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I. ABBREVIATIONS 
!

AMP: adenosine monophosphate  
 

!AMPK: AMP-activated protein kinase 
 

!bHLH-PAS: basic helix-loop-helix; Per-Arnt-Single 
 
BMAL1: brain and muscle ARNT like protein 
 
CAR: constitutive androstane receptor 
 

!CK: casein kinase 
 

! !CLOCK: circadian locomotor output cycles kaput 
 
CRY: cryptochrome 
 

! !DYRK1A: dual-specifity tyrosine-(Y)-phosphorylation  
regulated kinase 1A 
 
FOXO1: forkhead box protein O1 
 

!GABA:!γ-aminobutyric acid 
 

!GSH: glutathione 
 

! !GSK-3B: F-box and leucine-rich repeat protein 3 
 
GSPE: grape seed proanthocyanidin extract 
 
HAT: histone acetyl transferasa 
 

!NAADP: nicotinate adenine dinucleotide phosphatase 
 
NAD: nicotinamide adeninedinucleotide 
 

!NAM: nicotinamide 
 

! !NHRs: nuclear hotmonal receptors 
 

!NMN: nicotinamide mononucleotide 
 

!
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NR1D1: nuclear receptor subfamily 1, group D 
 
OEA: oleylethanolamide 
 

! !PAs: proanthocyanidins 
 

! !PER: period 
 

! ! !PGC-1α: peroxixome proliferator-activated receptor coactivator alpha 
 
PPARα: peroxisome proliferator-activated receptor alpha 
 
PPARγ: peroxixome proliferator-activated receptor gamma 
 
REV-ERBα: reverse erythroblastosis virus alpha 
 
RORα: retinoic acid-related orphan receptor alpha 
 
ROS: reactive oxygen species 
 

!SCN: suprachiasmatic nucleus 
 

!SIRT1: sirtuine 1 
 

! !SOD: superoxide dismutase 
 

!SREBP-1C: sterol regulatory element-binding protein 1C 
 
STAT3: signal transducer and activator of transcription 3 
 
TORC2: transducer of regulated CREB protein 2 
 
TTFL: transcription-translation feedback loop 
 
VIP: vasoactive intestinal peptide 
 

!βTrCP: β-transducing-repeat-containing protein!
 

!
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1. Circadian rhythms: the output of the circadian system 

1.1. From circannual to circadian rhythms 

All organisms in Earth are organised towards diverse environmental 

influences that mediate transformation through biological signals, chemical 

processes, or various forms of energy. Among all these external cues, the sun 

is thought to be the most important factor in life, as without it, life on our 

planet would not be possible. As the case of a magnet, the sun exerts such a 

powerful effect, that even an enormous system as the planets that make up 

the solar system, react to the solar energy circling the sun. Our planet is not 

an exception and as cause of that factor, environmental changes occur yearly, 

generally called as the seasons. All kinds of challenges to the survival of 

organisms and their offspring arise with the beginning of every new season, 

reason why they have developed seasonally induced changes that adapt them 

to these predictable events. Winter, for instance, means in half of the world a 

decrease in ambient temperatures and therefore food availability, while 

energetic demands increase. Under this perspective, some species adapt 

themselves by doing hibernation, migration, huddling among them, 

increasing pelage, eating more calorically or allowing time for parturition, 

fattening process of flowering time in plants for another more appropriate 

season, among many others adaptations carried out year behind year [1]. 

Particularly, in human beings, the quality and quantity of food ingested flows 

along the different seasons, similar as, despite the globalisation, the type of 

fruits and vegetables do. In fact, weather and raw materials, therefore 

geography and social structure, traditionally have influenced the different 

world cuisines [2], as many phenotypic modifications [3]. Thereby, 

organisms are in constant interaction with the environment through time, 

which entrainmany behavioural, physiological, and metabolic aspects, 

suggesting the existence of an epigenetic fact that would explain how gene 
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regulation can modulate development, proposed by Waddington through his 

metaphorical epigenetic landscape [4].  

Generally, if any event within a biological system occurs at approximately 

regular intervals, it is known as a biological rhythm which is a cyclical 

change in the biological or chemical function of body [5]. In the case of an 

annual biological rhythm, the mechanisms have not yet been clearly 

identified, although there is evidence for an annual clock, an endogenous 

calendar, that contributes recollecting the annual information in order to 

provide an advantage for survival expectations even when predictive cues are 

noisy or not immediately present, as the case of solstices, hibernators and 

species inhabiting high latitudes, where prolonged winters are associated with 

absence of an obvious external light-dark cue [6]. In addition to this 

endogenous calendar, a day length– measuring mechanism finally would 

conform the annual clock in order to adjust physiological state precisely to 

the seasons [7], although changes on the thyroid hormone  signaling represent 

another important molecular mechanism, as this hormone  is crucially 

required for the expression of seasonal rhythms [8] . Day length is the most 

accurate natural predictor of annual phase known as photoperiod, which 

drives seasonal physiology through the contraction of the melatonin pineal 

signal during short summer nights and its expansion in long winter nights, 

providing an accurate endocrine representation of day-night length. However 

some other non-photoperiodic seasonal factors like food, water, ambient 

temperature and social cues have all been shown to alter seasonal traits 

specifically among species [9]. Thus, a molecular system capable of 

measuring day length and controlling melatonin pineal signal, emerges as the 

key piece responsible for recollecting the required information for increasing 

survival expectations along the time. This system is called the circadian clock 

system. 
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1.2. Circadian clock system 

Day length entails light-dark cycle, which is directly conditioned by the 

rotation of Earth to its own axis, implying daily biological rhythms with 

periods, the time interval after which the event recurs, of 24 hours. Then 

daily rhythms become termed circadian rhythms, coming from the Latin 

circa, meaning “around” / “about” or “approximately”; and diem or dies, 

meaning “day”. In fact, internal circadian rhythms can be studied in isolated 

units, free from external signals and variations, such as bunkers, caves, 

suitable laboratories, etc., resulting still in periods slightly deviating from 24 

h; or under normal environmental conditions where the internal rhythms of 

the organisms adapt their period, to the light regime of the sun, showing then 

a daily 24 h rhythm and underlining the importance of the daily Earth 

rotation, as organisms reside in it. In both cases, the presence of a circadian 

clock system that controls and emits rhythms is evident, as it is in the case of 

waking up at the same time spontaneously everyday even without an alarm 

[10]. In fact, the list of circadian physiological events is as long as complex 

are the different species living in this planet, but in general, their circadian 

cycle responds to a better predisposition for the next action, which is directly 

related to an external cue. For example, cycles in rest and activity, blood 

pressure, body temperature, alertness, coordination, reaction and brain 

activity, cardiovascular efficiency or muscle strength, hormonal secretion in 

blood and ions in urine, etc..; oscillate throughout the day, responding to an 

external demand in order to allow us a better adaptation. All these 

physiological circadian aspects are triggered by numberless molecular 

pathways, nonetheless, there is a circadian clock system which as a main 

function, allows us to prepare our physiology from a basic, original and 

universal mechanism among almost all species worldwide, from prokaryotes 

to higher organisms [11].   
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The hypothalamic suprachiasmatic nucleus (SCN) into the hypothalamus, 

that is found in nearly all living organisms, is capable of integrating direct 

photic input from the retina. No more regions thorough the body are able to 

accomplish that function, so that, SCN is also known as the master clock or 

oscillator in mammals, for synchronising our physiology or circadian 

rhythms, according to our main external cue or synchronizer coming from the 

sun, the light [12]. Nonetheless, organisms are surrounded by many other 

external synchronizers, therefore, other many peripheral and cerebral 

oscillators are present in cells throughout the body, sharing a similar structure 

at the molecular level and emitting rhythms in a self autonomous manner 

depending of the external cues [13]. Thus the circadian clock system is 

composed in one hand, by a master clock located in the SCN; and on the 

other hand, many others oscillators throughout the body which share a similar 

structure molecularly.  

 

1.2.1. Molecular basis of the circadian clock system 

For all organisms in which the molecular clock mechanism has been 

investigated, a common model has been observed: a transcription-translation 

feedback loop (TTFL). TTFL components are not, however, shared between 

organisms. For example, the cyanobacterial clock is modeled around three 

proteins: KaiA, B and C while the plant TTFL involves elements including 

TOC1 and CCA11 [14]. Furthermore, although some multicellular organisms 

such as Drosophilaand mammals possess homologous components, their 

functions appear to differ between organisms, suggesting that daily 

timekeeping evolved independently within different lineages [15]. 

Focusing in the mammalian circadian clock system, it consists of a cycle with 

a periodicity of approximately 24 h, driving the positive limb of this loop by 

the transcriptional activators circadian locomotor output cycles kaput 
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(CLOCK) and brain and muscle ARNT like protein 1(BMAL1), which both 

encode bHLH-PAS (basic helix–loop–helix; Per-Arnt-Single) proteins that 

after their own heterodimeritation, initiate the transcription by binding to 

specific DNA elements like E-boxes (5’-CACGTG-3’) and E’-boxes (5’-

CACGTT-3’) in the promoters of target genes. As a matter of fact, if CLOCK 

is removed from the system, the behavior of the animal remains perfectly 

rhythmic due to the gene Npas2, which acts as a surrogate for the loss of 

Clock, playing a role as transcriptional partner of Bmal1 in the SCN 

[16].However, the loss of Clock abolishes the circadian rhythmicity of the 

molecular oscillations in peripheral clocks [17]. 

Among the CLOCK:BMAL1 target genes, Period (Per) and Cryptochrome 

(Cry) genes in turn inhibit the activity of CLOCK:BMAL1 heterodimer, after 

increasing to a critical concentrations that allow the PER and CRY proteins, 

dimerize and translocate to the nucleus, leading, therefore, to a decrease in 

Per and Cry expression [18] . Degradation of the negative limb proteins PER 

and CRY is required to terminate the repression phase and restart a new cycle 

of transcription, which is crucial in order to set the period of the clock. In 

line, casein kinase (CK)1ε and CK1δ target the PER proteins through 

phosphorylation, for ubiquitination and degradation by �-transducing-

repeat-containing protein (βTrCP) and 26S proteasome respectively [20], 

while CRY1 is phosphorylated by 5' AMP-activated protein kinase 1 

(AMPK1) [21] and CRY2 by a sequentialdual-specificity tyrosine- (Y)-

phosphorylation regulated kinase 1A(DYRK1A) /glycogen synthase kinase 

3beta (GSK-3β) cascade [22], being both targeted for ubiquitination and 

degradation byF-Box And Leucine-Rich Repeat Protein 3(FBXL3) [23].  

In addition, the active CLOCK:BMAL1 heterodimer also promotes the 

transcription of the retinoic acid-related orphan receptor alpha (Rorα) and  

the nuclear receptor subfamily 1, group D (Nr1d1), also known asreverse 

erythroblastosis virus alpha(Rev-erbα), its own activator and repressor 
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respectively, competing both for a binding site within the response element 

(RORE) into the Bmal1 promoter, generating another loop of regulation [18]. 

In addition to Rorα,peroxisome proliferator–activated receptoralpha (PPARα) 

is also a positive regulator of Bmal1 expression, as pparαbinds on a potential 

PPARα response element located in the bmal1 promoter. BMAL1, in turn, is 

an upstream regulator of pparαgene expression, being this  the reason why 

this gene can be considered aclock-controlled gene, which in turn suggest an 

additional regulatory feedback loop, involving BMAL1 and PPARα in 

peripheral clocks [24].  

Therefore, CLOCK:BMAL1 heterodimer enhance the transcription of 

metabolic gens or clock controlled gens, as the case of pparα, which are 

implicated in manyaspects of metabolism and biochemical processes and, 

moreover, are often regulated through D-boxes elements in their promoters, 

revealing another potential transcription loop [19].  

 
Figure 1. The molecular clock system, from Biliana Marcheva and colleagues[25]. 
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Hence, it has been proposed that the three known binding elements together 

provide the necessary delay to cycle about 24 h: E-box in the morning, D-box 

in the day, and RORE elements in the evening, which means maximum levels 

of Bmal1 and Clock genes at night, while there are maximum levels of Per2, 

Rev-erbα, Rorα, …; in the morning [26]. 

 

Figure 2. Acetylation and deacetylation of BMAL1, from Biliana Marcheva and 

colleagues [25]. 

 

In general, the chromatin remodeling necessary for this cyclic transcriptional 

activity, can be observed in the rhythmic acetylation/deacetylation of histones 

(H3 and H4) at multiple clock target genes, among other protein 

transformations as phosphorilations, etc..[27]. Bmal1, in this sense, is the 

angular stone of the cycle, as the robust transcriptional oscillations are lost in 

the absence of this core clock gene [28]. In fact, the acetylation of BMAL1 is 

carried out by its partner CLOCK, which possesses a histone acetyl 
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transferase (HAT) domain, while the rhythmic deacetylation of histone H3 at 

the promoters of circadian genes, such as BMAL1, is regulated by the 

deacetylase sirtuin 1 (SIRT1), which is sensitive to NAD+ levels (Figure 2) 

[29].  

Related to this, the NAD+ to NADH ratio has been shown to regulate 

CLOCK/ BMAL1’s ability to bind DNA in vitro [30], underlying the 

importance of the cellular metabolism towards the regulation of the 

transcriptional circadian state. 

 

1.2.2. The master clock  

The SCN appears to be highly conserved in its anatomical and physiological 

organization, containing approximately 20,000 neurons spread in two similar 

anatomic subdivisions: a ventral “core” region where light first induces 

immediate genes as retinal inputs are more dense in this subunit [31]; and a 

dorsal “shell” region, where circadian rhythms in gene expression occur after 

receiving projections from the “core” region [32]. Thus, compared to the 

whole human brain which is composed by 100,000,000,000 neurons, the 

SCN is a small area in the hypothalamus [33]. Taking into account the 

different functions carried out by the two SCN parts, it is essential that they 

stay well coupled in order to allow the SCN operates properly, as synchrony 

of these 20,000 neurons to each other, is vital for the robust generation of a 

coherent output signal. In this sense, three different mechanisms have been 

described for coupling: synaptic potentials, electrical synapses, and 

neuropeptidergic signalling [12]; being Vasoactive Intestinal Peptide (VIP) 

signalling a powerful mechanism in the latter, as mice laking VIP [34] or its 

receptor VPAC2 [35], lost rhythmicity. The robustness of the intact SCN is 

also important for its ability to remain in appropriate phase with the light–

dark cycle. In the presence of rhythmic physiologic perturbations, as in cases 
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when food availability is restricted to a time of the day, when an animal is 

typically asleep and certain peripheral clocks shift their phase accordingly 

[36]; or under the presence of physiologic temperature fluctuations, being 

especially evident in cultured SCN, where the tissue becomes sensitive to 

physiologic temperature changes when communication between cells is lost 

because they are dissociated [37].   

Therefore, for the propagation of the phase information to the rest of the 

brain and body, the SCN firstly has to be synchronised by photoreceptors 

found exclusively in the eyes under light cycles in the environment [38], so 

as it has been postulated before; and secondly, SCN cells consequently 

release and receive signals that allow them to synchronize to each other to 

integrate the incoming information from light and other peripheral clocks 

and, in turn, synchronising peripheral clocks and body rhythms, thereby, 

synchronising the individual cells of the body to a uniform internal time [32]. 

In other words, SCN has a pivotal role in maintaining circadian rhythms, as 

complete SCN lesions abolish circadian rhythmicity [39,40], while 

implantation of foetal SCN tissue can partially restore them [41], so as when 

isolated in vitro, the SCN continues to express circadian rhythms [42]. 

The SCN synchronizes peripheral clocks and body rhythms by neural 

connections and hormonal signals [13]. Beyond the brain, the autonomous 

nervous system plays a direct role in communicating circadian SCN timing 

signals to multiple tissues. For example, SCN signals travel via the 

autonomous nervous system to the liver in order to control the circadian 

glucose production [43], to the heart for cardiac rate regulation in circadian 

fashion [44], to the adrenal gland to regulate both circadian and light-

dependent corticosterone production [45], or to the pineal gland to control 

circadian melatonin production [46], among others examples.  

 

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF CENTRAL AND PERIPHERAL MOLECULAR CLOCKS BY PROANTHOCYANIDINS 
Aleix Ribas Latre 
Dipòsit Legal: T 1831-2014



II. INTRODUCTION 

34!

In total, sympathetic efferents have been documented for brown adipose 

tissue, thyroid gland, kidney, bladder, spleen, adrenal medulla, and adrenal 

cortex; while parasympathetic nervous system innervation of the thyroid, 

liver, pancreas, and submandibular gland has also been reported, being even 

innervated some tissues by both sympathetically and parasympathetically 

SNC innervations [47].  

The case of driven melatonin production (Figure 3) is doubly important as the 

sympathetic innervations of the pineal gland, where melatonin is mostly 

synthesized during the dark phase, to connect the rhythmic activity of the 

SCN with the rhythmic release of melatonin, was the first output pathway 

which provided a circadian message to the organism. Melatonin is a robust 

signal that indicates the time of environmental darkness, being even secreted 

during 

 
 

Figure 3. Circadian melatonin production through SCN signals, adapted from Reiter, 

Russel J and colleagues [48] 
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the dark phase of the circadian cycle in nocturnal animals, after direct control 

of SCN [49].Importantly, melatonin is not stored within pineal cells and is 

immediately released into the general circulation, underlying the fact that 

plasma melatonin concentrations reflect precisely its pineal synthesis, being 

in turn related with the better predisposition of its receptors spread 

throughout the body, as they are highly expressed at night, which explains the 

physiologic effects of melatonin [50].  

In addition, although melatonin cannot be stored in pineal gland, it can do it 

in the gut and stomach at major concentrations than in plasma. In fact, it is 

now accepted that whereas night time levels of melatonin in blood are mostly 

from pineal origin, day time melatonin concentrations in blood are mostly 

produced in gut as its synthesizing enzymes; N-acetyltransferease and 

hydroxyindole-O-methyltransferase, were detected in this tissue [51]. 

Nonetheless, the implications of melatonin present in the gut go beyond its 

properties on the circadian system, as conversely to systemic melatonin 

levels, the gut melatonin levels are independent of light or the circadian 

rhythm, being more entrained its synthesis, as a result of food intake and 

digestion. For this reason, melatonin exerts in gut local effects regulating 

intestinal motility, the immune system, gut secretion, and the release of 

peptides involved in energy balance such as peptide YY; so as a protective 

effect against some disturbances, playing a role as antioxidant element [52].   

 

1.2.3. The peripheral clocks 

The circadian system can be observed not only in the SCN but also in nearly 

every mammalian tissue [53], including those essential for metabolic 

function, such as the pancreas [54], muscle [55], liver [53,55] and heart [53]; 

and other isolated brain regions apart from SCN [56], displaying circadian 

patterns of gene expression in a self autonomous form, as a mechanism of 

adaptation to local needs and better functional predisposition on time. In fact, 
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in SCN-lesioned animals, individual organs still maintain some degree of 

circadian synchrony in clock gene expression, although this varies among 

both animals and organs [57]. It is postulated that even at the single-cell 

level, the molecular clockwork of transcription and translation can be also 

observed working autonomously in every single cell [58], underlying that the 

number of oscillators might be as numerous as cells are. This cell-tissue-

autonomous rhythms, can be translated in the fact that different mouse tissues 

show different circadian phases in tissue explants [53]. For example, a five-

hour phase difference is observable between the liver and the spleen, and 

nearly eight hours between the liver and gonadal adipose tissue. Supporting a 

tissue-intrinsic mechanism for these phase differences, free-running period in 

tissue explants differed by 2–4 hours between liver and the other two tissues 

[59], again pointing to subtle tissue-specific differences in free-running clock 

mechanism, although alternatively, different entrainment signals might also 

play a role in these differences, as peripheral clocks respond to a complex 

and redundant combination of direct nervous stimuli, hormonal signals, and 

indirect activity-directed signals such as body temperature and the timing of 

food intake, among others, like it will be shown in the next section. 

 

1.3. Clock system synchronisers 

Any environmental factor that varies across the 24-h day can potentially 

serve as an entraining signal, zeitgeber (“time giver” in German). In this 

regard, light has a dominant role because light and therefore, darkness, are 

responsible for all other environmental rhythms, being the most reliable 

source of information about the time of day, so as the most important 

zeitgeber for the SCN. As a reminder, the SCN translates the information of 

light and darkness to the many other oscillators in the body, by providing 

endogenous zeigebers, through the control of the daily production of 
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melatonin, the hormonal alarm of night as it was described above. 

Nonetheless, in parallel, melatonin itself can exert an effect as a 

synchronizer, similar as light does, synchronizing SCN transcriptional loops 

with temporal organization, attending that melatonin receptors are present 

also in SCN [60]. In fact, melatonin administration several hours prior to the 

normal onset of secretion, causes a phase advance in the endogenous 

melatonin rhythm, which is particularly useful for the treatment of eastbound 

jetlag; while melatonin treatment following the endogenous onset of 

secretion, is often useful to improve westbound jetlag [61]. 

The rest-activity cycle, which is related to the light-dark cycle, play an 

important role in circadian physiology and gene expression in some tissues 

as, of 2,032 cortical transcripts under circadian control, only 391 remained 

rhythmic during sleep deprivation [62]. Thus, sleep itself can also be 

considered an important behavioral synchronizer, because, in addition, it 

influences the daily light profiles after closing the eyelids or retreating into a 

burrow or a dark room. 

Temperature, both internal or external, entrain the cellular peripheral clocks 

in mammalian tissues cultures [63], although according to Takahashi and 

colleagues [37], due to the strong coupling of the SCN neurons, the central 

clock is resistant as it has been referenced formerly, so as in the case of food. 

In fact, until now, only external factors have affected the SCN when it has 

been presented in an uncoupled form. Besides temperature and food, daily 

administration of γ-aminobutyric acid (GABA) to cultured dissociated SCN 

neurons, can synchronize rhythms of spontaneous firing, shifting their phase 

under a single administration, as most neurons in the SCN produce this 

neurotransmitter [64]. In addition, caffeine adjusts circadian timing of 

electrical activity in the insolated SCN, the clock gene expression in cultured 

mammalian cells, and modestly lengthens the circadian period of locomotor 

activity in mice [65]. 
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Food as a synchronizer has been studied amply. Particularly, it might be 

considered the oldest zeitgeber along with the light cycle, as the evolutionary 

oldest clocks known are those in cyanobacteria, photosynthesizing 

prokaryotes, in which light is both an energy resource and a zeitgeber [66]. In 

addition to its age, food is one of the most important synchronizers, as in the 

mouse liver, for example, only a small portion of transcripts displayed 

circadian expression patterns in the absence of food, being the circadian 

transcriptome restored, under temporal restricted feeding even in the absence 

of functional liver clocks [67]. In fact, on a molecular level, restricted feeding 

entrains circadian oscillations in peripheral tissues, such as the liver. In line 

with this, the speed as well as the degree of phase shift induced by inversed 

feeding, which inverses the timing of peripheral clocks, varies among 

different organs, without affecting the clock rhythms in the central pacemaker 

in the SCN, thereby uncoupling the phase of peripheral clocks from that of 

the SCN. For example, mRNA of the clock gene Dbp examined in mice fed 

only during the light phase shows a strong temporal difference in the liver, 

the kidneys, the heart, and the pancreas, whereas in mice fed during the dark 

phase, the accumulation of Dbp mRNA was around ZT14 to ZT18 in all 

analyzed tissues [36]. 

In addition to the timing of food availability affecting the circadian outputs of 

the clock, caloric restriction (i.e., restriction of the total number of calories 

consumed without malnutrition) induces phase advances in rat behavioral and 

physiological circadian rhythms, and alters expression of clock genes and 

neuropeptides in the mouse SCN [68], so as prolonged fasting, that also 

advances the phase of free-running rhythms of locomotor activity and 

temperature [69]. On the other hand, mice fed a high-fat diet have increased 

daytime activity, lengthened period of locomotor activity rhythms, and 

altered expression of clock and clock-controlled genes involved in fuel 

utilization [70]. These mice, by the way, consume nearly all of their extra 
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calories during the 12-h light phase, suggesting that feeding at the incorrect 

time in the light/dark cycle (i.e., their rest period) exacerbates the obesogenic 

effects of high caloric intake due to desynchronization of various behavioral, 

hormonal, and molecular rhythms involved in maintaining energy balance 

[70]. 

To date, from a more concrete point of view, some concrete dietary 

components as resveratrol [71], have shown a clear property as a signal for 

the clock machinery, although it will be studied more extensively in the 

second section. 

 

1.3.1. Mechanisms for synchronisation  

Apart from the mechanisms by which the central clock system entrains 

circadian rhythms in periphery, thereby exerting a role as a synchroniser 

through the autonomous system, as it has been commented in the 1.2.2. 

section, there are other mechanisms by which a synchroniser can synchronise 

the clock system. 

 On the one hand, three classes of signalling pathways have been identified as 

capable of independently phase-shifting peripheral circadian clocks: cAMP 

and MAP kinases, protein kinase C, and calcium signalling [72]. In fact, 

multiple signalling agents such as endothelin-1 [73], forskolin [74], fibroblast 

and epidermal growth factor [75], glucose [76] and prostaglandin E2 [77]; act 

through these pathways, inducing and synchronising circadian clocks in vitro, 

whereas prostaglandin E2 [77] and dexamethasone, a glucocorticoid 

analogue, have been shown to shift circadian clocks acutely in peripheral 

organs, when injected into mice. In the case of dexamethasone, the effect is 

conducted by other mechanism, the glucocorticoid signalling, wherein 

dexamethasone activates the glucocorticoid receptor, which can 
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independently control 60% of the circadian transciptome [78], reseting the 

peripheral clock in liver, heart, and kidney, presumably by direct 

glucocorticoid receptorregulation of Per1[79] and Rev-erbα [80] expression.  

On the other hand, as sensors of metabolites including heme, fatty acids, and 

sterols; REV-ERBα/β and RORα integrate nutrient signals with 

transcriptional regulation of the clock, as they are the molecular Bmal1 

repressor or activator respectively, revealing another mechanism by which 

the clock system can be synchronized by a zeitgeber (in this case the heme 

metabolite or fatty acids and sterols). In relation, PPAR family of Nuclear 

Hormonal Receptors (NHRs) are also regulators of clock gene expression, as 

PPARα, which is a clock-controlled gene and a positive regulator of Bmal1 

expression, can be activated by various types of lipids, including the 

circulating gut metabolite oleylethanolamide (OEA) or pharmacologic doses 

or phenofibrate, all known as natural ligands [81], and therefore, exerting a 

role as a synchronizers through this alternative mechanism. 

 

1.4. Circadian clock system and metabolism 

Organisms are in constant interaction with the environment along the time, 

which entrain many behavioural, physiological, and metabolic aspects as for 

example, circadian cycles in rest and activity, blood pressure, body 

temperature, alertness, coordination, reaction and brain activity, 

cardiovascular efficiency or muscle strength, hormones secretion in blood 

and ions in urine, responding to an external demand in order to allow 

organisms a better adaptation [11].   

In relation, physiologic disturbances curiously also cycletending to peak at 

particular times during the day, as for instance myocardial infarction [82] or 

asthma episodes [83] among others. The fact that glucose levels peak before 

the start of the active period, the glucose tolerance and insulin action are 
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known to vary throughout the day and oral glucose tolerance is impaired in 

the evening compared to morning hours, due to combined effects of reduced 

insulin sensitivity and diminished insulin secretion in the nighttime [84], can 

be considered other examples. Similar as the susceptibility to UV light-

induced skin cancer [85] and that chemotherapy treatments varies greatly 

across the circadian cycle in mice [86], suggesting a better predisposition of 

cells in some concrete period of time. 

 In fact, transcriptional studies have revealed that approximately 10% of all 

mammalian genes across multiple tissues such as liver, muscle, heart, adipose 

tissue or the SCN [87–90] exhibit 24-h variations in mRNA levels, grouping 

many of these rhythmic genes within processes like mitochondrial oxidative 

phosphorylation, carbohydrate metabolism and transport, lipid biosynthesis, 

adipocyte differentiation, and cholesterol synthesis and degradation. From 

these processes, a small subset of these oscillating metabolic genes are direct 

target of the molecular clock, while many others encode transcription factors, 

transcription or translation modulators, or rate-limiting enzymes, which in 

turn impart rhythmicity on downstream metabolic genes and processes 

[19,89]. Among the direct target metabolic genes, Nampt is one of the most 

important because, a part of being a Bmal1 target gene, it is also the rate-

limiting enzyme that converts the Nicotinamide (NAM) to Nicotinamide 

Mononucleotide (NMN), which is a key reaction in the biosynthesis of 

Nicotinamide Adenine Dinucleotide (NAD) through its salvage pathway 

(Figure 4) [91].  

NAD is a key molecule in metabolism, as it has been known to play a major 

role as a coenzyme in numerous oxidation-reduction reactions [92], being 

required in a number of important signaling pathways in mammalian cells, 

including poly(ADP-ribosyl)ation in DNA repair [93], mono-ADP-

ribosylation in both the immune response and G protein-coupled signaling 

[94], and synthesis of cyclic ADP-ribose and nicotinate adenine dinucleotide 

phosphate (NAADP) in intracellular calcium signaling [95]. Furthermore, 
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NAD and its derivatives also play important roles in transcriptional 

regulation [96]. In fact, SIRT1 activity depends absolutely on the NAD levels 

(Figure 4).  

SIRT1 itself, is another critical regulator of metabolic processes such as 

gluconeogenesis, lipid metabolism, and insulin sensitivity, as well as 

lifespan, as it targets several transcription factors involved in the maintenance 

of nutrient flux, including Peroxisome Proliferator-Activated Receptor 

gamma (PPARγ), Peroxisome Proliferator-Activated Receptor Gamma 

Coactivator 1-alpha (PGC-1α), Forkhead Box Protein O1 (FOXO1), 

Transducer of Regulated CREB Protein 2 (TORC2), Sterol Regulatory 

Element-Binding Protein 1c (SREBP-1c), and Signal Transducer and 

Activator of Transcription 3 (STAT3), among others [97,98]. In addition, 

SIRT1 also modulates CLOCK/BMAL1 activity, generating a negative 

feedback loop after deacetylating BMAL1 (Figure 4) [29].  

Besides this, another molecular method of synchronizing circadian clocks to 

metabolism is probably mediated by cryptochrome clock proteins, which are 

phosphorylated and targeted for degradation by AMPK, an enzyme regulated 

by cellular ATP/ AMP balance [21]. 

 

 
Figure 4. NAD salvage pathway and SIRT1 interelation, from Saurabh Sahar and 

Paolo Sassone-Corsi [99]. 
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As it was postulated previously in the section of peripheral clocks, the phase 

of oscillation and the level of expression of each metabolic gene vary across 

different tissues, suggesting that the circadian system responds to both local 

and systemic cues, to control diverse metabolic processes in a physiologically 

autonomous manner [100]. Therefore, as a result, a large number of 

physiological processes are under circadian control:  

 

• Xenobiotic detoxification: CLOCK and BMAL1 protein control the 

Dbp which binds to the constitutive androstane receptor (CAR) gene 

promoter, which in turn controls circadian expression of many 

cytochrome P450 isoforms that directly regulate metabolism of a 

wide variety of xenobiotics [101]. 

• Lipid metabolism: CLOCK and BMAL1 protein also control the 

expression of peroxisome prolierator-activated receptor alpha 

(PPARα), a key regulator of the lipid metabolism [102]. 

• Glucose metabolism: circadian clock ablation in pancreatic islets 

results in diabetes due to defects in coupling of beta cell stimulus to 

insulin secretion [54]. 

• Renal activity: mice lacking CLOCK show significant changes in 

renal expression of key regulators of water and sodium balance, as 

well as changes in sodium excretion itself [103].  

• Immune function:  circadian clocks in macrophages [104] and T cells 

[105]govern inflammatory immune responses, and the clock protein 

REV-ERBα appears to play a specific role in selectively regulating 

inflammatory cytokines [106]. 
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• Cardiovascular health: arterial transplants from animals lacking 

circadian clocks develop atherosclerosis in transplanted blood vessels 

[107]. In addition, circadian clock control of adrenal aldosterone 

production via the enzyme Hsd3b6 is an important regulator of blood 

pressure [108].  

Thus, due to the vast amount of circadian biologic processes that the 

molecular clock system controls, the specific disruption of some clock gene 

can create, in turn, a wide range of pathologies, as it has been observed in 

some knockouts experiments in mice, reviewed [25,109] here: 

 

• CLOCK knockout mice display increased blood levels of 

triglycerides, cholesterol, glucose, leptine and therefore, it 

presents obesity and metabolic syndrome, besides hyperfagia. 

 

• BMAL1 knockout mice display impaired gluconeogenesis and 

adipogenesis, adipocyte differentiation, hyperlipidemia, glucose 

intolerance, hypoglycemia, reduced life span, premature aging, 

impaired steroidogenesis and reduced fertility. 

 

• PER knockout mice display absent glucocorticoid rhythm and 

diurnal feeding rhythm, obesity, alternations in leptin-depenent 

bone density, cancer-prone, abnormal response to gamma 

irradiation, increased cellular proliferation, reduced muscular 

strength under stress, and less of food anticipatory activity. 

 

• CRY knockout mice display impaired body growth, feminized 

patterns of growth hormone and metabolic genes in liver, 

impaired liver regeneration, reduced α-adrenoreceptor 
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responsiveness, salt sensitive hypertension, reduced tumor 

development and lowered incidence of cancer. 

 

• REV-ERB knockout mice display elevated serum VLDL 

triglycerides, impaired Purkinje cells development, delayed 

proliferation and migration of granule cells, increased apoptosis 

of neurons in the internal granule cell layer and aberrant 

expression of myosin isoforms in skeletal muscles. 

 

• ROR knockout mice display lower plasma triglycerides, 

abnormal lymphoid organ development, reduced survival rates of 

thymocytes, reduced susceptibility to autoimmune and 

inflammatory disorders, thin long bones, ataxia and severe 

cerebellar atrophy, fewer Purkinje cells and a loss of cerebellar 

granule cells. 

 

Out of the laboratory, since the introduction of artificial light and nighttime 

work, serious health consequences have been reported for those who sleep 

less and/or routinely disconnect their working time from the light/dark cycle, 

as reduced sleep duration (both acute and chronic) and poor-quality sleep are 

linked with impaired glucose tolerance, reduced insulin responsiveness 

following glucose challenge, increased body mass index, decreased levels of 

leptin, and increased levels of ghrelin [110,111]; while association studies 

have further revealed that shift workers have increased risk of suffer some 

component of the metabolic syndrome [112–114]. In addition, social jetlag, 

the discrepancy between the circadian and social clock and then a small but 

chronic version of shift-work or circadian misalignment, results in chronic 

sleep loss and increased BMI [115]. In fact, one of the most compelling 

clinical studies to examine the role of circadian alignment on metabolic 

physiology comes from an experimental paradigm in which healthy 
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volunteers were placed on a 28-h “day” and scheduled to sleep at different 

phases throughout the circadian cycle. When the subjects were shifted 12 h 

from their normal sleep/wake cycle, they exhibited decreased leptin, 

increased glucose, and elevated blood pressure. In addition, their post-meal 

glucose response was similar to that seen in prediabetic patients [116]. 

Together, these studies highlight the detrimental health effects of disruption 

of the circadian system and the importance of synchronization of 

physiological systems with the light/dark cycle for maintenance of overall 

health. Nonetheless, is still not clear whether a misalignment of the clock 

firstly impaired metabolism and physiology, or contrary, is the presence of 

illness what disrupts the clock machinery in the first place, although this 

bidirectional crosstalk is clear.  

 

2. Polyphenols 

Polyphenols are secondary metabolites of plants, generally involved in 

defense against ultraviolet radiation, aggression by pathogens, 

reproduction, nutrition and growth [117]. 

2.1. Polyphenols classes and structures 

Polyphenols are a diverse group of natural compounds present in a wide 

range of plants, about 8000 phenolic structures have been described within 

the plant kingdom, that contain multiple functionalities, in parallel with 

diverse structures, properties and sizes ranging from monomers to polymers, 

although they tend to share a similar basic structure formed by at least, one 

aromatic ring with one or more hydroxyl groups attached. Polyphenols can be 

classified into different groups based on the number of phenol rings that they 

contain, the number and disposition of their carbon atoms; and of the 
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structural elements that bind these rings to one another, such as sugars or 

organic acids [118–120]:  

- Phenolic acids: two classes of phenolic acids can be distinguished: 

derivatives of benzoic acid (components of complex structures that have not 

been extensively studied, as they are found in only a few plants eaten by 

humans), and derivatives of cinnamic acid, which consist mainly of p-

coumaric, caffeic, ferulic and sinapic acids, therefore, being more common 

its consumption, as caffeic acid is involved in the biosynthesis of chlorogenic 

acid, another acid found in coffee. These acids are usually bounded to 

glycosylated derivatives or esters of quinic acid, shikimic acid, and tartaric 

acid; except in processed food that has undergone freezing, sterilization, or 

fermentation; in which case they are found in the free form.!!

!

 

Figure 5. Polyphenol structures. Adaptation from Manach et al [118]. !

Phenolic acids
Two classes of phenolic acids can be distinguished: deriva-

tives of benzoic acid and derivatives of cinnamic acid (Figure 1).
The hydroxybenzoic acid content of edible plants is generally
very low, with the exception of certain red fruits, black radish,
and onions, which can have concentrations of several tens of
milligrams per kilogram fresh weight (2). Tea is an important
source of gallic acid: tea leaves may contain up to 4.5 g/kg fresh
wt (3). Furthermore, hydroxybenzoic acids are components of
complex structures such as hydrolyzable tannins (gallotannins in
mangoes and ellagitannins in red fruit such as strawberries, rasp-
berries, and blackberries) (4). Because these hydroxybenzoic
acids, both free andesterified, are found inonly a fewplants eaten
by humans, they have not been extensively studied and are not
currently considered to be of great nutritional interest.
The hydroxycinnamic acids are more common than are the

hydroxybenzoic acids and consist chiefly of p-coumaric, caffeic,
ferulic, and sinapic acids. These acids are rarely found in the free
form, except in processed food that has undergone freezing,
sterilization, or fermentation. The bound forms are glycosylated
derivatives or esters of quinic acid, shikimic acid, and tartaric
acid. Caffeic and quinic acid combine to form chlorogenic acid,
which is found in many types of fruit and in high concentrations
in coffee: a single cup may contain 70–350 mg chlorogenic acid
(5). The types of fruit having the highest content (blueberries,
kiwis, plums, cherries, apples) contain 0.5–2 g hydroxycinnamic
acids/kg fresh wt (Table 1) (6).
Caffeic acid, both free and esterified, is generally the most

abundant phenolic acid and represents between75%and100%of
the total hydroxycinnamic acid content of most fruit. Hydroxy-
cinnamic acids are found in all parts of fruit, although the highest
concentrations are seen in the outer parts of ripe fruit. Concen-

trations generally decrease during the course of ripening, but
total quantities increase as the fruit increases in size.
Ferulic acid is themost abundant phenolic acid found in cereal

grains, which constitute its main dietary source. The ferulic acid
content of wheat grain is !0.8–2 g/kg dry wt, which may rep-
resent up to 90% of total polyphenols (28, 29). Ferulic acid is
found chiefly in the outer parts of the grain. The aleurone layer
and the pericarp of wheat grain contain 98% of the total ferulic
acid. The ferulic acid content of different wheat flours is thus
directly related to levels of sieving, and bran is the main source
of polyphenols (30).Rice andoat flours containapproximately the
samequantity of phenolic acids aswheat flour (63mg/kg), although
the content inmaize flour is about 3 times as high (2). Ferulic acid is
found chiefly in the trans form,which is esterified to arabinoxylans
andhemicelluloses in thealeuroneandpericarp.Only10%offerulic
acid is found in soluble free form inwheat bran (29). Several dimers
of ferulic acid are also found in cereals and form bridge structures
between chains of hemicellulose.

FIGURE 1. Chemical structures of polyphenols.

FIGURE 2. Chemical structures of flavonoids.
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- Lignans: are formed of 2 phenylpropane units. The richest dietary source is 

linseed, which contains secoisolariciresinol and low quantities of 

matairesinol; while other cereals, grains, fruit, and certain vegetables contain 

minor traces. Lignans are metabolized to enterodiol and enterolactone by the 

intestinal microflora, which are known for its healthy properties.  

- Stilbenes: are found in only low quantities in the human diet, being 

resveratrol the most representative constituent found in red wine and peanuts, 

and in lesser amounts in berries, red cabbage, spinach and certain herbs. 

Structurally, resveratrol can adopt a cis or trans conformation, being trans-

resveratrol and trans-resvertrol-3-O-glucoside, which has been detected in 

pistachio nuts. This is important as these structures have presented widely, 

cellular healthy effects towards health.   

- Flavonoids: found throughout the plant kingdom, is the largest group of 

polyphenols comprising generally 15 carbons with two aromatic rings 

connected by a three carbon bridge, being in turn able to bind to hydroxyl 

groups and sugars that increase their water solubility, as they use to appear 

naturally as a glycosides; or other substituents, such as methyl and isopentyl 

units, that make flavonoids lipophilic. Due to the amount of flavonoids 

existing, a subclassification is required [118–120]: 

• Flavonols such as quercetin and kaempferol as  main representatives, 

are widely present at relatively low concentrations in fruits and 

vegetables, presented in glycosylated form, as they bound often to 

glucose or rhamnose and even, to galactose, arabinose, xylose and 

glucuronic acid.  

• Flavones are much less common than flavonols in fruit and 

vegetables but, similarly, consist mainly of glycosides, being luteolin 

and apigenin two representative examples of flavones, which are not 

distributed amply, as significant occurrences, to date, have been 
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reported in only parsley, celery and some herbs. In addition, the skin 

of citrus fruit contains large quantities of polymethoxylated flavones, 

such as tangeretin, nobiletin, and sinensetin; which are the most 

hydrophobic flavonoids. 

• Flavanones are found in tomatoes and certain aromatic plants such as 

mint; and in higher concentrations only in citrus fruit. They are 

generally glycosylated by a disaccharide at position 7, being the main 

aglycones naringenin in grapefruit, hesperetin in oranges, and 

eriodictyol in lemons.  

• Isoflavones are flavonoids with structural similarities to estrogens, 

which confer pseudohormonal properties such as the ability to bind 

to estrogen receptors, reason why they are classified as 

phytoestrogens. They are founded almost exclusively in leguminous 

plants, being soy and its processed products the main source in the 

human diet, where they are found in 4 forms: aglycone, 7-O-

glucoside, 6’’-O-acetyl- 7-O-glucoside, and 6’’-O-malonyl-7-O-

glucoside, with the most representative molecules being genistein, 

daidzein,and glycitein. 

• Anthocyanidins are widely dispersed throughout the plant kingdom, 

being particularly evident in fruit and flower tissue where they are 

responsible for red, blue and purple colours. They are also found in 

leaves, stems, seeds and root tissue, being present in the human diet 

in red wine, certain varieties of cereals, and certain leafy and root 

vegetables such as aubergines, cabbage, beans, onions or radishes. 

The most common anthocyanidins in plant tissues are found as sugar 

conjugates that are known as anthocyanins, which may also be 

conjugated to hydroxycinnamates and organic acids such as acetic 
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acid. Some representative examples of anthocyanidins are 

pelargonidin, cyanidin, delphinidin, peonidin, petunidin or malvidin.  

 

 

Figure 6. Flavonoids structures from Manach et al [118]. 

 

Phenolic acids
Two classes of phenolic acids can be distinguished: deriva-

tives of benzoic acid and derivatives of cinnamic acid (Figure 1).
The hydroxybenzoic acid content of edible plants is generally
very low, with the exception of certain red fruits, black radish,
and onions, which can have concentrations of several tens of
milligrams per kilogram fresh weight (2). Tea is an important
source of gallic acid: tea leaves may contain up to 4.5 g/kg fresh
wt (3). Furthermore, hydroxybenzoic acids are components of
complex structures such as hydrolyzable tannins (gallotannins in
mangoes and ellagitannins in red fruit such as strawberries, rasp-
berries, and blackberries) (4). Because these hydroxybenzoic
acids, both free andesterified, are found inonly a fewplants eaten
by humans, they have not been extensively studied and are not
currently considered to be of great nutritional interest.
The hydroxycinnamic acids are more common than are the

hydroxybenzoic acids and consist chiefly of p-coumaric, caffeic,
ferulic, and sinapic acids. These acids are rarely found in the free
form, except in processed food that has undergone freezing,
sterilization, or fermentation. The bound forms are glycosylated
derivatives or esters of quinic acid, shikimic acid, and tartaric
acid. Caffeic and quinic acid combine to form chlorogenic acid,
which is found in many types of fruit and in high concentrations
in coffee: a single cup may contain 70–350 mg chlorogenic acid
(5). The types of fruit having the highest content (blueberries,
kiwis, plums, cherries, apples) contain 0.5–2 g hydroxycinnamic
acids/kg fresh wt (Table 1) (6).
Caffeic acid, both free and esterified, is generally the most

abundant phenolic acid and represents between75%and100%of
the total hydroxycinnamic acid content of most fruit. Hydroxy-
cinnamic acids are found in all parts of fruit, although the highest
concentrations are seen in the outer parts of ripe fruit. Concen-

trations generally decrease during the course of ripening, but
total quantities increase as the fruit increases in size.
Ferulic acid is themost abundant phenolic acid found in cereal

grains, which constitute its main dietary source. The ferulic acid
content of wheat grain is !0.8–2 g/kg dry wt, which may rep-
resent up to 90% of total polyphenols (28, 29). Ferulic acid is
found chiefly in the outer parts of the grain. The aleurone layer
and the pericarp of wheat grain contain 98% of the total ferulic
acid. The ferulic acid content of different wheat flours is thus
directly related to levels of sieving, and bran is the main source
of polyphenols (30).Rice andoat flours containapproximately the
samequantity of phenolic acids aswheat flour (63mg/kg), although
the content inmaize flour is about 3 times as high (2). Ferulic acid is
found chiefly in the trans form,which is esterified to arabinoxylans
andhemicelluloses in thealeuroneandpericarp.Only10%offerulic
acid is found in soluble free form inwheat bran (29). Several dimers
of ferulic acid are also found in cereals and form bridge structures
between chains of hemicellulose.

FIGURE 1. Chemical structures of polyphenols.

FIGURE 2. Chemical structures of flavonoids.

728 MANACH ET AL

 at UNIVERSITAT RO
VIRA I VIRG

ILI on Septem
ber 3, 2014

ajcn.nutrition.org
Downloaded from

 

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF CENTRAL AND PERIPHERAL MOLECULAR CLOCKS BY PROANTHOCYANIDINS 
Aleix Ribas Latre 
Dipòsit Legal: T 1831-2014



II. INTRODUCTION 

51!

• Flavan-3-ols or flavanols are the most structurally complex subclass 

of flavonoids, ranging from the simple monomers (+)-catechin and 

its isomer (-)-epicatechin, which can be hydroxylated to form 

gallocatechins and also undergo esterification with gallic acid, to 

complex structures including oligomeric and polymeric 

proanthocyanidins, which are also known as condensed tannins. 

Catechins are found in many types of fruit (apricots are the richest 

source), beverages like red wine and highly in green tea and in 

significant quantities in chocolate. In contrast to other classes of 

flavonoids, flavanols are not glycosylated in foods. 

 

2.2. Physiological functions, conformation, bioavailability and 

metabolism of grape     seed proanthocyanidins extract 

Procanthocyanidins (PAs) are the most consumed polyphenols in human diet 

for its widespread presence in vegetables, fruits, cacao, nuts and some 

beverages like red wine or tea [121]. 

The Grape Seed Proanthocyandin Extract (GSPE) experimentally used in this 

thesis, has been used previously in several studies in our group, using various 

in vitro and animal models, demonstrating that PAs have a vast range of 

health effects improving insulin resistance [122], inflammation [123], 

hypertension [124], oxidative stress [125] and lipid metabolism [126]. 

Therefore as other groups agree, PAs have protective properties against 

metabolic syndrome [127]  and cardiovascular diseases [128]. In addition, 

PAs have also shown anticancer properties by inducing apoptosis or 

inhibiting cell proliferation but also neuroprotective effects by inversely 

regulating apoptotic mechanisms [138–140], as well as, antibacterial power 

as they are able to produce antiadhesive actions against bacteria in urinary 
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and dental infections, including Escherichia coli and Streptococcus mutants 

[127]. 

GSPE used in this thesis was kindly provided by Les Dérives Résiniques et 

Terpéniques (Dax, France), with the following GSPE composition [129]: 

catechin (58 µmol/g), epicatechin (52 µmol/g), epigallocatechin (5.50 

µmol/g), epicatechingallate (89 µmol/g), epigallocatechingallate (1.40 

µmol/g), dimeric procyanidins (250 µmol/g), trimeric procyanidins (1568 

µmol/g), tetrameric procyanidins (8.8 µmol/g), pentameric procyanidins (0.73 

µmol/g) and hexameric procyanidins (0.38 µmol/g); therefore the dimeric 

procyanidins and specially, the trimeric procyanidins are the main 

constituents of this extract. In fact, procyanidins are formed from the 

condensation of monomeric units, catechin and its isomer, epicathechin, 

which in turn can be gallated, as it was commented previously. Between two 

and five units of monomers conform oligomers while over five units of 

monomers, are polymers [130]. Therefore, our extract is rich in oligomers.  

During digestion, the oligomers are fragmented into monomeric units of 

cathechin and epicathechin, which are absorbed in the small intestine, 

resulting in a wide range of conjugated metabolites, from the combination of 

sulphatation, glucuronidation and methylation, after its exit from the liver by 

means of the bloodstream. It has been postulated that large doses are 

metabolised mainly in the liver, and small doses may be metabolised by the 

intestinal mucosa, with the liver playing a secondary role to further modify 

the polyphenol conjugates from the small intestine, underlying the important 

role of liver exerting this chemical changes [131]. In this sense, in a 

collaboration with Aida Serra from the Universitat de Lleida [132], the same 

extract used in the experiments of this thesis, was administered to rats with an 

acute large dose of 1g/kg of body weight. This resulted in a maximum peak 

concentration of several metabolites in the plasma, such as catechin and 

epicatechin glucuronide and methyl-glucuronidated, two hours after GSPE 

ingestion; while free forms of dimmers and trimers reached one hour after 
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GSPE administration, displaying an important stability under gastric and 

duodenal digestion conditions although a limited absorption. In consonance, 

it has been observed in another previous study using a similar extract with the 

same dose [130], where the vast majority of components detected in the 

gastrointestinal tract, that remained in the stomach for 6 hours appearing in 

lesser quantities in the intestine 1 hour after ingestion; were the original 

flavan-3-ols extract forms, as oligomeric procyanidins were not 

depolymerised into monomeric forms to any extent of the gastrointestinal 

tract, so as other authors had also observed [133]. Conversely, the circulatory 

system only contained methylated and glucuronidated flavan-3-ol 

metabolites, so as in the case of liver and kidney, suggesting that these 

structures could be hydrolysed by the colonic microflora, prior to the return 

to the blood stream [130]. In line, in other study where rats were administered 

a hazelnut skin extract rich in procyanidin oligomers [134], similar to ours, a 

variety of simple aromatic acids, probably the products of the colonic 

fermentation of procyanidins, was detected in the intestine and tissues. 

Underlining the similarity between GSPE and this hazelnut skin extract, as 

they both are rich in oligomers, it was observed again, the presence of 

glucuronidated and methyl-glucuronidated conjugates in the plasma two 

hours after hazelnut skin extract, even in some organs like the thymus, lung, 

kidney, spleen or testicles, although, the free forms of catechin and 

epicatechin were not detected in either the plasma or tissues, except in the 

lungs. The free forms of procyanidin dimer and trimers were only quantified 

in the plasma, but not in tissues, confirming the finding of other studies 

[130,132]. The disposition of these structures in tissues, could be the crucial 

importance in order to understand their biological activities. The 

glucuronidated and methyl-glucuronidated conjugates, so as the simple 

aromatic acids converted by the colonic flora, would be the major functional 

candidates, as they were found in liver, kidney, heart, lung, testicles, thymus 

and spleen in other study focused in the distribution of procyanidins and their 
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metabolites in rat tissues, after the ingestion of procyanidin-enriched or 

procyanidin-rich cocoa creams [135]. However, in 2009, Gemma Montagut 

and collages [136], found that dimeric and trimeric oligomers reproduced the 

bioactivity in glucose metabolism, lipid metabolism and macrophage 

functionality; which globally suggest, that the dose and duration of the 

treatment with procyanidins, is what ultimately determine its accumulation in 

different tissues and functionality. In this sense, in a more recent experiment 

carried out by Anna Arola-Arnal and colleagues [137], an acute dose of a 

similar GSPE (1g/kg of body weight) was administered to rats. Surprisingly, 

in the brain, catechin, epicatechin, and dimeric procyanidin B2 were 

quantified at low levels (1.27–2.39 nmol/g tissue), and some glucuronidated 

forms of catechin and epicatechin such as catechin glucuronide, epicatechin 

glucuronide, and methyl-epicatechin glucuronide at 1.15–2.20 nmol/g tissue, 

between 1 and 2 hours after GSPE administration, confirming the findings of 

other study where catechin and epicathechin metabolites were found in the 

brain after three weeks of a cocoa diet [138], all together  underlying the 

ability of these flavonoids to cross the blood-brain barrier, dependently of the 

dose and duration of the treatment. In fact, being more accurated, another 

experiment with a rat model of Parkinson’s disease under chronic oral 

administration (10mg/kg/day for 28 days) of tangeretin, resulted with a 

significant level of this citrus flavonoid in the hypothalamus, even at higher 

concentrations than in liver and plasma [139], suggesting the ability of these 

molecules in being stored in different structures of the brain. 

 

!  
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3. Healthy effects of plant polyphenols in other species: a xenohormetic 

event regulated by the circadian system? 

3.1. Xenohormesis concept 

Over the course of long-term evolution, as well as compulsory quick seasonal 

adjustments, plants have learnt to cope with changing environmental 

conditions and pressures due to the formidable chemical arsenal of secondary 

metabolites, which have been implicated in the plant resistance against 

microbial pathogens and herbivores, such as insects, exerting an antibiotic 

and antifeeding effect respectively, protection against solar radiation and 

consequently, a role in reproduction, nutrition and growth [117]. Therefore, 

polyphenols exert a crucial role in life expectancy, in other words, the 

lifespan of a plant. In fact, the synthesis of polyphenols is induced in plants 

by a variety of environmental stresses, providing a chemical signature of the 

state of the environment, as environmental extremes of temperature variation, 

predation and water or nutrient availability, must be endured in place because 

plants, in general, cannot physically move away from stressors. For instance, 

the synthesis of resveratrol is stimulated by UV light, ozone, or pathogen 

stress [140]. Therefore, when this chemical cocktail is ingested, it comes into 

intimate contact with the receptors and enzymes within the consumer, 

providing a wide range of beneficial effects towards health, so as it has been 

observed in the previous section. In fact, one third of the current top 20 drugs 

on the market are plant derived, hatching another healthy plant molecule, 

weekly. Salicylates are just one example of dozens of known plant bioactives 

that produce wide-ranging health benefits in humans by interacting with more 

than one endogenous protein, so as resveratrol and other polyphenols. 

Thus, the fact that stress-induced plant compounds tend to up-regulate 

pathways that provide stress resistance (healthy benefits) in other organisms 

such as mammals, suggests that plant consumers may have mechanisms to 
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perceive these chemical cues and react to them in ways that are beneficial. 

This hypothesis in fact, was set up by Konrad T. Howitz and David A. 

Sinclair [141,142]by coining the term xenohormesis, the process by which 

one organism benefits from the stress response of another (from xenos, the 

Greek word for stranger, and hormesis, the term for health benefits provided 

by mild biological stress, such as cellular damage or a lack of nutrition). 

3.2. Is the circadian system a possible mechanism by perceiving 

molecules from a xenohormetic point of view? 

There are several possible explanations by which the animal's stress response 

should be activated by products of a plant's stress response, but basically, the 

main explanation could be the fact that as mammals do not have the ability to 

synthesize polyphenols, they have the ability to sense these plant molecules, 

as polyphenols provide a highly useful advance warning of a deteriorating 

environment and/or food supply [142], which in turn, could precede the 

polyphenol beneficial effects, being in fact, the main cause of them. In this 

sense, the conservative functionality of biochemical molecules between 

plants and mammals, could mean that common biosynthetic pathways existed 

before the separation of the plant and animal kingdoms, suggesting that 

evolution has simply used these ancient pathways to create similar-looking 

signaling chemicals [143], as the protective properties of polyphenols in 

plants, are translated in healthy effects in mammals. Therefore, the same 

molecules that are able to expand the life of plants, also expand the life of 

mammals. 

Related to this and coming back to the first section of this introduction, there 

is a mechanism shared by almost all species worldwide, which is able to 

measure the day length, gathering the required information to increase the 

survival expectations over time, through the improvement of the life 

adaptation after first driving the physiology. It is the circadian system. In 

fact, beyond its function of generating daily rhythms, circadian clocks are 
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sensors for environmental information that allows them to remain entrained 

to the regular changes of day and night, of light and dark, of warm and cold, 

of humidity and of all the resources that depend on these environmental 

changes such as availability of food or presence of enemies and/or 

competitors, etc. Therefore, it is not strange that the circadian clock of an 

animal, can sense the information of the state of the environment 

incorporated in a polyphenol, such as resveratrol, attending that its synthesis 

has been induced by a variety of environmental stresses [140]. In fact, 

resveratrol has been the first polyphenol in synchronizing the molecular clock 

system in mammals to date, hence being sensed by other specie that have 

taken advance of it, extending its lifespan [71].  

Furthermore, regular environment changes occurred daily, implies an early 

development of circadian clocks in evolution, extending this conservative 

feature of circadian clocks among species, to a conservation along the 

evolution, as it is known that some multicellular organisms such as 

Drosophila and mammals possess homologous components [15], unraveling 

that a common basic clock mechanism existed before the separation of 

insects and mammals more than 500 million years ago. Nonetheless, some 

argue that the relationship of basic clock mechanism and proteins may be 

extended to Neurospora [144], 2.5 billion years ago, attesting that, although 

there is no evident relationship between the circadian proteins of 

cyanobacteria and those of mammals, as they do not share the same clock 

components at the molecular level [14]; the mere fact of presenting a 

transcription-translation feedback loop for all organisms in which the 

molecular clock mechanism has been investigated, point to the suggestion 

that a basic metabolic rhythm-generator may be ancestral to all circadian 

clocks and that the specific transcriptional-translational mechanisms 

represent adaptations in the respective phyla. In fact, circadian rhythms are 

also important for the fitness of cyanobacteria, as many cyanobacterial 
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species organize a large fraction of their metabolism under circadian 

transcriptional control, implying for example a selective advantage to 

transcribing photosynthesis genes at the right time during a light–dark cycle 

[145]. Therefore, for its functions advancing physiologic events according to 

external cues in order to extend the lifespan and, in addition, its conservation 

among different phyla and, thereby, evolution; circadian system is thought to 

be a fit mechanism for sensing xeno cues from other organisms, such as 

ancient as secondary metabolites from plants. In this sense, this thesis tries to 

add another actor apart of resveratrol, a member of flavonoids amply known 

for its healthy properties, the procyanidins. 

 

4. Polyphenols as synchronizers of the circadian system machinery 

Polyphenols not only exert an effect in plants, but also in depredators like 

animals and humans, acting mainly as scavengers of free radicals and 

reactive oxygen species (ROS), which are overproduced under oxidative 

stress conditions and are unable to be subdued by the regular action of 

endogenous cellular antioxidants such as glutathione (GSH), glutathione 

peroxidase, or superoxide dismutase (SOD), or by dietary antioxidant 

vitamins like vitamins E and C. In addition to its redox properties, 

polyphenols exerts a related protective effect against cancer and 

neurodegenerative disease, as well as some key components of the metabolic 

syndrome like diabetes and cardiovascular disease, which could be mediated 

by a direct union to a target protein [146]. In this regard, dietary polyphenols 

such as resveratrol, curcumin, quercetin, and catechins, display anti-

inflammatory properties via modulating different pathways, such as NF-

kappaB [147]. 

 In fact, more concretely, resveratrol has gained a lot of importance since it 

was postulated to be the first, and unique polyphenol to date, in activating 
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SIRT1 [141,148,149], although more recent studies has gone in the opposite 

direction, arguing that resveratrol is not a specific activator of SIRT1 

[150,151], opening an interesting unfinished debate, which nowadays claims 

that resveratrol increases SIRT1 activity in some settings, through a direct 

allosteric activation mediated by an N-terminal activation domain in SIRT1 

[152]. SIRT1 is implicated in the prevention of many age-related diseases 

such as cancer, Alzheimer's disease, and type 2 diabetes [153], controlling, at 

the cellular level, DNA repair and apoptosis, inflammatory pathways, insulin 

secretion, mitochondrial biogenesis and, in addition, the circadian clocks 

[154]. In this sense, SIRT1 is known to deacetylate BMAL1, playing in turn a 

critical role in metabolic processes such as gluconeogenesis, lipid metabolism 

and insulin sensitivity, as it has been mentioned in the first section. 

Considering the implication of the resveratrol and SIRT1 interrelation in the 

clock machinery, it has been observed, additionally, as resveratrol adjusts the 

circadian rhythms of locomotor activity and body temperature in animals 

[155], regulates the expression of clock genes Per1, Per2, and Bmal1in 

cultured fibroblasts [71]and reverses, in rats, the change induced by high-fat 

feeding in the expression of Rev-Erbα in adipose tissue [156], confirming that 

circadian molecular system is a target for this polyphenol. To date, no more 

publications exist showing the modulation of some molecular component of 

the circadian system by other polyphenol, but resveratrol.  

 
!  
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The work performed in this Ph.D. thesis is part of a general research project 

developed by the Nutrigenomics Research Group of the Universitat Rovira i 

Virgili, which focus on the potential health effects of dietary 

proanthocyanidins and their mechanisms of action. There is particular interest 

in these polyphenols because they are the most consumed class of flavonoids 

due to their widespread presence in foods. In addition, these compounds have 

a wide range of beneficial effects, improving all the components of metabolic 

syndrome. Many of these effects have been studied in this Research Group. 

In previous assays (unpublished), it was observed that GSPE was able to 

affect NAD levels in the liver and modulate RORα function; these important 

metabolic regulators are also two important components of the clock system. 

Nonetheless, the effects of GSPE on the clock system have not been studied 

to date, though other polyphenols such as resveratrol have been shown to 

modulate clock gene expression in cultured fibroblasts and in rat organs.  

As a main function, the clock system allows the anticipation of 

environmental changes and adaptation to the time of day and food availability 

through the generation of circadian rhythms, which is intimately related to 

metabolic regulation and integration. This important function can be altered 

as a cause of a disrupted situation, thereby compromising health. Thus, we 

hypothesised that the molecular clock system could partially mediate the 

beneficial effects of proanthocyanidins on metabolism. 

Therefore, the main objective of this thesis was to assess whether 

proanthocyanidins can modulate the central and peripheral molecular clock in 

rats and to identify the mechanism by which this flavonoid affects this 

system. To this end, six specific objectives were proposed: 
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1. To assess whether the chronic consumption of proanthocyanidins, at 

dietary doses, can modulate the peripheral clock system in the gut, 

the liver and the mesenteric adipose tissue of healthy (normal 

circadian rhythm state) and obese (disrupted circadian rhythm state) 

rats (manuscript 1).  

 

2. To challenge whether proanthocyanidins can modulate the peripheral 

clock system in the liver after two different times of administration 

(manuscript 2). 

 

3. To evaluate whether proanthocyanidins can modulate the clock 

system in HepG2 cells and to identify some of the potential 

mechanisms by which proanthocyanidins could affect the molecular 

clock system (manuscript 3). 

 

4. To challenge whether proanthocyanidins can modulate the central 

clock system in the hypothalamus after two different times of 

administration (manuscript 4). 

 

5. To determine whether proanthocyanidins can entrain internal body 

rhythms (manuscript 4). 

 

6. To challenge whether proanthocyanidins can modulate the peripheral 

and central clock system in a disrupted situation such as jet lag 

simulation (manuscripts 2 and 4).    
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1. Chronic consumption of dietary proanthocyanidins entrains 

peripheral clocks in healthy and obese rats.  

(Manuscript 1, J. Nutr. Biochemistry, Accepted)  
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Abstract: Circadian rhythm plays an important role in maintaining homeostasis, and its disruption 
increases the risk of developing metabolic syndrome. Circadian rhythm is maintained by a central clock 
in the hypothalamus that is entrained by light, but circadian clocks are also present in peripheral 
tissues. These peripheral clocks are trained by other cues, such as diet. The aim of this study was to 
determine whether proanthocyanidins, the most abundant polyphenols in the human diet, modulate 
the expression of clock and clock-controlled genes in the liver, gut and mesenteric white adipose tissue 
(mWAT) in healthy and obese rats. Grape seed proanthocyanidins (GSPE) were administered for 21 
days at 5, 25 or 50 mg GSPE/Kg body weight in healthy rats and 25 mg GSPE/Kg body weight in rats 
with diet-induced obesity. In healthy animals, GSPE administration led to the overexpression of core 
clock genes in a positive dose-dependent manner. Moreover, the acetylated BMAL1 protein ratio 
increased with the same pattern in the liver and mWAT. With regards to clock-controlled genes, Per2 
was also overexpressed, whereas Rev-erbα	
  and	
  RORα	
  were	
  repressed	
  in	
  a	
  negative	
  dose-dependent 
manner. Diet-induced obesity always resulted in the overexpression of some core clock and clock-
related genes although the particular gene affected was tissue specific. GSPE administration 
counteracted disturbances in the clock genes in the liver and gut but was less effective in normalising 
the clock gene disruption in WAT. In conclusion, proanthocyanidins have the capacity to entrain 
peripheral molecular clocks in both healthy and obese states. 
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rats. 

 

Ribas-Latre, A., Baselga-Escudero, L., Casanova E., Arola-Arnal, A., Salvadó, MJ., Arola, L.*, Bladé, C. 

Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain  

 

 

 

 

 

* Corresponding author: Lluís Arola 

Department of Biochemistry and Biotechnology 

Universitat Rovira i Virgili 

C/Marcel.lí Domingo s/n,  

43007 Tarragona, Spain                       

Phone: +34 977558449,  

Fax: +34 977558232,  

e-mail: lluis.arola@urv.cat

*Manuscript
Click here to view linked References

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF CENTRAL AND PERIPHERAL MOLECULAR CLOCKS BY PROANTHOCYANIDINS 
Aleix Ribas Latre 
Dipòsit Legal: T 1831-2014



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

Abstract 

Circadian rhythm plays an important role in maintaining homeostasis, and its disruption increases the risk 

of developing metabolic syndrome. Circadian rhythm is maintained by a central clock in the 

hypothalamus that is entrained by light, but circadian clocks are also present in peripheral tissues. These 

peripheral clocks are trained by other cues, such as diet. The aim of this study was to determine whether 

proanthocyanidins, the most abundant polyphenols in the human diet, modulate the expression of clock 

and clock-controlled genes in the liver, gut and mesenteric white adipose tissue (mWAT) in healthy and 

obese rats. Grape seed proanthocyanidins (GSPE) were administered for 21 days at 5, 25 or 50 mg 

GSPE/Kg body weight in healthy rats and 25 mg GSPE/Kg body weight in rats with diet-induced obesity. 

In healthy animals, GSPE administration led to the overexpression of core clock genes in a positive dose-

dependent manner. Moreover, the acetylated BMAL1 protein ratio increased with the same pattern in the 

liver and mWAT. With regards to clock-controlled genes, Per2 was also overexpressed, whereas Rev-

erbα and RORα were repressed in a negative dose-dependent manner. Diet-induced obesity always 

resulted in the overexpression of some core clock and clock-related genes although the particular gene 

affected was tissue specific. GSPE administration counteracted disturbances in the clock genes in the liver 

and gut but was less effective in normalising the clock gene disruption in WAT. In conclusion, 

proanthocyanidins have the capacity to entrain peripheral molecular clocks in both healthy and obese 

states. 

 

 

 

 

Keywords: Flavonoids, Bmal1, Clock, RORα, Per2, Rev-erbα. 
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Introduction 

Proanthocyanidins are a class of polyphenolic compounds in vegetables, fruits, cacao, nuts and some 

beverages such as red wine and tea; therefore, their presence in the human diet is considerably high [1]. 

Importantly, proanthocyanidins are considered to be bioactive compounds for their physiological and 

cellular processes, and several studies using various in vitro and animal models have elucidated a varied 

range of health effects in relation to metabolism, such as effects on insulin resistance [2], obesity [3], 

inflammation [4], cardiovascular disease [5], hypertension [6], oxidative stress [7] and lipid 

abnormalities. In fact, the effect of proanthocyanidins on lipid metabolism via correcting dyslipidemia in 

obese rats and reducing triglyceridemia and lipogenesis is due to some well-studied mechanisms in liver, 

such as the repression of lipogenic genes, transcriptional activation of the nuclear receptor FXR or even 

the modulation of miRNAs [8–11].  

However, it is well-established that lipid and carbohydrate metabolism and the expression of their key 

genes exhibit circadian oscillation. The circadian rhythm of every organism is regulated by a central 

molecular clock localised in the hypothalamic suprachiasmatic nuclei (SCN). However, an equal core 

clock mechanism is also expressed in extra-SCN regions of the brain and nearly all peripheral tissues 

[12]. The molecular clock consists of a transcription–translation autoregulatory feedback loop that cycle 

with a periodicity of approximately 24 h. The positive limb of this loop is driven by the transcriptional 

activators circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT like protein 1 

(BMAL1), which after their own heterodimerisation activate the transcription of the period (Per) and 

cryptochrome (Cry) genes, and once they reach a critical concentration, the PER and CRY proteins 

translocate into the nucleus and inhibit the activity of the CLOCK:BMAL1 heterodimer, thus leading to a 

decrease in Per and Cry expression. In addition, the active CLOCK:BMAL1 heterodimer also promotes 

the transcription of retinoic acid-related orphan receptor alpha (Rorα) and nuclear receptor subfamily 1, 

group D (Nr1d1, also known as Rev-erbα), its own activator and repressor, respectively, generating 

another loop of regulation. Finally, the CLOCK:BMAL1 heterodimer enhances the transcription of 

metabolic genes or clock-controlled genes (CCGs) e.g., nicotinamide phosphoribosyltransferase (Nampt) 

[13].  

It has been well established that circadian rhythms play an important role in maintaining homeostasis and 

normal body function [14], and the disruption of circadian regulation affects normal physiological and 

biochemical functions, inducing diseases. Association studies have revealed that shift workers, night 

workers, and sleep-deprived individuals have an increased risk for developing metabolic syndrome 

symptoms [15,16]. Interestingly, whereas light is the major synchroniser of the central clock, peripheral 

clocks are entrained by other cues such as rhythmic access to food [17], diet composition [18] and food 

biocompounds [19].Therefore, the aim of this study was to determine whether proanthocyanidins can 

entrain the peripheral clock to identify novel cellular mechanisms by which proanthocyanidins can 

modulate lipid metabolism and cell functionality. The capacity of proanthocyandins to entrain peripheral 

clocks was evaluated in normal (healthy rats) and disrupted (obese rats) circadian rhythm states.  
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Materials and methods 

Grape seed proanthocyanidin extract composition 

Grape seed proanthocyandin extract (GSPE) was kindly provided by Les Dérives Résiniques et 

Terpéniques (Dax, France). The following GSPE composition used in this study was previously analysed 

[20]: catechin (58 µmol/g), epicatechin (52 µmol/g), epigallocatechin (5.50 µmol/g), epicatechin gallate 

(89 µmol/g), epigallocatechin gallate (1.40 µmol/g), dimeric procyanidins (250 µmol/g), trimeric 

procyanidins (1,568 µmol/g), tetrameric procyanidins (8.8 µmol/g), pentameric procyanidins (0.73 

µmol/g) and hexameric procyanidins (0.38 µmol/g). 

 

Animals 

All procedures involving the use and care of animals were reviewed and approved by The Animal Ethics 

Committee of the Universitat Rovira i Virgili (Permit number 4249 by Generalitat de Catalunya). 

Forty-five male Wistar six-week-old rats (Crl: WI (Han)) were purchased from Charles River (Barcelona, 

Spain) for both experiments. 

Healthy rats: Rats were singly caged in animal quarters at 22ºC with a 12 h light/dark cycle (light from 

8:00 to 20:00 pm) and were fed ad libitum with a standard chow diet (STD, Panlab 04, Barcelona, Spain) 

and tap water. After one week of adaptation, the animals were randomly divided into four groups (n = 6) 

and supplemented with 0 (control group), 5, 25 or 50 mg GSPE/Kg body weight for 3 weeks. GSPE was 

dissolved in sugary milk (100 g: 8.9 g protein, 0.4 g fat, 60.5 g carbohydrates, 1175 kJ) at appropriate 

concentrations such that the same volume of milk (750 µL) was always administered to the animals. 

Before supplementation, all of the rats were trained to voluntarily lick the milk, and all groups were 

administered the same volume of sugary milk for 3 weeks. Treatment was administered every day at 9:00 

am.  

After 3 weeks of supplementation, the rats were fasted overnight. At 9:00 am, the rats were orally 

gavaged with lard oil (2.5 mL/kg of body weight) with or without (control groups) an adequate dose of 

GSPE (5, 25 or 50 mg/kg body weight). After 3 h, the rats were sedated using a combination of ketamine 

(70 mg/kg body weight, Parke-Davis, Grupo Pfizer, Madrid, Spain) and xylazine (5 mg/Kg body weight, 

Bayer, Barcelona, Spain). After anesthetisation, the rats were exsanguinated from the abdominal aorta. 

Blood was collected using heparin (Deltalab, Barcelona, Spain) as an anticoagulant. Liver, mesenteric 

white adipose tissue and the intestines were excised, immediately frozen in liquid nitrogen and then 

stored at -80ºC until RNA and protein extraction. Before freezing, duodenal mucosa was extracted by 

scraping with a small glass plate.  

Obese rats: Rats were housed in animal quarters at 22ºC with a 12 h light/dark cycle (light from 08:00 

hours to 20:00 hours) and fed a standard chow diet (STD) ad libitum (Panlab, Barcelona, Spain). After 

one week, the rats were divided into 3 groups (n= 7): the STD control group in which rats were fed STD 
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ad libitum, and 2 other groups, which were fed a STD plus a cafeteria diet (CD) that comprised 23.4% 

lipids (0.05% cholesterol), 35.2% carbohydrates and 11.7% protein. The CD consisted of the following 

foods: cookies with foie-gras and cheese triangles, bacon, biscuits, carrots and sugary milk. After 10 

weeks, rats feeding on the CD were trained to lick arabic gum (1 mL) (G9752, Sigma-Aldrich, Madrid, 

Spain), which was used as the vehicle, and they were randomly divided in two groups. One group was fed 

the CD plus 25 mg GSPE/kg bw dissolved in arabic gum for 3 more weeks. The second group was fed the 

CD plus the same volume of arabic gum (CD control group). All treatments were administered at the 

same time point (7 p.m.). 

After 3 weeks of treatment, the rats were fasted overnight and killed at 9 a.m. by anesthetising them with 

50 mg/kg bw sodium pentobarbital (0804118, Fagron Iberica, Terrasa, Spain), and they were sacrificed 

by bleeding. Blood was collected using heparin (Deltalab, Barcelona, Spain) as an anticoagulant. The 

livers, mesenteric adipose tissue and intestines were excised, immediately frozen in liquid nitrogen and 

stored at -80ºC until RNA could be extracted. The duodenal mucosa was equally extracted as described 

above.   

 

RNA extraction and cDNA synthesis 

Total RNA was extracted from liver, mesenteric white adipose tissue and intestinal mucosa using the 

TRIzol reagent and RNeasy Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s protocols. 

RNA was quantified by spectrophotometry (Nanodrop 1000 Spectrophotometer, Thermo Scientific) at 

λ=260 nm and tested for purity (by A260/280 ratio) and integrity (by denaturing gel electrophoresis). 

Complementary DNA was generated using the High-Capacity complementary DNA Reverse 

Transcription Kit from Applied Biosystems (4368814).  

 

mRNA quantification by real-time qRT-PCR 

A total of 10 ng of cDNA was subjected to quantitative RT-PCR amplification using SYBR Green PCR 

Master Mix from Bio-Rad (172-5200). The forward and reverse primers for the rat genes analysed are 

listed in Table 1. Reactions were run with a quantitative real-time PCR system (Bio-Rad), and the thermal 

profile settings were 50ºC for 2 min, 95ºC for 2 min, and 40 cycles of 95ºC for 15 s and 60ºC for 2 min. 

Finally, statistical data were converted and normalised to the linear form using the 2-CT (∆∆CT) 

calculation [21]. The relative expression level of the clock genes rorα, rev-erbα, bmal1, clock, per2, 

nampt and hmgCoAR was assessed for the liver, mesenteric adipose tissue and intestinal mucosa, which 

was normalised to the cyclophilin mRNA level.  

 

Western Blot analyses 
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Protein was extracted from liver and white adipose tissue using RIPA (radio-immunoprecipitation assay) 

lysis buffer (15 mM Tris–HCl, 165 mM-NaCl, 0.5% Na-deoxycholate, 1% Triton X-100 and 0.1% SDS), 

containing a protease inhibitor cocktail (1:1000; Sigma-Aldrich) and 1 mM-PMSF 

(phenylmethanesulfonyl fluoride solution). The total protein levels of the lysates were determined using 

the BCA method from Thermo Scientific (23227). Then, the samples were placed in sample buffer (0.5 M 

Tris–HCl, pH 6.8, 10% glycerol, 2% (w/v) SDS, 5% (v/v) β-mercaptoethanol, 0.05% bromophenol blue). 

After boiling for 5 min, 50 µg of protein was loaded and separated in a 10% SDS-polyacrylamide gel. 

The samples were then transferred to a polyvinylidene fluoride (PVDF) membrane (Bio-Rad 

Laboratories) using a transblot apparatus (Bio-Rad) and blocked at room temperature for 1 h with 5% 

(w/v) non-fat milk in TTBS buffer (Tris-buffered saline (TBS) plus 0·5% (v/v) Tween-20). The 

membranes were incubated overnight at 4ºC with primary monoclonal antibodies directed against Nampt 

(Imgenex), Bmal1 (LS-Bio), acetyl-Bmal1 (Millipore) and anti-β-actin (Sigma-Aldrich) at a 1:1000 

dilution in blocking solution. After washing with TTBS, the blots were incubated with a peroxidase-

conjugated monoclonal anti-rabbit secondary antibody (Sigma-Aldrich) at a 1:10000 dilution at room 

temperature for 1.5 h. The blots were then washed thoroughly in TTBS followed by TBS. 

Immunoreactive proteins were visualised with an enhanced chemiluminescence substrate kit (ECL plus; 

Amersham Biosciences, GE Healthcare) according to the manufacturer’s instructions. Images were 

obtained with a GBOX Chemi XL 1.4 image system (Syngene, pais). Band quantification was performed 

with ImageJ software (NIH, USA). The results were expressed as relative intensity (Nampt/b-actin, 

Bmal1/b-actin and acetil-Bmal1/b-actin) and are relative to the loading control group. 

 

Statistical analysis 

The results are presented as the mean plus the associated standard error (SE). The data were analysed 

using one-way ANOVA to determine significant differences using SPSS statistical software (version 17.0 

for Windows; SPSS, Inc.). p values <0.05 were considered statistically significant. 

 

Results 

Chronic administration of GSPE in healthy rats differentially modulates the peripheral clock in the liver, 

mesenteric white adipose tissue and intestinal mucosa  

The capacity of GSPE to modify circadian rhythms was evaluated in peripheral clocks using three 

different organs including the liver, mesenteric white adipose tissue (mWAT) and duodenal mucosa 

(GUT) of healthy animals chronically treated with GSPE at doses of 5, 25 and 50 mg/Kg body weight. In 

these organs, we evaluated the gene expression of Clock and Bmal1 (clock core genes), Per2 (a 

component of the negative loop of the circadian clock), Rorα and Rev-erbα (nuclear receptors whose 

expression is regulated by CLOCK:BMAL1 and act as an activator or repressor of Bmal1 gene 

expression, respectively), Nampt (a metabolic gene whose expression is directly regulated by 
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CLOCK:BMAL1) and HmgCoAR (a metabolic gene with circadian rhythm expression that is not directly 

controlled by CLOCK:BMAL1). 

In the liver (Fig. 1), GSPE administration increased the expression of Clock and Per2 in a dose-dependent 

pattern with a significant increase at 25 and 50 mg GSPE/Kg body weight. In contrast, Rev-erbα was 

repressed by GSPE with a significant reduction at the lowest dose. The effect of GSPE on Rorα 

expression was bimodal with repression at the lowest dose and overexpression at the two higher doses. 

GSPE did not modify the Bmal1, Nampt or HmgCoAR expression in the liver at any dose. 

In mWAT (Fig. 2), GSPE administration modulated the expression of all genes studied, except that of 

HmgCoAR. GSPE consumption increased significantly the expression of Clock, Bmal1 and Per2 at 50 mg 

GSPE/Kg body weight. On the other hand, the expression of genes modulated directly by 

CLOCK:BMAL1, i.e., Rorα, Rev-erbα and Nampt, was repressed significantly by GSPE treatment.  

In the GUT (Fig. 3), only Bmal1 and HmgCoAR were modified by GSPE administration. Bmal1 was up-

regulated by all GSPE doses studied, whereas HmgCoAR expression was increased only by the 25 

GSPE/Kg body weight dose. 

To confirm the ability of GSPE to entrain peripheral molecular clocks, we determined the BMAL1 and 

NAMPT protein level in livers and mWAT (Fig. 4). The protein levels demonstrated the same pattern as 

the gene expression levels in all cases, and the effects of GSPE were more evident at the protein level 

than at the mRNA level, thus confirming the results observed at transcriptional level. The active form of 

BMAL1, which turns on the clock machinery, is the acetylated form; thus, we also measured the 

percentage of acetylated protein versus total protein (Fig. 4). In both tissues, the ratio of acetylated 

BMAL1 was reduced in animals treated with 5 mg GSPE /kg body weight, whereas the ratio was 

increased at 25 and 50 mg GSPE /kg body weight, indicating that higher doses of GSPE increased the 

transactivation activity of CLOCK:BMAL1. 

Together, these results indicate that chronic GSPE consumption differentially modulates the peripheral 

clock of each organ, particularly the core clock genes, including GSPE-modulated Clock in the liver, 

Bmal1 in the GUT and both in mWAT. Moreover, mWAT was the organ most sensitive to GSPE. 

 

Chronic administration of GSPE counteracts the disturbances in the clock genes induced by obesity 

mainly in the liver and GUT 

After determining that chronic GSPE treatment was capable of entraining peripheral clocks in animals 

with normal circadian rhythms, we studied the capacity of GSPE to modulate peripheral clocks in rats 

with obesity, a state with disrupted circadian rhythms. The study was conducted in the liver, WAT and 

GUT by chronically treating obese rats with 25 mg GSPE /Kg body weight and quantifying the 

expression of the same core clock and related genes studied in healthy rats. 
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In the liver (Fig. 5), obesity resulted in the overexpression of Rev-erbα and Bmal1 and HmgCoAR 

repression. GSPE treatment normalised the expression of these genes in the liver to values similar to that 

of lean rats, particularly for Rev-erbα. In contrast with healthy animals, chronic administration of 25 mg 

GSPE/kg body weight GSPE did not affect the expression of Clock, Per2 or Rorα in livers of obese rats. 

In mWAT (Fig. 6), Rev-erbα and Clock were overexpressed in obese rats. GSPE treatment normalised 

only the expression of Rev-erbα in the WAT of obese rats. Moreover, GSPE administration significantly 

increased the expression of Per2 in the WAT of obese rats compared with obese and lean rats in a manner 

similar to GSPE treatment in the WAT of healthy rats at the higher dose. In contrast with healthy animals, 

chronic administration of 25 mg GSPE/kg body weight did not repress Rorα or Nampt in the WAT of 

obese rats. 

In the GUT (Fig. 7), Bmal1, Per2 and HmgCoAR were significantly overexpressed in obese rats. GSPE 

administration normalised the expression of Per2 and HmgCoAR in obese rat guts. However, the Bmal1 

expression in obese rats treated with GSPE had values in between that of obese and lean animals. 

Moreover, GSPE exacerbated the obesity-induced Rev-erbα overexpression in the GUT. As in healthy 

rats, chronic administration of 25 mg GSPE/kg body weight did not affect the expression of Clock or 

Nampt in the GUT of obese rats. 

Overall, diet-induced obesity always resulted in overexpression of some core and related clock genes 

although the particular gene affected was tissue specific. In particular, obesity affected Bmal1 in the liver 

and GUT, whereas Clock was affected in the mWAT. GSPE administration counteracted disturbances in 

the clock genes induced by obesity in the liver and GUT, whereas it was less effective in normalising the 

clock gene disruption induced by obesity in mWAT.  

 

Discussion 

Digestion, absorption and metabolism follow circadian rhythms that are regulated by peripheral clocks 

[22]. While light entrains the central clock, food is a potent synchroniser for peripheral clocks [23]. The 

expression of clock genes in the liver [18,24], gut [17] and WAT [25] is entrained by the frequency and 

daytime meals and diet composition. Moreover, it has been described that bioactive food components also 

modify circadian rhythms. Specifically, resveratrol adjusts the circadian rhythms of locomotor activity 

and body temperature in animals [26,27] and alters clock gene expression in cultured fibroblasts [28] and 

rat organs [19]. Therefore, this study was designed to determine whether proanthocyanidins, which have a 

powerful hypolipidemic effect [29], modulate the expression of clock genes in tissues significant for lipid 

homeostasis i.e., the liver, gut and WAT, in healthy and obese rats. 

In healthy animals, GSPE was administered once a day at 5, 25 or 50 mg GSPE/kg body weight to 

evaluate whether the clock genes responded in a dose-dependent manner. By extrapolating to human 

doses [30] and estimating the daily intake for a 70 kg human, these doses match an intake of 57, 284 and 

560 mg of GSPE/day. As the estimated proanthocyanidin intake for humans ranges between 90 and 200 
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mg/day [31–33], the GSPE doses used in this study simulate low, similar or high human 

proanthocyanidin dietary intake. 

This study shows that GSPE differentially modulates the peripheral clock in each organ studied. In 

healthy animals, the number of core clock and clock-controlled genes with altered expression in response 

to GSPE was high in mWAT, medium in the liver and low in the GUT. It has been described that 

different mouse tissues have different circadian phases, suggesting the existence of organ-specific 

circadian rhythms synchronisers at the cell and tissue level [34]. For instance, a nearly eight hour phase 

difference is observed between the liver and gonadal WAT [23]. Therefore, the fact that we quantified the 

expression of clock genes at different points of the circadian phase in each organ could make the 

effectiveness of GSPE modulating clock gene expression relatively evident. Alternatively, the absorption 

kinetics and tissue distribution of proanthocyanidins could also lead to dissimilar clock modulation by 

GSPE in each organ. Proanthocyanidins accumulate in adipose tissue [35]; thus, the constant presence of 

high levels of proanthocyandins in adipose cells can result in greater modification of the clock loops in 

mWAT than in the liver or GUT. 

GSPE administration increased the expression of core clock genes (Clock in liver, Bmal1 in GUT and 

both in mWAT) in a dose-dependent mode, indicating that these genes are targets of proanthocyanidin. 

Interestingly, GSPE supplementation, at the same doses used in this experiment, improves lipid tolerance 

in healthy rats with a dose-dependent effect [36]. This fact indicates the involvement of the circadian 

clock in the hypolipidemic effects of proanthocyandin. CLOCK and BMAL1 knockouts have 

abnormalities in lipid homeostasis. For example, mice lacking Bmal1 have hyperlipidemia and an 

elevated respiratory quotient value, indicating less utilisation of fat as an energy source [37], and Clock 

mutant mice have hypercholesterolemia, atherosclerosis and increased lipid absorption [38,39]. However, 

as gene expression was measured at only one point, it is not possible to infer whether the increased 

expression of core clock genes was due to a phase shift or amplitude intensification after GSPE chronic 

consumption. Nevertheless, by increasing core clock gene expression or shifting their phase, GSPE 

consumption could repress lipid absorption and increase fatty acid oxidation, inducing the hypolipidemic 

effects described for proanthocyanidins [29,36].  

Despite the general overexpression of the core clock genes by GSPE, there were two different patterns in 

the expression of genes directly controlled by CLOCK:BMAL1 in the liver and mWAT. Per2, a 

component of the negative loop of the circadian clock, was overexpressed in a positive dose-dependent 

manner by GSPE similar to Clock and Bmal1. In contrast, Rev-erbα and Rorα were repressed by GSPE 

with a negative dose-dependent pattern. BMAL1 binding to the DNA of its target genes peaks around 

Zeitgeber time (ZT) 4 to ZT8, and the mRNA level of BMAL1 target genes peaks earlier or it is delayed 

[40]; thus, as in this study we only analysed expression at one time point, the Per2 mRNA level could be 

in a different phase than that of Rev-erbα, Rorα and Nampt. It is important to note the negative dose-

dependent behaviour of Rev-erbα, Rorα and Nampt, which suggests that low dietary proanthocyanidin 

consumption could be effective in repressing these genes and thus controlling circadian rhythms.  
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The protein levels of BMAL1 and NAMPT confirmed that chronic GSPE administration entrained the 

peripheral clock in the liver and mWAT. The active form of BMAL1 that turns on the clock machinery is 

its acetylated form; thus, the ratio of acetylated to total BMAL1 protein provides direct information about 

the transactivation activity of BMAL1:CLOCK. BMAL1 is acetylated by CLOCK [41] and deacetylated 

by sirtuin (SIRT) 1 [42]. SIRT1 activity depends absolutely on the NAD+ levels, thus directly connecting 

the circadian peripheral clock activity and BMAL1 deacetylation to metabolism using the level of NAD+ 

as a metabolic cue, which in turn is directly proportional to the level of NAMPT activation [43]. In 

mWAT, the activation of the clock machinery as measured as the percentage of acetylated BMAL1 was 

directly proportional to the GSPE dose with a positive dose response similar to that of Bmal1 mRNA. 

Moreover, the maximal BMAL1activation at 50 mg/Kg body weight matched the maximal NAMPT 

protein levels. These results confirmed that the mWAT molecular clock is a clear target for 

proanthocyanidins.  

As GSPE chronic intake was capable of modifying circadian clock gene expression in healthy animals at 

doses that simulate regular proanthocyanidin intake in the Mediterranean diet [33] i.e., 25 mgGSPE/Kg 

body weight, we further determined the capacity of GSPE to entrain peripheral molecular clocks in rats 

with obesity, a pathological condition associated with disrupted circadian rhythms [14,44] . We used rats 

fed with the cafeteria diet (CD) as a nutritional model for obesity. Feeding rats with this diet results in 

over weight rats (20%) and dyslipidemia (increases in the triglyceride, total cholesterol and LDL-C levels 

in plasma of 60, 45 and 120%, respectively) [11]. GSPE administration to obese animals normalises the 

plasma triglyceride and C-LDL but not total cholesterol levels [11], whereas it has no effect on body 

weight. In parallel with this hypotriglyceridemic effect, GSPE administration also nearly corrected the all 

of the disruptions in the clock genes induced by obesity in the liver and GUT, the two organs that 

generate triglyceride-rich lipoproteins [45]. In contrast, GSPE administration was less effective in 

normalising the clock gene disruption in mWAT, which is in agreement with the ineffectiveness of GSPE 

in reducing body weight.  

The availability of phenolic compounds to counteract the disruption of clock genes induced by obesity 

has also been evaluated with resveratrol in adipose tissue and livers [19]. Despite the difficulty in 

comparing our results with those in this study because diets and adipose tissue locations are different, 

resveratrol counteracts the increase in Rev-erbα expression induced by obesity in the liver and WAT 

similar to the proanthocyanidins in this study. Interestingly, Rev-erbα is essential for adipogenesis, and its 

overexpression results in the overexpression of adipogenic genes [46], thus suggesting that phenolic 

compounds can reduce adipogenesis in obesity. However, resveratrol is more powerful than GSPE in 

normalising Rev-erbα expression in WAT, which is in agreement with the mimetic effects of energy 

restriction described for resveratrol and not for proanthocyanidins. 

In summary, proanthocyanidins have the capacity to entrain peripheral molecular clocks in healthy and 

obese states. Moreover, in healthy animals, GSPE administration leads to the overexpression of core 

clock genes and increases the percentage of acetylated BMAL1 in a positive dose-dependent manner 

similar to the hypolipidemic effects of GSPE. Therefore, the modulation of peripheral circadian clocks 

appears to be a novel molecular mechanism by which proanthocyanidins regulates metabolism and cell 
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functionality in peripheral organs, such as the liver and mWAT. However, as there is bidirectional cross 

talk between molecular clocks and metabolism through AMPK and sirtuins [47], it cannot be inferred 

whether proanthocyanidins alter clock genes first and then lipid metabolism or vice versa. Therefore, 

further research is needed to clarify whether proanthocyanidins can directly modulate the clock phase, 

amplitude and/or period of peripheral and central clocks. 
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Fig. 1 Effect of different chronic doses of GSPE on the relative expression level of some clock and 
clock-controlled genes in the liver. 

 

The mRNA level of some clock and clock-controlled genes in the livers of rats chronically supplemented 
with different doses of grape seed proanthocyanidin extract (GSPE) for 3 weeks. The mRNA levels were 
normalised to the PPIA endogenous gene and then to the control group without GSPE supplementation. 
White bars, control group; coloured bars, GSPE treated groups. The different letters indicate statistically 
significant differences as determined by the 1-way ANOVA test (p<0.05). 

 

 

Fig. 2 Effect of different chronic doses of GSPE on the relative expression level of some clock and 
clock-controlled genes in white adipose tissue.  

 

The mRNA level of some clock and clock-controlled genes in white adipose tissue from rats chronically 
supplemented with different doses of grape seed proanthocyanidin extract (GSPE) for 3 weeks. The 
mRNA levels were normalised to the PPIA endogenous gene and then to the control group without GSPE 
supplementation. White bars, control group; colour bars, GSPE treated groups. The different letters 
indicate statistically significant differences by the 1-way ANOVA test (p<0.05). 

 

 

Fig. 3 Effect of different chronic doses of GSPE on the relative expression level of some clock and 
clock-controlled genes in the gut.  

 

The mRNA level of some clock and clock-controlled genes in the guts of rats chronically supplemented 
with different doses of grape seed proanthocyanidin extract (GSPE) for 3 weeks. The mRNA levels were 
normalised to the PPIA endogenous gene and then to the control group without GSPE supplementation. 
White bars, control group; coloured bars, GSPE treated groups. The different letters indicate statistically 
significant differences by the 1-way ANOVA test (p<0.05). 

 

 

Fig. 4 Effect of different chronic doses of GSPE on the relative protein expression level of BMAL1 
and NAMPT in the liver and mWAT. 

 

Total and acetylated levels of the BMAL1 protein and the protein level of NAMPT in the liver (a) and 
mWAT (b) of rats chronically supplemented with different doses of grape seed proanthocyanidin extract 
(GSPE) for 3 weeks. Proteins were extracted with radioimmunoprecipitation (RIPA) buffer and analysed 
via Western blot. Proteins were normalised with the endogenous protein β-actin. Relative intensity units 
were obtained by dividing the intensity of the protein band of interest by the intensity of the band of the 
endogenous protein. In the case of acetylated and total BMAL1 protein, both results were divided to 
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obtain the acetyl Bmal1/ total Bmal1 protein ratio, which is shown as a percentage. Different letters 
indicate statistically significant differences by the 1-way ANOVA test (p<0.05). 

 

 

Fig. 5 Effect of chronic dose GSPE on the relative expression level of some clock and clock 
controlled-genes in the liver of obese rats. 

 

The mRNA level of some clock and clock-controlled genes in livers of rats fed for 10 weeks on a 
cafeteria diet (CD) followed by vehicle or chronic supplementation with 25 mg/kg bw grape seed 
proanthocyanidin extract (GSPE) for 3 weeks. The mRNA levels were normalised to the PPIA 
endogenous gene and then to the STD group. White bars, control group; grated bars, vehicle group; 
brown bars, GSPE-treated groups. Different letters indicate statistically significant differences by the 1-
way ANOVA test (p<0.05). 

 

 

Fig. 6 Effect of chronic dose GSPE on the relative expression level of some clock and clock 
controlled-genes in the white adipose tissue of obese rats. 

 

The mRNA level of some clock and clock-controlled genes in white adipose tissue from rats fed for 10 
weeks with a cafeteria diet (CD) followed by vehicle administration or chronic supplementation with 25 
mg/kg bw grape seed proanthocyanidin extract (GSPE) for 3 weeks. The mRNA levels were normalised 
to the PPIA endogenous gene and then to the STD group. White bars, control group; grated bars, vehicle 
group; brown bars, GSPE-treated groups. Different letters indicate statistically significant differences by 
the 1-way ANOVA test (p<0.05). 

 

 

Fig. 7 Effect of chronic dose GSPE on the relative expression level of some clock and clock 
controlled genes in the gut of obese rats 

 

The mRNA levels of some clock and clock-controlled genes in guts of rats fed for 10 weeks with a 
cafeteria diet (CD) followed by vehicle administration or chronic supplementation with 25 mg/kg bw 
grape seed proanthocyanidin extract (GSPE) for 3 weeks. The mRNA levels were normalised to the PPIA 
endogenous gene and then to the STD group. White bars, control group; grated bars, vehicle group; 
brown bars, GSPE-treated groups. Different letters indicate statistically significant differences by the 1-
way ANOVA test (p<0.05). 
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Table 1. Rat-specific primer sequences. 

 

Rorα, RAR-related orphan  receptor A; Rev-erbα (also known as Nr1d1), nuclear receptor subfamily 1, 
group D, member 1; Bmal1 (also known as ARNTL), aryl hydrocarbon receptor nuclear translocator-like; 
Clock, circadian locomotor output cycles kaput; Per2, period circadian clock 2; Nampt, nicotinamide 
phosphoribosyltransferase; Hmgcr, 3-hydroxy-3-methylglutaryl-Coenzyme A reductase; Ppia, cyclophilin 
A. Fw, forward primer sequence; Rv, reverse primer sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Primer sequence 
rorα Fw:  5’-GAAGGCTGCAAGGGCTTTTTCAGGA-3’ 

Rv:  5’-CCAAACTTGACAGCATCTCGA-3’ 
rev-erbα Fw:  5’-CTGCTCGGTGCCTAGAATCC-3’ 

Rv: 5’-GTCTTCACCAGCTGGAAAGCG-3’ 
bmal1 Fw: 5’-GTAGATCAGAGGGCGACGGCTA-3’ 

Rv: 5’-CTTGTCTGTAAAACTTGCCTGTGAC-3’ 
clock Fw: 5’-TGGGGTCTATGCTTCCTGGT-3’ 

Rv: 5’-GTAGGTTTCCAGTCCTGTCG-3’ 
per2 Fw: 5’-CGGACCTGGCTTCAGTTCAT-3’ 

Rv: 5’-AGGATCCAAGAACGGCACAG-3’ 
nampt Fw: 5’-CTCTTCACAAGAGACTGCCG 

Rv: 5’-TTCATGGTCTTTCCCCCACG-3’ 
hmgcr Fw: 5’- GAAACCCTCATGGAGACGCA-3’ 

Rv: 5’- ACCTCTGCTGAGTCACAAGC-3’ 
ppia Fw: 5’-CTTCGAGCTGTTTGCAGACAA-3’ 

Rv: 5’-AAGTCACCACCCTGGCACATG-3’ 
 

 

Table(s)
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Fig.5 
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Fig. 6 
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Abstract: 

Metabolism follows circadian rhythms, which are driven by peripheral 
clocks. The clock in the liver is one of the most important because this 
organ plays a central role in maintaining homeostasis. Clock genes in the 
liver are entrained by daytime meals and food components such as 
proanthocyanidins (PAs), which are the most abundant flavonoids in the 
human diet and serve to modulate lipid and glucose homeostasis. The aim 
of the current study was to determine whether PAs could entrain the 
peripheral clock system in the liver. Male Wistar rats were orally gavaged 
with 250 mg grape seed proanthocyanidin extract (GSPE)/kg body weight 
at zeitgeber time (ZT) 0, when the lights were turned on, or at ZT12, when 
the lights were turned off; these treatments were also given to rats with 6 
hours of jet lag. The 24 hour rhythm of clock-core (Clock and Bmal1) and 
clock-controlled (Per2, Rorα, Rev-erbα and Nampt) gene expression 
indicated that Nampt was the most sensitive gene to GSPE. However, GSPE 
modulated Nampt expression in opposite ways when it was administered at 
ZT0 compared to administration at ZT12, reducing or increasing Nampt 
protein and mRNA levels when administered at ZT0 or ZT12, respectively. 
Accordingly, NAD levels, which also exhibit circadian rhythm, were 
significantly decreased or increased 6 hours after GSPE administration at 
ZT0 or ZT12, respectively. GSPE administered at either time increased both 
mRNA and protein levels of Bmal1 after 1 hour of treatment. Nonetheless, 
the ratio of acetylated Bmal1 only increased when GSPE was administered 
at ZT12, which was the same condition under which Nampt was 
overexpressed. Therefore, Bmal1acetylation, Nampt and NAD emerge as 
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GSPE targets in the liver, indicating that PAs can modulate lipid and 
glucose metabolism in the liver by entraining the daily rhythm of some 
components of the clock system.  
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Abstract 

Metabolism follows circadian rhythms, which are driven by peripheral clocks. The clock in the 

liver is one of the most important because this organ plays a central role in maintaining 

homeostasis. Clock genes in the liver are entrained by daytime meals and food components such 

as proanthocyanidins (PAs), which are the most abundant flavonoids in the human diet and 

serve to modulate lipid and glucose homeostasis. The aim of the current study was to determine 

whether PAs could entrain the peripheral clock system in the liver. Male Wistar rats were orally 

gavaged with 250 mg grape seed proanthocyanidin extract (GSPE)/kg body weight at zeitgeber 

time (ZT) 0, when the lights were turned on, or at ZT12, when the lights were turned off; these 

treatments were also given to rats with 6 hours of jet lag. The 24 hour rhythm of clock-core 

(Clock and Bmal1) and clock-controlled (Per2, Rorα, Rev-erbα and Nampt) gene expression 

indicated that Nampt was the most sensitive gene to GSPE. However, GSPE modulated Nampt 

expression in opposite ways when it was administered at ZT0 compared to administration at 

ZT12, reducing or increasing Nampt protein and mRNA levels when administered at ZT0 or 

ZT12, respectively. Accordingly, NAD levels, which also exhibit circadian rhythm, were 

significantly decreased or increased 6 hours after GSPE administration at ZT0 or ZT12, 

respectively. GSPE administered at either time increased both mRNA and protein levels of 

Bmal1 after 1 hour of treatment. Nonetheless, the ratio of acetylated Bmal1 only increased when 

GSPE was administered at ZT12, which was the same condition under which Nampt was 

overexpressed. Therefore, Bmal1acetylation, Nampt and NAD emerge as GSPE targets in the 

liver, indicating that PAs can modulate lipid and glucose metabolism in the liver by entraining 

the daily rhythm of some components of the clock system.  
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Introduction 

Digestion, absorption and metabolism follow circadian rhythms that are regulated by peripheral 

clocks (Tahara and Shibata 2013), and the disruption of the clock system triggers different types 

of illnesses, indicating that peripheral clocks play important roles in maintaining homeostasis 

and normal body function (Froy 2010). In this way, association studies have revealed that shift 

workers, night workers, and sleep-deprived individuals (clear examples of disrupted circadian 

rhythms) have an increased risk of developing symptoms of metabolic syndrome (Chaput et al. 

2008; DiLorenzo et al. 2003).  

Among peripheral clocks, the clock in the liver is one of the most important, because this organ 

plays a central role in metabolism and energy production, thus significantly affecting the 

physiological status of the whole organism. For instance, the liver is the major site of 

intermediate metabolism, including the synthesis and removal of cholesterol (Edwards et al. 

1972), as well as the regulation of glucose homeostasis (Lamia et al. 2008). In fact, 10% of all 

transcripts, or 20% of all proteins, in mouse liver are under circadian regulation (Reddy et al. 

2006), underscoring the importance of the clock present in this organ.  

At the molecular level, the clock system consists of transcription–translation autoregulatory 

feedback loops. Driving the positive side of this loop are transcriptional activators circadian 

locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1). 

After forming a heterodimer, these factors activate the transcription of the Period (Per) and 

Cryptochrome (Cry) genes. In turn, once they reach a critical concentration, PER and CRY 

proteins translocate to the nucleus and inhibit the activity of the CLOCK:BMAL1 heterodimer, 

thus leading to a decrease in Per and Cry expression. In addition, the active CLOCK:BMAL1 

heterodimer also promotes the transcription of retinoic acid-related orphan receptor alpha 

(Rorα) and nuclear receptor subfamily 1, group D, member 1 (Nr1d1, also known as Rev-erbα), 

its own activator and repressor, respectively, generating another loop of regulation. Finally, the 

CLOCK:BMAL1 heterodimer enhances the transcription of metabolic genes, such as 

nicotinamide phosphoribosyltransferase (Nampt), which are implicated in many aspects of 

metabolism and biochemical processes, therefore supporting the tight relation between the clock 

system and metabolism or physiology (Green et al. 2008; Bass and Takahashi 2010). 

Interestingly, the expression of clock genes in the liver (Hirao et al. 2009; Reznick et al. 2013), 

and in turn, metabolic circadian rhythm, is entrained by the frequency of daytime meals as well 

as by diet composition. 

Proanthocyanidins (PAs) are a class of polyphenols present in vegetables, fruits, cacao, nuts and 

beverages such as red wine or tea; therefore, their presence in the human diet is considerably 

high (Serrano et al. 2009). PAs are considered to be dietary bioactive compounds because their 

consumption exerts a varied range of healthy effects, including the reduction of cardiovascular 

diseases (Rasmussen et al. 2005) and improvement in insulin resistance (Montagut et al. 2010), 
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obesity (Montagut et al. 2007), inflammation (Terra et al. 2011), hypertension (Quiñones et al. 

2013), oxidative stress (Puiggros et al. 2005) and dyslipidemia (Quesada et al. 2009). 

Interestingly, the liver is a key organ in which PAs are active, restoring lipid (Bladé et al. 2010) 

and glucose (Pinent et al. 2012) homoeostasis after a disruption. 

Remarkably, resveratrol is a polyphenol that adjusts the circadian rhythms of locomotive 

activity and body temperature in animals (Pifferi et al. 2013, 2011) and alters clock gene 

expression in cultured fibroblasts (Oike and Kobori 2008) and rat organs, such as adipose tissue 

(Miranda et al. 2013). However, there is little information about the effect of polyphenol 

consumption on circadian rhythm in the liver. Therefore, the aim of the current study was to 

determine whether PAs could modulate the peripheral clock system in the liver to set a new 

cellular mechanism by which PAs can modulate cell functionality and improve some 

pathological conditions. To this end, we have measured the expression rhythm of clock-core and 

clock-controlled genes in the liver by administering PAs during the day, at night or in jet-lagged 

rats.  

 

 

 

Materials and methods 

Grape seed proanthocyanidin extract composition 

Grape seed proanthocyanidin extract (GSPE) was kindly provided by Les Dérives Résiniques et 

Terpéniques (Dax, France). Specifically, GSPE contains (Serra et al. 2010): catechin (58 

µmol/g), epicatechin (52 µmol/g), epigallocatechin (5.50 µmol/g), epicatechingallate (89 

µmol/g), epigallocatechingallate (1.40 µmol/g), dimericprocyanidins (250 µmol/g), 

trimericprocyanidins (1568 µmol/g), tetramericprocyanidins (8.8 µmol/g), 

pentamericprocyanidins (0.73 µmol/g) and hexamericprocyanidins (0.38 µmol/g). 

 

Animals 

All procedures involving the use and care of animals were reviewed and approved by The 

Animal Ethics Committee of the Universitat Rovira i Virgili (Permit number 4249 by 

Generalitat de Catalunya). 

Eighty-four eight-week-old male Wistar rats (Crl: WI (Han)) were purchased from Charles 

River (Barcelona, Spain) and fed ad libitum with a standard chow diet (STD, Panlab 04, 

Barcelona, Spain) and tap water. Rats were divided into three groups according to the Zeitgeber 

time (ZT) when GSPE was administered. 

Administration of GSPE at ZT0: Forty rats were singly caged in animal quarters at 22ºC with a 

12 h light/dark cycle (light from 9:00 to 21:00 pm). After three weeks of adaptation, the rats 

were orally gavaged with tap water (control group) or 250 mg of GSPE /kg body weight 
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dissolved in tap water at ZT0 (9:00 am, light turned on). Rats were sacrificed by beheading at 

ZT0, ZT0.5, ZT1, ZT3, ZT6, ZT12 and ZT24 (n=3 for control and n=3 for GSPE-treated 

groups). 

Administration of GSPE at ZT12: Twenty-two rats were singly caged in animal quarters at 22ºC 

with a 12 h light/dark cycle (light from 21:00 pm to 9:00 am). After three weeks of adaptation, 

the rats were orally gavaged with tap water (control group) or 250 mg of GSPE/kg body weight 

dissolved in tap water at ZT12 (9:00 am, light off). Rats were sacrificed by beheading at ZT12, 

ZT13, ZT15, and ZT18 (n=3 for control and n=3 for GSPE-treated groups). 

Administration of GSPE to jet-lagged rats: Twenty-two rats were singly caged in animal 

quarters at 22ºC with a 12 h light/dark cycle (light from 15:00 pm to 03:00 am). After three 

weeks of adaptation, rats were orally gavaged with tap water (control group) or 250 mg of 

GSPE /kg body weight dissolved in tap water at ZT6 (9:00 am, middle of the light day) and 

immediately moved to a dusk room (ZT12), thus giving rats a jet lag of 6 hours. Rats were 

sacrificed by beheading at ZT12, ZT13, ZT15, and ZT18 (n=3 for control and n=3 for GSPE-

treated groups). 

For the three experiments, the liver was excised, frozen immediately in liquid nitrogen and 

stored at -80ºC until RNA and protein extraction.  

 

RNA extraction and cDNA synthesis 

Total RNA from liver was extracted using TRIzol reagent and an RNeasy Mini Kit (Qiagen, 

74106, Barcelona, Spain) according to manufacturer protocols. RNA was quantified by 

spectrophotometry (Nanodrop 1000 Spectrophotometer, Thermo Scientific, Madrid, Spain) at 

λ=260 nm and tested for purity (by A260/280 ratio) and integrity (by denaturing gel 

electrophoresis). Complementary DNA was generated using the High-Capacity complementary 

DNA Reverse Transcription Kit from Applied Biosystems (4368814, Madrid, Spain). 

 

mRNA quantification by real-time qRT-PCR 

A total of 10 ng of cDNA was subjected to quantitative RT-PCR amplification using SYBR 

Green PCR Master Mix from Bio-Rad (172-5200, Barcelona, Spain). The forward and reverse 

primers of the genes analyzed are shown in Table 1. Reactions were run on a quantitative real-

time PCR system (CFX96 touch of Bio-Rad, Barcelona, Spain); the thermal profile settings 

were 50ºC for 2 min, 95ºC for 2 min, and then 40 cycles at 95ºC for 15 s and 60ºC for 2 min. 

Finally, statistical data were converted and normalized to the linear form by the 2-CT (∆∆CT) 

calculation (Livak and Schmittgen 2001). The relative expression of the clock genes was 

normalized to cyclophilin mRNA levels.  

 

Western blot analyses 
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Protein was extracted from liver using RIPA (radio-immunoprecipitation assay) lysis buffer (15 

mM Tris–HCl, 165 mM NaCl, 0.5% Na-deoxycholate, 1% Triton X-100 and 0.1% SDS) 

containing a protease inhibitor cocktail (1:1000; Sigma-Aldrich P8340-1 mL, Madrid, Spain) 

and 1 mM PMSF (phenylmethanesulfonyl fluoride solution, Sigma-Aldrich 93482, Madrid, 

Spain). The total protein levels of the lysates were determined using the BCA method from 

Thermo Scientific (23227, Barcelona, Spain). The samples were then placed in sample buffer 

(0.5 M Tris–HCl, pH 6.8; 10% glycerol; 2% (w/v) SDS; 5% (v/v) β-mercaptoethanol; and 

0.05% bromophenol blue). After boiling for 5 min, 50 µg of protein was loaded and separated 

on a 10% SDS-polyacrylamide gel. The samples were then transferred to a polyvinylidene 

fluoride (PVDF) membrane (Bio-Rad Laboratories, 162-017, Barcelona, Spain) using a 

transblot apparatus (Bio-Rad, 16580229SP ) and blocked at room temperature for 1 h with 5% 

(w/v) non-fat milk in TTBS buffer (Tris-buffered saline (TBS) plus 0.5% (v/v) Tween-20). The 

membranes were incubated overnight at 4ºC with primary monoclonal antibodies directed 

against Nampt (Imgenex, IMX-6096, Nanterre, France), Bmal1 (LS-Bio, LS-C16603, Vizcaya, 

Spain), acetyl-Bmal1 (Millipore, AB15396, Madrid, Spain), HmgcoAR (Santa Cruz, SC-33827, 

Nanterre, France) and anti-β-actin (Sigma-Aldrich, A2066-0.2 mL, Madrid, Spain) at a 1:1000 

dilution in blocking solution. After washing with TTBS, the blots were incubated with a 

peroxidase-conjugated monoclonal anti-rabbit secondary antibody (Sigma-Aldrich, A1949, 

Madrid, Spain) at a 1:10,000 dilution at room temperature for 1.5 h. The blots were then washed 

thoroughly in TTBS followed by TBS. Immunoreactive proteins were visualized with an 

enhanced chemiluminescence substrate kit (ECL plus; Amersham Biosciences, GE Healthcare, 

RPN2132, Barcelona, Spain) according to the manufacturer’s instructions. Images were 

obtained with a GBOX Chemi XL 1.4 image system (Syngene, UK). Band quantification was 

performed with ImageJ software (NIH, USA). The results were expressed as relative intensity 

(Nampt/ β -actin, Bmal1/ β -actin, HmgcoAR/ β -actin and acetyl-Bmal1/ β -actin) and are 

relative to the loading control group. 

 

NAD quantification 

NAD levels in the liver were quantified using an ELISA kit following the manufacturer’s 

instructions (Sigma-Aldrich, MAK037-1KT, Madrid, Spain). 

 

Data and statistical analysis 

The mRNA of each gene was fitted by single cosinor analysis, as data formed a period curve, to 

determine whether significant circadian rhythms were present (Acro.exe, version 3.5; designed 

by Dr. Refinetti (Refinetti et al. 2007)). Cosinor analysis provides information on the rhythm 

through peak-to-trough amplitude; the time of the peak of the rhythm, or acrophase, with a 

confidence interval; and the middle value of the cosine wave or MESOR. The regression fitting 
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also produces an R-squared statistic which is then used to compute the percentage of variance, 

or rhythmicity, in an individual time-series data set that is accounted for by the fitted 24 h curve. 

In addition, the results are presented as the mean with the associated standard error (SE).The 

data were analyzed using a two-way ANOVA and Student t-test to determine the significant 

difference using SPSS statistical software (version 17.0 for Windows; SPSS, Inc.). P values < 

0.05 were considered statistically significant. 

 

 

 

Results 

Acute administration of GSPE at ZT0 shifted the acrophase of Clock, Rorα, Per2 and Nampt 

in the liver. 

The capacity of GSPE to modify the molecular clock in the liver was evaluated by measuring 

the 24h mRNA oscillation of Clock and Bmal1 (clock core genes), Per2 (a component of the 

negative loop of the circadian clock), Rorα and Rev-erbα (nuclear receptors whose expression is 

regulated by CLOCK:BMAL1 and which act as an activator or repressor, respectively, of 

Bmal1 gene expression), Nampt (a metabolic gene whose expression is directly regulated by 

CLOCK:BMAL1) and HmgCoAR (a metabolic gene that has circadian rhythm expression but 

that is not directly controlled by CLOCK:BMAL1). To determine whether GSPE significantly 

altered the circadian gene pattern, we applied the ANOVA and cosinor analyses to each mRNA 

curve. 

Overall, the ANOVA test indicated that GSPE administered at ZT0 (light turned on) did not 

significantly affect the mRNA rhythm of any gene studied in the liver (Figure 1). Nonetheless, 

the cosinor analysis demonstrated that GSPE, administered at this ZT, modulated the wave 

parameters of some of these mRNAs. Specifically, GSPE delayed the Clock acrophase by two 

hours, from ZT20 to ZT22, and doubled its amplitude (Figure 1B), while not altering the profile 

of Bmal1 (Figure 1A). The mRNA from the clock-controlled genes Rorα and Per2 (Figure 1C 

and 1E, respectively) shared the same profile in control animals, peaking at ZT17. Remarkably, 

GSPE treatment delayed the mRNA acrophase of both genes by 3h, until ZT20. In the same 

way, the mRNA acrophase of Nampt (Figure 1F), which is also controlled by CLOCK-BMAL1, 

was delayed by 6h, shifting from ZT11 to ZT17.  Nonetheless, GSPE did not affect the wave 

parameters of Rev-erbα (Figure 1D) or HmgCoAR (Figure 1G).  

In view of the importance of these circadian waves over the course of 24h, the percentage of 

rhythm was also computed. In general, GSPE treatment slightly affected the wave rhythm of 

expression. Only Per2 decreased its rhythmicity after GSPE treatment (approx. from 74% to 

55%).  
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Altogether, these results indicate that PAs have the capacity to adjust the molecular clock in the 

liver by delaying the acrophase of Clock, Rorα, Per2 and Nampt when GSPE was administered 

at ZT0. However, taking into account the confidence interval of the acrophase, the shift was 

only relevant for Nampt. 

 

Acute administration of GSPE at ZT12 significantly affected the expression of Per2, Nampt 

and HmgCoAR in the liver. 

Rats are nocturnal animals and eat mainly at night. Therefore, we next studied whether PAs can 

modulate the molecular clock in the liver when GSPE is administered at night, when the liver 

actively manages the ingested nutrients. GSPE was administered when the light was turned off 

(ZT12), and the expression of clock-core and clock-controlled genes in the liver was determined 

at four time points: ZT12, ZT13, ZT15 and ZT18. Nonetheless, to achieve a better visualization 

of the changes induced by GSPE administered at ZT12, we drew the figures (Figure 2) with a 

24-hour curve for the control group by assembling the expression values of the control group 

from both this experiment and the former experiments. Because of the short period studied (6 

hours) in this experiment, we analyzed the effects of GSPE by the ANOVA test and did not 

apply a cosinor analysis.  

GSPE, administered at ZT12, induced slight effects on the mRNA levels of clock-core genes 

Bmal1 (Figure 2A) and Clock (Figure 2B) as well as on the mRNA levels of the clock-

controlled genes Rorα (Figure 2C) and Rev-erbα (Figure 2D).  Nonetheless, the mRNA levels of 

Per2 (Figure 4E) and Nampt (Figure 4F), two clock-controlled genes, were significantly 

affected by GSPE. Moreover, the mRNA levels of HmgCoAR (Figure 4G), a gene with 

circadian rhythm but not directly controlled by the clock-core genes, were also significantly 

increased by GSPE treatment.  

Comparing the effects of GSPE administered at ZT12 (beginning of the night) or at ZT0 

(beginning of the day), it is evident that Nampt was modified under both conditions, thus 

indicating that this gene is a target of GSPE. However, GSPE showed a powerful capacity to 

entrain Nampt when administered at ZT12. 

 

Acute administration of GSPE modulated the peripheral clock in the liver of jet-lagged rats 

The capacity of GSPE to modulate the peripheral clock was also evaluated in a situation where 

circadian rhythm was disrupted using rats subjected to a 6h jet-lag. Rats at ZT6 (middle of the 

light period) were administered GSPE and moved to ZT12 (light turned off). The capacity of 

GSPE to modulate clock-core and clock-controlled genes was evaluated at ZT12, ZT13, ZT15 

and ZT18. Because of the short period studied (6h) in this experiment, we analyzed the effects 

of GSPE by the ANOVA test and did not apply a cosinor analysis. 
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In control animals, the jet lag induced a clear shift in the mRNA rhythmicity for all of the genes 

that were studied (Figure 3) when the rhythms were compared with the 24-hour control waves 

(built by assembling the expression values of the control groups, such as in the former 

experiment).  

GSPE, administered at the beginning of jet lag, did not modulate Clock (Figure 3B) or Per2 

(Figure 3E), whereas it significantly altered the expression rhythm of Rev-erbα (Figure 3D), 

Bmal1 (Figure 3A), Nampt (Figure 3F) and HmgCoAR (Figure 3G) when compared with the jet 

lag control group. Remarkably, Nampt was again one of the genes most sensitive to GSPE, as in 

when GSPE was administered at ZT0 and, in particular, at ZT12.  

 

Acute administration of GSPE had opposite effects on both Nampt expression and NAD 

levels in the liver at different treatment times 

Given that Nampt was the most susceptible gene to GSPE in the liver and that this protein is the 

rate-limiting enzyme of the NAD salvage pathway, we next quantified the oscillations of Nampt 

protein and NAD concentration to confirm Nampt as a target of GSPE in the liver.  

Remarkably, GSPE induced opposite effects when it was administered at ZT0 or ZT12 (Figure 

4). Nampt protein and mRNA levels were decreased 3h after GSPE administration at ZT0 

(Figure 4A), while Nampt mRNA and protein levels were significantly elevated at 3 and 6h, 

respectively, after GSPE administration at ZT12 (Figure 4B). These modifications in Nampt 

expression agreed with the alterations in NAD levels that were induced by GSPE in each 

situation: NAD levels were significantly decreased 6h after GSPE administration at ZT0, 

whereas they were significantly increased 6h after GSPE administration at ZT12. 

Altogether, these results implicate Nampt and NAD modulation as key factors in GSPE activity 

in the liver.  

 

Acute administration of GSPE at ZT12 increased the ratio of acetylated Bmal1 in rat liver  

Nampt is a direct target gene of CLOCK:BMAL1. However, GSPE did not induce a strong 

modification in the mRNA rhythms of Clock or Bmal1 that could explain the observed 

alteration in Nampt expression. However, the transcriptional activity of CLOCK:BMAL1 is 

dependent on Bmal1 acetylation. Thus, we focused further on the ratio of Bmal1 acetylation by 

measuring Bmal1 mRNA, protein and acetylated protein during the first six hours after GSPE 

administration at ZT0 or ZT12.  

GSPE administered at either time increased mRNA and protein levels of Bmal1 after 1 hour of 

treatment (Figure 5A and B; ZT1 and ZT13, respectively). Nonetheless, the ratio of acetylated 

Bmal1 was only increased when GSPE was administered at night (ZT12); these are the same 

circumstances under which Nampt was overexpressed.  
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Acute administration of GSPE repressed the relative expression of HmgcoAR in rat liver. 

Finally, the mRNA and protein levels of HmgcoAR, a metabolic gene not controlled by the 

clock molecular machinery, were determined according to the three experimental designs (day, 

night and jet lag) during only the first six hours after GSPE treatment (ZT1, ZT3 and ZT6 or 

ZT13, ZT15 and ZT18).  

 HmgcoAR expression was significantly repressed at ZT1 (mRNA) and ZT3 (protein) after 

GSPE treatment was administered at ZT0 (Figure 6A). While mRNA levels were increased at 

ZT15 after GSPE treatment was administered at ZT12, the protein levels did not reflect that fact 

(Figure 6B). Finally, in the jet-lagged rats, HmgcoAR protein and mRNA levels were decreased 

at ZT18 (Figure 6C).   

 

 

Discussion 

While light is the major synchronizer of the central clock in the suprachiasmatic nucleus (SCN), 

many other external cues such as temperature, social events or meal timing (Hirao et al. 2009) 

can entrain circadian rhythms in other cerebral regions or peripheral tissues. This phenomenon 

is especially the case in the liver, which is the most important metabolic organ due to its 

involvement in glucose (Lamia et al. 2008) and lipid (Edwards et al. 1972) metabolism, among 

other crucial physiological functions (Panda et al. 2002). Even specific components in foods 

could also be important synchronizers, such as dietary fat (Kohsaka et al. 2007) or phenolic 

compounds like resveratrol (Pifferi et al. 2013, 2011; Oike and Kobori 2008; Miranda et al. 

2013). Therefore, the aim of this work was to determine the capacity of an acute dose of GSPE 

to act as a signal to entrain the molecular clock in the liver and as a global mechanism by which 

PAs can exert their beneficial metabolic effects in the liver. 

To accomplish this outcome, three different experimental approaches were performed to 

determine whether PAs can modulate the liver clock: the administration of GSPE at ZT0, at the 

beginning of the light phase; at ZT12, at the beginning of the dusk phase; and to rats with 6h of 

jet lag. The data clearly show that the power of PAs to entrain the circadian rhythm of clock-

core and clock-controlled genes in the liver depends on the time of their administration. 

Interestingly, Nampt and NAD emerge as molecular targets of PAs in the liver. Nampt is the 

rate-limiting enzyme in NAD biosynthesis through its salvage pathway (Magni et al. 1999). 

NAD plays a major role as a coenzyme in numerous oxidation-reduction reactions (Rongvaux et 

al. 2003) and is required in a number of important signaling pathways in mammalian cells, 

including poly(ADP-ribosyl)ation in DNA repair (Ménissier de Murcia et al. 2003), mono-

ADP-ribosylation in both the immune response and G protein-coupled signaling (Corda and Di 

Girolamo 2003), and the synthesis of cyclic ADP-ribose and nicotinate adenine dinucleotide 

phosphate (NAADP) in intracellular calcium signaling (Lee 2001). Furthermore, NAD activates 
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several NAD(+)-dependent deacetylases (SIRT), such as SIRT1 and SIRT3, thus controlling the 

activity of many cellular proteins by cycling them between their acetylated and deacetylated 

forms. Specifically, the circadian oscillations of NAD levels have been shown to modulate 

mitochondrial respiration by controlling the activity of SIRT3, thus generating rhythms in the 

acetylation and activity of oxidative enzymes that synchronize mitochondrial oxidative 

functions across the daily cycles of fasting and feeding (Peek et al. 2013). Therefore, NAD is a 

key molecule in the synchronization of liver metabolism, and the modulation of its levels in the 

liver by PAs is an attractive candidate for the explanation of some of the metabolic effects of 

PAs. Although GSPE modulated Nampt and NAD levels in opposite ways 6h after its 

administration during the day versus at night, reducing or increasing their levels, respectively, it 

is noteworthy that the Nampt acrophase was delayed by 6 hours by GSPE administration during 

the day, suggesting that NAD also peaked at night. Therefore, in this sense, PAs could act as an 

element of adaptation in the liver, improving the energetic profile of rats and increasing 

mitochondrial function and oxidation at night, when rats are active. In keeping with the idea of 

an adaptation mechanism, as these animals are resting during the light phase, PA activity could 

be acting as an energy saver through the decreased levels of NAD after PA administration at 

ZT0.  

NAD concentration oscillates in a circadian manner due to the circadian expression of Nampt, 

which in turn is mediated by the CLOCK:BMAL1 heterodimer (Nakahata et al. 2009). The 

rhythm of Clock and Bmal1 expression was not altered by GSPE administration, either during 

the day or at night (Figures 1 and 2). However, when Bmal1 expression was studied during the 

first six hours of GSPE administration (Figure 5), both mRNA and protein levels were always 

increased one hour after PA consumption, regardless of whether GSPE was administered 

diurnally, at night, or even under jet lag conditions, suggesting a robust relationship between 

Bmal1 and PAs. However, to be active, BMAL1 should be acetylated by CLOCK, which is its 

own partner. Therefore, the ratio of acetylated to total BMAL1 protein provides direct 

information about the transactivation activity of BMAL1:CLOCK (Nakahata et al. 2009). We 

found that GSPE significantly increased the ratio of BMAL1 that was acetylated at ZT13, 

whereas this effect was not observed at ZT1. This differential pattern of BMAL1 acetylation, 

which depends on the time of GSPE administration, could explain the overexpression of 

NAMPT and therefore the peak in NAD levels in the liver only when GSPE was administered at 

night. Therefore, it is globally supposed in this work that NAD levels peaked 6 hours after 

GSPE consumption at ZT12 (thereby at ZT18) as a consequence of an increased BMAL1 

acetylation ratio at ZT13 that, in turn, increased Nampt mRNA and protein levels at ZT15-

ZT18.  

PAs modulate lipid metabolism in the liver (Bladé et al. 2010). Therefore, we also analyzed the 

expression of HmgcoAR, the key enzyme in the cholesterol biosynthetic pathway, which has 
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circadian rhythm but is not directly controlled by the clock-core genes (Patel et al. 2001). As 

was expected, the HmgcoAR acrophase occurred at ZT17, and PAs did not modify the 

expression rhythm of this enzyme. However, GSPE had a dual effect on HmgcoAR expression 

depending on the time of its administration. GSPE repressed both HmgcoAR mRNA and protein 

levels at ZT0, whereas protein levels at ZT12 were not affected. Therefore, as in the case of 

BMAL1 acetylation, Nampt expression and NAD levels, the time of PA administration 

conditions the circadian adjustment outputs.     

Overall, these findings agree with the Xenohormesis Hypothesis, which proposes that 

heterotrophs are able to sense chemical cues, such as polyphenols, that are synthesized by plants 

in response to stress (Howitz and Sinclair 2008). In fact, circadian rhythms allow the 

anticipation of environmental changes and adaptation to the time of day and food availability, 

which has been shown in this work through NAD, NAMPT and BMAL1 acetylation levels. 

Thus, PAs can advise animals about environmental conditions by entraining biological rhythms 

to obtain a better ability to adapt to changing conditions over the course of their lives.  

In conclusion, PAs entrain the molecular clock in the liver even though their effectiveness 

depends largely on the time of administration. Specifically, Bmal1 and Nampt, as well NAD, 

emerge as targets of GSPE in the liver.  
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Figure legends 
 

Fig. 1  
Nampt is the most sensitive clock-controlled gene in the liver after an oral dose of a grape seed 

proanthocyanidin extract (GSPE) administered at Zeitgeber Time 0.  

Rats were orally gavaged with tap water (control group) or 250 mg of GSPE /kg body weight 

dissolved in tap water at ZT0 (light turned on), and mRNA levels were measured at ZT0, ZT0.5, 

ZT1, ZT3, ZT6, ZT12 and ZT24. The capacity of GSPE to modify the peripheral clock was 

evaluated by measuring the oscillation of the levels of mRNA from the clock core genes (A) 

Bmal1 and (B) Clock as well as the CLOCK:BMAL1-controlled genes, (C) Rorα, (D) Rev-erbα, 

(E) Per2 and (F) Nampt. (G) The expression of HmgCoAR, a gene that has circadian rhythm 

expression but that is not directly controlled by CLOCK:BMAL1, was also evaluated. Each 

graph shows the mean ± s.e. for each data point (n=3). T, significant effect of 

proanthocyanidins; t, significant effect of Zeitgeber Time; T*t, interaction between the two 

variables by two-way ANOVA. For the cosinor analysis: %R, cosine wave rhythm percentage; 

M, mesor; AMP, amplitude of cosine wave; Acro, acrophase; CI Acro, confidence interval of 

acrophase. 

 

Fig. 2 
An oral dose of a grape seed proanthocyanidin extract (GSPE) administered at Zeitgeber Time 

12 significantly affects the expression of Per2, Nampt and HmgCoAR in the liver.  

Rats were orally gavaged with tap water (control group) or 250 mg of GSPE /kg body weight 

dissolved in tap water at ZT12 (light turned off), and mRNA levels were measured at ZT12, 

ZT13, ZT15 and ZT18. The capacity of GSPE to modify the peripheral clock was evaluated by 

measuring the oscillation of the levels of mRNA from the clock core genes (A) Bmal1 and (B) 

Clock as well as the CLOCK:BMAL1-controlled genes (C) Rorα, (D) Rev-erbα, (E) Per2, and 

(F) Nampt. (G) The expression of HmgCoAR, a gene that has circadian rhythm expression but 

that is not directly controlled by CLOCK:BMAL1, was also evaluated. Each graph shows the 

mean ± s.e. for each data point (n=3). For the control group, a 24-hour curve was constructed by 

assembling the expression values of the control group from this experiment and those from Fig. 

1. T, significant effect of proanthocyanidins; t, significant effect of Zeitgeber Time; T*t, 

interaction between the two variables by two-way ANOVA.  

 

 

 

Fig. 3 
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An oral dose of a grape seed proanthocyanidin extract (GSPE) administered to jet-lagged rats 

significantly alters the expression rhythms of Rev-erbα, Bmal1, Nampt and HmgCoAR.  

Rats were orally gavaged with tap water (control group) or 250 mg of GSPE /kg body weight 

dissolved in tap water at ZT6 (middle of the light period) and were moved to ZT12 (light turned 

off). mRNA levels were measured at ZT12, ZT13, ZT15 and ZT18. The capacity of GSPE to 

modify the peripheral clock was evaluated by measuring the oscillation of the levels of mRNA 

from the clock core genes (A) Bmal1 and (B) Clock as well as the CLOCK:BMAL1 controlled 

genes (C) Rorα, (D) Rev-erbα, (E) Per2 and (F) Nampt. (G) The expression of HmgCoAR, a 

gene that has circadian rhythm expression but that is not directly controlled by 

CLOCK:BMAL1, was also evaluated. Each graph shows the mean ± s.e. for each data point 

(n=3). For the control group with no jet lag, a 24-hour curve was constructed by assembling the 

expression values of the control groups from Fig. 1 and 2. T, significant effect of 

proanthocyanidins; t, significant effect of Zeitgeber Time; T*t, interaction between the two 

variables by two-way ANOVA.  

 

Fig. 4 
An oral dose of a grape seed proanthocyanidin extract (GSPE) administered at Zeitgeber Time 0 

or 12 oppositely affects both Nampt expression and NAD levels in the liver.  

Rats were orally gavaged with tap water (control group) or 250 mg of GSPE /kg body weight 

dissolved in tap water both at ZT0 (light turned on) and ZT12 (light turned off), and Nampt 

protein expression and NAD levels were measured at ZT1, ZT3, ZT6, ZT13, ZT15 and ZT18. 

Proteins were extracted by radioimmunoprecipitation (RIPA) buffer and analyzed by Western 

blot. Proteins were normalized to β-actin, an endogenous protein. Relative intensity units were 

obtained by dividing the band intensity of the protein of interest by the band intensity of the 

endogenous protein. NAD quantification was performed using an ELISA kit following the 

manufacturer’s instructions. Each graph shows the mean ± s.e. for each data point (n=3). White 

bars, control group; colored bars, GSPE-treated groups. *Statically significant differences found 

by independent Student T-test (p<0.05) between the control group and GSPE-treated group for 

each ZT. 

 

 

 

 

Fig. 5 
An oral dose of a grape seed proanthocyanidin extract (GSPE) administered at Zeitgeber Time 

12 increases the ratio of acetylated Bmal1 in rat liver.  
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Rats were orally gavaged with tap water (control group) or 250 mg of GSPE /kg body weight 

dissolved in tap water both at ZT0 (light turned on) and ZT12 (light turned off), and Bmal1 total 

protein and acetylated protein were measured at ZT1, ZT3, ZT6, ZT13, ZT15 and ZT18. 

Proteins were extracted by radioimmunoprecipitation (RIPA) buffer and analyzed by Western 

blot. Proteins were normalized to β-actin, an endogenous protein. Relative intensity units were 

obtained by dividing the band intensity of the protein of interest by the band intensity of the 

endogenous protein. Acetylated and total BMAL1 protein samples were then divided to obtain 

the acetylated Bmal1/total Bmal1 protein ratio, shown as a percentage. Each graph shows the 

mean ± s.e. for each data point (n=3). White bars, control group; colored bars, GSPE-treated 

groups. *Statically significant differences found by independent Student T-test (p<0.05) 

between the control group and GSPE-treated group for each ZT. 

 

Fig. 6 
An oral dose of a grape seed proanthocyanidin extract (GSPE), administered at Zeitgeber Time 

0, 12, or to jet-lagged rats, modulates HmgcoAR expression in rat liver.  

Rats were orally gavaged with tap water (control group) or 250 mg of GSPE /kg body weight 

dissolved in tap water at ZT0 (light turned on), ZT12 (light turned off) or ZT6 (middle of the 

light period), in the case of the jet-lagged rats, which were moved to ZT12 (light turned off) 

after GSPE administration. HmgcoAR protein expression was then measured at ZT1, ZT3, ZT6, 

ZT13, ZT15 and ZT18. Proteins were extracted by radioimmunoprecipitation (RIPA) buffer and 

analyzed by Western blot. Proteins were normalized to β-actin, an endogenous protein. Relative 

intensity units were obtained by dividing the band intensity of the protein of interest by the band 

intensity of the endogenous protein. Each graph shows the mean ± s.e. for each data point (n=3). 

White bars, control group; colored bars, GSPE-treated groups. *Statically significant differences 

found by independent Student T-test (p<0.05), between the control group and GSPE-treated 

group for each ZT. 
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Figure 2 
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Figure 4 

NAMPT

Β-ACTIN

0

50

100

150

200

250

ZT1 ZT3 ZT6

U
m

ol
/g

 to
ta

l N
AD

 
co

nc
en

tr
at

io
n

*

ZT1                ZT3                ZT6
0

40

80

120

160

200

ZT13 ZT15 ZT18

U
m

ol
/g

 to
ta

l N
AD

 
co

nc
en

tr
at

io
n

ZT13              ZT15               ZT18

*

0

1

2

3

CT3 CT6

N
am

pt
 p

ro
te

in
 e

xp
re

ss
io

n

*

ZT3                             ZT6
0

1

2

3

CT13 CT15 CT18

N
am

pt
pr

ot
ei

n 
ex

pr
es

sio
n

ZT13                 ZT15                 ZT18

*

0

2

4

6

8

10

CT13 CT15 CT18

N
am

pt
 re

la
tiv

e 
ex

pr
es

sio
n Control

GSPE

ZT13                   ZT15                  ZT18

*B

0

0,1

0,2

0,3

CT1 CT3 CT6

N
am

pt
 re

la
tiv

e 
ex

pr
es

sio
n Control

GSPE

ZT1                   ZT3                   ZT6

*

0.3A

0.2

0.1

 

 

 

 

 

 

 

 

 

Page 23 of 25

http://mc.manuscriptcentral.com/jbrhythms

Journal of Biological Rhythms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF CENTRAL AND PERIPHERAL MOLECULAR CLOCKS BY PROANTHOCYANIDINS 
Aleix Ribas Latre 
Dipòsit Legal: T 1831-2014



For Peer Review

Figure 5 
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Figure 6 
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Table 1. Primer sequences 

 Forward Reverse 

Bmal1 5’-GTAGATCAGAGGGCGACGGCTA-3’ 5’-CTTGTCTGTAAAACTTGCCTGTGAC-3’ 

Clock 5’-TGGGGTCTATGCTTCCTGGT-3’ 5’-GTAGGTTTCCAGTCCTGTCG-3’ 

Per2 5’-CGGACCTGGCTTCAGTTCAT-3’ 5’-AGGATCCAAGAACGGCACAG-3’ 

Rorα 5’-GAAGGCTGCAAGGGCTTTTTCAGGA-3’ 5’-CCAAACTTGACAGCATCTCGA-3’ 

Rev-erbα 5’-CTGCTCGGTGCCTAGAATCC-3’ 5’-GTCTTCACCAGCTGGAAAGCG-3’ 

Nampt 5’-CTCTTCACAAGAGACTGCCG-3’ 5’-TTCATGGTCTTTCCCCCACG-3’ 

HmgCoAR 5’- GAAACCCTCATGGAGACGCA-3’ 5’- ACCTCTGCTGAGTCACAAGC-3’ 

Cyclophilin 5’-CTTCGAGCTGTTTGCAGACAA-3’ 5’-AAGTCACCACCCTGGCACATG-3’ 

 

Bmal1 (also known as ARNTL): aryl hydrocarbon receptor nuclear translocator-like; Clock: 
circadian locomotor output cycles kaput; Per2: period circadian clock 2; Rorα: RAR-related 
orphan receptor A; Rev-erbα (also known as Nr1d1): nuclear receptor subfamily 1, group D, 
member 1; Nampt: nicotinamide phosphoribosyl transferase; HmgCoAR: 3-hydroxy-3-methyl-
glutaryl-CoA reductase. 
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IV. RESULTS AND DISCUSSION 
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3. Dietary proanthocyanidins modulate the rhythm of BMAL1 

expression and induce RORα transactivation in HepG2 cells. 

 (Manuscript 3, submitted) 
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Abstract 

Proanthocyanidins (PAs), a flavonoid sub-class, alter the expression of clock genes in the liver 

of lean and obese rats. The present study aimed to determine whether PAs could modulate the 

24-hour rhythmicity of clock gene expression and to identify the molecular mechanism through 

PAs could adjust the clock system in HepG2 cells. The 24-hour rhythmicity of core clock 

(CLOCK and BMAL1) and clock-controlled (CRY, PER2,  RORα,  REV-ERBα) gene expression 

indicated that a grape seed proanthocyanidin extract (GSPE) shifted the acrophase of nearly all 

of them, but BMAL1 appeared as the most sensitive gene to GSPE. Specifically, GSPE 

increased BMAL1 expression strongly and very quickly. This effect was also reproduced by 

melatonin. The overexpression of BMAL1 was MT1 dependent for melatonin but MT1 

independent for GSPE. However, GSPE  increased  the  transcriptional  activity  of  RORα,  

suggesting that this nuclear receptor could be responsible for the modulation of BMAL1 by 

GSPE.  

 

 

 

 

 

 

 

 

Keywords:  Bmal1, melatonin, flavonoids, Rorα 
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1. Introduction 
Many aspects of metabolism display circadian rhythms that are regulated by peripheral clocks in 

a tissue-autonomous manner, revealing a mechanism by which the organism can improve its 

adaptation in the face of external demands and integrating information from the environment 

(Tahara & Shibata, 2013). Disruption of the clock system triggers different types of illnesses, 

such as cancer and metabolic syndrome, indicating that peripheral clocks play an important role 

in maintaining homeostasis and normal body function (Froy, 2010). Among the peripheral 

clocks present throughout the body, the clock in the liver is one of the most important because 

this organ plays a central role in metabolism and energy production, significantly affecting the 

physiological status of the entire organism. For instance, the liver is the major site of 

intermediate metabolism, including the synthesis and removal of cholesterol (Edwards, Muroya, 

& Gould, 1972) and the regulation of glucose homeostasis (Lamia, Storch, & Weitz, 2008). In 

fact, 10% of all transcripts or 20% of all proteins in mouse liver are under circadian regulation 

(Reddy et al., 2006), emphasizing the importance of the clock present in this organ. 

At the molecular level, the clock system consists of transcription–translation autoregulatory 

feedback loops, with the transcriptional activators circadian locomotor output cycles kaput 

(CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) driving the positive limb of 

this loop. After their heterodimerization, the complex activates transcription of the Period (PER) 

and Cryptochrome (CRY) genes; once reaching a critical concentration, the PER and CRY 

proteins translocate to the nucleus and inhibit the activity of the CLOCK:BMAL1 heterodimer, 

thus leading to a decrease in PER and CRY expression. In addition, the active CLOCK:BMAL1 

complex also promotes transcription of the retinoic acid-related orphan receptor alpha (RORα) 

and nuclear receptor subfamily 1, group D (Nr1d1, also known as REV-ERBα), its own activator 

and repressor, respectively, thereby generating another loop of regulation (Green, Takahashi, & 

Bass, 2008).  

Peripheral clocks are adjusted to a 24-hour circadian rhythm by the master clock in the 

suprachiasmatic nucleus (SCN) of the hypothalamus, which is entrained by the light/dark cycle, 

through the autonomic nervous system and hormonal signals such as melatonin and 

glucocorticoids (Dibner, Schibler, & Albrecht, 2010). Moreover, the molecular clock in the 

liver, and therefore the metabolic circadian rhythm, is also entrained by the frequency of 

daytime meals as well as by the composition of the diet (Hirao, Tahara, Kimura, & Shibata, 

2009; Reznick et al., 2013).  

Proanthocyanidins (PAs) are a sub-class of flavonoids that are present in vegetables, fruits, 

cacao, nuts and some beverages, such as red wine and tea (Serrano, Puupponen-Pimiä, Dauer, 

Aura, & Saura-Calixto, 2009). The consumption of PA extracts and PA-rich food has been 

associated with a variety of healthy effects, such as reduced cardiovascular disease (Rasmussen, 

Frederiksen, Struntze Krogholm, & Poulsen, 2005), improved insulin resistance (Montagut et 
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al., 2010), and decreased obesity (Montagut et al., 2007), inflammation (Terra et al., 2011), 

hypertension (Quiñones et al., 2013), oxidative stress (Fernández-Iglesias et al., 2014) and 

dyslipidemia (Quesada et al., 2009). The liver has been found to be a key organ in the 

mechanism of action by which PAs improve lipid (Bladé, Arola, & Salvadó, 2010) and glucose 

(Pinent, Cedó, Montagut, Blay, & Ardévol, 2012) homoeostasis in disrupted situations. 

Interestingly, PAs modulate the expression of clock genes in the liver of lean and obese rats 

(Ribas-Latre et al., 2014), suggesting that PAs can improve health by entraining biological 

rhythms. Therefore, the aim of this study was to determine whether PAs could modulate the 24-

hour rhythmicity of clock gene expression in hepatocytes and to identify the molecular 

mechanism through PAs could adjust the clock system in the liver. To determine the direct 

effect of PAs in the liver clock and avoid synchronization by the SCN, this study was carried 

out using the human hepatocyte carcinoma cell line HepG2.  

 

2. Materials and methods 
2.1.Grape seed proanthocyanidin extract composition 

The grape seed proanthocyandin extract (GSPE) was kindly provided by Les Dérives 

Résiniques et Terpéniques (Dax, France). GSPE contains (Serra et al., 2010) catechin (58 

μmol/g),  epicatechin  (52  μmol/g),  epigallocatechin  (5.50  μmol/g),  epicatechin gallate (89 

μmol/g),  epigallocatechin gallate  (1.40  μmol/g),  dimeric procyanidins  (250  μmol/g),  trimeric 

procyanidins  (1568  μmol/g),  tetrameric procyanidins  (8.8  μmol/g), pentameric procyanidins 

(0.73  μmol/g)  and  hexameric procyanidins  (0.38  μmol/g). 

 

2.2. Cell culture  

HepG2 cells were used as the experimental model. The cells were routinely propagated in a 5% 

CO2 humidified atmosphere at 37 °C in minimum essential medium (DMEN, BE12-917F, 

Lonza, Barcelona, Spain) supplemented with 10% (v/v) fetal bovine serum (DE14-801F, Lonza, 

Barcelona Spain), L-glutamine (2 mM) (BE17-605E, Lonza, Barcelona, Spain), N-(2-

Hydroxyethyl) piperazine-N'-(2-ethanesulfonic acid) (HEPES, 25 mM) (H-3375-500 g, Sigma, 

Madrid, Spain), non-essential amino acids (NEAA, 0.1 mM) (M7145, Sigma, Madrid, Spain) 

and penicillin (100 U/ml) / streptomycin  (100  μg/ml)  (DE17-602E, Lonza, Barcelona, Spain). 

The cells were passaged every 3 days, and the medium was changed every 2 days. 

The day before the experiment, cells at approximately 80% of confluence were plated in six-

wells plates (657160, Cellstar, Tarragona, Spain) at a density of 1,000,000 cells/well. After 24 

hours, the cells were synchronized by serum shock using 50% horse serum (v/v) (H1138-500 

mL, Sigma, Madrid, Spain) in DMEN for two hours. The medium was then replaced with 

DMEN, supplemented as indicated before, and the specific treatment was added. GSPE and 

melatonin were dissolved in ethanol at the appropriate concentration to attain a final 

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF CENTRAL AND PERIPHERAL MOLECULAR CLOCKS BY PROANTHOCYANIDINS 
Aleix Ribas Latre 
Dipòsit Legal: T 1831-2014



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

concentration of ethanol ≤0.1% in the medium. For each experiment, control cells were 

incubated with the same concentration of ethanol in the medium. 

Experiment 1: HepG2 cells were incubated with GSPE at 100 mg/L and lysed at 0, 1, 3, 6, 9, 12, 

15, 18, 21 or 24 hours after GSPE addition.  

Experiment 2: HepG2 cells were incubated with GSPE at 100 mg/L or with melatonin (M5250-

250MG, Sigma, Madrid, Spain) at 0.1, 10 or 100  μM and lysed after 1 hour of treatment.  

Experiment 3: HepG2 cells were incubated with GSPE at 100 mg/L or with melatonin (M5250-

250MG,  Sigma,  Madrid,  Spain)  at  10  μM and lysed after 0,1, 3, 6, 9 and 15 hours of treatment.  

Experiment 4: HepG2 cells were incubated with luzindole (0877, Tocris, Madrid, Spain) at 1 

μM for 1 hour and then with GSPE at 100 mg/L or melatonin  at  10  μM.  In  parallel,  another set 

of cells was cultured with GSPE or melatonin, but without luzindole, at the same doses and 

times. The cells were lysed after 1, 6, 9 and 15 hours of GSPE or melatonin treatment.  

For the four experiments, three independent experiments were run in duplicate, and the cells 

were lysed with the lysis buffer RLT (Qiagen, 74106, Barcelona, Spain) and stored at -80ºC 

until RNA extraction.  

 

2.3. RNA extraction and cDNA synthesis 

Total RNA from cells was extracted using the TRIzol reagent and an RNeasy Mini Kit (Qiagen, 

74106, Barcelona, Spain) according to the protocols of both manufacturers. The RNA was 

quantified by spectrophotometry (Nanodrop 1000 Spectrophotometer, Thermo Scientific, 

Madrid, Spain)  at  λ=260  nm  and  tested  for  purity  (by  A260/280  ratio)  and  integrity  (by  

denaturing gel electrophoresis). Complementary DNA was generated using the High-Capacity 

complementary DNA Reverse Transcription Kit from Applied Biosystems (4368814, Madrid, 

Spain). The cDNA was subsequently amplified by PCR using specific TaqMan Assay-on-

Demand Probes from Applied Biosystems (Madrid, Spain) for circadian locomotor output 

cycles kaput (CLOCK) (Hs00231857_m1), brain and muscle ARNT-like protein 1 (BMAL1) 

(Hs00154147_m1), Period 2 (PER 2) (Hs00256143_m1), Cryptochrome1 (CRY 1) 

(Hs01565974_m1), retinoic acid-related orphan receptor alpha (RORα) (Hs00536543_m1), 

nuclear receptor subfamily 1, group D (NR1D1, also known as REV-ERBα) (Hs00253876_m1) 

and cyclophilin peptidylprolyl isomerase A (PPIA) (Hs99999904_m1). 

 

2.4. mRNA quantification by real-time qRT-PCR 

A total of 10 ng of cDNA was subjected to quantitative RT-PCR amplification using the 

TaqMan PCR Core Reagent Kit, according to the manufacturer's protocol, and analyzed using a 

Real-Time 7300 PCR System, both from Applied Biosystems (Madrid, Spain). The thermal 

cycling comprised an initial step at 50 °C for 2 min, followed by a polymerase activation step at 

95 °C for 10 min and a cycling step under the following conditions: 40 cycles of denaturation at 
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95 °C for 15 s and annealing at 60 °C for 1 min. Finally, the statistical data were converted and 

normalized to the linear form by the 2-CT  (∆∆CT) calculation (Livak & Schmittgen, 2001). The 

relative expression of the clock genes was normalized to PPIA mRNA levels.  

 

2.5. Luciferase-based reporter system for Rorα  transcriptional  activity  assays 

A luciferase reporter system was obtained by cloning the ligand-binding domain (LBD) and the 

hinge  region  of  RORα  in  the  pCMV-BD plasmid (Stratagene, USA) using the primers (forward) 

AAAAGGATCCTATGCAGAAGTACAGAAACAC and (reverse) 

AAAACTGCAGTTACCCATCAATTTGCATTGC, which also contain restriction sites for 

BamH1 and Pst1 digestion; HepG2 cDNA was used as the template, and a previously described 

protocol was followed (Josep M del Bas, Laos, Caimari, Crescenti, & Arola, 2012). The 

resulting construct coding for an RORα-LBD:Gal4 DNA-binding domain fusion protein was 

delivered into HepG2 cells cultured in 48-well plates using linear polyethylenimine  (Sigma, 

Madrid, Spain) as the transfection agent (Reed, Staley, Mayginnes, Pintel, & Tullis, 2006) 

together with pFRLuc (Stratagene, USA) as the reporter plasmid. The pRL-TK vector 

expressing Renilla luciferase (Promega) was also co-transfected as the transfection efficiency 

control. For ligand activity assays, the complete medium was replaced with fresh DMEM 

medium supplemented with 10% charcoal-stripped FBS (Life Technologies, USA), 1% NEAA 

and 1% L-glutamine containing either 10 μM  melatonin (Sigma, Spain), 100 mg/L GSPE or 

both, with DMSO as the vehicle. After 24 hours, the cells were washed with PBS, and the 

Renilla and firefly luciferase activities were assayed with the Dual-Glo luciferase assay system 

(Promega, Spain) following the manufacturer’s instructions.  

 

2.6. Data and statistical analysis 

The results are presented as the mean with the associated standard error (SE) of three 

independent experiments. The expression of clock genes was fitted by the method of single 

cosinor analysis, as the data formed a period curve, to determine whether significant circadian 

rhythms were present (Acro.exe, version 3.5; designed by Dr. Refinetti (Refinetti, Lissen, & 

Halberg, 2007)). The cosinor analysis provides information of the rhythm through the peak-to-

trough amplitude and time of the peak of the rhythm, or acrophase, with a confidence interval 

and the middle value of the cosine wave or MESOR. The regression fitting also produces an R-

squared statistic, which is then used to compute the percentage of variance or rhythmicity in 

individual time-series data accounted for by the fitted 24-h curve. 

In addition, data were analyzed using a two-way ANOVA and Student t-test to determine 

significant differences with SPSS statistical software (version17.0 for Windows; SPSS, Inc.). P 

values <0.05 were considered statistically significant. 
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3. Results 
3.1. GSPE shifts the mRNA acrophases of core clock and clock-controlled genes and targets 

BMAL1. 
The capacity of GSPE to modify the molecular clock in HepG2 cells was evaluated by 

measuring the mRNA oscillations of CLOCK and BMAL1 (core clock genes), PER2 and CRY1 

(components of the negative loop of the circadian clock), and RORα and REV-ERBα (nuclear 

receptors with expression regulated by CLOCK:BMAL1 and that act as an activator or a 

repressor of BMAL1 gene expression, respectively).  

The HepG2 cells exhibited a circadian expression of core clock and clock-controlled genes, as 

indicated by the cosinor values obtained from the 24-hour mRNA levels of each gene in the 

control cells (Figures 1A to 1F).  

GSPE treatment did not affect the percentage of rhythmicity of any gene studied but did 

increase the amplitude of REV-ERBα  (Figures 1A to 1F). In contrast, GSPE treatment 

remarkably shifted the acrophase of both core clock and clock-controlled genes, except PER2 

(Figure 1E). Specifically, GSPE treatment advanced the mRNA acrophase of RORα (Figure 1C) 

by 15 hours (shifting from T23 to T8) while delaying the mRNA acrophase of BMAL1 (Figure 

1A) by 6 hours (shifting from T14 to T20), CLOCK (Figure 1B) and CRY1 (Figure 1F) by 18 

hours (shifting from T5 to T23) and REV-ERBα  (Figure 1D) by 3 hours (shifting from T2 to 

T5).  

The effect of GSPE on the mRNA levels of core clock and clock-controlled genes was also 

evaluated by ANOVA (Figures 1A to 1F), with only BMAL1 and RORα expression being 

significantly affected by the treatment. Therefore, BMAL1 and RORα  emerged as the genes most 

sensitive to GSPE.  

 

 

3.2. GSPE mimics the modulation of BMAL1 expression induced by melatonin in HepG2 

cells. 
As BMAL1 is essential for maintaining rhythmicity in cells, we next focused on BMAL1 

modulation by GSPE. Melatonin is one of the most important synchronizers of peripheral 

clocks; therefore, we determined whether GSPE could modulate BMAL1 expression by 

simulating melatonin. 

Comparing BMAL1 mRNA levels in cells treated with GSPE with those of the control at each 

time point independently, it became evident that GSPE increased BMAL1 expression at 1 and 15 

hours after treatment (Figure 2A). Thus, the cells were cultured with melatonin, or GSPE, for 1, 

3, 6, 9 or 15 hours. To define the suitable concentration of melatonin, cells were first cultured 

with three different levels of melatonin for 1 hour (Figure 2B); as 10 µM melatonin induced the 

highest level of BMAL1 overexpression, this concentration was selected for the experiment.     
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Cells cultured with 10 µM melatonin significantly overexpressed BMAL1 at 1 hour, whereas the 

control values were observed at 6, 9 and 15 hours (Figure 2C). Remarkably, the overexpression 

of BMAL1 induced by melatonin matched completely with that induced by GSPE at 1 hour: 

both GSPE and melatonin increased the BMAL1 mRNA abundance by 6 times when compared 

with the levels of the control cells. However, melatonin did not reproduce the overexpression of 

BMAL1 induced by GSPE at 9 and 15 hours: at these times, GSPE was little effective in 

increasing the BMAL1 mRNA (1.5 times the control value). Thus, the melatonin curve 

overlapped with the GSPE curve for the first 6 hours and thereafter with the control curve.  

BMAL1 controls the expression of RORα  and  REV-ERBα, two genes that shifted their 

acrophase by GSPE treatment. Therefore, we also determined whether melatonin reproduced 

this effect by measuring the mRNA levels of REV-ERBα and RORα at their shifted acrophase, 

i.e., 3 and 9 hours, respectively (Figure 2D). The results shown that melatonin did not reproduce 

the overexpression of REV-ERBα and RORα induced by GSPE. 

Overall, these results indicate that GSPE mimicked the action of melatonin for the first 6 hours 

of treatment only with regard to BMAL1 modulation. 

 

3.3. Overexpression of BMAL1 induced by GSPE is not mediated by the MT1 melatonin 

receptor. 
Some of the effects of melatonin are mediated by its interaction with membrane receptors. Thus, 

the next step was to evaluate the contribution of the MT1 melatonin membrane receptor on the 

impact of GSPE on BMAL1 expression.  To accomplish this, HepG2 cells were pre-incubated 

with luzindole, a competitive antagonist of MT1. 

Figure 3 shows that luzindole significantly blocked the overexpression of BMAL1 induced by 

melatonin at 1 hour. In contrast, luzindole did not block the overexpression of BMAL1 induced 

by GSPE at any time studied, though a non-statistically significant slight inhibition was 

observed at 1 hour. Altogether, these results indicated that the molecular mechanisms by which 

melatonin and GSPE induce the overexpression of BMAL1 are different, with MT1 dependence 

for melatonin and MT1 independence for GSPE.  

 

3.4. GSPE modulates the transcriptional activity of the RORα LBD 

BMAL1 expression  is  activated  by  RORα  (Teboul, Gréchez-Cassiau, Guillaumond, & Delaunay, 

2009). Thus, we evaluated whether GSPE could affect the transcriptional activity of this nuclear 

receptor in the absence and presence of melatonin because this hormone has been shown to 

affect the activity  of  RORα   in  other   cell   lines   (Dai, Ram, Yuan, Spriggs, & Hill, 2001). The 

results (Figure 4) show that incubation with GSPE caused an increase in RORα  activity  in  both  

situations, reaching statistically significant activations of 50% and 100% with respect to the 

vehicle-treated cells. Despite the quantitatively low increase, it is notable that our system 
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displays a high basal transcriptional activity, a phenomenon that has been described previously 

for   RORα   activity   assays   (Dai et al., 2001). Therefore, slight effects might be expected for 

RORα  activators  when  using   these   systems  because the firefly luciferase measurements were 

high even for the vehicle-treated cells. As a result, the additional luminescence induced by 

activators was expected to be limited. Moreover, melatonin did not affect the activity of our 

RORα  system  or  the  effects  of  GSPE.   

 
4. Discussion 
While light is the major synchronizer of the central clock in the SCN, many other external cues, 

such as temperature, social events or meal timing, can entrain circadian rhythms in peripheral 

tissues (Hirao et al., 2009). Even specific components in foods could also be important signals 

for peripheral clocks, such as dietary fat (Kohsaka et al., 2007) or phenolic compounds such as 

resveratrol (Miranda et al., 2013) and PAs (Ribas-Latre et al., 2014). However, the molecular 

mechanisms by which polyphenols modulate peripheral clocks are poorly understood, though 

some studies implicate Sirtuine 1 (SIRT1) as the mechanism used by resveratrol to modulate the 

clock system (Hubbard et al., 2013). Therefore, the aim of this work was to investigate in depth 

the potential molecular mechanism by which PAs could adjust the clock system in the liver. 

As the SCN adjusts peripheral clocks via the autonomic nervous system and hormones (Dibner 

et al., 2010), this study was carried out in vitro to circumvent hormonal and neuronal signals, 

thereby allowing the characterization of the direct effect of PAs in hepatocytes. HepG2 cells 

have been proven to be sensitive to GSPE and reproduce the metabolic effects induced by GSPE 

in vivo (Guerrero et al., 2013; Puiggros et al., 2005; Zhang et al., 2009); therefore, this cell line 

was chosen as the experimental model.  

The results of this work clearly demonstrate that GSPE modulates the circadian rhythm of clock 

genes in HepG2 cells, indicating that PAs are able to directly modulate the clock system in the 

liver. Interestingly, some studies using the same dose of GSPE (100 mg/L) have already 

demonstrated in HepG2 cells a reduction in triglyceride secretion (Josep Maria Del Bas et al., 

2008) and modulation of the expression of the microRNA miR-122 (Arola-Arnal & Bladé, 

2011), two processes that exhibit circadian rhythm.  

Among all the genes of the clock system, BMAL1 emerges as a clear target of PAs in 

hepatocytes. Interestingly, bmal1 is the only single gene in the circadian network for which 

knock out results in arrhythmicity (Hirayama et al., 2007). GSPE increased BMAL1 expression 

robustly and very rapidly. Therefore, GSPE, through the overexpression of BMAL1, can drive a 

powerful rhythmicity to the core components of the clock network at the gene expression level, 

including CLOCK, RORα, REV-ERBα or CRY1. 

Melatonin is secreted by the pineal gland during the dark phase and regulates circadian rhythms 

in humans and animals (Kalsbeek et al., 2000). At pharmacological concentrations, melatonin 
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improves immune function (Macchi & Bruce, 2004), acts as an effective antioxidant (Reiter et 

al., 2003) and exerts beneficial effects in cancer and  some metabolic disorders, such as diabetes 

and obesity, and therefore in cardiac disorders (Singh & Jadhav, 2014). Clearly, melatonin and 

PAs exert similar healthy effects. Interestingly, both GSPE and melatonin resulted in BMAL1 

overexpression in the same pattern, with a rapid and sharp increase after 1 hour of treatment, 

indicating that GSPE mimics, at least with regard to BMAL1, the melatonin-induced 

modulation of the clock system in hepatocytes.   

Melatonin actions in the liver are mediated by its membrane receptor MT1 (Naji, Carrillo-Vico, 

Guerrero, & Calvo, 2004). Therefore, because GSPE mimicked the action of melatonin on 

BMAL1 expression, we studied whether melatonin and PAs share a molecular mechanism. The 

results showed that MT1 mediates the overexpression of BMAL1 induced by melatonin, 

whereas this receptor was not implicated in GSPE actions. In addition to the BMAL:CLOCK 

system, the molecular clock can also be regulated by another feedback loop driven by nuclear 

receptors RORα and REV-ERBα, which activate and repress, respectively, the expression of 

BMAL1 by binding to a retinoic acid-related orphan receptor response element (RORE) in its 

promoter (Schmutz, Albrecht, & Ripperger, 2012). The possibility of PAs acting on this system 

was also explored by using classical nuclear receptor activity reporter assays. The observed 

enhancement  of  RORα  activity  by  GSPE  was consistent with the effects on BMAL1 gene 

expression, which was found to be rapidly induced at 1 hour after GSPE treatment and at later 

time points. We also tested GSPE on a REV-ERBα reporter system using an identical 

experimental approach as that used for RORα and did not observe differences between the 

vehicle- and GSPE-treated cells (data not shown). Moreover, it has been suggested that 

melatonin  can  modulate  RORα  activity  by  interacting  with  the  Ca2+/CaM signaling pathway in 

human breast cancer cells (Dai et al., 2001). Our results show that melatonin does not affect our 

reporter system when used in the HepG2 model. Altogether, these results suggest that under our 

experimental conditions, RORα could be responsible for the direct modulation of BMAL1 by 

GSPE but not by melatonin, though indirect actions of melatonin cannot be discounted. 

Therefore, PAs could modulate the clock system acting by on the clock network itself.  

 

 

4. Conclusions 
In conclusion, PAs entrain the molecular clock system in HepG2 cells. Specifically, BMAL1 and 

RORα emerge as targets of GSPE in these cells. Based on our results, GSPE could modulate the 

clock system through the transactivation of RORα, resulting in the overexpression of BMAL1.  

Because the liver is the most important metabolic organ due to its role in glucose (Lamia et al., 

2008) and lipid (Edwards et al., 1972) homeostasis, this results open a new door for further 
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research when considering the modulation of the clock system in the liver as a global 

mechanism by which PAs can exert their beneficial metabolic effects. 
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Figure 1. GSPE shifts the mRNA acrophases of core clock and clock-controlled genes and 
targets BMAL1. HepG2 cells were  incubated  with  either  vehicle  (ethanol  ≤0.1%  in  the  
medium) or GSPE at 100 mg/L. The cells were lysed at 0, 1, 3, 6, 9, 12, 15, 18, 21 or 24 hours 
after GSPE addition. Three independent experiments were run in duplicate. The capacity of 
GSPE to modify the peripheral clock was evaluated by measuring the oscillation of mRNA of 
the core clock genes (A) BMAL1 and (B) CLOCK as well as the CLOCK:BMAL1-controlled 
genes (C) RORΑ, (D) REV-ERBΑ, (E) PER2 and (F) CRY1. Each graph shows the mean±s.e. for 
each data point. T, significant effect of proanthocyanidins; t, significant effect of time; T*t 
interaction between the two variables by two-factor ANOVA (p<0.05). For the cosinor analysis: 
%R, cosine wave rhythm percentage; M, mesor; AMP, amplitude of cosine wave; Acro, 
acrophase; CI Acro, confidence interval of the acrophase. 

Figure 2. GSPE mimics the modulation of BMAL1 expression induced by melatonin in 
HepG2 cells. (A) HepG2 cells were incubated with either vehicle (ethanol ≤0.1%  in  the  
medium) or GSPE at 100 mg/L. The cells were lysed at 0, 1, 3, 6, 9, 12, 15, 18, 21 or 24 hours 
after GSPE addition. The graph shows the BMAL1 mRNA levels of cells treated with GSPE 
compared to those of the control at each time point independently. * denotes statistical 
significance by an individual 1-way ANOVA (p<0.05) with respect to its independent vehicle-
treated  cells.  (B)  HepG2  cells  were  incubated  with  either  vehicle  (ethanol  ≤0.1%  in  the  medium)  
or melatonin at different doses (0.1, 10 and 100 μM). The cells were lysed at 1 hour after 
treatment, and the BMAL1 mRNA levels were determined. Three independent experiments were 
run in duplicate. The graph shows the mean±s.e. for each data point, and the different letters 
indicate statically significant differences by an individual 1-way ANOVA test (p<0.05). (C) 
HepG2  cells  were  incubated  with  either  vehicle  (ethanol  ≤0.1%  in  the  medium),  GSPE  at  100 
mg/L or melatonin at 10 μM. The cells were lysed at 0, 1, 3, 6, 9 and 15 hours after GSPE 
addition, and the BMAL1 mRNA levels were determined. Three independent experiments were 
run in duplicate. (D) Additionally, REV-ERBα and RORα mRNA levels were determined at 3 
and 9 hours, respectively, after treatment. The graph shows the mean±s.e. for each data point, 
and the different letters indicate statically significant differences by an individual 1-way 
ANOVA test (p<0.05).  

Figure 3. Overexpression of BMAL1 induced by GSPE is not mediated by the MT1 
melatonin receptor. HepG2 cells were incubated with luzindole at 1 μM  for  1  hour  and  then  
with GSPE at 100 mg/L  or  melatonin  at  10  μM.  In  parallel,  another  set  of  cells  was cultured 
with  vehicle  (ethanol  ≤0.1%  in  the  medium),  GSPE  or  melatonin,  but  without  luzindole,  at  the  
same doses and times. The cells were lysed after 1, 6, 9 and 15 hours of the GSPE or melatonin 
treatment. Three independent experiments were run in duplicate. The graph shows the 
mean±s.e. for each data point, and the different letters indicate statically significant differences 
by an individual 1-way ANOVA test (p<0.05). 

Figure 4. GSPE modulates the activity of an RORα-LBD:Gal4-DBD reporter system. 
HepG2 cells were seeded in 48-well plates and co-transfected with an RORα-LBD:Gal4-DBD 
fusion protein expression vector together with a reporter plasmid, with the luciferase gene 
controlled by 5 Gal4 binding sites. The cells were treated with either vehicle (DMSO), GSPE 
(100  mg/L),  melatonin  (10μM)  or  both  for  24  hours.  Three  independent  experiments  were  run  in  
duplicate. * denotes statistical significance (p<0.05) with respect to the vehicle-treated cells by 
Student’s t-test.  
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Abstract 

Scope: Circadian rhythms allow organisms to anticipate and adapt to environmental 

changes; food components can adjust internal rhythms. Proanthocyanidins (PAs), 

improve cardiovascular risk factors that exhibit circadian oscillations. Therefore, the 

aim of the current study was to determine whether PAs modulate body rhythms.  

Methods and results: Male Wistar rats were orally gavaged with 250 mg grape seed 

proanthocyanidin extract (GSPE)/kg body weight at zeitgeber time (ZT) 0, light on. 

Phenotypic biorhythm was evaluated by measuring a 24 hour rhythm of melatonin and 

plasma metabolites using MNR-metabolomics. GSPE treatment maintained nocturnal 

melatonin levels until ZT 6 (middle light day) and shifted the rhythm of 28 plasma 

metabolites. Quantification of expression of clock-core (Clock and Bmal1) and clock-

controlled (Per2, Rorα, Rev-erbα and Nampt) genes in the hypothalamus by RT-PCR 

showed that this shift of phenotypic rhythm was concomitant with modulation of the 

central clock. GSPE administration shifted the rhythms of Bmal1 and clock-controlled 

genes in the hypothalamus. However, GSPE did not modulate the rhythm of clock 

genes when administered at ZT 12 (light off). Furthermore, GSPE administered to jet-

lagged rats improved night adaptation of Bmal1 and Nampt.  

Conclusions: PAs have chronobiological properties, although their activity depends 

largely on the time of administration.  
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Introduction 
Circadian rhythms are the approximately 24-hour endogenous oscillations of most biological 

processes that are entrained to the environment by external cues called zeitgebers, thus allowing 

organisms to anticipate environmental changes and to adapt the time of day and food 

availability [1]. The most important zeitgeber is light. The hypothalamic suprachiasmatic 

nucleus (SCN) integrates direct photic input from the retina. No other region in the body is able 

to accomplish that function; thus, SCN is considered the central and master clock [2]. 

Nonetheless, many other peripheral and cerebral oscillators (peripheral clocks) that emit 

rhythms in a self-autonomous manner but are synchronized by outputs from the central clock 

and by external cues such as fasting-feeding time or temperature cycling are present throughout 

the body [3]. The SCN contains approximately 10,000 neurons in two anatomic subdivisions: a 

ventral “core” region and a dorsal “shell” region, which must be well coupled  to integrate 

incoming information from light and other peripheral clocks [4]. In fact, complete SCN lesions 

abolish circadian rhythmicity [5,6], but implantation of fetal SCN tissue can partially restore 

them [7], thus demonstrating an essential role of SCN in maintaining circadian rhythms.  

The SCN synchronizes peripheral clocks and body rhythms by hormonal signals and neural 

connections [3]. In this regard, melatonin receives special attention as it is a robust hormonal 

signal that indicates the time of environmental darkness and is even secreted during the dark 

phase of the circadian cycle in nocturnal animals, when these animals are also increasing their 

activity [8]. In fact, the sympathetic innervations of the pineal gland, where melatonin is 

primarily synthesized, that connect the rhythmic activity of the SCN with the rhythmic release 

of melatonin is the first output pathway that provides a circadian message to the organism 

through general circulation at night that is driven by the SCN master clock, therefore, making 

the SCN an anatomical target for chronotherapeutic studies [9].  

At the molecular level, the master clock consists of an autoregulatory transcription–translation 

feedback loop cycling with a periodicity of approximately 24 h, driving the positive branch of 

this loop by the transcriptional activators circadian locomotor output cycles kaput (CLOCK) 

and brain and muscle ARNT-like protein-1(BMAL1), which activate the transcription of the 

Period (Per) and cryptochrome (Cry) genes after their own heterodimerization. After reaching a 

critical concentration, their protein products, PER and CRY, translocate to the nucleus and 

inhibit the activity of the CLOCK:BMAL1 heterodimer, thus leading to a decrease in Per and 

Cry expression. Additionally, the active CLOCK:BMAL1 heterodimer also promotes the 

transcription of the retinoic acid-related orphan receptor alpha (Rorα) and the nuclear receptor 

subfamily 1, group D (Nr1d1, also known as Rev-erbα), its activator and repressor, respectively, 

generating another regulatory loop. Finally, the CLOCK:BMAL1 heterodimer enhances the 

transcription of metabolic genes or clock controlled gens (CCGs), such as nicotinamide 
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phosphoribosyltransferase (Nampt), which has been implicated in many metabolic and 

biochemical processes. Here lies the tight relationship among light, SCN and metabolism or 

physiology [1,10]. 

Proanthocyanidins (PAs) are a class of polyphenols present in vegetables, fruits, cacao, nuts and 

some beverages such as red wine or tea; therefore, its presence in the human diet is considerably 

high [11]. Several studies that used various in vitro and animal models demonstrate that PAs 

have a vast range of health effects, such as improving insulin resistance [12] and decreasing 

inflammation [13], hypertension [14], oxidative stress [15] and lipid abnormalities [16], thus 

reducing metabolic syndrome [17] and cardiovascular diseases [18]. Interestingly, all these 

processes exhibit circadian rhythms [19] and humans with disrupted circadian rhythms have 

increased risk of developing symptoms of metabolic syndrome [20,21].  

Although light is considered the master zeitgeber, the feeding-fasting cycle [22] as well as 

dietary components, such as dietary fat [23] and resveratrol [24], also work as external cues that 

synchronize biological rhythms. Therefore, the aim of the current study was to determine 

whether PAs can entrain internal body rhythms and modulate the central clock. Biological 

rhythms have been evaluated by analyzing plasma melatonin and metabolite oscillation during a 

24-hour cycle. The capacity of PAs to adjust the SCN has been determined by measuring the 

expression rhythm of clock-core and clock-controlled genes in the hypothalamus while 

administering PAs diurnally or at night or even in concert with circadian disruption using jet-

lagged rats. 

 

Materials and methods 
Grape seed proanthocyanidin extract composition 

Grape seed proanthocyanidin extract (GSPE) was kindly provided by Les Dérives Résiniques et 

Terpéniques (Dax, France). The composition of GSPE is as follows [25]: catechin (58 µmol/g), 

epicatechin (52 µmol/g), epigallocatechin (5.50 µmol/g), epicatechingallate (89 µmol/g), 

epigallocatechingallate (1.40 µmol/g), dimeric procyanidins (250 µmol/g), trimeric procyanidins 

(1568 µmol/g), tetrameric procyanidins (8.8 µmol/g), pentameric procyanidins (0.73 µmol/g) 

and hexameric procyanidins (0.38 µmol/g). 

 

Animals 

All procedures involving the care and use of animals were reviewed and approved by The 

Animal Ethics Committee from the Universitat Rovira i Virgili (Permit number 4249 by 

Generalitat de Catalunya). 

Eighty-four eight-week-old male Wistar rats (Crl: WI (Han)) were purchased from Charles 

River (Barcelona, Spain) and fed a standard chow diet (STD, Panlab 04, Barcelona, Spain) and 
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tap water ad libitum. Rats were divided in three groups, according to the zeitgeber time (ZT) 

when GSPE was administered. 

Administration of GSPE at ZT0: Forty rats were singly caged in animal quarters at 22ºC with a 

12-h light/dark cycle (light from 9:00 to 21:00 P.M.). After three weeks of adaptation, rats were 

orally gavaged with tap water (control group) or 250 mg of GSPE /kg body weight dissolved in 

tap water at ZT0 (9:00 am, light on). Rats were sacrificed by decapitation at ZT0, ZT0.5, ZT1, 

ZT3, ZT6, ZT12 and ZT24 (n=3 for control and n=3 for GSPE treated groups). 

Administration of GSPE at ZT12: Twenty-two rats were singly caged in animal quarters at 22ºC 

with a 12-h light/dark cycle (light from 21:00 pm to 9:00 am). After three weeks of adaptation, 

the rats were orally gavaged with tap water (control group) or 250 mg of GSPE /kg body weight 

dissolved in tap water at ZT12 (9:0 am, light off). Rats were sacrificed by decapitation at ZT12, 

ZT13, ZT15, ZT18 (n=3 for control and n=3 for GSPE treated groups). 

Administration of GSPE to Jet-lagged rats: Twenty-two rats were singly caged in animal 

quarters at 22ºC with a 12-h light/dark cycle (light from 15:00 pm to 03:00 am). After three 

weeks of adaptation, rats were orally gavaged with tap water (control group) or 250 mg of 

GSPE /kg body weight dissolved in tap water at ZT6 (9:00 am, middle of light day) and 

immediately moved to a dusk room (ZT12), thus rats received a jet lag of 6 hours. Rats were 

sacrificed by decapitation at ZT12, ZT13, ZT15, ZT18 (n=3 for control and n=3 for GSPE 

treated groups). 

For the three experiments, blood was collected using heparin (Deltalab, Barcelona, Spain) as an 

anticoagulant and plasma was obtained by centrifugation. Plasma was frozen at -80 ºC until 

melatonin and metabolomic analysis. The hypothalamus was excised and frozen immediately in 

liquid nitrogen and stored at -80ºC until RNA extraction.  

 

RNA extraction and cDNA synthesis 

Total RNA from hypothalamus was extracted using TRIzol reagent and an RNeasy Lipid Tissue 

Mini Kit (Qiagen, 74804, Barcelona, Spain) according to both manufacturer protocols. RNA 

was quantified using spectrophotometry (Nanodrop 1000 Spectrophotometer, Thermo 

Scientific) at λ=260 nm and tested for purity (by A260/280 ratio) and integrity (by denaturing 

gel electrophoresis). Complementary DNA was generated using the High-Capacity 

complementary DNA Reverse Transcription Kit from Applied Biosystems (4368814, Madrid, 

Spain)  

 

mRNA quantification by real-time qRT-PCR 

A total of 10 ng cDNA was subjected to quantitative RT-PCR amplification using SYBR Green 

PCR Master Mix from Bio-Rad (172-5200, Barcelona, Spain). The forward and reverse primers 
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of the analyzed genes are shown in Table 1. Reactions were run on a quantitative real-time PCR 

system (CFX96 touch of Bio-Rad, Barcelona, Spain); the thermal profile settings were 50ºC for 

2 min and 95ºC for 2 min and then 40 cycles at 95ºC for 15 s and 60ºC for 2 min. Finally, 

statistical data were converted and normalized to the linear form using the 2-CT (∆∆CT) 

calculation [26]. The relative expression of the clock genes was normalized to cyclophilin 

mRNA levels.  

 

Melatonin measurement 

Melatonin plasma levels were assayed using an ELISA method following the manufacturer’s 

instructions (RE54021 IBL international, Hamburg, Germany). 

 

MRN analysis and sample preparation 

MRN analysis and sample preparation was performed according to the method described by 

Vinaixa et al [27] for untargeted metabolomics. From 400 µL of the plasma sample, 200 µL 

were placed in a tube with 1800 µL of a methanol:water mixture (8:1) for an aqueous extraction 

(methanol from Panreac Química S.A. Barcelona, Spain). The other 200 µL were placed in a 

tube with 3 mL of a chloroform:methanol mixture (2:1) for lipid extraction (chloroform from 

Panreac Química S.A. Barcelona, Spain). The mixtures were vortexed vigorously and 

centrifuged for 10 min at 4500 rpm (4ºC). For the aqueous extraction, the pellet was washed 

twice with additional methanol:water (8:1), vortexed and centrifuged, combining the liquid 

phases. Finally, the upper aqueous phases were partially dried in a nitrogen stream to remove 

methanol and quickly frozen. The lipid extraction was completely dried in a nitrogen stream. 

For NMR measurements, the hydrophilic extracts were reconstituted in 600 µl of D2O 

containing 0.67 mM trimethylsilyl propionic acid (TSP). The lipophilic extracts were 

subsequently extracted in 700 µl of CDCl3/CD3OD (2:1) containing 1.18 mM tetramethylsilane 

(TMS). Samples were then vortexed, homogenized for 20 min, and centrifuged for 15 min at 

6000 × g at 4 °C. Finally, redissolved samples were placed into 5 mm NMR tubes. 1H NMR 

spectra were recorded at 300 K on an Avance III 600 spectrometer (Bruker, Germany) operating 

at a proton frequency of 600.20 MHz using a 5 mm CPTCI triple resonance (1H, 13C, 31P) 

gradient cryoprobe. One-dimensional 1H pulse experiments were carried out using the nuclear 

Overhauser effect spectroscopy (NOESY) presaturation sequence (RD–90°–t1–90°–tm–90° 

ACQ) to suppress the residual water peak, and the mixing time was set at 100 ms. Solvent 

presaturation with irradiation power of 75 Hz was applied during recycling delay (RD = 5 s) and 

mixing time. The 90° pulse length was calibrated for each sample and varied from 6.57 to 6.99 

ms. The spectral width was 12 kHz (20 ppm), and a total of 256 transients were collected into 

64 k data points for each 1H spectrum. The exponential line broadening applied before Fourier 

Page 6 of 33

Wiley-VCH

Molecular Nutrition and Food Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF CENTRAL AND PERIPHERAL MOLECULAR CLOCKS BY PROANTHOCYANIDINS 
Aleix Ribas Latre 
Dipòsit Legal: T 1831-2014



For Peer Review

 

7 

 

transformation was of 0.3 Hz. The frequency domain spectra were phased and baseline-

corrected using TopSpin software (version 2.1, Bruker). 

The acquired 1H NMR spectra were phased, baseline-corrected, and referenced to the chemical 

shift of residual A signal at B ppm. Pure compounds from the metabolic profiling AMIX spectra 

database (Bruker), HMDB, and Chenomx databases were used as references for metabolite 

identification. In addition, we assigned metabolites by 1H–1H homonuclear correlation (COSY 

and TOCSY) and 1H–13C heteronuclear (HSQC) 2D NMR experiments and by correlation with 

pure compounds run in-house. After baseline correction, specific 1H NMR regions identified in 

the spectra were integrated using the AMIX 3.9 software package.  

Data (pre-) processing, data analysis, and statistical calculations were performed in R. 

 

Data and statistical analysis 

Metabolite and melatonin concentrations and clock genes expression were fitted using single 

cosinor analysis because the data formed a period curve, to determine whether significant 

circadian rhythms were present (Acro.exe, version 3.5; designed by Dr. Refinetti [28]). Cosinor 

analysis provides information about the rhythm through peak-to-trough amplitude, time of the 

peak of the rhythm or acrophase with a confidence interval and the middle value of the cosine 

wave or MESOR. The regression fitting also produces an R-squared statistic, which is then used 

to compute the percentage of variance or rhythmicity, in an individual time-series data that is 

accounted by the fitted 24-h curve. 

Results are presented as the mean with the associated standard error (SE). The data were also 

analyzed using a two-way ANOVA to determine the significant difference using SPSS 

statistical software (version17.0 for Windows; SPSS, Inc.). P values<0.05 were considered 

statistically significant. 

Multivariate analysis was performed using R software for Windows [29]. The full set of NMR 

metabolomics data were subjected to principal component analysis (PCA) using the pca 

function of the mixOmics package [30] with three principal components using the centering and 

scaling options. The rest of the options were left at default. Visual 3D representations were 

constructed with the Rcmdr R package [31]. 

 

Results 

Acute administration of GSPE at Zeitgeber Time 0 entrains the internal body rhythm.  

The capacity of PAs to entrain circadian rhythms was evaluated by measuring the circadian 

oscillation of several metabolites and melatonin in the plasma of the rats maintained on a 12-h 

light/12-hdark cycle and treated with an acute dose of 250 mg GSPE /kg body weight at 

zeitgeber time (ZT) 0, when the light was turned on.  
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Melatonin levels in plasma were measured at ZT0, ZT0.5, ZT1, ZT3, ZT6, ZT12 and ZT24 

(Fig. 1). ANOVA analysis shows that GSPE treatment significantly altered the melatonin 

rhythm in plasma, resulting in high levels of melatonin until ZT3 and ZT6, when control 

animals had the lowest levels. However, despite this significant difference, GSPE did not 

modify melatonin’s acrophase, which was maintained at ZT20 like in the control animals.  

Plasma metabolomics, carried out using RMN, was performed at ZT0, ZT6, ZT12 and ZT24. 

Forty-nine metabolites were identified, including amino acids, glucose, lactate, 3-

hydroxybutyrate, glycerol, triglycerides, cholesterol and some phospholipids and fatty acids 

(Tables 2, 3 and 4). To determine whether GSPE significantly altered the circadian metabolite 

pattern, we applied the ANOVA and cosinor analysis to each metabolite’s circadian rhythm 

(Tables 2, 3 and 4). GSPE treatment significantly affected the circadian oscillations of tyrosine, 

serine, glycerolphosphocholine, oleic acid and monounsaturated fatty acids (MUFA). Moreover, 

the circadian rhythms of glucose, pyruvate, citrate, valine, leucine, lysine, tyrosine, glutamine, 

isoleucine, histidine, serine, cholesterol, esterified cholesterol, phosphatidylcholine, linoleic 

acid, MUFA, polyunsaturated fatty acids (PUFA) and all-trans retinoic acid (ARA) showed a 

significant interaction between time and GSPE. Additionally, some metabolites showed a 

significant modification of their acrophase time. Specifically, GSPE treatment shifted the 

acrophases of glucose, pyruvate, lactate, 3-hydroxybutyrate, glutamine, isoleucine and histidine 

from ZT0 (ZT11 for glucose) to ZT23 and the acrophase of alanine, serine and threonine from 

ZT11 to ZT0. GSPE treatment also shifted the acrophases of some lipid metabolites, such as 

cholesterol, phosphatidylcholines, MUFAs and PUFAs.  

We subjected the full set of NMR data from samples at ZT0, ZT6, ZT12 and ZT24 to PCA 

analysis (Fig. 2). Because the value at each ZT for GSPE- or vehicle-treated animals is derived 

from material pooled from three animals and clustering techniques are not recommended in 

such small groups, we did not use this multivariate analysis for classification. Instead, we 

assessed the separation between the projection of the data for each animal (scores) as a measure 

of whole metabolic variability through the 24-hour period. Remarkably, the scores for GSPE-

treated animals were clearly condensed when compared with the control animals (Fig. 2A). The 

differences were not due to increased variability within a given ZT but to increased variability 

between ZTs, as observed in fig. 2B when the scores for ZT6 and ZT12 animals, as 

representative groups, are plotted for both GSPE and control conditions.  

Taken together, these results indicate that GSPE treatment profoundly alters melatonin and 

metabolite oscillation in plasma and that GSPE entrains internal body circadian rhythms.  
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Acute administration of GSPE at ZT0 shifted the mRNA acrophases of Bmal1 and Bmal1-

controlled clock genes in the hypothalamus. 

Because the central clock is the master regulator of body circadian rhythms, we further studied 

whether this modulation of phenotypic rhythm by GSPE was associated with adjustment of the 

central clock. The capacity of GSPE to modify the central clock was evaluated by measuring the 

oscillations of Clock and Bmal1 (clock core genes), Per2 (component of the negative loop of the 

circadian clock), Rorα and Rev-erbα (nuclear receptors, the expression of  which is regulated by 

CLOCK:BMAL1 and that act as activator or repressor of Bmal1 gene expression, respectively), 

Nampt (metabolic gene that its expression is regulated directly by CLOCK:BMAL1) and 

HmgCoAR (metabolic gene that has circadian rhythm expression but not directly controlled by 

CLOCK:BMAL1) mRNA in the hypothalamus. As was the case with metabolites, we also 

applied the ANOVA and the cosinor analysis to each mRNA curve. 

Of the two clock core genes, only Bmal1 (Fig. 3A) responded significantly to GSPE whereas 

Clock (Fig. 3B) remained similar to that of the control animals. ANOVA showed a significant 

effect of GSPE treatment on the 24-hour rhythmicity of Bmal1 mRNA. Moreover, cosinor 

analysis showed that GSPE administered at ZT0 accelerated the onset of Bmal1 acrophase by 

three hours, from ZT8 to ZT5. 

The mRNAs of the Bmal1 targeted genes, Rorα, Rev-erbα, Per2, Nampt (Fig. 3C-F, 

respectively) shared the same profile in the control animals, peaking at ZT5. Remarkably, GSPE 

treatment delayed the mRNA acrophase of all these genes. In particular, the mRNA acrophase 

of Rev-erbα, Per2 and Nampt was delayed by 15 hours, shifting it to ZT20, whereas the mRNA 

acrophase of Rorα was delayed by 3 hours, shifting it to ZT8. Despite GSPE modulating the 

acrophase of all these genes, only the circadian rhythm of Nampt was significantly altered by 

GSPE. On the contrary, the mRNA rhythm of HmgCoAR (Figure 3G), a gene not directly 

controlled by Bmal1, was not affected by the administration of GSPE, indicating a different 

pattern of those of Bmal1-controlled genes. 

Taking into account the importance of these circadian waves over 24 h, the percentage of 

rhythm was also computed (Fig. 3). In general, small differences were observed between the 

control and GSPE rhythms, but only Rev-erbα decreased its rhythmicity after GSPE treatment 

(from 76% to 47% approx.). 

Altogether, these results indicate that GSPE can adjust the central clock and that Bmal1and 

Nampt were the most significant clock genes involved in the entrainment of internal body 

rhythm by GSPE. 
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Acute administration of GSPE at ZT12 affected the expression of only Rev-erbα 

Next, we studied whether PAs could modulate the central clock independently of the time 

during the circadian cycle they are administered. Thus, GSPE was administered at ZT12 (light 

turned off) and the expression of clock and clock-controlled genes was determined at four time 

points, ZT12, ZT13, ZT15 and ZT18. To achieve a better visualization of the changes induced 

by GSPE administered at ZT12, we drew the figures with a 24-hour curve for the control group 

(Fig. 4) by assembling the expression values of the control group from this and the former 

experiments. Because of the short period studied (6 hours) in this experiment, we analyzed the 

effects of GSPE by ANOVA and did not apply the cosinor analysis.  

GSPE, administered at ZT12, induced slight effects on the mRNA levels of the clock core genes 

Bmal1 (Fig. 4A) and Clock (Fig. 4B) as well as the mRNA levels of the Bmal1-controlled clock 

genes Rorα (Fig. 4C) and Per2 (Fig. 4E). However, GSPE significantly affected the mRNA 

levels of Rev-erbα (Fig. 4D), and the expression of Nampt and Rev-erbα showed a significant 

interaction between time and GSPE. GSPE treatment at ZT12 did not affect the expression of 

HmgCoAR (Fig. 4G) 

Plasma metabolites were analyzed at ZT12 and ZT15 (Table 5). No significant differences were 

observed in any metabolite after GSPE administration at ZT12, which is in accordance with the 

few effects of GSPE on the central clock when it was administered at ZT12. 

Despite the fact that we did not analyze the effects of GSPE on the 24-h cycle in this 

experiment, these results indicate that GSPE entrained the circadian rhythms more strongly 

when it was administered at ZT0 (starting of day) than at ZT12 (starting of night). 

 

Acute administration of GSPE modulated the central clock in jet-lagged rats 

Finally, the capacity of GSPE to modulate the central clock was evaluated in a simulation of 

circadian disruption using rats subjected to a 6 hours jet lag. GSPE was administered to rats at 

ZT6 (middle of light period), and the rats were then moved to ZT12 (light off). The capacity of 

GSPE to modulate core and related clock genes, was evaluated at ZT12, ZT13, ZT15 and ZT18. 

Because of the short period studied (6 hours) in this experiment, we analyze the effects of GSPE 

using ANOVA and did not apply cosinor analysis. 

In the control animals, six hours of jet lag induced a clear shift of the mRNA rhythmicity of all 

the genes studied (Fig. 5) when they were compared with the 24-hour control rhythms (built by 

assembling the expression values of the control groups as in the former experiment) at ZT12, 

ZT13, ZT15 and ZT18.  

GSPE, administered at the beginning of jet lag, did not modulate clock (Fig. 5B), Rev-erbα (Fig. 

5D) or HmgCoAR (Fig. 5G), whereas the expression rhythms of Bmal1 (Fig. 5A), Rorα (Fig. 

5C), Per2 (Fig. 5E) and Nampt (Fig. 5F) were altered significantly when compared with the jet-
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lag control group. Remarkably, Bmal, Rorα and Nampt were again the most sensitive genes to 

GSPE, similar to when GSPE was administered at ZT0. Both when GSPE was administered at 

ZT0 and in the jet-lag situation, the mRNA levels of Bmal1 and Nampt decreased significantly 

after GSPE treatment. This decrease of Bmal1 and Nampt mRNA levels induced by GSPE in 

the jet-lag situation adjusted the expression of both genes to the 24-hour control rhythm at 

ZT15. Therefore, GSPE treatment partially counteracted the jet-lag disruption of Bmal1 and 

Nampt. 

 

Discussion 

Light and meal timing entrain circadian rhythms, but specific components in foods could also be 

important signals. For instance, resveratrol adjusts the circadian rhythms of locomotor activity 

and body temperature in animals [32,33] and alters clock gene expression in cultured fibroblast 

[24] and rat organs [34]. Therefore, the aim of this work was to determine the capacity of an 

acute dose of GSPE to entrain biological rhythms and to adjust the central clock. 

Melatonin is a robust indicator of the internal body time [9]. Additionally, plasma metabolites 

exhibit circadian oscillations, and blood metabolomics has been proposed as a method to 

analyze internal body time [35]. Remarkably, GSPE administered at ZT0 strongly increased 

plasma melatonin levels in the middle of the light period, maintaining similar levels as at dusk, 

and shifted the acrophase of many important plasma metabolites, such as amino acids, glucose 

and cholesterol among others. Moreover, GSPE treatment masked changes in metabolite 

concentration that were very evident in the control animals at the ZT studied. Therefore, acute 

GSPE treatment at ZT0 actually affected biological rhythms in the rats. 

To study the relationship between PAs and the molecular clock, we focused on the 

hypothalamus, where the SCN integrates direct input from light and information from other 

oscillators present throughout the body, thus acting as a master synchronizer [3]. The SCN 

contains approximately 10,000 neurons in two anatomic subdivisions, which must be well 

coupled as demonstrated by the fact that the period of an intact SCN is more precise than the 

period of independently oscillating SCN neurons [4]. Therefore, assaying the whole 

hypothalamus allows the study of the intact SCN despite increased noise. 

Three different experimental approaches were used to determine whether PAs can modulate the 

central clock: GSPE treatment at ZT0, at the beginning of the light phase; at ZT12, at the 

beginning of the dusk phase; and at ZT6 with a jet lag of 6 hours. The data clearly show that 

GSPE adjusted the circadian rhythms of clock-core and clock-controlled genes in the 

hypothalamus when was administered at ZT0 or in jet-lagged rats, whereas the administration at 

ZT12 caused minimal effects. Thus, GSPE is primarily active when administered during the day 
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period, indicating that the effectiveness of PAs to adjust the central clock depends largely on the 

time of administration. In fact, SCN cells have been established to be extensively coupled 

during the day, when the cells exhibit synchronous neural activity, but to be minimally coupled 

during the night, when the cells are electrically silent [36]. So, this discrepant functionality of 

SCN cells between day and night could determine the effectiveness of PAs. Moreover,  

exposure to light has been observed to cause shifts in the phase of the SCN clock primarily 

during the subjective night in nocturnal rodents, whereas non-photic cues trigger these shifts 

mainly during the subjective day [3]. Therefore, GSPE could act as a non-photic cue, triggering 

the central clock system during the light period. Nonetheless, no studies have determined 

whether PAs reach the hypothalamus, although some studies in Wistar rats have elucidated the 

distribution of flavonols and their metabolites to different tissues, e.g., the brain [37,38] and 

ruled out the capacity of flavonols to cross the blood-brain barrier. Even, an experiment with a 

rat model of Parkinson’s disease with chronic oral tangeretin administration (10 mg/kg/day for 

28 days) confirmed a significant level of this citrus flavonoid in the hypothalamus, even at 

higher concentrations than in liver and plasma [39]. Therefore, PAs could act as direct non-

photic cues in the SCN. Alternatively, PAs could adjust the central clock by acting at intestinal 

levels through the brain-gut axis, which send gut cues to the brain by neuronal and hormonal 

mechanisms [40]. Thus, more studies are needed to define the molecular mechanism by which 

PAs adjust the central clock. 

Among the observed effects of GSPE treatment at ZT0 on the circadian rhythm expression of 

clock-core and clock-controlled genes in the hypothalamus, special attention should be paid to 

Bmal1, which showed a significant advanced shift in its phase. Because clock was not affected 

by GSPE, which is consistent with its constitutive expression in the SCN [41], such a dramatic 

shift in Bmal1 rhythm could explain the delayed phase of the clock-controlled gens Rorα, Rev-

erbα, Per2 and Nampt, according to the defined role of Bmal1 as master regulator of the 

molecular clock system [42]. Interestingly, Bmal1 was also targeted by GSPE in jet-lagged rats. 

In this situation, GSPE counteracted the jet-lag effect and allowed Bmal1 to recover its normal 

rhythm.  

SCN synchronizes circadian rhythm of the whole body by hormonal signals and neural 

connections [3]. In particular, nocturnal secretion of melatonin by the pineal gland is directly 

controlled by the SCN [43]. Remarkably, GSPE administered at ZT0 triggered high plasma 

melatonin levels at middle light day. GSPE extract does not contain melatonin; thus the 

adjustment of the melatonin rhythm could be due to the adjustments induced by GSPE in the 

SCN. However, the SCN expresses melatonin receptors [44]. Thus, the inverse mechanism, 

including an initial effect of GSPE on melatonin secretion followed by melatonin action on 

SCN, cannot be ruled out. 
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Because GSPE maintained night levels of melatonin during the light period, entrained clock 

genes when it was administered at ZT0 and not a ZT12, and partially counteracted the jet-lag 

disruption, these data strongly suggest that PAs could be a non-photic cue of night. These 

findings agree with the xenohormesis hypothesis, which proposes that heterotrophs are able to 

sense chemical cues synthesized by plants, such as polyphenols, in response to stress [45]. In 

fact, circadian rhythms allow anticipation of environmental changes and adaptation to the time 

of day and food availability. Thus, PAs can advise animals about environmental conditions by 

entraining biological rhythms.  

In conclusion, GSPE treatment clearly entrained biological rhythms by maintaining high levels 

of melatonin during the light period. Moreover, GSPE adjusted the circadian rhythms of clock 

genes in the hypothalamus when it was administered during the light period but not at dusk, 

indicating that the ability of PAs to adjust the central clock depends largely on the time of 

administration. Specifically, Bmal1 emerges as a target of GSPE. Therefore, PAs have 

chronobiologic properties. However, as rats are nocturnal animals, assessing the ZT when PA-

rich foods can entrain circadian rhythms in humans will be necessary.  
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Figure legends 

 

Fig. 1  
An oral dose of a grape seed proanthocyanidin extract (GSPE) administered at zeitgeber time 0 

entrains melatonin circadian rhythm in rats. Rats were orally gavaged with tap water (control 

group) or 250 mg of GSPE /kg body weight dissolved in tap water at ZT0 (9:00 am, light on), 

and plasma melatonin was measured at ZT0, ZT0.5, ZT1, ZT3, ZT6, ZT12 and ZT24. The 

graph shows the mean±s.e. for each data point (n=3). T, significant effect of proanthocyanidins; 

t, significant effect of zeitgeber time; T*t interaction between the two variables by two factors 

ANOVA. For the cosinor analysis: %R, cosine wave rhythm percentage; M, mesor; AMP, 

amplitude of cosine wave; Acro, acrophase; CI Acro, confidence interval of acrophase. 

 

Fig. 2 
An oral dose of a grape seed proanthocyanidin extract (GSPE ) administered at zeitgeber time 0 

entrains metabolite circadian rhythms in rats. Rats were orally gavaged with tap water (control 

group) or 250 mg of GSPE /kg body weight dissolved in tap water at ZT0 (9:00 am, light on) 

and plasma metabolites were measured by NMR metabolomics at ZT0, ZT6, ZT12 and ZT24. 

(A) The values of abundance of all metabolites were subjected to a principal component 

analysis. Scores for each animal are represented in the three dimensions defined by PC1, PC2 

and PC3 (explaining a 72%, 8% and 6% of the variance respectively) as blue dots for the 

control group and green dots for the GSPE-treated group. Ellipsoids containing the 50% of the 

scores are represented for each group. (B) Heat map depicting temporal patterns of changing 

metabolites. The fold-change respect the ZT0 of each metabolite (rows) is represented as 

explained in the color key insert for each ZT (columns). Metabolites patterns are clustered by 

euclidean distance as depicted in the dendogram. 

 

Fig. 3 
An oral dose of grape seed proanthocyanidin extract (GSPE) administered at zeitgeber time 0 

adjusts the rhythm expression of clock-core and clock-controlled genes in the hypothalamus. 

Rats were orally gavaged with tap water (control group) or 250 mg of GSPE /kg body weight 

dissolved in tap water at ZT0 (light on), and mRNA levels were measured at ZT0, ZT0.5, ZT1, 

ZT3, ZT6, ZT12 and ZT24. The capacity of GSPE to modify the central clock was evaluated by 

measuring the oscillation of mRNA of the clock core genes (A) Bmal1 and (B) Clock as well as 

the CLOCK:BMAL1 controlled genes (C) Per2, (D) Rorα, (D) Rev-erbα and (E) Nampt. (G) 

The expression of HmgCoAR, a gene that has circadian rhythm expression but that is not 
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directly controlled by CLOCK:BMAL, has also been evaluated. Each graph shows the 

mean±s.e. for each data point (n=3). T, significant effect of proanthocyanidins; t, significant 

effect of zeitgeber time; T*t interaction between the two variables by two factors ANOVA. For 

the cosinor analysis: %R, cosine wave rhythm percentage; M, mesor; AMP, amplitude of cosine 

wave; Acro, acrophase; CI Acro, confidence interval of acrophase. 

 

 

Fig. 4 
An oral dose of a grape seed proanthocyanidin extract (GSPE) administered at zeitgeber time 12 

slightly affects the rhythm of clock-core and clock-controlled gene expression in the 

hypothalamus. Rats were orally gavaged with tap water (control group) or 250 mg of GSPE /kg 

body weight dissolved in tap water at ZT12 (light off), and mRNA levels were measured at 

ZT12, ZT13, ZT15 and ZT18. The capacity of GSPE to modify the central clock was 

evaluated by measuring the oscillation of mRNA of the clock core genes (A) Bmal1 and 

(B) Clock as well as the CLOCK:BMAL1 controlled genes (C) Per2, (D) Rorα, (D) 

Rev-erbα and (E) Nampt. (G) The expression of HmgCoAR, a gene which has circadian 

rhythm expression but that is not directly controlled by CLOCK:BMAL, has also been 

evaluated. Each graph shows the mean±s.e. for each data point (n=3). For the control group, a 

24-hour curve was constructed by assembling the expression values of the control group 

from this experiment and those of Fig. 3. T, significant effect of proanthocyanidins; t, 

significant effect of Zeitgeber Time; T*t interaction between the two variables by two factors 

ANOVA.  

 

Fig. 5 
An oral dose of a grape seed proanthocyanidin extract (GSPE) administered to jet-lagged rats 

entrains the rhythm expression of clock-core and clock-controlled genes in the hypothalamus to 

the new zeitgeber time. Rats were orally gavaged with tap water (control group) or 250 mg 

GSPE /kg body weight dissolved in tap water at ZT6 (middle of light period) and moved to 

ZT12 (light turn off). mRNA levels were measured at ZT12, ZT13, ZT15 and ZT18. The 

capacity of GSPE to modify the central clock was evaluated by measuring the 

oscillation of mRNA of the clock core genes (A) Bmal1 and (B) Clock as well as the 

CLOCK:BMAL1 controlled genes (C) Per2, (D) Rorα, (D) Rev-erbα and (E) Nampt. 

(G) The expression of HmgCoAR, a gene which has circadian rhythm expression but 

that is not directly controlled by CLOCK:BMAL, was also evaluated. Each graph shows 
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the mean±s.e. for each data point (n=3). For the non-jet-lagged control group, a 24-hour curve 

was constructed by assembling the expression values of the control group from Fig. 3 

and 4. T, significant effect of proanthocyanidins; t, significant effect of zeitgeber time; T*t 

interaction between the two variables by two factors ANOVA.  
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Table 1. Primer sequences 

 Forward Reverse 

Bmal1 5’-GTAGATCAGAGGGCGACGGCTA-3’ 5’-CTTGTCTGTAAAACTTGCCTGTGAC-3’ 

Clock 5’-TGGGGTCTATGCTTCCTGGT-3’ 5’-GTAGGTTTCCAGTCCTGTCG-3’ 

Per2 5’-CGGACCTGGCTTCAGTTCAT-3’ 5’-AGGATCCAAGAACGGCACAG-3’ 

Rorα 5’-GAAGGCTGCAAGGGCTTTTTCAGGA-3’ 5’-CCAAACTTGACAGCATCTCGA-3’ 

Rev-erbα 5’-CTGCTCGGTGCCTAGAATCC-3’ 5’-GTCTTCACCAGCTGGAAAGCG-3’ 

Nampt 5’-CTCTTCACAAGAGACTGCCG-3’ 5’-TTCATGGTCTTTCCCCCACG-3’ 

HmgCoAR 5’- GAAACCCTCATGGAGACGCA-3’ 5’- ACCTCTGCTGAGTCACAAGC-3’ 

Cyclophilin 5’-CTTCGAGCTGTTTGCAGACAA-3’ 5’-AAGTCACCACCCTGGCACATG-3’ 

 

Bmal1 (also known as ARNTL): aryl hydrocarbon receptor nuclear translocator-like; Clock: 
circadian locomotor output cycles kaput; Per2: period circadian clock 2; Rorα: RAR-related 
orphan receptor A; Rev-erbα (also known as Nr1d1): nuclear receptor subfamily 1, group D, 
member 1; Nampt: nicotinamide phosphoribosyl transferase; HmgCoAR: 3-hydroxy-3-methyl-
glutaryl-CoA reductase. 
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Table 2. Circadian rhythm parameters of glucidic plasma metabolites in rats treated with 
an oral dose of a grape seed proanthocyanidin extract (250 mg /kg body weight) at 
zeitgeber time 0 

Metabolite  %R MESOR AMP Acro CI Acro Annova P-value 

Glucose C 70,4 6212.5 787.5 CT11 9.01-12.99 T 0.146 

  GSPE 97,8 6412.5 347.5 CT23 22.41-23.59 T*t 0.001* 

Lactate C 45,6 5011.25 1360 CT0 ± 2.33 T 0.811 

  GSPE 95,7 5159.25 1580 CT23 22.14-23.86 T*t 0.208 

Pyruvate C 38,9 171.5 77.5 CT0 ± 2.42 T 0.632 

  GSPE 92,9 165.5 36.6 CT23 21.29-24.08 T*t 0.005* 

Citrate C 37 373.75 170 CT0 ± 2.43 T 0.713 

  GSPE 59 362.75 75 CT0 ± 2.11 T*t 0.044* 

Formate C 71,9 63.5 23 CT0 ± 1.88 T 0.484 

  GSPE 70,5 68.5 16.5 CT0 ± 1.93 T*t 0.881 

Methylsuccinate C 21,7 214 97.5 CT0 ± 2.72 T 0.661 

  GSPE 34,3 222.5 97.5 CT11 8.36-13.64 T*t 0.055 

Dihydroxyacetone C 67,3 755.25 187.5 CT11 8.48- 13.16 T 0.291 

  GSPE 93,3 680.75 61.5 CT23 21.98-24.02 T*t 0.117 

Mannose C 55,3 102 23.5 CT0 ± 2.19 T 0.768 

  GSPE 59,2 97 23.5 CT23 20.84-25.16 T*t 0.934 

 

Rats were gavaged at ZT0. Cosinor analysis and two factors ANOVA have been applied to plasma 

metabolite concentration at ZT0, ZT6, ZT12 and ZT24. %R , cosine wave rhythm percentage; AMP, 

amplitude of cosine wave; Acro, acrophase; CI Acro, confidence interval of acrophase; T, Effect of 

proanthocyanidins; T*t, interaction between proanthocyanidins and Zeitgeber Time; C, control animals, 

GSPE, group treated with a grape seed proanthocynidin extract.  
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Table 3. Circadian rhythm parameters of nitrogen plasma metabolites in rats treated with 
an oral dose of a grape seed proanthocyanidin extract (250 mg /kg body weight) at 
zeitgeber time 0 

 

Metabolite  %R MESOR AMP Acro CI Acro Annova P-value 

Alanine C 32 905.25 500 CT11 8.35-13.65 T 0.526 

  GSPE 87,9 980.5 173 CT0 ± 1.4 T*t 0.143 

Serine C 65,5 1131 337.5 CT11 8.8-13.2 T 0.028* 

  GSPE 93,2 965.25 183 CT0 ± 1.08 T*t 0.09* 

Threonina C 87,6 1001.5 270 CT11 9.63-12.37 T 0.154 

  GSPE 89 802 227.5 CT0 ± 1.35 T*t 0.175 

Dimethyl-glycine C 59,6 7.25 4 CT0 ± 2.18 T 0.330 

  GSPE 80,8 6.5 2 CT0 ± 1.69 T*t 0.019* 

Tyrosine C 54,6 158.75 47.5 CT0 ± 2.25 T 0.024* 

  GSPE 91 137 43.5 CT0 ± 1.24 T*t 0.06* 

Glutamine C 28,6 1602.75 432.5 CT0 ± 2.61 T 0.222 

  GSPE 87,7 1488.5 213 CT23 21-59-24.41 T*t 0.026* 

Glutamate C 60,1 1072.5 331 CT0 ± 2.21 T 0.077 

  GSPE 85,2 934.25 225 CT0 ± 1.54 T*t 0.172 

Leucine C 47,2 418 134 CT0 ± 2.31 T 0.285 

  GSPE 94 393.75 96.5 CT0 ± 1.02 T*t 0.016* 

Isoleucine C 24,2 531.25 157.5 CT0 ± 2.66 T 0.312 

  GSPE 94,3 497.5 85 CT23 22.02 - 23.98 T*t 0.015* 

Valine C 52,6 478.75 162,5 CT0 ± 2.18 T 0.135 

  GSPE  88,3 445 135 CT0 ± 1.4 T*t 0.007 * 

Lysine C 35,9 621.25 282.5 CT0 ± 2.47 T 0.357 

  GSPE 49,4 577.5 132.5 CT0 ± 2.42 T*t 0.016* 

Histidine C 19,2 145.75 67.5 CT11 8.24-13.16 T 0.629 

  GSPE 71,4 135.25 26.5 CT23 21.12-24.88 T*t 0.006* 

Phenylalanine C 24,8 99 25 CT0 ± 2.71 T 0.06 

  GSPE 89,4 86 16.5 CT0 ± 1.34 T*t 0.095 

Tryptophan C 95,1 176.25 18 CT23 22.11-23.89 T 0.740 

  GSPE 97,5 173.25 25 CT23 22.35-23.65 T*t 0.915 

Methionine C 40 341 135.5 CT0 ± 2.2 T 0.868 

  GSPE 60,2 336.25 111.5 CT0 ± 2.11 T*t 0.237 

Taurine C 85,3 1469.75 266.5 CT0 ± 1.53 T 0.294 

  GSPE 19,9 1243.25 491.5 CT0 ± 2.77 T*t 0.833 

Methylhistidines + 
xanthine 

C 31,6 44.25 20 CT17 14.31-19.69 T 0.687 

  GSPE 84,9 39.25 23 CT0 ± 1.55 T*t 0.828 

Urea C 88,2 448.25 102.5 CT17 15.96-18.04 T 0.818 

  GSPE 83,3 456.25 75 CT17 15.44-18.56 T*t 0.575 

Creatine C 79,8 842.5 432.5 CT0 ± 1.73 T 0.766 
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  GSPE 74,6 762.25 373.5 CT23 21.21-24.79 T*t 0.939 

Cadaverine C 38,3 816.25 367.5 CT0 ± 2.44 T 0.275 

  GSPE 57,8 756.25 165 CT0 ± 2.23 T*t 0.008* 

Tymidine C 70,9 27 4 CT23 21.15-24.85 T 0.897 

  GSPE 76,7 27.5 2.5 CT17 15.58-18.42 T*t 0.793 

Cytosine C 91,2 26.5 10 CT17 16.01-17.99 T 0.822 

  GSPE 93,3 27.25 3.5 CT11 10.01-11.99 T*t 0.236 

Allantoin C 86,4 152.75 26 CT11 9.53-12.47 T 0.825 

  GSPE 62,8 139 8.5 CT0 ± 2.07 T*t 0.989 

 

Rats were gavaged at ZT0. Cosinor analysis and two factors ANOVA have been applied to plasma 

metabolite concentration at ZT0, ZT6, ZT12 and ZT24. %R , cosine wave rhythm percentage; AMP, 

amplitude of cosine wave; Acro, acrophase; CI Acro, confidence interval of acrophase; T, Effect of 

proanthocyanidins; T*t, interaction between proanthocyanidins and Zeitgeber Time; C, control animals, 

GSPE, group treated with a grape seed proanthocynidin extract.  
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Table 4. Circadian rhythm parameters of lipidic plasma metabolites in rats treated with 
an oral dose of a grape seed proanthocyanidin extract (250 mg /kg body weight) at 
zeitgeber time 0 

Metabolite  %R MESOR AMP Acro CI Acro Annova P-value 

Triglycerides C 66,2 288 59 CT0 ± 2.05 T 0.826 

  GSPE 40,2 271.5 110 CT0 ± 2.56 T*t 0.846 

Linoleicacid C 86,6 146.25 88 CT17 15.84-18.16 T 0.293 

  GSPE 57,9 161.25 46 CT23 20.79-25.21 T*t 0.004* 

Oleicacid C 84,8 195.25 43 CT17 15.64-18.36 T 0.033* 

  GSPE 79,9 224.25 3 CT11 9.37-12.63 T*t 0.153 

MUFA C 84,1 178.5 126 CT23 21.43-24.57 T 0.030* 

  GSPE 76,7 256.75 127.5 CT0 ± 1.76 T*t 0.026* 

PUFA C 84,2 392.25 213.5 CT17 15.49-18.51 T 0.167 

  GSPE 89,7 351 123.5 CT11 9.7-12.3 T*t 0.028* 

omega-3 fattyacids C 76,6 57.75 11 CT17 15.58-18.42 T 0.730 

  GSPE 63,3 55.75 8.5 CT17 15.04-18.96 T*t 0.924 

ARA+EPA C 84,8 73.25 41.5 CT17 15.71-18.29 T 0.155 

  GSPE 85,4 62.25 15.5 CT11 9.54-12.46 T*t 0.010* 

Freeglycerol C 31 1319.75 267 CT0 ± 2.4 T 0.140 

  GSPE 74,3 1183.5 283.5 CT0 ± 1.87 T*t 0.411 

3-hydroxy-butyrate C 18,7 527 214 CT0 ± 2.71 T 0.817 

  GSPE 61,6 549.75 136.5 CT23 20.85-25.15 T*t 0.669 

Acetates C 56,1 570 234 CT0 ± 2.06 T 0.838 

  GSPE 61,3 544.5 186.5 CT0 ± 2.14 T*t 0.789 

Total cholesterol C 81,2 372.5 168.5 CT17 15.7-18.3 T 0.549 

  GSPE 23,4 368.75 107 CT11 8.32-13.68 T*t 0.007* 

Esterifiedcholesterol C 83 253.75 127.5 CT17 15.68-18.32 T 0.332 

  GSPE 24,2 271.75 99.5 CT17 14.4-19.6 T*t 0.037* 

Cholate C 24,6 181 77.5 CT0 ± 2.66 T 0.219 

  GSPE 88,9 162.25 38 CT23 21.65-24.35 T*t 0.013* 

Phosphocholines C 81,5 457.75 327 CT17 15.72-18.28 T 0.963 

  GSPE 52,1 455 226 CT0 ± 2.14 T*t 0.002* 

Glycerol-phosphocholine C 69,2 880.25 218.5 CT11 8.94-13.06 T 0.025* 

  GSPE 88,3 692.75 130 CT0 ± 1.38 T*t 0.155 

Choline C 72,9 70.75 25 CT0 ± 1.79 T 0.948 

  GSPE 92,8 69.5 20 CT0 ± 1.12 T*t 0.309 

Plasmalogen C 21,5 15.25 1.5 CT0 ± 2.52 T 0.831 

  GSPE 95,4 15.5 1.5 CT11 10.52-11.88 T*t 0.504 

Sphingomyelin C 72,8 43.25 6.5 CT11 9.15-12.65 T 0.437 

  GSPE 79,4 46.75 15 CT11 9.27-12.73 T*t 0.325 

 

Rats were gavaged at ZT0. Cosinor analysis and two factors ANOVA have been applied to plasma 

metabolite concentration at ZT0, ZT6, ZT12 and ZT24. %R , cosine wave rhythm percentage; AMP, 
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amplitude of cosine wave; Acro, acrophase; CI Acro, confidence interval of acrophase; T, Effect of 

proanthocyanidins; T*t, interaction between proanthocyanidins and Zeitgeber Time; C, control animals, 

GSPE, group treated with a grape seed proanthocynidin extract; MUFA, monounsaturated fatty acids; 

PUFA, polyunsaturated fatty acids; ARA, all-trans retinoic acid; EPA, Eicosapentaenoic acid. 
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Table 5. Plasma metabolite levels of rats treated with an oral dose of a grape seed 

proanthocyanidin extract (GSPE, 250 mg /kg body weight) at zeitgeber time 12 at 3 hours 

post treatment 

Metabolite Control GSPE ANOVA p-value 

Glucose 
6.65 6.71 0.92 

Lactate 5.16 6.35 0.62 

Pyruvate 
0.16 0.16 1.00 

Citrate 0.36 0.34 0.50 

Methylsuccinate 
0.15 0.15 1.00 

Dihydroxy acetone 0.62 0.64 0.60 

Mannose 
0.07 0.05 0.45 

Alanine 1.00 0.95 0.60 

Serine 
0.98 0.93 0.34 

Threonina 0.78 0.75 0.58 

Dimethyl-glycine 
0.06 0.05 0.20 

Tyrosine 0.12 0.11 0.65 

Glutamine 
1.49 1.50 0.66 

Glutamate 0.91 0.80 0.17 

Leucine 
0.37 0.34 0.42 

Isoleucine 0.43 0.38 0.23 

Valine 
0.43 0.38 0.30 

Lysine 0.47 0.40 0.50 

Histidine 
0.01 0.01 0.71 

Phenylalanine 0.09 0.07 0.26 

Tryptophan 
0.15 0.16 0.54 

Methionine 0.25 0.23 0.51 

Taurine 
1.41 1.22 0.38 

Methylhistidines + 

xanthine 
0.03 0.04 0.63 

Urea 
0.34 0.31 0.46 

Creatine 0.05 0.05 0.25 

Cadaverine 
0.65 0.60 0.41 

Triglycerides 0.52 0.52 0.98 

Linoleic acid 
23 25 0.77 

Oleic acid 20 21 0.81 

MUFA 
35 35 0.78 

PUFA 51 55 0.73 

Page 32 of 33

Wiley-VCH

Molecular Nutrition and Food Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF CENTRAL AND PERIPHERAL MOLECULAR CLOCKS BY PROANTHOCYANIDINS 
Aleix Ribas Latre 
Dipòsit Legal: T 1831-2014



For Peer Review

omega-3 fatty acids 
7 7 0.81 

ARA+EPA 11 12 0.74 

Free glycerol 
0.99 0.94 0.41 

3-hydroxy-butyrate 0.39 0.39 0.90 

Acetates 
0.41 0.43 0.74 

Total cholesterol 0.60 0.67 0.80 

Esterified cholesterol 
0.45 0.43 0.95 

Cholate 0.13 0.12 0.62 

Phosphocholines 
0.91 0.90 0.97 

Glycerol-

phosphocholine 
0.55 0.55 0.95 

Choline 
0.06 0.05 0.47 

Plasmalogen 
0.02 0.02 0.90 

Sphingomyelin 0.05 0.06 0.90 

Tymidine 
0.02 0.04 0.18 

Cytosine 0.02 0.04 0.21 

Formate 
0.05 0.04 0.45 

Allantoin 0.12 0.12 0.94 

Metabolite concentration is expressed as mM except for linoleic acid, oleic acid, MUFA, PUFA, 

omega-3 fatty acids and ARA+EPA that are expressed as percentage of molar chain. GSPE, 

group treated with a grape seed proanthocynidin extract; MUFA, monounsaturated fatty acids; 

PUFA, polyunsaturated fatty acids; ARA, all-trans retinoic acid; EPA, Eicosapentaenoic acid. 
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Since resveratrol was found to modulate clock gene expression in cultured 

fibroblasts [1] and rat white adipose tissue and liver [2], no further studies 

have been performed with other groups of polyphenols. In the latter study 

with resveratrol, the aim was to analyse the potential effects of this 

polyphenol on changes induced by a high-fat diet on the expression of core 

clock genes and clock-controlled genes [2]. As mentioned in the introduction 

of this thesis, it is known that the clock machinery is affected by some stress 

situations, such as the stress induced by a high-fat diet, as mice fed this diet 

display altered expression of core clock and clock-controlled genes involved 

in fuel utilisation and other circadian rhythm disturbances [3]. Therefore, 

based on the close relationship between the circadian system and metabolism 

and, in turn, the beneficial effects of this polyphenol on metabolic 

disturbances, it is possible that correction of these disruptions by resveratrol 

can be considered another mechanism by which the compound exerts its 

healthy effects. In fact, as a most important effect on the molecular clock, 

resveratrol counteracted the obesity-induced increase in liver and WAT 

expression of Rev-erbα [2], a gene that is essential for adipogenesis and for 

which overexpression results in the overexpression of adipogenic genes [4]. 

Accordingly, considering that PAs are the most consumed flavonoid due to 

their widespread presence in foods [5] and have a vast range of health effects, 

improving all the components of metabolic syndrome [6], we speculated 

whether PAs, similar to resveratrol, would be able to modulate the clock 

machinery. Thus, we decided to initially demonstrate in a similar condition as 

in the case of resveratrol, i.e., under a high-fat diet, whether PAs are capable 

of exerting a similar effect. We first performed another experiment without a 

pathological situation with different doses of PAs, at 5, 25 or 50 mg GSPE/kg 

body weight, to evaluate whether the clock genes responded in a dose-

dependent manner. By extrapolating to human doses [7] and estimating the 

daily intake for a 70 kg human, these doses match an intake of 57, 284 and 

UNIVERSITAT ROVIRA I VIRGILI 
MODULATION OF CENTRAL AND PERIPHERAL MOLECULAR CLOCKS BY PROANTHOCYANIDINS 
Aleix Ribas Latre 
Dipòsit Legal: T 1831-2014



V. GENERAL DISCUSSION 

204!

560 mg of GSPE/day. As the estimated proanthocyanidin intake for humans 

ranges between 90 and 200 mg/day [8–10], the GSPE doses used in this study 

simulate low, similar and high human proanthocyanidin dietary intake. 

For these two experiments (under or not stress), the peripheral oscillators in 

the liver, gut and mWAT were analysed, taking into account that the 

expression of clock genes in the liver [11,12], gut [13] and WAT [14] are 

entrained by the frequency of daytime meals and diet composition. As a 

result, these two experiments showed that GSPE differentially modulates the 

peripheral clock in each organ studied.  

In healthy animals, the number of core clock and clock-controlled genes with 

altered expression in response to GSPE was high in mWAT, medium in the 

liver and low in the gut, with a general overexpression of core clock genes 

and two different patterns in the expression of genes directly controlled by 

CLOCK:BMAL1 in the liver and mWAT. Per2 was overexpressed in a 

positive dose-dependent manner, similar to Clock and Bmal1; in contrast, 

Rev-erbα and Rorα were repressed, showing a negative dose-dependent 

pattern. As chronic GSPE intake was capable of modifying circadian clock 

gene expression in healthy animals at doses that simulate regular 

proanthocyanidin intake in the Mediterranean diet [10], i.e., 25 mg GSPE/kg 

body weight, we determined the capacity of GSPE to modulate peripheral 

molecular clocks in obese rats under this standard dose. GSPE administration 

nearly corrected all of the disruptions in the clock genes induced by obesity 

in the liver and gut yet was less effective in normalising clock gene 

disruption in mWAT. However, as gene expression was measured at only one 

point in both experiments, it is not possible to infer whether the effects 

induced by PAs on the molecular clock were due to a phase shift or 

amplitude intensification after chronic GSPE consumption. 

 

Therefore, we next designed an experiment in which gene expression was 

measured at several points, shaping a curve so that it was possible to 
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determine the amplitude and acrophase for each gene. For this experiment, 

PAs administration was supplied acutely at 250 mg of GSPE /kg body weight 

to affect the clock system in a dose that, in previous experiments by our 

group, was found to be effective for modulating lipid and glucose metabolism 

[15–18]. PAs were administered at ZT0, when the light was turned on, and at 

ZT12, when the light was turned off. Despite mWAT being the tissue most 

affected by PAs in healthy rats, as indicated in the previous experiment, the 

effects of GSPE in the liver were not negligible. In addition, although 

comparisons are difficult because the experimental conditions were not equal, 

the liver was the organ that better matched the effects exerted by resveratrol 

in a similar study [2]. Therefore, we focused on the liver in the ensuing 

experiments as the tissue most closely related to rhythms. In fact, liver is the 

most important metabolic organ due to its implications in glucose [19] and 

lipid [20] metabolism, among other crucial physiological functions [21], and 

is thus a good candidate for studying the effects of PAs on the peripheral 

clock. 

The data clearly showed that the ability of PAs to entrain the circadian 

rhythm of core clock and clock-controlled genes in the liver depends on the 

time of administration. Specifically, PAs administered at the beginning of the 

dusk phase (ZT12) were much more effective affecting the clock machinery. 

Bmal1 mRNA and protein levels were consistently increased one hour after 

PAs consumption, independently of whether administration occurred 

diurnally or at night. However, only the acetylated form of BMAL1 is active, 

and GSPE significantly increased the ratio of acetylated BMAL1 only at 

ZT13, with no effect at ZT1. The acetylation of BMAL1 is carried out by its 

partner CLOCK, which possesses a histone acetyl transferase (HAT) domain; 

the rhythmic deacetylation of BMAL1 is regulated by the deacetylase SIRT1, 

which is sensitive to NAD+ levels [22]. Therefore, the ratio of acetylated to 

total BMAL1 protein provides direct information about the transactivation 

activity of both SIRT1 and BMAL1:CLOCK [22]. The different pattern of 
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BAML1 acetylation induced by GSPE administered in the day or at night, in 

turn, explains the overexpression of Nampt, a BMAL target gene [22]. Hence, 

the peak of NAD levels in liver was found only when GSPE was 

administered at night. In fact, although GSPE modulated NAMPT, the rate-

limiting enzyme in the biosynthesis of NAD [23], and NAD levels in an 

opposite manner after 6 hours of its administration (day or night), reducing or 

increasing the levels, respectively, it is interesting that the Nampt acrophase 

was delayed by 6 hours when GSPE  was administered in the day, suggesting 

that NAD picked also at night. Therefore, in addition to Bmal1, Nampt and 

NAD emerge as molecular targets of PAs in the liver; due to its importance in 

metabolism [24–28], the modulation of NAD levels by PAs, through the 

BMAL1 acetylation, is an attractive candidate for explaining some of the 

metabolic effects of PAs. In this sense, PAs could act as an element of 

adaptation in the liver by improving the energetic profile of rats and 

increasing mitochondrial function and oxidation at night, a time when rats are 

active. Conversely, during the light phase, when these animals are resting, 

PAs could be acting as an energy saver through decreased levels of NAD 

after PAs administration at ZT0. A systemic regulatory network for 

metabolic regulation in mammals, named “NAD World”, has been described 

that functions by orchestrating metabolic responses to a variety of nutritional 

and environmental cues, contributing to the maintenance of the robustness of 

metabolic regulation at a systemic level [29]. In other words, circadian 

rhythms allow anticipation of environmental changes and adaptation to the 

time of day and food availability, as has been shown in this study through 

NAD, NAMPT and BMAL1 acetylation levels modulated by PAs. These 

cues advise animals about environmental conditions by entraining biological 

rhythms to obtain better perspectives regarding lifespan, in agreement with 

the Xenohormesis hypothesis, which proposes that heterotrophs are able to 

sense chemical cues synthesised by plants, such as polyphenols, in response 

to stress [30]. 
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As PAs modulate lipid metabolism in the liver [15], we also analysed the 

expression of HmgcoAR, the key enzyme of the cholesterol biosynthetic 

pathway, which shows a circadian rhythm but is not directly controlled by the 

core clock genes [31]. As expected, the HmgcoAR acrophase was at ZT17, 

and PAs did not modify the expression rhythm of this enzyme. However, 

GSPE had a dual effect on HmgcoAR expression depending on the time of its 

administration, repressing HmgcoAR, both at the mRNA and protein levels, 

at ZT0; in contrast, its expression was not affected at the protein level at 

ZT12, underlining this dual effect of PAs on liver metabolism as a function 

of the time of administration.   

 

Still focusing on the liver, we attempted to unravel some of the possible 

mechanisms by which PAs are able to modulate the molecular clock in the 

liver through other experiments in vitro, specifically with HepG2 cells, as 

related to BMAL1 acetylation. For these experiments, we employed a dose, 

100 mg/L in the medium, previously shown be active for lowering 

triglyceride levels [32] and modulating microRNA expression [33] in HepG2 

cells. GSPE produced clear effects in the clock machinery in these cells, 

largely mediated through Bmal1 and its activator Rorα. Rorα showed an 

advanced acrophase from T23 to T8, possibly explaining the delayed shift of 

the Bmal1 acrophase from T14 to T20. 

Then, we next attempted to ascertain whether melatonin and GSPE induced a 

similar effect, taking into account that at pharmacological doses, melatonin 

and PAs have similar effects on certain metabolic processes [34] and other 

physiological events [35,36]. RORα acts as a nuclear receptor of melatonin 

[37], and melatonin itself has been linked to the core circadian machinery 

genes [38]. We found that the BMAL1 mRNA levels were increased to the 

same intensity at 1 h after treatment when the cells were treated with 10 µM 

and 100 mg/L of melatonin and GSPE, respectively. However, in the case of 

melatonin, the overexpression of BMAL1 is mediated by the MT1 receptor, as 
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MT2 is not located in the liver [39], whereas the effect exerted by GSPE was 

mediated by another receptor. Taking into account that the effects of 

melatonin in the liver could also be mediated by its nuclear receptor RORα, 

which is also a BMAL1 activator, we sought to determine whether PAs could 

act as a natural ligand of RORα. Although the results were inconclusive, they 

point to the idea that the effects of PAs on the molecular clock in the liver 

could be mediated through RORα. This activation of RORα would explain 

the rapid BMAL1 overexpression induced, either in vivo or in vitro, within 1 h 

after GSPE treatment. Although it is not the subject of this thesis, the 

increase in BMAL1 expression induced by GSPE could be interesting because 

a down-regulation of BMAL1 accelerates the development of tumours and 

may influence the response to anti-cancer drugs [40]. In addition, the 

CLOCK:BMAL1 transactivation explained by the percentage of acetylation 

of BMAL1 would be more related to the time of PAs administration. 

 

After these striking results in the modulation of the peripheral clock in the 

liver by PAs, using the same in vivo experiment, we evaluated whether PAs 

were able to entrain biological rhythms and to adjust the central clock system 

in the SCN.  

To study the ability of PAs to entrain biological rhythms, the measurement of 

plasma metabolites, as blood metabolomics, has been proposed as a method 

to analyse internal body time [41], and the concentrations of melatonin, a 

robust indicator of the internal body time [42], were determined. As a result, 

GSPE administered at ZT0 strongly increased plasma melatonin levels in the 

middle of the light period, maintaining levels similar to those at dusk. 

Additionally, GSPE administered at ZT0 shifted the acrophase of the 

concentration of many important plasma metabolites, such as amino acids, 

glucose and cholesterol. Moreover, GSPE treatment masked the circadian 

rhythms of some metabolites that were very evident in the control animals at 
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the ZTs studied. Therefore, acute GSPE treatment at ZT0 actually affected 

biological rhythms in rats. 

Furthermore, to study the capacity of PAs to adjust the central clock system, 

core clock and clock-controlled genes were analysed in the hypothalamus, as 

in the liver. The data clearly showed that GSPE adjusted the circadian 

rhythms of core clock and clock-controlled genes in the hypothalamus when 

administered at ZT0. This modulation was concomitant with the modification 

to the biological rhythms of melatonin and plasma metabolites. Conversely, 

the administration of GSPE at ZT12 caused minimal effects on the molecular 

clock of the hypothalamus. This pattern is contrary to those in the liver, 

which displayed exactly an opposite arrangement. In fact, it has been 

described that different mouse tissues have different circadian phases, 

suggesting the existence of organ-specific circadian rhythms synchronisers at 

the cell and tissue levels [43]. In other words, circadian gene expression is 

tissue specific and optimised in each tissue to best accommodate the 

respective functions of each throughout the circadian cycle, which, in turn, is 

dependent on external synchronisers, as described in the introduction of this 

thesis. For instance, a nearly eight hour phase difference has been observed 

between the liver and gonadal WAT [44]. In addition, it has been established 

that SCN cells are extensively coupled during the day, when the cells exhibit 

synchronous neural activity, but are minimally coupled during the night, 

when the cells are electrically silent [45]. Therefore, this discrepant 

functionality of SCN cells between day and night could determine the 

effectiveness of PAs. Accordingly, exposure to light has been observed to 

cause shifts in the phase of the SCN clock primarily during the subjective 

night in nocturnal rodents, whereas non-photic cues trigger these shifts 

mainly during the subjective day [46]. Therefore, GSPE could act as a non-

photic cue, triggering the central clock system during the light period. 

Among the observed effects of GSPE treatment at ZT0 on the circadian 

rhythm expression of core clock and clock-controlled genes in the 
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hypothalamus, special attention should be paid to Bmal1, which showed a 

significant advanced shift in its phase. Because clock was not affected by 

GSPE, which is consistent with its constitutive expression in the SCN [47], 

such a dramatic shift in the Bmal1 rhythm induced by GSPE could explain 

the delayed phase of the clock-controlled genes Rorα, Rev-erbα, Per2 and 

Nampt. In addition, according to the defined role of Bmal1 as a master 

regulator of the molecular clock system [48] and its importance in controlling 

metabolic processes, this finding could also explain the observed shifted 

acrophase of many important plasma metabolites [49,50]. Nonetheless, no 

studies have determined whether PAs reach the hypothalamus, though some 

studies in Wistar rats have elucidated the distribution of flavonols and their 

metabolites to different tissues, e.g., the brain [51,52], ruling out the capacity 

of flavonols to cross the blood-brain barrier. In addition, an experiment with 

a rat model of Parkinson’s disease with chronic oral tangeretin administration 

(10 mg/kg/day for 28 days) confirmed a significant level of this citrus 

flavonoid in the hypothalamus, even at higher concentrations than in the liver 

or plasma [53]. Alternatively, PAs could adjust the central clock by acting at 

intestinal levels through the brain-gut axis, which sends gut cues to the brain 

via neuronal and hormonal mechanisms [54]. Thus, more studies are needed 

to define the molecular mechanism by which PAs adjust the central clock. 

 

Because an effect of PAs under the standard condition was observed in the 

central and liver clocks, the capacity of GSPE to modulate the central and 

liver clocks was also evaluated in a circadian-disrupted situation using rats 

subjected to a 6 hour “jet-lag”. Rats at ZT6 (middle of light period) were 

acutely administered GSPE at 250 mg of GSPE/kg body weight and moved 

to ZT12 (light off). Then, the capacity of GSPE to modulate core clock and 

clock-controlled genes was evaluated at ZT12, ZT13, ZT15 and ZT18 to 

establish whether PAs could exert some effect under this situation. In both 

tissues, “jet-lag” induced a clear shift in the rhythmicity of the mRNA levels 
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of all genes studied; indeed, GSPE administration significantly modulated the 

expression rhythm of most of them. Only Clock, Rev-erbα and HmgCoAR in 

the hypothalamus and Clock and Per2 in the liver were not modulated by 

GSPE at the beginning of this jet lag simulation. Interestingly, even under 

this situation, Bmal1 and Nampt were again modified, reinforcing the fact 

that they are targets of PAs. The effect of GSPE on Bmal1 expression in the 

hypothalamus was the most important, as GSPE counteracted the jet-lag 

effect and allowed Bmal1 to recover its normal rhythm. In the liver, the 

Bmal1 mRNA and protein levels were curiously increased at one hour after 

PAs consumption, as in the previous experiment in which Bmal1 was 

increased 1 h after GSPE treatment at ZT0 or ZT12. However, the percentage 

of acetylation was higher at six hours after GSPE administration, which could 

be related to the 6 hour delayed phase triggered by the jet lag situation. 

Altogether, these results suggest that PAs were not able to adapt to the jet lag 

situation in the liver until 6 h had elapsed; conversely, the adjustment of the 

molecular clock appeared to be immediate in the hypothalamus. This 

contradictory behaviour between the liver and hypothalamus could be related 

to the time of GSPE administration, i.e., ZT6, as that the major effects of 

GSPE in the central clock were observed during the light phase while the 

major effects were observed during the dark phase in the liver. In addition, 

another possible cause of this difference could lie in the coupling between 

cells. Peripheral cells oscillate largely independently of one another, whereas 

SCN neurons possess specific mechanisms, as explained in the introduction 

of this thesis, to maintain coupled neurons as a population such that they are 

able to oscillate robustly. These findings suggest that SCN cells are more 

prepared than peripheral cells to recover after a circadian-disrupted situation 

such as jet lag. 

,
,
! !
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1. Chronic consumption of proanthocyanidins at different doses modulates 

the peripheral clock in the gut, liver and mWAT of rats under a standard 

condition. 

 

2. Chronic consumption of proanthocyanidins nearly corrects the disruptions 

in clock genes induced by obesity in the liver and gut of obese rats. 

 

3. Bmal1 in the liver is a target of proanthocyanidins, independent of the 

time of administration or the situation (jet lag), as its expression is 

consistently increased 1 h after acute GSPE treatment. This effect is 

confirmed in HepG2 cells, in which proanthocyanidins could be acting as 

a natural ligand of RORα. 

 

4. The acetylation of BMAL1 in the liver induced by proanthocyanidins 

depends on the time of administration, displaying a higher level of 

acetylation after acute GSPE treatment at ZT12 (start of the dark phase). 

 

5. In addition to BMAL1, NAMPT and NAD emerge as molecular targets of 

proanthocyanidins in the liver, which could represent a mechanism of 

adaptation entrained by proanthocyanidins. 

 

6. Melatonin plasma levels are increased in the middle of the light period 

and, in parallel, several plasma metabolites such as amino acids, glucose 

and cholesterol shift their acrophase after GSPE administration at ZT0. 

 

7. GSPE affects biological rhythms and adjusts the circadian rhythms of 

core clock and clock-controlled genes in the hypothalamus when 

administered at ZT0, causing minimal effects after administration at ZT12 
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and displaying an opposite pattern compared to the liver, where GSPE 

exerts major effects after administration at ZT12. Therefore, 

proanthocyanidins could act as a non-photic cue in the hypothalamus and 

as a mechanism of adaptation in the liver during the night period. 

 

8. Bmal1 in the hypothalamus is also a target during the light phase, which 

could explain all the effects observed. 

 

9. GSPE significantly alters the expression rhythm of most clock genes in 

the central and peripheral clock in the liver; these genes show altered 

rhythms after a circadian-disrupted situation such as jet lag. Furthermore, 

Bmal1 is also targeted in the hypothalamus, as GSPE counteracts the jet-

lag effect and allows this gene to recover its normal rhythm.
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