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8 Comparison between bacteria and

viruses

8.1 Introduction

Applying quantitative EFM methods to very small scale systems
has an intrinsic interest. The group has recently published a paper in
Nature Materials [29] where we were able to distinguish very small
nanoparticles (radius around 10 nm) with similar shape but different
material. Also we were able to distinguish DNA-containing viruses from
empty ones. From these measurements a label free method to
determine the composition of nanoscale objects based on their
dielectric response was proposed. The ability to determine the
composition of materials at very small length scales is crucial for a wide
range of applications, from nanocomposites engineering and
characterization [56], [57], [58] to label-free detection for biomedical
diagnostics and therapy [59], [60], [61], [62]. Yet it is still a major issue
[63], [64], [65], [66], [67] owing to the lack of practical tools with
compositional sensitivity at high spatial resolution. But for three-
dimensional objects of a few tens of nanometres in size, material
identification remains extremely difficult owing to the influence of the
exact shape of the tip and of the object on the forces.

An interesting fact to analyze when going from medium size 3D
objects to very small scale 3D objects is how the object size affects the
modeling of the Electrostatic Force Microscopy measurements. In one
hand we have the bacteria, with a height ranging 200 to 700 nm, lengths
about 2 um and widths of around 1 um. On the other hand small objects
like nanoparticles and viruses are as small as 10 nm (radius). Which are
the important parameters of the geometry in these small entities? Are
there analytical (or approximated) formulas that could be applied? Is the
electric field and potential decay in similar or different way?



During the work of thesis | have been analyzing these questions
from a modeling point of view. In this chapter a summarize the main
conclusions reached for what concerns the modeling of very small scale
3D objects, which complement the study described in this thesis for
larger 3D objects like single bacteria. The study includes both
homogeneous systems as well as core-shell structures that enables us to
distinguish not only the surface but also the inner composition of the
objects. Precise numerical calculations based on realistic models of the
tip—object system enabled us to account for the geometric effects and to
resolve &, of dielectric 3D nano-objects with unprecedented selectivity,
reliability and resolution.

This chapter reproduces material that appeared in the articles:
Fumagalli, L., Esteban Ferrer, D., Cuervo, A., Carrascosa, J. & Gomila, G.
(2012). Label-free identification of single dielectric nanoparticles and
viruses with ultraweak polarization forces. Nature Materials, 11, 808—
816 and Gomila, G., Esteban-Ferrer, D. & Fumagalli, L. (2013).
Quantification of the dielectric constant of single non-spherical
nanoparticles from polarization forces: eccentricity effects.
Nanotechnology, 24(50), 505713. In these two articles | was in charge to
build the finite element models and to run and analyze a part of the
simulations. This part of the work was performed under the co-
supervision of Dra. L. Fumagalli.

8.2 Homogeneous dielectric constant
nanoparticle - Phenomenological
analytical model vs. numerical simulation

of the dielectric signal

To quantify EFM measurements on single dielectric
nanoparticles, we need to analyze the electric signals with numerical
calculations that take into account the exact geometrical parameters in
each experiment and the precise dielectric constant ¢,.
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(a) 3D simulation box including the tip, the nanoparticle and
the substrate, showing the two regions in which the
simulation space was divided (air and infinite). (b) 2D
axial symmetric representation of the simulation box,
indicating the boundary conditions and the parameters of the
system. The cone half-angle is 10° and the cone height 1 um.
(c-e) Examples of calculated potential distributions (1V
applied) for (c) a spherical nanoparticle (R = 10 nm, D = 40 nm)
and a viral particle modeled as an oblate spheroid (R = 10 nm,
h =40 nm, w = 50 nm) of (d) homogeneous material (¢, = 4)
and (e) with a core-shell structure (€core = 10, Espey = 2). In (e)
the thickness of the shell is 2.5 nm.



We used finite-element calculations (see Figure 8.1 for geometric
and boundary condition details) because an accurate analytical model
that exactly reproduces the nanoparticle—tip electrostatic interaction
was not available. Spherical, non-spherical and core-shell nanoparticle
models were built and investigated.

To understand the influence of &, and of the geometrical
parameters (R,D,z), we derived from finite-element calculations the
following phenomenological model of the dielectric signal at the center
of the nanoparticle (maximum) with respect to the substrate

dc

dc
max dZ

dz

(R+1)(D —dyp)

LYo IR

(8.1)

where ¢g~2.22 zF/nm™ and ro~11.0 nm are constants, whereas do=
do(R)~8-10 nm, d,=d;(R,&,)~2-3 nm, d,=d,(R,g,)~0-12 nm are smooth

functions of the variables R and €. The explicit expressions of these
dc (R+7) (D—dy)

. ac
functions are—Z max-dz 0 O(Z—D)2+—dl(1)—dz)log(€r)

R 2

1+ (7))

do(R) = dyo }13

14 =

To

(8.2)

d1(R, &) = dyglog (s£> [1 + (g — blog(c er))z]

r

(8.3)

R £ d
dy(R, &) =dpo| 1— @ (1 + ?T) log (E)

(8.4)



dCldz (zF/nm)

In Figure 8.2 we compared the analytical phenomenological
model with the numerical calculations. It can be shown that the
phenomenological model is accurate within * 15% with respect to
the numerical calculations for the range of tip and nanoparticle size, tip-
substrate distance and dielectric constant calculated in the range of
parameters: R = 5-30 nm, 6 = 10°, D = 20-60 nm, z - D = 10-45 nm and

g = 1-10.
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Figure 8.2 Maximal dielectric signal as a function of (a) the dielectric

constant, (b) the tip radius, (c) the nanoparticle diameter and
(d) the tip-substrate distance. The symbols correspond to
finite-element calculations and continuous lines to the
analytical equations (8.1)-(8.4). In (a) the different curves
correspond to the tip-substrate distances z = 50, 55, 60 and 65
nm (from top to bottom), while in (b) z = 50 nm and in (c) z =
65 nm. In (b-d) the different curves correspond to dielectric
constants €, = 2 (blue), 4 (green) and 8 (red). Note that in (a)
the phenomenological model is only accurate in the range €,
= 1-10. Geometric parameters when not otherwise stated: R =
5nm and D =40 nm.



Note that the phenomenological analytical model of equations
(8.1)-(8.4) is only accurate for dielectric constants in the range of £,~1-10.
According to equation (8.1) the dielectric signal shows a logarithmic
dependence on g, for g, < 10. This explains the weak dielectric sensitivity
to & in front of a much stronger dependence on the geometrical
parameters—roughly proportional to R, more complicated on D and
with the typical inverse-square power decay with respect to tip—sample
distance (z-D).

8.3 Equivalence between the homogeneous

and core-shell models of viral particles

The ability of our approach to precisely quantify the dielectric
properties and identify materials at the nanoscale was extended to the
inner composition of hybrid nano-objects with a core—shell structure.
This is because of the long-range nature of polarization forces, which are
capable of reaching the material inside the outer shell. We showed it in
[28] by measuring and discriminating single viruses—the bacteriophage
T7—from their capsids, that is, nanoparticles that have exactly the same
shell but different cores. This also illustrates the great potential of this
approach to study biological macromolecular complexes, spanning from
materials science to biology.

To identify the materials inside the shell, we need to include the
internal structure of the nanoparticles into the models. We assumed a
core—shell oblate spheroid with dielectric constants &, for the core and
&snel fOr the shell. To be specific | consider the case of a virus particle in
which the shell thickness is of 2.5 nm. It can be shown that in an external
uniform electric field the core—shell model can be made equivalent to
the homogenous model described above with an effective dielectric
constant given through the equation [49]



[(Ecore - gshell)L + gshell] + C(Ecore - gshell)(l - Ls)

[(Score - Sshell)Lc + gshell] - C(Score - gshell)Ls
(8.5)

Eeff = Eshell

where c is the volume fraction of the core, and L. and L are geometrical
factors given by

[o 0o N4 } ‘ dt
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The theoretical derivation of equation (8.5) is based on the
assumption that the electric field at far distances from the spheroid
nanoparticle is uniform. In principle, this is not the case for the electric
field generated by a sharp tip in close proximity to a spheroid
nanoparticle on a metallic substrate, as shown in Figure 8.3a, which gives
the electric field distribution in our case. In any case we found that the
effective dielectric constant obtained from equation (8.5) (solid lines),
constitutes a very good approximation to the values predicted by finite-
element numerical calculations (symbols). In Figure 8.3 we plot the
couples of values of &.e and &g,e Which give rise to given values of the
effective dielectric constant (in the present case that of a virus and a
capsid particles).
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(a) Calculated electrostatic field distribution for a tip in
close proximity to a dielectric core-shell spheroid
nanoparticle on a metallic substrate obtained using finite-
element calculations. The color code gives the magnitude of
the electric field (V/nm) while the lines give the field lines
(the spacing of the lines is in accordance with the
magnitude of the electric field). The dielectric constants of
the core and shell are €..,. = 5 and &4,y = 2, respectively. The
applied potential between tip and substrate is 4V, as in the
experiments. (b) (Symbols) €..,. as a function of &y, for the
virus and capsid in [29] Fig. 4 satisfying the condition that the
maximum capacitance gradient calculated by using the core-
shell model and finite-element calculations is equal to the
measured one (dC/dz = 7.15 and 3.30 zF/nm for the virus
and capsid, respectively). (Solid lines) €..,.. as a function of
Esnen for the virus and capsid in [29] Figure 4 satisfying the
condition that the effective dielectric constant of the uniform
model of equation (8.5) of the paper is equal to the
experimentally determined €. = 6.30 (virus) and .5 = 3.65
(capsid). As can be seen, the agreement between the finite
element calculations and the analytical model is excellent,
thus justifying the use of the analytical model to interpret the
measurements. Geometrical parameters correspond to the
virus and capsid in [29] Figure 4 (h =20, w = 104, R = 2 nm and
z = 36 nm for the capsid and h =39, w=52, R=5nmand z =
49 nm for the virus).
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The good agreement provided by the analytical formula is
probably a consequence of the fact that the portion of the nanoparticle
that mostly contributes to the force acting on the tip shows an electric
field distribution nearly uniform. Hence, equation (8.5) is a good
approximation that can be used in quantitative electrostatic force
microscopy as an effective uniform model of a core-shell spheroid
nanoparticle.

We have verified that this analytical formula cannot be applied
to bacteria since the tip radius we use and the height, length and width
of the bacteria configures a system where the electrical field is not
sufficiently homogeneous as to apply the approximation.

8.4 Quantification of the dielectric constant of
single non-spherical nanoparticles from

polarization forces: eccentricity effects

We analyze by means of finite-element numerical calculations the
polarization force between a sharp conducting tip and a non-spherical
uncharged dielectric nanoparticle with the objective of quantifying its
dielectric constant from electrostatic force microscopy (EFM)
measurements. We show that for an oblate spheroid nanoparticle of
given height the strength of the polarization force acting on the tip
depends linearly on the eccentricity, e, of the nanoparticle in the small
eccentricity and low dielectric constant regimes (1 <e<2and1<¢g <
10), while for higher eccentricities (e > 2) the dependence is sub-linear
and finally becomes independent of e for very large eccentricities (e >
30). These results imply that a precise account of the nanoparticle shape
is required to quantify EFM data and obtain the dielectric constants of
non-spherical dielectric nanoparticles.
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Figure 8.4 (a) Schematic representation of the calculated system and

boundary conditions used. (b) Calculated electric potential and
equipotential lines (1 V applied) for an oblate spheroidal
nanoparticle with eccentricity e = 2 (D = 40 nm, W = 80 nm)
and dielectric constant ¢, = 4 polarized with a tip radius R = 5
nm, cone half-angle 6= 10° and cone height H = 1 um located
at z =10 nm from the nanopatrticle.

To perform the study we have considered the tip—nanoparticle
system shown schematically in Figure 8.4(a). It consists of a sharp
metallic tip, modeled as a truncated cone of height H and cone half-
angle O terminated with a tangent spherical apex of radius R located in
close proximity (at a distance z) to a dielectric uncharged nanoparticle
with an oblate spheroidal shape, which lies on a conductive substrate.
The axial symmetry axis of the tip is assumed to be aligned with the
center of the nanoparticle. The nanoparticle has height D, width W and
relative dielectric constant €. The eccentricity of the nanoparticle is
defined as e = W / D. Thus, for an oblate spheroid nanoparticle one has e
> 1. Figure 8.4(b) gives an example of an electric potential distribution (1
V applied) calculated for a representative experimental situation of a tip
with apex radius R = 5 nm, cone half-angle 6 = 10" and an oblate
spheroid nanoparticle with height D = 40 nm, width W=80nm (e =2)
and dielectric constant g, = 4.



In Figure 8.5 shows the variation of the capacitance-gradient
contrast, AC'(z, €, e), as a function of tip—nanoparticle distance, z, for
the case of a solid oblate spheroid of dielectric constant €, = 6.3, height
D = 39 nm and eccentricities e = 1, 2, 5, 10 and 30 (for e > 30 the curves
overlap). The tip radius is R = 5 nm. For all eccentricities considered the
contrast decays with increasing tip—nanoparticle distance, as expected.
In the spherical nanoparticle limit (bottom curve, e = 1) the contrast
shows a strong decay with distance, reaching practically zero at a few
tens of nanometers (~50 nm) from the nanoparticle. Instead, for larger
eccentricities the contrast decays more slowly and it still gives a
measurable value at distances larger than 50 nm. We note that for large
eccentricities (e > 30) the contrast approaches the one corresponding to
an infinitely large dielectric film of the same thickness (and dielectric
constant) as the nanoparticle (dashed line in Figure 8.5). We then
conclude that for small eccentricities (1 < e < 2) the contrast decays with
distance in a similar way as it decays for a spherical nanoparticle (a
power-law decay), while for large eccentricities the decay is more similar
to the one found for a thin dielectric film (a power law plus a logarithmic
decay due to the cone contribution, see [38]).

The dependence of the capacitance-gradient contrast on the
eccentricity can be better understood by plotting it as a function of the
eccentricity at a fixed tip—nanoparticle distance. In Figure 8.5(b) we
show it for the same tip—nanoparticle system given in figure 2(a) and for
different tip—nanoparticle distances, z = 10, 16, 22 and 30 nm (from top
to bottom). We see that for fixed tip geometry, particle height and
measuring distance, the dielectric contrast is an increasing function of
the lateral diameter of the nanoparticle. For small non-sphericities (1 < e
< 2) the increase is roughly linear. This fact can be better appreciated in
the inset of Figure 8.5(b), where we plot the capacitance-gradient
contrast at a given distance as a function of the eccentricity normalized
by the corresponding value obtained for a spherical nanoparticle of
diameter equal to the height of the nanoparticle. The curves are linear,
showing a slope b = 1-1.4 for the tip—particle distances considered. For
larger eccentricities (2 < e < 30) the dielectric contrast increases sub-
linearly and saturates to a constant value for very large eccentricities (e
> 30).



Finally, in Figure 8.5(c) we show the dependence of the
capacitance-gradient contrast on the dielectric constant of the
nanoparticle at fixed tip—particle distance (z D 9:5 nm) and different
eccentricities in the small eccentricity regime (1 < e < 2, from bottom to
top). The dependence on the dielectric constant is qualitatively similar
to the one displayed by a spherical nanoparticle (e D 1, bottom line) but
it shows larger variations with increasing eccentricity of the
nanoparticle. It can be shown that with respect to a spherical particle
the contrast increases roughly proportionally to the eccentricity of the
nanoparticle for 1 < er < 10.

As a generalization of the formula in equation (8.1) we derived for
non- spherical nanoparticles the following equation:

AC,non—spher (z,&,€)

- (R +15)(D — dy)
~ (Co (z—D)2+d,(D - d2)> (1+ b(e —1))log(e,)

whereb=1-1.4for10nm<z<30nmand 1< g <10.

Results show that even for large radius (R~100) similar to the
ones used in bacteria (doped diamond coated tips) the obtained electric
forces can be very different if the eccentricity is not properly taken into
account. This is something that does not happen in bacteria due to a
lager height that makes it only be sensible on the central part (the force
density is centered and concentrated on top). See chapter 4.5 for more
details. We can also see that formula in ref. [68] is not a good
approximation for the probe-sample configuration.

8.5 Conclusions

We can conclude that whereas in the case of small particles
(nanoparticles, viruses, etc.) a phenomenological equation could be
derived, a similar formula could not be obtained for bacteria since the



geometrical effects and electric field configurations are radically
different in both cases.
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Figure 8.5

Calculated capacitance-gradient contrast at the center of the
nanoparticle as a function of the tip—nanoparticle distance for
a nanoparticle of fixed dielectric constant &, = 6.3 and height D
= 39 nm, and different eccentricities e = 1, 2, 5, 10 and 30.
Symbols are the calculated points, while continuous lines are
interpolated curves. The dashed line corresponds to the case
of a large dielectric film of the same thickness and dielectric
constant as the nanoparticle. (b) Idem, but as a function of the
eccentricity of the nanoparticle for different tip—nanoparticle
distances, z = 10, 16, 22, 30 nm. Inset: zoom of (b) in the small
eccentricity range (1 < e < 2) normalized by the calculated
value for e = 1. (c) Idem, as a function of the dielectric
constant of the nanoparticle at fixed tip—nanoparticle distance
z = 9.5 nm and different eccentricities in the range 1 < e < 2
(from bottom to top). The horizontal line is the value
measured on a single viral particle of spheroidal shape with
experimental parameters equal to the ones used in the
calculations (AC s = 7.15 zF nm™, see [29]). Tip geometry
data: R=5nmand 8= 10°.

Something similar happens with the two shell model, where small

objects can be approximated by an analytical formula because the

electrical field generated by the probe is approximately homogeneous in

the part that mostly contributes to the force, something that does not

happen in larger objects like bacteria (in the um range).

Finally we concluded that for the small objects the eccentricity

plays a very important role so the topography has to be precisely

measured, whereas in bacteria it is not as important and that is why an

axial symmetry of a cone truncated to a tangent sphere over an oblate

hemi-spheroid can be used.



