
Algorithms and efficient encodings for argumentation
frameworks and arithmetic problems

Francesc Guitart Bravo

Dipòsit Legal: L.1694-2014
http://hdl.handle.net/10803/284474

Nom/Logotip de la 
Universitat on s’ha 

llegit la tesi

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El  acceso  a  los  contenidos  de  esta  tesis  doctoral  y  su  utilización  debe  respetar  los
derechos  de  la  persona  autora.  Puede  ser  utilizada  para  consulta  o  estudio  personal,  así  como  en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.  No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.



Universitat de Lleida
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Abstract

In this thesis we focus on the design and implementation of a particular
framework of Possibilistic Defeasible Logic Programming (RP-DeLP). This
framework is based on a general notion of collective (non-binary) conflict
among arguments allowing to ensure direct and indirect consistency proper-
ties with respect to the strict knowledge. An output of an RP-DeLP program
is a pair of sets of warranted and blocked conclusions (literals), all of them
recursively based on warranted conclusions but, while warranted conclusions
do not generate any conflict, blocked conclusions do. An RP-DeLP program
may have multiple outputs in case of circular definitions of conflicts among
arguments.

We introduce two semantics, the first one where all possible outputs are
computed and the second one which is a characterization of an unique out-
put property. The computation of the outputs for both semantics relies on
two main problems: the problem of finding a collective conflict among a
set of arguments and the problem of finding almost valid arguments for a
conclusion. Both problems are combinatorial problems, so we propose two
resolution approaches: a first one based on SAT techniques and a second
one based on Answer Set Programming techniques. We propose an imple-
mentation and we empirically test our algorithms. We provide an analysis
on the performance of the implementation of the algorithms, and we explain
the results on the resolution of some randomly generated problems.

In this thesis we also focus on the resolution of some combinatorial prob-
lems. We analyze, design and implement some resolution tools for arithmetic
problems, modular constraints and networking problems. We studied empir-
ically how our approaches perform and we compared them to other solving
techniques known as best proposals in the literature.
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Resum

Aquesta tesi doctoral se centra en el disseny i implementació d’un framework
particular per Possibilistic Defeasible Logic Programming (RP-DeLP). Aquest
framework es basa en una noció de conflicte col·lectiu (no binària) entre argu-
ments que permet assegurar les propietats de consistència directa i indirecta
respecte del coneixement estricte. Una sortida d’un programa RP-DeLP és
una parella de conjunts de conclusions garantides i bloquejades (literals),
totes elles basades recursivament en conclusions prèviament garantides. La
diferència radica en què mentre les conclusions garantides no generen cap
conflicte, les conclusions bloquejades śı que ho fan. Un programa RP-DeLP
pot tenir múltiples sortides en el cas de definicions circulars de conflictes
entre arguments.

S’introdueixen dues semàntiques pel sistema d’argumentació presentat.
La primera d’elles pren en consideració totes les possibles sortides que po-
den ser obtingudes d’un programa RP-DeLP tenint en compte les diferents
maneres de resoldre els conflictes circulars que poden sorgir. La segona
semàntica se centra en el còmput d’una única sortida que està basada en
la caracterització del que anomenem maximal ideal output. Aquesta sorti-
da conté un nombre maximal de literals garantits, però que inclou només
literals els arguments dels quals tenen els seus suports inclosos en la sortida.

El comput de les sortides per ambdues semàntiques es basa en la resolu-
ció de dos problemes principals: el problema de trobar conflictes col·lectius
entre un conjunt d’arguments i el problema de trobar arguments almost
valid per una conclusió. Ambdós problemes són considerats problemes com-
binatoris i es proposen dues aproximacions per a la resolució: una primera
aproximació basada en tècniques SAT i una segona basada en Answer Set
Programming. Es proposa una implementació i una anàlisi emṕırica dels
algorismes implementats. Aquests algorismes es proven sobre un conjunt
de problemes generats aleatòriament mitjançant un generador que permet
la configuració dels diferents paràmetres dels problemes generats. Un cop
obtinguts els resultats, s’estudia quina afectació han tingut els diferents
paràmetres observant el temps de resolució i la informació obtinguda.

En aquesta tesi també s’estudien diferents tècniques de resolució per a
altres problemes combinatoris. S’analitzen, dissenyen i implementen algunes
eines de resolució per a problemes aritmètics, restriccions modulars i pro-
blemes de xarxes de comunicacions. S’ha estudiat com les aproximacions
proposades es comporten en comparació amb altres tècniques proposades a
la literatura considerades com les més eficients fins al moment.
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Resumen

Esta tesis se centra en el diseño e implementación de un framework particu-
lar para Possibilistic Defeasible Logic Programming (RP-DeLP). Este frame-
work está basado en la noción general de conflicto colectivo entre argumentos
(no binario) que permite asegurar las propiedades de consistencia directa e
indirecta respecto al conocimiento estricto. Una salida de un programa RP-
DeLP es una tupla de conjuntos de conclusiones (literales) garantizadas y
bloqueadas, todas ellas basadas recursivamente sobre conclusiones garanti-
zadas con la particularidad de que mientras las conclusiones garantizadas
no generan ningún conflicto, las conclusiones bloqueadas śı lo hacen. Un
programa RP-DeLP puede tener múltiples salidas en el caso de que existan
definiciones circulares de conflictos entre los argumentos.

Se introducen dos semánticas, la primera donde se computan todas las
posibles salidas del programa y una segunda que nace de la caracterización
de la propiedad de la salida única. El cómputo de las salidas para ambas
semánticas se basa en la solución de dos problemas principales: el proble-
ma de la búsqueda de argumentos almost valid para una conclusión y la
búsqueda de conflictos colectivos entre un conjunto de argumentos. Ambos
problemas son problemas combinatorios y se proponen dos aproximaciones
de resolución diferentes: una primera aproximación basada en técnicas SAT
y otra segunda aproximación basada en técnicas de Answer Set Program-
ming. Se propone una implementación y también se prueba emṕıricamente el
comportamiento de los algoritmos propuestos. A través de un análisis sobre
el comportamiento de la implementación se explican los resultados obteni-
dos. Para ello se generan problemas aleatorios donde algunas propiedades
pueden ser controladas mediante la configuración de parámetros de entrada.

Adicionalmente esta tesis también se centra en la resolución de otros
problemas combinatorios. Se analizan e implementan herramientas para la
resolución de problemas aritméticos, restricciones modulares y problemas de
redes de comunicaciones. Se propone un estudio emṕırico de las propuestas
y se comparan con las aproximaciones, conocidas como más eficientes hasta
el momento, de la literatura.
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1.1. Context and Motivation

Argumentation plays a key role in Human reasoning. Everyday we share
information among us by expressing ideas. Very often these ideas are related
with many other ideas supporting or attacking a claim. We can say that
those supports and attacks are part of an argumentative process within a
dialogue. We can also see argumentation as an introspective process used
when we face uncertainty or when we want to reason for a further under-
standing in a certain field of knowledge.

One of the main goals for Artificial Intelligence (AI) is to understand
intelligent entities, but in contrast to other fields such as Philosophy or
Psychology, which also are concerned to discover how humans think, AI
tries to reproduce those intelligent behaviours in computers. The study
of intelligence has been one of the oldest scientific research fields, but AI
research was formally initiated in 1956, and from the beginning to nowadays,
has turned one of the most biggest never ending puzzles in science.

Over the last ten years, argumentation has come to be a very important
piece of study in the puzzle of AI. One of the most relevant contribution
to this field is [Dun95a] where Dung stated a formalization for abstract
argumentation frameworks. That framework is based on the definition of
arguments and the relation between those arguments under the notion of
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attack. Arguments are evaluated using acceptability semantics where the
attack relation is the core of all Dung’s semantics.

There are a number of frameworks for modelling argumentation in logic.
Logic-based formalization of argumentation frameworks has been extensively
studied in recent years. One of the better-known approaches in this respect
is Besanrd and Hunter’s logic-based counterpart of Dung’s theory [BH00],
in which arguments are represented by a tuple where we distinguish the rea-
sons, the conclusion and the method of inference by which the conclusion is
meant to follow from the reasons. Common usual proposals for modelling
argumentation in logic combine arguments for and against a particular con-
clusion. However, when we face knowledge in our everyday life we can not
believe everything with the same level of certainty and sometimes the infor-
mation we handle is not complete. To deal with potentially inconsistent an
incomplete knowledge, there have been some formalisms to manage incon-
sistency and uncertainty in argumentation.

Defeasible Logic Programming (DeLP for short), formalized by Garćıa
and Simari [GS04a], is one of such formalisms, combining results from de-
feasible argumentation theory and logic programming. Although DeLP has
proven to be a suitable framework for building real-world applications that
deal with incomplete and contradictory information in dynamic domains, it
cannot deal with explicit uncertainty, nor with vague knowledge, as defea-
sible information is encoded in the object language using defeasible rules.

In [CSAG04], Chesñevar et al. define P-DeLP, a new logic programming
language that extends original DeLP capabilities for qualitative reasoning by
incorporating the treatment of possibilistic uncertainty and fuzzy knowledge.

In [ABG10], Alsinet, Béjar and Godo define a new recursive semantics
for DeLP extended with weights for arguments and based on a general no-
tion of collective (non-binary) conflict among arguments. In this framework,
called Recursive Possibilistic DeLP (RP-DeLP for short), an output (or ex-
tension) of a program is a pair consisting of a set of warranted formulas
and a set of blocked formulas with maximum strength. Arguments for both
warranted and blocked formulas are recursively based on warranted formu-
las but, while warranted formulas do not generate any collective conflict,
blocked conclusions do. Formulas that are neither warranted nor blocked
correspond to rejected formulas. A key feature that this warrant recursive
semantics addresses is the closure under subarguments postulate proposed by
Caminada and Amgoud [Amg12], claiming that if an argument is excluded
from an output, then all the arguments built on top of it should also be
excluded from that output. Then, in case of circular definitions of conflict
among arguments, the recursive semantics for warranted conclusions may
result in multiple outputs for RP-DeLP programs.

The first contribution of this thesis is the design and implementation of
a warrant procedure for computing the set of outputs that can be ultimately
warranted in an RP-DeLP program. This warrant procedure is an algorithm

2



which is based on the computation of two main queries for finding valid
arguments and finding collective conflicts.

Due to the recursive characterization of warranted conclusions and that
they can be naturally defined as sets computed with propositional rules and
certain constrains, we designed and implemented two approaches for solving
those queries:

The first one based on the successful SAT encodings for solving STRIPS
planning problems like the ones proposed by Kauz et al. in [KMS96,
KS99a]. In a STRIPS planning problem, given an initial state, de-
scribed with a set of predicates, the goal is to decide whether a desired
goal state can be achieved by means of the application of a suitable
sequence of actions.

The second one is based on the Answer Set Programming (ASP for
short) paradigm. We found the declarative programming paradigm
ASP well suited for our purpose of finding arguments in the set of
valid arguments and identifying arguments being part of a collective
conflict due to the natural representation with propositional rules. In
particular we reformulated SAT based constraints using the direct en-
coding proposed by Drescher and Walsh in [DW11a].

When considering the problem of deciding the set of conclusions that
can be ultimately warranted in an RP-DeLP program, circular definitions
of collective conflicts can arise. The usual skeptical approach would be
to adopt the intersection of all possible outputs. However, in addition to
the computational limitation, as stated by Pollock and Simari in [Pol09],
adopting the intersection of all outputs may lead to an inconsistent output.
Intuitively, for a conclusion, to be in the intersection does not guarantee
the existence of an argument for it, that is recursively based on ultimately
warranted conclusions.

The implementation of the corresponding designed algorithms for the
computation of multiple an unique outputs for RP-DeLP programs, pro-
vides a powerful tool to derive information from potentially inconsistent
knowledge bases. We used an imperative programming language such as
Python to code the main algorithm and data structures. We also integrated
modern SAT and ASP solvers to build an interpreter of RP-DeLP programs.
That interpreter is able to read an RP-DeLP program and compute the set
of warranted and blocked literals. One of the main advantages of having this
interpreter running in a computer is that we were able to perform a series
of experiments in order to empirically test how the RP-DeLP framework
works. To do so, we developed a random instances generator. This genera-
tor can tune some of the main properties for generating random instances,
among those properties are the length of the rules, number of variables, etc.
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We also integrate the RP-DeLP interpreter into a web application. This
application permits to any user in the world compute the outputs (choosing
among the Maximal Ideal or multiple extensions) for an RP-DeLP program
and also deciding if an ASP or an SAT solver is used to solve the queries
in which the warrant procedure relies on. Another interesting feature of
the web application is that we provide further information about the set of
warranted and blocked information, including the supporting arguments for
a blocked and a warranted literal.

The second contribution of this thesis is the study, design and im-
plementation of efficient encodings for arithmetic and other combinatorial
problems. Actual SAT solvers have become a very useful tool to consider
when solving hard problems. Due to the high efficiency in the performance
and the constant progress in solvers development, one might consider to rep-
resent the original problem as an SAT instance. The current high efficiency
of SAT solvers turned SAT encodings a powerful tool for many practical
industrial applications, such as Electronic Design Automation (EDA) and
important problems in Artificial Intelligence, like STRIPS, that were origi-
nally believed to be problems not suitable for propositional logic satisfiability
algorithms.

While most of the research in the SAT community has been focused on
developing very efficient solvers to solve the SAT problem, there is also an
interest in how problems are encoded efficiently. We studied three different
problems and evaluated empirically how they perform in comparison with
other solving tools:

1. Due to the high efficiency of modern SAT solvers, our interest was to
encode well-known cryptographic problems as SAT formulas. Cryp-
tographic systems rely on the hardness of reversing some arithmetic
functions such as factorization and discrete logarithm. Previous arti-
cles have proposed integer factorization as SAT-benchmark, our goal is
to introduce this benchmarks as the basis for new cryptographic SAT-
benchmarks. We performed some empirical test and we compare with
other problem solving techniques such as pseudo-Boolean constraints
(PB constraints for short) and traditional algorithms for solving those
problems. Our results indicate that these two problems are extremely
hard for state-of-the-art SAT solvers, so they are good benchmarks for
the research community interested in finding good SAT encodings for
practical constraints.

2. There are more problems related with cryptographic functions. This
is the case of linear modular arithmetic equations, apart from cryp-
tography they are used in several interesting applications. As an
example, in [GW97] linear modular arithmetic constraints are used
to prune the search space in an algorithm for optimally solving bin
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packing problems and in some frequency assignment problems, like
in [CG93, NO06], frequency domains for sites are organized in groups
that are congruence equivalence classes, so that adjacency constraints
between pairs of frequencies can be defined with modular arithmetic.
Our interest is to study modular arithmetic constraints on Boolean
variables. We study and analyze some translations to PB constraints,
which can be solved with native PB solvers. We also look at those PB
solvers that have shown that a transformation to the SAT problem
can be an effective solving strategy for PB problems.

3. There are several real world applications where SAT solving techniques
are suitable for solving them. One of the best known is EDA but there
are more topics where SAT is a very suitable tool. One of this topics
is networking, to be more concrete, we focused on optical networking.
All-optical networks are one of the most successful recent approaches
to tackle with the need of high bandwidth, although they come with
some inconveniences. One of such problems is the need to design
networks that will be able to cope with existing and future demands
with the least possible hardware deployment, especially without having
to resort to costly frequency conversion or opto-electronic conversion.

We focus on the Routing Wavelength Assignment for Static Lightpath
Establishment (RWA-SLE for short), by encoding it as PB problem.
Then we compare results using our solving method with other proposed
approaches for a wide range of generated problem instances. Results
show that, for those problems where it is hard to find a suitable set of
routes and wavelength assignments our method performs better than
other methods. Solving those hard instances is particularly interesting
because, otherwise, more hardware deployment would be needed to
meet the traffic requirements.

Additionally to the study over the PB encodings for the RWA-SLE
problem, we also present an Answer Set Programming solving ap-
proach. Answer Set programming has become an attractive tool for
representation and reasoning. Although some solvers were proposed in
[SNS02] [LPF+06], recent work in ASP solving techniques such as con-
flict driven learning, backjumping, restart and watched literals lists has
been proposed in [GKNS07], making Clasp the best performing ASP
solver. This can bee seen in [GLN+07] [DVB+09] [CIR+11] where
Clasp and Potassco framework show very good performance in global
results. Moreover Clasp also showed very good performances in SAT
competitions, making ASP a good technique for CSP solving.
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1.2. Contributions

The contributions of this thesis were obtained in two different parts.
First, we devoted our efforts towards understand how to solve certain kind
of combinatorial problems using SAT and ASP encodings. Secondly, we
applied the knowledge obtained from the first phase to design and imple-
ment efficient solvers for the argumentation problems studied in the second
part. In this section we summarize the contributions of this thesis. The
contributions of the first part are:

We presented SAT encodings for basic non-linear arithmetic opera-
tions: multiplication and modular exponentiation, used as the basic
building blocks for encoding integer factorization and discrete loga-
rithm as very challenging SAT instances. We performed an empirical
study for comparing the performance of our encodings with other solv-
ing techniques.

We studied how to solve efficiently pseudo-Boolean Modular constraints
(a generalization of parity constraints). After this empirical study
we have provided two new alternative approaches based in pseudo-
Boolean constraints and SAT encodings. We studied the performance
of our encodings.

We studied the use of current SAT solvers for the resolution of all
optical networks problems. Through a series of empirical studies, we
proved that a good formulation allocates network resources more effi-
ciently than other approaches based on greedy algorithms, extensively
studied in the specialized literature, at least, for critically constrained
problems. We also contributed with new pseudo-Boolean encoding
variants, highly competitive with the existing SAT formulations for
this problem, that make easier the task of extending the proposed
formulation to other networking problems with different kind of con-
straints.

We also performed an experimental investigation about the use of An-
swer Set Programming (ASP) solvers for the resolution of of all optical
networks problems. We contributed with new Answer Set Program-
ming encodings for the problem, and we studied how the tightness
and the number of generated loop nogoods relate with the complex-
ity of solving the instances. In addition, a comparison with the best
previous pseudo-Boolean encoding has shown that the Answer Set Pro-
gramming approach is quite competitive with the well established ap-
proach based on pseudo-Boolean solvers that use SAT encodings and
state-of-the-art SAT solvers.
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Then, once we learned about how to solve hard combinatorial problems
with SAT and ASP encodings, we tackled the problem of designing and
implementing efficient algorithms for different argumentation problems:

We studied, designed and implemented algorithms that compute the
outputs for a Recursive Possibilistic Defeasible Logic Programming
(RP-DeLP) argumentation framework, but considering two different
semantics:

1. A semantics where the answer for a single argumentation problem
instance can include multiple outputs, where an output contains
a set of warranted and blocked conclusions and their arguments,
given that mutually conflicting arguments are resolved by con-
sidering different outputs. Each output is guaranteed to satisfy
certain consistency and closure properties.

2. A semantics where there is an unique output for a single argu-
mentation problem instance, called maximal ideal output, where
the output represents the maximal possible consensus that is free
from mutual conflicts between arguments but it also satisfies sim-
ilar closure properties like in the previous semantics.

After the design of a first version of algorithms for these two semantics,
we subsequently designed refined versions that allow a more efficient
implementation, because avoid the computation of certain structures
and not necessary arguments with the goal of improving the overall
performance.

We contributed with the design and implementation of efficient encod-
ings, based on SAT and ASP techniques, of the two main queries that
are needed to solve by our argumentation algorithms: computing valid
arguments and computing conflicting sets of arguments. These queries
are needed by our algorithms under the both semantics considered.

We designed and implemented a web system for the easy use of our
argumentation algorithms, that allows the use of both the SAT encod-
ings and the ASP encodings. The web system not only gives to the
user the outputs generated from the two different semantics consid-
ered, but it also gives additional information to the user that allows
to understand the arguments finally warranted and blocked in each
output, with the goal of helping non-expert users on argumentation to
better understand the outputs generated under a particular semantics.

We empirically studied the performance of the algorithms when solv-
ing random problem instances. We generated sets of random problem
instances that differ on some of the features, such as number of vari-
ables, number of clauses, and other structural characteristics. We also
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empirically studied and compared how the SAT and ASP encodings
proposed allow the argumentation algorithms to scale up with problem
size for some particular cases.

1.3. Publications

Some of the contributions done during this thesis have already been
published in conferences and journals. We next list in chronological order
those publications:

Béjar, R., Fernández, C., and Guitart, F. Encoding Basic Arithmetic
Operations for SAT-Solvers. In Proceedings of CCIA2010. Pages 239
- 248.

Ansótegui, C., Béjar, R., Fernández, C., Guitart, F., and Mateu, C.
Solving Pseudo-Boolean Modularity Constraints. In Proceedings of
ECAI2010. Pages 867 - 872.

Alsinet, T., Béjar, R., Godo, L., and Guitart, F. Maximal Ideal Re-
cursive Semantics for Defeasible Argumentation. In Proceedings of
SUM2011. Pages 96-109.

Béjar, R., Fernández, C., Guitart, F., and Mateu, C. Towards an
Efficient Use of Resources in All-Optical Networks. In Proceedings of
CCIA2011. Pages 61 - 70.

Alsinet, T., Béjar, R., Godo, L., and Guitart, F. Using Answer Set
Programming for an Scalable Implementation of Defeasible Argumen-
tation. In Proceedings of ICTAI2012. Pages 1016 - 1021.

Alsinet, T., Béjar, R., Godo, L., and Guitart, F. On the Implementa-
tion of a Multiple Outputs Algorithm for Defeasible Argumentation.
In Proceedings of SUM2013. Pages 71 - 77.

Béjar, R., Fernández, C., Guitart, F., and Mateu, C. Solving Rout-
ing and Wavelength Assignment problem with Conflict-Driven ASP
solvers. In Proceedings of CCIA2013. Pages 60 - 63.

Alsinet, T., Béjar, R., Godo, L., and Guitart, F. Web Based System for
Weighted Defeasible Argumentation In Proceedings of CLIMA XIV.
Pages 155 - 171.

Alsinet, T., Béjar, R., Godo, L., and Guitart, F. RP-DeLP: A Weighted
Defeasible Argumentation Framework Based on a Recursive Seman-
tics. In Journal Of Logic And Computation
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Driven ASP solvers. In AI Communications.
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2
SAT Encodings

In this chapter we summarize the work done to understand techniques
for solving combinatorial problems. We focus this work on theoretical and
practical problems. First we give a short introduction to SAT algorithms
and then we move to three main problems: Arithmetic Problems, Modular
Constraints and the Routing and Wavelength Problem for All-Optical
Networks. For each problem we propose some encodings which are
evaluated through a comparison to other problem solving techniques, and
then we discuss the results obtained.
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2.1. Introduction

The Boolean Satisfiability Problem (SAT) has received a lot of attention
since the early 60’. SAT is a central problem in Computer Science, having
both theoretical and practical interest. From a theoretical point of view, it
was the first problem to be shown NP-complete and, from a practical point
of view, it has very efficient algorithms (SAT solvers) which are publicly
available for an easy use for the SAT community. In the past few years, the
SAT community has worked hard to improve the performance of SAT solvers.
As an example, a SAT competition is yearly organized, where researchers
around the world present their improvements on this field.

Despite the fact that, unless P = NP , the time complexity SAT problem
is know to be exponential in worst case, it is used in many areas such as soft-
ware and hardware verification, planning , scheduling , cryptography. SAT
solvers are becoming a suitable tool to tackle more and more practical prob-
lems, and instead of developing a search procedure for an specific problem
domain it is worth to reformulate the original problem as SAT instance.

SAT solvers can be divided in two categories, complete and incomplete.
On the one hand, complete methods can give a solution for a given input
SAT formula or prove that the formula is unsatisfiable. On the other hand,
incomplete methods can find a solution for a very large formula, but they
fail to detect unsatisfiability when no solution exists. In the field of com-
plete methods, most of the actual solvers are wise variations of the DPLL
procedure which was already presented in the 60’. Next we will give a brief
problem definition and some notation which will be used in the rest of the
document.

A Boolean formula is a logical expression defined over variables that can
take only two truth values: FALSE (0) and TRUE (1). A literal l is either a
variable b or its negation ¬b. We are interested in a certain kind of formulas,
which are in Conjunctive Normal Form (CNF). In a CNF formula, a clause
c is a disjunction of literals, l1 ∨ l2 · · · ∨ ln and the formula is a conjunction
of clauses c1 ∧ c2 · · · ∧ cn.

A truth assignment to a set V of Boolean variables is a function σ as-
signing a truth value to a set of variables. We say that a formula F has a
satisfying assignment if it is evaluated to 1 under a certain assignment. We
say then that F is satisfiable.

A partial assignment for a formula F is a truth assignment to a subset of
the variables of F . For a partial assignment ρ for a formula F , F |ρ denotes
the simplified formula obtained by replacing the variables appearing in ρ
with their specified values, removing all clauses with at least one TRUE
literal, and deleting all occurrences of FALSE literals from the remaining
clauses. If an assignment satisfies a formula F , this assignment is called a
model of F .

The SAT problem of a formula F in CNF, consists in determining whether
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there exists an assignment to the Boolean variables of F that satisfies the
formula.

The empty clause will be denoted as ⊥, which is the clause with no
literals and is unsatisfiable. A clause with only one literal is referred as unit
clause. A clause with two literals is refered as binary clause.

2.1.1. Complete Methods

A complete method for a SAT formula F , either finds a solution for F
or produces the empty clause (⊥) , meaning that F has no solution. The
most widely used methods in complete solvers are variations over the DPLL
algorithm. As we will see later, this algorithm performs backtracking on the
search space of partial truth assignments and performs efficient pruning on
falsified clauses. Modern SAT solvers add other techniques to this procedure,
such as clause learning and watched literals lists.

DPLL Procedure

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm [DLL62] is a
refinement of the previous Davis-Putnam algorithm, which was a resolution-
based algorithm proposed by Davis an Putnam in 1960. The DPLL algo-
rithm is a search process for finding a satisfying assignment for a given CNF
formula, or proving its unsatifiability.

The backtracking algorithm runs by selecting an unassigned variable l
and recursively search for a satisfying assignment for F. We say that the
algorithm is in a branching step every time a literal is chosen. A decision is
an assignment of the literal l to FALSE or TRUE in a branching step. For
a partial assignment of F , we say that F is violated by σ if it contains the
empty clause. The unit propagation procedure assigns the TRUE value to
unit clauses in order to increase the efficiency of the global procedure.

Other Features of Modern DPLL-Based SAT Solvers

Apart from the DPLL algorithm, modern SAT solvers introduce many
other techniques for handling SAT instances. It is not easy to keep an
updated list of all those features, but we will give some explanation of the
most used ones.

Decision strategy is one of the techniques that most differs from a
solver to another in variable selection. Some of the solvers use ran-
dom assignment to the variables, while others make use of objective
functions to maximize the current variable or clause state.

Clause learning plays a critical role in solvers performance. It is used
to prune the search in a different part of the space search by giving an
explanation for failure points.
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Non-chronological backtracking forces the algorithm to analyze the con-
flict reason and then determines which settings of the current partial
assignment are responsible for the conflict. Then it also determines
how far has to backtrack to unassign variables being part of the conflict
reasons.

Restarts clear the decision stack after some backtracks. Instead of per-
forming a long search, it splits the decision sequences in many shorter
searches. It reduces the probability of the procedure to get stuck in
an abnormally long search time and increases the availability of good
splitting decisions by allowing the search to explore only the smaller
subtrees under a decision node.

Watched literals are data structures which maintain information of
some special clauses in order to trigger fast unit propagation. The idea
behind is that for each clause there are two watched literals, when a
watched literal has an assignment the clause is reviewed, if there are
more than one variables unassigned, then the pointer to the watched
literal is updated to a new unassigned variable, but if there is only one
unassigned variable left, is time to run unit propagation. This may led
bigger usage of memory but speeds up the performance of the solver.

SAT Solvers

As explained later, we are concerned not only with solving problems in
an efficient way, but with using the information provided by SAT solvers to
get further information based on that results. That is the case for argumen-
tation systems encodings, where an UNSAT instance verifies the absence
of conflicts in a knowledge database. This is only one of the reasons why
we need complete methods to solve most of our generated SAT instances.
We used basically two main SAT solvers: Minisat and Precosat. Follows a
description of its main features:

Minisat is one of the most popular SAT solvers in the community. Its
minimalistic and open-source nature makes it the starting point for
many researchers and developers in SAT community. Apart of being
a good learning tool, it was awarded in the 2005 SAT competition,
being this a proof of its good efficiency. Minisat has been an excellent
tool for us to solve SAT instances as well as to modify and implement
some other features in our algorithms, such as unit propagation. Some
key features of Minisat are:

• Easy to modify, as it provides an excellent documentation and it
is clearly programmed, being very easy to understand and also
to modify.
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• Highly efficient, results show that it can solve SAT instances very
efficiently.

• Designed for integration, as minisat supports incremental SAT
and has mechanisms for adding non-clausal constraints. It is a
good choice for being integrated as a backend to another tool.

Precosat. Precosat version 236 was the winner of the application track
of the SAT competition in 2009. Newer versions have been submitted
to more recent competitions.

2.1.2. Incomplete Methods

An incomplete method for solving the SAT problem is one that does
not provide the guarantee that it will eventually either report a satisfying
assignment or prove that the formula is unsatisfiable. Unlike the complete
methods that do an exhaustive branching and backtracking search over the
space of the problem, incomplete methods are generally based on stochastic
local search.

The most known local search methods in SAT are GSAT [SLM92] and
WalkSAT [SKC94]. By contrast, these procedures are able to solve hard
instances with more variables than complete methods, though completeness
is lost. Local search methods start typically with some ramdomly generated
complete assignment and try to find a satisfying assignment by iteratively
changing the assignment of one propositional variable. Each change of the
assignment of a variable is called a variable flip, and variables are selected
heuristically. Such changes are repeated until either a satisfying assignment
is found or a pre-set maximun number of changes is reached.This process is
repeated as needed, up to a pre-set number of times. This allows to explore
the search space moving from one search space position to a neighboring
position. The decision on each step (change) is based on information about
local neighborhood only. Usually, local search algorithms do not explore the
entire search space, and a given assignment may be considered more than
once.

The main difference among the different local search algorithms for SAT
lies in the strategy used to select the variable to be ipped next. Furthermore,
local search algorithms can get trapped in local minimal and plateau regions
of the search space, leading to premature stagnation of the search. One of
the simplest mechanisms for avoiding premature stagnation of the search is
random restart, which reinitializes the search if no solution has been found
after a fixed number of steps. Random restarts are used in almost every
local search algorithm for SAT.
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2.2. Arithmetic Problems

Given the current success of using SAT encodings for solving problems
with linear arithmetic constraints, see for example [ES06], our motivation is
to start an investigation for finding the best we can do with SAT encodings
for solving problems with non-linear arithmetic constraints. We consider
two of such problems, integer factorization and discrete logarithm over a
finite cyclic group, that are basic problems for cryptographic applications.

These two problems are also interesting from the point of view of arti-
ficial intelligence and constraint programming, as they are problems in the
complexity class NP . Actually they are believed not to be polynomially
solvable, they seem not to be NP -complete. So they are one of the few
natural problems to be located somewhere between P and NP -complete
problems, a class of problems not widely studied by these research commu-
nities.

We present SAT encodings for the basic building functions that can be
used to define these problems: adders and multipliers. Our SAT encodings
are based on Boolean circuit representations of such functions, following the
best approaches found so far for encoding linear constraints with SAT.

Definition 2.1 (Boolean circuit). For every n,m ∈ N , a Boolean circuit
C with n inputs and m outputs is a directed acyclic graph. It contains n
nodes with no incoming edges; called the input nodes and m nodes with no
outgoing edges, called output nodes. All other nodes are called gates and are
labeled with one ∨, ∧ or ¬ (the logical operations OR, AND, and NOT).
The ∨ and ∧ nodes have fanin (i.e., number of incoming edges) of 2 and the
¬ nodes have fanin 1. The size of C, denoted by |C|, is the number of nodes
in it. The circuit is called a Boolean formula if each node has at most one
outgoing edge.

It is well known that each propositional formula can be converted to an
equisatisfiable formula in CNF, e.g., by using Tseitin’s encoding [Tse68].
The idea behind Tseitin transformations is to introduce a new variable xG
for each subformula G = H1 ◦H2 in F , where ◦ denotes any of the operators
∧,∨,→ or ↔, and we use = to denote syntactic equality. The formula F
is then translated into conjunctive normal form by adding a set of clauses
Tr(G) for each subformula G which enforces that the truth value of XG is
computed correctly given the truth values of XH1 and XH2 .

For the multiplication function, we also consider a translation to pseudo-
Boolean linear equations, and a subsequent transformation to SAT, using
current SAT encodings for such equations.

We compare the performance of our SAT-based approaches with the best
algorithms for such problems: Quadratic Sieve factorization and Pollard’s
Rho discrete logarithm algorithms. Our results indicate that the perfor-
mance of the SAT encodings is worse than for the current best specialized
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algorithms, thus indicating that these problems are interesting benchmarks
for discovering efficient SAT encodings of practical constraints.

Nevertheless, we observe that the gap at performance between SAT en-
codings and specialized algorithms becomes narrower for discrete logarithm
problems than for factorization. This opens a new line of research towards
elliptic curve cryptography, where we expect to narrow the gap, given the
state of the art of specialized elliptic curve algorithms.

Our main goal is to encode all the circuits as equisatisfiable formulas,
so as long as there exists a model for the input variables also a model must
exist for the outputs, and vicevercesa.

2.2.1. Factorization

Factorization is one of the two cornerstones where RSA security relies
on. RSA [RSA78] is the first public-key cryptography schema suitable for
digital signature as well as for encryption, being still widely used today. RSA
security is based on the computational unfeasibility to factorize a public
large integer, n = x · y, where their prime factors, x and y, require certain
conditions in order to avoid specific attacks that could discover x and y
easily. Practical RSA public keys, nowadays consist of integers n with a
length of a few thousands of bits.

To solve the factorization problem using a SAT solver, we will encode
the multiplication problem as a CNF formula. So, given an encoding for the
multiplication able to assign a value to variables x and y, the SAT solver
will search for a proper assignment to the variable x, but if we encode it
wisely we will be able to assign a value to variable x and the SAT solver will
find an appropriate assignment for x and y such that it is the solution for
the factorization problem.

Problem Definition

The decomposition of an integer n = pe11 · pe22 . . . pekk , being pi primes
and ei naturals, is unique. When we talk about n factorization we mean
the problem of finding a non trivial decomposition for n. In this work we
consider the special case of finding the non-trivial decompositions for an
integer n that is the product of two primes x and y, where x > 1 and y > 1.

Adders

An adder is a circuit which takes two integers as input and outputs an
integer which is the sum of the inputs. The simplest circuit performing this
task is a half adder, which can represent the sum and the overflow (carry)
of an input of two bits. A full adder can represent the sum and the overflow
of an input of three bits representing two input bits plus the carry-in bit.
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Half Adder: A half adder needs two input bits (X and Y) and two
output bits. The carry (C) bit is set to 1 only when the sum (S) can
not be represented with a single bit.

S ↔ X ⊕ Y ;
C ↔ X ∧ Y,

Full Adder: A Full Adder is a circuit capable of representing both
the carry-in and the carry-out overflow in an arithmetic sum. It has
three input variables A, B and Cin and two output variables S and
Cout which represents the sum and the carry-out.

S ↔ A⊕B ⊕ Cin;
Cout ↔ (A ∧B) ∨ (Cin ∧ (A⊕B)),

Multipliers

Array Multiplier: For this implementation we used the proposi-
tional logic model proposed in [FMM03]. It can be implemented as an
array of half and full adders. Using this schema, two l-bits length num-
bers can be multiplied using an array with l rows and 2l-1 columns.
For the encoding, as well as for Figure 2.1, we use X and Y as input
variables and P as output. Figure 2.1 shows the array multiplier for
l = 4.

Ii,j ↔ Xi ∧ Yj i, j = 0 . . . l − 1
S0,j ↔ I0,j+1 ⊕ Ij+1,0 j = 0 . . . l − 2
Si+1,j ↔ Ci,j ⊕ Si,j+1 ⊕ Ij+1,i+1 i, j = 0 . . . l − 2
C0,j ↔ I0,j+1 ∧ Ij+1,0 j = 0 . . . l − 2
Ci+1,j ↔ (Ij+1,i+1 ∧ Ci,j)∨
(Ij+1,i+1 ∧ Si,j+1) ∨ (Ci,j ∧ Si,j+1) i, j = 0 . . . l − 2
P0 ↔ I0,0

Pi ↔ Si−1,0 i = 1 . . . l − 1
Pi+l ↔ Sl−1,i i = 0 . . . l − 2
P2l−1 ↔ Cl−1,l−2

Booth Multiplier: Booth multiplication is a technique whereby x
and y may be multiplied following a few simple steps [Boo51]. We
decided to implement such algorithm because the corresponding circuit
representation is smaller than for the array multiplier in terms of size.

The Booth multiplier works with an iterative process, where the num-
ber of iterations is determined by the size of the multiplicand y, and
where a sum of partial products is iteratively updated until it finally
contains the value of the multiplication. First of all, let’s define our
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Ii,j ↔ Xi ∧ Yj

Figure 2.1: Modular design of an array multiplier.

variables. The input variables are the bit vectors multiplicands X, of
size lx, and Y , of size ly, which contains the binary representation of x
and y respectively. We define the size of the output as l = lx + ly + 1,
and define the following additional bit vectors:

1. A is a bit vector of size l and contains the value of x on its lx
left-most bits, being the remaining (ly + 1) bits filled with zeros.

2. S is a bit vector of size l and contains the value of −x (2-
complement representation) on its lx left-most bits, being the
remaining (ly + 1) bits filled with zeros.

3. P is a bit vector of size l and it initially contains: on its lx left-
most bits the value 0, on the next ly bits the value of y and in the
final (right-most) bit the value 0. It represents a sum of partial
products that at the end of the algorithm will contain the desired
product of x and y.

The Booth multiplication process iterates the next steps ly times, so
at the end the bit vector P will contain the multiplication of x and y.
At iteration i, the steps are:

1. If P0 = 0, P1 = 0, multiply the existing sum of partial products
(P ) by 2−1. It is easy to see that this is an one place arithmetic
shift to the right.

2. If P0 = 0, P1 = 1, add S to P and multiply by 2−1.

3. If P0 = 1, P1 = 0, add A to P and multiply by 2−1.

4. If P0 = 1, P1 = 1, multiply the sum of partial products by 2−1.
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Finally we drop the rightmost bit of P , so the product can be found
on the lx + ly left-most bits of P .

According to this procedure, we have implemented a SAT encoding
based on its circuit representation, where the basic building functions
are full and half adders, plus some additional small circuits that con-
trol the right action to perform at each iteration of the above iter-
ative process. The SAT encoding uses the sets of Boolean variables
{Ai, Si|0 ≤ i ≤ l − 1} and {Pi,j |0 ≤ i ≤ ly + 1, 0 ≤ j ≤ l − 1}. The
first set represents the bits of the vectors A and S, and the second
one represents the value of the vector P at the different iterations of
the algorithm; so Pi,j represents the value of bit j of P at iteration i.
Iteration 0 refers to the initial value of P . Next, we present the clauses
of the SAT encoding. For enforcing the values of the bit vectors A and
S, we add unitary clauses that set the value of variables Ai and Si as
described before. Similarly, the initial value of P will be set on the
variables P0,j . The rest of clauses of the encoding simulate the different
iterations of the algorithm, so we have a similar set of clauses for each
iteration i of the algorithm. We use additional sets of variables for
simulating the computations performed at iteration i: {Ti|1 ≤ i ≤ ly},
{Qi,j |1 ≤ i ≤ ly, 0 ≤ j ≤ l − 1}, {Ci,j |1 ≤ i ≤ ly, 0 ≤ j ≤ l − 1}. The
set of clauses for iteration i are described below.

Ti ↔ Pi,0 ⊕ Pi,1
Qi,j ↔ Ti ∧ ((Pi,0 ∧Aj) ∨ (Pi,1 ∧ Sj)) j = 0 . . . l − 1
Ci,0 ↔ Qi,0 ∧ Pi,0
Pi+1,j−1 ↔ Qi,j ⊕ Pi,j ⊕ Ci,j−1 j = 1 . . . l − 1
Ci,j ↔ ((Qi,j ∧ Pi,j) ∨ (Qi,j ∧ Ci,j−1) ∨ (Pi,j ∧ Ci,j−1)) j = 1 . . . l − 1
Pi,l−1 ↔ Pi,l−2

Pseudo Boolean Encoding

A linear pseudo-Boolean constraint (PB constraint) over Boolean vari-
ables is defined by

∑
i ci · li B p where ci, the coefficients, and p, are integer

constants, li are literals and B is one of the operators of {=, <,≤, >,≥}.
Without loss of generality, these constraints can be rewritten to use the ≥
operator and positive coefficients (notice that −ci · bi can be rewritten as
ci · ¬bi − ci). A coefficient ci is said to be activated under a partial assign-
ment if its corresponding literal li is assigned to true. Assuming that B is
the ≥ operator, a pseudo-Boolean constraint is said to be satisfied under an
assignment to its Boolean variables if the sum of its activated coefficients
exceeds or is equal to p.

Consequently, the factorization problem can be encoded as follows:
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l−1∑
i=0

xi2
i ≥ 2

l−1∑
j=0

yj2
j ≥ 2

l−1∑
i=0

l−1∑
j=0

zi,j2
i+j = k

zi,j − xi − yj ≥ −1 i, j = 0 . . . l − 1
−2zi,j + xi + yj ≥ 0 i, j = 0 . . . l − 1

Firstly we try to avoid trivial solution and then we equal a binary rep-
resentation of the number to factorize. Then we represent the partial prod-
ucts to perform factorization. Both first equations avoid trivial solution,
meanwhile the third equation gives a binary representation of the number
to factorize. Finally, partial products are represented in order to perform
factorization.

It is worth to note that in this case of the pseudo-Boolean we encode
the direct problem of factorization in contraposition of previously defined
encodings, where our effort was devoted to encode the reverse problem of
multiplication to solver factorization. Our main goal with this encoding is,
given the current state of pseudo-Boolean solving techniques, compare how
SAT solvers behave in both cases.

Quadratic Sieve

In order to compare our multipliers with other methods, a good bench-
mark is to factorize large integers. To do so, we will use Quadratic Sieve
with the mathematical software SAGE to compare with our SAT-based mul-
tipliers.

Quadratic Sieve (QS) is known as one of the best methods to factor-
ize integers, along with Number Field Sieve, being the best algorithm for
integers up to 100 bits long.

The basics of QS are inspired on Fermat’s factorization method, trying to
find two numbers x and y such that x 6≡ ±y (mod n) and x2 ≡ y2 (mod n).
This means that (x− y)(x+ y) ≡ 0 mod n, and we only need to check that
(x− y, x) is a non trivial division. As detailed in [Pom85] there is at least a
1/2 chance that the factor will be non trivial. The steps in doing so are the
defined, firstly QS defines Q(x) as:

Q(x) = (x+ b√nc)2 − n = x̃2 − n,

and compute Q(x1), Q(x2), . . . , Q(xk). From the evaluations of Q(x), we
want to pick a subset such that Q(xi1)Q(xi2) . . . Q(xir) is a square, y2. Then
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note that for all x,Q(x) ≡ x̃2 mod n. At this point,

Q(xi1)Q(xi2) . . . Q(xir) ≡ (xi1xi2 . . . xir)
2 mod n.

If conditions above hold, we have factors for n.

2.2.2. Discrete Logarithm

We can define logarithm loga(h) operation as the solution to the equation
ax = h over the real or complex numbers. Discrete Logarithm is analogue
to the logarithm defined over the reals, but now defined over a finite cyclic
group instead. So we can say that discrete logarithm is the solution x to the
equation ax = h where a and h are elements of the finite cyclic group G.

Discrete Logarithm is a key concept for several cryptographic procedures
such as the standard for digital signature DSS [GFD09], that defines digital
signature schemes based on Discrete Logarithm over integer modular arith-
metic as well as over elliptic curves. For the first case, the standard specifies
private key lengths –roughly speaking x– between 160 and 256 bit length.

All the known methods to tackle the Discrete Logarithm run in expo-
nential time. The naivest approach is based on trial multiplication, encoded
for SAT as explained in next section. Other methods performs faster, as
Pollard’s rho, detailed in Section 2.2.2

Exponentiation

Let’s assume two natural numbers a and x to the computed as ax. Ex-
pressing x as binary, x =

∑l−1
i=0 xi2

i, we obtain,

ax = a20x0+21x1+22x2+...+2l−1xl−1 =
l−1∏
i=0

a2ixi .

As xi are binary variables, only those elements a2i , with xi set to one
will be multiplied.

Making a sharper look into that technique, we can see that a2i = (a2i−1
)2,

which means that having a we can easily calculate next series’s value squar-
ing the previous one. We can see a modular scheme for this exponentiation
method in Fig. 2.2 for an exponent l-bit length.

An easy extension to Zn of that fast exponentiation technique may be
implemented using modulo n multipliers, with the advantage that any par-
tial product will have length at most 2·log n, so the size of the exponentiation
circuit for Zn will remain polinominaly bounded in the size of the input.

In Fig. 2.3 there is a modular scheme for a n-modulo multiplier. Once
again we use multipliers and adders explained before plus a two’s comple-
ment module. What we want to encode is x · y = z (mod n), being x and
y the multiplicands, n the modulus, and x · y − k · n the output for any
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Figure 2.2: Modular design of an exponentiation circuit using multipliers
and 1-bit exponentiators.
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Figure 2.3: Modular design of a n-modulo multiplier.

k ∈ Z. Two’s-complement arithmetic is used to represent negative num-
bers. For ease of understanding, next we show Boolean equations for the
two’s complement module.

l−1∧
i=0

Bi ↔ Āi

l−1∧
i=2

(Ci ∨Bi−1 ∨ Ci−1) ∧ (C̄i ∨Bi−1) ∧ (C̄i ∨ Ci−1) ∧ (Ci ∨ B̄i−1 ∨ C̄i−1)

(C̄1 ∨B0 ∨ C0) ∧ (C1 ∨ B̄0 ∨ C̄0) ∧ (C1 ∨ B̄0) ∧ (C1 ∨ C̄0)

We have A as an input vector, B an auxiliary vector containing the
vector A negated, and finally C contains the output. All that vectors are
l-bit length.
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Pollard’s Rho

The Pollard’s rho randomized algorithm for the discrete logarithm prob-
lem [Pol78], is based on finding a collision on a sequence of integers of the
cyclic group Zn. Such a collision will be defined by two integers Yi and Yj
of the iteration sequence {Y0, Y1, . . . , Yi, . . . , Yj} generated with an iteration
function f : Zn → Zn and such that Yi ≡ Yj (mod n), where each Yk of the
sequence has the form: Yk = ak1hk2 . Then, once such a collision is found,
depending on the particular exponents of the two matching elements of the
sequence, the solution to ax = h (mod n) may be obtained.

As with the quadratic sieve algorithm, we have used the implementation
of this algorithm available in SAGE.

2.2.3. Experimental Analysis

In order to conduct our experimental investigation we have developed
two generators of random problem instances for factorization and discrete
logarithm problems. For the factorization problem, we first search two
primes of length n/2 and we took its product as the number to factorize.
For the discrete logarithm, we first search a strong prime q using Gordon’s
algorithm [MVO96], and then we search a generator g for the cyclic group
and randomly select an element h from the group. So, we have that gx = h
(mod q) is our discrete logarithm problem instance.

We have used two solving techniques for the experimental analysis:

SAT solver: Precosat (v.236)[Bie]. Winner at the SAT Competition
2009 for the application category. We have used this algorithm for
solving all the propositional encodings based on Boolean circuits for
the problems considered.

Pseudo-Boolean Solver: Minisat+ [ES06]. We have used this algorithm
for solving the pseudo-Boolean encoding of the factorization problems.
It uses three main approaches to generate circuits in order to trans-
late them to CNF pseudo-Boolean linear problems, which then can be
solved by a SAT-Solver. Those three approaches are:

• Convert a PB-linear constraint to a BDD.

• Convert a PB-linear constraint into a network of adders.

• Convert a PB-linear constraint into a network of sorters.

See [ES06] for more details about the above encodings for PB-linear
constraints.

Our experiments have been run on machines with the following specifica-
tions: Rocks Cluster 5.2 Linux 2.6.18 Operating System, AMD Opteron 248
Processor clocked at 1.6 GHz, 1.0GB Memory, and GCC 4.1.2 Compiler.
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Our SAT encoding for factorization (labeled as Precosat Array and
Precosat Booth) are compared with PB-encodings (labeled as Minisat+

Adders, Minisat+ BDD and Minisat+ Sorters) as shown in Figure 2.4.

SAT encodings for factorization use any of the propositional encodings
for integer multiplication. The output is fixed to the desired value n, and the
required additional constraints are added in order to make x and y factors
non-trivial.

For illustration, these additional constraints are the first two constraints
in the pseudo-Boolean encoding for factorization. It can be noted from
Figure 2.4 that our encoding using the Array multiplier performs the best
for factorization. Also we can see how the conversion of PB-encoding into
a network of adders is performing quite well. Both approaches perform
similarly because all of them employ networks of adders. Being so, the Array
multiplier will be the selected schema to compare SAT-encoding performance
against other benchmarks.
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Figure 2.4: Results on Factorization.

Figure 2.5 shows a comparison between the Array Multiplier SAT encod-
ing and SAGE Quadratic Sieve implementation. We can see that our SAT
approach performs significantly worse. The results show that with similar
time bounds, Quadratic Sieve is able to factor integers of around 200 bits
meanwhile the SAT encoding only factors integers of around 40 bits. The
figure also shows a similar comparison between our SAT approach for solv-
ing the discrete logarithm and Pollard’s Rho algorithm. This time, for a
same time bound, the difference in the size of the discrete logarithm prob-
lems solved is about 4 times bigger for the specialized algorithm. To check
the differences between our approach and the dedicated algorithm, we per-
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formed a linear regression in order to see the scaling cost of the specialized
algorithms and the SAT-based approaches. We have a cost of e0.4092·bits

for Precosat factorization and e0.06766·bits for SAGE Quadratic Sieve. And
e0.8466·bits for Precosat discrete logarithm and e0.3865·bits for SAGE Pollard’s
Rho. So, these results indicate that there is still a lot of space for possible
improvements of SAT encodings for these non-linear arithmetic problems.
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Figure 2.5: Results on Factorization and Discrete Logarithm.

As a final remark, we can say that we have presented SAT encodings
of basic non-linear arithmetic operations: multiplication and modular ex-
ponentiation, used as the basic building blocks for encoding integer fac-
torization and discrete logarithm as very challenging SAT instances. Our
comparison of the performance of our SAT-based methods with the cur-
rent best performing specialized algorithms has shown that these problems
are interesting challenges for the SAT research community, and we honestly
think that they deserve further study in order to understand the limits on
the performance of SAT encodings for such basic problems.

In the future, we expect to use our SAT encodings for encoding Elliptic
Curve problems, where the lack of specialized algorithms for them may make
worth the study of the performance of SAT-based algorithms.

2.3. Modular Constraints

Modular arithmetic is used in cryptographic systems as well as in pseudo-
random generators, being currently implemented in a wide range of devices,
and subject of great interest in media since some evidences shown that
pseudo-random generators may have been flawed in order to provide feasible
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backdoors to certain governmental agencies. Efficient implementations of
modular arithmetic are needed for power saving and many environmental
constraints requirements [GvHSS07, GW97, NO06, CG93].

Our interest is focused in studying modularity constraints of the follow-
ing form:

∑
i ci · li ≡ r (mod m) where ci, r and m are positive integers

and li is a literal of Boolean variables. We will refer to this constraint as
a pseudo-Boolean Modular (PBMod) constraint. In particular, in our work
we are interested in solving, efficiently, formulas which are conjunctions of
PBMod constraints.

A straightforward method to deal with PBMod Constraints is through
their translation to PB constraints of the form:

∑
i ci · li B k where k is an

integer positive constant and B is one of the operators of {=, <,≤, >,≥}.
Then, it is possible to use a PB solver with an empty objective function to
solve the problem. Some PB solvers also employ, as their solving strategy,
the translation to the SAT problem and the usage of SAT solvers. There are
several works on the translation of PB constraints to SAT [ES06, BBR09,
RM09, BBR06] and cardinality constraints (PB constraints where all coef-
ficients are equal to 1) to SAT [BB03, Sin05, ANORC09].

In [ES06] several encoding schemes into the SAT problem are analyzed:
networks of adders, Binary Decision Diagrams (BDD), and networks of
sorters. As we show in the experimental analysis that we have carried out,
for the problem we address in this work, the encodings based on a network
of sorters are the best performing ones. It is well known that an eager trans-
formation may lose some desirable properties/information from the original
model. Therefore, we introduce in this work a specialized translation for the
PBMod constraints into the SAT problem extending the encoding based on
networks of sorters.

We have also compared this approach with other standard solving tech-
niques such as the software package GLPK (GNU Linear Programming
Kit): https://www.gnu.org/software/glpk/) for solving our Integer Lin-
ear Programming (ILP) formulations of the problem.

In order to conduct our experimental investigation we have developed a
generator of random PBMod constraints. As in many problems we indeed
observe the existence of a phase transition region, i.e. a region where there is
an abrupt descent on the ratio of satisfiable instances. We have also studied
how the different generator parameters such as: the values of the remainder,
the modulo, the coefficients of the variables, and the length of the modular
constraints impact on the hardness of the instances and the performance of
the different solving strategies. Such study allows to select the appropriate
solving technique depending on the structure of the problem.
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2.3.1. Modular Constraints as pseudo-Boolean constraints

A modularity constraint on Boolean variables, that we will call pseudo-
Boolean modularity constraint, is defined by:∑

i

ci · li ≡ r (mod m) (2.1)

where the coefficients ci and the remainder r are integer constants, the
modulo m is a positive integer constant, and the li symbols are literals on
Boolean variables.
Without loss of generality, this constraint can be rewritten to use just posi-
tive integer constants through its normalization. This is achieved by replac-
ing the coefficients and the remainder by their remainder modulo m.

Now, we can naturally translate Eq. 2.1 to a linear integer arithmetic
constraint as follows: ∑

i

ci · li − k ·m = r (2.2)

where k is a positive integer variable. We will refer to the translation model
of Eq. 2.2 as ModLIA.

Notice that k is actually bounded, i.e., k ≤
⌊
C
m

⌋
, where C =

∑
i ci.

As we will see in Section 5, in order to solve a problem involving linear
integer arithmetic constraints we can use, among other several approaches,
a SMT solver with support for the Quantifier Free Linear Integer Arithmetic
(QF LIA) theory or a package like GLPK for Mixed Integer Programming.
However, since our modularity constraint is defined on Boolean variables,
we may rather be interested on translating Eq. 2.2 into PB constraints. In
particular, we just need to express k ·m as an arithmetic expression involving
only Boolean variables as follows:∑

i

ci · li −
∑
j

kj ·m = r (2.3)

where kj are Boolean variables and j ∈ {1, . . . ,
⌊
C
m

⌋
}.

We will refer to the translation model of Eq. 2.3 as ModPB-A.
We can still consider a slight variation that can potentially reduce the

search space, by reducing the natural symmetry in Eq. 2.3. Notice that the
sum of the kj variables can be the same under different assignments. We
can avoid this problem as follows:∑

i

ci · li −
∑
j

kj · j ·m = r ∧
∑
j

kj ≤ 1 (2.4)

We will refer to the translation model of Eq. 2.4 as ModPB-B.
As we can see, any consistent assignment to the kj variables will set at

most one variable to true. For both Eq. 2.3 and Eq. 2.4 we can now also
apply a PB solver.

28



2.3.2. Modular Constraints as SAT formulas

Eq. 2.5 is an example of normalized PBMod constraint.

3 · b1 + 2 · b2 + 5 · b3 + 3 · b4 = 1 (mod 6) (2.5)

As we can observe, C =
∑

i ci = 13 and
⌊
C
m

⌋
=
⌊

13
6

⌋
= 2.

Then, taking into account the different translation models described in
the previous section, we obtain the following PB constraints:

ModPB-A:

3 · b1 + 2 · b2 + 5 · b3 + 3 · b4 − (k1 · 6 + k2 · 6) = 1

ModPB-B:

3 · b1 + 2 · b2 + 5 · b3 + 3 · b4 − (k1 · 6 + k2 · 12) = 1 ∧ (k1 + k2 ≤ 1)

As we can observe, with the ModPB-A model there are two possible
ways to sum up to 6 with the k variables, while for the ModPB-B
there is only one. In general, for n k-variables, the ModPB-A model
considers 2n consistent assignments while ModPB-B just considers n,
thanks to the at-most-one constraint on the k-variables.

These PB constraints can now be solved with a PB solver. From
the different solving techniques of the state-of-the-art solvers, now,
we focus on the one that translates the PB constraints to a SAT for-
mula [ES06]. There exist several translation techniques [ES06, BBR09,
RM09, BBR06]. Whether a translation is suitable or not depends on
both the size of the encoding and the level of consistency that can be
achieved under a partial assignment to the Boolean variables. In par-
ticular, in [ES06] three main approaches to generating a SAT formula
from a PB-constraint are studied.

• Translate the PB constraint into a BDD, which can be treated as
a circuit of ITEs (if-then-else gates) and translated into clauses
by the Tseitin transformation [Tse68]. This approach guaran-
tees that the resulting encoding is arc-consistent but its size is
exponential in the worst case.

• Translate the PB constraint into a network of adders. The ap-
proach used in [ES06] is similar to the one is used for Data Mul-
tipliers to sum up the partial products [Dad68]. The size of the
translation is in O(n), however the resulting encoding is not arc-
consistent.

• Translate the PB constraint into a network of sorters. A sorter
is a circuit of n input gates and n output gates where the k
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lowest output gates are set to true and the rest to false if there
are exactly k input gates set to true. The size of the translation
used in [ES06] is in O(n · log2 n), and although it is not yet arc-
consistent it is closer than the translation through adders.

We have used the Minisat+ [ES06] solver to convert the PB constraints,
representing modularity constraints expressed with ModPB-A and ModPB-
B as to SAT formulas using the three different translation techniques pro-
vided by Minisat+: networks of adders, BDDs, and networks of sorters.
For the size of problems that will be considered in our experimental evalua-
tion, translation through networks of adders has shown a poor performance
(some orders of magnitude worse), BDDs do better but are not as good as
networks of sorters. This last translation technique together with ModPB-B
is the best performing approach so far. Consequently, in our experimental
evaluation the other two translation techniques, adders and BDDs, will not
be shown.

Therefore, we have decided to explore whether we can achieve a better
encoding if we translate directly the PBMod constraint to a SAT formula
based on a network of sorters, instead of having an intermediate state where
the PBMod constraint is translated to a PB constraint. In our translation
we used the OddEvenMerge sorters [Bat68]. For a more detailed explanation
for OddEven mergesort see [Lan00]. In our work the function compare(i1,i2)
on two input gates (Boolean variables) is translated to a SAT formula, with
two new auxiliary Boolean variables o1, o2 (the output gates), representing
(o2 ↔ (i1 ∧ i2)) ∧ (o1 ↔ (i1 ∨ i2)) with the following clauses:

o2 ∨ ¬i1 ∨ ¬i2
¬o2 ∨ i1
¬o2 ∨ i2

¬o1 ∨ i1 ∨ i2
o1 ∨ ¬i1
o1 ∨ ¬i2

A straightforward approach to convert a PBMod constraint into a SAT
formula consists in flattening the left hand side (LHS for short) and using
a sorter with as many inputs as the sum of the coefficients. Taking into
account our example in Eq. 2.5, once flattened,

3·b1︷ ︸︸ ︷
b1 + b1 + b1 +

2·b2︷ ︸︸ ︷
b2 + b2 +

5·b3︷ ︸︸ ︷
b3 + b3 + b3 + b3 + b3 +

3·b4︷ ︸︸ ︷
b4 + b4 + b4 = 1 (mod 6)
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the sorter would have 13 inputs and we should add the circuit to check if
the last output gate activated represents a number congruent to 1 modulo
6. Obviously, this approach is not good in terms of the size of the resulting
encoding. So, a better approach consists in connecting several sorters; i.e.,
creating a network of sorters. We will refer to this encoding as ModCS. In
order to apply the encoding based on sorters, the numbers must be repre-
sented in unary instead of binary. The sorters play then the role of adders of
unary numbers. Notice that the unary representation allows the use of any
base for the coefficients. The first phase of the encoding process is to find
a base such that the sum of all the digits of the coefficients written in that
base is as small as possible, since we want to minimize the entries to the
sorters to get the lowest possible size of the encoding. Since this is already
a hard optimization problem, we use a brute-force search trying all prime
numbers less than 20, as it is done in Minisat+.

In our working example the base we use is < 1, 3 >. The coefficients in
this base are represented as follows:

2 = (2, 0)<1,3> = 2 · 1 + 0 · 3
3 = (1, 3)<1,3> = 1 · 1 + 3 · 3
5 = (2, 1)<1,3> = 2 · 1 + 1 · 3

As we can see in Fig. 2.6, two sorters are used in our example. One
for the contribution of every coefficient to the 1-bits weight and another for
the 3-bits weight. Notice that one of the input gates of the 3-bits sorter
is connected to the third output gate of the 1-bits sorter. This is the way
we represent the carry between sorters. Then, taking into account that
the network of the sorters represents the sum of the LHS, we just need
to add the additional circuitry, i.e. the comparator, that checks whether
LHS ∈ {1, 7, 13}, the possible numbers congruent to 1 mod 6. For example,
in order to assure that LHS = 1 we just need to check if the first output
gate of the sorter 1-bits is true, the second is false and if the first output
gate of the sorter 3-bits is also false. Notice that if the kth output gate of
a sorter is false then the rest of the upper gates must also be false. This
circuitry can now be reused to test the conditions LHS = 7 and LHS = 13.

The motivation of this approach is to reduce the size of the encoding
as much as possible, both in terms of clauses and variables while preserv-
ing the good propagation properties. The PB solver Minisat+ uses in its
translation of the PB constraints to a CNF formula an intermediate circuit
representation where any two syntactically identical nodes are merged by
the so-called structural hashing. This reduces effectively the size of the en-
coding, however our approach still generates smaller formulas. Table 2.3.2
compares for two sets of the experimental results the size of our encoding
approach, ModCS, to the conversion through Minisat+ and the option of
sorters on the model ModPB-B.
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Figure 2.6: Schema for the ModCS encoding applied to example of Eq. 2.5.

(v,n,M,f) Variables Clauses Vars. × Clauses

100,10,5,56
ModPB-B 9,089 25,414 2.3 · 108

ModCS 7,203 18,258 1.31 · 108

Ratio 1.75
100,50,5,22

ModPB-B 60,988 179,466 1.09 · 1010

ModCS 33,249 89,880 2.98 · 109

Ratio 3.66

Table 2.1: Comparison of the size of encodings of models ModPB-B (Min-
isat+ and option sorters) and ModCS.

2.3.3. Experimental Analysis

In order to conduct our experimental investigation we have developed a
generator of random pseudo-Boolean Modularity constraints, randPBMod(v,n,M ,f).
The generator creates a formula consisting on f PBMod constraints, each
one with n Boolean variables out of a total of v Boolean variables. The
constraints are already normalized according to the respective modulo. For
each PBMod constraint, the modulo m, the remainder r, the coefficients ci
and the variables bi are selected from a uniform random distribution in the
intervals m ∈ [2,M ], r ∈ [0,M − 1], ci ∈ [1,M − 1] and bi ∈ [1, v]. The
variables are selected with no repetition for every PBMod constraint.

We have used several solving techniques for the experimental analysis:

SAT solver: Precosat (v.236). Winner at the SAT Competition 2009
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for the application category.

PB solver: Bsolo (v.3.1) [MMS05]. Winner at the Pseudo-Boolean
Evaluation 2009 for the category ”no optimization, small integers, lin-
ear constraints” in sat+unsat answers.

GLPK: advanced ILP solver with cutting planes. We have used the
advanced branch and bound GLPK ILP solver, that preprocesses the
input ILP problem for obtaining a simplified version of it, and we
have also used the option of adding cover, clique and Gomory cutting
planes, to further improve the pruning of the search space. For a
general introduction to cutting planes, see for example [MMWW02].

In this section we show results for each of these solvers (labeled as psat,
bsolo, and gplk) using each one at least one of the following encodings:
ModPB-A, ModPB-B, ModCS, and ModLIA (§ Section 2.3.2). Take into
account that the encodings ModPB-A and ModPB-B, in order to be used
by a SAT solver, should be first translated into SAT with Minisat+ using
the sorting networks option.

Our experiments have been run on machines with the following specifica-
tions: Rocks Cluster 5.2 Linux 2.6.18 Operating System, AMD Opteron 248
Processor clocked at 1.6 GHz, 1.0GB Memory, and GCC 4.1.2 Compiler.

In order to evaluate the different encoding performances we have run
our experiments for a wide range of parameters. The number of PBMod
constraints in a formula (f) determines its satisfiability. As plotted in Fig.
2.7, the probability of having an unsatisfiable problem grows with f , as it
becomes more constrained. In this case, when problems have v ' n, the
satisfiability transition occurs at low values of f and there seems to be a
sharp transition, like the one observed in other NP-complete problems, as
SAT [SK96, AP04] or CSP [XL00]. By relaxing this condition and allowing
values of v larger than n, we can build satisfiable problems for larger values
of f .

As a first benchmark, we have designed a set of experiments for v = 100,
n = 10, 20, 50 and M = 5, 10, 20, testing values for f up to a given time out
and solving 100 independent instances per point. This benchmark shows a
first picture about the problem hardness parameter dependency, and proves
that the problems become harder as n, M and f grow. It also helps to
look at the performance differences of our encodings in distinct benchmark
conditions.

Figure 2.8 shows the ratio of performance, considering solving time us-
ing Precosat, between the two best performing encodings for SAT solvers:
ModCS and ModPB-B converted to SAT with Minisat+ using the sorting
networks option. Measures are done for the values of v, n (legend), and
M (y-axis) detailed above. The boxes cover the region of the number of
PBMod constraints (f , x-axis) where both encodings solve problems in the
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Figure 2.7: Percentage of satisfiable instances as as function of f .

allotted time (the time out used has been 30 minutes), and still give signif-
icant times, i.e. more than 1 second. Inside each box figures represent the
performance ratio of ModCS over ModPB-B, it is measured as the mean of
the performance rations over the considered range of f . As an example, a
ratio of 1.77 means that ModCS is 1.77 times faster than ModPB-B.
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Figure 2.8: Performance ratio for the two best encodings -ModCS and
ModPB-B-, using Precosat v.236 for v = 100 and distinct values for n and
f .

A first conclusion from Fig. 2.8 is that ModCS performs better as the
number of variables per constraint (n) increases. It should be noted that
as n increases, so it does the sum of the coefficients (C), leading to more
distinct interpretations of a congruence for a given M , and finally, giving
more chances of reusing circuitry to ModCS encoder (as explained in the
previous section), reducing the formula size. Second, as a result of the same
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f ModCS ModPB-B ModPB-Bbin Ratio

M = 5 36 912 1193 – 1.31
34 158 297 765 1.88
32 33 82 169 2.48
30 8.2 32 63 3.90
28 3.6 16 14 3.89
26 1.9 9.3 6.1 3.21
24 1.6 4.8 2.5 1.56

Mean Ratio 2.17

M = 20 22 307 371 442 1.21
20 19 45 32 1.68
18 3 16 5.3 1.77
16 2 7.4 2.3 1.15
14 1.6 4.6 1.7 1.06

Mean Ratio 1.37

Table 2.2: Median time for ModCS, ModPB-B and ModPB-Bbin encodings
using Precosat v.236. v = 200, n = 50 and their relative performance (–
means median time larger than 30 minutes).

effect, one can also observe, for n = 50, an increase of relative performance
for ModCS encoder as M decreases, due to the larger number of constraints
(f).

To prove the scaling with the number of variables, Table 2.3.3 reports
the performance ratios for v = 200, n = 50 and M = 5, 20. The mean ratio
between encodings raises up to 3.13 and 3.1 respectively.

Tables 2.3.3, 2.4, 2.5, and 2.6 show the median time to solve all the
instances and the percentage of solved instances for a timeout of 30 minutes,
and a wide range of parameter values. Left column denotes the employed
combination solver/encoding as mentioned at the beginning of the current
section.

Table 2.3.3 shows that ModPB-A is not a good option for any solver.
It also shows that for solvers yices and glpk, none of both PB models
(ModPB-A, ModPB-B) is competitive with ModLIA.

On the one side, it also seems clear that the LP (gplk/ModLIA) approach
is not competitive with the other best combination encoding/solver.

On the other side, the differences between the SAT and PB solvers are
more subtle. With respect to both encodings used for Precosat solver, as
mentioned above, our improvement of the translation through network of
sorters (ModCS) slightly outperforms the original translation (ModPB-B)
in most cases, increasing their differences as the number of variables (n) be-
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f

6 7 8 9 10
bsolo/ModPB-A –/26 –/8 –/3 –/0 –/1
bsolo/ModPB-B 647/53 –/18 –/9 –/3 –/3
psat/ModPB-B 4.1/100 12/100 13/100 12/100 12/100
psat/ModCS 4.3/100 14/100 16/100 16/100 17/100
glpk/ModPB-A –/3 –/1 –/0 –/0 –/0
glpk/ModPB-B 55/97 130/96 245/95 354/97 373/95
glpk/ModLIA 12/97 25/97 28/95 25/97 24/97

Table 2.3: Median solving time / % of solved instances within alloted time
for v,n and M=20 (– means median time larger than 30’).

comes larger, and particularly for low values of M , that is when the ModCS
encoding ameliorates its circuit reusing capabilities. According to the PB
solver performance (bsolo/ModPB-B), it does particularly well for under-
constrained problems, i.e. when f is low, but tends to solve less instances
than psat/ModCS for higher f . In order to reinforce this last point, we have
conducted additional experiments for v = 200 and n = 50 as shown in Table
2.3.3.

As a final remark we can say that we have studied how to solve effi-
ciently PBMod Modularity constraints. Although these constraints are nat-
urally expressed as Linear Integer Arithmetic constraints, we have shown
that is not the best approach at least when the LHS term of the PBMod
involves only Boolean variables. We have proposed two possible alterna-
tive approaches: (i) a translation to PB constraints (models ModPB-A and
ModPB-B) and the usage of pure PB solver or a PB solver based on a trans-
lation into SAT, and (ii) a direct translation into a SAT formula based on
a network of sorters (model ModCS) and the usage of a SAT solver. For
the first approach we have provided a new encoding (ModPB-B) that is
more competitive than the naive conversion to PB constraints (ModPB-A)
by breaking the symmetry in that encoding. However, the second approach
(ModCS) is even more competitive since it allows to better exploit the ex-
pressiveness of the original model by producing smaller encodings while
preserving the propagation properties.

It remains for future work to test other types or variations of sorter
schemes, such as the Half sorting networks based on OddEven Half Merging
networks, see [ANORC09], where the main contribution are the Cardinality
Networks based on Simplified Merging Networks. This approach saves a lot
of circuitry when the RHS term is small enough compared to the number
of the inputs of the sorter. However, in our current approach, we cannot
benefit from those savings as even when we have a small remainder term
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Table 2.4: Median solving time / % of solved instances within alloted time
for v=100 and n=10 (– means median time larger than 30’)

f

M=5 48 50 52 54 56
bsolo/ModPB-B 1.2/99 11/94 107/71 –/36 –/17
psat/ModPB-B 1.1/100 2.5/100 9/99 42/95 286/50
psat/ModPB-Bbin 1.1/100 3/100 13/99 52/99 298/75
psat/ModCS 0.8/100 3.3/100 8.3/95 53/95 299/75
glpk/ModLIA –/0 –/0 –/0 –/0 –/0

M=10 38 40 42 44 46
bsolo/ModPB-B 6.8/81 –/47 –/21 –/9 –/2
psat/ModPB-B 2.9/100 13/97 130/88 720/71 1391/55
psat/ModPB-Bbin 2.9/100 14/96 131/90 643/72 1299/54
psat/ModCS 2.3/100 15/98 104/83 748/67 1598/51
glpk/ModLIA –/0 –/0 –/0 –/0 –/0

M=20 28 30 32 34 36
bsolo/ModPB-B 1.3/92 68/74 371/56 292/51 358/67
psat/ModPB-B 0.8/100 1.9/100 2.9/100 3.1/100 3.1/98
psat/ModPB-Bbin 0.6/100 1.7/100 2.6/100 3.0/100 2.4/100
psat/ModCS 0.7/100 1.8/100 3.0/100 3.5/100 3.0/100
glpk/ModLIA –/0 –/0 –/0 –/0 –/0

we need to consider several output gates in order to test the modularity
condition.

2.4. Routing and Wavelength Assignment Prob-
lem

Finding challenging benchmarks for SAT solvers is not only interesting
from an evaluation of algorithms efficiency point of view, but also interest-
ing in the theoretical computer science community. However, most of the
efforts in this area are not devoted to solve real world problems. There
are some real world applications of SAT, such as such as Electronic Design
Automation (EDA) where SAT solving techniques become a suitable tool
for problem instances generated. This section focuses in networking prob-
lems, in particular in solving constraints which appear when introducing
new optical technologies in backbone infrastructures.

Last years have seen a surge in all-optical network deployment that has
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Table 2.5: Median solving time / % of solved instances within alloted time
for v=100 and n=20 (– means median time larger than 30’)

f

M=5 32 34 36 38 40
bsolo/ModPB-B 2.0/100 16/91 128/69 –/31 –/6
psat/ModPB-B 4.8/100 13/100 62/99 340/87 1550/53
psat/ModPB-Bbin 5.9/100 14/100 73/100 393/86 –/45
psat/ModCS 3.1/100 11/100 38/100 312/89 1064/60
glpk/ModLIA –/0 –/0 –/0 –/0 –/0

M=10 24 26 28 30 32
bsolo/ModPB-B 0.5/100 8.3/95 –/48 –/12 –/5
psat/ModPB-B 2.7/100 11/99 99/92 1427/53 –/20
psat/ModPB-Bbin 1.9/100 11/99 80/96 885/61 –/20
psat/ModCS 1.1/100 9.5/100 85/87 1239/56 –/21
glpk/ModLIA –/0 –/0 –/0 –/0 –/0

M=20 18 20 22 24 26
bsolo/ModPB-B 0.1/100 1.4/95 1175/47 –/15 –/8
psat/ModPB-B 1.4/100 5.0/100 50/96 1423/55 –/10
psat/ModPB-bin 0.8/100 3.1/100 32/94 1033/55 –/13
psat/ModCS 0.7/100 2.9/100 35/95 1262/58 –/12
glpk/ModLIA –/0 –/0 –/0 –/0 –/0

come together with a dramatic increase in available bandwidth thanks to the
use of Wavelength Division Multiplexing (WDM for short) on such networks.

These kind of networks work by allocating direct connections (circuits)
between users, usually customers, traversing all the network. As the main
idea is to use all-optical networks, such circuits must provide light continu-
ity, and given that possible paths or routes are a finite resource, and that for
every connection between network nodes only a limited set of wavelengths
(or lambdas) are available, there is much interest in devising methods and
algorithms to efficiently allocate routes and lambdas to each required con-
nection (such pairs, route and lambda, are known as a lightpath).

This problem is known as Routing and Wavelength Assignment (RWA
for short) problem. It can be solved in three flavours: as a static problem,
knowing in advance all traffic demands we must attend (known also as RWA-
SLE, Static Lightpath Establishment); as an incremental problem, where new
demands can appear at any time, but once established they stay so for ever;
or as a dynamic problem, where demands appear spaced in time and must
be attended as they appear, and after a working period they disappear and
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Table 2.6: Median solving time / % of solved instances within alloted time
for v=100 and n=50 (– means median time larger than 30’)

f

M=5 16 18 20 22
bsolo/ModPB-B 0.7/100 5.8/99 92/86 –/44
psat/ModPB-B 10/100 27/100 100/100 542/80
psat/ModPB-Bbin 5.9/100 27/100 112/98 723/73
psat/ModCS 1.9/100 10/100 49/100 363/93
glpk/ModLIA 1493/53 –/15 –/3 –/0

M=10 12 14 16
bsolo/ModPB-B 0.4/100 8.1/89 –/46
psat/ModPB-B 8.7/100 40/98 379/83
psat/ModPB-Bbin 3/100 31/100 323/85
psat/ModCS 2.1/100 24/100 272/83
glpk/ModLIA –/13 –/2 –/0

M=20 8 10 12
bsolo/ModPB-B 0.1/100 0.5/97 1559/50
psat/ModPB-B 2.5/100 12/100 94/98
psat/ModPB-Bbin 1.1/93 6.3/98 165/97
psat/ModCS 1/100 3.5/100 96/97
glpk/ModLIA 1341/57 –/3 –/0

f

M=5 30 32 34 36
bsolo/ModPB-B 2.9/100 16/98 131/91 1562/52
psat/ModCS 8.2/100 33/100 158/91 912/69

M=20 18 20 22
bsolo/ModPB-B 0.3/100 3.4/98 189/63
psat/ModCS 3/100 19/100 307/82

Table 2.7: Median solving time / % of solved instances within alloted time
for v=200 and n=50.
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resources can be reclaimed for reuse. RWA has been proved to be NP-
complete [CGK92], thus making it an interesting research problem from the
optimization point of view.

We propose a new approach to encode the previously mentioned RWA-
SLE problem as a pseudo-Boolean satisfiability problem. Our new approach
is then compared to a previously published SAT encoding approach [VSK05]1

and to greedy algorithms traditionally used in the networking literature.
There is also recent work about the problem of maximizing the number of
traffic demands that can be attended with a given network using constraint
programming [Sim09]. Experimental results clearly show that our approach
outperforms other methods on instances where those methods have poor
performance or are unable to provide a solution. Those cases used to be
scenarios with a critical level of resources and with none or a few possible
solutions.

We also provide an ASP approach to solve the RWA-SLE problem. An-
swer Set programming has become an attractive tool for representation and
reasoning. Although some solvers were proposed in [SNS02] [LPF+06], re-
cent work in ASP solving techniques such as conflict driven learning, back-
jumping, restart and watched literals lists has been proposed in [GKNS07],
making Clasp the best performing ASP solver. This can bee seen in [GLN+07]
[DVB+09] [CIR+11] where Clasp and the Potassco framework show very
good performance on global results. Moreover, Clasp also showed very good
performances in SAT competitions, making ASP a good technique for CSP
solving.

We compare this new ASP encoding approach for the RWA-SLE problem
with previous works based on SAT and pseudo-Boolean satisfiability tech-
niques shown as best for RWA-SLE decision problem. Experimental results
show that ASP approximation can improve the performance under certain
circumstances described below.

2.4.1. Definitions

We present some formal definitions for the problem we study in this pa-
per. The routing and wavelength assignment problem (RWA) without wave-
length translation is a generic term. In our case we focus on the RWA-SLE
without wavelength conversion on nodes. It is worth to take into account
that dealing also with wavelength conversion, would be another interesting
problem which is RWA-Translation (RWA-T for short).

Every instance of the RWA-SLE problem is characterized by the follow-
ing elements:

Connection network N = (V,E), where V is the set of nodes and E
contains an undirected link li,j for every pair of nodes i and j such that

1We compare with this approach as it seems to be the ”best” existing SAT approach.
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there is a link between them. To simplify the problem we consider that
the capacity, different number of wavelengths a link can support, of
all links is the same, denoted by parameter λ.

Set of traffic demands R, where rs,t ∈ R if there is a demand for a
lightpath between s and t.2 In RWA without wavelength conversion,
the wavelength must be the same for every link corresponding to the
same route rs,t, while in RWA-T it is assumed that a node can translate
a wavelength to any other.3

2.4.2. SAT Based Encodings

Once the problem is defined, we describe two main encoding approaches.
First, we encode RWA using pseudo-Boolean formulation (PB). A first pseudo-
Boolean encoding is described in [ARA07]. We extend it by adding more
powerful clauses and by proposing a more compact formulation that per-
forms better for large problems. Second, we use a SAT formulation proposed
in [VSK05], applying it to a broader range of problems and comparing it
with our PB approach.

It is worth noting that a PB encoding allows to easily extend the for-
mulation to the RWA-T problem, as for example, translating the linear pro-
gramming approach of [TK08] to PB. Such an extension in SAT is a much
harder task. Note that the solution for RWA-T in [VSK05] is only valid
for full-capable conversion nodes and cannot be generalized to network sce-
narios where the conversion range of the nodes is limited, as in real world
networks.

Pseudo-Boolean Encoding

Our encoding is based on a set of propositional variables and constraints
specified with pseudo-Boolean formulas. Some of the pseudo-Boolean con-
straints have a direct translation to logical clauses, but some of them have
a more compact form as the pseudo-Boolean constraints we present.

For every route demand rs,t ∈ R we have the following propositional
variables to encode all the possible routes in the communication network
(V,E):

1. For every node i ∈ V , variable nirs,t indicates if node i appears in the
route for rs,t.

2If we allow multiple lightpaths between each possible pair of nodes, then R is a mul-
tiset instead of a set. This can happen in “real-world” networks, as each lightpath can
correspond to a different customer or application.

3In fact, usually not all nodes can convert wavelengths, and those that can are able
only of a limited range and number of translations.
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2. For every link li,j , variable di,js,t indicates if link li,j appears in the route
for rs,t.

3. For every link li,j and wavelength w, variable xi,j,ws,t indicates if link li,j
appears in the route for rs,t using wavelength w.

So, the total number of propositional variables is |R| · (|V |+ |E| · (λ+ 1)).
The set of constraints can be divided in two groups, one that ensures

the selection of a connected path for each route demand rs,t, and another
that avoids using the same wavelength for routes sharing a link. For the
first group, we have the following pseudo-Boolean constraints:

The starting and ending nodes of the route must be active:

nsrs,t = ntrs,t = 1, ∀rs,t ∈ R (p1)

On a route, there is only one active link connected with s and t:∑
ls,i∈E

ds,is,t = 1, ∀rs,t ∈ R (p2)

∑
li,t∈E

di,ts,t = 1, ∀rs,t ∈ R (p3)

For any node k, different from s and t, either it is active together with
two adjacent links or it is not active and none of its links are active:

−2nkrs,t +
∑

k 6={s,t},j 6={s,t}
dk,js,t = 0, ∀rs,t ∈ R (p4)

For the second group, we have these constraints:

If a link li,j is active, then exactly one wavelength is used in that link,
otherwise no wavelength is used:

−di,js,t +
∑
w

xi,j,ws,t = 0, ∀rs,t ∈ R, ∀li,j ∈ E (w1)

For any intermediate node (j) in a route, if a wavelength w is used in
link li,j for a given route, then it must also be used in adjacent link
lj,k that is active in the same route:

−xi,j,ws,t −dj,ks,t+xj,k,ws,t > −2, ∀rs,t ∈ R, ∀(li,j , lj,k) ∈ E2|j 6= s, t; i 6= k
(w2)

Observe that assuring the use of the same wavelength between adjacent
links of the route is enough to ascertain the use of only on wavelength
in all the links of the route.
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The same wavelength w cannot be used in a given link li,j for different
routes:

−xi,j,ws,t −xi,j,ws′,t′ > −2, ∀(rs,t, rs′,t′) ∈ R2|{s, t} 6= {s′, t′} ∀li,j ∈ E, ∀w
(w3)

Related to this second group, two redundant or alternative constraints may
be considered.

For any route, if the starting active link ls,i uses wavelength w, then
any other different link li′,j′ in the route cannot use a different wave-
length w′ (and analogously for the ending active link li,t):

−xs,i,ws,t − xi
′,j′,w′

s,t > −2, ∀rs,t ∈ R, ∀(ls,i, li′,j′) ∈ E2, ∀w 6= w′

−xi,t,ws,t − xi
′,j′,w′

s,t > −2, ∀rs,t ∈ R, ∀(li,t, li′,j′) ∈ E2, ∀w 6= w′

(w2b)

This constraint achieves the same effect that w2 because for a con-
nected path it is enough to ensure the use of a same wavelength be-
tween adjacent links.

A wavelength w is used by at most one of the route demands in a link:∑
rs,t∈R

xi,j,ws,t ≤ 1, ∀li,j ∈ E, ∀w (w3b)

This constraint achieves the same effect as constraint w3.

Given the complementarity between constraints w2 and w2b, and be-
tween w3 and w3b, we can consider four different PB encodings: PB2+3,
PB2+3b, PB2b+3, and PB2b+3b obtained by selecting one from each pair of
complementary constraints. It is worth noticing that in a solution of the
previous constraints although for any route rs,t a connected path must be
present, it can also contain some other activated links that will form isolated
cycles. However, these cycles do not change the soundness of the encoded
path between s and t.

A More Compact pseudo-Boolean Encoding

The previous PB encoding considers individual variables for encoding the
wavelength used in each link of a route, with the idea to be able to extend it
to an encoding for the general RWA-T problem, where some nodes may be
able to convert wavelengths. In case we are only interested in working with
the non conversion variant of RWA, we can reduce the number of variables
and constraints as we show in the following modified PB encoding (called
compact PB encoding, PBcpt).
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The number of variables and constraints is reduced by considering only
one variable xws,t per traffic demand and wavelength, denoting that the same
wavelength w is used in all the links of the route between s and t. This new
encoding substitutes the previous second group of constraints (set w) by the
following:

One wavelength must to be used per demand:∑
w

xws,t = 1, ∀rs,t ∈ R (cw1)

For each pair of traffic demands sharing a link, at most one wavelength
variable must be set:

− di,js,t − di,js′,t′ − xws,t − xws′,t′ > −4,

∀(rs,t, rs′,t′) ∈ R2|{s, t} 6= {s′, t′}, ∀li,j ∈ E, ∀w (cw2)

Comparison with SAT Encoding

In [VSK05] a SAT encoding for RWA is presented, i.e., based on a set
of Boolean variables plus a CNF formula for encoding the problem. They
showed that their approach outperformed previous specialized approaches
[KO04] for solving RWA. Since we noticed that for some constraints a more
compact pseudo-Boolean formulation was possible, and given the state of the
art in efficient translations of pseudo-Boolean constraints to CNF formulas,
it seemed natural to study possible improvements of their encoding by using
a pseudo-Boolean encoding that was more compact and efficient, at least for
some cases. That is the main reason for studying the encoding we present
in this paper.

For each combination of node, route and wavelength, the SAT encod-
ing of [VSK05] uses a Boolean variable for indicating whether that node is
active for that route using that wavelength. Analogously, for each combina-
tion of link, route and wavelength, it uses a Boolean variable for indicating
whether that link is active. The fact that they do not use a specific variable
for encoding whether a link is active for one route, independently of the
wavelength used, is one of the reasons that increases the number of clauses
of the problem with respect to the number of clauses in our encoding.

For the clauses used for encoding the constraints, we discuss only the ones
that present significant differences with our encoding. When we consider the
size of our PB constraints, we are assuming that we transform them to a
CNF using the sorting network encoding of [ES06]. Recently, new CNF
encodings for PB constraints have been proposed [BBR09] that, although
they have a bigger size, they promise to be more powerful, with respect
to propagation, in some cases. However, they still have to be successfully
integrated in current SAT solvers.
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To ensure end-to-end continuity for a route, the SAT encoding forces
each node of the path to have the right number of active links in a different
way. For ensuring that the start and ending nodes of a route have exactly
one active link, it uses a set of clauses for ensuring at least one link plus a
set of clauses for ensuring at most one link. This second set of clauses is
the one that gives a significant difference in the number of clauses needed,
compared with our corresponding PB constraints p2 and p3, as the number
of clauses for this at most one link is O((λ deg)2) for the starting or ending
node of a route but for our constraints p2 and p3 is O(deg log2(deg)). 4 We
have an analogous situation for the constraint that ensures that the other
nodes of the route have exactly two active links. The SAT encoding uses a
set of clauses for ensuring at most two active links per node, that has a size
of O(deg3λ2), for each node of the route. By contrast, our corresponding
PB constraint p4 has a size of O(deg log2(deg)) for each node of the route.

For ensuring that the same wavelength is used along all the links of a
route, the SAT encoding uses a set of clauses that ensures that if a wave-
length is used on the active link connected to the starting node of the route,
then the other active links of the route cannot use other wavelengths, and
analogously with the ending node. This set of clauses has size O(|E|λ2deg)
for each route demand. In contrast, we get the same effect with our sets of
PB constraints w1 and w2 that have size O(|E|λ(log2(λ) + deg)). Actually,
the set of clauses used by the SAT encoding is equivalent to the set of PB
constraints defined in our alternative constraint w2b. For the PBcpt encod-
ing the only constraint we need is cw1, that has size O(|R|λ), smaller than
in the other encodings.

To avoid using the same wavelength in a link in more than one route, the
SAT encoding uses the set of clauses resulting from the transformation of the
constraints defined in w3, so both have the same size: O(|R|2λ|E|). However,
given that the alternative PB constraint w3b is a cardinality constraint5,
using the sorting network CNF encoding the total number of clauses will be
O(|R| log2(|R|)λ|E|). So, given that the level of consistency achieved by both
w3 and w3b is the same, arc-consistency for the constraint: a wavelength is
used in any link by at most one route, in the case of problems with a high
number of route demands, using w3b instead of w3 can be an advantage.
For the PBcpt encoding, constraint encoding cw2 has a bigger size than w3b:
O(|R|2λ|E|). So, even if PBcpt is more compact with respect to the number
of variables, this is done at the cost of increasing the size of the encoding
for this constraint.

4deg is an upper bound on the number of links of any node.
5A pseudo-Boolean constraint in which all the coefficients are 1.
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2.4.3. Experimental Analysis for SAT-Based Encodings

To compare the performance of the above explained encodings we con-
duct experiments in two cases. First, by generating synthetic problems in
a broad range of network scenarios by developing a problem generator and
creating a set of instances. Second, by translating and encoding existing
benchmarks based on real world networks. Although there exist some prob-
lem instances derived from those networks [KO04, VSK05], we have found
that they are too easy for all the solving approaches we compare in this
section, probably because these instances are defined with a very high level
of resources.6

A RWA Problem Generator

Our generator works by first creating a fully connected network and then
generating a set of random traffic demands to be satisfied by the network.
Problem instances for our experimentation are created using Waxman model
[Wax88], which creates a network topology that obeys a power law. Waxman
model works by first placing nodes randomly across a bidimensional space,
as is the case with real networks. With nodes placed then it proceeds to
add edges (optical connections) between each pair of nodes u and v, using

the probability function, P (u, v) = β
−d(u,v)
Lα where d(u, v) is the distance on

the plane between u and v, L is the maximum distance between two nodes,
and α and β are parameters in the range (0, 1]. Larger values of β represent
higher connectivity degrees for the nodes, whilst α indicates connectivity
from a node to more distant nodes, i.e. long-haul edges. For each edge we
must also define the number of available wavelengths (λ).

Once the network is built, we generate a set of traffic demands D between
random pairs of nodes. As the network is fully connected there is always a
path between every possible pair of nodes but, as satisfying a demand uses
up an available wavelength, there is no guarantee that all possible sets of
demands will be satisfiable.

In order to evaluate the encodings performance, we have used a test
set consisting of 980 instances, for network topologies from 10 to 20 nodes,
from 20 to 50 traffic demands, and 2 to 10 available lambdas, creating a
wide range of problems from unsatisfiable to easily satisfiable.

Hardness Characterization

In RWA problems, as in other studied problems [Pro96, AGKS00, ABF+10],
there exists an easy-hard-easy hardness characterization when we move from
unsatisfiable to satisfiable instances along a given parameter, the number of

6Due to space constraints, detailed results for real world networks are not included,
although authors have them available on request.
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Satisfiable
Time(s.) 2+3 2b+3 2+3b 2b+3b cpt SAT

< 1 9 1 32 5 0 14
(1, 10] 42 3 161 2 1 124

(10, 102] 3 2 2 0 17 29
(102, 103] 0 0 0 0 2 2
≥ 104 0 0 0 0 0 0∑

54 6 195 7 20 169

Unsatisfiable
Time(s.) 2+3 2b+3 2+3b 2b+3b cpt SAT

< 1 10 9 55 25 31 19
(1, 10] 10 3 180 16 10 15

(10, 102] 1 1 4 1 5 0
(102, 103] 2 2 2 1 1 0
≥ 104 0 2 0 1 8 0∑

23 17 241 44 55 34

Table 2.8: Number of satisfiable and unsatisfiable instances solved faster per
encoding at their corresponding time range.

lambdas in our case. As an example, Table 2.10 shows the percentage of
satisfiable instances and the computation time to solve 20 instances of a
problem with 10 nodes, 20 traffic demands, α = 0.65 and β = 1, for differ-
ent values of λ. As we focus on network sustainability, as traffic demands
grow, we must be able to study and solve the RWA problem under regimes
at which the number of resources is at a critical level.

With these goals in mind, we have designed our problem instance gen-
erator to obtain a wide range of problem instances. From instances with a
high number of solutions, to instances with no solutions, passing trough an
intermediate class of instances in which the level of resources is at a critical
level. Such instances have very few solutions and are very hard to solve, es-
pecially with greedy algorithms. With our generator, these different classes
of instances are easily generated by simply modifying the parameter λ as we
keep fixed the other parameters.

SAT and PB Encodings Performance

Table 2.8 summarizes the performance of our four different basic PB en-
codings (PB2+3, PB2+3b, PB2b+3, and PB2b+3b), our compact PB encoding
(PBcpt) and the SAT encoding (SAT).7 The results are presented separated

7The solver used for SAT solving, as well as solving CNF encoding of PB encodings
is Precosat [Bie]. The CNF formulas are generated from the corresponding PB encodings
using Minisat+ using sorters [ES06].
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for instances with solution (left table) and for instances with no solution
(right table). Each column shows the number of instances that the corre-
sponding encoding has solved faster. The timeout to stop the SAT solver,
with any encoding, has been 23 hours per instance. Even with such timeout,
some instances have not been solved with some of the encodings.

For satisfiable instances, the encoding PB2+3b has the best performance
for the easiest instances, but as the difficulty increases, the SAT and PBcpt

encodings perform better. Overall, we observe that the encoding PB2+3b

does better although followed closely by the SAT encoding. The PBcpt

encoding only gives an advantage for some difficult satisfiable instances.
For unsatisfiable instances, that represent cases with not enough re-

sources to satisfy all traffic demands, we again observe that PB2+3b performs
well for easy instances, but when difficulty increases PBcpt improves. We
believe that this is due to the more compact form of representing assignment
of wavelengths to routes in PBcpt, such that there are no partial solutions
with more than one wavelength assigned to the same path of a route. This
fact may allow the SAT solver to reach more quickly the branches of the
search tree that represent different assignments of wavelengths to the routes.
However, given the higher size of the constraint that avoids using the same
wavelength in different conflicting routes in PBcpt, O(λ|E||R|2), with re-
spect to the one of PB2+3b, O(λ|E||R| log2(|R|)), the possible improvement
thanks to a more compact search space may be reduced due to the increased
time needed to check the constraints.

To compare the relative performance of our best encodings, PB2+3b and
PBcpt, with the SAT encoding, in a more quantitative way, we have also
created scatter plots, where every point (x, y) in a plot represents one of
the instances of the test-set with the x value representing its solving time
with one encoding and the y value its solving time with a second encoding.
Figure 2.9 shows a scatter plot between the SAT and the PBcpt encodings
(left plot) and a scatter plot between the SAT and the PB2+3b encodings
(right plot). We observe that PBcpt is either competitive or superior (es-
pecially for unsatisfiable instances) to the SAT encoding. PB2+3b seems to
be clearly superior to the SAT encoding on unsatisfiable instances, but for
satisfiable instances, the SAT encoding is almost always the best. However,
the experiments at the end of this section show that as the number of de-
mands increases, even for satisfiable instances, PB2+3b starts to outperform
the SAT encoding.

We have also tested the performance of the best solving approach re-
ported in [ZTTD03], named NEW algorithm in that reference, that can be
seen as an improved version of the common approach used to solve the RWA
problem in two phases with a greedy approach. First, a transformed graph
is used to determine the shortest route between source and destination using
the Dijkstra shortest path algorithm, where the weights of the links quan-
tify the probability for a request to pass through a node, and later a simple
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Figure 2.9: Scatter plot of times to solve satisfiable and unsatisfiable in-
stances for different SAT based encodings.

greedy scheme is used to assign a proper wavelength to that path. Once
a wavelength is assigned, the weights of the routing graph are updated, in
order to attend future demands. Although it is an adaptive algorithm that
tries to reduce the blocking probability, its greedy nature makes it very
inefficient for RWA-SLE problem because, when considering the combined
problem (routing + wavelength assignment), it is possible that it is unable to
find a solution for a problem with a certain number of wavelengths, although
the problem is perfectly solvable.

Our tests show that for a given network and demand set, our approach
needs less wavelengths to satisfy them. As an example, for the same network
with 10 nodes reported above in Table 2.10, the NEW algorithm only finds
satisfiable instances for λ above 10, and even for λ = 10, the percentage of
satisfiable found instances is a scarce 10%. As greedy algorithms perform
better for a large λ, we conduce some additional tests for a larger λ and
more traffic demands. Concretely, we take 20 nodes, a = 0.4, b = 0.5, and
λ = 20. Table 2.9 shows the time to solve an instance for different values of
traffic demands. Note that all the instances are satisfiable.

From Table 2.9 one can derive some facts. First, NEW algorithm is
not able to find solutions when demands go beyond 25. Greedy algorithms
do not do particularly good when resources are scarce. Second, due to
the encoding size, the SAT encoding is not able to solve even the smaller
case, 25 demands, because of memory exhaustion (1 GB of RAM). The best
performing PB encoding is PB2+3b, which is able to solve up to 100 traffic
demands.

As a final remark we can say that we studied the use of current SAT
solvers for the resolution of the RWA-SLE problem. We proved that a
good formulation allocates network resources more efficiently than other ap-
proaches, as greedy algorithms, extensively studied in the specialized litera-
ture, at least, for more critically constrained problems. We also contributed
new PB encoding variants, highly competitive with the existing SAT formu-
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Time(s.)
# demands PBcpt PB2+3b SAT NEW

25 10 8 - 1
50 - 20 - u
75 - 123 - u

100 - 1,395 - u
125 - - - u

Table 2.9: Time in seconds to solve an instance for 20 nodes, a = 0.4,
b = 0.5, and λ = 20. (-) indicates memory exhaustion, and (u) unsatisfiable
reported.

λ % sat Mean time (s.)

2 40 0.59
3 60 0.79
4 70 192.39
5 90 1.58
6 90 2.18

Table 2.10: An example of easy-hard-easy hardness characterization on RWA
problems.

lation for this problem, that make easier the task of extending the proposed
formulation to RWA problems with partial lambda translation. And finally,
we reported a comparative performance test among our encodings, SAT
encodings and greedy algorithms under different network scenarios.

2.4.4. ASP-Based Encodings

In this section we present an Answer Set Programming (ASP) solving
approach for solving the RWA problem for its SLE variant (RWA-SLE).
Answer Set programming has become an attractive tool for representation
and reasoning. Although some solvers were proposed in [SNS02, LPF+06],
recent work in ASP solving has incorporated techniques such as conflict
driven learning, backjumping, restart and watched literals lists in the state-
of-the-art ASP solver Clasp [GKNS07]. This ASP solver has been the winner
in many categories of benchmarks in the past ASP competitions [GLN+07,
DVB+09, CIR+11].

We propose and study four different ASP encodings for RWA-SLE, that
differ in the way of encoding some of the constraints of the problem. The
main difference between these alternative encodings is basically the use of
integrity constraints with respect to the use of regular clauses. We study how
a measure of the tightness of the programs we propose relates to its relative
performance and to the number of generated loop nogoods during search.
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Our results indicate that incorporating measures of the tightness of ASP
encodings could be a good predictive tool for selecting the best ASP encoding
of a problem. We also compare this new ASP encoding approximation for
RWA-SLE problem with the current best performing pseudo-Boolean based
approach from Section 2.4.2. The experimental results show that our ASP
approach can be better or competitive with the PB based approach.

ASP Encoding

We present an ASP encoding for RWA-SLE that follows an analogous
encoding scheme than the best pseudo-Boolean encoding we have found for
it, that is the PB2+3b encoding we have explained in the Section 2.4.2. So,
our ASP encoding is based on the following constraints:

1. The starting and ending nodes of the route must be active. Two
constraints assures that the Boolean variable representing source and
destination are evaluated to True.

2. On a route, there is only one active link connected with src and dst.

3. For any node k, different from src and dst, either it is active together
with two adjacent links or it is not active and none of its links are
active.

4. For any intermediate node j in a route, if a wavelength w is used in
link li,j for a given route, then it must also be used in adjacent link
lj,k that is active in the same route.

5. A wavelength w is used by at most one of the route demands in a link.

However, taking profit of the different ways of modelling some of the con-
straints in the ASP framework we have used, Clingo, we will present four
variants of the ASP encoding for trying to identify key aspects in the per-
formance of ASP encodings.

Following the procedure described in [GKK+11a], an ASP encoding is
specified with a set of rules with non-ground predicates (predicates with vari-
ables as arguments) such that the data of a particular problem instance will
be specified later as a set of ground instantiations of some of the predicates
of the encoding.

We will describe some alternatives for encoding some of the constraints
that will give place to four different alternative ASP encodings. Observe
that from an ASP encoding with non ground rules and the set of ground
predicates that define a problem instance we need to finally create an ASP
instance with only ground predicates. This is done automatically by a
grounder used by the ASP system Clingo, and once the grounded ASP
instance is obtained, Clingo solves it with the ASP solver Clasp.

51



We use some more expressive rules beyond the classical rules of normal
logic programs, because they are allowed by the ASP system Clingo. These
are the additional kinds of rules:

An integrity constraint, that is of the form

⊥← p0, . . . , pm, not pm+1, . . . , not pn

and is actually a way to express directly a nogood on the logic program.

A choice rule that is of the form

h0, . . . , hk ← p0, . . . , pm, not pm+1, . . . , not pn

allows for the non-deterministic choice over atoms in h1, . . . , hk.

A cardinality rule of the form

h← k1{p0, . . . , pm, not pm+1, . . . , not pn}k2

infers h if the number of satisfied literals from

{p1, . . . , pm, not pm+1, . . . , not pn}

is in [k1, k2].

A cardinality choice rule of the form

k1{h0, . . . , hk}k2 ← p0, . . . , pm, not pm+1, . . . , not pn

allows for the non-deterministic choice of a subset S of atoms from
h1, . . . , hk such that k1 ≥ |S| ≥ k2.

For a more detailed explanation of the semantics of these extended kinds of
rules, we refer the reader to [GKK+08].

These are the different ASP non ground rules of our ASP encoding for
RWA-SLE:

1. For each connection demand rs,t we define predicates that mark s as
the source node of the connection and t as the termination node with
the predicates source(s, i) and destination(t, i), being i the identifier
of the demand. Although this information is already included in the
predicate connection(S, T, C), this helps to simplify the modelling of
the next constraint. This constraint is modelled as the next cardinality
choice rule and is analogous to constraint p1 in PB2+3b:

2 {source(S,C), destination(T,C)} 2← connection(S, T, C).
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2. We establish a connected lightpath for any connection demand C using
the predicate use edge(A,B,C). First, we use cardinality choice rules
that force source and termination nodes to be connected with exactly
one other node in the lightpath for C:

1 {use edge(S,A,C) | edge(S,A), node(A)} 1← source(S,C).

1 {use edge(B, T,C) | edge(B, T ), node(B)} 1← destination(T,C).

Secondly, any other node, that is not the starting or termination node
of a connection demand C, if it is connected to one node in the light-
path for C then it must be connected to exactly one other node. We
force this with the following cardinality choice rules:

1{use edge(B,X,C) | edge(B,X), node(X)}1 ←
use edge(A,B,C), T 6= B, destination(T,C).
1{use edge(X,A,C) | edge(X,A), node(X)}1 ←
use edge(A,B,C), S 6= A, source(S,C1).

These constraints are related to constraints p2,p3 and p4 in PB2+3b

Also, as the lightpath for a connection C from S to T will be encoded
as a directed path starting at S and ending at T , and edge {A,B}
can only be used in one direction, so we use the following integrity
constraint:

⊥← use edge(A,B,C), use edge(B,A,C).

3. We add redundant rules to force that any node B used in a lightpath
cannot be the destination of two incoming nodes A1 and A1 or be
the origin of two outgoing nodes A1 and A2. We say that they are
redundant because the rules we have introduced in the previous step,
and considering that answer sets are always well-founded models, do
not allow to have more than one incoming or outgoing connection with
a node. Adding redundant clauses, specially integrity constraints that
are directly equivalent to nogoods, can improve the performance of
an ASP solver like Clasp, given that the inference mechanism of unit
propagation it uses is based on the discovery of forced unit assignments
obtained from nogoods and the current partial solution.

⊥← use edge(A2, B,C), use edge(A1, B,C), A1 6= A2.
⊥← use edge(B,A2, C), use edge(B,A1, C), A1 6= A2.

Also, as redundant rules, we force with integrity constraints that the
source (S) and termination (T ) nodes of a lightpath for C are not
connected to any other nodes than the ones specified with the previous
rules:

⊥ ← source(S,C), use edge(A,S,C).
⊥ ← destination(T,C), use edge(T,B,C).
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4. We add a cardinality choice rule to force that for each used directed
edge A→ B for connection C (use edge(A,B,C) is true) exactly one
predicate use link(A,B,C, L) must be true, among all possible lamb-
das we can use for the link of the edge. So, the predicate use link(A,B,C, L)
indicate the lambda used in the link of the edge for that connection.

1{use link(A,B,C, L)|L ∈ [1..Λ]}1←
use edge(A,B,C1).

5. We need to force that the same lambda is used in all the links of a
lightpath. For forcing this constraint we propose two alternatives ways
for encoding it.

a) A rule for forcing that when directed edges A → B and B → X
are used and L is used for the link of A→ B (use link(A,B,C, L)
is true), then the same lambda L must be used in the link for
B → X:

use link(B,X,C,L)← use link(A,B,C, L),
use edge(A,B,C), use edge(B,X,C).

b) We can instead force the same property with the following in-
tegrity constraint:

⊥← not use link(B,X,C,L),
use link(A,B,C, L), use edge(A,B,C),
use edge(B,X,C).

As a first analysis of the difference these two alternatives for encod-
ing the constraint can make, observe that 5a is a rule where a same
predicate name (use link) appears both at the head and at the body.
So, if the network G = (N,E) of the problem instance is connected,
as in our test sets of the experimental section, these rules will create
loops in the dependency graph GΠ of the logic program. By contrast,
with the integrity constraint 5b such problem is not present. Observe
that the rules of the item 2 for forcing connected lightpaths also create
loops in GΠ.

6. Because we allow to use an edge {A,B} in only one direction, A→ B
or B → A, we could also force the corresponding predicates use link
(A,B,C, L) and use link(B,A,C, L) to be not both true. However, to
simplify the encoding of the next constraint, we are going to force the
contrary condition, both predicates will be true or both will be false
with the following rule, even if the edge is used only in one direction:

use link(B,A,C, L)← use link(A,B,C, L).
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7. We need to force that the same lambda is not used by two or more
lightpaths that share at least one link. For encoding this constraint
we have also considered two alternatives:

a) An integrity constraint for not allowing to have a same link A−
B used with a same lambda L by any two different connection
demands C1 and C2

⊥← use link(A,B,C1, L),
use link(A,B,C2, L), C1! = C2.

b) In a very similar way, for any link A − B and lambda L we can
use instead a cardinality integrity constraint that does not allow
to have more than one predicate use link(A,B,C, L) true in the
set {use link(A,B,C, L)|C ∈ [0, |R|]}

⊥← |R| {use link(A,B,C, L)|C ∈ [0, |R|]} 2,
edge(A,B), node(A), node(B).

It is not clear what of the two options should be better, as both
are integrity constraints, but the second one is a more complex
one that must be transformed by the grounder of Clingo to a set
of more basic rules 8.

8. Finally, we add some other redundant integrity constraints:

⊥← not use link(B, T,C, L), source(S,C),
use link(S,A,C, L), destination(T,C), useedge(B, T,C).

⊥← not use link(S,A,C, L), destination(T,C),
use link(B, T,C, L), source(S,C), use edge(S,A,C).

Given the two possible ways of encoding constraint 5 (5a and 5b) and
the two possible ways of encoding constraint 7 (7a and 7b) that we have
presented, we can define four different ASP encodings for RWA-SLE, de-
pending on the option selected for constraints 5 and 7. So, we identify four
ASP encodings ASP5a7b, ASP5b7b, ASP5b7a and ASP5a7a that we use in the
experimental section to study and compare their performance.

2.4.5. Experimental Analysis for ASP Based Encodings

In this section we compare the performance of the four different ASP
encodings for solving RWA-SLE. We focus on randomly generated problems,
as we have seen that the current state of RWA networks deployment makes

8We do not have information about the particular transformations that Clingo applies
to these classes of more complex rules
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real-world scenarios very easy to solve. Instead of real scenarios, we use
synthetic problems like in Section 2.4.2, where we can tune some of the
properties of the network and traffic demands. In fact, we use the same
problem generator that we described in 2.4.2 but we will select a different
range of scenarios.

We will compare the performance of our ASP encodings with the one
obtained with the best PB encoding, that we found in Section 2.4.3, the
PB 2+3b encoding that we have presented in Section 2.4.2.

The ASP encoded instances of RWA-SLE are solved with the ASP tool
Clingo, that incorporates a grounder that given the non-ground rules based
ASP encoding and a particular instance generates the resulting set of ground
rules for the instance. Then, Clingo uses the Clasp ASP solver to solve the
instance. In all the instances, we have used the Clasp decision heuristic
VSIDS, that is similar to the one used by Minisat+.

Our experiments have been run on machines with the following specs:
Rocks Cluster 5.2 Linux 2.6.18 Operating System, AMD With two Opteron
248 Processor clocked at 1.59 GHz, 1.0GB Memory, and GCC 4.1.2 Com-
piler.

Next we describe the scenarios where we believe that our ASP encodings
can perform as better as PB approaches.

Selected Scenarios

Our aim is to generate problem instances by using different parameters
in the RWA generator, going from very relaxed problem instances, where
the number of demands with respect to the resources (paths and lambdas)
is low so instances tend to have many solutions, to overconstrained problem
instances, where the number of demands with respect to the resources is so
high that instances tend to have no solutions.

We have generated different test sets of instances, each one with 50 in-
stances. First, we have generated four sets with α = 0.4 and β = 0.25, that
give place to very sparse networks, with λ = 3 and with number of nodes
equal to 16. The four sets differ then only on the number of demands in each
one: {10, 15, 20, 25}. So, observe that by fixing the network size and average
density of links and the number of lambdas but increasing the number of
demands, we will be able to generate scenarios with different constrained-
ness. A similar set of four test sets is also generated but increasing now the
number of nodes to 20.

Then, we generate new sets of instances as before, but now increasing β
to 0.5 and changing the range of demands to set {15, 20, 25, 30}. This way,
for the same number of demands and nodes, as instances will tend to have
more paths, they will tend to have more solutions.

Finally, we have also generated analogous test sets of instances by now
increasing λ to 5 but only with a number of nodes equal to 16.
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ASP Encoding Performance

nodes = 16, λ = 3
demands 10 15 20 25
SAT (%) 18 2 0 0

SCCGP
time nogoods time nogoods time nogoods time nogoods

ASP5a7b 0.00 0.03 63-444 0.05 79-628 0.11 104-885 0.19 124-1148
ASP5b7b 0.12 0.01 41-401 0.03 48-544 0.03 53-609 0.06 84-863
ASP5b7a 0.12 0.02 43-386 0.01 10-255 0.01 7-170 0.01 7-42
ASP5a7a 0.00 0.04 62-425 0.05 66-517 0.06 64-512 0.05 35-456

PB 0.03 0.06 0.11 0.20

nodes = 20, λ = 3
demands 10 15 20 25
SAT (%) 42 12 2 0

SCCGP
time nogoods time nogoods time nogoods time nogoods

ASP5a7b 0.00 0.09 129-701 0.16 142-997 0.31 206-1304 0.41 197-1736
ASP5b7b 0.12 0.06 129-687 0.14 145-934 0.17 125-1127 0.20 147-1165
ASP5b7a 0.12 0.06 131-704 0.09 111-667 0.01 8-162 0.01 7-70
ASP5a7a 0.00 0.09 120-679 0.18 148-898 0.20 121-1030 0.125 81-814

PB 0.04 0.09 0.16 0.26

Table 2.11: Experimental results for instances with α = 0.4, β = 0.25, λ = 3,
nodes = {16, 20} and demands = {10, 15, 20, 25}. Gray cells indicate the
best results among the ASP encodings

As we have said before, our aim is to study and understand the perfor-
mance of the different ASP encodings we have presented. Table 2.11 shows
the results for test sets with λ = 3, α = 0.4 and β = 0.25. The upper
part shows the results for the four test sets with instances with 16 nodes,
and the lower part the results for the four test sets with instances with 20
nodes. The column labelled SCCGP is the median value of the tightness
we have measured for the instances of each test set. Although this value
is not exactly the same for each one of the four test sets for a same ASP
encoding, when rounded up to two decimal digits, as we have done here, it
shows the same value for the four test sets, so we only show one column for
this value. The column labelled time indicates the median time to solve an
instance from a test set. The column labelled nogoods indicates a pair of
numbers n1−n2, where n1 is the median number of learned nogoods and n2
is the median number of generated loop nogoods. The row labelled SAT%
indicates the percentage of instances that have solution in each test set.

We observe that the best ASP encoding is ASP5b7a in three of the four
test sets with 16 nodes and in the four test sets with 20 nodes, and that at
the same time it also shows almost always the smaller number of learned
nogoods and generated loop nogoods. Also, ASP5b7b is the best one or the
second best one in three of the four test sets. So, observe that the key
difference seems to be the choice of option 5b for constraint 5 of the ASP
encoding. That is, an integrity constraint instead of the regular rule of
option 5a. This seems reasonable if we consider that the rule of option 5a,
having the same predicate name use link in both its body and its head,
can easily create cycles in the dependence graph of the instances, as we have
discussed before, and so increases the possibilities of having unfounded sets
in partial solutions, thus giving place to loop nogoods. Instead, option 5b
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is an integrity constraint, so it cannot participate in any cyclic dependence
between atoms. This is further supported by the fact that our tightness
measure is higher for these two ASP encodings. It is also worth noticing
that the number of generated loop nogoods is always the quantity that
dominates the total number of nogoods, thus supporting our hypothesis
that the generation of loop nogoods, and so the tightness of the instances,
is an important factor regarding the performance of ASP encodings.

The reason of why option 7a seems to be a better option than 7b could
be that although 7b is a cardinality integrity constraint similar to a regular
integrity constraint, its concrete translation to a simpler set of integrity
constraints or rules by the grounder used by Clingo may not be generating a
set of integrity constraints as short as the ones of option 7a. Shorter nogoods
are preferable to longer ones, because in the process of unit propagation
performed by the ASP solver Clasp used by Clingo more unit literals will
tend to be produced before if we have shorter nogoods. See [GKNS07]
for a discussion of the unit propagation process performed with nogoods.
Remember that a grounded integrity constraint is equivalent to a nogood.

With respect to the performance of the PB encoding, observe that the
best ASP encoding is always better than or similar to the PB encoding.
As the number of instances with solution decreases when we increase the
number of demands on the test set, the advantage of ASP with respect to
PB increases.

nodes = 16, λ = 3
demands 15 20 25 30
SAT (%) 44 20 12 2

SCCGP
time nogoods time nogoods time nogoods time nogoods

ASP5a7b 0.00 0.30 450-1186 0.44 332-1464 0.51 310-1846 0.53 280-2069
ASP5b7b 0.12 0.17 352-1173 0.18 250-1020 0.25 186-826 0.36 241-1366
ASP5b7a 0.12 0.18 372-1017 0.12 149-547 0.02 9-263 0.02 8-102
ASP5a7a 0.00 0.36 475-1172 0.34 253-1189 0.17 86-895 0.09 43-650

PB 0.11 0.19 0.29 0.37

nodes = 20, λ = 3
demands 15 20 25 30
SAT (%) 72 64 28 2

SCCGP
time nogoods time nogoods time nogoods time nogoods

ASP5a7b 0.00 2.04 1816-2085 7.46 5916-3597 1.60 1110-3066 1.60 671-3605
ASP5b7b 0.12 1.34 1467-2133 4.46 5427-4018 0.87 955-2523 0.93 476-2672
ASP5b7a 0.12 1.14 1824-2014 6.74 7694-4094 0.31 547-881 0.18 22-627
ASP5a7a 0.00 3.41 2580-2249 8.17 6096-3587 1.30 765-2407 1.05 446-1921

PB 0.16 0.36 0.48 0.78

Table 2.12: Experimental results for instances with α = 0.4, β = 0.5, λ = 3,
nodes = {16, 20} and demands = {15, 20, 25, 30}.

Table 2.12 shows analogous results but now for test sets with λ = 3,
α = 0.4 and β = 0.5. As before, we observe that the best ASP encoding is
ASP5b7a and that at the same time it also shows almost always the smaller
number of learned nogoods and generated loop nogoods and together with
ASP5b7b has the higher tightness. Observe also that the second best ASP
encoding is ASP5b7b in all test sets except on the two last ones, where almost
all the instances are unsatisfiable, and that it has the same tightness value
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nodes = 16, λ = 5
demands 10 15 20 25
SAT (%) 70 26 12 6

SCCGP
time nogoods time nogoods time nogoods time nogoods

ASP5a7b 0.00 0.09 217-753 0.17 319-1063 0.23 304-1391 0.40 304-1707
ASP5b7b 0.15 0.05 170-725 0.11 275-1000 0.15 273-1239 0.24 251-1595
ASP5b7a 0.15 0.04 139-712 0.07 245-809 0.05 153-362 0.06 156-239
ASP5a7a 0.00 0.09 200-762 0.17 329-1055 0.24 317-1322 0.37 321-1371

PB 0.05 0.11 0.20 0.31

Table 2.13: Experimental results for instances with α = 0.4, β = 0.25, λ = 5,
nodes = {16} and demands = {10, 15, 20, 25}.

nodes = 16, λ = 5
demands 15 20 25 30
SAT (%) 82 78 58 28

SCCGP
time nogoods time nogoods time nogoods time nogoods

ASP5a7b 0.00 0.75 743-1919 2.43 1818-2768 8.28 310-1846 17.66 3088-3873
ASP5b7b 0.15 0.42 669-1874 1.43 1986-2737 5.19 186-826 21.53 5911-3175
ASP5b7a 0.15 0.40 654-1807 1.16 1500-2561 4.30 9-263 1.84 325-1301
ASP5a7a 0.00 0.90 763-1918 2.92 2155-2743 12.22 86-895 46.08 11745-3521

PB 0.17 0.32 0.54 0.88

Table 2.14: Experimental results for instances with α = 0.4, β = 0.5, λ = 5,
nodes = {16} and demands = {15, 20, 25, 30}.

that ASP5b7a. So, again it seems that the number of learned nogoods and
generated loop nogoods are good indicators of the hardness of the search for
a solution, and specially the number of loop nogoods that is always higher
than the number of regular nogoods. The smaller number of loop nogoods is
almost always obtained with the two ASP encodings with higher tightness.

The results we obtain here for PB show a similar behaviour than before,
although that given that in these test sets we have a higher fraction of
instances with solution, the advantage of ASP is only relevant in three of the
four test sets for nodes = 16 and in two of the four test sets for nodes = 20.

Finally, we present the results for the test sets with λ = 5. Table 2.13
shows the results for test sets with λ = 5, α = 0.4 and β = 0.25. As now we
have more resources per link, for the same number of demands with respect
to the results of Table 2.11 we obtain more instances with solution. As
before, the best ASP encoding is ASP5b7a that obtains the best results in
median time and median number of loop nogoods. This time, the second
best ASP encoding is always ASP5b7b. So, for these test sets the two best
ASP encodings are the ones with the higher tightness.

Table 2.14 shows the results for λ = 5, α = 0.4 and β = 0.5. Again,
ASP5b7a is the best ASP encoding but ASP5b7b is the second one in three of
the four test sets. With respect to the performance of the PB encoding, we
also obtain similar results: ASP encodings are competitive or better than
the PB encoding.

Observe that even if one could think, given our results, that using in-
tegrity constraints instead of regular rules in ASP encodings should be al-
ways the best option, there is a drawback in the excessive use of integrity
constraints. The problem is that using regular rules sometimes we can get
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more compact encodings than using sets of integrity constraints. So, one
should try to get a balance between encoding size and solving time perfor-
mance.

As a final remark we can say that we studied the use of ASP solvers
for the resolution of the RWA-SLE problem. We contributed with new
ASP encodings for the problem, and we studied how the tightness and the
number of generated loop nogoods relate with the complexity of solving the
instances. In addition, a comparison with the best previous pseudo-Boolean
encoding has shown that the ASP approach is quite competitive with the well
established approach based on PB solvers that use SAT encodings and state-
of-the-art CDCL SAT solvers. Our tightness measure for ASP instances
indicates that there is probably still room for improvement in the ASP
encodings for this problem, if ASP encodings with better tightness, but still
of compact size, can be found.
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3
Recursive Defeasible

Logic Programming

In this chapter we present a particular framework of Possibilistic Defea-
sible Logic Programming (RP-DeLP for short). This framework is based on
a general notion of collective (non-binary) conflict among arguments allow-
ing to ensure direct and indirect consistency properties with respect to the
strict knowledge. An output of an RP-DeLP program is a pair of sets of
warranted and blocked conclusions (literals), all of them recursively based on
warranted conclusions but, while warranted conclusions do not generate any
conflict, blocked conclusions do. An RP-DeLP program may have multiple
outputs in case of circular definitions of conflicts among arguments.

Contents

3.1 Introduction and Motivation . . . . . . . . . . . . . . . 59

3.2 Weighted Recursive Semantics of RP-DeLP . . . . . . . 61

3.1. Introduction and Motivation

Defeasible argumentation is a natural way of identifying relevant assump-
tions and conclusions for a given problem which often involves identifying
conflicting information, resulting in the need to look for pros and cons for a
particular conclusion [PV02]. This process may involve chains of reasoning,
where conclusions are used in the assumptions for deriving further conclu-
sions and the task of finding pros and cons may be decomposed recursively.
Logic-based formalizations of argumentation that take pros and cons for
some conclusion into account assume a set of formulas and then lay out
arguments and counterarguments that can be obtained from these assumed
formulas [BH08].
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Defeasible Logic Programming (DeLP) [GS04b] is a formalism that com-
bines techniques of both logic programming and defeasible argumentation.
As in logic programming, knowledge is represented in DeLP using facts and
rules; however, DeLP also provides the possibility of representing defeasible
knowledge under the form of weak (defeasible) rules, expressing reasons to
believe in a given conclusion. In DeLP, a conclusion succeeds if it is war-
ranted, i.e., if there exists an argument (a consistent sets of defeasible rules)
that, together with the non-defeasible rules and facts, entails the conclusion,
and moreover, this argument is found to be undefeated by a warrant proce-
dure which builds a dialectical tree containing all arguments that challenge
this argument, and all counterarguments that challenge those arguments,
and so on, recursively. Actually, dialectical trees systematically explore the
universe of arguments in order to present an exhaustive synthesis of the rel-
evant chains of pros and cons for a given conclusion. In fact, the interpreter
for DeLP [GDS09] (http://lidia.cs.uns.edu.ar/DeLP) takes a knowledge base
(program) P and a conclusion (query) Q as input, and it then returns one
of the following four possible answers: YES, if Q is warranted from P ; NO,
if the complement of Q is warranted from P ; UNDECIDED, if neither Q
nor its complement are warranted from P ; or UNKNOWN, if Q is not in
the language of the program P .

Possibilistic Defeasible Logic Programming (P-DeLP) [ACGS08] is an
extension of DeLP in which defeasible rules are attached with weights (be-
longing to the real unit interval [0, 1]) expressing their relative belief or pref-
erence strength. As many other argumentation frameworks [CML00, PV02],
P-DeLP can be used as a vehicle for facilitating rationally justifiable decision
making when handling incomplete and potentially inconsistent information.
Actually, given a P-DeLP program, justifiable decisions correspond to war-
ranted conclusions (to some necessity degree), that is, those which remain
undefeated after an exhaustive dialectical analysis of all possible arguments
for and against.

In [CA07] Caminada and Amgoud proposed three rationality postulates
which every rule-based argumentation system should satisfy. One of such
postulates (called Indirect Consistency) requires that the set of warranted
conclusions must be consistent (wrt the underlying logic) with the set of
strict facts and rules. In [CA07] a number of rule-based argumentation
systems were identified in which such postulate does not hold (including
DeLP [GS04b] and Prakken & Sartor’s [PS97], among others). As a way
to solve this problem, the use of transposed rules is proposed in [CA07] to
extend the representation of strict rules. Recently, in [Amg12] Amgoud pro-
poses a new rationality postulate (called Closure under Subarguments) which
rule-based argumentation systems should satisfy. This postulate claims that
the acceptance of an argument should imply also the acceptance of all its
subarguments which reflect the different premises on which the argument is
based.
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Since the dialectical analysis-based semantics of (P-)DeLP for warranted
conclusions does not satisfy the Indirect Consistency postulate, in [ABG10]
Alsinet et. al. provide (P-)DeLP with a new semantics satisfying the above
mentioned postulates.

To this end, in [ABG10] recursive semantics for defeasible argumentation
is considered as defined by Pollock in [Pol09], where recursive definitions of
conflict between arguments were characterized by means of inference-graphs,
representing (binary) support and attack (pros and cons) relations among
the conclusions of arguments. Recursive semantics presented in [ABG10]
are based on the fact that if an argument is rejected, then all arguments
built on top of it should also be rejected. On the other hand, as stated
in [Pol09], recursive definitions of conflict among arguments can lead to
different outputs (extensions) for warranted conclusions.

In this chapter we introduce the recursive semantics with defeasibility
levels to the particular framework of P-DeLP, this formalism is referred as
Recursive P-DeLP (RP-DeLP for short).

Following the approach of Pollock [Pol09], in RP-DeLP inferences from
some propositions to others and definitions of conflict are characterized by
means of what the authors call Warrant Dependency Graphs, representing
support and (collective) conflict relations between argument conclusions.

As stated in the introduction chapter, the one contribution of the thesis
is to design and implement the argumentation framework behind RP-DeLP.

3.2. Weighted Recursive Semantics of RP-DeLP

The language of RP-DeLP, denoted L, is inherited from the language
of logic programming, including the notions of atom, literal, rule and fact.
Formulas are built over a finite set of propositional variables {p, q, . . .} which
is extended with a new (negated) atom “∼p” for each original atom p. Atoms
of the form p or ∼p will be referred as literals.1 Formulas of L consist of
rules of the form Q ← P1 ∧ . . . ∧ Pk , where Q,P1, . . . , Pk are literals. A fact
will be a rule with no premises. The name clause is used to denote a rule
or a fact. The R-DeLP framework is based on the propositional logic (L,`)
where the inference operator ` is defined by instances of the modus ponens
rule of the form: {Q ← P1 ∧ . . . ∧ Pk , P1, . . . , Pk} ` Q. A set of clauses Γ
will be deemed as contradictory, denoted Γ ` ⊥, if , for some atom q, Γ ` q
and Γ ` ∼q.

An RP-DeLP program P is a tuple P = (Π,∆,�) over the logic (L,`),
where Π,∆ ⊆ L, and Π 6` ⊥. Π is a finite set of clauses representing
strict knowledge (information that is taken as granted they hold true), ∆ is
another finite set of clauses representing the defeasible knowledge (formulas

1For a given literal Q, is written ∼Q as an abbreviation to denote “∼q” if Q = q and
“q” if Q = ∼q.
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for which there are reasons to believe they are true). Finally, � is a total
pre-order on Π∪∆ representing levels of defeasibility: ϕ ≺ ψ means that ϕ
is more defeasible than ψ. Actually, since formulas in Π are not defeasible,
� is such that all formulas in Π are at the top of the ordering. For the sake
of a simpler notation we will often refer in the paper to numerical levels
for defeasible clauses and arguments rather than to the pre-ordering �, so
we will assume a mapping N : Π ∪ ∆ → [0, 1] such that N(ϕ) = 1 for all
ϕ ∈ Π and N(ϕ) < N(ψ) iff ϕ ≺ ψ. 2 The notion of argument is the usual
one. Given an RP-DeLP program P = (Π,∆,�), an argument for a literal
(conclusion) Q of L is a pair A = 〈A,Q〉, with A ⊆ ∆ such that Π∪A 6` ⊥,
and A is minimal (w.r.t. set inclusion) such that Π∪A ` Q. If A = ∅, then
A is called an s-argument (s for strict), otherwise it will be a d-argument
(d for defeasible). The strength of an argument 〈A,Q〉, written s(〈A,Q〉), is
defined as follows:

(i) s(〈A,Q〉) = 1 if A = ∅; and

(ii) s(〈A,Q〉) = min{N(ψ) | ψ ∈ A}, otherwise.

The notion of subargument is referred to d-arguments and expresses an
incremental proof relationship between arguments which is defined as fol-
lows. Let 〈B,Q〉 and 〈A,P 〉 be two d-arguments such that the minimal sets
(w.r.t. set inclusion) ΠQ ⊆ Π and ΠP ⊆ Π such that ΠQ ∪ B ` Q and
ΠP ∪A ` P verify that ΠQ ⊆ ΠP . Then, 〈B,Q〉 is a subargument of 〈A,P 〉,
written 〈B,Q〉 @ 〈A,P 〉, when either B ⊂ A (strict inclusion for defeasible
knowledge), or B = A and ΠQ ⊂ ΠP (strict inclusion for strict knowledge).
A literal Q of L is called justifiable conclusion w.r.t. P if there exists an
argument for Q, i.e., there exists A ⊆ ∆ such that 〈A,Q〉 is an argument.

The warrant recursive semantics for RP-DeLP is based on the following
notion of collective conflict in a set of arguments which captures the idea of
an inconsistency arising from a consistent set of justifiable conclusions W
together with the strict part of a program and the set of conclusions of those
arguments. Let P = (Π,∆,�) be an RP-DeLP program and let W ⊆ L be
a set of conclusions. A set of arguments {〈A1, Q1〉, . . . , 〈Ak, Qk〉} minimally
conflicts with respect to W iff the two following conditions hold:

(i) the set of argument conclusions {Q1, . . . , Qk} is contradictory with
respect to W , i.e. it holds that Π ∪W ∪ {Q1, . . . , Qk} ` ⊥; and

(ii) the set {〈A1, Q1〉, . . . , 〈Ak, Qk〉} is minimal with respect to set inclu-
sion satisfying (i), i.e. if S ( {Q1, . . . , Qk}, then Π ∪W ∪ S 6` ⊥.

This general notion of conflict is used to define an output for an RP-
DeLP program P = (Π,∆,�) as a pair (Warr,Block) of subsets of L of

2Actually, a same pre-order � can be represented by many mappings, but we can take
any of them since only the relative ordering is what actually matters.
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warranted and blocked conclusions respectively all of them based on war-
ranted information but while warranted conclusions do not generate any
conflict, blocked conclusions do.

Since considering several levels of strength among arguments are consid-
ered, the intended construction of the sets of conclusions Warr and Block is
done level-wise, starting from the highest level and iteratively going down
from one level to next level below. If 1 > α1 > . . . > αp ≥ 0 are
the strengths of d-arguments that can be built within P, one can define:
Warr = Warr(1) ∪ {∪i=1,pWarr(αi)} and Block = ∪i=1,pBlock(αi), where
Warr(1) = {Q | Π ` Q}, and Warr(αi) and Block(αi) are respectively the
sets of the warranted and blocked justifiable conclusions of strength αi and
are required to satisfy the following recursive constraints: 3

1. Q ∈Warr(αi)∪Block(αi) iff there exists an argument 〈A,Q〉 of strength
αi satisfying the following three conditions:

(V1) for each subargument 〈E,P 〉 @ 〈A,Q〉 of strength β, P ∈Warr(β);

(V2) Q 6∈Warr(> αi) ∪ Block(> αi);

(V3) ∼Q 6∈ Block(> αi) and Π∪Warr(> αi)∪{P | 〈E,P 〉 @ 〈A,Q〉}∪
{Q} 6` ⊥.

In this case is said that 〈A,Q〉 is valid with respect to the sets Warr(≥
αi) and Block(> αi).

2. For every valid argument 〈A,Q〉 of strength αi

- Q ∈ Block(αi) whenever there exists a set G of valid arguments
of strength αi such that

(i) 〈A,Q〉 6@ G, and

(ii) G∪{〈A,Q〉} minimally conflicts with respect to the set W =
Warr(> αi) ∪ {P | 〈E,P 〉 @ G ∪ {〈A,Q〉}}.

- otherwise, Q ∈Warr(αi).

Intuitively, an argument 〈A,Q〉 is valid whenever (V1) it is based on
warranted conclusions; (V2) there does not exist a valid argument for Q
with greater strength; and (V3) Q is consistent with already warranted and
blocked conclusions. Then, a valid argument 〈A,Q〉 becomes blocked as
soon as it leads to some conflict among valid arguments of same strength
and the set of already warranted conclusions, otherwise it is warranted.

Next we outline some relevant properties regarding warranted and blocked
conclusions when considering stratified strengths of arguments:

3In what follows we will also write Warr(≥ αi) and Warr(> αi) to denote
∪β≥αiWarr(β) and ∪β>αiWarr(β), respectively, and analogously for Block(> αi), as-
suming Block(> α1) = ∅.
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1. If Q ∈ Warr(α) ∪ Block(α), then there exists an argument 〈A,Q〉 of
strength α such that for all subargument 〈E,P 〉 @ 〈A,ϕ〉 of strength
β, ψ ∈Warr(β).

2. If Q ∈Warr(α) ∪ Block(α), then for any argument 〈A,Q〉 of strength
β, with β > α, there exists a subargument 〈E,P 〉 @ 〈A,Q〉 of strength
γ and P 6∈Warr(γ).

3. If Q ∈Warr, then Q,∼Q 6∈ Block.

4. IfQ 6∈Warr∪Block, then either∼Q ∈ Block, or for all argument 〈A,Q〉
there exists a subargument 〈E,P 〉 @ 〈A,Q〉 such that P 6∈ Warr or
Π ∪Warr(> αi) ∪ {P | 〈E,P 〉 @ 〈A,Q〉} ∪ {Q} ` ⊥.

Example 1. Consider the RP-DeLP program P1 = (Π,∆,�), with

Π = {a ∧ b ∧ c→ y,∼y}, ∆ = {a, b, a ∧ b→ c}.

Assume one defeasible level α1 for ∆, so 1 > α1 > 0. Obviously, Warr(1) =
{∼y} and, at level α1, arguments A1 = 〈{a}, a〉 and A2 = 〈{b}, b〉 are valid,
and thus, conclusions a and b may be warranted or blocked but not rejected.
At this point we can assure that Warr(α1) = {a, b} as Warr(> α1)∪{a, b} 6`
⊥. Next, argument A3 = 〈{a, b, a ∧ b → c}, c〉 now is satisfying condition
V1, but it minimally conflicts with the set Warr(> α1), so Block(α1) = {c}.
Argument A4 = 〈{a, b, a ∧ b→ c, a ∧ b ∧ c→ y}, y〉 is a rejected argument.

Example 2. Consider the RP-DeLP program P2 = (Π,∆,�), with

Π = {∅},∆ = {a, b,∼c, a ∧ b→ c, b→ ∼b}

and two defeasible sets as follows: {a∧ b→ c, b→ ∼b} ≺ {a, b,∼c}{a∧ b→
c, b → ∼b}. Assume α1 is the level of {a, b,∼c} and α2 is the level of
{a ∧ b → c, b → ∼b}, with 1 > α1 > α2 > 0. As there is no information
at strict level (Π), Warr(1) = ∅. Then at level α1 there are three valid
arguments: A1 = 〈{a}, a〉, A2 = 〈{b}, b〉 and A3 = 〈{∼c}, c〉. As Warr(>
α1) ∪ {a, b,∼c} 6` ⊥ then Warr(α1) = {a, b,∼c}. In the next level A4 =
〈{b, a, a ∧ b → c}, c〉 is a valid argument and as it minimally conflicts w.r.t
Warr(> α2) then Block(α2) = {c}.

In [ABG10] authors showed that, in case of some circular definitions of
conflict among arguments, the output of an RP-DeLP program may be not
unique, that is, there may exist several pairs (Warr,Block) satisfying the
above conditions for a given RP-DeLP program.

The authors formalized circular definitions of conflicts by means of what
they called warrant dependency graphs, following the approach of Pollock
[Pol09]. To support the definition of the warrant dependency graphs the
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authors define the conditions that an argument must satisfy in order to be
an almost valid argument wrt a set of valid arguments. This definition will
be used later in the warrant dependency graph definition.

Let P = (Π,∆,�) be an RP-DeLP program, let W and B be two sets
of warranted and blocked conclusions, respectively, and let A be a set of
valid arguments of strength α with respect to W(≥ αi) and B(> αi). An
argument 〈F, P 〉 of strength α is almost valid with respect to A if it satisfies
the following six conditions:

(AV1) for any subargument 〈C,R〉 @ 〈F, P 〉 of strength β > α, R ∈W(β);

(AV2) P 6∈W(> α) ∪ B(> α);

(AV3) ∼P 6∈ B(> α) and Π ∪W(> α) ∪ {R | 〈C,R〉 @ 〈F, P 〉} ∪ {P} 6` ⊥;

(AV4) there does not exist a valid argument for conclusion P of strength α;

(AV5) for any subargument 〈C,R〉 @ 〈F, P 〉 of strength α such that R 6∈
W(α), it holds that 〈C,R〉 ∈ A, otherwise R and ∼R 6∈ B(≥ α); and

(AV6) there exists at least an argument 〈C,R〉 ∈ A such that 〈C,R〉 @ 〈F, P 〉.

Intuitively, an almost valid argument captures the idea of an argument
based on valid arguments and which status is warranted (not rejected) when-
ever these subarguments are warranted, and rejected, otherwise. In particu-
lar, Condition (AV1) corresponds to a smoothed version of Condition (V1).
Conditions (AV2) and (AV3) are equivalent to Conditions (V2) and (V3),
respectively. Condition (V4) ensures that there does not exist a valid ar-
gument for the literal, and Conditions (AV5) and (AV6) ensure that the
status of an almost valid argument depends on the status of at least one
valid argument.

At this point we are ready to define the warrant dependency graph for
a set of valid arguments and a set of almost valid arguments.

Definition 3.1 (Warrant dependency graph). Let P = (Π,∆,�) be an
RP-DeLP program and let W and B be two sets of warranted and blocked
conclusions, respectively. Moreover, let A1 = 〈A1, Q1〉, . . . ,Ak = 〈Ak, Qk〉
be valid arguments of strength α with respect to W(≥ αi) and B(> αi), and
let B1 = 〈B1, P1〉, . . . ,Bn = 〈Bn, Pn〉 be arguments of strength α that are
almost valid with respect to {A1, . . . ,Ak}. The warrant dependency graph
(V,E) for {A1, . . . ,Ak} and {B1, . . . ,Bn} is defined as follows:

1. For every literal L ∈ {Q1, . . . , Qk} ∪ {P1, . . . , Pn}, the set of vertices
V contains one vertex vL.
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2. For every pair of literals (L1, L2) ∈ {Q1, . . . , Qk} × {P1, . . . , Pn} such
that the argument of L1 is a subargument of the argument of L2, the
set of directed edges E includes one edge (vL1 , vL2).4

3. For every pair of literals (L1, L2) ∈ {P1, . . . , Pn} × {Q1, . . . , Qk} such
that L1 = ∼L2, the set of directed edges E includes one edge (vL1 , vL2).
5

4. For every strict rule R← R1∧. . .∧Rp ∈ Π such that {∼R,R1, . . . , Rp} ⊆
W (≥ α)∪ {Q1, . . . , Qk} ∪ {P1, . . . , Pn}, the set of directed edges E in-
cludes one edge (vL1 , vL2) for every pair of literals (L1, L2) ∈ {P1, . . . , Pn}×
{Q1, . . . , Qk} such that the argument of L2 is not a subargument of the
argument of L1, L1 ∈ {∼R,R1, . . . , Rp} and, either L2 ∈ {∼R,R1, . . . , Rp}
or, L2 is a subargument of the argument of L3, for some L3 ∈ {P1, . . . , Pn}
such that L3 ∈ {∼R,R1, . . . , Rp}. 6

5. Elements of V and E are only obtained by applying the above construc-
tion rules.

The idea behind the warrant dependency graph is that it represents

(i) support relations of almost valid arguments with respect to valid ar-
guments and

(ii) conflict relations of valid arguments with respect to almost valid ar-
guments.

Example 3. Consider the RP-DeLP program P3 = (Π,∆,�), with

Π = {∅}, ∆ = {p, q, p→ ∼q, q → ∼p}.

Now, consider the empty set of conclusions W = W (1) = ∅ and ar-
guments for conclusions p and q; i.e. A1 = 〈{p}, p〉 and A2 = 〈{q}, q〉.
Finally, consider the arguments for conclusions ∼p and ∼q; i.e.

B1 = 〈{q, ∼p← q},∼p〉 and
B2 = 〈{p, ∼q ← p},∼q〉.

Figure 3.2 shows the warrant dependency graph for A1 and A2 w.r.t.
W = ∅, B1, and B2. Conflict and support relationships among these argu-
ments are represented as dashed and solid arrows, respectively. The cycle
of the graph expresses that the warranty of p depends on the validity of ∼p,
which depends on the warranty of q, which depends on the validity of ∼q,
which in turn depends on the warranty of p.
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q ∼q

p ∼p

Figure 3.1: Warrant dependency graph for RP-DeLP program from Exam-
ple 3

Example 4. Consider the RP-DeLP program P4 = (Π,∆,�), with

Π ={∅},
∆ ={p, q, r, p ∧ q → ∼r, r ∧ q → ∼p, r ∧ p→ ∼q}.

As in the precedent example, consider the empty set of conclusions W =
W (1) = ∅ and now we have arguments for conclusions p, q and r: A1 =
〈{p}, p〉, A2 = 〈{q}, q〉 and A3 = 〈{r}, r〉. Based on this valid arguments
we have the following subarguments: B1 = 〈{p, q, p ∧ q → ∼r},∼r〉, B2 =
〈{p, r, p ∧ r → ∼q},∼q〉, B3 = 〈{q, r, q ∧ r → ∼p},∼p〉.

Conflict and support relationships among these arguments are repre-
sented as dashed and solid arrows, respectively. The graph contains many
cycles. For instance, following the recursive definition of valid and almost
valid argument, the set of edges

{(∼p, p), (q,∼p), (∼q, q), (p,∼q)}

expresses that:

1. The warranty of p depends on a (possible) conflict with ∼p (direct
conflict between p and ∼p if ∼p was valid).

2. The support of ∼p depends on q (i.e. the validity of ∼p depends on
the warranty of q);

3. The warranty of q depends on a (possible) conflict with ∼q (direct
conflict between q and ∼q if ∼q was valid).

4. The support of ∼q depends on p (i.e. the validity of ∼q depends on
the warranty of p).

4The directed edge (vL1 , vL2) represents an inference (subargument) relation from a
valid argument to an almost valid argument.

5The directed edge (vL1 , vL2) represents a direct conflict, inconsistency due to defeasible
rules, between an almost valid argument and a valid argument.

6The directed edge (vL1 , vL2) represents an indirect conflict, inconsistency due to strict
rules, between an almost valid argument and a valid argument.
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p ∼p

q ∼q

r ∼r

1

3

4

2

Figure 3.2: Warrant dependency graph for RP-DeLP program from exam-
ple 4

The following example will show a circular definition of a cycle with
strict knowledge.

Example 5. Consider the RP-DeLP program P5 = (Π,∆,�), with

Π ={∼a, p1 ∧ s→ a, q1 ∧ r → a},
∆ ={p1, q1, q1 → s, p1 → r,

p2, q2, p2 → r, q2 → q1,

p2 → ∼q2, q2 → s}

p1 q1

r s

q2∼q2

p2 ∼p2

Figure 3.3: Warrant dependency graph for RP-DeLP program from exam-
ple 5

In this example the strict knowledge (Π) is not empty, so we have to
consider W = W (1) = {∼a} and the arguments for p1, q1, p2 and q2: A1 =
〈{p1}, p1〉, A2 = 〈{q1}, q1〉, A3 = 〈{p2}, p2〉 and A4 = 〈{q2}, q2〉. Based on
those valid arguments we have the following almost valid arguments:
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Almost valid arguments for r: B1 = 〈{p1, p1 → r}, r〉 and B2 =
〈{p2, p2 → r}, r〉

Almost valid arguments for s: B3 = 〈{q1, q1 → s}, s〉 and B4 =
〈{q2, q2 → s}, s〉

Almost valid argument for ∼p2: B5 = 〈{q2, q2 → ∼p2},∼p2〉

Almost valid argument for ∼q2: B6 = 〈{p2, p2 → ∼q2},∼q2〉

It is worth to notice that there are two different almost valid arguments for
s and r. That can give a hint to see that despite of the fact that the number
of nodes in the graph is upper bounded with the number of literals in the
program, the number of almost valid arguments can be exponentially higher,
so the complete contraction of the graph can take exponential time.

We can see that there are two cycles. The first one is

{(s, p1), (q1, s), (r, q1), (p1, r)},

and unlike the previous examples, there is strict knowledge involved in the
circular definition of the conflict. There are two possible indirect conflicts at
defeasible level: Π∪W ∪{p1, s} ` ⊥ and Π∪W ∪{q1, r} ` ⊥. The complete
cycle can be explained as follows:

1. The edge (s, p1) indicates an (indirect) conflict between the valid ar-
gument for p1 and an almost valid argument for s. That is, a conflict
generated after considering the strict rules.

2. The edge (q1, s) indicates that the almost valid argument for s depends
on a valid argument for q1.

3. The edge (r, q1) indicates an (indirect) conflict between the valid argu-
ment for q1 and an almost valid argument for r.

4. Finally, the edge (p1, r) indicates that the almost valid argument for r
depends on a valid argument for p1.

The second only has direct conflicts defined with the rules from the defa-
sible level

{(∼p2, p2), (q2,∼p2), (∼q2, q2), (p2,∼q2)},
and can be defined as follows:

1. The edge (∼p2, p2) indicates a (direct) conflict between the valid argu-
ment for p2 and an almost valid argument for ∼p2.

2. The edge (q2,∼p2) indicates that the almost valid argument for ∼p2

depends on a valid argument for q2.
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3. The edge (∼q2, q2) indicates a (direct) conflict between the valid argu-
ment for q2 and an almost valid argument for ∼q2.

4. The edge (p2,∼q2) indicates that the almost valid argument for ∼q2

depends on a valid argument for p2.

Example 6. Consider the RP-DeLP program P6 = (Π,∆,�), with

Π ={p1 ∧ s→ a, q1 ∧ r → a, p2 ∧ s→ a, q2 ∧ r → a,∼a},
∆ ={p1, q1, q1 → s, p1 → r, p2, q2, q2 → s, p2 → r}.

p1 q1

r s

q2p2

Figure 3.4: Warrant dependency graph for RP-DeLP program from exam-
ple 6

In this example we have four arguments A1 = 〈{p1}, p1〉, A2 = 〈{p2}, p2〉,
A3 = 〈{q1}, q1〉 and A4 = 〈{q2}, q2〉 such that any of them appears in two
cycles in the dependency graph. Each cycle is associated to a different ex-
planation of why p1, p2, q1 and q2 cannot be uniquely warranted or blocked,
so in principle detecting any of the two cycles is enough to show that they
are not uniquely determined.

For example, the cycle:

{(s, p1), (q1, s), (r, q1), (p1, r)}

Shows a circular definition between literals because:

1. The edge (s, p1) indicates an (indirect) conflict between the valid ar-
gument for p1 and an almost valid argument for s. That is, a conflict
generated after considering the strict rules.

2. The edge (q1, s) indicates that the almost valid argument for s depends
on a valid argument for q1

3. The edge (r, q1) indicates an (indirect) conflict between the valid argu-
ment for q1 and an almost valid argument for r.
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4. Finally, the edge (p1, r) indicates that the almost valid argument for r
depends on a valid argument for p1

That is, the status of warranted or blocked for the literals with valid argu-
ments p1 and q1 depends on each other, so our recursive based semantics
does not give an unique status for these literals

But for showing that p1 cannot be uniquely determined, we have also this
other cycle:

{(s, p1), (q2, s), (r, q2), (p1, r)}
It basically differs with the previous cycle in the almost valid argument

for s, that is now an argument that depends on q2 instead of on q1 So, with
this cycle we discover that the status of p1 and q1 depends on each other.
But observe that for certifying that p1 cannot be uniquely determined to be
warranted or blocked, any one of these two cycles is equally good

We have a similar situation for literals p2 and q2.

In the next chapter we will present an algorithm to compute all the
possible outputs from an RP-DeLP program. After presenting a first version
of the algorithm which uses the dependency graph, we will also present an
optimized version which avoids using the graph. This optimized algorithm is
able to determine when a literal is part of a cycle avoiding explicitly working
with the full constructed dependency graph. That optimization permits a
better memory management as its not necessary to maintain a complete list
of arguments for a literal.
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4
On the Implementation of
the RP-DeLP Framework

In this chapter we propose an algorithm which computes all possible
RP-DeLP program outputs. Once a first version of the algorithm is
presented, we propose an optimization which demonstrates that it is not
necessary to construct the whole Warrant Dependency Graph to compute
the outputs of an RP-DeLP program. Once this optimization is showed,
we present an optimized algorithm. The complexity of this new optimized
algorithm relies on two combinatorial queries. We also propose two
encodings for solving such queries: one based in SAT techniques and the
other one based on ASP techniques.

Contents

4.1 Computing the Set of Outputs for an RP-DeLP Program 73

4.2 SAT Encodings for Finding Warranted Literals . . . . . 82

4.2.1 Looking for Almost Valid Arguments . . . . . . . 82

4.2.2 Looking for Collective Conflicts . . . . . . . . . . 86

4.3 ASP Encodings for Finding Warranted Literals . . . . . 87

4.3.1 Looking for Almost Valid Arguments . . . . . . . 87

4.3.2 Looking for Collective Conflicts . . . . . . . . . . 90

4.1. Computing the Set of Outputs for an RP-
DeLP Program

From a computational point of view, the set of outputs for a recursive
based semantics can be computed by means of a recursive algorithm, start-
ing with the computation of warranted conclusions from strict clauses and
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recursively going from warranted conclusions to defeasible arguments based
on them.

For every level the algorithm must compute the sets of valid and almost
valid arguments and has to check the existence of conflicts between valid
arguments and cycles at some warrant dependency graph.

As we have seen in some examples in the precedent chapter, the exis-
tence of cycles leads to different outputs which satisfy the conditions of the
RP-DeLP semantics. For a complete computation of all possible outputs,
when a cycle is found one must exhaustively compute all the possible ex-
tensions resolving the cycle by adding one literal from the cycle into the set
of warranted or blocked conclusions. To store the set of partially computed
extensions at every level we use a stack.

In the following we use the simpler notation W , W (1), W (α) and W (≥
α) for Warr, Warr(1), Warr(α) and Warr(≥ α) respectively, and B, B(α)
and B(≥ α) for Block, Block(α) and Block(≥ α), respectively.

Algorithm 1.

Algorithm RP-DeLP outputs

Input P = (Π,∆,�): An RP-DeLP program
Output O: Set of outputs for P
Variables

(W,B): Current output for P
S: Stack of partially computed outputs (W,B,α) for P

Method
O := ∅;
W := {Q | Π ` Q};
B := ∅;
α := 1;
Push(S, (W,B,α));
while (¬Empty Stack(S)) do

(W,B,α) := Pop(S);
while (α >lowest level(�)) do

α := next level(�, α);
level computing(W , B, α, S, O)

end while
end while

end algorithm Algorithm 1: RP-DeLP outputs

The algorithm RP-DeLP outputs first computes the set of warranted
conclusions form the set of strict clauses Π and uses the stack S to store the
set of partially computed outputs for each level. We define function Pop(S),
which returns and deletes the top of the stack S. Empty Stack(S) returns
True if the stack S is empty and False otherwise.
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Elements in S are (W,B,α) which represent partially computed outputs
where W and B are warranted and blocked conclusions up to level α. For
example, imagine we have a program P with n defeasible levels and at level
l exists one cycle involving two literals: u and v. The algorithm detects the
cycle at level l which implies that there are at least two different outputs
satisfying the conditions of RP-DeLP semantics. After the execution of
level computing at level l the stack S will contain two elements: one for
the extension for v at level i and the other for the extension for u at level i.
Those two extensions will be extended at the following levels until the lower
level, where they will be added at set O.

When all possible extensions of a partial output are explored in the lowest
defeasible level, variable O stores the output. Take into account that, at the
lowest level computed outputs will not be stored in S as long they are not
partial outputs. All outputs at lowest level will be stored at O which is the
set representing complete outputs. Then, as long as there are elements in
S, there are partial outputs unexplored. Algorithm RP-DeLP outputs will
not finish until all the possible outputs are explored.

For every partially computed output and every defeasible level 1 > α >
0, the procedure level computing extends the partially computed outputs
with the sets of warranted and blocked conclusions of the next level α.
Function level computing returns all the extensions up to level α. Function
lowest level returns the lowest defeasible level in program P, and function
next level returns iteratively in descendant order the following value of α.

Algorithm RP-DeLP outputs finishes when S is empty and O contains
all the possible outputs of P.

Procedure level computing (in out W , B, α, S, O)

Variable VA: Set of valid arguments

Method
VA : = {〈A,Q〉 with strength α | 〈A,Q〉 is valid w.r.t. W and B};
weighted extension (W , B, α, VA, S, O);
(W,B,α) := Pop(S);

end procedure level computing

The procedure level computing receives a partially computed output
with a set of warranted conclusions W (> α) and a set of blocked conclusions
B(> α), and extends this partial output up to level α, i.e. computes W (≥ α)
and B(≥ α) for every extension. As level computing computes the partial
output of the next level of α, first of all we have to compute the set of valid
arguments in α.

Procedure weighted extension (in W , B, α, VA; in out S, O)

Variables
Wext: Extended set of warranted conclusions
VAext: Extended set of valid arguments
is leaf : Boolean

Method
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is leaf := true;
while (VA 6= ∅ and is leaf = true) do

while (∃〈A,Q〉 ∈ VA |
¬ conflict(〈A,Q〉, VA, W , not dependent(〈A,Q〉,
almost valid(VA, (W , B))))
and ¬ cycle(〈A,Q〉, VA, W , almost valid(VA, (W , B))) do

W := W ∪ {Q};
VA := VA\{〈A,Q〉} ∪ {〈E,P 〉 with strength α | 〈E,P 〉
is valid w.r.t. W and B}

end while
I := {〈A,Q〉 ∈ VA | conflict(α, 〈A,Q〉, VA, W , ∅) };
B := B ∪ {Q | 〈A,Q〉 ∈ I};
VA := VA\I;
J := {〈A,Q〉 ∈ VA | cycle(α, 〈A,Q〉, VA, W ,
almost valid(α, VA, W , B)) };
for each argument (〈A,Q〉 ∈ J) do

Wext := W ∪ {Q};
VAext := VA\{〈A,Q〉} ∪ {〈E,P 〉 with strength α | 〈E,P 〉
is valid w.r.t. Wext and B};
weighted extension (Wext, B, α, VAext, S, O)

end for
if (J 6= ∅) then is leaf := false

end while
if ((W,B,α) 6∈ S and is leaf = true ) then

Push(S, (W,B,α));
if (α = lower level(�)) then O := O ∪ {(W,B)}

end if
end procedure weighted extension

The recursive procedure weighted extension receives as input a par-
tially computed output (W,B) at a level α and the set of valid arguments
VA with respect to W and B. It also receives S and O as input/output
variables, which will only be used to store the partial or complete output
respectively.

When a cycle is found in a warrant dependence graph, each valid ar-
gument of the cycle can lead to a different output. Then, the procedure
weighted extension selects one valid argument of the cycle and recursively
computes the resulting output by warranting the selected argument. The
procedure finishes when the status for every valid argument is computed. If
the recursive analysis leads to a new extension, it is stored in the stack S.
Moreover, if the level computing α corresponds with the lower strength of
the program arguments, each new output is added to the set of outputs O.

The function almost valid computes the set of almost valid arguments
based on some valid arguments in VA. The function not dependent com-
putes the set of almost valid arguments which do not depend on 〈A,Q〉.

The function conflict has two different functionalities:

On the one hand, the function conflict checks possible conflicts
among the argument 〈A,Q〉 and the set VA of valid arguments ex-
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tended with the set of almost valid arguments whose supports depend
on some argument in VA\{〈A,Q〉}, and thus, every valid argument
with options to be involved in a conflict remains as valid.

conflict(〈A,Q〉,VA,W, not dependent(〈A,Q〉,
almost valid(VA, (W,B))))

On the other hand, the function conflict checks conflicts among the
argument 〈A,Q〉 and the set VA of valid arguments, and thus, every
valid argument involved in a conflict is blocked.

conflict(〈A,Q〉,VA,W, ∅)

Finally, the function cycle checks the existence of a cycle in the warrant
dependency graph for the set of valid arguments VA and the set of almost
valid arguments based on some valid arguments in VA. Please note that
the function cycle needs the full constructed dependency graph in order to
check if a literal is involved in a conflict. Despite of the fact that it can be
showed that once the graph is constructed, checking that a literal is involved
in a cycle can be solved in polynomial time, there is still the need of the
construction of the graph which can take exponential time with respect to
the number of literals in the program.

It can be we showed that whenever cycle returns true for 〈A,Q〉, then
a conflict will be detected with the set of almost valid arguments which do
not depend on 〈A,Q〉. Moreover, the set of valid arguments J computed
by function cycle can also be computed by checking the stability of the set
of valid arguments after two consecutive iterations, so it is not necessary to
explicitly compute dependency graphs.

Proposition 4.1 (Optimization). Let P = (Π,∆,�) be an RP-DeLP pro-
gram with defeasibility levels 1 > α1 > . . . > αp > 0 for ∆, and let W
and B be two sets of warranted and blocked conclusions with strength ≥ αi,
respectively. If VA is the set of all d-arguments of strength αi that are valid
with respect to (W,B) and AV is the set of all d-arguments of strength αi
that are almost valid with respect to VA, we get the following results:

(i) If there is a cycle in the warrant dependence graph for VA and AV,
and 〈A,Q〉 ∈ VA is such that the vertex of conclusion Q is a vertex
of the cycle or there exists a path from a vertex of the cycle to the
the vertex of conclusion Q, then there exists a set ND ⊆ AV such
that 〈A,Q〉 6@ 〈R,P 〉 for all 〈R,P 〉 ∈ ND, and there exists a set S ⊆
VA\{〈A,Q〉} such that Π ∪ W ∪ {P | 〈B,P 〉 ∈ S} ∪ ND 6` ⊥ and
Π ∪W ∪ {P | 〈B,P 〉 ∈ S} ∪ND ∪ {Q} ` ⊥.

(ii) If for all 〈A,Q〉 ∈ VA there exists a set ND ⊆ AV such that 〈A,Q〉 6@
〈R,P 〉, for all 〈R,P 〉 ∈ ND, and there exists a set S ⊆ VA\{〈A,Q〉}

79



such that Π ∪W ∪ {P | 〈B,P 〉 ∈ S} ∪ ND 6` ⊥ and Π ∪W ∪ {P |
〈B,P 〉 ∈ S} ∪ ND ∪ {Q} ` ⊥, then there is at least a cycle in the
warrant dependence graph for VA and AV, and every 〈A,Q〉 ∈ VA is
such that the vertex of conclusion Q is a vertex of a cycle or there
exists a path from a vertex of a cycle to the the vertex of conclusion
Q.

Proof.

(i) If the vertex of conclusion Q is a vertex of the cycle, because of the
warranty dependency graph definition, we can consider the set ND ⊆
AV such that the vertex of each conclusion in ND is a vertex of the
cycle and 〈A,Q〉 6@ 〈R,P 〉 for all 〈R,P 〉 ∈ ND, and then, there should
exist a set S ⊆ VA\{〈A,Q〉} such that Π∪W∪{P | 〈B,P 〉 ∈ S}∪ND 6`
⊥ and Π ∪W ∪ {P | 〈B,P 〉 ∈ S} ∪ ND ∪ {Q} ` ⊥. If the vertex of
conclusion Q is not a vertex of the cycle and there exists a path from
a vertex of the cycle to the the vertex of conclusion Q, we can consider
the set ND ⊆ AV such that the vertex of each conclusion in ND is a
vertex of the cycle. Now, because of the warranty dependency graph
definition, 〈A,Q〉 6@ 〈R,P 〉 for all 〈R,P 〉 ∈ ND and there should exist
a set S ⊆ VA\{〈A,Q〉} such that Π∪W ∪ {P | 〈B,P 〉 ∈ S} ∪ND 6` ⊥
and Π ∪W ∪ {P | 〈B,P 〉 ∈ S} ∪ND ∪ {Q} ` ⊥.

(ii) We have that for all S ⊆ VA, Π∪W∪{P | 〈R,P 〉 ∈ S} 6` ⊥ and that for
all 〈A,Q〉 ∈ VA there exists a set ND ⊆ AV such that 〈A,Q〉 6@ 〈R,P 〉
for all 〈R,P 〉 ∈ ND, and there exists a set S ⊆ VA\{〈A,Q〉} such that
Π ∪W ∪ {P | 〈B,P 〉 ∈ S} ∪ND 6` ⊥ and Π ∪W ∪ {P | 〈B,P 〉 ∈ S} ∪
ND∪{Q} ` ⊥. Then, for all 〈A,Q〉 ∈ VA, we have that the warranty of
Q depends on a possible conflict with a set S ⊆ VA\{〈A,Q〉} and a set
ND ⊆ AV such that 〈A,Q〉 6@ 〈R,P 〉 for all 〈R,P 〉 ∈ ND. Therefore,
because of the warranty dependency graph definition, there should
exists a cycle in the warrant dependence graph (V,E) for VA and AV
such that the vertexes of conclusions of ND are vertexes of the cycle
and the vertexes of conclusions of S and {〈A,Q〉} are vertexes of the
cycle or there exists a path from a vertex of the cycle to the the vertex
of these conclusions.

From Proposition 4.1 it follows that we only need one argument per
conclusion in order to find a conflict among arguments. So, there is no need
for maintaining the full list of arguments for a conclusion.

Next we present an optimized version of the previously presented algo-
rithm. This new version uses the same main algorithm RP-DeLP output us-
ing two new versions of procedures level computing and weighted extension.
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The new optimized version of the algorithm makes use of a new set of
literals. This new set is called VL and it contains the set of valid literals. A
valid literal is the conclusion of a valid argument (similarly we will refer as
almost valid literals to the conclusions of almost valid arguments).

Procedure level computing (in out W , B, α, S, O)

Variable VL: Set of valid literals

Method
VL : = {Q with strength α | 〈A,Q〉 is valid w.r.t. W and B};
weighted extension (W , B, α, VL, S, O);
(W,B,α) := Pop(S);

end procedure level computing

Procedure weighted extension (in W , B, α, VL; in out S, O)

Variables
Wext: Extended set of warranted conclusions
VLext: Extended set of valid literals
is leaf : Boolean

Method
is leaf := true;
while (VL 6= ∅ and is leaf = true) do

while (∃Q ∈ VL |
¬ conflict(α, Q, VL, W , almost valid literals(α,VL, (W , B), Q))) do

W := W ∪ {Q};
VL := VL\{Q} ∪ {P with strength α | 〈E,P 〉
is valid w.r.t. W and B}

end while
I := {Q ∈ VL | conflict(α, Q, VL, W , ∅) };
B := B ∪ I;
VL := VL\I;
if VL does not change from previous iteration then J := V L;
for each literal (Q ∈ J) do

Wext := W ∪ {Q};
VLext := VL\{Q} ∪ {P with strength α | 〈E,P 〉
is valid w.r.t. Wext and B};
weighted extension (Wext, B, α, VLext, S, O)

end for
if (J 6= ∅) then is leaf := false

end while
if ((W,B,α) 6∈ S and is leaf = true ) then

Push(S, (W,B,α));
if (α = lowest level(�)) then O := O ∪ {(W,B)}

end if
end procedure weighted extension

The main difference introduced in level computing respect to the pro-
cedure in the original algorithm is that it makes use of a list of valid literals
as input instead of a list of arguments.

So now, in the optimized version, weighted extension procedure will
take a list of literals instead of a list of arguments. Another difference in
weighted extension is the absence of the function cycle as long as is not
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necessary to find cycles in the warrant dependency graph as follows from
Proposition 4.1. Instead of cycle function, we check the stability of the
set of valid literals in two iterations. We can check that if in two iterations
of the main loop in weighted extension procedure the set of VL has not
changed, all literals in set VL are involved in at least a cycle with other
literals in VL. Nevertheless we can not obtain the full description of the
cycle, so by checking the stability of set VL we can assure that there is at
least one cycle and also that all literals in set VL are in a cyclic definition
of a conflict with other valid and almost valid literals.

Working this way we can detect the existence of cyclic definitions of
conflicts but without explicitly computing them. As a drawback we are not
capable to give a full description of the cycle, but we can speed up and
optimize the algorithm.

Similarly as in the non optimized version, for any level α the procedure
weighted extension first computes the set VL of valid literals with respect
to W (> α) and B(> α). Then, this set of valid literals is dynamically
updated depending on new warranted and blocked conclusions with strength
α. To do so, we maintain a list with the rules which can derive new valid
arguments. When a literal is added to W , then this list is used to quickly
check for new updates. Given the recursive definition of a valid argument,
its conditions can be checked in polynomial time. Then it only remains
assuring that new literals do not conflict with strict knowledge. Also, when
a literal is added to B, we update the list and delete the rules containing
this new blocked literal in its body. The procedure weighted extension

finishes when the status for every valid literals is resolved.

Hence the weighted extension procedure needs to compute two main
queries during its execution: i) to find the set of almost valid literals not
depending on valid literal Q, ii) check if there is a conflict for a valid literal
given a set of valid literals and optionally a set of almost valid literals.

In the following we present SAT and ASP encodings for these two main
combinatorial queries. The input and output specification of each query is
as follows:

(i) almost valid literals(α, VL, (W , B), Q): It takes as input a set
VL of valid literals of strength α, sets W and B of warranted and
blocked literals of strength ≥ α, respectively, and a literal Q such as
the argument 〈A,Q〉 is a valid argument with respect to W and B at
level α. It iteratively checks among the set of possible almost valid
literals for the existence of an almost valid argument of strength α
that does not depend on Q. The query will return a list of almost
valid literals with at most one argument for each literal.

Note that the status of an almost valid argument B only changes under
the following conditions:
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i When all subarguments of B are in the set W , then the almost
valid argument changes its status to valid argument.

ii When one subargument of B is in the set B, it is no longer almost
valid as it will not satisfy the conditions of a valid argument.

For each almost valid literal we maintain a cache with the last call to
function almost valid literal where the status of an almost valid
literal was checked. So, before launching the query we can check this
cache. If we find a previous recorded entry in this cache, it means
that the status of literal has not changed. If we do not find an entry,
then we launch the query. There is a necessary task to do, and it is
to keep the cache updated, so we have to detect when an almost valid
argument changes its status due to the inclusion of a literal in the set
of the warranted or blocked.

One can see that finding an almost valid argument for a literal is a
combinatorial problem. This is the problem of finding a set of almost
valid literals not depending on Q and to solve such problem we make
use of SAT and ASP techniques. In next section we present two encod-
ings based on SAT and ASP designed for efficiently solve those tasks.
Moreover, using those encodings we can find an almost valid argument
not depending on a literal Q.

(ii) conflict(α, Q, VL, W , ND): It takes as input a set W of warranted
literals of strength ≥ α, a set VL of valid literals of strength α, a valid
literal Q of strength α, and a set ND of almost valid literals of strength
α that do not depend on Q. It checks (possible) conflicts among the
literal Q and the set VL of valid arguments extended with the set ND
of almost valid arguments.

Observe that there are two conflict calls. The first one with a non
empty set of ND almost valid literals which checks for a possible con-
flict between literal Q and W ∪VL∪ND. The importance of this call
is that if no conflict is found we set literal Q as warranted as Q will
not be in any conflict.

In the second query we have ND = ∅, so if a conflict is found, it means
that there is at least a conflict between Q and W ∪VL, so conclusion
Q must be blocked. Finding conflicting arguments for conclusion Q
among the rules and facts from an RP −DeLP program is a combi-
natorial problem. Again, to solve such problem we make use of ASP
and SAT techniques.

In the next section we also present two encodings based on SAT and
ASP techniques which solve such problem in an effective way. More-
over SAT and ASP queries will return a subset C ⊆W ∪VL which is
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not minimum but satisfies Q∪C∪Π `⊥. We can use the set of literals
C to give an explanation of why we block the conclusion Q.

We can see that this algorithm will compute an exponential number of
outputs respect to the size of the program in worst case. For each output it
will perform linear number of calls to the solvers.

4.2. SAT Encodings for Finding Warranted Liter-
als

In the previous section we have seen that we can compute the outputs of
an RP-DeLP program by means of a level-wise procedure, starting from the
highest level and iteratively going down from one level to next level below.
At every level it is necessary to determine the status (warranted or blocked)
of each valid argument by checking the existence of both conflicts between
arguments, and cycles at the warrant dependence graphs. We also showed
that this level-wise procedure can be implemented to work in polynomial
space. On the one hand this can be achieved because it is not actually
necessary to find all the valid arguments for a given literal, it is enough
to find only one. Actually, in our implementation to explain the existence
of a valid argument for a literal Q we simply record the last rule of the
argument, that is, a rule with Q as conclusion, and with all the literals of
its body as warrants. To give a full explanation for a valid argument, we
recursively give explanations for all the warrants of the body of the rule.
Something similar applies to the computation of at most one almost valid
argument for a given literal. This will be done with the first of the two SAT
encodings we present next, and it allows also to explicitly give an almost
valid argument for a literal, not only to check the existence. On the other
hand, the existence of cycles in the warrant dependency graph among valid
and almost valid arguments can be validated by checking the stability of
conflicts between valid and almost valid arguments, so it is not necessary to
explicitly compute the warrant dependency graphs. Hence, the procedure
to find warranted literals needs to compute two main queries during its
execution:

i whether an argument is almost valid, and

ii whether there is a conflict among valid and almost valid arguments.

4.2.1. Looking for Almost Valid Arguments

The idea for encoding the problem of searching almost valid arguments
is based on the same behind successful SAT encodings for solving STRIPS
planning problems [KS99b]. In a STRIPS planning problem, given an initial
state, described with a set of predicates, the goal is to decide whether a
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desired goal state can be achieved by means of the application of a suitable
sequence of actions. Each action has a set preconditions, when they hold
true the action can be executed and as a result certain facts become true and
some others become false (its effects). Hence executing an action changes
the current state, and the application of a sequence of actions creates a
sequence of states. The planning problem is to find a sequence of actions
such that, when executed, the obtained final state satisfies the goal state.

In our case, the search for an almost valid argument 〈C,P 〉 can be seen as
the search for a plan for producing P , taking as the initial set of facts some
subset of a set of literals in which we already trust. We call such initial set
the base set of literals1, and we say that they are true at the first step of the
argument. For looking for an almost valid argument 〈C,P 〉, we will consider
what rules should be executed, such that starting from the initial set will
finally obtain the desired goal P . We say that a rule R can be executed
starting from a set of literals S, when Body(R) ⊆ S, and that when it is
executed we obtain a new set S ∪ {Head(R)}. We have to consider only
some rules for looking for almost valid arguments of strength α for literals
not yet warranted, we called those rules α-rules and we say a rule R is an
α-rule if it satisfies the following conditions:

1. Either s(R) > α and Body(R) \W (> α) 6= ∅, or s(R) = α.

2. Body(R) ∩B(≥ α) = ∅.

3. Head(R),∼Head(R) 6∈W (≥ α) ∪B(≥ α).

4. There is no 〈C,Head(R)〉 ∈ VA.

We use the following sets of literals and rules to define our SAT encoding.
Consider first the initial set S0:

S0 = {L | L ∈W (≥ α) or ∃〈C,L〉 ∈ V A}

which is the base set of warranted and valid literals. If we execute all the
α−rules that can be executed from S0, that is:

R0 = {R | R ∈ α−rules , Body(R) ⊆ S0}

we obtain a new state S1 that contains S0 plus the heads of all the executed
rules. This process can be repeated iteratively, obtaining a sequence of sets
of literals S = {S0, S1, . . . , St} and a sequence of sets of executed rules R =
{R0, R1, . . . , Rt−1}, until we reach a final state St in which the execution of
any possible rule does not increase the set of literals already in St. If starting
from an initial set S0 that contains all the current valid and warranted literals

1For an almost valid argument, the base set can contain only warranted and valid
literals.
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the final state St contains P , that means that an almost valid argument for
P could be obtained from the sequence of executed rules, if we could find
a subset of rules such that they can form an argument that satisfies all the
conditions for an almost valid argument for P .

Observe that an almost valid argument 〈C,P 〉 with strength α can only
exist if the following conditions, that can be checked in polynomial time, are
satisfied:

1. P 6∈W(> α) ∪ B(> α). This is actually condition (AV2).

2. ∼P 6∈ B(> α). This is actually the first part of condition (AV3).

3. There does not exist a valid d-argument for conclusion P of strength
α. This is actually condition (AV4).

4. P ∈ St.

If the previous conditions are satisfied, we proceed the search for 〈C,P 〉 with
strength α with a SAT encoding from the sequences S and R defined above.

That is, a SAT instance with variables to represent all the possible literals
we can select from each set Si:

{viL | L ∈ Si, 0 ≤ i ≤ t}

plus variables to represent all the possible rules R we can select from each
set Ri:

{viR | R ∈ Ri, 0 ≤ i < t}
In order to check that the variables set to true represent an almost valid
argument, we add clauses for ensuring that:

(1) If variable viL is true, then either vi−1
L is true or one of the variables

vi−1
R , with Head(R) = L, is true.

(2) If a variable viR is true, then for all the literals L in its body viL must
be true.

(3) If variable viL is true, then vi+1
L is also true.

(4) The variable vtP must be true.

(5) No two contradictory variables vtL and vt∼L can be both true.

In addition, in order to satisfy the consistency of the literals of the ar-
gument with respect to the closure of the strict knowledge Π, we create also
an additional set of variables VΠ and set of clauses RΠ. The set of variables
VΠ contains a variable vΠ

L for each literal that appears in the logical closure
of the set St ∪W with respect to the strict rules.

Then, we add the following clauses to check the consistency with Π:
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(1) If a literal is selected for the argument (vtL set to true) then vΠ
L must

also be true.

(2) For any L ∈W , vΠ
L must be true.

(3) For any rule R ∈ Π that was executed when computing the logical
closure, if for all the literals L in its body vΠ

L is true, then vΠ
Head(R)

must be true.

(4) No two contradictory variables vΠ
L and vΠ

∼L can be both true.

Observe that this layered encoding for searching almost valid arguments
allows to explicitly recover the full structure of the argument, because we
have both the literals and the rules that have generated them at each step
of the argument.

We next show that any solution for a formula obtained with this SAT
encoding gives an almost valid argument 〈C,P 〉; i.e. we show that 〈C,P 〉
satisfy Conditions (AV1)-(AV6):

(AV1) Given that the only possible rules that can be selected for building
the almost valid argument are those defined as α-rules, the conclusion
of an α-rule can only become valid with strength at most α. So, the
only possible subarguments with strength greater than α are the ones
corresponding to literals that can selected from the set S0. Observe
that the literals in the set S0 are all the literals at the current set
W (≥ α) plus the current set of literals with valid arguments with
strength α. It follows that the only subarguments of strength β > α
that can be implicitly used are the ones corresponding to warranted
literals.

(AV2) This condition is actually checked before creating the SAT encoding.
That is, if the condition is not satisfied, we answer that there is no
such almost valid argument.

(AV3) The first part of this condition ∼P 6∈ B(> α) is also checked before
creating the SAT encoding. For the second part, first observe that for
any subargument 〈C,R〉 @ 〈B,P 〉, vtR will be true, due to the clauses
in (A3), as long as vtP (due to the clauses in (A4)). Then the clauses
in (B1) ensure that for any literal L with vtL true, the corresponding
variable vΠ

L of the second part of the encoding will be also true. Finally,
the clauses in (B2), (B3) and (B4) will ensure that all such true literals
are consistent with Π ∪W .

(AV4) As in the condition (AV 2), this condition is checked before creating
the SAT encoding.
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(AV5) Any literal L that is part of the argument (vtL = true) will be either
generated by an α-rule, so it holds that L,∼L 6∈ W (≥ α) ∪ B(≥
α) ∪ VA, or it is already true at the initial set ( v0

L = true ), so it is
warranted or valid.

(AV6) Observe that there is no R ∈ α-rules such that Head(R) ∈ B ∪
W ∪ VA, then it cannot be that all the rules used in the argument
for P depend only on warranted literals from S0 because that would
mean that P is indeed valid (so P would have to be in VA). So, from
the initial set S0 at least one valid, but not warranted, literal will be
activated, if any almost valid argument for P exists.

4.2.2. Looking for Collective Conflicts

We reduce the query computed by function conflict, to a query where
we consider finding the set of conflict literals that are the conclusions of the
corresponding conflict set of arguments. Basically, for finding this conflict
set of literals S for a valid argument 〈A,Q〉 from the base set of literals
considered in function conflict, i.e. the set G = {P | 〈C,P 〉 ∈ VA \
{〈A,Q〉} ∪ ND}, we have to find two arguments 〈A1, L〉 , 〈A2,∼L〉 using
only rules from Π, literals W ∪ {Q} and a subset S from G, but such that
when Q is not used, no conflict (generation of L and ∼L for any L with strict
rules) is produced with such set S. So, this can be seen as a simple extension
of the previous query, where now we have to look for two arguments, instead
of only one, although both arguments must be for two contradictory literals.
That is, the SAT formula contains variables for encoding arguments that use
as base literals W ∪ G ∪ {Q} and rules from Π (with the same scheme of
the previous SAT encoding for almost valid arguments), with an additional
set of conflict variables to encode the set of possible conflicts that can be,
potentially, generated from W ∪G∪ {Q} using rules from Π, in order to be
able to force the existence of at least one conflict. There is also an additional
set of variables and clauses for encoding the subproblem of checking that S,
when Q is not used, does not generate any conflict.

So, the SAT formula contains two different parts. A first part is devoted
to checking that the selected set of literals S plus {Q} is a conflict set (i.e.
if Π ∪W (≥ α) ∪ S ∪ {Q} ` ⊥). This set of variables and clauses is similar
to the previous one for finding almost valid arguments, but in this case is
used for finding two arguments starting from a subset of W ∪G and forcing
the inclusion of {Q}. That is, the SAT clauses of this first part are:

(1) A clause that states that the literal Q must be true at the first step.

(2) A clause that states that at least one conflict variable cL must be true.

(3) For every conflict variable cL, a clause that states that if cL is true
then literals L and ∼L must be true at the final step of the argument.
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(4) The rest of clauses are the same ones described in the first part of
the previous encoding, except the clauses of the item 5 that are not
included, but now considering as possible literals and rules at every
step the ones computed from the base set W ∪G∪{Q} and using only
strict rules.

The process for computing the possible literals and rules that can be poten-
tially applied in every step of the argument is the same forward reasoning
process presented for the previous encoding. This same process is used for
discovering the set of conflict variables cL that need to be considered, be-
cause we can potentially force the conflict cL if at the end of this process
both L and ∼L appear as reachable literals.

A second part of the SAT formula is devoted to checking that the selected
set of variables and clauses S at the first step, without using Q, does not
cause any conflict with the strict rules. So this second part of the formula
contains a variable for any literal that appears in the logical closure of G∪W
with respect to the strict rules. Actually, this second part of the formula is
analogous to the second part of the formula for the previous encoding.

Observe that this encoding for searching conflicts for Q not only allows to
check the existence of conflicts, but it also gives an explicit conflict set: the
variables set to true that represent the chosen set S, together with almost
valid arguments for those literals in S that have arguments in ND. So, we
can explain the reasons for each conflict detected.

4.3. ASP Encodings for Finding Warranted Liter-
als

Due to the recursive characterization of warranted conclusions and that
they can be naturally defined as sets computed with propositional rules
and certain constraints, we present a natural implementation based on a
transformation to answer set programming (ASP) [Bar03]. As it has been
pointed in a recent survey about the use of ASP in argumentation frame-
works [TS11], to date most of the work has been centered around using
ASP in abstract argumentation frameworks, although there is some theo-
retical work about transformations from DeLP to ASP [TKI08], but not so
much in more concrete argumentation frameworks that are more suitable for
applications. Our ASP transformation for the efficient resolution of queries
in our argumentation framework go in the direction pointed in that sur-
vey. Moreover, with our transformation we can not only discover warranted
conclusions, but also give full explanations (arguments) for the warranted
conclusions, and in case of conflicts we can also explain the reasons of the
conflict. Current results show that modern ASP solvers, like the one we
use here: the Potassco suite [GKK+11b], are extremely competitive with
state-of-the-art CSP solvers on many problems [DW11b].
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4.3.1. Looking for Almost Valid Arguments

In order to determine whether a given literal P has an almost valid
argument which does not depend on a valid argument 〈A,Q〉, we follow
some rule schemes for translating constraint satisfaction problems (CSP) to
ASP [DW11b]. In particular, since our problem is to find a minimal set
of arguments M ⊆ VA, with 〈A,Q〉 6∈ M , that satisfy Conditions (AV1)
to (AV6) for P w.r.t. W and B, we propose to use a straightforward ASP
encoding in which an atom of the form e(L, i) is defined for each literal L
with a valid argument in VA expressing the instantiation of L in M . Then,
as for each literal L with a valid argument in VA the condition of belonging
to the set M is Boolean, possible instantiations for the atom are encoded
by the following choice rule:

{e(L, 0), e(L, 1)} ← .

Furthermore, we specify that L has to take at least one value:

⊥ ← not e(L, 0), not e(L, 1)

and that it has to take at most one value:

⊥ ← 2{e(L, 0), e(L, 1)}.

Then, we define inductively the following sets of variables representing
literals that can be involved in the almost valid argument we are looking
for. We define S1 as a set with a variable for each valid argument which can
be a subargument of an almost valid argument for P :

S1 = {v1
L | 〈B,L〉 ∈ VA\{〈A,Q〉}}.

Where lately, variables in S1 will be encoded using atoms of the form e(v1
L, i),

with i ∈ {1, 0}. Having e(v1
L, 1) in the final answer set will mean that the

argument for literal L is a subargument of the almost valid argument for
P , otherwise having e(v1

L, 0) means it is not a subargument. We define
another set S2, formed by the rest of the literals of the language. They
are encoded as variables var(v2

L). In this case we know that v2
L is part of

the argument, if it appears in the final answer set. Another set of variables
representing conflicts between two literals is created. This new set, denoted
as C, contains a variable for each literal L being part of sets S1 or S2 and
having ∼L in S1 or S2.

Having all the variables defined, program rules are defined by the fol-
lowing encodings:

1) For strict clauses, we encode that each appearing literal L is substi-
tuted for its corresponding predicate, depending if it is in S1 or S2. Having
e(v1

L, 1) for the first and var(v2
L) for the second one.
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2) Defeasible clauses are encoded in the same way strict clauses were,
but a choice variable is added to the body of the rule. So, whenever the
body of a defeasible clause is all True, the inclusion in the final set of the
head can be avoided by setting this choice atom to False.

3)We encode a rule stating that if two literals generating a conflict in C
are in the answer set, the variable representing the conflict will be as well.

4) As no conflicts can arise, integrity constraints stating that no variable
in C can be in the answer set are added to the encoding.

5) An integrity constraint is added to the encoding for each blocked
literal having a variable in S1 and S2, denoting that it can not be in the
answer set.

6) In a similar way, for each warranted literal a rule stating that it must
be in the answer set is added to the encoding.

7) Finally, an integrity constraint with the form ⊥← not P , is added to
the encoding to denote that P must be in the answer set.

Next we show that as long as there exists an answer set for the previ-
ous encoding schemes, the almost valid argument found during the search
process will satisfy Conditions (AV1) to (AV6): 2

(AV1) : Given that the only possible rules that can be selected for building
the almost valid argument are those defined as α-rules, the conclusion
of an α-rule can only become valid with strength at most α. So, the
only possible subarguments with strength greater than α are the ones
corresponding to literals warranted at higher levels. Observe that rule
(6) in the encoding forces all such warranted literals to be in the answer
set, so in the final argument for P any such subargument is implicitly
used.

(AV2) : This condition is satisfied before solving the encoding with the
solver. Using a polynomial process it is checked if P is in the warranted
or blocked set of literals.

(AV3) : First part of this condition is assured by checking if ∼P is in the
set of blocked literals. The second part is assured by rules (3) and
(4) in the encoding. If a literal in the initial set has its negation in
W(> α), a conflict arises when the literal is selected. Then, if there
exists a contradiction, a consistency constraint is violated.

(AV4) : Before the execution of the query we explicitly check if the literal
is in the set of valid literals VA.

(AV5 ): For a defeasible clause to be part of an argument for P , we need
all literals in the body of the rule to be True. All warranted literals

2Given two sets W and B of warranted and blocked literals respectively, we say that a
program rule R is an α-rule if i) N(R) > α and Body(R) \W (> α) 6= ∅ or N(R) = α, ii)
Body(R) ∩B = ∅, and iii) Head(R),∼Head(R) 6∈W ∪B.
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are forced to be True in the encoding and the rest of possible literals
to be evaluated as True are those in the set S1 which are valid literals.
The last part of the condition is assured by the selection of α-rules, as
no rule with the head in blocked set can be used to build an almost
valid argument for P .

(AV6) : The initial set S1 is formed by valid literals which can be activated
or not. Any defeasible clause with blocked literals in the body is
used as α-rule, additionally any defeasible rule with all the body with
warranted literals could exist because that would mean that P is valid.
Then, if an argument for P is found, it is because some literals in S1

are activated.

4.3.2. Looking for Collective Conflicts

We present here an ASP encoding that generates a logic program that
has a model if and only if the answer to the query Conflict is true, i.e.
if there exists a set G ⊆ {P | 〈E,P 〉 ∈ VA\{〈A,Q〉} ∪ ND} such that
Π ∪W ∪G 6` ⊥ and Π ∪W ∪G ∪ {Q} ` ⊥.

To achieve this objective, we propose to use an encoding schema struc-
tured in two parts. The first part is devoted to find a subset of valid literals
which activated (True instantiation) does not generate a conflict w.r.t W .
Then, in the second part, we check the condition that when the literal Q is
added to the subset of valid literals, a conflict appears. Finally, we link the
two parts of the encoding to assure that when one variable from the second
part is activated, the analogous variable for the same literal in the first part
is activated as well.

Next we formalize the encoding for the first part. We define the sets of
variables representing literals involved in the process of checking whether
the strict clauses without the need of Q, generates a conflict. The starting
set of literals is G1 = W ∪ {P | 〈E,P 〉 ∈ VA\{〈A,Q〉} ∪ ND}. So we define
the set Se,1 in the following way:

Se,1 = {ve,1L |L ∈ G1}

Each variable in Se,1 is encoded as an atom with the form e(ve,1L , i), having
i ∈ {1, 0}. As done previously, a set of variables Sv,1 encodes all those literals
appearing in the rules and not in G1. We also define a set of conflicts C1 in
the same way that we did in the almost valid ASP encoding.

Variable and program rules for this first part of the encoding are defined
as follows:

1) We encode strict clauses replacing literals by variables defined in Se,1

and Sv,1.
2) For each conflict in C1, we encode a rule denoting that if both two

opposite literals are in the answer set, the conflict variable will be as well.
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3) Integrity constraints stating that no conflict variable can be in the
answer set.

4) Rules stating that warranted literals must be in the answer set.
Following a similar encoding for the second part, we define analogous

sets for checking whether a conflict can be generated with the strict clauses
but now using the literal Q. So, now the starting set of literals is G2 =
G1 ∪ {〈A,Q〉}. This is done to distinguish, between literals activated by
strict clauses, and literals activated during the search of the conflict. Then,
we define the sets Sv,2 and Se,2 in the following way:

Sv,2 = {vv,2L | L ∈ G2 ∪ {Head(R),Body(R) | R ∈ Π}}
Se,2 = {ve,2L | L ∈ G2}

We also create the set of variables C2 representing conflicts in the set Sv,2.
An special variable CC is defined to denote that a collective conflict exists.

Variable and program constraints for this second part of the encoding
are defined as follows:

1) We encode strict clauses replacing literals by variables defined in Sv,2

and Se,2. Being var(vv,2L ) and e(ve,2L , 1) the proper translations, respectively.
2) For each conflict in C2, we encode a rule denoting that if both two

opposite literals are in the answer set, the conflict variable will be as well.
3) A cardinality constraint stating that if at least a conflict in C2 is in

the answer set, the variable CC will be as well.
4) An integrity constraint stating: ⊥← not CC.
5) Rules stating that warranted literals must be in the answer set.
Finally, we define the following linking rules between the variable sets of

the two parts of the encoding:
1) For each variable representing a literal in the set Se,2, a rule stating

that if this variable is in the answer set, a variable representing the same
literal must be in Se,1.

2) For each variable representing a literal in the set Se,2, a rule stating
that if this variable is in the answer set, a variable representing the same
literal must be in Sv,2.
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5
The Maximal Ideal

Output for RP-DeLP
Framework

In the previous chapter we showed an algorithm for computing the set
of conclusions that can be ultimately warranted in RP-DeLP programs with
multiple outputs.

Now in this chapter we are interested in characterize an unique output
property for the particular framework of RP-DeLP programs. The usual
skeptical approach would be to adopt he intersection of all possible outputs.
However, in addition to the computational limitation, as stated in [Pol09],
adopting the intersection of all outputs may lead to an inconsistent out-
put (in the sense of violating the base of the underlying recursive warrant
semantics) in case some particular recursive situation among literals of a
program occurs. Intuitively, for a conclusion, to be in the intersection does
not guarantee the existence of an argument for it that is recursively based
on ultimately warranted conclusions.
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5.1. Characterization of the Maximal Ideal Out-
put for an RP-DeLP Program

For instance, consider the following situation involving three conclusions
P , Q, and T , where P can be warranted whenever Q is blocked, and vice-
versa. Moreover, suppose that T can be warranted when either P or Q
are warranted. Then, according to the warrant recursive semantics, we
would get two different outputs: one where P and T are warranted and Q is
blocked, and the other one where Q and T are warranted and P is blocked.
Then, adopting the intersection of both outputs we would get that T would
be ultimately warranted, however T should be in fact rejected since neither
P nor Q are ultimately warranted conclusions.

According to this example, one could take then as the set of ultimately
warranted conclusions of RP-DeLP programs those conclusions in the inter-
section of all outputs which are recursively based on ultimately warranted
conclusions. However, as in RP-DeLP there might be different levels of de-
feasibility, this approach could lead to an incomplete solution, in the sense of
not being the biggest set of ultimately warranted conclusions with maximum
strength.

For instance consider the above example extended with two defeasibility
levels as follows. Suppose that P can be warranted with strength α whenever
Q is blocked, and vice-versa. Moreover, suppose that T can be warranted
with strength α whenever P is warranted at least with strength α, and that
T can be warranted with strength β, with β < α, independently of the sta-
tus of conclusions P and Q. Then, again we get two different outputs: one
output warrants conclusions P and T with strength α and blocks conclusion
Q, and the other one warrants conclusions Q and T with strengths α and
β, respectively, and blocks P . Now, by adopting conclusions of the inter-
section which are recursively based on ultimately warranted conclusions, we
get that conclusion T is finally rejected, since T is warranted with a different
argument and strength in each output. However, as we are interested in de-
termining the biggest set of warranted conclusions with maximum strength,
it seems quite reasonable to reject T at level α but to warrant it at level β.

Therefore, we are led to define the maximal ideal output for an RP-DeLP
program P = (Π,∆,�) as a pair (Warr,Block) of respectively warranted and
blocked conclusions, with a maximum strength, such that:

(i) the arguments of all conclusions in Warr∪Block are recursively based
on warranted conclusions;

(ii) a conclusion is warranted (at level α) if does not generate any conflict
with the set of already warranted conclusions (at a level β > α) and it
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is not involved in any cycle of a warrant dependency graph; otherwise,
it is blocked; and

(iii) a conclusion is rejected if it can be neither warranted nor blocked to
any level.

In fact, in a different context, this idea corresponds to the maximal ideal
extension defined by Dung, Mancarella and Toni [DMT06, DMT07] as an
alternative skeptical basis for defining collections of justified arguments in
the abstract argumentation frameworks promoted by Dung [Dun95b] and
Bondarenko et al. [BDKT97].

Definition 5.1 (Maximal ideal output). The maximal ideal output for an
RP-DeLP program P = (Π,∆,�), with defeasibility levels 1 > α1 > . . . >
αp, is a pair (Warr,Block) such that, for every valid argument 〈A,Q〉 of
strength αi with respect to Warr(≥ αi) and Block(> αi), the following re-
cursive constraint is satisfied:

1. Q ∈ Block(αi) whenever one of the two following cases holds:

Case 1 There exists a set G of valid arguments of strength αi such
that the two following conditions hold:

(i) 〈A,Q〉 6@ G, and

(ii) G ∪ {〈A,Q〉} minimally conflicts with respect to the set
W = Warr(> αi) ∪ {P | 〈B,P 〉 @ G ∪ {〈A,Q〉}}.

Case 2 There exists a set H of valid arguments of strength αi such
that the three following conditions hold:

(i) 〈A,Q〉 6@ H.

(ii) There exists a set of arguments F of strength αi that are
almost valid with respect to H∪ 〈A,Q〉 and such that there is
a cycle in the warrant dependence graph (V,E) for H∪〈A,Q〉
and F, and any argument 〈C,R〉 ∈ H is such that R is either
a vertex of the cycle or 〈C,R〉 does not satisfy Case 1.

(iii) For some vertex v ∈ V of the cycle, either v is the vertex of
conclusion Q or v is the vertex of some other conclusion in H,
and there exists a path from v to the the vertex of conclusion
Q.

2. Otherwise, Q ∈Warr(αi).

The intuition underlying the maximal ideal output definition is as follows.
The conclusion of every valid (not rejected) argument 〈A,Q〉 of strength αi is
either warranted or blocked. Then, it is eventually blocked if either (Case 1)
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it is involved in some conflict with respect to Warr(> αi) and a set G of
valid arguments whose supports do not depend on 〈A,Q〉, or (Case 2) the
warranty of 〈A,Q〉 depends on some circular definition of conflict between a
set of valid arguments H whose supports do not depend on 〈A,Q〉 and a set
of almost valid arguments F whose supports depend on some argument in
H ∪ 〈A,Q〉. In fact, the idea here is that if the warranty of 〈A,Q〉 depends
on some circular definition of conflict between the arguments of H and F,
one could consider two different outputs (status) for conclusion Q: one with
Q warranted and another one with Q blocked. Therefore, conclusion Q is
blocked for the maximal ideal output. In general, the arguments of H and F
involved in a cycle are respectively warranted and rejected for the maximal
ideal output.

For instance, consider again the recursion case in the Example 4 from
Section 3.2. Figure 3.2 shows the warrant dependency graph for the set of
valid arguments

H = {〈{p}, p〉, 〈{q}, q〉, 〈{r}, r〉}
and the set of almost valid arguments

F = {〈{q, r, q∧r → ∼p},∼p〉, 〈{p, r, p∧r → ∼q},∼q〉, 〈{p, q, p∧q → ∼r},∼r〉}

Then, since for every valid argument in H there is a a cycle, the maximal
ideal output for the RP-DeLP program is Warr = ∅ and Block = {p, q, r}.

As a matter of another example, we have the following example:

Example 7. Consider the RP-DeLP program P7 = (Π,∆,�) with

Π = {y,∼y ← p ∧ r,∼y ← q ∧ s} and ∆ = {p, q, r ← q, s← p},

and a single defeasibility level α for ∆.
Consider the sets W (1) = {Q | Π `R Q} = {y}, B(1) = ∅, W (α) = ∅ and
B(α) = ∅. Now consider arguments for conclusions p and q; i.e.

H1 = 〈{p}, p〉 and H2 = 〈{q}, q〉.

Finally, consider arguments for conclusions r and s; i.e.

F1 = 〈{q, r ← q}, r〉 and F2 = 〈{p, s← p}, s〉.

Obviously, H1 and H2 are valid arguments with respect to W (≥ α) and
B(> α), and F1 and F2 are almost valid arguments with respect to {H1,H2}.
Figure 5.1 shows the warrant dependency graph for {H1,H2} and {F1,F2}.
The cycle of the graph expresses that (1) the warranty of p depends on a
(possible) conflict with r; (2) the support of r depends on q; (3) the warranty
of q depends on a (possible) conflict with s; and (4) the support of s depends
on p.
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Figure 5.1: Warrant dependency graph for RP-DeLP program P7 from ex-
ample 7.

Figure 5.1 shows the warrant dependency graph for the set of valid ar-
guments

H = {〈{p}, p〉, 〈{q}, q〉}
and the set of almost valid arguments

F = {〈{q, r ← q}, r〉, 〈{p, s← p}, s〉}.

Again, since for every valid argument there is a cycle, the maximal ideal
output for P7, is Warr = {y} and Block = {p, q}.

Now consider a new program P8 = (Π,∆,�), which is an extension of
P7 with the following set of defeasible rules:

Π = {y,∼y ← p ∧ r,∼y ← q ∧ s}, ∆ = {p, q, t, r ← q, s← p, t← p, t← q},

and with ∆ being stratified as follows:

level α1: {p, q, r ← q, s← p, t← p, t← q} level α2: {t}.

Assume α1 is the corresponding highest level and α2 is the lowest level,
with 1 > α1 > α2 > 0. Obviously, Warr(1) = {y} and, at level α1, H1 =
〈{p}, p〉 and H2 = 〈{q}, q〉 are valid arguments. Moreover, F1 = 〈{q, r ←
q}, r〉, F2 = 〈{p, s ← p}, s〉, F3 = 〈{q, t ← q}, t〉 and F4 = 〈{p, t ← p}, t〉
are almost valid arguments with respect to {H1,H2}. Figure 5.2 shows the
warrant dependency graph for {H1,H2} and {F1,F2,F3,F4}. As for every
valid argument there is a cycle, p and q are blocked, while r and s are
rejected for the maximal ideal output since the support of F1 depends on q
and the support of F2 depends on p, and p and q are blocked. Remark that t
is also rejected at level α1 since the support of F3 depends on p, the support
of F4 depends on q, and p and q are blocked. Therefore, Warr(1) = {y},
Warr(α1) = ∅ and Block(α1) = {p, q}. Finally, at level α2, 〈{t}, t〉 is the
unique valid argument and therefore t is warranted, hence, Warr(α2) = {t}
and Block(α2) = ∅. Therefore, the maximal ideal output for P8 is Warr =
{y, t} and Block = {p, q}.
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Figure 5.2: Warrant dependency graph for RP-DeLP program P8 from ex-
ample 7
.

Next proposition shows that the maximal ideal output for an RP-DeLP
program is unique.

Proposition 5.1 (Unicity of the maximal ideal output). Let P = (Π,∆,�)
be an RP-DeLP program. The pair (Warr,Block) of warranted and blocked
conclusions that satisfies the maximal ideal output characterization for P of
Definition 5.1 is unique.

Proof. Suppose that (Warr,Block) and (Warr′,Block′) are pairs of war-
ranted and blocked conclusions that satisfy the maximal ideal output char-
acterization for P stated in Def. 5.1. Obviously, Warr(1) = Warr′(1). Sup-
pose that for some α, Warr(α) 6= Warr′(α) and Warr(β) = Warr′(β), for
all β > α. As Warr(α) 6= Warr′(α), suppose that 〈A,Q〉 of strength α is
valid with respect to (Warr,Block) and (Warr′,Block′) but Q 6∈ Warr(α)
and Q ∈Warr′(α). Then, Q ∈ Block(α) and 〈A,Q〉 is either

Case 1: involved in a conflict with respect to Warr(> α) and a set
G of valid arguments of strength α which supports do not depend on
〈A,Q〉, or

Case 2: the warranty of 〈A,Q〉 depends on a circular definition of
conflict between a set H of valid arguments which supports do not
depend on 〈A,Q〉 and a set F of almost valid arguments which supports
depend on some argument in H ∪ 〈A,Q〉.

Moreover, as Q ∈ Warr′(α), 〈A,Q〉 is not involved in a conflict nor in a
cycle with respect to Warr′(> α).

As all sets G and H of valid arguments of strength α whose supports
do not depend on 〈A,Q〉 are also valid with respect to (Warr′,Block′), and
all sets G′ and H′ of valid arguments of strength α which supports do not
depend on 〈A,Q〉 are also valid with respect to (Warr,Block), there should
exist at least an argument 〈B,P 〉 such that

(i) it is almost valid with respect to a set H of valid arguments that satisfy
Condition (b) for argument 〈A,Q〉 and output (Warr,Block), and
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(ii) it is not almost valid with respect to H.

Therefore, 〈B,P 〉 should violate Condition (AV5) from Section 3.2 with
respect to H and Warr′ and Block′, and thus, for some subargument 〈C,R〉 @
〈B,P 〉 of strength α it must hold that R 6∈ Warr′(α) and 〈C,R〉 6∈ H
and R or ∼R ∈ Block′(≥ α). Now, as 〈C,R〉 6∈ H and 〈B,P 〉 is almost
valid with respect to H, either R ∈ Warr(α), or R,∼R 6∈ Block(≥ α). If
R ∈Warr(α), because of the recursive warrant semantics, 〈A,Q〉 6@ 〈C,R〉,
and thus, R ∈ Warr′(α). If R 6∈ Warr(α), we have R,∼R 6∈ Block(≥ α)
and R or ∼R ∈ Block′(≥ α). As Block(β) = Block′(β) for all β > α,
R,∼R 6∈ Block(α) and R or ∼R ∈ Block′(α). Then either R ∈ Warr(α) or
〈C,R〉 is not valid with respect to (Warr,Block), and thus, 〈A,Q〉 @ 〈C,R〉.
Now, as the warranty of 〈A,Q〉 depends on a circular definition of conflict
between the set H and a set F of almost valid arguments which supports
depend on some argument in H∪ 〈A,Q〉 with 〈B,P 〉 ∈ F, there is a cycle in
the warrant dependence graph (V,E) for H and F and any argument C ∈ H
is such that the conclusion of C is either a vertex of the cycle or C does not
satisfy Condition (a). Then, if R or ∼R ∈ Block′(α) and 〈C,R〉 6∈ H, R or
∼R ∈ Block(α). Hence, Warr(α) = Warr′(α) and Block(α) = Block′(α) for
all defeasibility level α.

When we restrict ourselves to the case of RP-DeLP programs with a
single defeasibility level, we get the following property of the maximal ideal
output.

Proposition 5.2 (Programs with a single defeasibility level). Let P be an
RP-DeLP program with a single defeasibility level, and let (Warr,Block) be
the maximal ideal output for P. Then, for each output (Warr′,Block′) for
P, we have Warr ⊆Warr′ and Block ⊆Warr′ ∪ Block′.

Proof. Obviously, Warr(1) = Warr′(1), for each output (Warr′,Block′) for
P. Since we are considering a single defeasibility level, 〈A,Q〉 is a valid ar-
gument with respect to Warr iff P ∈Warr for all 〈B,P 〉 @ 〈A,Q〉. Suppose
that 〈A,ϕ〉 is valid with respect to Warr and not valid with respect to Warr′.
Then, there should exist an argument 〈B,P 〉 such that 〈B,P 〉 @ 〈A,Q〉 and
〈B,P 〉 ∈ Warr but, 〈B,P 〉 6∈ Warr′ and 〈B,P 〉 is valid with respect to
Warr′. Hence, there should exist a set of arguments G valid with respect
to Warr′ such that 〈B,P 〉 6@ G and {〈B,P 〉} ∪ G minimally conflicts with
respect to the set W = {R | 〈C,R〉 @ G ∪ {〈B,P 〉}}. If each argument
in G was valid with respect to Warr, then {〈B,P 〉} 6∈ Warr. Then, there
should exist an argument 〈C,R〉 ∈ G such that 〈C,R〉 is valid with respect
to Warr′ and not valid with respect to Warr, and thus, there should exist
an argument 〈D,T 〉 such that 〈D,T 〉 @ 〈C,R〉 and 〈D,T 〉 ∈ Warr′ but,
〈D,T 〉 6∈ Warr and 〈B,P 〉 is valid with respect to Warr. Hence, there
should exist a cycle in a warrant dependency graph and vertices for 〈B,P 〉

101



and 〈C,R〉 should be vertices of the cycle and there should exist a path from
some vertex of the cycle to the vertex of 〈B,P 〉, and thus, 〈B,P 〉 6∈ Warr.
Hence, Warr ⊆Warr′. Finally, as each argument 〈A,Q〉 valid with respect
to Warr is also valid with respect to Warr′ and each valid argument is either
warranted or blocked, Block ⊆Warr′ ∪ Block′.

The following example shows that in case we consider multiple defea-
sibility levels for ∆, a conclusion can be warranted for the maximal ideal
output at some level α and, due to the set of warranted conclusions at higher
levels, rejected for each output (extension).

Example 8. Consider the RP-DeLP program P9 = (Π,∆,�) with

Π = {y,∼y ← p ∧ s,∼y ← q ∧ s} and ∆ = {p, q,∼q ← p,∼p← q, s},

where ∆ is stratified in two defeasibility levels (1 > α1 > α2 > 0) as follows:

level α1: {p, q,∼q ← p,∼p← q} level α2: {s}.

Obviously, Warr(1) = {y}. Then, at level α1, we have two valid arguments:

H1 = 〈{p}, p〉 and H2 = 〈{q}, q〉.

and two almost valid arguments with respect to {H1,H2}:

F1 = 〈{p,∼q ← p},∼q〉 and F2 = 〈{q,∼p← q},∼p〉.

Figure 5.3 shows the warrant dependency graph for {H1,H2} and {F1,F2}.
The cycle expresses that either p or q can be warranted, but not both. Hence,
at level α1, we have two possible outputs for P9:

Warr1(α1) = {p}, Block1(α1) = {q,∼q},
Warr2(α1) = {q}, Block2(α1) = {p,∼p}.

Then at level α2, the argument 〈{s}, s〉 violates Condition (V3) from Sec-
tion 3.2, and thus, s is rejected in both outputs. Therefore, the two possible
outputs for P9 are:

Warr1 = {y, p}, Block1 = {q,∼q},
Warr2 = {y, q}, Block2 = {p,∼p}.

Let us consider now the maximal ideal output for P9, in which valid argu-
ments involved in cycles are blocked and almost valid arguments involved in
cycles are rejected. Obviously Warrmaximal(1) = {y}, and at level α1 the
maximal ideal output for P9 is:

Warrmaximal(α1) = ∅, Blockmaximal(α1) = {p, q}.
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Now, at level α2 we have that the argument 〈{s}, s〉 is valid and it is not
involved in a cycle nor in a conflict, and thus, s is warranted at level α2 for
the maximal ideal output. Hence, the maximal ideal output for P9 is:

Warrmaximal = {y, s}, Blockmaximal = {p, q}.

Therefore, in the program P9, s is not warranted in any of their two outputs
Warr1 and Warr2, but still s is warranted in the maximal ideal output.

∼p ∼q

p q

Figure 5.3: Warrant dependency graph for RP-DeLP program from exam-
ple 8.

Next we will present two examples to show how warranted and blocked
conclusions at higher levels are taken into account in lower levels.

Example 9. Consider the RP-DeLP program P10 = (Π,∆,�) with

Π = {y,∼y ← p ∧ r,∼y ← q ∧ s} and ∆ = {p, q, r ← q, s← p, u← q},

where ∆ is stratified in two defeasibility levels (1 > α1 > α2 > 0) as follows:

level α1: {p, q, r ← q, s← p} level α2: {u← q}.

Note that P10 and P7 have the same strict knowledge and the same defeasible
knowledge at level α1 , the only difference is at level α2.

So, like in P7, P10 has Warr(1) = {y} and, at level α1, H1 = 〈{p}, p〉
and H2 = 〈{q}, q〉 are valid arguments.

Moreover, F1 = 〈{q, r ← q}, r〉 and F2 = 〈{p, s← p}, s〉 are almost valid
arguments with respect to {H1,H2}.

As for every valid argument there is a cycle, p and q are blocked, while
r and s are rejected for the maximal ideal output since the support of F1

depends on q and the support of F2 depends on p, and p and q are blocked.
Therefore, Warr(1) = {y}, Warr(α1) = ∅ and Block(α1) = {p, q}.

However, at level α2, argument H3 = 〈{q, u ← q}, u〉 is not a valid
argument because it violates condition V 3 as q ∈ Block(> α2). Therefore
the maximal ideal output for P10 is Warr = {y} and Block = {p, q}.
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Example 10. Consider the RP-DeLP program P11 = (Π,∆,�) with

Π = {y,∼y ← p ∧ r,∼y ← q ∧ s} and ∆ = {p, q, u, r ← q, s← p,∼q ← u},

where ∆ is stratified in two defeasibility levels (1 > α1 > α2 > 0) as follows:

level α1: {p, q, r ← q, s← p} level α2: {u,∼q ← u}.

As in the previous example P10, at level α1 we will have: Warr(1) = {y},
Warr(α1) = ∅ and Block(α1) = {p, q}.

At level α2 we will have a different situation, because Warr(α2) = {u}
but H1 = 〈{u,∼q ← u},∼q〉 is not a valid argument because q ∈ Block(α1)
and then, it violates condition V 3. Therefore the maximal ideal output for
P11 is Warr = {y, u} and Block = {p, q}.

Previous examples show that in case we consider multiple defeasibility
levels, the set of conclusions that are warranted and blocked at each level
is decisive for determining which arguments are valid at lower levels. Then,
since the maximal ideal output for an RP-DeLP program corresponds to a
skeptical criterion regarding warranted conclusions, it is very interesting to
analyze the status of the Closure Postulate for the maximal ideal output for
RP-DeLP programs with multiple defeasibility levels.

Proposition 5.3 (Closure for the maximal ideal output). Let P = (Π,∆,�)
be an RP-DeLP program with defeasibility levels 1 > α1 > . . . > αp > 0,
and let (Warr,Block) be the maximal ideal output for P. Then, if Π ∪
Warr(≥ αi) `R Q and Π∪Warr(> αi) 6`R Q, then either Q ∈Warr(αi), or
Q ∈ Block(> αi), or ∼Q ∈ Block(> αi).

Proof. Suppose that for some αi, Π∪Warr(≥ αi) `R Q, Π∪Warr(> αi) 6`R
Q, Q 6∈ Warr(αi), and Q,∼Q 6∈ Block(> αi). Then, since Π ∪Warr 6` ⊥,
Π ∪Warr(≥ αi) ∪ {Q} 6` ⊥, there exists a valid argument 〈A,Q〉 for Q of
strength αi. Now, since Q 6∈ Warr(αi), according to Def. 5.1 there are two
possible cases:

Case 1 There is a set G of valid arguments of strength αi such that
(i) 〈A,Q〉 6@ G, and (ii) G ∪ {〈A,Q〉} generates a conflict with respect to
W = Warr(> αi) ∪ {P | 〈B,P 〉 @ G ∪ {〈A,Q〉}}. If G ∪ {〈A,Q〉} generates
a conflict with respect to W , Conditions (C) and (M) hold for W , and
thus, Π ∪W ∪ {Q} ∪ {P | 〈B,P 〉 ∈ G} ` ⊥ and Π ∪W ∪ S 6` ⊥, for all
S ⊂ {Q} ∪ {P | 〈B,P 〉 ∈ G}. Consider W ′ = {R | 〈B,R〉 @ 〈A,Q〉}. Then,
as W ′ ⊆ W and Π ∪W ′ `R Q, if Π ∪W ∪ {Q} ∪ {P | 〈B,P 〉 ∈ G} ` ⊥,
then Π ∪W ∪ {P | 〈B,P 〉 ∈ G} ` ⊥, and thus, either Q is warranted at
level αi or Q is rejected at level αi because Q or ∼Q are blocked at a level
β with β > αi. In other words, either Q ∈ Warr(αi) , or Q ∈ Block(> αi),
or ∼Q ∈ Block(> αi).
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Case 2 There is a set of valid arguments H of strength αi such that (i)
there is a set of arguments F of strength αi that are almost valid with respect
to H∪{〈A,Q〉}, (ii) there is a cycle in the warrant dependence graph (V,E)
for H ∪ {〈A,Q〉} and F, and any argument 〈C,R〉 ∈ H is either a vertex
of the cycle or 〈C,R〉 does not generate any conflict, and (iii) the vertex
vQ for Q is a vertex of the cycle or there is a path from a vertex for some
conclusion in H to vQ. Then, according to Def. 3.1, there is an almost valid
argument for conclusion ∼Q in F or an strict rule ∼Q← L1 ∧ . . .∧Lm ∈ Π
such that {L1, . . . , Lm} ⊆ Warr(≥ αi) ∪ {H | 〈E,H〉 ∈ H} ∪ {F | 〈J, F 〉 ∈
F}, and thus, there is an almost valid argument 〈D,∼Q〉 for conclusion
∼Q in F, and an edge from the vertex v∼Q to the vertex vQ. Now, since
Π ∪ Warr(≥ αi) `R Q and Q 6∈ Warr(≥ αi), there exists a strict rule
Q ← L′1 ∧ . . . ∧ L′p ∈ Π with all the L′j ’s in Warr(≥ αi). Moreover, as
Π ∪Warr(> αi) 6`R Q, there is at least one literal L′ ∈ {L′1, . . . , L′p} such
that L′ ∈ Warr(αi), and thus, there is a valid argument 〈J, L′〉 for L′ of
strength αi and 〈A,Q〉 6@ 〈J, L′〉. Then, there is a cycle in the warrant
dependence graph (V ′, E′) for H ∪ {〈A,Q〉} ∪ {〈J, L′〉} and F and an edge
from the vertex v∼Q to the vertex vL′ , and thus, L′ 6∈ Warr(αi). Hence,
either Q ∈Warr(αi) , or Q ∈ Block(> αi), or ∼Q ∈ Block(> αi).

As a direct consequence, we have the following simpler form of the Clo-
sure Postulate for the particular case of programs with a single defeasibility
level.

Corollary 5.4 (Closure for RP-DeLP programs with a single defeasibility
level). Let P be an RP-DeLP program with a single defeasibility level and
let (Warr,Block) be the maximal ideal output for P. Under this hypothesis,
if Π ∪Warr `R Q, then Q ∈Warr.

The following example shows the closure result for the maximal ideal
output.

Example 11. Consider the RP-DeLP program P12 = (Π,∆,�) with

Π = {∼s← q,∼r ← h} and ∆ = {q ← r, h← s, r, s, q, h},
and two defeasibility levels for ∆: α1 and α2 with 1 > α1 > α2 > 0. Consider
that ∆ is stratified as follows:

level α1: {q ← r, h← s, r, s} level α2: {q, h}.
Obviously, Warr(1) = ∅. Then, at level α1, we have two valid arguments:

H1 = 〈{r}, r〉 and H2 = 〈{s}, s〉.
and four almost valid arguments with respect to {H1,H2}:

F1 = 〈{r, q ← r}, q〉, F3 = 〈{r, q ← r},∼s〉,
F2 = 〈{s, h← s}, h〉, F4 = 〈{s, h← s},∼r〉.
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Figure 5.4 shows the warrant dependency graph for {H1,H2} and {F1,F2,F3,F4}.
The cycles express that either r or s can be warranted, but not both. Hence,
at level α1, we have two possible outputs for P12:

Warr1(α1) = {r}, Block1(α1) = {s, q},
Warr2(α1) = {s}, Block2(α1) = {h, r}.

Then at level α2, all arguments are rejected in both outputs, and thus,
Warr1(α2) = Warr2(α2) = ∅ and Block1(α2) = Block2(α2) = ∅. There-
fore, the two possible outputs for P9 are:

Warr1 = {r}, Block1 = {s, q},
Warr2 = {s}, Block2 = {h, r}.

Consider now the maximal ideal output for P12 in which valid arguments
involved in cycles are blocked and almost valid arguments involved in cycles
are rejected. Obviously, Warr(1)maximal = ∅ and, at level α1, the maximal
ideal output for P12 is:

Warrmaximal(α1) = ∅, Blockmaximal(α1) = {r, s}.

Now, at level α2 we have that arguments

〈{q}, q〉 and 〈{h}, h〉

are valid and none of them is involved in a cycle neither in a conflict,
and thus, q and h are warranted conclusions at level α2 (i.e. {q, h} ⊆
Warrmaximal(α2)). Finally, although arguments

〈{q,∼s← q},∼s〉 and 〈{h,∼r ← h},∼r〉

are recursively based on warranted conclusions, both violate Condition (V3)
(i.e. s, r ∈ Blockmaximal(≥ α1)), and thus, both arguments are rejected since
they are not valid. Hence, at level α2, s and r are rejected for the maximal
ideal output:

Warrmaximal(α2) = {q, h}, Blockmaximal(α2) = ∅.

Hence, the maximal ideal output for P12 is:

Warrmaximal = {q, h}, Blockmaximal = {r, s}.

Therefore, due to the fact that the set of conclusions that are warranted and
blocked at each level determines which arguments are valid at lower levels,
we get that Π ∪ Warrmaximal `R ∼s and Π ∪ Warrmaximal `R ∼r, but
∼s,∼r 6∈Warrmaximal since s, r ∈ Blockmaximal(α1).
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q h ∼s ∼r

r s

Figure 5.4: Warrant dependency graph for RP-DeLP program from exam-
ple 11.

5.2. Computing the Maximal Ideal Output for an
RP-DeLP Program

As in the computation of multiple outputs for an RP-DeLP program,
the maximal ideal output of an RP-DeLP program can be computed by
means of a level-wise procedure, as we have seen before starting from the
highest level and iteratively going down from one level to next level below.
It is necessary to determine the status (warranted or blocked) of each valid
argument at every level. Next we show an algorithm which implements
this level-wise procedure computing warranted and blocked conclusions by
checking the existence of conflicts between arguments and cycles at some
warrant dependency graph. As in the multiple output version we use the
simpler notation W , W (1), W (α) and W (≥ α) for Warr, Warr(1), Warr(α)
and Warr(≥ α) respectively, and B, B(α) and B(≥ α) for Block, Block(α)
and Block(≥ α), respectively.

Algorithm Computing warranted conclusions

Input P = (Π,∆,�): An RP-DeLP program
Output (W,B): maximal ideal output for P
Method

W (1) := {Q | Π `R Q}
B := ∅
α := maximum level(∆)
while (α > 0) do

level computing(α, W , B)
α := next level(∆)

end while
end algorithm

The main difference between the two algorithms is that now we won’t
have multiple extensions. One unique output is computed, so we don’t
need to stack partially computed outputs, as every warranted or blocked
conclusion will be part of the same output.
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The algorithm Computing warranted conclusions first computes the set of
warranted conclusions W (1) form the set of strict clauses Π. Then, for each
defeasibility level 1 > α > 0, the procedure level computing determines all
warranted and blocked conclusions with strength α. Remark that for every
level α, the procedure level computing receives W (> α) and B(> α) as
input and produces W (≥ α) and B(≥ α) as output.

Procedure level computing (in α; in out W , B)
VL : = {Q with strength α | 〈A,Q〉 is valid w.r.t. W and B};
while (VL 6= ∅) do

while (∃Q ∈ VL | ¬ conflict(α, Q, VL, W ,
almost valid literals(α, VL, (W , B), Q)) do

W (α) := W (α) ∪ {Q}
VL := VL\{Q} ∪ {P with strength α | 〈C,P 〉
is valid w.r.t. W and B}

end while
I := ∅
if VL does not change from previous iteration then

I := VL
else

for Q ∈ VL do
if conflict(α, Q, VL, W , ∅) then

I := I ∪Q
end if

end for
end if
B(α) := B(α) ∪ I
VL := VL\I

end while
end procedure

For any level α the procedure level computing first computes the set VL
of valid literals with respect to W (> α) and B(> α). Then, this set of valid
literals is dynamically updated depending on new warranted and blocked
conclusions with strength α. The procedure level computing finishes when
the status for every valid literals is computed.

We can see that computing the Maximal Ideal Output by means of the
algorithm we described is easier than computing all the outputs of an RP-
DeLP program with the algorithm described in Section 4.1. One can see that
the process of solving a cyclic definition of a conflict by means of resolving the
status of each member of the cycle, requires more computing time. Instead of
that for the Maximal Ideal Output, when we detect a set of literals involved
in at least one cycle, we block all of them, so the complexity is lower.

Observe that given the fact that queries conflict and almost valid

literal have the same input and output variables that the procedures
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used in the algorithm described in Section 4.1, we can make use the same
encodings described in Sections 4.2 and 4.3.

5.3. Web System Architecture

In this section we describe the architecture of the web based system we
have designed and implemented to process RP-DeLP programs 1 and which
is available at http://arinf.udl.cat/rp-delp.

A web application is a software tool which is available through a net-
work of computers, in most of the cases this software is being executed in a
server and accessible by all the clients connected to the same network. That
software provides a common interface which is supported by a web browser.
One of the main features of a web application is ubiquity, that means that
the application is ready as long as there is access to the network. Another
advantage is that the only software required at the client part is a web
browser. A key reason for its popularity is the fact that the software can
be updated and maintained without the necessity of installing or disturbing
the clients. There are more advantages, such as the inherent cross-platform
compatibility and the lack of high system requirements, because most of the
processing tasks are executed in the server side.

However, there are also some inconveniences, as a web interface is not
easily adaptable to other systems. To solve this drawback we designed a web
system capable of solving both instances posted through a web interface and
also instances received through HTTP requests. By using HTTP protocol,
any client will be able to send a query without the necessity of filling a web
interface.

Our system is allocated in a stand-alone server where all the required
software is installed, including a web server to handle HTTP requests, the
RP-DeLP algorithm to handle the user programs and the rest of the software
required by the system, such as the ASP and SAT solvers. As said previ-
ously, the user can access to the server using a web browser through the web
interface or by posting an HTTP request. The RP-DeLP algorithm is im-
plemented with Python. In Figure 5.5 we show the web interface structure
of the system.

The web interface is divided into two main parts. The first part is
devoted to choose the computation options. The Maximal Ideal radio button
computes the maximal ideal output and the Multiple radio button computes
the set of outputs. Remark that for RP-DeLP programs with a single output
both options will compute the same output.

The SAT radio button encodes queries with SAT formulas and solves
them with solver Minisat solver. The ASP radio button encodes queries

1We plan to deliver an open-source version as soon as we consider the system is suffi-
ciently mature.
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Figure 5.5: Web interface form for submitting RP-DeLP programs.

with ASP formulas and solves them with solver Clingo.
The second part of the web interface is devoted to define RP-DeLP

programs. Each defeasible level is depicted by a text box. The strict part of
the program is defined in the Strict Level text box. The defeasible part of
the program can be defined using multiple levels of strength, starting from
the highest level and going down from one level to the level below. The
form is dynamically updated, so the user can add new levels by pressing the
Add level button. The Delete level erases the last added level and the Reset
button deletes all levels except the strict part and the first defeasible level.
The Submit button starts the computation process.

Clauses are defined as follows:

All clauses must end with a dot.

A literal is an alphanumeric word starting with a letter.

Negation is denoted with symbol ∼.

Implication symbol is written with :- and conjunction symbol is a
comma. For instance, q ← p1 ∧ ∼p2 is written in our formalism as: q
:- p1, ∼ p2.

Regarding the system architecture, represented in Figure 5.6, the com-
putation process starts with the translation of the RP-DeLP program and
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the set of computation options into an XML file. Then, appropriate Python
structures are built from the XML file in order to be processed by the RP-
DeLP algorithm. The RP-DeLP algorithm uses the ASP or the SAT im-
plementation depending on the computation options. When the RP-DeLP
algorithm finishes, outputs are stored in an XML file which allow us to
provide an HTTP response or an HTML page.

Figure 5.6: RP-DeLP web system architecture.

One of the main features of our system is that provides not only sets of
warranted and blocked conclusions, but also information to further under-
stand the reasons why conclusions are warranted or blocked.

In Table 5.1 we show the information that the system provides to the
user for every output. This information is divided in two parts. The first
part shows the total number of outputs, a label of the computing order of
the output, the set of warranted conclusions of the output and the time
expended computing the output. For each warranted conclusion there is
a list of conclusions which support it and the strength of the conclusion.
The second part shows the set of blocked conclusions of the output and
the set of conclusions which support them. For each blocked conclusion the
system informs about the strength of the conclusion and the reason that
leads to block it: a conflict or a cycle. For conflicts it shows the set of valid
conclusions that minimally conflicts. For cycles it shows the set of valid
conclusions of the cycle at some warrant dependency graph. Remark that
a conclusion is blocked due to a cycle whenever we compute the maximal
ideal output, otherwise conclusions are blocked due to conflicts.
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Number of outputs # output Warranted conclusions Time

n i
P1 : {P1,1, . . . , P1,h} [αP1 ]

tn...
Pr : {Pr,1, . . . , Pr,u} [αPr ]

# output Blocked conclusions Support of blocked conclusions

i
Q1 : conflict(Q1,1, . . . , Q1,j) [αQ1 ] Q1 : {P1,1, . . . , P1,k}

...
...

Qs : cycle(Qs,1, . . . , Qs,v) [αQs] Qx : {Px,1, . . . , Px,w}

Table 5.1: Information provided by the system for an RP-DeLP program.

5.4. A Running Example: Arguing about the Best
Menu

In this section we consider the application of the RP-DeLP argumen-
tation framework to the construction of suitable menus in a restaurant.
Suppose we have two persons in the restaurant arguing about how to select
the different menu items: Chicote (the chef) and Luis (the restaurant man-
ager). Chicote is more concerned about the quality of the menu, whereas
Luis is more concerned about the price of the menu. However, both agree
that for preparing the menu they should reach a consensus that considers
the preferences of both.

The menu must contain appetizer, drink, first course, second course and
dessert. For appetizer and drink they have already reach the conclusion that
they will serve mussels (M) and red wine (R), respectively. But there is no
a consensus about the other items.

For the first course, the options are Soup (FS) and Fish (FF ). For the
second course are Beef (SB) and pork (SP ). And for the dessert are fruit
(DF ) and Sacher cake (DC).

First case. As we have said, they both agree on the selection for the
appetizer and the drink. Also, they both agree that when pork is served,
Sacher cake cannot be served. So, at the strict level we have the following
hard constraints:

Π = {M,R,∼DC ← SP}

The other conditions for the menu are not so clear, as both sides have
some opposite preferences, or not any preferences between some options.
First, regarding what option to select for each course and dessert, they do
not have, a priori, any preference between the two options for each menu
item. But it is clear that once one option is selected, the other should be
avoided. So, at the defeasible level we have propositions for all the possible
options for first and second course and dessert and rules that express the
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preference that once one option is selected for a course or for the dessert,
the other should not be selected.

Secondly, regarding the preferred combinations of courses and dessert,
Luis prefers not to serve the more expensive first course (fish) and the more
expensive dessert (Sacher cake) when beef is the second course. By contrast,
Chicote believes that when beef is served, the preferred options for first
course and dessert are fish and Sacher cake.

Then, all these conditions are encoded with a single defeasible level as
follows: 2

∆α1 =
{

FF, FS, SB, SP,DC,DF,

F1 : ∼FF ← FS, F2 : ∼FS ← FF,
S1 : ∼SP ← SB, S2 : ∼SB ← SP,
D1 : ∼DC ← DF, D2 : ∼DF ← DC,
C1 : FF ← SB, C2 : DC ← SB,
L1 : ∼FF ← SB, L2 : ∼DC ← SB }

Given all these conditions, it turns out that there is an unique menu that we
extract with our argumentation system, that corresponds with the unique
output of our program shown in Table 5.2.

# of outputs Warranted conclusions Blocked conclusions Support of blocked

1

M : {M}[Π] SP : conflict(SP,DC)[α1] ∼FF : {SB}
R : {R}[Π] DC : conflict(SP,DC)[α1] FF : {FF}

SB : {SB}[α1] FF : conflict(FF,∼FF )[α1] SP : {SP}
DF : {DF}[α1] ∼FF : conflict(FF,∼FF )[α1] DC : {DC}
FS : {FS}[α1]

Table 5.2: Output of the system for our first running example.

The reasons for this unique output are as follows. First, observe that
there is a conflict between valid arguments for SP and DC, so they are
blocked and SB and DF can be warranted. Then given the warrant status
of SB and the defeasible rule L1, ∼FF becomes valid, but then there is a
conflict between FF and ∼FF , so they are blocked. This allows to warrant
FS. As we have an unique output, in this case this output coincides with
the maximal ideal output of the program.

Second case. Suppose now that after some deliberation between Luis and
Chicote, they agree that the preference of Chicote of having fish and cake
when we have beef should receive more consideration than the preference
of Luis of not having fish and cake. But we still do not have a preference
between fish and soup, so they are still in the same defeasible level. So, we
have the same strict knowledge as before, but two defeasible levels α1 and
α2 with α1 > α2. Then, the set of defeasible facts and rules is stratified as

2The RP-DeLP program of Figure 5.5 corresponds with the set of facts and rules of
this example.
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follows:

∆α1
=
{

FF, FS, SB, SP,DC,DF

F1 : ∼FF ← FS, F2 : ∼FS ← FF,
S1 : ∼SP ← SB, S2 : ∼SB ← SP,
D1 : ∼DC ← DF, D2 : ∼DF ← DC,
C1 : FF ← SB, C2 : DC ← SB }

∆α2 =
{

L1 : ∼FF ← SB, L2 : ∼DC ← SB }

Given the modified defeasible knowledge, we have that now two menus are
possible, that correspond with the two outputs we have this time. We have
two outputs because now the warrant status of SB does not create a conflict
between FF and ∼FF . So, as both FF and FS are valid arguments at the
defeasible level α1, together with the defeasible rules F1 and F2 we have
two conflicts with almost valid arguments that cannot be resolved because
there is a cyclic dependence. To break this cycle, we have to consider two
options: either to warrant FF or to warrant FS:

1. If we warrant FF , then ∼FS becomes valid so we have to block FS
and ∼FS. This gives our first output in Figure 5.7.

2. If we warrant FS, then ∼FF becomes valid so we have to block FF
and ∼FF . This gives our second output in Figure 5.7.

Figure 5.7: Output of the system for our second running example.

For this case, the maximal ideal output has content shown in Table 5.3.
Remark that for our example the set of warranted conclusions for the max-
imal ideal output coincides with the intersection of the set of warranted
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conclusions for each output which indicates that Chicote and Luis coincide
always at least on the second course and the dessert. 3

# of outputs Warranted conclusions Blocked conclusions Support of blocked

1

M : {M}[Π] SP : conflict(SP,DC)[α1] FF : {FF}
R : {R}[Π] DC : conflict(SP,DC)[α1] FS : {FS}

SB : {SB}[α1] FF : cycle(FF, FS)[α1] SP : {SP}
DF : {DF}[α1] FS : cycle(FF, FS)[α1] DC : {DC}

Table 5.3: Maximal ideal output for the second running example.

3The set of warranted conclusions for the maximal ideal output is not equal to the
intersection of the set of warranted conclusions for each output for all RP-DeLP program
with multiple outputs. However, the set of blocked conclusions for the maximal ideal
output is different to the intersection of the set of warranted conclusions for each output
for all RP-DeLP program with multiple outputs.
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6
Average Computational

Cost and Easy/Hard
Problem Instances

To study the scaling behavior of the computational cost of our algorithms
as the size increases, as well as how different characteristics of the problem
instances affect its computational cost, we have implemented our algorithms
and conducted a series of experiments.

The main structures of algorithms have been implemented with the pro-
gramming language Python, but for solving the SAT and ASP formulas pre-
sented in the previous section we used different solvers. For the SAT version
of the algorithm, it uses Minisat SAT solver. However, our architecture eas-
ily allows to use any other SAT solver that appears in the future. Minisat is
one of the publicly available SAT solvers which implements most of the cur-
rent state-of-the-art solving techniques such as conflict-clause recording and
conflict-driven backjumping, among others. When using the ASP encodings
the algorithm uses Clingo and other tools from Potassco suite [GKK+11b].
Potassco suite is the best performing ASP solver in the last ASP competi-
tion [CIR+11].

In the experiments the algorithm solves different test sets of problem
instances obtained with a random generation algorithm. The instances can
be solved using the SAT solver or the ASP solver, as we have presented two
encoding based on SAT and ASP formulas. Also, for each problem instance
we can calculate all the outputs or the maximal ideal output.

To study and analyze how our RP-DeLP algorithm behaves as different
characteristics of the problem change, we generated our instances using one
and two levels of defeasibility and changing the other parameters of the
problem instances. The experiments have been performed solving different
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test sets of the randomly generated problem instances and have been run on
machines with the following specs: Rocks Cluster 5.2 Linux 2.6.18 Operating
System, AMD Opteron 248 Processor clocked at 1GHz, 1.0GB Memory, and
GCC 4.1.2 Compiler.

6.1. Random Generation of RP-DeLP Problem In-
stances

We used different parameters to control the generation of random RP-
DeLP problem instances with different sizes, defeasibility levels and other
characteristics. To experiment with different defeasible levels we generated
for our experimentation first on one set of problems with only one defeasible
level and then on another set with two defeasible levels. In both cases we
were interested in how the resolution time differs when the ratio of clauses
to the number of variables increases. Then, in the first case with only one
defeasible level, we were also interested in the results when the fraction of
clauses of the program at the strict knowledge level is modified, ranging from
no strict knowledge at all to all clauses at the strict knowledge level. For
the case of two defeasible levels, we have investigated the effect of modifying
the fraction of clauses between the two defeasible levels. We next explain
the generation of our problem instances.

Generation of instances with one defeasible level. Given a num-
ber of variables (V ), a maximum clause length (ML), a ratio of clauses
to variables (C/V ), and a fraction (f), between 0.0 an 1.0, of strict
knowledge, the algorithm generates an RP-DeLP problem instance by
generating C clauses, such that the length of the body of every clause
is selected uniformly at random from [0,ML] (clauses with body length
0 are facts). The variables of the literals of a clause are selected uni-
formly at random without repetition, and are negated with probability
0.5. From the C clauses, f ·C clauses are in the strict knowledge and
the rest in the defeasible set.

Two defeasible levels instance generation. Similar to the pre-
vious instance generator with a number of variables (V ), a maximum
clause length (ML), a ratio of clauses to variables (C/V ), now we fix
the fraction of strict knowledge (f) to some value. Then two defeasible
levels are built assigning a fraction l between 0.0 and 1.0 of the total
number of defeasible clauses to the first defeasible level and 1-l to the
second defeasible level.
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6.2. Maximal Ideal Output

6.2.1. Test instances considered

To perform the empirical analysis for the maximal ideal algorithm we
generated used two different groups of test sets: test sets with one defeasible
level and test sets with two defeasible levels. In both groups, test instances
were created with a number of variables (V ) selected from {20, 25, 30, 35},
1 and with maximum clause length (ML) selected from {2, 4}.

In the case of one defeasible level, for each combination (V,ML), different
test sets of instances were created by selecting a number of total clauses,
such that the ratio C/V ranged from 1 to 14 in steps of 0.5, and the fraction
of clauses in the strict knowledge ranged from 0 to 0.9 in steps of 0.1. So,
the total number of test sets for each combination (V,ML) was 90. The
number of instances generated in each test set was 50.

In the case of two defeasible levels, for each combination (V,ML) and
an strict knowledge fraction set to 0.1, different test sets of instances were
created by selecting a number of total clauses, such that the ratio C/V
ranged from 1 to 14 in steps of 0.5, and the fraction of clauses in the first
level l ranged from 0.1 to 0.9 in steps of 0.1.

6.2.2. One defeasible level

For one defeasible level, we first show the results for instances with total
number of variables V = 30 and maximum clause length ML = 2. The left
plot of Figure 6.1 shows the median time to solve the instances with the SAT
approach when solving instances with different ratio of the number of total
clauses to number of variables (axis labelled with C/V in the plots) and with
different fraction of strict knowledge (axis labelled with strict knowledge).
The plot shows that for a strict knowledge fraction of 0.0, there is an increase
of the median time as the total number of clauses increases.

By contrast, as the strict knowledge fraction increases, the time increases
only up to certain value of the number of total clauses, and then drops
significantly. This is probably because of two causes:

the more strict knowledge we have, the more possibilities to have in-
consistent instances, that are detected in polynomial time by our al-
gorithm, and

the more unacceptable arguments and blocked literals we can have.

To check the possible role of inconsistent instances on the complexity of the
problem, we have also computed what fraction of the instances, for each test
set of 50 instances, are inconsistent (Π `R ⊥). The right plot of Figure 6.1

1Notice that the total number of literals will be two times the number of variables.
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shows this information. The color scale ranges from points with a fraction of
instances with inconsistent strict knowledge equal to 0 (dark blue color) to
points with such fraction equal to 1.0 (red color). Apart for the obvious case
of strict knowledge fraction equal to 0.0, where there are never inconsistent
instances, for a fraction of strict knowledge equal to 0.1 up to the ratio
C/V = 6 no inconsistent strict knowledge is generated, but the time needed
to solve the instances is smaller than the one needed for instances with no
strict knowledge at all.

As the fraction of strict knowledge increases, test instances with inconsis-
tent strict knowledge appear more frequently for a lower ratio C/V and the
interval of values of C/V with instances with significant computation time
( greater than 0 ) decreases. Also, the highest computation time obtained
decreases as the fraction of strict knowledge increases.

To further understand the reasons for such differences on the compu-
tation time, we have also studied the average ratio of warranted literals
and average ratio of blocked literals, with respect to the total number of
variables, for each test set. The left plot of Figure 6.2 shows the ratio of
warranted literals and the right plot the ratio of blocked literals. Looking at
both plots, we observe that for instances with low C/V , if its strict knowl-
edge fraction is also low, we have a small, but non-negligible, fraction of
warranted literals, that starts to increase as we increase C/V , but only up
to certain limit C/V (around 2.0), and above that limit the fraction of war-
ranted literals starts to decrease, coinciding with an increase in the fraction
of blocked literals. A plausible explanation for this is that for very low C/V
instances have very few valid arguments, so few warranted and blocked liter-
als are produced. As C/V increases, more valid arguments start to appear,
but obviously as the number of valid arguments increases more and more
of them will be part of a conflict set of arguments. So, it seems that the
highest computation times are found for instances with enough clauses such
that many valid arguments are found, but many of them are also found to
be part of a collective conflict set.

When the strict knowledge fraction increases, as the fraction of instances
with inconsistent strict knowledge increases, it is clear that on average war-
ranted and blocked literals will decrease, and this is observed on both plots.
It is also natural that even on instances with a consistent strict knowledge,
when this fraction is larger, less literals will have valid arguments, because
consistency with the strict knowledge will hold for less arguments. However,
we still find remarkable the increase of easy instances for a strict knowledge
fraction of only 0.2, because at this strict knowledge fraction for C/V up
to 5.0 instances still have warranted literals. A possible explanation for this
increase of easy instances even when we still have a considerable number
of warranted literals, is that the fraction of strict knowledge produces the
pruning of larger arguments, so the arguments found for warranted literals
are shorter and easier to find.
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Figure 6.1: Median time to solve the instances (left) and fraction of incon-
sistent instances (right) for V = 30,ML = 2.
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Figure 6.2: Warranted literals (left) and blocked literals (right) for V =
30,ML = 2.

Our next goal is to compare our two solving approaches for the maximal
ideal output, we want to run a set of instances with ASP and SAT approaches
in order to compare the time expended in solving such instances. To do
so, we will avoid using unsatisfiable instances as the solver will find an
inconsistency quickly and there will be no calls to any solver. So one of our
sets will be the set with instances without strict knowledge (this is the set
of instances with fraction of strict knowledge f equal to 0), as in this set
there will not include any inconsistent instance.

We will also choose the set with fraction of strict knowledge f = 0.1.
Despite of it will surely contain some inconsistent instances, results show
that the inconsistency ratio is still low in comparison with the rest of the
sets with higher number of clauses in the strict part (this is instances with
fraction of strict knowledge f < 0.1. We believe that some instances in this
set are challenging because require a high number of solver calls in order to
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find collective conflicts.

Next we show a comparison in the average computational cost of the two
SAT and ASP approaches. In Table 6.1, we compared the time expended
in computing the maximal ideal output of instances with V = 30,ML = 2
and fraction of strict knowledge f = 0.0 and f = 0.1. Results show that the
ASP approach outperforms the SAT approach. One reason for the better
performance of ASP can be that ASP encodings are smaller than SAT ones
and thus the search space is bigger in SAT encondigns. As ASP and RP-
DeLP both inherit its language from Logic Programming, rules and facts
can be directly encoded from RP-DeLP to ASP. By contrast, in SAT it
is needed to explicitly encode the non-deterministic choice of clauses for
inferring conclusions in an argument. It is also worth to note that following
the idea of SAT encoding for classical STRIPS problems, each rule and each
fact must be rencoded in each level of the plan, adding also linking rules
between levels. This is not needed in the ASP encoding, so ASP instances
tend to be smaller.

In Table 6.2 we show the hardest instances for each set with different
V and a fixed number of max clause length with ML = 2. We compare
both approaches ASP and SAT by showing the time to solve the hardest
instances and also we show the fraction C/V of the instances. Again we see
how ASP needs less time to compute the maximal ideal output for the given
instances.

In Table 6.3 we show the same results but now for a maximum clause
length of ML = 4.

6.2.3. Two defeasible levels

Next, we analyze the effect on complexity of having two defeasible levels,
instead of just one. For these instances we have fixed the strict knowledge
fraction to 0.1 because we wanted to test the hardest possible instances we
can have when there is a fraction of strict knowledge greater than zero, so
we still can have non-trivial conflicts between arguments due to the role of
the strict knowledge on collective conflicts.

We first take a look at the results obtained after solving the set of in-
stances with the number of variables V = 30 and maximum clause length
ML = 2. The left plot of Figure 6.3 shows the median time to solve the
instances with our algorithm when solving instances with different ratio of
the number of total clauses to number of variables (axis labeled with C/V
in the plots) and with different fraction of defeasible knowledge at the first
defeasible level (axis labeled with fraction l). The right plot of the same fig-
ure shows the percentage of consistent instances. We observe that as before,
just up to the ratio where almost all instances are inconsistent, there is an
increase on the median time.

However, the lowest computation times are found on a range of values
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SAT ASP
f f

C/V 0.0 0.1 0.0 0.1

4.0 225.91 103.66 42.66 34.85
5.0 480.51 180.65 52.86 34.21
6.0 598.55 288.35 60.95 37.60
7.0 756.08 199.27 69.36 33.96
8.0 855.64 172.78 64.90 33.96
9.0 913.16 79.03 67.03 33.04

10.0 967.87 59.03 66.49 27.66
11.0 787.51 45.15 65.17 21.03
12.0 779.84 38.15 63.00 22.26
13.0 829.43 32.07 63.57 16.13
14.0 892.32 28.12 52.79 14.04

Table 6.1: Time in seconds to solve random instances with V = 30,ML = 2
and fraction of strict knowledge f = 0.0 and f = 0.1 with SAT and ASP
encoding approaches.

V 15 20 25 30 35

C/V time C/V time C/V time C/V time C/V time

ASP 8.0 10.02 8.0 27.68 9.0 47.84 7.0 69.36 11.0 140.02
SAT 9.0 64.03 10.0 229.08 11.0 522.36 10.0 966.86 10.0 1500.76

Table 6.2: Fraction of C/V and time to solve (seconds) hardest instances
with ML = 2 and fraction of strict knowledge sk = 0.0 with SAT and ASP
encoding approaches.

V 15 20 25 30 35

C/V time C/V time C/V time C/V time C/V time

ASP 11.0 14.80 8.0 28.83 11.0 63.51 9.0 123.83 12.0 172.91
SAT 13.0 119.79 13.0 341.23 9.0 725.39 11.0 1106.47 12.0 1224.20

Table 6.3: Fraction of C/V and time to solve (seconds) hardest instances
with ML = 4 and fraction of strict knowledge f = 0.0 with SAT and ASP
encoding approaches.
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for the first level fraction around 0.5, and where this fraction is near 0 or 1
the computation time increases. A possible explanation for this concentra-
tion of the hardest instances when the defeasible knowledge is unbalanced
(concentrated almost in one level) may be the following.

When almost all the clauses are in one level, we have more possible
acceptable arguments in that level. Then, the space of possible collective
conflicts at that level is also larger, so the computation times for the conflict
queries will be higher. However, there is an slight difference in the compu-
tational cost when (l ≈ 0) and when (l ≈ 1). Despite in both cases we have
the same unbalance of clauses between levels, having (l ≈ 0) means that the
contribution to the output of the program due to the first level will be small
and quickly computed. At the second level, where the input will include
the warrants from the strict part plus some warrants obtained from the first
defeasible level, we will have less possible acceptable arguments from the
second level than we would have if the first defeasible level would be empty.
So, the total computational effort should be smaller than if all the defeasible
knowledge would be only at one level. When we have the situation where
(l ≈ 1), almost all the defeasible knowledge is at the first level, so the com-
putational effort to compute the output of the first level increases. That is,
the input for the first defeasible level will contain only the warrants from
the strict part, so the set of possible acceptable arguments will be larger
(compared with the second defeasible level when (l ≈ 0)) and the set of
possible warrants and blocked literals to check will be larger. Observe that
the plot for blocked literals at the right of Figure 6.4, shows a larger ratio
|B|/V for l = 0.9, as the number of clauses increases, than for l = 0.1.

So, when the fraction of clauses at the two defeasible levels is near 0.5,
the number of warrants obtained from the first defeasible level will increase
with respect to l = 0.1, but the number of blocked literals will be smaller
than for l = 0.9, because the number of clauses at the first defeasible level
is smaller. At the second defeasible level, the warrants and blocked literals
will decrease, with respect to the case l = 0.1, given the input from the
previous level. Looking at the left plot of Figure 6.4, that shows the ratio of
warranted literals and the right plot the ratio of blocked literals, we clearly
observe that more warranted literals are obtained around l = 0.5 but less
blocked literals than at the extreme values of l.

Those results show that when defeasible levels are balanced in terms of
number of clauses, there are less conflicts between arguments at the same
level. That means that more literals can be warranted, and as it has been
shown the lack of conflicts decreases the computation time of the output.
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Figure 6.3: Average computational cost (left) and fraction of inconsistent
instances (right) for V = 30,ML = 2, fraction of strict knowledge = 0.1 and
two defeasible levels.
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Figure 6.4: Warranted literals (left) and blocked literals (right) for V =
30,ML = 2, fraction of strict knowledge = 0.1 and two defeasible levels.

6.3. Multiple Outputs

To study the performance of the multiple outputs algorithm we used the
same test instances used in Section 6.2.1. According with the previously
presented results, we have shown that the approach using ASP encodings
performs much better than the SAT approach. For this reason in this section
we will use the ASP approach in our empirical tests.

Our first goal is to study the computational cost of solving the test
instances. In Figures 6.5 and 6.6 we show the execution time to solve the
test instances with ML = 2 using the ASP approach.

The first thing to note respect to the results shown in Figures 6.1 and
6.2 is that the maximum solving times are greater than the solving times for
the maximal ideal output algorithm. One possible reason for these higher
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Figure 6.5: Computing time for V = 20,ML = 2 (left) and for V =
25,ML = 2 (right).
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Figure 6.6: Computing time for V = 30,ML = 2 (left) and for V =
35,ML = 2 (right).

solving times could be the existence of instances with two or more outputs
to compute, given that this would increase the total execution time of the
algorithm. For this reason we next analyze the number and size of the
outputs of the test instances when solved by the multiple outputs algorithm.

Table 6.4 shows the mean solving times and the mean number of outputs
for the instances with f = 0.0 of the test sets considered in Figures 6.5 and
6.6 and Table 6.5 shows the main characteristics of these outputs. We focus
on the instances with f = 0.0 because they give the hardest solving times.
The characteristics we study for the outputs of the instances of each test set
are: mean number of warrant literals divided by V (Mean Warr.) and mean
number of blocked literals divided by 2V (Mean Block.). We observe that the
maximum solving times are obtained for the C/V ratios that give instances
with a higher mean number of outputs, and that around these ratios with
highest solving times and highest number of outputs these quantities seem
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V C/V f time #O

6.0 0.0 28.55 1.42
6.5 0.0 29.85 1.50

20 7.0 0.0 33.68 1.63
7.5 0.0 35.18 2.00
8.0 0.0 30.43 1.36
8.5 0.0 27.05 1.14

7.5 0.0 64.69 1.29
8.0 0.0 56.57 1.05

25 8.5 0.0 74.09 1.80
9.0 0.0 65.55 1.21
9.5 0.0 74.98 1.82

10.0 0.0 63.92 1.1

6.5 0.0 95.55 1.17
7.0 0.0 111.42 1.56

30 7.5 0.0 107.85 1.20
8.0 0.0 101.71 1.16
8.5 0.0 110.05 1.44
9.0 0.0 105.67 1.04

9.5 0.0 177.38 1.05
10.0 0.0 164.87 1.36

35 10.5 0.0 192.23 1.49
11.0 0.0 149.09 1.07
11.5 0.0 138.90 1.05
12.0 0.0 142.01 1.05

Table 6.4: Time to solve (seconds) and average number of outputs for the
hardest instances with C/V = {20, 25, 30, 35} and fraction of strict knowl-
edge f = 0.0 with ASP encoding approach.

to be lower.

Looking at the characteristics of the outputs in Table 6.5 for a wider
range of C/V ratios, we observe that the mean number of warranted liter-
als increases before we reach the C/V ratio with the highest solving times,
and then it starts to decrease. By contrast, the mean number of blocked
literals increases monotonically almost always. A possible explanation for
this behaviour is that when the number of clauses is low we have few valid
arguments so we have few warranted and blocked literals. As the number of
clauses increases, more warranted and blocked literals start to appear and
also cyclic dependencies between almost valid and valid arguments that are
the source for possible different outputs. When more clauses are added,
more blocked literals present in any output will appear, given the presence
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Mean Warr. Mean Block.

V V
C/V 20 25 30 35 20 25 30 35

1.0 0.31 0.25 0.26 0.25 0.02 0.03 0.02 0.03
2.0 0.44 0.42 0.39 0.43 0.12 0.11 0.13 0.12
3.0 0.48 0.51 0.50 0.50 0.25 0.23 0.23 0.26
4.0 0.48 0.47 0.47 0.49 0.33 0.32 0.33 0.32
5.0 0.44 0.42 0.45 0.45 0.43 0.45 0.43 0.42
6.0 0.40 0.42 0.40 0.45 0.51 0.51 0.51 0.49
7.0 0.37 0.33 0.35 0.43 0.57 0.62 0.57 0.56
8.0 0.33 0.30 0.31 0.33 0.64 0.65 0.63 0.62
9.0 0.27 0.28 0.28 0.29 0.69 0.67 0.68 0.67

10.0 0.25 0.25 0.26 0.23 0.71 0.70 0.70 0.73
11.0 0.20 0.21 0.20 0.20 0.77 0.75 0.77 0.76
12.0 0.17 0.17 0.19 0.18 0.81 0.80 0.78 0.80
13.0 0.16 0.15 0.16 0.17 0.83 0.83 0.82 0.83
14.0 0.14 0.14 0.16 0.15 0.85 0.84 0.82 0.83

Table 6.5: Mean warranted literals ratio and mean blocked literals ratio for
V = {20.25, 30, 35} C/V = {1..14} and f = 0.0.

of more direct conflicts between contradictory literals, and the number of
warranted literals will decrease, as well as the number of cyclic dependencies
between arguments. So, when the presence of more direct conflicts increases
in contrast to the number of indirect conflicts obtained by cyclic dependen-
cies, the computation time will decrease at the same time that the number
of outputs per instance.

We also observe that as the number of variables V increases, the max-
imum mean number of outputs seems to decrease. A possible explanation
could be that as we have more variables but we do not increase the maximum
length of the clauses (ML) the probability of having cyclic dependencies be-
tween arguments decreases.
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7
Conclusions and Future

Work

As we have already introduced, the contributions of this thesis can be
divided in two groups: one about the definition, design and implementation
of an argumentation framework for RP-DeLP programs, and the other about
solving hard combinatorial arithmetic problems using SAT, PB and ASP
encodings.

As contributions in the first group, we have presented an argumentation
framework for RP-DeLP programs with two different semantics: a multiple
outputs semantics and a maximal ideal output semantics. In the first se-
mantics, we compute all the possible sets of conclusions that are warranted
from the program (each set of conclusions has valid arguments that support
them and they are consistent together), but for each set of warranted con-
clusions we also compute a set of blocked conclusions (a set of conclusions
that also have valid arguments supporting them but that generate conflicts
with the warranted conclusions). The way in which the different clauses of
the program are distributed among the strict level and the defeasible levels
determine whether a conclusion with a valid argument is finally warranted
or blocked. We have presented the design of an algorithm for computing the
outputs of an RP-DeLP program, and we have implemented it. In a first
version of the algorithm, possible conflicts between arguments are detected
checking all the possible cycles in a warrant dependency graph. Then, in
order to get a more efficient version for implementation, we presented an
improved version that avoids the computation of the warrant dependency
graph and checking cycles on it. In the improved version, the main algo-
rithm does all its work of detecting warranted and blocked conclusions in
outputs by solving two main subproblems: finding almost valid arguments
and finding conflict sets of arguments.

Then, still with the goal of achieving an scalable algorithm implemen-
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tation, we presented transformations of these two subproblems to SAT and
ASP encodings, in order to get advantage of the current performance of
state-of-the-art SAT and ASP solvers. The SAT encoding for finding almost
valid arguments follows an analogous approach to the one used for solving
classical STRIPS planning problems with SAT encodings, and the SAT en-
coding for finding conflict sets of arguments is actually an extension of the
previous one: we now search for a set of arguments, still of just one, but with
the additional constraint that together should generate a contradiction. The
ASP encoding approach follows a similar idea, being the main difference that
as ASP inherits its language from the language of logic programming (like
RP-DeLP does), so facts and rules in ASP can be used directly for facts and
rules on an RP-DeLP program. In addition, there is no need to explicitly
encode the non-deterministic choice of clauses for inferring conclusions in an
argument or to encode the different stages of evolution of the true literals
of an argument with different sets of variables.

In the second semantics we consider only one set of warranted and
blocked conclusions, called the maximal ideal output, that tries to capture
the best possible consensus about a maximal set of warranted conclusions
that are free from any possible conflicts. While in the first semantics circular
definitions of conflicts were solved by producing a new output for each con-
clusion involved in the conflict, in the maximal ideal output this deadlock
situation is solved by adding all the conclusions into the set of blocked liter-
als. So, any conflict between valid arguments is resolved by blocking all of
them and in the final set of warranted conclusions only conclusions derived
from valid arguments that are free from circular and collective conflicts are
included. So, there is no possible way to argue against any warranted con-
clusion in the maximal ideal output. Compared with the outputs obtained
under the first semantics, the typical maximal ideal output will tend to have
less warranted conclusions and more blocked conclusions. The algorithm de-
signed, and implemented, for solving RP-DeLP programs with this second
semantics is very similar to the first one, being the main difference that
now it discovers the warranted and blocked literals following the recursive
definition of warranted and blocked literals but with an iterative algorithm.
That is, it first discovers simpler warranted and blocked literals before be-
ing able to find more complex ones. By contrast, in the multiple outputs
algorithm, each time a circular conflict between arguments is found, it per-
forms recursive calls to the main algorithm, to split the search of outputs,
with one call for every literal involved in the circular conflict. But the main
computational queries, looking for almost valid arguments and conflict sets
of arguments, are solved in the same way. One of the most relevant prop-
erties of our algorithms is that although the possible set of arguments that
can be build from an RP-DeLP program can be exponentially large, we do
not need to maintain in memory at any time an exponentially large set of
arguments, because in the worst case we need to maintain one argument for
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each conclusion, even when looking for conflict sets.
Then, with the goal of making our argumentation framework more avail-

able for a wider research community, we presented a web based version of our
RP-DeLP framework, that allows to solve RP-DeLP programs using both
semantics, and it not only computes and gives outputs, with warranted and
blocked conclusions, but also informs the user about the arguments sup-
porting warranted conclusions and the conflict sets found that explain the
blocked conclusions. Having an available reasoner as a web application has
many advantages, specially to be an easy-to-use tool for non-expert potential
users.

Finally we performed an empirical study of the performance of the argu-
mentation algorithms implemented using randomly generated problem in-
stances. We developed a problem generator that allows to select the different
parameters of an RP-DeLP program that can make a difference regarding
the complexity of solving it: the number of variables, the number of defea-
sible levels, the amount of clauses in each level, and the maximum length of
the clauses. The results indicate that a first important parameter regarding
the complexity of solving the programs is the amount of strict knowledge.
Only when this quantity is very small we get programs where many possible
valid arguments can be obtained, so the complexity of deciding which liter-
als are warranted or blocked can be high. But when the amount of strict
knowledge exceeds a certain value, almost any possible argument is not valid,
given the closure and consistency properties that need to be satisfied with
respect to the strict knowledge. When the strict knowledge is small, or there
is not strict knowledge at all, the parameters that affect the complexity are
the ratio of clauses to variables, and how the clauses are distributed among
the different defeasible levels. A interesting result is that the complexity
seems to be lower when the clauses are more balanced between the different
levels, because them the number of blocked literals generated in each level
is decreased and the computation of blocked conclusions takes less time in
each level, compared to what happens when in some level a high amount
of clauses causes the generation of a high number of blocked conclusions.
Regarding the difference between the SAT and the ASP based approaches,
our results indicate that the ASP approach outperforms the SAT based.
We presented preliminary explanation of why we think that ASP performs
better.

We have seen that the ASP approach outperforms the SAT one. The
reason for this better performans still remains to be more explained, but
one reason may be that ASP represents information with rules and facts,
just like RP-DeLP does.

As contributions related to using SAT, PB and ASP encodings for solving
other hard combinatorial problems, we have considered several arithmetic
problems and one problem about communication networks design. As arith-
metic problems, we considered the problems of integer number factorization
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and discrete logarithm, and tried to design encodings with good propagation
properties regarding the unit propagation technique used by SAT solvers.
We also presented SAT and PB encodings for solving modular constraints.
The results show that we can outperform other SAT encoding approaches
to solve problems with such constraints. Finally, we presented SAT, ASP
and PB encodings for solving the routing and wavelength assignment (RWA)
problem, which is a problem that arises when a route must be established
in an all-optical communication network. Our approach shows a better per-
formance than other PB based previous approaches in instances where the
size of the network is significant and the resources (wavelengths and paths)
are critically constrained.

As future work, we present several lines. Regarding the semantics studied
for our argumentation framework, although they are very appealing given
that they satisfy the rationality postulates of Caminada and Amgoud, it
would be interesting to consider other possible semantics that may be rel-
evant in certain application domains. Regarding worst-case complexity, we
lack an study of the worst-case complexity of our problems, and we plan
to study this considering reductions from other well studied argumentation
and non-monotone reasoning problems where worst-case results are known.
With respect to the performance obtained

As a possible way to improve our algorithms, an interesting direction
would be to present SAT and ASP encodings able to find minimal conflict
sets, given that the current encodings do not ensure that the conflict sets
found are minimal, and minimal conflict sets can be more informative for the
final user, although its computation will tend to be more complex. Finally,
one of the most intriguing results we have obtained is the superiority of
the ASP based approach with respect to the SAT based one. Although
we presented possible reasons for this performance difference, based mainly
on the fact of the more close nature of RP-DeLP to ASP than to SAT
so we retain more structure of the original problem with ASP, it would
be interesting to deep into the reasons behind this performance difference,
given that in previous SAT solvers competitions when ASP solvers are used
they tend to be only better on unsatisfiable instances, but in our problem
instances considered in the experimental evaluation the instances that show
a clear advantage of ASP with respect to SAT are always feasible instances,
so the reasons of these superior performance of ASP should be investigated
with more detail.
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