- and
micro-size magnetic structures with controlled magnetic properties. For reasons
such as these, nano-scaled magnetic systems have drawn the attention of physicists
for the last twenty years and have been intensively studied.

Bulk magnetic systems tend to split into magnetic domains at zero field in
order to minimize their total energy, in particular the magnetostatic contribution.
It is well known that the thickness of the resulting domain walls, inside which
spins rotate from one domain to the other, is given by the exchange length of
the ferromagnetic material, ∆0 ∼ (Eex/Emag)

1/2a, where Eex and Emag are the
exchange and magnetostatic contributions to the total energy, respectively, and a
is the lattice spacing. Therefore, magnetic systems of size smaller than the ex-
change length exhibit the single domain (SD) as their ground state. In the case of
permalloy (Py), which is the prototypical soft ferromagnetic material with negli-
gibly small crystal-field anisotropy used in the fabrication of magnetic structures
with the vortex state, the exchange length is about 10 nm. The critical size below
which the specimen becomes SD depends on the balance between the exchange
and magnetostatic energies, the type of the crystal-field anisotropy and the shape
of the system.

67
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Among such magnetic structures, mesoscopic circular disks made of soft ferro-
magnetic materials should be remarked because of their unusual magnetic prop-
erties and potential for technological and biomedical applications: (ultra-)high-
density magnetic information storage [67, 68], ultrasmall magnetic field sensors
[69], biomolecular carriers [70] and targeted cancer-cell destruction [71], to name a
few. From this point forward the geometry of the structures will be that of a cylin-
der, characterized by the pair (L, R) −thickness and radius, respectively. Due to
geometric constains on the spin field, (sub)micron-size circular disks exhibit a rich
landscape of magnetic equilibrium configurations. A deep and thorough theoreti-
cal study of the magnetic ground states for the cylindrical geometry was conducted
by J. Ha and coworkers using micromagnetic principles and finite-element meth-
ods [72]: These authors studied the remnant states of disks made of Py based
on the parameters (L,R). These remnant states were reached by first saturating
magnetically the specimen using a large external magnetic field and then reducing
it gradually to zero.

The resulting ground states can be classified into two categories, one consisting
of the onion and vortex states and the buckle states defining the other one. Unifor-
mity of the spin field is favored in the onion states due to the exchange interaction
being the dominant one. Two mechanisms contribute to the formation of this kind
of state, namely the flowering (the opening/closing of the magnetization along the
axial direction) and the onionization (formation of an onion pattern in the plane
of the disk, see Fig. 3.1a) processes. Twisted onion states belong to this category
too (see Fig. 3.1b). The authors conclude that, as a rule of thumb, stability of
the SD is guaranteed if 2R < ∆0; otherwise the onion state develops. The vortex
state (VS) is heavily dictated by the magnetostatic interaction and is characterized
by the curling of the magnetization field, which winds either in (in-plane vortex)
or perpendicular to (out-of-plane vortex) the plane of the disk at the vortex core
(see Figs. 3.1c and 3.1d, respectively). This configuration of the spin field leaves
virtually no magnetic charges.

The second category consists of the buckle states, which result from a balance
between the exchange and the magnetostatic interactions so that the magnetization
field in the disk plane buckles. These states can be classified according to the
number of ’buckles’ in the in-plane magnetization: The C state corresponds to the
first-order buckling, the S state to the second-order buckling, etc. (see Figs. 3.1e
and 3.1f). Fig. 3.2 shows the diagram of remnant states obtained by the authors,
from which it is concluded that the aspect ratio β = L/R does not determine
the kind of magnetic pattern developed within the disk. On the contrary, the
radius of the disk determines whether some in-plane buckling is sustainable and
the thickness dictates whether a VS has lower energy than an onion state.

If not stated otherwise, room temperature will be considered from this point
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Figure 3.1: Micromagnetic study of ground states in permaloy circular disks. (a)
Top view of the x-component of the magnetization for an onion state. Perspec-
tive views of (b) a twisted onion state and (c) an in-plane vortex state. (d) Top
view of the z-component of the magnetization for an out-of-plane vortex state. (e)
Perspective view of a C state and (f) top view of the x-component of the mag-
netization for a S state. Color coating reflects the variation of the corresponding
component of the magnetization. The figure is adapted from Ref. [72].
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Figure 3.2: (L,R)-diagram of remnant states. Dashed lines are the iso-aspect-ratio
lines. The true remnant states corresponding to red-coated data are onion states,
but these ones collapse into the indicated states under small perturbations (thermal
fluctuations and small fields with reversed polarity). The figure is extracted from
Ref. [72].
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forward.

3.1.1 Experimental results

One of the first experimental observations of the VS was conducted by R. Cowburn
and coworkers, who studied arrays of submicron circular disks made of supermalloy
(Ni80Fe14Mo5) and fabricated by high-resolution electron beam lithography [73].
The ranges of their thickness and diameter were [6, 15] nm and [55, 500] nm, re-
spectively. The interdot distance, defined as the spacing among the submicron
circular dots, was set to be at least twice their radius, which ensures a negligible
interdot magnetostatic interaction. Therefore, the magnetic properties of a single
disk can be derived from the averaged magnetic properties measured on the whole
array. According to the diagram shown in Fig. 3.2, the expected magnetic equi-
librium configurations would be either the onion states/SD or the out-of-plane
VS (referred to as VS from this point forward). Hysteresis loops measured by
magneto-optical methods were used to determine the ground state of the circu-
lar disks, with the external magnetic field H being applied in the plane of the
disks. The prototypical hysteresis loop for the VS was systematically observed,
see Fig. 3.3. It is an antisymmetic curve as a function of the external magnetic
field. Its descending branch is characterized by the magnetic moment retaining its
saturation value (corresponding to a SD state) when the applied magnetic field is
reduced from its (positive) saturation value to a critical field Hn > 0, at which
the magnetic moment drops sharply. The dependence of the magnetic moment on
the external magnetic field is linear in the range [0, Hn], with m(H = 0) ' 0 in
the absence of pinning. On the other hand, the ascending branch for positive val-
ues of H is characterized by the magnetic moment being linear with the external
magnetic field from zero to a second critical field Han > 0, at which it increases
sharply up to its saturation value. The low-field linear regime of these hysteresis
loops is reversible.

Micromagnetic simulations assuming the presence of a VS within the circular
disks led to reproduce almost identically the half loop just described. The vortex
core (VC) is defined as the small area where the very weak uncompensated mag-
netic moment of the disk sticks out. From these simulations the authors concluded
that the vortex structure is deformed when the magnetic field increases within the
linear regime, so that the VC is displaced from the center of the disk towards the
outer region, where it becomes unstable and the VS is anihilated at Han (anni-
hilation field). Furthermore, the displacement of the VC is perpendicular to the
direction of the applied magnetic field. On the other hand, Hn (nucleation field)
determines whether the SD state becomes unstable and a transition towards the VS
occurs. The experimental values for the nucleation and annihilation fields can be
recovered in these simulations if thermal fluctuations are taken into consideration.



72 3 – Magnetic vortex state

0 200 400 600 800 1000 1200 1400 1600
0.00
0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72
0.80
0.88
0.96
1.04
1.12
1.20
1.28

 

 

M
 (e

m
u)

H (Oe)

Figure 3.3: Half hysteresis loop of the VS for a Py (Ni81Fe19) disk with thickness
L = 95 nm and radius R = 1.5 µm.
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First direct observations of the vortex state were carried out by T. Shinjo
et al. using magnetic force microscopy (MFM) [74] and by M. Schneider and
coworkers using Lorentz transmission electron microscopy (LTEM) [75], see Fig.
3.4. Samples were made of Py (Ni80Fe20) and had the same thickness but different
radius. The MFM technique allows to observe the presence of the VC in the
form of a clearly contrasted spot (see Fig. 3.4a). Whether the contrast is dark
or bright depends on the direction of the out-of-plane magnetization (referred to
as the vortex polarization), which appears to be independent of the application
of an in-plane external magnetic field (within the linear regime) and the vortex
chirality -clockwise (CW) or counter-clockwise (CCW). By means of the LTEM
technique one is able to observe the sense of rotation of the VS, see Fig. 3.4b,
where dark and bright spots indicate CW and CCW chirality of the spin field,
respectively. Schenider et al. concluded that changes in the chirality of the VS are
more probable with the reversal of the magnetic field between saturation values
before reaching the remnant state (field history HS → 0 → −HS → 0, with HS

being the saturation field). Furthermore, measurements of the annihilation field
by the latter technique led to its lack of correlation to the disk geometry (radius)
for large diameters.

Figure 3.4: MFM (left) and LTEM (right) images of the VS. Bright (dark) contrast
at the central spot of the disks indicates polarization p = ±1 of the VC in the
case of the MFM image and CCW (CW) chirality in the case of the LTEM image.
This figure has been adapted from Refs. [74, 75].

.

Lack of correlation between the vortex chirality and polarization can be also
observed by means of MFM in the case of elliptical disks [76]. In the same work,
Okuno and coworkers observed that the dependence of the magnetic reversal field
(along the axis of the disk), Hr, on the radius of circular dots was small and
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concluded that this is due to the fact that the magnetization reversal of the VC
does not depend on the outer spin-field distribution if the VC remains deep inside
the disk. Hysteresis loops were also measured by means of SQUID magnetometry:
For the in-plane configuration of the applied magnetic field the hysteresis loops
corresponded to the prototypical ones depicted in Fig. 3.3. In the case of the
external magnetic field being swept perpendicularly to the disk plane, the authors
observed a smooth increase of the magnetic moment to the saturated value, with
no sharp variation corresponding to the VC magnetization switching around Hr.
This is due to the fact that, magnetically, the VC is a very small object.

M. Grimsditch and coworkers used the difracted magneto-optical Kerr effect
(DMOKE) technique to investigate the high-order hysteresis loops of a square
array of Py (Ni81Fe19) disks with (L,R) = (60, 800) nm and period d = 1.6 µm
[77]. From the fitting of the measured high-order hysteresis loops to the theoretical
shapes calculated with account of the form factors associated with the presence of
a VS within the dots, the authors concluded that magnetic vortices are nucleated
with a preferential chirality in the majority of the disks (coherent chirality) due
to the presence of asymmetries in the dots shape. In Ref. [78] the authors studied
the effect of the interdot magnetostatic interaction on the magnetic properties of
arrays of circular dots with the VS. Disks of Py (Ni81Fe19) with thickness L = 80
nm and radii R ∈ {0.2, 0.3, 0.4} µm were considered. Rectangular arrays of these
disks (with a fixed value of R) were fabricated, with the interdot distance along the
Y axis being set to ζy = 2R and being variable along the X axis, ζx ∈ [30, 800] nm.
The direction of the external magnetic field was set to the X axis. V. Novosad et
al. observed that for a fixed interdot distance ζx both nucleation and annihilation
fields are decreasing functions of the radius of the disk, whereas for a fixed radius
both nucleation and annihilation fields are increasing functions of the interdot
distance. On the other hand, the more packed the dots are within the array, the
bigger its initial susceptibility is. The values of these three magnitudes tend to a
plateau for ζx big enough. The authors also noticed that the shape of the hysteresis
loops was sensitive to the angle between the lattice orientation and the applied
magnetic field. In brief, magnetization reversal in arrays of ferromagnetic circular
disks is controlled by magnetostatic interaction in the regime of small interdot
distances.

3.1.2 Theoretical description

For an arbitrary geometry of the magnetic structure -defined by a volume V - the
static magnetization-field distribution of the ground state, ~M(~r), can be derived
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by functional minimization of the total energy

E[~m] =

∫
V

d3~r

{
A

2

∑
i=x,y,z

[∇mi(~r)]
2 −MS

(
~Hd[~m] + ~H

)
· ~m(~r)

}
(3.1)

corresponding to the sum of the exchange, magnetostatic and Zeeman contribu-
tions, respectively. Magnetocrystalline anisotropy is neglected for the time being.
~m = ~M/MS is the normalized magnetization field, ~H is the external magnetic field,
~Hd is the demagnetizing field associated with the magnetization distribution, and
MS and A are the saturation magnetization and exchange stiffness constant of the
ferromagnetic material, respectively.

Minimization of the above functional should be done with the constraint |~m(~r)| =
1 within the volume of the system, which leads to the magnetization field being
naturally mapped onto the complex plane by means of the stereographic projec-
tion,

mx + imy =
2w

1 + |w|2
, mz =

1− |w|2

1 + |w|2
, (3.2)

where w(~r) ∈ C is a complex function. Restricting oneself to the case of a two-
dimensional flat geometry in the XY plane, the stereographic parametrization
becomes a mapping w : C → S2, that is, w(z, z̄) is a function of the complex
variable z = x+ iy. Notice that S2 represents the three-dimensional sphere. In so
doing, the functional for the exchange interaction becomes

Eex[~m] = AL

∫
R2

dx dy
4

(1 + |w|2)2

(
∂w

∂z

∂w̄

∂z̄
+
∂w

∂z̄

∂w̄

∂z

)
, (3.3)

where L is the thickness of the flat structure and independence on the coordinate
z has been assumed. The topological charge (or vorticity) is defined as the degree
of the mapping w : C→ S2,

Q =
1

4π

∫
S2

~m · d2~S, (3.4)

=
1

π

∫
R2

dx dy
1

(1 + |w|2)2

(
∂w

∂z

∂w̄

∂z̄
− ∂w

∂z̄

∂w̄

∂z

)
,

where surface integration is done over the three-dimensional sphere. Notice that
Q is a topological invariant of integer nature. Minimization of the functional (3.3)
[see Appendix A] leads to the complex partial differential equation

∂

∂z

(
∂w

∂z̄

)
=

2w̄

1 + |w|2
∂w

∂z

∂w

∂z̄
, (3.5)
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whose solutions are the extrema of the functional (3.3) and therefore (un)stable
magnetic states of the exchange interaction. Holomorphicity of w is a sufficient
condition to satisfy Eq. (3.5) because of the Cauchy-Riemann equations [∂w/∂z̄ =
0]. A. Belavin and A. Polyakov found the only family of solutions of the unbounded
two-dimensional case with finite exchange energy, which are known as the Belavin-
Polyakov (BP) solitons [79]. These solutions are defined by a rational function w of
the complex variable z, so that zeros of the numerator (denominator) correspond to
the centers of the solitons with positive (negative) topological charge and |mz| = 1
for |z| → ∞. D. Gross found another family of solutions of Eq. (3.5), the merons,
defined by a parametrization of the form w(z, z̄) = f(z)/|f(z)| with f being an
arbitrary holomorphic function [80]. These solutions exhibit zero out-of-plane
component of the magnetization field everywhere, mz ≡ 0, and their exchange
energy density diverges at those points where f(z) = 0. Therefore, BP solitons
(merons) are (un)stable magnetic configurations of the infinite planar ferromagnet.

A pseudo meron function can be introduced to avoid the divergences of the
exchange energy density present in the pure meron case: On the contour |f | = 1
the pure meron solution overlaps w(z) = f(z) continuously for any holomorphic
function f , so that the complex function

w(z, z̄) =

{
f(z) |f(z)| ≤ 1
f(z)
|f(z)| |f(z)| > 1

(3.6)

turns out to be continuous. Notice that in the domain {z ∈ C, |f(z)| ≤ 1} the mag-
netic structure is BP-soliton-like, whereas outside shows a meron-like behaviour.
A realistic vortex-like magnetization-field distribution can be obtained by means
of the holomorphic function

f(z) = i

(
z − z0

λ

)n
, (3.7)

which represents a VS centered at the point z0 of the flat space and where λ is an
arbitrary real number characterizing the scale (size) of the soliton-like part (the
vortex core) and n is an arbitrary integer number. The corresponding vorticity is
Q = n, so that positive values of n correspond to magnetic vortices.

The case n = 1 corresponds to the prototypical VS described in the previous
subsections and, for a flat (finite) disk geometry and z0 = 0, it satisfies the bound-

ary conditions ~m · ~n =
∂ ~m

∂~n
≡ 0 on the lateral side of the circular dot. N. Usov

and S. Peschany investigated the stability of this particular solution and proved
that, even though the exchange energy associated to this family of solutions is in-
variant under translations z 7→ z + z0 and scaling transformations z 7→ λz (which
implies that there is no preferential choice of either center or scale), this magnetic
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structure stabilizes with respect to both VC displacement and VC size due to the
magnetostatic interaction [81, 82]. This means that the equilibrium values of the
parameters (z0, λ) can be obtained by minimizing the total energy functional (3.1).
Family of solutions corresponding to n = Q = 1 is referred to as the rigid vortex
model (RVM).

Composition of solutions of Eq. (3.5) with holomorphic functions also satisfies
the same Euler-Lagrange equation. Therefore, solutions of the form (3.7) can be
generalized to other shapes by means of conformal mappings, for which the choice
of a complex function f based solely on symmetry arguments is cumbersome.
The forthcoming theoretical development becomes simplified over the unit disk
D = D(0, 1), so that an arbitrary circular disk of radius R, D(0, R), is mapped
onto D via the (conformal) scaling z 7→ z/R. From this point forward, complex
variables and length scales are normalized according to this transformation. The
conformal map z 7→ (z− z0)/(1− z0z) of the unit disk to itself yields the following
family of solutions, referred to as the two-vortex model (2VM):

w(z, z̄) =

{
i
λ
z−z0
1−z0z |z − z0| ≤ λ|1− z0z|

i (z−z0)|1−z0z|
(1−z0z)|z−z0| |z − z0| > λ|1− z0z|.

(3.8)

The conformal mapping used preserves the boundary condition
∂ ~m

∂~n

∣∣∣
∂D
≡ 0 but

magnetic charges on the side of the disk, ~m · ~n|∂D, appear. One can always rotate
the frame of axis so that the coordinate z0 of the vortex center becomes a real num-
ber. The total energy (3.1) can be calculated with account of Eqs. (3.2),(3.6),(3.7)
for both the RVM and 2VM [83–85]:

ERVM =
π

2
AL
[
ln
(
1− z2

0

)
− 2 ln (λ)

]
+ (2πMS)2(Rλ)3 [G(0)−G(β/λ)]

+2M2
SR

2L

[
z2

0

∑
µ>0

Fµ(β)I2
µ(z0)

]
+ EZ , (3.9)

E2VM = πAL [2− ln (λ)] + (2πMS)2(RRλ)
3 [G(0)−G(β/Rλ)] + (2πMS)2 ×

R2L

2

[
z2

0

(
z2

0 − 2
)2
F1(β) +

(
1− z2

0

)2
∑
µ≥2

z2µ
0 Fµ(β)

]
+ EZ , (3.10)

where the constants depending solely on the disk geometry (that is, not depending
on the parameters of the model) have been omitted. The contributions to the total
energy in the above expressions are the exchange energy, the magnetostatic energy
of the magnetic charges on the faces and side of the disk, and the Zeeman energy,
respectively. Notice that Rλ = λ(1 − z2

0)/(1 − λ2z2
0) and that the magnetostatic
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function G(x) is defined as

G(x) =

∫ 1

0

∫ 1

0

∫ 2π

0

∫ 2π

0

dρ1 dρ2 dφ1 dφ2 ρ1ρ2σ(ρ1, φ1)σ(ρ2, φ2)

(2π)2
√
x2 + ρ2

1 + ρ2
2 − 2ρ1ρ2 cos(φ1 − φ2)

, (3.11)

where σ = ~m · ~n|face = mz is the magnetic charge density on the faces of the
disk, which depends on the model considered. The functions Fµ(β) and Iµ(z) are
defined as

Fµ(β) =

∫ ∞
0

dt
f(βt)

t
J2
µ(t), f(x) = 1− 1− e−x

x
(3.12)

Iµ(z) = 2

∫ π

0

dφ
sinφ sin(µφ)√

1− 2z cosφ+ z2
, (3.13)

where Jµ(x) is the Bessel function of the first kind and order µ. Suppose that
the magnetic field is applied along the Y axis, ~H = Hêy. Thus, the Zeeman
energy term turns out to be EZ = −HMSπR

2L〈my〉. Within the regime of small
displacements of the VC, z0 � 1, the average value of the Y -component of the
normalized magnetization field is given by

〈my〉RVM ' z0 +O(z3
0), (3.14)

〈my〉2VM ' 4π

144

[
15z4

0 + 34z2
0 − 193

]
z0. (3.15)

Notice that the expression for 〈my〉 within the RVM is independent of the orien-
tation of the external magnetic field.

RVM describes well the vortex structure in the regimes of small VC displace-
ment (z0 � 1) and the vortex center being outside the dot (z0 � 1). For small
displacements of the VC, expression (3.9) for the total energy can be approximated
as

E|RMV ' E[s = 0] +M2
SπR

2L

[
a(β,R)z2

0 −
H

MS

z0

]
+O(z4

0), (3.16)

a(β,R) = 2πF1(β)− 1

2

(
∆0

R

)2

,

where a(β,R) must be postive defined to stabilize the vortex within the disk. The
exchange length is defined as ∆0 =

√
A/M2

S. Minimization with respect to the
parameter z0 yields the equilibrium displacement of the vortex center

〈z0〉|eq =
H

2a(β,R)MS

, (3.17)
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so that the average value of magnetization turns out to be [see Eq. (3.14)] 〈 ~M〉|eq =

χiso ~H, where χiso =
1

2a(β,R)
is the initial in-plane susceptibility of the isolated

circular disk. The nucleation field is defined as the maximal magnetic field at which
the initial SD state becomes unstable. The corresponding process of nucleation
can be modeled by means of the RVM considering a vortex structure (3.7) with
its center z0 = 1/ sinφ0 located outside the disk (φ0 = 0 corresponds to the SD
magnetic structure). Recalculating the total energy of the system and studying its
stability with respect to the angle φ0, one obtains a critical magnetic field below
which instability of the SD state arises,

Hn,iso(β,R) = 4πMS

[
F1(β)− F2(β)− 1

π

(
∆0

R

)2
]
. (3.18)

Calculation of the annihilation field can be done within the 2VM: In Ref. [85]
the assumption of z0λ being small −which is justified by numerical calculations−
leads to the parameters of the total energy becoming decoupled if one considers
the new pair (z0, q), with q = λ (1− z2

0) /β. Therefore, the total energy splits into
the sum E[z0, q] = E1[z0, H] + E2[q] and the term depending solely on the VC
displacement is given by

E1[z0, H]

M2
SπR

2L
= 2π

[
z2

0

(
z2

0 − 2
)2
F1(β) +

(
1− z2

0

)2
∑
µ≥2

z2µ
0 Fµ(β)

]

− H

MS

〈my〉+

(
∆0

R

)2

ln
(
1− z2

0

)
. (3.19)

Instability of the VS arises at the annihilation field, where the displacement of the
VC minimizing the energy (3.19) becomes a saddle point. That is,

0 =
∂E1[〈z0〉eq, Han]

∂z0

, (3.20)

0 =
∂2E1[〈z0〉eq, Han]

∂z2
0

.

This system of equations must be solved numerically and the resulting values of the
annihilation field are plotted in Fig. 3.5. Theoretical predictions of the initial in-
plane susceptibility and of the nucleation and annihilation fields agree reasonably
well with the corresponding experimental values of these magnitudes, see Fig. 3.5.

The above results have been derived for an isolated disk. Generalization to the
case of an array of dots, where interdot magnetostatic interactions play a significant
role in the magnetization reversal processes, is straightforward [84]. Let again ζx
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Figure 3.5: Initial in-plane susceptibility (left) and annihilation field (right) as a
function of the aspect ratio. Solid lines and points represent theoretical depen-
dences and experimental data, respectively. This figure has been adapted from
Refs. [83, 85].

and ζy denote the interdot distances along the X and Y axes, respectively. Let
dx = 2R + ζx and dy = 2R + ζy denote the unit cell sizes. The frame of axes is
chosen so that dx ≤ dy. Only the magnetostatic energy is affected by the interdot
distance −exchange and Zeeman energies are single-disk quantities−, which for
small displacements z0 and within the RVM becomes

Emag[z0] = Emag[0] + 2(πRMS)2LΛ(β, δ, φH)z2
0 +O(z4

0), (3.21)

Λ(β, δ, φH) =
4π

dxdy

∑
~k

f(kL)
J2

1 (kR)

k2
cos2(φ~k − φH),

where summation runs over vectors ~k of the reciprocal lattice, δ = dx/R and φ~k
(φH) is the polar angle for the vector ~k ( ~H). Therefore, the expression for the total
energy of an array of identical circular disks in the regime of small displacement
of the VC is given by

E ' E[s = 0] +M2
SπR

2L

[
A(β, δ, R, φH)z2

0 −
H

MS

z0

]
+O(z4

0), (3.22)

A(β, δ, R, φH) = 2πΛ(β, δ, φH)− 1

2

(
∆0

R

)2

,

so that the theoretical expression for the initial in-plane susceptibility of the array,
χarray, is analogous to the one derived for the single-disk case, but substituting
a(β,R) with A(β, δ, R, φH): χarray = 1

2A(β,δ,R,φH)
. The nucleation field for the array
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of dots can be derived along the lines of the isolated-disk case, resulting in the
expression

Hn,array(β, δ, R, φH) = 4πMS

[
F (β, δ, φH)− 1

π

(
∆0

R

)2
]
, (3.23)

F (β, δ, φH) = − 8π

dxdy

∑
~k

f(kL)
cos2(φ~k − φH)

k2
[C1(kR) cos[2(φ~k − φH)] + C2(kR)],

C1(x) = 3J1(x)J3(x)− J2
2 (x), C2(x) = −J1(x)J3(x)− J0(x)J2(x).

Once again, these formulas explain reasonably well the experimental results with
regard to the effect of the interdot spacing on the magnetic properties of circular
disks. Numerical calculations of the above magnitudes lead to conclude that the
nucleation field decreases significantly when the interdot distance reduces, whereas
χarray increases.

A different approach can be taken to study the topology of the VS, not based
on variational principles. A. Aharoni investigated analitically the curling of the
magnetization field in flat circular disks, based on the ansatz mρ = 0,mφ = f(ρ)

and mz =
√

1−m2
φ for the magnetization in cylindrical coordinates (ρ, φ, z) [86].

N. Usov and S. Peschany showed that the substitution f(ρ)→ sin Θ(ρ) yields the
relation tan Θ(ρ) = ρ/b, where b is the radius of the VC [81, 82]. Notice that
Θ(ρ) = π/2 (mz = 0) outside the vortex core. With account of the expansion

~M(Θ,Φ) = MS(cos Φ sin Θ, sin Φ sin Θ, cos Θ) (3.24)

of the fixed-length magnetization vector in spherical coordinates, the following
asymptotic expansion [87] of the static magnetization field for the VS will be used
in the forthcoming calculations:

Φ0(x, y) = Q tan−1(y − yv/x− xv) + φ0,

cos Θ0(r̃) =

 p

(
1− C1

(
r̃

∆0

)2
)

r̃ � ∆0

C2

(
∆0

r̃

)1/2
exp(−r̃/∆0) r̃ � ∆0

(3.25)

where (xv, yv) are the coordinates of the VC center in the XY plane and r̃ rep-
resents the distance from it. φ0 = ±π/2 corresponds to chirality C = ±1 of the
magnetization vector in the dot plane, respectively, and C1, C2 are constants that
can be obtained by imposing the smoothness condition on cos Θ0 at r̃ = ∆0 up to
its first derivative. The corresponding values are C1 = 3

7
and C2 = 4

7
pe, where e

denotes Euler’s number. It is important to remark that a magnetic vortex of fixed
vorticity (in the present case, Q = 1) is defined topologically by its polarization p
and its chirality C.
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3.2 Dynamics of the vortex state

Topological singularity of the magnetic vortex structure leads the VC to behave
as an independent entity because of the strong exchange interaction among its
spins. This enriches the landscape of magnetic excitations present in submicron-
size circular disks, which can be classified into two well-defined families. The first
one consists of the low-frequency dynamics of the VS, characterized by the spiral-
like precessional motion of the VC as a whole. The family of spin-waves excitations
defines the second kind of dynamics for the vortex ground state.

3.2.1 Low-frequency dynamics

The spiral motion of the VC in Py circular disks was directly observed in Ref.
[88] for the first time. J. Park and coworkers used time-resolved Kerr imaging
to study the dynamics of the VS in individual Py (Ni81Fe19) disks with thickness
L = 60 nm and diameters 2R ∈ {0.5, 1, 2} µm after the application of an in-plane
magnetic-field pulse of amplitude 5 Oe and width 150 ps. Apart from the high-
frequency dynamics (magnons), the authors observed a long-lived sub-GHz Kerr
signal attributed to the gyrotropic motion of the VC. This excitation is known as
the gyrotropic mode. S. Choe et al. studied the magnetization dynamics of micron-
size magnetic vortex structures by means of time-resolved x-ray imaging −with a
time resolution of about 70 ps− using fast in-plane AC pulses [89]. First, they
found a subnanosecond dynamical response ruled by the polarization of the VC. A
three-dimensional chirality in the vortex structure is induced by the out-of-plane
component of the magnetization of the VC, which controls its precessional motion
driven by the subnanosecond magnetic field pulse: The motion is (anti)parallel to
the field on that time scale for (left) right-handed vortices. After the magnetic
field pulse, the VC follows a gyrotropic motion towards its equilibrium position.
The corresponding VC velocity is found to be one order of magnitude higher than
the expected value calculated from the static susceptibility.

Detection of the gyrotropic mode was performed by V. Novosad and coworkers
using a vector network analyzer to measure the excitation spectrum of micron-size
Py (Ni80Fe20) circular disks of thicknesses L ∈ {20, 40} nm and diameters 2R ∈
{1, 2} µm lithographed on top of microwave coplanar waveguides [90]. Application
of an in-plane AC field of amplitude about 1 Oe leads to the excitation of the
gyrotropic mode. The authors observed narrow resonant peaks within the subGHz
range in the excitation spectra of the samples, which correspond to the gyrotropic
motion of the VC as a whole. They also found a weak dependence of the gyrotropic
frequency (gyrofrequency) on the application of an static in-plane magnetic field
−which induces the initial displacement of the VC within the dot. This dependence
becomes noticeable when H → Han. The gyrofrequency scales with β, being
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an increasing function of the aspect ratio. This is indicative of the fact that
the gyrotropic mode is dominated by magnetostatic interactions induced by the
circular geometry of the dots.

In Ref. [91] magnetization reversal of the VS via excitation of the gyrotropic
mode with bursts of an in-plane AC magnetic field was explored. The authors
applied an in-plane sinusoidal field of amplitude 1 Oe and frequency 250 MHz,
which is close to the expected value 244 MHz for the gyrofrequency of the vortex
structure. This guarantees a permanent spiral-like precessional motion of the VC.
Superimposed on this, a short magnetic field burst of 4 ns is applied and the
resulting dynamics is studied by time-resolved X-ray imaging. Switching of the
VC polarization can be detected through the change of the sense of gyration of
the VC during its gyrotropic motion [See Eq. (3.27)]. It was observed that just
a magnetic field strength of about 15 Oe is enough for the burst to change the
direction of the out-of-plane component of the magnetization of the VC. This VC
switching was reproduced by the authors using micromagnetic simulations, where
they observed that this switching process occurs via the formation of a vortex-
antivortex (V-AV) pair with equal polarizations. This V-AV pair splits and the
antivortex moves towards the original vortex, both of them annihilating when they
meet. Therefore, only the new vortex with opposite polarization remains in the
magnetic structure.

It is worth pointing out that this scheme allows magnetization reversal of the
VC in a controllable manner using short in-plane bursts of a very weak magnetic
field compared to the switching of the VC polarization induced by the application
of a perpendicular static magnetic field H opposite to the VC direction, with
values for the reversal field of Hr ∼ 5000 Oe. G. de Loubens et al. used magnetic
resonance force microscope (MRFM) spectroscopy to study the dependence of the
gyrotropic mode on the application of a transversal magnetic field in single circular
disks made of NiMnSb with thickness L = 43.8 nm and radius R ∈ {130, 520} nm
[92]. The gyrofrequency was found to split into two modes whose difference was
linear with the fieldH and the aspect ratio β. These two gyrotropic modes induced
by the magnetic field correspond to the two (opposite) polarizations of the VC and
this bistability occurs within the range of magnetic fields |H| < Hr.

Theoretical description

The gyrotropic motion of the VC can be described according to a collective variable
approach, because it precesses towards the equilibrium position as a whole entity.
The magnetization field of the vortex structure is therefore uniquely determined by
the position of the center of the VC in theXY plane, represented by the coordinate
vector ~X = (x, y) where x(t) and y(t) are time-dependent functions. The equation
of motion for this collective variable can be obtained from the Landau-Lifshitz-
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Gilbert equation [93] with account of the functional form ~M [~r, t] = ~M [~r − ~X(t)]
for the magnetization field,

~̇X × ~G+
∂E( ~X)

∂ ~X
− D̂ ~̇X = 0, (3.26)

which is known as Thiele equation [94]. The second term describes the restoring
force acting on the system and E( ~X) represents the potential energy of the vortex
structure at the VC position ~X. Exchange, magnetostatic, anisotropy (if not
neglected) and Zeeman energies are the main contributions to this potential, but
pinning might be considered when necessary [see Chapter 4]. The first and third
term are the gyroscopic force and the dissipative (damping) force, respectively.
They are completely characterized in terms of the gyrovector ~G and the damping
tensor D̂, with expressions

~G = L
MS

γ

∫
D(0,R)

d2~r sin Θ (∇~rΦ×∇~rΘ) , (3.27)

Dαβ = −αLLGL
MS

γ

∫
D(0,R)

d2~r

(
∂Θ

∂xα

∂Θ

∂xβ
+ sin2 Θ

∂Φ

∂xα

∂Φ

∂xβ

)
, (3.28)

where γ is the gyromagnetic ratio and αLLG is the Gilbert damping parameter.
The damping tensor becomes diagonal for cylindrical geometries, D̂ = DÎ, with
D being the damping coefficient. The values of the gyrovector and the damping
coefficient can be calculated within the RVM [95, 96]:

~G = Gêz, G = 2πpQLMS/γ, (3.29)

D = −αLLG[2 + ln(R/Rc)]πLMS/γ, Rc(L) = 0.86∆0

(
L

∆0

)1/3

(3.30)

with the expression of Rc being valid for L ≥
√

2∆0. The Thiele equation can
be also derived from the Lagrangian formulation of the Landau-Lifshitz equation
according to the principle of least action. This Lagrangian approach leads naturally
to generalizations of the above equation, see Sec. 3.4.

Calculation of the gyrofrequency ωG can be done from Thiele equation if 1)
dissipation is neglected (it affects only the amplitude of the precessional motion,
not its period), and 2) the regime of small displacements (| ~X| � R) is considered.
The gyrotropic frequency can be accurately calculated within the two-vortices side
surface charges free model (2VSCFM), which is described by the holomorphic
function f(z) = icz + z0 − z0z

2 with c ∈ R and z0 ∈ C (in the absence of applied
magnetic field, it can be taken real). It verifies the boundary condition ~m·~n|∂D ≡ 0,
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that is, no lateral surface charges are generated. The expression of the total energy
for small displacements of the VC becomes [97, 98]

E[z0] = E[z0 = 0] +M2
SπR

2La?(β,R)z2
0 +O(z3

0), (3.31)

a?(β,R) = 8πF ?(β)−
(

∆0

R

)2

, F ?(x) =

∫ ∞
0

dt
f(xt)

t

(∫ 1

0

dρρJ1(tρ)

)2

,

so that the restoring force becomes
∂E

∂ ~X
= (2πM2

SL)a?(β,R) ~X. With account of

the expression ~̇X = ~ω × ~X for the velocity of the VC in a circular motion, with
~ω = ωêz being the angular frequency, one has ~̇X × ~G = ωG ~X. Therefore Eq.
(3.26) yields the following expression for the gyrofrequency

ωG =
2πM2

SLa
?(β,R)

|G|
= γMSa

?(β,R), (3.32)

where a magnetic vortex with topological charge Q = 1 has been considered.

Within the limit β � 1 the linear approximation F ?(β) ' 5

18π
β holds and the term

(∆0/R)2 can be neglected because ∆0 � R. This leads to the linear dependence

ωG =
20

9
γMSβ for the gyrofrequency [98] in the regime of very small aspect ratios.

Fig. 3.6 shows comparison of experimental values (left) and micromagnetic
simulations (right) for the gyrofrequency to the above theoretical predictions. The
agreement between theory and experiments is satisfactory in the case of the gy-
rotropic mode. In Ref. [98], K. Guslienko and coworkers observed by means of
micromagnetic simulations that the direction of the precessional motion (CW or
CCW) of the VC is determined by the combination of the polarization and the
chirality, in agreement with the experimental observations of Ref. [89].

3.2.2 Magnon dynamics

Whereas the gyrotropic motion of the VC represents the softest dynamical mode
of the VS, high-frequency excitations occur in the form of conventional spin waves.
High-frequency spin wave modes can be excited by low-amplitude short-duration
magnetic field pulses and can be classified by a pair of integers (m,n), with n ∈ N
corresponding to the number of axially symmetric nodes and m ∈ Z counting the
number of azimuthal modes.

Ref. [99] reports the observation of dipole-dominated spin waves in an square
array of Py circular dots with (L,R) = (60, 400) nm and lattice period d = 1.6 µm.
The authors observed two excitation modes in the VS with frequencies f1 ∼ 8 GHz
and f2 ∼ 12 GHz using Brillouin light scattering (BLS) spectroscopy, showing no
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L/R L/R

Figure 3.6: (Left) Experimental data for the gyrotropic frequency (symbols) and
analytical dependence within the linear approximation (solid line) vs. the disk
aspect ratio. (Right) Comparison of micromagnetic calculations (symbols) and
theoretical dependence (solid line) given by Eq. (3.32) vs. the dot aspect ratio.
This figure has been adapted from Refs. [97, 98].

dependence on (being slightly decreasing with) the strength of an in-plane applied
magnetic field in the former (latter) case. V. Novosad et al. could reproduce
these magnon modes by means of micromagnetic simulations, showing their radial
nature and their localization at the edge and inside the disk (collective behavior far
from both the edge and the VC), respectively. L. Giovannini and coworkers also
used BLS to study spin wave excitations in an array of dots with (L,R) = (15, 100)
nm and interdot distance 2R. The experimental results were interpreted within
the framework of a hybrid micromagnetic simulation based on a dynamical matrix
approach [100]. The authors concluded that at zero in-plane magnetic field 1)
eigenfrequency of pure radial modes (0, n) is an increasing function of the radial
index n, and 2) the mode coupling effect (hybridization of ±m modes) is observed
in many spin-wave modes. In general, application of transversal magnetic field
pulses excites radially symmetric magnon modes.

On the other hand, in-plane magnetic field pulses generate spin-wave modes
with azimuthal symmetry. C. Zaspel et al. used this scheme combined with
time-resolved Kerr microscopy to study the excitation spectrum of Py (Ni81Fe19)
disks with thickness L = 50 nm and radii R ∈ [250, 1000] nm [101]. A couple of
peaks in the spectrum were clearly observed, one belonging to the sub-GHz range
(identified with the gyrotropic mode) and the second one to the GHz range. These
modes correspond to azimuthal modes with |m| = 1: This particular symmetry is
unraveled by means of the polar Kerr rotation signal, where a phase shift of 2π
in the time traces is observed when one moves around the azimuth of the dots.
Another high-frequency |m| = 1 mode was also measured experimentally for some
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disks. From the theoretical model presented in Refs. [101, 102] one concludes
that the azimuthal number corresponding to the gyrotropic mode is m = −1. The
higher frequency modes belonging to the |m| = 1 class form a doublet, whose
frequency splitting increases with the aspect ratio.

Broadband ferromagnetic resonance (FMR) in combination with Kerr imaging
was used in Ref. [103] to study magnon dynamics of the VS in arrays of Py circular
disks with (L,R) = (30, 350) nm and with lattice period d = 2 µm. Transversal
configuration of the transient magnetic field led to an excitation spectrum domi-
nated by a peak at 9.3 GHz and two additional resonances with small amplitudes
at 2.4 and 13.0 GHz. Homogeneity of the field pulse over the disks yields the
dominant resonance being a uniform mode across the disk with mode number
(m,n) = (0, 0). The highest mode corresponds to a radial mode with n = 2.
These two modes are also excited within the in-plane configuration of the pulse
excitation. Furthermore, also the gyrotropic mode (ωG = 0.44 GHz) is excited
and two other resonant peaks appear at 6.00 and 7.25 GHz, which correspond to
the azimuthal class |m| = 1. Kerr imaging of these latter modes led the authors
to conclude that they are circularly polarized (with opposite chirality) and cou-
ple directly to the spatially antisymmetric torque profile of the excitation pulse.
Furthermore, a substantial doublet splitting of 1.5 GHz is observed in the |m| = 1
class.

J. Park and coworkers studied the class |m| = 1 of azimuthal spin-wave modes
in Py (Ni81Fe19) disks with L = 20 nm and R ∈ {0.7, 5.0} µm using time-resolved
Kerr microscopy [104]. Analysis of the corresponding spatially resolved spectral
power and phase images led the authors to conclude that the chirality of the
phase change in the (±1, 0) modes is determined by the polarization of the VC.
Therefore, the azimuthal symmetry breaking of the |m| = 1 modes is due to the
coupling between the gyroscopic motion of the VC (p fixes its sense of rotation)
and magnon dynamics, with the doublet splitting increasing as β increases. In
Ref. [105] a different approach was taken to confirm this hypothesis: The |m| = 1
class of azimuthal modes was studied in a set of punctured Py disks with thickness
L = 15 nm and radii R ∈ {1, 6} µm. The holes were located at the center of
the disks and had a diameter D = 100 nm, which guarantees the absence of the
VC structure at zero field. Power spectra of these disks show a single resonant
peak corresponding to the |m| = 1 class, that is, the azimuthal modes (±1, 1)
are degenerated. The absence of doublet structure is attributed to the lack of
interaction with the gyrotropic motion of the VC, therefore confirming that the
softest excitations of the VS −in the form of gyrotropic motion of the VC soliton−
influence its magnon dynamics. Hybridization of the degenerate (±1, 1) modes
was also observed by the authors using time-resolved Kerr microscopy. It is also
reported that the values of the (|m| = 1)-class resonant frequency for punctured
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disks were higher than the corresponding values for regular disks. Furthermore, a
scaling of the azimuthal excitation frequencies with β1/2 is observed (as in [99]).

Theoretical description

C. Zaspel and B. Ivanov developed in Refs. [101, 102] a model describing the spin-
wave excitation spectrum of azimuthal modes in ferromagnetic submicron circular
disks. It is based on a linearized version of the Landau-Lifshitz equation and on
vortex-magnon scattering. Considering the fixed-length spherical representation
(3.24) of the magnetization field, angles Θ and Φ for small oscillations due to the
presence of spin waves become

Θ(~r) = Θ0(r) + ϑ(r, φ, t), Φ(~r) = Φ0(r, φ) + ψ(r, φ, t), (3.33)

where (r, φ, z) represent the spherical coordinates and ϑ, ψ are small deviations
from the ground state (3.25). Rigidity of the spin wave mode along the axis of
the disk (no dependence on the variable z) is assumed. The choice of independent
variables for this problem is the set {ϑ, µ}, with µ(r, φ, t) = −ψ sin Θ0. It is
convenient to split the radial and azimuthal dependences of this set, obtaining the
ansatz

ϑ(r, φ, t) = f(r) cos(mφ+ ωt), µ(r, φ, t) = g(r) sin(mφ+ ωt), (3.34)

where ω is the frequency of the magnon mode and {f, g} is the new set of (radial)
independent functions. The demagnetizing field is given by ~Hd = −∇Ud, where
Ud = Ud,v + Ud,s is the magnetostatic potential generated by the volume and
surface charge densities −∇ · ~M (Ud,v) and ~M · n̂ (Ud,s), respectively. Introducing
these dependences into Eq. (3.1) for the total energy and linearizing the resulting
Landau-Lifshitz equation with respect to f and g one obtains the set of linearized
equations

Ωf = Ĥ1g + V̂ f + Û1, (3.35)
Ωg = Ĥ2f + V̂ g + Û2,

Ĥ1 =
∆2

0

4π

(
−∇2 +

∇2(sin2 Θ0)

sin2 Θ0

)
, Ĥ2 = −∆2

0

4π
∇2 +

(
∆2

0

4πr2
− 1

)
cos(2Θ0),

V̂ =
m∆2

0

2πr2
cos Θ0,

where Ω = ω/4πγMS is the normalized magnon frequency and Ûi (i = 1, 2),
are integro-differential operators accounting for the volume magnetostatic effects.
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Furthermore, an effective boundary condition appears from the linearization pro-
cedure, G(k) = 0, which in the asymptotic regime β � 1 turns out to be

G(k) =
dg(R, k)

dr
+ 2Im

L

∆2
0

ln(4/β)g(R, k), (3.36)

with I0 = 2 and Im = 1, m 6= 0. The magnetostatic operators Ûi act as a
perturbation on the system of equations (3.35) because Ud,v/4πMS ' β � 1.
Therefore, a perturbative expansion of the functions f, g around the solutions
corresponding to the Ûi ≡ 0 case is acceptable. In the case of the |m| = 1 class of
azimuthal excitations, these solutions are given by

g0(r, k) = sin Θ0

[
4
√
π

∆0

J1(kr)− mπk

2
Y1(kr)

]
, f0(r, k) = −Ω0g0(r, k), (3.37)

where Y1(x) is the Neumann function of first order and Ω0 = k∆0/2
√
π. Intro-

ducing this perturbative expansion into Eqs. (3.35), one obtains the following
equation for the normalized frequency:

(Ω− Ω0)

∫ R

0

dr rf0g0 =
1

8π

∫ R

0

dr

∫ R

0

dr′ρ(r)S(r, r′)ρ(r′), (3.38)

ρ(r) = f0 cos Θ0 +
d(rg0)

dr
, S(r, r′) = L

∫ 2π

0

cosα dα√
r2 + r′2 − 2rr′ cosα + L2/4

. (3.39)

Azimuthal modes belonging to the |m| = 1 class must be compatible with
the boundary condition G(k) = 0 for their wave numbers, where G is given
by Eq. (3.36). The gyrotropic mode is identified with the lowest zero of G(k),
which corresponds to the azimuthal number m = −1 and is given aproximately
by k0 ' ∆0/2

√
πR2. The other zeros of the boundary condition are closely dis-

tributed over R, forming doublets according to the two signs of |m|. Calculation of
the eigenfrequencies associated with the excitation modes in each doublet leads to
a square-root dependence on the aspect ratio (valid for small values of this param-
eter), Ω ∼ β1/2, and to a doublet splitting that increases with larger values of β.
The same formation of doublets is found at higher values of |m|. Even though this
theory provides a prediction of the existence of doublets in the magnon spectrum of
ferromagnetic micron-size circular disks and the expected dependences have been
observed experimentally, it cannot be regarded as satisfactory in quantitive terms
because the experimental splittings exceed the theoretical expectations [105].

The same authors also codeveloped a model describing the excitation spectrum
of radially symmetric magnon modes in ferromagnetic submicron circular disks
[106]: Small deviations from the static VS due to the presence of radially symmetric
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spin excitations are considered in the form of Eq. (3.33), with ϑ(r, φ, t) ≡ ϑ(r)
and ψ(r, φ, t) ≡ ψ(t). Generalized momentum µ/γ conjugated with ψ within the
Lagrangian formalism of the Landau-Lifshitz equation is given by the expression

µ = LMS

∫
D(0,R)

d2~r cos Θ, so that the total Lagrangian becomes

L =
1

γ
µ
dψ
dt
− E(ψ, µ), (3.40)

where E(ψ, µ) is the total energy of the system (exchange and magnetostatic con-
tributions) expressed in the coordinate system (ψ, µ). The corresponding Hamil-
ton’s equation of motion yields the following expression for the eigenfrequencies of
the excitation modes:

Ω = 4πγMS

[
β

π
ln

(
η

β

)]1/2

, (3.41)

where η ∈ [4, 6] is a phenomenological parameter. This theoretical dependence is
quite insensitive to the value of η and agrees well with the experimental values for
the frequencies of this kind of excitations.

A (topological) gauge-potential approach was considered by K. Guslienko et
al. to study the coupling of spin-wave excitations with non-uniform slowly moving
magnetization distributions (for instance, the gyrotropic mode) [107]. Renormal-
ization of the interaction Lagrangian between spin waves and the VS leads to a

kinetic term of the form LSW-VS =
1

2
M ~̇X2, where M ' 3

2

L

γ2
is an effective mass

of dynamical origin.

3.3 Temperature and pinning effects
Thermal and pinning effects enrich enormously the phenomenology of the vortex
state. With respect to pinning, the presence in the disk of defects capable of
trapping the VC into metastable pinning wells must affect the dynamics of the
VS, especially the gyrotropic one (softest excitation mode). On the other hand,
the effect of temperature on the properties of the VS is twofold. First, circular dots
offer a rich landscape of ground states and transitions between them usually occur
via thermal activation. Hence, transitions between two particular ground states
(for instance SD→VS in the nucleation process) through intermediate metastable
states (C state, S state, etc.) may be enhanced at high temperatures, which
obviosuly would affect the static properties of the VS. Second, thermal activation
dies out in the limit T → 0 and therefore weaker pinning centers effectively trap
the VC as the temperature decreases, that is, the landscape of pinning barriers
becomes refined at low temperatures.
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In Ref. [108] thermal dependence of hysteresis loops in single Py submicron-
size dots with thickness L = 50 nm and radii R ∈ [500, 900] nm was investigated
by means of micro-Hall and bend-resistance magnetometry. These hysteresis loops
presented the prototypical shape corresponding to circular disks with the VS (see
Fig. 3.1), from which the experimental values for both nucleation and annihilation
fields were extracted. From the set of smallest and biggest disks the authors ob-
served the same thermal dependence for the magnetization reversal: Han decreases
monotonically with temperature, exhibiting two different slopes in the low/high T
regimes. On the other hand, Hn is a nonmonotonic thermal function, increasing
sharply on warming below a certain temperature, above which it slowly decreases.
These behaviors are due to magnetization reversal ocurring via thermal activation
(over an energy barrier) at low temperatures, whereas at high T these processes
are dominated by the thermal dependence of MS. This statement is supported by
the fact that the experimental values can be fitted to the theoretical dependences
H? = H?,0(1 − α?T

3/2) and H? = H?,0(1 + β?T ), (? = n,an), at high and low
temperatures, respectively. Small kinks in the magnetization at fields H > Hn

are observed in the biggest disks, which are attributed to the development of a S
state and a double-vortex prior to the single vortex nucleation. A rich landscape
of modes of magnetization reversal unravels for disks of intermediate size, with
complex thermal transitions among single-vortex, C state and double-vortex.

An exhaustive study of the annihilation process of magnetic vortices in Py
disks at high temperatures, T ∈ [290, 330] K, was conducted by J. Burgess et al.
in Ref. [109]. DC-MOKE and AC-MOKE microscopies were used to measure hys-
teresis loops and magnetic susceptibilities of a square array of 15000 Py circular
dots with (L,R) = (32, 1000) nm and lattice spacing d = 4 µm, which ensures
that magnetostatic interactions among the disks could be safely neglected. Exten-
sion of the RVM to third order in the VC displacement leads to the derivation of
an expression for the magnetic susceptibility that fits well the experimental data
within the vortex linear regime. The statistical distribution of the annihilation
field is calculated from the difference between the experimental data and the ex-
trapolated susceptibility at any field, which appears to be Gaussian distributed.
The standard deviation turns out to decrease with increasing the temperature, a
fact that supports the hypothesis of depinning-like processes triggering the decay.
Thermal and sweep-rate dependences of the mean value of Han can be described
by means of the typical Néel-Brown model with account of the Bloch T 3/2 law for
the saturation magnetization and a power-law scaling (1 − H/H0)α for the field-
dependent annihilation energy barrier. The choice of α = 3/2 for the power-law
exponent was made by analogy with the case of domain-wall depinning, that is,
pinning centers play an important role in the annihilation process.

G. Kakazei and coworkers conducted a study on the nucleation process of vor-
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tices in Py disks based on relaxation measurements [110]: A square array of Py
circular dots with (L,R) = (40, 250) nm and lattice period d = 1 µm was char-
acterized magnetically in the range of temperatures [200, 400] K. Interdot dipolar
interactions could be neglected because d > 2R. The shape of the hysteresis
loops was characteristic of the VS, with magnetization reversal occurring via dis-
placement of the vortex structure outwards. Again, the monotonically decreasing
behaviour of the annihilation field with T is reported. On the other hand, the
nucleation field for these samples appears to be quite insensitive to the temper-
ature in the range studied. States along the descending branch within the field
range [230, 320] Oe close to the nucleation field Hn = 250 Oe were taken as initial
states for the relaxation measurements. After a fast transient regime (∼ 50 s)
corresponding to the transition from the SD/onion state to a buckle state (C and
S states), time evolution of the magnetization scales with ln(t/τ0), where t is the
time and τ0 is a characteristic time of the system. This long-time magnetization
dynamics (∼ 1 h) is related to the thermally assisted hopping of nucleation energy
barriers, whose distribution is wide (logarithmic time dependence of the magneti-
zation). The nucleation energy barrier is assumed to follow a field dependence of
the form ∆En = β(H/Hn,0 − 1)α, which can be fitted to the values derived from
the experimental data of the magnetic viscosity. The corresponding value of the
power-law exponent ranges between 3.6 and 4, which differs from the α = 3/2 asso-
ciated to depinning-like processes. The authors concluded that vortex nucleation
occurs through deformation of the magnetization field of the C state.

Effects of pinning on the magnetic properties of a square array of Py (Ni80Fe20)
circular disks with (L,R) = (100, 500) nm and lattice period d = 1 µmwere studied
in Ref. [111]. By means of SQUID magnetometry Shima et al. measured typical
in-plane hysteresis loops for the VS [see Fig. 3.3] in a wide range of temperatures,
T ∈ [5, 250] K, and observed the existence of remnant magnetization. Due to the
curling magnetization structure of the VS in a perfect cylindrical dot, in-plane
magnetization at zero applied magnetic field should be almost zero. Therefore,
VCs must be pinned at the minima of some pinning potential, away from the
center of the disks. This fact is also upheld by the presence of a non-zero coercive
field, indicating the existence of resistance to the vortex motion al low T . Both
magnitudes decay exponentially with temperature due to thermal activation over
the corresponding energy barriers. Initial susceptibility is found to be an increasing
function of T . A pinning temperature Tpin ' 9.6 K was introduced so that below
Tpin the VC is pinned at a local minimum of the pinning potential, whereas the
vortex escapes out of the metastable well via thermal activation for T > Tpin.
The authors suggested that the source of pinning centers could be the presence of
defects in the dots, such as surface roughnesses and grain boundaries.

The question of how pinning affects the gyrotropic motion of the VC was
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answered by R. Compton and P. Crowell in Ref. [112]: Individual circular dots with
thickness L = 50 nm and radii R ∈ [0.3, 1.0] µm were patterned from two different
Py (Ni81Fe19) films, one with average grain diameter dA ' 35 nm and average
roughness RA ' 0.4 nm (small-grain, SG), and the other with dA ' 85 nm and
RA ' 0.8 nm (large-grain, LG). Orthogonal in-plane DC magnetic fields were used
to move the VC across the disk plane and then the gyroscopic mode was excited
by applying an in-plane magnetic field pulse with temporal width < 120 ps and
variable amplitude between 2− 13 Oe. This excitation field was spatially uniform
over the disk. Time evolution of the gyrotropic motion of the VC was recorded
using time-resolved Kerr microscopy. The authors observed fluctuations in the
values of the gyrofrequency as the VC moved over length scales ∼ 10 nm (typical
range of a pinning potential) for small enough amplitudes of the field pulse. These
fluctuations are independent of the VC polarization. Characteristics of the defect
at a pinning site determine a critical excitation amplitude of the field pulse above
which the radius of the gyro-orbit exceeds the range of the pinning center, that
is, the VC becomes depinned. In this regime the eigenfrequency of the gyrotropic
motion is insensitive to the field amplitude and depends solely on the magnetostatic
energy of the vortex structure [see Eq. (3.32)]. Spatial distribution of the pinning
centers can be obtained by mapping fluctuations in the gyrofrequency according to
this scheme, with the VC serving as a sensitive scanning probe, see Fig. 3.7. The
authors conducted an extension of this work in Ref. [113]: They observed a positive
correlation between the areal defect density and the areal grain density, which is
indicative of grain boundaries being a prominent source of pinning. Furthermore,
crystallographic grain structure is found to be weakly correlated with the spatial
density of pinning centers and not to influence the average magnitude of frequency
fluctuations. Independence of the average gyrofrequency shift on the disk radius
suggests that it represents a mesure of the strength of the pinning potential at
an individual defect. Pinning interaction between the VC and a single defect is
estimated to be about 2.2 eV.

Quantitative detection of the Barkhausen effect, a prominent signature of the
pinning of magnetic domain structures, was accomplished by Freeman’s group re-
cently [114]. By means of nanomechanical torque magnetometry the authors stud-
ied the stochastic jumps in the magnetization of a single Py disk with (L,R) =
(42, 500) nm, as the VC moves across the plane of the disk controlled by a set of
two orthogonal static in-plane magnetic fields Hx and Hy. Measurement of the
magnetization along 1D closed paths in the (Hx, Hy) plane led to hysteresis loops
sensitive to pinning phenomena: During pinning the differential susceptibility is
suppressed (but does not vanish) and transitions from one pinning center to an-
other appear as steep sections. Therefore, pinning centers can be located in this
way. Minor loops and bistability in the magnetization are masked at high temper-
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Figure 3.7: Atomic force microscopy images of the unpatterned (a) SG and (b)
LG samples. Contour maps of ωG for a disk with R = 500 nm made of (c) SG
and (d) LG samples as a function of a static in-plane magnetic field. The pulse
amplitude is about 7 Oe. The gyrofrequency is represented by a color scale and
pinning centers appear as point-like regions of bright contrast in a background of
low-frequency unpinned motion. The figure has been extracted from Ref. [112].
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atures because of thermal activation of the VC over the intersite wells. Analysis
of the Barkhausen noise present in the measurements of the magnetization along
2D (Hx, Hy)-paths in a neighborhood of a particular pinning site led J. Burgess
and coauthors to build a 2D mapping of the corresponding pinning potential. Es-
timates of the height and width of the pinning barriers can be obtained from these
maps, whose ranges are respectively [0.3, 2.5] eV and [7, 10] nm. These values are
compatible with the ones derived in Refs. [112, 113].

3.4 Lagrangian mechanics of the vortex core

Rigidity of the VC has been an underlying assumption in the existing theoretical
models of both static properties and spin excitations of sub-micron magnetic disks.
Pinning of this soliton structure by linelike defects, which is conceptually similar to
pinning of flux lines in type-II superconductors, contradicts this hypothesis: The
VC should undergo a local deformation along the cylinder axis to adjust itself to
the pinning (metastable) well at a particular defect. Therefore, the true nature of
the VC line is that of an elastic string.

If deformations of the VC along the axis of the disk are ignored, the gyrotropic
mode can be viewed as a uniform precession of the magnetic moment of the disk.
While it is true that strong exchange interaction makes the vortex a well-defined
independent entity, the question arises whether the gyrotropic mode allows spatial
dispersion similar to spin waves of a finite wavelength in ferromagnets. The aim
of this section is to study spin waves related specifically to the gyrotropic motion
of the vortex. Such a wave is illustrated in Fig. 3.8. It must exist due to the finite
elasticity of the vortex provided by the exchange interaction.

L

R

Figure 3.8: Gyroscopic spin wave in the vortex state of a mesoscopic magnetic
disk.

Note that conceptually similar modes have been studied for vortices in liquid
helium (Tkachenko modes) [115] and for Abrikosov vortices in superconductors
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[116]. However, the dynamics of vortices in magnetic disks is very different from the
dynamics of vortex lines in helium and in superconductors. From the mathematical
point of view the above problem resembles the problem of the motion of a charged
string in a potential well in the presence of the magnetic field. The latter problem is
a generalization of the problem of Landau levels of an electron in a two-dimensional
potential well in the magnetic field.

Most of the research on the gyrotropic motion of vortices in circularly polar-
ized disks ignores the inertial mass of the VC. Such a mass has a dynamical origin
stemming from the variation of the shape of the VC as it moves inside the disk.
Meantime, experimental studies of vortex oscillations in micrometer Py rings [117]
hinted towards a non-negligible vortex mass of order 10−24kg. Despite the ring
geometry in which it was measured, this value must provide a reasonable ballpark
of the vortex mass in a disk because, as it will be shown in Sec. 3.8, the main con-
tribution to the mass comes from distances far from the VC. (A similar situation
exists for the electromagnetic structure of the Abrikosov vortex in a superconduc-
tor.) On a theoretical side the mass of the magnetic vortex has been previously
computed in a two-dimensional Heisenberg model with anisotropic exchange inter-
action [87, 118, 119]. In disks made of soft ferromagnetic materials that have been
experimented with, the exchange interaction is isotropic. It will be shown that
in this case the finite mass density of the vortex originates from the geometrical
confinement of the spin field and the magnetic dipole-dipole interactions.

The vortex line will be described by the vector field ~X = (x, y), where x(t, z)
and y(t, z) are coordinates of the center of the VC in the XY plane. Landau-
Lifshitz dynamics of the fixed-length magnetization vector (3.24) follows from the
Lagrangian [93]

L
[
t; Θ,Φ, Θ̇, Φ̇, ∂zΘ, ∂zΦ

]
=

∫
dz d2~r

[
MS

γ
(DtΦ) cos Θ− E(Θ,Φ, ∂zΘ, ∂zΦ)

]
,

(3.42)
where E(Θ,Φ, ∂zΘ, ∂zΦ) is the energy density. The dependence of the Lagrangian
on the partial derivatives ∂z of the angular coordinates comes from the elastic
nature of the vortex core. It is contained in the total energy, E , that takes into
account interaction between different layers of the vortex line, see below.

The spatial dependence of angular coordinates (Θ,Φ) for the VS is given by
Θ = Θ(t;~r, z) = Θ[~r − ~X(t, z), t] and Φ = Φ(t;~r, z) = Φ[~r − ~X(t, z), t]. Only
long-wave solutions that do not deform the vortex core in any z-cross-section of
the disk will be considered, which means that the angular coordinates depend on
t and z via the coordinates of the vortex core ~X(t, z). The covariant derivative
with respect to time, DtΦ, along the VC is given by

DtΦ = ∇ ~̇X(t,z)
Φ = − ~̇X(t, z) · ∇~rΦ[~r − ~X(t, z)], (3.43)
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where “dot” denotes partial derivative with respect to t.
Taking all these considerations into account, the above Lagrangian becomes

L
[
t; ~X, ~̇X, ∂z ~X

]
=

∫
dzL̃

[
t, z; ~X, ~̇X, ∂z ~X

]
(3.44)

with the Lagrangian density being

L̃
[
t, z; ~X, ~̇X, ∂z ~X

]
=

∫
d2~r

[
MS

γ

(
− ~̇X(t, z) · ∇~rΦ

)
cos Θ− E(Θ,Φ, ∂zΘ, ∂zΦ)

]
.

(3.45)
Thus the generalized momentum densities are given by

~Πt

[
t, z; ~X, ~̇X, ∂z ~X

]
≡ δL̃

δ
(
~̇X(t, z)

) = −MS

γ

∫
d2~r (∇~rΦ) cos Θ, (3.46)

~Πz

[
t, z; ~X, ~̇X, ∂z ~X

]
≡ δL̃

δ
(
∂z ~X(t, z)

) = − δω( ~X, ∂z ~X)

δ(∂z ~X(t, z))
, (3.47)

where ω( ~X, ∂z ~X) =

∫
d2~r E(Θ,Φ, ∂zΘ, ∂zΦ) is the linear energy density. The

dynamics of the VC is governed by the Euler-Lagrange equation,

Dt
~Πt + ∂z~Πz −

δL̃
δ ~X(t, z)

= 0. (3.48)

Notice that

DtΛ(t, z; ~r,~v) = ξ̇(t, z)(Λ) =
∂

∂t
Λ(~r − ~X(t, z), ~̇X(t, z)) (3.49)

= − ~̇X(t, z) · ∇~rΛ(~r − ~X(t, z), ~̇X(t, z)) + ~̈X(t, z) · ∇~vΛ(~r − ~X(t, z), ~̇X(t, z))

means covariant derivative along the curve that is tangent to the VC, ξ(t, z). All
terms involving ~̇X(t, z) and ~̈X(t, z) in the Euler-Lagrange equation come from
Dt
~Πt, which is given by

Dt
~Πt = −MS

γ

∫
d2~r Dt (cos Θ∇~rΦ)

= −MS

γ

∫
d2~r

(
∇~r
[
−Ẋj∂jΦ + Ẍj ∂̃jΦ

]
cos Θ +∇~rΦ

[
−Ẋj∂j cos Θ + Ẍj ∂̃j cos Θ

])
= êiMijẌj − êiKijẊj, (3.50)
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where

Mij = −MS

γ

∫
d2~r

[
(∂i∂̃jΦ) cos Θ + (∂iΦ)∂̃j cos Θ

]
,

Kij = −MS

γ

∫
d2~r

[
(∂i∂jΦ) cos Θ + (∂iΦ)∂j cos Θ

]
, (3.51)

and ∂j ≡ ∇rj , ∂̃j = ∇vj .

Transformation of the expression êiKijẊj into the form ~ρG × ~̇X results in the

identity εijkρG,j = Kik. From this we obtain ρG,j = −1

2
εikjKik, which translates

into the vector form as

~ρG =
MS

2γ

∫
d2~rεikj

[
(∂i∂kΦ) cos Θ + (∂iΦ)(∂k cos Θ)

]
êj

=
MS

2γ

∫
d2~r

[(
∇~r ×∇~rΦ

)
cos Θ +∇~rΦ×∇~r cos Θ

]
. (3.52)

To compute the mass tensor and the gyrovector we have to find the solutions
(Θ,Φ) of the Landau-Lifshitz equation in the low-dynamics regime that is charac-
terized by the condition | ~̇X| � 1. In this regime solutions can be expanded as a
perturbative series on the differential speed, | ~̇X|, of the VC,

Θ(t, z;~r) = Θ(0)(z;~r) + Θ(1)(t, z;~r) + . . . ,

Φ(t, z;~r) = Φ(0)(z;~r) + Φ(1)(t, z;~r) + . . . (3.53)

Notice that the zero-th order is time-independent, otherwise the gyrovector would
depend on time.

The approach that neglects deformation of the vortex core in any z-cross-section
of the disk is correct only for weak deviations of the centerline of the VC from the
straight line along the Z-axis. Study of the Landau-Lifshitz equation for the set
of variables (Θ,Φ) will lead to the conditions defining such weak bending regime.
It can be obtained by applying the variational principle to the Lagrangian density

L̃
[
t, z; Θ,Φ, Θ̇, Φ̇,∂zΘ, ∂zΦ

]
=

∫
d2~r

[
MS

γ
(DtΦ) cos Θ− E(Θ,Φ,∇~rΘ,∇~rΦ, ∂zΘ, ∂zΦ)

]
.

(3.54)

Notice that

E(Θ,Φ,∇~rΘ,∇~rΦ, ∂zΘ, ∂zΦ) = EXY (Θ,Φ,∇~rΘ,∇~rΦ) + Eel(Θ,Φ, ∂zΘ, ∂zΦ)
(3.55)
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with EXY (Θ,Φ,∇~rΘ,∇~rΦ) being the sum of the exchange, anisotropy and dipolar
energy responsible for the formation of the vortex, and

Eel(Θ,Φ, ∂zΘ, ∂zΦ) = Aeff
[
(∂zΘ)2 + sin2 Θ(∂zΦ)2

]
(3.56)

being the elastic energy in which Aeff is a constant. It describes contribution of the
exchange and dipolar forces to the elasticity of the vortex line, with the exchange
playing a dominant role. Consequently, with good accuracy, Aeff can be identified
with the exchange constant A.

The set of dynamical equations for (Θ,Φ) is

Dt

(
δL̃

δ(DtΦ)

)
+ ∂z

(
δL̃

δ(∂zΦ)

)
− δL̃
δΦ

= 0,

MS

γ

∂ cos Θ

∂t
+
δEXY
δΦ

− 2Aeff
[
sin 2Θ∂zΘ∂zΦ + sin2 Θ∂2

zΦ
]

= 0, (3.57)

and

Dt

(
δL̃

δ(DtΘ)

)
+ ∂z

(
δL̃

δ(∂zΘ)

)
− δL̃
δΘ

= 0,

MS

γ
sin Θ

∂Φ

∂t
+
δEXY
δΘ

− 2Aeff

[
∂2
zΘ−

sin 2Θ

2
(∂zΦ)2

]
= 0. (3.58)

Performing a Fourier transform

Φ(t, z;~r) =
1√
2π

∫
dq Φ̄(t, q;~r)eiqz,

Θ(t, z;~r) =
1√
2π

∫
dq Θ̄(t, q;~r)eiqz, (3.59)

the following set of equations for the pair (Θ̄, Φ̄) is obtained:

MS

γ

∂ cos Θ

∂t
+
δEXY
δΦ

+
Aeffq

2

π

[
sin 2Θ ? Θ̄ ? Φ̄ + sin Θ ? sin Θ ? Φ̄

]
= 0, (3.60)

1√
2π

MS

γ
sin Θ ?

∂Φ

∂t
+
δEXY
δΘ

+ 2Aeffq
2

[
Θ̄− sin 2Θ

4π
? Φ̄ ? Φ̄

]
= 0, (3.61)

where ? means Fourier convolution.
For a small bending of the vortex core, the boundary conditions on the angle

Θ are the same as in the rigid VC case, i.e.: Θ ' 0 or π in the limit r̃ � ∆0, and
Θ ' π/2 in the limit r̃ � ∆0, where r̃ = ||~r− ~X(t, z)||2 is the radial distance from
the VC center at any height z. Two limits can be considered here:
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• Limit r̃ � ∆0. In this case, sin Θ ' 0 and thus sin 2Θ∂zΘ∂zΦ + sin2 Θ∂2
zΦ '

0. Hence, in the Fourier space Eq. (3.60) becomes

MS

γ

∂ cos Θ

∂t
+
δEXY
δΦ

= 0. (3.62)

• Limit r̃ � ∆0. In this case, sin Θ ' 1 and thus sin 2Θ∂zΘ∂zΦ + sin2 Θ∂2
zΦ '

∂2
zΦ. Therefore, Eq. (3.60) turns into

MS

γ

∂ cos Θ

∂t
+ 2Aeffq

2Φ̄ +
δEXY
δΦ

= 0. (3.63)

Notice that in both limits sin 2Θ ' 0 and so ∂2
zΘ − sin 2Θ

2
(∂zΦ)2 ' ∂2

zΘ. Conse-
quently, in the Fourier space Eq. (3.61) becomes

1√
2π

MS

γ
sin Θ ?

∂Φ

∂t
+ 2Aeffq

2Θ̄ +
δEXY
δΘ

= 0. (3.64)

Finally, in the limit of weak bending (Aeffq
2 � 1) the terms of the form 2Aeffq

2ξ̄
can be neglected in the above equations. In doing so, one recovers the standard
Landau-Lifshitz equations for (Θ,Φ) at any z layer, with the VC center depending
on the value of z. Introducing now the perturbative series (3.53) into the Landau-
Lifshitz equation and splitting it into O(| ~̇X|n) terms, the equations of motion for
the Φ(n) and Θ(n) terms are derived. In the case of the zero-th and first order
terms, one recovers the static solution (3.24) and the first perturbative solution
for the rigid vortex [see Sec. 3.8].

3.5 Elastic Thiele equation
The generalized Thiele equation describing spin waves in the VC of finite mass
density is derived in this Section. First, one should compute the gyrovector and the
mass density tensor. From Eq. (3.25) the following identities are straightforwardly
deduced,

∇~r ×∇~rΦ0 = 2πQδ(2)
(
~r − ~X(t, z)

)
êz,

∇2
~rΦ0 = 0. (3.65)

The first term of Eq. (3.52) equals (πQpMS/γ)êz with account of these iden-
tities. The second term is evaluated at the zero-th order of the perturbative ex-
pansion of the angular coordinates in the low-dynamics regime, Eq. (3.25), taking
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into account that in the weak bending regime the deformation of the VC is small
and one can consider r̃ ' r because || ~X(t, z)||2 � 1. In doing so, one obtains the
expression (πQpMS/γ)êz again [95]. Thus the gyrovector becomes ~ρG = ρGpQêz
with

ρG = 2πMS/γ. (3.66)

Notice that ~ρG is the gyrovector linear density as compared to the gyrovector in
the Thiele equation for a rigid vortex [94].

Computation of the mass density tensor will be performed in Section 3.8. For
circularly polarized disks it will be shown that this tensor reduces to a scalar,

Mij = ρMδij, with the VC mass density given by ρM =
1

4γ2
ln(R/∆0), where R

is the radius of the disk. Only ω( ~X, ∂z ~X) contributes to the partial derivative
δL̃/δ ~X in the slow dynamics regime, because ~Πt = ρM ~̇X and so the term ~̇X · ~Πt

equals ρM ~̇X2. Consequently, the generalized Thiele equation becomes

ρM ~̈X(t, z) + ~̇X(t, z)× ~ρG + ∂z~Πz +∇ ~Xω = 0. (3.67)

The linear energy density ω( ~X, ∂z ~X) is the sum of the magnetostatic and ex-
change contributions in the z-cross-section, ωXY ( ~X), and an elastic contribution
due to the deformation of the VC line, ωel(∂z ~X). Zeeman contribution will be
considered later. The dependence on the vortex core coordinates of the ωXY ( ~X)
term is quadratic for small displacements [see Eq. (3.31)]:

ωXY ( ~X) =
1

2
ρMω

2
Mε0 ~X

2, (3.68)

where ωM = ρG/ρM is the characteristic frequency of the system and ε0 = ωG/ωM
is a dimensionless parameter. Recall that the conventional gyrofrequency ωG is
defined by Eq. (3.32). From the continuous spin-field model we know that

ωel(∂z ~X) = Aeff

∫
d2~r
[
(∂zΘ)2 + sin2 Θ(∂zΦ)2

]
. (3.69)

Noticing that ∂zΘ = −∇~rΘ ·∂z ~X and ∂zΦ = −∇~rΦ ·∂z ~X, and taking into account
the vector identity ( ~A× ~B) · (~C× ~D) = ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C), with either
~A = ~D = ∇~rΘ, ~B = ~C = −∂z ~X or ~A = ~D = ∇~rΦ, ~B = ~C = −∂z ~X, the following
relations can be derived(

∇~rΘ · ∂z ~X
)2

= (∇~rΘ)2
(
∂z ~X

)2

−
(
∇~rΘ× ∂z ~X

)2

, (3.70)(
∇~rΦ · ∂z ~X

)2

= (∇~rΦ)2
(
∂z ~X

)2

−
(
∇~rΦ× ∂z ~X

)2

. (3.71)
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The main contribution to the integral comes from the zero-th order in the per-
turbative expansion (3.53). Notice that Θ0(~r) = Θ0(r̃) and that ∇~rΦ0 = Q

r̃
êφ.

As discussed before, in the weak bending regime one can use the approximation
r̃ ' r, so that ∇~rΦ0 × ∂z ~X = −Q

r
∂zXrêz and ∇~rΘ0 × ∂z ~X = dΘ0

dr ∂zXφêz, where
Xr = êr · ~X = x cos θ + y sin θ and Xφ = êφ · ~X = −x sin θ + y cos θ. The elastic
energy density finally becomes

ωel(∂z ~X) =Aeff

∫
d2~r

[
(∇~rΘ0)2 +

sin2 Θ0

r2

](
∂ ~X

∂z

)2

− Aeff

∫
d2~r

[(
dΘ0

dr

)2(
∂Xφ

∂z

)2

+
sin2 Θ0

r2

(
∂Xr

∂z

)2
]

=πAeff

∫
r dr

[(
dΘ0

dr

)2

+
sin2 Θ0

r2

](
∂ ~X

∂z

)2

, (3.72)

where the angular dependence of (∂zXr)
2 and (∂zXφ)2 has been integrated over

θ. This energy density can be recast as ωel(∂z ~X) =
1

2
λ

(
∂ ~X

∂z

)2

, where λ is the

elastic constant given by

λ = 2πAeff

∫
r dr

[(
dΘ0

dr

)2

+
sin2 Θ0

r2

]
. (3.73)

Making use of the variable m0(r) = cos Θ0(r), the above equation can be rewritten
as

λ = 2πAeff

∫
r dr

[
1

1−m2
0

(
dm0

dr

)2

+
1−m2

0

r2

]
(3.74)

and using the spatial dependence (3.24) one gets

1

1−m2
0

(
dm0

dr

)2

+
1−m2

0

r2
=


∆2

0

2C1r2

(
2pC1

∆2
0
r
)2

+ 2C1r2

∆2
0

1
r2 = 4C1

∆2
0

r � ∆0

1
∆2

0
m2

0 + 1
r2 =

C2
2

∆0r
exp (−2r/∆0) + 1

r2 r � ∆0

(3.75)
Computing the integral (3.73) by splitting into two regions, [0,∆0] and [∆0, R],
one obtains the expression

λ = 2πAeff

[
50

49
+ ln(R/∆0)

]
. (3.76)

In the limit R� ∆0 the logarithmic term dominates and therefore λ becomes

λ = 2πAeff ln(R/∆0). (3.77)
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Finally, for the total energy density one obtains

ω( ~X, ∂z ~X) =
1

2
ρMω

2
Mε0

~X2 +
1

2
λ

(
∂ ~X

∂z

)2

(3.78)

and thus the generalized Thiele equation for an elastic VC line becomes

ρM ~̈X(t, z)− λ∂2
z
~X(t, z) + ~̇X(t, z)× ~ρG + ρMω

2
Mε0

~X(t, z) = 0. (3.79)

3.6 Spin waves in the vortex core

Introducing the complex variable χ = x − iy we can recast Eq. (3.79) as the
following complex partial differential equation:

ρM χ̈− λ∂2
zχ+ iρGχ̇+ ρMω

2
Mε0χ = 0. (3.80)

Let χ0(z) be the equilibrium complex center of the straight vortex core line. In
the presence of the wave it gets perturbed and becomes χ(t, z) = χ0(z) +χw(t, z),
with ||χw||z � ||χ0||z. Switching to the Fourier transform,

χw(t, z) =
1

2π

∫
dω dqχw(ω, q)ei(ωt−qz), (3.81)

the following equation for χw(ω, q) is derived:[
−ρMω2 + λq2 − ρGω + ρMω

2
Mε0

]
χw(ω, q) = 0. (3.82)

For non-zero amplitude of the wave the expression in the square parenthesis must
vanish. This determines the spectrum of the waves:

ρMω
2 − λq2 + ρGω − ρMω2

Mε0 = 0. (3.83)

At ρM 6= 0 one can normalize Eq. (3.83) to get

ω2 + ωMω − ω2
M

(
ε0 +

λ

ρMω2
M

q2

)
= 0. (3.84)

Solving this equation one obtains the spectrum of VC excitations:

ω±(q) =
ωM
2

[√
(1 + 4ε0) +

4λq2

ρMω2
M

± 1

]
. (3.85)
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Condition 4λq2/ρMω
2
M � 1 is satisfied in the weak bending regime, so that the

above square root can be expanded and therefore one obtains the following expres-
sion for the frequencies

ω±(q) =
ωM
2

(√
1 + 4ε0 ± 1

)
+

1√
1 + 4ε0

λ

ρG
q2, (3.86)

where the relation ρMωM = ρG has been used.
As it will be shown in Section 3.8 the parameter ε0 = ωG/ωM is normally small

due to the smallness of β = L/R. Consequently,

ω−(q) ≈ ωG +
λ

ρG
q2, (3.87)

ω+(q) ≈ ωM +
λ

ρG
q2. (3.88)

With the help of Eqs. (3.66) and (3.77) with Aeff ≈ A = M2
S∆2

0 the above equations
can be written in a transparent form:

ω−(q) = ωG + γMS(q∆0)2 ln(R/∆0), (3.89)
ω+(q) = ωM + γMS(q∆0)2 ln(R/∆0). (3.90)

Note that the weak bending regime corresponds to q∆0 � 1.

3.7 Quantum mechanics of the excitations in the
vortex core

In this section it will be shown that excitations of the VC can be also obtained
in a rather non-trivial way from the quantum theory as well. This problem is
interesting on its own as it turns out to be equivalent to the problem of quantum
excitations of a charged string confined in a parabolic potential and subjected to
the magnetic field.

It is straightforward to prove that the generalized Thiele equation (3.79) is the
Euler-Lagrange equation associated with the following effective Lagrangian density
that can be derived from Eq. (3.45):

L̃(t, z; ~X, ~̇X, ∂z ~X) =
1

2
ρM ~̇X2 + ~̇X · ~AρG − ω( ~X, ∂z ~X), (3.91)

where ~AρG is the gyrovector potential satisfying ∇ ~X × ~AρG = −~ρG. Thus the total
Lagrangian becomes

L =

∫
dz L̃ =

∫
dz

[
1

2
ρM ~̇X2 + ~̇X · ~AρG − ω( ~X, ∂z ~X)

]
. (3.92)
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Noticing that {ϕn(z)}n∈N =

{√
2

L
sin (qnz)

}
n∈N

, with qn =
2π

L
n, is a Hilbert

basis of the function subspace W = {ϕ ∈ L2(0, L), ϕ(0) = ϕ(L) = 0}, one can
expand ~X as

~X(t, z) = ~X0(t) +
∑
n

~Xn(t)ϕn(z), (3.93)

where ~X0(t) is the center of the undisturbed vortex and ~Xn(t) =< ~X(t, z), ϕn(z) >L2(0,L).
Introducing this expansion in Eq. (3.92) and taking into account the orthonor-
mality of the Hilbert basis (and its spatial derivatives) the following identity is
derived:

L

(
t,
{
~Xn

}
n∈Z+

,
{
~̇Xn

}
n∈Z+

)
=

[
1

2
M ~̇X2

0 + ~̇X0 · ~A0 −
1

2
Mω2

Mε0 ~X
2
0

]
+

∑
n>0

[
1

2
ρM ~̇X2

n + ~̇Xn · ~An −
1

2
ρMω

2
Mε0

~X2
n −

1

2
λq2

n
~X2
n

]
, (3.94)

where Z+ = {0} ∪N, M = ρML is the total mass of the rigid vortex line and ~An
is the gyrovector potential associated to the n-th coordinate ~Xn, which satisfies
∇ ~X0
× ~A0 = −~G and ∇ ~Xn

× ~An = −~ρG, n > 0, with ~G = ~ρGL being the gyrovector
of the rigid vortex.

Applying the Laguerre transformation to the above Lagrangian one obtains the
following expression for the Hamiltonian

H

(
t,
{
~Xn

}
n∈Z+

,
{
~Πn

}
n∈Z+

)
=

[
1

2M
(~Π0 − ~A0)2 +

1

2
Mω2

Mε0 ~X
2
0

]
+

∑
n>0

[
1

2ρM
(~Πn − ~An)2 +

1

2
ρMω

2
M

(
ε0 +

λ

ρMω2
M

q2
n

)
~X2
n

]
, (3.95)

where ~Π0 = M ~̇X0 + ~A0 and ~Πn = ρM ~̇Xn + ~An, n > 0 are the corresponding
canonical momenta. Notice that Eq. (3.95) shows that H splits into the direct
sum ⊕m∈Z+Hm, with Hm being the Hamiltonian defined over the phase space
( ~Xm, ~Πm). It has a structure of the form

H′ = 1

2η
(~Π− ~A)2 +

1

2
ηω2

Mξ ~X
2, (3.96)

where ( ~X, ~Π) are the canonically conjugate variables, η, ξ are constants and ~A is
the gyrovector satisfying ∇ ~X× ~A = −χêz, with χ being a constant. It is important
to point out that χ/η = ωM in all cases.
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From this point forward the case of the VC of a non-zero mass (η 6= 0) will be
considered. It is convenient to choose a "symmetric gauge" given by

~A =
1

2
(−χêz)× ~X =

χy

2
êx −

χx

2
êy. (3.97)

Firstly, one defines the kinetic momentum operators as ~p = η ~̇X, so that ~Π = ~p+ ~A.
Notice the following non-vanishing commutators

[pj, pk] = −i~χεjk j, k ∈ {x, y}, (3.98)

where εjk is the antisymmetric tensor εxy = −εyx = 1. Secondly, one introduces
the operators

a =

√
1

2~χ
(py + ipx) ,

a† =

√
1

2~χ
(py − ipx) , (3.99)

which satisfy standard commutation relations for Bose operators,
[
a, a†

]
= 1. The

number operatorNa = a†a satisfies commutation relations [Na, a] = −a,
[
Na, a

†] =
a†, and the following identity

1

2η

(
~Π− ~A

)2

= ~ωM
(
Na +

1

2

)
(3.100)

holds.
In analogy with the case of a charged particle in the electromagnetic field [120],

one obtains that the gyrotropic translational group is generated by ~T = ~Π + ~A,

Tx = px + χy, Ty = py − χx (3.101)

which satisfies the following commutation relations,

[Tj, pk] = 0, [Tj, Tk] = i~χεjk, j, k ∈ {x, y}. (3.102)

Now we introduce another set of Bose operators

b =

√
1

2~χ
(Ty − iTx) ,

b† =

√
1

2~χ
(Ty + iTx) , (3.103)
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which satisfy commutation relations[
b, b†

]
= 1, [Mb, b] = −b,

[
Mb, b

†] = b†,

where Mb = b†b is the corresponding number operator. Notice that the commuta-
tion relations [a, b] =

[
a, b†

]
= 0 also hold.

Coordinates x and y can be expressed in terms of the above Bose operators:

x =
1

χ
(py − Ty) , (3.104)

y = − 1

χ
(px − Tx) ,

so that
1

2
ηω2

M

(
x2 + y2

)
= ~ωM

(
Na +Mb − ab− a†b† + 1

)
. (3.105)

Consequently, the Hamiltonian (3.96) becomes

H′ = ~ωM
[
(1 + ξ)Na + ξMb − ξ(ab+ a†b†) + ξ +

1

2

]
. (3.106)

It can be diagonalized with the help of Bogoliubov transformations

ᾱ = ua− vb†, β̄ = ub− va†, (3.107)

with u, v being real numbers. These new operators satisfy Bose commutation
relations if u2 − v2 = 1. Substituting the above equations into Eq. (3.106) one
obtains

H′ =~ωM

[
ᾱ†ᾱ

(
u2(1 + ξ) + ξv2 − 2ξuv

)
+ β̄†β̄

(
v2(1 + ξ) + ξu2 − 2ξuv

)
+

(ᾱ†β̄† + ᾱβ̄)
(
uv(1 + 2ξ)− ξ(u2 + v2)

)
+
(
v2(1 + 2ξ)− 2ξuv + (ξ + 1/2)

)]
.

(3.108)

To get a Hamiltonian in the oscillator form, the coefficient related to (ᾱ†β̄† + ᾱβ̄)
should be zero, which requires

uv(1 + 2ξ)− ξ(u2 + v2) = 0. (3.109)

The solution is u = cosh(θ), v = sinh(θ), with

tanh(2θ) =
2ξ

1 + 2ξ
. (3.110)
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Finally, the coefficients of the terms ᾱ†ᾱ and β̄†β̄ become

u2(1 + ξ) + ξv2 − 2ξuv =
1

2

[
1 + 2ξ

cosh(2θ)
+ 1

]
=

1

2

[√
1 + 4ξ + 1

]
,

v2(1 + ξ) + ξu2 − 2ξuv =
1

2

[
1 + 2ξ

cosh(2θ)
− 1

]
=

1

2

[√
1 + 4ξ − 1

]
, (3.111)

and, consequently, the Hamiltonian in the second quantization formalism becomes

H′ = ~ω+

(
ᾱ†ᾱ +

1

2

)
+ ~ω−

(
β̄†β̄ +

1

2

)
, (3.112)

where

ω± =
1

2

[√
1 + 4ξ ± 1

]
ωM . (3.113)

Noticing that for any n ∈ Z+ we have ξ = ε0 + λ
ρMω

2
M
q2
n, the second quantization

procedure yields the following form of Hamiltonian (3.95):

H =
∑
n≥0

~ω+
n

(
ᾱ†nᾱn +

1

2

)
+
∑
n≥0

~ω−n
(
β̄†nβ̄n +

1

2

)
, (3.114)

where ω±n are the eigenfrequencies of the vortex state given by

ω±n =
1

2

[√
(1 + 4ε0) +

4λ

ρMω2
M

q2
n ± 1

]
ωM , (3.115)

which coincides with (3.85).

3.8 Computation of the vortex mass
As it has been discussed in Section 3.4, to calculate the vortex mass density tensor
[see Eq. (3.51)] one needs to find solution [Φ(~r, t),Θ(~r, t)] of the Landau-Lifshitz
equation in the slow dynamics regime, that is in the first order on | ~̇X|. A more
convenient set of variables for this problem is the pair (Φ,m), where m ≡ mz =
Mz

MS

= cos Θ is the projection of the magnetic moment onto the Z axis. Notice

that Landau-Lifshitz equation can be recast as the set of equations

DtΦ =
γ

MS

δE

δm
,

Dtm = − γ

MS

δE

δΦ
. (3.116)
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The total energy density E(Φ,m) splits into the sum

E(Φ,m) = Eex(Φ,m) + Ean(Φ,m) + Ed(Φ,m)

= A
[
(∇Θ)2 + sin2 Θ(∇Φ)2

]
−Kq

M2
x

M2
S

+K⊥
M2

z

M2
S

− 1

2
~M · ~Hd

= A

[
1

1−m2
(∇m)2 + (1−m2)(∇Φ)2

]
−Kq cos2 Φ(1−m2)

+K⊥m
2 − 1

2
~M · ~Hd, (3.117)

with Kq, K⊥ being the anisotropy constants of the ferromagnetic material. Recall
that ~Hd(~r) = −∇Ud(~r), with ∇2Ud(~r) = −4πρd, and ρd = −∇ · ~M . Equivalently
[93],

Ud(~r) =

∫
V

d3~r′ ~M(~r′) · ∇′
(

1

|~r − ~r′|

)
= −

∫
V

d3~r′
∇′ · ~M(~r′)

|~r − ~r′|
+

∫
∂V

d~S ′ ·
~M(~r′)

|~r − ~r′|

=

∫
V

d3~r′
ρd(~r′)

|~r − ~r′|
+

∫
∂V

d2~r′
σd(~r′)

|~r − ~r′|
, (3.118)

with σd = ~M ·~n being the effective surface “charge” density and V being the volume
of the system. Consequently, the magnetostatic energy can be written as

Ed =
1

2

∫
V

d3~rρd(~r)Ud(~r) +
1

2

∫
∂V

d2~r σd(~r)Ud(~r). (3.119)

One deals with a 2D micrometric object, so the surface energy term dominates
over the volume energy term. This surface term can be approximated by an
effective easy plane anisotropy contribution given by

Ed,S =

∫
V

d3~r 2πM2
z (~r). (3.120)

This gives for the total energy density

E(Φ,m) = A

[
1

1−m2
(∇m)2 + (1−m2)(∇Φ)2

]
−Kq cos2 Φ(1−m2)

+ (K⊥ + 2πM2
S)m2, (3.121)
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and the equations of motion (3.116) become

MS

γ
DtΦ =− 2Am

(1−m2)2
(∇m)2 − 2A

1−m2
4m− 2Am(∇Φ)2 + 2Kq cos2 Φ m

+ 2(K⊥ + 2πM2
S)m,

MS

γ
Dtm =−Kq sin(2Φ)(1−m2)− 4Am∇m · ∇Φ + 2A(1−m2)4 Φ. (3.122)

In the slow dynamics regime (| ~̇X| � 1) solutions (Φ,m) can be split into Φ =
Φ0 +Φ1 and m = m0 +m1, where Φ0 and m0 are the static solutions of the Landau-
Lifshitz equation (the anisotropy interaction is considered to be weak enough so
that the static solutions of the Hamiltonian Eex + Ed are valid for our problem)
and where Φ1 and m1 are linear on | ~̇X|. Static solutions are given by Eqs. (3.25).
As discussed in Sec. 3.5, in the weak bending regime one can approximate r̃ ' r

so that ∇Φ0 = Q êφ
r

and ∇m0 =
dm0

dr
êr.

Linearizing Eqs. (3.122) and taking into account that DtΦ = − ~̇X · ∇Φ and
Dtm = − ~̇X · ∇m, one obtains the equations of motion

MS

γ
~̇X · Qêφ

r
=

2A

1−m2
0

4m1 +m1

[
2A(1 + 3m2

0)

(1−m2
0)3

(
dm0

dr

)2

+
4Am04m0

(1−m2
0)2

+
2A

r2
− 2Kq cos2 Φ0 − 2(K⊥ + 2πM2

S)

]
+

4A m0

(1−m2
0)2

dm0

dr
êr · ∇m1

+ 4AQ m0
êφ
r
· ∇Φ1 + 2Kqm0 sin(2Φ0)Φ1,

MS

γ
~̇X · êr

dm0

dr
= −2A(1−m2

0)4 Φ1 + 4AQ m0∇m1 ·
êφ
r

+ 4A m0
dm0

dr
êr · ∇Φ1

− 2Kq sin(2Φ0)m0m1 + 2Kq cos(2Φ0)(1−m2
0)Φ1. (3.123)

Asymptotic expressions for the O(| ~̇X|) corrections to the out-of-plane vortex
shape can be determined by substituting Eqs. (3.25) into Eqs. (3.123). In doing
so, one obtains

m1 = −MS

2γ
Q

~̇X · êφ
(K⊥ + 2πM2

S) +Kq cos2 Φ0

1

r
,

Φ1 =
C2MS

2γA
∆

3/2
0 ( ~̇X · êr)

exp (−r/∆0)

r1/2
(3.124)
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for r � ∆0, and

m1 =
MSC1Q
3γA∆2

0

( ~̇X · êφ)r3,

Φ1 =
MS

γ

p

12A
~̇X · ~r (3.125)

for r � ∆0. Computation of the mass of the vortex core can be made via ~Πt,
which should be proportional to ~̇X in this limit:

~Πt = −MS

γ

∫
d2~r(∇Φ)m = −MS

γ

∫
d2~r(∇Φ0)m0 −

MS

γ

∫
d2~r(∇Φ0)m1

− MS

γ

∫
d2~r(∇Φ1)m0 −

MS

γ

∫
d2~r(∇Φ1)m1. (3.126)

Notice that −MS

γ

∫
d2~r(∇Φ0)m0 = ~0 because it corresponds to the momentum

of the static solution. The last term of Eq. (3.126) can be neglected because it
is quadratic in | ~̇X|. Therefore it remains to calculate the second and third terms,
which are given by

−MS

γ

∫
d2~r(∇Φ0)m1 = −MS

γ

∫
r≤∆0

d2~r(∇Φ0)m1 −
MS

γ

∫
r≥∆0

d2~r(∇Φ0)m1

=
π

γ2

 M2
S

K⊥ + 2πM2
S

1/2√
1 + Kq

K⊥+2πM2
S

ln(R/∆0)− 1

28

 ~̇X,

(3.127)

and

−MS

γ

∫
d2~r(∇Φ1)m0 = −MS

γ

∫
r≤∆0

d2~r(∇Φ1)m0 −
MS

γ

∫
r≥∆0

d2~r(∇Φ1)m0

=
π

γ2

[
− 11

168
+

4

49

(
1− Ξ · e2

)]
~̇X, (3.128)

respectively. Notice that Ξ =

∫ R/∆0

1

dx
exp(−2x)

x
'
∫ ∞

1

dx
exp(−2x)

x
= 0.049

because one is interested in the limit R� ∆0.
Collecting all terms for the momentum, the total mass density becomes

ρM =
π

γ2

 M2
S

K⊥ + 2πM2
S

ln(R/∆0)

2
√

1 + Kq
K⊥+2πM2

S

− 0.049

 . (3.129)
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Notice that the term involving ln(R/∆0) is the dominant one in the limit
R � ∆0. Furthermore, redefining the exchange length by a factor close to unity
one can always absorb the small numerical constant in Eq. (3.129) into the log-
arithmic term. Magneto-crystalline anisotropies, if they are sufficiently large, de-
stroy the circularly polarized state. Consequently, materials like Py, used in the
studies of the vortex state, have negligible magneto-crystalline anisotropy energy
as compared to the demagnetizing energy. This means that the above expression
for the vortex mass density can be reduced to

ρM '
1

4γ2
ln(R/∆0). (3.130)

With account of this formula one obtains the following expressions for the param-
eters ωM and ε0 that determine eigenfrequencies in the equation (3.115):

ωM =
8πγMS

ln(R/∆0)
,

ε0 =
5L

18πR
ln(R/∆0). (3.131)

3.9 Effects of the magnetic field and dissipation
In this section the effects of a magnetic field on the excitation modes of the VS are
studied. An arbitrarily directed magnetic field can be split into two components,
one being in the plane of the disk and the other one being perpendicular to it.
The effects of these two components can be investigated separately.

Consider first the case of a spatially uniform in-plane magnetic field, ~Hin =
hxêx +hyêy. For small displacements along the disk, the magnetic vortex develops
a linear density of in-plane magnetic moment given by [96]

〈 ~M( ~X)〉
∣∣
L = −µ

[
êz × ~X

]
, µ = (2π/3)CMSR. (3.132)

The Zeeman energy density term is

ωZ( ~X) = −〈 ~M( ~X)〉
∣∣
L · ~Hin = −µ

[
êz × ~Hin

]
· ~X = µhyx− µhxy (3.133)

and thus the total in-plane potential energy becomes

ωXY ( ~X) =
1

2
ρMω

2
Mε0

(
x2 + y2

)
+ µhyx− µhxy =

1

2
ρMω

2
Mε0

[(
x+

µhy
ρMω2

Mε0

)2

+

(
y − µhx

ρMω2
Mε0

)2
]
− 1

2

µ2

ρMω2
Mε0

~H2
in. (3.134)
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Notice that by shifting the origin of the coordinate system one retrieves the orig-
inal in-plane term of the total energy density (3.78) except for the constant term

−1

2

µ2

ρMω2
Mε0

~H2
in, which is field dependent. Consequently, the application of an

in-plane magnetic field does not modify the excitation modes given by (3.115).
Consider now the effect of the magnetic field perpendicular to the plane of

the disk, ~H⊥ = Hẑ. Application of such a field results in the precession of the
magnetic moment of the vortex about the direction of the field, described by the
Landau-Lifshitz equation [93],

∂ ~M(t, ~X)

∂t
= −γ

[
~M(t, ~X)× ~H⊥

]
. (3.135)

Formally, this effect can be accounted for by adding an extra term to the gyrovec-
tor. Indeed, integration of Eq. (3.67) (with no potential energy) over time gives
~̇X = α

[
~X × ~ρG

]
, where α = −1/ρM . With account of Eq. (3.132), one has

[
êz × ~̇X

]
= −γ

[
êz × ~X

]
× ~H⊥, (3.136)

α
(
êz ×

[
~X × ~ρG

])
= −γ

[
êz × ~X

]
× ~H⊥. (3.137)

The vector identity ~a × ~b × ~c = (~a · ~c)~b − (~a · ~b)~c leads to αρG = −γH. Con-
sequently, the precessional effect of the perpendicular field can be absorbed into
the gyrovector density if one adds the term ~ρG, ~H⊥ = −γ

α
~H⊥ = ρMγ ~H⊥ to it. This

adds the Larmor frequency to ωM ,

ωM(H) =
ρG,tot

ρM
= ωM +

ρG, ~H⊥
ρM

= ωM + γH, (3.138)

so that the eigenfrequencies (3.115) become

ω±n (H) =
1

2

[√
[1 + 4ε(H)] +

4λ

ρMω2
M(H)

q2
n ± 1

]
ωM(H), (3.139)

with ε(H) given by

ε(H) =
ωG(H)

ωM(H)
=
ω
′′
XY ( ~X = ~0)

ρMω2
M(H)

=
ε0

(1 + γH/ωM)2
. (3.140)

Introducing dimensionless variables h = γH/ωM and ω̄±n (h) = ω±n (H)/ωM , Eq.
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(3.139) can be rewritten as

ω̄±n (h) =
1

2

[√
1 +

4ε0
(1 + h)2

+
4λ

ρMω2
M(1 + h)2

q2
n ± 1

]
(1 + h)

' 1

2

[√
1 +

4ε0
(1 + h)2

± 1

]
(1 + h) +

sgn(1 + h)√
(1 + h)2 + 4ε0

λq2
n

ρMω2
M

. (3.141)

The distance between ω+
n and ω−n equals ∆ω = ωM + γH.

To conclude this Section, the effects of the dissipation on the excitation modes
of magnetic vortices will be investigated. One considers only the zero field case.
Derivation of the corresponding expressions when a magnetic field is applied is
straightforward. Dissipation is introduced into the equation of motion by adding
a damping term of the form −D ~̇X [see Eqs. (3.26) and (3.28)], so that the elastic
Thiele equation becomes

ρM ~̈X − λ∂2
z
~X + ~̇X × ~ρG −D ~̇X + ρMω

2
Mε0

~X = 0. (3.142)

Repeating the procedure of Sec. 3.6 with the above equation in the massive vortex
case (ρM 6= 0) one obtains the following equation for the frequency modes

ω2 + (ωM + id)ω − ω2
Mε(q) = 0, (3.143)

with d = D/ρM and ε(q) = ε0 + λ
ρMω

2
M
q2. The (complex) roots of this equation,

ω± = Re(ω±) + iIm(ω±), are given by

Re(ω±) = ∓r
1/2

2
cos(θ/2)− ωM

2
,

Im(ω±) = ∓r
1/2

2
sin(θ/2)− d

2
, (3.144)

with

r =

√
[(1 + 4ε(q))ω2

M − d2]
2

+ 4d2ω2
M ,

θ = arg
( [

(1 + 4ε(q))ω2
M − d2

]
+ i [2dωM ]

)
= tan−1

(
2dωM

(1 + 4ε(q))ω2
M − d2

)
. (3.145)

In the regime of weak dissipation, d << ωM , one has θ ' tan−1

[
2d

(1 + 4ε(q))ωM

]
and r ' (1+4ε(q))ω2

M . As cos[tan−1(x)/2] ' 1− x
2

8
+o(x4) and sin[tan−1(x)/2] '
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x

2
+ o(x3) if |x| � 1, one finally obtains

Re(ω±) = ∓
[

1

2

(√
1 + 4ε(q)± 1

)
− 1

4

(d/ωM)2

(1 + 4ε(q))3/2

]
ωM

' ∓

[
ωM
2

(√
1 + 4ε0 ± 1

)
− ωM

4

(d/ωM)2

(1 + 4ε0)3/2

+
λ√

1 + 4ε0

(
1 +

3

2

(d/ωM)2

(1 + 4ε0)2

)
q2

ρMωM

]
, (3.146)

and

Im(ω±) =

(
∓ 1√

1 + 4ε(q)
− 1

)
d

2
, (3.147)

Im(ω+)

Im(ω−)
= −

1 +
√

1 + 4ε(q)

1−
√

1 + 4ε(q)
=

(1 +
√

1 + 4ε(q))2

4ε(q)
. (3.148)

3.10 Discussion
Study of excitation modes of vortices in circularly polarized mesoscopic magnetic
disks that correspond to the string-like gyrotropic waves in the VC has been con-
ducted. This problem was studied by classical treatment based upon Landau-
Lifshitz equation and by quantum treatment based upon Hamiltonian approach.
The quantum problem is interesting on its own as it is equivalent to the problem
of quantum oscillations of a charged string confined in a parabolic potential and
subjected to the magnetic field, which in its turn, is a generalization of the prob-
lem of the field-induced orbital motion of the electron in a potential well. Both
treatments rendered identical results. The solution presented here generalizes the
expression for the frequency of the gyrotropic motion of the vortex for the case
of the finite wave number q, as ω−(q) = ωG + γMS(q∆0)2 ln(R/∆0). This expres-
sion is valid in the long-wave limit q∆0 � 1. The wave number is quantized,
qn = 2πn/L, where L is the thickness of the disk and n is an integer. For, e.g.,
a Py disk (MS ≈ 8 × 105 A/m2, A ≈ 1.3 × 10−11 J/m) of thickness L = 100 nm
and diameter 2R = 1.5 µm, the n = 1 mode is separated from the uniform gy-
rotropic mode by f = ω/(2π) ≈ 7 GHz, while for 2R = 1 µm and L = 50 nm the
separation is about 25 GHz. This mode could be excited by, e.g., a tip of a force
microscope or a micro-SQUID placed at the center of the disk. Such measurement,
while challenging, is definitely within experimental reach.

Throughout this chapter a non-zero mass of the vortex was considered. The
finite value of the mass splits the gyrotropic frequency into two modes, one with
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the gap ωG and the other with the gap ωM � ωG. The latter depends explicitly on
the vortex mass. The vortex mass density has been computed here as a coefficient
of proportionality, ρM , in the kinetic energy density of the moving vortex ρM ~̇X2/2,
and is given by ρM ' 1/(4γ2) ln(R/∆0). For a 25-nm-thick, micron-size Py disk
this gives the vortex mass in the ball park of 10−23 kg, which is close to the
experimental value estimated for a Py ring of comparable size [117]. K. Guslienko
et al. derived a similar expression for the mass, M ' (3/2)L/γ2, in Ref. [107].
Both expressions have a dynamical origin and depend linearly on the ratio L/γ2,
but the prefactor in the present case shows an explicit logarithmic dependence
on the radius of the disk due to the major contribution of the long-range dipolar
interactions to the shape variation of the VC profile.

The result obtained here for the mass gives ωM = 8πγMS/ ln(R/∆0). It is
higher than the frequencies of the modes studied in Refs. [101, 106], and is typ-
ically in the same frequency range that the uniform ferromagnetic resonance of
the magnetic material. It would be interesting to investigate this frequency range
experimentally alongside with the low-frequency gyrotropic mode. One can also
test experimentally the explicit field dependence of the vortex modes, computed
here. So far, one has studied the low field that disturbs only slightly the VS formed
in a zero field. Nevertheless, the statement concerning the existence of the addi-
tional mode due to the finite vortex mass should apply to higher fields as well.
This case, however, defies analytical study and must employ full-scale numerical
micromagnetic calculations. When the field is sufficient to fully polarize the disk
in the perpendicular direction, one expects the high frequency mode to evolve into
the uniform ferromagnetic resonance.

It is worth remarking that these axial excitation modes have been detected
this same year by Adeyeye’s group using broadband ferromagnetic resonance [121,
122]. The authors adapted the model presented here to interpret their experimental
results, finding good agreement between theory and experiments.



Chapter 4

Quantum depinning of the magnetic
vortex core

4.1 Magnetic irreversibility and relaxation mea-
surements

The vortex core is a suitable candidate to observe macroscopic quantum phenom-
ena. Because of the strong exchange interaction it behaves as an independent entity
and, the VC being a nanoscopic object, is likely to exhibit quantum tunneling be-
tween classically stable configurations. The measurement of time relaxations of
the magnetic moment is a simple way to observe this phenomenon. At finite tem-
peratures these relaxations may occur via thermal activation, whereas in the limit
T → 0 these relaxations continue independently of the temperature due to under-
barrier quantum tunneling. Macroscopic quantum tunneling (MQT) [see Chapter
2] determines that the relaxation rate decreases exponentially as exp(−Seff/~),
where Seff is the total action −including dissipation due to coupling with the en-
vironment− evaluated at the magnetic thermon for a given temperature. This
behaviour has been widely observed in a large number of systems [32], which
include single domain particles [123–126], magnetic clusters [127, 128], magnetic
domain walls [42], flux lines in type-II superconductors [45, 129] and, very recently,
Normal-Superconducting interfaces in type-I superconductors [see Chapters 1 and
2]. All these experimental evidences suggest that magnetic tunneling is a common
phenomenon characterizing the low-temperature dynamics of magnetic materials
in the mesoscopic scale.

As discussed in Sec. 3.3, dynamics of the VC can be affected by the presence
of structural defects in the sample, the effect of pinning (effective strength of
the pinning well) being enhanced as the temperature decreases. The gyrotropic
motion of the VC can be induced via the application of an in-plane magnetic field,

117
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which displaces the VC out of its equilibrium position perpendicularly to the field
direction −see Fig. 4.1a. In this section, the magnetic irreversibility and the
dynamics of VCs in micron-size Py dot arrays are explored at low temperatures
by means of the application of an in-plane magnetic field. Experimental evidence
of the quantum depinning of magnetic VCs through relaxation measurements will
be presented.

4.1.1 Experimental results

All measurements were performed in a commercial SQUID magnetometer capable
of measuring at temperatures down to 2 K and to apply DC magnetic fields up to
5 T. The system is equipped with a Continuous Low Temperature Control (CLTC)
and an Enhanced Thermometry Control (ETC) and it showed thermal stability
better than 0.01 K at all times in any isothermal measurement. Two hexagonal
arrays of Py (Ni81Fe19) disks were studied, with geometries given by the parameters
(L,R) = (95, 750) nm (S1) and (L,R) = (60, 750) nm (S2), respectively. Their
surface density was 0.15 dots/µm2. Both arrays of Py disks were fabricated on
a silicon wafer using optical lithography, and lift-off techniques. A single layer
resist spin coating and highly directional electron-beam evaporation under UHV
conditions were used to obtain circular dots with sharp edges. Identical properties
such as grain size, distribution, orientation, and film thickness may be obtained
over the whole array. The magnetic film was deposited on a water-cooled substrate
from a Py (Ni81Fe19) target. The growth ratio was of about 1.5 Å/s. Both Py
films showed a switching field of about 4 Oe and appeared to be pretty isotropic
(in-plane). Figure 4.1b shows an AFM image of the array S1, the perspective being
from a top-down view. Finally, samples were prepared by stacking four 5× 5 mm2

of these arrays with parallel sides and all magnetic measurements were performed
using an in-plane configuration of the magnetic field. Samples were studied in the
range of temperatures T ∈ [2, 300] K and under applied magnetic fields up to 2
kOe.

Figure 4.2a shows the M(H) curves of sample S1 at three different tempera-
tures, T ∈ {2, 50, 300} K, for positive applied magnetic fields. The first magne-
tization curves have been omitted. The values of the magnetization at negative
fields can be obtained by noticing that these hysteretic cycles are antisymmet-
ric. These hysteresis loops correspond to the onion state/SD↔VS transitions [see
Sec. 3.1]. As the temperature is lowered, the nucleation field Hn decreases and
the annihilation field Han increases [see discussion in Sec. 3.3]. The vortex linear
regime along the descending branch should extend from 300 Oe to −500 Oe at
least in the range of temperatures explored. This has been confirmed by analyz-
ing the numerical derivative of the DC hysteresis loops and by measuring the AC
susceptibility along this hysteretic branch for comparison, a technique introduced
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a b

Figure 4.1: (a) Magnetization field of the vortex state in one of the Py disks
considered in (b). The VC is displaced transversely to the direction of the applied
magnetic field H. (b) AFM image of the array S1 of Py disks from a top-down
view.

in Ref. [109]. Figure 4.2b shows the numerical derivative dM/dH of these curves
along the descending branch for positive values of the magnetic field, with a clear
non-zero plateau in the field range [0, 300] Oe. This is a characteristic signature of
the vortex linear regime. The AC susceptibility measurements resulted in a similar
behavior to that described in Ref. [109]. On the other hand, the descending and
ascending branches do not overlap at any temperature within the linear regime.
Furthermore, the remnant magnetization increases as T decreases [see Sec. 3.3].
From Fig. 4.1b one observes that the patterned disks have a fairly circular shape,
so that the possibility of open hysteresis at zero field due to ellipticity (or shape
defect) of the submicron-size disks can be neglected. In summary, the vortex linear
regime exhibits magnetic irreversibility that is temperature dependent.

Metastability of magnetic vortices in sample S1 was explored by means of 1)
ZFC-FC magnetization curves [MZFC and MFC, respectively] at different magnetic
fields, and 2) isothermal measurements of the magnetization along the descend-
ing branch of the hysteresis cycle from the onion/SD state [Mdes(H)] at different
temperatures. In both protocols the values of T and H at which the magneti-
zation was measured were the same. The ZFC process consists of the following
steps: Firstly, minor cycles around H = 0 Oe are performed at T = 150 K, which
leads to a zero-magnetization state at zero field. Secondly, the sample is cooled
down to T = 2 K at zero field and then the desired magnetic field H is applied.
Finally, the ZFC magnetization curve is measured from 2 K to 150 K. Sweeping
the temperature back to 2 K one obtains the FC curve. Figure 4.3a shows both
ZFC-FC curves measured at H = 300 Oe in the temperature range T ∈ [2, 150] K.
Notice that the magnetization increases strongly from an initial value at 2 K to
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a

b

Figure 4.2: (a) Half hysteresis loops of sample S1 obtained at three different tem-
peratures (T = 2, 50 and 300 K) for positive applied magnetic fields. The size of
the points is bigger than the error bars. (b) Numerical derivative dM/dH along
the descending branch of the hysteresis loops plotted in (a).
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Figure 4.3: (a) Temperature dependence of MZFC(300 Oe) and MFC(300 Oe) in
the range T ∈ [2, 150] K. (b) Thermal dependence ofMdes(300 Oe), MZFC(300 Oe)
and MFC(300 Oe) in the range T ∈ [2, 30] K. These measurements correspond to
the sample S1.
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a maximum around T ∼ 30 K. Then it decreases smoothly and reaches a plateau
at high temperatures. The dependence of the FC curve on temperature is simi-
lar to that of the ZFC case at high temperatures, but with slightly higher values
of the magnetization. In the ballpark of T ∼ 20 K, however, the magnetization
of the FC process rises strongly, reaching its maximum value at T = 2 K. This
thermal dependence of both MZFC(H) and MFC(H) is characteristic of applied
magnetic fields within the linear vortex regime. Additionally, isothermal magnetic
measurements along the descending branch of the hysteresis cycle, Mdes(H), were
measured: Firstly, one saturates the sample in the onion/SD state by application
of a H = 1 kOe magnetic field after fixing the temperature T . Secondly, the mag-
netic field is reduced to the desired value and then magnetization of the sample is
recorded. In both protocols, measurements of M were taken at the same values of
T . Figure 4.3b shows the thermal dependences of Mdes, MZFC and MFC evaluated
at H = 300 Oe in the range T ∈ [2, 30] K. The values of Mdes(300 Oe) decrease
strongly as T increases within the range T ∈ [2, 20] K and tend smoothly to those
of the FC curve above T ∼ 30 K. The divergence among the MZFC, MFC and
Mdes curves in the range T ∈ [2, 20] K indicates the existence of strong magnetic
irreversibility in this region.

To confirm that the FC curve represents the magnetic equilibrium of the system
two sets of measurements of the isothermal time evolution of the magnetization,
M(T, t), were taken for sample S1 as the temperature is swept in increments of 1
K every 30 minutes (a) from 15 K to 2 K and (b) from 2 K to 15 K, see Fig. 4.4.
The initial magnetic state for each set of measurements was prepared by means
of the ZFC process explained above down to the desired temperature, followed by
the application of a magnetic field H = 300 Oe. In Fig. 4.4a magnetic relaxation
of the sample is only observed at 15 and 14 K, the magnetization quickly reaching
a stationary value corresponding to that of the FC curve. From this point forward,
sweeping the temperature down to 2 K only leads to a variation of the magnetiza-
tion of the sample according to the thermal dependence of the FC curve. On the
other hand, Fig. 4.4b shows that, for this protocol, the magnetization relaxes in
the whole range of temperatures. The initial magnetization value of each relax-
ation is determined by the time evolution of the previous process. Furthermore,
the amount of relaxed magnetization in each relaxation process is approximately
the same within the range T ∈ [2, 9] K and progressively decreases to zero for
T ≥ 10 K, with the magnetization tending to the values of the FC curve. Analo-
gous behavior with respect to the hysteresis loops, ZFC-FC magnetization curves
and magnetization along the descending branch was found for sample S2.

A deeper insight into the metastability of both samples was gained by per-
forming relaxation measurements within the vortex linear regime. The amount of
magnetization available for relaxing is given by the difference M0 −Meq, where
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Figure 4.4: Isothermal time evolution of the magnetization of sample S1 in steps
of 1 K every 30 minutes (a) from 15 K to 2 K and (b) from 2 K to 15 K.
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M0 is the initial magnetization and Meq corresponds to the equilibrium magneti-
zation. Therefore, the study focused on relaxation measurements of the VS from
the metastable states along the descending hysteretic branch in the temperature
range T ∈ [2, 20] K (see Fig. 4.3b). Figure 4.5 shows the normalized irreversible
magnetization [left term of Eq. (4.1)] vs. ln t curves measured at zero field within
the temperature range T ∈ [2, 10] K for samples S1 [panel (a)] and S2 [panel
(b)]. In this case relaxation processes occur from the remnant state to the zero-
magnetization state. Only below T ∼ 20 K the magnetization of both samples
follows very well a logarithmic time dependence.

Magnetic viscosity S(T ) of these relaxation measurements can be calculated in
this range of temperatures by means of the theoretical expression [32]

M(t)−Meq

M0 −Meq
= 1− S(T ) ln t, (4.1)

with M0 = Mr(T ) and Meq = 0 in the case of Fig. 4.5. Figure 4.6 shows the
magnetic viscosity as a function of temperature for both samples. Magnetic vis-
cosity reaches a non-zero plateau below Tc = 6 K, the crossover temperature of
the system. Above Tc the magnetic viscosity increases up to a certain temperature
−dependent on the sample−, from which it decreases again. The increase of viscos-
ity with temperature above the crossover temperature is due to thermal activation
over the pinning barriers. The drop of the magnetic viscosity is in agreement with
the loss of magnetic irreversibility in the systems.

4.1.2 Discussion

A logarithmic time dependence of the magnetization in relaxation measurements
indicates the existence of a broad distribution of energy barriers V in the system.
Classically, these energy barriers can be overcome by thermal activation with prob-
ability proportional to the Arrhenius factor exp(−V/kBT ). The so-called blocking
temperature, TB, sets apart the reversible (T > TB) and irreversible (T < TB)
regimes when the sample is externally perturbed. Despite the slight differences
between MZFC and MFC and between Mdes and MFC at high temperatures, the
strong divergence in magnetization observed in Fig. 4.3b suggests that the block-
ing temperature should be below T ∼ 20 K.

The blocking temperature for weakly interacting systems can be estimated
as the temperature at which the magnetic viscosity reaches its maximum [32].
From Fig. 4.6 one estimates the values TB,S1 ' 18 K and TB,S2 ' 20 K for sam-
ples S1 and S2, respectively. This is in good agreement with the gradual loss of
logarithmic time dependence of these relaxation measurements at T & 20 K. No-
tice that thermal activation of the energy barriers dies out in the limit T → 0.
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Therefore, the existence of the non-zero plateau in the thermal dependence of
the magnetic viscosity as T → 0 is the evidence of relaxations being non-thermal
at very low temperatures. Equivalently, transitions from metastable states occur
through underbarrier quantum tunneling below Tc. This interpretation is upheld
by the graphic representation M vs. T ln(t/τ0) [126] of the relaxation processes
in Fig. 4.7: τ0 is the so-called characteristic attempt time of the system and its
value is such that the magnetization of a relaxation process scales with T ln(t/τ0)
in the thermal regime. Hence, its best estimate corresponds to the best scaling
of the resulting M [T ln(t/τ0)] graphic representations. Notice that just the power
dependences τ0 = 10p, p ∈ Z+, are considered because only the order of magni-
tude is relevant to the relaxation process (see Ref. [32]). In the present case the
estimates for samples S1 and S2 are τ0,S1 ∼ 10−11s and τ0,S2 ∼ 10−10s, respectively,
so that magnetic relaxation curves only scale for temperatures above Tc. The loss
of scaling below the crossover temperature corresponds to the quantum regime
and is independent of the energy barrier distribution [126]. The increase of the
viscosity between Tc and TB corresponds to thermal overcoming of the (pinning)
energy barriers. Above the blocking temperature, the decrease of the viscosity as
T increases corresponds to the fact that there is a lower number of magnetic VCs
in metastable states that should relax to the equilibrium magnetization −magnetic
irreversibility decreases with temperature.

The onset of magnetic irreversibility occurs by sweeping the external magnetic
field in both MZFC and Mdes processes. The effect of the field (within the linear
regime) on the VS is to move the VC across the disk plane and, thus, magnetic
irreversibility should arise from this displacement. As discussed in Sec. 3.3, the
presence of some sort of structural defects (grain boundaries, dislocations, etc.) af-
fects the (gyrotropic) dynamics of the VS. Linelike defects are feasible candidates
to provide the landscape of pinning barriers encountered by the VC during its
low-temperature dynamics. Magnetic relaxation of the samples may, therefore, be
interpreted simply as the dynamics of the VC as it escapes from the mestastable
wells due to pinning centers towards the equilibrium. The crossover temperature
being independent of the thickness of the submicron-size disks supports the hy-
pothesis that just a small portion of the VC line takes part in the tunneling process
via an elastic deformation. The VC line as a whole behaves classically, that is, the
amount of spins configuring this magnetic soliton is large enough not to exhibit
quantum tunneling phenomena collectively.

4.2 Theoretical model

As discussed in Secs. 3.4 and 3.5, the true nature of the VC line is that of an
elastic string with finite elasticity provided by the exchange interaction. At low
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a

b

Figure 4.7: Magnetization vs. T ln t curves measured at zero field for samples
(a) S1 and (b) S2. Insets show a zoom of the curves in the temperature range
T ∈ [2, 7] K. Above Tc = 6 K the scaling M = M [T ln(t/τ0)] is verified −black
segments within the insets−, which corresponds to the case of thermal relaxation.
Below Tc one finds a breakdown of this scaling associated with the quantum regime.
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temperatures only the softest dynamical mode of the VS can be activated, which
corresponds to the gyrotropic motion of the VC. The aim of this section is to study
the mechanism of quantum tunneling of the elastic VC line through a pinning
barrier during the gyrotropic motion. The attention will focus on line defects,
which can be originated for instance by linear dislocations along the disk symmetry
axis. This case may be relevant to the relaxation experiments discussed in Sec. 4.1
since linear defects provide the maximum pinning and, therefore, the VC line in
the equilibrium state is likely to align locally with these defects. Such a situation
would be similar to pinning of domain walls by interfaces and grain boundaries.
Thus, the depinning of a small segment of the VC line from a line defect will be
considered. The problem of quantum and thermal depinning of a massive elastic
string trapped in a linear defect and subject to a small driving force was considered
by Skvortsov [130]. The problem studied here is different as it involves gyrotropic
motion of a massless vortex that is equivalent to the motion of a trapped charged
string in a magnetic field [see Sec. 3.5]. This problem will be studied with account
of Caldeira-Leggett-type dissipation [see Sec. 2.1.4].

4.2.1 Elastic Thiele’s Lagrangian formalism and depinning
rate

From this point forward, a circular disk geometry with parameters (L,R) and an in-
plane configuration of the applied magnetic field will be considered. Furthermore,
linear density (along the VC line) will be referred to simply as density. The VC
line is pinned by the line defect going in the Z direction −symmetry axis of the
disk− and located at the center of the disk. The VC line shall be described by the
vector field ~X = (x, y), where x(t, z) and y(t, z) are coordinates of the center of
the VC in the XY plane. The dependence on the Z-coordinate emerges from the
elastic nature of this magnetic structure [see Sec. 3.5]. Figure 4.8 shows an sketch
of the vortex line deformation due to pinning and its gyroscopic motion.

The softest dynamical mode of the VC, and hence of the whole vortex, origi-
nates from gyroscopic motion and is described by the generalized Thiele equation
(3.79):

~̇X(t, z)× ~ρG + ∂z~Πz +∇ ~Xω = 0, (4.2)

where ’dot’ means time derivative. The gyrovector density ~ρG = ρGpQêz is re-
sponsible for the gyroscopic motion of the VC and its modulus is given by Eq.
(3.66), with p = ±1 being the polarization of the VC and Q = 1 being the vor-
ticity of the magnetization field. The potential energy density ω( ~X, ∂z ~X) splits
into the sum of two contributions, ω1( ~X) and ω2(∂z ~X). The latter is the elastic
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Figure 4.8: Vortex state and depinning via nucleation of the part of the VC line
in a circular disk made of soft ferromagnetic material.

term, ω2(∂z ~X) =
1

2
λ

(
∂ ~X

∂z

)2

, provided by the exchange interaction. The elastic

constant is given by Eq. (3.77). Finally, ~Πz = −δω/δ(∂z ~X) = −λ∂z ~X is the
generalized momentum density with respect to Z. Hence, the generalized Thiele
equation becomes

~̇X(t, z)× ~ρG − λ∂2
z
~X(t, z) +∇ ~Xω = 0. (4.3)

The Lagrangian corresponding to the above equation is given by [see Eq. 3.92]:

L[t, ~X, ~̇X, ∂z ~X] =

∫ L

0

dz

{
~̇X · ~AρG − ω( ~X, ∂z ~X)

}
, (4.4)

where ~AρG = ρGpQyêx is the gyrovector potential in a convenient gauge. Notice
tha the symmetric gauge is used in Eq. (3.97) instead of this one. In both cases the
gyrovector potential verifies the identity∇ ~X× ~AρG = −~ρG. The VC is a mesoscopic
object consisting of many degrees of freedom. Quantum depinning of such object
must be considered within the semiclassical method of Caldeira-Leggett theory [see
Sec. 2.1.4]: The depinning rate at a temperature T , Γ(T ) = A(T ) exp [−B(T )], is
obtained by performing the imaginary-time path integral∫

D[x]

∫
D[y] exp

[
−1

~

∮
dτLE

]
(4.5)
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over τ -periodic trajectories ~Xτ ≡ ~X(τ, z) with period ~/kBT . Notice that τ = it
is the imaginary time and LE is the Euclidean version of Eq. (4.4). That is,

LE[τ, ~Xτ , ~̇Xτ , ∂z ~Xτ ] =

∫ L

0

dz

{
− i ~̇Xτ · ~AρG + ω( ~Xτ , ∂z ~Xτ )

}
. (4.6)

The energy density ω1( ~Xτ ) splits into the sum of three terms. The first one,
ωXY ( ~Xτ ), represents the sum of the magnetostatic and exchange contributions in
the z-cross-section, whose dependence on the VC coordinates is ωXY ( ~Xτ ) ∼ ~X2

τ

for small displacements [see Eq. (3.68)]. The second term, ωdep( ~Xτ ), represents
the pinning energy density associated with the line defect. Recent experimental
works have reported an even quartic dependence of pinning potentials on the VC
coordinates for small displacements in Py rings [131]. Therefore, it is legitimate
to take the following functional dependence for the sum of both terms:

(ωXY + ωdep)( ~Xτ ) =
1

2
κ
(
x2
τ + y2

τ

)
− 1

4
βp4(xτ , yτ ), (4.7)

where (κ, β) are the parameters of the model and p4(x, y) is a linear combination
of monomials of degree four on variables x and y. The last term represents the
Zeeman energy density, which is given by ωZ( ~Xτ ) = −µ

[
êz × ~Hin

]
· ~Xτ , µ =

(2π/3)CMSR for small displacements. It corresponds to the application of a weak
in-plane uniform magnetic field ~Hin. A magnetic field ~Hin = −Hêy applied along
the Y direction is chosen in the forthcoming calculations.

The simple dependence p4(xτ , yτ ) = x4
τ keeps the main features of the pinning

potential [see Sec. 4.2.4]. One also neglects the elastic term 1
2
λ
(
∂yτ
∂z

)2
. The

assumptions made regarding the structure of the potential can affect the values of
factors of order unity but should not change the conclusions as to the magnitude
of the effects studied here. From all these considerations the Lagrangian (4.6)
becomes

LE[τ, ~Xτ , ~̇Xτ , ∂z ~Xτ ] = (4.8)∫ L

0

dz

{
− iρGpQyτ ẋτ − µHxτ +

κ

2
x2
τ +

κ

2
y2
τ −

β

4
x4
τ +

λ

2

(
∂xτ
∂z

)2
}
.

Finally, Gaussian integration over yτ [see Appendix B] reduces Eq. (4.5) to

∫
D[x] exp

[
−1

~

∮
dτLE,eff

]
(4.9)
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with

LE,eff[τ, xτ , ẋτ , ∂zxτ ] =

∫ L

0

dz

{
1

2

(
ρ2
G

κ

)
ẋ2
τ − µHxτ +

κ

2
x2
τ −

β

4
x4
τ +

λ

2

(
∂xτ
∂z

)2
}
.

(4.10)
Within the framework of the Caldeira-Leggett theory [see Sec. 2.1.4], dissipa-

tion is taken into account by adding a term

η

4π

∫ L

0

dz

∮
dτ

∫
R

dτ1
[xτ (τ, z)− xτ (τ1, z)]

2

(τ − τ1)2
(4.11)

to the action of Eq. (4.9). The dissipative constant η is related to the damping
of the magnetic VC [32] and from Eq. (3.30) one has η ' 3αLLGρG, with αLLG

being the Gilbert damping parameter. Introducing dimensionless variables τ̄ =
(κ/
√

2ρG)τ , z̄ = (κ/2λ)1/2z and u = (2β/κ)1/2xτ , the depinning exponent becomes

B(T, h) =
ρG
√
λκ

2~β

∫
dz̄

∮
dτ̄

[
1

2
u̇2 +

1

2
(u′)2 + V (u, h)

+
η

2
√

2πρG

∫
R

dτ̄1
(u(τ̄ , z̄)− u(τ̄1, z̄))2

(τ̄ − τ̄1)2

]
(4.12)

where ’ ′ ’ means derivative with respect to z̄, V (u, h) = −hu + u2 − u4/4 is the
normalized energy potential and h = 2

√
2β/κ3µH. Let u0(h) be the relative

minimum of V for a fixed value of h. By rescaling the energy potential V (u, h)→
V (u, h) := V (u0(h) + u, h)− V (u0(h), h) and shifting the variable u → u0(h) + u
one obtains V (u, h) = u2

[(
1− 3u2

0(h)/2
)
− u0(h)u− u2/4

]
.

4.2.2 Instantons of the dissipative 1+1 model

Quantum depinning of the VC line is given by the evaluation of the depinning ex-
ponent (4.12) at the instanton solution of the Euler-Lagrange equations of motion
of the 1+1 field theory described by Eq. (4.12). This gives

ü+ u′′ −
[
2− 3u2

0(h)
]
u+ 3u0(h)u2 + u3−

√
2

π

η

ρG

∫
R

dτ̄1
u(τ̄ , z̄)− u(τ̄1, z̄)

(τ̄ − τ̄1)2
= 0 (4.13)

with boundary conditions

u(−Ω/2, z̄) = u(Ω/2, z̄) z̄ ∈ R,

max
τ̄∈[−Ω/2,Ω/2]

u(τ̄ , z̄) = u(0, z̄) z̄ ∈ R, (4.14)
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that must be periodic on the imaginary time τ̄ with the period Ω =
κ√
2ρG

~
kBT

.

This equation cannot be solved analytically, so we must proceed by means of
numerical methods. Notice that in the computation of instantons one can safely
extend the integration over z̄ in Eq. (4.12) over the whole set of real numbers.

Zero temperature

In this case, application of the 2D Fourier transform

û(ω, θ) =
1

2π

∫
R2

dτ̄ dz̄ u(τ̄ , z̄)ei(ωτ̄+θz̄) (4.15)

to Eq. (4.13) yields the equation

û(ω, θ) =
1

ω2 + θ2 +
√

2|ω|η/ρG + 2− 3u2
0(h)

[
3u0(h)

2π

×
∫
R2

dω1 dθ1û(ω1, θ1)û(ω − ω1, θ − θ1) +
1

(2π)2
×∫

R4

d2~ω d2~θ û(ω2, θ2)û(ω1 − ω2, θ1 − θ2)û(ω − ω1, θ − θ1)

]
, (4.16)

which is an integral equation for û. The depinning exponent (4.12) in the Fourier
space becomes

B(T = 0, h) =
ρG
√
κλ

2~β

{∫
R2

dω dθ û(ω, θ)û(−ω,−θ)×[(
1− 3

2
u2

0(h)

)
+
ω2 + θ2

2
+
|ω|√

2

η

ρG

]
− u0(h)

2π

∫
R4

d2~ω d2~θ

û(ω1, θ1)û(ω2, θ2)û(−ω1 − ω2,−θ1 − θ2)− 1

(4π)2

∫
R6

d3~ω d3~θ

û(ω1, θ1)û(ω2, θ2)û(ω3, θ3)û(−ω1 − ω2 − ω3,−θ1 − θ2 − θ3)

}
. (4.17)

The zero-temperature instanton is computed using an algorithm that is a field-
theory extension of the algorithm introduced in Refs. [64], [65] for the problem
of dissipative quantum tunneling of a particle. To begin with, one introduces the
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operator

O(λ, α, û(ω, θ), h) =
1

ω2 + θ2 +
√

2|ω|η/ρG + 2− 3u2
0(h)

×

(
λ

∫
R2

dω1 dθ1û(ω1, θ1)û(ω − ω1, θ − θ1)+

α

∫
R4

d2~ω d2~θ û(ω2, θ2)û(ω1 − ω2, θ1 − θ2)û(ω − ω1, θ − θ1)

)
, (4.18)

which generalizes the integral operator from Eq. (4.16). Notice that the equation of
motion for the instanton in the Fourier space becomes û(ω, θ) = O(3u0(h)/2π, 1/(2π)2,
û(ω, θ), h). Secondly, it is important to point out the scaling property of this
operator because it will be used in the computation of Eq. (4.17): Given any
triplet (λ0, α0, û0(ω, θ)) satisfying the identity (4.16), so will any other triplet
(λ1, α1, û1(ω, θ)) provided that

û1(ω, θ) = χû0(ω, θ) (4.19)
λ1 = λ0/χ (4.20)
α1 = α0/χ

2, (4.21)

where χ is a constant. This means that if a solution (λ1, α1, û1(ω, θ)) can be found
for arbitrary parameters (λ1, α1), then one can obtain the solution corresponding
to the pair (λ0, α0) simply by rescaling û1(ω, θ) by a factor χ = λ1/λ0 as long as
(λ1/λ0)2 = α1/α0 is verified.

The algorithm consists of the following steps:

1. Start with an initial (λ0, α0, û0(ω, θ)).

2. Let û1(ω, θ) = O(λ0, α0, û0(ω, θ), h).

3. Calculate λ1 = λ0/χ
2, α1 = α0/χ

3, where χ = û1(~0)/û0(~0).

4. Find û2(ω, θ) = O(λ1, α1, û1(ω, θ), h).

5. Repeat steps (2)-(4) until the successive difference satisfies a preset conver-
gence criterion.

The output is the triplet (λn, αn, ûn(ω, θ)). The final step consists of rescaling
ûn to obtain the solution corresponding to the pair (λ, α) = (3u0(h)/2π, 1/(2π)2):
The rescaling rules of the λ- and α- terms of Eq. (4.16) are different according
to the scaling property. Therefore, to obtain an accurate approximation of the
instanton solution one has to split û(ω, θ) into the sum of two functions û1(ω, θ)
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and û2(ω, θ) in the above algorithm, and calculate their next iteration by means
of the λ-term and the α-term of the operator (4.18), respectively. Finally, one
rescales û1,n by a factor 2πλn/3u0(h) and û2,n by a factor 2π

√
αn. The depinning

rate is calculated by evaluation of Eq. (4.17) at this solution.

Non-zero temperature

Because of the thermon solution being periodic in τ̄ −with period Ω− at T 6= 0, a
solution of the form

u(τ̄ , z̄) =
∑
n∈Z

un(z̄)e−iωnτ̄ (4.22)

is considered, where ωn =
2πn

Ω
for all n ∈ Z. Introducing this functional depen-

dence into Eq. (4.13) and applying a 1D Fourier transform leads to the equation

ûn(θ) =
1

ω2
n + θ2 +

√
2|ωn|η/ρG + 2− 3u2

0(h)
×[

3u0(h)√
2π

∑
p∈Z

∫
R

dθ1ûp(θ1)ûn−p(θ − θ1)+

1

2π

∑
p,q∈Z

∫
R2

d2~θ ûp(θ2)ûq(θ1 − θ2)ûn−p−q(θ − θ1)

]
, (4.23)

which is an integral equation for the set {ûn}n∈Z of Fourier coefficients. The
depinning exponent (4.12) in the Fourier space becomes

B(T > 0, h) =
ρG
√
κλ

2~β

{∑
n∈Z

∫
R

dθ ûn(θ)û−n(−θ)×[(
1− 3

2
u2

0(h)

)
+
ω2
n + θ2

2
+
|ωn|√

2

η

ρG

]
− u0(h)√

2π

∑
n,m∈Z

∫
R2

d2~θ

ûn(θ1)ûm(θ2)û−n−m(−θ1 − θ2)− 1

8π

∑
n,m,l∈Z

∫
R3

d3~θ

ûn(θ1)ûm(θ2)ûl(θ3)û−n−m−l(−θ1 − θ2 − θ3)

}
Ω. (4.24)

The numerical algorithm is analogous to that used in the zero-temperature case,
but with account of the rescaling of {û1

p}p∈Z and {û2
p}p∈Z by factors

√
2πλn/3u0(h)

and
√

2παn, respectively, in the last step of the calculations.
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Figure 4.9: Temperature dependence of the depinning rate: Normalized action
2~β

ρG
√
κλ
B(T ) vs. Ω at different values of the parameter h.
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Figure 4.9 shows the normalized action B̄(T ) =
2~β

ρG
√
κλ
B(T ) as a function of

Ω at different values of the parameter h. In the simulations the standard value
αLLG = 0.008 for bulk Py has been taken [96].

4.2.3 Crossover temperature

The crossover temperature determines the transition from thermal to quantum
tunneling regimes in the relaxation processes. It can be computed by means of
theory of phase transitions [56, 58, 66]: Above Tc, the instanton solution minimiz-
ing Eq. (4.12) is a τ̄ -independent function u(τ̄ , z̄, h) = ū0(z̄, h), whereas just below
Tc the instanton solution can be split into the sum of ū0 and a small perturbation
depending on τ̄ ,

u(τ̄ , z̄, h) = ū0(z̄, h) + ū1(z̄, h) cos

(
2π

Ω
τ̄

)
. (4.25)

The depinning exponent (4.12) is proportional to∫
R

dz̄ Φ(z̄; ū1, ū
′
1), (4.26)

where Φ is the spatial action density. Introducing the expansion (4.25) into Eq.
(4.12) one obtains the following expansion for the above functional:

Φ(z̄; ū1, ū
′
1) =

[
1

2
(ū′0)2 + V (ū0, h)

]
Ω +

Ω

4
(ū′1)2 + Λū2

1 +O(4), (4.27)

with

Λ =
Ω

4
V ′′(ū0, h) +

π2

Ω
+

π√
2

η

ρG
. (4.28)

If Λ > 0 the only pair (ū1, ū
′
1) minimizing Φ is ū1 ≡ 0. The crosover temperature

is then defined by the equation minz̄∈R Λ = 0, that is

Ωc

4
min
z̄∈R

V ′′(ū0, h) +
π2

Ωc
+

π√
2

η

ρG
= 0. (4.29)

The equation of motion for a τ̄ -independent instanton is

ū′′0 − [2− 3u2
0(h)]ū0 + 3u0(h)ū2

0 + ū3
0 = 0 (4.30)
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with boundary conditions: ū0 → 0 at |z̄| → ∞ and ū0(0, h) = −2u0(h) +√
4− 2u2

0(h) ≡ w(h), which is the width of the potential. Hence,

min
z̄∈R

V ′′(ū0(z̄, h), h) = min
ū0∈[0,w(h)]

V ′′(ū0, h) =

min
ū0∈[0,w(h)]

{
[2− 3u2

0(h)]− 6u0(h)ū0 − 3ū2
0

}
=

− 10 + 3u2
0(h) + 6u0(h)

√
f(h) (4.31)

with f(h) = 4 − 2u2
0(h). Solution of the quadratic equation for Tc given by Eq.

(4.29) yields the following expression for the crossover temperature:

Tc(h) =
~κ

4πkBρG

[√
8 + 3f(h)− 12u0(h)

√
f(h) +

η2

ρ2
G
− η

ρG

]
. (4.32)
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Figure 4.10: Magnetic field dependence of the dimensionless crossover temperature

θc =
4πkBρG

~κ
Tc. (Inset) Sketch of the potential V (u, h = 0.1).

Figure 4.10 shows the dependence of the dimensionless crossover temperature

θc =
4πkBρG

~κ
Tc on the generalized magnetic field h.

4.2.4 Discussion

Given any value of the generalized field h, two regimes in the dependence of the
normalized action on Ω are clearly distinguished in Fig. 4.9: A linear regime is
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found below Ωc(h), whereas the normalized action tends to a constant value above
the crossover imaginary-time period. Notice that the transition from the linear to
the plateau regime is smooth −that is, of second-order type. Above the crossover
temperature the depinning rate becomes

B(T > Tc, h) =
ρG
√
λκ

2~β

∫
dz̄

[
1

2
(ū′0)2 + V (ū0, h)

]
Ω (4.33)

with ū0 being the τ̄ -independent instanton. By means of Eq. (4.30) this expression
can be rewritten as [32]

B(T > Tc, h) =
ρG
√
λκ

2~β

[
2
√

2

∫ w(h)

0

dū0

√
V (ū0, h)

]
Ω (4.34)

and, therefore, the slope of the normalized action B̄(Ω) is equal to 2
√

2×∫ w(h)

0
dū0

√
V (ū0, h) in the linear regime, which can be evaluated analytically. At

all values of the generalized field h, the numerical slope calculated from Fig. 4.9
coincides with that calculated analytically within the numerical error of the sim-
ulations. This is indicative of the robustness of the algorithm presented here.

Quantum effects reported in Sec. 4.1 can be interpreted as being plausibly
due to the depinning from line defects present in the disk. The size of the defects
needs to exceed the nucleation length in order to pin the VC, but not to be as
long as the thickness of the disk. Pinning of extended parts of the VC line by
line defects would be justified by the fact that linear defects provide the strongest
pinning so that the VC line, or at least some segments, would naturally fall into
such traps. Thus, the present model can be test out on the experimental results
obtained in Sec 4.1. The crossover temperature is relevant to the roughness of the
fine-scale potential landscape due to linear defects at the bottom of the potential
well created by the external and dipolar fields. Above Tc vortices diffuse in this
potential by thermal activation, whereas below Tc they diffuse by quantum tun-
neling. This must determine the temperature dependence (independence) of the
magnetic viscosity. Tc is, therefore, the measure of the fine-scale barriers due to
linear defects. It can be measured experimentally and help to extract the width
of the pinning potential.

Notice that the depinning rate should not exceed 30 − 40 in order for the
tunneling to occur on a reasonable time scale. Estimates of the model parameters
(κ, β) are obtained by fitting the model to experimental data. Considering the
experimental values A = 1.3 · 10−11 J/m and MS = 7.5 · 105 A/m for permalloy,
fitting Eq. (4.32) and Eq. (4.17) to the values Tc ∼ 6 K (see Fig. 4.6) and
B(T = 0, h = 0) ∼ 30, respectively, at zero field leads to the estimates

κ ∼ 5.9 · 107 J/m3, β ∼ 6.9 · 1027 J/m5. (4.35)
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The width of the quartic potential can be found via the expression w =
√

2κ/β ∼
0.13 nm. This value is compatible with the width of the potential provided by a
linear dislocation.

In conclusion, non-thermal dynamics of magnetic vortices in micron-size Py
disks has been observed. It is attributed to the quantum escape of the VC line
from a line defect in these disks. Experimental results let one conclude that the
depinning process occurs in steps about 0.13 nm, which corresponds to the width
of the energy potential.



Chapter 5

Josephson junction with a magnetic
vortex

5.1 Introduction

A junction of two superconductors coupled via a weak link is known as a Joseph-
son junction, where the link consists of a thin non-superconducting layer −insu-
lating barrier, normal metal or ferromagnet. It exhibits the Josephson effect, a
macroscopic quantum phenomenon consisting of the flow of supercurrent across
the junction even in the absence of applied voltage. This is due to the tunneling
of Cooper pairs through the energy barrier provided by the weak link separating
both superconductors.

The first experimental observations of the (DC) Josephson effect were per-
formed in 1960 by H. Meissner [132], J. Nicol et al. [133] and I. Giaever [134], even
though it was attributed to the direct conduction of electrons through metallic
shorts in the insulating layer. At that time, quasiparticle −electrons and holes−
tunneling through an insulating barrier was widely known both theoretically and
experimentally. On the contrary, underbarrier quantum tunneling of Cooper pairs
was believed to occur with such low probability that it was unobservable for prac-
tical purposes.

The concept of symmetry breaking inherent in superconductivity [see Sec.
1.2.2] led B. Josephson to conclude that the phase difference between both su-
perconductors, Φ21, could be detected in case they exchange electrons −on the
contrary, global superconducting phases cannot be observed experimentally. Fur-
thermore, the total current flowing across a Josephson junction must depend ex-
plicitly on this phase difference. Josephson extended the calculation of the tun-
neling current across a superconductor-insulator-normal metal (S/I/N) junction
by M. Cohen and coworkers [135] to the case of a Josephson junction with an

141
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insulating layer, obtaining the following expression for the total current [136]:

I(V ) = Iqp(V ) + Ipair(V ), (5.1)
Ipair(V ) = I1(V ) cos(Φ21) + I2(V ) sin(Φ21),

where Iqp(V ) and Ipair(V ) represent the quasiparticle and pair tunneling currents,
respectively. I2(V ) is an even function of the applied voltage and does not vanish
as V → 0, whereas Iqp(0) = I1(0) = 0. Therefore, at zero voltage a non-zero
current flows across the junction stemming from the tunneling of Cooper pairs.
It is referred to as the Josephson supercurrent, IJ(V ) = I2(V ) sin(Φ21). Giaever’s
heuristic formula for the tunneling current [134] corresponds to the quasiparticle
tunneling current in Josephson’s derivation. Notice that the Josephson current is
of the same order of magnitude as the quasiparticle tunneling current, which con-
tradicts the previous belief that the contribution of Cooper pairs to the tunneling

current could be ignored. In fact, at zero temperature one has I2(T = 0) =
π∆(0)

2eRN
,

with ∆(0) being the superconducting gap at such temperature and RN being the
normal-state junction resistance. Hence I1(T = 0)/Iqp(2∆(0)/e) = π/4, where the
quasiparticle current has been evaluated at the sum-gap voltage 2∆(0)/e.

Experimental confirmation of the Josephson effect was provided by P. Ander-
son and J. Rowell in their study of low-resistance Josephson junctions [137]. In
particular, these authors observed that the critical supercurrent was sensitive to
magnetic fields and that the corresponding field dependence was in agreement with
Josephson’s predictions [137, 138], namely the critical supercurrent is reduced to
a minimum whenever the junction contains integer multiples of the flux quantum
Φ0.

Josephson junctions play a crucial role in the design of quantum circuits for
high-sensitive probing. Some remarkable examples are 1) the SQUID magnetome-
ter, which consists of two Josephson junctions connected in parallel by supercon-
ducting leads forming a loop and achieves a field sensitivity of about 10−15 T;
2) The superconducting low-inductance undulatory galvanometer (SLUG) [139],
consisting of an oxidized niobium wire completely surrounded by a blob of lead-tin
solder and showing a sensitivity of 10−14 V with a time constant of 1 s; and 3)
rapid single flux quantum (RSFQ) digital electronics to name a few.

The Josephson supercurrent can be formally derived within the framework of
the Ginzburg-Landau theory for a superconductor-normal-superconductor (S/N/S)
junction. The supercurrent density is given by Eq. (1.8):

~j(~r) =
e?

2m?

{
ψ̄
[
− i~∇− e?

c
~A
]
ψ + ψ

[
i~∇− e?

c
~A
]
ψ̄

}
, (5.2)

where e? = −2e and m? = 2me are the charge and the mass of the Cooper pair,
respectively. Setting the frame of axes so that the interface of the Josephson
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junction goes along the XY plane at z = 0, the supercurrent flowing across is
given by the Z component of the above equation, jz. The most general boundary
conditions for this kind of junction are given by the set of equations [6][

− i~∂ψ1

∂z
− e?

c
Azψ1

]
(0−) = −i~ψ2

λJ
(0+), (5.3)[

− i~∂ψ2

∂z
− e?

c
Azψ2

]
(0+) = i~

ψ1

λJ
(0−), (5.4)

with λJ ∈ R being the property of the junction. Label 1 (2) is set to refer to the
superconducting region on the z < 0 (z > 0) side of the interface. An underlying
consequence of these boundary conditions is that the supercurrent (5.2) is contin-
uous across the junction, that is jz|1(0−) = jz|2(0+). Introducing Eq. (5.3) and
its complex conjugate into the Z component of Eq. (5.2) one obtains

jz|1(0−) =

(
−i~e?

2m?λJ

)
2i Im

{
ψ̄1(0−)ψ2(0+)

}
= jm sin (Φ21) , (5.5)

where jm =
~|e?|
m?λJ

|ψ1(0−)||ψ2(0+)| is the maximum current density carried by the

junction, Φ21 = Φ1 − Φ2 is the phase difference between the two superconducting
regions, and the polar form of the superconducting wave functions, Ψ = |Ψ|eiΦ,
has been taken into account. This equation is known as the current-phase relation
of the Josephson junction. If the coupling between the superconducting regions
is weak, the moduli |ψ1(0−)| and |ψ2(0+)| differ slightly from the corresponding
equilibrium bulk values.

The superconducting wave function ψ(~r) and the vector potential ~A(~r) −de-
scribing a certain magnetic field− are modified according to Eqs. (1.14) under a
gauge transformation, from which the following gauge-invariant phase relation can
be derived:

∇Φ− e?

~c
~A = 0. (5.6)

Integration of this relation over the path {superconducting region 2 → supercon-
ducting region 1} leads to

Φ21 =
[
Φ0

1(0−)− Φ0
2(0+)

]
− |e

?|
~c

∫ 1

2

~A · d~l

= Φ0
21 +

2π

Φ0

∫ 2

1

~A · d~l, (5.7)

where Φ0 = hc/2e is the flux quantum and Φ0
21 = Φ0

1(0−)−Φ0
2(0+) is the intrinsic

phase difference between both superconductors.
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Josephson tunneling through uniformly magnetized ferromagnetic layers has
been intensively studied in the past [140]. In this chapter one is interested in the
Josephson effect in the case when a ferromagnetic layer contains a vortex of the
magnetization field. The interest in this problem is two-fold. Firstly, micron-size
disks of soft ferromagnetic materials naturally form a vortex ground state due
to magnetic dipolar interactions. The variety of spatial dimensions of such disks
[see Sec. 3.1] ideally suites typical parameters of Josephson junctions, with the
disks’ thickness range being comparable to the values of the coherence-length of
conventional superconductors.

Secondly, recent macroscopic evidence of quantum diffusion of vortices in the
array of submicron and micron-size magnetic disks [see Sec. 4.1] raises question
whether an individual vortex tunneling event can be observed by measuring the
change in the tunneling current through the disk. The problem of quantum tun-
neling of the VC out of the potential well created by the pinning potential was
discussed in Sec. 4.2.4. It was found that the low-temperature quantum diffusion
of the VC occurs via steps of a few interatomic distances. Thermal diffusion at el-
evated temperatures may involve longer steps. Theoretical picture of macroscopic
relaxational dynamics of vortices in the array of micron-size Py disks agreed with
experiment. In this chapter one is asking the question whether the displacement
of the VC by a few nanometers, or by a fraction of a nanometer, can be detected
via measurement of the tunneling current through a Josephson junction that is
made of a magnetic disk in the vortex state.

5.2 Formulation of the problem

A ferromagnetic Josephson junction (S/F/S), where the F-layer consists of a circu-
larly polarized magnetic disk, is considered. This essentially non-uniform ground
state is characterized by the curling of the magnetization in the plane of the disk
and by the existence of the vortex that sticks out of the disk and carries small
uncompensated magnetic moment, see Fig. 5.1.

Notice that, in general, ferromagnetism weakens the superconductivity at the
S/F boundary due to the proximity effect. It disappears if the ferromagnetic and
superconducting surfaces are separated by a thin non-magnetic insulating layer,
leaving only electromagnetic interaction of the Josephson junction with the fer-
romagnet, which is the case studied here. For a S/F/S junction the maximum
current jm depends strongly on the magnetic properties of the ferromagnetic layer
[140]. In the case of a circularly polarized magnetic disk, the curling of the magne-
tization provides a net zero in-plane magnetization for a centered vortex and the
out-of-plane component of the magnetization due to the VC is very small −can be
ignored. Moderate displacements of the VC from the center of the disk induce a
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I

I

Figure 5.1: Josephson current through a circularly polarized magnetic disk.

total in-plane magnetic moment linear with it . Therefore, the current jm is only
slightly affected by the motion of the VC in the regime of tiny displacements and,
from this point forward, it will be considered to be approximately constant. This
means that the main effect of the magnetic vortex on the Josephson current occurs
via the superconducting phase difference.

Under the practical condition that the lateral size of the junction is smaller
than the radius of the disk, but much greater than the diameter of the nanoscale
VC, the Josephson current through the junction can be calculated rigorously. It is
dominated by the configuration of the magnetization in the disk that depends on
the position of the VC. The latter can be displaced by the external magnetic field
parallel to the disk. The VC can also exhibit circular motion that corresponds
to a collective gyroscopic mode of the disk. It can also move spontaneously via
thermal or quantum diffusion in the presence of weak pinning. The present aim
is to find out whether the tiny movements of the vortex core can be detected by
measuring the Josephson current.

Let (L,R) be respectively the thickness and the radius of the ferromagnetic
disk. Again, the coordinate frame is set according to the symmetry of the system:
The XY plane coincides with the plane of the disk and the Z axis coincides
with the symmetry axis of the disk. The S/F boundaries are located at z =
±L/2. According to the geometry of the system, the path integral in Eq. (5.7)
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must be performed along the Z axis between z = −L/2 (superconducting region
1/ferromagnet boundary) and z = L/2 (ferromagnet/superconducting region 2
boundary). Therefore, the gauge-invariant phase relation becomes

Φ21 = Φ
(0)
21 +

2π

Φ0

∫ L
2

−L
2

Az(~r) dz, (5.8)

where Az is the projection of the vector potential onto the Z-axis. Notice that the
vector potential ~A is determined by the magnetization field ~M within the volume
V of the disk,

~A(~r) =

∫
V

∇′ × ~M(~r ′)

|~r − ~r ′|
d3~r ′ +

∮
∂V

~M(~r ′)× ~n′

|~r − ~r ′|
d2S ′. (5.9)

Here ~n′ is the vector normal to the surface of the disk.

5.3 Computation of the phase difference
The magnetization field in the disk can be described by the fixed-length vector
[see Eq. (3.24)]

~M(Θ,Φ) = MS(cos Φ sin Θ, sin Φ sin Θ, cos Θ) (5.10)

= MS(
√

1−m2 cos Φ,
√

1−m2 sin Φ,m),

where MS is the saturation magnetization of the ferromagnetic material and m =
cos Θ is the projection of the normalized magnetic moment onto the Z axis. Let
~Xv(t, z) =

(
xv(t, z), yv(t, z)

)
be the coordinates of the center of the VC in the

XY plane. Rigidity of the vortex structure is assumed, which translates into
the VC coordinates being independent of the z variable. One uses a quasi-static
approximation in which no time dependence of the VC coordinates is considered,
which is always valid for the slow motion of the vortex. Because of this, the
coordinate axis in the XY plane can be rotated so that ~Xv = xvêx. Let (r, φ) be
the polar coordinates in the XY plane. The static solution of the magnetization
field is [see Eq. (3.25)]

Φ0(x, y) = tan−1(y/x− xv) + φ0,

cos Θ0(r̃) =

 p

(
1− C1

(
r̃

∆0

)2
)

r̃ � ∆0,

C2

(
∆0

r̃

)1/2
exp(−r̃/∆0) r̃ � ∆0,

where
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• r̃ = ||~r − ~Xv||2 is the radial distance from the VC center,

• p = ±1 is the polarization of the magnetization,

• φ0 = ±π/2 corresponds to CCW/CW rotation of the magnetization,

• ∆0 =
√
A/M2

S is the exchange length of the material, and

• C1 = 3
7
and C2 = 4

7
pe.

Introducing the vector basis for cylindrical coordinates,

êr = cosφêx + sinφêy, êφ = − sinφêx + cosφêy, (5.11)

the magnetization field can be split into ~M(r, φ, z) = Mrêr +Mφêφ +Mz êz, with

Mr = êr · ~M = MS

√
1−m2

0 cos(Φ0 − φ), (5.12)

Mφ = êφ · ~M = MS

√
1−m2

0 sin(Φ0 − φ), (5.13)

Mz = MSm0. (5.14)

Let φ̃v = tan−1(y/x−xv). Then (r̃, φ̃v) are the polar coordinates in the XY plane
from the VC center. Figure 5.2 shows the geometrical relation between both sys-
tems of polar coordinates, from which the following identities are straightforwardly
deduced:

r̃ = ||~r − ~X(t, z)||2 =
√
r2 + x2

v − 2rxv cosφ, (5.15)

sin φ̃v =
r

r̃
sinφ, cos φ̃v =

1

r̃
(r cosφ− xv).

According to the above asymptotic dependences of the static solution one has√
1−m2

0 '
{ √

2C1
r̃

∆0
r̃ � ∆0,

1 r̃ � ∆0,
(5.16)

and
sin Φ0 = C cos φ̃v, cos Φ0 = −C sin φ̃v, (5.17)

where C = sinφ0 = ±1 represents the chirality of the magnetization field of the
ground state.

In this chapter the limit R� L,∆0 is considered. Being interested in the tiny
displacements of the VC due to, e.g., quantum tunneling, one also shall assume
that |xv| � ∆0. This allows one to obtain a perturbative expansion of the phase
difference across the junction in terms of powers of xv.
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Figure 5.2: Relation between the systems of polar coordinates (r, φ) and (r̃, φ̃v).

5.3.1 Surface contribution

The surface of the disk consists of three surfaces, ∂V = S1 ∪ S2 ∪ S3, where S1

and S3 are respectively the top and the bottom surfaces of the disk, and S2 is the
lateral surface. The corresponding normal vectors are n̂1 = −n̂3 = êz and n̂2 = êr.
It is straightforward to prove the following identities:

~M × n̂|S1 = − ~M × n̂|S3 = Mφêr −Mrêφ, (5.18)
~M × n̂|S2 = Mz êφ −Mφêz, (5.19)

so that the surface contribution to Az comes from integration over S2. This means
that

Az(~r)|Surf =

∫
S2

êz ·
~M(~r ′)× ~n′

|~r − ~r ′|
d2S ′ =

∫
S2

r′ dφ′ dz′
−Mφ′

|~r − ~r ′|
=

= R

∫ L
2

−L
2

dz′
∫ 2π

0

dφ′
−Mφ′

|~r − ~r ′|

∣∣∣∣
S2

. (5.20)

The Coulomb potential can be expanded in cylindrical coordinates as
1

|~r − ~r ′|
=

∫ ∞
0

dk J0(kr?)e−k(z>−z<), (5.21)
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where z< = min{z, z′}, z> = max{z, z′}, J0(x) is the zero-order Bessel function of
the first kind, and

r? =
√
r2 + r′2 − 2rr′ cos(φ− φ′). (5.22)

If z 6= z′ one can switch to the integration over φ and k, which gives∫ 2π

0

dφ′(−Mφ′ |S2)

∫ ∞
0

dk J0(kr?)|S2e
−k(z>−z<) = (5.23)∫ ∞

0

dk e−k(z>−z<)

∫ 2π

0

dφ′ [−Mφ′J0(kr?)]
∣∣
S2
.

By means of Eqs. (5.15), (5.16) and (5.17) the following asymptotic expressions
for Mφ′ are obtained:

Mφ′ '
{
MS

C
∆0

√
2C1 [r′ − xv cosφ′] r̃′ � ∆0,

MSC
r̃′

[r′ − xv cosφ′] r̃′ � ∆0.
(5.24)

Integration over surface S2 corresponds to the asymptotic limit r̃′ � ∆0, which
leads to r′ � xv. Consequently, the following expansion of the Coulomb potential
can be used:

1

r̃′
' 1

r′
+
xv cosφ′

r′2
(5.25)

and, therefore, Mφ′ |S2 'MSC [1 +O((xv/r
′)2)].

Neumann’s addition theorem for Bessel functions leads to the following expan-
sion

J0(kr?) =
∑
m≥0

εmJm(kr)Jm(kr′) cos (m(φ− φ′)) , (5.26)

where ε0 = 1 and εm = 2, m > 0. With account of the orthogonality of the Fourier
basis {1} ∪ {cosmφ′}m∈N ∪ {sinmφ′}m∈N one obtains∫ 2π

0

dφ′ [−Mφ′J0(kr?)]
∣∣
S2

= −2πMSCJ0(kr)J0(kR) +O
(
(xv/R)2

)
. (5.27)

On the other hand, one has the identity∫ ∞
0

dkJm(kr)Jm(kr′)e−k(z>−z<) =
1

π
√
rr′
Qm− 1

2

[
r2 + r′2 + (z − z′)2

2rr′

]
, (5.28)

where Qλ[z] is the Legendre function of second kind of the degree λ,

Qλ[z] =

√
π

2λ+1

Γ(λ+ 1)

Γ(λ+ 3/2)

1

zλ+1 2F1

(
λ+ 1

2
,
λ

2
+ 1, λ+

3

2
;

1

z2

)
, (5.29)
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with 2F1 being the hypergeometric function. Consequently, Eqs. (5.21), (5.27)
and (5.28) give∫ 2π

0

dφ′
−Mφ′

|~r − ~r ′|

∣∣∣∣
S2

= −2MSC√
rR

Q− 1
2

[
r2 +R2 + (z − z′)2

2rR

]
(5.30)

+O
(
(xv/R)2

)
, z 6= z′.

The contribution of the ferromagnetic layer to the phase difference of the junc-
tion is given by the path integral [see Eq. (5.8)]

ΦF
21|Surf =

2πR

Φ0

∫ L
2

−L
2

dz

∫ L
2

−L
2

dz′
∫ 2π

0

dφ′
−Mφ′

|~r − ~r ′|

∣∣∣∣
S2

. (5.31)

To deal with the singularity of the integrand when ~r ′ equals ~r, one introduces the
Cauchy principal value prescription to the integration over the z′ variable, that is∫ L

2

−L
2

dz′ ⇒ P
∫ L

2

−L
2

dz′ := lim
ε→0+

{∫ z−ε

−L
2

dz′ +

∫ L
2

z+ε

dz′

}
. (5.32)

With account of this prescription Eq. (5.23) can be always applied and so ΦF
21|Surf

becomes

ΦF
21|Surf = −4πMSC

Φ0

√
R

r

∫ L
2

−L
2

dz P
∫ L

2

−L
2

dz′Q− 1
2

[
r2 +R2 + (z − z′)2

2rR

]
+O(x2

v).

(5.33)

5.3.2 Bulk contribution

The bulk contribution to the phase difference of the Josephson junction stems from
the projection of the curl of the magnetization field onto the Z axis. That is,

Az(~r)|Bulk =

∫
V

êz ·
[
∇′ × ~M(~r ′)

]
|~r − ~r ′|

d3~r ′ (5.34)

=

∫ L
2

−L
2

dz′
∫ R

0

dr′
∫ 2π

0

dφ′
r′
[
∇′ × ~M(~r ′)

]
|~r − ~r ′|

· êz

with the projection of ∇′ × ~M(~r ′) onto the Z axis being

êz ·
[
∇′ × ~M(~r ′)

]
=

1

r′

[
∂(r′Mφ′)

∂r′
− ∂Mr′

∂φ′

]
. (5.35)
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As in the previous subsection, with account of Eq. (5.21) for the cylindrical ex-
pansion of the Coulomb potential (if z 6= z′) one has∫ 2π

0

dφ′
[
r′êz ·

(
∇′ × ~M

)] ∫ ∞
0

dk J0(kr?)e−k(z>−z<) =∫ ∞
0

dk e−k(z>−z<)

∫ 2π

0

dφ′J0(kr?)
[
r′êz ·

(
∇′ × ~M

)]
. (5.36)

Let z̄(′) = z(′)/∆0 and ρ(′) = r(′)/∆0 be the set of normalized spatial coordinates.
With account of the normalized versions of Eqs. (5.15), (5.16), (5.17), (5.25),
and of the approximation ρ̃′ ' ρ′ in the asymptotic regime ρ̃′ � 1, one has the
following asymptotic expressions:

êz ·
(
∇′ × ~M

)
' MSC

√
2C1

∆0

[
(2− C1ρ

′2)− 2
xv

∆0ρ′
(2− C1ρ

′2) cosφ′
]

(5.37)

for ρ̃′ � 1, and

êz ·
(
∇′ × ~M

)
' MSC

∆0ρ′

[
1 +

xv
∆0ρ′

cosφ′
]

(5.38)

in the asymptotic regime ρ̃′ � 1.
Again, in the case of z 6= z′, the addition theorem (5.26), the orthogonal-

ity of the Fourier basis and the identity (5.28) lead to the following asymptotic
expressions:

∫ 2π

0

dφ′
r′
(
∇′ × ~M

)
|~r − ~r ′|

· êz '
2MSC

√
2C1

∆0

√
ρρ′

× (5.39)[
(2− C1ρ

′2)ρ′Q− 1
2
[χ]− 2

xv
∆0

(2− C1ρ
′2)Q 1

2
[χ] cosφ

]
for ρ̃′ � 1, and

∫ 2π

0

dφ′
r′
(
∇′ × ~M

)
|~r − ~r ′|

· êz '
2MSC

∆0

√
ρρ′

[
Q− 1

2
[χ] +

xv
∆0ρ′

Q 1
2
[χ] cosφ

]
(5.40)

in the asymptotic regime ρ̃′ � 1, where the expansions in the right side have been
performed up to first order in the VC displacement and

χ =
ρ2 + ρ′2 + (z̄ − z̄′)2

2ρρ′
. (5.41)
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In the same manner as in the previous subsection, the Cauchy principal value
prescription is introduced to avoid singularities in the integrand of the bulk con-
tribution to the phase difference. Therefore one obtains

ΦF
21|Bulk =

2π

Φ0

∫ L
2

−L
2

Az(~r)|Bulk dz =
2π

Φ0

∆3
0

∫ L
2∆0

−L
2∆0

dz̄

× P
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2∆0

−L
2∆0

dz̄′
∫ R

∆0

0

dρ′
∫ 2π
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dφ′
r′
(
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)
· êz

|~r − ~r ′|

=
4π

Φ0

MSC∆2
0√

ρ
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2∆0

−L
2∆0

dz̄ P
∫ L

2∆0
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2∆0

dz̄′

{√
2C1

∫ 1
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dρ′√
ρ′

×
[
(2− C1ρ

′2)ρ′Q− 1
2
[χ]− 2

xv
∆0

(2− C1ρ
′2)Q 1

2
[χ] cosφ

]
+

∫ R
∆0

1

dρ′√
ρ′

[
Q− 1

2
[χ] +

xv
∆0ρ′

Q 1
2
[χ] cosφ

]}
, (5.42)

where integration over ρ′ has been split into the domains [0, 1] and [1, R/∆0] cor-
responding to the asymptotic expansions of the integrand [see Eqs. (5.39) and
(5.40)]. As before, one is working under the assumption of an infinitesimal dis-
placement of the VC from the center of the disk, xv � 1, so that the deformation
of the VC area with respect to the centered case (ρ′ ≤ 1) is small and can be safely
neglected in the integration process, simplifying the calculations.

5.4 Computation of the Josephson current

According to the gauge-invariant phase relation [Eq. (5.8)], the superconducting
phase difference splits into the sum of the intrinsic component and of both surface
and bulk contributions, which are given by Eqs. (5.33) and (5.42) respectively,
due to the presence of the F-layer. That is,

Φ21(ρ, φ) = Φ0
21 + ΦF

21|Surf + ΦF
21|Bulk = Φ0

21 + a(ρ) + b(ρ) cosφ,
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where the functions a(ρ) and b(ρ) are given by

a(ρ) =
4πMSC∆2

0

Φ0
√
ρ

∫ L
2∆0
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dz̄ P
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,

b(ρ) =
xv
∆0

4πMSC∆2
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Φ0
√
ρ
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2∆0
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dz̄ P
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∫ 1
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2
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}
.

The current density across the junction is given by the current-phase relation
(5.5):

j = jm sin
(
Φ0

21 + a(ρ) + b(ρ) cosφ
)
. (5.45)

With account of the Jacobi-Anger expansions

cos(b(ρ) cosφ) = J0(b(ρ)) + 2
∑
n≥1

(−1)nJ2n(b(ρ)) cos(2nφ),

sin(b(ρ) cosφ) = 2
∑
n≥0

(−1)nJ2n+1(b(ρ)) cos
(
(2n+ 1)φ

)
, (5.46)

and of the uniform convergence of these series −b(ρ) is a bounded function over
the domain [0, R/∆0]− one has the identities∫ 2π

0

dφ sin
(
b(ρ) cosφ

)
= 0, (5.47)∫ 2π

0

dφ cos
(
b(ρ) cosφ

)
= 2πJ0(b(ρ)). (5.48)

Combined with the trigonometric identity sin(Φ0
21 +a(ρ) + b(ρ) cosφ) = sin

(
Φ0

21 +
a(ρ)

)
cos(b(ρ) cosφ) + cos

(
Φ0

21 + a(ρ)
)

sin(b(ρ) cosφ) they lead to the following
expression:∫ 2π

0

dφ sin
(
Φ0

21 + a(ρ) + b(ρ) cosφ
)

= 2πJ0

(
b(ρ)

)
sin
(
Φ0

21 + a(ρ)
)
. (5.49)
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The total current can be obtained by integrating Eq. (5.45) over the surface,
SJ = πR2

0, of the junction of radius R0, centered at the origin of the XY Z coordi-
nate frame. Therefore, the following expression for the total current is obtained

I =

∫
SJ

d2~r jm sin Φ21 = Im

∫ R0/∆0

0

ρ dρ J0

(
b(ρ)

)
sin
(
Φ0

21 + a(ρ)
)
, (5.50)

where Im = 2πjm∆2
0 is the maximum current carried by the junction.

In estimating the effect of the displacement of the VC one shall assume that the
intrinsic phase difference of the junction, Φ0

21, is zero. Figure 5.3 shows variation
of the Josephson current, ∆I = I0 − I, resulting from small displacements of the
VC with respect to the center of the disk, for different values of the parameter
λ = R0/R. The variation of the current is normalized to I0 = I(xv = 0). As
an illustration of this effect, the computation has been performed for a Py disk
of normalized radius R/∆0 = 100 and normalized thickness L/∆0 = 6. The
experimental values MS = 7.5 · 105 A/m and A = 1.3 · 10−11 J/m for Py have been
used, which give ∆0 ' 15.2 nm.
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Figure 5.3: Variation of the Josephson current for different values of the parameter
λ = R0/R as a function of the normalized VC displacement from the center of the
disk. The current is normalized to I0 = I(xv = 0).
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5.5 Discussion
One has studied how the tunneling current through the Josephson junction con-
taining a circularly polarized magnetic disk changes when the center of the vortex
is displaced by a tiny distance due to, e.g, thermal activation or quantum tunnel-
ing. The numerical work has been done for a disk of a thickness that is few times
greater than the diameter of the VC. The latter in Py is about 15 nm, which for
L/∆0 = 6 used in the plot of Fig. 5.3 corresponds to the disks of thickness of
90 nm. Such disks have been studied in Chapter 4, where thermal and quantum
diffusion of vortices has been observed.

The change in the Josephson current due to the displacement of the VC from
the center of the disk has been computed in the range up to xv ∼ 0.1∆0, which
corresponds to 1.5 nm for a Py disk. The maximal change in the Josephson
current in this range of the displacement is of order of a few tenths of a percent,
which is within experimental range. It grows fast with the displacement for R0/R
below 0.1, which for a disk of diameter of 1.5 µm −like those studied in Chapter
4− corresponds to the Josephson junction of the lateral size 150 nm. While in
calculations a circular junction was used, its geometry does not really matter as
long as its size R0 < R is large compared to ∆0. Smaller junctions produce stronger
effect.

The present calculation and numerical estimates clearly illustrate that a Joseph-
son junction with a magnetic disk in the VS would be an interesting physical system
that could be used to measure the nanoscale motion of the VC. Manufacturing of
such junctions and experimenting with them may open up an exciting field of
research on quantum and classical dynamics of magnetic vortices.
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Chapter 6

Conclusions and future perspectives

6.1 Conclusions

The conclusions of the thesis are briefly outlined in this section. A more detailed
account of them can be found in the sections ”Discussion” of the previous chapters.
The summary splits into three parts according to the topics covered in this thesis.

Quantum tunneling of normal-superconductor interfaces in type-I su-
perconductors

The nature of the mechanism of magnetic relaxation in a disk-shaped type-I Pb
superconductor has been explored as a function of temperature and magnetic field
for initial states along the descending branch of the magnetic hysteresis cycle. As
the sample is cooled down, a transition from a thermal to a quantum regime has
been observed in the temperature dependence of the magnetic relaxation rate.
The crossover temperature between both regimes has been found to exhibit an
inverse dependence on the magnetic field that impedes the detection of the quan-
tum regime at high enough magnetic field values. On rising the magnetic field,
the relaxation rate has been observed to change from a slowly increasing regime,
in which no thermal effects are detected, to a steeply incremental region that is
noticeably affected by temperature. Comparison between the experimental data
and a model for quantum tunneling of normal-superconductor interfaces through
energy barriers defined by structural defects in the sample implies that the bumps
generated at the interfaces, which are responsible for the magnetic relaxation, be-
come flatter when the magnetic field increases. Quantum transitions cease above a
certain combination of values of temperature and magnetic field, but the interfaces
are still pinned by the defects and depinning occurs by thermal activation until a
threshold for quasi-free flux motion is reached.

157
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Macroscopic quantum tunneling of interfaces separating normal and supercon-
ducting regions in type-I superconductors has been studied theoretically. A math-
ematical model has been developed that describes dissipative quantum escape of a
two-dimensional elastic manifold from a planar potential well. It corresponds to,
e.g., a current-driven quantum depinning of the interface from a grain boundary
or from an artificially manufactured pinning layer. The Euclidean dynamics of the
interface in a type-I superconductor is entirely dissipative, described by integro-
differential equations in 2+1 dimensions. The model describes quantitatively the
thermal dependence of the magnetic viscosity of lead at zero field and estimates
the width of the pinning well to be about 3.6 nm. Together with the observation
of nonthermal low-temperature magnetic relaxation in lead, the model suggests
the possibility of a controlled measurement of quantum depinning of the interface
in a type-I superconductor.

Axial excitation modes of the vortex state and quantum depinning of
the vortex core

Classical and quantum theory of spin waves in the vortex state of a mesoscopic sub-
micron magnetic disk has been developed with account of the finite mass density of
the vortex. Oscillations of the vortex core resemble oscillations of a charged string
in a potential well in the presence of the magnetic field. Conventional gyrotropic
frequency appears as a gap in the spectrum of spin waves of the vortex. In the long-
wave limit q∆0 � 1 this spectrum becomes ω−(q) = ωG + γMS(q∆0)2 ln(R/∆0),
where ωG is the conventional gyrofrequency, γ is the gyromagnetic ratio, MS is
the saturation magnetization, ∆0 is the exchange length, and R is the radius of
the disk. The finite mass of the vortex, M ' L/(4γ2) ln(R/∆0) with L being the
thickness of the disk, agrees with experimental findings. It originates from the
geometrical confinement of the spin field and the magnetic dipole-dipole interac-
tions. Finite vortex mass generates a high-frequency branch of spin waves, with a
gap given by ωM = 8πγMS/ ln(R/∆0) that belongs to the same frequency range
that the uniform ferromagnetic resonance of the magnetic material. The effect of
an external magnetic field applied perpendicularly to the disk plane on the spectra
of the vortex can be described by adding the Larmor frequency to ωM .

Dynamics of the vortex core can be affected by the presence of structural de-
fects in the sample. The magnetic irreversibility and the dynamics of vortex cores
in micron-size Py (Ni81Fe19) dot arrays have been explored at low temperatures
by means of the application of an in-plane magnetic field. Experimental evidence
of the quantum depinning of magnetic vortex cores was found through relaxation
measurements. It is attributed to the quantum tunneling of a small portion of
the vortex core line −via an elastic deformation− through pinning barriers to-
wards the equilibrium. Linelike defects are the most feasible candidates to provide
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the landscape of pinning barriers encountered by the vortex core during its low-
temperature dynamics. A model of quantum depinning of magnetic vortex cores
from line defects in a disk geometry and under the application of an in-plane
magnetic field has been developed within the framework of the Caldeira-Leggett
theory. The Euclidean dynamics of the vortex core is dissipative, described by
integro-differential equations in 1+1 dimensions. The depinning process occurs in
steps of about 0.13 nm, which corresponds to the width of the pinning well.

Josephson junction with the vortex state

Josephson tunneling through a circularly polarized micron or submicron-size disk
of a soft ferromagnetic material has been studied. The change in the Josephson
current that is related to a tiny displacement of the vortex core has been computed
analytically. The maximal change in the range of displacements xv ∈ [0, 0.1∆0] is
of order of a few tenths of a percent for a disk with thickness L = 90 nm, which is
within experimental range. The change in the Josephson current grows fast with
the displacement for R0/R below 0.1, where 2R0 is the lateral size of the junction.
Therefore, a Josephson junction with a magnetic disk in the vortex state can be
an interesting physical system that may be used to measure the nanoscale motion
of the magnetic vortex.

6.2 Future perspectives

Further work can be performed concerning the research presented in this thesis.
The aim of this section is to outline some future extensions of it.

To begin with, as discussed in Chapter 2, the model of quantum tunneling
of normal-superconductor interfaces can be naturally extended to the case of an
arbitrary applied magnetic field. Some setbacks need to be taken into account
in order to succeed. First, the pattern geometry of normal-superconductor inter-
faces is cumbersome because it strongly depends on the shape of the specimen
and the distribution of defects (pinning centers) across the sample. Analytical
theory describing the formation of these labyrinthine patterns is absent and, there-
fore, calculation of the prefactor N(h) should be done numerically by solving the
Ginzburg-Landau equations with account of demagnetizing and pinning effects.
The same happens to the reduction of the effective energy barrier with the mag-
netic field strength, because the magnetic tension force depends on the shape of
the normal-superconductor interfaces. A first attempt could be made with ac-
count of the laminar model for normal and superconducting domains, but the
results derived from this would be valid for (quasi)defect-free samples.

Secondly, the theoretical model of spin-waves associated with the gyrotropic
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motion of the elastic vortex core was built under the assumption of small displace-
ments of the vortex core within the XY -plane along the Z axis. This assumption
is correct for the quantum depinning problem, where some segments of the vor-
tex core line diffuse through a pinning well of subnanometric size. This allows to
use the quadratic dependence (3.68) for the magnetostatic and exchange energy
potentials. This model can be extended to the case of moderate axial vortex-
core deformations if the general expression for the energy density ωXY within the
2VSCFM is considered. Furthermore, the elastic energy density should be also
modified −the hypothesis r̃ ' r is no longer valid. On the other hand, the present
model can be extended to other flat geometries −ellipses, stadiums, etc.− if an
ansatz for the magnetization field of the corresponding vortex ground state is pro-
vided. With respect to the quantum depinning of the vortex core line in disks
with the vortex state, it would be interesting to extend the model to the case of
random pinning potentials. This task is really cumbersome because the replica
method technique used in problems of the same kind leads to an effective action
that couples explicitly the coordinates (xτ , yτ ), so that the algorithmic approach
used in this thesis cannot be applied.

Thirdly, it would be interesting to study dynamical effects in a ferromagnetic
Josephson junction with the vortex state. Temporal dynamics of this system is
likely to couple Josephson oscillations with the oscillations of the magnetic vor-
tex in the disk. The idea is to derive a system of equations that couples Thiele
equation for the vortex state with the equation for the Josephson phase. Since
oscillations of the Josephson current can be controlled by the voltage, the question
of practical interest is whether the motion of the vortex core inside the disk can
also be controlled by the voltage through the junction. In case such a control be-
comes possible, it would open the way to a new method of electronic manipulation
of magnetic memory based upon submicron disks.
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Appendix A

Functional derivative

This Appendix deals with the formal definition of functional derivation and with
the explicit calculation of the functional derivative for some functionals appearing
in this thesis. One will focus on the space of complex differentiable functions
defined over Rn, to which the different functions of the models presented in this
manuscript belong. Notice that the following definitions can be extended to more
general functional spaces.

A.1 Functional derivative
Let Ω be a non-empty open subset of Rn and E(Ω) be the Fréchet space of all
C∞ complex functions on Ω endowed with the locally convex topology of the
local uniform convergence of functions and derivatives. Given any f ∈ E(Ω), its
support is defined as supp(f) = {x ∈ Ω | f(x) 6= 0}, where ”¯” denotes topological
closure. The space of test functions, D(Ω), is defined as the vector subspace of E(Ω)
consisting of functions with compact support. Let F : E(Ω)→ C be a functional.

Then the functional (or variational) derivative of F [u],
δF

δu(~r)
, is defined as

lim
ε→0

F [u+ εϕ]− F [u]

ε
=

∫
Ω

dn~r
δF

δu(~r)
ϕ(~r), ∀ϕ ∈ D(Ω), (A.1)

whenever F is Fréchet differentiable at u.

A.1.1 Density functional

Let V ⊂ R3 be an oriented 3D smooth manifold. Let Ω1 be an open subset of
R3 containing the manifold V . A function u : V → C is said to belong to the
C∞ class if there exists ū ∈ E(Ω1) such that ū|V ≡ u. E(V ) denotes the Fréchet
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space of C∞ complex functions on V endowed with the corresponding subspace
topology. Consider a functional of the form

F [u] =

∫
V

f (~r, u(~r),∇u(~r)) d3~r, (A.2)

where u ∈ E(V ) and f is a differentiable function. Let ϕ ∈ D(Ω), with Ω = V̊
−interior of V . Therefore, for an arbitrary ε > 0 one has

F [u+ εϕ]− F [u] =

∫
V

d3~r
[
f (~r, u(~r) + εϕ(~r),∇u(~r) + ε∇ϕ(~r))− f (~r, u(~r),∇u(~r))

]
= ε

∫
V

d3~r

[
∂f

∂u
ϕ(~r) +

∂f

∂∇u
· ∇ϕ(~r) +O(ε)

]
, (A.3)

which leads to the expression

lim
ε→0

F [u+ εϕ]− F [u]

ε
=

∫
V

d3~r

[
∂f

∂u
ϕ(~r) +

∂f

∂∇u
· ∇ϕ(~r)

]
. (A.4)

Notice that∫
V

d3~r
∂f

∂∇u
· ∇ϕ(~r) =

∫
V

d3~r

[
∇ ·
(
∂f

∂∇u
ϕ(~r)

)
−
(
∇ · ∂f

∂∇u

)
ϕ(~r)

]
, (A.5)

where the first term on the right side vanishes as a consequence of the divergence
theorem and ϕ being compactly supported on Ω. Hence, one finally obtains

lim
ε→0

F [u+ εϕ]− F [u]

ε
=

∫
V

d3~r

[
∂f

∂u
−∇ · ∂f

∂∇u

]
ϕ(~r). (A.6)

Application of the du Bois-Reymond lemma yields the following expression for the
functional derivative of F :

δF

δu(~r)
=
∂f

∂u
−∇ · ∂f

∂∇u
. (A.7)

This expression can be generalized in a straightforward manner to the case
where the density f depends on other first-order differential operators −curl and
divergence− and on higher order derivatives. On the other hand, in the above
derivation one can weaken the condition ϕ ∈ D(Ω) and consider ϕ ∈ E(V ). In
doing so the first term on the right side of Eq. (A.5) does not vanish for all ϕ
−not compactly supported on V̊ anymore. Application of the divergence theorem
leads to a surface term of the form∫

∂V

d2~r

(
∂f

∂∇u
· ~n
)
ϕ(~r), (A.8)
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where ~n is the normal vector to the boundary ∂V . Vanishing of this term is usually
considered, which can be obtained by imposing the boundary condition

∂f

∂∇u
· ~n = 0, on ∂V. (A.9)

In the particular case of the Ginzburg-Landau functional, the surface term leads
to the boundary condition (1.9) valid for an Insulator-Superconductor interface.

A.1.2 Caldeira-Leggett functional

The Caldeira-Leggett functional is given by [see Eq. (2.37)]

FCL[u] =

∫ ~β

0

dτ

∫ ~β

0

dτ ′D(τ − τ ′)u(τ)u(τ ′), (A.10)

with D(τ) =
1

2~β
∑
n∈Z

η|νn|eiνnτ being the kernel of the integral operator [see Eq.

(2.41)] and νn, n ∈ Z, being the Matsubara frequencies. The function u belongs
to the space Ep(R), where the subscript ”p” denotes periodic real-valued functions
with period ~β. Let ϕ̃ be an arbitrary real-valued function compactly supported
on (0, ~β). The periodic extension of ϕ̃|[0,~β] over R with period ~β is denoted by
ϕ. Thus, for ε > 0 one has

FCL[u+ εϕ]−FCL[u] = ε

∫ ~β

0

dτ

∫ ~β

0

dτ ′D(τ − τ ′) [u(τ)ϕ(τ ′) + u(τ ′)ϕ(τ) +O(ε)] ,

(A.11)
which leads to the expression

lim
ε→0

FCL[u+ εϕ]− FCL[u]

ε
=

∫ ~β

0

dτ

{
2

∫ ~β

0

dτ ′D(τ − τ ′)u(τ ′)

}
ϕ(τ), (A.12)

where a change of variables τ 7→ τ ′; τ ′ 7→ τ has been applied at the first term on
the right side of Eq. (A.11). With account of the du Bois-Reymond lemma the
following expression for the functional derivative of FCL is obtained:

δFCL

δu(τ)
= 2

∫ ~β

0

dτ ′D(τ − τ ′)u(τ ′). (A.13)

It is straightforward to prove, using the Fourier expansion of u(τ ′) over the set of
Matsubara frequencies, that the above functional derivative is equivalent to

δFCL

δu(τ)
=
η

π

∫
R

dτ ′
u(τ)− u(τ ′)

(τ − τ ′)2
. (A.14)
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Appendix B

Gaussian integration

In this Appendix a useful formula to calculate path integrals of Gaussian type is
given. A detailed treatment of the path-integral formalism is beyond the scope of
this manuscript. A deep insight into this subject is provided by Refs. [141, 142].

B.1 Gaussian integration
LetK ∈ L2(Rn×Rn,R) be a symmetric real-valued kernel −K(~x, ~y) = K(~y, ~x) for
all ~x, ~y ∈ Rn− and let f, φ ∈ L2(Rn,R) be arbitrary square-integrable functions.
Therefore, the following identity between Gaussian path integrals holds:∫

D[f ] exp
[
− i

2

∫
Rn×Rn f(~x)K(~x, ~y)f(~y) dn~x dn~y + i

∫
Rn φ(~y)f(~y) dn~y

]
∫
D[f ] exp

[
− i

2

∫
Rn×Rn f(~x)K(~x, ~y)f(~y) dn~x dn~y

] =

exp

[
i

2

∫
Rn×Rn

φ(~x)K−1(~x, ~y)φ(~y) dn~x dn~y

]
, (B.1)

where K−1(x, y) denotes the inverse kernel and satisfies the integral equation∫
Rn

K(~x, ~z)K−1(~z, ~y) dn~z = δ(n)(~x− ~y). (B.2)
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