ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a I'acceptacio de les seglents
condicions d'Us: La difusié6 d’'aquesta tesi per mitja del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel-lectual Gnicament per a usos privats
emmarcats en activitats d’'investigacio i docéncia. No s’autoritza la seva reproduccié amb finalitats
de lucre ni la seva difusio i posada a disposicio des d'un lloc alie al servei TDX. No s’autoritza la
presentacio del seu contingut en una finestra o marc alie a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentacio de la tesi com als seus continguts. En la utilitzacié o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusién de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual Gnicamente para usos
privados enmarcados en actividades de investigacién y docencia. No se autoriza su reproduccién
con finalidades de lucro ni su difusion y puesta a disposicidon desde un sitio ajeno al servicio TDR.
No se autoriza la presentacién de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentacion de la tesis como a sus
contenidos. En la utilizacién o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate
the name of the author

DOCTORAL STUDIES

PuD THESIS
- 2014 —

CONFORMANCE CHECKING AND
DIAGNOSIS IN PROCESS MINING

Jorge Munoz-Gama

Advisor

Josep Carmona Vargas

UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

A thesis presented by Jorge Munoz-Gama
in partial fulfillment of the requirements for the degree of
Doctor per la Universitat Politécnica de Catalunya — BarcelonaTech

Author: Jorge Munoz-Gama

Address: Department of Software
Edifici Omega, Despatx S108
C/ Jordi Girona, 1-3
08034 Barcelona, Spain

Email: jmunoz@Ilsi.upc.edu
jmunozgama@gmail.com

Telephone: (+34) 93 413 78 61

To Loly, Emilio, Alex,
and the rest of my family

Summary

Conformance Checking and Diagnosis in Process Mining

In the last decades, the capability of information systems to generate and record over-
whelming amounts of event data has experimented an exponential growth in several do-
mains, and in particular in industrial scenarios. Devices connected to the internet (internet
of things), social interaction, mobile computing, and cloud computing provide new sources
of event data and this trend will continue in the next decades. The omnipresence of large
amounts of event data stored in logs is an important enabler for process mining, a novel dis-
cipline for addressing challenges related to business process management, process modeling,
and business intelligence. Process mining techniques can be used to discover, analyze and im-
prove real processes, by extracting models from observed behavior. The capability of these
models to represent the reality determines the quality of the results obtained from them,
conditioning its usefulness. Conformance checking is the aim of this thesis, where modeled
and observed behavior are analyzed to determine if a model defines a faithful representation
of the behavior observed a the log.

Most of the efforts in conformance checking have focused on measuring and ensuring that
models capture all the behavior in the log, i.e., fitness. Other properties, such as ensuring
a precise model (not including unnecessary behavior) have been disregarded. The first part
of the thesis focuses on analyzing and measuring the precision dimension of conformance,
where models describing precisely the reality are preferred to overly general models. The
thesis includes a novel technique based on detecting escaping arcs, i.e., points where the
modeled behavior deviates from the one reflected in log. The detected escaping arcs are
used to determine, in terms of a metric, the precision between log and model, and to locate
possible actuation points in order to achieve a more precise model. The thesis also presents
a confidence interval on the provided precision metric, and a multi-factor measure to assess
the severity of the detected imprecisions.

Checking conformance can be time consuming for real-life scenarios, and understanding
the reasons behind the conformance mismatches can be an effort-demanding task. The second
part of the thesis changes the focus from the precision dimension to the fitness dimension,
and proposes the use of decomposed techniques in order to aid in checking and diagnosing

7

fitness. The proposed approach is based on decomposing the model in single entry single
exit components. The resulting fragments represent subprocesses within the main process
with a simple interface with the rest of the model. Fitness checking per component provides
well-localized conformance information, aiding on the diagnosis of the causes behind the
problems. Moreover, the relations between components can be exploded to improve the
diagnosis capabilities of the analysis, identifying areas with a high degree of mismatches,
or providing a hierarchy for a zoom-in zoom-out analysis. Finally, the thesis proposed to
main applications of the decomposed approach. First, the theory proposed is extended to
incorporate data information for fitness checking in a decomposed manner. Second, a real-
time event-based framework is presented for monitoring fitness.

Contents

Summary

I Introduction

1 Introduction
1.1 Process Mining e
1.2 Conformance Checking and its Challenges
1.2.1 Dimensions of Conformance Checking
1.2.2 Replay-based and Align-based Conformance Checking
1.2.3 Challenges of Conformance Checking
1.3 Contributions of the Thesis,
1.3.1 Precision Checking
1.3.2 Decomposed Conformance
1.4 Structure of the Thesis
1.5 Publications and Thesis Impact

2 Preliminaries
2.1 Basic Notations
2.2 Event Logs e
2.3 Process Models
2.4 Process Modeling Formalisms
2.4.1 PetriNets
2.4.2 Workflow Netso
2.4.3 Other Formalisms

IT Precision in Conformance Checking

3 Precision based on the Log

13

15
17
19
19
21
22
23
24
25
26
26

27
27
29
31
34
34
36
36

39

41

10

Contents

3.1 Imtroduction L 41
3.2 The Importance of Precision 42
3.3 Related Work oL 43
3.4 Precision based on Escaping Arcs o 0oL 45
3.5 Constructing the Observed Behavior 48
3.6 Incorporating Modeled Behavior, 50
3.7 Detecting Escaping Arcs and Evaluating Precision 52
3.8 Minimal Imprecise Traces 56
3.9 Experimental Results. 57
3.10 Limitations and Extensions, 61
3.10.1 Unfitting Scenario 61
3.10.2 Indeterministic Scenario 62

3.11 Conclusions o 63
Qualitative Analysis of Precision Checking 65
4.1 Imtroduction 65
4.2 Robustness on the Precision 0oL 66
4.3 Confidence on Precision 71
4.3.1 Upper Confidence Value 72
4.3.2 Lower Confidence Value 74

4.4 Severity of an Escaping Arc L L oo 74
4.4.1 Weight of an Escaping Arc 75
4.4.2 Alternation of an Escaping Arc 76
4.4.3 Stability of an Escaping Arc. oL 7
4.4.4 Criticality of an Escaping Arc 78
4.4.5 Visualizing the Severity 79

4.5 Experimental Results Lo o 80
4.6 Conclusions 84
Precision based on Alignments 85
5.1 Introduction e 85
5.2 Cost-Optimal Alignment 87
5.3 Precision based on Alignments, 92
5.3.1 Precision from 1-Alignment 92
5.3.2 Precision from All-Alignment 96
5.3.3 Precision from Representative-Alignment 98

5.4 Abstractions for the Precision based on Alignments 100
5.4.1 Abstraction on the Order 101
5.4.2 Abstraction on the Direction 102

5.5 Experimental Results. 106
5.6 Conclusions 111

Contents

IIT Decomposition in Conformance Checking

6 Decomposed Conformance Checking

6.1 Introduction
6.2 Related Work e
6.3 Single-Entry Single-Exit and Refined Process Structure Tree
6.4 Decomposing Conformance Checking using SESEs
6.5 Bridging a Valid Decomposition oL

6.5.1 Decomposition with invisible/duplicates
6.6 Experimental Results.
6.7 Conclusions e

Topological and Multi-level Conformance Diagnosis

7.1 Imtroduction L L

7.2 Topological Conformance Diagnosis.

7.3 Multi-level Conformance Diagnosis and its Applications
7.3.1 Stand-alone Checking
7.3.2 Multi-Level Analysis
7.3.3 Filteringo

7.4 Experimental Results. oo

7.5 Conclusions

Data-aware Decomposed Conformance Checking
8.1 Imtroduction.
8.2 Data-aware Processes L L o
8.2.1 Petrinets with Data
8.2.2 Event Logs and Relating Models to Event Logs
8.2.3 Data Alignments
8.3 Valid Decomposition of Data-aware Models
8.4 SESE-based Strategy for a Valid Decomposition.
8.5 Implementation and Experimental Results
8.6 Conclusions e e e

Event-based Real-time Decomposed Conformance Checking

9.1 Imtroduction

9.2 Event-based Real-time Decomposed Conformance
9.2.1 Model and Log Decomposition
9.2.2 Event-based Heuristic Replay

9.3 Case Example and Experimental Results
9.3.1 Description Lo
9.3.2 Experimental Scenario Evaluation
9.3.3 Experimental Comparison L.

11

113

115
115
116
117
119
121
127
131
137

139
139
140
144
144
145
145
147
148

149
149
152
152
155
156
158
160
161
163

12 Contents

9.4 Conclusions e e e 176
IV Closure 177
10 Conclusions 179

10.1 Conclusion and Reflection L. 179

10.2 Summary of Contributions L oo 180

10.3 Challenges and Directions for Future Work 181
Bibliography 185
Publications 195

Acknowledgements 197

Part 1

Introduction

13

Chapter 1

Introduction

There is a wide range of ways to define the concept of process. A simple but intuitive
alternative is to define a process as a sequence of activities performed in a specific order to
achieve a specific goal. And when this definition is considered one realizes that processes are
everywhere in our daily lives. Processes are crucial parts of our industries and organizations.
An assembly line in a car plant, or the management of packages in a delivery company are
examples of processes in industrial scenarios. However, the concept of process is wider than
that, being present in any daily activity: buying groceries in the city marked is, by itself,
a process. When you go to a market you visit the different stands in a given order. The
stands where you buy may depend on your needs that day (e.g., groceries for yourself or to
prepare a big meal for some guests), or even on the date itself (e.g., the butcher closes on
Monday). The order of the stalls is determined by a set of factors (e.g., buy in stalls close
to each others to avoid crossing the market each time, or buy heavy purchases at the end
to not carry them around). Even concurrent activities may appear (e.g., send your son to
buy bread while you buy the fish). Hence, buying groceries is a complete process with all its
elements. Other examples of processes are the application for a credit card, boarding and
security procedures before a flight, or the preoperative steps before a surgical procedure.

The times of paper and ink are progressively passing, and nowadays more and more
organizations are supported by some kind of IT system. The support of the IT system in
small organizations is usually passive, like the use of simple spreadsheets to keep the accounts
of a small business. In other cases, like in banking, this support plays a more active role
where each action is strictly controlled and monitored by the IT system. But most the
IT systems used in practice have something in common: the possibility to keep some kind
of record of the actions occurred during the executions of the process they support. This
records are called event logs.

Consider, for example, a doctoral scholarship process of some university. Doctoral stu-
dents that want to apply for a scholarship submit their academic record, the CV of their

15

16 Chapter 1. Introduction

advisor, and a description of their proposed project. Then the university evaluates the doc-
umentation and decides whether they grant the scholarship. The process starts collecting all
the documents and starting the procedure (Start Processing). Then, the three documents
are evaluated in any order (FEvaluate Academic Record, Evaluate Advisor CV and Evaluate
Project). Once all documents have been evaluated, a final evaluation is done by the chief
of the department (Final Evaluation) and the application is accepted (Accepted) or rejected
(Rejected). Finally, the decision taken is notified to the student (Notify Results). Table 1.1
show an example of an event log recorded by the IT system supporting this scholarship pro-
cess. Each row represents an event of the log, and the events are grouped, not chronologically,
but by student — i.e., case identifier — to help on understanding the process.

Case Event Timestamp Activity Employee Student
1 1 01-01-2014 10:00 Start Processing Merce Alex
1 2 01-01-2014 11:30 Evaluate Academic Record Fernando Alex
1 4 01-01-2014 13:30 Evaluate Project Fernando Alex
1 8 01-01-2014 17:00 Evaluate Advisor CV Fernando Alex
1 9 02-01-2014 10:00 Final Evaluation Ana Alex
1 11 02-01-2014 11:00 Accept Ana Alex
1 12 02-01-2014 12:00 Notify Results Merce Alex
2 3 01-01-2014 12:00 Start Processing Merce Dolores
2 5 01-01-2014 14:00 Evaluate Academic Record Maria Dolores
2 6 01-01-2014 15:00 Evaluate Advisor CV Maria Dolores
2 7 01-01-2014 16:00 Evaluate Project Fernando Dolores
2 10 02-01-2014 10:30 Final Evaluation Ana Dolores
2 13 02-01-2014 13:00 Reject Ana Dolores
2 15 02-01-2014 16:00 Notify Results Merce Dolores
3 14 02-01-2014 15:00 Start Processing Merce Emilio
3 16 02-01-2014 17:30 Evaluate Academic Record Maria Emilio
3 17 02-01-2014 18:00 Evaluate Project Maria Emilio
3 18 03-01-2014 10:00 Final Evaluation Ana Emilio
3 19 03-01-2014 11:00 Reject Ana Emilio
3 21 03-01-2014 13:00 Notify Results Merce Emilio
4 20 03-01-2014 12:00 Start Processing Merce George

Table 1.1: Example of a partial event log for the scholarship process, grouped by case.

The information contained on the event logs represents an unbiased reflect of the real
process as it is, being the perfect starting point for process mining techniques.

1.1. Process Mining 17

1.1 Process Mining

Process mining is a relative young research discipline that sits between machine learning
and data mining on the one hand, and process modeling and analysis on the other hand.
The idea of process mining is to discover, monitor and improve real processes by extracting
knowledge from event logs readily available in today’s IT systems [4].

Event logs are unbiased footprints representing the process as it 4s. This contrasts with
the process assumed by the process owners, a perception possibly biased by their understand-
ing of how the process is executed. Event logs are the starting point of all process mining
techniques, that use them to discover, verify or extend models for the process. In some cases
these models are used to gain insight, document, or analyze the process, for example to
simulate future scenarios. In other cases, the model is used directly to support the process,
for example as part of some workflow management system. But in any case, a model close to
the reality is required to obtain good results. Figure 1.1 shows an overview of how process
mining is structured.

REALITY IT SYSTEMS

controls /

supports
~e———

record

events
models /

analyzes

discovery
conformance
enhancement
PROCESS EVENT
MODEL LOG

Figure 1.1: Overview of process mining and its three types of techniques: discovery, confor-
mance and enhancement [4].

Figure 1.2 shows a possible workflow model discovered from the scholarship process event
log of Table 1.1. For simplicity purposes, the model is defined using an informal but intuitive
notation, instead of wide-spread process formalisms such as BPMN [69], Petri nets [68], or

18 Chapter 1. Introduction

YAWL [9]. In this informal notation AND diamonds model concurrent activities and XOR
diamonds represent mutually exclusive activities, similar to the gateways of BPMN.

Evaluate
Project

Start Evaluate Final Notify
. Academic .
Processing Record Evaluation Results

Evaluate
Advisor CV

Accept

Reject

Figure 1.2: Informal process model of the scholarship process.

Process mining techniques can be grouped into three classes depending on their purpose:
discovery, conformance, and enhancement.

Discovery: A discovery technique takes an event log as input and produces a model
only considering the knowledge extracted from the log. For example, the model in
Figure 1.2 could be an example of model obtained from logs of the scholarship pro-
cess. Discovery is the oldest sub-discipline in process mining, and it is the one with
more approaches proposed. The list of approaches is long, as long is the list of dif-
ferent techniques used to discover models. For instance, a-algorithm [13] is based on
detecting relations among activities of the log, Genetic Miner [58] uses evolutionary
algorithms, or Genet [37] and ILP Miner [101] are based on the theory of regions. The
model discovered is not restricted to the workflow perspective of the process. If the
log contains additional information one can also discover resource-related models, for
example capturing the interactions between the actors of the process [11].

Conformance: Unlike discovery, conformance considers both an event log and a
model as inputs. The goal of conformance techniques is to check if the behavior modeled
represents accurately the behavior observed in the log. Some examples of conformance
techniques are [79, 15, 62, 67, 97]. Conformance can be used to verify if a process
documentation is still updated, or to check if the model obtained using a discovery
approach is a faithful representation of the process. Conformance checking is the main
goal of this thesis and it is presented in more detail in Section 1.2.

Enhancement: Like conformance, enhancement also considers both an event log and
a model as inputs. However, enhancement techniques aim to improve the a-priori model
with information contained in the log. This enhancement could be done by means of
repairing the model to better conform the observed behavior [44]. Another option is to
extend the model with additional information, adding a new perspective to the process

1.2. Conformance Checking and its Challenges 19

model. For example, detecting and including the data dependencies that affect the
routing of a process execution [83].

1.2 Conformance Checking and its Challenges

Most of the research in process mining has mainly focused on discovery techniques, neglecting
the importance of conformance. However, conformance techniques have become an essential
part in the process life cycle. Regulations, certifications or simply communication purposes
are making most organization document their processes. Process models are also required in
process-aware information systems such as workflow management systems, or for analyzing
and simulating future scenarios. However, models not representing adequately the reality
could lead to wrong conclusions. Therefore, conformance techniques are necessary to detect
inadequate models, or models that have become obsolete due the continuously changing na-
ture of the processes. Conformance is also necessary to compare several models for the same
process and determine the best option, for example among models obtained with different
discovery algorithms.

1.2.1 Dimensions of Conformance Checking

By measuring the conformance between an event log and a process model one is concerned
about quantifying if a given model is valid description of the reality. A first naive approach
could be to consider that a model and a log conform each other simply if the model captures
all the behavior observed in the log. In other words, a perfect conformance would require
that all the traces in the log fit in the model. However, a more accurate study shows that,
although important, this condition alone is not sufficient. For example, let us consider the
model in Figure 1.3 for the scholarship example. The informal semantics behind this model
(similar to Petri nets), know as a flower model, is that it captures a possible sequence of the
activities, in any order and for any length. Therefore, any possible log involving the same
activities fit this model. However, as one can see, this model provides absolutely no insight
into the process or how the activities are executed.

In [80, 79] the multidimensional nature of the conformance is studied, and the authors
propose four dimensions — fitness, precision, generalization and simplicity — to fully capture
the notion of how good a given model is with respect to the reality.

Fitness As it has been already mentioned, this dimension indicates how much of
the observed behavior is captured — fits — the process model. For example, the trace
(Start Processing, Fvaluate Academic Record, Evaluate Project, Fvaluate Advisor CV,
Final Evaluation, Accept, Notify Results) with case id 1 in Table 1.1 perfectly fits the
model in Figure 1.2. However, the trace Start Processing, Evaluate Academic Record,
FEvaluate Project, Final Evaluation, Reject, Notify Results with case id 3 does not fit
the model because the advisor CV is never checked, denoting that the application of

20

Chapter 1. Introduction

Evaluate
Academic Evaluate
Advisor CV
Record
Evaluate Final
Project @ Evaluation
Start
Processing Accept
Notify .

Results Reject

Figure 1.3: Informal flower process model of the scholarship process, modeling any possible
sequence of the activities.

the student is rejected without proper evaluation. On the other hand, both traces fit
the flower model of Figure 1.3. Part III of this thesis is devoted to analyze the fitness
dimension in a decomposed way, and consequently a more formal presentation of the
fitness dimension is included in these sections.

Precision This dimension addresses overly general models: precision penalizes a pro-
cess model for allowing behavior that is unlikely given the observed behavior in the
event log. For example, in the log of Table 1.1 we observe that, although the three
documents could be evaluated concurrently, the university employees always evaluate
first the academic record. That way, if the student is clearly not suitable for the grant
(e.g., the grade does not reaches the minimum necessary), the advisor and project
evaluation is done superficially. Consequently, the model shown in Figure 1.4 is a more
precise representation of the reality than Figure 1.2. The flower model in Figure 1.3 is
the perfect example of completely imprecise model. Part II of this thesis is devoted to
the precision dimension, and consequently a more formal presentation of the precision
is included in these sections.

Generalization This dimension addresses overfitting models: a good model must
be able to generalize and reproduce possible future behavior, instead of capturing
simply each trace of the observed log. For example, Figure 1.5 shows a model that
only captures one possible order for the evaluation of the documents and that results
necessarily in the acceptance of the application. This model perfectly captures the
first trace in the Table 1.1, but it is unable to generalize for any other possible process
execution.

Simplicity This dimension penalizes models that are unnecessarily complex: following

1.2. Conformance Checking and its Challenges 21

Evaluate
Project Accept
Start Evaluate Final Notify
" Academic "
Processing Record Evaluation Results
Evaluate ;
Advisor CV Reject

Figure 1.4: More precise model for the scholarship process.

Start Evaluate Evaluate Evaluate Final Notify

Processing A;zgir:;lc Project Advisor CV Evaluation Accept Results

Figure 1.5: Model that overfitting the first trace of the scholarship log, and does not generalize
for possible future behavior.

the Occam’s Razor principle, models that explain the behavior observed in the log in
a simple way are preferred to those that use redundant components. Figure 1.6 is an
example where the unjustified use of duplicate activities — i.e., an activity of the process
is represented in different parts of the model — complicates unnecessary a model for
the scholarship process.

1.2.2 Replay-based and Align-based Conformance Checking

In early works on conformance, most of the proposed approaches were based on replaying the
log on the model to detect discrepancies. Some replay-based approaches simply stop at the
point where the model is not able to reproduce the trace anymore. Other approaches perform
the replay in a non-blocking way, regardless whether the path of the model is followed or
not, like [80]. More sophisticate approaches, like [98], include also a look ahead function to
determine the most promising path. Recently, another family of approaches has appeared,
where the conformance checking is done in a global manner, by means of aligning both the
modeled behavior and the behavior observed in the log. Examples of conformance approaches
based on alignments are [15, 54]. These approaches handle conformance in a global way,
but they are computationally more expensive compared with replay-based approaches. In
the first part of this thesis, both replay-based and align-based approaches are explored to
check precision. In the second part, a decomposed technique is proposed to alleviate the
conformance diagnosis computation time, specially for those analysis based on alignments
due their expensive cost.

22

Start
Processing

Evaluate
Project

Evaluate
Academic
Record

Evaluate
Advisor CV

Evaluate

Evaluate
Academic
Record

Evaluate
Project

Evaluate
Academic
Record

Evaluate

Evaluate
Advisor CV

Evaluate
Advisor CV

Evaluate
Project

Evaluate

Final
Evaluation

Chapter 1.

Introduction

Notify
Results

Academic
Record

Project Advisor CV

Evaluate
Academic
Record

Evaluate
Evaluate Evaluate Academic
Advisor CV Project
Record

Figure 1.6: Unnecessary complex model for the scholarship process.

Evaluate
Advisor CV

Evaluate
Project

1.2.3 Challenges of Conformance Checking

Conformance checking must confront a set of challenges in order to be applied successfully. In
particular, we identify five challenges: four-dimensional conformance, big data and real time,
noise, incompleteness, unfitness, and indeterminism, conformance diagnosis and modeling
notations. This thesis addresses all these the challenges. In recent years other authors have
also proposed approaches in that direction.

Challenge 1 — Four-Dimensional Conformance. Since the multidimensional nature
of the conformance — fitness, precision, generalization and simplicity — was first stated
n [82] and later refined in [84, 80, 79], the relation between the four dimensions and
the adequacy of the results has become more and more clear. Works like [33] illustrate
the need of metrics for all the dimensions in order to discover good models. However,
most of the approaches proposed in conformance, specially on the early days, are
focused exclusively on fitness. Conformance checking must provide also metrics for
other dimensions such as precision, generalization, and simplicity.

Challenge 2 - Big Data and Real Time. The amount of information recorded by
the information systems periodically grows exponentially. Event logs become more
detailed, complete and large, and with them also the process models. Conformance
techniques must evolve accordingly in order to handle this exponential growth, specially
those based on the global aligning of behaviors. Moreover, the fast implantation of
online and monitoring paradigms in nowadays systems is requiring faster and more
fine-grained conformance approaches.

Challenge 3 — Noise, Incompleteness, Unfitness, Indeterminism. Most of the prob-
lems found in process mining have to deal with this four concepts: noise, incomplete-
ness, unfitness, and indeterminism. Noise in event logs can appear by traces incorrectly

1.8. Contributions of the Thesis 23

recorded (for instance, due to temporary system failure), or traces reflecting exceptional
situations not representative for the typical behavior of the process. Noise is a well-
known problem in discovery approaches [4], and therefore, conformance approaches
proposed should also be noise-aware too. On the other hand, assuming a complete
log is an unrealistic assumption in most of the cases. The number of traces necessary
for a complete log grows exponentially when the number of concurrent actions in the
model is increased. Moreover, some concurrent actions may look sequentially in the
log because performing one action is always much faster than the other. Conformance
techniques must include mechanisms to aid the process analyst on deciding whether
the problems are real conformance anomalies or result of the incompleteness of the
log. Unfitness — i.e., situations where the behavior observed in the log cannot be re-
produced by the model — is a conformance dimension itself, but it may influence other
dimensions: if the model cannot reproduce the observed behavior, it cannot determine
in what state was the system in that moment. Conformance approaches should try
to abstract from how the alignment between observed and modeled behavior is done.
This include also the indeterministic situations produced when a trace in the log can
be mapped to several sequences in the model.

Challenge 4 — Conformance Diagnosis. The importance of indicating the location of
the problems for a proper conformance diagnosis was already emphasized in the seminal
work [79]. However, the diagnosis mechanisms cannot be limited to simply locate the
possible conformance errors, but they must go a step further: they must provide aiding
mechanisms to the analyst to fully understand the root causes of the problems. For
example, making it possible to dynamically inspect the conformance results at different
levels of abstraction, or to group mismatches with a similar root cause. Diagnosis tools
are specially useful for large models or models with a high degree of complexity, where
the causes of the problems are difficult to grasp.

Challenge 5 - Modeling Notations. Most of the approaches presented in conformance
so far focus exclusively on the control-flow perspective of the process — i.e., the or-
der of the activities — and to one specific workflow modeling notation, Petri nets [68].
Conformance techniques must include other modeling notations, and other perspec-
tives. In addition, there must appear new approaches to check the conformance of
multi-perspective models — models capturing more than one perspective — like for ex-
ample [54], where integer linear programming techniques are used to validate both the
control-flow and the data perspectives of a model.

1.3 Contributions of the Thesis

Process mining, and more specifically conformance checking and conformance diagnosis,
are the main goals of the contributions proposed in this thesis. These contributions can

24 Chapter 1. Introduction

be grouped in two categories: those that aim on analyzing precision, and those that use
decomposition to diagnose conformance problems in a decomposed way. Table 1.2 summarizes
the contributions of this thesis. The table includes a description of the contribution, the
category it belongs to, the chapter where they are presented, the conformance challenge
they mainly address (cf. Section 1.2), and the publications where they were proposed. The
remainder of the section enumerates the contributions of this thesis.

Contribution Chapter Challenge Publication

Prec Approach to quantify and analyze the 3 1,2 [62]
precision between a log and a model
based on escaping arcs.

Robustness and confidence interval for 4 1,2,3 [64][63)
precision based on escaping arcs.

Severity assessment of the imprecision 4 1,4 [64][63]
point detected.

Precision checking based on aligning ob- 5 1,3 [18]
served and modeled behavior.

Abstraction and directionality in preci- 5 1,3 [19]
sion based on alignments.

Decomp Decomposed conformance checking 6 2,4 [65] [67]
based on SESE components.

Hierarchical and topological decomposi- 7 4 [66] [67]
tion based on SESE components for con-
formance diagnosis.

Decomposed conformance checking for 8 5 [55]
multi-perspective models.

Decomposed Conformance Checking for 9 2 [29]
Real-Time scenarios.

Table 1.2: Chart summarizing the contributions of this thesis.

1.3.1 Precision Checking

e A novel approach to measure precision in conformance checking, based on detecting and
assessing escaping arcs. The escaping arcs identify where the modeled behavior allows

1.5.

Contributions of the Thesis 25

more than the behavior observed in the log. Among its main features, the proposed
metric is considerable less time-consuming than previous ones such as [80].

Extension of the precision checking to be more robust against noisy or infrequent traces
of the log. It complements the approach with an interval of confidence over the metric
provided. A wide interval denotes a low confidence on the results, whereas a narrow
interval represents the unlikelihood of a future variation of the metric.

Severity assessment of the imprecise points. All points of impreciseness are evaluated
by a multi-factor metric, denoting the priority of each one to be solved.

Using the Alignment of observed and modeled behavior to detect precision problems.
The global nature of the aligning techniques solves the possible problems of unre-
playable logs — the model cannot mimic the "moves” of the log —, problems present on
replay-based conformance approaches.

Extension for the precision checking to include different levels of abstraction. The
extension includes the possibility to abstract from the order of the activities — two
traces with the same activities in different order represent the same observed behavior
— and the abstraction of the direction of the process — giving more importance to the
start or the end of the process.

1.3.2 Decomposed Conformance

e A novel approach to decompose conformance checking based on partitioning the model

into Single-Entry Single-Exit (SESE) components. Informally, a SESE component is
a part of the model with only one entry and only one exit nodes, denoting a subpro-
cess with simple interface with respect to the main modeled process. The approach
correctness is formally proven. In practice, this decomposition technique alleviates sig-
nificantly the computation time of the current conformance techniques, specially those
based on alignments.

A topological representation of the SESE partitioning as starting point for detecting
parts or sets of parts with conformance anomalies. Hierarchical SESE decomposition to
analyze and diagnose possible conformance problems at different levels of abstractions.

Formalization of decomposed conformance for multi-perspective models. In particular,
Petri nets with data containing both control-flow and data perspectives. Definition of
several decomposition strategies for different conformance scenarios.

Application of decomposition for real-time scenarios, where the model to be monitored
is large or complex, and events are provided in a streaming context. The decomposition
provides mechanisms to aid on conformance diagnosis and alleviate the computation
times critical in real-time systems.

26 Chapter 1. Introduction

1.4 Structure of the Thesis

The thesis is structured in four main parts.

e Part I provides an introduction to the thesis. It consists of an introduction in Chapter 1,
and the necessary preliminaries to fully understand the thesis in Chapter 2.

e Part II presents the techniques proposed for precision checking. Chapter 3 introduces
an approach to measure and analyze the precision between an event log and a process
model, and Chapter 4 incorporates robustness, confidence and severity assessment to
the approach. Finally, Chapter 5 discusses the use of alignments between observed and
model behaviors for precision checking purposes.

e Part III proposes the use of decomposition to check conformance. Chapter 6 introduces
the SESE decomposition of models for a faster and meaningful checking. Chapter 7
discusses the use of hierarchical decomposition and topological representations as tools
for conformance diagnosis. Chapter 8 describes the decomposition for multi-perspective
models, while Chapter 9 proposes the application of decomposition techniques to event-
based real-time scenarios.

e Part IV and Chapter 10 concludes the thesis, summarizing the main results and dis-
cussing possible extensions of the work presented.

1.5 Publications and Thesis Impact

The materials reported in this thesis are partially published in international journals in
the areas of business process management and information systems: [67] in Information
Systems, [19] in Information Systems and e-Business Management, and [63] in the special
issue on business process management of the International Journal of Innovative Computing,
Information and Control.

In addition, materials of this thesis were presented in international conferences of different
fields: [62] and [65] in the International Conference on Business Process Management (BPM),
[64] in the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), [66]
in Application and Theory of Petri Nets and Concurrency, and [18] in the workshop of
Business Process Intelligence (BPI). Finally, [29] and [55] were presented in the International
Conference on Cooperative Information Systems (CooplS).

The applicability of the approaches proposed is extensively used in the area, with more
than 130 citations among all the publications, according to Google Scholar. The metrics for
precision proposed in this thesis have been used by the community as a reference conformance
measures to evaluate different discovery algorithms [96], to guide discovery techniques based
on genetic algorithms [33], as part of the CoBeFra conformance benchmarking framework
[28], or to train a recommender system for process discovery [78], among other applications.

Chapter 2

Preliminaries

This chapter introduces the preliminaries used in the remainder of this thesis. Some basic
notations are introduced in Section 2.1. Section 2.2 and Section 2.3 formalize the concepts
of event logs and process models, the two necessary elements in any conformance checking
approach. Finally, Section 2.4 presents several process model formalisms, including Petri
nets (and extensions), used to illustrate most of the thesis. For the sake of comprehension,
the concepts introduced in this section respects de facto notations used in most of works of
the field, such as [67, 1, 79, 15].

2.1 Basic Notations

In this section we introduce the basic notations for sets, multisets, functions, sequences, and
transition systems.

Definition 2.1 (Set). A set A is a possible infinite collection of elements. The elements in
the set are listed between braces, e.g., A = {a,b,c}. The empty set is represented by 0. |A]
denotes the size of the set, e.g., |A| = 3. P(A) denotes the powerset of A, the set of all subsets
of A, including the empty set and A itself, e.g., P(A4) = {0, {a}, {b}, {c},{a,b},{a,c}, {b,c},
{a,b,c}}.

Some operations are defined over sets. Let A = {a,b,c,d} and B = {a,c,d, e} be non-
empty sets. The union of A and B, denoted AU B, is the set containing all elements of either
Aor B, eg., AUB = {a,b,c,d,e}. The intersection of A and B, denoted AN B, is the set
containing elements in both A and B, e.g., AN B = {a, ¢, d}. The difference between A and
B, denoted A\ B, is the set containing all elements of A that are not in B, e.g., A\ B = {b}.

Multisets are used to describe event logs and to represent states of some processes models
such as Petri nets.

27

28 Chapter 2. Preliminaries

Definition 2.2 (Multiset). A multiset — also called bag — B over a set A is a possible infinite
collection of elements of A, where each element may appear more than once. The elements in
the multiset are listed between square brackets, e.g., B = [a, a, b], also denoted as B = [a?, b],
where A = {a,b}. B(a) denotes the number of times the element a appears in the multiset
B, e.g., B(a) =2, B(b) =1 and B(c) = 0 for all ¢ ¢ A. Furthermore, a set S C A can be
viewed as a multiset where each element occurs once. The empty multiset is denoted as [].
B(A) represents the set of all multisets over the set A.

The standard operations over sets can be extended to multisets. For example: the union
[a,a] W [a,b] = [a,a,a,b], the difference [a,a,b,c]\ [a,b,b] = [a,c], the size |[a,a]| = 2, etc.

Sequences are used to represent traces in the log, or states of the observed behavior and
modeled behavior.

Definition 2.3 (Sequence). A sequence o = {(a1,as,...,a,) € A* over a set A is an ordered
list of elements a; € A of size n. The empty sequence is denoted as (). The concatenation of
sequences is denoted as oy - 9.

Functions are constantly used in the thesis to represent different meanings, such as the
mapping between model tasks and observable activities.

Definition 2.4 (Function). Let A and B be non-empty sets. A function f from A to B,
denoted f : A — B is a relation from A to B, where every element of A is associated to an
element of B. Given a function f: A — B, dom(f) and rng(f) denote the domain and the
range of f. A partial function, denoted f : A -» B, is a function that may be undefined for
some of the elements in A.

In particular, a function can be applied to a sequence, applying it only to the elements
in the domain of the function, i.e. if dom(f) = {z,y}, then f({y, z,v)) = {(f(v), f(v)).

Definition 2.5 (Function to Sequences). Let f € X /4 Y be a partial function. f can be
applied to sequences of X using the following recursive definition (1) f({)) = () and (2) for
c€X*and x € X:

f(o) if © & dom(f)
(f(@)) - flo) ifx € dom(f)

A specially useful function is the projection.

f(<x>-0')={

Definition 2.6 (Projection). Let X be a set and @ C X one of its subsets. [g€ X* — Q* is
a projection function and is defined recursively: (1) ()[o= () and (2) for 0 € X* and x € X:

olg ifex &Q
~0[Q ifxeq@

2.2. FEvent Logs 29

For example, (y, 2, Y)| {z,y3= (¥,)
Transition systems are used to represent the observed and the modeled behavior. More-

over, in other to abstract from any specific process model notation, transition systems are
used to represent the semantics of a generic process model.

Definition 2.7 (Transition System). A transition system with initial states Sp and final
states Sp is a tuple TS = {S,%, 7,51, Sr} where S is a set of states, ¥ is a set of action
labels, S; C S is a set of initial states, Sp C S is a set of final states, and /C S x X x S is
a transition relation.

A more general — and more commonly used — definition of transition systems does not
include the set of final states. When no set of final states is specified, it is assumed all states
are final states, i.e., Sp = S. Figure 2.1 shows an example of transition system with states
S = {s1, 82, 83, 54} and labels ¥ = {a, b, ¢}, being s; its initial state. The transition system
denotes that, for example, there is a transition from the state s; to the state ss.

Figure 2.1: Example of TS with S = {s1, $2, 83,54}, = = {a,b,c}, and S; = {s1}.

2.2 Event Logs

Event logs are the footprints left in the system by the execution of processes. They are
the main object any process mining technique works with. Let us consider a variant of the
scholarship process presented in Chapter 1. In this variant both Start Processing and Notify
Results activities are substituted by a single activity Set Checkpoint executed at the start
and end of the process. Moreover, the Final Evaluation action is done always outside the
system, and there is no recording of it in the log. Table 2.1 shows a possible partial event log
of the process. The log contains two complete process executions or cases: Alex and Dolores
application. Each row corresponds with one event in the log, and the events are ordered
chronologically. Therefore, an event log is a sequence of events. Each event is associated
with a set of attributes. The list of the most common attributes in event logs for the practice
of process mining analysis are:

e case — process instance id of the event.

e qctivity — name of the action performed in the event.

30

Chapter 2. Preliminaries

Event Case Timestamp Activity Employee Student
1 1 01-01-2014 10:00 (a) Set Checkpoint Merce Alex
2 1 01-01-2014 11:30 (c) Evaluate Academic Record Fernando Alex
3 2 01-01-2014 12:00 (a) Set Checkpoint Merce Dolores
4 1 01-01-2014 13:30 (b) Evaluate Project Fernando Alex
5 2 01-01-2014 14:00 (c) Evaluate Academic Record Maria Dolores
6 2 01-01-2014 15:00 (d) Evaluate Advisor CV Maria Dolores
7 2 01-01-2014 16:00 (b) Evaluate Project Fernando Dolores
8 1 01-01-2014 17:00 (d) Evaluate Advisor CV Fernando Alex
10 1 02-01-2014 11:00 (e) Accept Ana Alex
11 1 02-01-2014 12:00 (a) Set Checkpoint Merce Alex
12 2 02-01-2014 13:00 () Reject Ana Dolores
13 2 02-01-2014 16:00 (a) Set Checkpoint Merce Dolores

Table 2.1: Example of event log for the scholarship process variant, ordered chronologically.

e timestamp — moment of the event execution, establishing an order between the events.
e resource — name of the resource initiating the event.
e data — data attribute related to the event.

For example, the event 10 is part of the case 1, corresponding with the scholarship application
of Alex, and it reflects an Accept activity performed by Ana at 11 : 00 on the date 02 — 01 —
2014. For the sake of clarity activities have associated a lowercase letter, e.g., e = Accept.

Different attributes are required to derive different type of models. For example, the
resource attribute is necessary for discovering a social interactions between actors of the
process. In this thesis we focus mainly on the control-flow perspective of the processes
(except on Chapter 8 were we also focus on the data perspective). For those cases, the
activity, the case and an order between events is necessary, and therefore, the definition of
event logs is simplified: the event log is composed by traces, where each trace corresponds
to a case, and only the activity is considered for each event.

Definition 2.8 (Trace, Event Log). Let A € Ua be a set of activities in some universe of
activities Uy. A trace o € A* is a sequence of activities. An event log is a multiset of traces,
ie., L € B(A").

For example, the event log in Table 2.1 is represented as [{(a, ¢, b, d, e, a), (a,c,d, b, f,a)],
containing information about 12 events and 2 cases, where each case follows a different trace.
Although they are called event logs, event information is rarely recorded in logs files as
Apache logs or error logs are, but stored in some internal database. However, recently a new
XML-based standard for event logs has been presented: eXtensive Event Stream (XES) [43].

2.3. Process Models 31

The purpose of XES is not only the storage of event logs, but to provide a standard format
for the interchange of event log data between tools and application domains.

2.3 Process Models

Process models are the second element necessary in any conformance checking approach. A
process model captures the behavior to compare with respect to the behavior observed in the
log. Different models are used to capture different perspective of the process. In this thesis
we mainly focus on the control-flow perspective of the processes, and therefore the models
are used to capture the ordering between the actions. For the sake of generality, whenever it
is possible, we abstract from any specific process modeling notation defining a generic process
model. In Section 2.4 we present several concrete process modeling languages.

A generic process model semantics can be abstracted using a basic transition systems
as a placeholder for more advanced modeling languages, such as Petri nets, UML, BPMN,
EPCs, etc.

Definition 2.9 (Process Model). A process model semantic is abstracted as a transition
system TS = {S,T, 7, S;,Sr} over a set of model tasks T with states S, initial states
S; C S, final states Sp C S, and transitions /C S x T' x S. When no set of final states is
specified, all states are assumed to be final states.

A task t € T is enabled to be executed in the state s of the model M, denoted as (M, s)[t),
if there is a transition with task ¢ in the state s, i.e., (s,t,s") € /. (M, s)[t)(M,s’) denotes
that ¢ is enabled in s and executing ¢ results in the state s’. Let o = (t1,¢2,...,t,) € T* be
a sequence of model tasks. (M, s)[o)(M, s’) denotes that there is a set of states sg, s1,..., S,
such that sg = s, s, = ¢’ and (M, $;)[tit1)(M, $i41) for 0 < i < n.

Definition 2.10 (Complete Task Sequences). The set of complete tasks sequences ¢; of
process model M is the set of all possible sequences of tasks executed from an initial state
reaching a final state, i.e., ¢:(M) = [o|(M, s;)[o)(M,sp)} for all s; € Sy and sp € Sp.

Figure 2.2 shows a process model M capturing the order of the tasks T' =t ...tg using
the informal semantics of Chapter 1, i.e., AND models concurrent tasks and XOR mutually
exclusive tasks. The set of complete tasks sequences of this model is:

32 Chapter 2. Preliminaries

(t1,t2,t3,14,15,16,t3)
(t1,to,t3,ta, ts, b7, ts)
(t1,to,ta,t3,t5,t6, ts)
(t1,t2,ta,t3, 15,17, t8)
(t1,t3,t2,t4, 15, 16, t3)

_ <t1at3at27t47t57t77t8>
M) = 4ttt s B, 1)
(t1,t3,ta,t2,t5,t7,ts)
(t1,ta,t2, 13,15, 6, ts)
(t1,ta,t2,t3,t5,t7,t3)
<t17t47t37t27t57t67t8>
(t1,ta,t3,t2,t5,t7,13)

0 t6
tl 3 t5 — t8
Wl
t

Figure 2.2: Informal process model for tasks t; ... tg.

In a labeled process model (or observable process model) the tasks represent activities
in a real process that are potentially observable, i.e., they may cause events in a log. This
potential observability is captured by the labeling function, which relates observable tasks in
the model to activities of the process.

Definition 2.11 (Labeled Process Model). A labeled process model (or simply a process
model) is a tuple M = (T5,1), where the transition system 7'S = {S, T, 7, S, Sr} represents
the semantics of the model, and [€ T' - Uy is a labeling function where U/ 4 is some universe
of activity labels.

The process models in this thesis are considered always labeled, unless stated otherwise.
If a model task t ¢ dom(l), then it is called invisible (or also known as silent or unobservable).
An occurrence of a visible task t € dom(l) corresponds to observable activity {(t). Two or
more tasks associated with the same activity are called duplicate. For instance, Figure 2.3
show a labeled process model for the scholarship variant process. The task t¢5 is invisible,
i.e., this action is not observed nor recorded in the log. Tasks t; and tg are duplicate tasks
corresponding with the same activity (a)Set Checkpoint.

2.8. Process Models 33

(b) Evaluate
Project

tl 3 t5 t8

(c) Evaluate
o) set AND Academic AND XOR XOR (2) Set
eckpoint Record Checkpoint
4 7

d) Evaluat .
(A31vi‘sl<e;ruca\;a () Reject

(e) Accept

Figure 2.3: Informal labeled process model for scholarship variant process.

Definition 2.12 (Process Model notations). Let M = (TS,1) be a process model with
TS:{SvTa/‘aSbSF}'

o T,(M) = dom(l) is the set of visible tasks in M.
o A,(M) = rng(l) is the set of corresponding observable activities in M.

o T (M) ={teT,(M)|Yyer,m) U(t) = 1(t") =t = t'} is the set of unique visible tasks
in M, i.e., there are no other tasks with the same associated to the same activity.

o AU(M) ={I(t) |t € T*(M)} is the set of corresponding unique observable activities in
model M.

In the example model M of Figure 2.3 the set of visible tasks is T,,(M) = {t1, t2, t3, ta, tg, t7,ts}
(all except t5), and the set of unique visible tasks is T*(M) = {ta,t3,t4,t6,t7}. The set of
observable activities is A, (M) = {a, b, c,d, e, f}, while the set of unique observable activities
is only AY(M) ={b,c,d,e, f}.

Similar to the set of complete task sequences, a labeled process model contains its corre-
sponding set of complete activity sequences, i.e., sequences of tasks starting from an initial
to a final state projected onto the set of observable activities.

Definition 2.13 (Complete Activity Sequences). Let M be a process model with T tasks
and labeling function I. A sequence o, = (aj,as,...,a,) € Uax is a complete activity
sequence of the model M, denoted as (M, sy)[o, > (M, sp) if and only if there is a complete
tasks sequence o € T* in M such that (M, s;)[o)(M, sr) and [(c) = 7,. The set of complete
activity sequences of the model M is denoted ¢(M).

The set of complete activity sequences of the model in Figure 2.3 is:

34 Chapter 2. Preliminaries

(a,b,c,d e, a)
(a,b,c,d, f,a)
(a,b,d,c, e, a)
(a,b,d,c, f,a)

<a7 c’ b’ d’ e’ a>

_ <G,C,b,d,f,a>
¢(M) = (a,e,d,b, e, a)
(a,c,d,b, f,a)
(a,d,b,c e, a)
(a,d,b,c, f,a)
(a,d,c,b, e, a)
(a,d,c,b, f,a)

2.4 Process Modeling Formalisms

There are a wide variety of process modeling formalism that match the generic process
model definition of previous section. In this section we present some of these formalisms. In
particular we focus on Petri nets and its extensions, the formal notation used to illustrate
the process models examples of this thesis.

2.4.1 Petri Nets

Petri nets [68] are one of most frequently used process modeling notations in process min-
ing. Its formal semantics, its mathematical foundation, and its inherent capacity to model
concurrency in a succinct way, make Petri nets perfect to model the control-flow perspective
of processes. In addition, Petri nets are supported by an intuitive graphical notation, and
there exists a wide range of tools and libraries to operate with them.

Definition 2.14 (Petri Net). A Petri net is a tuple PN = (P, T, F) with P the set of places,
T the set of transitions, where PNT = (), and F C (P x T) U (T x P) the flow relation. For
a node n (place or transition) of a Petri net, en (ne) is the predecessor (successor) set of n
in A, i.e., en = {n'|(n’,n) € F} and ne = {n|(n,n') € F}.

The set of transitions T represent the set of tasks of generic process modeling definition.
An example of Petri net is shown in Figure 2.4. The transitions are represented as square
nodes, while the places are represented as circles.

The states of a Petri net are called markings. The formal semantics of Petri nets are
defined by the firing rule, that states the effects of firing an enabled transition.

Definition 2.15 (Petri Net Semantics). Let PN = (P, T, F') be a Petri net. A marking M is
a multiset of places, i.e., M € B(P). A transition ¢ € T is enabled in a marking M, denoted

2.4. Process Modeling Formalisms 35

a = Set Checkpoint

b = Evaluate Project

¢ = Evaluate Academic Record
d = Evaluate Advisor CV

e = Accept

f = Reject

Figure 2.4: Petri net for scholarship variant process of Figure 2.3.

as (PN, M)[t), iff o¢ < M. Firing transition ¢ in M, denoted as (PN, M)[t)(PN, M’), results
in a new marking M’ = M — et + te, i.e., tokens are removed from et and added to te.

A marking is graphically represented as black dots (called tokens) in places. For example,
the marking represented in Figure 2.4 is M = [start]. In that marking, only ¢; is enabled,
and firing t1, (PN, M)[t1)(PN,M’), will result in the marking M’ = [p1,p2,ps]. In M’,
to, t3,ts are enabled simultaneously, and can be fired in any order.

Similar to tasks sequences, a transition sequence from a Petri net can also be defined.
Notice that, for the sake of clarity, the same notation is preserved between generic process
models and Petri nets, referring to tasks or transitions in each particular case.

Definition 2.16 (Transition Sequence). A transition sequence o = (t1,ta,...,tn) € T of
Petri net PN, represented as (PN, M)[o)(PN,M’), denotes that there is a set of markings
1\40,]\417 N ,Mn such that MQ =]\47 Mn =M and (N,Mi)[ti+1>(N,Mi+1) for 0 S i<n. A
marking M’ is reachable from M if there exists a o such that (PN, M)[o)(PN,M').

Similar to generic labeled process models, a Petri net can also be labeled, associating
observable activities to the transitions of the model.

Definition 2.17 (Labeled Petri Net). A labeled Petri net PN = (P,T,F,l) is a Petri net
(P, T, F) with labeling function | € T' - U4, where U, is some universe of activity labels.

Figure 2.4 shows a labeled Petri net for scholarship variant process of Figure 2.3. Similar
to the generic labeled process model, we can define the wisible transitions T,,(PN), observ-
able activities A,(PN), unique visible transitions T.*(PN), and unique observable activities
AY(PN) of a Petri net PN. Typically, invisible transitions are represented as filled squares,
e.g., ts.

Definition 2.18 (Activity Sequence). A sequence o, = {a1,as,...,a,) € Uax is a activity
sequence of the Petri net PN, denoted as (PN, M)[o, > (PN, M') if and only if there is a
transition sequence o € T* in PN such that (PN, M)[o)(PN,M’) and (o) = o,.

In the context of process mining and business processes, processes are usually considered
to start in an initial state and to end in a well-defined end state. Petri nets considering a
initial and a final marking are called system mnets.

36 Chapter 2. Preliminaries

Definition 2.19 (System Net). A system net is a triplet SN = (PN, M, Mp) where PN =
(P,T,F,l) is a labeled Petri net, M; € B(P) is the initial marking, and Mg € B(P) is the
final marking.

A system net SN = (PN, [start], [end]) is a possible system net for the Petri net PN
in Figure 2.4. We define the set of complete transition sequences and the set of complete
activity sequences as the sequence of transitions and activities from the initial marking to
the final marking.

Definition 2.20 (Complete Transition Sequence, Complete Activity Sequence). Let SN =
(PN, My, Mp) be a system net with PN = (P,T,F,l). The set of complete transition
sequences ¢, of SN is the set of all possible sequences of transitions executed from the initial
marking and reaching the final marking, i.e., ¢(SN) = [o|(PN,Mj)[o)(PN,Mp)}. The
set of complete activity sequences of system net SN is the set of all possible sequences of
observable activities from the initial marking and reaching the final marking, i.e., ¢(SN) =
[o|(PN,Mj)[o> (PN, Mp)}.

2.4.2 Workflow Nets

Workflow nets [5, 7], commonly used for business and workflow processes, are a subclass of
Petri nets with a well defined starting and ending place.

Definition 2.21 (Workflow Net). A workflow net WN = (P, T, F,l, start, end) is a partic-
ular type of Petri net where:

e start is a special source place with no incoming arcs, i.e., estart = ()
e end is a special sink place, with no outgoing arcs, i.e., ende = ()
e every node of the net must be on some path from start to end

The Petri net in Figure 2.4 shown in the previous section is actually a workflow net.
Workflow nets present a direct way to define system nets, with a single token in start as
initial marking, and a single token in end as a final marking.

Definition 2.22 (System Net from Workflow net). A system net SN = (WN, [start], [end)])
from the workflow net WN is the net where the initial marking is [start], and the final
marking is [end].

2.4.3 Other Formalisms

There is a wide range of other model formalisms to describe processes. Each formalism
has its own advantages and disadvantages, and its own tools to support it. Some examples
of such formalisms are BPMN [69], YAWL [9], EPC [3], or UML [70], to enumerate some
examples.

2.4. Process Modeling Formalisms 37

Business Process Model and Notation (BPMN) [69] is a standard for business process
modeling that provides a graphical notation for specifying business processes based on a
flowcharting technique very similar to activity diagrams from Unified Modeling Language
(UML) [70]. The objective of BPMN is to support business process management, for both
technical users and business users, by providing a notation that is intuitive to business
users, yet able to represent complex process semantics. BPMN is one of the most used
notations in the industry. BPMN is composed of events (denoted as circles), activities
(denoted as rounded squares) and gateways (denoted as diamonds), among other elements,
and the connections between them. Figure 2.5 illustrates a model for the scholarship variant
process using BPMN notation®.

A 4

(b) Evaluate
Project

() Accept

(©) Evaluate

(f) Reject

p (d) Evaluate
> “Advisor CV

Figure 2.5: BPMN for scholarship variant process of Figure 2.3.

Another notation is YAWL [9]. The original drivers behind YAWL were to define a work-
flow language that would support all (or most) of the typical workflow patterns [10] and
that would have a formal semantics. The language is supported by a software system that
includes an execution engine, a graphical editor and a worklist handler. The system is
available as Open source software under the LGPL license. Figure 2.6 illustrates a model
for the scholarship variant process using YAWL notation, where the atomic tasks (denoted
as squares) can be possibly complemented with control flow elements such as AND-split,
AND-join, XOR-split, XOR-join, OR-split or OR~join.

(b) Evaluate
Project (e) Accept

(a) Set
Checkpoint

>—

(¢) Evaluate @set
Academic Record Checkpoint

L — | —@

(d) Evaluate
Advisor CV,

() Reject

Figure 2.6: YAWL for scholarship variant process of Figure 2.3.

1For the sake of clarity, BPMN notation is abused representing an activity without label.

Part 11

Precision in Conformance
Checking

39

Chapter 3

Precision based on the Log

3.1 Introduction

In the last years, the use within organizations of Process-Aware Information Systems (PAIS)
and Business Process Management technologies (BPM) has experimented an exponential
growth. Increasingly, organizations are investing vast amounts of time and resources on mod-
eling their business processes [41, 102]. Process models are used to provide insights, analyze,
simulate and improve the processes, and all conclusions obtained rely on how faithfully these
models describe the reality [4]. Conformance checking techniques compare recorded process
executions in terms of event logs with process models to quantify how good these models are.
Checking conformance is a complex multi-dimensional task that involves the dimensions of
fitness, precision, generalization and simplicity [4]. While fitness evaluates whether the be-
havior in the log is captured in the model, precision evaluates how much behavior is allowed
by the model which is unlikely given the observed behavior in the log. Precise models are
desirable: when the model becomes too general allowing for more behavior than necessary,
it becomes less informative as it no longer describes the actual process. The extreme case is
the flower model, shown in Figure 3.1, a model that allows for the execution of activities a—i
in any order. The fitness in this case is perfect because it captures any possible log over the
activities a—i, but the precision is extremely poor and the model provides no insights on the
process. Many approaches in the literature relate to the fitness dimension, e.g., [20, 16, 21,
33, 60, 46, 47, 71, 80, 85, 4, 8, 100, 1, 54]. In contrast, few are the ones proposed to measure
precision, e.g. [19, 80, 97, 59, 47].

In this chapter we present an approach to estimate precision between an event log and a
process model based on detecting and quantifying escaping arcs, i.e., the points where the

— The materials reported in this chapter are partially published in [62] —

41

42 Chapter 3. Precision based on the Log

a = Start Checkpoint

b = Register Low-value Claim

¢ = Register High-value Claim
d = Check Policy

e = Consult Expert

f = Check Liability

g = Complete Low-value Claim
h = Complete High-value Claim
i = Close Checkpoint

Figure 3.1: Flower model for the activities a—i.

model allows more behavior than the one observed in the log. The remainder of this chapter
is organized as follows. Section 3.2 outlines the importance of precision checking, specially
in real-life scenarios. Related work and other strategies for precision checking are presented
in Section 3.3. Section 3.4 introduces the concept of precision checking based on escaping
arcs, a procedure decomposed in two steps: constructing the observed behavior from the log
— presented in Section 3.5 — and incorporating in it information about the modeled behavior
— presented in Section 3.6. Section 3.7 proposes a metric to estimate the precision, and
Section 3.8 presents a mechanism to collect the points of imprecision for future use. In
Section 3.9 we provide some experimental results, and in Section 3.10 we discuss about the
limitations and possible extensions of the proposed approach. Finally, Section 3.11 concludes
the chapter.

3.2 The Importance of Precision

From a theoretical point of view, the need for a multi-dimensional conformance, and specially
the necessity of measuring the precision, has been plenty justified and illustrated in the
literature [80, 33]. The flower model represents the theoretical worst scenario concerning
precision.

But besides the theory, the importance of precision is also a key element of real-life
scenarios. The lack of precision on the models used in real-life systems may reduce the
effectiveness of those systems. Some examples of those scenarios are:

o Workflow Management Systems: Workflow Management Systems and other process-
aware information systems [41] make use of process models to set-up and monitoring
the defined sequence of tasks in a process. A precise model would guide the system,
limiting and suggesting the next task to be performed, improving the efficiency. On
the other hand, an imprecise model would be a poor guide, allowing too much tasks at
the same time, and not giving real useful information.

o Regulations and Certifications: Regulations, such as the Sarbanes-Oxley (SOX) Act [86],

3.8. Related Work 43

enforce the documentation of processes, while quality certification, such as the ISO 9000
standards, requires the documentation and monitoring of all key processes to ensure
their effectiveness. The use of overgeneralized models as part of the audition and certi-
fication procedure may provide an inexact vision of the processes, failing the auditing
process [14].

o Communication: Models are used to communicate and gain insight into the analyzed
processes, for example, models illustrating the reworks done in the process. Models
allowing for more behavior than the one seen in reality would difficult the understanding
of the processes, indicating a possible rework path that never happened.

e Simulation: Process models are used for simulating possible future scenarios, and
to take decisions according to results obtained. The use of imprecise models would
result in overgeneralized simulations, with a lot of non realistic scenarios, limiting the
effectiveness of the conclusions.

o Abstraction: Some systems require a high level of flexibility. Health-care systems are
good examples of flexible systems, where the path followed by two patients is never the
same. In those cases, the need for precision is less crucial. However, extremely over-
generalized models would mask possible path restrictions, compromising the usefulness
of the system.

In conclusion, the need for achieving precise models is becoming more crucial in nowadays
systems, for bothcarahuevo conformance checking and process discovery techniques.

3.3 Related Work

In contrast with the fitness dimension, few are the approaches proposed in the literature
that address, totally or partially, the precision checking. In [47], Greco et al. propose a
metric —soundness— to estimate the precision by calculating the percentage of traces in the
log that can be generated by the given model. Medeiros et al. [59] defines a metric —behavioral
precision— to measure the precision between two models and a log, evaluating how much of
the first model behavior is covered by the second. This measure is used within the Genetic
Miner [60, 58] —a discovery approach based on evolutionary algorithms— to evaluate the
quality of the population obtained. Goedertier et al. [46] introduces the use of artificial
negative examples to measure the precision between an event log and a process model. The
way of generating those negative examples was later improved by De Weerdt et al. [97]
and Vanden Broucke et al. [27]. Finally, Van Dongen et al. [40, 39] addresses the precision
dimension between two models without a log, based on the similarity of their structures.
However, given this chapter goal of checking precision between a process model and
an event log, Rozinat et al. [80] can be seen as the seminal work, later extended in [79].
In [80], Rozinat et al. present several metrics to estimate the four dimensions of conformance

44 Chapter 3. Precision based on the Log

No. of Instances Log Traces
1207 ABDEA
145 ACDGHFA
56 ACGDHFA
23 ACHDFA
28 ACDHFA

EventLog L2

Analyze whether activities in the model Analyze whether events in the log actually
Always (A), Never (N), or Sometimes (S) Always (A), Never (N), or Sometimes (S)
follow each other followed each other

FIA B C D E F G H FIA B C D E F G H
AlA]|sS |s s|s|s|s Alar|s|s|Aa|s|s|s]|s
B|A|[N|N|A|[A|N|N|N Bl|A|[N|[N|A|A|N|N]|N
C|A|[N|[N|A|N|A|[S]|A C|IA|N|N|A|IN|A]|S|A
D|A|N N | N S S S S DI A N N N S S S S
E|J]A|[N|N|N|N|N|N|N E|A|N|N|N|N/|N]|NI[N
F|A|N|[N|N|N|N|N|N FIA|N|N|N|N|[N/|N]|N
G|A|N|N|[S|[N|A|[S|A G|lA|[N|[N|S|N|A|N]|A
HIA|N|N|S|N|A|[NI|N HlA|N|N|S|N|A|N]|N

(a) “Follows” relations from model perspective (b) “Follows" relations from log perspective

Figure 3.2: 'Follows’ relations used to compute the behavioral appropriateness (a’z). Image
taken from Process Mining: Conformance and Extension by Anne Rozinat [79].

checking. In particular, they present the advanced behavioral appropriateness (a’z), a metric
designed to measure the precision between a Petri net and an event log. The metric is based
on deriving global ’Follows’ and 'Precedes’ activity relations from both a model and a log
perspective, i.e., given all pairs of activities and y, determine whether they either always
(i.e., in all traces), never (i.e., in none of the traces), or sometimes (i.e., in some but not all
traces) follow/precede each other. Figure 3.2 shows an example of "Follows’ relation, taken
from [79]. Because precision relates to those situations where the model has more variability
than the event log, the idea of the metric is compare the behavior allowed by the model and
the behavior observed in the log based on how many elements are contained in the sometimes
follows and sometimes precedes relations once we superpose two the matrices.

The aforementioned technique has some limitations. First, precision is based on activity

3.4. Precision based on Escaping Arcs 45

relations with a high level of abstraction but not precise points of deviation, i.e., only three
categories are considered: always, never and sometimes. Although this can be useful to get
insights on the precision from a high level, it becomes a limitation when it comes to detect
exactly those precision problems. Moreover, the correct categorization of follows/precedes
relations is not guaranteed when the traces contain loops [79]. Finally, building the relations
from a model point of view requires the analysis of the model task sequences based on a
state space analysis or an exhaustive model simulation. This limits the applicability of the
approach to examples of low complexity, or forces the use of approximations to alleviate the
complexity.

3.4 Precision based on Escaping Arcs

This chapter presents an approach to check the precision between a process model and an
event log that enable a analyst to both measure the precision dimension and diagnose the
causes of the precision problems and where are located. In particular, we aim for:

o A precision based on potential points of improvement. The precision dimension can
be viewed from different angles. One can estimate the precision of a system as the
difference between the behavior allowed by the model and the behavior observed in the
log. Instead, we propose a different way of estimating precision based on identifying all
precision problems and quantifying the effort need to correct them achieving a perfectly
precise system.

e A technique that does not require an erhaustive model state-space exploration. Because
the state space of a model can grow exponentially, state-based analysis techniques
may be problematic with respect to computational complexity [77]. Therefore, any
approach involving an exhaustive exploration of the model state-space, such as [80],
sees its applicability compromised for complex cases, often found in reality.

e An approach to identify precision problems with a fine granularity. In order to help in
the process diagnosis, the approach should be able to detect the exact precision points
of improvement in the model.

e A mechanism to use the precision results for analysis and process improvement. Be-
sides a metric, any approach proposed should consider the possibility of collecting all
precision anomalies detected in a format suitable for analysis using process mining
techniques, or to be used within the continuous cycle of improvement and correction
of the process.

The approach proposed in this chapter addresses these goals and presents a precision
checking technique based on the detection and collection of escaping arcs between a log and
a model. The escaping arcs define those crucial points where the model starts to deviate

46 Chapter 3. Precision based on the Log

model behavior
Figure 3.3: Overview of observed behavior, modeled behavior, and escaping arcs.

from the behavior observed in the log. Figure 3.3 shows an overview of the escaping arcs. On
the one hand, the behavior observed in the log is determined by a set of states. On the other
hand, a possibly different set of states determine the behavior represented by the model.
When compared, both sets usually overlap. In an ideal situation, both set of states will be
equal, representing a complete precise scenario. However, this is not usually the case. In
most of the cases, some of the observed states are not modeled, representing some unfitting
behavior. Symmetrically, there is also the situation where that the model includes behavior
not observed, denoting an imprecise model. The "border’ between the observed behavior and
the modeled behavior determines a set of escaping arcs, points reaching a state modeled but
not observed in the log.

The escaping arcs depend entirely on how the observed and modeled states are deter-
mined. The technique proposed in this chapter is decomposed into the following steps (cf.
Figure 3.4):

1. Constructing the observed behavior: First, the behavior in the log is analyzed, extract-
ing state information from it, constructing an automaton representing the observed
behavior. This step is explained in detail in Section 3.5.

2. Incorporating modeled behavior: Second, the observed behavior automaton is enhanced
incorporating information about the modeled states. This step does not require an
exhaustive exploration of the modeled behavior, but the exploration is restricted to
the ’border’ between observed and modeled behavior. This step is explained in detail
in Section 3.6.

3. Detecting escaping arcs and estimating precision: The escaping arcs of a state refer
to those points where the model allows more behavior than the one actually recorded

3.4. Precision based on Escaping Arcs 47

event log

<a,b,d,g,i>

<a,c,d,e,fh,i>
<a,c,e,d,fhi>
<a,c,ef,dh,i>

modeling
log behavior

process model enhance

with model
behavior and
detect
imprecisions

ETC Precision
metric

Minimal
Imprecise Traces

Figure 3.4: Route map of the precision based on escaping arcs.

in the log. The number of escaping arcs and their location are used to estimate the

precision of the whole system in terms of a metric. This step is explained in detail in
Section 3.7.

4. Collecting minimal imprecise traces: Finally, all the precision problems detected are
collected in terms of an event log, describing the minimal traces leading to a precision
problem. This step is explained in Section 3.8.

48 Chapter 3. Precision based on the Log

3.5 Constructing the Observed Behavior

In this section we present the first necessary step for the precision checking proposed in this
section: determining the states conforming the observed behavior by means of an automaton.
The state definition proposed in this section is based on the prefixes of the traces, i.e. given
a log trace o reflecting an instance of the process, the prefizes of o determine the states
reached by the system during that execution.

Definition 3.1 (Prefixes of a Log). Let L € B(A*) be an event log, where 0 = (a1, as, ..., ay,)
L is a trace of the log. (o) is the set of prefizes of the trace o, i.e., (c) = {{a1,a2,...,am)]
m < n}. o(L) € B(A*) is the multiset of prefizes of the log L, i.e., o(L) =4, (o).

Notice that, the empty sequence () and the complete sequence are prefixes of any trace.
Let us consider for example the trace ¢ = (a,b,d, g,7) of log Ly in Figure 3.5. The pre-
fixes o(c) = {(), (a), {a,b), (a,b,d), {(a,b,d, g),{a,b,d,g,i)} represent the states reached by
the system during the execution recorded in o. The set of prefixes resulting of applying this
definition to all the traces in L; represents the set of observed states of the whole log.

a = Start Checkpoint
b = Register Low-value Claim

L]_ ¢ = Register High-value Claim
X d = Check Policy

<a,b,d,g,1> e = Consult Expert

<a,c,d,e,f h,i> f = Check Liability

. g = Complete Low-value Claim
<a’c’e’d’f’h’1> h = Complete High-value Claim
<a,c,e,f,d,h,i> i = Close Checkpoint

Figure 3.5: Event log L; for a liability insurance claim process.

The state information extracted from a log is used to construct a compact representation
in terms of an automaton. The prefix automaton contains the states, the transitions between
the states, and the weight of a state within the process.

Definition 3.2 (Prefix Automaton of the Log). Let L € B(A*) be an event log, where A
is the set of activities. We define the prefir automaton of the log as an extension of the
transition system definition Ay, = (S, 4, 7, w, ()) such that:

e the set of states correspond to the set of prefixes of the log, i.e., S = {o|o € o(L)}.
e the set of labels correspond to the set of activities of the log, i.e., A.

e the arcs /C (S x A x S) define the concatenation between prefixes and activities, i.e.,

S=A{(0,a,0-{a))|lc € SAc-(a) € S}.

3.5. Constructing the Observed Behavior 49

e the function that determines the weight of a state is determined by the number of
occurrences of the state in the multiset of prefixes of the log, i.e., w(c) = o(L)(0).

e the initial state corresponds with the empty prefix ().

<a,b> <a,b,d> <a,b,d g> i <a,b,dg,i>
» 1 »(1
<a,c,d,e> <a,cdef> <a,cdefh> ., <acdefhi>
N f o1 h i
i\ 4
<aced> p <acedf> <acedfh> <acedfhi>
(1) (1) i
@ @ D
<a,cef> <a,c.ef.d> <acefdh> <acefdh,i>
R s

Figure 3.6: Prefix automaton Ay, for the event log L;.

Figure 3.6 illustrates the construction of the prefix automaton for the log L. Each prefix
of Ly identifies a state. The number in the states represent the weight function. For instance,
the state (a) has a weight of w({(a)) = 4 because it appears four times in o(L). On the other
hand, (a,b) appears only once, i.e., w({a,b)) = 1. The initial state corresponds with the
prefix ().

In [12], the authors proposed a configurable approach to construct a transition system
from an event log. The definition of state and the events considered to build a state can be
parametrized depending on the abstraction level desired. In particular, the parameters past,
sequence, and no horizon will result in a transition system with the same characteristics as
the prefix automaton proposed in this section. In Chapter 5 we consider the use of other
values for the parameters and their effects on the precision checking.

50 Chapter 3. Precision based on the Log

3.6 Incorporating Modeled Behavior

In this section we use the prefix automaton representing the observed behavior to restrict
the exploration of the modeled behavior. Let us consider, for example, the model SN;
in Figure 3.7, presented in terms of a system net, with [start] and [end] as initial and final
markings respectively.! The system net is a possible model for the insurance process observed
in the log L;. Given a state of the prefix automaton, we analyze the set of activities possible
when the model reaches that state. For example, let us consider the state (a) of the prefix
automaton Ar,. Analyzing the set of complete activity sequences of SN we realize that,
once the model reaches the state (a), only two activities can follow: b and c.

For the sake of clarity, in this section we assume that the log perfectly fits the model.
That is to say that all traces of the log L are included in the set of complete activity sequences
of the model M, i.e. Vo € L: o € ¢(M). Consequently, any prefix of the trace o represents
a state reachable by the model. In Section 3.10 we study the relaxation of this assumption,
and how the theory proposed is extended accordingly.

a = Start Checkpoint

b = Register Low-value Claim
¢ = Register High-value Claim
d = Check Policy

e = Consult Expert

f = Check Liability

g = Complete Low-value Claim
h = Complete High-value Claim
i = Close Checkpoint

Figure 3.7: System net SN; modeling the liability insurance claim process.

Given a prefix automaton from the log, we analyze the activities allowed by the model
in each log state, and we incorporate new states denoting those activities modeled but never
observed in the log. Let us consider for example the automaton Ay, sn, in Figure 3.8, result
of enhancing Ay, with modeled behavior of SN;. The states in white represent states both
in the log and model behavior. The colored states represent the new states introduced, that
belong only to modeled behavior but never observed in the log. The weight of these new
states is 0, denoting that they are not observed in the log. For example, the state (a,c)
represents a state both in the log L; and the model SN, but (a,c, f) is a state only of the
model (i.e., {a,c, f) is not a prefix of L;).

Formally, the enhancement of the observed prefix automaton with modeled behavior is
defined as follows:

1Notice that we use system nets in this section for illustrative purposes only, while the theory refers to
any process model.

3.6. Incorporating Modeled Behavior 51

<a,b,d,g,i>

<acdefh> . <acdefhi>

h _@ i @

<acedfh> <acedfhi>

<acefdh> <acefdh,i>
!

Figure 3.8: Prefix automaton Ay, si, of the event log Ly enhanced with the modeled behavior
of the system net SN;.

Definition 3.3 (Prefix Automaton of the Observed Behavior Enhanced with the Mod-
eled Behavior). Let L € B(A*) be an event log, where A is a set of activities. Let M
be a process model, where ¢(M) is the set of complete activity sequences of M. Simi-
lar to o(L), e(¢(M)) represents the prefixes of the complete activity sequences of M, i.e.,
*(¢(M)) =W, cpar) ®(0). We define the prefiz automaton of the observed behavior enhanced
with modeled behavior Ay = (S, A, /7, w, () such that:

o Let Spar = {o|lo € o(L) N o(¢p(M))} be the states that are in both observed and
modeled behavior. Let Sy = {coloc & o(L) Ao € e(¢(M))} be states that are in
the modeled behavior but not in the observed behavior?. The set of states S of the
enhanced automaton is the union S = Spy U Sg, where S C Sy are the states
only in the modeled behavior that come preceded by a state in both behaviors, i.e.,
Sg={c-(a)lo € SpmNo-{(a) € Sm}.

e The set of labels correspond to the set of activities of the process, i.e., A.

e The arcs /C (S x A x S) define the concatenation between states and activities, i.e.,
S=A{(0,a,0-{a))|lc € SAc-(a) € S}.

281, ={olo € o(L) Ao & e(¢(M))} is not possible because we assume perfect fitness (cf. Section 3.10.)

52 Chapter 3. Precision based on the Log

e The function that determines the weight of a state is determined by the number of
occurrences of the state in the multiset of prefixes of the log P with P = e(L), or 0 if
the state does not appear on the log:

(0) = P(o) ifoeSLu
“9I=N 0 if 0 € S

e The initial state corresponds with the empty prefix ().

Notice that, although the definition of the enhanced prefix automaton considers the set of
complete activity sequences ¢p(M) of a model M, in practice the approach proposed does not
require computing all the sequences in advanced. In the previous example, for the system
net SN, the set of complete activity sequences is infinite due the transition ¢5. Instead, in
executable process models such as Petri nets or BPMN, the sequences can be constructed
progressively on demand. For example, given SN and the state (a), we analyze the marking
reached after firing ¢; (i.e., [p1]) and the activities allowed (i.e., b and ¢), being (a, b) and (a, c)
both sequences possible in the model. Notice that, the presence of invisible and duplicate
transitions may arise some potential indeterminism about the marking reached after a given
prefix, i.e., the same sequence of activities may match several tasks sequences, reaching
different markings, and therefore, allowing different set of activities. For the sake of clarity
in this section we assume determinism. In Section 3.10 we explore the relaxation of this
assumption and the consequences that this may produce.

Moreover, the proposed approach does not require the complete exploration of model
behavior. Unlike other approaches in the literature that require an exhaustive exploration
of the model state space (e.g., [80]), the proposed approach restricts the exploration to
the boundaries of the log state space. Only the border between the behavior observed in
the log and the model behavior is explored. For example, given L; and SN, the trace
(a,c,d,e, e e e e, f,h, i) included in the model behavior is never explored.

3.7 Detecting Escaping Arcs and Evaluating Precision

Given an event log L and process model M, the prefix automaton Ay, contains the jux-
taposition of both observed and modeled behaviors, and the border defined between them.
Each state of the automaton represents a state reached by the system during the execution
recorded in the log. The precision checking approach proposed in this chapter bases its es-
timation on comparing, for each one of these states, the activities allowed by the model and
the activities that where recorded in the log.

Definition 3.4 (Observed and Modeled Arcs). Let Apy = (S, 4, 7w, ()) be the prefix
automaton of the log L enhanced with the behavior of the model M. Let Sy s be the states
that are in both observed and modeled behavior, and let Sy be the states only in the modeled
behavior. Let o € Sy be a state of the automaton. obs(c) = {(0,a,0') € /|0 € SppNo’ €

3.7. Detecting FEscaping Arcs and Evaluating Precision 53

S} represent those arcs whose activities were executed and consequently recorded on the
log L when the system was on the state 0. mod(c) = {(o,a,0’) €, |0 € Sppm Ao’ €
SrarUShs} represent those arcs whose activities are modeled and consequently allowed by the
model M when the system was on the state o. Similarly, we refer as observed /modeled states
of o those states reached through an observed/modeled arc from o, and observed/modeled
activities of o those activities used in the observed/modeled arcs from o.

For example, let us consider the state (a,c) of the automaton Ay, sy,. The activities
modeled by the model SN in that state are d, e and f. On the other hand, the activities
observed in the same state are only d and e. Notice that in this section we are under the
assumption that the log perfectly fits the model. Therefore, observed(c) C modeled(o) for
all states o € Spr.

An escaping arc denotes a point where the behavior of the process model allows more than
what has been actually observed in the log, i.e., an arc that escapes from the log behavior.

Definition 3.5 (Escaping Arcs). Let Ary = (S, A, 7, w, () be the prefix automaton of the
log L enhanced with the behavior of the model M, where o € Sy ;. The set of escaping arcs
of the state o is determined by the difference between the arcs modeled and the arcs allowed
on the state, i.e., esc(c) = mod(c) \ obs(c). Similarly, we refer to the activities used to
escape and the states reached, as escaping activities and escaping states, respectively. The
set of all escaping arcs of the automaton is denoted as esc(Agps).

Following with the example state (a,c) of the automaton in Ay, sy,, there is only one
escaping activity in that state: f. In other words, when the system was in the state (a,c),
all activities allowed by the model in that point have been observed, except f. Notice that,
by construction of the automaton, the escaping activities are considered globally, i.e., all the
traces in the log are considered as a whole to compute the set of reflected activities, instead
of analyzing trace by trace independently. For example, given the state (a, c) in AL, sn,, the
activity d is reflected in the second trace of L, and the activity e is reflected in the third
and forth traces of the log.

In our view, a precise model is one that does not contain escaping arcs, i.e., for each state
it only models the behavior observed on the log. A model where almost all the behavior
allowed represents an escaping opportunity must be considered highly imprecise. In that
sense, we define a metric ~-ETC Precision— designed to measure the precision between a
model and a log, based on the escaping arcs. On the one hand, the metric quantifies the
degree of escaping arcs of the automaton. This value is weighted according to the weight of
the state where each escaping arc is located, i.e., escaping arcs in more frequent states have
more impact in the metric that those who appear in infrequent and barely used parts of the
process. On the other hand, the metric measures the modeled behavior on the automaton,
weighted also according to the weights of the states. The metric defines the precision between
a log and a model as the relation between the escaping behavior versus the modeled behavior.

Definition 3.6 (ETC Precision). Let Ary = (S, A4, 7, w, () be the prefix automaton of
the log L enhanced with the behavior of the model M. The metric ETC Precision estimates

54 Chapter 3. Precision based on the Log

the precision of the system comparing, for each state in Sy, the number of escaping arcs
with the number of modeled arcs. The numbers are weighted according to the importance
of the state. Formally:

2oespu W) - [ese(o)]
2oespa (@) - [mod(a)]

Let us consider, for example, the automaton Ay, sv,. The automaton contains 21 states
in Spas, denoted in white. For each one of those states we compute the number of escaping
arcs and the number of modeled arcs, and we weight them according to the weight of each
state.

etcp(ALM) =1-

etcp(Ar,sn,) = 1—
4.-0+4-0+1-04+1-0+1-04+1-0+3-1+1-1+1:1+4---
4-1+4-24+1-14+1-1+1-1+1-04+3-3+1-2+1-2+4---
---1-04+1-04+1-04+42-14+1-14+1-04+1-04+1-0+1-0+---
---1-141-141-04+2-34+1-24+1-1+1-1+1-0+1-1+---
-+-1-041-0+1-0 8

...1.1_|_1,1_|_1_0—1_521—0.1920.81

The etc, value for the automaton Ar, sy, between L; and SN; is 0.81, denoting a
moderate precision degree of 81%.

Taking a look at the literature one can see that the intuitive notion of precision is difficult
to capture in a metric. Comparing a process model and an even log always allows for different
interpretations and a wide range of metrics can defined. Facing so much uncertainty it
is wise to impose some requirements to ensure the usefulness of any measure proposed.
In [81] the authors present a list, based on [56], with five properties any conformance metric
proposed should satisfy: validity, stability, analyzability, reproducibility and localizability. In
the following part we analyze those properties and we provide a brief justification on how
ETC Precision metric fulfills them:

e Validity Validity means that the measure and the property to measure must be suffi-
ciently correlated with each other.

As it has been motivated, there is a direct relation between the precision of a system and
the escaping arcs detected, justifying its validity. An increase in the precision degree is
reflected in the number and importance of the escaping arcs, and thus, producing an
increment on the metric value.

e Stability Stability means that the measure should be stable against manipulations of
minor significance, i.e., be as little as possible affected by properties that are not mea-
sured.

3.7. Detecting FEscaping Arcs and Evaluating Precision 55

The approach proposed is defined at a activity level, i.e., the observed behavior is
compared with the modeled behavior independently from the structural properties of
the models. Two models with different structure but modeling the same behavior will
result in the same metric value. This makes even possible to compare models defined
using different notations, e.g., Petri nets and BPMN. The metric is defined such that
the context of the precision problem is taken into account, but not the position, i.e., two
states with the same weight will have the same importance in the metric no matter
where they are located. Notice that, although the metric is defined to measure the
precision dimension independently, possible problems and corrections in the fitness
dimension may affect the stability of the precision results (cf. Section 3.10).

e Analyzability Analyzability, in general, relates to the properties of the measured val-
ues (e.g., whether they can be statistically evaluated). In the remainder, the emphasis
is on the requirement that the measured values should be distributed between 0 and 1,
with 1 being the best and 0 being the worst value.

Notice that by definition esc(o) C mod (o), resulting in a metric that range from 0 to
1. Therefore, on the one hand an optimal value for precision is defined, i.e, 1 denotes
that the observed behavior is precisely modeled. This is especially important as a
stop condition in the context of an iterative approach looking for appropriate process
models, such as genetic mining [60, 32], but also for a human analyst as it indicates
that there is no better solution available. Notice that, to achieve a value of 1 is not
necessary to have all the modeled behavior observed in a single trace, i.e., the precision
is considered globally, taking all the observed traces as a whole. Finally, the fact
that the metric is normalized by the degree of allowed behavior in each state makes
it possible to use it for comparing different pairs of model-log, even if they refer to
different processes.

e Reproducibility Reproducibility means that the measure should be independent of
subjective influence, i.e., it requires a precise definition of its formation.

The definition of the metric proposed is solid and formal, and there is no room for
subjectivity. The same experiment can be reproduced several times and it will always
output the same result. However, notice that the relation between activity sequences
and tasks sequences of a process model may arise possible non-deterministic situations,
requiring further assumptions in order to preserve the reproducibility of the approach
(cf. Section 3.10).

e Localizability Localizability means that the system of measurement forming the metric
should be able to locate those parts in the analyzed object that lack certain desirable (i.e.,
the measured) properties.

It is very important that a precision problem is not only reflected by the measured value
but can also be located. In that sense, the escaping arcs captured in the automaton

56 Chapter 3. Precision based on the Log

describe perfectly where the precision problems are, making possible for the business
analyst to identify potential points of improvement. Additionally, in Section 3.8 we
provide an additional mechanism to collect all those precision problems for a deeper
analysis.

3.8 Minimal Imprecise Traces

The ETC Precision metric presented in the previous section provides a numeric measurement
on the precision of the system. This value may be useful to measure the precision of several
alternative models describing the same observed behavior, or to establish when a model
becomes obsolete to represent an evolving process. However, in order to fully understand
the causes of the precision problems, an analyst needs to be able to access the exact points
of mismatch between the observed and modeled behaviors. The prefix automaton and its
detected escaping arcs provide this information, and may be used to guide a deeper analysis
into model and the log to understand their discrepancy. Some of the escaping arcs may
represent meaningful abstractions that arise in the model and therefore no further action is
required. Others, however, may suggest situations for which future actions over the process
need to be carried out.

Additionally to the escaping arcs detected on the automaton, in this section we propose
to collect all the precision anomalies in terms of logs and traces to be used later on for its
analysis. Each escaping arc is represented by one minimal imprecise trace (mit), a sequence
containing the minimal behavior observed until the escaping arc was available. All the
minimal imprecise traces compose the minimal imprecise log.

Definition 3.7 (Minimal Imprecise Traces and Log). Let Apy = (S, A, /w,()) be the
prefix automaton of the log L enhanced with the behavior of the model M. Let esc(Aras)
define all the escaping arcs of the automaton. Given the escaping arc (o, a,0’) € esc(Arn),
its minimal imprecise trace is defined as mit((o,a,o’)) = o’. The set of all minimal imprecise

traces define the minimal imprecise log, i.e., mil(Arn) = Uieescape(ay o) Mit(4)-

In Ay, sn,, there are five escaping arcs in the automaton, and thus, five are the minimal
imprecise traces conforming the minimal imprecise log, shown in Figure 3.9. Notice that, by
definition, all minimal imprecise traces fulfill a minimality criterion, i.e., their represent the
minimal behavior before the deviation. In other words, all elements in the trace except the
last one represent a behavior observed in the log, and the last one is the activity allowed by
the model but not observed.

The representation of the imprecisions in terms of a minimal imprecise log opens the
possibility to different analysis and uses. For example, all techniques and tools based in
analyzing event logs can be used to gain insights into the precision problems. That includes
most of the approaches in the field of process mining, e.g., discovery algorithms can be used
to derive a model that represents the imprecise behavior. Some of the minimal imprecise
traces can be used for process reparation, correcting the model to represent more precisely

3.9. Ezperimental Results 57

a = Start Checkpoint

<a,c,f> b = Register Low-value Claim
<a,c, d’f> ¢ = Register High-value Claim
d = Check Policy
<a,c,d,e,e> e = Consult Expert
<a’c’e’d’e> f = Check Liability
g = Complete Low-value Claim
<a,c,ee> h = Complete High-value Claim
Minimal Imprecise Log (MIL) i = Close Checkpoint

Figure 3.9: Minimal Imprecise Log (MIL) for the automaton Ay, sy,

the observed behavior, e.g., transforming pairs of concurrent events in the model to ordered
events [61]. Another option is to use the minimal imprecise log as input for the supervisory
control theory [76], i.e., synthesizing a supervisor (i.e., another model synchronized with the
original model) that restricts the behavior of original system such the imprecisions never
occur. Finally, similar to [46, 97, 27], the minimal imprecise trace can be considered as
negative examples, and can be used to enrich the original log in order to discover a more
precise model.

3.9 Experimental Results

The technique presented in this paper, implemented as part of the ETConformance plug-in
within ProM 6 [75], has been evaluated on existing public-domain benchmarks [74]. The
purpose of this section is:

e Justify empirically the existence of a new metric to evaluate precision, i.e. demonstrate
the novelty of the concept when compared to previous approaches.

e Show the capacity of the technique to handle large specifications.

Table 3.1a shows a comparison of the technique presented in this chapter with the tech-
nique presented in [80], implemented in ProM 5.2 as the Conformance Checker. The rows
in the table represent benchmarks with small size (few traces). The names are shortened,
e.g., GFAs5 represents GroupedFollowsA5. We report the results of checking precision for both
conformance checkers in columns under az and etc,, respectively, for the small Petri nets
obtained by the ILP miner [101] which derived Petri nets with fitness value one. For the
case of our checker, we additionally provide the number of minimal imprecise traces (| MIL|).
We do not report CPU times since checking precision in both approaches took less than one
second for each benchmark.

From Table (a) one can see that when the model describes precisely the log, both metrics
provide the maximum value. Moreover, when the model is not a precise description of the

58 Chapter 3. Precision based on the Log

log, only three benchmarks provide opposite results (GFBN2, GF121, GF121Skip). For instance,
the ari2iskip benchmark a'y is providing a significant lower value: this is because the model
contains an optional loop that is always traversed in the log. This variability is highly
penalized by simply observing the tasks relations. On the other hand, metric etc, will only
penalize the few situations where the escaping edges appear in the log.

Benchmark a’y etc, |MIL| Benchmark a’p ete, |MIL|

GFA6NTC 1.00 | 1.00 0 GF1210pt 1.00 | 0.85 7

GFA7 1.00 | 1.00 0 GFAL2 0.86 | 0.90 391

GFAS8 1.00 1.00 0 GFDrivers 0.78 | 0.89 2

GFA12 1.00 | 1.00 0 GFBN3 0.71 | 0.88 181

GFChoice 1.00 | 1.00 0 GFBN2 0.59 | 0.96 19

GFBN1 1.00 | 1.00 0 GFA5 0.50 | 0.57 35

GFParallel5 | 1.00 | 0.99 11 GFI21 0.47 | 0.75 11

GFAL1 1.00 | 0.88 251 GFI121Skip 0.30 | 0.74 10

(a)
M~ Parikh RBMiner

Benchmark | TS| etcy |P] |T] etcy |MIL| CPU | |P| |T| etcy | MIL| CPU
a22f0n00-1 1309 | 0.06 | 19 22 | 0.63 1490 0(0) | 19 22 | 0.63 1490 0(0)
a22fon00.5 9867 | 0.07 | 19 22 | 0.73 9654 03) | 19 22| 0.73 9654 0(4)
a32f0n00-1 2011 0.04 31 32 | 0.52 2945 0(0) 32 32| 0.52 2944 0(1)
a32f0n00_5 16921 | 0.05 31 32 | 0.59 22750 2(10) 31 32 | 0.59 22750 2(11)
a2f0n00.1 2865 | 0.03 | 44 42 | 0.35 7761 0(2) | 52 42 | 037 7228 0(2)
a42fon00-5 24366 | 0.04 | 44 42 | 0.42 60042 5(28) 46 42 | 0.42 60040 6(29)
£32f0n00-1 7717 1 0.03 | 30 33 | 0.37 15064 1(15) | 31 33| 0.37 15062 1(12)
t32f0n00-5 64829 | 0.04 | 30 33 | 0.39 125429 9(154) | 30 33 | 0.39 125429 8(160)

(b)

Table 3.1: (a) Comparison of the precision results between the proposed approach and
approach in [80] for small examples. (b) Comparison of precision results between models
obtained by three discovery algorithms, for large examples where aj, was not able to finish.

Larger benchmarks for which Conformance Checker cannot handle are provided in Ta-
ble 3.1b. For these benchmarks, we report the results (precision value, number of | MIL| and
CPU time in seconds) for the models obtained by the ILP miner and the RBMiner [90].
These are two miner that guarantee fitness value one. For each one of the aN benchmarks,
N represents the number of tasks in the log, while the _1 and _5 suffixes denote its size: 100
and 900 traces, respectively. The ¢32 has 200 (_1) and 1800 (_5) traces. The pair of CPU
times reported denote the computation of etc, without or with the collection of |MIL| (in
parenthesis). Also, we provide the results of the most permissive models, i.e., models with
only the transitions but without arcs or places (Mr). These models allow any behavior and
thus, they have a low etc, value, as expected.

3.9. Ezperimental Results 59

A first conclusion on Table 3.1 (b) is the capability of handling large benchmarks in rea-
sonable CPU time, even for the prototype implementation carried out. A second conclusion
is the loss of precision of the metric with respect to the increase of abstraction in the mined
models: as soon as the number of tasks increases, the miners tend to derive models less
precise to account for the complex relations between different tasks. Often, these miners
derive models with a high degree of concurrency, thus accepting a potentially exponential
number of sequences which might not correspond to the real number of traces in the log.

Finally, three charts are provided: the relation between the log size with respect to the
CPU time, the etc, value and the size of MIL are shown in Fig. 3.10. For these charts,
we selected different log sizes for different types of benchmarks (a22f0, a22f5, a32f0,a32f5
for the two bottom charts, a42f0, t32f5 and t32f9 for the top chart). For the two bottom
charts, we used the Petri nets derived by the ILP miner to perform the conformance analysis
on each log, whereas we use a single Petri net for the top chart to evaluate the CPU time
(without collecting MIL) on different logs, illustrating the linear dependence of our technique
on the log size. The chart on top clearly shows the linear relation between log size and CPU
time for these experiments, which is expected by the technique presented in this chapter.
The two charts on bottom of the figure show: (left) since for the a22/a32 benchmarks the
models derived are very similar independently of the log, the more traces are included the
less escaping arcs are found. On the other hand, the inclusion of more traces contributes to
the incorporation of more traces in the MIL, as it is shown in the right chart at the bottom.

60 Chapter 3. Precision based on the Log

CPU vs. Log size

25 T T T T T
a42f0n00 —+—
t32f5n00 ----
t32f9n00 ---%--

20 - ’ B

15 B

Seconds

ol ! ! ! ! ! ! !
100 200 300 400 500 600 700 800 900

’ ILogl
etc, vs. Log size |MIL]| vs. Log size
0.85 T T T 25000 T T T T T T T
a22f0on00 —— a22f0n00 —+—
a32f0n00. ==-x--= a32f0n00 ------
__..----a22f5n00 ---*--- a22f5n00 ---*--- .
08 | e a32f5n00 - | a32f5n00 &<
e 20000 |- S
075 - g X
15000 - .
S o %~ a
g s
10000
5000
05 0 1 1 1 1 1 1 1
200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000

|Logl |Log|

Figure 3.10: Relation between time, etc,, minimal imprecise log, with respect to the log size
for some large benchmarks.

3.10. Limitations and Extensions 61

3.10 Limitations and Extensions

For the sake of clarity, the approach presented in this chapter made some assumptions. In
this section we discuss the effects of relaxing those assumptions. In particular, we focus on
the consequences of unfitting traces and the indeterminism between activity sequences and
tasks sequences.

3.10.1 Unfitting Scenario

This chapter has presented the precision checking based on escaping arcs assuming a perfectly
fitting log. In other words, each trace on a log L is included in the set of complete activity
sequences of the model M. Consequently, any prefix in the log traces is a prefix of the
sequences of the model, and therefore, observed(o) C modeled (o) for all states o € Spas.

However, this is a strong assumption, specially in real-life scenarios, where misrecorded
events and exceptional executions of the process exists. For such cases, we define S;, = {o|o €
o(LYNo & e(¢p(M))} as the set of states in the observed behavior but not modeled. Those
states represent situations difficult to interpret, where the observed behavior is not aligned
within the domain of the model [15]. In other words, the model is not able to determine the
state of the system given the observed elements.

Given the rare nature of these situations, a possible strategy is to consider the fit-
ting part of the traces for the computation of the precision. In other words, given an
unfitting trace ¢ = o’ - (a) - ¢” where ¢’ € Spy and o’ - (@) € Si, only ¢’ is used to
compute precision. For example, let us consider the model M of Figure 3.11 and the log
L = [{a,b,d, f)*% (a,c,e, £)1% (a,b,c,d, f)]. The observed behavior used to compute the
precision automaton is composed by the two first traces (100 instances of each) and the
fragment (a, b) of the third trace.

end

ph t6
mESalie
5
Figure 3.11: Model to illustrate the problems of unfitting scenarios.

Notice that the current definition of observed, modeled and escaping arcs presented in
Definition 3.4 and 3.5 already satisfies that assumption, considering observed arcs those arcs
in the behavior of both the log and the model. Moreover, the ETC' Precision proposed in Def-
inition 3.6, based on observed and escaping arcs, also satisfies the assumption. If the escaping
arcs suggest situations with precision problems, we define the equivalent fitness escaping arcs
as the exact points where the observed behavior deviates from the model. In these cases, the
fitness escaping arcs do not provide information about the precision dimension, but simple
information about the fitness of the system. Moreover, similar to the minimal imprecise trace

62 Chapter 3. Precision based on the Log

(cf. Definition 3.7), we define the minimal unfitting trace as the trace fragment reaching that
fitness escaping arcs.We define the minimal unfitting log as the collection of those unfitting
traces in terms of a log. For example, L = [{a,b,d, f)!%° (a,c,e, £)1°° {(a,b,c,d, f)] has only
one fitness escaping arc, and therefore the minimal unfitting log is composed only by the
trace (a, b, c).

The strategy of considering the fitting part of the traces to compute precision is only
appropriate for those cases where the unfitting behavior represent a minor part of the whole
observed behavior and its effect on the metric is negligible. However, it has several disadvan-
tages and limitations. First, the precision metric is affected by the position of the fitness prob-
lem, creating a dependency between both dimensions not desired [19, 18]. In the worst case
scenario, when the fitness mismatch is at the beginning of the trace, the whole trace is dis-
carded. For example, Ly = [{a,a,b,d, f),{a,a,c,e, f)] and Ly = [{a,b,d, f, f),(a,c,e, f,)]
are two logs for the model M where a or f is recorded twice by mistake. In Ly, only (a) is
considered to measure precision (the rest of both traces is discarded). This results in a low
precision value of 0.3. On the other hand, in Lo, (a,b,d, f) and (a,c,e, f) are considered
(only the last f is discarded), and this result in a perfect precision of 1.

The second limitation is that noisy unfitting behavior distort the precision analysis, ” cov-
ering” arcs that otherwise would be considered escaping. For example, let us consider the
log L = [{a,b,d, £)1°9° (a,¢c,b,d, f)]. In this log, the second trace, that could be considered
noisy, covers the escaping arc {a, ¢), denoting that the lower path of the model is never used.
Notice that the effect on the metric from a escaping arc (i.e., ¢) in a state (a) with a weight
of 1000 is much more than the effect of the escaping arc e in a state (a, ¢) with a weight of 1.

This issue is related with the third limitation: the fitness anomalies are not addressed
globally, but locally. For example, given the trace {(a, ¢, b, d, f) in the aforementioned example,
we assume that deviation is produced after (a,c). However, a global vision would consider
a more logical interpretation where c is already a deviation, denoting a misrecorded event
on a perfectly fitting trace (a,b,d, f). The application of global alignment of observed and
modeled behavior for precision checking will address these issues, and is presented in detail
in Chapter 5.

3.10.2 Indeterministic Scenario

The second assumption made for the sake of clarity during this chapter is the deterministic
relation between activity sequences and tasks sequences of a model. In other words, given a
sequence of activities, there is only one sequence of tasks associated with it. However, this is
not always the case. Let us consider the model in Figure 3.12. Given the activity sequence
(a, by, there are two transition sequences resulting in that sequence: (t1,t2) and (¢1,¢3). A
similar situation may occur when the model contains invisible tasks.

There are different strategies to deal with indeterminism. One option is to consider and
explore all possible scenarios. However, this solution could lead to a state-space explosion,
making it only suitable for small and simple cases [80]. Other options include the use of

3.11. Conclusions 63

t2 p2 t4
O SRl

ole
O

13 p3 t5

Figure 3.12: Model to illustrate the problems of indeterministic scenarios.

heuristics, e.g., a random selection, or more elaborate look-ahead heuristics to determine the
most plausible option. The heuristic solution contrasts with the possibility to use alignment
algorithms to determine the global optimal sequence of tasks for a given activity sequence.
This possibility is explored in detail in the Chapter 5.

3.11 Conclusions

Given an event log and a process model, the notion of escaping arcs offers an efficient alterna-
tive to analyze the precision dimension. This chapter described the definition of the observed
behavior in terms of an automaton, and how that automaton is enhanced to incorporate in-
formation about the modeled behavior. It showed how the enhanced automaton is used to
detect the escaping arcs. The escaping arcs, and their position within the process, are the
bases for the proposed precision metric. Furthermore, the chapter proposed the collection
and analysis of the escaping arcs to get insight into the imprecision causes. Finally, the
chapter includes a discussion on generalizing the approach for unfitting and indeterministic
scenarios.

Chapter 4

Qualitative Analysis of Precision
Checking

4.1 Introduction

In the previous chapter we introduced the precision checking based on escaping arcs. Given
a log and a model, we use the behavior observed in the log to traverse the modeled behavior,
detecting the escaping arcs and estimating the precision of a system. In other words, it allows
to know how precise is our model describing the behavior observed in the log. In this chapter,
we go a step further, and we extend the escaping arcs analysis to address the following points:

e Robustness on the escaping arcs. Experience has proved that most real-life logs contain
noise, e.g, incorrectly logged events (for instance, due to temporary system misconfigu-
ration), or sequence of events representing abnormal behavior [60]. Even though noise
tends to represent a minor part of the observed behavior, its effect on the escaping arcs
detection may become significant, i.e., causing exceptional escaping arcs to appear, or
covering legitimate ones. In this chapter we revisit the escaping arcs approach in order
to make it more robust to such situations.

e Confidence of the precision metric. A checking based on escaping arcs reports the
degree of precision of the system at a certain moment. However, the metric by itself
provides no insight on the precision stability, i.e., how likely is the metric to drastically
change when we consider more observed behavior. In this chapter we introduce a

— The materials reported in this chapter are partially published in [64] and [63] —

65

66 Chapter 4. Qualitative Analysis of Precision Checking

confidence interval over the precision metric in order to indicate the possible variability
of the metric in the future.

e Severity of the imprecisions. The precision based on escaping arcs aims to estimate the
effort needed to achieve a perfectly precise system, i.e., resolving all the escaping arcs
result in a model that precisely describes the observed behavior. However, analyzing
the cause of an escaping arc and eventually fixing it requires time and it is a resource-
consuming task. One only wants to invest time and effort in resolving those deviations
that represent a clear and sever precision problem. On the other hand, it may be
considered a waste of resources to fix escaping arcs likely to disappear in a near future.
In this chapter we propose a multi-factor severity assessment of the escaping arcs,
making it possible to compare them and prioritize those imprecisions that need to be
resolved first.

The remainder of this chapter is organized as follows. Section 4.2 revisits the theory of
precision checking based on escaping arcs presented in Chapter 3 to introduce the notion
of robustness on it. In Section 4.3 we present an upper bound and a lower bound of the
precision metric to estimate its degree of confidence. Section 4.4 proposes a multi-factor
analysis of the escaping arcs detected in order to estimate its severity. In Section 4.5 we
provide some experimental results. Finally, Section 4.6 concludes the chapter.

4.2 Robustness on the Precision

The precision checking presented in Chapter 3 is based on detecting escaping arcs, i.e., the
log is traversed to detect those points where the modeled behavior is broader than the one
observed on the log. Each trace considered produces new escaping arcs, or covers some
existing one. However, although the weight of the states is taken into account to estimate
the precision metric (cf. Definition 3.6), it is not used to determine what represents or not
an escaping arc. In other words, infrequent or noise behavior in the log may impact on
the escaping arcs and the precision metric, covering possible escaping arcs and creating new
ones.

Let us consider the insurance process in Chapter 3 and use it as a running example to
illustrate the concepts introduced in this chapter. The system net of Figure 4.1 represents
a model M for the insurance process, and the log L in Table 4.1 is a reflect of the process
execution. Each row of the log represents a trace and the number of occurrences of the trace
in the log. Therefore, L captures 3200 executions of the process, following 5 different paths.

Figure 4.2 shows the prefix automaton of L and M as it is presented in Chapter 3. Looking
at the prefix automaton one can see the effect of the infrequent trace o5 = (a, ¢, d, e, e, f, h,i).
The detected escaping arc (a, ¢, d, e, e, e) is a direct result of the trace o5, i.e., an escaping arc
that would not exist if we consider the log L’ = [0343% 0946 5164 534]. On the other hand,
o5 contains the prefix (a, ¢, d, e, e) that otherwise, considering L', would be a escaping arc on

4.2. Robustness on the Precision 67

a = Start Checkpoint

b = Register Low-value Claim
¢ = Register High-value Claim
d = Check Policy

e = Consult Expert

f = Check Liability

g = Complete Low-value Claim
h = Complete High-value Claim
i = Close Checkpoint

Figure 4.1: Model M for the insurance process, used as running example to illustrate the
concepts of this chapter.

Frequency Trace
1435 o1 = (a,b,d,g,1)
946 o2 = (a,c,d,e, f,h,i)
764 o3 = {a,c,e,d, f, h,i)
(
(

54 o4 ={a,c,e, f,d, h,i)
1 05 = (L,C7d76,€,f,h,i>

Table 4.1: Event log L for the insurance process, used as running example to illustrate the
concepts of this chapter.

a highly weighted state (a, ¢, d,e) (with its consequent effect on the metric value). A robust
precision checking approach should be affected as less as possible for this kind of situations.
In the literature, several approaches have been proposed to detect noisy and anomalous
traces within event logs, e.g., [22, 23]. This is not the goal of the approach presented in this
section, but to extend the escaping arc detection theory in order to incorporate the weight
component, and to do that in an arc-level way. Therefore, the filtering of anomalous traces
from the event log can be considered a pre-processing step previous to the precision checking.
In order to increase the robustness of the approach presented in Chapter 3, in this section
we propose the use of a cut threshold to remove states of the prefix automaton based on their
weight, as a preliminary step to the precision computation. In other words, states in the log
having a weight under that threshold are considered out of the observed behavior for the
precision checking purposes. For example, if we consider the state (a,c,d, e) in Figure 4.2,
we see that 99.9% of its behavior follows the f activity, being e a promising candidate to be
cut. The cut threshold proposed in this section is defined to be parametric at arc-level:

e Parametric: The cut threshold is based on a cut factor r € [0,1]. The cut factor is
established according to the level of robustness desired. For instance, a high cut factor

68

Chapter 4. Qualitative Analysis of Precision Checking

<a,b,d.g> i <a,b,d.g,i>
{1435 435)

<a,cdef> h <a,cdefh> . <acdefhi>
]

<a,c,de> <a,c,dee> <a,cdeef> <acdeefh> <acdeefhi>
e SONTr AN n UEST i S

<a,c,d,eee>

<a,ced,e>
p <a,c,ed,f> h <acedfh> <acedfhi>
»(762) o (762 i
»(764) »(764 =@
<a,cef,d> <acefdh> <acefdhi>
(54) »(5¢) !

Figure 4.2: Prefix automaton for the event log L and model M as it is presented in Chapter 3.

is used to compute the precision using only the main behavior of the system, reaching
a higher level of abstraction. On the other hand, a low cut factor cuts only the most
extreme cases. When the cut factor r is 0 there is no cut states, and all the behavior
is considered for the precision checking.

Arc-Level: The cut threshold is applied at arc-level, and not at trace level. In other
words, to decide if at the state oy with the incoming arc ¢ = (o5, a, 0¢) must be cut we
consider only the context of that arc, i.e., the weight of target state o; and the weight
of its predecessor os. The cut threshold is defined as the weight of the source state
multiplied by the cut factor, i.e., w(os) - r. A state is cut if its weight is less or equal
than the cut threshold, i.e., w(oy) < w(os) - r. Notice that, the cut threshold is defined
locally to the arc, and not globally. Therefore, the cut does not depends on the weight
of the overall automaton but only on the weights of the part of the process the arc
refers to.

When a state o € Sy is defined as cut state, all the states in Sy, descendants of o are

also considered cut.

Figure 4.3 shows the prefix automaton of L and M when we apply a cut factor of r = 0.03.

The automaton shows some differences with the original automaton in Figure 4.2, where the
cut states are represented in a different color than the escaping states. For example, the state
(a,c,d, e, e) is a cut state because its weight do not overpass the threshold w({a,c,d, e, e)) <
w({a,c,d,e)) -r, e, 1 <947 -0.03 = 28.41. Consequently, all the states after (a,c,d,e,e)

4.2. Robustness on the Precision 69

<a,c,def> h <a,cdefh> . <acdefhi>
<acdeefh> <acdeefhi>
<a,cede>
<acedf> h <acedfh> <acedfhi>
»(769) »(763) i
<a,cefd> <acefdh> <acefdh,i>
N S TN o S By

Figure 4.3: Prefix automaton for the event log M and model M considering a cut factor
r = 0.03.

are also cut states, i.e., (a,c,d, e, e, f), (a,c,d, e e, f,h) and (a,c,d, e, e, f, h,i).
Formally, cut states are defined as follows:

Definition 4.1 (Cut States). Let Ary = (S, A, 7, w, () be the prefix automaton of the log
L enhanced with the behavior of the model M. Let (05, a,0:) € 7 be an arc where o € Sy,
is a state of both log and model. Given a cut factor r, the prefix o; is a cut state if :

e its weight is less or equal than the cut threshold for that state, i.e., w(o:) < w(oy) - r.
e any of the prefixes of oy is already a cut state, i.e., o, - 0 = 04 : 04 is a cut state.

The set of cut states is represented as S,. The prefix automaton of the log L enhanced
with the behavior of the model M and cut with a threshold r is denoted as A7 ,,.

Notice that, by definition the empty sequence () is never a cut state because it has no
incoming arc. Notice also that, when the threshold factor r is 0, no state in the log is cut
and the approach behaves as the one presented in Chapter 3.

As it has been mentioned before, the cut states are considered to be out of the log behav-
ior. Therefore, although they appear on the log, they are counted as escaping states for the
precision computation. The definitions of modeled, observed and escaping in Definition 3.4
and Definition 3.5 are adapted to reflect this new scenario.

70 Chapter 4. Qualitative Analysis of Precision Checking

Definition 4.2 (Escaping Arcs with Cut States). Let A7 ,, = (S, A, /, w, () be the prefix
automaton of the log L enhanced with the behavior of the model M and cut with a factor r.
Let the prefix o5 € (Spar\ Sr) represent a state of both log and model and not cut by r. The
set of arcs observed in o represent those activities executed and consequently recorded on the
log L but not cut by r, i.e., 0bs(os) = {(0s,a,01) € |or € (S \Sr)}. The set of activities
modeled by the model M in the state o, is defined as mod(os) = {(0s,a,0¢) €, |or € Snm}-
The set of escaping arcs of the state o, is determined by the difference between the arcs
modeled and the arcs observed on the state, i.e., esc(os) = mod(cs) \ 0bs(os).

For example, the modeled activities of the state (a,c,d,e) are f and e, but only f is
considered observed, being e escaping. The precision metric in Definition 3.6 is redefined to
consider the new definitions of modeled and escaping arcs. The metric only explores states
both in the modeled and observed behavior which are not cut.

Definition 4.3 (ETC Precision with Cut States). Let A7 ,, = (S, 4, 7w, ()) be the prefix
automaton of the log L enhanced with the behavior of the model M and cut with a factor
r. The metric ETC Precision when the automaton contains cut states is defined as follows:

ZUE(SLM\S}) W(U) ’ |856(0)‘
Y oe(Span\s,) w(o) - [mod (o)

etep(Apn) =1 -

<a,b> <a,b,d> g <a,b,d.g> . <a,b,d.gi>

i
d :@ 435)
<a,c,d,f> .
<acdef> <acdefh> <ac.defh,i>

h @ i

f Ao
<a,c,d,e> <a,c,d,ee>
—@®

") >

<acee> <a,cede>

<acedfh> <acedfhi>
1

<acef> <acefd> <acefdh> <acefdhi>
Figure 4.4: Escaping arcs of the prefix automaton for the event log L and model M, cut
with a factor r = 0.03.

4.8. Confidence on Precision 71

Figure 4.4 illustrates the states and escaping arcs considered in the metric for the running
example L and M. The five escaping states considered are represented in color: the four
states in the same color indicate states in the model but not in the log, and the state in
different color represents a cut state. The blurry states indicate the states not explored by
the precision metric due to being cut states.

The metric calculation for automaton A%0? between L and M with a cut factor of 0.03
is:
ete,(AYR7) = 1—

3200-0+3200-0+1435-0+1435-0+1435-0+1435- 0+ 1765 -1+ ...

3200-1+3200-2+1435-1+1435-1+1435-1+41435-041765-3 4+ ...
4947 -14+947-14+946-04946-04+946 -0+ 818 -1+ 764 -1+ ...

e+ 947 2494724946 -1 4+946-1 +946-1+ 818 -3+ 764-2 ...
<-4+ 764-04764-04764-0+54-0454-04+54-0+54-0
e+ T764-14764-14+764-0+54-1454-1+54-1454-0
5241
= 1 —_ =]_ - .]. = U.
31498 0.17=10.83
The metric result for the automaton A%-07 is 0.83, and as it was expected differs from
the results of the automaton Arys with no cut where etc,(Arar) is 0.86. The difference is
explained because A%0% contains a escaping state ({a,c,d, e, e)) is a state with high weight
({a, c,d, e) with weight 947), a situation that does not occur in Ay s, causing the metric to

decrease.

4.3 Confidence on Precision

Given an event log and a model, the metric ETC Precision (etc,) estimates the degree of
precision of the system. However, together with a metric, sometimes it is convenient to
provide also a confidence value, indicating the possible variability of the metric in the future.
In this section we provide this confidence value in terms of a confidence interval, i.e., an upper
confidence value (etc;—) and a lower confidence value (etc;) estimating variability over the
computed metric. A narrow interval indicates that the metric should not vary significantly.
On the other hand, a wide interval reflects the opposite: a low confidence in the metric
provided, whose value could change drastically in the future.

Both confidence values presented in this section are defined in terms of k, a parameter
representing the future behavior to consider. A low k is used to compute the confidence in
a near future, whereas with a large k, a larger incoming behavior is considered, and thus a
longer term future is contemplated. We will implement & as number of traces to consider.

Notice that, both confidence values presented in this section are approximated, i.e., they
do not provide real bounds over the metric, but instead aim at estimating them with simple
and intuitive heuristics which can be computed in a systematic manner.

72 Chapter 4. Qualitative Analysis of Precision Checking

4.3.1 Upper Confidence Value

Given an automaton A7 ,, and the parameter k representing the future behavior to consider,
the upper value of the confidence interval is computed considering a best possible scenario.
That is, all the future behavior aims only to cover existing escaping arcs. In other words,
each j where 1 < j < k represents a new occurrence in an escaping arc, increasing the weight
of the both states of the arc. In that sense, each j can be seen as a future trace reaching an
escaping arc ¢ = (0g,a,o;). Both if the target state o, is not in the log or it has been cut, a
trace j represents a new occurrence of it in the log. If the number of occurrences is enough
to overpass the cut threshold (cf. Section 4.2), the arc is no longer considered escaping.

The cost in number of occurrences needed to change a escaping arc ¢ = (0, a,0¢) from
escaping to non escaping depends on the cut factor r considered, i.e., w(o;) < w(og) - 7.
Notice that, states in the model but not in the log (i.e., with weight 0), are under that
threshold, no matter what r is considered. The technique presented in this section estimates
the gain (i.e., the precision increase) of covering each escaping arc, and maximizes the total
gain considering k as the maximum number of occurrences used to cover escaping arcs. For
that, we first define the cost and the gain of covering an escaping arc.

Definition 4.4 (Cost and Gain of Covering and imprecision). Let ¢ = (o0s,a,0:) be an
escaping arc of the automaton A7 ,,. The cost of covering ¢, denoted as cost(q) = ¢ with
¢ € N, is the minimum c that satisfies w(oy) + ¢ > (w(os) + ¢) - 7, i.e., it overpasses the cut
threshold. The gain of covering the escaping arc ¢ is defined as gain(q) = w(oy), i.e., the
gain of reducing in one the number of escaping arcs of the source state os.

By inspecting the formula of the ETC Precision metric (cf. Definition 4.3), one can
see why the gain of covering the escaping ¢ is defined as w(o): if the state os has one
less escaping arc, the number of escaping arcs become |esc(os)| — 1. Since this number is
multiplied by w(o) in the numerator part of the equation, the numerator will be reduced
exactly in w(os).

<a,cf> <a,cd,f> <acdee> <a,cee> <a,ce,d,e>

<a,c>

ql

Figure 4.5: Close up of the escaping arcs of the automaton A% for the running example

M and L.

Let us consider the escaping arcs of the running example A%0% enumerated in Figure 4.5.

The cost of the escaping arc g is 30, i.e., 30 traces need to reach that arc to overpass the

4.8. Confidence on Precision 73

threshold. Instead, 29 are not enough because w({a,c,d, f)) +29 # (w((a,c,d)) +29) - 0.03.
On the other hand, the escaping arc g3 only needs 29. That contrasts with the the cost of
the escaping arc ¢; — that needs 55 — because of the weight of (a, c) — that is 1765. The gain
of covering ¢» and g3 is the same, i.e., 947. On the other hand, the gain of covering ¢; is
1765.

Once the gain and cost of covering an escaping arc are defined, the maximum gain
obtained with k occurrences can be formulated. This problem is analogous to the well
known Knapsack problem [38], which can be solved using binary integer programming (BIP)
[87]. The following BIP model encodes the maximum gain obtained covering imprecisions
with at most £ occurrences:

1. Variables: The variable X; denotes if the imprecision i is covered or not.

X; € {0, 1}

2. Constraints: The total cost cannot exceed the number of occurrences.

Z cost(i) - X; <k

i€esc(AY /)
3. Cost function: Maximize the gain.

max Z gain(i) - X;

i€esc(AY /)

Once the optimization problem is formulated, the upper confidence value can be defined
as follows:

Definition 4.5 (Upper Confidence Value). Let A7 ,, = (S, A, 7w, ()) be the prefix automa-
ton of the log L enhanced with the behavior of the model M and cut with a factor r. Let k be
the future parameter to consider. Let numerator and denominator be the numerator and de-
nominator of the metric ETC Precision in Definition 4.3, i.e., etc, (A} ,,) = 1 — Jumerator_
Let gain,,,, be the result obtained using the optimization problem modeled above. The

upper confidence value is defined as:

numererator — gain,, ..

ete] (AL k) =1—
p(a1 k) denominator

Following with the running example of A%%% and considering a future parameter k = 24,

the only escaping arc with cost lower enough to be covered with this k£ is ¢5. The gain of
covering this escaping arc is 764. This value is subtracted from numerator, providing an
upper interval value of 0.85 for this scenario.

74 Chapter 4. Qualitative Analysis of Precision Checking

4.3.2 Lower Confidence Value

The idea for computing the lower confidence value is similar to the upper value. However, in
this case the k representing the future does not cover escaping arcs, but produce the rising
of new escaping arcs instead. In other words, we consider k£ new observed traces. Each one
of those k traces introduces m new observed states. And each one of those m states causes
n new escaping arcs to appear. The lower confidence value is the decrease on the precision
metric caused by the escaping arcs introduced by these new k traces.

The number of escaping arcs introduced is directly related with the number of observed
states introduced by the new traces, i.e., m. Longer traces cause more escaping arcs, and
as a result a lower confidence value. The are several alternatives of the value of m, e.g., the
length of the longest trace in the log, or just an arbitrary number. However, for statistical
consistency, the m considered in this approach corresponds with the average length of the
traces in the log. Moreover, the number of new escaping arcs introduced for each state (i.e.,
n) is also directly related with the confidence value obtained. Given that we are considering
a worst case scenario, we consider n to be |A — 1], i.e., all activities are escaping arcs except
the one followed by the trace. Given all these considerations, the lower confidence value is
defined as follows:

Definition 4.6 (Lower Confidence Value). Let A7 ,, = (S, 4, 7, w,()) be the prefix au-
tomaton of the log L enhanced with the behavior of the model M and cut with a factor
r. Let numerator and denominator be the numerator and denominator of the metric ETC
Precision in Definition 4.3, i.e., ete, (A7 ;) = 1 — gasmeralor T et k be the future to consider,

and let avg be the average length of the traces in the log L. The lower confidence value is
defined as:

numerator + (k - avg - |A — 1])

1 r
ety (Arar, k) =1 - denominator + (k - avg - |A|)

For instance, following with the running example, being avg = 6 the average length,
A = 8 the number of activities, and considering » = 0.03 and k = 24, the lower bound in
this case is:

5241+ (24-6-7)

31498 + (24 -6 - 8)

etey (A7 p,24) =1 =0.81

4.4 Severity of an Escaping Arc

The computation of the escaping arcs is an accurate mechanism to determine the exact
location of imprecisions of a system. By means of defining the border between log and model
behaviors one can indicate where the efforts must be done in order to achieve a precise
representation of the reality. However, not all escaping arcs have the same importance.
Some escaping arcs may refer to exceptional and infrequent parts of the process or may be
produced by the incompleteness of the log considered. On the other hand, other escaping

4.4. Severity of an Fscaping Arc 75

arcs may be clear and may affect important and frequent parts of the process. Assigning
to each escaping arc a severity degree it becomes possible to compare and sort the escaping
arcs, opening the door to prioritizing those imprecision points that must be fixed first.

The severity of an escaping arc is a complex multi-factored concept, with a strong degree
of subjectivity that changes according to the importance that each process analyst gives to
each factor.

Definition 4.7 (Severity of an Escaping Arc). Let ¢ € esc(A7 ,,) be an escaping arc detected
in the system. The severity of ¢ is defined as:

sev(q) = f(facty, ..., factl)

where facti, ..., fact] correspond to the factor values for the escaping arc ¢, and f is a
user-defined function that weights the n factors.

In this section, we define a standard weighting function as the arithmetic mean of all the
factor values considered, giving the same importance to all the factors. Alternative weighting
functions can be defined assigning higher weights to some factors, and lower weights (or even
0) to others.

The definition and selection of the different factors considered in the severity function
are also open to subjectivity, and may vary from one context to another. In this thesis we
propose a four-factored severity, being weight, alternation, stability and criticality the four
factors considered.

4.4.1 Weight of an Escaping Arc

The first factor proposed to assess the severity of an escaping arc is the weight. Escaping
arcs occurring on highly weighted states denote problems in important parts of the process.
These escaping arcs occur frequently during the process executions, and should be in the top
of the list of problems to fix. On the other hand, escaping arcs that appear on states with
low weight indicate problems in infrequent parts of the process, with low representation in
the process executions.

The weight factor considers the weight of the state where the escaping arc occurs, nor-
malizing it with the maximum weight of all the states in the automaton. Therefore, the
factor value ranges from 0 to 1.

Definition 4.8 (Weight Factor). Let ¢ = (05, a,0¢) € esc(A7 ;) be an escaping arc detected
in the automaton A7 ,, = (S, A, /,w,00). Let maz be the maximum weight of all the states
in S, i.e.,, Vo € S, max > w(c). The weight factor of the escaping arc q is defined as:

w(os)

maxr

factl =

76 Chapter 4. Qualitative Analysis of Precision Checking

For example, let us consider the escaping arc g; of the running example A%9?. The
maximum weight of all the states of A%93 corresponds with the state (), i.e., maz = 3200.

Therefore, the weight factor for ¢; is factl! = w(xl’;)) = 1103 — 0.55. The mid-value weight
factor for g; contrast with the % = 0.24 value for the imprecision gs.

<a,c,d>

<a,c,e>

Figure 4.6: Close-up of the escaping arc ¢; of A% and it context.

4.4.2 Alternation of an Escaping Arc

The alternation factor addresses those situations where the system enables a set of alterna-
tives, but only a few part of them can be considered valid alternatives. In this case, the set
of alternatives are the set of arcs in a state, while a wrong alternative is to chose to continue
through an escaping arc. Those situations where it is more likely to chose wrongly must have
more priority, than others situations where choosing an escaping arc is not so probable.

Definition 4.9 (Alternation Factor). Let ¢ = (0s,a,04) € esc(A7,,) be an escaping arc
detected in the automaton A7 ,, = (5, 4, 7, w,00). Given a state o € S, let Pg(o) be the
probability of selecting a escaping arc being in the state o. The alternation factor of the
imprecision ¢ is defined as:

factl = Pg(os)

The distribution of Pg(0s) depends on the assumptions taken. In the general case where
no particular assumption are made, a uniform distribution is considered, i.e., given oy, all
the outgoing arcs of o have the same probability of being reached. Considering a uniform
distribution the alternation factor of the escaping arc ¢ is reformulated as:

|esc(o)]

q __
Jocte = od ()]

Notice that the alternation is a factor based on the source state o of the escaping arc, not
the target escaping state o;. Therefore, all escaping arcs with the same source state have the
same alternation value. The alternation factor measures the amount of alternation in each
escaping arc. For instance, the alternation value for the escaping arc ¢; is fact?' = % =0.33,

4.4. Severity of an Fscaping Arc 7

denoting a mid-low probability of selecting a escaping state — only (a, ¢, f) in this case— from
the state (a, c).

4.4.3 Stability of an Escaping Arc

The third factor proposed — the stability factor — addresses the stability or equilibrium of
an escaping arc, i.e., the probability of an arc to stop being an escaping arc after applying
to it a little perturbation. The idea of introducing perturbations in order to estimate some
property has been used successfully in other fields, such as the measurement of community
robustness [51]. In our setting, a perturbation over an escaping arc is represented by a small
set of traces going across the escaping arc, modifying the weight of both source and target
state, and possibly changing its status from escaping to normal arc. The number of traces
used as perturbation — and represented by z — are defined proportionally to the weight of
the source state by means of the perturbation intensity .

Definition 4.10 (Perturbation of an Escaping Arc). Let ¢ = (0s,a,0,) € esc(A},,) be
an escaping arc detected in the automaton A} ,, = (S, A4, *,w,00). Let 7 € [0,1] be the
perturbation intensity considered. The number of traces considered as perturbation is defined
as z = [w(og) - 7]. Let I € N be the smallest number such that the equation w(oy) +1 >
(w(o) + z) - r is satisfied, i.e., [defines the minimum number of traces the arc ¢ must receive
in order to overpass the cut threshold r after considering z traces, and change from escaping
to normal arc.

For example, let us consider the escaping arc ¢; of A%]OV:[)’ where r = 0.03. Considering

a perturbation intensity of 7 = 0.06, the perturbation traces are [1765 - 0.06] = 106, and
consequently, [is [((1765 + 106) - 0.03) — 0] = 57.

The stability factor is defined as the probability of an escaping arc to remain escaping
after perturbing it.

Definition 4.11 (Stability Factor). Let ¢ = (0s,a,0,) € esc(A},,) be an escaping arc
of A7 ,; = (S,A, M w,00). Let 7 be the perturbation intensity, and let z and ! be the
corresponding perturbation traces and minimum, respectively. The stability factor of the
escaping arc g is the probability of g to remain escaping after considering z new traces, i.e.,

-1
Jact?, = P (< 1) = 3" Pi(=)
1=0

where P7(< z) and P; (= x) represent the probability that the arc g receives less than x
(or exactly x) of the new z traces considered in this point.

Let p, define the probability that a new trace crosses the escaping arc q. Let 1 — p, be
the probability that the trace follows one of the other successor states of o,. According to
the binomial distribution [25], the stability factor can be expressed as:

78 Chapter 4. Qualitative Analysis of Precision Checking

-1
q _ & i z—1
futt, =3 () 1 =20

The formula can be understood as follows: in order to g to remain escaping i successes
(pq)* and z — i failures (1 — p,)*~" are needed. However, the i successes can occur anywhere
among the z traces, and there are (f) different ways of distributing 7 successes in a sequence
of z traces.

The probability p, may depend on the assumptions taken. Again, if no knowledge regard-
ing the distribution of the log is assumed, a uniform distribution is considered. Therefore, if
¢ is the number of successors states of o, the probability of each successor state is 1/¢, and
the formula can be rewritten as:

-1 > 1 i 1 z—1
a _ z _
£ ()0
=0
In the running example A%9?, given the escaping g5 and considering r = 0.03 and 7 =
0.06, the stability factor results in 0.67, being z = 46 and [= 25. This factor reflects that
this escaping arc has a mid-probability of disappearing in the close future. This contrasts

with the stability 1 obtained from the escaping arc ¢, with the same r and 7 parameters,
reflecting a really stable imprecision.

4.4.4 Criticality of an Escaping Arc

Finally, the criticality factor introduces domain knowledge into the severity assessment. Dif-
ferent activities constitute different levels of criticality within the process. For example, the
possible consequences of CheckDateFormat action are not the same as the TransferMoney
action, so neither their criticality. Escaping arcs in the model allowing to execute Transfer-
Money — an action never observed in the log on that state — must have a higher severity and
should be analyzed before than escaping arcs allowing CheckDateFormat.

The criticality factor relies on a function crit defined externally by a domain expert,
assessing the criticality of the activities of the process. If this function is not defined, we
consider a function where all activities have the same criticality. The criticality function
is inspired by cost function used by the alignment conformance algorithms to weight the
different types of misalignments [16, 15].

Definition 4.12 (Criticality Factor). Let ¢ = (0s,a,0:) € esc(A],,) be an escaping arc
detected in the automaton A7 ,, = (S, A, 7, w,00). Let cri : A — [0,1] be the function that
assess the criticality of the process activities. The criticality factor of the escaping arc ¢ is
defined as:

fact? = crit(a)

4.4. Severity of an Fscaping Arc 79

In our running example, we consider that Check Liability (f) is a relative cheap operation
where the database is queried automatically, whereas Consult Ezpert (e) is a much costly
operation that involve a human consultation. Consequently, considering crit(e) = 0.9 and
crit(f) = 0.2, the escaping arcs ¢z, q4, g5 are considerably more critical than ¢, ¢o.

4.4.5 Visualizing the Severity

The severity of an escaping arc is the result of combining the different factors through
the function f, that assign weights to each factor (cf. Definition 4.7). For example, the
standard severity proposed in this chapter for an escaping arc ¢ is defined as sev(q) =
mean(factl, fact? fact? | fact?). This value can be used to visualize the severity escaping
arcs of a system in more advanced ways than simply displaying the value next to the arc. For
example, the set of escaping arcs can be partitioned according to their severity ([0.0,0.3) =
low, [0.3,0.4) = mid, and [0.4,1.0) = critical), and using an intuitive traffic light color
scheme (i.e., green, yellow, red), an analyst can easily identify visually the different severity
degrees.

fact,,

fact, Sfacty fact,. fact,

fact, fact,
Figure 4.7: Two escaping arcs with different factor value distribution.

However, there are situations where a factor-grained analysis of the severity may be
more adequate, i.e., analyzing the factors independently, instead of aggregating them on a
unique value. For those cases, displaying the factor results in a radar chart provides a better
understanding of the different factor distribution composing the severity of an escaping arc.
For example, Figure 4.7 two possible escaping arcs with different factor distribution. The left
chart corresponds to a really frequent escaping arc. However, the situation of that escaping
arc is really unstable and the possibilities of choosing badly in that situation are really few.
The second escaping arc, shown in the chart on the right, is much more sever in general
terms than the first one. It corresponds to a more stable and dangerous situation, but it is
less frequent than the first one.

80 Chapter 4. Qualitative Analysis of Precision Checking

4.5 Experimental Results

This section illustrate experimentally some of the concepts presented on this chapter. Ta-
ble 4.2 contains the results of applying the proposed approach to a set of large datasets. For
comparative reasons, the datasets are some of the ones used in Chapter 3, obtained from the
same public repository. As it is mentioned in Chapter 3, these datasets cannot be handled
by precision approaches such as a’b [80]. The experimental setting is based on variations of
the a32f0n00.5 and t32f0n00_5 datasets, and the experiments focus on illustrating how the
growth of a log influences the metric and its confidence, given a particular selection of the
stability and confidence parameters presented in this chapter. The column with pX reports
the percentage of the log considered in each case, i.e. p100 represents the original a32f0n00_5
log, while logs pX with X < 100 correspond to slices of the original log, e.g., p20 contains
the first 20% of the original log traces. Logs pX with X > 100 are obtained by choosing with
uniform distribution among the existing traces in the log the extra traces needed to achieve
the desired size.

| Bench [[Log|| r [k || eic, | Confidence | time(s) |

p20 180 .543 | .246 - .553 | (.307) 1/3/5
p40 360 564 | .345 - .570 | (.225) 1/5/6
p60 | 540 576 | .403 - .582 | (.179) 1/7/11
p80 720 583 | 441 - .587 | (.146) 1/12/17

a32 | pl00 | 900 | .05 | 20 || .592 | .470-.595 | (.125) | 1 /15 /24
p150 | 1350 591 | .504 - .595 | (.091) | 2 /16 /23
p200 | 1800 591 | .523 - 595 | (.072) 2/17/23
p250 | 2250 .590 | .534 - .594 | (.060) 2/16 /24
p300 | 2700 591 | .544 - 594 | (.050) | 2 /16 / 24
p20 360 .385 | .250 - .387 | (.137) | 2 /67 /121
p40 720 .391 | .305 - .392 | (.087) | 4 / 180 / 229
p60 | 1080 392 | .330-.393 | (.063) | 5 /295 / 339
p80 | 1440 393 | .345 - .394 | (.049) | 6 / 336 / 496

t32 | p100 | 1800 | .05 | 20 || .393 | .353 - .394 | (.041) | 6 / 390 / 550
p150 | 2700 303 | 365 - 393 | (.028) | 6 / 411 / 562
p200 | 3600 393 | .371- 393 | (.022) | 7 /429 / 572
p250 | 4500 393 | .376 - .393 | (.017) | 9 / 440 / 579
p300 | 5400 393 | .379 - .393 | (.014) | 9 / 443 / 581

Table 4.2: Precision metric value, confidence and computation time for incremental bench-
marks.

As in the previous experiment in Chapter 3, the models used are the ones obtained
from discovering a Petri net through the ILPMiner [101]. The wide spectrum of the set of

4.5. Ezxperimental Results 81

benchmarks presented makes it possible to illustrate the evolution of the approach presented
in this chapter and can be considered as a real situation in an information system where
trace sets are evaluated on a regular basis, e.g., monthly.

A first conclusion on the table is the stability of the approach with respect to the size
of the log. Notice that the etc, value tends to increase as new behavior is considered, e.g.,
between p20 and p100 there is a difference of 0.05. However, this difference is extremely
small considering that between p20 and p100 there is a 500% increment in the observed
behavior. In addition, the more traces are included in the previously observed behavior,
the closer the metric value is to stabilizing. The second conclusion to extract from this
table is the dependency between the traces considered and the confidence in the metric, i.e.,
increasing the size of the trace set considered results in a narrower confidence interval.

0.9
0.8
0.7
0.6
0.5
— —
0.4
0.3

0.2
0.1

etcp

ext_c1_01 ext_c1_02 ext c1_03

1 500 10002000 1 500 10002000 1 500 10002000
k

(a)

= pig01 == pig02

100
90
80
70
60
50
40
30
20
10

% behavior not considered

001 003 006 01 014 018 022 026 03 036
0 002 004 008 012 016 02 024 028 033 04

(b)

Figure 4.8: Charts showing the effects of different parameters for the confidence value.

82 Chapter 4. Qualitative Analysis of Precision Checking

The next set of experiments are designed to illustrate the influence of confidence param-
eter k and the cutting parameter r in the proposed approach.

In chart 4.8a, three process models are considered: ext_c1_01, ext_c1_02 and ext_c1_03.
These benchmarks have been created using the PLG tool [36]. This tool allows to create
configurable and generic benchmarks, containing all the common patters appearing in any
workflow model, e.g., choice, parallelism, sequence, etc. For the experiment, each one of the
logs considered contains 15000 traces. Benchmarks 01 and 03 denote standard processes,
with great difference between model and log behavior (and thus exhibiting low precision).
On the other hand, process model ext_c1_02 is a simpler model which describes accurately
the behavior reflected in the log, i.e., the precision value is high. The chart illustrates the
influence in the approach when considering diverse future windows, i.e., four different k val-
ues: 1, 500, 1000 or 2000 new traces to consider. As it is reflected in the experiments, the
future considered has no influence on the metric value, but it is relevant on the confidence
value over the metric. The possibility of variation for the metric considering a really near
future (i.e. k = 1) is practically zero. However, when considering farther futures, this possi-
bility increases, e.g., considering a k value of 2000 (approx. 15% of the log) the confidence
in the metric is substantially low. Notice that, as expected, the confidence interval is not
symmetric.

Chart 4.8b illustrates the relation between the cut factor r and the percentage of the pro-
cess behavior considered to compute the precision. Two generic and representative process,
plg_01 and plg_02, have been created using PLG tool, and different values of r have been
tested. The conclusion we obtain is that for these processes, lower values of r (i.e., less than
0.04) can be used to polish the effects produced by noisy traces, while greater values of r
(not considering more than 10% of the process behavior for computing the precision) should
be used if the emphasis is in computing precision on the most frequent parts of the process.
Values greater than 0.4 does not make any sense, due to the 100% of process is discarded.

In addition, charts 4.9a and 4.9b are used to illustrate the part of the approach concerning
the severity. Four generic models (sev01, sev02, sev03 and sev04) have been created using the
PLG tool, which contain the most common structures in workflow models. For each model,
a severity analysis has been performed, where each factor has received the same weight.

The same values of r and 7 have also been assigned for all the models (0.01 and 0.06,
respectively). The criticality value assigned to each of the tasks is different depending on
the task and the model. In chart 4.9a, we selected the most sever escaping arc of each
process, and show the distribution of each one of the four factors. This chart illustrates the
distribution of the weight of each factor in the final severity value, in this particular setting.
In addition, it also illustrates that, given the normalization introduced in the definition of
each one of the factors, it is possible to compare the severity between imprecision of different
processes, e.g., given a system containing the four process models, and given the current
setting, the escaping arc shown in the second bar (which corresponds to model sev02) should
be tackled first. In chart 4.9b, the same four processes are considered. In this case, escaping
arcs of each process are classified in three categories: low (less than 0.3), mid (between 0.3

4.5. FExperimental Results 83

0.8 12000
0.7
10000
0.6
—
— 8000
0.5
— W weigh .
04 alt 6000 u Cr,’;
Hstb - ::"N
0.3 i
W crit 4000
0.2
2000
0.1
sev0l sev02 sev03 sev04 sev0l sev02 sev03 sev04

(a) (b)

Figure 4.9: Severity analysis of four escaping arcs, and partitioning of the detected escaping
arcs in three severity categories: low, mid, and critical.

and 0.4) and critical (greater than 0.4). Notice that, in this particular scenario, the number
of critical escaping arcs (the ones that should be tackled urgently) is small (approx. 10
imprecisions for each process) compared to the total number of escaping arcs.

Finally, the approach presented in this chapter has been tested in a real world scenario.
The scenario is taken from a Dutch Academic Hospital, and the log contains about 150.000
events in 1100 cases, where each case corresponds with a patient of the Gynecology depart-
ment.'The goal of the experiment is to measure the quality of the models obtained using
different discovery algorithms. The process miners used in the experiment are RBMiner[90],
Genet[37], ILPMiner [101] and a-miner[13]. The results illustrate that the precision of the
models obtained using such miners focusing on the whole process is very low. The models
generated allow almost all the tasks most of the time, decreasing drastically the precision
and consequently the quality of the models. For instance, the etc, value of the models
generated by a-miner and RBMiner are 0.03 and 0.01 respectively. However, that precision
increases when we apply partition and clustering techniques over the log, to focus the mining
on specific parts of the process. For instance, mining a model projecting the process over
the set of the 10 most frequent events will result in a precision of 0.397, 0.386, and 0.386 for
Genet, ILPMiner and a-miner respectively. In the case of RBMiner, the precision is slightly
greater, i.e., 0.423.

Log file DOT is doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54 and can be found in the 3TU
Datacenter (http://data.3tu.nl).

http://data.3tu.nl

84 Chapter 4. Qualitative Analysis of Precision Checking

4.6 Conclusions

Given an event log and a process model, the approach to measure precision based on escaping
arcs presented in Chapter 3 is sensitive to the presence of infrequent behavior. This chapter
presented an extension of the escaping arc theory to increase its robustness, by discarding
exceptional behavior from the precision computation. Furthermore, the chapter presented a
confidence interval over the precision metric, indicating how likely is the metric to drastically
change when more observed behavior is considered. Finally, the chapter proposed a multi-
factor measure to quantify the severity of the detected escaping arcs, making it possible to
compare them and to prioritize those imprecisions that need to be resolved first.

Chapter 5

Precision based on Alignments

5.1 Introduction

As it has been illustrated in previous chapters, replaying observed behavior over the modeled
behavior is an effective and efficient way to detect escaping arcs, and with them, detect
potential imprecise points to be fixed. However, there are situations where the observed
behavior cannot be replayed on the modeled behavior, i.e., the model cannot mimic the
”moves” observed in the log. These problems are produced by the presence of unfitting
traces, or undeterministic situations on the model. For example, let us consider the model
M at the top of Figure 5.1, and the state o1 = (a, b, ¢) observed in the log. Given the choice
between b and ¢ in M7, the state o; cannot be reached by the model. A similar situation
occurs for the models My and Ms, in the middle and bottom of Figure 5.1, respectively.
However, in this case the problems are not produced due the unreachability of the observed
state, but because there is a non-bijective relation between activity sequences and tasks
sequences on the model — due invisible and duplicate activities. Let us consider the model
M and the observed state oo = (a,b). What are the set of modeled activities for the state
02?7 ¢, if we consider the upper b? Or d, if we consider the lower b?. The use of duplicate
activities may introduce — not always — undeterminitic situations such as the one illustrated.
A similar situation happens with the presence of invisible activities. For example, let us
consider the model M3 and the observed state o5 = (a). Because invisible activities are not
reflected in the log, there is no way to determine if the set of modeled activities in o3 are b,
¢, or the empty set.

The effect of problems derived from unfitting logs can be alleviated making some assump-
tions over the observed behavior. For example, in Section 3.10.1 the unfitting part of the

— The materials reported in this chapter are partially published in [18] and [19] —

85

86 Chapter 5. Precision based on Alignments

start

M1
M2
t2 p2 t4
start . p4 t6 end
s o
. .)o S

t3 p3 t5

Figure 5.1: Models to illustrate the problems with the replay produced by unfitting traces
(top), the indeterminism of duplicate activities (middle), and the indeterminism of invisible
activities (bottom).

trace is considered noisy or infrequent and it is discarded for the precision metric. This dras-
tic approach is useful when the percentage of log discarded is small, and we are not interested
on providing all possible points of imprecision. However, the effect in a worst case scenario
is not negligible. For example, in a log where only the first event in all traces is wrongly
recorded, the whole log is discarded. Similar, heuristic assumptions could be considered to
solve indeterministic situations with no formal guarantees, but still practical applicability.

Undeterminism is produced because the escaping arcs are detected at a log level. At a
model level, each task is unique, e.g., although ¢5 and t3 have the same label b, they are
distinguishable in the model Ms. Therefore, a precision checking at a task level will solve
indeterministic situations, transferring the responsibility to mapping correctly log traces and
tasks sequences of the model. Thus, each trace in the log is translated to a complete tasks
sequence in the model. For example, log traces (a,b,c,e) and (a,b,d, e) may be associated
with (t1,t2,t4,ts) and (t1,ts3,5,ts) of model My, respectively.

The mapping between log traces and model traces is far from trivial. An approach may
consider the use of heuristics, such as look-ahead [98, 30]. Informally, when the approach
reaches a decision point, the algorithm looks ahead to choose the most suitable option. For
example, in the trace (a,b,c,e) for the My, to is selected because there is a ¢ next. Similar
happens when the indeterminism is introduced by invisibles, e.g., trace (a, b, d) is associated
with complete tasks sequence (t1,ta,t4,16) in M3. Look-ahead heuristics can be also used
to associate unfitting observed stated to reachable states of the model. For example, given
the observed trace (a,b,c,d, f) and the model My, the algorithm could consider ¢ an event
wrongly recorded in the log.

5.2. Cost-Optimal Alignment 87

Look-ahead and other heuristics are heuristics after all, and therefore, they lack of formal
guarantees. The decision taken heuristically may not be the optimal. Even, when the number
of events considered in the look-ahead is increased, the decision may still not be optimal,
e.g., the optimal path may require reconsidered previous decision [15].

In this chapter we introduce a precision checking approach based on aligning observed
and modeled behavior. The alignment is done at a model level, for each one of the traces
in the log. The alignment techniques provide global optimal results and therefore, there
are guarantees on the escaping arcs detected. Notice that, the computation cost of aligning
observed and modeled behavior in a global optimal may be considerable in some cases.
Therefore, there are situations where other alternatives need to be considered, for example,
a decomposed aligning for conformance diagnosis (cf. Chapter 6), or a heuristic replay-based
approach in real-time scenarios where the time is a crucial element (cf. Chapter 9).

The remainder of this chapter is organized as follows. Section 5.2 formalizes the alignment
of observed and modeled behavior. Section 5.3 proposes an approach to measure precision
from the alignments. In Section 5.4, we propose two extensions for abstracting the precision
checking from the order of the tasks (Section 5.4.1) and the direction of the automaton con-
struction (Section 5.4.2). Finally, Section 5.5 provides experimental results, and Section 5.6
concludes the chapter.

5.2 Cost-Optimal Alignment

An alignment between an event log and a process model relates occurrences of activities in
the log to tasks of the model. As the execution of a case is often performed independently
of the execution of another case, the alignment is performed per traces. This is a common
assumption take in process mining techniques, and reduces the complexity of the analysis.

For each trace in an event log that fits a process model, each move in the trace (i.e., an
activity observed in the log) can be mimicked by a move in the model (i.e., a task executed
in the model). However, this is not the case if the trace does not fit the model perfectly. We
use the symbol > to denote "no move” in either log or model.

Definition 5.1 (Moves [15]). Let L € B(A*) be an event log over the activities A, and let M
be a model where T is the set of tasks of the model, A, (M) is the set of observable activities
of M, and [is the labeling function between tasks and observable activities in M. For the
sake of clarity, we abuse the notation writing I(¢t) = 7 if ¢t € dom(l), i.e., if ¢ is an invisible
task.

o (ar,(ap,t)) is a move, where ar, € A U >, (apn,t) € (A,(M)U7T xT) U >, and
l(t) = ap.

e (a,(a,t)) is a synchronous move (also called move in both), where a € A, t € T, and
I(t) =a.

88 Chapter 5. Precision based on Alignments

a = Examination
b = Radiology

¢ = Update Record
d = Therapy

e = Home Care

f = Allergy Test

g = Chemotherapy
h = Post-Chemo
t6 p3 t7 p6 t8 i = Operation

Figure 5.2: Model for a medical process, used as running example on this chapter.

e (a,>) is a move on log, where a € A.
o (>, (a,t)) is a move on model, where (a,t) € (A,(M)UT x T), and I(t) = a.

e A legal move is a move on log, a move on model, or a synchronous move. Otherwise,
it is an illegal move. Apas denotes the set of possible legal moves between the model
M and log L.

Given a sequence of moves v, row7 () denotes the sequence of log activities in v, i.e., the

first element. Similar, rowy;(y) and row7 () denote the sequence of model activities and
tasks, respectively. rowy, rowy; and rowr denote the projection of sequences of activities in

the log, model and tasks, filtering >>.

Definition 5.2 (Alignment [15]). Let o, € L be a log trace and oy € ¢(M) a complete
task sequence of model M. An alignment of oy and o, is a sequence of moves v € App™
such that the sequence of log activities (ignoring >>) yields o, and the sequence of model
tasks (ignoring >>) yields oy, ie., rowr(y) = o and rowr(y) = op.

Let us consider a medical process for an oncological treatment in a hospital — this process
will be used as running example during this chapter. Model M in Figure 5.2 represents a
possible model for this medical process. Assuming that the end state of the model is reached
when place end in the model contains exactly one token, the model represents an infinite
set of complete activity sequences, e.g., (a,b,c,d), (a,c,b,d), {(a,b,c,e), (a,c,b,e), {(a, f,g,h),
(a,b,i,c,b,e). Given an unfitting trace o, = (a,b,d,e), Figure 5.3 shows some possible
alignments between oy, and M.

The moves are represented vertically, e.g., the second move of v is (>, (¢, t3)), indicating
that the model performs t3 while the log does not make any move. Note that after removing
>, the projections of all moves in the model are by definition complete task sequences
allowed by the model. This property is not always ensured by other conformance checking
approaches. For example, given a trace and a process model, when using the approach in [80],
the so-called missing tokens are added to allow activities that occur in the trace but are not

5.2. Cost-Optimal Alignment 89

la|>|b|d]e| la|b|>|d]e| la|>[b|d]e|
M1=la| c|b|>]ce Yo=|a|bl|c|>]e y3=|a | c|bl|d]|>

t | ts | to ts t |ty | ts ts t |ty | to | ta
(afb|>ldle| |alb|d|[>|e| |al|>[>|>]|b]|d]|e]
Yay=|a|b|c|d|>|vm=|la|b|>]|c Yvo=|a | f|lg|h|>>>

ty | to | t3 | g ty | t2 t3 | t5 t1 | te | t7 | L3

Figure 5.3: Some alignments between trace o1, = (a, b, d, e) and the model M in Figure 5.2.

supposed to occur according to the model. The addition of such missing tokens introduces
extra behavior that is not allowed in the original process model, thus overestimating its
behavior.

In order to compare alignments and select the most appropriate one, costs are associated
to undesirable moves and select an alignment with the lowest total costs. To quantify the
costs of an alignment, a cost function § is defined.

Definition 5.3 (Cost of alignment [15]). The cost function 6 : Apy — IN assigns costs
to legal moves. The cost of an alignment v € Ap™ is the sum of all costs, i.e., §(y) =

2eyer 0@).

Different scenarios may require different cost functions. The costs may depend on the
nature of the activity, e.g., skipping a payment may be more severe than sending an email.
Moreover, the severity assumed for a move on log and a move on model may be different, e.g.,
a system with constant recording problems should be more tolerant with activities skipped
on the log. Abstracting from particular cases, we can define a standard cost function that
assigns unit costs to moves in log or moves on model only.

Definition 5.4 (Standard Cost Function [15]). A standard cost function dg is defined such
that:

e Synchronous move has cost 0, i.e., dg(z, (z,t)) =0 for all x € A.

e Move on log has cost 1, i.e., dg(z,>) = 1.

e Move on model from a visible task has cost 1, i.e., ds(>, (z,t)) = 1.

e Move on model from an invisible task has cost 0, i.e., ds(>>, (7,t)) = 0.

Using the standard cost function, the cost of alignment v; is d5(v1) = ds(a, (a,t1))+ds(>
,(c,t3)) + d5(b, (b,t2)) + dg(d,>) + ds(e, (e,t5)) = 0+ 1+ 0+ 1+ 0 = 2. Note that the
function returns the number of mismatches in the alignment. On the other hand, ds(vs) = 6.
Hence, we conclude that 7 is close to the log trace o, = (a, b, d,) than ~.

90 Chapter 5. Precision based on Alignments

Given a trace from an event log and a process model, we are interested in an activity
sequence from the model that is most similar to the trace, i.e., the optimal alignment.

Definition 5.5 (Optimal Alignments [15]). We define the set of alignments T'y, pr = {7y €
Apnp™ | 7y is an alignment between o, and M} to be all possible alignments between oy, and
M. Accordingly, we define the set of optimal alignments as the set of all alignments with
minimum cost, i.e., I'g, \y ={v € Loy | Vorer,, o 0(7) <3(7)}

It is easy to see that there can be more than one optimal alignment between a trace and
a model. For example, {v1,72,73, 74,75} is the set of optimal alignments between the trace
or = (a,b,d,e) and the model M.

By definition, the task component of all alignments yields a complete task sequence of
the model. Thus, given an optimal alignment v between o;, and M, rowr(v) provides a
complete tasks sequence that both perfectly fits M and is closest to 0. In the running
example, rowr(y1) = (t1,t3,t2,t5) is one of the complete task sequences of M that is most
similar to trace (a,b,d, e).

Given a log and a model, constructing all optimal alignments between all traces in the log
and the model is computationally expensive [16, 17]. Thus, there are cases where computing
all optimal alignments between traces and process models may not always be feasible in
practice. Hence, instead of computing all optimal alignments between traces in the log and
the model to obtain insights into deviations, one may also compute just some representative
optimal alignments for each trace. In this chapter, we consider three approaches: one optimal
alignment per trace, all optimal approaches, and a set of representative optimal alignments.
We define three functions that provide optimal alignments between traces in the log and the
model:

o Ny, Ay — P(Apm™) returns all optimal alignments between traces of L and M, such
that for all o7, € L, Ay (on) =17, 4,

o AL, : A% — Apn™ returns one optimal alignment between traces of L and M, such
that for all o1, € L, A}, (or) € T2,), and

o A A% — P(Apy™) returns representatives of optimal alignments between traces of
L and M, such that for all o7, € L,Af; (o) T2, 4.

In [20, 16, 17] various approaches to obtain an optimal alignment between a trace and a
model with respect to different cost functions are investigated. Given a trace oy, of L and
a model M, if there are multiple optimal alignments, A}, chooses one of them according
to other external criteria. With our previous example, suppose that A}, selects an align-
ment that has the longest consecutive occurrence of synchronous moves in the beginning,
Ay (on) =

In [16, 17], an A*-based algorithm is proposed to compute one optimal alignment between
a trace and a model. The same algorithm can be extended to provide more than one optimal

5.2. Cost-Optimal Alignment 91

la|>]>]>| la|>]>]|> la|>]>]>|
ye=|la | flg|h| vws=|lal|lb|lc|d]| vw=|a|c]|b|d
ti| te | tr | ts ti | ta | t3 | ta ti |tz | t2 | ta

la|>[>]>| la|>][>]>|

Yo=|a | c | b | e Yii1=|a | b | c| e

ti| ts | t2 | t5 ti | ta | t3 | t5

Figure 5.4: All optimal alignments between trace o7, = (a) and the model M in Figure 5.2.

alignment between them. Given a trace oy, of L and a model M, the algorithm constructs one
optimal alignment by computing a shortest path from the initial to the final state of the state
space of the synchronous product between o, and M. It is shown in [17] that all shortest
paths from the initial to the final state of the state space yields an optimal alignment. For
each state in the state space, the algorithm records a shortest path from the initial state to
reach this state and thus, becomes the representative of all other shortest paths from the
initial state to the state. An optimal alignment is constructed from a shortest path from the
initial state to the final state that is also representing all other shortest paths that connect the
same pair of states. By recording all represented shortest paths during state space exploration
for each state, we can obtain all shortest paths from the initial to the final state of the state
space (i.e., obtain all optimal alignments). Different representatives may represent different
number of optimal alignments. Given a representative v € A, (or), repy, () denotes the
number of optimal alignments represented by ~y. Furthermore, due to possible pruning of
state space, the total number of represented optimal alignments by the representatives is
a lower bound of the total number of all optimal alignments, i.e., ZweAﬁ,(aL) rep () <
[T, arl- The interested reader is referred to [16, 17, 15] for details on the constructed state
space with the A*-based algorithm approach.

Take for example a trace o, = (a). All optimal alignments between the trace and
the medical model M are shown in Figure 5.4. Given a possible function A®, A% (o) =
{77,799, v10} Where repy;(17) = 1 (77 represents {37}), rep(y9) = 2 (7 represents {1s,70}),
and rep(v10) = 2 (10 represents {710,711})-

For simplicity, in the remainder we omit the model notation M in functions A%, AL,
AT, and rep,; whenever the context is clear. Note that in cases where a process model
has duplicate tasks (more than one task to represent an activity) or invisible tasks (tasks
whose execution are not logged), approaches to construct alignments (e.g., [20, 16]) keep the
mapping from all model moves to the tasks they correspond to. Hence, given an alignment
of a trace and such models, we know exactly which task is executed for each model move.
We refer to [20, 16] for further details on how such mapping is constructed.

92 Chapter 5. Precision based on Alignments

5.3 Precision based on Alignments

The technique described in the previous section provides optimal alignments for each trace
in the log. This section presents a technique to compute precision based on the use of these
optimal alignments. Like the approach on Chapter 3, the behavior observed in the log is used
to traverse the modeled behavior, detecting escaping arcs for possible points of imprecision.
However, whereas in Chapter 3 is based on model replay directly from the log, the approach
presented here uses the alignments as a more faithful representation of the observed behavior.
The advantages are manifold. First of all, traces in the log do not need to be completely
fitting. In Chapter 3, the non-fitting parts are simply ignored. For most real-life situations,
this implies that only a fraction of the event log can be used for computing precision. Second,
the existence of indeterminism in the model poses no problems when using the alignments.
Finally, the use of alignments instead of log-based model replay improves the robustness of
conformance checking. The remainder of this section is devoted to explain how precision can
be calculated from the alignments. In particular, we consider the precision checked from one
alignment, all alignments, and representative alignments. To illustrate the three approaches,
in the remainder of the section we use the following running example: the model M shown
in Figure 5.2 and the log L = [01, 02,03, 04,05], containing the 5 traces that appear in in
Table 5.1. The table also provides the optimal alignments for the traces in L.

5.3.1 Precision from 1-Alignment

Like Chapter 3, precision is estimated by confronting model and log behavior: escaping
arcs between the model and the log (i.e., situations where the model allows more behavior
than the one reflected in the log) are detected by juxtaposing behavior observed in the log
and the one allowed by the model. This juxtaposition is done in terms of an automaton:
first, an automaton is built from the alignments. Then, the automaton is enhanced with
behavioral information of the model. Finally, the enhanced automaton is used to compute
the precision. In order to build the automaton, observed behavior must be determined in
terms of model perspective, i.e., we consider the optimal alignments of each trace in the
log for this purpose. For example, given the running example L and M, the trace o1 has
5 optimal alignments, Y1a, V16, Vics Y1d, Vie}, shown in Table 5.1. However, in 1-alignment
only one alignment is considered. For this example, we assume that the alignment assigned
to o1 by Al based on an external criterion corresponds to vig, i.e., Al(o01) = y14. On
the other hand, traces o3 ...05 are perfectly fitting and have only one optimal alignment
containing only synchronous moves. Given an alignment -, in order to build the automaton,
we only consider the projection of tasks moves, i.e., rowr (7). In this example, the sequences
used as observed behavior are (ti,tg,t7,ts), (t1,ta,ts,ts), {t1,t3,ta,t5), (t1,ts,t7,ts) and
(t1,t2,tg, ta, t3,t4). We use rowr(Al)z to denote the application of function rowr on all the
alignments provided by the functions A' for the traces in log L. We can omit the subindex
L whenever the context is clear. Note that, by definition, any alignment projection rowz(7)
is a valid complete firing sequence of the model.

5.8. Precision based on Alignments 93

Freq Trace Optimal Alignment
1 o1 = {(a)
al|>[>]>|
Yia =| a g | h
1| te | t7 | ts
a | >|>| > a | >|>|>
Yb=|a | b | c|d]| ye=|al|c|b|d
t | to | ts | ta t |ty | ta | ta
a | >|>| > a | >|>|>
Yia=|a | c|b|e| vie=|al|b|c]|e
t1 | t3 | t2 | T5 t1 | ta | t3 | t5

1 o9 = {a,b,c,d)

1 o3 = {a,c,b,e)
a b
Y3=|a | c|b
ty |tz | t2 | t5
1 04:<a7fagvh>
al flglh
Ya=|a | flg|h
ty |t | t7 | ts

1 0—5:<a’b,i,b,c,d> ‘ a b) b c d ‘

Ys=|a|b|i|b]|c|d
t | te | to | ta | t3 | ts

Table 5.1: Optimal alignments of log [01, 02, 03, 04, 05] and the medical model M of Figure 5.2

94 Chapter 5. Precision based on Alignments

Similar to Chapter 3, the automaton is built considering all the prefixes for the se-
quences in mwT(Al) as the states. For instance, given a sequence (t1,to,ts,t4) resulting
of rowr(A')(o2), the states considered are (), (t1), (t1,t2), (t1,ta,t3) and (t1,t2,t3,t4). We
denote as e(rowr (7)) the set of prefizes of the tasks sequence of the alignment v and as
o(rowr(A')) the multiset of prefizes of the the tasks sequences of all alignments in A

Definition 5.6 (Prefix Automaton of the 1-Alignment). Let L € B(A*) be an event log, let
M be a model with tasks 7', and let rowr(A') be the alignments between them projected on
the model tasks. We define the prefiz automaton of the 1-Alignment Ap1py = (S, T, 7w, so)
such that:

e the set of states correspond to the set of prefixes of the alignments projected on the
model tasks, i.e., S = {o|oc € o(rowr(Al))}.

e the set of labels correspond to the set of tasks T

e the arcs /C (S x T x S) define the concatenation between states and tasks, i.e.,
S={(o,t,0-(t))|c € SAc-(t) € S}.

e the function that determines the weight of a state is determined by the number of
occurrences of the state in the multiset of prefixes of the tasks sequences, i.e., w(o) =
o(rowr(A1))(o) for all o € S.

e the initial state sg corresponds with the empty prefix ().

Figure 5.5 shows the resulting automata for the running exemple L using the function A!
(only the white states). For example, the weight of the state (t1) is greater than the weight
of (t1,t3) because there are more tasks sequences with the prefix (¢1) (all 5 sequences), than
the ones with prefix (t1,¢3) (only the sequence (t1,t3,t2,t5) contains that prefix).

Once the observed behavior has been determined in terms of an automaton, the con-
frontation with the actual modeled behavior is required in order to determine the precision.
For each state of the automaton, we compute its set of modeled tasks, i.e., possible direct
successor tasks according to the model (mod), and then compare it with the set of observed
tasks, i.e., tasks really executed in the log (obs)(cf. Definition 3.4). Let us consider, for
example, state (t1,ta,t3) of automaton in Figure 5.5. The set of observed tasks of the state
is obs({t1,ta,t3)) = {t4}, i.e., for all traces with prefix (¢,ts,t3), their direct successor is
only t4. The set of modeled tasks for the state is mod({t,ta,t3)) = {t4,t5,t9} because after
performing the sequence of tasks (t1,ta,t3), the model allows to do t4, t5 or tg. Note that,
by definition of alignment, obs(s) C mod(s), i.e., the set of executed tasks of a given state is
always a subset of all available tasks according to the model.

The arcs that are modeled according to the model, but do not occur in the event log
according to the alignments, are used to collect the escaping arcs of the system, i.e., an
arcs that escapes from the observed behavior. The tasks on the escaping arcs and the
states reached are called escaping tasks and escaping states respectively. In Figure 5.5

5.8. Precision based on Alignments 95

<t1,£2,19,t5> <t1,£2,t9,12,t3,t5>
<t1,£2,t9> <tl,12,t9,t2> <t1,12,19,12,83> " <t1,t2,t9,12,t3,t4>
0
<t1,t2,t9,t6> <t1,62,69,62,t9> <t1,62,t9,12,t3,t9>
<t1,t2,t3,t5>
<t1,t2> <tl,2,t3> <tl,t2,t3,t4>
©,
<t1,t2,t3,t9>

<t1,13,12,t4>

< <tl> <tL,t3> <tl,£3,12> <tl,t3,12,t5>

<t1,t3,12,t9>

<t1,t6> <tl,t6,t7> <t1,t6,t7,t8>

Figure 5.5: Automaton from 1-alignments between model M and log L.

the escaping states are in color. For example, the escaping tasks of the state (¢1,t2,t3)
are {ts,t5,to} \ {ta} = {t5,t9}. The computation and analysis of these escaping arcs are
the cornerstone of the precision checking technique presented in this thesis. All identified
escaping arcs can be analyzed and further used to correct the model and make it more precise.
Furthermore, in order to globally estimate precision, these escaping arcs in turn are weighted
and normalized defining a metric to measure precision called I-align precision metric.

Definition 5.7 (1-Align Precision metric). Let Apxip = (S, 7T, 7 w, s0) be the prefix au-
tomaton of the alignments in A' enhanced with the behavior of the model M. The metric
1-Align Precision estimates the precision of the system comparing, for each state in S, the
number of escaping arcs with the number of allowed arcs. The numbers are weighted accord-
ing to the importance of the state. Formally:

Y scgw(s) - |esc(s)|
> sesw(s) - [mod(s)|

For example, the precision for the automaton derived from A' shown in Figure 5.5 is

a,;(AAlM) =1-

96 Chapter 5. Precision based on Alignments

0.79.

5.3.2 Precision from All-Alignment

As experiments show, the use of one alignment is an effective and efficient alternative for
precision checking. However, the approach relies on selecting one of optimal alignments, and
therefore, it may detect more escaping arcs. Let us consider the model in Figure 5.6, and a
log with only one trace (a, d).

start

tl
(o—]a]

Figure 5.6: Model with two optimal alignments for the trace (a, d), one with move on the
model (b,t2), and the other with one move on model (¢, t3).

There are two possible optimal alignments: one includes a move on the model (b, t2), and
the other one move on model (c,t3), while (a,t1) and (d,t4) are synchronous moves. If we
select the first alignment for computing the precision, (¢1,t3) is then considered an escaping
tasks. On the other hand, if we select the second alignment, (t1,t2) becomes an escaping
tasks. In other words, decisions in the fitness dimension are affecting the precision dimension.
As [80, 79] states, the analysis of one conformance dimension should be independent from
the others. Therefore, given that both alignments have the same cost, both alignments
must be considered for precision dimension, while the mismatches produced by the moves
on model must be evaluated in the fitness phase. Following with the running example of
Table 5.1, we consider the following 9 complete transition sequences to represent the observed
behavior: TO?UT(’)/la) = <t1,t6,t7,t8>, TO’LUT(")/lb) = <t1,t2,t3, lf4>7 TOU)T(’}/lc) = <t17t3,t2,t4>,
rowr (y1a) = (t1,t3,t2,t5), rowr(yie) = (t1,t2,t3,t5), rowr(y2) = (t1,ta,t3,t4), rowr(ys) =
(t1,t3,ta,t5), rowr(ya) = (t1,ts,t7, ts), and rowr(ys) = (t1, t2, to, ta, t3, ta),

Notice that, constructing an automaton from all the alignments using the approach on the
previous section introduces a bias on the weighting functions: log traces associated with more
optimal alignments would have more weight. For example, log trace o1 would have five times
more influence in the measure — rowr(v14), Towr(Y1p), rowr(y1c), rowr(v14) and rowr(yie)
— than o9 — rowr(7y2). In other words, in order to have an unbiased precision measure, the
weight of each optimal alignment associated with a log trace must be normalized, such that
each trace of the log has the same importance within the observed behavior. For that, we
define the weight of an alignment, and we redefine the weight of the states in the prefix
automaton.

Definition 5.8 (Weight of Alignment). Let M be a model, let L be an event log, let o, be
a trace in L, let L(oy) be the frequency of o, and let v € A%,(or) be one of the optimal

5.8. Precision based on Alignments 97

alignments between o, and M. The weight of 7 is defined as w(y) = L(or)-1/|A%, (o), ie.,
the weight is split equally among all the alignments of the log trace, taking into account the
frequency of the trace withing the log. Given the prefix automaton Apx«pr = (S, T, /, w, So),
the weight of a state s € S is defined as:

w(s) = Z w(7) if s is a prefix of rowy () (or 0 otherwise)
VyeA*

For example, the weight of the alignment 71, of trace o1 is 1-1/5 = 0.2, while the weight
of y9is 1-1/1 = 1. Figure 5.7 shows the resulting automata for the running exemple L and
M using the function A*. For example, the weight of the state (t1,ts) is 1 from ~4 plus 0.2
from 714, i.e., 1.2.

<t1,£2,19,t5> <t1,2,9,2,13,t5>

<t1,t2,t9> <t1,t2,19,t2> <t1,£2,19,t2,t3> <t1,£2,t9,t2,t3,t4>

<t1,£2,9,t6> StLLE2,9,62,19> NKtL12,9,12,13,19>

A
&
S
N
-
3

—-
(93
\

<t,t2> <t,£2,t3> <t1,t2,13,t4>

<> <tl> <tl,t3> <t1,t3,t2>

<t1,t6> <tl,t6,t7> <t1,t6,t7,t8>

Figure 5.7: Automaton from all-alignments between model M and log L.

As it is done with 1-align precision metric, the all-align metric is formalized as:

Definition 5.9 (All-Align Precision metric). Let Apx«pr = (S, 7T, 7, w,s0) be the prefix
automaton of the alignments in A* enhanced with the behavior of the model M. The metric
All-Align Precision estimates the precision of the system comparing, for each state in S,

98 Chapter 5. Precision based on Alignments

the number of escaping arcs with the number of allowed arcs. The numbers are weighted
according to the importance of the state. Formally:

2sesW(s) - [esc(s)]
2sesw(s) - [mod(s)]

a;(AA*]\/[) =1-

5.3.3 Precision from Representative-Alignment

Given a log trace and a process model, A* provides all optimal alignments. However, as
shown in [18], it is an expensive option in terms of computation time. The use of only
one alignment per trace (i.e., A') solves this issue in cases where time is a priority, but
it may sacrifice accuracy. As a trade-off between time and accuracy, in this section we
propose precision measurement based on representatives of all optimal alignments AT (cf.
Section 5.2). In this section, we revisit the precision measurement to include this notion.

Freq Trace AR rep

1 o1 = <a> Y1a 1
Yie 2
Yd 2

1 g2 = <a,b,C7 d> Y2 1

1 o3 = (a,c,b,e) vz 1

1 04:<aafvg7h> Y4 1

1 o5 = (a,b,i,b,c,d) 5 1

Table 5.2: Optimal representative alignments of log L = [o1, 02, 03,04, 05] and the medical
model M of Figure 5.2

Table 5.2 show the optimal representative alignments assigned to each trace of the running
example, and the number of optimal alignments they represent.

The construction of the prefix automaton and the definition of escaping arcs for the
representative alignments are the same as the or for all the alignments shown in the previ-
ous section, except for the weighting function. The weight of an alignment + needs to be
proportional to the number of alignments represented by 7, i.e., rep(7y).

Definition 5.10 (Weight of Alignment). Let M be a model, let L be an event log, let oy,
be a trace in L, let L(oz) be the frequency of o7, and let v € A, (o) be one of the optimal
representative alignments between o, and M, where rep(vy) are the alignments represented
by ~. The weight of v is defined as:

w(y) =L(og) -rep(v)/ > rep(v)

Y EAR (o)

5.8. Precision based on Alignments 99

For instance, let us consider the optimal representative alignment ~y;. for the log trace
o1. The number of alignments represented by ~i. is rep(v1.) = 2. The total number
of optimal alignments represented by the representative alignments associated with oy is
> enr(or) TeP(Y') = 5. Hence, the weight w(v1c) =1-2/5 = 0.4. On the other hand, let us
consider 75, the only optimal alignment associated with o5. The representative alignment
~5 represents 1 optimal alignment. Since the number of all optimal alignments represented
is > ear(os) TeP(Y) = 1, the weight of v5 is w(y5) =1-1/1=1.

Figure 5.8 shows the resulting automata for the running exemple L and M using the
function Af. For example, the weight of the state (t;,t3) is 1 from 73, plus 0.4 from 7.
(represents 2 alignments of 5), plus 0.4 from 714 (represents 2 alignments of 5), i.e., 1.8.

<t1,2,19,t5> <t1,2,9,2,13,t5>

<t1,t2,t9> <t1,t2,19,t2> <t1,£2,19,t2,t3> <t1,£2,t9,12,t3,t4>

<t1,t2,t9,t6> <t1,62,69,2,t9> <t1,62,t9,12,t3,t9>

<t1,2,13,t5>

<tl1,12> <t,£2,t3> <t1,t2,t3

<t1,12,13,t9>

t4>

121

<> <tl> <t1,t3> <tl,t3,12>

<t1,t6> <tl1,t6,t7> <t1,t6,t7,t8>

Figure 5.8: Automaton from representative-alignments between model M and log L.

As it is done with 1-align and all-align precision metric, the rep-align metric is formalized
as:

Definition 5.11 (Rep-Align Precision metric). Let Aprp; = (S, T, 7w, s0) be the prefix
automaton of the alignments in A® enhanced with the behavior of the model M. The metric
All-Align Precision estimates the precision of the system comparing, for each state in S,

100 Chapter 5. Precision based on Alignments

the number of escaping arcs with the number of allowed arcs. The numbers are weighted
according to the importance of the state. Formally:

Dses@(8) - |esc(s)]
2sesw(s) - [mod(s)]

Note that there can be more than one ways to compute representative alignments from
a given model and a trace. Given an event log and a model, the selection of representative
alignments between each trace in the log and the model obviously influences the automata
that can be constructed between the log and the model.

af(AARM) =1-

5.4 Abstractions for the Precision based on Alignments

The approach presented in Section 5.3 uses the prefixes of complete tasks sequences to
represent states of the automaton. This implies that given a complete tasks sequence o,
other sequences with slightly different permutation of tasks are placed in different branches of
constructed automaton than . Given a process model that allows many possible interleaving
of tasks, the approach can only provide a perfect precision value if all permutations of the
interleaving activities are been observed. This requirement may be too restrictive in some
cases.

Figure 5.9: Process model that allows the interleaving of two blocks of tasks: to,t3,t4 and
g, t7,ts.

For example, let us consider the process model in Figure 5.9 and the log in Table 5.3. The
model allows for the interleaved execution of 5, t3 and t4. This behavior is also observed
in the log, containing all possible permutations of to, t3 and t4. The model also allows the
interleaving of tg, t7 and tg, and all possible permutations of tg, t7 and tg are also observed
in the log. One may expect a perfect precision of 1 for such model and log. However,
given the presented approach, the precision is 0.8. The automaton of Figure 5.10 shows
the escaping arcs detected. Notice that prefix (t1,ta,t3) of (t1,te,ts,t4, 5, te, t7,ts, to) and
prefix (t1,ts3,t2) of (t1,t3,t2,1t4,ts5,t7,t6,ts, o) represent two different states even when the

5.4. Abstractions for the Precision based on Alignments 101

Freq Trace rowp(7y)

1 (a,b,c,d,e, f,g,h, i) (t1,t2,t3,t4,t5,t6,t7,ts,t9)
1 (a,b,d,c e, fyh,g,i) (t1,t2,ta,ts,t5,t6, ts, t7, t9)
1 <a,c,b,d,6,g,f, h,i) <t1,t3,t2,t4,t5,t7,t6,t8,tg>
1 (a,e,d,bye g, h, fi) (t1,ts,tq,t2,t5,t7, s, 6, to)
1 (a,d,b,yc,e h, f,g,7) (t1,ta,ta,t3,t5,t8,t6, t7,t9)
1 (a,d, e bye h, g, f,1) (t1,ta,t3,ta, ts, ts, t7, e, to)

Table 5.3: Event log for the model in Figure 5.9

executed tasks and their frequency in both prefixes are the same. For the given example, the
minimum number of traces necessary to reach a precision of 1 is 36. This number increases
exponentially with the increasing degree of concurrency of the considered model. In such
cases, some level of abstraction in the way states are represented is desirable. In Section 5.4.1
we propose an approach to abstract from the order of the tasks to compute the precision,
dealing with the possible incompleteness of the log.

Moreover, notice that the automaton is constructed considering the prefixes of the com-
plete tasks sequences. However, this may introduce a bias on the direction, i.e., the tasks
executed in the past are the ones that determine the current state. A reasonable alternative
is to consider the future tasks to determine the current state. In Section 5.4.2 we propose to
use the future to construct the automaton, in order to deal with the possible bias produced
by the direction used to compute precision.

5.4.1 Abstraction on the Order

In [12], the authors describe an approach to extract a transition system from the log. The
proposed approach consider a set of possible abstractions and filters on the trace in order
to determine the states of the transition system. In particular, they propose the use of
sets, multisets, and sequences of activities as state representations. In a similar way, in
this section we propose two possible state representations for precision checking that can be
chosen depending on the desired level of abstractions:

e Ordered: A stateis a sequence of tasks. This is the same representation as the one used
in Section 5.3. For example, the states for prefix (t1, ta,t3) and (t1, t3, t2) are different.

e Unordered: A state is a multiset of tasks, i.e., the order among tasks does not matter,
but the number of executions of each task does. For example, the states for (¢1,ts,t3)
and (t1,t3,t2) are the same, i.e., [t1,t2,t3]. However, the states for (t1,%2,t9) and

102 Chapter 5. Precision based on Alignments

(t1,t2,t9,t2) are not the same, i.e., [t1,ta,t9] and [t1,t22, 9] respectively, because the
number of occurrences of each task matters.

Figure 5.11 show the l-alignment automaton for the medical process, considering the
multiset state representation. This automaton contains differences with respect to its or-
dered homologous (cf. Figure 5.5). For example, instead of having two states (¢1,%2,t3)
and (t1,t3,ta) for prefixes (t1,ts,t3) and (t1,¢3,t2), both prefixes are now represented as a
single state [t1,ta,t3]. This representation reduces the number of escaping arcs and hence
increases precision values. Using multiset state representation and precision calculation as
explained in Section 5.3, the model in Figure 5.9 and log in Table 5.3 used to motivate
this section has a precision value of 1 (perfect). It is worth mentioning that in [12], the
authors also propose the use of set as state representation. However, this is not applicable
to our case: unlike sequence or multiset, a set does not preserve the number of occurrences
of each task executed, and therefore, it may represent a (possible infinite) number of differ-
ent model states. For example, given the model in Figure 5.2, the set {t1,t2,%9} represents
(t1,t2,t9),(t1, 2, to, ta),(t1, t2, to, tas tg), - - ..

5.4.2 Abstraction on the Direction

In the approach presented in Section 5.3, the prefixes of the complete tasks sequences are
used to build the automaton. For example, given a complete task sequence (ty,to,t3,t4),
the states constructed from the sequence are the empty sequence () (corresponding with
(ot1,1a,ts,ts), where o indicates a point of interest in the sequence), (t1) (for (t1e,ta,t3,t4)),
<t1, t2> (fOT <t1, tg, t3, t4 [t3, t4>), <t1, tz, t3> (fOI <f1, tg, t3 o t4>) and ﬁnally <t1, tg, t3, t4> (fOI‘
(t1,ta,t3,t40)). In other words, only the activities in the past are used and we move forward
on the complete task sequences. This approach is used by all existing precision checking
techniques [62, 64, 63].

In [12], the authors show that any point in the sequence (represented as o) may represent
two complementary visions: the past tasks seen until that point (as it has been shown
above), but also the future tasks to come until the ending of the case. For instance, given
(t1,t2 @ t3,t4), (t1,t2) are the tasks occurred, while (t3,t4) are the tasks to happen. Both
(t1,t2) and (t3, t4) are used in [12] as two different states that can be derived from the same
point in the sequence. In this section, we use the same idea to present a backward precision
measurement, that complements the forward approach presented before. The combination
of metric results for both approaches will lead to a measurement unbiased by the direction
of the precision checking. For the sake of clarity we will use ordered state representation to
illustrate the remainder of the section, although the analogous procedure is applicable for
unordered representation.

Let A be the option chosen to compute precision, i.e., A*, A* or A®. In order to build the
automaton for the backward precision measurement, we consider the prefixes of the reversed
complete tasks sequences in rowr(A). In other words, given rowr(vy) = (t1,t2,ts,t4) of the
alignment v € A, we use row.(y) = (ta,t3,%2,%1) to determine the states, resulting in the

5.4. Abstractions for the Precision based on Alignments 103

following 5 states: () (corresponding with (ety,ts,ta,t1)), (t4) (for (t4 e t3,t2,11)), (ta,t3)
(fOl" <t4, t3ets, t1>), <t4, t3, f2> (fOY <t4, t3, to Ot1>) and finally <t47 t3, to, t1> (fOI <t47 t3,to, t1.>).
Analogously, the set of complete tasks sequences of M is also reversed.! The rest of the
precision checking is performed as it is described in Section 5.3.

Figure 5.12 shows an example of two automata for the trace (a,b,c,d), constructed by
moving in forward direction (left) and by moving backward (right). Notice the difference of
identified escaping arcs shown by the two automata. Finally, precision values obtained using
forward and backward-constructed automaton can be combined (e.g., the average), resulting
in a balanced precision metric unbiased by the direction of the automaton constructed.
Note that more sophisticated and flexible combinations of both metrics are also possible.
In Section 5.5, we investigate the differences in precision values produced by the various
approaches using a variety of even logs and models.

INotice that, for the case of Petri nets with one unique initial and final markings, the set of all reversed
complete transition sequences can be generated by the behavior of a net obtained from the original net by
reversing its arcs and swapping their initial with final marking.

104

<t1,12,t4>

<t],12 <t1,12,t3>

<tl,13,12>

<> <t1> <tt3 <t1,13,t4>
(O—(s)

<tl,t4,t2>

1,14 <tl,t4,t3>

<t1,2,t4,3>

<t1,12,13,t4>

<t1,63,12,t4>

<t1,63,14,12>

<t1,t4,12,t3>

<t1,t4,13,12>

<t1,£2,t4,13,5>

<t1,13,12,t4,t5>

<t1,3,14,12,t5>

<t],t4,2,t3,t5>

<t],t4,13,t2,t5>

<t1,12,13,t4,t5>

Chapter 5. Precision based on Alignments

<t1L12,4,3,15,17>

<t1,42,14,13,15,t6>

<t,12,14,13,15,18>

<t1,t2,t3,t4,t5,t7>

<t1,A2,t3,14,t5,t6>

<EL2,13,t4,t5,t8>

<t1,13,t2,14,15,t6>

<t1,13,12,14,15,t7>

<tL3,02,t4,t5,t8>

<t1,13,4,2,15,16>

<t1,t3,t4,12,15,t7>

<UL3,H4,62,t5,t8>

<t1,t4,12,3,15,6>

<t1,t4,t2,13,t5,t8>

<tLH2,3,t5,t7>

<t1,t4,13,12,15,6>

<t1,t4,t3,12,t5,t8>

<tH4,13,2,t5,t7>

<t1,12,t4,13,t5,t6,t7>

ZH12,t4,13,15,6,t8>

<ULLE2,13,4,15,6,18>

ZU,12,83,14,15,16,L7>

<t113,12,14,15,17,8>

ZU,13,12,14,5,17,6>

<t1,13,t4,t2,t5,t7,t6>

<t1,63,14,12,15,t7,t8>

<t1,t4,12,3,15,18,17>

ZH1t4,02,3,t5,8,t6>

<t1,14,83,12,15,18,16>

<t1,t4,13,12,t5,t8,t7>

UL, 35, E6,t8,47> <t1,12,t4,13,L5,6,t8,47,19>

<ELA23MAL5,66,47,08> <t1,t2,t3,t4,15,46,17,8,t9>

UL AT H6,48> <t1,t3,t2,t4,15,47,46,18,t9>

<UL AT A8,46> <t1,t3,t4,12,15,17,18,16,t9>

<tLH2,3,5,18,16,7> <t1,t4,12,t3,15,18,16,7,t9>

<t]t4,t3,02,t5,t8,t7,t6> <t1,t4,t3,t2,t5,t8,t7,t6,19>

Figure 5.10: Precision automaton and escaping arcs between the model in Figure 5.9 and

the log in Table 5.3.

5.4. Abstractions for the Precision based on Alignments 105

[t1,£2,16,19] [t1,£2,£2,£3,15,19]

[t1,£2,19] [t1,£2,12,19] [t1,£2,42,£3,t9

[t1,£2,62,3,t4,19]

[t1,£2,16,19] £1,£2,£2,19,19] £1,62,£2,£3,19,19]

[t1,42,13,t5]
<t1,2,63] [t1,2,13,t4]

[1,£2,£3,19]

[t1,t6]

[t1,t6,t7] [t1,t6,t7,t8]

Figure 5.11: Automaton from A with multiset state representation for the running example
medical process.

@ end

<t2> <tl,t1> <tl,t2,t1> <t4,t3,t1> <t4,t3,t2,t2> <t4,t3,t2,t1,t1>

<tl,t2> <tL2,t3> <tl1,t2,t3,t4> <t4,t3> <t4,t3,t2>

<t1,13> St4,3,2,t1,2>

Figure 5.12: Example of model and resulting automaton for the trace (a,b, ¢, d), with both
forward and backwards approaches.

106 Chapter 5. Precision based on Alignments

5.5 Experimental Results

In this section we illustrate experimentally some of the concepts presented in the chapter.

The first set of experiments was performed to evaluate the precision measurements pro-
vided by the proposed metrics. In particular, we measured whether the proposed precision
metrics are unidimensional [95], i.e., not sensitive to non-fittingness of event logs. We mea-
sured precision between various logs and models whose expected values are known. Further-
more, we compared the values obtained against existing state-of-the-art metrics for precision:
etcp [62] (presented in Chapter 3), behavioral precision [97], and weighted behavioral preci-
sion [27].

By combining completely precise and flower models and log in various ways, we created
new models whose expected precision values are between the two extremes. Two models
were combined by merging the end place of one with the initially marked place of another.
The merged models were named according to the name of their original models, e.g., PF
model is the result of merging the end place of completely precise P model with the initially
marked place of the flower model F. Precision values were measured 30 times using 30 event
logs, each consists of 5,000 traces, generated by simulating the precise model (i.e., PP). For
sake of completeness, we also measured the precision of the overfitting model (P) and the
flower model (F) using 30 logs of 5,000 traces generated by simulating the P model. This
way, each log contains all the possible behavior of the model that generates it (i.e., all directly
follow relations between two activities that are allowed according to the model are recorded
in the log).

The top part of Figure 5.13 shows the alignment-based precision values, measured using
all optimal alignments per trace of the logs. The experiment with one and representative
alignments per trace yields identical results. This result shows that by observing sufficiently
enough behavior in the event logs, all alignment-based metrics provide similar intuition
about precision of models, i.e., overfitting models have high precision values and “flower”
models have low precision values. Note that there are slight differences between various
configurations of metrics, i.e., states (ordered /unordered) and forward /backward constructed
automata.

To evaluate the robustness of the metrics against non-fitting logs, we took the models
and logs from the previous experiments and created unfitting logs by removing n random
events per trace from the fitting logs. Furthermore, the measurements are compared against
existing metrics. We use the CoBeFra tool [28] to measure behavioral precision [97] and
weighted behavioral precision [27]) and use ProM 6 to measure etcp. The bottom part of
Figure 5.13, Figures 5.14 and 5.15 show some of the results.

The bottom part of Figure 5.13 shows that the metrics proposed in this chapter are robust
to fitness problems. Even in cases where almost half of the events in all traces are removed,
all alignment-based metrics provide similar value as the ones provided for perfectly fitting
traces. Figure 5.14 shows a comparison between the precision values provided by alignment-
based metrics and other existing metrics. For readability, we only show one alignment-based

5.5. Ezperimental Results 107

No removed events

Precision

FF F PF FP
Log/Model

3 removed events/trace

PF FP Log/Model PP
LEGEND
Alignment-based (All-optimal alignments)
B ordered, combined [] ordered, backward ordered, forward
[l unordered, combined unordered, backward] unordered, forward

Figure 5.13: Precision values of flower and over-precise logs/models and their combinations
provided by alignment-based approach (i.e., computed using all optimal alignments, ordered,
and forward-constructed automata). If all behavior are observed in the original logs, all
measurements are insensitive to non-fitting traces.

metric: the one computed using all-optimal alignments and forward-constructed automata
whose states are constructed by taking into account activity ordering. Note that in cases
where logs are perfectly fitting the models, all metrics provide similar precision intuition.
In fact, the alignment-based precision values shown in Figure 5.14 are the same as the etcp
values. However, in cases where logs are non-fitting, other metrics may show misleading
precision insights. The etcp metric provides low precision for model PF with respect to
perfectly fitting logs (i.e., 0.25). However, the value rises to 0.82 when 3 events are removed
from the logs, because for all non-fitting traces it ignores the rest of the traces after the
first non-fitting event occur. Similarly, both weighted and unweighted behavioral precision
metrics provide lower precision values for non-fitting logs than the ones provided for perfectly
fitting logs. Even for overly fitting models P and PP, both metrics provide precision values
below half (i.e., indicating the models are imprecise). This occurs because both metrics mixed
both perfectly-fitting and non-fitting traces in construction of artificial negative events, which
leads to misleading construction of artificial negative events.

Figure 5.15 shows the influence of noise by removing some events in the logs. As shown
in the figure, other than the alignment-based precision metric, precision values of all metrics
may change significantly even with only one event removed from all traces. Due to the
randomness of the location of removed events, the etcp metric may both increases or decreases
with the presence of non-fitting traces. Both weighted and unweighted behavioral precision

108 Chapter 5. Precision based on Alignments

No removed events 3 removed events/trace

Precision
Precision

. ! 00
FF F PF FP P PP PF FP P PP
Log/Model Log/Model
LEGEND
Alignment-based precision: All- [l etc, [] Unweighted behavioral [l Weighted behavioral
alignments, ordered, forward precision precision

Figure 5.14: Comparison between precision values obtained using alignment-based approach
(i.e., computed using all optimal alignments, ordered, and forward-constructed automata)
and other metrics. Only the alignment-based approach is not sensitive to non-fitting
logs/models.

metrics decreases when more events are removed because incorrect artificial negative events
are introduced. Note that the number of negative events tends to decrease when traces in
the log gets more vary because of the removal of events.

Model PF Model FP Model PP Model P
10 03 1.0 -\ — —h —4 10 =\ —a— 3
c 08 e g —_—— g 08 08
goe 2 02 206 S s %\7
g 8 oo o~ Zu
g & 01 s e =
02 —% 02 a 02
0.0 T - Y 0.0 0.0 0.0 T
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
#Removed events #Removed events #Removed events #Removed events
LEGEND
—+—Alignment-based precision: All-alignments, etc, —*=Unweighted behavioral —#-Weighted behavioral
ordered, forward precision precision

Figure 5.15: Precision values of different metrics for perfectly fitting logs and non-fitting logs
created by removing some events in the logs. Only the alignment-based approach metric
(i.e., computed using all optimal alignments, ordered, and forward-constructed automata) is
insensitive to non-fitting logs.

The set of experiments also shows some interesting insights into differences between
alignment-based metrics. Figure 5.16 shows a comparison between precision values provided
by the two metrics for models PF and FP. As shown in the figure, precision values of
alignment-based metrics provided by forward-constructed automata for model PF is higher
than the values provided by backward-constructed automata for the same model, regardless
of the noise level and the state representation (ordered/unordered). In contrast, the values

5.5. Ezperimental Results 109

provided by the latter is higher than the former for the FP model. This shows that the posi-
tion of the precise part of the models influences precision values. Precision values are higher
when the direction of constructed automata starts with precise part of process models. In
this case, we clearly see the influence of forward /backward direction of constructed automata
to precision values. To balance the influence, one of the simplest way is to take the average
between the values provided by both directions. Figure 5.16 shows that the precision values
obtained by combining both values are almost similar between model PF and FP.

PF, Ordered PF, Unordered FP, Ordered FP, Unordered
3

o3 o3 — 0. 0.3
P e [e o o O D
s o - G F—H——XK S 2 c ===
002 +o——— 902 +o—=—o—0— 202 0802 +—
1] : '] a]
'Q o S o
0.1 80.1 = 0.1 @0.1
o a a o
0.0 T T 0.0 T T T] 0.0 : - ! 0.0 T T
o 1 2 3 o 1 2 3 o 1 2 3 o 1 2 3
#Removed events #Removed events #Removed events #Removed events

LEGEND -=% Combined -#— Forward =e— Backward

Figure 5.16: Precision values of the PF and FP using all-alignments per trace, with differ-
ent state representations (ordered/non-ordered) and direction (forward/backward). Higher
precision is obtained when the direction of automata construction starts with precise part of
the models.

To evaluate the applicability of the approach to handle real life logs, we used 8 pairs of
process models and logs from two different domains (see Table 5.4), where 7 logs and models
were obtained from municipalities in the Netherlands. In particular, we took the collections
of logs and models from the CoSeLoG project [34]. The remaining pair of log and model is
obtained from a hospital in the Netherlands?. The logs and models from municipalities are
related to different types of building permission applications, while the hospital log is related
to patient handling procedure. All processes have unlogged tasks, and some of the models
allow loops. Table 5.4 shows an overview of the logs and models used in the experiments.
#Deviations/trace column indicates the number of asynchronous moves after aligning all
traces in the logs with their corresponding models. As shown in Table 5.4, all logs are not
perfectly fitting to the corresponding models. We measure the precision values for all logs
and the computation time required. The results are shown in Figure 5.17 and Figure 5.18.

Figure 5.17 reports precision values obtained for real-life logs and models. Only the
approach based on 1-alignment provides precision values for all real-life logs and models in
the experiments. The approach based on all-optimal alignments per trace had out-of-memory
problems when dealing with relatively complex process models and logs such as “Bouw-1”
(33 places, 34 transitions), “Bouw-4” (31 places, 31 transitions), and “MLog-3" (24 places,

2see http://www.healthcare-analytics-process-mining.org/

http://www.healthcare-analytics-process-mining.org/

110 Chapter 5. Precision based on Alignments

Log #Cases #Events Process Model #Deviation/trace
#Place #Trans

Bouw-1 139 3,364 33 34 9.75
Bouw-4 109 2,331 31 31 7.27
MLogl 3,181 20,491 15 12 5.33
MLog2 1,861 15,708 16 19 1.45
MLog3 10,271 85,548 24 21 14.50
MLog4 4,852 29,737 16 27 2.09
MLogb 25,846 141,755 14 24 T.21
IsalaLog i 459 26 39 0.68

Table 5.4: Real-life logs and models used for experiments

1-alignment

All-alignments Representative-alignments

c c c
2 206 G 0.6
K] @ 2
S S 2
£ £ 04 gos

0.2 0.2

0.0 0.0

\)&’\
< <
Log/Model Log/Model
LEGEND M ordered, combine ordered, backward ordered, forward
unordered, combine unordered, backward [unordered, forward

Figure 5.17: Precision values of real-life logs and models. Only the 1-alignment approach
manages to provide precision results for all logs/models.

21 transitions). Precision measurements based on representative of optimal alignments also
had the same problems dealing with the hospital log (i.e., “IsalaLog”). Although the model
of the log is relatively small, it contains many unlogged tasks (tasks whose execution are not
logged), allows loops, and allow many interleaving activities such that the size of state space
required to compute even representative of all optimal alignments is large and does not fit
memory.

Nevertheless, notice the similarity of the computed precision values using all three align-
ments (1-align, all-align, and representatives). From all pairs of logs and models, only 2 of
them have precision value below 0.7. This shows that in reality, process models are made to
be relatively precise such that meaningful insights into the process can be obtained. Interest-
ingly, different precision values are provided by different metrics in the experiment with log
and model “Bouw-4” when both one and representative alignments are used. The precision
value provided by ordered-forward metric for the model is around 0.44 (showing impreci-
sion) while the unordered-backward precision metric provides a value of 0.7 (i.e., precise).
This indicates that more observations are required to measure the particular log and model
accurately.

Figure 5.18 reports the computation time required to measure precision of real-life logs

5.6. Conclusions 111

Ordered, combine Unordered, combine
100.00 100.00
@ i
2 2
£ 1000 £ 10.00
=3 =3
2 2
o 1.00 ——— o 1.00 ———
£ E
= =
a 0.10 +— a 010 +—
13 13
(=] =]
Q Q
0.01 0.01 +
N ™ N o D D H L N R N v D D &
& ISR N B N N Y & SIS N N N BN Y
& < Y Q¥ QY \c;o\'b & o NEN NI U ER -y
Log/Model Log/Model
LEGEND M All-alignments Representative-alignments M 1-alignment

Figure 5.18: Computation time comparison of alignment-based precision measurement using
combined values (from backward and forward automata construction). Y-axis values are
shown in a logarithmic scale.

and models using alignment-based approach with combined precision values between forward
and backward-constructed automata. The y-axis of the charts are shown in logarithmic scale.
As shown in the figure, the computation time of precision measurement with all-alignments
takes much longer than the ones required by one or representative alignments. All measure-
ments using l-alignment/representative alignments were computed in less than 10 seconds.
Notice the similarity between the left and right graph on the figure (except the IsalaLog that
has out-of-memory problem in the approach with representative alignments). In fact, we ob-
tained identical results for all other combination of state representations (ordered /unordered)
and directions where automata is constructed (forward/backward). This shows that the dif-
ferent directions of the automata construction and state representations are not significantly
influencing computation time. Instead, most computation time of precision measurement
is spent in the alignment of logs and process models. Another interesting observation is
that the time spent to compute representative alignments are similar to the time spent to
compute 1-alignment. Thus, we recorded the number of generated representatives for the
experiments and other statistics to investigate this.

5.6 Conclusions

The direct use of event logs to determine the observed behavior is susceptible to get mis-
aligned when it is compared with the modeled behavior, i.e., situations where the model is
unable to determine the system state given the observed behavior. This chapter proposes
the use of aligning approaches as a previous step before the precision computation. In par-
ticular, the chapter extends the escaping arcs theory to use the 1-alignment, all-alignment
and representative-alignment to determine the observed behavior, instead of using directly

112 Chapter 5. Precision based on Alignments

the log. Furthermore, the chapter proposes an abstraction of the escaping arcs approaches,
where different state representations and different automaton construction are considered.

Part 111

Decomposition in Conformance
Checking

113

Chapter 6

Decomposed Conformance
Checking

6.1 Introduction

While in the previous chapters we analyzed the precision dimension, in these second part
we focus on the fitness dimension of conformance checking. In real-life situations, event logs
often do not fit its corresponding models, i.e., some log traces cannot be fully reproduced
in the model. These non-fitting situations should be communicated to the stakeholders, in
order to take decisions on the process object of study. However, in reality process models can
be non-deterministic, which complicates the analysis. Non-determinism may arise when the
model contains silent or duplicate activities, which is often the case in practice. Moreover,
the presence of noise in the log — e.g., incorrectly logged events or abnormal behavior —
complicates even more the algorithmic detection of non-fitting situations. Due to this, the
initial fitness approaches based on replaying log traces in a model in order to assess whether a
trace can fit a model [80] have been recently reconsidered, giving rise to approaches based on
alignment [16]. Alignment techniques relate complete firing sequences of the model and traces
in the event log. The techniques can cope with deviations and models with duplicate/invisible
activities. However, alignment techniques are extremely challenging from a computational
point of view. Traces in the event log need to be mapped on paths in the model. A model may
have infinitely many paths and the traces may have an arbitrary amount of deviating events.
Hence, although the algorithms have demonstrated to be of great value for undertaking
small or medium-sized problem instances [4, 49], they are often unable to handle problems

— The materials reported in this chapter are partially published in [67] and [65] —

115

116 Chapter 6. Decomposed Conformance Checking

of industrial size. Decomposition techniques are an important means to tackle much large
and more complex process mining problems. Therefore, this chapter addresses this problem
through decomposition and distribution, using Petri nets as the modeling class (although the
conclusions can be extrapolated to other process model notations).

There is a trivial way to decompose the fitness checking problem. One can simply split
the event log into sublogs such that every trace appears in precisely one of these sublogs.
Note that the conformance is still checked on the whole model. Linear speed-ups are possible
using such a simple decomposition. However, the real complexity is in the size of the model
and the number of different activities in the event log [15]. Therefore, we propose a different
approach. Instead of trying to assess the fitness of the whole event log and the complete Petri
net, fitness checking is only performed for selected subprocesses (subnets of the initial Petri
net and corresponding sublogs). Subprocesses are identified as subnets of the Petri net that
have a single-entry and a single-exit node (SESE), thus representing an isolated part of the
model with a well-defined interface to the rest of the net. SESEs can be efficiently computed
and hierarchically represented in a tree-like manner into the Refined Process Structured Tree
(RPST) [73].

The remainder of this chapter is organized as follows. Related work and other approaches
for decomposing conformance checking are presented in Section 6.2. Section 6.3 presents the
definitions of Single-Entry Single-Exit and Refined Process Structured Tree. The decompo-
sition of a Petri net in terms of SESEs is presented in Section 6.4, and Section 6.5 defines
a valid decomposition where the conformance properties are preserved. In Section 6.6 we
provide some experimental results. Finally, Section 6.7 concludes the chapter.

6.2 Related Work

Decomposing large graphs into smaller fragments is a topic widely studied in the literature.
There exist plenty of techniques with different goals for that task, for example, minimizing the
connectivity among fragments [52]. In particular, this chapter aims to obtain fragments with
a single entry node and a single exit node [72]. SESEs, presented in Section 6.3, capture the
idea of subprocess with a clear entry and exit point within the main process. In [93, 94] the
authors proposed a Refined Process Structure Tree, a tree structure of SESEs. The proposed
RPST has some desirable properties: it is unique, it is modular, and can be computer in linear
time. The linear time computation is based on the idea of triconnected components in [91].
The original RPST algorithm [93] contained a post-processing step fairly complex. In [72,
73] the computation of this post-processing step is considerably simplified by introducing a
pre-processing step that splits every node with more than one incoming andmore than one
outgoing edge into two nodes. Both the theory and the implementation used in this chapter
is based on [72, 73]

Decomposition techniques have been applied recently in process mining. In [2], the author
proposes a new decomposition concept: passages. A passage is a pair of two non-empty sets
of activities (X,Y") such that the set of direct successors of X is Y and the set of direct

6.3. Single-Entry Single-Ezit and Refined Process Structure Tree 117

predecessors of Y is X[2]. Process discovery and conformance checking can be done at a
passage level and the results can be aggregated. This has advantages in terms of efficiency
and diagnostics. Moreover, passages can be used to distribute process mining problems over
a network of computers.

In [1] the author formalizes the concept of valid decomposition to decompose in a generic
way process discovery and conformance problems. A decomposition is valid, presented in
detail in Section 6.5, if the resulting subnets ”agree” on the original labeling function, each
place resides in just one subnet, and also each invisible transition resides in just one subnet.
Moreover, if there are multiple transitions with the same label, they should reside in the
same subnet. Only unique visible transitions can be shared among different subnets.

Finally, conformance checking and decomposition are also considered in the work on
proclets [45]. Proclets can be used to define the so-called artifact centric processes, i.e.,
processes that are not monolithic but that are composed of smaller interacting processes
(called proclets). In [45] it is shown that conformance checking can be done per proclet by
projecting the event log onto a single proclet while considering interface transitions in the
surrounding proclets.

6.3 Single-Entry Single-Exit and Refined Process Struc-
ture Tree

The intuitive idea behind the decomposition technique in this chapter is to find subgraphs
that have a simple interface with respect to the rest of the net. The following set of definitions
formalize the idea of Single-Entry Single-Exit subnet and the corresponding decomposition.
The underlying theory dates back to the seminal work of Hopcroft and Tarjan in the sev-
enties [48], but recent studies have made considerable progress into making the algorithms
practical when applied to process models [73, 72]. We start defining the graph structure used
for decomposing a process model: the workflow graph. Given a workflow net!, the workflow
graph represents the arcs between the nodes of the net.

Definition 6.1 (Workflow Graph). Let WN = (P, T, F, start, end) be a workflow net, where
P are the places, T' are the transitions, and F' are the arcs. We define the workflow graph of
WN simply as the directed graph G(WN) = (N, F') where no distinctions are made between
places and transitions, i.e., N = PUT represent the nodes of the graph, and F the arcs. We
can omit the parameter WN whenever the context is clear.

An example of workflow graph Figure 6.1b (only the graph but not the squares) is shown
for the workflow net in Figure 6.1a.

L Although the approach presented in this chapter can be generalized to general Petri nets with several
sources and sinks, for the sake of clarity in this paper we restrict to the workflow case with only one source
and only one sink [73].

118 Chapter 6. Decomposed Conformance Checking

t2 t5
o) 1| P? P4 Y ta t7

start t3 p6 t6 p end

Figure 6.1: An example of (a) workflow net, (b) its workflow graph, and the (c¢) RPST with
its SESE decomposition.

In the remainder, the following context is assumed: Let G be the workflow graph of a
given WN, and let Gg = (Vg, S) be a connected subgraph of G formed by a set of edges S
and the vertices Vg = I1(S) induced by S.2

Definition 6.2 (Subnet nodes [73]). A node z € Vg is interior with respect to Gg iff it is
connected only to nodes in Vg; otherwise x is a boundary node of Gg. A boundary node y
of Gg is an entry of Gg iff no incoming edge of y belongs to S or if all outgoing edges of y
belong to S. A boundary node y of Gg is an exit of Gg iff no outgoing edge of y belongs to
S or if all incoming edges of y belong to S.

For example, let us consider the arcs Sy = {b,d, f, h} of Figure 6.1, and the set of vertices
induced by them Vg, = {t1,p2,t2,p4,t4}. t1 and ¢4 are boundary nodes, while po, ta, ps are
interior. Moreover, t; is an entry, while t4 is an exit.

As next definition formalizes, a SESE is a special type of subgraph with a very restricted
interface with respect to the rest of the graph:

Definition 6.3 (Single-Exit-Single-Entry [73]). A set of edges S C F is a SESE (Single-
Ezit-Single-Entry) of graph G = (N, F) iff Gs has exactly two boundary nodes: one entry
and one exit. A SESE is trivial if it is composed of a single edge. S is a canonical SESE of
G if it does not partially overlap with any other SESE of G, i.e., given any other SESE S’ of
G, they are nested (S C S’ or S’ C S) or they are disjoint (SN S’ = @). By definition, the
source start of a workflow net is an entry to every fragment it belongs to and the sink end
of the net is an exit from every fragment it belongs to.

2II(R) = U(a,b)eR {a,b} is the set of elements referred to by relation X C A x B.

6.4. Decomposing Conformance Checking using SESFEs 119

The decomposition based on canonical SESEs is a well studied problem in the literature,
and can be computed in linear time. In [94], the authors proposed the algorithm for con-
structing the RPST, i.e., a hierarchical structure containing all the canonical SESEs of a
model. In [73], the computation of the RPST is considerably simplified and generalized by
introducing a pre-processing step that reduces the implementation effort considerably.

Definition 6.4 (Refined Process Structured Tree [73]). Let G be the workflow graph of a
given workflow net. The Refined Process Structured Tree (RPST) of G is the tree composed
by the set of all its canonical SESEs, such that, the parent of a canonical SESE S is the
smallest canonical SESE that contains S. The root of the tree is the entire graph, and the
leaves are the trivial SESEs. The set of all the nodes of the tree is denoted as S.

Figure 6.1 show the RPST and the canonical SESEs in the example of the same figure.
In the remainder of the chapter, we will refer to canonical SESEs resulting from the RPST
decomposition simply as SESEs. Also note that the SESEs are defined as a set of edges (i.e.,
S) over the workflow graph (not as subgraphs, i.e., Gg). However, for simplicity and when
the context is clear, we will use the term SESE to refer also to the subgraph induced by those
edges. We will denote as PN® = (PS,T%, F'S) the Petri net determined by the SESE S, i.e.,
PN® = (PNII(S), T NII(S), F NS). The nodes (either transitions or places) determined by
S are denoted as N¥, i.e., (PUT)NTI(S).

6.4 Decomposing Conformance Checking using SESEs

It is well known that checking conformance of large logs and models is a challenging problem.
The size of log and model and the complexity of the underlying process strongly influence
the time needed to compute fitness and to create optimal alignments. Divide-and-conquer
strategies are a way to address this problem [66, 65, 67, 1]. As indicated before, we do
not just want to partition the traces in the event log (providing a trivial way to distribute
conformance checking). The potential gains are much higher if also the model is decomposed
and traces are split into smaller ones. To decompose conformance checking problems, the
overall system net SN is broken down into a collection of subnets {SN*', SN2, ..., SN™} such
that the union of these subnets yields the original system net.

Definition 6.5 (Decomposition). Let SN = (SNMj, M) be a system net where WN =
(P, T, F, start, end). D = {SN*',SN? ... SN™} is a decomposition of SN if and only if:

[] P:UISiSHPi’
° TZUlgignTiv

. F:UISignFi where FINFi =0 for1<i<j<n.

120 Chapter 6. Decomposed Conformance Checking

Note that each place or transition can be shared among different subnets, while each arc
resides in just one subnet.

Any decomposition that satisfies Definition 6.5 may be considered for decomposing a
conformance problem, e.g., subnets containing only one arc, or subnets randomly grouping
distant nodes on the net. However, given that the ultimate goal of a decomposition is to be
able to diagnose, comprehend and understand conformance problems, the use of meaningful
decompositions is preferred, i.e., SESFEs. Given the structure of a SESE where a unique single
entry and a unique single exit exist, a SESE becomes an appropriate unit of decomposition.
Intuitively, each SESE may represent a subprocess within the main process (i.e., the interior
nodes are not connected with the rest of the net), and the analysis of every SESE can be
performed independently. The RPST of a net can then be used to select a possible set of
SESEs forming a decomposition. As it shown in Proposition. 6.6, any transverse cut over
the RPST defines a decomposition.

Proposition 6.6 (SESE decomposition). Let SN = (SN My, Mp) be the system net of the
workflow net WN = (P, T, F, start, end). Consider the RPST decomposition of WN, where S
represents all the SESEs in the RPST. We define a transverse-cut over the RPST as a set of
SESEs D C S such that any path from the root to a leaf of RPST contains one and only one
SESE inD. Given a transverse-cut D = {S1,Sa,...S,}, let the decomposition Dy be defined
as Dp = {SN®' SN2 .. SN} where SN = (PN, M| ps,, Mp|ps,), i.c., the Petri
net determined by the SESE S;, and the projection of the initial and final markings on the
places of the subnet. The decomposition Dy derived from the SESEs satisfies the definition
of decomposition given in Definition 6.5

Proof. By definition of RPST, the arcs of each SESE in the RPST are contained in one, and
only one, of its children (unless it is a trivial SESE). Therefore, any transverse-cut set of
SESEs contains all the arcs, where each arc only appears in only one SESE. O

Proposition 6.7 (A SESE decomposition from RPST exists). Given any RPST, a decom-
position always exists.

Proof. Given any RPST, the root (i.e., the whole net) defines a decomposition. In addition,
the set of all the leaves (i.e., the trivial SESEs with only one arc) also defines a decomposition.
O

As it is claimed in Proposition 6.7, the overall net is, by definition, a decomposition by
itself. But it is obvious to see that this trivial way of decomposition does not alleviate the
initial conformance problem. On the other hand, a decomposition formed only by trivial
SESEs will produce meaningless components, and at the same time, the posterior analysis
will have to deal with the analysis overhead produced by the creation of the numerous
components. A decomposition which lays in between the aforementioned extremes seems
more interesting from the practical point of view, i.e., to generate components large enough
to become meaningful subprocesses, but whose size can be handled in practice. Hence,

6.5. Bridging a Valid Decomposition 121

the algorithm proposed in Algorithm 6.1 can generate a decomposition which limits the
maximum size of each component to k in order to control the size and complexity of individual
components.

Algorithm 6.1 k-decomposition algorithm
procedure k-DEC(RPST,k)

V = {root(RPST)}

D=0

while V # () do
v < pop(V')
if |v.arces()] < k then D = DU {v}
else V =V U {children(v)}

return D

Algorithm 6.1 shows how to compute a k-decomposition, for any k such that 1 < k < |F|
(where |F| stands for the number of arcs of the overall net). The algorithm keeps a set of
nodes that conform the decomposition (D) and a set of nodes to consider (V). Initially V'
contains the root of the RPST, i.e., the overall net. Then, the algorithm checks, for each
node v to consider, if v satisfies the k property, i.e., the number of arcs of SESE v is less or
equal than k. If this is the case, v is included in the decomposition. If not, it discards v and
includes the RPST children of v into the nodes to consider. Note that, given any RPST, a
k-decomposition always exists, i.e., in worst case, the decomposition formed by all the leaves
of the RPST will satisfy the definition. The algorithm proposed has linear complexity with
respect to the size of the RPST, and termination is guaranteed by the fact that the size of
the component is reduced in every iteration.

6.5 Bridging a Valid Decomposition

A SESE is a component that only interfaces with the rest of the net through the single entry
and single exit boundary nodes, which may be shared among different components. The
rest of nodes of a SESE (i.e., the interior nodes) have no connection with other components.
Given that the SESE computation is performed over the workflow graph (i.e., where there
is no distinction between places and transitions), we distinguish two possible cases for the
boundary nodes: transition boundary and place boundary.

The transition boundary case occurs when the node determined to be the entry or the
exit of a SESE is a transition. Figure 6.2 shows an example of a transition boundary. In the
example, the overall net is decomposed into two subnets that correspond to the SESEs S;
and Sy, being d the boundary transition shared between them.

As it is proven in [1], a transition boundary decomposition represents no problem from
a conformance point of view, i.e., given a decomposition with only transition boundaries, a

122 Chapter 6. Decomposed Conformance Checking

end:

(a) original model

O.=abcddefg

sl () <) 0-1[51=(Zb6dd
b E Olls2= ddefg
O

a
st:rt C ﬂ
O.=abce
s? o 19
d - g O Olsi=abe
flOy™— @ Olsz=efg
(b) decomposition (c) log traces

Figure 6.2: Example of decomposition with transition boundary.

log trace fits the overall net if and only if it fits all the subnets. The reason for that is that
when a transition is shared among subnets, the label of the transition is used to synchronize
the subnets that contain that transition on their boundaries, ensuring that the decisions on
model ability to reproduce that label are done jointly. Consider the decomposition Dp =
{SN®*, SN2} from the example of Figure 6.2, where SN°' = (PN®', [start], []) and SN2 =
(PN*2,]], [end]) are the systems nets derived from the SESEs S; and S». Consider the trace
01 = abeddefg shown in Figure 6.2c. Such trace does not fit the overall net due to the
double d. The projection of that trace on SN°' and SN2 results in oy [7s, = abcdd and
o1 [ps, = ddefg respectively (cf. Figure 6.2c). Note that, although oy [ps, fits SN2 (on
SN2, the preset of d is empty hence it can fire more than once), o1[ps, does not fit SN,
Hence, the trace o1 that does not fit the overall net, does not fit all the subnets (at least
there is one that is not fitting). A similar situation happens with the trace oo = abcefy
(where no d appears), i.e., trace o2 does not fit the overall net, hence o9 [ps, does not fit
SN or oy [7s, does not fit SN2 In the latter example, actually both do not fit.

On the other hand, the case of place boundary is different. When the boundary (entry or
exit) is a place, it is shared among two or more subnets. However, the arcs connected to the
place (the ones in charge of producing and consuming tokens) are split among the subnets.
This makes the place unable to synchronize, and therefore, it is impossible to analyze the
different subnets in isolation. The example in Fig. 6.3 reflects this situation. The original net
is decomposed into two subnets, Dp = {SN S1 SN SQ}, corresponding with the SESEs S; and
S5, and being p the boundary place shared by both subnets. It can be seen that the arcs that
produce tokens in p and the ones that consume tokens from p are distributed into different

6.5. Bridging a Valid Decomposition 123

start

b O.=abcdef
}D Oilst=abe
c /P O.ls?= def

A
O

d ﬂ O.=abdecf
O

start

f _.O Olst=abc
end 0'2[52 =de f

;O\‘Q,

e

(b) decomposition (c) log traces

Figure 6.3: Example of decomposition with place boundary.

subnets. Consider now the log traces o1 = abedef and o9 = abdecf of Fig. 6.3. While o4
fits the overall net, oo does not. However, the projections of both traces on T and T2
are the same (cf. Fig. 6.3). This problem materializes when we analyze the subnets. Firstly,
given that any arc that produces tokens in p is contained in PN 51 we need to consider
an initial marking for SN2 different than [] (otherwise, the subnet would be deadlocked
initially). If we consider the initial marking [p], o1 [ps, does not fits SN 92 Therefore the
fitness correctness is not preserved, i.e., a trace that fits the overall net like o; must fit all
the subnets. On the other hand, if we consider the initial marking with two (or more) tokens
on p (i.e., [p?]), o2lps, fits SN2 (similarly, o |ps, fits SN51). However o is a non-fitting
trace of the overall net, and consequently, it must not fit all the subnets. Therefore, when
the decomposition contains place boundaries, the preservation of the fitness correctness is
not guaranteed.

In [1] the definition of decomposition is revisited to propose the so called valid decompo-
sition, i.e., a decomposition that only shares transitions (but not places nor arcs).

Definition 6.8 (Valid Decomposition [1]). Let SN = (WN, My, MF) be a system net where
WN = (P, T, F, start, end). D = {SN* SN? ... SN"} is a valid decomposition of SN if and
only if:

o T = Ulgign T,

® P=U cic, P where PPN P/ = for 1 <i<j<n,

124 Chapter 6. Decomposed Conformance Checking

® F:U1§¢§nFiWhereFiﬂFj:Q)for1§i<j§n,

In [1, Theorem 2] it is proven that all valid decomposition preserves the fitting correctness,
i.e., a log is fitting a system net if and only if fits all the subnets.

As has been illustrated in the previous examples, a decomposition based directly on SESEs
is not necessarily a valid decomposition, i.e., boundary places may be shared among subnets.
However, in the remainder of this section an approach to transform a SESE decomposition
into a valid decomposition is presented, which tries to preserve the underlying semantics
behind the SESE decomposition. This technique is called bridging, and consists of: (1)
transforming each place boundary found into a transition boundary (i.e., boundary place is
removed) and (2) creating explicit subnets (called bridges) for each boundary place. The
bridges contain all the transitions connected with the boundary place, and they are in charge
of keeping the place synchronized among subnets. In addition, the boundary places together
with the arcs connected to them are removed from the original subnets. Formally:

Definition 6.9 (Bridging a SESE decomposition). Let D = {S1,...S,} be SESE decom-
position of the workflow net WN = (P, T, F, start, end). Let Ip = {i1,...,i,} and Op =
{01,...,0,} be the set of all entry and exit nodes of the SESEs in D. B = {py,...,px} =
((IpuOp)NP)\ {start, end} = (IpNOp) N P is the set of boundary places, i.e., entry and exit
nodes of the SESEs that are places but not the source or sink place of the workflow net WN.
The decomposition after applying bridging D' = {S},...S],,B1... By} of D is constructed
as follows:

e Forall1 <i<n: S/ ={(z,y) € Si| {z,y} N B =0} (boundary places are removed
from the SESEs).

e For 1 <j<k: B;={(z,y) € A|p; € {z,y}} (bridges are added).

Dy = {SNSQ, ..SNSw SNP SNPrY represents the decomposition constructed from
D'

Figure 6.4 illustrates the effects of the bridging on the example previously shown in
Fig. 6.3. In this case, the boundary place p (and its arcs) are removed from S; and Sy, and
a bridge Bj is created. Note that now, the transitions connected to p (i.e., b, ¢, d and e)
are shared (instead of p), keeping the synchronization among components, and making Dy
a valid decomposition.

Proposition 6.10 shows that the decomposition derived from applying SESE decomposi-
tion and then bridging results in a valid decomposition, according to Def. 6.8.

Proposition 6.10 (Bridging results in valid decomposition). LetD’ = {S},... S/, By ... By}
be obtained from a SESE decomposition after applying bridging. The decomposition Dp =
{SNSl, ...SNS» SNBv SNPB*Y is a valid decomposition according to Def. 6.8.

6.5. Bridging a Valid Decomposition 125

(b) decomposition (c) decomposition and bridging

Figure 6.4: Example of decomposition with bridging.

Proof. By construction, a SESE decomposition only shares transitions and places. After
applying the bridging, all the shared places are removed, creating explicit components with
only one instance of these places. O

Moreover, given that the bridging produces a valid decomposition, it also preserves the
property that a trace in the log fits the overall process model if and only if each subtrace
fits the corresponding process fragment. Hence, fitness checking can be decomposed using
SESEs and bridges.

Proposition 6.11 (SESE-based Fitness Checking can be decomposed). Let L be a log
and SN = (WN,M;, Mg) be a system net where WN is a workflow net. Let Dp =
{SN' SN2, ...SN"} be a valid decomposition resulting of the application of the SESE de-
composition and bridging over WN. Let SN* = (PN*, Mt ML), where PN = (P!, T, A").
A trace o € L fits SN (i.e., (WN, M)[o)(WN, Mp)) if and only if it fits all the parts,

i.e., for all SN* € Dy, (PN', M¥)[o]1:)(PN*, M}).

Proof. Special case of the more general Theorem 2 in [1]. If the overall trace o fits SN, then
each of the projected traces o[: fits the corresponding subnet. If this is not the case, then at
least there exist one projected trace o[that does not fit. But this is impossible because, by
construction, each subnet is a relaxation of the behavior of the overall net. If the projected

126 Chapter 6. Decomposed Conformance Checking

traces or: fit the corresponding subnets, then these traces can be stitched back into a trace
o that fits SN. O

high insurance check prepare

‘ H . notification
start high end high start
high medical history check N check notification
O O "]
contract hospital

low insurance check

register decide
high-low

re-notification
need

register

notification

archive
claim

start low
check

re-process claim
r

[]
L™

Figure 6.5: Running example: claims in a insurance company.

Let us consider the example of Figure 6.6 to illustrate the decomposition of the confor-
mance checking proposed in this Chapter. The model in figure was inspired by a similar
model presented in [24] and represents the possible situations to handle claims in a insurance
company.

QO
s L
S" n
[+ O 0] [« }—C
B1 Bs n
n Bs S'%
.——!—- O+ |

Figure 6.6: Components resulting from 15-decomposition and bridging for the running ex-
ample of Figure 6.5.

Figure 6.6 shows the SESE decomposition using a size k£ of 15. Let us show how the
fitness problems are now identified in a decomposed manner. For that, we will use the trace
o = abijlmnpgnpgs. Given o and each one of the SESEs provided in Figure 6.6, the only
ones that reveal fitness anomalies are S%, By and Bg (for the other components we can find
perfect alignments when projecting o to the activities of the component). The alignment for
S is:

6.5. Bridging a Valid Decomposition 127

il >

ilg| k|1
which reveals that the mandatory check of the medical history is missing in the log. Analo-
gously, the alignment for By is:

|m|n|>]|n|
[mln]o]n]

that identifies the explicit need for notifying again the client, an action missing in the log
but required by the model. Finally, the alignment for Bg:

q 14q9]|s
>1q s

reveals another fitness problem for trace o: the system has stored in the log an early regis-
tration of the notification which was not meant at that point in time, since later notifications
were sent and according to the model, the registration is only expected to be done at the
end of the case.

Using Prop. 6.11, we can infer that the fact that some components in the decomposition
identify fitness problems implies that the whole model does not fit the log.

6.5.1 Decomposition with invisible/duplicates

So far, the approach presented in this chapter was assuming that all the Petri net transitions
were associated with a unique single activity, i.e., a transition could be unambiguously iden-
tified by its label. In this section we lift this assumption in order to consider invisible and
duplicate transitions. An invisible transition is a transition without activity associated, e.g.,
transitions included for routing purposes. Duplicate transitions are transitions with the same
activity associated. For example, consider the net of Figure 6.7, which is a slight variation
of the example in Figure 6.5. This model contains an invisible transition (represented in
black) used to skip the execution of contract hospital, i.e., now contract hospital is optional.
Moreover, the new model does not distinguish between high insurance check and low high
insurance check, but the same action insurance check is modeled in two different parts of the
model, i.e., is a duplicate activity. The Petri net definition is extended considering now a
labeling function [€ T' 4 U where U4 is some universe of activity labels. Additionally, if a
transition ¢t ¢ dom(l), it is called invisible. T,,(PN) = dom(l) is the set of visible transitions
in PN. T})(PN) = {t € T,(PN) | Vyer,(pn) U(t) = (') = t = t'} is the set of unique
visible transitions in PN (i.e., there are no other transitions having the same visible label)
As it has been illustrated previously in this chapter, when a net is decomposed, the
labels of the transitions are used to synchronize and preserve the fitness properties. However,
sharing invisible and duplicate transitions among subnets generates ambiguity invalidating
this synchronization. Thus, the definition of valid decomposition presented in Definition 6.8

128 Chapter 6. Decomposed Conformance Checking

insurance check

Oeebey
start high end high notification
high medical history check N\ check n
start
. . notification

insurance check

register decide
high-low

re-notification
need
register
notification

start low
check

archive
claim

Bi®
s" [?]
Sk [°]
[f=O—{» | (o o —O
B Bs [a]
[«] Bs st
O

Figure 6.7: Variant of the running example of Figure 6.5 including invisible and duplicates
(top), and its corresponding decomposition (bottom).

is refined to consider invisible and duplicates, i.e., only unique visible transitions can be
shared among subnets.

Definition 6.12 (Valid Decomposition with Invisible and Duplicates[1]). Let SN = (WN, My, MF)
be a system net where WN = (P, T, F,l, start, end). D = {SN',SN? ... SN™} is a valid
decomposition of SN if and only if:

e SN' = (PN', M}, M%) is a system net with PN* = (P, T%, F*,1*) for all 1 <i < n,

o ' =y forall 1 <i<n,

PinPl=Qforl1<i<j<n,
o T'NTJ CTY(SN) for 1 <i < j<mn,and
o SN =Ucic, SN'.

Let SN = (WN, My, Mp) with WN = (P, T, F,l, start, end) be a system net with valid
decomposition D = {SN', SN? ... SN™}. We can observe the following properties:

6.5. Bridging a Valid Decomposition 129

- each place appears in precisely one of the subnets, i.e., for any p € P: |{1 <i < n/|
pe P} =1,

- each invisible transition appears in precisely one of the subnets, i.e., for any ¢ € T\
T(SN): [{1<i<n|teT} =1,

- visible transitions that do not have a unique label (i.e., there are multiple transitions
with the same label) appear in precisely one of the subnets, i.e., for any t € T,,(SN) \
TUSN): [{1<i<n|teT} =1,

- visible transitions having a unique label may appear in multiple subnets, i.e., for any
teTH(SN): {1<i<n|teT'}|>1,and

- each edge appears in precisely one of the subnets, i.e., for any (z,y) € F: [{1 <i<mn|
(x,y) € F'}| =1.

In order to instantiate a decomposition complying with this new definition of valid de-
composition, Algorithm 6.1 needs to be refined (cf. Algorithm 6.2).

Algorithm 6.2 Refined k-decomposition algorithm
function k-DEC(RPST,k)
V ={root(RPST)}
D=0
while V # () do
v < pop(V)
if |v.ares()| < k or not Decomposable(v) then
D =DU{v}
else V. =V U {children(v)}
return D

function DECOMPOSABLE(s)
{81,...8n} < children(s)
T < shared transitions in {sy,...s,}
P + shared places in {s1,...5,}
T¥ < transitions connected with P

if TNT) # T then return false

else if TP NT¥ # T then return false

else if same label in different {sq,...s,} then
return false

else return true

130 Chapter 6. Decomposed Conformance Checking

Algorithm 6.2 checks if considering the children of a SESE s will violate the definition of
valid decomposition in Definition 6.12. The three conditions need to be satisfied:

- transitions shared (T') between any subset of SESEs {sy, ... sy} must be unique visible
transitions (T}*).

- places shared (P) between any subset of SESEs {s1,...s,} will be bridged according
to Def. 6.9. Therefore, transitions connected with the places shared (P) between any
subset of {s1,...s,} must be unique visible transitions (T7}*), in order to avoid be
duplicated boundary transitions after the bridging.

- Transitions with the same label must belong to the same wv;.

The main difference between the original k-decomposition algorithm presented previously
and Algorithm 6.2 is that the latter checks if considering the children of SESE v for the
decomposition D will violate the valid decomposition definition (Definition 6.12). Notice
that by definition, if the children {si,...s,} of v violate the definition, considering further
descendants of v will also violate the definition. Therefore, when the algorithm checks that
the SESE must not be decomposed, it includes it into the decomposition D. As a result,
Algorithm 6.2 does not guarantee the k property, i.e., some components may have more than
k arcs. For instance, consider the subnets resulting of a 15-decomposition and bridging shown
in Figure 6.7. Unlike Figure 6.6, here when the algorithm tries to decompose the SESE Sy,
it detects than this will result in splitting the duplicate e, and thus it must consider Ss, even
if the number of arcs of Sy is greater 15%. Notice that some worst case scenarios exist for
Algorithm 6.2: consider the example of Figure 6.8. In this case, the presence of invisible
transitions in the model boundaries makes it impossible for the algorithm decompose more
that the root S1, and therefore, the resulting decomposition will be the overall net. The effect
of those cases can be alleviated by pre-processing the model and the log before applying the
decomposed conformance.

S1 S1
S2

LN
OF WORELENY- LGl
A

(a) workflow net (b) RPST

Figure 6.8: Example of worst case scenario for the k-decomposition with invisible/duplicates.

3Notice that, the bridging may produce that a SESE loses its SESE structure, e.g., the entry and exit
places of S are removed when it becomes S} due to the bridges B2 and Bs. In spite of this, the decomposition
obtained still satisfies Definition 6.12.

6.6. Ezxperimental Results 131

6.6 Experimental Results

In this section we provide experimental results demonstrating that decomposition approach
proposed provides significant performance gains and improved diagnostics.

2743

n/a
3566
138 " 1667
400
200
0+ T

prAmé prBmé prCmé prDm6 prEmé6 prFmé prGmé6
M new DC (25) new DC (50) mold DC(50) M non decomposed

time (s)
@
3
3

Figure 6.9: Comparison of computation time among different approaches: the new decom-
posed conformance checking technique (two variants: one which limits the maximum size
of each component to k = 25 and the other to £ = 50), the old decomposed conformance
checking technique [65], and the approach without decomposition.

Implementation

The techniques presented in this chapter have been implemented within the ProM 6 tool?,
and have been included in the package Decomposed Conformance. The new implementation
(unlike the one presented in [66, 65]) is fully compliant with the DivideéConguer package —
a new initiative for a common framework among all decomposed process mining techniques
within ProM, such as [2, 53, 66, 65]. This modular framework is based on common objects
and encourages and facilitates the reusability of plugins, both for discovery and conformance.
Compared to the implementation in [66, 65] the architecture changed dramatically. For
example, arrays of components are used, instead of the sequential creation and processing
of the components. These changes in the implementation had a significant impact on the
performance of the techniques. The Decomposed Conformance package in ProM supports
all of the decomposition and filtering approaches and the advanced diagnostics described in
this paper.

Performance Improvements

Figure 6.9 illustrates the performance improvement achieved by SESE-based decomposition
and the new implementation in ProM. For this first analysis we use the bpm2013 benchmark®.
The benchmark contains large models with different levels of fitness (ranging from perfectly

4http://www.promtools.org/prom6/nightly
5http ://dx.doi.org/10.4121/uuid: 44c32783-15d0-4dbd-af8a-78b97be3de49

http://www.promtools.org/prom6/nightly
http://dx.doi.org/10.4121/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49

132 Chapter 6. Decomposed Conformance Checking

fitting as pr Bm6, to models with fitness of 0.57 — like prCmé6), according to the fitness metric

n [16]. Figure 6.9 compares four approaches using seven model-log combinations. The chart
includes the results of the new Decomposed Conformance (DC), using a k to decompose of
25 and 50 respectively (cf. Algorithm 6.1). In this experiment (and in the rest of section) we
used a conformance based on alignments for checking the conformance of each component
[16]. The comparison also includes the results of the previous implementation (with & of 50)
[66, 65], and the non-decomposed results of [16] (using the same algorithm and parameters
as the decomposed approach).

The chart illustrates perfectly the vast difference, in computation time, between the
approach presented and the non-decomposed alternative. The non-decomposed approach
remains competitive for the less complex and highly fitting models (e.g., pr Am6 and pr Bm6).
Because of the component creation overhead the non-decomposed approach may even be
faster for simple and well-fitting models as noted in [65]. For example, for pr Am6 and pr Bm6
the non-decomposed approach is faster than the previous implementation presented in [65].
This is no longer the case for the new decomposed implementation which is outperforming the
earlier approaches. In those cases where the complexity and fitness is an issue, the difference
could reach two orders of magnitude (e.g., from 15 to 3566 seconds in prEm6). More
importantly, the approach proposed is able to tackle and provide conformance information
for those cases (prDm6, prFm6 and prGm6) where [16] is not able to provide a result within
a period of 12 hours. Notice though, that the goal of both approaches is slightly different:
while [16] aims for a global conformance, the decomposed approach aims for an optimal
conformance of each component. However, a decomposed approach makes it possible to
locate in a smaller vicinity where the conformance problems are, get a better understanding
of the cause, and eventually be able to provide and bound conformance properties in a
global manner [1]. The comparison also shows the significant speedup yield by the new
implementation with respect to the one in [65], due to the new architecture based on arrays
of components.

Conformance Diagnosis

One of the main contributions presented is a decomposed strategy to aid on the diagnosis of
conformance problems in large systems, pinpointing which subprocesses are producing them.
In order to illustrate this contribution we provide the fitness results per component for the
running example and the benchmark bpm2013 (cf. Figure 6.10 and 6.11).

We use a circumference to graphically depict the fitness evaluation of a decomposition
by means of a colored gradient for each component. All components of the decomposition
are placed in different positions of the circumference. Let us use the running example of this
chapter to illustrate the graphical visualization used.

For each component, a line from the center of the circumference indicates its fitness. If
the line reaches the perimeter, the fitness is 1.0 (components S7, By, Ba, S5, Bs, S}, Bs, S§),
while the line for components with fitness anomalies does not reach the perimeter. To show

6.6. Ezxperimental Results 133

prAm6 prBm6 prCmé prDm6 prEm6 prFm6 prGm6

Figure 6.11: Fitness results per components for benchmark bpm2013.

intuitively the fitness, a color gradient is included in the circumference: the fitness ranges
from red/dark (fitness problems close to 0.0) down to green/light (perfect fitness of 1.0).

The fitness diagnosis of each one of the models of benchmark bpm2013 can be understood
more easily: for model pr Am6, 7 components have fitness anomalies, with diverse severity
(7 dents on the circumference) .° On the other hand, all components in pr Bm6 are perfectly
fitting. This contrasts with prC'm6, where fitness problems are clearly spread over multiple
components. The other of benchmark model-log combinations have fitness anomalies in just
a few components. This supports the approach taken in this thesis. The diagnostics help to
focus on the problematic parts while at the same time provide performance gains.

Performance vs Comprehension

The previous experiment included two different sizes for the decomposition: 25 and 50.
This second set of experiments is designed to determine the optimal decomposition size for
both perspectives: performance impact and comprehension of the conformance anomalies

6When no fitness anomalies exist, we do not explicitly label components in the visualization.

134 Chapter 6. Decomposed Conformance Checking

detected. The benchmark used, isbpm20137, includes several models, and a set of logs with
different properties for each model. In this experiment we have checked conformance for
different values of k. Note that, when the k is the total number of arcs of the model, the
decomposed approach behaves as non-decomposed (i.e., there is only one component). Figure
6.12 reflects the computation time for two of the cases in the benchmark (pr1908-m34-13-
noise and pr1151-m37-13-noise), which summarizes the global tendency for all the models
in the benchmark. The mark representing the minimum time is slightly differentiated.

50
pr-1908-m34-13-noise

8 &

time(s)
S

w‘_

pr-1151-m37-13-noise

0 30 60 90 120

Figure 6.12: Comparison of computation time among different k values.

The main conclusion one can reach from the experiments is that, from a computational
time point of view, the smaller the better. This is perfectly reflected in Figure 6.12. For

"http://dx.doi.org/10.4121/uuid:b8c59ccb-6e14-4fab-976d-dd76707bcbsa

http://dx.doi.org/10.4121/uuid:b8c59ccb-6e14-4fab-976d-dd76707bcb8a

6.6. Ezxperimental Results 135

small values of k (e.g., 1...20), the results show a slight overhead because many compo-
nents need to be created. However the effect of this overhead is negligible in most of the
cases. On the other hand, when the k-decomposition starts to allow larger components, the
computation time abruptly increases. This disruption on the computation time is produced
by the hierarchical nature of the RPST, e.g., a decomposition k instead of k£ + 1 could lead
the selection of n subprocesses of low complexity instead of the one subprocess that includes
all n. The results and insights based on these new experiments differ from [65], where —due
to inefficiencies of the previous implementation— the overhead caused by the processing of
components was significantly higher, making k of 200 faster than 50 in some cases.

If components are excessively small (e.g., 1...10), the semantic information they provide
is rather trivial or insufficient. From a diagnostic point of view, the subprocesses to be
analyzed should be large enough to be able to make meaningful conclusions. Our empirical
experiments show that, decomposition with k between 20 and 40 could represent a good
trade-off between computation time and diagnostic quality.

Trace length and grouping

A third set of experiments was conduced to study the effect of the trace lengths on the
proposed approach. We aim to compare decomposed and non-decomposed conformance
checking for different traces lengths. All logs and models of this experiments are included in
the isbpm2013 benchmark. For each model used in this experiment, four logs were generated,
each one with a different average length of the traces on it (e.g., pr1908-m18-11 has an average
trace length of 18, while pr1908-m/j1-14 has average length of 41). Each one of these four
logs has been generated from simulating the same model and using the same parameters
(except the length of the traces), and all them are completely fitting. Additionally, we have
created another four logs for each model, with the same characteristics, but containing noise
(and hence being non-fitting). Figure 6.13 shows the results for two models: pr-1908 and
pr-1151, being the results similar for the rest of models-logs in the benchmark. For each
model, the chart contains the computation times of each alternative: decomposed (using k
of 25) with noisy logs and fitting logs, and the results for the same noisy and fitting logs
using the original non-decomposed approach.

The first conclusion that arises from the experiments refers to the processes with noise
— the most plausible assumption in a real world scenario. Figure 6.13 shows that, when
the log has short traces, both decomposed and non-decomposed alignment checking perform
good. However, once the length of the traces grows (or simply traces of large models or
with lot of concurrency), it has a severe effect on the non-decomposed performance. This
was to be expected, i.e., the more activities in a trace, the more difficult it is to compute
the alignment. On the other hand, the decomposed approach performs both fast and with
a near-to constant growth (and eventually constant at some point). This is justified by the
effect of the decomposition on the computation time (as has been shown in Figure 6.9), but
also due to the grouping (as explained below).

136 Chapter 6. Decomposed Conformance Checking

pr-1908

S
S
w
&

o

16 21 2
average trace length

dec (25) fit ——dec (25) noise —a—non_dec fit —#— non_dec noise

1000
pr-1151

800
% 600
400
200

0 lw — %

11 21 31 41 51

average trace length

dec (25) fit —— dec(25) noise —a— non_decfit —m— non_dec noise

Figure 6.13: Comparison of computation time among different trace length.

The current implementation of the align-based conformance checking includes the group-
ing optimization: when the algorithm analyzes a trace, it first checks if it has already com-
puted an alignment for an identical trace. In this is the case, it re-uses the previously
computed alignment, thus reducing the time significantly. The effect of this optimization for
the non-decomposed scenario depends on the case at hand, and it is strongly related with
the size and the behavior of the model. However, in the decomposed scenario, the chances
to encounter this situation increase: the smaller is the component (e.g., k = 25), the fewer
activities it contains, and therefore, the more likely it is to find a trace already seen before
(once the original trace has been projected onto the component). The effects of the grouping
are perfectly reflected by the fitting cases of Figure 6.13: the decomposed approach performs
faster than the non-decomposed alternative even in a fitting scenario. This is remarkable
because alignments can be created easily in this case.

6.7. Conclusions 137

6.7 Conclusions

Checking conformance between an event log and a process model is a time demanding proce-
dure, specially for those cases using conformance based on alignments. This chapter proposed
the use of decomposed techniques to alleviate the time required to compute conformance,
and to aid on the conformance diagnosis. The technique proposed is based on decomposing
the model in single entry single exit components, denoting subprocesses within the main
process with a simple interface with the rest of the model. The chapters provided formal
proofs on the conformance analysis, and the experiments showed a significant reduction in
computation time with respect to the monolithic approach.

Chapter 7

Topological and Multi-level
Conformance Diagnosis

7.1 Introduction

The main goal of decomposed conformance checking techniques is to alleviate the time re-
quired to analyze conformance, specially for complex alignment-based approaches. This is
the case of the approach presented in Chapter 6. However, in conformance analysis, comput-
ing the conformance metrics is as important as the diagnosis and understanding the cause of
the conformance problems. Approaches that decompose processes into components provide
a basic mechanism to diagnose conformance, assessing which components are problematic —
specially those techniques that decompose the process into meaningful components such as
SESEs [67] or passages [2]. This chapters goes a step further in that direction, and provides
additional mechanisms to diagnose conformance problems based on decomposed processes.

Comparing a process model with a map is a recurrent metaphor in process mining [6].
A map represents a city, like a models represents a process. There is not ”a” map, but
a set of maps for different purposes, for example street maps, traffic congestion maps, or
real state maps. Maps can be decomposed, for example, into provinces, cities, or districts.
Information in maps can be grouped, to indicate for example what areas concentrate most
crimes, and they can allow to zoom-in and zoom-out to analyze this information at different
levels. Figure 7.1 shows an example of real estate map, indicating the areas with more rent
offers, being able to refine geographically this information with the zoom.

— The materials reported in this chapter are partially published in [67], [65] and [66] —

139

140 Chapter 7. Topological and Multi-level Conformance Diagnosis

Lampa,
Chile

1@ °
i N\ /

o e
79 N Q)
saago | (@)
& vt SasssEN i I
to 19 4 © 55 s
ky 4 S
©] g °

Padre b’
Hurtado > °
Penaflor,
Chile

MMMMMMM

Talagante

Figure 7.1: Interactive real estate map from www.portalinmobiliario.com, with grouping
by proximity and zoom-in zoom-out functionality.

This chapter translates some of this map functionalities to decomposed conformance
checking. In Section 7.2 we define a topological relationship between components, and use
this relations to define close areas with conformance problems. Section 7.3 defines a hierarchy
among components, opening the door to explore the conformance results at multiple levels.
Moreover, the section proposes several refinements over the hierarchy to aid on the confor-
mance diagnosis. Finally, Section 7.4 provides some experimental results, and Section 7.5
concludes the chapter.

7.2 Topological Conformance Diagnosis

A valid decomposition, presented in the previous chapter, is a collection of subnets that may
be related to each other through the sharing of transitions, i.e., two subnets are related if
they share a transition. The topology of a valid decomposition is an undirected graph where
the vertices denote subnets and the edges denote the sharing of transitions.

Definition 7.1 (Topology of a Decomposition). Let D = {SN* SN?,...SN"} be a valid
decomposition, where SN* = (PN*, M}, ML) and PN' = (P!, T% F?). The topology of
decomposition D is defined as the undirected graph Tp = (D, C') such that two components
are connected if they share any transition, i.e., C = {{SN*, SN7}|1 <i < j < nAT'NT7 # (}.

In the general definition of topology over a valid decomposition the relations remain
undirected, i.e., two subnets sharing the same transition are connected by an undirected

www.portalinmobiliario.com

7.2. Topological Conformance Diagnosis 141

edge. However, in the specific case of a valid decomposition derived from SESEs, defined in
Chapter 6, this definition can be extended to include the concept of direction: the transition
being the exit of the SESE is considered the source of the edge, while the entry is the
target. Bridges can have multiple entry and exit nodes, but again we can derive the direction
connections among bridges and SESEs.

Definition 7.2 (Topology of a SESE Decomposition). Let D = {S1,...S5,} and D' =
{S],...5],B1,...Br} be a SESE decomposition before and after applying bridging. Let
{p1,...,pk} be the boundary places in D. Let Dp = {SNSi,...SNS;, NB . SNBr}
represent the decomposition constructed from D’. The topology of Dy is defined as the
directed graph Tp, = (Dp, C) such that C = {(SNS;, S’NS;)|1 <ij<n A (y,z) €S; A
(z,2) € S} U {(SN SNP)1<i<n A 1<j<k A (y,p;) € Si} U{(SNPi SN)1 <
1 <n A 1§j§]€ A (pj,y)ESi}.

Note that the topological graph has as vertices the nets in I/, but some arcs of this graph
(those regarding connection to bridges) are defined over the original SESE decomposition
D, e.g., (y,p;) € S; refers to an arc in the original SESE and is used to infer a directed

connection from SN5i to SN5i.

S2 ’

S
st . ’

t5 () 17
. 5 . sh
8
< p

(a) decomposition and bridging

omoN 0.9,
@ = rm = Yo @ oy ;
OO ey

(b) topological graph (c) topology enhanced with fitness for the trace t1 t3 t4 t5 t7 t7 t9

Figure 7.2: Example of valid decomposition and its topology

One of the features of the topology is to aid in the visualization of a valid decomposition.
For example, let us consider the valid decomposition in Figure 7.2 (a slight modification
of the model in Figure 6.1 in Chapter 6). The decomposition is the result of applying a
4-decomposition over the model (i.e., SESEs with at most 4 edges: 51, 5%, 5%, 5%, 5§, S%) and
followed by the bridging (resulting in two bridges, By and Bs, corresponding with the two

142 Chapter 7. Topological and Multi-level Conformance Diagnosis

boundary places pg and pg)*. The corresponding topology is shown in same Figure 7.2b.

Besides simply showing the connections among subnets, the topology can be enhanced
with other information about the components and their characteristics. For instance, bridges
can be denoted by circles having dotted borders and SESEs can be denoted by circles having
solid borders. Moreover, the size of the nodes in the graph is directly related with the size
of the corresponding subnets, i.e., a subnet with many arcs is depicted using a larger circle
compared to subnets with fewer arcs. Given the final goal of this thesis (i.e., conformance
analysis), a particular interesting case is to enhance the topology with conformance infor-
mation. For example, let us consider the trace o = t1tgtytst7t7tg. When we check fitness in
the subnets of decomposition Dy = {SNS1 ,...SN5s SNB1, SN2}, we detect the following
fitness anomalies: in SN 5, ty is fired without firing ¢5; in SN g, t7 is executed twice, but
this requires the firing of ¢5 also twice; finally, in the bridge SN2, t; is fired twice, but tg
only once, leaving a token remaining in pg. This information can be used to enhance the
topology. As shown in Figure 7.2¢ the vertices have problems can be depicted in color (here
Sé, Sé and BQ)

Although the topology is an important aid for the process diagnosis by itself, it can
also guide further analysis. For instance, the topological graph enhanced with conformance
information can be used to identify maximal process fragments with fitness problems. This
allows us to focus on the problematic parts of a model, discarding the parts without any
fitness problems. Algorithm 7.1 describes a procedure that is based on detecting connected
components (C.) on the graph induced by the non-fitting vertices. First, the topological
graph (Tp) is filtered, leaving only non-fitting vertices (V). Then, the weakly connected
components (C,.) are detected: 1) a random node v; is chosen, 2) all nodes {v1, ... v,} weakly
connected (i.e., connected vertices without considering the direction of the edges) with v,
are computed using a depth-fist search exploration and they constitute a new connected
component, and finally 4) {vy,...v,} are removed from the graph and the exploration of
connected components continues. For each connected component, we project the elements
of the original net they refer to. Note that this algorithm prioritizes the connectivity among
vertices resulting in weakly connected components. However, alternative versions of the
algorithm yielding strongly connected components are possible. For instance, given the
example of Figure 7.2c, two connected components are found as shown in Figure 7.3: one
corresponding to SN2 and the other to the union of SN5 and SN2,

The topological graph enhanced with conformance information can also be used to cre-
ate one complete subnet that includes all non-fitting subnets of the decomposition, i.e., a
connected set of vertices V' containing all the non-fitting vertices V,s. Algorithm 7.2 illus-
trates the heuristic-based approach proposed, based on the greedy expansion of the largest
non-fitting connected components, to compute the complete non-fitting subnet. Initially,
V' contains the non-fitting vertices V¢, and G denotes the graph induced by V. The goal

INote that the original trivial SESE S4 that corresponds to the arc (t4,p6) has disappeared once the
bridging has been done, i.e., the arc is now in B;. The same happens for the original trivial SESE S7
corresponding to the arc (p9,t9).

7.2. Topological Conformance Diagnosis 143

S2

p2
S5.+B2
(:)——» t5 ——+<:>——> t7 ;::{:)——» 19
p7 P9

p6
t8

Figure 7.3: Examples of non-fitting weakly connected components.

Algorithm 7.1 Non-Fitting Weakly Connected Components Algorithm

function NFwee(Tp,V) > V is non-fitting vertices
C.=10
remove from Tp: > Graph induced by V

-all arcs ¢ = {x,y} such that z,y ¢ V
-all vertices z ¢ V

while Tp has vertices do
v1 < select random vertex on Tp
{v1,... v} < get vertices weakly connected with v; using Depth-first search
remove {v1,...v,} from Tp

C.=C.UJ] v

return C,

of the algorithm is to have all the vertices in V' connected, i.e. G be connected. If this is
not the case, the algorithm detects the two largest connected components (¢; and ¢3) of G,
and then computes the shortest path ({v;...v,}) between any vertex in ¢; and any vertex
in ¢g. Finally, {v;...v,} are included to V, and it is checked again if the induced graph
G is connected. Given the example of Figure 7.2¢, the net resulting (shown in Figure 7.4)

contains the union of the subnets SNSQ, SNS‘/I, SNB, SN and SNP2.

O
p2

S2.+S4+B1+S5+B2

Figure 7.4: Example of a non-fitting subnet.

144 Chapter 7. Topological and Multi-level Conformance Diagnosis

Algorithm 7.2 Non-Fitting Subnet Algorithm
function NFN(Tp,V,¢) > Vi is non-fitting vertices

V « an

G <+ graph induced by V on Tp

while G is not connected do
c1 < get the 1st largest conn. comp. of G
co < get the 2nd largest conn. comp. of G
{v1...v,} « shortest_path_vertex(Tp, c1,c2)
V=VU{vi...on}.
G «+ graph induced by V on Tp

return Petri net induced by V

7.3 Multi-level Conformance Diagnosis and its Applica-
tions

So far the analysis of the conformance was always performed using a complete decomposition
of the model. However, for detailed process diagnosis it is important to also be able to do a
more focused analysis. This section presents three approaches to achieve this: (1) stand-alone
checking, (2) multi-level analysis, and (3) filtering.

7.3.1 Stand-alone Checking

First we consider the problem of analyzing a selected subprocess in isolation. Clearly, as-
sumptions on the subprocess and its context must be defined in order to perform such an
isolated conformance check. The conformance results obtained are strongly correlated with
the assumptions considered, and hence the analysis of the model properties and domain
knowledge becomes an essential part, e.g., whether a place has a bound on the number of
tokens, or the number of activations of the subprocess within a trace.

Let us show an application of the stand-alone checking for the typical case of well-
structured process models, that can easily be modeled using the subclass of safe workflow
nets[66]. Given a SESE S obtained from a decomposition, one can apply the following steps
to conduct a local diagnosis of S:

1. Workflowing the SESE: In order to have a clear starting and ending point for the
subprocess represented, re-define the net derived from S. In other words, given a
SESE S, define the net derived from S in terms of a workflow net, with an starting
place (start) and a final place (end). By construction, a SESE has both an entry ()
and an exit (0) node. The start corresponds with i if ¢ is a place. However, when i is a
transition, we define start to be an artificial place and we connect it with i. Similarly
for end and o.

7.8. Multi-level Conformance Diagnosis and its Applications 145

2. Initial and Final Marking: Given the workflow-net from the previous step, determining
a plausible initial marking becomes straightforward, i.e., due to the safeness assumption
of safe workflow nets, we consider a single token in the start in order to emnable the
execution of the subprocess. Similarly for the final marking.

3. SESFE activations: the number of potential activations of a SESE within a case must
be determined. In case it is always one, the SESE is left as is. However, in case it can
be executed more than once (e.g., the SESE is inside some loop in the model), the net
in the previous step is short-circuited, using a silent transition between end and start.
Finally, it can also happen that a SESE may be not executed in a trace. In this last
case, a silent transition between start and end avoiding the SESE content will be used.
Determining if a suprocess can be executed several times is a complex matter. In [66],
it is proposed the use of Petri net structural theory (minimal T-invariants [88]) as a
best effort strategy for estimating repetitive behavior.

7.3.2 Multi-Level Analysis

In this section we propose to combine the stand-alone checking presented above with the
RPST to achieve a conformance analysis on a hierarchical manner. RPST nodes enriched
with conformance information enable the analysis at different degrees of granularity and
independence, similar to zooming in and out using online maps. Note that, by construction,
the root of the RPST is the overall net. Therefore, any hierarchical analysis that involves
the conformance checking of all the RPST nodes will require checking conformance on the
original net (plus the checks of the rest of nodes), i.e., the computation time for a exhaustive
hierarchical analysis will always be, by definition, greater than checking conformance on
the overall net. For complex and time-consuming cases, this problem can be alleviated by
limiting the size of the nodes to check or by using less expensive replay-based conformance
techniques like [80, 30]. The latter techniques use heuristics in order to deal with unfitting
situations.

7.3.3 Filtering

The study presented in [66] suggest that there are three main differences between manual hier-
archical decomposition and the one provided by the RPST-based decomposition: (1) analysts
prefer to discard small components, (2) analysts prefer to not consider similar components,
and (3) analysts prefer to have a hierarchy with a limited number of levels. Additionally,
in this paper we point out a fourth difference: (4) analysts prefer to base hierarchies on
other (non-control-flow) perspectives. In the remainder of this section we propose filtering
techniques to allow for RPST-based decompositions closer to hierarchical decompositions
preferred by analysts.

- Small components: Small components of the RPST can be removed by filtered using a
minimal size threshold.

146

Chapter 7. Topological and Multi-level Conformance Diagnosis

/O_’”Q‘
T oo

(a) similar size among SESEs

O O }i%

(b) high simplicity among SESEs

Sy

Figure 7.5: Example of cases with high similarity between nested SESEs.

- Similarity: In order to reduce the redundancy of components and the unnecessary

growth of the hierarchy, a similarity metric between parent-child components is defined,
together with a threshold that determines the similarity frontier that will determine
when two components are considered essentially the same. The proposed metric for
estimating the similarity between a node S and its single child S’ is based on two
factors: size and simplicity. The size factor is related with the number of arcs of .S not
included on S’. The more arcs shared by both components, the more similar they are.
For instance, considering the component S; of Figure 7.5a, all its arcs are included in S
except two, i.e., So is in essence S;. Therefore, a detailed conformance diagnosis over
S1 may be sufficient for understanding both subprocesses. The simplicity factor refers
to the simplicity of part of the parent S not included on the child S’. When such part
defines a simple behavior (e.g., the strictly sequential behavior of S5 not included in
Sy, in Figure 7.5b), the analysis and understanding of the parent may again be enough.
On the other hand, when the behavior not included in S’ contains complex control-
flow constructs (e.g., mixtures of concurrency and choice) it may be more advisable to
analyze both subprocesses. An example similarity metric is formalized as follows.

Definition 7.3 (Similarity Metric). Let Sp = (Vp, Fp) be an RPST node, and let
Sc = (Veo, Feo) be its only child. Let size define the difference on size between them,
i.e., size = |F¢|/|Fp|. Let Fo = Fp \ Fc be the set of non-intersecting arcs. Let
F} be the arcs in Fp that have a source vertex with only one outgoing edge, and a
target vertex with only one incoming edge, i.e., F, = {(z,y) € Fo|(z,v) € Fo| =
1 A |(w,y) € Fo| = 1}. Let simplicity define the simplicity of the non-intersecting
arcs, i.e., simplicity = |F§|/|Fo|. The similarity between Sp and Sc is the harmonic

7.4. FExperimental Results 147

mean between size and simplicity:

size - simplicity

similarity = 2 - — - —
size + simplicity

Although the similarity evaluation is restricted to nodes with only one child, our ex-
perimental results show that the reduction achieved on the RPST may be significant
(specially after applying a small nodes filtering).

- Multi-perspective filtering: The filtering presented until now is based on only structural
net properties, not taking into account other perspectives (e.g., data, costs, roles, de-
partments). However, they may be situations where we would like to focus the analysis
only on those subprocesses satisfying certain domain conditions, e.g., an analyst may
want to focus on the subprocesses involving tasks executed in a particular department.
Therefore, we need to support filtering based on user-requirements and focus the anal-
ysis on the subprocesses involving activities relevant from the selected viewpoint. Such
filtering is not limited to activities and may involve other perspectives (e.g., resources,
actors, or costs), determining the activities they are connected with, and using them
for filtering.

7.4 Experimental Results

The set of experiments of this section is designed to illustrate the effects of some of the
techniques proposed for process diagnosis. In particular, the Non-fitting Subnet Algorithm
(cf. Algorithm 7.2), and the techniques of filtering the RPST based on small components
and similarity (cf. Section 7.3.3). Table 7.1 shows the application of the NFN algorithm over
the benchmark bpm2013?, with components of size at most 50. For each model (containing
P places and T transitions) the table provided the size of the minimal net containing all
the non-fitting components, i.e., the number of places and transitions (|P| and |T|), and
the number of vertices |V| used to create the net. The table illustrates the benefits of the
proposed algorithm to detect and isolate the fitness mismatches. In case the fitness problems
are spread all over the whole model, the resulting net is almost the original net (e.g., prCme6).
However, when the fitness problems are local, the net that encloses all problem spots may
be orders of magnitude smaller than the original net, thus easing the diagnosis.

The second experiment performed illustrates the effects of the simplification techniques
over the RPST. Figure 7.6 reflect the results for one of the models (prCm6). The charts
show the number of nodes of the original RPST, after filtering small components (< 10)
and then merging by similarity (> 0.8). The number of nodes are distributed by levels of
depth in the RPST tree, i.e., the distance with the root represented as the level 1. The chart
clearly reflects the difference between the number of components on the original RPST and

%http://dx.doi.org/10.4121/uuid: 44c32783-15d0-4dbd-af8a-78b97be3de49

http://dx.doi.org/10.4121/uuid:44c32783-15d0-4dbd-af8a-78b97be3de49

148 Chapter 7. Topological and Multi-level Conformance Diagnosis

Dataset NFN
P T Vi [Pl T
prAm6 363 347 14 15 14

prCm6 317 317 113 315 317
prDm6 529 429 31 55 52
prEm6 277 275 31 29 40
prFm6 362 299 7 271 25
prGm6 357 335 5 34 29

Table 7.1: Results of NFN algorithm.

the one after removing the small components, i.e., most of the RPST nodes are small. After
removing small nodes the depth of the RPST only decreases two levels (from 14 to 12). On
the other hand, when merging on similarity is applied over the filtered RPST, the number
of nodes is not reduced so drastically, but the number of levels of the tree is (from 13 to
6), providing a hierarchical decomposition with less redundancy and more aligned with the
human perception [66].

13 13 13
11 11 11
» 9 »n 9 ©w 9
g [o
2 7 K] 7 K 7
5 5 5
3 3 3 . . .
1 RSPT 1 small 1 similarity
0 100 200 0 20 40 0 20 40
nodes nodes nodes

Figure 7.6: Results of filtering by small (< 10) and merging by similarity (> 0.8) over the
model prCme.

7.5 Conclusions

Decomposition techniques in conformance checking provide an efficient mechanism to iden-
tify and locate conformance anomalies. This chapter went a step further, using decompo-
sition techniques to provide other mechanisms for the diagnosis of conformance problems.
The chapter proposed a topological relation between components, used to identify closely
connected components with conformance problems. Furthermore, the chapter defined a hier-
archy of components, opening the door to a zoom-in zoom-out analysis of the conformance.

Chapter 8

Data-aware Decomposed
Conformance Checking

8.1 Introduction

Most of the work done in conformance checking in the literature, and the one presented in
this thesis so far, focuses on the control-flow of the underlying process, i.e. the ordering of
activities [80, 16]. In a data-aware process model, each case, i.e. a process instance, is char-
acterized by its case variables. Paths taken during the execution may be governed by guards
and conditions defined over such variables. A process model specifies the set of variables and
their possible values, guards, and write/read actions. Since existing conformance checking
techniques typically completely abstract from data, resources, and time, many deviations
remain undetected. Therefore, the event log may record executions of process instances
that appear fully conforming, even when it is not the case. Rigorous analysis of the data
perspective is needed to reveal such deviations.

Let us consider the process that is modeled as BPMN diagram in Figure 8.1. It models
the handling of loans requests from customers. It is deliberately oversimplified to be able to
explain the concepts more easily. The process starts with a credit request where the requestor
provides some documents to demonstrate the capability of paying the loan back. These
documents are verified and the interest amount is also computed. If the verification step
is negative, a negative decision is made, the requestor is informed and, finally, the negative
outcome of the request is stored in the system. If verification is positive, an assessment is
made to take a final decision. Independently of the assessment’s decision, the requestor is

— The materials reported in this chapter are partially published in [55] —

149

150 Chapter 8. Data-aware Decomposed Conformance Checking

. Interest (1)

0.1 Amount < Interest < 0.2 Amount Decision (D)

Negative
Decision

Positive
Vefication

Register
Negative

Request (g)

Open Credit
(h)

Assessment

(c)

Inform Requester

(e)

Register il
—— Negative
Verification (d

Positive

Negative i
Decision

Verification

)

: [Decision = Negative

Renegotiate

Amount (A) Tl .. The renegotiated amount is
. * { smaller than the original

amount
Verification (V)

Figure 8.1: Example of a (simplified) process to request loans. The dotted arcs going from
a transition to a variable denote write operations; the arcs towards a transition denote read
operations, i.e. the transition requires accessing the current variables’ value. Each transition
is abbreviated into a lower-case letter (e.g. a) and each variable is represented as a upper-case
letter (e.g. A). The abbreviations are shown in brackets after the name of the transitions or
variable names.

informed. Moreover, even if the verification is negative, the requestor can renegotiate the
loan (e.g. to have lower interests) by providing further documents or by asking for a smaller
amount. In this case, the verification-assessment part is repeated. If both the decision and
verification are positive and the requestor is not willing to renegotiate, the credit is opened.
Let us consider the following trace:!

Tew = ((a,0,{(A,4000)}), (b, {(A,4000)},{(I,450), (V, false)}), (c, {(V, false)},
{(D,true)}), (e,0,0), (£, {(A, 4000)}, {(A,5000)}), (b, {(A,5000)},{(I,450),
(Vi false)}), (d, {(V, false)}, {(D, false)}), (e, 0, 0), (h, {(D; true)}, 0))

Seen from a control-flow perspective only (i.e. only considering the activities’ ordering), the
trace seems to be fully conforming. Nonetheless, a number of deviations can be noticed if
the data perspective is considered. First of all, if activity c is executed, previously activity
b could not have resulted in a negative verification, i.e. V is set to false. Second, activity f

INotation (act,r,w) is used to denote the occurrence of activity act that writes and reads variables
according to functions w and r, e.g., (b, {(A,4000)}, {(I,450), (V,false)}) is an event corresponding to the
occurrence of activity b while reading value 4000 for variable A and writing values 450 and false to variables I
and V respectively. (e,), D) corresponds to the occurrence of activity e without reading/writing any variables.

8.1. Introduction 151

cannot write value 5000 to variable A, as this new value is larger than the previous value,
i.e. 4000. Furthermore, if the decision and verification are both negative, i.e. both V are D
are set to false, then h cannot be executed at the end.

The identification of non-conforming traces clearly has value in itself. Nonetheless, orga-
nizations are often interested in explanations that can steer measures to improve the quality
of the process. Alignments (cf. Chapter 5) aim to support more refined conformance check-
ing. An alignment aligns a case in the event log with an execution path of the process model
as good as possible. If the case deviates from the model, then it is not possible to perfectly
align with the model and a best matching scenario is selected. Note that for the same de-
viation, multiple explanations can be given. For instance, the problem that h was executed
when it was not supposed to happen can be explained in two ways: (1) h should not have
occurred because V' and D are both set to false (“control-flow is wrong”) and (2) V and D
should both have been set to true because h occurs (“data-flow is wrong”). In order to decide
for the most reasonable explanation, costs are assigned to deviations and we aim to find the
explanation with the lowest cost. For instance, if assigning a wrong value to V and D is less
severe than executing h wrongly, the second explanation is preferred. The seminal work in
[16] only considers alignments in the control-flow part, thus ignoring the data-perspective
aspect of conformance.

As we detail in Section 8.2.3, finding an alignment of an event log and a data-aware
process model is undecidable in the general case. However, to make the problem decidable,
works [54, 57] put forward the limitation that guards need to be linear (in)equations. These
works also show that, even with that limitation, the problem of finding an alignment of an
event log can become intractable since the problem’s complexity is exponential on the size
of the model, i.e. the number of activities and data variables.

In this chapter, while keeping the limitations mentioned above, we aim to speed up the
computation of alignments by using a divide-and-conquer approach. The data-aware process
model is split into smaller partly overlapping model fragments. For each model fragment a
sublog is created by projecting the initial event log onto the activities used in the fragment.
Given the exponential nature of conformance checking, this may significantly reduce the
computation time. If the decomposition is done properly, then any trace that fits into the
overall model also fits all of the smaller model fragments and vice versa. The remainder
of this chapter is organized as follows. Section 8.2 revisits the background definitions of
conformance checking and process mining presented so far in this thesis to incorporate data
information. In Section 8.3 we extend the definition of valid decomposition for data-aware
models. Section 8.4 proposes a valid decomposition strategy based on SESEs. Experimental
results, both artificial and real, are presented in Section 8.5. Finally, Section 8.6 concludes
the chapter.

152 Chapter 8. Data-aware Decomposed Conformance Checking

8.2 Data-aware Processes
In the previous chapters, all the definitions and theory presented focus on the control-flow
perspective of the processes. In this section we extend those concepts to incorporate the data

perspective. In particular, this section presents Petri nets with data as data-aware process
model notation, event logs with data, and the relation between models and logs.

8.2.1 Petri nets with Data

\ o
!
N !
N !
N

\

DRc\gislir Negative Request
|j/ "

Open Credit Loan

Register Negative
Verification

‘ - Renegotiate

Figure 8.2: Pictorial representation of a Petri net with Data that models the process earlier
described in terms of BPMN diagram (cf. Figure 8.1). Places, transitions and variables are
represented as circles, rectangles and triangles, respectively. The dotted arcs going from
a transition to a variable denote the writing operations; the reverse arcs denote the read
operations, i.e. the transition requires accessing the current variables’ value.

Petri nets presented in previous chapters are extended to incorporate data. A Petri
net with Data is a Petri net with any number of variables (see Definitions 8.1 and 8.2
below). Petri nets with data can be seen as an abstracted version of high-level/colored Petri
nets [50]. Colored Petri nets are extremely rich in expressiveness; however, many aspects are
unimportant in our setting. Petri nets with data provide precisely the information needed for
conformance checking of data-aware models and logs. In particular, the definitions presented
is based on the work of de Leoni et al. [54].

Definition 8.1 (Variables and Values). Uyy is the universe of variable names. Uy is the
universe of values. Uy = Uyn 7 Uyy is the universe of variable mappings.

8.2. Data-aware Processes 153

In this type of nets, transitions may read from and/or write to variables. Moreover,
transitions are associated with guards over these variables, which define when these they can
fire. A guard can be any formula over the process variables using relational operators (<, >
,=) as well as logical operators such as conjunction (A), disjunction (V), and negation ().
A variable v appear as v,. or v,,, denoting the values read and written by the transition for v.
We denote with Formulas(V') the universe of such formulas defined over a set V' of variables.
In the remainder, given a set V' C Uyy of variable names, we denote Vg = {v, : v € V'} and
Vw ={vy :v €V}

Formally, a Petri net with Data (DPN) is defined as follows:

Definition 8.2 (Petri net with Data). A Petri net with Data DPN = (SN, V, val, init, read,
write, guard) consists of

e asystem net SN = (PN, My, Mpina) with PN = (P, T, F,1),

e aset V C Uyn of data variables,

a function val € V-— P(Uyy) that defines the values admissible for each variable, i.e.,
val(v) is the set of values that variable v can have,

e a function init € V' — Uy that defines the initial value for each variable v such that
init(v) € val(v) (initial values are admissible),

e a read function read € T — P(V') that labels each transition with the set of variables
that it reads,

e a write function write € T — P(V') that labels each transition with the set of variables
that it writes,

e a guard function guard € T — Formulas(Viy U Vg) that associates a guard with each
transition such that, for any ¢ € T and for any v € V|, if v, appears in guard(t) then
v € read(t) and if v,, appears in guard(t) then v € write(t).

Uppy is the universe of Petri nets with data.

The notion of bindings is essential for the remainder. A binding is a triplet (t,r,w)
describing the execution of transition ¢ while reading values r and writing values w. A
binding is valid if:

1. r € read(t) = Uyy and w € write(t) — Uyy

2. for any v € read(t): r(v) € val(v), i.e., all values read should be admissible,

w

. for any v € write(t): w(v) € val(v), i.e., all values written should be admissible.

=~

. Guard guard(t) evaluates true.

154 Chapter 8. Data-aware Decomposed Conformance Checking

’ Transition \ Guard ‘
Credit Request true
Verify 01-A.<1,<02-A4,
Assessment Vg = true
Register Negative Verification | V,. = false A D,, = false
Inform Requester true
Renegotiate Request V, =falseNA, < A,
Register Negative Request D, = false
Open Credit D, = true

Table 8.1: Definitions of the guards of the transitions in Fig. 8.2. Variables and transition
names are abbreviated as described in Figure 8.1. Subscripts 7 and w refer to, respectively,
the values read and written for that given variable.

More specifically, let us introduce variable assignment xp : (VR U Vi) 4 Uyy) which is
defined as follows: for any v € read(t), x(v,) = r(v) and, for any v € write(t), x(vw) = w(v).
A binding (¢, 7, w) makes guard(t) evaluate true if the evaluation of guard(t) wrt. x; returns
true.

A marking (M, s) of a Petri net with Data DPN has two components: M € B(P) is the
control-flow marking and s € Uyy with dom(s) =V and s(v) € val(v) for all v € V is the
data marking. The initial marking of a Petri net with Data DPN is (M, init). Recall that
init is a function that defines the initial value for each variable.

(DPN, (M, s))[b) denotes that a binding b is enabled in marking (M, s), which indicates
that each of its input places et contains at least one token (control-flow enabled), b is valid
and and s[,cqq(+)= 7 (the actual values read match the binding).

An enabled binding b = (¢,r,w) may occur, i.e., one token is removed from each of the
input places et and one token is produced for each of the output places te. Moreover, the
variables are updated as specified by w. Formally: M’ = (M \ et) Wte is the control-flow
marking resulting from firing enabled transition ¢ in marking M (abstracting from data) and
s’ = s ® w is the data marking where s'(v) = w(v) for all v € write(t) and s'(v) = s(v) for
all v € V\ write(t). (DPN,(M,s))[b)(DPN,(M’,s’)) denotes that b is enabled in (M, s) and
the occurrence of b results in marking (M’ s').

Figure 8.2 shows a Petri net with Data DPN,, that models the same process as repre-
sented in Figure 8.1 as BPMN diagram, and Table 8.1 illustrates the conditions of the guards
of the transitions of DPN,,. The labeling function [is such that the domain of [is the set
of transitions of DPN,, and, for each transition ¢ of DPN,,, I(t) = t. In other words, the
set of activity labels coincides with the set of transitions.

Let o, = (b1,ba,...,b,) be a sequence of bindings. (DPN, (M, s))[op)(DPN,(M’,s"))
denotes that there is a set of markings (Mg, so), (M1, $1), ..., (My, s,) such that (Mg, sg) =
(M, 8), (Mn,Sn) = (]\4/,3/)7 and (DPN, (M“SZ))[()H_1>(DPN7 (Mi+1,8i+1)) for 0 < i<n. A

8.2. Data-aware Processes 155

marking (M’ s') is reachable from (M, s) if there exists a o}, such that (DPN, (M, s))[os)(DPN,
(M, s").

¢¢r(DPN) = {op | 35 (DPN,(Mini, init))[op)(DPN, (Mfnai, s))} is the set of complete
binding sequences, thus describing the behavior of DPN.

Given a set of Petri nets with Data, the union is defined as the merge of those Petri nets.

Definition 8.3 (Union of Petri nets with Data). Let DPN' = (SN*, V!, val', init*, read’,
write', guard') and DPN? = (SN2, V2, val?, init?, read®, write?, guard®) with V* nV? = §).
DPN'UDPN? = (SN*USNZ, VIUV2, val' @ val?, init* & init?, read®, write®, guard3) is the
union such that

o read®(t) = read* (t), write®(t) = write' (t), and guard®(t) = guard'(t) if t € T'\ T?,

o read®(t) = read®(t), write®(t) = write®(t), and guard®(t) = guard®(t) if t € T2\ T",
and

o read®(t) = read'(t) U read?(t), write®(t) = write*(t) U write*(t), and guard®(t) =
guard*(t) - guard®(t) if t € T* N T2,

8.2.2 Event Logs and Relating Models to Event Logs

Next we extend the definition of event logs presented in Chapter 2 to incorporate data and
relate them to the observable behavior of a DPN.

Definition 8.4 (Trace, Event Log with Data). A trace o € (Ua XUy xUyar)* is a sequence
of activities with input and output data. L € B((Ua X Uyn X Uyar)*) is an event log with
read and write information, i.e., a multiset of traces with data.

Definition 8.5 (From Bindings to Traces). Consider a Petri net with Data with transitions
T and labeling function I € T 4 Ua. A binding sequence o, € (T X Uyyr X Uyp)™ can be
converted into a trace o, € (Ua X Uyy X Uyp)* by removing the bindings that correspond
to unlabeled transitions and by mapping the labeled transitions onto their corresponding
label. I(0},) denotes the corresponding trace o,.

Note that we overload the labeling function to binding sequences, o, = (o). This is
used to define ¢(DPN): the set of all visible traces.

Definition 8.6 (Observable Behavior of a Petri net with Data). Let DPN be a Petri net
with Data. (DPN,(M,s))[o, > (DPN,(M’,s")) if and only if there is a sequence o} such
that (DPN, (M, s))[ow)(DPN,(M',s")) and o, = l(0p). ¢(DPN) = {l(0o) | op € ¢;(DPN)}
is the set of wvisible traces starting in (M, init) and ending in (Mfya, s) for some data
marking s.

Definition 8.7 (Perfectly Fitting with Data). A trace o € (Ua X Uy X Uyar)* is perfectly
fitting DPN € Uppy if 0 € ¢(DPN). An event log L € B((Ua x Uvar X Uyar)*) is perfectly
fitting DPN if all of its traces are perfectly fitting.

156 Chapter 8. Data-aware Decomposed Conformance Checking

Later, we will need to project binding sequences and traces onto subsets of transi-
tions/activities and variables. Therefore, we introduce a generic projection operator Iy y (o)
that removes transitions/activities not in Y and variables not in V.

Definition 8.8 (Projection). Let X be a set of transitions or activities (i.e., X C T or
X CUy). Let Y C X be a subset and V' C Uyn a subset of variable names. Let o € (X X
Uvyn xUyar)* be a binding sequence or a trace with data. IIy,v (o) € (Y < (V A Uyy)x(V 4
Uyv))* is the projection of o onto transitions/activities Y and variables V. Bindings/events
unrelated to transitions/activities in Y are removed completely. Moreover, for the remaining
bindings/events all read and write variables not in V' are removed. Iy,y (L) = [Ily,y (o) |
o € L] lifts the projection operator to the level of logs.

8.2.3 Data Alignments

In this section we extend the alignment theory presented in Chapters 5 and 6 to incorporate
the notion of data. Alignments shows how the event log can be replayed on the process
model, and they are composed by sequences of moves:

Definition 8.9 (Legal alignment moves). Let DPN = (SN, V,val,init,
read, write, guard) be a Petri net with Data, with SN = (PN, Minit, Mfina) and PN =
(P, T, F,l). Let S, = UaxUvyp XUy be the universe of events. Let Sppy = TxUvy XUy
be the universe of bindings of DPN. Let be S3py = Sppy U {>>} and S7” = S, U {>>}.

A legal move in an alignment is represented by a pair (sr, sar) € (S77 XS5 pn) \{(>,>)}
such that

e (s1,sn) is a move in log if s;, € S, and spr =,
e (sp,snm) is a move in model if s;, => and sy € Sppn,

e (sp,snm) is a move in both without incorrect read/write operations if sy = (¢, r,w) €
Sppn and sp, = (l(t),r,w) S SL,

e (s, snr) is a move in both with incorrect read/write operations if spr = (t,r,w) € Sppn
and sy, = (I(t),r',w') € S, and r # ' or w # w'.

All other moves are considered as illegal.

Definition 8.10 (Data Alignments). Let DPN = (SN, V,val, init, read, write, guard) be
a Petri net with Data and o € (S1)* be an event-log trace. Let Appy be the set of legal
moves for DPN. A complete alignment of o and DPN is a sequence v € Appn”™ such
that, ignoring all occurrences of >, the projection on the first element yields o; and the
projection on the second yields a op € ¢py(DPN).

Table 8.2 shows two complete alignments of the process model in Figure 8.2 and the log
trace 0., from Section 1.

8.2. Data-aware Processes 157

Event-Log Trace Process Event-Log Trace Process

(a, {(A,4000)}]) (a, {(A,4000)}) (a, {(A,4000)}) (a, {(A,5100)])

(b, {(1,450),(V,false)}) (b, {(1,450),(V,true)}) (b, {(1,450),(V ,false)}) (b, {(1,511),(V,true)})
(c, {(D,true)}) (c, {(D,true)}) (c, {(D,true)}) (c, {(D,true)})

(e, 0) (e,) (e,) (e, 0)

(£, {(A,5000)}) (£, {(A,3000)}) (f, {(A,5000)}) (f, {(A,5000)})

(b, {(1,450),(V false)}) | (b, {(1,450),(V false)}) (b, {(1,450),(V false)}) | (b, {(1,511),(V false)})
(d, {(D,false)}) (d, {(D,false)}) (d, {(D,false)}) (d, {(D,false)})

(e, 0) (e, 0) (e,) (e,

(h, 0) > (b, 0) >

> (g, 0) > (g, 9)

(a) (b)

Table 8.2: Examples of complete alignments of ocyqmpie and N. For readability, the read
operations are omitted. Of course, read operations for any variable must match the most
recent value for that variable. Any move is highlighted with a gray color if it contains
deviations, i.e. it is not a move in both without incorrect read/write operations.

As it is explained in Chapter 5, in order to define the severity of a deviation, we introduce
a cost function on legal moves: kK € Appy — Rg . This cost function can be used to favor
one type of explanation for deviations over others. The cost of each legal move depends on
the specific model and process domain and, hence, the cost function s needs to be defined
specifically for each setting. The cost of an alignment -y is the sum of the cost of all individual
moves composing it: K(v) =3, o ey K(SL, Sar)-

However, we do not aim to find just any complete alignment. Our goal is to find a complete
alignment of o7, and DPN which minimizes the cost: an optimal alignment. Let I';, n be
the (infinite)set of all complete alignments of oy, and DPN. The alignment v € I';, ppn is
an optimal alignment if, for all v/ € Ty, n, K(7) < K(7'). Note that an optimal alignment
does not need to be unique, i.e. multiple complete alignments with the same minimal cost
may exist.

Let us consider again our example introduced above. Let us assume to have a cost
function k* such that x%(sp, spr) = 11if (sg, sar) is a visible move in process or a move in log
(i.e. s => and sj; corresponds to a labeled transition or, conversely, sp; =>, respectively)
or a move in both with incorrect read/write operations and x*(sr, spr) = 0 in case of move
in both without incorrect read/write operations or a move in model corresponding to an
unlabeled transition. The alignment in Table 8.2a has a cost of 6 whereas the alignment in
Table 8.2b has a cost 8.2 It follows that the former is a better alignment. As a matter of fact,
it is also an optimal alignment, although it is not the only one. For instance, any variation
of such an alignment where the move for fis of the form (now including read operations)
((f,{(A,4000)},{(A,5000)}) (f,{(A,4000)},{(A,z)})})) with 2250 < = < 4000 corresponds
to an optimal alignment, as well.

2They also include a cost of two that is accounted for incorrect read operations, not shown in the align-
ments, which are caused by incorrect write operations.

158 Chapter 8. Data-aware Decomposed Conformance Checking

As we have mentioned, the data-aware conformance checking is undecidable in the general
case. This is caused by the fact that Petri nets with Data are Turing-complete. Therefore,
it is not decidable to verify whether a sequence of valid bindings exists that takes from the
initial marking to any final marking (Mynal,). As a consequence, for instance, it is not
possible to find an alignment of a Petri net with Data and the empty log trace. However,
the problem becomes decidable (with an exponential complexity) if guards are restricted to
linear (in)equalities.

8.3 Valid Decomposition of Data-aware Models

In Chapter 6 a valid decomposition [1] is presented in terms of Petri nets: the overall system
net SN is decomposed into a collection of subnets {SNl7 SNZ%, ..., SN™} such that the union
of these subnets yields the original system net. A decomposition is valid if the subnets “agree”
on the original labeling function (i.e., the same transition always has the same label), each
place resides in just one subnet, and also each invisible transition resides in just one subnet.
Moreover, if there are multiple transitions with the same label, they should reside in the
same subnet.

As shown in Chapter 6, these observations imply that conformance checking can be de-
composed. Any trace that fits the overall process model can be decomposed into smaller
traces that fit the individual model fragments. Moreover, if the smaller traces fit the indi-
vidual fragments, then they can be composed into a trace that fits into the overall process
model. This result is the basis for decomposing process mining problems.

In this chapter, the definition of valid decomposition is extended to cover Petri nets with
data.

Definition 8.11 (Valid Decomposition for Petri nets with Data). Let DPN € Uppy be a
Petri net with Data. D = {DPN' DPN? ..., DPN™} C Uppy is a valid decomposition if
and only if:

e foralll1 <i<mn: DPNi = (SN®, V', val', init*, read", write’, guardil) is a Petri net with
Data, SN* = (PNl,Mfmt,M;iml) € Usy is a system net, and PN* = (P! T Fi,1%) is
a labeled Petri net,
e D'={SN' SN? ...,SN"} C Usy is a valid decomposition of Ui<i<n SN,
e VinVi=0for1<i<j<mn,
e DPN =J,.,,, DPN".
D(DPN) is the set of all valid decompositions of DPN.

Each variable appears in precisely one of the subnets. Therefore, Vi N VJ = (im-
plies that there cannot be two fragments that read and or write the same data variables:

8.3. Valid Decomposition of Data-aware Models 159

User read" (t) U write’ (t) NUiers read’ (t) U write’ (t) = () for 1 <4 < j < n. Moreover,
two guards in different fragments cannot refer to the same variable. If a transition ¢ appears
in multiple fragments, then it needs to have a visible unique label. Such a uniquely labeled
transition ¢ shared among fragments, may use, read, or write different variables in different
fragments. Since DPN = |J,«,.,, DPN", we know that, for all ¢ in DPN, guard(t) is the
product of all guard(t) such that t € T?. Without loss of generality we can assume that
the first k fragments share ¢. Hence, guard(t) = guard®(t) - ... guard”(t). Hence, in a valid
decomposition, the guard of a shared transition can only be split if the different parts do not
depend on one another. Notice that, the splitting of the data variables is limited by how the
variables are used throughout the process, existing a worst-case where all the data variables
are used in all the steps of the process.

Based on these observations, we prove that we can decompose conformance checking also
for Petri nets with data.

Theorem 8.12 (Conformance Checking With Data Can be Decomposed). Let L € B((Ua x
Uyn xUvar)*) be an event log with information about reads and writes and let DPN € Uppn
be a Petri net with Data. For any valid decomposition D = {DPN', DPN?,... , DPN"} C
Uppn: L is perfectly fitting Petri net with Data DPN if and only if for oll 1 < i < n:
I, (sniy,vi(L) is perfectly fitting DPN®.

Proof. Let DPN = (SN, V, val, init, read, write, guard) be a Petri net with Data with SN =
(PN, Minit, Ming) and PN = (P, T,F,l). Let D = {DPN', DPN? ... DPN"} be a valid
decomposition of DPN with DPN' = (SNi,Vi7vali,initi, read’, wm‘tei,guardi), SNt =
(PN*, M}, M},,.1) € Usy, and PN* = (P',T", F', I").

(=) Let 0, € L be such that there exists a data marking s such that (DPN, (M,
init))[oy> (DPN, (Mfinai, s)). This implies that there exists a corresponding o, with (DPN,
(Mg, init))[op) (DPN, (Mfina, s)) and (op) = 0,. For all 1 < ¢ < n, we need to prove that
there is a o} with (DPN", (M}, init"))[o})(DPN", (M1, 8")) for some s°. This follows
trivially because DPN® can mimic any move of DPN with respect to transitions T%: just
take og =TII7i vi(op). Note that guards can only become weaker by projection.

(<) Let 0, € L. For all 1 < i < n, let o} be such that (DPN’, (M, init"))[o})
(DPN', (M}, 5")) and I(0}) = Iy, (sw+),v(0w). The different o} sequences can be stitched
together into an overall oy, s.t. (DPN, (Mpt, init))[op)(DPN, (Mfina, s)) with s = s' & s? &
... @ s™. This is possible because transitions in one subnet can only influence other subnets
through unique visible transitions and these can only move synchronously as defined by o,.
Moreover, guards can only be split in independent parts (see Definition 8.11). Suppose that
t appears in T; and T}, then guard(t) = guard'(t) - guard’ (t). Hence, a read /write in subnet
¢ cannot limit a read/write in subnet j. Therefore, we can construct o, and I(0p) = 0, O

160 Chapter 8. Data-aware Decomposed Conformance Checking

8.4 SESE-based Strategy for a Valid Decomposition

In this section we present a concrete strategy to instantiate the valid decomposition definition
over a Petri net with data presented in the previous section (cf. Definition8.11). Similar to
Chapter 6, the proposed strategy decomposes the Petri net with data in a number of Single-
Entry Single-Exit (SESE) components, creating meaningful fragments of a process model [72,
66]. SESE decomposition is indicated for well-structured models, whereas for unstructured
models some automatic transformation techniques can be considered as a pre-processing step

[42].
kk 9

aN
N =%

(ratlaciiliey Open Gredit Loan
Necetive| | Redster Negative:
SEass Verification e
Verify
Assessment Register Negative Request
n D D] & ,D /’D* o
x| | ot e Yoy [b i, - P
| L L] e e E e
Qredit Request Renegotiate Regs .
Verfigon O

Figure 8.3: SESE-based decomposition for the running example, with 2-decomposition.

To extend the SESE decomposition strategy presented in Chapter 6 to also account for
data, one simply considers its application over the data workflow graph, an extension of the
workflow graph where the variables and read/write arcs are also included.

Definition 8.13 (Data Workflow Graph). The data workflow graph of a Petri net with Data
((P,T,F,l), Minit, Mpinar), V, val, init, read, write, guard) with data arcs R = {(v,t)lv €
read(t)} and W = {(¢,v)|v € write(t)} is the workflow graph DWG = (S,E) with S =
PUTUV and E=FURUW.

The SESE decomposition proposed to analyze the conformance of Petri nets with data,
is similar to the one presented in Chapter 6 but considering data workflow graph instead.
Algorithm 8.1 describes the steps necessary to construct a SESE decomposition. The arcs
are partitioned in SESEs by means of creating the RPST from the data workflow graph,
and selecting a particular set of SESES over it. Once the partitioning is done, a subnet is
created for each part. Subnets contradicting some of the requirements of Definition 8.11 (e.g.
sharing places, invisible or duplicate transitions, variables, or transitions with non-splitting
guards) are merged to preserve the valid decomposition definition.

Figure 8.3 shows the decomposition for the example of Figure 8.2, where the RPST is
partitioned using the 2-decomposition algorithm (cf. Chapter 6), i.e., SESEs of at most 2

8.5. Implementation and Experimental Results 161

Algorithm 8.1 SESE-based Decomposition

Build data workflow graph DWG from F, R, W

Compute RPST from DWG

Compute SESE decomposition D from the RPST

Compute and merge subnets if necessary to preserve valid decomposition.
return valid decomposition where perspectives are decomposed altogether

arcs®. To ensure a valid decomposition is obtained, step 4 of Algorithm 8.1 combines multiple
SESE fragments into larger fragments, which are not necessarily SESEs anymore.

8.5 Implementation and Experimental Results

The approach discussed in this chapter has been implemented as a plug-in for the open-source
ProM framework for process mining.

The plug-in requires a Petri Net with Data and an event log as input and returns as
many bags of alignments as the number of fragments in which the Petri Net with Data
has been decomposed. Each bag refers to a different fragment and shows the alignments of
each log trace and that fragment. A second type of output is also produced in which the
alignments’ information is projected onto the Petri net with Data. Transitions are colored
according to the number of deviations: if no deviation occurs for a given transition, the
respective box in the model is white-colored. The filling color of a box shades towards red
as a larger fraction of deviations occur for the corresponding transition. Something similar
is also done for variables: the more incorrect read/write operations occur for a variable, the
more the variable is shown with a color close to red. This output is extremely interesting
from an end-user viewpoint as it allows for gaining a helicopter view on the main causes of
deviations [54].

The plug-in has been evaluated using a number of synthetic event logs and also a real-life
process. The plug-in has been evaluated using the model in Figure 8.2 and with a number of
event logs that were artificially generated. In particular, we have generated different event
logs with the same number of traces, 5000, but increasing number of events, meaning that,
on average, traces were of different length. To simulate that, for each simulated process
execution, an increasing number of renegotiations was enforced to happen. Traces were also
generated so as to contain a number of deviations: the event logs were generated in a way
that 25% of transitions fired violating the guards.

Figure 8.4 shows the results of checking for conformance of the different event logs and
the process model, comparing the SESE-based decomposition with k£ = 2 with the case in
which no decomposition is made. To check the conformance of each fragment, we used the

3 Although the SESEs have at most two arcs, this is not guaranteed for the final subnets, i.e., some subnets
are merged to preserve the valid decomposition definition.

162 Chapter 8. Data-aware Decomposed Conformance Checking

10000

1000 -+
M No Decomposition

SESE-based decomposition (k=2)

(in seconds - log scale)

Average Computation Time

5 10 15 20 25 30

Average number of events per event-log trace

Figure 8.4: Computation time for checking the conformance of the Petri net with Data in
Figure 8.2 and event logs of different size. The Y axis is on a logarithmic scale.

technique reported in [54]. Each dot in the chart indicates a different event log with traces of
different size. The computation time refers to the conformance checking of the whole event
logs (i.e., 5000 traces). The decomposed net is the same as in Figure 8.3. Regarding the
cost function, we assign cost 1 to any deviation; however, this could be customized based on
domain knowledge. The results show that, for every combination of event log and process
model, the decomposition significantly reduces the computation time and the improvement
is exponential in the size of the event log.

To assess the practical relevant of the approach, we also performed an evaluation with
a Dutch financial institute. The process model was provided by a process analyst of the
institute and consists of 21 transitions: 13 transitions with unique labels, 3 activities labels
shared between 2 transitions (i.e. 6 transitions in total), plus 3 invisible transitions. The
model contains twelve process variables, which are read and written by the activities when
being executed. We were also provided with an event log that recorded the execution of
111 real instances of such a process; overall, the 111 log traces contained 3285 events, which
means roughly 29.6 events per trace. We checked the conformance of this process model
and this event log, comparing the results when the model has or has not been decomposed
in small fragments. For conformance checking, here we used the technique reported in [57]
since the provided process model breaks the soundness assumptions required by [54]. For this
experiment round, the additional optimizations proposed in [57] were deactivated to allow
for a fair comparison.

The application of the decomposition approach to this real-life case study has shown
tremendous results: the conformance checking has required 52.94 seconds when the process
model was decomposed using the SESE-based technique presented in Section 8.4; conversely,

8.6. Conclusions 163

it required 52891 seconds when the model was not decomposed. This indicates that decom-
posing the process model allowed us to save 99.999% of the computation time. As a matter
of fact, we tried for different values of SESE parameter k£ but we obtained similar results: the
computation time did not move away for more than 1 second. The reason of this is related
to the fact that every decomposition for any value of k always contained a certain fragment,
along with others. Indeed, that fragment could not be decomposed any further than a given
extent. Since the computation time was mostly due to constructing alignments with that
fragment, no significant difference in computation time could be observed when varying k.

8.6 Conclusions

Checking conformance between an event log and a process model is known to be a complex
procedure. That complexity explodes even more when we consider data-aware conformance
checking with multi-perspective models. This chapter proposed the extension of control-flow
decomposed conformance checking techniques to alleviate the computation time of data-
aware processes. The decomposition definition proposed is proven to be correct from a
conformance point of view, and the experiments showed a significant reduction in time with
respect to the monolithic approach. In the future, new decomposition strategies may be
considered, and the proposed techniques may be extended to other conformance dimensions,
such as precision.

Chapter 9

Event-based Real-time
Decomposed Conformance

Checking

9.1 Introduction

In this chapter we use the application of decomposed techniques to check conformance in
event-based real-time systems. Unlike forensic conformance checking, where conformance
is analyzed a posteriori once the case has finished, real-time techniques check conformance
on the fly. Real-time checking techniques are specially indicated for monitoring, immediate
fraud detection and governance, risk and compliance verification, and failure protection.

Although both forensic and real-time checking analyze the conformance between models
and reality, the latter presents a list of new challenges for its applicability. First, the proposed
approach should consider the computation time a priority. The analysis must be conducted
on a regular basis and the results must be output in a short period of time. Second, given
the periodicity of the analysis and the urge of the conclusions, the real-time approaches must
focus on the fine-grained localization of the deviation and the understanding of their causes.
Finally, real-time systems must be event-based instead of trace-based, i.e., the analysis must
not require a complete trace in other to detect possible mismatches.

In this chapter we propose decomposed conformance analysis methodology to support
the real-time monitoring of event-based data streams, which aims to provide an answer to

— The materials reported in this chapter are partially published in [29] —

165

166 Chapter 9. FEvent-based Real-time Decomposed Conformance Checking

the challenges listed above, being more efficient than related approaches and able to localize
deviations in a more fine-grained manner. The remainder of this chapter is organized as
follows. Section 9.2 presents the methodology proposed, that combines both decomposition
and event-based heuristic replay. Section 9.3 presents an extensive example case to illustrate
the benefits of the methodology, and an experimental comparison with related approaches.
Finally, Section 9.4 concludes the chapter.

9.2 Event-based Real-time Decomposed Conformance

In this section we present the proposed methodology, that combines: 1) a decomposition of
the model, 2) with an event-based heuristic replay of the log. Figure 9.1 provides a schematic
overview of the approach, where each event is dispatched to its corresponding component to
be replayed.

Event-based
Heuristic Replay

(8]
—P : ..
{ : Event
...{case5,A} {case3,D} {case4,B} {case3 A} : ven
...{casel,C} {case4,D} {case4,C} {case4 A} Dispatcher Event-based
—> Heuristic Replay

O-{p}+O

Event-based
Heuristic Replay

Figure 9.1: Architectural overview of the developed real-time decomposed conformance
checking technique.

9.2.1 Model and Log Decomposition

The first phase of the proposed methodology entails decomposition. Formally, the overall
system net SN is broken down into a collection of subnets {SN', SN? ... SN"} such that

9.2. FEvent-based Real-time Decomposed Conformance 167

the union of these subnets yields the original system net SN. By means of decomposing the
original model into a set of subnets we aim to achieve the following goals. First, fragment
the conformance problems into a set of more comprehensive semantic elements aiding on the
diagnosis. Second, restrict the possible pernicious effects of the heuristics decisions taken
during the conformance analysis (see Phase 3 below). Third, speed-up the analysis compared
with non-decomposed conformance checking techniques.

Due to the final goal of analyzing conformance, not all possible decomposition approaches
are appropriate for this task. Only those valid decompositions that preserve the conformance
integrity should be considered (cf. Chapter 6). That is, given the original net and the
decomposed version, the original net perfectly conforms iff all the subnets in the decomposed
setting perfectly conforms. In other words, no conformance anomalies should be lost or
introduced in the transition from the overall model to the decomposed one. As it is presented
in Chapter 6, a valid decomposition—applicable on Petri nets— is defined informally as the
decomposition that satisfies the following conditions:

1. Each arc of the overall net belongs to exactly one of the subnets.

2. Each place of the overall net belongs to exactly one of the subnets.
3. Invisible transitions appears in precisely one of the subnets.

4. Visible, duplicate transitions appear in precisely one of the subnets.
5. Visible, non-duplicate transitions may appear in multiple subnet.

In other words, all elements in the original Petri net model must belong to a subnet, but
only visible, non-duplicate transitions can be shared among several subnet.

As it is mentioned in previous chapters, there exist several possible valid decomposi-
tion strategies: minimal, passages, SESEs, etc. In this methodology we consider a valid
decomposition based on the SESE decomposition proposed in Chapter 6, i.e. subgraphs
in the workflow graph defined over a system net having single entry and exit boundary
nodes. SESEs perfectly reflect the idea of subprocesses within the main process, important
to obtain a meaningful real-time decomposition. Figure 9.2 shows an example of SESE for
the illustrative case shown in Section 9.3. The SESE decomposition can be combined with
a user-supervised post-processing step where several SESEs are merged in order to obtain
components that better fulfill the domain-aware monitoring.

Once a system net has been decomposed into a set of submodels, this collection of models
is passed to a central event dispatcher, which also serves to listen for incoming events. For
each submodels, it is examined whether it contains a transition ¢ which maps to the incoming
event e. If it does, this indicates that the event at hand should be replayed on this particular
submodel (multiple such submodels can be found), and the event is passed forward to this
model fragment.

168 Chapter 9. FEvent-based Real-time Decomposed Conformance Checking

RRS

...Q_>STRR_>Q_> RRR_>Q_>FTRR_>Q

RRD

Figure 9.2: ”Open and register transaction” SESE from the case example in Section 9.3.
STRR and FTRR are the entry and ezit boundary nodes of the SESE, respectively. The rest
of places and transitions are interior nodes of the SESE.

9.2.2 Event-based Heuristic Replay

Once it is determined which process model fragment(s) should parse the incoming event,
the actual replay of this event on each such fragment is performed. In previous chapters
— Chapters 5 and 6 — we illustrate the use and benefits of a optimal conformance checking
based on alignments. However, given the event-based nature of the methodology, and the
need of efficient approaches in real-time system, in this chapter we propose the use of replay
based conformance techniques. In the seminal work [80], a “fitness” metric is presented to
describe the extent to which event traces can be associated with valid execution paths in the
process model, and an “appropriateness” metric is proposed to asses whether the process
model describes the observed behavior accurately enough. The aforementioned approach
replays the traces of the log in the model to evaluate these metrics. One of the drawbacks
of this approach is that for undeterministic models, the heuristics used in the replay may
lead to overestimating the metrics, due to the artificial creation of superfluous tokens in the
model. Several solutions have been proposed to overcome this issue. Weidlich et al. propose
a system to check process model consistency based on “behavioral profiles” [99, 89]—which
can be derived in a straightforward and efficient manner but with loss of some granularity
regarding the exact traces which can be accepted by the model at hand.

In this chapter we propose the use of a replay algorithm based on the work of vanden
Broucke et al. [30, 26]. The informal idea is the following: for each process model fragment,
a state list is maintained denoting the current marking reached by the currently-running
process instances. When an event is queued for replay by a process fragment, the state
linked to process instance is progressed by investigating whether there exists an enabled
transition for such activity. The outcome of this evaluation determines if the process model
is showing discrepancies or not.

Some additional remarks should be provided at this point. First of all, we note that we

9.2. FEvent-based Real-time Decomposed Conformance 169

apply a heuristic, event-granular replayer similar to the one applied in [30]. The reasoning
behind the choice to opt for a replayer playing the token game instead of an alternative
approach such as alignment or behavioral profile based techniques [16, 89, 99] are twofold.
First, alignment and behavioral profile based replayers perform their analysis on a trace,
rather than event level, meaning that a complete process instance needs to finalize in order
to align the log trace with a process model transition sequence As we are dealing with event
streams which need to be analyzed in a real-time manner, an event-granular replay strategy
is required. Second, alternative approaches suffer from scalability issues which make them
unsuitable in a real-time context.

A second remark entails the way decision points are resolved by the replayer. Put briefly,
whenever multiple (enabled) transitions are mapped to the same event log activity within a
process model and /or whenever multiple invisible activities are enabled, the replayer needs to
determine which transition to execute to handle the activity at hand. Note that—in extreme
edge cases—it is possible that the forced firing of a non-enabled transition should be preferred
if this avoids several other violations later in the event trace [92]. A replay strategy is put
forward which prefers the firing of enabled transition mapped to the activity at hand first,
followed by the set of silent transitions, followed by the set of non-enabled transition mapped
to the activity at hand. If the chosen set contains multiple transition candidates, a one-step
look-ahead procedure is executed to determine which candidate enables the execution of the
following activity (if no such candidate can be found, a random one is chosen). For the
multitude of process models, this look-ahead suffices to resolve any ambiguities. However,
since we are dealing with streaming event data in this context, we possess no knowledge about
events which will arrive in the future, preventing the execution of the look-ahead procedure.
There are three proposed strategies to deal with this issue. First, disabling the look-ahead
altogether and assuming that the model is deterministic enough to handle incoming events
without taking the context into account. Second (another extreme), restarting the replay
of the full trace each time an event is added, thus allowing the replayer to revise earlier
decisions. Note however that the replayer is configured such that no new violations may
be introduced related to historical activities. In practice, this means that the replayer can
revise the state chain by modifying the execution of silent transitions, selecting alternative
albeit also enabled transition mapped to a particular activity for activities which were parsed
correctly, or selecting alternative disabled transition, although only for activities which were
not parsed correctly. The third method combines these two extremes by considering a part
of the executed transition sequence as “frozen”, only allowing revisions for the last n steps.

As a third remark, as it is aforementioned, one of the drawbacks of “token game”-based
replayers entails the possible creation of superfluous tokens, enabling subsequently for too
much behavior. However, as was mentioned, the decomposition of a process model restricts
the possible pernicious effects of the heuristics decisions taken during the conformance analy-
sis, as each model is now limited to dealing with a smaller subset of behavior. In addition, as
superfluous tokens are created following the forced firing of violating activities, the process
instance or model fragment at hand is likely to be immediately indicated as “dubious” at this

170 Chapter 9. FEvent-based Real-time Decomposed Conformance Checking

point, lowering the trustfulness of following events within this instance of model fragment,
independent of the replay strategy being applied.

The results of the replay analysis can be reported and visualized. Remark that, naturally,
these actions can be performed while the actual conformance analysis is running. In general,
two ways of result follow-up are supported by our architecture. The first one consists of the
logging of various statistics by the running worker threads and replayers, which is polled
regularly by decoupled components (e.g. a real-time dashboard or perhaps logged to a
persistent data store). The second manner by which results can be interpreted consists of
the definitions of various triggers which are to be fired once certain criteria are met, such
as a model fragment overshooting a certain error rate threshold, for instance, of a high-risk
activity or model fragment being violated. The actions which can be undertaken as a result
are self-explanatory, e.g. sending warnings, or halting running process instances or even the
complete system.

9.3 Case Example and Experimental Results

In this section we propose the study of a realistic process case example in order to illustrate
the approach presented its benefits. Model and logs—original and decomposed—of this case
example, together with the rest of the benchmarks used in this experimental section, are
publicly available®.

9.3.1 Description

The modeled process describes a realistic transaction process within a banking context. The
process contains all sort of monetary checks, authority notifications, and logging mechanisms
responding to the new degree of responsibility and accountability that current economic
environments demand. The process is structured as follows (cf. Figure 9.3 shows a high-
level overview of the complete process): it is initiated when a new transaction is requested,
opening a new instance in the system and registering all the components involved. The
second step is to run a check on the person (or entity) origin of the monetary transaction.
Then, the actual payment is processed differently, depending of the payment modality chosen
by the sender (cash, cheque? and payment). Later, the receiver is checked and the money is
transferred. Finally, the process ends registering the information, notifying it to the required
actors and authorities, and emitting the corresponding receipt.

The process has been modeled in terms of a Petri net. The decomposition techniques
based on SESEs is used to decompose the overall model into suprocesses. In particular, a valid
decomposition where components have size at most 60 is derived. Finally, the decomposition
is post-processed by merging some of the SESEs in order to reach the final decomposition
shown in Figure 9.4 (which depicts the full process): eight of the proposed subnets correspond

1doi:10.4121 /uuid:c1d1fdbb-72df-470d-9315-d6f97e1d7cT7c
2The British term is used to avoid ambiguity with the verb “to check”.

9.8. Case Example and Fxperimental Results 171

process
cash
payment

)
open and —. —
egister check p check transfer notify and
register X>—» cheque i cloge
transaction sender " receiver money)
— (payment) transaction

process
electronic
payment

Figure 9.3: High level overview of the running example process, structured in subprocesses.

with the eight subprocesses identified in Figure 9.3 (represented within gray rectangles), and
the ninth subnet contains all the trivial connections between suprocesses (represented outside
the rectangles).

9.3.2 Experimental Scenario Evaluation

To illustrate the benefits of the technique, we present two possible scenarios within the case
example process.

Scenario 1: Serial Number Check

The modeled process defines that, whenever a client executes the payment in cash, the se-
rial numbers must be checked (see Figure 9.3). The banking regulation states that serial
numbers must be compared with an external database governed by a recognized interna-
tional authority (“Check Authority Serial Numbers CASN”). In addition, the bank of the
case example decided to incorporate two complementary checks to its policy: an internal
bank check (“Check Bank Serial Numbers CBSN”), and a check among the databases of
the bank consortium this bank belongs to (“Check Inter-Bank Serial Numbers CIBSN”).
At a given point, due to technical reasons (e.g., peak hour network congestion, malfunction
of the software, deliberated blocking attack, etc.), the external check CASN is not longer
performed, contradicting the modeled process, i.e., all the running instances of the process in-
volving cash payment can proceed without the required check. Using the proposed approach,
this situation is detected immediately, identifying the anomalous subprocess (process cash
payment), focusing the conformance analysis on it, and eventually taking the necessary coun-
termeasures. The consequences of detecting such cases only in forensic analysis performed
months after the incident are severe and difficult to recover from. The situation is depicted
in Figure 9.5.

Chapter 9. FEvent-based Real-time Decomposed Conformance Checking

172

UOI}ORSURI) OSO[D PUe AJIION

Aouowr IojsueL],

IDPUDS HDOU)

IOATOOOT YOO

uorjorsuRI}
19381801 pue wad()

Figure 9.4: Running example: final valid SESE-decomposition.

The substructures are named according to Figure 9.3.

9.8. Case Example and Fxperimental Results 173

OO

8 _| —— Nr. of Violations
AL Nr. of Violations / Sec.
g &
S
&] - 2
g b
= ; -
-
Py "
e - ©
I I I I

0 50 100 150

Time (Elapsed Seconds)

Figure 9.5: In the first scenario, the Check Authority Serial Number (CASN) activity is
skipped for some process instances, causing the CPC activity to fail, due to a missing input
token which was expected to be present and placed there by the execution of CASN. The
figure depicts the error localized in the affected model fragment; the graph depicts the
cumulative and running amount of violations detected within this fragment.

174 Chapter 9. FEvent-based Real-time Decomposed Conformance Checking

| — Nr. of Violations
e | Nr. of Violations / Sec.
S o a0 A b i .
g = R ' i
5] ! PV e
5 o Y A o
o —
v
-
o -+ o

0 20 40 60 80 100 120 140

Time (Elapsed Seconds)

Figure 9.6: In the second scenario, the preliminary profile check for receivers is skipped
(SRPP to FRPP), causing either the REPP or EPP activities to fail. The figure depicts the
error localized in the affected model fragment; the graph depicts the cumulative and running
amount of violations detected within this fragment.

Scenario 2: Receiver Preliminary Profiling

During the check receiver stage, the model establishes two steps to be performed sequentially:
first, a preliminary profiling analysis (“Start Receiver Pre Profiling SRPP”) is executed over
the receiver in order to evaluate and establish its potential risk (“Evaluate Pre Profiling
EPP”). Ouly then, a complete background check is performed over the receiver, where this
check can either be more casual (“Start Low Risk Receiver Processing SLRRP) or thor-
oughly (“Start High Risk Receiver Processing SHRRP”) depending on the potential risk
detected on the preliminary profiling. However, the presence of an inexperienced bank em-
ployee, malevolence, or simply a bad implemented bank evaluation protocol, could result in
evaluating the receiver with an unfinished preliminary profile check. The situation is depicted
in Figure 9.6.

9.8. Case Example and Fxperimental Results 175

v Real time v Alignmentnon decomposed v
o v Heuwistic decomposed v v Heuristic non decornposed v Alignment decomposed v
M - .

—

xQ]

el
=
:
P
g = ; ;
g Alignment non decomposed (no noise)
= Alignment non decomposed (noise)
b~ . .
° v Alignment decomposed (no noise)
g < Alignment decomposed (noise)
& Heuristic non decomposed (no noise)

o Heuristic non decomposed (noise)

S 7] Heuristic decomposed (no noise)

Heuristic decomposed (noise)
—— Real time (no noise)
S - - - Real time (noise)

I T I I
0 100 200 300

Time (Elapsed Seconds)

Figure 9.7: Comparison of replay performance for the included techniques in the experimental
setup, showing the time taken per technique to replay the given event log.

9.3.3 Experimental Comparison

To benchmark the performance of our developed real-time conformance analysis technique
against related approaches, a fitting event log was generated (based on the model depicted
in Figure 9.4) containing ten thousand process instances (678864 events). A non-conforming
(“noisy”) variant of this event log was produced by inducing noise (inserting, deleting, and
swapping of events) so that 10% of the included events are erroneous.

We compare our proposed technique against the alignment based replay technique by
Adriansyah et al. [16] as well with the original implementation of the token-game based
heuristic replayer [30]. Both the non-decomposed and decomposed variants of these tech-
niques were included.

Figure 9.7 depicts the performance results of the experiment, showing the amount of
time taken (x-axis) to check the conformance of the included event logs (the y-axis repre-
sents the cumulative ratio of event checks performed). As can be seen, our proposed real-time
conformance analysis technique performs competitively with respect to related techniques.
During the experimental run, a maximum throughput rate (number of events checked per

176 Chapter 9. FEvent-based Real-time Decomposed Conformance Checking

second) was reached at 35000 with the experiment running on a single consumer laptop with
three worker threads. Some additional remarks should be provided however when interpret-
ing Figure 9.7. First, note that our proposed technique performs similarly as the heuristic
decomposed replay technique, but note that proposed technique executes a conformance
check on an event-granular basis and thus can be applied in a real-time monitoring setting,
whereas the other techniques do so on a trace-granular level (i.e. a complete trace should
be provided to perform the replay procedure). However, the event log is of sufficient size so
that a step-wise effect is not apparent in Figure 9.7. Second, the replay procedure of the
existing techniques was modified such that each trace is checked independently of the log
context, meaning that no distinct trace grouping is performed over the log and each trace
is checked as if it were belonging to an event log containing only this trace, so as to bet-
ter assess the performance of these techniques in a real-time scenario (where the complete
trace and log are unknown as events are arriving), rather than a post-hoc scenario where
the complete event log is provided as-is. Note that—for the alignment based technique—this
causes the non-decomposed version to perform better than the decomposed one. This is a
perhaps unexpected result, but is caused by the fact that the alignment based techniques are
geared towards checking—and as such expect—event logs as a whole. We thus emphasize the
fact that these techniques have—currently—not been optimized to be applied in a real-time
scenario (with an event stream being checked instead of an historical log).

9.4 Conclusions

In this chapter we have presented a novel business process conformance analysis technique
which is able to support real-time monitoring of event-based data streams. Our approach
offers a number of novel contributions, most notably a speed-up compared to related tech-
niques, the ability to localize discrepancies and allowing real-time monitoring and thus rapid
response times in mission-critical or high-risk environments, which is a significant benefit
compared to existing conformance checking techniques which mainly work in an offline man-
ner.

Future lines of research include: streamlining visualization and reporting capabilities,
incorporating other decomposition and replay strategies, and adapting the framework into
a distributed implementation, where different replayer engines run on separate machines.
In addition, future research include the adaptation of these techniques to a strict steaming
scenario, where the cases have no identification.

Part 1V

Closure

177

Chapter 10

Conclusions

10.1 Conclusion and Reflection

In the early days of process mining, most of the research in process mining was mainly
focused on discovery techniques, neglecting the importance of conformance. Several discovery
approaches were presented, using a wide range of different techniques. However, measuring
the adequacy of the provided results was never a priority, and only simple measures where
used, being difficult to determine the most adequate approach for each case. Moreover, most
analysis focused on verifying the properties of the model (e.g., has the model deadlocks?),
or the properties of the log (e.g., is activity x and y always executed by a different person?),
instead of evaluating whether the model represented faithfully the reality observed in the
log, i.e., conformance.

However, in the recent years this tendency has finally changed, and more research effort
has been focused on the conformance dimensions. Since the thesis [79], several master and
doctoral thesis has focused, totally or partially, on conformance. Thesis like [15], [26], [31],
or the thesis presented here, represent a good example of that effort. In addition, several
papers were presented in journals, conferences and workshops to analyze conformance: works
addressing all conformance dimensions, such as [16, 1] for fitness, [62, 19, 30] for precision,
[30, 8] for generalization, or [33] for simplicity, to enumerate some examples; works addressing
the conformance using replay-based strategies such as [30], and also align-based strategies
such as [16]; works addressing conformance in a decomposed way, such as [2, 1, 67]; and
works addressing conformance for multi-perspective models such as [54]. New benchmarking
frameworks for conformance analysis has been presented, such as [28], incorporating and
using these new approaches, for example in [96], to evaluate the quality of state-of-the-art
discovery algorithms.

179

180 Chapter 10. Conclusions

10.2 Summary of Contributions

The main theme of this thesis is the conformance checking and diagnosis between behavior
observed in the log and process models. The contributions of the thesis can be divided in
two groups according to the their purpose: techniques to evaluate the precision dimension,
and techniques to decompose the conformance diagnosis.

e Precision in Conformance Checking. The precision is the dimension in confor-
mance checking that measures the degree of a process model to describe only the
behavior observed in the log, and no more.

Chapter 3 studied the limitations of the approaches based on comparing model and
log relations, and presented a different approach to study precision. This approach is
based on detecting escaping arcs, in other words, those points where the model allows
more behavior than the one observed in the log. The escaping arcs are weighted and
used to provide a metric for the precision dimension. Moreover the escaping arcs, and
the situations leading to them, define possible points for a future actuation, in order
to achieve a more precise model.

In Chapter 4, the escaping arcs theory is revisited to incorporate the notion of robust-
ness. The refined approach consider the frequency of the observed traces in order to be
less affected by infrequent or noisy observed behavior. The chapter also presented the
notion of confidence over the precision metric provided. A narrow confidence interval
indicates a high confidence on the provided metric, while a wide interval denotes a
likely possibility that precision metric changes in the future. The confidence interval
is determined according to a giving parameter indicating the future to consider, where
a low value indicates a close future and a high value a distance future. The bounds
of the interval represent the likelihood of new escaping arcs to appear, or disappear,
within the considered future. Finally, the chapter presented a method to assess the
severity of the escaping arcs detected. The severity proposed is based in a multi-factor
analysis, with factors such as the weight of the escaping arc within the process or the
criticality of the action allowed. Escaping arcs with high severity pinpoint imprecise
situations that should be addressed urgently.

Chapter 5 presented a different approach to analyze the escaping arcs of a system.
While the previous proposed technique detects the escaping arcs directly from the
log, this different approach uses a pre-processing step, where the observed behavior is
aligned with the modeled behavior. Aligning observed and modeled behavior is able
to solve in a global optimal way those situations, such as unfitting and undeterminism,
where the direct use of the log would require the use of heuristics. However, the
aligning of behaviors is time-consuming operation not suitable for all the scenarios.
The chapter presented the use of aligned behavior to derive escaping arcs, including
also those situations where the observed traces in the log can be optimally aligned with
several model sequences. The chapter also proposed different levels of abstractions on

10.3. Challenges and Directions for Future Work 181

the precision computation, where the order of the activities is not considered, or where
the direction in which the log traces are processed is reverted to achieve a more balanced
precision.

e Decomposed Conformance Diagnosis. Conformance checking is a time-consuming

task. Moreover, identifying the causes of the conformance problems is sometimes far
from easy. The decomposition techniques try to alleviate this two problems decompos-
ing the processes in parts, and analyzing them separately. In this part, the conformance
focus changes from the precision dimension of the previous part to the fitness dimen-
sion.
Chapter 6 studied the different decomposition methods in process mining, a proposed
a decomposition conformance checking based on Single-Entry Single-Exit (SESE) com-
ponents. SESEs are components with a clear interface with the rest of the model, (i.e.,
one entry node and one exit node), representing subprocesses within the main process.
Decomposing a model in SESEs alleviate the conformance checking analysis, while at
the same time, the meaningful decomposition provides a better understanding of what
subprocesses have conformance problems.

Chapter 7 extended the diagnosis capacities of the decomposition methods, providing
mechanisms to analyze the conformance in a topological way and a hierarchical way.
A topology of a decomposition represents the connections between components, and it
can be used to detect areas with conformance problems. A hierarchical conformance
analysis allows to zoom-in and zoom-out on a hierarchy of components in order to get
a better understanding of the situation and the cause of the conformance problems.

Chapter 8 proposes a decomposition of multi-perspective models, in order to alleviate
the computation time and to aid in the conformance diagnosis. In particular, the de-
composition proposed focus on models with control-flow and data perspective, aligning
both flow and data in a distributed way.

Chapter 9 addresses the real-time monitoring of conformance deviations by means of
decomposition and event-based heuristic replay. The decomposed setting aims at iden-
tifying the subprocesses cause of the conformance anomalies, while the replay adapts
the analysis to the event-based nature of real-time monitoring scenarios.

10.3 Challenges and Directions for Future Work

The work presented in this thesis focus in the area of conformance checking, a first step
to perform conformance analysis impossible until now. In this section we list some of the
possible future research paths to follow:

e New metrics, new dimensions. Each conformance dimension states the property
all metrics for that dimension should measure. However, the details on how this di-
mension is quantified relies on each specific metric, and each metric assumes a different

182

Chapter 10. Conclusions

interpretation of the dimension. For example, PM [100] defines fitness as the number
of correct parsed traces divided by the number of traces in the event log, while the
metric f [80] is more fine-grained because it also considers which problems (missing
and remaining tokens) happened during the log replay. In precision, a’z [80] derives
sometimes follows and precedes relations for the model and the log and compares them,
while etc, [62] bases its estimation on detecting escaping arcs. Each proposed metric
has its advantages and disadvantages that make it appropriated for a particular sce-
nario. For example, a precision metric such as etc,, less time consuming than as, is
more suitable to be incorporated within a genetic algorithm where conformance is exe-
cuted constantly [33]. Therefore, the study of new conformance metrics is an area that
must be explored as future research, extending the base of metrics to use. Moreover,
limiting conformance to only four dimensions (fitness, precision, generalization, and
simplicity) may be considered too restrictive, and future research must be open to ex-
plore other possible dimensions, such as the completeness, i.e., is the model describing
the complete process or only a part?

Decomposed alignment of observed and modeled behavior. As experiments
show, aligning observed and modeled behavior can be a time-consuming tasks [15].
Chapter 6 and other similar works alleviate this cost by means of decomposing the
process. However, as it is remarked in the same chapter, the goal of decomposing is
not to aligning the whole log and model (i.e., the original problem), but to align at
component level to provide localized conformance information. It is proven by coun-
terexample that the simple concatenation of local optimal alignments does not result
in a global optimal alignment. However, the use of decomposed techniques have pro-
vided equally important results for the global setting. For example, [1] provides a lower
bound on the global alignment cost based on local alignments. The use of decomposed
techniques is a promising research path to alleviate the cost of the alignments, and lots
of efforts has been put in the recent months. That may include, for example, the study
of what properties the traces, model, or local alignments must satisfy so the lower
bound results in the exact cost, or the development of divide-and-conquer strategies
for a bottom-up construction of the alignments.

Decomposed conformance for other dimensions. Chapter 6 shows how to check
perfectly fitting traces in a decomposed way. However, conformance checking is com-
posed by other three dimensions. The use of decomposed techniques to measure those
dimensions is an interesting future research path, but it is also a challenge far from
trivial. For example, metrics such as etc, [62] and a’; [80] define precision as a global
property, and therefore, a direct decomposition is not possible. Several are the op-
tions to explore to address that issue: the real cost of metrics like a, [19] comes from
computing the alignments they rely on, and thus, a faster decomposed alignment of
the behaviors will reduce the computation cost of the metric; in other cases, a simple
conformance analysis can be done at local level to then be smartly aggregated at a

10.3. Challenges and Directions for Future Work 183

global level, similar to a Map Reduce strategy; a final option is the definition of new
metrics that consider a redefinition of the dimension in a non-global way. Similarly,
decomposition can be used to measure simplicity, for example, measuring the simplicity
of the components and how they are connected.

e Visualization and diagnosis. The usefulness of results is directly related with how
the results are provided. Results poorly displayed may limit their transmitted infor-
mation. This is specially important in the conformance checking area, where results
tend to be large (e.g., set of escaping arcs, tokens missing, misalignments, ...) and
pinpointing future lines of actuation withing the organization. The thesis provides
several mechanisms in that direction (e.g., severity of the escaping arcs, or detection of
problematic areas using the topology of a decomposition). However, this is just the tip
of the iceberg and more approach should follow. Some future work possibilities include
the aggregation of conformance problems by the underlying cause behind them, or new
ways of visually represent those problems.

e Model repair. The conformance diagnosis approaches presented in this thesis indi-
cate points where the model does not describe adequately the reality. These points
indicate possible parts of the model to be repaired, but the approaches rely on the user
to perform iterative improvements on the model. The use of the conformance results
within a fully automated approach to repair the models, similar to [44] and [35], is an
interesting topic for further research. This becomes specially interesting in the decom-
posed setting, where the model can be repaired component by component. Moreover,
other scenarios to consider are also possible, such as models that cannot be modified,
opening the door to theories like supervisory control [76] in order to derive a controller
to supervise the model execution.

Bibliography

Wil M. P. van der Aalst. “Decomposing Petri nets for process mining: A generic
approach”. In: Distributed and Parallel Databases 31.4 (2013), pp. 471-507 (cit. on
pp. 27, 41, 117, 119, 121, 123-125, 128, 132, 158, 179, 182).

Wil M. P. van der Aalst. “Decomposing Process Mining Problems Using Passages”.
In: 38rd International Conference on Application and Theory of Petri Nets, PETRI
NETS ’12. Ed. by Serge Haddad and Lucia Pomello. Vol. 7347. Lecture Notes in
Computer Science. Springer, 2012, pp. 72-91 (cit. on pp. 116, 117, 131, 139, 179).

Wil M. P. van der Aalst. “Formalization and verification of event-driven process
chains”. In: Information & Software Technology 41.10 (1999), pp. 639650 (cit. on
p. 36).

Wil M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement
of Business Processes. Springer, 2011, pp. I-XVI, 1-352 (cit. on pp. 17, 23, 41, 115).

Wil M. P. van der Aalst. “The Application of Petri Nets to Workflow Management”.
In: Journal of Circuits, Systems, and Computers 8.1 (1998), pp. 21-66 (cit. on p. 36).

Wil M. P. van der Aalst. “Using Process Mining to Generate Accurate and Interac-
tive Business Process Maps”. In: Business Information Systems Workshops, BIS’09.
Ed. by Witold Abramowicz and Dominik Flejter. Vol. 37. Lecture Notes in Business
Information Processing. Springer, 2009, pp. 1-14 (cit. on p. 139).

Wil M. P. van der Aalst. “Verification of Workflow Nets”. In: Application and The-
ory of Petri Nets, PETRI NETS ’97. Ed. by Pierre Azéma and Gianfranco Balbo.
Vol. 1248. Lecture Notes in Computer Science. Springer, 1997, pp. 407-426 (cit. on
p. 36).

Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen. “Replaying
history on process models for conformance checking and performance analysis”. In:
Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 2.2 (2012), pp. 182-192
(cit. on pp. 41, 179).

Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. “YAWL: yet another workflow
language”. In: Inf. Syst. 30.4 (2005), pp. 245-275 (cit. on pp. 18, 36, 37).

185

186

[10]

[15]

[16]

Bibliography

Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair
P. Barros. “Workflow Patterns”. In: Distributed and Parallel Databases 14.1 (2003),
pp. 5-51 (cit. on p. 37).

Wil M. P. van der Aalst, Hajo A. Reijers, and Minseok Song. “Discovering Social
Networks from Event Logs”. In: Computer Supported Cooperative Work 14.6 (2005),
pp. 549-593 (cit. on p. 18).

Wil M. P. van der Aalst, Vladimir Rubin, H. M. W. Verbeek, Boudewijn F. van
Dongen, Ekkart Kindler, and Christian W. Gilinther. “Process mining: a two-step
approach to balance between underfitting and overfitting”. In: Software and System
Modeling 9.1 (2010), pp. 87-111 (cit. on pp. 49, 101, 102).

Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. “Workflow Mining:
Discovering Process Models from Event Logs”. In: IEEE Trans. Knowl. Data Eng.
16.9 (2004), pp. 1128-1142 (cit. on pp. 18, 83).

Rafael Accorsi and Thomas Stocker. “On the exploitation of process mining for secu-
rity audits: the conformance checking case”. In: Proceedings of the ACM Symposium
on Applied Computing, SAC 2012, Riva, Trento, Italy, March 26-30, 2012. Ed. by
Sascha Ossowski and Paola Lecca. ACM, 2012, pp. 1709-1716 (cit. on p. 43).

Arya Adriansyah. “Aligning Observed and Modeled Behavior”. PhD thesis. Eind-
hoven, The Netherlands: Technische Universiteit Eindhoven, 2014 (cit. on pp. 18, 21,
27, 61, 78, 87-91, 116, 179, 182).

Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. “Con-
formance Checking Using Cost-Based Fitness Analysis”. In: 15th IEEE International
Enterprise Distributed Object Computing Conference, EDOC"’11. IEEE Computer So-
ciety, 2011, pp. 55-64 (cit. on pp. 41, 78, 90, 91, 115, 132, 149, 151, 169, 175, 179).

Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. Memory-
Efficient Alignment of Observed and Modeled Behavior. Tech. rep. BPM-03-03. BPM-
center.org, 2013 (cit. on pp. 90, 91).

Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F. van Dongen,
and Wil M. P. van der Aalst. “Alignment Based Precision Checking”. In: 8th In-
ternational Workshop on Business Process Intelligence, BPI’12. Ed. by Marcello La
Rosa and Pnina Soffer. Vol. 132. Lecture Notes in Business Information Processing.
Springer, 2012, pp. 137-149 (cit. on pp. 24, 26, 62, 85, 98, 195).

Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F. van Dongen,
and Wil M. P. van der Aalst. “Measuring precision of modeled behavior”. In: Inf.
Syst. E-Business Management 12 (2014). (to appear) (cit. on pp. 24, 26, 41, 62, 85,
179, 182, 196).

Bibliography 187

[20]

[21]

28]

Arya Adriansyah, Natalia Sidorova, and Boudewijn F. van Dongen. “Cost-Based Fit-
ness in Conformance Checking”. In: 11th International Conference on Application of
Concurrency to System Design, ACSD’11. Ed. by Benoit Caillaud, Josep Carmona,
and Kunihiko Hiraishi. TEEE, 2011, pp. 57-66 (cit. on pp. 41, 90, 91).

Sebastian Banescu, Milan Petkovic, and Nicola Zannone. “Measuring Privacy Com-
pliance Using Fitness Metrics”. In: 10th International Conference on Business Process
Management, BPM’12. Ed. by Alistair P. Barros, Avigdor Gal, and Ekkart Kindler.
Vol. 7481. Lecture Notes in Computer Science. Springer, 2012, pp. 114-119 (cit. on
p. 41).

Fébio de Lima Bezerra and Jacques Wainer. “Algorithms for anomaly detection of
traces in logs of process aware information systems”. In: Inf. Syst. 38.1 (2013), pp. 33—
44 (cit. on p. 67).

Fébio de Lima Bezerra, Jacques Wainer, and Wil M. P. van der Aalst. “Anomaly
Detection Using Process Mining”. In: 10th International Workshop on Business Pro-
cess Modeling, Development, and Support, BPMDS’09. Ed. by Terry A. Halpin et al.
Vol. 29. Lecture Notes in Business Information Processing. Springer, 2009, pp. 149—
161 (cit. on p. 67).

R. P. Jagadeesh Chandra Bose, Wil M. P. van der Aalst, Indre Zliobaite, and Mykola
Pechenizkiy. “Handling Concept Drift in Process Mining”. In: Advanced Information
Systems Engineering, CAiSE ’11. Ed. by Haralambos Mouratidis and Colette Rolland.
Vol. 6741. Lecture Notes in Computer Science. Springer, 2011, pp. 391-405 (cit. on
p. 126).

George E. P. Box, William G. Hunter, and J. Stuart Hunter. Statistics for experi-
menters : an introduction to design, data analysis, and model building. Wiley series
in probability and mathematical statistics. J. Wiley & Sons, 1978 (cit. on p. 77).

Seppe K. L. M. vanden Broucke. “Advances in Process Mining: Artificial Negative
Events and Other Techniques”. PhD thesis. Leuven, Belgium: Katholieke Universiteit
Leuven, 2014 (cit. on pp. 168, 179).

Seppe K. L. M. vanden Broucke, Jochen De Weerdt, Bart Baesens, and Jan Van-
thienen. “Improved Artificial Negative Event Generation to Enhance Process Event
Logs”. In: 24th International Conference on Advanced Information Systems Engi-
neering, CAiSE’12. Ed. by Jolita Ralyté, Xavier Franch, Sjaak Brinkkemper, and
Stanislaw Wrycza. Vol. 7328. Lecture Notes in Computer Science. Springer, 2012,
pp. 254-269 (cit. on pp. 43, 57, 106).

Seppe K. L. M. vanden Broucke, Jochen De Weerdt, Jan Vanthienen, and Bart Bae-
sens. “A comprehensive benchmarking framework (CoBeFra) for conformance analysis
between procedural process models and event logs in ProM”. In: IEEE Symposium
on Computational Intelligence and Data Mining, CIDM’13. IEEE, 2013, pp. 254-261
(cit. on pp. 26, 106, 179).

188

[29]

[30]

[36]

[37]

Bibliography

Seppe K.L.M. vanden Broucke, Jorge Munoz-Gama, Josep Carmona, Bart Baesens,
and Jan Vanthienen. “Event-based Real-time Decomposed Conformance Analysis”.
In: International Conference on Cooperative Information Systems, CooplS’14. Ed. by
Robert Meersman et al. Springer, 2014, pp. 345-363 (cit. on pp. 24, 26, 165, 196).

Seppe K.L.M. vanden Broucke, Jochen De Weerdt, Jan Vanthienen, and Bart Bae-
sens. “Determining Process Model Precision and Generalization with Weighted Arti-

ficial Negative Events”. In: IEEE Transactions on Knowledge and Data Engineering
99.PrePrints (2013), p. 1 (cit. on pp. 86, 145, 168, 169, 175, 179).

Joos C. A. M. Buijs. “Flexible Evolutionary Algorithms for Mining Structured Pro-
cess Models”. PhD thesis. Eindhoven, The Netherlands: Technische Universiteit Eind-
hoven, 2014 (cit. on p. 179).

Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. “A
genetic algorithm for discovering process trees”. In: IEEE Congress on Fvolutionary
Computation. IEEE, 2012, pp. 1-8 (cit. on p. 55).

Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. “On
the Role of Fitness, Precision, Generalization and Simplicity in Process Discovery”.
In: On the Move to Meaningful Internet Systems, OTM’12. Ed. by Robert Meersman
et al. Vol. 7565. Lecture Notes in Computer Science. Springer, 2012, pp. 305-322 (cit.
on pp. 22, 26, 41, 42, 179, 182).

Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. “Towards
Cross-Organizational Process Mining in Collections of Process Models and Their Ex-
ecutions”. In: Business Process Management Workshops - BPM 2011 International
Workshops, Clermont-Ferrand, France, August 29, 2011, Revised Selected Papers,
Part II. Ed. by Florian Daniel, Kamel Barkaoui, and Schahram Dustdar. Springer,
2011, pp. 2-13 (cit. on p. 109).

Joos C. A. M. Buijs, Marcello La Rosa, Hajo A. Reijers, Boudewijn F. van Dongen, and
Wil M. P. van der Aalst. “Improving Business Process Models Using Observed Behav-
ior”. In: Data-Driven Process Discovery and Analysis, SIMPDA’12. Ed. by Philippe
Cudré-Mauroux, Paolo Ceravolo, and Dragan Gasevic. Vol. 162. Lecture Notes in
Business Information Processing. Springer, 2012, pp. 44-59 (cit. on p. 183).

Andrea Burattin and Alessandro Sperduti. “PLG: A Framework for the Generation of
Business Process Models and Their Execution Logs”. In: Business Process Manage-
ment Workshops - BPM 2010 International Workshops and Education Track, Hobo-
ken, NJ, USA, September 13-15, 2010, Revised Selected Papers. Ed. by Michael zur
Muehlen and Jianwen Su. Springer, 2010, pp. 214-219 (cit. on p. 82).

Josep Carmona, Jordi Cortadella, and Michael Kishinevsky. “Genet: A Tool for the
Synthesis and Mining of Petri Nets”. In: Application of Concurrency to System Design,
ACSD’09. IEEE Computer Society, 2009, pp. 181-185 (cit. on pp. 18, 83).

Bibliography 189

[38]

[39]

[40]

[45]

[46]

[47]

[48]

[49]

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms (3. ed.) MIT Press, 2009, pp. I-XIX, 1-1292 (cit. on p. 73).

Boudewijn F. van Dongen, Remco M. Dijkman, and Jan Mendling. “Measuring Sim-
ilarity between Business Process Models”. In: 20th International Conference on Ad-
vanced Information Systems Engineering, CAiSE’08. Ed. by Zohra Bellahsene and
Michel Léonard. Vol. 5074. Lecture Notes in Computer Science. Springer, 2008, pp. 450—
464 (cit. on p. 43).

Boudewijn F. van Dongen, Jan Mendling, and Wil M. P. van der Aalst. “Structural
Patterns for Soundness of Business Process Models”. In: 10th IEEE International En-
terprise Distributed Object Computing Conference, EDOC’06. IEEE Computer Soci-
ety, 2006, pp. 116-128 (cit. on p. 43).

Marlon Dumas, Wil M. P. van der Aalst, and Arthur H. M. ter Hofstede. Process-
Aware Information Systems: Bridging People and Software Through Process Technol-
ogy. Wiley, 2005 (cit. on pp. 41, 42).

Marlon Dumas, Luciano Garcia-Banuelos, and Artem Polyvyanyy. “Unraveling Un-
structured Process Models”. In: Second International Workshop on Business Process
Modeling Notation, BPMN’10. Ed. by Jan Mendling, Matthias Weidlich, and Mathias
Weske. Springer, 2010, pp. 1-7 (cit. on p. 160).

Eatensible Event Stream (XES). www.xes-standard.org (cit. on p. 30).

Dirk Fahland and Wil M. P. van der Aalst. “Repairing Process Models to Reflect Real-
ity”. In: Business Process Management, BPM’12. Ed. by Alistair P. Barros, Avigdor
Gal, and Ekkart Kindler. Vol. 7481. Lecture Notes in Computer Science. Springer,
2012, pp. 229-245 (cit. on pp. 18, 183).

Dirk Fahland, Massimiliano de Leoni, Boudewijn F. van Dongen, and Wil M. P.
van der Aalst. “Conformance Checking of Interacting Processes with Overlapping
Instances”. In: Business Process Management, BPM’11. Ed. by Stefanie Rinderle-Ma,
Farouk Toumani, and Karsten Wolf. Vol. 6896. Lecture Notes in Computer Science.
Springer, 2011 (cit. on p. 117).

Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. “Robust Process

Discovery with Artificial Negative Events”. In: Journal of Machine Learning Research
10 (2009), pp. 1305-1340 (cit. on pp. 41, 43, 57).

Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, and Domenico Sacca. “Discovering
Expressive Process Models by Clustering Log Traces”. In: IEEE Trans. Knowl. Data
Eng. 18.8 (2006), pp. 1010-1027 (cit. on pp. 41, 43).

John E. Hopcroft and Robert Endre Tarjan. “Dividing a Graph into Triconnected
Components”. In: STAM J. Comput. 2.3 (1973), pp. 135158 (cit. on p. 117).

IEEE Task Force on Process Mining — Case Studies. http://wuw.win.tue.nl/
ieeetfpm/doku.php?id=shared:process_mining_case_studies (cit. on p. 115).

www.xes-standard.org
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_studies
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_case_studies

[54]

[55]

Bibliography

K. Jensen and L.M. Kristensen. Coloured Petri Nets. Springer Verlag, 2009 (cit. on
p. 152).

Brian Karrer, Elizaveta Levina, and M. E. J. Newman. “Robustness of community
structure in networks”. In: Phys. Rev. E 77.4 (Apr. 2008), p. 046119 (cit. on p. 77).

George Karypis and Vipin Kumar. “A fast and high quality multilevel scheme for
partitioning irregular graphs”. In: 1998, pp. 359-392 (cit. on p. 116).

Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. “Discovering Block-
Structured Process Models from Event Logs - A Constructive Approach”. In: 34th
International Conference on Application and Theory of Petri Nets and Concurrency,
PETRI NETS 2013. Ed. by José Manuel Colom and Jorg Desel. Springer, 2013,
pp. 311-329 (cit. on p. 131).

Massimiliano de Leoni and Wil M. P. van der Aalst. “Aligning Event Logs and Pro-
cess Models for Multi-perspective Conformance Checking: An Approach Based on
Integer Linear Programming”. In: 11th International Conference on Business Process
Management, BPM ’13. Ed. by Florian Daniel, Jianmin Wang, and Barbara Weber.
Vol. 8094. Lecture Notes in Computer Science. Springer, 2013, pp. 113-129 (cit. on
pp. 21, 23, 41, 151, 152, 161, 162, 179).

Massimiliano de Leoni, Jorge Munoz-Gama, Josep Carmona, and Wil M.P. van der
Aalst. “Decomposing Alignment-based Conformance Checking of Data-aware Process
Models”. In: International Conference on Cooperative Information Systems, CooplS’14.
Ed. by Robert Meersman et al. Springer, 2014, pp. 3-20 (cit. on pp. 24, 26, 149, 196).

Peter Liggesmeyer. Software-Qualitdt - testen, analysieren und verifizieren von Soft-
ware. Spektrum Akadem. Verl., 2002, pp. I-XV, 1-523 (cit. on p. 54).

F. Mannhardt, M. de Leoni, and H.A. van der Aalst Wil M. P. Reijers. Balanced
Multi-Perspective Checking of Process Conformance. Tech. rep. BPM Center Report
BPM-14-07. BPMcenter.org, 2014 (cit. on pp. 151, 162).

Ana Karla A. de Medeiros. “Genetic Process Mining”. PhD thesis. Eindhoven, The
Netherlands: Technische Universiteit Eindhoven, 2006 (cit. on pp. 18, 43).

Ana Karla A. de Medeiros, Wil M. P. van der Aalst, and A. J. M. M. Weijters.
“Quantifying process equivalence based on observed behavior”. In: Data Knowl. Eng.
64.1 (2008), pp. 55—74 (cit. on pp. 41, 43).

Ana Karla A. de Medeiros, A. J. M. M. Weijters, and Wil M. P. van der Aalst.
“Genetic process mining: an experimental evaluation”. In: Data Min. Knowl. Discov.
14.2 (2007), pp. 245-304 (cit. on pp. 41, 43, 55, 65).

Jorge Munoz-Gama. “Algorithms for Process Conformance and Process Refinement”.
MA thesis. Barcelona, Spain: Universitat Politecnica de Catalunya, 2010 (cit. on
p. 57).

Bibliography 191

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]
[70]

[71]

Jorge Munoz-Gama and Josep Carmona. “A Fresh Look at Precision in Process
Conformance”. In: 8th International Conference on Business Process Management,
BPM’10. Ed. by Richard Hull, Jan Mendling, and Stefan Tai. Vol. 6336. Lecture
Notes in Computer Science. Springer, 2010, pp. 211-226 (cit. on pp. 18, 24, 26, 41,
102, 106, 179, 182, 195).

Jorge Munoz-Gama and Josep Carmona. “A General Framework for Precision Check-
ing”. In: Special Issue on Intelligent and Innovative Computing in Business Pro-
cess Management of International Journal of Innovative Computing, Information and

Control 8.7(B) (July 2012), pp. 5317-5339 (cit. on pp. 24, 26, 65, 102, 195).

Jorge Munoz-Gama and Josep Carmona. “Enhancing precision in Process Confor-
mance: Stability, confidence and severity”. In: IEEE Symposium on Computational
Intelligence and Data Mining, CIDM’11. IEEE, 2011, pp. 184-191 (cit. on pp. 24, 26,
65, 102, 195).

Jorge Munoz-Gama, Josep Carmona, and Wil M. P. van der Aalst. “Conformance
Checking in the Large: Partitioning and Topology”. In: 11th International Conference
on Business Process Management, BPM’13. Ed. by Florian Daniel, Jianmin Wang,
and Barbara Weber. Vol. 8094. Lecture Notes in Computer Science. [Best Student
Paper Award]. Springer, 2013, pp. 130-145 (cit. on pp. 24, 26, 115, 119, 131, 132, 135,
139, 196).

Jorge Munoz-Gama, Josep Carmona, and Wil M. P. van der Aalst. “Hierarchical
Conformance Checking of Process Models Based on Event Logs”. In: 8/th Interna-
tional Conference on Application and Theory of Petri Nets and Concurrency, PETRI
NETS’13. Ed. by José Manuel Colom and Jorg Desel. Vol. 7927. Lecture Notes in
Computer Science. Springer, 2013, pp. 291-310 (cit. on pp. 24, 26, 119, 131, 132, 139,
144, 145, 148, 160, 196).

Jorge Munoz-Gama, Josep Carmona, and Wil M.P. van der Aalst. “Single-Entry
Single-Exit Decomposed Conformance Checking”. In: Information Systems 46 (2014),
pp. 102-122 (cit. on pp. 18, 24, 26, 27, 115, 119, 139, 179, 196).

Tadao Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings of
the IEEE 77.4 (1989), pp. 541-580 (cit. on pp. 17, 23, 34).

OMG. Business Process Model and Notation (BPMN) Version 2.0. http://www.ong.
org/spec/BPMN/2.0/. 2011 (cit. on pp. 17, 36, 37).

OMG. Unified Modeling Language (UML) Version 2.0. wuw.omg.org/spec/UML/2.0/.
2011 (cit. on pp. 36, 37).

Milan Petkovic, Davide Prandi, and Nicola Zannone. “Purpose Control: Did You
Process the Data for the Intended Purpose?” In: 8th VLDB Workshop on Secure
Data Management, SDM’11. Ed. by Willem Jonker and Milan Petkovic. Vol. 6933.
Lecture Notes in Computer Science. Springer, 2011, pp. 145-168 (cit. on p. 41).

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
www.omg.org/spec/UML/2.0/

= =
o

=
=

Bibliography

Artem Polyvyanyy. “Structuring process models”. PhD thesis. University of Potsdam,
2012 (cit. on pp. 116, 117, 160).

Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Volzer. “Simplified Computation and
Generalization of the Refined Process Structure Tree”. In: 7th International Workshop
on Web Services and Formal Methods, WSFM’10. Ed. by Mario Bravetti and Tevfik
Bultan. Vol. 6551. Lecture Notes in Computer Science. Springer, 2010, pp. 2541 (cit.
on pp. 116-119).

Process Mining. http://wuw.processmining.org (cit. on p. 57).
ProM 6 Framework. http://www.promtools.org/promé (cit. on p. 57).

Peter J Ramadge and W Murray Wonham. “Supervisory control of a class of discrete
event processes”. In: STAM Journal on Control and Optimization 25.1 (1987), pp. 206
230 (cit. on pp. 57, 183).

Wolfgang Reisig and Grzegorz Rozenberg. Lectures on Petri nets I: Basic models -
Advances in Petri nets. Vol. 1491. Springer, 1998 (cit. on p. 45).

Joel Ribeiro, Josep Carmona, Mustafa Misir, and Michele Sebag. “A Recommender
System for Process Discovery”. In: Business Process Management, BPM’1/. Lecture
Notes in Computer Science. Springer, 2014 (cit. on p. 26).

Anne Rozinat. “Process Mining: Conformance and Extension”. PhD thesis. Eind-
hoven, The Netherlands: Technische Universiteit Eindhoven, 2010 (cit. on pp. 18, 19,
22,23, 27, 43-45, 96, 179).

Anne Rozinat and Wil M. P. van der Aalst. “Conformance checking of processes based
on monitoring real behavior”. In: Inf. Syst. 33.1 (2008), pp. 64-95 (cit. on pp. 19, 21,
22, 25, 41-43, 45, 52, 57, 58, 62, 80, 88, 96, 115, 145, 149, 168, 182).

Anne Rozinat and Wil M. P. van der Aalst. Conformance Testing: Measuring the
Alignment Between Fvent Logs and Process Models. BETA Research School for Op-
erations Management and Logistics, 2005 (cit. on p. 54).

Anne Rozinat and Wil M. P. van der Aalst. “Conformance Testing: Measuring the
Fit and Appropriateness of Event Logs and Process Models”. In: Business Process
Management Workshops. Ed. by Christoph Bussler and Armin Haller. Vol. 3812.
2005, pp. 163-176 (cit. on p. 22).

Anne Rozinat and Wil M. P. van der Aalst. “Decision Mining in ProM”. In: Business
Process Management, BPM’06. Ed. by Schahram Dustdar, José Luiz Fiadeiro, and
Amit P. Sheth. Vol. 4102. Lecture Notes in Computer Science. Springer, 2006, pp. 420—
425 (cit. on p. 19).

http://www.processmining.org
http://www.promtools.org/prom6

Bibliography 193

[84] Anne Rozinat, Ana Karla Alves de Medeiros, Christian W. Giinther, A. J. M. M. Wei-
jters, and Wil M. P. van der Aalst. “The Need for a Process Mining Evaluation Frame-
work in Research and Practice”. In: Business Process Management Workshops. Ed.
by Arthur H. M. ter Hofstede, Boualem Benatallah, and Hye-Young Paik. Vol. 4928.
Lecture Notes in Computer Science. Springer, 2007, pp. 84-89 (cit. on p. 22).

[85] Anne Rozinat, Manuela Veloso, and Wil M. P. van der Aalst. Using Hidden markov
models to evaluate the quality of discovered process models. Tech. rep. BPM-08-10.
BPMcenter.org, 2008 (cit. on p. 41).

[86] P. Sarbanes, G. Oxley, et al. Sarbanes-Ouxley Act of 2012. 2002 (cit. on p. 42).

[87] Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 1999, pp. I-XI, 1-471 (cit. on
p. 73).

[88] Manuel Silva, Enrique Teruel, and José Manuel Colom. “Linear Algebraic and Linear
Programming Techniques for the Analysis of Place or Transition Net Systems”. In:
Petri Nets. Ed. by Wolfgang Reisig and Grzegorz Rozenberg. Vol. 1491. Lecture Notes
in Computer Science. Springer, 1996, pp. 309-373 (cit. on p. 145).

[89] Sergey Smirnov, Matthias Weidlich, and Jan Mendling. “Business Process Model Ab-
straction Based on Behavioral Profiles”. In: 8th International Conference on Service-
Oriented Computing, ICSOC. Ed. by Paul P. Maglio, Mathias Weske, Jian Yang, and
Marcelo Fantinato. Vol. 6470. Lecture Notes in Computer Science. 2010, pp. 1-16
(cit. on pp. 168, 169).

[90] Marc Solé and Josep Carmona. “Rbminer: A Tool for Discovering Petri Nets from
Transition Systems”. In: Automated Technology for Verification and Analysis, ATVA’10.
Ed. by Ahmed Bouajjani and Wei-Ngan Chin. Vol. 6252. Lecture Notes in Computer
Science. Springer, 2010, pp. 396-402 (cit. on pp. 58, 83).

[91] Robert Endre Tarjan and Jacobo Valdes. “Prime Subprogram Parsing of a Program”.
In: Principles of Programming Languages, POPL’80. Ed. by Paul W. Abrahams,
Richard J. Lipton, and Stephen R. Bourne. ACM Press, 1980, pp. 95-105 (cit. on
p. 116).

[92] S.vanden Broucke, J. De Weerdt, J. Vanthienen, and B. Baesens. On replaying process
execution traces containing positive and negative events. FEB Research Report KBI

1311. KU Leuven, 2013, 17 pp. (Cit. on p. 169).

[93] Jussi Vanhatalo, Hagen Vélzer, and Jana Koehler. “The Refined Process Structure
Tree”. In: Business Process Management, BPM’08. Ed. by Marlon Dumas, Man-
fred Reichert, and Ming-Chien Shan. Vol. 5240. Lecture Notes in Computer Science.
Springer, 2008, pp. 100-115 (cit. on p. 116).

[94] Jussi Vanhatalo, Hagen Vélzer, and Jana Koehler. “The refined process structure
tree”. In: Data Knowl. Eng. 68.9 (2009), pp. 793-818 (cit. on pp. 116, 119).

194

[95]

[100]

[101]

[102]

Bibliography

J. de Weerdt, M. de Backer, J. Vanthienen, and B. Baesens. “A Critical Evaluation
Study of Model-log Metrics in Process Discovery”. In: Business Process Management
Workshops. Ed. by Michael Muehlen and Jianwen Su. Vol. 66. Lecture Notes in Busi-
ness Information Processing. Springer Berlin Heidelberg, 2011, pp. 158-169 (cit. on
p. 106).

Jochen De Weerdt, Manu De Backer, Jan Vanthienen, and Bart Baesens. “A multi-
dimensional quality assessment of state-of-the-art process discovery algorithms using
real-life event logs”. In: Inf. Syst. 37.7 (2012), pp. 654676 (cit. on pp. 26, 179).

Jochen De Weerdt, Manu De Backer, Jan Vanthienen, and Bart Baesens. “A robust
F-measure for evaluating discovered process models”. In: IEEE Symposium on Com-
putational Intelligence and Data Mining, CIDM’11. TEEE, 2011, pp. 148-155 (cit. on
pp. 18, 41, 43, 57, 106).

Jochen De Weerdt, Seppe K. L. M. vanden Broucke, Jan Vanthienen, and Bart Bae-

sens. “Active Trace Clustering for Improved Process Discovery”. In: IEEE Trans.
Knowl. Data Eng. 25.12 (2013), pp. 2708-2720 (cit. on pp. 21, 86).

Matthias Weidlich, Jan Mendling, and Mathias Weske. “Efficient Consistency Mea-
surement Based on Behavioral Profiles of Process Models”. In: IEEFE Trans. Software
Eng. 37.3 (2011), pp. 410429 (cit. on pp. 168, 169).

A.J.M.M. Weijters, Wil M. P. van der Aalst, and Ana Karla A. de Medeiros. “Pro-
cess Mining with the Heuristics Miner-algorithm”. In: BETA Working Paper Series.
Vol. WP 166. 2006 (cit. on pp. 41, 182).

Jan Martijn E. M. van der Werf, Boudewijn F. van Dongen, Cor A. J. Hurkens, and
Alexander Serebrenik. “Process Discovery using Integer Linear Programming”. In:
Fundam. Inform. 94.3-4 (2009), pp. 387-412 (cit. on pp. 18, 57, 80, 83).

Mathias Weske. Business Process Management - Concepts, Languages, Architectures,
2nd Edition. Springer, 2012, pp. I-XV, 1-403 (cit. on p. 41).

Publications

Precision

[62] A Fresh Look at Precision in Process Conformance

Jorge Munoz-Gama and Josep Carmona

Business Process Management, BPM 2010

Lecture Notes in Computer Science, vol. 6336, Springer, pp. 211-226.

[64] Enhancing precision in Process Conformance: Stability, confidence and severity
Jorge Munoz-Gama and Josep Carmona

IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2011
IEEE, pp. 184-191.

[63] A General Framework for Precision Checking

Jorge Munoz-Gama and Josep Carmona

International Journal of Innovative Computing, Information and Control (IJICIC),
vol.8 no.7 (B), July 2012

[18] Alignment Based Precision Checking

Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F. van Dongen
and Wil M. P. van der Aalst

Business Process Management Workshops 2012

Lecture Notes in Business Information Processing, vol. 132, Springer, pp. 137-149.

195

196 Chapter 10. Publications

[19] Measuring Precision of Modeled Behavior

Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F. van Dongen
and Wil M. P. van der Aalst

Information Systems and e-Business Management

Springer.

Decomposition

[66] Hierarchical Conformance Checking of Process Models Based on Event Logs
Jorge Munoz-Gama, Josep Carmona and Wil M. P. van der Aalst

Petri Nets 2013

Lecture Notes in Computer Science, vol. 7927, Springer, pp. 291-310.

[65] Conformance Checking in the Large: Partitioning and Topology
Jorge Munoz-Gama, Josep Carmona and Wil M. P. van der Aalst
Business Process Management, BPM 2013

Lecture Notes in Computer Science, vol. 8094, Springer, pp. 130-145.

[67] Single-Entry Single-Exit Decomposed Conformance Checking
Jorge Munoz-Gama, Josep Carmona and Wil M. P. van der Aalst
Information Systems

vol. 46, December 2014, pp. 102-122, Elsevier.

[65] Decomposing Conformance Checking on Petri Nets with Data

Massimiliano de Leoni, Jorge Munoz-Gama, Josep Carmona and Wil M.P. van der Aalst
Cooperative Information Systems, CooplS 2014

Lecture Notes in Computer Science, vol. 8841, Springer, pp. 3-20.

[29] Event-based Real-time Decomposed Conformance Analysis

Seppe K.L.M. vanden Broucke, Jorge Munoz-Gama, Josep Carmona, Bart Baesens
and Jan Vanthienen

Cooperative Information Systems, CooplS 2014

Lecture Notes in Computer Science, vol. 8841, Springer, pp. 345-363.

Acknowledgements

The first person I would like to thank is my advisor Josep Carmona. I would like to express my
gratitude to him for his expertise, understanding, and patience. I appreciate his knowledge
and skill (an ‘oracle’ to me), his determination and patience teaching me, his concept of
ethics in the academic world, the hours of work spent together, and his comprehension in my
darkest hours. From him I learned to be never satisfied with mediocrity, and to always give
the best of myself. Thanks for having your office always open for me! On the other hand,
he has a horrible taste in football.

Next, I would like to thank Wil van der Aalst for opening the door of the TU Eindhoven,
making me feel a member of his group from minute one, and for sharing with me his views
on the process mining field. It was a real privilege to work with him and I hope to keep
collaborating in the future. I would like to extend my thanks to the rest of the people
in Eindhoven, specially to Arya Adriansyah (I learned something new each second I spent
working with him, and it is a clear example that two people with different cultures can get
along really well), Massimiliano de Leoni (work and fun together make the conferences more
interesting), Boudewijn van Dongen, Eric Verbeek, and the others. I also want to mention
Ine van der Ligt and Riet van Buul for solving all the problems I brought them. To all of
you, thanks for making my stay in Eindhoven memorable.

During my PhD I have had the privilege to work with great people from other research
groups around the world. I would like to thank Isao Echizen from the NII for advising me,
giving me the opportunity to work in a place so exotic for me like Japan. His creative mind
and his practical vision of the security and the world in general is something remarkable. I
would like to thank also Seppe vanden Broucke (hard-working researcher and greater person),
Bart Baesens and Jan Vanthienen from the KU Leuven. I would also like to thank Artem
Polyvyanyy for his advice and comments, and let’s hope we finally meet in a conference one
day. Some of these people have visited us in Barcelona, and I had the opportunity to work
side by side with them: Joel Ribeiro, Thomas Stocker, and Xixi Lu. It has been a pleasure
to have you here. Collaborating with Ernest Teniente and Montse Estanol is a clear evidence
that in science there are more things in common between us than the ones keeping us apart.

The academic path is a road full of bumps. This is why I would like to thank all the
people that made this work possible: the people in charge of the department, the university,

197

198 Chapter 10. Acknowledgements

the research projects, and the administrative tasks. Not to forget Ramon Xuriguera and
Daniel Alonso, that never had a no for me when my deadlines where around the corner.

I would like to give a special mention to Marcos Sepulveda and Mar Pérez-Sanagustin
from the UC in Chile. They are the ones to blame for my next exciting adventure, and to
make that transition millions of times more peaceful.

To enumerate all the friends that shared with me this period of my life would require
another thesis: the friends of S108 (and S106, of course), The Netherlands, Japan, Bergen,
Barcelona, Folloneres, China, Haskell, Castellén, San Francisco, Vic, Ragu, Gelida, Ibiza,
Cantabria, Indonesia, Leuven, Italy, Iran, Curitiba, Ukraine, Russia, Porto, France, and all
the others. Without you, I would have finished this thesis much earlier.

Finally, I would like my last thanks go to my parents Loly and Emilio, my brother Alex,
and the rest of my family. I am truly grateful to have you by my side, in the good but also
in the bad moments. This thesis is dedicated to you.

This work has been partly supported
by Ministerio de Educacion.

	Summary
	I Introduction
	Introduction
	Process Mining
	Conformance Checking and its Challenges
	Dimensions of Conformance Checking
	Replay-based and Align-based Conformance Checking
	Challenges of Conformance Checking

	Contributions of the Thesis
	Precision Checking
	Decomposed Conformance

	Structure of the Thesis
	Publications and Thesis Impact

	Preliminaries
	Basic Notations
	Event Logs
	Process Models
	Process Modeling Formalisms
	Petri Nets
	Workflow Nets
	Other Formalisms

	II Precision in Conformance Checking
	Precision based on the Log
	Introduction
	The Importance of Precision
	Related Work
	Precision based on Escaping Arcs
	Constructing the Observed Behavior
	Incorporating Modeled Behavior
	Detecting Escaping Arcs and Evaluating Precision
	Minimal Imprecise Traces
	Experimental Results
	Limitations and Extensions
	Unfitting Scenario
	Indeterministic Scenario

	Conclusions

	Qualitative Analysis of Precision Checking
	Introduction
	Robustness on the Precision
	Confidence on Precision
	Upper Confidence Value
	Lower Confidence Value

	Severity of an Escaping Arc
	Weight of an Escaping Arc
	Alternation of an Escaping Arc
	Stability of an Escaping Arc
	Criticality of an Escaping Arc
	Visualizing the Severity

	Experimental Results
	Conclusions

	Precision based on Alignments
	Introduction
	Cost-Optimal Alignment
	Precision based on Alignments
	Precision from 1-Alignment
	Precision from All-Alignment
	Precision from Representative-Alignment

	Abstractions for the Precision based on Alignments
	Abstraction on the Order
	Abstraction on the Direction

	Experimental Results
	Conclusions

	III Decomposition in Conformance Checking
	Decomposed Conformance Checking
	Introduction
	Related Work
	Single-Entry Single-Exit and Refined Process Structure Tree
	Decomposing Conformance Checking using SESEs
	Bridging a Valid Decomposition
	Decomposition with invisible/duplicates

	Experimental Results
	Conclusions

	Topological and Multi-level Conformance Diagnosis
	Introduction
	Topological Conformance Diagnosis
	Multi-level Conformance Diagnosis and its Applications
	Stand-alone Checking
	Multi-Level Analysis
	Filtering

	Experimental Results
	Conclusions

	Data-aware Decomposed Conformance Checking
	Introduction
	Data-aware Processes
	Petri nets with Data
	Event Logs and Relating Models to Event Logs
	Data Alignments

	Valid Decomposition of Data-aware Models
	SESE-based Strategy for a Valid Decomposition
	Implementation and Experimental Results
	Conclusions

	Event-based Real-time Decomposed Conformance Checking
	Introduction
	Event-based Real-time Decomposed Conformance
	Model and Log Decomposition
	Event-based Heuristic Replay

	Case Example and Experimental Results
	Description
	Experimental Scenario Evaluation
	Experimental Comparison

	Conclusions

	IV Closure
	Conclusions
	Conclusion and Reflection
	Summary of Contributions
	Challenges and Directions for Future Work

	Bibliography
	Publications
	Acknowledgements

