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Esther Ibáñez Marcelo

Thesis Advised by:

Tomás Alarcón Cor

Barcelona, December 2014



Abstract

In this thesis we develop a multi-scale model of the evolutionary dynamics of a population
of cells, which accounts for the mapping between genotype and phenotype as determined
by a model of the gene regulatory network. We study topological properties of genotype-
phenotype networks obtained from the multi-scale model. Moreover, we study the problem
of evolutionary escape and survival taking into account a genotype-phenotype map.

An outstanding feature of populations with genotype-phenotype map is that selective
pressures are determined by the phenotype, rather than genotypes. Our multi-scale model
generates the evolution of a genotype-phenotype network represented by a pseudo-bipartite
graph, that allows formulate a topological definition of the concepts of robustness and evolv-
ability.

We further study the problem of evolutionary escape for cell populations with genotype-
phenotype map, based on a multi-type branching process. We present a comparative analysis
between genotype-phenotype networks obtained from the multi-scale model and networks
constructed assuming that the genotype space is a regular hypercube. We compare the effects
on the probability of escape and the escape rate associated to the evolutionary dynamics
between both classes of graphs.

We further the study of evolutionary escape by analysing the long term survival condi-
tioned to escape. Traditional approaches to the study of escape assume that the reproduction
number of the escape genotype approaches infinity, and, therefore, survival is a surrogate of
escape. Here, we analyse the process of survival upon escape by taking advantage of the
fact that the natural setting of the escape problem endows the system with a separation of
time scales: an initial, fast-decaying regime where escape actually occurs, is followed by a
much slower dynamics within the (neutral network of) the escape phenotype. The probability
of survival is analysed in terms of topological features of the neutral network of the escape
phenotype.

Keywords: genotype-phenotype map, multi-scale model, evolutionary dynamics, complex
networks, escape probabilities, branching process
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Resum

En aquesta tesi es desenvolupa un model multi-escala de la dinàmica evolutiva d’una població
de cèl·lules, tenint en compte la correspondència entre el genotip i el fenotip determinat per
un model de la xarxa de regulació genètica. Estudiem les propietats topològiques de les
xarxes genotip-fenotip obtingudes a partir del model multi-escala. D’altra banda, s’estudia
el problema de la fugida evolutiva i la supervivència, tenint en compte una aplicació entre
genotip i fenotip.

Una caracteŕıstica destacable de les poblacions amb aplicació genotip-fenotip és que les
pressions selectives actuen sobre els fenotips, en lloc dels genotips. El nostre model multi-
escala genera l’evolució d’una xarxa genotip-fenotip representada per un graf pseudo-bipartit,
el qual permet formular una definició topològica dels conceptes de robustesa i capacitat evo-
lutiva.

A més a més, estudiem el problema de fugida evolutiva de poblacions de cèl·lules amb
una aplicació genotip-fenotip, basat en en un procés de ramificació multi-tipus. Presentem un
anàlisi comparatiu entre les xarxes de genotip-fenotip obtingudes a partir del model multi-
escala i les xarxes constrüıdes assumint un espai de genotips de tipus hipercub regular. Com-
parem els efectes de la probabilitat de fugida i la freqüència d’escapament associades a la
dinàmica evolutiva entre ambdues classes de grafs.

Anem més enllà de l’estudi de fugida evolutiva mitjançant l’anàlisi de la supervivència a
llarg plaç condicionat a fugir. Els enfocaments tradicionals per a l’estudi de la fugida o es-
capament suposen una taxa de reproducció en el genotip de fugida propera a infinit. Per tant,
la supervivència és equivalent a la fugida. Aqúı analitzem el procés de supervivència suposant
fugida aprofitant el fet que l’entorn natural del problema de fugida dota al sistema amb una
separació d’escales de temps: un règim inicial, de temps ràpid, on la fugida realment es pro-
dueix; seguit d’una dinàmica molt més lenta dins de la (xarxa neutra del) fenotip de fugida.
La probabilitat de supervivència s’analitza en termes de les caracteŕıstiques topològiques de
la xarxa neutra del fenotip de fugida.
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Chapter 1

Introduction

Understanding how complex global behavioural traits (phenotypes) emerge from the interac-
tions between individual genes and their products is one of the major challenges of modern
biology. Phenotypes arise from networks of interactions between genes and gene products,
which ultimately regulates gene expression. These networks of gene regulation are dynam-
ical systems whose complexity partially stems from the fact that they are non-linear, high-
dimensional dynamical systems but, also and foremost, because they are shaped up by evo-
lution by natural selection. Natural selection acts upon gene regulatory networks (GRNs)
so that they evolve to exhibit properties such as robustness (i.e. resilience of the phenotype
against genetic alterations [105]), canalisation (i.e. the ability for phenotypes to increase their
robustness as time progresses [101, 102]) or non-uniqueness (i.e. different genotypes leading
to the same phenotype [28, 27]). Moreover, they are under the influence of noise both of
internal (molecular noise in the regulatory system itself) and external (unpredictable changes
in the environment) characters.

The gap between genotype and phenotype poses a daunting problem in evolutionary the-
ory. Whereas genes are the entities passed on from one generation to the next and their
frequencies measured over populations (the remit of population genetics), selective pressures
act at the level of phenotypes [31]. Thus, assigning fitness values to genes (mutant variants,
different alleles, etc.) is not, in general, the valid approach. A more appropriate approach
consists of considering models that take into account the genotype and the phenotype, or a
model where selection acts at the level of phenotypes.

In order to study the properties and issues regarding the genotype-phenotype maps, several
models have been studied [108]: RNA, circuits of gene regulation and metabolic networks.
Concerning RNA molecules as model of the genotype-phenotype map [39], the genotype of
each RNA molecule consists of a sequence of nucleotides. There are four such nucleotides,
so for sequences of length L, the size of the genotype space is 4L. The phenotype of the
RNA molecule refers to the fold or three-dimensional conformation, which determines the
biochemical function of the molecule. The folded structure of an RNA sequence, which is
a proxy for its phenotype, but still lies far from defining its function; is determined by the
sequence (genotype) in a many-to-one way, i.e. many different genotypes give rise to the
same phenotype. Such non-uniqueness has led to the concept of the neutral network [67,
88]: a network whose nodes correspond to genotypes, all with the same phenotypes, with
edges between those nodes which differ by only one nucleotide [105]. This system has been
used extensively in the study of the genotype-phenotype map, in particular, those issues
regarding its evolutionary properties, such as the role of phenotypic robustness in evolvability
and adaptation [107, 108]. Recently, the topology of the RNA genotype-phenotype space,
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2 CHAPTER 1. INTRODUCTION

composed by an intermingled set of neutral networks, has been analysed [2].
Gene regulatory networks (GRNs) have also been used to analyse properties of the genotype-

phenotype map, in particular several variants of the model introduced by Wagner to study
phenotype plasticity [104]. These models are dynamical systems for the expression levels
of the corresponding genes and are characterised by two elements: a matrix whose entries
specify the character of the interaction between two genes (usually, activation or inhibition)
and, possibly, the intensity of such interaction, and a series of rules for the time evolution
of the expression levels of the genes involved. The entries of the corresponding matrix are
the genotype of the GRN. The phenotype is the steady-state gene expression yielded by the
dynamics. There are many such genotypes that produce the same phenotype, which allows
to extend the concept of neutral network to GRN, where nodes correspond to different ma-
trices (producing the same steady-state) and links exist between nodes if the corresponding
matrices differ only in one regulatory interaction. Models of GRNs have been used to study
phenotype plasticity [104], robustness and innovation in circuits of gene regulation [28, 27],
and canalisation [94, 14], among other issues.

Metabolic networks are the third class of systems that have been used to assess properties
regarding robustness and innovation [71, 80, 85, 81]. They are formed by thousands of enzyme-
catalysed chemical reactions. These networks are responsible for supplying cells with energy
(i.e. ATP) and the molecule building blocks cells need to grow. The genotype space for this
system consists of the space of all the possible metabolic networks, whereas the phenotype
corresponds to the secondary metabolites the metabolic network is able to synthesise, the
molecules they can use as energy sources, the ability to detoxify certain waste products, etc.
[108]. Innovations in these aspects not always appear as the result of gene mutations that
give rise to new enzymes. They can also arise through novel combinations and utilisation of
existing elements.
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1.1 Background

In this Section we introduce the main characteristics of a genotype-phenotype map (Section
1.1.1). It includes properties such that, robustness, evolvability, canalisation and conver-
gence. We then move on to describe previous models that have been used to model properties
described previously (Section 1.1.2). Finally, at the end of this Section we give a brief intro-
duction to the concept of evolutionary escape.

1.1.1 Characteristics of genotype-phenotype map

The definition of the map relating genotypes to phenotypes is one of the first problems that
we have to deal with. In order to study and try to shed light on to some properties of this
map, we first consider some generic properties which arise in the study of systems endowed
with such structure.

1.1.1.1 Robustness and innovation (evolvability)

We can define the robustness of a system as the capacity of a system to retain its state in
presence of perturbations (mutations, noises, environmental changes, etc).

As far as the present work is concerned, we refer to genetic robustness or mutational
robustness, i.e. the ability to retain the same phenotype upon genetic mutations. Our de-
scription of robustness is based on the concept of the so-called neutral network [105, 106].

Another important concept is innovation or evolvability, which refers to the ability to
adaptation, and it is defined as the capacity of a system for adaptive evolution. It is very
important to produce genetic diversity but also viable individuals who will be well adapted
to the system.

Evolutionary adaptation of a population to, say, a new environment requires evolutionary
innovation or evolvability, namely, new, better adapted phenotypes must arise within the pop-
ulation. Such innovations are achieved over many generations by means of genetic mutations.
Most of these mutations are known to be either detrimental or neutral [37, 86, 96]. However,
rarely, one or several mutations produce new phenotypes that are better adapted to the new
conditions. These rare mutations are the drivers of Darwinian evolution.

Intuitively, robustness and evolvability seem to be in conflict, since, by definition, robust
phenotypes are resilient to the effects of mutations. However, it is impossible to understand
robustness without innovation. There is mounting evidence which hints otherwise, i.e. phe-
notypic robustness facilitates evolutionary innovation [107, 108]. According to this view, the
genotype space has two generic properties which allow to reconcile robustness and evolvabil-
ity. The first of these properties is the existence of neutral networks, i.e. large connected
sub-networks of the space of genotypes which can be navigated in small, mutation-induced
steps with no change in phenotype. The second of these features regards the so-called geno-
type neighbourhood, i.e. the set of genotypes accessible from any one genotype in a prescribed
number of mutations. A simple measure of how phenotypically variable is a genotype is the
number of different phenotypes reached in a genotype neighbourhood, i.e. how many dif-
ferent phenotypes are easily accessible by mutation(s) [106]. The first of these properties
allows preservation of the phenotype with changing genotypes, thus creating a substantial
amount of divergence within a population, whereas the second property, neighbourhoods,
allow genotypes within a neutral network to explore different phenotypes.

The argument to support that robustness favours evolvability rather than hindering it can
be summarised as follows [107, 108]: Large neutral networks containing many genotypes with
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the same phenotype have, collectively, a much larger neighbourhood, i.e. that corresponding
to the (disjoint) union of all the neighbourhoods of all the nodes within the neutral network,
than non-robust genotypes, which will be typically isolated in genotype space.

These issues regarding the relation between robustness and evolvability may seem to be
of a rather theoretical character. However, they are fundamental to understanding the evolu-
tionary dynamics of systems such as cancer [58, 98]. Kitano [58] points out that cancers can
be seen as robust systems with respect to its proliferate potential, which is maintained in the
presence of several anti-cancer therapies and environmental factors, such as the effect of the
immune system. Kitano’s thesis is that, as it occurs in systems engineering, the development
of robustness with respect to some properties leads to fragility with respect to others which
should be exploited as therapeutic targets. Whereas this is a valid and useful point of view,
it may fall short of a full picture, since it fails to take into account that also tumours highly
evolve [98]. According to results recently reviewed by Tian et al. [98], the evolutionary dy-
namics of tumours is such that evolvability is greatly enhanced. These two results can be
unified under the above paradigm that robustness favours evolvability which implies that, to
achieve effective control (therapeutic) strategies, both robustness and evolvability must be
tackled [98].

1.1.1.2 Canalisation and convergence

We define canalisation or genetic assimilation in the context of genetics as the ability of a
population to produce the same phenotype regardless of variability of its environment or geno-
type. In other words, it means robustness, assimilation of a change that after some generations
can survive without the mutation or change that we have imposed some generations before.
This term, canalisation, was coined by Conrad Waddington in the 1940’s, also is named by
Waddington buffering of the genotype in [101].

In opposition to canalisation, that shows how some phenotypes are fixed in the population
and become more robust as time goes by, convergence in evolution refers to the phenomenon
whereby a number of different species of different lineages achieve the same biological traits.
For example, the common ancestor of flying insects and birds does not have wings. In our
case we can relate it with the fact that two or more different unrelated genotypes can have
the same phenotype.

Another term introduced by Waddington is the term epigenetics. It can take many differ-
ent meanings depending on the context. This term was first proposed by Conrad Waddington
in the 1940’s in [102]. He uses it to designate the study of the processes by which the genetic
information of an organism, defined as genotype, interacts with the environment in order to
produce its observed traits, defined as phenotype. The goal of Waddington with epigenet-
ics was to provide insight into gene-environment interactions that influence development and
embryology, but had no molecular insights to consider.

We refer to epigenetic stability as genetic canalisation (or assimilation). It is different than
phenotypic plasticity, that is the ability of the genotype to change the phenotype in response
to changes in the environment (environmental aspect of canalisation).

1.1.2 Previous models and genotype-phenotype map

In this Section, we state the definition of the genotype-phenotype map we use through out this
thesis. Our definition is based on the idea, first proposed by Stuart Kauffman [56], according to
which gene regulatory networks are dynamical systems and that phenotypes or differentiated
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states correspond to the stable attractors of these dynamical systems. Furthermore, previous
models of robustness and canalisation, relevant to our own work are briefly described. Among
these, we summarise the model of Wagner in [104], which consists of a phenotype-genotype
map based on a dynamical model of the gene regulatory network. Also, we are going to
comment on the work of Ciliberti et al. [27, 28] where a geometrical description of the genotype
space was introduced. They studied robustness and evolvability in terms of the properties of
a metagraph (a graph of graphs). Others authors, such as Siegal and Bergman in [94], define
a more complex model introducing changes in the dynamics of the gene regulatory network.
In [14], Bergman and Siegal discuss how gene silencing induces a greater range of phenotypes,
that is kept so-called buffered during evolution of evolutionary capacitors, such as HSP90 [83].

1.1.2.1 The model of Wagner

Wagner [104] has formulated a model, which has been the basis of much later work on ro-
bustness and evolvability [27, 28, 14, 94], including ours. For later reference, we summarise
here its main ingredients.

We consider a set of N genes, whose products mutually regulate each other’s expression
at the transcriptional level. These regulatory interactions are represented as a network, the
so-called gene regulatory network.

A gene network is represented by a dynamical system whose state variables correspond to
expression states of the genes involved in the associated regulatory system. They are denoted
as,

~g(t) := (g1(t), . . . , gN (t)),

where gi(t) is the expression state of the ith gene at some time t ≥ 0. It is assumed that
gi(t) only can assume two values: +1 or −1, corresponding to the gene i is expressed or not
expressed, respectively, at time t. The gene expression state ~g(0) at time t = 0 is called the
initial expression state.

Starting from the initial gene-expression pattern, ~g(0), which can be interpreted as an
inherited developmental program, cross and auto-regulatory interactions among network genes
cause the expression state to change. These changes are modelled by means of the following
dynamical system:

gi(t+ τ) = σ

 N∑
j=1

wijgj(t)

 = σ[hi(t)], where (1.1)

σ(x) =


−1 for x < 0,

1 for x > 0,
0 for x = 0

(1.2)

hi(t) represents the sum of the regulatory effects of all network genes on gene i and the real
constants wij represents the strength of regulatory interaction of gene j with gene i. That is
the degree of transcriptional activation (wij > 0) or repression (wij < 0). The set of these
strengths is the connectivity matrix, w. Wagner use as a parameter in this model the fraction
of entries different from zero of w = (wij), denoted by c, which is denoted as the connectivity
density of the network. The dynamics of (1.1) will lead to the attainment of an equilibrium
gene expression state, which may be a fixed point of (1.1) or a limit cycle. Wagner [104]
only considers fixed-point equilibria, denoted by ~g(∞). According to Kauffman’s theory [56],
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~g(∞) determines the phenotype associated to the genotype, defined by the matrix w = (wij).
He also defines an optimal phenotype ~gopt(∞), so he makes the assumption that an optimal
equilibrium gene-expression state exists for networks acting in a developmental process. For
this reason, it is defined fitness of an individual. First, he defines a measure for the distance
d between the equilibrium state S(∞) attained by a network and the optimal ~gopt(∞) by,

d(~gopt(∞), ~g(∞)) :=
1

2
− 1

2N

N∑
i=1

gopti (∞)gi(∞)

also this measure is known as the Hamming distance. It counts the number of different states
between both expressions and normalises it. Finally, based on d, the fitness of an individual
is defined by a Gaussian fitness function as

exp

(
−d[~gopt(∞), ~g(∞)]2

s

)
.

s represents the strength of selection, small values of s implying strong selection against
deviations from the optimal state.

Wagner uses a binomial distribution, B(N, p) in order to choose how many genes in the
initial state are going to be expressed and connectivity matrices w are defined by a probability
distribution ρ(w) of regulatory interaction strengths, with a mean fraction c of connectivities
different from 0.

1.1.2.2 Modelling robustness, canalisation and innovation

After the original definition of robustness and canalisation by Conrad Waddington at 1942
[101], lacking a proper mechanistic explanation, these issues lie dormant for many years. Until
Rutherford and Lindquist [83], who found the first evidence for an explicit molecular mech-
anism that assists the process of evolutionary change in response to the environment. They
found that inactivation of the molecular chaperone HSP90 induces phenotypic variation with
specific variants depending on the particular genetic background. These genetic variants that
prior to HSP90 inactivation remained silent, after mutation of HSP90 are able to produce
phenotypic variants that after some generations, subject to evolution, rapidly became inde-
pendent of the HSP90 mutation and the new phenotypes are fixed in the population even
when HSP90 activity is restored.

During the development of a multicellular organism from a zygote, a large number of
epigenetic interactions take place on every level of suborganism organisation. This raises the
possibility that the system of epigenetic interactions may compensate or “buffer” some of the
changes that occur as mutations on its lower levels, and thus stabilise the phenotype with
respect to mutations. This hypothetical phenomenon will be called epigenetic stability [104,
103]. After long periods of stabilising selection 1, the fraction of mutations causing changes in
the gene-expression patterns is substantially reduced in the model, thus leading to increased
epigenetic stability. It is discussed that only epistatic (non-linear) gene interactions can cause
such change in epigenetic stability. The relation of epigenetic stability to developmental
canalisation is outlined [104, 103].

1Stabilising selection: It is fixed a final state (optimal phenotype) that a genotype have to reach, it is
assigned a probability (survival probability) using the difference between the optimal phenotype and the final
state of each genotype to discard or maintain this genotype alive. So, stabilising selection acts as selection of
“good” genotypes in this way. It is like a kind of genotype selection.
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Following the work of Rutherford and Lindquist, the interest in canalisation was rekindled
which gave rise to a number of theoretical works. Among those, Wagner and co-workers
proposed a theoretical model [103] to address a number of issues: How changes on the lowest,
submicroscopic levels of their production system are translated onto the macroscopic level of
the phenotype? How do epigenetic interactions influence the effect of mutant genes and their
gene products on the phenotype? Can they absorb or buffer some such effects? If yes, can
such an ability to “protect” the phenotype from mutations be subject to evolutionary change?
What direction would such change take?

Wagner [103] proposed a model (see Section 1.1.2.1) of population dynamics with a
phenotype-genotype map based on a dynamical model of the gene regulatory network where
the phenotype is taken to be the corresponding steady state pattern of gene activation. More-
over, a fitness function was defined, such that individuals were more likely to reproduce if
their phenotype is close to an (arbitrary chosen) optimal phenotype. Thus genetic variants
yielding phenotypes which differ from the optimal one are very likely to go extinct [104].

The likelihood that a mutation affecting regulatory interactions changes the network’s
gene-expression pattern can be viewed as measure for the epigenetic stability of that segment
of a developmental pathway.

Wagner [104] showed that his model exhibits the phenomenon of epigenetic stability,
whereby phenotype-changing mutations become substantially rarer as time proceeds. Wagner
[104] concluded that epigenetic stability is an evolvable property and that genotypes with
low epigenetic stability are selected against. However, he pointed to stabilising selection (i.e.
there exists an optimal phenotype on which fitness depend) as essential to the emergence of
epigenetic stability.

He concludes mutations in networks with low stability and high fitness produce many
genotypes with low fitness. However, they also produce some genotypes with high fitness
and higher stability than the original network. On the other hand, networks with low fitness
are eliminated and networks with high fitness and high stability accumulate because they
produce fewer suboptimal variants. Thus, networks with high stability and high fitness replace
networks with low stability and high fitness in a population.

Further development of the subject led to the work of Ciliberti et al. [27, 28] where a
geometrical description of the genotype space was introduced. They proposed to describe
the genotype space in terms of a metanetwork where nodes correspond to a particular gene
regulatory network (GRNs). Edges in this metagraph link genotypes (GRNs) which are
separated by one single mutation. Robustness and evolvability are studied in terms of the
properties of the metagraph. The model for the genotype-phenotype map is the same as in
[28].

Two types of robustness are considered (in both cases, the robust feature is the equilibrium
of pattern gene expression ~g(∞) in the network):

• Robustness to mutations: it corresponds to the robustness of the phenotype, defined
as the steady state of the gene regulatory network (~g(∞), in the terminology of [28])
upon genetic mutations, which, following [104], correspond to changes in regulatory
interactions, i.e. in the weights of the interaction matrix that defines the gene regulatory
network.

• Robustness to noise (or non-genetic perturbations): it corresponds to the robustness of
~g(∞) to random changes in the initial state ~g(0) or random changes in the trajectory
from ~g(0) to ~g(∞).
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From these definitions some questions emerge:

– How does change ~g(∞) from changes in ~g(0) (initial state of genes)?

– How many changes in ~g(0) we have to do in order to obtain a different ~g(∞)?

– How does changes in the gene expression trajectory, between ~g(0) to ~g(∞), change
~g(∞)?

Recall that whereas robustness represents the resilience of the phenotype to gene muta-
tions, innovation or evolvability represents the ability that a genotype can evolve to another
phenotype to perturbations.

In [36] the relationship between the mutational robustness of a phenotype and the po-
tential of a population to generate novel phenotypic variation is studied. It is found that
phenotypic robustness promotes phenotypic variability in response to non-genetic perturba-
tions, but not much in response to mutation. From the consideration of the genotype space
using a variant model of Wagner’s model [104] they observe how a large set of genotypes
produce the same phenotype, this is called neutral network. The size of the neutral network is
used as a proxy for robustness to mutations. In particular, the potential of different kinds of
perturbations to generate phenotypic variation in populations subject to stabilising selection
for many generations is analysed there [36]. Such population accumulate genetic variation
that is not phenotypically visible. So, non-genetic perturbations, such as changes in the envi-
ronment (e.g., changes in the initial condition, noise in the trajectory between initial state to
the final state), produce new phenotypes in order to be adapted to new ambient conditions,
so it is said that there is innovation. It is showed that innovation occurs more frequently in
robust phenotypic populations under mutations. It is suggested that phenotypic robustness
to mutations can play a positive role in phenotypic variability after non-genetic perturbations.

In Ciliberti et al. [27, 28] robustness is measured as the size of the neutral network.
They have obtained two important results, namely, they observe that neutral networks evolve
into more robust one (i.e. emergence of canalisation), and that long-term innovation in gene
expression only emerges in the presence of the robustness induced by interconnected genotype
networks.

Canalisation is also studied by Siegal and Bergman [94] using a model based on Wagner’s
model [104]. They show that, in the presence of an optimal phenotype, (with respect to which
fitness is measured), robustness increases in time. Further to this model, Bergman and Siegal
[14] have studied genetic assimilation. They observe how a genetic knock out uncovers hidden
cryptic genetic variation, which becomes fixed within the population, even when the gene
knock out is removed. They claim that this result implies that in this type of GRN, virtually
every gene can act as an evolutionary capacitor (such as HSP90 [83]).

1.1.3 Evolutionary escape

Evolutionary escape is the process whereby a population under sudden changes in the selective
pressures acting upon it try to evade extinction by evolving from previously well-adapted phe-
notypes to those that are favoured by the new selective pressure, the called escape phenotypes.
This evolutionary process is driven by gene mutations. Examples of biological situations where
this process is relevant include viruses evading anti-microbial therapy, emergence of drug re-
sistance in cancer, parasites trying to infect a new host, or species attempting to invade a
new ecological niche [53].

Earlier models of evolutionary escape have been formulated by Iwasa and co-workers
[53, 54], their approach based on the assumption that n point mutations in some crucial
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parts of the genome are necessary for escape. They further assume that the genotype of the
different mutants can be described by binary strings (with entries of +1 or −1) of length n, of
which there are 2n − 1. It is assumed that, under the new selective pressure, most genotypes
exhibit reduced proliferation ratios of sensitive mutants, R < 1; whereas some genotypes, the
so-called escape genotypes, are such that R > 1. The corresponding evolutionary dynamics
is modelled in terms of Galton-Watson multi-type branching process [57], where at each
generation each individual of each type has a given (in general, mutant-dependent) probability
of mutating, thus producing offspring belonging to a different type. The problem is to calculate
the probability that an escape genotype is reached. The model proposed by Iwasa and co-
workers has been analysed in more detail by Serra and co-workers [89, 90, 84]. These authors
have thus considered the process of evolutionary escape as a random search on a genotype
space modelled by a hypercube: Individuals would concentrate in a given genotype and they
must reach a well-adapted genotype (the escape genotype) before the population undergoes
extinction. An alternative escape mechanism have been proposed in [4] whereby escape is
achieved by means of a growth-restricted (quiescent) phenotype that is insensitive to the
selective pressure (e.g. a drug). This escape mechanism is relevant in cancer treatment
of hypoxic tumours [3, 18, 19] and drug resistance in bacterial populations which exhibit
persistence [8, 66].
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1.2 Methodology

In this Section, we present a summary of tools and models used in this work, specifically,
regarding complex network theory and population dynamics. We include a section on gen-
erating functions (subsection 1.2.0.1) and their properties which are used in the analysis of
branching process (subsection 1.2.2.3). In Section 1.2.1 jointly with Section 7.2 in Appendix
7 we review the main properties and definitions that characterise a graph [75](degree dis-
tribution, clustering coefficient, percolation threshold, ...), usual graph models (Erdös Rényi
[34],[35], Watts–Strogatz [109], Barabási–Albert [11], configuration model [16, 13]). We also
review some of the literature on growing networks [74] and community detection algorithms
[40], including particular properties associated to them. In Section 1.2.2, we summarise the
basic properties of population genetic models and branching processes. We focus on the
Wright-Fisher and Moran models and the Galton-Watson process which are extensively used
in this work.

1.2.0.1 Generating functions

In mathematics, a generating function [110] is a formal power series in one indeterminate,
whose coefficients encode information about a sequence of numbers an that is indexed by the
natural numbers. Then, probability generating function, of a discrete random variable is a
power series representation (the generating function) of the probability mass function of a
random variable..

Suppose a discrete random variable X takes values in 0, 1, 2, ... and has probability function
p(x) (P [X = x] = p(x)). Then pgf (probability generating function) is

gX(s) = E(sX) =
∞∑
x=0

p(x)sx.

Note: gX(0) = p(0) and gX(1) = 1, pgf uniquely determines the distribution and vice-
versa.

From above definition we can define the multivariate pgf. Suppose X = (X1, . . . , Xn) ∼
{pi1i2...in}i1,i2,...,in≥0 is a finite vector of non-negative random variables, then the pgf gX of X
can be written as,

gX(~s) = E(sX1
1 · sX2

2 · · · sXnn ) = pi1i2...ins
i1
1 s

i2
2 · · · sinn ,

if ~s = (s1, s2, . . . , sn) ∈ [0, 1]n.

Theorem 1.2.1. Let Z = X1 +X2 + · · ·+Xn, with Xi independent discrete random variables
with pgfs gi(s), i = 1, . . . , n. Then,

gZ(s) = g1(s)g2(s) · · · gn(s).

In particular, if Xi are identically distributed with pgf g(s), then,

gz(s) = [g(s)]n
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bond percolation site percolation

Figure 1.1: Different percolation models: Bond and site percolation.

Proof.

gZ(s) = E
(
sZ
)

= E
(
sX1+X2+···+Xn) = E

(
sX1 · sX2 · · · sXn

)
=︸︷︷︸

Xiindependents

(1.3)

= E
(
sX1
)
· E
(
sX2
)
· · ·E

(
sXn

)
=︸︷︷︸

definition

g1(s) · g2(s) · · · gn(s) (1.4)

1.2.1 Network models, properties and tools

Networks or graphs are ubiquitous in many fields of active research in order to organise and
represent the data as well as extracting information to represent it. In our case, we use a
network representation for the genotype-phenotype space. In Appendix 7.2, we briefly define
the main local and global properties of graphs defined in the field of graph theory.

1.2.1.1 Percolation

Percolation theory is a highly developed field in mathematics and statistical physics [97, 21,
17]. The best way to illustrate problems related to percolation theory applied to networks is
the bond percolation model and site percolation, (see Figure 1.1). In the first model, given n
isolated nodes on a regular lattice, we define the process that at each step introduces one or
more edges with probability p, in this case we are interested in which is the critical value pc
to have a path between two extremes on the lattice. On the other hand, the site percolation
model considers an empty lattice in which nodes are randomly filled with probability p.
The percolation transition occurs when a giant connected component emerges (see Appendix
Section 7.2), i.e. a connected component which contains a macroscopically large number of
nodes, when the occupation probability reaches its critical value, pc, (node percolation). In
other words, it is the formation of long-range connectivity in random systems. Below the
critical probability a giant connected component does not exist; while above it, there exists a
giant component of the order of system size. As we can expect, the higher is p, the larger are
the individual clusters. Instead of being a continuous change, we observe a phase transition.

There are some results regarding the percolation transition for different lattices and pro-
cesses, where the critical parameter can be approximated accurately [24]. Another feature
related to percolation is that giant connected component emerges faster in assortative net-
works, otherwise its emergence is delayed in dissassortative networks (see Appendix 7).

The same process could be done inversely, in this case we want to know when the system is
broken or disconnected. This allows to define robustness as an inverse percolation transition.
In this case, given a connected network (or a network with a giant connected component),
we remove a fraction, f , of nodes (or edges) chosen at random. This parameter controls
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the proportion of nodes (edges) that can be removed from the network without the giant
component being destroyed. In other words, how robust a network is against random failure
by investigating the proportion of nodes or edges that we need to remove before long-scale
connectivity is lost. As we have described before, there exists a critical threshold fc: for
f < fc we continue to have a giant component, but when f > fc, the giant component breaks
into disconnected components.

The critical fraction fc of removed nodes for a network with an arbitrary degree distribu-
tion is fc = 1− 〈k〉

〈k2〉−〈k〉 (proof in Advanced Topics 8.C in [12]). It is easy to deduce fc = 1− 1
〈k〉

for a random network, with has a Poisson degree distribution. Then, as 〈k〉 → 1, it is eas-
ier to disconnect a random network (generated by the Erdös-Rényi model described later).
By contrast, scale-free degree distribution networks, whose second moment 〈k2〉 diverges, are
such that fc → 1. This result has the implication that scale-free networks are very resilient
to random attacks.

A classical example of percolation processes are the epidemic processes by which diseases
spread over networks of contact between population. In these processes percolation plays an
important role.

1.2.1.2 Small world property

The small-world phenomenon is exhibited by those networks in which the average clustering
coefficient is close to one and, simultaneously, the diameter of the network D, is small, i.e.
D ∼ log(n), where n is the number of nodes (see Section 7.2 in Appendix 7). In other words,
the small-world effect describes those graphs whose diameter and average path length grow
much more slowly than the number of nodes n, that is slower than log(n) which correspond
to Erdös Rényi graphs (or random graphs).

1.2.1.3 Network models

We first summarise some of the basic models used in complex network theory.

Random networks Random graphs (Section 2.2 in [22]) are generated by fixing some of
the parameters such as the number of nodes or/and edges, but the network is maximally
random otherwise. The simplest model is obtained by fixing the number of nodes n and place
a fixed number of edges m randomly. This model is referred to as the G(n,m) model.

The best known model of random graphs is the Erdős–Rényi model [34, 35] denoted by
G(n, p), where n is the number of nodes and p, the probability of connecting each pair of nodes.
This model allow a fuller characterisation than for G(n,m) graphs. It is straightforward to
obtain the mean number of edges, 〈m〉 =

(
n
2

)
p and the mean degree, 〈k〉 = (n− 1)p.

The degree distribution of graphs generated using this model follows a Poisson distribution
(for n large, otherwise it follows a binomial distribution). Its clustering coefficient, c, tends

to zero as n grows while mean degree stays constant (c = 〈k〉
n−1). This property differs from

most of real-world networks which retain a high clustering coefficient with a large amount
of nodes. Other departures from most real networks are that random graph models do not
show correlations between degree and its second neighbourhood neither exist a community
structure.

Small-world networks Another important type of network is the so-called small-world
network.
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Similarly to the Erdős–Rényi model, the Watts–Strogatz model [109] is the basic procedure
to generate a small-world graph characterised by short average path lengths and high cluster-
ing. This model is specified by the number of nodes, n, the mean degree, k, and a parameter p
(0 ≤ p ≤ 1), which represents the rewiring probability and controls the interpolation between
the circle model and the random graph. We start from a regular ring lattice, with n nodes
and each connected to k neighbours (k/2 on each side). The small-world graph is generated
by rewiring each edge with probability p to a random chosen node. The degree distribution
goes from a Dirac delta function (p = 0) to a Poisson distribution as p → 1. In this model

clustering coefficient varies in function of p by, c = 3(〈k〉−2)
4(〈k〉−1)+8p〈+4p2k〉〈k〉 [75].

Scale-free networks A usual feature of real networks is the appearance of power-law degree
distributions, also called scale-free graphs. The first model which proposed a mechanism to
obtain a power-law distribution is the Barabási–Albert model [11, 12], also known as a the
Yule process, which uses the preferential attachment rule: given a number of nodes n, and an
initial number of nodes n0, the network begins with an initial connected network of n0 nodes
and with links which are chosen arbitrarily, as long as each node has at least one link. At
each time step a new node is added to the network one at a time. Each new node is connected
to existing nodes with a probability that is proportional to the number of links (ki) that the
existing nodes already have. Formally, the probability pi that the new node is connected to
node i is pi = ki∑

j kj
. This model produces a network with n nodes and m edges and 〈k〉 = 2m.

This model is limited to produce power-laws with exponent equal 3.

Average path length increases approximately logarithmically with the size of the network,(
D ∼ log(n)

log(log(n))

)
that implies a systematically shorter average path length than a random

graph. Clustering coefficient of the Barabási-Albert model decays slower than expected for a

random network, indicating that the obtained network is locally more clustered
(
c ∼ ln(n)2

n

)
[59]. On the other hand, correlations between the degrees of connected nodes develop spon-
taneously because of the way the network is generated, but as n grows this correlation decays
[12].

Configuration model A widely used algorithm to generate random graphs is the configura-
tion model [72]. This model generates a maximally random graph given a degree distribution,
that is: given a sequence of degrees (k1, k2, . . . , kn) with length n. We generate a graph with
n nodes and each node ni has ki stubs (half edges), by picking a pair of stubs uniformly at
random and connect them.

1.2.1.4 Correlations

Most of real networks exhibit correlations in their connectivity patterns. Correlations between
two nodes can be measured by the average degree (see Appendix 7) of nearest neighbours as a
function of the node degree, k̄nn(k) =

∑
k′ k
′P (k′ | k) [22], where P (k′ | k) is the conditioned

probability that a vertex of degree k is connected to a vertex of degree k′. We say that a graph
is assortative if the correlation between the average of nearest neighbours and their degree is
positive, i.e more connected nodes are preferably connected to high-degree nodes. Otherwise,
if connections are preferably formed between nodes with very different degree usually are
connected, implying a negative correlation between degree and number of nearest neighbours,
we have a disassortative network. Random graph models, such as the Erdős–Rényi model
and the configuration model do not exhibit degree correlations by definition. In growing
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networks degree correlations depend on the attachment probability Ak (sublinear, linear,
superlinear). The linear case corresponds to the Barabási-Albert, which degree correlations
decay as n grows. The clustering coefficient (see Appendix 7 Section 1.2.1) is another form of
correlation. In this case, it is associated to correlations between three nodes [22].

Growing networks usually develop correlations between the degrees of connected nodes as
the network grows and the size distributions of the in component and the out component in
directed growing networks. The presence of correlations might have important consequences
in dynamical processes taking place in the topology defined by the network (e.g. epidemic
spreading, epidemic threshold (percolation), ...).

1.2.1.5 Growing networks

Growing networks or non-equilibrium graphs are networks that evolve, adding nodes and links
as time progresses. The organisational development of growing networks has been studied
in papers like [62] where an attachment rate is prescribed. Real networks do not belong
to the equilibrium, i.e. static, class of networks. Their non-equilibrium character endows
them with a number of interesting properties. For example, the percolation transition in
growing networks is of a quite different nature in non-equilibrium networks [23] (percolation
properties are well studied in [33, 73, 68, 69]). Using a simple growing model, [23] has shown
that a phase transition exists at which a giant component forms whose size scales linearly
with system size. In this respect, their networks resemble traditional random graphs but
they differ from random graphs in many other ways. For example, the mean component
size is different both quantitatively and also qualitatively, having no divergence at the phase
transition. The position of the phase transition is different as well, and the transition itself
appears to be infinite order rather than second order. There is, therefore, a number of features,
both local and global, by which the non-equilibrium graph can be distinguished from a static
one. Another usual behaviour of growing networks, specially with preferential attachment, is
that in long times a single node captures a macroscopic fraction of links.

Recent approaches to the study of growing networks are based on the use of rate equa-
tions methods in order to model their evolution of growing networks, instead of probabilistic
approaches or generating function techniques [60]. The rate equation approach also has the
advantage that it can be adapted to other evolving graphs systems, including networks not
only with addition, such as with the addition and deletion of nodes and links, and also with
link rewiring [62].

For example, in [62], the following model is proposed: a growing network in which nodes
are added one at time, and a link is established with a pre-existing node according to an
attachment probability Ak, which depends only on the degree of the target node. This model
produces a directed tree graph topology. They study the evolution of the degree distribution
according different kernels of attachment: linear, sublinear and superlinear [63]. Their rate
equation to model the evolution of the degree distribution is,

dnk
dt

= A−1 [Ak−1nk−1 −Aknk] + δk1 (1.5)

where, nk(t) represents the number of nodes of degree k at time t, Ak is the probability to
attach to a node of degree k and A(t) =

∑
j≥1Ajnj(t).

In growing networks the time-dependent degree distribution is determined by the rate
equation approach, with different distributions arising in the growing network model depend-
ing on the asymptotic behaviour of the attachment probability as a function of node degree.
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Such models also investigate the joint age-degree distribution, and it has been found that old
nodes are typically more highly connected [61]. Approaches like those of [62, 32] have anal-
ysed how the degree distribution depends on the attachment rate, Ak and behaviour depends
on whether Ak grows slower than linearly with k, linear or superlinear. The probability of
attachment takes an important role in the generation of degree correlations, that changes the
emergence of the giant component.

1.2.1.6 Communities and modularity

Communities, i.e. subsets of nodes tightly inter-connected, well above the levels of a randomly
chosen set of nodes, and how to detect them is a field studied in graph theory. There are a
broad range of algorithms for finding communities, whose accuracy depends on the kind of
graph and the available information [40, 65]. For example, there are algorithms where a priori
knowledge of the number of communities to detect is needed [40]. We can obtain different
levels of success for all this range of algorithms applied to the same graph. A usual measure
used in many community detection algorithms is modularity. It measures the strength of a
division of a network into modules (also called groups, clusters or communities). Modularity
is defined as the fraction of the edges that fall within the given groups minus the expected such
fraction if edges were distributed at random: It takes positive values if the number of edges
within groups exceeds the number expected on the basis of chance. Given a partition of the
network into modules, modularity reflects the concentration of edges within modules compared
with random distribution of links between all nodes regardless of modules. In other words,
networks with high modularity have dense connections between the nodes within modules but
sparse connections between nodes in different modules.

Traditional methods for community detection are: graph partitioning (Kernighan-Lin al-
gorithm, spectral bisection method), hierarchical clustering (agglomerative algorithms and
divisive algorithms; sometimes stopping conditions are given by modularity optimisation),
partitional clustering (k-means clustering), spectral clustering (introduced by Donath and
Hoffmann) and divisive algorithm (Girvan–Newman algorithm). An extensive review of all of
these methods, as well as newer one, is given in [40].

1.2.2 Population dynamics

Modern population dynamics is the field originated by [111],[38] and [45], where short-term
and long-term composition changes of populations are studied. We briefly present some models
used in this thesis. Also, a very useful tool as generating functions is presented with some
interesting properties and how it applies to branching processes.

1.2.2.1 Population genetic models:

Models of inheritance, mutation, and selection of genetic material in populations of individu-
als. Classically, these models assume a constant number of individuals related to each other
through common ancestry (Wright-Fisher model, [111],[38]). Although very different from
the branching processes some of these models can be approximated by branching processes
(e.g., when an expanding subpopulation of mutants arises within the large population). Such
a situation arises when some genetic diseases are studied.

Wright-Fisher and Moran model: Wright-Fisher model [111, 38], is a well-known model
in population genetics where individuals within the population are picked up at random for
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proliferation with uniform probability. Of the rest of the individuals of the population we
picked another one randomly and remove it from the population, so that the total population
keeps constant.

On the other hand, in each generation of the Moran model [70], one individual is chosen
at random to give 2 offspring and one individual is chosen to die (all other individuals survive
to the next generation). In contrast to Wright-Fisher model, Moran model has overlapping
generations. This model is also known as a birth-and-death model.

1.2.2.2 Multi-type Galton–Watson process:

A generalisation of the single-type Galton–Watson process [6, 57]. It evolves in discrete time
measured by non-negative integers. Each individual belongs to one of a finite number of
types. The initial population is assumed to consist of a single individual of one particular
type. Processes started by individuals of different types are generally different. At each
generation, the ancestors are replaced by a random number of progeny of various types. The
distribution of progeny counts depends on the type of parent. Each of the first-generation
progeny becomes an ancestor of an independent subprocess, distributed identically as the
whole process (modulo ancestor’s type). In the multi-type process, asymptotic behaviour
depends on the matrix of average progeny count. Rows of this matrix correspond to the
parent types and columns correspond to the progeny types. The largest positive eigenvalue of
this matrix (Theorem Perron- Frobenius [78, 41]) is the Malthusian parameter of the process,
provided the process is supercritical (the Perron–Frobenius eigenvalue larger than 1) and
positive regular. This latter means that parent of any given type will have among its (not
necessarily direct) descendants, individuals of all possible types, with non-zero probability.
Galton-Watson process (or multi-type Galton-Watson) can also be generalised to a continuous
branching process.

1.2.2.3 Branching processes

A branching process is a class of process that not need to be Markovian, but all the processes
studied here are Markov processes. A Markov process is defined as a stochastic process with
the following property:

P (yn, tn|y1, t1; . . . ; yn−1, tn−1) = P (yn, tn|yn−1, tn−1), ∀n. (1.6)

That is, the conditional probability density at tn, given the value yn−1 at time tn−1, is uniquely
determined and is not affected by any knowledge of the ys values at earlier times.

Markov process studied here models a population in which each individual in generation
n produces some random number of individuals in next generation n + 1, according, in the
simplest case, to a fixed probability distribution that does not vary from individual to indi-
vidual. These processes are used to model bacterial reproduction, epidemic spreading, cell
mutations, etc., [57].

The oldest, simplest and best known branching process is the Galton-Watson process [57],
[6]. It can be described as follows: A single ancestor particle lives for exactly one unit of time,
and at the moment of death it produces a random number of progeny according to a given
probability distribution. Each of the first-generation progeny behaves, independently of each
other, as the initial particle did. It lives for a unit of time and produces a random number of
progeny. Each of the second-generation progeny behaves in the identical way, and so forth.

This process can be mathematically described using a discrete-time index, identical to
the number of successive generation and defining some generating functions. Generating
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functions are a useful tool for handling distributions of such random sums is the probability
generating function (pgf) of a distribution. Methods employing pgf manipulations instead of
directly dealing with random variables are called analytic. Probability generating functions
are the basic analytic tool employed to deal with non-negative random variables and finite
and enumerable sequences (vectors) of such variables.

The Galton-Watson process produces an equation that can be solved, providing us the
number of individuals for each generation and many interesting data.

We can consider two ways to define the self-recurrence in the branching process. One
is based on decomposing the process into a union of subprocesses initiated by the direct
descendants of the ancestor. It can be called the “backward” approach, in an analogy to
the backward Chapman–Kolmogorov equations of Markov processes. The other way is the
“forward” approach. It consists of freezing the process at time t, recording the states of all
individuals at that time, and predicting their future paths.

Let Zn be a random variable used as counter of individuals in each generation (where
generation 0 is composed of the single initial particle) and X be the number of offspring
for an individual with P [X = k] = pk, k ∈ N, E[X] = R and V ar[X] = σ2 < ∞. The
process can be represented as a union of the subprocesses initiated by the first-generation
offspring of the ancestor particle. Let Xj be the random variable for the number of offspring

for the jth individual, such that, Zn+1 =
∑Zn

j=1Xj . We construct the backward equation of

a Galton-Watson branching process. Let the pgf of X be given by g(s) =
∑∞

k=0 pks
k and let

gn(s) =
∑∞

k=0 P [Zn = k]sk be the pgf of Zn for n = 1, 2, 3, . . . . Then, using Theorem 1.2.1 of
probability generating function, follows backward equation:

gn+1(s) = gn(g1(s)) (1.7)

In order to obtain forward equation (only in Galton-Watson branching process), we only
need to fix Z0 = 1, it means P [Z0 = 1] = 1. Then, g0(s) = s, this yields the following,

gn(s) = gn(s) = g1{. . . g1(g1(s)) . . . }, gn+1(s) = gn(g1(s)). (1.8)

Backward-forward equation shows that we only need to know what happens between t to
t+ 1 in order to understand all the process.

Moreover, branching processes are not restricted to one-component processes, but all prop-
erties applies for processes with r components. In the above mathematical description we only
need to think s as a vector ~s = (s1, . . . , sr), and we have a branching processes with multi-type
components. One example is the multi-type Galton-Watson process.

1.2.2.4 Continuous-time branching process:

We have defined previously the discrete branching process. However it is possible to define a
continuous-time (age-dependent) branching process [57] with exponential life time distribu-
tions. This process also has the Markov property and is closely related to the Galton–Watson
process. Although the exponential distribution to model lifetimes of cells admitting lifetimes
which are arbitrarily close to 0, whereas it is known that life cycles of organisms and cells
have lower bounds of duration. The advantage of using the exponential distribution is that
it leads, in many cases, to computable expressions. The latter allow us to deduce properties
which then can be conjectured for more general models.

Similar to the discrete process, the age-dependent process can be described as follows. A
single ancestor particle is present at t = 0. It lives for time τ , which is exponentially distributed
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with parameter λ. At the moment of death, the particle produces a random number of progeny
according to a probability distribution with pgf f(s). Each of the first-generation progeny
behaves, independently of each other, in the same way as the initial particle. It lives for an
exponentially distributed time and produces a random number of progeny. Progeny of each
of the subsequent generations behave in the same way. If we denote the particle count at time
t by Z(t), we obtain a stochastic process Z(t), t ≥ 0. The probability generating function
F (s, t) of Z(t) satisfies an ordinary differential equation which is easiest to derive based on
the Markov nature of the process.

Consider the process at a given time t. Any of the particles existing at this time, whatever
its age is, has a remaining lifetime distributed exponentially with parameter λ. This follows
from the lack of memory of the exponential distribution. Therefore, each of the particles starts,
independently, a subprocess identically distributed with the entire process. Consequently, at
any time t + ∆t, the number of particles in the process is equal to the sum of the number
of particles in all iid subprocesses, indexed by i, started by particles existing at time t, such

that, Z(t+ ∆t) =
∑Z(∆t)

i=0 Z(i)(t).
So, according to the pgf theorem 1.2.1, we have the following pgf identity:

F (s, t+ ∆t) = F [F (s, t),∆t], F (s, 0) = s

.
Assuming a ∆t small and then by letting t→ 0, leads to the following differential equation:

dF (s, t)

dt
= −λ(F (s, t)− f(F (s, t))), with initial condition F (s, 0) = s. (1.9)

For more details see Chapter 4 of [57].

1.2.2.5 Extinction and criticality

Processes can be classified into subcritical, critical or supercritical processes in terms of their
long-time asymptotic behaviour. Once process is classified we can determine its relation with
an extinction process. We define R = E (X), the mean progeny count of a particle, Zn random
variable which counts the number of individuals in each generation and g(s) is the pgf that
satisfies E (X) = g′(1), as we have defined in 1.8, differentiating it and evaluating in s = 1,
we obtain

E (Zt) = g′n(1) = Rn.

Then, in the expected value sense, the process:

• grows geometrically if R > 1, called supercritical;

• stays constant if R = 1, called critical; and

• decays geometrically if R < 1, called subcritical.

However, this expected value sense is not in many cases a good description of the be-
haviour. Even in the supercritical case the probability of extinction can be very high. In
terms of extinction process we have theorem 1.2.2.

Theorem 1.2.2. The extinction probability of the Zn process is the smallest non-negative
root q of the equation,

g(q) = q.

It is equal to 1 if R ≤ 1, and it is less than 1 if R > 1. Proof See Section 1.5.3 in [57].
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1.3 Aims

The aim of this PhD thesis is to develop a multi-scale model of biological evolution which
accounts for the mapping between genotype and phenotype as determined by a model of the
gene regulatory network. In order to achieve this aim, we formulate a simple model in Chapter
2 of genotype-phenotype map inspired in the model proposed in [103] and studied in [104] by
Wagner.

We first proceed to generate a genotype-phenotype space (network) under such multi-scale
dynamics. We then analyse several population dynamics on this genotype-phenotype graph.
The objective is to study the effects of the genotype-phenotype structure on these dynamics
through the complex topology of genotype-phenotype network.

More specifically in Chapter 3, we characterise the geometrical and topological properties
of the genotype-phenotype space obtained from the multi-scale model which assumes a selec-
tive pressure acting at the level of phenotypes. This topological characterisation determines
robustness and evolvability driven by genetic mutations, and their relation to evolutionary
phenomena such as canalisation and convergence. We analyse the role of cryptic genetic vari-
ation on evolutionary processes and study how rewiring of the gene regulatory networks affect
robustness and evolvability. Also, we study how robust are genotype-phenotype networks
obtained from the multi-scale model against attacks.

In Chapter 4 we start our explanation of how population dynamics are affected by the
complex topological features of the genotype-phenotype network. In particular, we extend
the theory of evolutionary escape, a well-known evolutionary mechanism responsible for resis-
tance, by analysing the effects on the probability of escape and the escape rate of considering
that the evolutionary dynamics occurs on a genotype-phenotype network rather than on a
regular hypercube. We present a comparative analysis between genotype-phenotype networks
obtained from the multi-scale model and networks constructed assuming that the genotype
space is a regular hypercube. We compare the effects on the probability of escape and the
escape rate associated to the evolutionary dynamics between both classes of graphs.

We further our study of evolutionary escape on complex genotype-phenotype networks by
introducing a continuous-time branching process in order to model evolutionary escape and
survival as a process characterised by two different time-scales: A fast-decaying, initial regime
in which escape actually occurs, followed by a slow, quasi-steady state regime, in which cells
which have succeeded to reach the well-adapted escape phenotype, strive for survival. Our
aim in Chapter 5 is to analyse the influence of topological properties associated to robustness
and evolvability on the probability of escape and on the probability of survival upon escape.
We analyse the role played by topological properties of escape genotype, such as, degree,
clustering coefficient and a local weighted clustering coefficient, in determining escape and
eventual survival.

1.4 Outline

This thesis is structured in seven Chapters. In Chapter 1 we introduce genotype-phenotype
maps, giving some ideas about previous models of them and presenting the concept of evolu-
tionary escape (Section 1.1). Then, in Section 1.2 we present a review of the main methodol-
ogy used in this thesis and applied in the followings Chapters 3, 4 and 5. Chapter 2 contains
a complete description of the proposed multi-scale model of biological evolution and used
subsequently.
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After that, the main contributions are presented in Chapters 3, 4 and 5. At the end of
each of these Chapters we describe and discuss the obtained results. Finally, we summarise
results and conclusions in Chapter 6 and give some ideas for future work. We provide an
Appendix in Chapter 7.



Chapter 2

The model

The aim of this Chapter is to propose a multi-scale model of evolutionary dynamics inspired
in the model proposed by Wagner in [103], which accounts for the mapping between genotype
and phenotype as determined by a model of the gene regulatory network. The model is
split in three scales: microscale, mesoscale and macroscale. Each one is associated to a
particular process. The microscale models the intracellular dynamics of interaction between
genes, that is the gene regulatory network (GRN), and provides a genotype-phenotype map
introducing a selective pressure at the phenotype level. The mesoscale describes the dynamics
of the population of cells, which we assume to be described by a multi-type Wright-Fisher
model with mutation [15]. Finally, the macroscale describes the evolutionary dynamics of the
genotype-phenotype space. We propose a similar, but not identical, representation of this
space to the proposed by Ciliberti et al. [28, 27].

2.1 Model formulation

We consider a population of cells whose dynamics is described by a multi-scale model [3]
composed of three mutually-coupled levels: the microscale, where the intracellular dynamics
is modelled in terms of a gene regulatory network (GRN), the mesoscale, i.e. the population
dynamics of the population where birth and death rates are assigned according to the pheno-
type of each cell, and the macroscale, consisting of a model of the evolutionary dynamics of
the genotype-phenotype space (to be defined later).

Each of these levels have associated different characteristic time scales which become longer
as we move up the hierarchy of the model: from the microscale, where the characteristic time
scales correspond to the ones associated to intracellular processes (ranging from seconds to
hours), to the mesoscale, characterised by the time scales of the order of the life-time of a cell
(ranging from a few days to months or even years), and to the macroscale, where the time
scales are those characteristic of evolutionary processes and are measured in generations [3]
(see Figure 2.1).

We consider a scenario where selective pressures act on phenotypes. We therefore for-
mulate a model with separation of time scales where we allow individuals to complete the
developmental plan encoded in their genotype (to be defined in Section 2.1.1), determine the
corresponding phenotype, and then decide whether it is fit to survive and thrive or not. A
similar selection procedure has been used, for example, by Siegal & Bergman [94, 14]

21
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Figure 2.1: Description of multi-scale model. Time measures in microscale: intracellular
process then ranging from seconds to hours, mesoscale: life-time of a cell ranging from few
days, months or even years, macroscale: generations.
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2.1.1 Microscale: Intracellular dynamics of the GRN

Our model considers a population of cells characterised by a pair G = (G, g(0)). G is a matrix
accounting for the interaction between genes (i.e. how a gene product affects the (in)activation
of all other genes). The vector g(0) corresponds to the initial pattern of gene expression, which
can be interpreted as heritable genetic information: the components of g(0) = (gi(0)) are the
states (active or inactive) of each gene when new cells are born. This pair is referred to as
the genotype in the remaining of this manuscript.

The aim of the microscale dynamics is to provide our model with a representation of
the genotype-phenotype map, i.e., a correspondence between (G, g(0)) and the phenotype,
φ. Our model is closely related to the model used by Wagner to study plasticity [104] and
the model used by Bergman and Siegal to study canalisation [94, 14]. It is also based on
the idea, proposed by Stuart Kauffman, that GRNs are dynamical systems and phenotypes
or differentiated states correspond to the stable attractors of these dynamical systems [56].
Within this framework, we represent GRNs as graphs, where genes are the nodes and links
represent a regulatory interaction between the genes corresponding to the nodes at either end
of the link. This graph can be represented by a matrix A, the so-called adjacency matrix,
where dim(A)=NG × NG, with NG equal to the number of genes. A is defined so that its
entries, aij , are such that aij = 1 if there exists a link between nodes (genes) i and j, and
aij = 0, otherwise.

Each gene, labelled by i = 1, . . . , NG, is endowed with a state variable gi(t), which, at
time t, can take two values: gi(t) = 1 if the gene is being expressed and its protein product
being synthesised, and gi(t) = −1, otherwise. The matrix G = (gij), is a weighted version of
A: gij = aij if gene i activates gene j, and gij = −aij if gene i inhibits gene j. GRNs are
directed graphs and, therefore, both A and G need not be symmetric.

The phenotype is defined as the steady-state of the dynamical system defined by the
following set of rules:

1. At t = 0, that is, at the time of birth of each cell, we fix g(t = 0) = g0.

2. At each time step, and for each gene in the GRN, we determine the value of the variable
Ii(t), defined by:

Ii =
∑
〈j〉ini

gjigj , where 〈j〉ini is the set of in-neighbours of i. (2.1)

3. We determine the value of the state of each gene at step t+ 1 according to:{
gi(t+ 1) = 1, if Ii(t) ≥ 0
gi(t+ 1) = −1, if Ii(t) < 0

4. Steps 2 and 3 are repeated until t = T � 1. The phenotype corresponding to the
genotype G = (G, g0), φ(G), is defined by φ(G) = g(T )

2.1.1.1 Selective pressure: viability conditions.

We formulate conditions to discard genotypes which give rise to unviable phenotypes. Our
viability conditions are related by those imposed by Bergman & Siegal [94, 14]. These authors
consider that a gene regulatory network is in steady state if an average measure analogous to a
variance is smaller than a (small) threshold value. If the GRN has not reached a steady state
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after a certain number of iterations, it is discarded as non-viable. The average involved in this
steady state criterion is taken over a period of time of length v, which implies that solutions
with periods longer than v are non-viable.. Here, we discarding oscillatory solutions if their
period is longer than a threshold length, lv. In the case of these oscillatory solutions, our
definition of the phenotype is slightly different: φi(G) = 0 if gi oscillates, and φi(G) = gi(T ),
otherwise. For example, if φ(G) oscillates like (1,−1, 1, 1) → (1, 1, 1, 1) → (1,−1, 1, 1), then
φ(G) is defined as (1, 0, 1, 1).

From our definition of viability conditions, we can see that the shorter we choose lv, the
more GRNs are going to be disregarded as unviable. Therefore smaller lv, the more severe
the selection pressure (see Appendix 7 Fig 7.2 to see plotted genotype-phenotype networks
with lv = 0).

2.1.1.2 GRN topology

Finally, we need to model the topology of the GRNs. We use two different models in order
to capture two topological properties. A number of protein-interaction and transcription
networks have been found to exhibit the small-world phenomenon [100, 112, 5] and, in view of
this, we will use the Strogatz-Watts model (Section 1.2.1) to generate the graphs underlying
GRNs with the small-world property [109]. This model works as follows. Consider a regular
lattice with NG vertices and k edges per vertex such that E = kNG/2. By rewiring each edge
at random with probability p, Watts & Strogatz showed that, between the limits of a regular
graph (p = 0) and a random graph (p = 1), there exists an intermediate regime between these
two extremes where there is a transition whereby the rewired graph exhibits the small-world
effect, i.e. they simultaneously show high clustering and short-path length [76].

A second topological property whose effects we are interested in exploring is the scale-
free topology shown to be exhibited by GRNs [7], which we generate using the preferential
attachment model [10]. Greenbury et al. [43] have shown that the scale-free topology leads
to increased robustness with respect to GRN with random, Erdös-Renyi topology. Here we
will examine the small-world phenomenon and the scale-free topology affect the evolvability
properties of our system.

Recall that is enough to study GRN connected networks (see Appendix 7 Section 7.1).

2.1.2 Mesoscale: Population dynamics

The mesoscale describes the dynamics of the population of cells, which we assume to be
described by a multi-type Wright-Fisher model with mutation [15]. In our model, cell types
correspond to genotypes where ni is the number of cells with genotype Gi. The Wright-Fisher
model is an urn model where the total number of cells Nc =

∑
i ni is kept constant. The

population dynamics is as follows:

1. A cell is chosen at random for proliferation. All cells are equally likely to be chosen.
Therefore, the probability of a cell with genotype Gi to be picked up is equal to ni/N .

2. With probability µ, the chosen cell is subjected to mutation. In our model (see [104]),
a mutation corresponds to changing the sign of one and only one randomly chosen,
non-zero entry of the matrix G: i.e. G → G′ where g′ij = −gij , where the ij-edge
is randomly chosen with probability 1/E, with E =

∑
i,j aij is the number of edges

(interaction between genes) of the GRN, and g′lk = glk for all i 6= l and k 6= j. We
check, by running the microscale dynamics, whether φ(Gi) is equal to φ(G′), where
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G′ = (G′, g0). We have three possibilities, namely, (i) φ(Gi) = φ(G′), (ii) φ(Gi) 6= φ(G′)
and φ(G′) is viable, and, last, (iii) φ(Gi) 6= φ(G′) and φ(G′) is non-viable.

3. If there is no mutation (with probability 1−µ), ni → ni+1. If there is a mutation which
results in cases (i) or (ii), ni → ni − 1 and ni′ → ni′ + 2, where ni′ is the population of
cells with genotype G′. In either case, another cell chosen at random is eliminated, so
that the total cell population stays constant.

4. If there is a mutation which results in a non-viable genotype (case (iii)), steps 1 and 2
are repeated until a viable genotype is found

This description of the cell population dynamics shows that our viability conditions act
as a selective pressure on the population: Those genotypes more prone to yield oscillations of
period longer than lv are negatively selected for.

2.1.3 Macroscale: Evolutionary dynamics of the genotype-phenotype map

The macroscale describes the evolutionary dynamics of the genotype-phenotype space. Our
representation of this space is similar, but not identical, to the metagraph proposed by Cilib-
erti et al. [28, 27], who analysed this space using a graph which extends the concept of neutral
network [105].

The model of Ciliberti et al. [28, 27] can be summarised as follows. Consider that all
the cells in our population share the same inherited developmental plan, g0. Then, genotypes
G = (G, g0) are characterised by the corresponding matrix G alone. In the previous section,
we have defined a mutation as a sign change in one of the non-zero entries of G. To properly
characterise this in mathematical terms, let us define the distance between two matrices G
and G′, dist(G,G′), as:

dist(G,G′) =
∑
i,j

|gij − g′ij |
2

, (2.2)

i.e. dist(G,G′) is the number of entries in G and G′ with differing signs.

For example, let G1 and G2, two genotypes,

G1 =

 0 1 0
−1 0 0
0 0 1

 G2 =

0 1 0
1 −1 0
0 0 1


then dist(G1, G2) = 2. G1 and G2 in the previous example differ in the sign of two entries,
i.e. they are two mutations apart. According to the definition of neutral network given in
Chapter 1.1 these two genotypes would not be connected.

Furthermore, consider the set of viable genotypes, G = (G, g0). Based on this set, we can
define a graph Γ = (VG, EG), where VG is the set of vertices and EG is the set of edges, in the
following way.

1. VG is equal to the set of viable genotypes

2. EG is defined as follows: for all pair Gi,Gj ∈ V an edge exists linking both nodes if and
only if dist(Gi, Gj) = 1
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Ciliberti et al. [28, 27] characterise phenotypic robustness and evolvability in terms of
certain topological properties of this graph, namely, its modularity structure is related to
robustness: if genotypes with the same phenotype reside within modules (i.e. tightly inter-
connected subsets of VG [75]), the phenotype is said to be robust as it is highly likely that
gene mutations lead to genotypes producing the same phenotype.

We propose here an extension of this graph by considering a pseudo-bipartite graph, B =
(VG, Vφ, EG, Eφ), where we have two types of nodes and two types of edges:

1. VG is equal to the set of viable genotypes

2. Vφ is equal to the set of viable phenotypes

3. EG, the set of genotype-genotype links, is defined as follows: for all pair Gi,Gj ∈ VG an
edge exists linking both nodes if and only if dist(Gi, Gj) = 1

4. Eφ, the set of genotype-phenotype edges, is given by the phenotype-genotype map: An
edge exists between φi and Gj if and only if φi = φ(Gj)

Note that this definition departs from that of a bipartite graph in that we allow edges between
nodes of the same type (i.e. genotype-genotype edges).

2.1.4 Evolutionary dynamics of the genotype-phenotype map

Our aim is to analyse the evolutionary dynamics and the emergent properties of the genotype-
phenotype map. We propose the following multi-scale evolutionary dynamics model.

Initial Condition At t = 0 we fix the initial condition for our evolutionary dynamics as
follows.

1. An inheritable developmental programme, g0, is randomly generated.

2. Nc number of GRNs are generated. This is a two step process:

• Nc replicas of an adjacency matrix are generated at random using the Watts-
Strogatz model with rewiring probability p .

• For each of these adjacency matrices, each non-zero entry is given a positive (neg-
ative) weight with probability p+ (1− p+).

3. For each of the Nc genotypes Gi = (Gi, g0), i = 1, . . . , Nc, we determine the corre-
sponding phenotype φi = φ(Gi) by means of the microscale dynamics described in
Section 2.1.1. If non-viable genotypes are encountered, the corresponding GRN is dis-
carded and another one is generated. This process is repeated until we have Nc viable
genotypes and produces the set of genotypes present in the population at time t = 0,
SG(t = 0) = {Gi, i = 1, . . . , Nc}, and the set of phenotypes present in the population at
t = 0, Sφ(t = 0) = {φ(Gi), i = 1, . . . , Nc}. Note that repeated genotypes and phenotypes
are included only once in their respective sets.

4. The initial condition for the genotype-phenotype graph, B0 = (VG(t = 0), Vφ(t =
0), EG(t = 0), Eφ(t = 0)), is fixed as follows.

• The set of genotype nodes, VG(t = 0) = SG(t = 0)
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• The set of phenotype nodes, Vφ(t = 0) = Sφ(t = 0). Note that card(Vφ) ≤ card(VG)

• The set of genotype-genotype links, EG(t = 0), is defined as follows: for all pair
Gi,Gj ∈ VG(t = 0) an edge exists linking both nodes if and only if dist(Gi, Gj) = 1

• The set of genotype-phenotype edges, Eφ(t = 0), is determined by the phenotype-
genotype map: An edge exists between φi ∈ Vφ(t = 0) and Gj ∈ VG(t = 0) if and
only if φi = φ(Gj)

Dynamics For t > 0, the system is updated according to the following dynamics.

1. An iteration of the mesoscale dynamics according to the model described in Section 2.1.2
is carried out. This iteration produces a population of cells with the corresponding set
of different genotypes present in the population at iteration t = t + 1, SG(t + 1) and
with the phenotype set Sφ(t+ 1).

2. The growth dynamics of the genotype-phenotype graph is defined as follows:

• If SG(t+ 1) ∩ VG(t) 6= SG(t+ 1), i.e. the population dynamics has generated new
genotypes, then VG(t+ 1) = VG(t)∪ (SG(t+ 1)−SG(t+ 1)∩VG(t)), i.e. we update
the set of genotype nodes by adding the new ones arising from the population
(mesoscale) dynamics.

• Similarly, for the set of phenotype nodes, if Sφ(t + 1) ∩ Vφ(t) 6= Sφ(t + 1) then
Vφ(t+ 1) = Vφ(t) ∪ (Sφ(t+ 1)− Sφ(t+ 1) ∩ Vφ(t)), i.e. the set of phenotype nodes
is updated by addition of the new ones arising from the population dynamics.

• The set of genotype-genotype links, EG(t+ 1), is updated by adding to EG(t) the
following set of edges: for all new genotype, G ∈ SG(t + 1) − SG(t + 1) ∩ VG(t),
we add new links between G and all Gj ∈ VG(t) such that dist(G,Gj) = 1, i.e. we
add links from the new genotypes to all the genotypes in the graph which are one
mutation apart.

• The set of genotype-phenotype links, Eφ(t+1), is updated by applying the genotype-
phenotype map (microscale dynamics) to the new genotypes, i.e. new edges are
added between phenotype node φi and genotype node Gj if and only if φi = φ(Gj).

2.1.4.1 Example: Microscale to macroscale

Genes interaction:

A =

0 1 1
0 0 0
0 0 0


A = (aij), aij ∈ {0, 1}, N = 3.

Genotype representation:

G =

0 ±1 ±1
0 0 0
0 0 0


G = (gij), gij ∈ {−1, 0, 1},

gij ∈ {−1, 1} ⇐⇒ aij = 1.
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2.1.5 Remarks of genotype-phenotype network

One of the first observations to do is that genotype-phenotype network obtained is a pseudo-
bipartite graph. It means, we have two classes of nodes (genotypes and phenotypes) and
two classes of edges (genotype-genotype and genotype-phenotype). As a difference between
bipartite networks we have connections between one of the same class of nodes. This small
difference give us a more advantageous way to work.

Another point is the possibility to define the clustering coefficient, that in the topological
characterisation of robustness proposed by Ciliberti et al. [28, 27] in the network constructed
according to the model described in Section 1.1.2.1 is not possible. Since, one can define the
average clustering coefficient of a network by adding up all the nodal clustering coefficients
and dividing by the number of nodes. Then, if we attempt to apply this definition to the
network constructed according to the model described in Section 1.1.2.1, we immediately run
into a problem: The clustering coefficient is identically zero since it is impossible to have
triangles in this graph. Recall that two nodes on the genotype network are connected if only
if there is only one mutation between them. If a node a is connected with node b and c,
distance between a and b and a and c is 1:
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d(a, b) = 1 ∧ d(a, c) = 1 =⇒ d(b, c) = 2 (2.3)

a

b c

Figure 2.2: Impossible edge. Not triangles.

Eq. (2.3) implies that there cannot exist any edge between b and c, which means there are
no triangles in the genotype graph. Whereas, the genotype-phenotype network obtained from
the model described above, allows to apply with sense the clustering coefficient, that is going
to be an useful parameter to study the structural features of genotype-phenotype networks.
It can be easily verified that triangles where one of the vertex corresponds to a phenotype
and the other two to genotypes exist (see Figure 2.3).

G1

G2

P1

Figure 2.3: Triangle between genotypes and a phenotype.
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Chapter 3

The topology of robustness and
evolvability in evolutionary systems
with genotype-phenotype map

In this Chapter we formulate a topological definition of the concepts of robustness and evolv-
ability. We start our investigation by formulating a multi-scale model of the evolutionary
dynamics of a population of cells. Our cells are characterised by a genotype-phenotype map:
their chances of survival under selective pressure are determined by their phenotypes, whereas
the latter are determined their genotypes. According to our multi-scale dynamics, the popula-
tion dynamics generates the evolution of a genotype-phenotype network. Our representation
of the genotype-phenotype network is similar to previously described ones, but has a novel
element, namely, our network contains two types of nodes: genotype and phenotype nodes.
This network representation allows us to characterise robustness and evolvability in terms
of its topological properties: phenotypic robustness by means of the clustering coefficient of
the phenotype nodes, and evolvability as the emergence of giant connected component which
allows navigation between phenotypes. This topological definition of evolvability allows to
characterise the so-called robustness of evolvability, which is defined in terms of the robust-
ness against attack (i.e. edge removal) of the giant connected component. An investigation
of the factors that affect the robustness of evolvability shows that phenotypic robustness and
cryptic genetic variation are key to the integrity of the ability to innovate. These results fit
within the framework of a number of models which point out that robustness favours rather
than hindering evolvability. We further show that the corresponding phenotype network, de-
fined as the one-component projection of the whole genotype-phenotype network, exhibits the
small-world phenomenon, which implies that in this type of evolutionary system the rate of
adaptability is enhanced.

3.1 Network dynamics: degree distributions and parameters

The result of the multi-scale model described in Chapter 2 is the evolutionary dynamics
on the genotype-phenotype space (i.e. our pseudo-bipartite network). This space can be
characterised in terms of a number of topological attributes typical from complex network
theory [75]. One such metric, which conveys very useful information, is the degree distribution.
Here, we consider two different degree distributions: The genotype degree distribution, P (kg),
corresponding to the number of genotype neighbours of genotype nodes, and the phenotype

31
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Figure 3.1: Time evolution of the degree distribution for the genotype nodes in the bipartite
network. The degree of the genotype nodes is exponentially distributed. We observe that the
genotype degree distribution quickly settles into its exponential distribution steady-state.

degree distribution, P (kφ), corresponding to the number of genotype nodes connected to a
phenotype node (i.e. kφ is an approximate measure of the size of the basin of attraction of
phenotype φ subjected to the selective pressure). Results for P (kg) and P (kφ) are shown in
Fig. 3.1 and Fig. 3.2, respectively.

For GRNs whose topology has been generated according to the Strogatz-Watts model
(SW) (defined in Section 1.2.1), we observe that, whereas the genotype degree distribution
quickly settles into an (steady-state) exponential distribution, the phenotype degree distribu-
tion evolves towards a power-law distribution (see Figs. 3.1 and 3.2). The same qualitative
behaviour is observed for scale-free GRNs, although some significant differences are observed
with respect to the previous case. Fig. 3.3, where we compare the genotype and pheno-
type degree distributions corresponding to both GRNs topologies, shows that whereas the
genotype degree distribution for both scale-free (SF) generated by the Barabási-Albert model
and Strogatz-Watts GRNs do not significantly differ, the phenotype degree distribution corre-
sponding to the scale-free GRN exhibits a fatter tail than its Strogatz-Watts counterpart. The
significance of this behaviour will become apparent when analysing the robustness properties
of evolvability to be discussed in Sections 3.3.1 & 3.3.2.

Finally, we have considered the evolution of our multi-scale evolutionary model under
two distinct regimes, namely, µN > 1 and µN < 1. These two regimes corresponding to
fundamentally different dynamical regimes [105, 106]. Populations with µN > 1 are very
likely to be polymorphic at any given generation, i.e. more than one phenotype coexist
within the population, whereas populations with µN < 1 tend to be monomorphic for most
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Figure 3.2: Time evolution of the phenotype degree distribution in the bipartite network. The
degree of the phenotype nodes is distributed according to a power law. We observe that the
phenotype degree distribution quickly settles into its power law distribution steady-state.
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Figure 3.3: These plots show the comparison between the steady-state genotype and phe-
notype degree distribution for scale-free GRNs (SF) and Strogatz-Watts GRNs (SW). We
observe that whereas the corresponding genotype degree distributions, P (kg), do not differ
in a significant way, the phenotype degree distribution, P (kφ), for scale-free GRNs exhibits a
fatter tail than its Strogatz-Watts counterpart.

of their evolution. Consequently, whilst the latter will evolve to accumulate over time in
regions of the genotype-phenotype map where strongly robust genotypes exist, the former will
perform a random walk which will sample the phenotype-genotype space uniformly. Given
these differences, it is important to compare the behaviour of our system in these two regimes.
Regarding the genotype degree distribution, P (kg), and the phenotype degree distribution,
P (kφ), we observe that the exhibit fatter tails when µN < 1 than in the case µN > 1, as
illustrated in the simulations shown in Fig. 3.4. The consequences regarding robustness and
evolvability of this fact will be explored in detail in Sections 3.3.1 & 3.3.2.

3.2 Topological characterisation of phenotypic robustness

In this section, we provide a definition of a metric of phenotypic robustness based on the
topological properties of the genotype-phenotype graph.

Our working definition of phenotypic robustness corresponds to the likelihood of a viable
individual to retain its phenotype when gene mutations occur [105]. Our aim in this section
is to propose a metric for phenotypic robustness that allows us to quantitatively analyse its
evolutionary dynamics.

According to this definition, the phenotype φ(G) of an individual with genotype G is
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Table 3.1: Parameter values.

Parameter Description Typical value
NG Length of the genome 20
lv Maximum period of viable oscillations 5 or 7
p Rewiring probability in the Watts-Strogatz model 0.1 or 0.9
E Number of links in the GRN 40
p+ Probability of positive feed-back link 0.5
Nc Number of cells in the population 50
µ Mutation probability 0.3
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Figure 3.4: This figure shows simulation results comparing the steady-state genotype and
phenotype degree distributions for different values of the mutation rate, µ. We observe that
whereas the corresponding both distributions, P (kg) and P (kφ), exhibits a fatter tail for
µN < 1 than for µN > 1. We have taken N = 50 and µ = 0.3 (red dots, µN > 1)
and µ = 0.01 (blue dots, µN < 1). These results correspond to genotype-phenotype maps
generated using Strogatz-Watts GRNs with p = 0.1.
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Table 3.2: Description of parameters.

Parameter Description
t time or iterations
A = (aij) Adjacency matrix of the interaction gene graph without to indicate

if an interaction is positive or negative, ie, aij ∈ {0, 1}
G = (G, g(0)) G = (gij): matrix of interaction between genes (gij = ±1),

g(0) = (gi(0)): vector of the initial pattern of gene expression
((gi(0)) = ±1)

φ Phenotype and φ(G): phenotype corresponding to genotype G
B Pseudo-bipartite graph with:

VG: genotype nodes, Vφ: phenotype nodes,
EG: genotype-genotype links, Eφ: genotype-phenotype links.
B = (bij) adjacency matrix of B

kg Genotype degree in the bipartite network
kφ Phenotype degree in the bipartite network
P (kg), P (kφ) Genotype and phenotype degree distribution in the

in the bipartite network, respectively
cφ Clustering coefficient of phenotype φ
sgcc Size of the giant component
πφ(s) Distribution of the size of the connected components
Dφ(t) Diameter of the phenotype network at time t

deemed to be robust if a random gene mutation, transforming the genotype G → G′ where
dist(G,G′) = 1, does not affect the phenotype, i.e. if φ(G) = φ(G′). This definition has a
topological equivalence in terms the properties of the pseudo-bipartite network defined in
Section 2.1.3. Since dist(G,G′) = 1 these two genotypes correspond to nodes linked by a
genotype-genotype edge. Moreover, if φ(G) = φ(G′) this means that both nodes G and G′
are linked to the same phenotype node φ by genotype-phenotype edges. In other words, the
genotype nodes G and G′ and the phenotype node φ form a triangle within the pseudo-bipartite
graph. Thus the number of such triangles within the neutral network of a given phenotype
(i.e. the basin of attraction of φ) is a direct measure of phenotypic robustness. Phenotypic
robustness can thus be quantified by means of the clustering coefficient of phenotype node φ,
cφ:

cφ =
2Tφ

kφ(kφ − 1)
(3.1)

where Tφ is the number of triangles that have φ as one of their vertices and kφ is the degree
of φ, i.e. the number of genotype nodes to which φ is connected.

Note that kφ, i.e. roughly speaking, the size of the basin of attraction of φ, is not an
appropriate measure of robustness as it does not take into account how tightly interconnected
are the genotypes linked to φ. In this respect, our characterisation of robustness is reminiscent
of the one given by Ciliberti et al. [28, 27] where robustness is characterised by the community
structure within their genotype graph Γ (see Section 2.1.3). However, we found that, due to
known difficulties with the algorithms currently used to determine community structure in
graphs (different algorithms produce different communities, miss-assignation of nodes to clus-
ters, etc.[40]), quantifying robustness in terms of community structure resulted problematic,
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Figure 3.5: Blue dots represent simulation results for the (steady-state) phenotype clustering
coefficient as a function of the degree, kφ. We compare with c(kφ) = (kφ − 1)−1 (solid black
line), which according to [91, 92] establish the border between high and low clustering regimes
in uncorrelated networks.

hence our introduction of this alternative description in terms of the pseudo-bipartite graph.

Fig. 3.5 shows simulation results regarding the steady-state behaviour of the relation
between the clustering coefficient of phenotype nodes, cφ, i.e. phenotypic robustness, as a
function of their degree, kφ, the size of the pool of viable genotypes with phenotype φ. These
results show that there is an inverse correlation between cφ and kφ: Low-degree phenotypes
exhibit much higher clustering coefficient than high-degree phenotypes.

We further observe that by tuning the rewiring probability of the GRN, p, the overall
robustness can be controlled. Fig. 3.5 shows that for p = 0.9, regardless of the value of the
of lv, cφ(kφ) is very well close to cφ(kφ) ' (kφ − 1)−1, whereas for p = 0.1, the corresponding
cφ(kφ) curve is such that cφ(kφ) > (kφ − 1)−1. This implies that the robustness of the
phenotypes generated with GRNs with low values of p are intrinsically more robust. The
reason for this result is that the parameter p in SW model measures how far the topology of
the network is from a regular lattice and how close is to a tree. Low values of p imply that
the network closely resembles a regular lattice. This means that low-p networks are, generally
speaking, more heavily clustered than networks with large p values, which are more tree-like.
More clustered GRNs imply that the presence of feed-back loops is more likely which, in turn,
implies that oscillatory phenotypes are more common. Therefore, it is less probable to to
obtain viable phenotypes for SW-GRNs with large p. However, when one is discovered, it is
very likely that it is more robust.
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3.3 Topological characterisation of evolvability

Evolvability is defined as the ability of an evolutionary system to innovate by generating new
and better adapted behaviour [105]. Recent results have shed some light into the apparent
conflict between robustness, i.e. resilience to change, and evolvability [28, 27, 106, 106, 107,
108]. These results suggest that, under very general conditions the tension is only apparent
and the mechanisms that favour robustness also enforce the emergence of evolvability.

Regarding innovation, we follow the work of Ciliberti et al. [28, 27] where evolvability is
related to the ability of the system to, under the effect of gene mutations, move from one
neutral network (i.e. the subnetwork of genotypes with one particular phenotype) to another.
This view, i.e. that evolvability is equivalent to the navigability of the network of phenotypes,
has a direct mathematical translation within our model.

In this Section, we first define the phenotype network as the (weighted) one-component
projection of the pseudo-bipartite genotype-phenotype graph. We then go on to characterise
the emergence of a giant connected component within the phenotype network, an attribute
that we use to characterise evolvability in topological terms. Finally, we conclude this section
by showing that the phenotype network exhibits the small-world network property.

3.3.1 Phenotype network

In this and the following sections, we consider the properties of the phenotype network, which
is defined as a one-mode projection of our phenotype-genotype network, which it is obtained
in the following way. We consider that between a pair of phenotypes, φi and φj , there is an
edge if there exists a path φi − Gi − Gj − φj where φ(Gi) = φi and φ(Gj) = φj , and Gi and Gj
are connected within the pseudo-bipartite network. In other words, two phenotype nodes are
connected in the one-component projection if there exists at least one length 3 path between
them in pseudo-bipartite network. In our model such length 3 paths represent the minimum
(two mutation) evolutionary path to reach a phenotype form another. Since there any number
of different length 3 paths between any pair of phenotypes, we define the phenotype network
as a weighted network where the weight of the edge between two phenotypes is the number
of such paths that connect them within the full genotype-phenotype network.

Mathematically, the phenotype network is constructed as follows. If B = (bij) is the
adjacency matrix of the pseudo-bipartite graph, then in order to calculate the number of
length 3 paths between phenotypes, we use a well-known property of the adjacency matrix,
namely that the entries of the matrix B3 = (βij) are the number of length 3 paths between
nodes i and j. βij is zero if no path of length 3 exists between nodes i and j. By considering
only the entries corresponding to paths between phenotype nodes, we obtain the weighted
adjacency matrix corresponding to our phenotype network.

3.3.2 Evolution of evolvability: Emergence of giant connected component

The onset of percolation is heralded by the formation of the so-called giant connected com-
ponent. In percolation theory [24], the giant component is a connected subset of nodes that
contains a macroscopic fraction of the entire set of vertices of the graph, i.e sgcc = γNv, where
sgcc is the size of the giant component, Nv is the number of vertices of the graph and γ . 1.

In order to address the question of whether the evolutionary dynamics of our multi-scale
system gives rise to evolvability, i.e. to a phenotype (network) space where a macroscopically
large number of all viable phenotypes are mutually connected, we study the time evolution
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Figure 3.6: Time evolution of the distribution of cluster size in the phenotype network.

of the distribution of the size of the connected components, πφ(s), in the phenotype network.
The results are shown in Fig. 3.6.

We observe that, regardless the parameter values, as time progresses the formation of a
giant connected component emerges. The formation of this connected component is signalled
by the appearance of a peak for large size clusters in the cluster size distribution. Whereas the
emergence of the giant connected component is unaffected by the GRN parameter, p, or the
strength of the selective pressure, lv, its dynamic is indeed affected by the rewiring probability:
the larger the value of p, the faster the formation of the giant connected component (see Fig.
3.7).

3.3.3 The phenotype network is a small world

Complex networks often exhibit the so-called small-world phenomenon [109]. Small-world
networks are such that most nodes can be reached form every other node in a small number
of jumps compared to the size of the network. Mathematically, this property is defined
by requiring that the diameter of the network grows proportionally to the logarithm of the
number of nodes [75]. We are interested in investigating whether the evolutionary process
described in Section 2.1 yields an evolving phenotype network with the small-world property,
i.e. whether

Dφ(t) ∼ logNφ(t) (3.2)

where Dφ(t) is the diameter of the phenotype network at time t and Nφ(t) is the number of
nodes at time t.



40 CHAPTER 3. ROBUSTNESS AND EVOLVABILITY

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

π
φ
(s

)

generation: 10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

generation: 20

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

generation: 30

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

generation: 50

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

generation: 100

0.0 0.2 0.4 0.6 0.8 1.0

s
0

1

2

3

4

5

6

7

8

generation: 150

Cluster size density estimation
lv = 7, p = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

π
φ
(s

)

generation: 10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

generation: 20

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

generation: 30

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

generation: 50

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

generation: 100

0.0 0.2 0.4 0.6 0.8 1.0

s
0

1

2

3

4

5

6

7

8

generation: 150

Cluster size density estimation
lv = 7, p = 0.9

Figure 3.7: Dynamics of the formation of giant connected component as shown by the emer-
gence of a peak in the distribution of cluster size in the phenotype network. The shadowed
region is the 1-σ confidence region using a Gaussian kernel density estimation (see Appendix
7 Section 7.4).
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Figure 3.8: Diameter of the growing phenotype network as a function of the logarithm of
the number of nodes. The linear dependence of the diameter of the phenotype network on
the logarithm of the number of nodes shows that the phenotype network exhibits small-world
behaviour.

Simulation results regarding the time evolution of both the diameter of the phenotype
network and the number of nodes (i.e. the number of viable phenotypes that our evolutionary
dynamics (see Section 2.1) allows to emerge) are shown in Fig. 3.8. We observe that the
networks of phenotypes generated by our evolutionary model have the small world property
as their diameter grows linearly with the logarithm of the number of phenotypes (nodes).
This result is stronger than the similar one obtained recently by Aguirre et al. [2] regarding
the genotype-phenotype map for RNA secondary structures. They have been demonstrated
that the average path length within RNA secondary structure neutral networks scales loga-
rithmically with the size of each independent neutral network. Here, we are able to show that
our multi-scale model generates a small-world phenotype network.

From these simulation, we observe that our results regarding the small-network structure
of the phenotype network is robust to changes in several parameter values. For example,
according to Fig. 3.8, modifying both p, i.e. the rewiring probability of the SW model used
to generate the GRN topology, and lv, essentially, the selective pressure, leaves untouched the
small-world property.

Taken together, these two properties, namely, the emergence of a giant connected compo-
nent within the phenotype network and of the small-world phenomenon, have strong biolog-
ical implications, in particular regarding evolvability. First, the fact that a giant connected
component in phenotype space exists means that it is globally connected and, therefore,
innovation by means of genetic mutations is granted regardless of the existence of robust
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phenotypes. This is consistent with previous results regarding innovation and robustness
[105, 106, 106, 108, 28, 27]. On the other hand, the small world property of our phenotype
network, implies that, in topological distance, phenotypes are very close to each other, and
therefore, adaptive processes where the system must reach a privileged phenotype in order to
ensure survival (as, for example, in evolutionary escape [53, 54]) could be much more efficient
than previously thought.

3.4 Robustness of evolvability

We have shown in Section 3.3 that, similarly to what has been observed in other models
[105, 106, 106, 108, 28, 27] evolvability is an emergent, evolved property of the dynamics.
This view in which evolvability is itself an evolutionary property of the dynamics [79], together
with our topological characterisation of robustness, allow us to pose the question of whether
evolvability itself is a robust property.

In order to address the issue of robustness of evolvability, we proceed in the following
way. Ciliberti et al. [28, 27] have shown that evolvability is associated with the connec-
tivity between neutral networks corresponding to different phenotypes. In Section 3.3.2, we
have shown that this interpretation of evolvability leads to its characterisation in terms of
the emergence of a giant connected component in the growing phenotype network. Within
this framework, a natural definition of robustness of evolvability arises: The robustness of
evolvability is associated to the resilience against edge-removal of the corresponding giant
connected component.

In order to ascertain how different factors affect the robustness of evolvability, i.e. the
integrity of the giant connected component, we consider three different strategies for edge-
removal [23]: random removal and two targeted strategies, one in which removal of edges is
done according to the clustering phenotypes to which they are connected, and the other in
which removal of edges according to the degree of the phenotypes to which they are connected.
Note that here clustering coefficient and degree of the phenotypes refer to the corresponding
quantities in the bipartite genotype-phenotype network. Results are shown in Fig. 3.9.

Regarding the behaviour of the phenotype giant component generated by Strogatz-Watts
GRNs, Fig. 3.9(a) shows that random edge removal has little effect on the integrity of the
giant connected component unless a massive percentage of edges is removed. This implies that
evolvability is very robust to random elimination of genotypes. By contrast, when edges are
removed in targeted manner according to the degree of the phenotype, we observe that there
is a sharp transition when the percentage of edges removed exceeds a critical point (see Fig.
3.9(c)). This means that evolvability is not robust to targeted attack where genes associated
to high-degree phenotypes are the focus of the attack.

The behaviour described so far is very much resembling of the behaviour of other complex
networks, namely, robust against, random attack but sensitive to high-degree-targeted attack
[23]. We consider a third scenario in which the attack is targeted on the more robust pheno-
types, i.e. those phenotypes with larger clustering coefficient, cφ (Eq. (3.1)). In this case, the
behaviour of the system is less clear-cut.

Fig. 3.10 shows the variance of the size of phenotype giant connected component, σ2
gcc,

for Strogatz-Watts GRNs. We see that, for the two targeted strategies, this quantity exhibits
the sharp increase typical of a second-order phase transition. It is worth noting that the
threshold/critical value for the giant connected component to disappear is not significantly
different regardless of which targeting strategy is used.
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Figure 3.9: Damage suffered by the phenotype giant connected component. The relative size
of the giant connected, %gcc, is defined as the cardinal of the set of nodes such that, for
any pair of nodes, it is possible to find at least a continuous connecting path relative to the
total number of nodes. Damage is measured in terms of the relative size of the remaining
largest connected component after removal of a certain percentage of edges. We consider
that edges are (a) removed randomly, (b) according to the clustering coefficient of the nodes
(phenotypes) to which they are connected, and (c) according to the degree of the phenotype
to which they are connected. Clustering coefficient and degree of the phenotypes refer to
the quantities corresponding to the bipartite genotype-phenotype network. Plots (d), (e)
and (f) explore the comparison between the behaviour of the phenotype giant connected
component generated by a multi-scale model with Strogatz-Watts (SW) and scale-free (SF)
gene regulatory networks.
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Figure 3.10: Variance of the giant component size from damage done when edges are removed
randomly, according to the clustering coefficient of the nodes (phenotypes) to which they
are connected, and according to the degree of the phenotype to which they are connected.
Clustering coefficient and degree of the phenotypes refer to the quantities corresponding to
the bipartite genotype-phenotype network.

Regarding the effects of the Strogatz-Watts GRN parameters, our simulation results show
that evolvability is more robust in systems with larger values of the rewiring probability p.
In this respect, it is worth noticing that, opposite to the behaviour observed in clustered
uncorrelated networks, analysed in depth in [91, 92], we observe that for p = 0.1, for which
cφ(kφ) ≤ (kφ−1)−1 (as shown in Fig. 3.5), the giant connected component is less robust than
for p = 0.9, for which cφ(kφ) ' (kφ − 1)−1 (see in Fig. 3.5). This difference in behaviour is
due to the presence of correlations.

The presence of correlations is demonstrated by analysing the average number of nearest-
neighbours as function of the degree, knn(kφ), which is shown in Fig. 3.11. These results show
that knn(kφ) is an increasing function of the phenotype degree and, therefore, the phenotype
network is assortative (more connected nodes are preferably connected to each other). Note
that, although this is in contrast with the common situation in biological networks lacking
an underlying genotype-phenotype structure, which are commonly found to be disassortative
(more connected nodes are preferably connected to low-degree nodes) [75], assortativity seems
to be a systematic property of phenotype networks. A recent example is provided in [29] where
it is observed that large (i.e. strongly connected) phenotypes have an inherently enhanced
accessibility to new phenotypes.

It is also interesting to compare the behaviour of the robustness of the phenotype giant
connected component generated by Strogatz-Watts (SW) GRNs and by scale-free (SF) GRNs.
Figs. 3.9(d), (e) and (f) show that the giant connected component corresponding to SF GRNs
is systematically more robust than those generated by SW GRNs.

We now address the effect of varying the mutation rate on our results regarding robustness
of evolvability. We have argued in 3.1 that there are two distinct regimes, corresponding to
µN > 1 and µN < 1 where the population exhibits rather different structure: whilst for
µN > 1 the population is most likely to be polymorphic, for µN < 1 the population is
monomorphic most of the time. We observe that, in agreement with results reported by
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Figure 3.11: Average nearest neighbours as a function of the phenotype degree, kφ, for different
values of the Strogatz-Watts GRN parameters, lv and p. Including a zoom of the figure.

Wagner [106] regarding his analysis of the RNA genotype-phenotype map, where evolvability
is shown to be robust to variations in the mutation rate, our multi-scale model exhibits a
similarly robustly connected phenotype network. In fact, the phenotype giant connected
component, i.e. the core of mutually reachable phenotypes, is found to be more resilient
to damage for small mutation rates (in the µN < 1 regime), regardless of the targeting
strategy we use. Increased robustness of the phenotype giant connected component for smaller
mutation rate is a consequence of the presence of fatter tails in the genotype and phenotype
degree distributions as shown in Section 3.1, which implies that the giant connected component
corresponding to µN < 1 is more tightly connected and, therefore, more difficult to disconnect.

3.5 Conclusions

In this chapter we have presented a novel mathematical description of the genotype-phenotype
space in terms of a pseudo-bipartite graph and its associated one-component projection, the
phenotype network. We have based our presentation on a model of the genotype-phenotype
for circuits of gene regulation, although its extension to other genotype-phenotype models,
such as RNA, should be straightforward. This new representation allows us to characterise
robustness of evolvability in terms of the topological properties of these networks: phenotypic
robustness is defined as the clustering coefficient of phenotype nodes in the pseudo-bipartite
genotype-phenotype network, and evolvability is defined as the emergence of a giant connected
component in the phenotype network, which ensures global connectedness and navigability of
the space of phenotypes.

New results have been obtained regarding the small-world property of the phenotype
network, as well as the characterisation of the robustness properties of evolvability. In par-
ticular, we have shown that the phenotype network exhibits, beyond global connectedness,
the small-world property. We have further exploited our topological definition of evolvability,
characterised in terms of the onset of percolation and the size distribution of connected com-
ponents, to explore the issue of whether evolvability is a robust property, i.e. under which
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(c) Edge-removal by degree (SW)
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Figure 3.12: Damage suffered by the phenotype giant connected component when edges are
(a) removed randomly, (b) according to the clustering coefficient of the nodes (phenotypes)
to which they are connected, and (c) according to the degree of the phenotype to which they
are connected. Clustering coefficient and degree of the phenotypes refer to the quantities
corresponding to the bipartite genotype-phenotype network. Green lines correspond to µ =
0.01 (i.e. µN = 0.5) whereas red lines correspond to µ = 0.3 (i.e. µN = 1.5), These phenotype
networks are generated by a multi-scale model with Strogatz-Watts with p = 0.1.
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conditions the giant connected component may be broken down. We observe, that under ran-
dom attack, the giant connected component, and, therefore, our system’s evolvability, is very
resilient. However, similarly to other complex networks, when the attack is targeted rather
than random, weaknesses arise and evolvability breaks down.

Our results regarding the topological characterisation of robustness and evolvability are
complementary to the corresponding definitions given by Ciliberti et al. [28, 27]. By extending
their description in terms of a space of genotypes to explicitly include the corresponding phe-
notypes, we can provide purely topological definitions in terms of easily measurable quantities
for which algorithms are readily available [75], namely, the clustering coefficient of the phe-
notype nodes as a measure of phenotypic robustness, and the existence of a giant connected
component in the phenotype network as characteristic of evolvability.

Regarding the characterisation of robustness, our results given in Section 3.2, Fig. 3.5, re-
garding the dependence of the phenotype clustering coefficient on the degree of the phenotype
nodes, cφ(kφ), show that there exists an inverse relation between clustering coefficient and
degree: cφ(kφ) ∝ (kφ− 1)−αp,lv with αp,lv ≥ 1. This result has an important interpretation in
terms of the concept of neighbourhood and the relation between robustness and evolvability
[107, 108]. Our result implies that those phenotypes with larger cryptic variability, i.e. geno-
typic variability which presents no variation in phenotype and which is given by the degree
of the phenotype nodes in the pseudo-bipartite genotype-phenotype network, kφ, exhibit, in
relative terms, higher accessibility to new phenotypes that those with smaller degree. This
observation suggests that these phenotype nodes have a fundamental role to play in the ability
for innovation of the system.

Our analysis of the robustness of evolvability is closely related to this issue. We have
shown (see Section 3.4, Fig. 3.9) that evolvability is a robust property respect to attack
(removal) of randomly selected genotypes. Recall that removal of a genotype node in the
genotype-phenotype network corresponds to the removal of an edge in the phenotype network.
Mathematically, this corresponds to the giant connected component in the phenotype network
being robust against random removal of edges, Fig. 3.9(a). This situation is radically changed
when genotype removal is targeted rather than random. In particular, we have carried out two
removal strategies, namely, remove first those genotypes connected to phenotypes with bigger
clustering coefficient (Fig. 3.9(b)), and remove first those genotypes connected to phenotypes
with bigger degree (Fig. 3.9(c)). In other words, we target genotypes associated to more
robust phenotypes or more connected phenotypes, respectively. These targeted attacks are
much more efficient at breaking the giant connected component. In particular, evolvability
is particularly affected by the removal of genotypes associated to phenotypes with bigger
degree, kφ. Removal of genotypes associated to phenotypes with bigger clustering coefficient,
cφ, seems to be slightly less detrimental, although its effect on evolvability appears to be much
more important than that associated to random attack.

Taken together, these results support the theory that robustness and cryptic variability,
rather than hindering innovation, they facilitate the ability of evolutionary systems to evolve
and adapt. These results are, therefore, in agreement with recent findings by Wagner and
co-workers [107, 108].

Evolvability is further quantified by the distribution of size of connected components (see
Section 3.4). This measure contains a much more detailed description of evolvability: It
provides the probability of a phenotype to be connected to a cluster (i.e. a set of mutually
reachable phenotypes) of size s. This distribution provides a description of evolvability as
it gives us information about how many new phenotypes are in reach of a given phenotype.
It also provides a measure of evolvability before the giant connected component has been
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formed (as shown in Fig. 3.6) and, equivalently, after the damage to the phenotype network
has been done. If we look at Fig. 3.6, for example, we realise that before the formation of the
giant connected component some degree of evolvability is still possible. Taken together both
topological measures, existence of a giant connected components and distribution of size of
connected components, provide a characterisation of evolvability which allows us to explore
whether evolvability is at all possible and whether a macroscopic proportion of phenotypes
are mutually reachable.

A new result that emerges from our analysis is the fact that the genotype-phenotype
map is such that the phenotype network exhibits the small-world phenomenon (see Section
3.3, Fig. 3.8). This result implies that the maximum average distance between two given
phenotypes on the phenotype network scales as the logarithm of the number of phenotypes,
which is much smaller than the distance one should expect if the phenotype-genotype space
were lattice-like, as it is commonly assumed in models of evolutionary escape, for example
[53, 54]. This topological result has obvious implications regarding the rate of evolutionary
adaptation, which should be greatly increased by this property. This result is consistent too
with recent studies suggesting that cryptic genetic variation increases the rate of evolutionary
adaptation in RNA enzymes [46].

Besides the issues arising from our topological characterisation of robustness and evolvabil-
ity and their biological relevance, we have also investigated their controllability, i.e. to what
extent change of the parameters of the GRNs can be used to drive changes in robustness and
evolvability. Although our results show that the generic properties of the genotype-phenotype
space are rather insensitive to these parameters, we have found that some level of control is in-
deed possible. In particular, in the case of GRN topology generated using the Strogatz-Watts
model, from our results shown in Fig. 3.5, we can conclude that a measure of control on
the level of robustness can be achieved by tuning the characteristic parameters of the GRN.
Increasing the rewiring probability p appears to lower the overall phenotypic robustness, as
shown in Fig. 3.5 where we observe that the clustering coefficient as a function of pheno-
type degree for p = 0.1 is increased with respect to the corresponding values for p = 0.9.
We have also investigated how some model details affect our results. In particular, we have
explored the effect of (i) considering a scale-free GRN topology, using the Barabási-Albert
model instead of the Strogatz-Watts model, and (ii) varying the value of the mutation rate,
µ. We have observed that both considering scale-free GRN topology and decreasing µ render
the evolvability more robust, as both these factors produce phenotype networks with giant
connected components that are more resilient to damage.

A biological scenario where our topological characterisation of robustness and evolvability
could be a useful tool is cancer. In a recent review, Tian et al. [98] have advocated that in
order to understand the principles of tumour evolvability, which, in turn, are key to analyse
issues such as resistance to therapy and cancer stem cells, a systems biology approach must be
used which integrates the different factors that contribute to heritable phenotypic variability
(genetic and epigenetic instability, stochastic protein dynamics, tumour microenvironment,
etc.). Central to these issues is the concept of epigenetic landscape, which are inspired by
the concept of energy landscape familiar in Physics: a space populated with diverse attractor
states (i.e. minima of the landscape), corresponding to different cell states and separated by
epigenetic barriers. In the context of our model, the epigenetic landscape is represented by
the phenotype network.

In Developmental Biology, these attractors correspond to the stable-steady states of the
GRN that regulate cell differentiation and represent the differentiation states of the cell [47,
49, 48, 99], and transitions between these states occur following a well-orchestrated series of
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events, otherwise cells are locked into the corresponding state. The epigenetic landscape is
organised so that (plenipotentiary) stem cells sit atop a hierarchy of connected attractors that
radiate outwards to stable states which represent distinct cell fates.

In the case of cancer cells, pathological attractors that represent different cancer states
are scattered over the epigenetic landscape. In some cases, cancer cells posses a landscape
with well-defined minima and correspondingly stable cancer states similar to developmental
landscape. However, due to severe genetic and epigenetic disregulations occurring in aggressive
forms of cancer, it appears that a de-stabilisation of the epigenetic landscape ensues where
epigenetic barriers are lowered down and attractors becoming increasingly less stable, thus
increasing evolvability and the ability of the tumour to evade therapy. Supporting evidence
for this model (reviewed in [98]) has been recently found [82, 93] where genetic and epigenetic
dysfunctions allow for the population of cancer cells to transiently visit a number of metastable
states within the epigenetic landscape, thus disrupting the hierarchical organisation of normal
tissues and favouring the emergence of phenomena such as transient drug resistance [93]. The
application of the formalism developed to such issues would require to develop a model of
the GRN governing such states as well as the corresponding epigenetic regulation [82] and
then analyse using our topological description (based on percolation on and distribution of
component size in the phenotype network) how disregulations at the genetic and epigenetic
levels would affect evolvability, whereby targeted strategies aimed at phenotypes which cause
the most disruption on evolvability and produce more static tumours could be formulated.
The formulation of such models and the corroboration of whether such strategies are based
on topological properties (like the ones proposed in Section 3.4) or not is beyond the scope of
this work and left for future research.
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Chapter 4

Evolutionary escape on complex
genotype-phenotype networks

In this Chapter, we study the problem of evolutionary escape for cell populations with
genotype-phenotype map. This setting involves two major variations with respect to previous
models of evolutionary escape. Rather than assuming that the genotype space is a regular
hypercube, we consider complex genotype-phenotype network (which we dub B-graphs), ob-
tained from a model which assumes a selective pressure acting at the level of phenotypes,
which have certain topological properties which are absent in regular hypercubes. Further-
more, the consideration of the genotype-phenotype structure allows us to associate fitness to
phenotypes rather than genotypes. Our aim is to carry out a comparative analysis in which
the effects that these two factors, i.e. complex genotype-phenotype topology and fitness as-
sociated to phenotype, have on evolutionary escape. Specifically, we study the effects on the
probability of escape and the escape rate associated to the evolutionary dynamics occurring
on a genotype-phenotype network rather than on a regular hypercube (which we denote as
H-graphs). We apply a general theory, based on multi-type branching processes, in order to
compute the evolutionary dynamics and probability of escape, which takes into account the
structure of the genotype-phenotype space. We show that the heterogeneity observed in the
distribution of distances between phenotypes in B-graphs, one of the main structural differ-
ences between both types of graphs, causes heterogeneous behaviour in all results associated
to the escape problem. We further show that, due to the heterogeneity characterising escape
on B-graphs, escape probability can be underestimated by assuming a regular hypercube
genotype network. Similarly, it appears that the complex structure of B-graphs slows down
the rate of escape.

4.1 Evolutionary escape

As we have introduced in Section 1.1.3 evolutionary escape is the process whereby a popula-
tion under sudden changes in the selective pressures acting upon it try to evade extinction by
evolving from previously well-adapted phenotypes to those that are favoured by the new se-
lective pressure. In this thesis we take into account that selective pressures act on phenotypes
rather than genotypes, then evolutionary escape is best described in terms of a population dy-
namic that accounts for the genotype-phenotype map. This modification alters the approach
proposed by Iwasa and co-workers in two significant ways. First, due to evolved robustness
in populations with genotype-phenotype map [104, 28, 27, 105, 106, 106, 55], not every gene
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Figure 4.1: Schematic representation of the two types of networks considered in this
manuscript: Plot (a) corresponds to a pseudo-bipartite genotype-phenotype graph, B, con-
structed according to the model [52], whereas (b) corresponds to a hypercube graph, H. In
both plots, phenotype nodes are represented as squares and genotype nodes as circles. Each
colour represent a different phenotype and their associated genotypes. Edges between nodes
allows identify map between genotype-phenotype and feasible mutations between genotypes.
Heavier strokes in some nodes indicates the initial genotype, characterised by a reproduction
number such that R < 1, i.e. bound to long-term extinction, and the goal or escape genotype,
which we consider to have a reproduction number R = ∞). In other words, we assume that
once the system reaches a genotype corresponding to the escape phenotype, the extinction
probability is vanishingly small.

mutation necessarily generates a new phenotype. As a consequence, many gene mutations are
neutral as far as the evolutionary escape process is concerned. Furthermore, it has been shown
that the topology of genotype-phenotype networks is far from that of the hypercube lattice
assumed by Iwasa et al. [2, 52]. In fact, we have shown in Chapter 3 that the correspond-
ing phenotype network exhibits the small-world phenomenon and that, as a consequence,
accelerated evolvability (relative to that of a system with no genotype-phenotype map) may
emerge. The question naturally arises as to whether these properties, i.e. phenotypic ro-
bustness and evolvability typical of genotype-phenotype networks, have an influence on the
process of evolutionary escape. To address this issue, we apply a general theory, based on
multi-type branching processes [57], to compute the evolutionary dynamics and probabilities
of escape which takes into account the structure of the genotype-phenotype space.

4.2 Mathematical model

The classical escape model [53, 54, 89, 90, 84] can be summarised as follows. Each of the
2n nodes of an n-dimensional hypercube is assumed to represent a genotype. Fitness values,
represented here by the reproductive ratio, R, defined as the average number of offspring per
individual, are assigned directly to genotypes. The population is assumed to be concentrated
in one genotype which, prior to the change in selective pressure (as a consequence of e.g.
the administration of a drug), was well adapted. After treatment commences, this initial
genotype becomes ill-adapted to the new selective pressure, i.e. its reproductive ratio becomes
R < 1. To avoid extinction the population needs to start a random, mutation driven search
of the genotype hypercube, until it finds an escape genotype, i.e. a genotype such that its
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reproductive number satisfies R > 1. The reproductive number of all genotypes other than
the escape genotype are such that R < 1. This implies that only the escape genotype has a
positive probability of long-term survival [57].

The random search on the genotype hypercube is performed by an evolutionary dynamics
that take the form of a multi-type Galton-Watson branching process with mutation [53, 54,
89, 90, 84]: Upon proliferation, each cell has a certain probability of mutating, the mutation
rate µ, which allows the population to spread over the genotype hypercube until escape is
achieved, by sequentially moving between genotypes until the escape genotype is reached, or
extinction eventually occurs.

4.2.1 Genotype-phenotype network

We extend the basic framework for analysing evolutionary escape by introducing two modi-
fications. The first one has to do with the topology of the space on which the evolutionary
dynamical process occurs. We assume that space where the escape process is performing
its random search is not a regular hypercube [53, 54, 89, 90, 84], but a complex genotype-
phenotype network [28, 27, 2, 52].

In order to proceed further, we consider two classes of graphs (see Fig. 4.1):

• B: Genotype-phenotype networks as modelled in Chapter 2 and [52],

• H: An artificial genotype-phenotype graph where the genotype space is given by a
hypercube. Phenotypes are assigned randomly to genotypes so that the phenotype
degree distribution, i.e. the probability distribution of the number of genotypes bearing
a given phenotype, is the same as that resulting from the multi-scale model in [52].

4.2.2 Population dynamics

A further modification we introduce with respect to the original model by Iwasa et al. [53] is
the fact that we now associate fitness to phenotypes rather than genotypes, i.e. the value of
the reproduction number depends on the phenotype: Different genotypes which exhibit the
same phenotype have the same reproduction number.

In this section we summarise the methodology used to compute the escape probability, i.e.
the probability of a population to reach the escape phenotype, φE , through a process of birth
and mutation before extinction occurs, focusing on the effect of considering the escape process
on the different genotype-phenotype networks considered in our analysis, namely, graphs of
classes B or H (see Fig 4.1).

In order to model our evolutionary dynamics on B- and H-class networks, we follow the
previous literature on the subject [53, 54, 89, 90, 84] and consider a Galton-Watson multi-
type branching process [57]. The process takes place on the genotype network and each type
corresponds to a different genotype. When we refer to the population of type i at generation
t, Ni(t), we mean the number of cells with genotype Gi at time t. Furthermore, we define

NE(t) =
∑
i∈〈φE〉

Ni(t)

as the total population of the escape phenotype. The sum in the above expression is done
over all the genotypes belonging to 〈φE〉, which is the set of genotype nodes whose phenotype
is the escape phenotype φE , i.e. all those genotypes such that φ(Gi) = φE .
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The process is assumed to start with a clonal population, i.e. the whole initial population
concentrated in one single genotype, G0, such that φ(G0) 6= φE . The evolutionary dynamics
is characterised by two parameters: the birth probability and the mutation rate. Whereas
the latter is assumed to have be independent on genotype/phenotype of the cell, the birth
probability, λ, is assumed to be dependent on phenotype, i.e. λ = λ(φi). From the point
of view of the evolutionary dynamics, this implies that all genotypes associated to the same
phenotype have the same birth probability. The death probability, σ, is given by σ = 1 − λ
and it therefore depends on the phenotype. We further define the reproduction ratio [53]
R(φi) = λ(φi)/σ(φi). For simplicity, we assume that λ(φi) = λ =cnst. for all genotypes such
that φ(Gi) = φi 6= φE . We further assume that λ � λE where λE is the birth probability of
those genotypes such that φ(Gi) = φE . In fact, we consider R(φE) → ∞, so that once the
system reaches an escape genotype, the survival probabilities PS(t)→ 1.

The evolutionary dynamics is defined as follows. At each time step (generation) each
individual can:

• Reproduce with no mutation with probability λ(1− µ)2.

• Reproduce with asymmetrical mutation, i.e. one of the descendants mutates, the other
retains the genotype of its mother cell. This event occurs with probability 2λµ(1− µ).

• Reproduce with symmetric mutation, i.e. both descendants mutate, which occurs with
probability λµ2.

• Die with probability σ = 1− λ.

This dynamic is iterated until either an escape genotype is reached, upon which escape is
assumed to occur with probability one, or the population undergoes extinction.

In order to proceed further, we recall the following definitions regarding multi-type Galton-
Watson branching processes [57] (described in Section 1.2.2):

• We define fi(s1, . . . , sn; t) = E(s
N1(t)
1 · sN2(t)

2 · · · sNn(t)
n | Ni(0) = 1, Nj(0) = 0, ∀j 6= i)

as the generating function of probability of the population to be (N1(t), . . . , Nn(t)) at
time conditioned to the initial condition of the system to consist of a single individual
of type i, i.e. Nj(t = 0) = δi,j for j = 1, . . . , n. we further define ~s = (s1, s2, . . . , sn).
Each component, si, satisfies 0 ≤ si ≤ 1 ∀i.

• We consider the progeny probability generating function, Fi(~s), which is defined as
the generating function corresponding to the probability distribution of the number of
offspring of a cell with genotype Gi

The dynamics of a multi-type Galton-Watson process is described by two equivalent func-
tional equations, namely, the forward equation

~f(~s, t+ 1) = (~F ◦ ~F ◦ · · · ◦ ~F )(~s) = ~F (~F (~F . . . F (~s))) (4.1)

where the progeny probability generating function is composed with itself t + 1 times, and
the backward equation:

~f(t+ 1) = ~f(~F (~s), t) (4.2)

where ~f = (f1, . . . , fn) and ~F = (F1, . . . , F2).
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Table 4.1: Description of parameters.

Parameter Description
R Reproduction rate
µ Mutation rate in the branching process
ν Mutation rate in generation of a B class graph,

it is equal to parameter µ in Chapter 2
Ni(t) Number of cells with genotype Gi at time t
NE(t) Total number of cells in the escape phenotype φE
B class graph Pseudo-bipartite graph generated by model in Chapter 2
H class graph Artificial genotype-phenotype graph
λ Birth probability in genotypes Gi such that, φ(Gi) 6= φE
σ Death probability in genotypes Gi such that, φ(Gi) 6= φE
λE Birth probability in genotypes Gi such that, φ(Gi) = φE
σE Death probability in genotypes Gi such that, φ(Gi) = φE
PS(t) Survival probability at time t

(~θt)i = (f(~θ0, t))i Probability of no individuals have reached φE ,
assuming an initial individual of type i

N Initial population to generate B graphs using model in Chapter 2

According to our model evolutionary dynamics, the progeny generating function of a non-
escape genotype Gi, i.e. φ(Gi 6= φE), Fi(~s) is given by:

Fi(~s) = σ + λ(1− µ)2s2
i +

∑
j

2λµ(1− µ)
aij
di
sisj +

∑
j,k

λµ2aijaik
d2
i

sjsk (4.3)

where A = (aij) is the adjacency matrix of genotype graph (defined as a sub-graph of the
genotype-phenotype network) and di is the degree of of genotype i in the genotype network.

On the other hand, the progeny generating function of an escape genotype, i.e. φ(Gi = φE),
is given by:

Fi(~s) = si. (4.4)

In order to simplify notation we will define for non escape genotypes, we further define the
matrix D = (dij = diδi,j). In terms of the matrices A and D, ~F (~s) can be re-written as:

~F =σ~1 + λ(1− µ)2~s� ~s+ 2λµ(1− µ)(D−1A · ~s)� ~s+ λµ2(D−1A · ~s)� (D−1A · ~s) =

= σ~1 + λ(B · ~s)� (B · ~s)
(4.5)

where � denotes the component-to-component product and B = µD−1A+ (1− µ)Id with Id
equal to the identity matrix.

Escape time probability The generating function ~f(~s, t) encodes all the information of
the process, in particular, that pertaining to the escape probabilities. To calculate the escape
probability, we need to fix the initial genotype and the escape phenotype. The escape phe-
notype has associated all those genotypes such that φ(Gi) = φE . In order to proceed further,
we define:

~θ0 := (1, 1, 1, . . . , 0, 0)
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where

(~θ0)i =

{
0 if φ(Gi) = φE
1 otherwise

(4.6)

Since ~θt := f(~θ0, t), then ~θt satisfies

(~θt)i = P (NE(t) = 0 | Ni(0) = 1, Nj(0) = 0 ∀i 6= j),

that is the probability of no individuals to have reached the escape phenotype, assuming that
the population is initially composed by one individual of type i. Then,

(~θt)i = E(s
N1(t)
1 · sN2(t)

2 · · · sNn(t)
n | Ni(0) = 1, Nj(0) = 0∀j 6= i)

∣∣∣
~s=~θ0

=

= P (Nk1(t) = nk1 , . . . , Nkl(t) = nkl | Ni(0) = 1, Nj(0) = 0,∀j 6= i)

= P (NE(t) = 0 | Ni(0) = 1, Nj(0) = 0, ∀i 6= j)

(4.7)

where ki, i = 1, . . . , l refer to all those genotypes such that φ(Gki) = φE . The quantities (~θt)i
are obtained by iteration of Eq (4.5):

~θn+1 = σ~1 + λ(B · ~θn)� (B · ~θn) (4.8)

The quantities (~θt)i are closely related to the escape probability at time t. Consider the
probability of not reaching the escape phenotype at time t− 1, P (NE(t− 1) = 0), which can
be expressed as:

P (NE(t− 1) = 0) = P (NE(t− 1) = 0 | NE(t) > 0)P (NE(t) > 0)

+P (NE(t− 1) = 0 | NE(t) = 0)P (NE(t) = 0)

Recalling that P (NE(n− 1) = 0) = (~θt−1)i and

P (NE(n− 1) = 0 | NE(n) = 0)P (NE(n) = 0) = P (NE(n) = 0) = (~θt)i,

we have that:

(~θt−1)i − (~θt)i = P (NE(t− 1) = 0 | NE(t) = 0)P (NE(t) > 0),

which, in turn, implies that the probability of reaching the escape phenotype precisely at time
t, or, in other words, the escape time probability, P (NE(t − 1) = 0 ∧ NE(t) > 0 | Ni(0) =
1, Nj(0) = 0, ∀i 6= j) is given by:

PE(t) = P (NE(t− 1) = 0 ∧NE(t) > 0 | Ni(0) = 1, Nj(0) = 0,∀i 6= j) = (~θt−1 − ~θt)i (4.9)

Since E(NE(t)) is an increasing function of t, it follows that:

P (NE(t) = 0 | Ni(0) = 1, Nj(0) = 0,∀i 6= j) ≥
P (NE(t+ 1) = 0 | Ni(0) = 1, Nj(0) = 0,∀i 6= j),

and therefore we have that (~θt)i ≥ (~θt+1)i. This inequality has two important consequences,
namely, (i) (~θt−1−~θt)i ≥ 0, which guarantees that the escape probability at time t (Eq. (4.9))
is well-defined (i.e. non-negative), and (ii) ~θt converges to ~θ∞ as t→∞.
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Escape probability P (NE(∞) > 0) From the above results, we are able to compute the
asymptotic escape probability, P (NE(∞) > 0), in terms of the escape time probability PE(t):

P (NE(∞) > 0) = 1− (~θ∞)i =
∑
t

PE(t) (4.10)

where ~θ∞ = limt→∞ ~θt satisfies:

~θ∞ = σ~1 + λ(B · θ∞)� (B · θ∞) (4.11)

Alternative recursion We consider the following recursion in order to obtain escape prob-
ability at time t. We consider the quantity ~1 − ~θn. By defining ~ψn = ~1 − ~θn, Eq (4.8) leads
to:

~1− ~ψn+1 = σ ·~1 + λ(B · (~1− ~ψn))� (B · (~1− ~ψn)) (4.12)

After some algebra, we obtain the following recursion:

~ψn+1 = 2λB ~ψn − λ(B~ψn �B~ψn) (4.13)

This new recursion, Eq (4.13), is numerically better behaved than Eq (4.8). Therefore, it
provides a more accurate approximation.

4.3 Results

In this section, we report the results of our comparative analysis of evolutionary escape on B
and H genotype-phenotype graphs. We first focus on structural properties of both types of
genotype-phenotype networks, in particular, those charactering the distance between pheno-
types, which is an essential property of the networks affecting evolutionary escape. We then
proceed to analyse the dynamics of escape on both types of networks, according to the model
presented in Section 4.2.2. We first focus on the steady-state (t→∞) properties of the escape
probability. We then move on to the study of dynamical properties of evolutionary escape
as characterised by several metrics, namely, the escape time probability, the average escape
time, and the escape time probability conditioned to escape.

4.3.1 Connectivity structure of genotype-phenotype networks

As a first step towards understanding the properties of the evolutionary escape phenomenon
on genotype-phenotype networks, we investigate the connectivity structure of our B graphs,
as this structure directly affects the properties of random walks on networks [64, 30, 87] and
is therefore straightforwardly connected to the escape dynamics.

In order to proceed with our analysis, we start by investigating the distance between
phenotypes on B-networks. An estimation of this quantity can be obtained via the average
shortest path length between phenotypes which is computed as follows. For each genotype-
phenotype graph, we consider its giant connected component (GCC). More specifically, we
consider the genotype one-mode projection of the GCC. Note that, as we are not considering
the phenotype nodes, the genotype one-mode projection of the GCC is not necessarily con-
nected. Once this one-mode projection has been determined, we compute the shortest path
between every pair of genotypes, which in turn allows us to compute the average distance be-
tween phenotypes by averaging over the distances between genotypes belonging to two given
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Figure 4.2: Mean short path between phenotypes ordered by clusters. Different graph struc-
tures are observed. White corresponds to no path between two phenotypes, black or really
dark means distance from 1 to 10 (approx), from black to turquoise length path increases.
These are graph with viability 7 and GRN modelled as Strogatz-Watts graph with parameter
p = 0.1. Initial genotypes, N = 50 and for (a),(b),(c) mutation rate is ν = 0.3, (d) and (e)
ν = 0.01.
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phenotypes. In order to visualise our results of the network we make a cluster hierarchy, using
a method implemented in Python: scipy.cluster.hierarchy.linkage. Several examples
of this cluster analysis are shown in Fig. 4.2, where we have colour-coded the different pheno-
types according to the distance between them: darker (lighter) colour is associated to smaller
(bigger) average shortest path between corresponding phenotypes. White indicates that there
is no path between phenotypes (i.e. the average shortest path is of infinite length).

Our analysis shows that genotype-phenotype networks exhibit a high degree of hetero-
geneity. We distinguish between two cases: genotype-phenotype networks associated to large
populations (i.e. νN > 1) and genotype-phenotype networks corresponding to small pop-
ulations (i.e. νN < 1). The evolutionary dynamics of populations in these two limits is
fundamentally different: whereas populations with high mutation rates (νN > 1) are likely to
be polymorphic at any given generation, with individuals accumulating over time in regions of
the genotype space with genotypes characterised by high mutational robustness, populations
with low mutation rate (νN < 1) tend to be monomorphic with individuals performing a ran-
dom walk that samples the genotype network uniformly [106]. These properties are reflected
in our analysis: we observe that those genotype-phenotype networks associated to νN > 1 are
more likely to exhibit an structure where separated communities of phenotypes, i.e. genotype-
phenotype networks where disjoint subsets phenotypes emerge (see Figs. 4.2(b) & (c)), thus
enabling for polymorphic populations to appear. Such disjoint subsets of phenotypes are far
less likely in genotype-phenotype maps associated to νN < 1 (see Figs. 4.2(d) & (e)). Note
that, although disjoint phenotype networks are much more likely for genotype-phenotype
maps with νN > 1, it is possible to observe fully connected phenotype networks associated
to νN > 1. An example is shown in Fig. 4.2(a). Similarly, disjoint phenotype networks may
also exist for νN < 1, although they are much less likely than the fully-connected ones. The
emergence of disjoint subsets of phenotypes has an immediate consequence on evolutionary
escape: since some phenotypes are unreachable, escape is not going to be possible in the initial
phenotype and the escape phenotype live in different disjoint subsets.

In order to gain a more quantitative understanding connectivity between phenotypes, we
have plotted the distribution of the average distance between phenotypes corresponding to
the data shown in Fig. 4.2. We have further computed the same data for the associated
H-type genotype-phenotype graph: according to the procedure explained in Section 4.2, for
each B genotype-phenotype map, we compute a H graph by randomly linking genotype-
phenotype pairs under the constraint that both B and H graphs have the same phenotype
degree distribution. The results of computing the average distance between phenotypes in
both types of graphs is shown in Fig. 4.3, from which a property stands out, namely, B
genotype-phenotype graphs exhibit a much higher degree of heterogeneity than their H-type
counterparts, as shown by the bigger width of the distributions for B-type graphs (Figs.
4.3(a), (c), and (e)) compared to that of the distributions associated to H- graphs (Figs.
4.3(b), (d), and (f)).

4.3.2 The escape probability exhibits higher degree of heterogeneity in B
graphs

Using the methods of Section 4.2.2, we have proceeded to compute the long-term escape
probability P (NE(∞) > 0) for B-type genotype-phenotype graphs, i.e. those for which the
nodes of the genotype network is the set of genotypes associated to viable phenotypes, and
compare to escape probability associated to H-type genotype-phenotype graphs, for which
the genotype network is a hypercube.
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Figure 4.3: Series of plots showing the normalised histograms for the average distance between
phenotypes associated to the data corresponding to the genotype-phenotype graphs shown in
Fig. (4.2 (a), (b), (c), Nν = 15) (plots (a), (c), and (e)), and the normalised histograms for
the corresponding H-type genotype-phenotype maps (plots (b), (d), and (f)).



4.3. RESULTS 61

(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Comparison between the long-term escape probability, P (NE(∞) > 0), for B (in
red) and H (in blue) genotype-phenotype graphs as the mutation rate, µ, varies. Each row
plots corresponds to a different graph from Fig 4.2 (a), (b), (c), Nν = 15. For each graph,
we fix an escape phenotype, and compute the escape probability for all remaining initial
phenotypes. These plots show results for ten different escape phenotypes chosen at random.
Plots (a), (c), and (e) show scatter plots for results for each initial condition, whilst plots (b),
(d), and (e) show the escape probability averaged over initial conditions. λ = 0.1 and σ = 0.9.
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Fig. 4.4 shows simulation results showing how the escape probability, P (NE(∞) > 0),
changes as the mutation rate, µ, is varied. Results are shown for both types of genotype-
phenotype maps. We observe (see Figs. 4.4(a), (c), and (e)) that much higher levels of
variability are obtained for B-type genotype-phenotype graphs. Such heterogeneity is directly
inherited from the connectivity properties of B and H graphs (see Fig. 4.3): since the distance
between phenotypes in H graphs is much more homogeneous than in B graphs so is the escape
probability. Our analysis shows that the average escape probability (Figs. 4.4(b), (d), and (e))
is not informative to distinguish between escape in either type of graph. Moreover, whereas
this average is representative of the behaviour of H graphs, it is likely that for B graphs the
average escape probability, due to their intrinsic heterogeneity, is not characteristic of their
behaviour.

Furthermore, as a consequence of the heterogeneous behaviour of B genotype-phenotype
graphs, one can find cases in which the escape probability on the B graph is an order of
magnitude larger than on the H graph. In these instances, the theory of escape based on
regular hypercube genotype spaces seriously under-estimates the escape probability.

4.3.3 Escape dynamics: asymptotic behaviour of escape time probability

Taken a graph of set B and another of H class, we compute escape probabilities for exactly
each time t and represent them in Fig 4.5. It seems clear that distribution tails, for t large,
decay exponentially. Also we can note that a bigger variability of results is observed in the B
genotype-phenotype graph while in the hypercube probabilities are less variable independently
of the pair of genotypes chosen. This fact is given by a higher richness of structure in B graphs
than in H graphs.

In order to analyse the asymptotic behaviour of PE(t), (4.8) we consider the change of
variable ~θt = ~θ∞ + ~εt in the recursion relation Eq. (4.8):

~θ∞ + ~εt+1 = σ~1 + λ(B · (~θ∞ + ~εt))� (B · (~θ∞ + ~εt)) =

= σ~1 + λ
(
B · ~θ∞ �B · ~θ∞ + 2B · ~εt �B · ~θ∞ +B · ~εt �B · ~εt

)
.

(4.14)

where ~θ∞ satisfies (4.11), which implies that ~εt satisfies the following recursion relation:

~εt+1 = 2λ(B · ~εt �B · ~θ∞ +B · ~εt �B · ~εt) (4.15)

Moreover, asymptotically, when t→∞, (~εt)i � 1, so that one can linearise Eq. (4.15)

~εt+1 = 2λ(B · ~εt �B · ~θ∞). (4.16)

Recalling that B = µD−1A+ (1−µ)Id, ff µ� 1 then B = Id and, consequently, ~θ∞ = ~θ0.
This implies that the asymptotic behaviour of (εt)i is determined by the recursion relation
(εt+1)i = 2λ(εt)i, i.e.

(εt)i ≈ (2λ)t (4.17)

Eq. (4.17) allows us to determine the asymptotic behaviour of PE(t) for µ� 1. Since PE(t) =
(~θt−1 − ~θt)i = (~εt−1 − ~εt)i ≈ (2λ)t((2λ)−1 − 1). This result shows that, for negligible small
values of the mutation rate, the escape probability decays exponentially as PE(t) ≈ elog(2λ)t

with 2λ < 1, independently of network topology.
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Figure 4.5: Series of plots showing the escape probability at time exactly t. PE(t) for different
genotype-phenotype maps (correspond to graphs in Fig 4.2 (a), (b), (c), Nν = 15) with
different values of the mutation rate, µ. Red corresponds to B graphs and blue to H graphs.
For each B graph, we have set an escape phenotype and calculate the probability of escape
for all possible initial conditions. We have repeated this computation for ten randomly chosen
escape phenotypes for each graph. Parameters: λ = 0.1, σ = 0.9
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Figure 4.6: Series of plots showing the rate, s, associated to PE(t) ∼ e−st, for different
genotype-phenotype graphs of type B (left column, graphs correspond to Fig 4.2 (a), (b), (c)
with Nν = 15) and type H (right column). The value of s for each graph is obtained by
fitting the data shown in Fig. 4.5.
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Fig. 4.5 shows simulation results for different B and H genotype-phenotype networks and
for different values of the mutation rate, µ. These numerical results show that, even for non-
negligible values of the mutation rate µ, the asymptotic behaviour of PE(t) is exponential,
i.e. PE(t) ≈ e−st for large t, although the rate associated to the exponential distribution is
indeed dependent on the mutation rate, so that, in general, s 6= − log(2λ) (2λ < 1).

We further observe a great deal of heterogeneity in the behaviour of PE(t) associated to B
genotype-phenotype networks (see Figs. 4.5 and 4.6). Fig. 4.6 shows how the histograms of
the distribution of rates s change as the parameter values used to generate B-type genotype-
phenotype graphs are varied. These results show that, regardless of the parameter values, the
dispersion observed in the rate s associated to B networks is robustly larger than for their
H-counterparts.

Further information regarding the difference between evolutionary escape on B and H
genotype-phenotype graphs can be obtained by recalling that, as the escape time is expo-
nentially distributed, PE(t) ≈ e−st, s is equal to the inverse of the average escape time, τE :
s = τ−1

E . The distributions of s associated to B- and H-type graphs, Fig. 4.6, show that the
values of s corresponding to escape on B genotype-phenotype graphs are shifted to the left
with respect to their counterparts on H-graphs, which implies that the average escape time
on B-type graphs is bigger than that on H-type graphs.

4.3.4 Escape dynamics: escape time probability conditioned to escape

We now proceed to analyse the escape time probability conditioned to eventual escape,
PE(t|E) ≡ P (NE(t) > 0 ∧ NE(t − 1) = 0 | NE(∞) > 0, Ni(0) = 1, Nj(0) = 0 ∀j 6= i).
The rationale for looking at the properties of this particular function follows from our results
regarding the connectivity structure of B-type graphs in which we have seen that phenotypes
may be disconnected, and therefore the probability of reaching certain escape phenotypes
within B-type graphs may be zero. By conditioning to eventual escape, we discard this cases
and focus on the escape process within connected phenotype components.

Comparative analysis between the behaviour of the conditioned escape time probability,
PE(t|E), on B- and H-type graphs shows that there are striking quantitative differences
between them. Whereas PE(t|E) on H-type graphs is sharply concentrated around a well-
defined average escape time, PE(t|E) on B-type graphs is virtually flat, very close to a uniform
distribution, where the average escape time has barely any representative.

This behaviour is a direct consequence of the distribution of average distances between
phenotypes shown in Fig. 4.3 associated to both types of genotype-phenotype graph: whilst
H-graphs exhibit distributions of average distances between phenotypes which are sharply
concentrated around the average value, distance distributions for B-graphs are much wider
with an average value that is rather un-representative of the behaviour of the ensemble of
realisations of the escape process. These properties have a direct effect on the escape time
subject to eventual escape.

4.4 Discussion & conclusions

In this Chapter we have studied the problem of evolutionary escape from a novel perspective,
namely, since selective pressures act on phenotypes rather than genotypes and therefore fit-
ness is determined by the former, escape problems should be analysed within the context of
complex genotype-phenotype networks rather than on regular, hypercube genotype lattices
where fitness is directly determined by the genotype.
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Figure 4.7: Series of plots comparing the behaviour of the conditioned escape time probability,
PE(t|E), on B- (red lines) and H-type (blue lines) genotype-phenotype maps. The B-graphs
considered in plots (a), (b) and (c) are the same as those whose connectivity is shown in
Fig 4.2(a), (b), and (c), respectively and Nν = 15. By studying how PE(t|E) changes as
the mutation rate, µ, varies, we observe that PE(t|E) is rather robust to changes in these
parameter.
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We have carried out a comparative analysis, we have considered two types of genotype-
phenotype networks. We have considered complex genotype-phenotype networks, our so-
called B-type graphs, which are generated according to a multi-scale model proposed in [52]
and described in Chapter 2. Associated to each B-graph, we generate a H-type genotype-
phenotype graph, which, according to the procedure explained in Section 4.2, is computed
by randomly linking genotype-phenotype pairs under the constraint that both B and H
graphs have the same phenotype degree distribution. We have further formulated a population
dynamics model, consisting of a multi-type branching process [57], where types are associated
to genotypes and their proliferation probability is assigned according to the corresponding
phenotype, as determined by the either B or H genotype-phenotype map.

Our comparative analysis sheds some light on the differences between the escape process
on either type of genotype-phenotype network, regarding both dynamical and steady-state
properties. We have started our analysis by studying the average distance between pheno-
types, as this property directly affects the escape process (see Section 4.3.1). Our results
(Fig. 4.3) show that, whereas the distribution of distance between phenotypes in H-type
genotype-phenotype graphs is sharply peaked around its mean value, its counterpart for B-
graphs exhibits a much larger degree of dispersion so that the average distance is hardly
representative of individual behaviour within the statistical ensemble.

An alternative to the approach used in Section 4.3.1, which is based on computing the
average shortest path between phenotypes, consists of resorting to spectral graph theory [26].
In fact, Chung [25] has proven that the diameter of a graph, i.e. the maximum of the distances
among all possible pairs of vertices, is small (i.e. O(log n) where n is the number of nodes) if
the modulus of the second eigenvalue of the adjacency matrix is small compared to the first
eigenvalue. However, in our case, this method does not allow us to discriminate between B
and H graphs, nor to identify heterogeneities among B-graphs, as per the examples shown in
Fig. 4.2. This is a direct consequence of the fact that genotype subgraph for both B and H
genotype-phenotype maps are bipartite graphs.

Consider an H graph whose genotype subgraph, GH , is an n-cube, i.e. a 2n-vertices
hypercube where one can assign to each vertex a string of length n from (−1,−1, . . . ,−1) to
(1, 1, . . . , 1). For example, a 2-cube (or square) would be:

00, 01, 10, 11.

One can now define two disjoint subsets within the graph G = (X,Y ). Where X ={vertices
who have an even number of 1’s} and Y ={vertices who have an odd number of 1’s}. Since
edges connect nodes that differ by one entry in the label string, we only have edges between
X and Y , thus constructing a colouring with only two colours and, therefore, the n-cube
graph is bipartite. Since the genotype subgraph of a B genotype-phenotype network is a
subset of GH , then it also is a bipartite graph. Bipartite graphs happen to have rather trivial
spectral properties [20]: bipartite networks have symmetric spectra and the spectral gap is
equal to zero. B and H networks are not exactly bipartite, because of the presence of the
phenotype nodes. However, we have checked that these nodes perturb the spectrum only very
slightly. Therefore, the spectral properties associated to these two types of networks are not
the right framework to analyse the differences between them, in particular, those concerning
the evolutionary escape problem.

The heterogeneity observed in the distribution of distances between phenotypes in B-type
graphs induces heterogeneous behaviour in all the observables associated to the escape problem
that we have investigated. The escape probability in B-type graphs displays a much wider
range of variability than in H-type networks, with instances in which the escape probability
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in the B-graph is an order of magnitude bigger than in its H-type counterpart (see Fig. 4.4).
Heterogeneity is also ubiquitous when dynamical properties are examined. Fig. 4.6 shows
that the average escape time is much more homogeneously distributed in H-type graphs.
Furthermore, as a result of the heterogeneity in the average escape time for B-graphs, we
have determined that escape is very likely to occur on considerable longer time scales on B-
graphs. When studying the escape time distribution conditioned to eventual escape (see Fig.
4.7), we observe that, unlike H-graphs where escape exhibits a well-defined, characteristic time
scale, conditioned escape time on B-graphs shows a much wider (almost uniform) distribution
with virtually no discernible characteristic scale.

Therefore, unlike genotype-phenotype graphs where the genotype network is a regular hy-
percubic lattice, where averaged properties are representative of individual behaviour within
the statistical ensemble, in complex genotype-phenotype networks heterogeneity is the rule.
This implies that predictions regarding emergence of resistant varieties in, for example, can-
cer cell populations under treatment [98] based on regular hypercubic genotype spaces may
be inaccurate. Rather, a more detailed study of the underlying genotype-phenotype struc-
ture is necessary to produce accurate estimates. The application of our methods to the issue
of emergence of resistance in tumours under therapy would require to develop a model of
the gene regulatory network governing the appearance of pathological cell states (i.e. ma-
lignant phenotype) as well as the corresponding epigenetic regulation [82], and then analyse
the corresponding genotype-phenotype graph to discern how deregulations at the genetic and
epigenetic levels would affect evolutionary escape, whereby targeted strategies aimed at min-
imising the escape probability could be formulated. The formulation of such models is beyond
the scope of this work and left for future research.



Chapter 5

Surviving evolutionary escape on
complex genotype-phenotype
networks

In this Chapter we study the problem of evolutionary escape and survival for cell populations
with genotype-phenotype map. In order to explore these issues, we formulate a population
dynamics model, consisting of a multi-type time-continuous branching process, where types
are associated to genotypes and their birth and death probabilities depend on the associated
phenotype (non-escape or escape). We show that, within the setting associated to the escape
problem, separation of time scales naturally arises and two dynamical regimes emerge: a fast-
decaying regime associated to the escape process itself, and a slow regime which corresponds
to the (survival) dynamics of the population once the escape phenotype has been reached (i.e.
conditioned to escape). We exploit this separation of time scales to analyse the topological
factors which determine escape and survival. In particular, the aim of this Chapter is to
analyse the influence of topological properties associated to robustness and evolvability on
the probability of escape and on the probability of survival upon escape. We show that,
while the escape probability depends on size of the neutral network of the escape phenotype
(i.e. its degree), the probability of survival is essentially determined by its robustness (i.e.
the resilience of the escape phenotype against genetic mutations), measured in terms of a
weighted clustering coefficient.

5.1 Surviving evolutionary escape

In Chapter 4 and in [50], we have considered a variation of the original framework for studying
escape problems which alters the approach proposed by Iwasa and co-workers. We have
shown that by incorporating the genotype-phenotype network structure into the study of
evolutionary process a large degree of heterogeneity arises both in the probability of eventual
escape and the dynamics of escape, which is absent in genotype-phenotype graphs associated
to regular hypercube genotype networks [50]. As a consequence, we have shown that the
model of escape on genotype-phenotype graphs associated to hypercube genotype networks
may lead to underscoring the escape probabilities and that the topology of complex genotype-
phenotype graphs slows down the rate of escape [50].

The inclusion of the complex structure of genotype-phenotype network introduces yet
another issue that needs to be considered when dealing with the escape problem. Previous

69
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studies of this problem [53, 54, 89, 90, 84, 50] assume that once the escape genotype is reached,
escape takes place with probability 1, i.e. the proliferation ratio of the escape genotype is
RE = ∞. However, one could go one step further and analyse the probability of surviving
escape if 1 < RE < ∞. This question is particularly meaningful when genotype-phenotype
structure is accounted for. On the one hand, due to the multiplicity of genotypes associated
to each phenotype, there exists a non-trivial population dynamics even when the population
is confined within the escape phenotype. Secondly, cell populations with genotype-phenotype
map exhibit evolved properties such as robustness and evolvability which affect escape [50] and
survival alike: robustness, being related to resilience of phenotypes against gene mutations,
is bound to affect survival, since any mutation driving cells away from the escape phenotype
can be considered deleterious. Similarly, the degree of the escape phenotype, kE , which is
defined as the number of viable genotypes bearing the escape phenotype [52], is a measure
of accessibility to the escape phenotype (roughly speaking, the higher kE , the more access
routes for the mutation-driven random search process which drives escape to reach the target
phenotype). The aim of this Chapter is to analyse the influence of this and other topological
properties associated to robustness and evolvability [28, 27, 52] on the probability of survival
after escape.

Remind the mathematical model in Section 4.2 and that genotype-phenotype networks in
this Chapter has been modelled such as in Chapter 2. We also note, that clustering coefficient
of phenotype node φ, cφ, can be described as

cφ =
2|{eG,G′ | G,G′ ∈ Neighφ}|

kφ(kφ − 1)
(5.1)

where Neighφ is the neighbourhood for a node φ and kφ is the degree of φ, i.e. the number of
genotype nodes to which φ is connected. Since dist(G,G′) = 1 these two genotypes correspond
to nodes linked by a genotype-genotype edge, eG,G′ .

5.1.1 Population dynamics

Evolutionary escape has been studied in the context of multi-type Galton-Watson processes
[54, 90, 52]. This type of process is characterised by a lack of characteristic time scales, as its
dynamic is generated by mere iteration of and individual progeny-generation process. Here,
we aim to analyse the emergence of separation of time scales intrinsic to the evolutionary
escape process and its associated consequences regarding the behaviour of the system. In
order to account for the characteristic time scales, we resort to a description in terms of a
continuous-time branching process with exponential life time distributions, which is closely
related to the Galton-Watson process [57].

We first define a multi-type birth-and-death process where each type is associated to a
genotype, Gi, so that Ni(t) is the number of cells with genotype i = 1, . . . , NG, where NG is
the number of viable genotypes. Our model of the genotype-phenotype map [52] assigns a
phenotype to each genotype, i.e. φi = φ(Gi) where φi is the phenotype associated to genotype
Gi. Following to the model of evolutionary escape formulated in [50], we assume that birth
and death rates of each cell type depend on the phenotype rather than on the genotype. We
thus consider the birth-and-death process defined by:
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Prob(Ni(t+ ∆t) = Ni(t) + 1) = λ(φi)(1− µ)2∆t

Prob(Ni(t+ ∆t) = Ni(t)− 1) = σ(φi)∆t

Prob(Ni(t+ ∆t) = Ni(t), Nj(t+ ∆t) = Nj(t) + 1) = 2λ(φi)µ(1− µ)
aij
di

∆t,

Prob(Ni(t+ ∆t) = Ni(t)− 1, Nj(t+ ∆t) = Nj(t) + 2) = λ(φi)µ
2aijaik
d2
i

∆t,

(5.2)

for all j, k = 1, . . . , NG, where aij are the entries of the adjacency matrix of the genotype
network, di is the degree of Gi within the genotype network, λ(φi) and σ(φi) are the phenotype-
dependent birth and death rates associated to Gi, and µ is the mutation probability per
division. For simplicity, we consider that λ(φi) = λ and σ(φi) = σ for all φi 6= φE with λ < σ,
and λ(φi) = λE and σ(φi) = σE for all φi = φE with λE > σE . We can assume that λ = λE
and σ � σE .

We now define an associated embedded, continuous-time branching process [44]. This
branching process is characterised by the set of type-specific generating function of the prob-
ability density of the number of progeny produced by each cell:
If φi 6= φE ,

Fi(~s) =
σ

λ+ σ
+
λ(1− µ)2

λ+ σ
s2
i +

∑
j

2
λµ(1− µ)

λ+ σ

aij
di
sisj +

∑
j,k

λµ2

λ+ σ

aijaik
d2
i

sjsk, (5.3)

If φi = φE ,

Fi(~s) =
σE

λE + σE
+
λE(1− µ)2

λE + σE
s2
i +

∑
j

2
λEµ(1− µ)

λE + σE

aij
di
sisj+

+
∑
j,k

λEµ
2

λE + σE

aijaik
d2
i

sjsk

(5.4)

where Fi(~s) is the probability generating function of the number of progeny generated by a
cell with genotype Gi and ~s = (s1, . . . , sG). Furthermore each genotype has an associated
survival time which is exponentially distributed with parameter ω = λ + σ if φi 6= φE and
ωE = λE + σE if φi = φE . Note that ω � ωE .

Similarly to the Galton-Watson process, the dynamics of the continuous-time branch-
ing process is generated by iterating the progeny-generation process, which mathematically
translates into the following recursive equation for the generating function, fi(~s, t) [57]:

fi(~s, t+ ∆t) = fi

(
~f(~s, t),∆t

)
, (5.5)

where fi(~s, t) is the generating function associated to the probability distribution of the pop-
ulation (N1(t), . . . , NG(t)) at time t generated from a single initial individual of (geno)type
i. If ∆t is small, then with probability close to one, the process consists of either the mother
cell, provided that it survives, or its first-generation progeny, conditioned to the mother cell
exhausts its life-span, i.e.

fi(~s,∆t) = sie
−ω∆t + Fi(~s)(1− e−ω∆t) + o(∆t2) if φi 6= φE ,

fi(~s,∆t) = sie
−ωE∆t + Fi(~s)(1− e−ωE∆t) + o(∆t2) if φi = φE . (5.6)
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5.1.1.1 Separation of time scales: quasi-steady state regime

The setting in which evolutionary escape occurs involves separation of time scales. Within
this setting, all genotypes, Gi, associated to phenotypes φi 6= φE are sub-critical (σ > λ),
whereas those genotypes associated to the escape phenotype (φi = φE) are super-critical, i.e.
σE < λE . If we can assume that, for example, λ = λE and σ � σE , which implies ω � ωE ,
separation of time scales ensues. Consider Eqs. (5.6) and the following re-scaled time variable
τ = ωEt. Carrying out this change of variables, Eqs. (5.6) read:

fi(~s,∆τ) = sie
− 1
ε
∆τ + Fi(~s)(1− e−

1
ε
∆τ ) + o(∆τ2) if φi 6= φE ,

fi(~s,∆τ) = sie
−∆τ + Fi(~s)(1− e−∆τ ) + o(∆τ2) if φi = φE . (5.7)

where ε = ωE
ω � 1. This implies that cell types associated to non-escape genotypes evolve

much faster than those associated to escape genotypes. The former will therefore settle onto
their equilibrium state, i.e. extinction, whilst the latter continue to evolve at a much slower
rate. This becomes clearer if we write down the system of ODEs which govern the evolution
of fi(~s, τ) (see [57] for details of their derivation):

ε
dfi(~s, τ)

dτ
= −fi(~s, τ) + Fi(f1(~s, τ), . . . , fG(~s, τ)) if φi 6= φE

dfi(~s, τ)

dτ
= −fi(~s, τ) + Fi(f1(~s, τ), . . . , fG(~s, τ)) if φi = φE , (5.8)

which explicitly shows that, under time re-scaling (τ = ωEt), the population of non-escape
genotypes evolves according to a fast dynamic and can be considered to be in (quasi-)steady
state. The populations associated to escape genotypes follow a slow dynamic which evolves
on a much slower time scale.

5.1.1.2 Separation of time scales: inner regime

Besides the long time dynamics associated to the quasi-steady state regime analysed in Section
5.1.1.1, we can study the initial, inner regime by re-scaling time: T = ε−1τ . Under this re-
scaling, Eqs. (5.6) read:

fi(~s,∆T ) = sie
−∆T + Fi(~s)(1− e−∆T ) + o(∆T 2) if φi 6= φE ,

fi(~s,∆T ) = sie
−ε∆T + Fi(~s)(1− e−ε∆T ) + o(∆T 2) if φi = φE . (5.9)

Eqs. (5.9) imply that, since ε � 1, the rate of evolution of the populations associated to
escape genotypes (φi = φE) is very slow, so that the most likely event is that cells with escape
genotypes do not generate progeny, i.e., during this initial regime, cells associated to escape
genotypes tend to stay latent (that is, they survive without producing offspring or dying).
By contrast, the populations associated to non-escape genotypes (φi 6= φE) evolve at an O(1)
rate. The corresponding set of ODEs for the probability generating functions is:

dfi(~s, T )

dT
= −fi(~s, T ) + Fi(f1(~s, T ), . . . , fG(~s, T )) if φi 6= φE

dfi(~s, T )

dT
= −ε (fi(~s, T )− Fi(f1(~s, T ), . . . , fG(~s, T ))) if φi = φE , (5.10)
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which further confirm that, during this initial regime, the populations associated to escape
genotypes stays frozen, whereas the non-escape populations evolves at a rate O(1).

These properties regarding time scale separation have the consequence that, during this
initial regime, population accumulates within the escape genotypes. The source of this pop-
ulation is mutations occurring in cells associated with non-escape genotypes but which are
first neighbours of escape genotypes. According to our analysis, these cells remain latent
during the initial regime. Therefore the total number of cells accumulated within the escape
phenotype during the initial regime (T = 1), N0 (latter re-called PE(T )), can be estimated
by [42, 9]:

N0 = Y

2λ

ω

∑
i∈∂φE

∫ 1

0

µ(1− µ)
∑

j∈〈φE〉

aij
di

+ µ2
∑

j,k∈〈φE〉

aijaik
d2
i

Ni(T )dT

 (5.11)

Y (s) is a Poisson-distributed random number with parameter s and ∂φE is the sub-set of
non-escape genotypes of the genotype networks which are first-neighbours with an escape
genotype: Gi ∈ ∂φE if φi 6= φE and there exists at least one Gj such that φj = φE and aij = 1.
Note that the cardinal of ∂φE is proportional to the degree of the escape phenotype, kE , and
therefore, from Eq. (5.11), we expect N0 be an increasing function of kE , too: the bigger kE ,
the bigger the boundary between the escape phenotype and the remaining of the network,
and the more access ways for population to enter the escape phenotype.

5.1.1.3 Coarse-grained population dynamics of the escape phenotype

In view of the picture arising from the discussion of Sections 5.1.1.1 and 5.1.1.2 regarding
separation of time scales, we propose a coarse-grained population dynamics of the escape
phenotype, associated to the quasi-steady state regime in which the non-escape genotypes
have already become extinct, and where we look at the total population of the escape pheno-
type, rather than looking at the populations associated to the escape genotypes. In order to
formulate this coarse-grained dynamics, we invoke some of the topological properties analysed
in [52].

We have shown that, within the genotype-phenotype network defined in [52], we can
associate a clustering coefficient to each phenotype, where the clustering is associated to
the proportion of genotypes which are first neighbours (i.e., according to the definition of the
genotype network in [52], genotypes that are separated by a one-hit mutation) and which share
the same phenotype. If we assume that the clustering coefficient of the escape phenotype,
cE , models the probability that a gene mutation which changes Gi into Gj without changing
phenotype, i.e. φi = φj = φE : the probability of a gene mutation to produce a change of
phenotype is equal to µ(1−cE). Similarly, the probability of a phenotype-preserving mutation
is µcE . Furthermore, we have shown that cE(kE) ≈ (kE − 1)−α with α ≈ 1 [52].

By taking into account this interpretation of the clustering coefficient, we can define the
following coarse-grained continuous-time branching process:

FE(s) = 1
ωE

(
σE + λEµ

2(1− cE)2+ Death

+λE(2µ(1− cE)(1− µ) + 2µ2c(1− c))s+ Survival
+λE((1− µ)2 + 2µ(1− µ)cE + µ2c2

E)s2
)

Proliferation

(5.12)
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with a life-time which is exponentially distributed with parameter ωE . We have further
assume that cells which mutate an change phenotype die, as they fall back into a non-escape
phenotype which is sub-critical.

5.1.1.4 Alternative measure of robustness

Results (see Section 5.2) show that, although cE is a measure of robustness which subtly
correlates with PS (see Fig 5.6), a measure of robustness better suited for the coarse-grained,
long-time dynamics of survival upon escape, must be defined. To do so, we proceed with a
more detailed analysis of Eqs (5.8). Before proceeding we introduce the following notation:
~1 = (1, . . . , 1), ~1E is the vector with ones in the escape components and zeros otherwise, and
~1N = ~1 − ~1E . We define ~g(τ) = (~gN , ~gE) as the split vector, first components are associated
to non escape genotypes, ~gN , and ~gE corresponds to indexes associated to escape genotypes.
Making some algebra we can rewrite ~F (~s) as,

~F (~s) = ~1 +D(−~1 +B · ~s�B · ~s) (5.13)

where B = µD−1A + (1 − µ)Id, D = diag(γi) (γi = λ
λ+σ if φi 6= φE , γi = λE

λE+σE
if φ = φE)

and � denotes the component-to-component product.
As we have shown in a previous work [50], if we define gi(τ) = P (NE(τ) > 0 | ICi), then

~f(~1N , τ) = ~1− ~g(τ) is the complementary of the escape probability. Therefore, gi(τ)� gj(τ)
if i /∈ φE , j ∈ φE , where NE is the number of cells in the escape phenotype. Then, Eqs (5.8)
read,

ε
d~gN (τ)

dτ
= −~gN (τ) +

λ

λ+ σ
(2B · ~gN (τ)− (B · ~gN (τ)�B · ~gN (τ))) (5.14)

d~gE(τ)

dτ
= −~gE(τ) +

λE
λE + σE

(2B · ~gE(τ)− (B · ~gE(τ)�B · ~gE(τ))) (5.15)

We split B into four sub-matrices:

B =

(
BNN BNE
BEN BEE

)
where BNN corresponds to sub-matrix of non escape indexes, BEE is the sub-matrix of escape
indexes and similarly for BEN and BNE . In terms of these sub-matrices, Eq (5.15) can be
rewritten as,

d~gE
dτ

= −~gE +
λE

λE + σE
[2(BEE · ~gE +BEN · ~gN )

− (BEE · ~gE +BEN · ~gN )� (BEE · ~gE +BEN · ~gN )]

(5.16)

As (~gN )i � (~gE)j , we can neglect ~gN . Eq (5.16) then reads,

d~gE
dτ

= −~gE +
λE

λE + σE
[2BEE · ~gE − (BEE · ~gE �BEE · ~gE)] (5.17)

In order to study the behaviour of ~gE , we first consider the simplest possible case. We
assume |{φ(Gi) = φE}| = 1, i.e. there is only one genotype Gi in φE . This allows us to write
Eq (5.17) as,

dgE
dτ

= −gE +
λE

λE + σE

[
2(1− µ)gE − (1− µ)2g2

E

]
(5.18)
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At steady state Eq (5.18) is,

0 =− gE +
λE

λE + σE

[
2(1− µ)gE − (1− µ)2g2

E

]
=

= gE

(
1− λE

λE + σE
(2− 2µ) +

λE
λE + σE

(1− µ)2gE

)
(5.19)

with non-trivial solution

gE =
2

1− µ −
λE + σE
λE(1− µ)2

.

Now, consider the case of |{φ(Gi) = φE}| = 2. This implies that B = BEE ,

BEE =

(
1− µ a12/d1

a21/d2 1− µ

)
Then,

if =


a12 = 0( =⇒ a21 = 0) =⇒ we are in case |{φ(Gi) = φE}| = 1,

as both nodes are disconnected,
a12 = 1( =⇒ a21 = 1) =⇒ ~gE will depend on d1 and d2.

where, di is the degree of genotype Gi in the genotype network. This simple case shed some
light on what kind of parameters affect the value of ~gE . This simple case illustrates that the
clustering coefficient does not characterise the evolution of ~gE , as we need to take the degree
of the first neighbours into account.

Therefore, we define the following measure of robustness, ME , of an escape phenotype φE :

1. Generate genotype subgraph, GφE , of nodes corresponding to genotypes Gi, such that,
φ(Gi) = φE .

2. Associate weights, wij for each (i, j) edge in GφE .

3. Define wij = 1
di

+ 1
dj

.

4. Then,

ME =

∑
(ij)wij

|{φ(Gi) = φE}|
, ME ∈ [0, 1].

Note that ME = 0 is associated to escape phenotypes, φE , for which their escape associated
genotypes are not interconnected, i.e. ME = 0 =⇒ cE = 0. At the other extreme, ME = 1
corresponds to an isolated escape phenotype where all possible connections between escape
genotypes exist. In this case, cE = 1 (see Fig 5.1 and Table 5.1). In general cE = 1 does not
imply ME = 1.

An intuitive handle on the meaning of ME can be obtained by comparing the examples
shown in Fig 5.2. Both these graphs have cE = 1/3. However, ME takes different values and,
therefore, it allows to distinguish between both cases. Note that survival is less likely in graph
(b) than in graph (a). From these examples, we observe that ME provides more information
than cE because ME accounts for inhomogeneities between nodes. In other words, ME carries
more local information regarding the genotypes than cE .

A definition for the global weighted clustering coefficient ME , can be thought as a local
clustering coefficient for a weighted network. Given an undirected, unweighted network,
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φE φE

(a) (b)

Figure 5.1: Two different graphs with extreme values of ME . Graph (a) has ME = 0, whereas
graph (b) has ME = 1. More details in Table 5.1.

Table 5.1: Comparison of graphs of Fig 5.1.

Parameters (a) graph (b) graph
kE 3 3
cE 0 1

GφE

0 0 0
0 0 0
0 0 0

 0 1 1
1 0 1
1 1 0


GwφE

0 0 0
0 0 0
0 0 0

  0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


ME 0 1

n

n/2

φE φE n/2

(a) (b)

Figure 5.2: Two different graphs with very different ME . Graph (a) has ME = 1/3, whereas
graph (b) has ME = 4/3(n+ 2). More details in Table 5.2.
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Table 5.2: Comparison parameters graphs of Fig 5.2.

Parameters (a) graph (b) graph
kE 3 3
cE 1/3 1/3

knn (second neighbours) n n

GφE

0 1 0
1 0 0
0 0 0

 0 1 0
1 0 0
0 0 0


GwφE

 0 1/2 0
1/2 0 0
0 0 0

  0 1/(n/2 + 1) 0
1/(n/2 + 1) 0 0

0 0 0


ME

1
3

4
3(n+2)

clustering coefficient of a node i, Ci is equal to the fraction of number of edges between
neighbourhood of i. Then, given a undirected weighted network, we define Ci as the fraction
between the sum of weights in edges between i-neighbourhood and the maximum value that
can weights achieve, that is, ki. On the other hand, these weights wij represent the sum of
the probability of going from i to j and the one of going from j to i. This is equivalent to
ME which is normalised by kE .

5.1.1.5 Redefinition of the escape phenotype coarse-grained dynamics

Using ME as a measure of robustness, the coarse-grained dynamics of an escape phenotype
is defined by the pgf:

FE(s) = 1
ωE

(
σE + λEµ

2(1−ME)2+ Death

+λE(2µ(1−ME)(1− µ) + 2µ2ME(1−ME))s+ Survival
+λE((1− µ)2 + 2µ(1− µ)cE + µ2M2

E)s2
)

Proliferation

(5.20)

with a life-time which is exponentially distributed with parameter ωE (see Section 5.1.1.3).

5.2 Results

Having established the separation of time scales in Section 5.1.1, where an inner, faster regime
associated to the escape process is followed by an outer, slower dynamics related to the within-
escape phenotype dynamics, we proceed to analyse in detail the eventual survival of the
population upon escape (i.e. upon the population having reached the escape phenotype). We
will first study the escape process (as determined by the dynamics within the inner regime),
in particular, we focus on how the escape probability and the number of cells reaching the
escape phenotype depend on the degree of the escape phenotype, kE . We then proceed to
study the eventual survival conditioned to escape, which corresponds to the outer regime and
it is analysed using a coarse-grained model (see Section 5.1.1.3 and 5.1.1.5).

5.2.1 Fast dynamics: Escape properties

In this Section we study escape properties during the inner regime. We show how escape
probabilities can be computed and how to compute the average expected number of cells
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accumulated during the fast dynamics. All of these quantities are related with the degree and
the clustering coefficient of the escape phenotype, we introduce in what way these correlations
appears.

5.2.1.1 Escape probability

Given an escape phenotype φE we define the initial condition ICi as Ni(0) = 1 and Nj(0) = 0
for all j 6= i and we assume φ(Gi) 6= φE . The probability of escape PE(T ) is the probability
to achieve the escape phenotype before extinction starting from the configuration ICi and
averaged for all possible initial conditions. This process happens in the inner regime. This
probability can be computed in a similar way than it was done for the discrete model in [50]
(see results in Appendix 7, Section 7.5). Briefly, it can be checked that PE(T ) coincides with
the evaluation of the pgf at the parameter ~s = ~1N . As the pgf evolves according to an ODE
(Eq (5.10)), we can integrate numerically it to obtain the desired values PE(T ). Moreover, as
we are interested in the inner regime we only compute PE(T ) up to time T = 1.

Fig 5.3 shows results regarding how PE(T ) changes as we vary the degree kE (Fig 5.3 (a),
(c)) and the clustering coefficient φE (Fig 5.3 (b)). These results agree with results in discrete
branching process model described in Chapter 4 (see Appendix 7 Section 7.5). We observe
that PE(T ) is positively correlated with kE , i.e. the larger the number of genotypes which
belong the escape phenotype, the bigger (on average) is the probability of achieve the escape
phenotype during the inner regime. Otherwise, the negative correlation between PE(T ) and
cE is a direct consequence of cE(kE) ≈ (kE − 1)−α [52].

5.2.1.2 Average number of cells accumulated within the escape phenotype dur-
ing the initial regime

In order to calculate the average number of cells that reach the escape phenotype during
the fast dynamics regime, we proceed as follows. Consider all the genotypes Gk such that
φE = φ(Gk). We are interested in computing the expectation E (Nk(T ) | ICi), which is given
by [57]:

E (Nk(T ) | ICi) =
∂fi
∂sk

(~1, T ), (5.21)

therefore the ODE governing the evolution of this quantity can be obtained from Eqs. (5.10).
By applying ∂sk to that system,,

d

dT

∂fi
∂sk

(~s, T ) = −∂fi(~s, T )

∂sk
+
∑
l

∂Fi
∂sl

∣∣∣∣
~f(~s,T )

· ∂fl
∂sk

(~s, T ). (5.22)

Evaluating at ~s = ~1, we obtain

d

dT

∂fi
∂sk

(~1, T ) = −∂fi(
~1, T )

∂sk
+
∑
l

∂Fi
∂sl

∣∣∣∣
~1

· ∂fl
∂sk

(~1, T ) (5.23)

In order to proceed further, we define the vector ~βk(T ) whose components are ~βk(T ) =

(βk,i(T ), i = 1, . . . , NG) =
(
∂fi
∂sk

(~1, T ), i = 1, . . . , NG

)
, i.e. the ith component of ~βk(T ) is the

average population of cell of genotype Gk at time T with initial conditions given by ICi. From
Eq. (5.23) we derive a linear ODE for the time evolution of ~βk(T ):
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(a) (b)

(c)

Figure 5.3: Probability of escape in the time-continuous model. Different colours represent
results for different graphs. As we expected, PE is positive correlated with kE (plot (a)) and
negatively correlated with cE (plot (b)), in agreement with the relation that exists between
clustering coefficient and degree. Plot (c) represents a zoom of (a).
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(a) (b)

Figure 5.4: Plots showing the dependence of the unconditioned average number of cells ac-
cumulated within the escape phenotype during the initial regime, E (NE). Plot (a) shows
how NE varies as the degree of the escape phenotype, kE , changes. Plot (b) shows results
regarding the behaviour of E (NE) as the clustering coefficient, cE , of the escape phenotype
varies. We observe that E (NE) is positively correlated with kE and negatively correlated with
cE .

d

dT
~βk(T ) = −~βk(T ) +DF (~1) · ~βk(T ) = (−Id +DF (~1)) · ~βk(T ), (5.24)

with (DF (~1))ij = ∂Fi
∂sj

(~1). The solution of Eq. (5.24) is given by:

~βk(T ) = exp((−Id +DF (~1)) · T ) · ~βk(0) (5.25)

where ~βk(0) = (δ1k, δ2k, . . . , δNGk). Finally, we define E (NE(T = 1)) as the expected number
of cells that reach the escape phenotype during the initial regime process (see Section 5.1.1.2)
averaged over all possible initial conditions:

E (NE(T = 1)) =
1

NG − kE
∑

k∈〈φE〉

~1N · ~βk(s) (5.26)

note, ~1 ·~1N = NG − kE .

Fig. 5.4 shows results regarding how E (NE) (NE = NE(T = 1)) changes as we vary the
degree (Fig. 5.4(a)) and the clustering coefficient (Fig. 5.4(b)) of the escape phenotype. We
observe that E (NE) is positively correlated with kE , i.e. the larger the number of genotypes
which bear the escape phenotype, the bigger (on average) is the number of cells which accu-
mulate within the escape phenotype during the initial, fast dynamics regime. This behaviour
is a consequence of the fact that, in general, the larger kE , the more likely is that cells trying
to escape the ill-adapted genotypes find a route into the escape phenotype. The negative
correlation between E (NE) and cE is then a direct consequence of cE(kE) ≈ (kE − 1)−α [52].

In addition to E (NE), since we are interested in studying survival to escape, we need to
analyse the average number of cells that reach the escape conditioned to eventual escape,
E (NE | N0 > 0). To compute this quantity, we first consider E (Nk(T ) | ICi, N0 > 0), i.e.
the expected value of the population of the genotype Gk such that φ(Gk) = φE with initial
condition ICi, which is given by:



5.2. RESULTS 81

(a) (b)

Figure 5.5: Plots showing the dependence of the average number of cells accumulated within
the escape phenotype conditioned to eventual escape, E (NE | N0 > 0). Plot (a) shows how
E (NE | N0 > 0) varies as the degree of the escape phenotype, kE , changes. Plot (b) shows re-
sults regarding the behaviour of E (NE | N0 > 0) as the clustering coefficient, cE , of the escape
phenotype varies. We observe that E (NE | N0 > 0) is positively correlated with kE and neg-
atively correlated with cE , although the such correlation is weaker than for the unconditioned
average E (NE).

E (Nk(T ) | ICi, N0 > 0) =
∑
k

nkP (Nk(T ) = nk | ICi, N0 > 0)

=

∑
k nkP (Nk(T ) = nk;N0 > 0 | ICi)

P (N0 > 0)

=

∑
k nkP (Nk(T ) = nk | ICi)

P (N0 > 0)

=
E (Nk(t) | ICi)

P (N0 > 0 | ICi)
(5.27)

Eq. (5.27) implies that to compute E (NE | N0 > 0) we must renormalise Eq. (5.26) by a
factor which is equal to the escape probability, P (N0 > 0 | ICi), computed as PE in Section
5.2.1.1, (where we only consider those initial conditions, ICi, for which P (N0 > 0 | ICi) > 0):

E (NE | N0 > 0) =
1

NG − kE
∑

k∈〈φE〉

NG∑
i=1

βk,i(s)

P (N0 > 0 | ICi)
ds (5.28)

The behaviour of E (NE | N0 > 0) as kE and cE vary is shown in Fig. 5.5(a) and (b),
respectively. We find that E (NE | N0 > 0) and kE are positively correlated (see Fig. 5.5(a)),
although the observed correlation appears to be weaker for the conditioned average than
for the unconditioned one (compare to Fig. 5.4(a)). Similarly, E (NE | N0 > 0) and cE are
negatively correlated (see Fig. 5.5(b)).

5.2.2 Slow dynamics: Survival probability

We now proceed to examine the post-escape dynamics, i.e. once the fast, transient regime in
which escape occurs and described by Eqs. (5.10), a dynamical regime characterised by much
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longer time scales ensues in which, conditioned to the occurrence of escape, the population
may still get extinct due to the within-escape phenotype population dynamics. We define
PS(t) as the survival probability at time t, that is PS(t) = P (NE(t) > 0 | ICi), where now ICi

corresponds to an i with belongs to the escape phenotype. This probability is computed for a
large time (t→∞). We model this slow, long-time regime using two different coarse-grained
models. The first model, depending on clustering coefficient, is described in Section 5.1.1.3.
The second model, depending on weighted clustering, ME , is introduced in Section 5.1.1.5. In
both models, the theoretical survival probability, PS , is the complementary of the clearance
probability, PC (see Section 5.1.1.5), PS = 1 − PC . The clearance probability is given by
smaller root of (see [57]):

FE(PC)− PC = 0, (5.29)

This is a second order equation which can be solved exactly. Its two roots, x1 and x2, are
given by

x1 = 1, x2 =
σ + λµ2(1− α)2

λ(1− µ(1− α))2
,

where α = cE in the first model, and α = ME in the second model. PC = x2, therefore
PS = 1 − x2. Note that PS is the survival probability conditioned to escape, as the relation
PS = 1− PC assumes that at least one cell has reached the escape phenotype.

In the first model, the behaviour of PS as we vary cE and kE using FE(cE) is shown in
Fig. 5.6(a) and (b), respectively. We find in this case that PS(t) is not well approached by
theoretical PS and its relation with cE and kE is not clear.

Nevertheless, in the second model, the survival probability PS(t), approached theoretically
by,

PS = 1− σE + λEµ
2(1−ME)2

λE(1− µ(1−ME))2
=
−σe − λE + 2λE(1− µ+ µME)

λE(1− µ+ µME)2
(5.30)

models perfectly PS(t) as a function of ME (see Fig 5.7). Clearly, there are a strong positive
correlation between PS(t) and ME .

5.3 Conclusions

We have formulated a population dynamics model, consisting of a multi-type time-continuous
branching process, where types are associated to genotypes and their proliferation probability
is defined depending on which kind of genotype we are (non escape or escape). This model
allows analyse the problem of evolutionary escape and survival for cell populations with
genotype-phenotype map.

We have studied the global process of evolutionary escape and survival escape as a process
with two time scales, characterised by two different regimes: an initial, fast regime, during
which escape actually occurs. Then a quasi-steady regime, slow regime ensues associated to
the dynamics once escape has occurred and the population has reached the escape phenotype.

We have shown that, while the escape probability depends on size of the neutral network
of the escape phenotype (i.e. its degree), the probability of survival is essentially determined
by its robustness (i.e. the resilience of the escape phenotype against genetic mutations). We
have shown that the simple topological of measure phenotypic robustness defined in [52], i.e.
the clustering coefficient, is not well-adapted to describe robustness in the context of the
coarse-grained dynamics of survival. Rather, a new measure in terms of a weighted clustering
coefficient is necessary to accurately account for robustness under said dynamics.
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(a) (b)

(c) (d)

Figure 5.6: Probability of survival conditioned to escape as a function of kE ((a),(c)) and cE
((b),(d)). We consider an initial condition where Ni(τ = 0) = 1 for a randomly chosen Gi so
that φ(Gi) = φE . Solid line represents the theoretical PS from (FE(cE)), if we suppose that
one individual go out from the escape phenotype, then is unable to reach again the escape.
Top: Scatter plot. Bottom: Joining by degree (c), clustering (d). Different colours represent
results for different graphs.

Figure 5.7: Plot showing the correlation between survival probability PS(t) and the new
measure ME for two different sets of parameters. Solid line corresponds to the theoretical PS
(approach in Eq (5.30)). Different colours of dots represent results for different graphs.
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Our analysis of the fast-decaying, initial regime reveals (see Fig. 5.3) that the escape
probability, PE , is positively correlated with the size of the neutral network associated to the
escape phenotype, i.e. its degree, kE , and negatively correlated with its clustering coefficient,
cE . This is a direct consequence of the inverse relation between both quantities cE ≈ (kE −
1)−α with α ≈ 1 [52]. Thus, the size of borderline of escape genotypes takes an important
role during the fast, initial regime, where escape actually occur. We have also calculated the
average number of cells accumulated within the escape phenotype during the initial regime,
both conditioned and unconditioned to eventual escape (Section 5.2.1.2, see Figs. 5.5 and 5.4,
respectively). Results show that E (NE) and E (NE | N0 > 0) are identically correlated with
kE and cE as the escape probability.

On the other hand, our analysis of the slow dynamic regime, where escape has already
occurred and we study the dynamics of the population of the escape phenotype, reveals that
the probability of survival conditioned to escape is determined by the robustness of the escape
phenotype. However, we have shown that the topological measure of robustness proposed
in Chapter 4 and in [52], i.e. the clustering coefficient, cE , does not accurately describe
the coarse-grained, quasi-steady state dynamics of the escaped population. Instead, a new
measure of robustness ME [51], closely related to a weighted clustering coefficient [77], has
been defined which is better suited to defining robustness in the context of our coarse-grained
dynamics in the slow regime. Results show a strong positive correlation between the survival
probability, PS , and, ME . Moreover, this measure provides much better accuracy for the
survival probability as a function of ME (Fig 5.7). The reason for the failure of the clustering
coefficient to accurately describe robustness for the survival dynamics appears to be related
to the fact that the clustering coefficient does not take into account the heterogeneity of the
genotype nodes belonging to the neutral network of the escape phenotype (see Fig. 5.2). Our
measure, ME , takes into account the heterogeneity within the escape neutral network, thus
providing a more detailed, better suited description of robustness.

To summarise, these results show that, while the escape probability, PE , is essentially
determined by kE , the survival probability long-time survival probability PS depends on the
robustness of the escape phenotype, as measured by our weighted clustering coefficient ME .
This weighted clustering explains much better the population dynamics of survival within the
escape neutral network than the usual local clustering coefficient cE (Fig 5.6).



Chapter 6

Summary

6.1 Discussion and Conclusions

In this PhD thesis we have developed a multi-scale model of biological evolution which ac-
counts for the mapping between genotype and phenotype as determined by a model of the
gene regulatory network. We have formulated a simple model in Chapter 2 of genotype-
phenotype map inspired in the model proposed in [103] and studied in [104] by Wagner which
take into account that selective pressure acts at the level of phenotypes [52]. The theoretical
basis of this genotype-phenotype map was established by Kauffman [56], where phenotypes
or differentiated states are the steady states of the dynamical systems associated to the gene
regulatory network.

In Chapter 3, we have characterised the geometrical and topological properties of the
genotype-phenotype space obtained from the multi-scale model which assumes a selective
pressure acting at the level of phenotypes. We have defined phenotypic robustness as the
clustering coefficient of phenotype nodes in the pseudo-bipartite genotype-phenotype network
and evolvability is defined as the emergence of a giant connected component in the phenotype
network, i.e. the one-mode projection of genotype-phenotype network, which ensures global
connectedness and navigability of the space of phenotypes. Further to this global definition
of robustness, we have produced a local measure of robustness based on the distribution of
size of connected components in the phenotype network. In particular, we have shown that,
beyond global connectedness, the phenotype network exhibits the small-world property. We
have further explored whether evolvability is a robust property. We have observed that under
random attack, the giant connected component, and, therefore, our system’s evolvability, is
very resilient. However, similarly to other complex networks, when the attack is targeted
rather than random, weaknesses arise and evolvability breaks down. Moreover, we show
that, regarding the dependence of the phenotype clustering coefficient on the degree of the
phenotype nodes, i.e. the size of the associated neutral network cφ(kφ), exists an inverse
relation between clustering coefficient and degree: cφ(kφ) ∝ (kφ − 1)−αp,lv with αp,lv ≥ 1.
This result has an important interpretation in terms of the concept of neighbourhood and the
relation between robustness and evolvability [107, 108]. It implies that those phenotypes with
larger cryptic variability exhibit, in relative terms, higher accessibility to new phenotypes that
those with smaller degree to the expense of robustness.

In Chapter 4 we have carried out a comparative analysis in the context of the problem
of evolutionary escape. We have introduced a novel perspective using complex genotype-
phenotype networks where selective pressures acts on phenotypes, obtained from the multi-

85



86 CHAPTER 6. SUMMARY

scale model in Chapter 2, rather than regular, hypercube genotype lattices where fitness
is directly determined by the genotype. In order to compute escape probabilities we have
formulated a population dynamics model, consisting of a multi-type branching process [57],
where types are associated to genotypes and their proliferation probability is assigned ac-
cording to the corresponding phenotype. We have observed an heterogeneous behaviour in
all the observables associated to the escape problem that we have investigated applied to
complex networks in contrast with the much more uniform behaviour in hypercube genotype
spaces [50]. This heterogeneity applies to the distribution of distance between phenotypes,
the escape probability, the average escape time to escape and the escape time distribution
conditioned to eventual escape. Moreover, this heterogeneity, in some instances, causes an
order of magnitude bigger in the escape probability than in its regular hypercube associated.

Finally, in Chapter 5, the problem of evolutionary escape, but also survival probabilities
have been studied for cell populations with genotype-phenotype map [51]. Prior approaches
to this problem, which do not consider populations with genotype-phenotype structure and
associate fitness values directly to genotypes [53, 54, 89, 90, 84], have focused on the problem
of estimating the probability of reaching a well-adapted (so-called escape) genotype for an
initial population entirely composed of cells with ill-adapted genotypes. This point of view
implicitly assumes that, once the escape genotype has been reached, the populations survives
with probability one. When the genotype-phenotype map is added to the picture, the situa-
tion becomes more complex [50]: genotype-phenotype structure endows complex structure to
the escape phenotype which, in particular, provides robustness to the escape phenotype. Un-
der genotype-phenotype structure, each phenotype has an associated neutral network which
possess a rather reach topology [105, 2, 52], so that the dynamics of the system post-escape
is not trivial.

In order to explore this issue, we have formulated a population dynamics model, consisting
of a multi-type time-continuous branching process, where types are associated to genotypes
and their birth and death probabilities depend on the associated phenotype (non-escape or
escape) via the genotype-phenotype map defined in Chapter 2 and in [52]. We have shown
that, within the setting associated to the escape problem, where the types associated to
non-escape phenotypes are sub-critical and types associated to the escape phenotype are
super-critical, separation of time scales naturally arises and two dynamical regimes emerge:
a fast-decaying regime, accounting for the early stages in the evolution of the system, and
associated to the escape process itself, and a slow regime which corresponds to the (survival)
dynamics of the population once the escape phenotype has been reached.

We have shown that, while the escape probability depends positively on size of the neu-
tral network of the escape phenotype (i.e. its degree), the probability of survival is essentially
determined by its robustness (i.e. the resilience of the escape phenotype against genetic muta-
tions). We have shown that clustering coefficient, is not well-adapted to describe robustness
in the context of the coarse-grained dynamics of survival. In consequence, we have intro-
duced a weighted clustering coefficient as new measure of robustness adapted to slow regime.
It takes into account the heterogeneity within the escape neutral network, thus providing a
more detailed, better suited description of robustness.

6.2 Future work

This thesis opens a number of interesting avenues for future work in the field of evolutionary
dynamics of systems with genotype-phenotype map. In particular, we intend to extend our
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methodology to other, such systems, e.g. the neutral networks obtained in [1, 2] for RNA.
Regarding the particular case of RNA neutral networks, we intend to carry out a com-

parative analysis between the RNA genotype-phenotype networks (where selection pressure is
effectively present through viability conditions on the folding structure) to regular hypercubic
lattices, in order to better understand the topological properties of the former [1, 2].

Another avenue of future work is to apply our models of evolutionary escape on genotype-
phenotype networks to the study of emergence of drug resistance in tumours. In these systems,
a complex epigenetic landscape in which co-evolution of robustness and evolvability naturally
arises [98]. Therefore, our methods for the study of escape on networks, where these properties
have been shown to co-evolve, should be very relevant.

Another area in which our methods should prove useful concerns the formulation of coarse-
grained population dynamics models. In Chapter 5, we have defined a weighted clustering
coefficient in terms of which the population dynamics of the escape phenotype can be analysed
as a single-type system (rather than as a multi-type population, where each type corresponds
to a genotype). We expect this methodology be applicable to coarse-grained more general
population dynamical models. This involves a more careful analysis of whether our defini-
tion of the weighted clustering coefficient is restricted to the particular situation depicted in
Chapter 5, or, on the contrary has a wider range of applicability.

Another question to solve is how a change in GRN affects the full genotype-phenotype
network obtained from model in 2 and to find a method to compare genotype-phenotype
networks in order to decide if two networks are equivalent in any sense.
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Chapter 7

Appendix

7.1 Generalization of GRN

In this Section we prove that we can assume connected GRNs. If a gene regulatory network
is not connected then we can consider each connected component, study its behaviour and
reconstruct the pseudo-bipartite graph from each small pseudo-bipartite graph. First, we
show it for the simplest case: GRNs is composed by two connected components: T1 and T2.
It can be generalised for any number of connected components. This is a consequence of
the associative property of the graph product. In other words, if we have a GRN with three
connected components, first study properties for two of them and after recalculate properties
as you have only two connected components. Consider T1 and T2 networks,

• Network T1 generates the genotype set G1, where |G1| = g1 and g1 = 2m1 , m1 =
#edges of T1.

• Network T2 generates the genotype set G2, where |G2| = g2 and g2 = 2m2 , m2 =
#edges of T2.

Each component generates some phenotypes,

• Network T1 generates the phenotype set F1, where |F1| = f1.

• Network T2 generates the phenotype set F2, where |F2| = f2.

In the same way that we have constructed the pseudo-bipartite graph, we can proceed in
the same way for each connected component. We define the graph product in order to obtain
the complete pseudo-bipartite graph (see Figure 7.1 as an example):

f1 f2

g1 g2 g3 g4 g5

×

f1f2

g1g3 g1g4 g1g5 g2g3 g2g4 g2g5

=

Figure 7.1: Example of graph product.

89
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• Set of nodes: G1×G2 and F1×F2, i.e. we have g1 · g2 genotypes and f1 ·f2 phenotypes.

• Set of edges:

– ∃ edge between genotypes, (a, b) ∼ (c, d), a, c ∈ G1 and b, d ∈ G2 iff diff(a, c) +
diff(b, d) = 1, where diff(x, y) = 0 iff x = y.

– ∃ edge between genotype and phenotype, (a, b) ∈ F1 × F2 (phenotype), (c, d) ∈
G1 ×G2 (genotype) iff a ∼ c and b ∼ d.

Remark: We use a ∼ b if there are any edge between them in the connected component.

After introducing the definition of the product graph, we infer the properties of the product
graph and of their components properties: phenotype degree, genotype degree, genotype
clustering coefficient and phenotype clustering coefficient.

Phenotype degree Given v = (v1, v2) ∈ F1 × F2. Deg(v) = deg(v1) · deg(v2).

Genotype degree Given u = (u1, u2) ∈ G1 ×G2.

Deg(u) =
∑
v∼u

1 =
∑

(v1,v2)∼(u1,u2)

1 =
∑

(v1,u2)∼(u1,u2)

1 +
∑

(u1,v2)∼(u1,u2)

1 =

= deg(u1) + deg(u2).

Phenotype clustering coefficient Given v = (a, b) ∈ F1 × F2. Clustering coefficient is
defined as,

cv =
2Tv

deg(v)(deg(v)− 1)
, where Tv = # triangles with a vertex in v.

First, we must count the triangles with v = (a, b) ∈ F1 × F2 as vertices, Tv.

Tv = Tadeg(b) + Tbdeg(a).

Using ca = 2Ta
deg(a)(deg(a)−1) , cb = 2Tb

deg(b)(deg(b)−1) , deg(v) = deg(a)deg(b) we obtain:

cv =
2Tv

deg(v)(deg(v)− 1)
=

2 (Tadeg(b) + Tbdeg(a))

deg(a)deg(b)(deg(a)deg(b)− 1)
=

=
cadeg(a)(deg(a)− 1)deg(b) + cbdeg(b)(deg(b)− 1)deg(a)

deg(a)deg(b)(deg(a)deg(b)− 1)
=

=
ca(deg(a)− 1) + cb(deg(b)− 1)

deg(a)deg(b)− 1
(7.1)

The product graph is associative, so we can generalise this procedure for any number of
connected components. For example, for 3 connected components: v = (a, b, c) ∈ (F1 × F2 ×
F3), the number of triangles is:

T(a,b) = Tadeg(b) + Tbdeg(a) and deg((a, b)) = deg(a)deg(b).

Then,
T(a,b,c) = (Tadeg(b) + Tbdeg(a)) deg(c) + Tc (deg(a)deg(b)) .
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Genotype clustering coefficient Given u = (a, b) ∈ G1 × G2. Clustering coefficient is
defined as,

cu =
2Tu

deg(u)(deg(u)− 1)
, where Tu = # triangles with a vertex in u.

First, we must to count how many triangles we have with u = (a, b) ∈ G1×G2 as a vertex,
(Tu).

Tu =#{(a′, b′), (a′′, b′′)|(a′′, b′′) ∼ (a′, b′), (a′, b′) ∼ (a, b), (a, b) ∼ (a′′, b′′)} =

=#{(a′, b′), (a′′, b′′), (a = a′)|(a′′, b′′) ∼ (a, b′), b′ ∼ b, (a, b) ∼ (a′′, b′′)}+
+#{(a′, b′), (a′′, b′′), (b = b′)|(a′′, b′′) ∼ (a′, b), a′ ∼ a, (a, b) ∼ (a′′, b′′)} =

=#{(a′, b′), (a′′, b′′), (a = a′), (a = a′′)|b′′ ∼ b′, b′ ∼ b, b ∼ b′′}+
+# {(a′, b′), (a′′, b′′), (a = a′), (b = b′′)|(a′′, b) ∼ (a, b′), b′ ∼ b, a,∼ a′′}︸ ︷︷ ︸

0

+

+ # {(a′, b′), (a′′, b′′), (b = b′), (a′ = a′′)|b′′ ∼ b, a′ ∼ a, (a, b) ∼ (a′, b′′)}︸ ︷︷ ︸
0

+

+#{(a′, b′), (a′′, b′′), (b = b′), (b = b′′)|a′′ ∼ a, a′ ∼ a, a ∼ a′′} =

=Tb + Ta (7.2)

Using (7.2) and ca = 2Ta
deg(a)(deg(a)−1) , cb = 2Tb

deg(b)(deg(b)−1)

cu =
2(Ta + Tb)

(deg(b) + deg(a))(deg(b) + deg(a)− 1)
=

=
cadeg(a)(deg(a)− 1) + cbdeg(b)(deg(b)− 1)

(deg(b) + deg(a))(deg(b) + deg(a)− 1)
(7.3)

Remark: We do not count edges between genotypes to phenotypes in order to count triangles.

7.2 Graph definitions

Given a undirected graph1 G (without weights), with n nodes and m edges. It is defined [75]:

• Degree of a node, k: is the number of neighbours of a node. Average degree in a network
〈k〉 is the average of the degree of all nodes, and the degree distribution P (k), represents
the probability to pick a node with degree k. In the case of directed graphs two kind of
degree are defined: in-degree and out-degree, first counts the number of incoming edges,
second counts the number of outgoing edges.

• The clustering coefficient, cv, of a node v is defined as the fraction between the actual
number of triangles that have the node as a vertex to the corresponding maximum
number of such triangles (if v has kv neighbours, then at most cv = 2Tv/(kv− 1), where
Tv is the number of triangles that v make with its neighbours). In other words, if Neighv
corresponds to the v neighbourhood and ei,j are edges between nodes in Neighv, then

clustering coefficient is the proportion of ei,j : cv =
2|{ei,j |i,j∈Neighv}|

kv(kv−1) . It quantifies the

1Undirected graph: edges do not have orientation, edge (i, j) is identical to (j, i).
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connectivity between neighbours of a node. The average clustering coefficient 〈c〉 is the
average of the clustering coefficient for all nodes.

• Shortest path between two nodes, v1 and v2 is the shorter number of steps needed to go
from v1 to v2 among all possible paths between both nodes. Also it is called, distance
between nodes. If we have the shortest path for each pair of nodes, then its maximum
is defined as the diameter of the graph.

• A small-world network is a type of graph in which most nodes are not neighbours of
one another, but most nodes can be reached from every other by a small number of
steps. Specifically, a small-world network is defined to be a network where the typical
distance L between two randomly chosen nodes (the number of steps required) grows
proportionally to the logarithm of the number of nodes n in the network: L ∝ log n.

• A regular graph is a graph where all nodes have the same degree, for example a regular
lattice in d-dimensions.

• A random graph is a graph which probability p to have a connection between two random
nodes. In this kind of graph degree distribution follows a Poisson distribution (for n
large, otherwise it follows a binomial distribution).

• A scale-free graph is a graph whose degree distribution follows a power law (P (k) ∼ kγ),
at least asymptotically. These graphs have hubs, few nodes with very large degree.

• Assortativity is showed in a graph if the correlation between the average of nearest neigh-
bours and their degree is positive. It means, that more connected nodes are preferably
connected to each other. On the other hand, if the correlation is negative we have a
disassortative network.

• Connected components is the number of isolated parts that a graph is composed. A
connected component is a set of nodes that for each pair of them exist a path to go
from one to other. A used term is giant component that is a connected component that
contains a significant fraction of all nodes. Other related definitions are in component
and out component. In component can be defined as given a node x, the set of nodes
which can reach node x via directed path of links. Likewise, out component is defined
as, given a node x, the set of nodes which can be reached from node x via a directed
path.

A bipartite graphs is a graph whose vertices can be divided into two disjoint sets U and V such
that there are only edges between u ∈ U and v ∈ V nodes. It does not exist edges between
nodes which belong to the same disjoint set. Equivalently, a bipartite graph is a graph that
does not contain any odd-length cycles.

7.3 Severe selective pressure

As we have formulated in Chapter 2 the selective pressure (Section 2.1.1.1) we give some idea
about visual genotype-phenotype graphs structure imposing that the period of time of length
v, which implies that solutions with periods longer than v are non-viable is equal to 0 (lv = 0).
In other words, we only consider viable phenotypes if it is a fixed point. GRNs are generated
using Strogatz-Watts model with p = 0.9 and p = 0.1. Figure 7.2 shows some examples.
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Figure 7.2: Genotype-phenotype networks. Big points represent phenotypes and each colour
corresponds to all nodes with same phenotype. Top plots are generated with p = 0.1, bottom
p = 0.9.
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7.4 Other definitions:

Kernel density estimation: Gaussian Kernel Kernel density estimation [95] is a method
to estimate the probability density function (PDF), f(x), of a random variable in a non-
parametric way using Eq.(7.4). Kernel density estimation is a fundamental data smoothing
problem where inferences about the population are made, based on a finite data sample. Ker-
nel density estimates are closely related to histograms, but can be endowed with properties
such as smoothness or continuity by using a suitable kernel. The bandwidth of the kernel is
a free parameter which exhibits a strong influence on the resulting estimate (it can produce
a more picked or smoothed distribution). In other words, it is the tuning parameter which
give a better estimation of the true density. As a particular case, we use a Gaussian Kernel
K(u) = 1√

2π exp(−1
2u

2):

f̂(x) =
1

n

n∑
i=1

K

(
x− x(i)

h

)
(7.4)

where
∫
K(t)dt = 1 to ensure that the estimates f(x) integrates to 1 and where the kernel

function K is usually chosen to be a smooth unimodal function with a peak at 0. Even though
Gaussian kernels are the most often used, there are various choices among kernels. It is used
in Figure 3.7.

7.5 Escape probabilities in the discrete-time branching pro-
cess

Given an escape phenotype φE we define the initial condition ICi as Ni(0) = 1 and Nj(0) = 0
for all j 6= i and we assume φ(Gi) 6= φE . We represent results of the probability of escape PE ,
that is the probability to achieve the escape phenotype before extinction starting from the
configuration ICi and averaged for all possible initial conditions. These results correspond to
the discrete model of Chapter 4 and in [50].

Fig 5.3 shows results regarding how PE changes as we vary the degree kE (Fig 7.3 (a))
and the clustering coefficient φE (Fig 7.3 (b)). These results agree with results in the time-
continuous model model described in Chapter 5. We observe that PE is positively correlated
with kE , i.e. the larger the number of genotypes which belong the escape phenotype, the
bigger (on average) is the probability of achieve the escape phenotype. Otherwise, the negative
correlation between PE and cE is a direct consequence of cE(kE) ≈ (kE − 1)−α [52].
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(a) (b)

Figure 7.3: Probability of escape in the discrete model. Different colours represent results for
different graphs. As we expected, PE is positive correlated with kE (plot (a)) and negatively
correlated with cE (plot (b)), in agreement with the relation that exists between clustering
coefficient and degree.
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[34] P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae, 6:290–297,
1959.



BIBLIOGRAPHY 99

[35] P. Erdős and A. Rényi. On the evolution of random graphs. In Publication of the
Mathematical Institute of the Hungarian Academy of Sciences, pages 17–61, 1960.

[36] C. Espinosa-Soto, O. Martin, and A. Wagner. Phenotypic robustness can increase
phenotypic variability after nongenetic perturbations in gene regulatory circuits. J.
Evol. Biol., 24(6):1284–1297, 2011.

[37] A. Eyre-Walker and P. D. Keightley. The distribution of fitness effects of new mutations.
Nat. Rev. Genet., 61:610–618, 1990.

[38] R. Fisher. The Genetical Theory of Natural Selection. Clarendon Press, Oxford, 1930.

[39] W. Fontana and P. Schuster. Shaping space: The possible and the attainable in RNA
genotype-phenotype mapping. J. Theor. Biol., 194:491–515, 1998.

[40] S. Fortunato. Community detection in graphs. Phys. Rep., 486:75–174, 2010.
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