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Abstract

A cardiac computational model is a relevant tool that can give biomedical researchers

an additional source of information to understand how the heart works. Numerical

models can help to interpret experimental data and provide information about cardiac

mechanisms that can not be determined accurately by classical clinical devices. In this

thesis, High Performance Computing (HPC) techniques are used to build a cardiac

computational tool, which is capable of running in parallel in thousands of processors,

allowing high fidelity simulations on fine meshes. To simulate the pumping heart, an

explicit coupling scheme between the three-dimensional electrophysiological equations

and the solid mechanics formulation is used, solving the governing equations with

finite element methods. Also, data assimilation techniques are implemented for the

effective estimation of some relevant electrophysiological parameters, which is a crucial

step towards the patient-sensitive cardiac model. The data assimilation techniques are

assessed on synthetic data generated by the model. Finally, the computational code

is applied to simulate real physical problems. The electromechanical propagation in a

rabbit geometry is studied to test the sensitivity of the framework to input variations.

Particularly, the computational tool is used to evaluate the influence of the fiber field

in the contraction of the tissue.

To develop a cardiac simulation useful for clinical purposes, the integrative model

requires combining computational mechanics and image processing techniques via data

assimilation methods. Coupled with the most advanced image processing analysis,

the framework can be the base of theoretical studies into the mechanisms of cardiac

pathologies. It can help surgery planning and cardiac modeling, such as the prediction

of the impact of pharmacological compounds on the heart’s rhythm or to improve the

knowledge of drug study, giving medical researchers additional hints to understand the

heart. This realization is only possible in a multidisciplinary team, where specialized

groups join forces in their respective disciplines: cardiologists, image researchers,
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bioengineers and computational scientists. The present cardiac computational model

is one further step towards the creation of a virtual lab.



Resum

Els models computacionals del cor són una eina important que pot donar als

investigadors biomèdics una font addicional d’informació per entendre el funcionament

del miocardi. Els models numèrics poden ajudar a interpretar dades experimentals

i proporcionar informació complementària sobre mecanismes card́ıacs que no poden

ser determinats amb precisió mitjançant dispositius cĺınics clàssics. En aquesta tesi,

s’apliquen tècniques de computació a gran escala per construir una eina computacional

capaç d’executar-se en paral·lel en milers de processadors, permetent simulacions

d’alta fidelitat en malles fines. Per simular el bombeig del cor, s’utilitza un esquema

d’acoblament expĺıcit entre les equacions electrofisiològiques en tres dimensions i la

formulació en mecànica de sòlids. Per trobar la solució numèrica, s’utilitza el mètode

d’elements finits. A més, s’implementen tècniques en assimilació de dades per a

l’estimació efectiva dels paràmetres electrofisiològics i mecànics rellevants que apareixen

a les equacions, la qual cosa és un pas crucial cap a un model card́ıac sensible a cada

pacient. El codi computacional s’aplica per simular problemes f́ısics reals. S’estudia la

propagació electromecànica en una geometria de conill, on es prova la sensibilitat del

model a les variacions d’entrada. En particular, l’eina de càlcul s’utilitza per avaluar

la influència del camp de fibres card́ıaques en la contracció del teixit.

Per desenvolupar una simulació card́ıaca útil per a fins cĺınics, el model requereix la

integració i combinació de la mecànica computacional i les tècniques de processament

d’imatge més recents. El model resultant pot ser la base d’estudis teòrics sobre

mecanismes de patologies, oferint als investigadors i cardiòlegs pistes addicionals

per comprendre el funcionament del cor. Pot ajudar a la planificació de cirurgia i

modelització, com és la predicció dels efectes de compostos farmacològics en el ritme

card́ıac o l’estudi de l’efecte de medicaments. Aquest projecte només és possible en un

equip multidisciplinar, on grups especialitzats uneixen les seves forces en les respectives

disciplines: cardiòlegs, investigadors imatge, bioenginyers i cient́ıfics de la computació.
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El present model computacional del cor és un pas més cap a la creació d’un laboratori

card́ıac virtual.



Glossary

CCM Cardiac Computational Modeling

DT-MRI Diffusion Tensor Magnetic Resonance Imaging

EF Ejection Fraction

EM Electromechanics

EnKF Ensemble Kalman Filter

FD Finite Diferences

FEM Finite Element Method

FHN FitzHugh-Nagumo

FK Fenton-Karma

HPC High Performance Computing

LV Left Ventricle

MRI Magnetic Resonance Imaging

ODE Ordinary Diferential Equation

PDE Partial Diferential Equation

PMJ Purkinje Myocardium Junction

ST1 Linear interpolation of rule-based fiber field

ST3 Cubic interpolation of rule-based fiber field
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Chapter 1

Introduction

No man-made structure is designed like a

heart. Considering the highly sophisticated

engineering evidenced in the heart, it is not

surprising that our understanding of it comes

so slowly.

Daniel D. Streeter

Gross morphology and fiber geometry in the

heart. Handbook of Physiology, 1979

1.1 Motivation

Cardiac computational biomechanics studies the use of computers to simulate the

heart, converting mathematical models to a code. Different approaches have been

used to model the dynamical behavior of biological systems, including mathematical

descriptions based on differential equations or cellular automata, which provide a model

of the activity of the organ, such as electrophysiology, mechanics or blood flow. In the

forefront of cardiac research, the knowledge of the morphology and the functional

processes of the heart has a vital interest due to their potential application to the

cardiovascular clinics. Experimental studies involving the in-vivo human heart are

possible and often available, but they are expensive and very limited. Therefore, well-

defined numerical modeling is emerging as a powerful tool that can help to interpret

experimental data, allowing the knowledge of phenomena not detectable by classical

clinical devices. Simulation can be the base of theoretical studies into the mechanisms
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2 Chapter 1. Introduction

of cardiac pathologies, can provide diagnosis values (Chabiniok et al., 2012) or can be

used to assist in therapy planning (Sermesant et al., 2012).

The framework proposed in this thesis aims to create a finite element model of

excitation-contraction coupling of the heart based on cardiac data, using the latest

advances in image processing and image acquisition. The model is one further step

towards the creation of simulations with high precision, which could help to interpret

clinical data. The framework could be integrated into medical analysis laboratories

where several simulations would be performed on the patient’s data. The results

would be delivered to the doctor, who could take decisions on subsequent steps in

the treatment: surgery, pacemakers, drugs, stents, etc.

Nowadays, this tendency can be observed in pharmaceutical companies, which already

have specialized teams dedicated to mixed simulation and experimental techniques.

They are interested in the prediction of the impact of pharmacological compounds on

the heart’s rhythm, using computer models, to improve the knowledge of drug study

(Staab et al., 2013; Novartis, Novartis). The high performance computational (HPC)

simulation tool should lead to a significantly reduction of animal experiments. This also

would represent direct savings and reduction in product development for companies.

Creating a simulation of a physiological or pathophysiological process requires

knowledge of the process itself. This realization is only possible in a multidisciplinary

team, where specialized groups join forces in their respective disciplines. The present

work involves medical doctors from several hospitals, image researchers, bioengineers

and computational scientists, many of them with the skills extending beyond their

core subject of research. This thesis presents the contribution in the project from the

Computational Mechanics scientist’s point of view. From this perspective, the issue of

understanding how the heart works is amazingly appealing. The development of a HPC-

based model of the pumping heart is presented and used to test cardiac properties. The

aim is to help researchers and cardiologists to get a deeper insight of the system, and

to speed-up our understanding, that “comes so slowly” (Streeter et al., 1969). With

this objective, a computational code has been created to represent a new use of HPC

resources in biomechanics.

Most of the criticism received in simulations of biological systems comes from the lack

of better physiological models to represent real behavior. For these highly coupled

and multi-scale systems, a better model means a more computationally expensive one

to setup, calibrate and perform the data assimilation. Therefore, a simulation tool



1.2. Cardiac computational modeling 3

that combines programming flexibility with efficient use of HPC opens a new research

perspective.

1.2 Cardiac computational modeling

Cardiac modeling is a complex problem. The maturity of the models of electrical

propagation in the heart is still not comparable with the one achieved in other

engineering fields. Several causes can explain this difference:

• The heart muscle is a structure composed of cells, whose properties are non-linear,

inhomogeneous, time-dependent and anisotropic.

• The biological processes are still partly understood. Direct observations of

electromechanical (EM) propagation in the heart tissue is not trivial, and the

experimental techniques have strong limitations.

• Experimental validation is still inaccurate and difficult to obtain, when compared

to more traditional engineering problems on cars, planes or pumps.

• The problem is extremely multi-disciplinary. To obtain anatomical information

and develop the model, the team involves cardiologists, radiologists, image

researchers, bioengineers and computational scientists, with all kinds of

communication problems among the players.

As a consequence, each observed behavior can have different interpretations according

to antagonistic theories, creating strong controversies. One of the most representative is

the answer to the simple question on how the heart pumps, even in a qualitative general

answer. Pumping action is determined by the way the heart tissue contracts, which is

in turn determined by the muscular tissue, which is in turn determined by the myocites

orientation and distribution. For many years, the ventricular myocardium was described

as a continuum in which myocite fibers orientation varied smoothly from the external

side of ventricular wall (epicardium) to the internal side (endocardium). The defenders

of this idea interpreted a large amount of experimental evidence as backing it, although

one key issue remained obscure: How does a heart with this morphology contract to

achieve the pumping rate observed? A second idea was left aside by the defenders of

the first one, considered by them as incorrect. It states that the cardiac ventricular

tissue is configured as a helical band with two spiral turns (Fig. 1.1). This theory was
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Figure 1.1: Ventricular myocardial band, Torrent Guasp drawing.

developed by Torrent-Guasp et al. (2005). Nowadays this controversial theory is still

questioned under differing views.

Under the Computational Mechanics scientist’s point of view, we cannot support any

theory, but the development of a ”computational heart” could help to study and assess

controversial theories as the helical band.

Numerical model. Heart simulation is a multi-scale problem. Many scales are

strongly coupled, from cell descriptions of cardiac mechanisms to anatomical models of

the organ. As stated by Legrice et al. (2001) the simulation scales covers eight orders

of magnitude, “from the geometry of the cardiac chambers down to descriptions of

ion channel or T-tubule density and distribution” which are tightly linked. At the
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cell level, EM simulations are based on electrophysiological equations coupled with

protein interaction models. Cellular models describe ionic currents and dynamics of the

microscopic structures with a high degree of detail. They have been used to describe

cellular properties as well as the influence of pharmaceuticals, neurotransmitters and

mechanics. Despite all their advantages, it is impracticable to derive a whole heart by

modeling every single cell (McCulloch and Huber, 2002).

At organ level, the reaction-diffusion equations describe the spread of the electrical

impulse through the myocardium as a continuum. The excitation and electrical

propagation process in cardiac tissue is coupled with the mechanical contraction,

typically modeled with finite deformation elasticity theory, based on general

conservation principles of space, mass and momentum. The present work focuses on

the EM simulation of the heart at the continuum level. The code, Alya, is written in

parallel, capable of running efficiently in thousands of processors. The starting point is

the set of physical models that describe the constitutive parts of the problem. Then,

numerical methods are developed to solve the group of non-linear partial differential

equations (PDE) that governs the system. In this work, the Finite Element Method

(FEM) is used to find the numerical solutions, rendering PDEs into an approximating

system of ordinary differential equations (ODE). The FEM includes the 3D geometry,

the fiber architecture, electrophysiology, finite strains, non-lineal properties and other

features in the analysis. The complete problem can be divided into three parts: the

electrical propagation, the mechanical deformation and the blood flowing in and out

of the heart. This thesis attacks the first two topics and how they are linked together.

The electrical propagation is modeled through non-linear equations representing an

excitable media. The deformation is studied as a dynamic large-strain solid mechanics

model with an appropriate Ogden-like material. The resultant HPC-based simulation

tool provides the coupled EM propagation in cardiac geometries.

Cardiac imaging. To solve numerically electrical and mechanical components, the

following anatomical components are used in this work:

• The geometry of the ventricular chambers.

• The definition of the fiber micro-structure.

The development of imaging techniques has facilitated the acquisition of accurate

anatomical data required for the cardiac computational modeling (CCM). Nowadays,

magnetic resonance imaging (MRI) is the reference modality for extracting the
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Figure 1.2: Section of the ventricles. Comparison of mathematical model of the fibers
(linear and cubic) and experimental DT-MRI in a short cut of the ventricles. Colours
represent the angle of the fiber field (from −60◦ on the epicardium to 0◦ at mid-wall
to +60◦).

geometry of the ventricles. MRI is a noninvasive technique that enables accurate

descriptions using strong magnetic fields and radiowaves.

Regarding the definition of the micro-structure, the orientation of muscle fibers can also

be obtained using image techniques. Diffusion tensor MRI (also known as DT-MRI)

has allowed the depiction of preferred orientation in the tissue (Basser et al., 1994).

It has been shown that the main eigenvectors of tensors as acquired with DT-MRI

correlate with the direction of the elongated myocytes in the ventricles (Scollan et al.,

1998). However, most results are ex-vivo and can not be related to patient-specific

studies directly. Nowadays, a challenging work to obtain results in-vivo is being

developed in acquisition and image processing (Harmer et al., 2013; Toussaint et al.,

2013; Nagler et al., 2013).
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Unfortunately, cardiac images of geometry and fiber field are not always available. In

those cases, mathematical descriptions are used to define the anatomy, assuming the

error that the approximation involves. Figure 1.2 shows three possible orientations of

the cardiac fiber field. Linear and cubic models represent mathematical descriptions

of the microstructure and DT-MRI represents the experimental acquisition. Based

on observations on anatomical dissections in mammalian hearts, those synthetic

interpolations describe mathematically the variation of the fibers, from the epicardium

to the endocardium. Colours in the figure represent the angle of inclination measured

from the wall, typically from −60◦ on the epicardium to 0◦ at mid-wall to +60◦ in the

endocardium.

Mathematical equations modeling the physics of the problem need to be solved in

realistic geometries. Moreover, cardiac imaging is continuously improving, there is a

wide field of research to remove noise in the acquisitions and to obtain high-resolution

recordings. As the quality of the image increases in terms of both signal to noise

ratio and spatio-temporal resolution, cardiac accurate models need more computational

resources to take profit from this detailed information. Consequently, HPC is a strong

tool that can contribute to obtain realistic simulations of the heart using all the

information of the detailed data available. The creation of virtual models based on

cardiac imaging, using the most recent advances in this field, can be a platform to test

new techniques, validate theories, design early clinical trials or predict clinical results.

Data assimilation Electrical and mechanical models that govern the simulation of

the heart contain a large number of parameters in their equations, which often cannot

be measured directly or that have to be acquired ex-vivo. Although some of them can

be found in the literature, a special calibration of these values is required to adapt the

simulation to an specific cardiac mechanism.

Data assimilation permits a non-invasive characterization of the parameters that can

be used to fit the simulation, to describe and predict the behavior of the system. In

particular, data assimilation combines the information available from experimental

sources with models describing the cardiac mechanism to estimate the unknown

quantities of interest. In terms of clinical applications, data assimilation can improve

the cardiac model and assist in diagnosis (Wang et al., 2013; Chabiniok et al., 2012;

Xi et al., 2012). Once data assimilation has been performed, the model can be used

to predict the evolutions of the system. Consequently, diagnosis could be improved by

adapting the simulation to a patient.
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Figure 1.3: Interaction between computational mechanics and image processing
techniques. This multidisciplinary project is composed by Hospital de Sant Pau, Centre
de Visio per Computador (CVC) and Barcelona Supercomputing Center (BSC). Image
designed by Debora Gil (CVC).

Outline of the multidisciplinary project. The HPC-based computational model

is a useful tool that can be applied in many multidisciplinary fields. Most of the

times, the processing power of computers available to clinical researchers is too limited

to simulate physiological and disease mechanisms. In this context, computational

scientists are crucial. In the future, the CCM tool presented here aims to cover different

clinical disciplines. For example, in pharmaceutical research, the design of HPC-based

simulations could improve the time and cost factors in areas such as drug development.

In this thesis, the integrative model requires combining computational mechanics

and image processing techniques to develop a cardiac simulation useful for clinical

purposes. One possible interaction between the players that compose the computational

simulation of the myocardium is illustrated in Figure 1.3. The ideal study provides the

geometry of the ventricles and the spatial disposition of the muscular fibers to allow the

estimation of the EM sequence of the heart. The anatomy of the ventricles is obtained
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from images and is converted into a computational mesh where the numerical equations

are solved. Functional data (cardiac deformation) can be recorded through Cine MRI

or ultrasound echocardiography. Both modalities provide reliable measurements of

intramural motion that could be used to calibrate the simulation. The resultant

simulation of the CCM tool is compared with the experimental 3D motion. Ideally,

it should match the observed behavior of the heart. This multidisciplinary project

is composed by Hospital de Sant Pau, Centre de Visio per Computador (CVC) and

Barcelona Supercomputing Center (BSC).

However, the current technology for reconstruction of 3D motion has a temporal

resolution that might not be high enough to produce reliable contractions. Advances

in medical imaging have the potential to meet the demands of the requirements of

this approach. The improvement of 3D motion is crucial to personalise the cardiac

simulation.

1.3 Goals of the thesis

This PhD thesis represents an effort in helping cardiologists to grasp the underpinnings

of cardiac dynamics, considering that simulations of biological systems are a

complementary tool for physicians to study the organs. The tools developed here should

give medical researchers additional hints to understand the heart. The use of numerical

simulations in therapeutic applications is in the way of becoming a reality, allowing

medical doctors to make decisions on subsequent steps in the patient diagnosis and

treatment.

This works aims to investigate some aspects of the mathematical and numerical

modeling of the cardiovascular system, focusing on:

• The electrophysiological simulation of the heart

• The mechanical simulation of the heart

• The weak EM coupling

• The HPC-based simulation

The computational electrophysiology and computational mechanics are implemented

in the same computational tool, Alya, which also solves other engineering problems.

Under Alya Red, we group all the biomedical research projects. The resulting software
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is then targeted to biomedical research and based in a general purpose simulation

code for coupled multiphysics and programmed for parallel computers. This strategy

allows a great flexibility to cover the wide range of problems found in biological

systems, being all of them seen in the same way and as any other engineering

problem: systems of differential equations coupled together. Alya has no dependency on

third-parties libraries, being all solvers developed in-house. The coupled EM solution

requires solving electrical and mechanical components, which are performed in the

same computational code. The simulation tool is flexible enough to introduce all the

necessary modelization improvements, preserving the main features, particularly the

scalability. In this thesis, electrophysiological and mechanical models are implemented.

The CCM tool is used to test properties of the heart. We analyze its potential on EM

cardiac applications through a sensitivity analysis and we present a framework that

emphasises the possibility to optimise cardiac models.

Questions and Hypotheses of the work. The work presented here is one of the

biomedical problems solved in Alya and means a preliminary step towards the virtual

heart simulator. The questions and hypotheses that have been arisen to build and

develop the framework are summarized as follows:

• Is HPC necessary?

Computational meshes are commonly used in numerical simulations, offering the

advantage of describing the topology and the geometry of the organ as precisely

as required. Nowadays, some anatomical data is hard to obtain, for example the

orientation of the fiber field in the heart. Since cardiac imaging techniques are

improving fast, the newest technology allows to acquire at a high resolution. In

the near future, it will increase even more. Therefore, we have to be prepared to

use all the information coming from the new medical equipments to consider the

increasingly high resolution obtained from the clinical images. High resolution

at both geometrical and material levels produce high resolution meshes in the

electrical and mechanical problems, which makes high fidelity simulations. HPC

is necessary to compute the models of the heart in a fine mesh, which considers

all the detail of the geometry that comes from high definition acquisition.

In addition, to perform a sensitivity analysis in a cardiac geometry HPC is also

needed. One simulation can run in several days in a single computer. If we pretend

to analyze the effect of the input parameters in the contraction of the muscle, we

need to run a large amount of cases, as it is done in this work.
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Finally, the electrophysiological, material and coupling models of high complexity

have up to a hundred of degrees of freedom per node. If we use complex models

in the cardiac simulation, computer resources are also required.

• Why simple electrophysiological models are used in this thesis?

Alya’s flexibility allows to easily program a large variety of physiological models

for each problems that needs to be solved. The purpose of this thesis, is to develop

an EM propagation of the heart, including the mutual coupling. To simulate

the global pumping action, complex models are not required. Models including

detailed information of the ionic processes that occur in the contraction of the

muscle are suitable for other studies, such as the effect of drugs in pharmaceutical

studies. Those models are already implemented in Alya (O’Hara-Rudy, Grandi-

Bers) but are not used in this thesis. Instead, Fitz-Hugh Nagumo and Fenton-

Karma models are used to run all the simulations.

• Why a fine mesh is needed in the EM simulation of the heart?

In the case of the heart, a fine mesh is necessary to prescribe the anatomical

details of the heart available from cardiac images, specially the fiber field

orientation. The fiber field information is crucial to develop an EM simulation

because it determines the resultant movement of the organ. The orientation of

the cardiac fiber field influences the contraction of the heart. Mathematical fiber

models can be interpolated in the cardiac geometry when the real data is not

available. They are useful and probably suitable to obtain optimal simulations.

However, we aim to use the experimental data and all the anatomical description

of each case when it is possible.

• Why to solve the electrophysiology and the mechanical deformation of the

problem in the same computational mesh?

Electrophysiology and mechanical deformation are solved on the same mesh, with

no interpolation. This method allows to avoid stability issues and interpolation

errors, paying the price of a high computational cost for the mechanical problem.

As all problems are programmed and solved in the same code, supported on the

same mesh and with the same parallelization scheme, we find our approach very

natural.

• Why to solve both electrical and mechanical problems in the same code?

Alya is a multiphysics code, specially build to solve complex problems. If

everything is programmed in the same code, the control over the development of
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the model is broader. This also allows improvements and new capabilities to be

exploited.

1.4 Background

This thesis focuses on modeling the heart as an organ, based on conservation laws and

differential equations that describe the excitation and propagation process in cardiac

tissue coupled with the mechanical contraction of the muscle.

The first electrophysiological model was published by Hodgkin and Huxley (1952),

where the authors described the dynamics of the transmembrane voltage Vm and ionic

currents through the axon membrane. Given the equivalence with cardiac cells, their

work on neurons could be used by cardiac scientists to describe the electrical behavior

of the heart. A reduction and adaption of Hodgkin-Huxley model to cardiac cells was

published by FitzHugh (1961). Due to its simplicity and generality, the FitzHugh-

Nagumo (FHN) model has been used widely and is good trade-off for comparisons and

simulations (Murillo and Cai, 2004). More complex electrophysiological models have

been developed since the late nineteenth century, ranging from single cell (Noble. D,

2001; Ten-Tusscher and Panfilov, 2006), to tissue and organ level (Vigmond et al.,

2003; Noble, 2007). Several works have shown how those computational models can

be applied to describe 3D phenomena (Penland et al., 2002; Murillo and Cai, 2004;

Fenton et al., 2005).

Regarding the simulation of the cardiac contraction, Mirsky (1973) introduced the

first model, considering a non-linear problem with great strains and incompressible

material. After this first approach, mechanical models incorporated the description of

the fiber orientation (Streeter et al., 1969) in the analysis of the stress (Yin et al.,

1987). Nowadays, mechanical models account for the anisotropy of the tissue,

considering different properties in the planes perpendicular to the fiber direction and

through the thickness (Humphrey et al., 1990; Guccione et al., 1991; Costa et al., 1996;

Holzapfel and Ogden, 2009). Although the simulation of the contraction in the heart

has been studied extensively, there is less published work in the area compared to the

electrical modeling.

Fully coupled EM simulations combine both electrophysiology and mechanics. At the

organ level, electrophysiological models are based on reaction-diffusion systems and

mechanical models are based on finite deformation elasticity theory. The first coupled

EM models that considered the 3D fiber geometry and used the FEM to solve the
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equations were developed by Hunter and Smaill (1988) and Nielsen et al. (1991). In the

last decades, EMmodels improved quickly in terms of precision and they have been used

to investigate pathological phenomena (Cherubini et al., 2008; Niederer and Smith,

2008; Campbell et al., 2009; Keldermann et al., 2010; Trayanova, 2011; Land et al.,

2012). Although fully coupled EM modeling is still the exception rather than the

rule in cardiac modeling (Trayanova and Rice, 2011), EM simulations have become of

increasing use to understand the properties of the heart. Currently, cardiac models

are sufficiently accurate to simulate complex processes. In many cases, they have

been proved useful for predicting cardiac mechanisms as resynchronization therapy

(Kerckhoffs et al., 2009; Constantino et al., 2012; Sermesant et al., 2012), patient-

specific applications (Smith et al., 2011; Niederer et al., 2012; Chabiniok et al., 2012;

Krishnamurthy et al., 2013) or cardiac growth (Kerckhoffs et al., 2012). The coupled

EM problem is significantly demanding in terms of computing (Nickerson et al., 2006).

The development of fully coupled 3D solution in large computational domains has been

limited due to extremely high computational cost. Particularly, electrophysiology is a

more computationally expensive exercise than the mechanical one. Until recently, EM

models have been used successfully to study different aspects of cardiac functions, but

are made of relatively small meshes. Nowadays, few models are prepared to run on

large supercomputers, particularly for the coupled EM case. This lack of resolution is

an obstacle when trying to reproduce the complexity of fiber distribution.

Weak coupled models solve the electrophysiology and mechanics problems separately,

with only the timing of activation passing between the two systems. The alternative

method is the strong coupling between electrophysiology and mechanics, where both

systems are solved simultaneously. Up to the author’s knowledge, the groups that

develop EM models of the heart at the organ level are summarized here:

• University of California (UCSD). The Cardiac Biomedical Science and

Engineering Center has developed a coupled EM model in an anatomical heart

geometry to study the effects of pacing on synchrony (Kerckhoffs et al., 2006).

They use models that represent the cellular electrophysiology to study the benefit

of biventricular pacing in a canine heart, in the presence of left bundle branch

block (Usyk and McCulloch, 2003).

• Johns Hopkins University (JHU). The Computational Cardiology Laboratory has

developed a coupled EM model in the canine ventricles to study pathologies as

arrhythmia or dyssynchronous heart failure (Trayanova, 2011).
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• University of Tokio (UT). The UT-Heart Laboratory has developed a multi-scale

and multi-physics simulator prepared to perform massively parallel computations.

They solve the governing equations of the coupled EM problem, including the

ventricular blood flow, using the FEM. The domain is discretized in voxel

elements and tetrahedral elements to analyze the electrical and mechanical

phenomenon respectively. They apply the simulator on virtual cells and to

develop therapeutic devices such as the basic design of an implantable defibrillator

(Watanabe et al., 2004; Sugiura et al., 2012).

• King’s College London (KCL). The research group is focused on the

development of computational models of the heart with the capacity to integrate

multiple measurement types. The multiscale modeling combines detailed

cellular dynamics, electrophysiology and deformation models within a common

anatomical heart geometry (Niederer and Smith, 2008; Nordsletten et al., 2010).

• IBM Research. The group has developed a code that runs on the Blue Gene

supercomputer. They plan to involve higher spatial resolution in the cardiac

model.

• INRIA. The M3DISIM team has developed a 3D EM model of the

ventricles, using FHN model for the transmembrane potential propagation. The

contraction is modeled through a constitutive law including an electromechanical

coupling (Sainte-Marie et al., 2006; Sermesant et al., 2012; Chapelle et al., 2012;

Caruel et al., 2014). The model enables the introduction of pathologies and the

simulation of electrophysiology interventions.

• Stanford University. The Department of Mechanical Engineering has developed a

coupled cardiac EM simulation, proposing a fully implicit, FEM-based modular

approach (Goktepe and Kuhl, 2010).

• Simula Research Laboratory. The Computational Cardiac Modeling group

develops mathematical models of cardiac electromechanics for strongly coupled

EM simulations (Sundnes et al., 2014).

• University of Auckland (AU). The team has developed a computational model for

cardiac EM which couples cellular, tissue, and whole heart modeling paradigms

(Hunter et al., 1997; Nickerson et al., 2006).

• Karlsruhe Institute of Technologgy (KIT). The group develops computer models

of the human heart, modeling and measuring electrophysiological properties of
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myocardial cells and tissue for the development of forces (Seemann et al., 2003).

The framework is applied to study the effect of heterogeneity in the EM coupling.

• Politecnico di Milano. The Laboratory for Modeling and Scientific Computing

focuses on the development, analysis and computer implementation of

mathematical models for the cardiovascular system. The group studies the

coupling between cardiac mechanics and electric signal (Ambrosi et al., 2011)

• Zhejiang University, Hanzhou. The group has developed a a unified EM

model of the heart at cell level (Xia et al., 2006; Wong et al., 2008). They

propose an integrated framework for noninvasive personalization of cardiac

electromechanics by combining an integrated cardiac Physiome model and multi-

modality observations (Mao et al., 2012).

• Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland The Laboratory

of Multiscale Modeling of Materials study the interaction between the

propagation of the electrical potential through the cardiac tissue (modeled by

bidomain equations), and the mechanical response, assuming a decomposition of

the deformation gradient between an active and a passive factors (Rossi et al.,

2012).

• Barcelona Supercomputing Center (BSC). The group develops a computational

tool, Alya, that combines the experience acquired in electromechanics and the

background in HPC techniques. Electrophysiological models coupled with the

mechanical contraction of the muscle are computed and a coupling scheme that

link both problems together. The non-linear equations are solved using the

FEM with an explicit time scheme using the same computational mesh. The

present scheme shows almost linear scalability plots for thousands of processors

(Vázquez et al., 2011; Lafortune et al., 2012; Marin et al., 2013). The simulations

are performed in Marenostrum, the most powerful supercomputer in Spain, which

is hosted in BSC.
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Chapter 2

The physical problem: the heart

In this chapter, a basis about the physiology, structure and mechanical properties of

the heart is provided, as well as some of the currently used methods for the acquisition

of cardiac data.

2.1 The cardiac tissue

The heart is a muscular organ responsible for pumping blood by repeated and rhythmic

contractions. In adult humans, the heart weights approximately 250 to 350 g and is

usually situated in the middle of the thorax. It is composed of semi-striated muscle

that functions by contraction, causing the muscle cells to shorten. It contracts 72 beats

per minute.

2.1.1 Cardiac electrophysiology

The wall of the heart has three layers: The epicardium, myocardium and endocardium.

Endocardium and epicardium are thin layers consisting primarily of collagen and elastic

tissue. In the middle layer, the myocardium, the cells that constitute the muscle

show electrical excitability. These specialized cells, called myocytes, are organized into

parallel cardiac fibers giving the muscle the striated appearance. The fibers form sheets

which are connected one to another by collagen (Fung, 1993), (Fig. 2.1).

Four chambers can be distinguished in the heart: two atria and two ventricles (Fig.

2.2). The interatrial septum is the wall that separates the right and left atria of the

heart and the interventricular septum separates the ventricles.

17
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Figure 2.1: Sections of cardiac muscle. Heart wall showing the pericardium, myocardium
and endocardium (left). Cardiac fibers give a striated aspect to the myocardium (right).
Image by Stephen Gallik.

The valves of the heart are located within the chambers, preventing the back flow of

blood. The tricuspid valve is placed between the right atrium and right ventricle and

the mitral valve is situated between the left atrium and the left ventricle. Right ventricle

(RV) pumps blood to the lungs for oxygenation through the pulmonary artery. Left

ventricle (LV) pushes blood into the aorta to deliver it to all the body tissues, pumping

blood at a higher pressure than the RV.

The action potential. A cardiac cell (myocyte) is typically 10 to 20 µm in diameter

and 80 to 125 µm in length. The cell membrane acts as an electrical insulator and

contains ion channels which transport electrical current by diffusion. The potential

difference across the membrane is called transmembrane potential. Initially, a cardiac

cell is at rest, with a potential difference across the membrane. The potential inside the

cell is negative compared to the external. If the membrane potential rises to a certain

threshold value (close to 40 mV) a rapid process occurs, which can be explained in

different phases:

• Resting membrane potential: The membrane is polarized at the resting state value

of -85 mV. The Na+−K+ ATPase is active and exchanges the intracellular Na+

with the extracellular K+. The fast Na+ channels are closed.
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Figure 2.2: Longitudinal cut of the heart showing the four chambers. Illustration by
CC Patrick J. Lynch and C. Carl Jaffe, Yale University, 2006.

• Depolarization: An excitation opens the fast Na+ channels, causing a large influx

of ions through the membrane and rapid increase of conductance to these ions.

The cell changes its potential becoming Vmax less negative.

• Early repolarization: Inactivation of the fast Na+ channels. A current of K+ tries

to recover the equilibrium of the action potential to the resting state.

• Plateau: There is a balance between an inward movement of Ca2+ and the

outward movement of K+.

• Repolarization: Ca2+ channels close while K+ channels are still open. The cell

loses its positive charge and causes the cell to repolarize. K+ channels close when

the membrane potential is restored to -85 mV.

The charge is transported by the ionic currents and is accumulated at the membrane

(Fig. 2.3). The complete cycle of depolarization and repolarization is called action

potential and is illustrated in Figure 2.4.

Typically, the cell changes its potential in presence of external stimulus coming from

an adjacent cell. However, certain cells of the heart have the ability to generate an

action potential without any influence. Changes in the electric voltage of the cell drive

the mechanism to contract. The calcium concentration allows the interaction between
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Figure 2.3: Schematic diagram describing the current flows across the cell membrane.
From the CellML Project.

Figure 2.4: Phases of an Action potential: (0) Sodium enters the cell through fast
sodium channels; (1) Fast sodium channels close; (2) Calcium and additional sodium
enter the cell through slow channels; (3) Potassium exits the cell, and resting membrane
potential is reestablished; (4) Equilibration of sodium and potassium occurs.
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Figure 2.5: Illustration of the heart muscle showing the sinoatrial (1) and
atrioventricular (2) nodes and the Purkinje system. By CC Patrick J. Lynch and C.
Carl Jaffe, Yale University, 2006.

actin and myosin proteins in the intracellular domain. The myocytes generate an active

tension making the cell to shorten.

Purkinje system. The electrical signal that triggers contraction enters from the

atrioventricular node to the bundle of His. This bundle branches out into a tree-like

structure called Purkinje fibers, which provide rapid delivery of the electrical impulse

(Fig. 2.5). Purkinje system and myocardium muscle are electrically connected through

transitional cells called myocardium junctions (PMJs), distributed throughout the

ventricular subendocardial layer.

2.1.2 Cardiac mechanics

From a mechanical point of view, heart muscle is mainly composed of a thick layer

of myocytes assuming the pumping function of the heart (Fig. 2.6). The tissue is

considered a nonlinear, anisotropic, viscoelastic and slightly compressible material
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Figure 2.6: Scanning electron microscopy of the myocardium sectioned perpendicular
to the fibers (Legrice et al., 2001). Fibers, muscle bridges and collagen are visible.

(Fung, 1993; Yin et al., 1996; Humphrey, 2001). Taking into account the behaviour

of the myocardium, the stress of the muscle is divided in two parts:

• The active stress represents the active component of the embedded muscle fibers.

The active part is generated by the contractile cells when they are electrically

stimulated.

• The passive part represents the contribution of the surrounding matrix of

connective tissue, mostly collagen and elastin.

2.1.3 The cardiac fiber field

Cardiac fibers are necessary to prescribe both, electrical and mechanical properties of

the myocardium. A detailed description of the cardiac fiber architecture is important for

an accurate electromechanical modeling. In the last decades, several studies have been

performed to inspect the cardiac fiber field, based on the measurements of angles of fiber

orientation through the ventricular wall (Streeter et al., 1969; Armour and Randall,

1970; Greenbaum et al., 1981; Legrice et al., 2001). Dissections on mammalian hearts

measured the angles of fiber slope, giving a detailed map of the fiber directions in

the heart. These works show the complexity of the cardiac fiber direction. From this,
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Figure 2.7: Representation of the cardiac fiber field (Peyrat et al., 2006).

mathematical models have been constructed, integrating the fiber orientation. In these

synthetic cardiac structures, the angle varies from base to apex across the wall (i.e.

transmural), from −60◦ to −70◦ in the epicardium to 60◦ to 70◦ in the endocardium

(Fig. 2.7).

The fiber directions in the cardiac muscle have an important role. The orientation of the

cardiac fibers is necessary in the prescription of the electrophysiological and mechanical

behavior of the heart and the coupling between them. In the electrical part, the primary

direction of the propagation is the longitudinal fiber direction. In the orthogonal

directions, conductivities have the same value but different from the conductivity

along the fiber direction. Specifically, the conduction velocity is three times faster

along the myocardial fibers than in a perpendicular direction (Rubart and Zipes, 2001;

Coghlan et al., 2006). Regarding the mechanical contraction, the fiber distribution

influences the active part of the stress. Finally, the fiber field is also necessary in

the electromechanical coupling. The excitability of cardiac fibers is determined by the

increase of the cellular [Ca2+] concentration, which increases the force of contraction.

Nowadays, measuring these directions in a living heart is still an open-challenge.

Models constructed from geometrical data acquired in-vivo are not able to image fiber

orientation. Consequently, cardiac models have to include an approximation of the fiber

architecture instead of the real one. There are two options for obtaining the vector
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fields over the whole myocardial volume, image-based and rule-based methods. The

main characteristics of experimental and synthetic fiber models are presented here:

Diffusion Tensor Imaging. In recent years, Diffusion Tensor Magnetic Resonance

Imaging (DT-MRI or DTI) has emerged as a powerful tool for the experimental

measurement of cardiac fiber structure. This method is based on the assumption that

water diffuses along the myocardial fiber orientation. Applying magnetic field gradients

in at least 6 directions in the cardiac sample, it is possible to calculate a tensor T

that describes the 3-dimensional shape of the diffusion. This matrix is symmetric and

positive. The eigenvalue decomposition leads to T = PDP T , were P is the eigenvectors

matrix and D the diagonal matrix of the eigenvalues. The eigenvalues of the diffusion

tensor quantify the diffusion rate of water molecules within the tissue structure along

the directions given by the corresponding eigenvectors. Finally, the fiber direction is

indicated by the tensor’s main eigenvector.

DT-MRI is a non-invasive technique which allows a direct measurement of the

anisotropy (Basser et al., 1994). However, DT-MRI data is noisy and the quality

of the reconstructed images is related with the number of DT-MRI acquisitions.

An average model can be obtained combining reconstructions of the same heart

sample, giving better quality to the distribution. Up to date, a full 3D DT-MRI

acquisition of the fiber data requires extremely long times to achieve the minimal

accuracy for the reconstruction (several hours) and can only be performed on ex-

vivo hearts (Helm et al., 2005). Novel studies in 2D show that the acquisition of high

resolution in-vivo is becoming feasible (Gamper et al., 2007; Toussaint et al., 2010,

2013; Harmer et al., 2013). Due to cardiac motion, the acquisition of high resolution

in-vivo DT-MRI is a challenging task. In the near future, the improvement of this

technique will lead to a simulation of the human heart including the anatomy and the

anisotropic structure of the human organ, both acquired in-vivo.

Rule-based fiber models. The experimental fiber field is not always available. For

this reason, rule-based models describing the cardiac fibers are frequently used. Based

on experimental measurements such as in Streeter et al. (1969), the fiber orientation

is generated by mathematical algorithms. Rule-based models are validated comparing

to those in the same geometrical model but with DT-MRI-derived fiber orientation.

In Potse et al. (2006) the following rule-based approach is described. For each

ventricular node, the minimal distance d between endocardium and epicardium is
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calculated (dendo, depi). The transmural variation of the fiber field is represented from−θ

on the epicardium to 0 at mid-wall to +θ on the endocardium, by using the epicardium

to endocardium surface distance d. The value of θ usually varies between 60◦ and 70◦.

A thickness parameter is defined as

e =
dendo

dendo + depi
(2.1)

The interpolation of the fiber along transmural direction is defined as

θ = R(1− 2e)n (2.2)

where R = π/3 for the LV and R = π/4 for the RV.

This approach has shown some success in ventricular models with basic geometries

(Potse et al., 2006; Bishop et al., 2010). However, minimal distance parametrization

can yield to singularities in the minimal distance function in realistic geometries,

particularly in the septum (Bayer et al., 2012). The advantages of synthetic fiber field

models are:

• Fast algorithm and fast implementation

• Fiber direction can be modified to examine its effect in propagation

• New fiber models can be incorporated

• Long acquisitions required to acquire in-vivo fiber data are avoided

Moreover, new studies present a method to personalize the fiber architecture. Based on

inverse techniques as the Unscented Kalman Filter, the parameters of the rule-based

fiber model are estimated from DT-MRI-derived fiber data (Nagler et al., 2013).

2.2 Electrophysiological models

Modeling the molecular structure of the heart involves a large number of cells. To

simulate the electrical activity in the myocardium, one possible approach is to model

each cell as a separate unit and couple them together using specific mathematical

models. Since this method is numerically expensive, this type of model is useful for

small samples of tissue. To avoid the difficulties in the resolution of the mathematical

equations, in this thesis the electrical phenomena is studied in a macroscopic level.
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At the organ level, reaction-diffusion systems reproduce continuous approximations of

the excitation of cardiac muscle (Hunter, 1983). Nowadays, two models are widely used

in electro-cardiology to simulate the propagation of the action potential waves in the

cardiac tissue: the bidomain and monodomain models.

The bidomain model. It represents a well-established description of the electrical

activity of the myocardium on a macroscopic scale, taking into account the ionic

current, the membrane potential and the extracellular potential. In the bidomain model,

the simulation of the ionic current requires the solution of a system of partial differential

equations (PDE’s), with an implicit analysis. The model considers that the muscle cells

are connected via small channels in the cell membrane, where substances such as ions

pass directly from one cell to another.

The model is suitable for problems that require ion exchange calculations, such as

the study of defibrillation or induced arrhythmia in small samples of cardiac tissue

(Trayanova et al., 2006). In these applications, the bidomain model captures the tissue

behavior.

The monodomain model. The monodomain model is a simplification of the

bidomain equations. It assumes that conductivities are proportional in the intracellular

and extracellular spaces. The advantage of the model is that it produces realistic

activation patterns, useful for analysis and simplified electrophysiological studies.

Depending on the purpose of the study, the monodomain model is accurate enough

to simulate the action potential (Sundnes et al., 2006; Potse et al., 2006). However,

it cannot be applied in all situations because it does not permit currents in the

extracellular domain.

2.2.1 The physiological governing equations

Hodgkin and Huxley (1952) introduced the first continuous mathematical model

designed to reproduce cell membrane action potentials. Since then, there has been

many complex models developed for cardiac cells following their approach. In general,

the action potential V (xi, t) is modeled using a reaction-diffusion equation through a

macroscopic continuous media, which is combined with a microscopic model. The basic
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Figure 2.8: Local coordinate system. Fiber (f0), normal (n0) and sheet (s0) directions
are drawn.

form of the electrical propagation equation is1:

∂Vα
∂t

=
∂

∂xi

(

Dij
∂Vα
∂xj

)

+ L(Vα). (2.3)

Greek subindices label the number of tissue domains. In the case of monodomain models

α = 1. For bidomain models α = 1, 2, representing the extracellular and intracellular

potentials (Simelius et al., 2001). On the right hand side of the equation two terms can

be distinguished:

1) Diffusion term: It is governed by the conductivity tensor Dij, which represents

the conductivity in the axial and crosswise fiber direction. At a given point, a set of

perpendicular unit vectors is defined: f0 is the unit vector along the cardiac fiber at

the given point, n0 is perpendicular to the fiber in the sheet plane and s0 is normal to

the sheet plane (Fig. 2.8). The conductivity tensor Dij in 2.3 is written as:

Dij = C−1
ik Dloc

lk Clj, (2.4)

where Cij is the transformation matrix with respect to the local basis {f0, no, s0}.

Expressed in the basis formed by these three vectors, the local conductivity tensor Dloc

lk

1Einstein convention on repeated indexes is used.



28 Chapter 2. The physical problem: the heart

is diagonal:

D =






kf 0 0

0 ks 0

0 0 kn




 (2.5)

whose diagonal components are the axial and crosswise conductivities. As reported in

(Clerc, 1976; Rubart and Zipes, 2001; Coghlan et al., 2006), the conduction velocity

is three times faster in the direction of the long axis of myocardial fibers than in a

direction perpendicular to this long axis. Supposing the same relation, the crosswise

conductivity is then one third of the axial conductivity (kf = 3kn = 3ks).

2) Non-linear term: L(Vα) is the non-linear operator representing the total

membrane ionic current Iion and the applied stimulus Iapp. For the Iion current,

different models reproduce the process of cardiac activation and deactivation. They

are commonly grouped into three categories:

• Phenomenological models. Simplified models that use the minimum set of currents

necessary to reproduce macroscopically observed behavior of cells, such as

the action potential (FitzHugh, 1961; Fenton et al., 2005). These models are

numerically efficient but they are not able to identify cardiac mechanisms.

• 1st generation ionic models. They reproduce basic ionic currents and

concentrations (Beeler and Reuter, 1977; Luo and Rudy, 1991).

• 2nd generation ionic models. They give a direct description of ionic currents and

concentrations and they reproduce an accurate shape of the action potential

(DiFrancesco and Noble, 1985). They are robust models but numerically

expensive.

The type of the ionic model Iion is chosen depending on the application of the

study. Simple models are suitable to simulate the pumping heart in macroscopic

situations, where a detailed description of the mechanisms in the cell membrane is

not necessary. On the contrary, complex ionic models are used to study cell processes.

For example, pharmaceutical studies demand the modeling of the ionic exchange in

the cell membrane. In this case, the evolution of the electrical wave without a detailed

description of the mechanisms in the cell membrane would not be enough to capture

the effect of drugs in the electrical propagation.

In this thesis, phenomenological models are used to simulate the pumping heart. The

ionic models are the following:
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Figure 2.9: Fitzhugh-Nagumo transmembrane potential, temporal evolution for a given
position.

Fitzhugh-Nagumo. Based on observations, Fitzhugh-Nagumo (FHN) is a generic

model for excitable media (FitzHugh, 1961). It is a simplification of the Hodgkin-

Huxley equations and does not include a physiological description of the ion exchange

in the cell membrane. Although the model does not account for realistic ionic processes

and concentrations, it is able to reproduce the macroscopic behaviour of excitable cells.

The most general properties of the myocytes are reproduced using two variables: the

transmembrane potential (V ), and the recovery potential (w), which is introduced to

simulate the repolarization of the cell. The equations of the model are the following:

Iion = c1V (V − c3)(V − 1) + c2w

∂w

∂t
= ε (V − γw) (2.6)

Constants c1, c2 and c3 define the shape of the propagation wave and ε and γ control

the recovery potential evolution. The action potential generated by the FHN model

is shown in Figure 2.9. Although the shape is mathematically obtained and it is not

based on cellular changes, the propagation of this electrical wave permits to investigate

macroscopically how changes in the electrical activation affect the function of the muscle

tissue.

Fenton-Karma. This model reproduces quantitatively much of the behavior of

a full model. The Fenton-Karma model (FK) is a simple formulation which
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Figure 2.10: Fenton-Karma transmembrane potential, temporal evolution for a given
position.

contains three ionic currents, corresponding to sodium, calcium, and potassium

(Fenton and Karma, 1998). The total membrane current Iion is given by the sum of the

three phenomenological currents Jfi, Jso and Jsi. The first one, Jfi is analogous to the

Na+ current related to the depolarization of the membrane. Secondly, Jso represents

the K+. Finally, Jsi is comparable to the Ca2+ current, and triggers the contraction

of the cardiac tissue. FK equations use three variables: the transmembrane potential

V and two ionic gates v, w. For each current and for each ionic gate one equation is

computed:

Iion = Jfi(V, v) + Jso(V ) + Jfi(V,w)

∂w

∂t
= Θ(Vc − V )

(1− w)

τ−
w

− Θ(V − Vc)
w

τ+
w

∂v

∂t
= Θ(Vc − V )

(1− v)

τ−
v

− Θ(V − Vc)
v

τ+
v

Jfi(V, v) = −
v

τd
Θ(V − Vc)(1− V )(V − Vc)

Jso(V ) =
V

τ0
Θ(Vc − V ) +

1

τr
Θ(V − Vc)

Jsi(V,w) = −
w

2τsi
(1 + tanh[k(V − V si

c )]) (2.7)
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where Θ is the Heaviside function. Depending on the choice of the model parameters,

the FK mimics Beeler-Reuter or Luo-Rudy models (Fenton and Karma, 1998). The

action potential generated by the model is shown in Figure 2.10. The shape of

the transmembrane potential V is obtained mathematically and reproduces a softer

potential evolution than in the FHN case.

In this work, FHN and FK models are used to reproduce the most important

characteristics of the action potential.

2.3 Mechanical models

The response of the cardiac tissue is characterized by a constitutive equation which

gives the stress as a function of the deformation of the heart. The constitutive relations

allow us to mathematically define the characteristics of the cardiac muscle.

Initially, mechanical models described the myocardium as isotropic (Demiray, 1976).

Later, tests in the fibers of canine hearts showed that the myocardium has a significant

anisotropy with a stiffness substantially bigger in the fiber direction than the orthogonal

cross-fiber direction (Yin et al., 1987). To account for the anisotropy of the cardiac

tissue, transversely isotropic models where introduced considering the same physical

properties in the planes perpendicular to the fiber direction but different properties

through the thickness (Humphrey et al., 1990; Guccione et al., 1991; Costa et al.,

1996). This version of the law is useful when the fiber field is only characterised

by its direction, with no information on their eventual sheet-like grouping. However,

experimental tests performed on excised slices of cardiac muscle revealed that the tissue

presents a particular orthotropic-layered architecture, meaning that the mechanical

properties are different along the axis determined by the fiber orientation (Novak et al.,

1994; Dokos et al., 2002). One of the first works in orthotropic constitutive models was

developed by Hunter et al. (1997), containing 18 parameters in the equations. Recently,

a locally orthotropic constitutive model was introduced by Holzapfel and Ogden (2009),

using fiber-based material invariants.

2.3.1 Constitutive equations for the cardiac tissue

A detailed information of the orientation of the fibers is necessary to prescribe complex

constitutive equations, specially orthotropic models. Since the complete orientation

of the cardiac fibers is hard to obtain, transversally isotropic models are commonly
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chosen to model the cardiac muscle (Watanabe et al., 2004; Dorri et al., 2006). The

constitutive equations presented here are a transversally isotropic version of the

orthotropic law described by Holzapfel (2000).

Governing equations. Consider Ω0 as a fixed reference configuration of a body

and Ω the deformed one. The position vector of a particle in the body is expressed

in this work by Xi in the first configuration and by xi in the second one (note that

capital letters and subscripts are used for scalars or tensors defined in the reference

configuration, and lowercase letters and subscripts when defined in the deformed

configuration). Being the displacement ui = xi−XI , the relation between both measures

is given by the deformation gradient:

FiJ =
∂xi
∂XJ

= δiJ +
∂ui
∂XJ

(2.8)

In a total-Lagrangian formulation, results are referred to the initial state. The governing

equations are written as:

ρo
∂2ui

∂t2
=
∂PiJ

∂XJ

+ ρoBi (2.9)

where ρo is the initial density of the body, Bi is the body force and PiJ is the first

Piola-Kirchoff stress tensor. Being J the determinant of the deformation gradient F ,

the Cauchy stress tensor is related to the first Piola-Kirchoff stress as follows:

σ = J−1PF T (2.10)

Suppose a compressible, homogeneous, hyperelastic material. The constitutive behavior

of such material is expressed in terms of a strain energy function W and the right

Cauchy-Green deformation b = FF T :

σ = 2J−1∂W (b)

∂b
b (2.11)

It can be useful to develop general expressions of stress in terms of the strain invariants

of b. The invariants are of particular interest when developing constitutive laws because

they remain unchanged when expressed in a different basis. The three first invariants

of b are:

I1 = trb, I2 =
(

(trb)2 − trb2
)

, I3 = det(b) (2.12)

Figure 2.8 illustrates the orthonormal basis defining the local coordinate system

associated with the myocardium structure. It is assumed that the preferred direction
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coincides with the muscle fiber orientations. The mean fiber orientation is represented

by f0. The sheet axis that lies in plane perpendicular to the fibers is s0 and n0 is the

normal to the plane formed by the two other vectors. If the material is modeled as

transversally isotropic, the fourth strain invariant will be needed:

I4 = f0bf0 (2.13)

Using the chain rule,
∂W (b)

∂b
=

∑

α

∂W

∂Iα

∂Iα
∂b

(2.14)

and the definitions of the strain invariant derivatives (Eq. 2.11) is reformulated as

follows Holzapfel and Ogden (2009):

σ = 2J−1W1b+ 2J−1W2(I1b− b2) + 2JW3I + 2J−1W4f ⊗ f (2.15)

where the notation Wi =
∂W

∂Iα
and f = Ff0. This notation is used to underline the

fact that f is not a unitary vector. Based on physiological considerations, a form of

W is suggested in Holzapfel and Ogden (2009). The energy function for the reduced

transversally isotropic version presented here is given by

W =
a

2b
eb(I1−3) −

a

2
(I1 − 3) +

af
2bf

{

ebf (I4−1)2 − 1
}

+
K

2
(J − 1)2 (2.16)

The strain-energy function represents the change of the material properties during the

activation. The volumetric energy term function of J have been added to make the

material compressible. Introducing the expression of the derivatives of the energy in

the general stress equation gives the following:

Jσpas = (a eb(I1−3) − a)b+ 2af (I4 − 1)ebf (I4−1)2f ⊗ f +K(J − 1)I (2.17)

The strain invariant I1 represents the non-collagenous material while strain invariant I4

represents the stiffness of the muscle fibers. The vector f defines the fiber direction. In

this equation, first term does not depend on the fiber orientation and the second term is

directly referred to the fiber field. Finally, in the third term K sets the compressibility.

Parameters a, b, af , bf are determined experimentally in Chapter 3.
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2.4 Electromechanical coupling

Electro-mechanic: Macroscopically, the excitation-contraction coupling is the

phenomenon by which the fibers contract after a wave of electrical activation propagates

through the myocardium. A large amount of EM coupling models have been developed

(Rice and de Tombe, 2004). A ’one-way coupling’ model is presented in this work,

considering that the displacements have no influence on electrophysiology. The total

Cauchy stress is developed in two parts, active and passive (Humphrey, 2001):

σ = σpas + σact(λf , [Ca
2+])f ⊗ f (2.18)

The passive part is governed by a transverse isotropic exponential strain energy function

W (b), defined in Equation 2.16. The active part is calculated as in Holzapfel (2004).

It is assumed to be produced in the direction of the fiber. If the muscle fiber stretch is

represented by λf , the excitation-contraction coupling is modeled as follows:

σact = γ
[Ca2+]n

[Ca2+]n + Cn
50

σmax(1 + β(λf − 1)) (2.19)

In this equation, Cn
50, σmax and β are model parameters. The coupling parameter γ is

used to graduate the active stress (0 < γ < 1). The concentration [Ca2+] mediates

the contraction of the myocardium and fluctuates in time following this relation

(Hunter et al., 1998):

[Ca2+](tloc) = [Ca2+]max(tloc/τCa)e
(1−tloc/τCa) (2.20)

where τCa is a parameter and tloc is the local activation time. The tloc is initiate to 0 s

at the beginning of the simulation for the entire mesh. When the membrane potential

overcomes a threshold value (fixed to -5 mV), EM coupling is triggered and tloc starts

running at this specific location. Then, [Ca2+] (and consequently σact) also vary.

Figure 2.11 shows the relation between the local activation time and the action

potential, the concentration of intracellular [Ca2+] and the normalized active force

produced. Parameter values are Cn
50 = 0.5µm, σmax = 100kPa, β = 2.5,[Ca2+]max =

1.0µm, n = 3 and τCa = 0.06s. In this problem, the electrical propagation is

solved using a monodomain model and a FHN ionic current model. The electrical

conductivity is isotropic, equal to 0.012 ms/cm and the membrane capacitance is

Cm = 0.001µF/cm2.
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Figure 2.11: Time scale comparison of the normalized active force, the membrane
potential and the [Ca2+].

Mechano-electric: The algorithms of continuum mechanics usually make use of

two classical descriptions of motion: the Lagrangian description and the Eulerian

description (Donea et al., 2004). In a Lagrangian description, the computational mesh

follows the movement of the body. Each node of the mesh coincides with the associated

material particle during motion. In the Eulerian description, the computational mesh

is fixed and the body moves with respect to the grid.

In this work, the mechano-electric coupling follows the Lagrangian description.

Therefore, the action potential propagates in the deformed configuration.
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Chapter 3

HPC cardiac computational

modeling

Working at the organ-level, the cardiac computational model requires solution of

three components: the electrical signal, the mechanical deformation and the excitation-

contraction coupling that links both problems together. The equations of the complex

models describing the heart can not be solved analytically, they must be solved on a

computer using numerical techniques.

The main topic of this chapter is the solution of the governing equations to simulate the

electromechanical propagation of the heart. The methods are based on a finite element

approach (FEM), focusing on the solution in parallel computers. The time evolution

of the system is calculated using an Euler scheme. We also present and analyze two

different integration rules in the right hand side of the equation that solves the problem,

with and without mass lumping. We underline the most remarkable differences between

them.

Finally, the computational code Alya is presented. The tool is used in this thesis to

run cardiac simulations, solving both cardiac electrophysiology and mechanics. Alya

is conceived as a multiphysics platform to deal with coupled computational problems

in parallel, designed from scratch to take profit of parallel architectures with parallel

efficiency.

37
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Figure 3.1: Canine ventricular data, Johns Hopkins University. MRI data is processed to
obtain the computational mesh. Green dots correspond to the voxels obtained from the
image. The geometry is discretized in tetrahedral elements, using the mesh generator
Tetgen. A slice of the ventricular mesh is represented in colours.

3.1 The computational domain

To solve the electromechanical problem, the typical domain in this project is a 3D

cardiac geometry consisting in two ventricles. Figure 3.1 shows an anatomically detailed

MRI-derived canine ventricular model developed by Johns Hopkins University. The

continuous volume, extracted from cardiac images, is divided into small elements

and the governing equations are numerically solved within these elements. In 3D,

the FEM-based space discretization allows different element types to solve the

governing equations. Particularly, the cardiac geometry can be divided in tetrahedral

or hexahedral elements. After some tests, tetrahedra have been chosen to solve the

large-scale problems in this work because they fit anatomical information obtained

from clinical images. Given the increasing resolution and accuracy of cardiac imaging,

unstructured tetrahedral meshes can be easily adapted to complex geometries and can

be efficiently generated from raw data.

This work uses the same mesh for the coupled problem, solving both electrical

and mechanical equations in the same discretized domain. We present the

electrophysiological and mechanical equations that are solved in the cardiac geometry.



3.2. Computing the electrical activity 39

3.2 Computing the electrical activity

Cardiac electrophysiology is modeled here at the organ level. Considering a

monodomain scheme, the parabolic reaction diffusion equation can be written as

follows:

Cm
∂V

∂t
=

∂

∂xi

(
Dij

Sv

∂V

∂xj

)

+ L(V ), (3.1)

where Cm is the membrane capacitance (µF cm−2) and Sv is the surface to volume

ratio. The non linear term L(V ) represents the total membrane ionic current is Iion

and the applied stimulus Iapp (µA cm−2).

To find the value of the action potential V , the discretization of the partial differential

equations is carried out using a variational formulation (Johnson, 1987). Assuming that

the solution V belongs to the the usual FEM interpolation function space V , the test

function ψ ∈ V is chosen (Eriksson et al., 1996). The simulation domain is Ω and its

boundary is ∂Ω. The weak form of Equation 3.1 is obtained by first multiplying by

ψ and then integrating over the domain Ω. Three terms can be distinguished in this

equation:

∫

Ω

ψ
∂V

∂t
dΩ

︸ ︷︷ ︸

Mass term

=

∫

Ω

ψ
∂

∂xi

(
Dij

CmSv

∂V

∂xj

)

dΩ

︸ ︷︷ ︸

Difussion term

+
1

Cm

∫

Ω

ψL(V ) dΩ

︸ ︷︷ ︸

Non-Linear term

(3.2)

1) Mass term: Corresponds to the time derivative term.

2) Diffusion term: Using the chain rule and the Gauss’s theorem, the diffusion term

gives:

∫

∂Ω

ψ
Dij

Cm Sv

∂V

∂xj
njdS −

∫

Ω

Dij

Cm Sv

∂ψ

∂xi

∂V

∂xj
dΩ (3.3)

The first part of the diffusion term is used to impose Neumann boundary conditions.

To a first approximation, the fluxes on the boundaries are set to zero, and this part

vanishes. No Dirichlet conditions are directly imposed.

3) Non-linear term: Corresponds to the ionic current. For the FHN model, an

ordinary differential equation (ODE) is added to simulate the gate potential w.
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Linearizing the ionic equation, L(V ) can be expressed as:

L(V ) = c1V (V − c3)(V − 1) + c2 ≡ V f(V )

∂w

∂t
= ε (V − γw) (3.4)

Rewriting the three terms in the weak form, the system to be solved is:

∫

Ω

ψ
∂V

∂t
dΩ = −

∫

Ω

Dij

Cm Sv

∂ψ

∂xi

∂V

∂xj
dΩ +

1

Cm

∫

Ω

ψ V f(V ) dΩ

∂w

∂t
= ε (V − γw) (3.5)

Discretization in space. The spatial discretization of Equation 3.5 is performed

using a FEM approach. The solution V and its derivative are expressed as:

V (x, t) =

nnodes∑

k=1

ψk(x)Vk(t)

V̇ (x, t) =

nnodes∑

k=1

ψk(x)V̇k(t) (3.6)

Introducing these expressions, the Equation 3.2 yields:

V̇

∫

Ω

ψiψj dΩ = −V

∫

Ω

∂ψi

∂xi

Dij

Cm Sv

∂ψj

∂xj
dΩ + V f(V )

1

Cm

∫

Ω

ψiψj dΩ (3.7)

After discretization, Equation 3.5 can be expressed in a matrix form:

MV̇ = −KV +MV f(V )

Ẇ = ε (V − γW ) (3.8)

The FEM-based formulation leads to a mass matrix M in the time derivative term, a

diffusion matrix K, with anisotropic diffusion tensor, and a non-linear ODE-like term

for the IIon current.

Discretization in time. The explicit formulation is particularly well-suited for

solving the non-linear equations of the electrophysiological problems, which need very

short time-scales. In particular, the explicit scheme is chosen because the non-linear

term permits this formulation. Although FHN equations can also be solved implicitly,
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Figure 3.2: Integration rules for triangles. Open rules with one or three integration
points and one closed rule with three integration points.

other complex models would permit the implicit solution just in the diffusion term, not

in the non-linear term Ten-Tusscher and Panfilov (2006).

The temporal discretization of the equation is performed using the FD method. Then,

the derivatives of V and W are expressed as:

V̇ =
V n+1 − V n

∆t

Ẇ =
W n+1 −W n

∆t
(3.9)

where ∆t is the time step, V n is the solution at the current step and V n+1 is the

solution at the new time step. Using an explicit Euler scheme, the matrix form yields:

M

∆t
V n+1 = M

(
1

∆t
+ f(V n)

)

V n +KV n

W n+1 = W n +∆t
(
V n+1 + γW n

)
(3.10)

In the time derivative term M must be inverted. To solve this problem, two different

numerical integrations can be applied:
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Figure 3.3: Anisotropic 2D potential propagation sequences: closed integration rule for
the ODE-like term (top) versus open integration rule for the ODE-like term (bottom).
The first option gives the proper shape and propagation speed.

• The open rule, where the integration points are not coincident with the nodes. In

this case, M is called consistent matrix and is not diagonal. A special treatment

of the rows is performed to diagonalize it.

• The closed rule, where the integration points are coincident with the nodes. M is

called lumped matrix and is diagonal. Nodal locality is preserved because shape

functions are built by setting them to one in its own node and zero in the rest of

them.

Mass lumping is a numerical technique related to the FEM that has been widely used

in different applications. Figure 3.2 shows three integration cases for triangles, where

the open and closed rules are used.

To compare the results of the open and closed numerical integrations, the electrical

propagation equations are solved in a 2D anisotropic media, with cardiac fibers oriented

in horizontal direction (Fig. 3.3). FHN model is used to simulate the evolution of

the action potential through the cardiac tissue. In this simulation, conductivities in

Cartesian axes are chosen proportional (kx = 3ky). The figure shows a sequence of the

propagation in both cases, computing the consistent and lumped matrices to integrate
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Figure 3.4: Action potential with open and closed integration rules: speed differences
for the closed rule (“lumped”) and the open rule (“no-lumped”) used in the ODE-like
term.

the non-linear term in the ODE. Top row corresponds to lumped or closed integration

rule and bottom row corresponds to the consistent or open rule. The use of the open

rule introduces a significant error in speed and propagation behavior. The difference

in speed between the two models can be observed in Figure 3.4. The open rule (green

curve, called “no lumped”) produces a propagation that arrives earlier than the closed

rule (red curve, called “lumped”). Apparently, consistent matrix leads to higher cross-

diffusion.

Finally, Figure 3.5 shows the results when the diffusion term is set to zero. In case of no

diffusion, the action potential should not propagate through the cardiac tissue. If the

governing equations are integrated using the open rule, an artificial numerical diffusion

is introduced producing a wrong propagating behavior . On the contrary, when the

closed rule is chosen, the initial condition does not propagate, as expected.

Critical time step. The typical procedure to solve transient problems explicitly

is to compute a local time step at each mesh element using its characteristic size h

and take the minimum value to obtain the global time step. In the explicit case, the

critical time step ∆tcrit that corresponds to the electrophysiological governing equations

should be calculated taking into account the diffusion and the non-linear term. Through

numerical experiments, we observed that the most stringent criterion comes from the

diffusion part. Independently of the cell model, the critical time step is calculated as
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Figure 3.5: Anisotropic 2D potential propagation sequences: when diffusion is set to
zero, the open rule introduces an artificial numerical diffusion, producing a wrong
propagating behaviour.

follows:

∆t =
h2

2D
(3.11)

where h is the characteristic size of the element and D is the largest entry of the

diffusion tensor, usually along the fiber. At every time step, ∆t is computed for each

element of the computational domain. The lowest value is taken as the global time step

and used for the explicit time advance.

3.2.1 Simulation in a biventricular geometry

In this section we present an example that shows the potential of the proposed

methodology for simulating the electrophysiological problem in realistic cases. This

work is done in collaboration with Centre de Visio per Computador (CVC), in

Bellaterra (Spain).

We use real data obtained from medical images. The ventricles are the result of a mean

model of healthy canine hearts from a study at Johns Hopkins University, which is

freely available at http://www.ccbm.jhu.edu/. Firstly, the MR-DTI data is converted

to usable file. The external anatomy of the myocardium is described as a field of points

regularly distributed, with a mean resolution of 0.2 mm, corresponding to the voxels

obtained from the image. The fiber orientation is given as a vector at each coordinate

point. Secondly, the geometrical information is converted into a computational mesh,

using the software Tetgen. Figure 3.1 shows the input data set and a slice of the

resultant mesh. The mesh is made of 17M tetrahedra, maintaining the image resolution.

Finally, electrophysiological simulations are run in Marenostrum supercomputer in

parallel. Results are obtained in 15 minutes of wall clock time using 500 cores. The
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Figure 3.6: Action potential propagation.

Figure 3.7: The isotropic model is represented on the left and the anisotropic case on
the right. Isochrones are packed in the septum, due to the fiber conduction action.
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initial condition that activates the ventricles is chosen from experimental evidence

(Ballester-Rodes et al., 2006). Two stimuli spread from the base to the apex with a

delay of 30 ms between them. In Figure 3.6, six snapshots represent the evolution of

the action potential through the cardiac tissue at different times.

Moreover, isotropic and anisotropic conductivities are tested in the framework. Figure

3.7 shows the isochrones in both cases. Notice that the isochrones became much tighter

packed in the septum, due to the fiber conduction action.

This work is introductory to a wider Computational Biomechanics strategy, attacking

the problem of simulating the heart behaviour from the standpoint of a Computational

Mechanics researcher. The experience acquired in electrophysiology and the background

in HPC techniques allows us to write a parallel code specific for this problem and

adapted to run efficiently in a supercomputer.

3.3 Computing the mechanical contraction

The governing equation that describes the mechanical deformation in the cardiac tissue

is the following:

ρo
∂2ui

∂t2
=
∂PiJ

∂XJ

+ ρoBi (3.12)

Assuming that the solution u belongs to the the usual FEM trial and interpolation

function space W , the test function φ ∈ W is chosen. Then, the weak form in the fixed

reference configuration Ω0 is:

∫

Ω0

φρo
∂2ui

∂t2
dΩ0 = −

∫

Ω0

∂φ

∂xJ
PiJ dΩ0 +

∫

∂Ω0

NJPiJφ dΩ0 +

∫

Ω0

φρoBi dΩ0 (3.13)

where ρo is the initial density of the body, NJ is the exterior normal of Ω0 on the surface

∂Ω0, Bi is the body force and PiJ is the first Piola-Kirchhoff stress tensor. As in the

electrophysiological case, space is discretized using the FEM and time is discretized

with FD. The discretization of the equations leads to a matrix equation of the form:

Mü+C(u)u̇+K(u)u = F (3.14)

where F is the force vector, M is the mass matrix and K is the stiffness matrix,

which typically depends on the unknown. The second term, proportional to the speed,

is called Rayleigh damping, where C(u) is the damping matrix. This matrix is added
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to damp high frequencies and avoid unphysical oscillations. Usually, it is written as

C(u) = αM + βK(u), where parameters α and β are computed depending on

the frequency range to be damped (Belytschko et al., 2000). After some numerical

experiments, we have observed that the best choice is to take β = 0 and α = cν, where

c is a constant between 2 and 10. The frequency ν is computed by running a problem

without damping, plotting the displacement for one point in the domain and analyzing

its time series. It is worth to remark that when β = 0 the matrix damping becomes

independent of the unknown, which certainly simplifies its computation.

Critical time step. As in the electrophysiological case, the local time step is

computed at each mesh element using its characteristic size h. The minimum value

is taken to obtain the global time step. For the solid mechanics problem, ∆tcrit is

related directly to the element size and inversely to the information propagation speed.

The usual procedure is to compute the local time step using the speed of sound

(Belytschko et al., 2000). For each element, ∆t is computed at every time step. The

explicit time advance is performed choosing the lowest value in the domain.

3.3.1 Characterization of the passive stress

In this section, parameters a, b, af , bf of the passive stress are determined

experimentally reproducing the test bi-axial test conducted by Yin et al. (1987)1.

Passive stresses have been studied intensely in the past; they are typically determined

through in-vitro experiments of explanted tissue. A thin square sheet of tissue of about 4

cm × 4 cm × 0.15 cm is extracted from the myocardium. The traction axis are aligned

with the fiber (f ) and sheet direction (s). The third direction perpendicular to this

plane is called the normal direction (n) (Fig. 2.8). First, the stress equation (Eq. 2.17)

is solved numerically using the gradient deformation tensor F = diag[λf λs λn]. The

subscripts refer to the directions described above and λ is the stretch in the indicated

direction. λf and λs are given (supposing a displacement-controlled test) and λn is

found solving:

σn = (ae(b(I1−3)) − a)λ2n +K(J − 1) = 0 (3.15)

since no constraint are applied in this direction. This equation is solved numerically

using the bisection method. The stress in the two other directions are then calculated

1This section has been written in collaboration with P. Lafortune and Antoine Jerusalem
(Lafortune et al., 2012)
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Figure 3.8: Bi-axial test. Experimental values extracted from Yin et al. (1987) for strain
ratio Eff/Ess of 0.48 (©), 1.02 (�) and 2.05 (△). The full curves represent the solution
of the analytical solution and the dash curves the values obtained with the FEM.

with:

σf = (ae(b(I1−3)) − a)λ2f + 2af (I4 − 1)ebf (I4−1)2λ2f +K(J − 1) (3.16)

σs = (ae(b(I1−3)) − a)λ2s +K(J − 1) (3.17)

where the constant values are a = 4.3 kPa, b = 9.7, af = 1.69 kPa, bf = 15.78.

In addition to the numerical solution used to find the parameters, the model is tested

reproducing the bi-axial tests with a simple FEMmodel containing 50 linear hexahedral

elements. The results of those tests, along with experimental data, are shown in Figure

3.8.

To characterize the material in compression we can have a general idea using the

solution of a uni-axial traction test. The deformation gradient tensor is in this case

simplifies to F = diag[λf λs λs], where f is the fiber direction align with the traction,

and s the two other directions forming a perpendicular plan to f . Once again, we

suppose here that λf is the displacement of the traction machine, and we find λs
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Figure 3.9: Solution of the stress equations for a uni-axial tension-compression test.
The response given by the original parameters and when the value of af is modified
are shown. Values published by Hunter et al. (1997) are also shown.

solving the stress equation in the s directions:

σs = (ae(b(I1−3)) − a)(λ2s) +K(J − 1) = 0 (3.18)

Then, the stress in the f direction can be computed as

σf = (ae(b(I1−3)) − a)(λ2f ) + 2af (I4 − 1)ebf (I4−1)2λ2f +K(J − 1) (3.19)

Figure 3.9 shows the result of the uni-axial traction test. First, the behavior of

the material with the parameters previously found is plotted. A very low stiffness

is observed in compression, due the nature of the exponential functions used in

the constitutive equation. To stiffen the material in compression, the constant af is

increased to acomp
f = 6.5 af when compression is detected in the direction of the fibers

(λf < 1.0). The result using the modified coefficient is plotted on the same graphic.

Even if acting on the term that controlled the fibers, this modification must be seen

as acting on the whole structure. As mentioned by Holzapfel and Ogden (2009), the

fibers are most likely to buckle when compressed, and then have a minor contribution.
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3.4 Alya

In this thesis, the governing equations of the electrical propagation and the mechanical

deformation of the heart are numerically solved in the same code Alya. The code is

developed and supported at Barcelona Supercomputing Center (Houzeaux et al., 2013,

2009).

Alya is written in Fortran 90/95. It solves time-dependent PDEs, using a numerical

method. Variational formulations and the FEM are preferred but other discretization

methods can be easily programmed. Time advance is numerically integrated by FD

with trapezoidal rules. Monolithic implicit, by-block segregated or explicit schemes are

used.

The platform is designed to be multiphysics and flexible for running in parallel coupled

problems using non-structured meshes. Different physical phenomena are solved using

the code, such as fluids, meteorology, electromagnetic waves or the EM propagation in

the heart (Puzyrev et al., 2013; Marras et al., 2013; Vázquez et al., 2011).

For the coupled EM problem, the code targets the following aspects:

• Large geometries: data coming from high definition acquisition producing high

resolution meshes in both electrical and mechanical problems.

• Complex physiological models: electrophysiological, material and coupling models

of high complexity, with thousands of degrees of freedom per node.

• Multi-physics problems: electrical activity, mechanical deformation and blood

flow.

3.4.1 Code modularity

Alya architecture is modular. It is composed by modules, services and kernel. The

modules solve numerically each of the individual physical problems. The services

provide a set of complementary tools, called by modules and kernel, for example

the parallelization. Finally, the kernel contains the core of Alya where the common

procedures lie.

For the EM case, the governing equations of the electrophysiological problem have

been computed in a module called exmedi and the mechanical equations have been

computed separately, in a module called solidz. Figure 3.10 shows the modular structure
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Figure 3.10: Modular structure in Alya.

Do time loop

• Compute the equations of the electrical system (module
exmedi)

• Compute the coupling factor

• If the coupling factor reaches a threshold

- Compute the equations of the mechanical system
(module solidz )

• End If

End Do

Table 3.1: General algorithm to solve the EM problem in Alya.
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of the EM system. In this coupled problem, one unique tetrahedral mesh is used to

solve the discretized governing equations. Every time step, the problems are solved

in a staggered way, using a by-block structure, involving one alternate solution of

electrical and mechanical modules. The kernel is in charge of reading data and geometry,

computing the mesh, calling the modules or calling the parallelization service. The

general algorithm is presented in Table 3.1.

Global time step. Due to the highly transient character, electrical and mechanical

problems are solved explicitly, computing the time step in the electrical and the

mechanical modules separately. Based on stability criteria, the global time step is

the smallest one computed for each of the two modules. The same time step allows

a straight synchronization. After many numerical experiments we have found that

the electrophysiology time step is around 50% smaller than the mechanical one

(∆t = 10−6s). The accuracy and computational times required in the EM solution

are often related by the degree of mesh refinement. For the coupled problem, the

mechanical system is highly non-linear and the time to solve it is greater than the

electrical system on the same mesh.

Parallelization. Thanks to the code modularity, the electrophysiological and

mechanical governing equations are computed in separate modules sequentially and

the parallelization is performed external. Work distribution is achieved by sub-division

of the original sequential problem in smaller problems running concurrently. Problem

sub-division is done using METIS, an automatized mesh partitioner which divides the

original mesh in sub-domains and distributing work among the cores (Fig. 3.11). The

solver, based on MPI communication, gives at every moment the same result running

in parallel with many partitions as running sequentially with a unique partition. The

local element matrices are built following the sequence:

1. For each slave, compute elemental LHS and RHS.

2. For each slave, assemble (scatter) elemental RHS and LHS into global LHS and

RHS.

3. Exchange RHS of boundary nodes, the nodes belonging to more than one sub-

domain and sum up the contribution.

4. The operations of an iterative solver are matrix-vector multiplications. Then, for

each slave, compute matrix-vector multiplication.
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Figure 3.11: 1000-domains mesh partition performed by Metis (left) on a 1M tetrahedra
unstructured mesh (right) of a single left ventricle.

5. Exchange the results on the boundary nodes, as was done for the RHS.

3.4.2 Strong scalability

Alya runs efficiently in Marenostrum, the most powerful supercomputer in Spain

hosted in Barcelona Supercomputing Center. With the third upgrade (2012-2013),

Marenostrum has a peak performance of 1.1 Petaflops, with 48896 Intel Sandy Bridge

processors in 3056 nodes, and 84 Xeon Phi 5110P in 42 nodes, with more than 100.8

TB of main memory and 2 PB of GPFS disk storage. At June 2014, Marenostrum is

positioned at the 34th place in the TOP500 list of fastest supercomputers in the world.

Alya has shown high parallel efficiency up to several thousands of cores for

different physical problems, either coupled or single-physics (Houzeaux et al., 2009,

2011; Puzyrev et al., 2013). Moreover, it has shown scaling behaviour in other

supercomputers. In Blue Waters, the supercomputer hosted in the National Center for

Supercomputing Applications (NCSA), the code presents a performance up to 100000

cores, achieving more than 85% parallel efficiency. This result contradicts the common

belief that engineering simulation codes do not scale efficiently in large supercomputers,

opening a new wide horizon of potential applications in the industrial area. The same

problem would take 17.4 years for a serial code to do what Alya, on 100000 cores of Blue

Waters, can do in less than two hours. Thanks to the high parallel efficiency attained
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Figure 3.12: Pig biventricular geometry provided by Dr. A. Berruezo (Hospital Clinic
de Barcelona) in collaboration with R. Sebastian (Universitat de Valencia) and O.
Camara (Universitat Pompeu Fabra).

in codes like Alya, exascale supercomputers will allow solving complex engineers and

scientists problems.

CCM parallel efficiency. For the coupled EM problem, strong scalability measures

the CCM parallel efficiency. To illustrate that, a cardiac EM simulation is run

for a high-resolution pig biventricular geometry (Fig. 3.12), choosing FHN as the

electrophysiological model. A 6M tetrahedral mesh is generated for the geometry

provided by Dr. A. Berruezo (Hospital Clinic de Barcelona) in collaboration with R.

Sebastian (Universitat de Valencia) and O. Camara (Universitat Pompeu Fabra). The

original mesh is progressively subdivided following Houzeaux et al. (2013) in smaller

elements, creating a hyerarchy of larger meshes. To perform the scalability test, two

meshes coming from the subdivision cycle, 427M and 3.4B elements, are used. They

are respectively labelled ’DIV2’ and ’DIV3’ in Figure 3.13. Scalability is measured

upon the time needed to solve one time step. The smaller mesh ’DIV2’ shows linear

scalability up to 65K processors, being normalized with the 1024 cores run. At 65K

’DIV2’ has a mean of 6500 tetrahedra per core. At this end, communication time starts

to be noticeable with respect to computing time. However, scalability figures for the

larger mesh ’DIV3’ are linear up to the top: it is 8 times larger, with a mean of 52K

elements per core at 65K cores.
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Figure 3.13: Strong scalability in Alya. The vertical axis shows the speedup, the lower
horizontal axis is the number of cores and the upper horizontal axis is the elements-
per-core average. Tests were carried out in NCSA Blue Waters supercomputer.

Results of the CCM parallel efficiency lead to the congress contribution: M. Vázquez,

G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra, R. Aŕıs, D. Mira, H. Calmet,

F. Cucchietti, H. Owen, A. Taha, J. M. Cela (2014). Alya: Towards Exascale for

Engineering Simulation Codes. International Supercomputing Conference.

3.5 Discussion

This chapter introduces the computational aspects of an EM model of the heart,

capable of running on supercomputers and flexible enough to easily build up much more

complex models, from the numerical algorithms up to the parallel implementation. The

purpose of the simulation model is to be capable of reproducing the behavior of the

heart with the best degree of accuracy possible in a computer. The resultant simulation

tool has to be prepared to include the physiological an mechanical complexity of

the currently available models. Moreover, as medical imaging progresses, the highest

simulation fidelity is required. For all these reasons, an efficient parallel platform is

necessary.

From the numerical point of view, the treatment of the ODE-like terms in the model is

introduced. We propose to use a different numerical integration for these terms, similar

to that used for the lumped mass matrix. If the ODE-like local terms are ’spacialized’,



56 Chapter 3. HPC cardiac computational modeling

the solution present spurious numerical effects that can lead to plainly wrong results

(notably, the case with zero diffusion). These examples show how a different numerical

treatment, which is basically correct, can yield deep errors.

On the computational side, the implementation aspects of the parallel platform Alya

are introduced. The combined flexibility and parallel performance give to the proposed

approach a great advantage when extending the model towards data assimilation,

multi-scales and multi-physics. The present scheme shows almost linear scalability

plots for thousands of processors in explicit and implicit formulations. When carefully

programmed, this is inherited by all the Physical problems simulated in the platform.

Then, in Alya, electrophysiology, mechanical deformation and fluid flow can be coupled

retaining this parallel efficiency.



Chapter 4

Applications of the CCM tool

Simulation is an attractive approach for dealing with the many experimental difficulties

in determining properties of the heart. An extensive computational model can

provide information about cardiac mechanisms that would be impossible to determine

accurately by experimental methods.

In this chapter, the CCM tool is applied in several problems to demonstrate the

potential of computational simulations. Different electrophysiological and mechanical

aspects are studied. Firstly, Aya is used to fit the active force of the cardiac tissue,

according to data from the literature. The virtual experiment of modeling the active

force of the muscle leads to a surprising result that shows the efficiency of the physical

system, the heart. Secondly, a well known standard benchmark is tested in Alya,

where the mesh convergence of the code is assessed. Moreover, the framework is used

to determine certain properties of the tissue. After that, electrical and mechanical

questions are solved through a sensitivity analysis of the simulations. The behaviour of

the error in the fiber field reconstruction is investigated in synthetic datasets. Finally,

the relation between conductivity and conduction velocity is analyzed.

4.1 Fitting of the active force

In this section, we present a methodology to characterize mechanical properties of the

tissue using the CCM tool. The objective is to adjust the active force of the cardiac

muscle to reflect the change of volume inside the cavity that has been reported in the

literature.

57
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Figure 4.1: Rabbit ventricular mesh, University of Oxford. Discretized in tetrahedral
elements using the mesh generator TetGen.

Figure 4.1 shows an anatomically detailed MRI-derived rabbit ventricular model

developed by Bishop et al. (2010) at University of Oxford. The experimental fiber field

is not available in this study and a mathematical rule-based fiber model is interpolated

in the geometry. In order to fit the active force of the computational model, we take

into account that in a healthy rabbit heart, the total volume inside the ventricles varies

60% a cardiac cycle (Jung et al., 2012).

In the mechanical constitutive equations, the stress is decomposed in passive and active

contributions, with the latter being related to the measured force.

σ = σpas + σact

The action of the active force in contraction in the CCM tool is simulated varying the

parameter γ from the following equation:

σact = γFactf ⊗ f

where the active force Fact is related to the degree of ventricular filling and the stiffness

of the tissue. In order to avoid the cardiac tissue to collapse, we calibrate the active
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Figure 4.2: Calibration of the active force. The figure represents the change volume
inside the cavities vs. time. The theoretical value measured in a rabbit heart is 65%.
The CCM tool is calibrated to adjust this percentage.

force of the muscle. The parameter γ, also named control factor, is calibrated against

the expected change of volume in the two cavities:

EjectionFraction(%) =
MaximumV olume−MinimumV olume

MinimumV olume
∗ 100

which is 60% in a healthy rabbit heart. In Alya, the volume inside the cavities is

calculated through a discrete form of the Gauss’s theorem.

We solve the coupled EM problem in the 3D cardiac domain, using FNH equations for

the electrophysiological part. Giving different values of the control factor we observe

that choosing γ = 0.2 or γ = 0.3 the simulation yields to a ejection fraction (EF)

percentage that is close to the expected value. For γ = 0.2, we measure 61.72 % of the

EF and for γ = 0.3, we measure 69.6 % (Fig. 4.2). Although both results are sufficient

for our purpose, we choose γ = 0.2, which is nearer to the theoretical value.

Discussion. This application has been designed to calibrate the active force. The

parameter γ has been fitted to accomplish the theoretical EF value, finding that γ = 0.2

yields to an acceptable result, close to the experimental one. Therefore, simulations



60 Chapter 4. Applications of the CCM tool

performed in this thesis use γ = 0.2 in most of the situations. In case of simulating

a new circumstance, such as a pathological situation, the same procedure should be

taken into account to calibrate the active force of the muscle.

In addition, an indirect result has been found. Notice that increasing the active force

30% of its value, the EF only increases 8%. Although the fiber model used in the

simulation is a mathematical approach, the helical structure of the heart gives stability

an efficiency to the system. Varying considerably the contraction force, the EF does not

change the same amount. The design of the heart compensates a wrong functioning of

the tissue because of the microstructure disposition, saving the global behavior. This

unexpected result could explain that in some occasions the heart continues pumping

after a cardiac dysfunction, as in a damaged heart where non-beating cells form

scar tissue. The complexity of the cardiac architecture is an evidence. The complex

arrangement of myocites distributes the energy efficiently to pump a sufficient supply

of blood, even when some part of the tissue is damaged. As Streeter et al. (1969) said,

“No man-made structure is designed like a heart”. Nowadays, existing techniques can

not provide complete descriptions of the global muscular architecture. Simulations can

help to improve them.

Conclusion. The results show the potential of the framework, which is a virtual lab

that can help to interpret theories that are not validated yet. In the present application,

we underline two main features:

1. Decreasing the active force 30%, the EF value only decreases 8%.

2. The helical structure of the fiber field gives efficiency and stability to the cardiac

ventricles. Variations in the properties of the material can be compensated by

the system, allowing the heart to behave normally.

4.2 Relation between conductivity and conduction

velocity

Accurate conductivity values are essential for realistic simulations of cardiac

electrophysiological phenomena. Nowadays, the experimental determination of those

data is hard to obtain and results present large variation because of the complexity of

the measurements. Although conductivity values are available from measurements in
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Figure 4.3: 3D slab of cardiac tissue. Colours represent the different domains when
solved in parallel. A and B represent nodes of initial stimuli. C represents the node
where the velocity is measured.

the laboratory (Roth, 1997), results can vary depending on the experiment, producing

significantly different simulation output. Apparently, there is no preferred conductivity

value agreement in the community.

Myocardial structure is considered anisotropic because of the existence of the fiber field.

The current propagates more rapidly along the tissue fibers than across them. In the

governing equations, the conductivity tensor represents the anisotropy of the cardiac

tissue (Eq. 2.3), which is composed by the axial and crosswise fiber conductivities. As

explained in chapter 2, in the local basis the conductivity tensorD is diagonal, where kf ,

ks and kn are the axial and crosswise conductivities. Experiments in mammalian hearts

have determined that the electrical conduction velocity is three times faster along the

myocardial fibers than in a perpendicular direction (Clerc, 1976; Roberts et al., 1979;

Rubart and Zipes, 2001; Coghlan et al., 2006). Supposing the same relation in D, the

crosswise conductivity should be one third of the axial conductivity (kf = 3kn = 3ks).

Cardiac simulation is an appropriate tool to determine parameters and properties that

are hard to obtain, such as conductivity (Stinstra et al., 2005). The present study aims
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to examine the electrical propagation in the cardiac tissue to answer the question ’How

conductivity and conduction velocity are related?’.

FHN model is used to simulate the electrical activity of the heart in a 3D slab of

cardiac tissue, consisting in a cuboid of 2.5 mm x 2.5 mm x 10 mm. Fibers are defined

to be aligned in the long axis (10 mm) of the cuboid. The domain discretized in 96000

elements, where ∆x = 0.25 mm. To investigate the relation between conductivity and

conduction velocity, the tissue is considered isotropic (kf = kn = ks). The stimulus

current is located at one corner of one face (2.5 mm x 2.5 mm) of the slab (point A

in Figure 4.3). Values of the conductivity along the fibers are changed from 0.02 S/m

to 0.48 S/m. For each value, the simulation of the electrical propagation is performed

and the velocity along the fibers is measured. If exists the same relation between

conductivity and conduction velocity, the velocity should increase linearly with the

conductivity.

Results are presented in Figure 4.4. Red line corresponds to the experimental relation

between conductivity and conduction velocity. Green line represents the assumed

relation. From this graphic, we observe that the relation between the conductivity and

the conduction velocity is not linear. If we increase the conductivity linearly, conduction



4.2. Relation between conductivity and conduction velocity 63

velocity does not increases the same amount. To obtain a conduction velocity that

approximately increases by three, the conductivity needs to be increased by ten:

kf = 0.24 S/m =⇒ vf = 41.33 cm/s

kn = ks = 0.02 S/m =⇒ vn = vs = 13.22 cm/s

Finally, to check if the relation in the conduction velocity is fulfilled with the new

values, we perform the anisotropic case choosing the conductivity values that we have

found (kf = 0.24 S/m and kn = ks = 0.02 S/m). The experimental velocities in the

anisotropic case are the following:

vf = 45.73 cm/s ; vn = vs = 17.17 cm/s

We observe that the relation between the axial and crosswise velocities has is close to

the relation that has been reported in the literature (vf = 3vn = 3vs).

Discussion. Results clearly show that the relation between the conductivity and the

velocity of propagation is not linear. For each situation, the conductivity needs to be

calibrated with the simulation. Therefore, we propose a framework to calibrate the

conductivity parameters for each new case:

1. Explore a range of kf . For each conductivity value, perform the isotropic electrical

simulation and measure the resultant conduction velocity along the fibers (vf ).

2. Plot the conductivity versus the conduction velocity.

3. Choose the axial and crosswise conductivities from the graphic, keeping the

experimental relation vf = 3vn = 3vs.

4. Check if the relation is fulfilled in the anisotropic situation.

The method should be applied for a new electrophysiological model implemented in

the code.

Conclusion. As in the previous sections, this result shows the potential of the

simulation platform as a virtual lab where cardiac properties can be tested. The main

conclusion of the present application is that the relation between the conductivity and
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the conduction velocity is not linear. In addition, a new framework has been presented.

The method should be used to calibrate every new electrophysiological model and find

the conductivity parameters that fulfill the experimental evidence between the velocity,

along the fiber field and transversally.

4.3 Mesh convergence

Cardiac electrophysiological simulations are becoming increasingly complex. Computa-

tional codes represent the detailed physiology and pathologies of the heart, while at the

same time take advantage of the computational potential of HPC architecture. To verify

that the code gives a faithful representation of the governing equations, Niederer et al.

(2011) have provided a N-version benchmark to the community. N-version code com-

parisons studies are typically applied in contexts where simulations are intrinsically

unable to be validated against direct observations. The benchmark has been created to

generate a consensus converged solution. The test assesses if the simulation software

produces the same electrophysiological result at multiple spatial discretizations.

The geometry used in this section is the same as in the previous one, a cuboid of 2.5

mm x 2.5 mm x 10 mm. Fibers are defined to be aligned in the long axis (10 mm)

of the cuboid and the stimulus current is located at the corner of one face (2.5 mm

x 2.5 mm) of the slab (point A in Figure 4.3). Initially, the membrane potential is

set to -85 mV. The benchmark is performed in Alya. The problem is solved at four

spatial resolutions (∆x = 0.5 mm, 0.25 mm, 0.125 mm, 0.0625 mm) and each spatial

resolution is solved with a PDE time step (∆t = 0.08 ms, 0.02 ms, 0.0017 ms, 0.00032

ms respectively). Using a monodomain model (FHN equations for the non-linear term)

with transversely isotropic conductivity, the governing equations are solved explicitly.

Both open and closed rules are used in the integration scheme to study if this subtle

difference in implementation can cause discrepancies in the simulations. We measure

the velocity of propagation at the opposite corner of the cuboid, considering that the

node is activated when the upstroke passes through 0 mV.

Two different situations are studied. Firstly, we consider that the propagation in the

cardiac tissue is isotropic. Secondly, we consider the anisotropic version.

1. Isotropic. The conductivity along the fiber is set to 0.12 S/m. In this case, we

measure the velocity along the fiber direction, from point A to point C (Fig. 4.3). The

distance between the corners is 1 cm. The propagation wave is illustrated in one face of
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Figure 4.5: The problem is solved at four spatial resolutions. From left to right, ∆x =
0.5 mm, 0.25 mm, 0.125 mm and 0.0625 mm. Colours represent the evolution of the
action potential trough the cardiac tissue.
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Elements ∆x (mm) C: velocity (cm/s) O: velocity (cm/s)
12000 0.5 30.15 31.75
96000 0.25 30.61 31.01
768000 0.125 30.76 30.98
6144000 0.0625 30.78 30.84

Table 4.1: Velocity of the wave front calculated in the same domain with different spatial
discretization for the isotropic case. Results for closed (C) and open (O) integration
rules.

the cuboid in Figure 4.5. On the left side of the figure, the geometry has been discretized

in space of 12000 elements. Solving the FHN equations in this domain and using the

closed integration rule, the velocity of the propagation wave that is measured is 30.15

cm/s. In the second case, the mesh is refined and the total elements in the same domain

increases to 96000. The velocity recorded in this slab is 30.61 cm/s. In the third case,

the mesh contains 768000 elements and the velocity gives 30.76 cm/s. Finally, the fourth

discretization corresponds to a mesh of 6144000 elements. In this case the velocity is

30.78 cm/s, which can be considered equivalent to the previous result. The behavior

of the system is stable for spatial discretizations lower than ∆x = 0.125 mm, giving

the same velocity. Moreover, open and closed rules are used in the integration scheme,

causing discrepancies up to 5% (Table 4.1). With the closed integration, the activation

presents an increase of time, specially for coarser resolutions.

1. Anisotropic. The conductivity along the fiber is set to 0.24 S/m and the

transversal directions are set to 0.02 S/m. From the starting point of the stimulus,

point B in Figure 4.3, and the opposite corner, point C in Figure 4.3, the distance is

1.601 cm. In this case, only the closed integration scheme has been used. The resultant

velocities are summarized in Table 4.2. As in the isotropic case, the system behaves

stable for spatial discretizations lower than ∆x = 0.125 mm.

Elements ∆x (mm) velocity (cm/s)
12000 0.5 31.28
96000 0.25 33.58
768000 0.125 34.02
6144000 0.0625 33.91

Table 4.2: Velocity of the wave front calculated in the same domain with different
spatial discretization for the anisotropic case.
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Discussion. The benchmark presented in Niederer et al. (2011) has been tested in

a cuboid using four different spatial discretizations. The velocity calculated for the

solver at coarse spatial resolutions is substantially closer to that obtained with the

finest spatial resolution. This result shows mesh convergence of Alya. As the authors

reported in the paper, codes performing simulations with and without mass lumping

obtain different times. Using the mass lumping (closed integration) an increase of time

in the activation pattern is recorded, specially for coarser resolutions. This effect is

also captured with Alya. The closed rule yields to smaller velocities, specially for the

coarsest mesh.

Conclusion. In the spatial range we are working in this thesis, the velocities become

stable. Results obtained at coarse and fine spatial resolutions are close, specially at

high resolution meshes.

4.4 Effect of the noise in the cardiac fiber field

The cardiac fiber field can be obtained experimentally with the image technique DT-

MRI, but the acquisitions always include noise in its recordings. The noise is originated

by two components: the scanner apparatus and the patient breathe inside the scanner.

In cardiac MRI images, random noise is essentially white and has its origin in thermal

Brownian motion of electrons.

The CCM tool is used here to assess the effect of errors in the input fiber field, derived

from the data acquisition methodology, and to evaluate the error sensitivity. In this

case, only the electrophysiological governing equations are solved, using FK model. A

cubic-shaped slice of cardiac tissue has been used, which has a crosswise fiber field (Fig.

4.6). Three different examples of the same slab are simulated: one with a uniform fiber

field, set as the reference, and two more with perturbed fiber fields (10% and 20% of

random noise). The percentage of error added to the direction of fibers in the reference

is defined by α ± α · g · r(xi) where g = 0.1 or g = 0.2 and 0 ≤ r(xi) ≤ 1 is a random

function defined for each point in space xi. To quantify the error of such a transient

problem, the isochrones are calculated for each case. The isochrones are contour lines

connecting points where the propagating potential reach a marker value at the same

time (-5 mV in this case). Once the polarization wave passes through all the domain,

the isochrone field can be compared for the different cases in the discrete L2 norm.
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Figure 4.6: Noise in fiber orientation in 3D. In (a) the distribution of fibers has no
noise. In (b) noise in fiber orientation has grown up to 10%. Fibers in (c) has 20% of
random noise. The corespondent isochrones are (d), (e) and (f). FK model has been
used in the simulations.

Discussion. In this section we study the effect of the noise that appear in the

acquisition of the fiber field. Usually, cardiac images include noise in the captured

data. To simulate this situation, random noise has been added into the synthetic data.

Results presented in Figure 4.6 show the influence of the noise in the direction of

the electrical propagation in cardiac tissue. We present three different situations: The

exact fiber field and two situations containing noise in the fiber direction. In the first

row, the fiber field orientation is drawn for each case. Isochrones suggest that 10% of

random noise in the acquisition does not significantly compromise the temporal pattern

of the electrical wave. However, the maps indicate local differences in the case of 20% of

random noise. This result would suggest that, when obtaining highly error acquisitions,

the orientation of the anisotropy varies.

Conclusion. In the present application, we underline two main features:

1. 10% of random noise in the acquisition does not significantly compromise the

temporal pattern of the electrical wave.

2. High error acquisitions varies the orientation of the anisotropy.



Chapter 5

Data assimilation. Inverse problem

The construction of cardiac models that describe accurately the behavior of the heart

is a challenging task. Computational modeling has already shown a great potential

to better understanding mechanisms involved in pathologies. However, assimilation of

clinical data is a crucial step to increase the model reliability and to obtain quantities

of interest in-silico. An accurate modeling requires the characterization of the electrical

and material properties of soft tissue, which most of the times are not accessible

through clinical technology directly or that have to be acquired ex-vivo. Nowadays,

data assimilation methods permit an objective characterization of myocardial tissue.

Some of the EM properties of the cardiac muscle can be determined indirectly,

combining mathematical algorithms and experimental data. However, extracting the

values from the available measurements is not always possible. For example, some

material parameters, such as myocardial stiffness, still remain unknown.

The CCM tool presented in this thesis uses a large amount of parameters and some

of them are not determined experimentally. In this chapter, we perform two data

assimilation techniques to find some values. In the first part, we review the Kalman

Filter method, for the effective estimation of relevant physical parameters and we apply

the technique to the 1D FHN equation. Specifically, the electrical problem is studied

with the Ensemble Kalman Filter to estimate the conductivity. In the second part,

parameters of the mechanical problem are estimated with another inverse problem.

This section is the result of a collaboration with the biomedical Engineering group

at King’s College London. The mechanical characterization of the cardiac tissue is

performed in a human left ventricle (LV) geometry using their in-house simulation

code Cheart. The aim is to make a detailed analysis of the sensitivity to one of the

uncertainties of the process: the distribution of fiber orientation.

69
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This is a first approach of the inverse problem. The discretization of the partial

differential equations is carried out using the finite differences method and is

implemented in an in-house Fortran code. In the future, it will be extended to the

FEM formulation and it will be integrated in the CCM tool in Alya.

5.1 Kalman filters

This section gives a brief introduction to the Kalman Filters (KF), as sequential

data assimilation methodologies and outlines the general theory of the Ensemble

Kalman Filter (EnKF), which is used in non-linear problems. The aim is to present

a comprehensive derivation of the KF used for the parameter estimation in 1D

electrophysiological problems.

The KF is a computational algorithm that can estimate the variables of a wide range

of processes. Measurements are combined with the mathematical model to predict the

evolution of the system and to estimate the variables, parameters or initial conditions

of the model (Kalman, 1960). The KF is a sequential filter method. It is integrated

forward in time and, whenever measurements are available, they are used to reinitialize

the model before the integration continues.

The behavior of the physical system is described through the state equation. The vector

x contains all of the information about the present state of the system, but cannot be

measured directly. Instead, vector y is measured, which is corrupted by the noise z.

Using the knowledge of the system and the measurement dynamics, the estimator gives

an accurate value of the current state.

The filter is build under two premises:

• The KF estimates the states of a system. The average value of the state estimate

has to be equal to the average value of the true state.

• The state estimate should have the smallest error possible compared to the true

state. In mathematical terms, the filter minimizes the variance of the estimation

error.
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5.1.1 Kalman filters for linear systems

If the physical process can be approximated as a linear system (xk+1 = Axk + Bkuk),

the KF can be described by the following two equations:

xk+1 = Axk +Bkuk + wk

yk+1 = Ckxk + zk (5.1)

where k is the time index, u is a known input and A, B, and C are matrices. The

process noise is represented by w.

The noise covariance matrices Sw and Sz are defined as:

Sw = E(wkw
T
k )

Sz = E(zkz
T
k ) (5.2)

where E() is the expected value. The process noise covariance is Sw = E(wkw
T
k ), also

named Q, and Sz = E(zkz
T
k ) is the measurement noise covariance, also named R. The

general formulation of the KF is given as follows:

Kk = PkC
T (CPkC

T + Sz)
−1

xk+1 = (Axk + Buk) +Kk(yk+1 − Cxk)

Pk+1 = (I −KCk)Pk (5.3)

where K matrix is called the Kalman gain and P matrix is the estimation error

covariance. K is chosen to be the gain that minimizes the error covariance P .

In the filter, xk+1 represents the state vector in the system model corrected by the

second term Kk(yk+1 − Cxk). The difference yk+1 − Cxk+1 is called the measurement

innovation, or the residual. The residual reflects the discrepancy between the predicted

measurement Cxk+1 and the measurement yk+1. The state estimate xk+1 has to be

corrected due to the measurements. If the measurement noise is small, Sz will be small

and K will be large. In this case, high credibility will be given to the measurement

when computing the next state estimate xk+1. On the contrary, K will be small in case

of low confidence on the measurement y.
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Computational Cost The computational cost associated with matrix inversion is

proportional to n3, where n is the number of elements in the domain and also the size

of the matrix (Kalman, 1960).

5.1.2 The Ensemble Kalman filters for non-linear systems

Non-linear systems are treated with Extended Kalman filter. Particularly, the Ensemble

Kalman Filter (EnK) is used in this section. It is an extension of the linear KF theory

to non-linear systems, representing the distribution of the system state using a random

sample called the ensemble. At the current assimilation time, the EnKF assumes that

the forecast error is randomly sampled by an ensemble of forecasts, denoted by xe1 ,

xe2,... x
e
N . The forecast ensemble consists of N members, which are state vectors of

dimension n:

Xe =
(

xe1, xe2, ..., xeN

)

(5.4)

The ensemble mean is defined by

xe = N−1

n∑

i=1

xei (5.5)

and the perturbed observations are yki = yk + vki where vi ∼ N(0, R) is the associated

noise. The ensemble perturbation from the mean for i-th member is x′e = xei − xei . In

the EnKF the covariance matrix is replaced by the sample covariance of the ensemble

the matrix Ex:

Ex =
(

xe1 − xe1, xe2 − xe2, ..., xeN − xeN

)

(5.6)

and the estimation error P is determined by:

P =
ExE

T
x

N − 1
(5.7)

Implementation of the filter. For each ensemble member, the EnKF is described

as:

xk+1
i = xki +Kk(yk+1

i − Cxki )

K = PkC
T (CPkC

T +R)−1 (5.8)
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Figure 5.1: Operations involved when solving the EnKF.

Figure 5.1 presents an schematic view of the operations involved when solving the

EnKF, where n represents the number of elements in the domain, nexp is the number

of measurements and nnsml is the number of ensembles.

5.1.3 Non-Linear Application: FHN equation

In this section, we illustrate the methodology presented above with the estimation in-

silico of electrical parameters in the 1D FHN governing equations. The EnKF and the

partial differential equations of the electrophysiological problem are implemented in an

in-house Fortran code. For simplicity in this first approach, the discretization is carried

out using the finite differences method. In the future, it will be extended to the FEM

formulation in Alya.

The reaction-diffusion equation in the 1D FHN model is given by:

∂V

∂t
= D

∂2V

∂x2
+ IIon (5.9)
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Figure 5.2: True potential evolution in x = 4. Some results for conductivity D are
plotted. Units: V (mV), t (ms), D (S/m).

Using the finite differences method, the iterative scheme yields to:

V n+1
x = V n

x +D
∆t

(∆x)2
(V n

x+1 − 2V n
x + V n

x−1) + C1V
n
x (V

n
x − α)(1− V n

x ) + C2ω

ωn+1 = ωn +∆tǫ(V n
x − γωn) (5.10)

The governing equations are solved in 1D computational domain, discretized in 10

elements. This is a very coarse mesh, which is useful to test the method. Therefore, we

use the easy framework to analyze some problems related with the EnKF.

Estimation of D. Nowadays, action potential in myocardial tissue can be measured

experimentally, but conductivity values can not be measured directly. To characterize

the conductivity of the system in a controlled situation, we propose an in-silico

framework using the EnKF.

In 1D, the conductivity is a scalar. The true result is generated numerically solving

the governing equations of the FHN model. Notice that different values of D leads to a

significant difference in the action potential’s shape (Fig. 5.2). As showed in chapter 4,

the relation between conductivity and conduction velocity is not linear. In the figure,

we can observe the same behavior: reducing the conductivity value, the velocity of the

wave is also reduced but it is not keeping the same relation.
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Figure 5.3: True potential and estimation obtained from EnKF in x = 4. Values used
in the EnKF to generate the numerical result (true solution) and the measurements.
In this case, R = 5. Units: V (mV), t (ms), D (S/m).

To perform the EnKF, we compute the numerical solution of the FHN model. We use

the FD scheme in space and explicit solver in time. Firstly, we compute the simulation

with the conductivity valueD = 1.5 S/m. The result is set as the reference (true result).

Secondly, measurements are generated in-silico, adding Gaussian noise to the numerical

solution of the FHN equation in the 1D domain. In this case, the conductivity is set to

D = 0.8 S/m and the Gaussian noise is 5 mV. To determine the estimate of V (x, t),

the EnKF is implemented using 50 ensembles. The values are presented in Figure 5.3,

where ntimes refers to the total simulation time and mtimes refers to the time interval

when the measurements are created. R is the matrix associated with the noise in the

measurements, which gives the confidence in the measurements.

The result of the EnKF is plotted in Figure 5.3. Notice that a large number of

measurements are available in this process (blue points). Although the numerical

solution is calculated with D = 1.5 S/m (red line), the confidence in the measurements

(R = 5) and the large amount of measurements produce an action potential

corresponding to D = 0.8 S/m. The filter gives a solution corrected by the

measurements (green line).
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In this example, the steps in the parameter estimation procedure are the following:

1. Compute the electrophysiological equations with the theoretical value (D = 1.5

S/m).

2. Correct the solution with the measurements that are available, performing the

EnKF.

3. Evaluate the parameter from the estimated action potential. From the graphic

we estimate the value of the parameter to D = 0.75 S/m.

Confidence of the filter R. From the previous study, we observe that results

depend on the confidence of the filter. To study the effect of R matrix, we consider the

same situation as in the previous case and we test different values of R in the EnKF.

Theoretical action potential and measurements are obtained using the same parameters

introduced above. Then, the filter is implemented twice, choosing R = 20 and R = 0.1.

On the one hand, Figure 5.4 shows the result of the EnKF with R = 20. In this case, the

estimated electrical wave is similar to the one presented in Figure 5.3. For comparison

with the true potential evolution, we can affirm that the conductivity parameter is

close to D = 0.75 S/m. On the other hand, Figure 5.5 shows the result of the the

filter using R = 0.1. In this case, the action potential presents fluctuations because

the estimated electrical wave is following the measurements, more than in the previous

case. The filter believes the noisy measurements and follows them. From the figure, we

can affirm that the parameter is close to D = 0.85 S/m.

Effect of the number of measurements available. In the in-silico processes

previously presented, a large number of measurements are available. However, not

always we have access to this amount of data. The parameter calibration is also possible

when physical experiments have a narrow window of measurements.

Figure 5.6 illustrates the result of the EnKF considering less measurements than the

previous example. On the top, the filter uses R = 20 to estimate the action potential.

In this case, the repolarization and the depolarization of the electrical wave are not

captured correctly. Since we have less measurements, we need to increase the confidence

of the filter. On the bottom, the figure shows the result in the same situation using

R = 5. In this case, the estimated action potential is closer to the real one. From

this result, we observe that if the number of measurements is small, a smaller R is

convenient.
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Figure 5.4: The confidence of the filter is R = 20. The filter responds to the
measurements slowly. Units: V (mV), t (ms), D (S/m).
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Figure 5.5: The confidence of the filter is R = 0.1. In this case, the filter is following
the measurements. Units: V (mV), t (ms), D (S/m).
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Figure 5.6: Result of the EnKF considering less measurements. Top: R = 20. Bottom:
R = 5
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5.1.4 Discussion

EnKF is a suitable method to estimate parameters in non-linear problems. In this

section we have applied the filter to determine the conductivity in the 1D FHN equation.

We have seen that if we have a lot of measurements we can use high values of R. On

the contrary, when the number of measurements is small, we need to choose a smaller

R. For our purpose, values between R = 10 and R = 20 are correct. Nevertheless, a

balance between confidence of the filter and the number of measurements available has

to be established for each new case.

Parameter estimation is essential to model a patient-specific heart. The present method

can be used to determine other parameters of the electrical model and it can be

extended to estimate parameters in the mechanical equations of the heart. However,

cases with high dispersion on geometry and parameters require a more robust strategy

(Sermesant et al., 2012, 2006).

5.2 Characterization of the cardiac tissue in a

human LV geometry

In this section, we use an alternative methodology to characterize the parameters of

the cardiac model. Particularly, we focus on the characterization of the mechanical

deformation of the muscle.

Up to date, there is a lack of personalised data on fiber orientation. Fully 3D acquisition

and reconstruction of the cardiac architecture through DT-MRI require long times

and are hard to obtain. Consequently, a few cardiac models include the anatomical

and the fiber description coming from the same geometry. In most cases, transmural

heterogeneity of the fiber field across the wall is described mathematically, interpolating

fiber directions from the epicardium to the endocardium by using surface distance

functions. Based on measurements by Streeter et al. (1969), fibers are embedded in

the cardiac geometry interpolating their direction from −θ on the epicardium to 0 at

mid-wall to +θ on the endocardium, where the standard value is θ = 60◦.

To investigate the relevance of the fiber orientation in the deformation of the heart,

we present an inverse study, combining knowledge coming from various disciplines

including anatomy and biomechanics. The work assesses how the cardiac material

properties change for different fiber field configurations.
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Figure 5.7: Human LV and experimental fiber field extracted in vivo with DT-MRI.
From King’s College of London.

5.2.1 Methods

To perform the mechanical simulations, the cardiac geometry and the fiber field are

required. In this work, a human LV geometry is obtained from MRI images and cardiac

human fibers are captured in vivo DT-MRI at King’s College of London (KCL). The

human LV and the experimental cardiac fibers are shown in Figure 5.7.

Firstly, the end systolic frame is segmented. The volume mesh is built using an approach

developed by Lamata et al. (2011). The method uses medical image registration and

a cubic-Hermite warping technique to fit a template mesh to a given geometry. The

mesh, with 12 elements and 436 nodal positions, provides a continuous representation

of the cavity.

Secondly, human fibers are captured in vivo DT-MRI through a novel technique

developed by Toussaint et al. (2013) and integrated in the human LV geometry. In

addition, a variety of mathematical fiber fields are prepared to interpolate in the LV

geometry. Rule-based synthetic fibers with transmural heterogeneity are computed,
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choosing different values of the interpolation angle θ. To study the difference in

contraction, we explore the interpolation angles 0◦, ±30◦, ±60◦, ±90◦ and we compare

results with the simulation obtained using the in-vivo DT-MRI fibers.

Finally, to evaluate the difference in contraction obtained using the rule-based fiber

models and the experimental DT-MRI fiber field, we build a functional. The shape

of the functional gives information about the sensitivity of the model to changes in

the fiber orientation and the minimum of the objective function localizes the set of

parameters that best fit the reference.

Material constitutive law. Focusing on the mechanical properties of the muscle,

myocardium is modeled as transversely isotropic hyperelastic material. In this work,

the mechanical behaviour of the cardiac tissue is described with a constitutive law that

isolates the passive component of the stress, introduced by Guccione et al. (1991). The

reason of modeling the heart as a passive material is to simplify the situation and reduce

uncertainties of the inverse problem. With this approach, the fundamental properties

of the constitutive law are limited and the number of parameters are decreased. This

formulation does not consider the active term and reproduces the mechanical properties

of the stress-free material with four parameters:

W = C1(e
Q − 1)

Q = C2E
2
ff + C3(E

2
ss + E2

nn + 2E2
sn) + C4(2Efs

2 + 2E2
fn) (5.11)

where W is the strain energy density function, C1, C2, C3, C4 are the constitutive

parameters and Eij is the Green-Lagrange strain in sheet / normal / fiber direction.

Particularly, C2 represents the stiffness in the myocardium fiber direction (Costa et al.,

2001). In order to describe the material properties, the constitutive parameters are

reparameterized into C1, α, r3 and r4, as in Xi et al. (2012):

α = C1 + C2 + C3

r3 = C3/α

r4 = C4/α (5.12)

where r2, r3, r4 are the anisotropies of C2, C3, C4 and fulfill that:

r2 + r3 + r4 = 1 (5.13)



82 Chapter 5. Data assimilation. Inverse problem

Figure 5.8: Passive inflation of LV.

With this reformulation, the material properties can be split in two parts:

• C1 − α space: It is related with bulk stiffness. Linear terms of W are considered

in C1 value. Meanwhile, α refers to the exponential terms of the strain-energy

function.

• r3− r4 space: It is related with the anisotropy of the myocardial structure, which

indicates the relative stiffness along the myofiber compared to other material

directions.

Computational model. The solid mechanical model is implemented in Cheart,

the simulation code developed and supported at KCL. The LV is fixed at the base

on its epicardium nodes and the apex is free to move. Pressure is applied as a

boundary condition on the endocardium of the cubic-Hermite mesh with a quasi-static

loading, increasing from a minimum of 0 kPa to a maximum of 1.5 kPa. The quasi-

static finite-elasticity formulation is denoted in the Lagrangian frame as described

in McCormick et al. (2013) and the stress equilibrium governing equation is solved

using the finite element method as explained in Nordsletten et al. (2011). Figure 5.8

represents the passive inflation performed in the LV.

5.2.2 Parameter estimation framework

To determine the values that produce a movement of the LV geometry that is consistent

with experimental observations, parameter estimation techniques are often used. In this

work, we present a methodology to scope the relevance of the fiber architecture in the

deformation of the LV.
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The aim is to investigate how a change in the fiber orientation might bias the

estimation of material parameters. To study their influence in the resultant movement

of the ventricle, a set of passive inflation simulations are performed in the human

LV geometry, changing the fiber field that has been interpolated in the geometry and

the Ci parameters from the Guccione law. Notice that in the passive constitutive law,

multiple combination of values C1, C2, C3, C4 are able to reproduce similar cardiac state.

Despite the complexity of determining constitutive parameters in the inverse problem,

this 4-parameter law makes the estimation practicable.

To design the problem, we need the following ingredients:

1) Ground-truth. The simulation of the passive inflation of the LV performed with

the human fiber field obtained from in-vivo DT-MRI is established as the reference or

ground-truth. The constitutive parameters are chosen based on previous results on a

healthy case, published by Xi et al. (2012) and listed in Table 5.1.

C1 (kPa) C2 C3 C4

1 19.13 10.67 12.76

Table 5.1: Constitutive parameters of the Guccione law for a healthy case. This values
have been used to generate the ground-truth.

2) Rule-based fiber field orientations. A variety of simulations are performed in

the human LV cavity using different mathematical descriptions of the cardiac fibers.

We explore different fiber fields, which have a linear variation across the wall, from −θ

degrees in the epicardium to θ degrees in the endocardium (θ = 0◦,±30◦,±60◦,±90◦).

For each fiber field interpolation, simulations are generated by changing Ci values in

the Guccione law.

3) Functional to minimize. For each fiber field distribution, the constitutive

parameters that best fit the reference movement of the LV minimize the difference

between the ground-truth and the simulation obtained with the rule-based fibers. In

this work, the difference is evaluated with a functional at the end-diastolic frame,

measuring the averaged distance between equivalent Gauss point of the reference and

simulated meshes at a certain time point. The functional is defined as the objective

function J :

J(x, y) =

√

1

G

∑

g

|xg − yg|2 (5.14)



84 Chapter 5. Data assimilation. Inverse problem

where g is the number of Gauss points per element and xg, yg are the coordinates of

the reference and the simulation respectively. The averaged distance J is calculated

between each simulation and the ground-truth at end-diastolic time step.

5.2.3 Simulation set-up

The sensitivity of the fiber orientation in the estimation of material parameters is tested

through a set of passive inflation simulations performed in the human LV geometry.

First, the reference is established. Then, simulations of the passive filling of the human

LV are performed for different sets of Ci values and the variety of fiber field orientations

that are interpolated in the geometry. Following the Forward Models presented in Table

5.2, data assimilation is applied in a each case.

For each rule-based fiber field Do

1. Forward Model A: Fixing C3 and C4 on the reference
values, compute the simulations to explore C1−α space.

(a) Find the optimal point for each fiber field in C1−α
space.

(b) Calculate the hessian at the optimal point

(c) Calculate the bias

2. Forward Model B : Fixing C1 and α on the reference
values, compute the simulations to explore explore r3 −
r4 space.

End Do

Table 5.2: General algorithm to solve the inverse problem.

Notice that in this study parameters are not estimated by optimisation. The

combination of parameters that best fit the reference is achieved by minimizing the

difference between the reference and the simulation model. In order to understand the

impact of fiber orientation in the problem, an exploration of the values of the functional

is performed, measuring the similarity between the observation and the simulation.

For each case, the functional J presented above is evaluated to draw the C1 − α and

r3 − r4 landscapes. With this ’brute-force’ data assimilation approach, the location

of the global minimum is found at each C1 − α and r3 − r4 spaces. Finally, the bias

and the hessian are calculated to characterise the curvature of J at the critical point.
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We expect that the functional obtained from a model with the best identifiable fibers

yields to the highest hessian value. Therefore, if a simulation is performed with a fiber

field that is far from the reference, the hessian value decreases and the optimal value

changes (a bias is introduced).

5.2.4 Results

In this section we present the results of the inverse problem to study the sensitivity to

the fiber field in the passive inflation of the human LV. The reference or ground-truth

has been performed using the theoretical values from Table 5.1 and considering the

DT-MRI human fiber field obtained in-vivo. For each rule-based fiber field, the general

algorithm from Table 5.2 is performed. To determine the values of the Guccione law that

produce a behavior consistent with the reference, we explore the functional introduced

in Equation 5.14. First, the C1 − α landscape is obtained performing passive inflation

simulations, holding the C3 and C4 parameters to the theoretical values. With this

method, we explore the combinations of C1 and α parameters for a given fiber field.

Results are shown in Figure 5.9, where the objective function is plotted in the

C1 − α parameter space for all the mathematical descriptions of the fiber field

(θ = 0◦,±30◦,±60◦,±90◦). Numerical results are summarized in Table 5.3. In the

figure, the reference behaviour is also drawn, named DT-MRI. On the one hand, yellow

dots show the position of the theoretical values listed in Table 5.1 and red dots show

the minimum of the functional found for each rule-based fiber field. The reference

corresponds to the result obtained with the experimental human fibers, which gives

C1 = 1 kPa and α = 42.56. On the other hand, the closeness of the contour lines

indicates the rapid increase of the objective function, away from the minimum. It can

be seen that there is only one minimum at each space, giving the assurance of unique

values. Notice that the parameters in the Guccione law are coupled between them.

Therefore, an increase of C1 can be compensated by a decrease of C2, C3, C4 (Xi et al.,

2011). The coupling relationship can be visualized in the figure, represented as the

dark blue valley. The first graphic (Angle 0 ), corresponds to the simulations where the

interpolation angle of the fiber field is θ = 0◦. In order to have a behavior similar to

the reference (DT-MRI), we observe that a change in the interpolation angle makes a

change in the constitutive parameter values. In this case, the minimum value of C1 is

localized at 1.1 kPa and α = 38.43. For θ = 0◦, we observe the minimum of J yields to

an increase of C1 and a decrease of C2, compared with the ground truth. Consequently,
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the change of the fiber orientation produces a decrease of the stiffness (C2 parameter)

in this case.

Figure 5.9: C1 − α landscape of the functional. Yellow dot: Ground Truth. Red dot:
Minimum value of the functional.
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Model C1min (kPa) αmin Hessian Bias
DT-MRI 1 42.56 1.17E-05 0
Angle 0 1.1 38.43 7.51E-07 0.868
Angle 30 1.1 38.43 6.42E-07 0.881
Angle 60 0.9 48.43 1.27E-07 0.912
Angle 90 1.5 27.43 1.55E-06 0.916

Table 5.3: Values of C1, α obtained from the inverse problem. The hessian and bias are
calculated to characterize the minimum.

The same procedure is repeated for other fiber field distributions. In the figure, we

observe that simulations obtained with θ = 60◦ and θ = 90◦ yield to patterns that

are close to the experimental one (DT-MRI). In Table 5.3, we observe that angles

θ = 0◦ and θ = 30◦ yield to the same combination of parameters and, therefore, the

same stiffness. In both cases, C1 increases and C2 decreases compared to the DT-MRI

fiber field. On the contrary, θ = 60◦ gives the opposite situation. C1 decreases and C2

increases compared to the ground truth, increasing the stiffness. Regarding, θ = 90◦,

results show that this rule-based fiber field yields to a large decrease of the stiffness.

Moreover, the bias and the hessian are calculated for each case, to characterise the

curvature of the functional at the critical point. As expected, we observe that the

hessian value decreases when the simulation is performed using a fiber field that is

different from the reference. The lowest hessian value is obtained for θ = 60◦. On the

contrary, θ = 90◦ has the largest value, which indicates that this rule-based fiber field

is closer to the reference.

Similarly, Figure 5.10 presents the objective function in relation to the r3 − r4 space.

In this case, C1 and α are fixed and we explore combinations of C3 and C4. Results

show differences between the simulations performed using the human fiber field and

the rule-based. Particularly, simulations obtained using θ = 30◦ and θ = 60◦ yield to

a pattern that is closer to the experimental one (DT-MRI). Probably an intermediate

angle would give the best combination of C3 and C4 parameters.

Finally, Table 5.4 summarizes the sets of parameters of the Guccione law obtained in

the inverse study. In order to fit the reference contraction, we observe that different

fiber field orientations yield to different constitutive parameters.
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Figure 5.10: r3− r4 landscape of the functional. Yellow dot: Ground Truth. Red dot:
Minimum value of the functional.
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Model C1min (kPa) C2min C3min C4min
DT-MRI 1 19.13 10.64 12.76
Angle 0 1.1 15 11.92 14.89
Angle 30 1.1 15 11.49 17.02
Angle 60 0.9 25 9.79 10.64
Angle 90 1.5 4 12.76 19.15

Table 5.4: Values of C1, C2, C3 and C4 obtained from the inverse problem.

5.2.5 Computational remarks

The code is solved sequentially in an Intel Core i7-3770 CPU 3.40 GHz. One simulation

runs in 100 s. For each fiber field distribution, a complete analysis requires 10 hours

on a single PC. Since the computational requirements for this study are not excessive,

the application of the method is practical. However, the implementation of the inverse

problem in a parallel platform would increase the potential of the framework.

5.2.6 Discussion

The definition of myocardial parameters in the governing equations is necessary in

cardiac biomechanics. In this section, we have introduced a preliminary work to adjust

the mechanical properties of the heart, required for the simulations. Particularly, the

framework has been used to study the effect of tissue structure. To scope and develop

the method, we have build the framework in a controlled situation. The fiber field

orientation has been the only factor that has changed.

Mathematical fibers have been embedded in the cardiac geometry interpolating their

direction from −θ on the epicardium to 0 at mid-wall to +θ on the endocardium.

Simulations of the passive inflation of the cavity have been performed using rule-

based fiber fields and have been compared to the reference simulation, obtained with

the experimental DT-MRI fiber field. The difference between the reference and the

mathematical models has been evaluated with a functional at the end systolic frame.

For each case, the model parameters of the constitutive law that best fit the reference

have been calculated.

Recently, Carapella et al. (2014) have published a computational study of the impact

of tissue microstructure on contraction of the left ventricle in rat. They state that

in order to represent the effect of the fiber field on cardiac mechanics, and to have

a patient-specific approach, further investigation of the sheet orientation should be

carried out. The present work has been performed in-silico, with perfect control on
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boundary conditions. We have tested the the sensitivity of the model to the fiber

direction, through the evaluation of changes in the location of the minimum in the

C1 − α and r3 − r4 spaces. At the end systolic frame, results show that for each fiber

field orientation, a different combination of parameters yields to a contraction that

is close to the reference. Probably, the rule-based fiber model obtained with θ = 90◦

has the closest match in this example. However, as described in Carapella et al. (2014),

further investigation is necessary to understand the impact of the fiber field orientation

on cardiac deformation. Working with real data would increase the challenge, due to

the noise in the acquisitions. Finally, the improvement of in-vivo DT-MRI techniques

is also crucial, to set the ground truth simulation of the in-silico framework.



Chapter 6

Sensitivity Analysis of the EM

Computational Model

This chapter presents a sensitivity analysis study using the cardiac computational

modeling (CCM) code based on HPC strategies. Focusing on the electromechanical

propagation in the myocardium, the application aims to investigate the effect of initial

conditions in the resultant simulation. Particularly, we study the influence of different

settings of the heart microstructure in the contraction of the tissue, such as the electrical

activation. The analysis is performed in a biventricular geometry, where 14 different

activation protocols are tested. In addition, two different fiber field orientations are

interpolated in the geometry. The activation protocols and the fiber field descriptions

are combined to run a wide spectrum of simulations. For each case, results are evaluated

by quantifying the total activation time, ejection fraction and the time of maximal

contraction. A total of 52 electromechanical simulations are needed to test all the

inputs parameters in this work. One simulation of 600 ms in real time requires about

30 min of wall clock time in 512 processors. Consequently, the complete study requires

high computational resources.

Considering the complexity of cardiac models, the sensitivity analysis presented here

emphasises the possibility to optimise the cardiac activation protocols by use of the

present method. Results presented show that the proposed CCM tool is capable of

capturing variations to small input parameter changes.

The results presented in this chapter lead to the article: R. Aŕıs, J. Aguado-Sierra,

G. Houzeaux, D. Gil, Agnés Borràs, R. Sebastian and M. Vázquez. Sensitivity

Analysis to Initial Stimuli and Fiber Orientation of a Biventricular Electromechanical

Computational Model of the Heart. Submitted.
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6.1 Introduction

The CCM tool is used to simulate a pumping heart, focusing on the EM propagation

through the tissue. Working at the organ level, the CCM requires the solution of

three components: the electrical signal, computed as a non-linear reaction-diffusion

system, the mechanical deformation, which produces the contraction of the heart and

the excitation-contraction coupling scheme that links both problems together.

It has been reported that the specific location where the stimuli enters the myocardium,

along with the anatomical variations, determine the overall activation sequence of

the heart and the epicardial breakthrough of the electrical wave (Durrer et al., 1970).

Obtaining an accurate representation of the Purkinje system in the in-vivo heart is a

huge challenge still unsolved, and the variability of the Purkinje fiber geometry across

and within species is unknown. We aim to understand the effect of modeling various

initial stimuli protocols and its resulting electromechanical response. The Purkinje

system modeler has been developed by Sebastian et al. at University of Valencia

(Sebastian et al., 2013). Each initial stimuli protocol is composed of a set of locations

and times determined by the Purkinje tree structure and its PMJs, where the electrical

stimuli reach the right or left ventricular myocardium, a magnitude of the stimulus.

For this reason, it is necessary to test the sensitivity of the CCM model to different

initial stimuli and analyze the importance of the initial activation in the dynamics of

the system.

A biventricular geometry is employed to study the sensitivity of the code to different

settings of the heart microstructure. Fourteen initial activation protocols and two

transmural fiber field interpolations are tested. For each case, simulations are evaluated

and analyzed to assess if the variation of the inputs has an impact in the pumping

motion of the muscle.

6.2 Computational mesh

To perform the simulations, the rabbit ventricular geometry developed by Bishop et al.

(2010) at the University of Oxford is used. The model represents the ventricles of

the heart and does not include valves, great vessels, pericardium and organs around

the heart. The geometry consists of 432000 linear tetrahedra and 82619 nodes with a

resolution of 0.05 cm. An important issue is how to anchor the heart. In this work,

myocardium has been fixed in the apex, but only in z (z axis is the apex to base
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Figure 6.1: Nodes in the endocardium (red), coupled to the Purkinje system tree (white)
and PMJs (small spheres), where the electrical propagation is initiated.

direction, or longitudinal direction, in our reference frame). The resultant movement

is a rotation of the apex in xy axial plane, i.e. torsion of the heart, and a displacement

of the base towards the apex in the longitudinal axis z.

6.2.1 Initial Stimuli

To study the impact of the initial stimuli in the simulations, the ending points of

the Purkinje network are supposed as the starting conditions for the coupled EM

simulations. 14 different activation protocols have been generated, varying the density

of initial stimuli and time of activation Sebastian et al. (2013). For each ventricle, the

network has been constructed independently (Figure 6.1 and Table 6.1), being applied

at the nodes level in our finite element model.

Considering the number of nodes and the time of activation, we briefly describe the

activation protocols as follows:

• Activation protocols 1, 3, 6 and 7 present high density of nodes (> 490) in both

ventricles, but different time of activation between them. Activation protocol 2

shows high density of activation in the RV but not on the LV.

• Activation protocols 4, 5 and 8 have low density of nodes (< 379). In addition,

the activation in cases 4 and 5 is performed from apex to base.
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• Activation protocols 9 to 12 are activated only in the RV, simulating a left

ventricular bundle branch block. Each case has different density of activation.

Notice that activation protocols 5-12, 8-10 and 7-11 have the same number of

stimuli locations in the RV.

• Punctual activations are performed in protocols 13 and 14. Based on the study of

Ballester-Rodes et al. (2006), activation protocol 13 is initiated in two nodes in

the base (one node in each ventricle) with a delay of 30 ms between them. Finally,

Activation protocol 14 is activated in one node in the epicardial surface of the

apex. This protocol is commonly used in cardiac simulations, as in Bishop et al.

(2009).

Activation Protocol Nodes RV Nodes LV

1 741 714

2 738 178

3 571 758

4 379 145

5 85 90

6 802 720

7 805 490

Activation Protocol Nodes RV Nodes LV

8 327 151

9 514 0

10 327 0

11 805 0

12 85 0

13 1 1

14 1

Table 6.1: Number of nodes for each activation protocol in both ventricles.

As can be seen from Table 6.1, the activation protocols have different density of nodes in

the ventricles. To compare this, the location of the nodes of the initial stimuli is drawn

in Figure 6.2. For each protocol, coordinate z (oriented from apex to base) versus the

time of activation is presented. Green color refers to the stimuli located in the LV and

red color to the stimuli located in the RV. Notice that most of the protocols activate

the Purkinje network within 30-40 ms. Moreover, only activation protocols 4 and 9

take up to 55 ms to complete the initial activation. Finally, the LV is not activated in

protocols 9 to 12.

6.2.2 Fiber Field

Since the experimental fiber field is not available for this model, the cardiac fiber

orientation is calculated using the rule-based model described in chapter 2. The

parameters of this function are chosen to fit the observations of Streeter et al. (1969).

The interpolation of the fiber along transmural direction, called helix angle α, is defined

as α = R(1− 2e)n where R = π/3 for the LV and R = π/4 for the RV.
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Figure 6.2: Activation of PMJs in the ventricles. Number and location (with respect
to the longitudinal axis z) of PMJs activated over time. Clusters of points correspond
to PMJs activated at nearly the same time and close to each other. Green color refers
to the stimuli in the LV, while the red colored stimuli are located in the RV.
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Two different interpolations are produced to study the impact of the transmural

rotation in the fiber orientation: linear and cubic, corresponding to n = 1 and n = 3

values in the formulation.

6.2.3 Measurements: Volume and Ejection Fraction

Ejection fraction represents the volumetric fraction of blood pumped out of the ventricle

with each heart beat or cardiac cycle. It can be applied to either the right ventricle

or the left ventricle. In a healthy rabbit, ejection fraction of 70% can be considered as

normal (Zou et al., 2009). The ejection fraction in this work is approximated to:

EjectionFraction(%) =
MaximumV olume−MinimumV olume

MinimumV olume
∗ 100

The minimum volume is achieved after cavity contraction.

6.3 Linear rule-based fiber field interpolated in the

ventricles

Evolution of the EM wave. A qualitative analysis of the wavefront at t=45 ms

and t=64 ms from the initial activation is shown in Figure 6.3 and Figure 6.4. At

these early times, the electromechanical wave has already reached the epicardium in

all cases but the total activation of the ventricles is not completed yet. In Figure 6.3,

we can observe that different initial stimuli leads to different activation sequence of the

heart. The closest match appears between the activation protocols which have the same

number of nodes in the activation of the RV, activation protocols 5-12, 8-10 and 7-11.

As protocols 10, 11 and 12 are not activated in the LV, the activation is produced by

diffusion from the RV and contraction occurs later. Figure 6.4 shows the evolution of

the wavefront at t=64 ms. In most of the cases, global patterns of electrical activation

are similar. The main differences can be observed in the protocols with low density

of nodes that activate the ventricles (activation protocols 5, 12, 13 and 14). On the

contrary, mechanical contraction is different in almost all situations. Some similarities

can be found between activation protocols 1-6-7, for example, which have high density

of nodes in the RV and similar sequence of activation.
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1 2 3 4 5 6 7

8 9 10 11 12 13 14

Figure 6.3: Anterior view of the ventricles. Simulation of the electrical and mechanical
components of the EM wave propagating at t=45 ms for each activation protocol.
ST1 fiber field interpolated in the geometry. Red coloured areas in the first row
correspond to the electrical component of the EM wave. In the second row, we present
the biventricular deformation of the tissue.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Figure 6.4: Evolution of the EM wave at t=64 ms. First row corresponds to the electrical
component of the EM wave. The second row represents the deformation of the tissue.
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Activation Protocol 1 2 3 4 5 6 7

1 0.96 1 1.15 0.73 0.92 0.77
Breakthrough

post mid ant inf ant sup post inf post inf post mid post mid

Maximal Contraction 3 3.26 3 3.58 3.5 3 2.85

Total Activation 4.31 4.5 4.15 4.54 4.54 4.19 4.08

EF (%) 71.4 73.6 69.5 66.6 70.8 68.9 70.3

Activation protocol 8 9 10 11 12 13 14

0.92 0.85 0.88 0.77 0.73
Breakthrough

post inf post inf post inf post mid post inf

Maximal Contraction 3.38 4.96 5.08 4.85 5.12 8.81 6.85

Total Activation 4.31 5.12 5.19 5 5.31 7.62 8.23

EF (%) 67.7 58 57.2 57.9 58.7 57.3 77

Table 6.2: Normalized times of breakthrough, total activation (electrical component of
the EM wave), maximal contraction and ejection fraction of the ventricles. The area
where the activation first appears in the epicardium is described as anterior (ant),
posterior (post), inferior (inf), middle (mid), superior (sup).

Epicardial Breakthrough. The major advance of the EM wave through the

myocardium is studied for each activation protocol. Table 6.2 shows the time and the

location where the EM wave first reach the epicardium. Notice that times have been

normalized to a reference, which is the time of breakthrough in protocol 1. Moreover,

activation protocols 13 and 14 are not included in this analysis because the nodes of

activation are close to the epicardium.

From the simulations, we observe that the epicardial activation first arises at the

posterior part of the ventricles in most of the activation protocols. Only activation

protocols 2 and 3 have a different behavior and the epicardial breakthrough is in the

anterior part. Furthermore, the major advance is generally found in the middle or the

inferior site of the ventricles. The exception is protocol 3, which first activates the basal

part of the epicardium. As in the case of the evolution of the EM wave presented above,

the closest match exists between protocols 5-12, 8-10 and 7-11 because they have the

same activation in the RV.

Maximal contraction. The time of maximal contraction of the cavity is

approximated to the time of the minimum volume inside the ventricles. Table 6.2

shows the results for each activation protocol. As can be seen from the table, protocols

2, 4, 5 and 8 present an increase of the time of maximal contraction compared to the
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reference (protocol 1). The reason of this change can be a decrease in the left ventricular

activation density, see Figure 6.2. In all these cases, the nodes that activate the LV are

spread. The same occurs with protocols 9 to 12, which have no activation in the LV.

Probably, low (or zero) density in the nodes of activation of the LV extends the time

to reach the maximal contraction. Moreover, the largest time of maximum contraction

is given by activation protocol 13, where the stimulus is initiated at two nodes in the

base of the ventricles.

Although the time to reach the minimum volume inside the cavity is different in all

activation protocols, in most cases the mechanical pattern is very similar, see Figure

6.5. Only activation protocols 13 and 14 show a shape in the base which deviates from

the average. The mechanical pattern at the beginning of the propagation varies between

the activation protocols but at maximum contraction the protocols present a similar

contraction.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Figure 6.5: Time of maximal contraction for each activation protocol. Colours represent
the displacement.

Total Activation. The ventricles are totally activated when the electrical component

of the EM wave spreads through all the cardiac tissue. As can be seen in Table 6.2,

activation protocols which have low density or have no activation in the LV (protocols

2, 4, 5, 8 and 9-12) increase the total activation time, compared to protocol 1.

Furthermore, most of the cases reach the total activation of the cavities after the time

of maximal contraction. However, activation protocol 13, which has two initial stimuli

in the base of the ventricles, has a different behavior. In this activation protocol, the

total activation in the cavity is captured first and the time of maximal contraction is

obtained later.
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1 3 4 5 8 13

Figure 6.6: Electrical component of the EM activation at t=45 ms for each activation
protocol. Top: Activation protocols activated in a period of 55 ms. Bottom: Activation
protocols with synchronous activation.

Ejection Fraction. We calculate the ejection fraction rate in the LV cavity. Results

are presented in Table 6.2. Notice that activation protocols 1 to 8 present values close

to 70%, with 5% of variability. However, activation protocols which have no initial

stimuli on the LV (protocols from 9 to 12) have this value reduced by 18%. The same

result is obtained in activation protocol 13, which is activated only at the base. Finally,

the maximum EF value, 77%, is reached in activation protocol 14, where the initial

activation is located in one node in the epicardial surface of the apex.

6.3.1 Influence of the time-sequence in the activation of the

EM wave

Previous results have been performed using different activation protocols. The purpose

of this section is to study how the temporal sequence of activation affects the

propagation of the EM wave through the cardiac tissue. In this process, we choose

some of the activation protocols from Table 6.1 and we proceed to stimulate all the

nodes of each protocol at the same time, to establish a synchronous activation of the

models.

In Figure 6.6, qualitative differences can be observed at the beginning of the

propagation for the two time-sequences. However, Table 6.3 shows that at time of

maximal contraction results obtained with the protocols activated synchronously and

non-synchronously are very similar. In addition, the deformation patterns present no

discrepancies in the simulation. It is worth to mention that synchronous activation

protocols tend to reach the maximal contraction slightly earlier than non-synchronous

cases, but differences are not significant. Regarding the total activation, times between

synchronous and non-synchronous protocols are similar too. Finally, ejection fraction



6.3. Linear rule-based fiber field interpolated in the ventricles 101

rate of the LV is also calculated for synchronous and non-synchronous activations. We

observe that the rate increases in the synchronous cases, achieving values up to 2.5 %

larger than the non-synchronous cases.

Maximal Contraction

Protocol 1 3 4 5 8 13

Non-Sync 3 3 3.58 3.5 3.38 8.81

Sync 3 2.88 3.54 3.5 3.31 8.73

Total Activation

Protocol 1 3 4 5 8 13

Non-Sync 4.31 4.15 4.54 4.54 4.31 7.62

Sync 4.31 4.08 4.54 4.58 4.38 7.42

EF (%)

Protocol 1 3 4 5 8 13

Non-Sync 71.4 69.5 66.6 70.8 67.7 57.3

Sync 72.2 71.9 66.6 71.5 68.5 58.8

Table 6.3: Times of maximal contraction and total activation normalized to protocol 1.
Value of ejection fraction for protocols activated non-synchronously and synchronously.

6.3.2 Density of activation

In order to study how the density of nodes in the initial activation influences the

resultant movement of the heart, we reduce the number of stimuli in protocol number

1 homogeneously. From each two nodes in the activation system we choose one, and

we obtain half of the density, maintaining the temporal activation of each node.

The simulation performed with the modified activation protocol gives similar results

compared to the original, see Table 6.4. Times of maximal contraction and total

activation are equivalent. We only observe that ejection fraction decreases 0.1 % when

we reduce the density by half. Furthermore, we test the synchronous activation in the

new set. If we compare the results with the non-synchronous simulations, we observe

that if the density of nodes decreases and the activation is synchronous, the resultant

ejection fraction increases 1.5 %, see Figure 6.7. This result agrees the previous section:

the ejection fraction rate increases in the synchronous cases.

Maximal Contraction

Protocol 1 Modified 1

Non-Sync 3 3.27

Sync 3 3.08

Total Activation

Protocol 1 Modified 1

Non-Sync 4.31 4.35

Sync 4.27 4.31

EF (%)

Protocol 1 Modified 1

Non-Sync 71.4 71.3

Sync 72.2 72.8

Table 6.4: Normalized times of maximal contraction and total activation for protocol 1
and modified protocol 1, where the density is reduced to half of the nodes. Synchronous
and non-synchronous results are presented.
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Figure 6.7: Ejection fraction results. Left: activation protocol 1. Middle: activation
protocol 1 modified (the activation is reduced to half of the nodes). Right: activation
protocol 1 modified with synchronous activation.

6.4 Cubic rule-based fiber field interpolated in the

ventricles

In this section, we use cubic rule-based fiber vectors interpolated in the geometry to

perform new simulations. All the activation protocols are tested. Results are compared

to simulations presented above, obtained with the linear interpolation of the fibers.

At the early state of t=45 ms, there are no remarkable differences between the

simulations using linear (ST1) or cubic (ST3) distributions. However, at time of

maximal contraction, linear and cubic cases present a different behavior, see Table 6.5.

In almost all cubic cases, the maximal contraction is reached earlier than the linear

result. Only activation protocols 13 and 14 reach the maximal contraction first in the

linear case. Notice that all protocols present an important variation of the maximal

contraction time when changing the fiber field model. Specially activations 13 and 14,

which have the largest response.

Regarding the total activation of the ventricles, we observe that the cubic interpolation

of the cardiac fibers leads to larger times in protocols 1 to 8 and 13 to 14. Only protocols

9 to 12, which are not initially activated in the LV, reach the total activation earlier

than the linear case. Notice that discrepancies in total activation times between the

fiber field models are remarkable in almost all cases.
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Figure 6.8: Ejection fraction results using two different fiber field models in the EM
simulation. ST1 corresponds to a linear interpolation of the cardiac fibers and ST3 a
cubic interpolation of the fibers.

Finally, ejection fraction values are presented in Table 6.5. In general, the cubic rule-

based model predicts a lower ejection rate than the linear, with a variability lower that

1.5 %. The maximum difference rises up to 7 % in activation protocols 13 and 14.

Figure 6.8 shows the comparison of all the results.

Maximal Contraction

Protocol 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ST1 3 3.26 3 3.58 3.5 3 2.85 3.38 4.96 5.08 4.85 5.12 8.81 6.85

ST3 2.85 3.27 2.81 3.35 3.31 2.85 2.73 3.23 4.69 4.85 4.58 4.88 9.31 7.27

Total Activation

Protocol 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ST1 4.31 4.5 4.15 4.54 4.54 4.19 4.08 4.31 5.12 5.19 5 5.31 7.62 8.23

ST3 4.54 4.77 4.31 4.62 4.62 4.35 4.31 4.31 5.04 5.08 4.92 5.23 8.31 8.92

Table 6.5: Normalized times of maximal contraction and using linear (ST1) and cubic
(ST3) rule-based fiber fields.

Quantification of the variability in the contraction of the tissue. At the time

of maximal contraction, the cardiac tissue presents areas of mismatch at the base and

also at the apex when varying the fiber field. To quantify the variability, we divide the
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geometry in 7 zones and we calculate the difference between the deformation of the

tissue obtained with linear and cubic fiber field models. For each region, we normalize

the resultant value to the number of nodes of the zone.

Figure 6.9 (left) shows the normalized difference versus the time. Zone 1 corresponds to

the apex and zone 7 corresponds to the base of the ventricles. As can be observed in the

figure, zones 2 to 6 are distributed between these two sections. On the right side of the

figure, the normalized difference of the deformation of the tissue is plotted. We observe

that the major differences in contraction between the fiber field models are produced

in zones 6 and 7, which are close to the base. It is apparent that the rule-based linear

model and the cubic one predict a different movement in the myocardium, specially in

this area.

6.5 Computational Remark: Parallel efficiency for

the coupled EM model

The simulations of the present work are performed in the Spanish supercomputer

Marenostrum III. A total of 52 EM simulations have been needed to test all the input

parameters in the geometry. Each cardiac simulation of 600 ms requires about 30 min

of computation in 512 MPI processors. The typical wall clock figures in Marenostrum

is a few minutes. As the scalability is very linear, we usually use the average value of

FEM elements per MPI task to have a rough estimate of the wall clock time.

Figure 6.10 shows Alya strong scalability solving a coupled electromechanical problem

in a distributed memory cluster. The code was compiled using the Intel Fortran

Compiler in Marenostrum. The tests were carried out up to 8000 cores for a special

mesh of 27.6 millions non-structured tetrahedra (4.8 millions nodes), which comes from

a refinement of the rabbit ventricular geometry from the University of Oxford. After

10000 elements-per-core, it is noticeable a progressive degradation of linear scalability

due to communication. To simulate 1 second of real time, the wall clock time in

Marenostrum is approximately 10-15 minutes. Depending on the electrophysiology

model used (FHN or TT) this time could vary around 20 - 30 %.
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Figure 6.9: Displacement of the cardiac geometry using linear (ST1) or cubic (ST3)
interpolation of the fiber field and activation protocol 1. For each zone, the graphic
shows the normalized difference versus time.
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6.6 Discussion

Results presented in this chapter show that the proposed cardiac computational model

of the heart is capable of capturing variations to small input parameter changes. We

focus on the EM propagation in the cardiac tissue. The activation of the system is

performed using 14 activation protocols that stimulates the electromechanical wave.

Also, linear and cubic rule-based models have been tested in the computational

problem. We study the propagation dynamics throughout the volume of the ventricles

giving measures like ejection fraction and times of contraction.

Despite the propagation of the EM wave has a different activation sequence, at early

stage (t=64 ms) the simulations performed using 14 activation protocols present a close

match in almost all cases. Only activation protocols 13 and 14, which are activated in

one or two nodes, show different results. At the time of maximal contraction, we observe

that low density of nodes in the activation of the LV leads to similar electrical and

mechanical patterns. However, times are extended in these cases, compared to other

activation sequences. The same behavior can be observed in the total activation. Times

are larger when the initial activation of the LV is produced with low or zero density

of nodes. Moreover, ejection fraction rate presents up to 4 % of variability between
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activation protocols. The value is reduced in activation protocols which have no initial

stimuli on the LV, achieving differences up to 18 %.

To study the influence of the time-sequence in the EM activation, some of the protocols

have been stimulated at the same time and a synchronous activation of the models has

been established. Results show that the time-sequence does not seem to affect the

morphology of the activation. Despite we observe that activation protocols activated

synchronously reach the maximal contraction slightly earlier than non-synchronous

cases, differences are low. We can assume that time-sequence does not affect the

maximal contraction and total activation times. Regarding the ejection fraction rate,

we observe that it increases in the synchronous cases, but the variability is less than 1.5

%. Furthermore, if we reduce homogeneously the density of nodes in both ventricles,

results are practically not affected.

Depending on the model, the fiber orientation makes a difference in the simulations.

As prompted by some authors, the fiber model has a great influence in contraction

Gil et al. (2013); Carreras et al. (2006); Poveda et al. (2012). In this work, the relation

observed in the linear case between the activation protocols is maintained in the cubic

case. Besides differences between activating protocols, the new fiber model presents

discrepancies up to 6% compared to the linear case in times of maximal contraction.

Regarding the ejection fraction, the cubic rule-based model predicts rates 3% lower in

average than the linear model. Finally, through a quantification of the variability in the

contraction of the tissue, we observe that linear and cubic rule-based models predict a

different movement in the myocardium, specially in the base.

In conclusion, results presented in this work show that the result of a simulation of

the cardiac contraction depends on two factors: the geometrical location of the initial

stimuli and the travel of the EM wave through the cardiac fibers. Probably, the fiber

field orientation interpolated in the cardiac model, plays the most significant role in the

simulations. Differences in the density of the stimulated nodes that first excite must be

very large to really account for changes in the ventricles contractile action. Moreover,

time sequence have low influence in the simulations. If the non-synchronous sequence

is unavailable, a synchronous activation is sufficient and leads to acceptable results.

Considering the complexity of cardiac models, the sensitivity analysis presented here

emphasises the possibility to optimise the cardiac activation protocols by use of the

present method. It is worth mentioning that these results are highly dependent on

boundary conditions. Fluid action inside the cavity has been replaced by a constant

pressure in the endocardium during the ejection, and no isovolumetric pressure has
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been imposed in relaxation. Probably, the absence of fluid motion inside the cardiac

muscle is one of the main causes for the lack of realistic movement. In addition, the

geometry has been fixed by the apex in z direction. Thus, the influence of these initial

conditions is considerably important in the resultant motion. In a future work, the blood

dynamics will be taken into account. The ideal simulation scenario would be recreating

with the highest possible detail the heart, in line with the dramatic improvement of

data acquisition techniques. To be comprehensive enough, it should include electrical

activation, mechanical deformation, blood flow, perfusion, systemic contributions, cell

models, etc., in a well defined geometry with the best anatomical information available.



Chapter 7

Conclusions and future work

Cardiac computational models are a relevant tool that can give biomedical researchers

additional source of information to understand how the heart works. In this thesis HPC

techniques have been applied to build the CCM tool, which is capable of running in

parallel in thousands of processors, allowing high fidelity simulations in fine meshes.

A key issue is the almost ideal scalability, not only for large and complex problems

but also for medium-size meshes. The model is very appealing for direct validation

against experimental measurements on real cases obtained from medical images, such

as ejection rate, torsion, wall thickening, deformation or time sequence. Coupled with

advanced image processing and analysis techniques, it could constitute a framework

that could help to understand the function of the myocardium. Additionally, it could

help surgery planning and cardiac modeling of pathological situations.

7.1 Contributions

The framework presented in this thesis simulates a pumping heart, providing

complementary knowledge of the EM propagation in 3D ventricular geometries. The

CCM tool has been built following four steps:

1. HPC Electrophysiological model. FHN and FK formulations have

been implemented to be solved efficiently in large-scale parallel facilities. The

electrophysiological equations have been used to perform the following studies:

• Numerical treatment of the ODE-like terms in the model. Important differences

in the diffusion have been shown using open and closed integration rules in

109
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the solution of the governing equations. By proposing the use of a close nodal

integration rule for the mass matrix, a consistent local-spatial scheme has been

obtained. We have shown that if the ODE-like local terms are ’spacialized’, the

solution present spurious numerical effects that can lead to plainly wrong results

(notably, the case with zero diffusion).

• Sensitivity to the fiber field errors. Background noise affects the determination

of the fiber tract direction calculated from the DT-MRI. We have run some tests

adding noise to the fiber field and shown how this noise influences the final results.

Controlled perturbations have been applied to a synthetic fiber field, concluding

that less than 10% of random noise does not affect the electrophysiological

simulations.

• Analysis of the relation between conductivity and conduction velocity. The

computational framework has shown that the relation between them is not

linear. We have seen that if the conduction velocity is three times faster in the

long axis than in the perpendicular direction of myocardial fibers, the velocity

does not behave in the same manner. To maintain the same proportionality, the

crosswise diffusion and the axial diffusion have to be determined experimentally.

In addition, we have proposed a method to determine conductivity values in any

computational code.

• Mesh convergence of the CCM tool. Electrophysiological simulations have been

performed to determine the conduction velocities at coarse and fine spatial

resolution meshes. Results have been substantially close, demonstrating that

velocities become stable in the spatial range we are working.

2. HPC Mechanical model. Non-linear solid mechanics of complex materials

is computationally expensive, with a large amount of inner nodal or Gauss point

loops, requiring HPC techniques in the solution. In this work, a large strain total

Lagrangian formulation has been implemented. The material model computed has

been an Ogden type specially designed for the heart, including modifications published

by Holzapfel and Ogden (2009). Compressibility has been taken into account, and a

transversally isometric version has been created with a new set of parameters. Although

the critical lack of clinical data in compression to validate the constitutive models,

the uni-dimensional traction/compression numerical test performed has underlined the

fact the constitutive models not always behave symmetrically if used in tension or

compression.
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3. Fully coupled EM model. Both, electrical and mechanical models have been

integrated in Alya. Commonly, to perform EM simulations of the heart, electrical

and mechanical governing equations are solved in different meshes. The resolution of

the electrical governing equations usually needs a fine mesh to properly capture the

action potential wave front and the mechanical system may permit a lower level of

discretization. In this work, the electrical and mechanical meshes operate together in a

way that the information can be passed easily between the two systems in the coupling

process. The electrical and mechanical models have been solved in the same code

using the same computational mesh, avoiding computational errors and instabilities

in the coupling process, and keeping intact the good scalability properties. Due to the

small physical time scales and the high non-linearities of both problems, the explicit

formulation has been used for solving highly transient problems, with very short time-

scales.

As an application problem, the tool has demonstrated to be useful in measuring

sensitivities of the cardiac tissue. Focusing on large scale computational resources with

parallel efficiency, it has been applied to investigate the influence of certain inputs in

the resultant simulation and to test properties of the heart. For the coupled EM case,

the following results have been shown:

• Evidence of the complex design of the tissue structure. To reflect the change

of volume inside the cavity reported in the literature, the active force has been

adjusted. The study has led to demonstrate the stability an efficiency of the

cardiac system, that compensates a wrong functioning of the tissue because of

the microstructure disposition, saving the global behavior. Decreasing the active

force 30% we have seen that the EF value only have decreased 8%. Due to the

helical structure of the cardiac fibers, important variations in the properties of

the material can be compensated by the system, allowing the heart to behave

normally.

• Sensitivity to the electrical activation. The CCM tool has demonstrated to be

capable of capturing variations to small input parameter changes. The time

evolution of the action potential has been triggered by initial localized impulses

in some predefined locations (synthetically created Purkinje systems). It has been

demonstrated that variations in the electrical activation must be very large to

really account for changes in the ventricles contractile action.

• Sensitivity to different fiber field orientations. Simulations in a biventricular

geometry have been performed using two rule-based models. The propagation
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dynamics has been studied throughout the volume of the ventricles, giving

measures like ejection fraction. The fiber model has shown an important influence

in contraction, greater than the initial activation through the Purkinje system.

Linear and cubic rule-based models have predicted different displacement,

specially in areas such as the base or the apex. As state in Gil et al. (2013),

the description of the fiber field is relevant to get realistic simulations of cardiac

mechanics.

• Parallel efficiency. The EM problem has run in NCSA Blue Waters

supercomputer, showing that high parallel efficient codes like Alya will allow

solving complex engineers and scientists problems in exascale supercomputers. In

Marenostrum, we have established the wall clock time of coupled EM problems.

With 10000-5000 elements per core, a coupled problem for 1 second of real time

has run in approximately 10-15 minutes wall clock time, compiling the code with

the Intel Fortran Compiler.

4. Data assimilation. Studies have been performed to find parameters of the

constitutive equations. Two different methods have been presented to calibrate

electrical and mechanical properties in the cardiac model. We have solved Kalman

filters for the assimilation of the electrophysiological parameters and a ’brute force’

inverse problem for the mechanics.

7.2 Future lines

Computer models provide an efficient way of research, prior to clinical trials which

are expensive and can be a risk to the patients. Simulations can be performed on a

patient’s data and the results can be delivered to the doctor in an ad-hoc visualization

manner (virtual lab). The results can help researchers and cardiologists to get a deeper

insight of the problem.

This thesis has shown the potential of the HPC cardiac simulation. In particular,

its ability to measure the sensitivity of outputs to different inputs. To achieve the

cardiac virtual lab, the complete model should include electrical activation, mechanical

deformation, blood flow, perfusion, systemic contributions, cell models, etc., in a well

defined geometry with the best anatomical information available. The main future lines

of research are the following:
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• New physical models will be implemented and integrated in the framework.

Particularly, blood inside the cavities. Currently, no wall force is imposed in

the endocardium, neither pressure nor viscous strains. The mechanical influence

of the blood will be taken into account. We believe that the absence of fluid

motion inside the cardiac muscle is one of the main causes for the lack of realistic

movement in the CCM.

• Systemic contributions will be included in the model, specially those required

when blood flow is solved. Alya is being coupled to 1D models of both the arterial

and venous circulatory systems.

• Data assimilation and parameter fitting in 3D will be included.

• New electrophysiological models will be programmed and tested to study the

effect of drugs in the action potential behavior and the contraction of the muscle.

• The processes of obtaining high-resolution images will potentially lead to a

revolutionary paradigm. As medical imaging progresses, the highest simulation

fidelity will be required. The simulation code should recreate with the highest

detail the heart. To better face future research lines, Alya performance will be

improved through code cleaning and optimization.

This thesis represents a step towards the virtual lab. The combined flexibility and

parallel performance of Alya will give to the proposed approach a great advantage

when extending the model towards data assimilation, multi-scales and multi-physics.

Electrophysiology, mechanical deformation and fluid flow will be coupled, retaining the

parallel efficiency.
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• M. Vázquez, R. Aŕıs, G. Houzeaux, P. Villar, P. Lafortune, C. Labarta, D. Gil,

J. Garcia-Barnés, M. Ballester, F. Carreras (2010). A massively parallel electro-

mechanical model of the heart for large-scale simulations. Computer Methods in

Biomechanics and Biomedical Engineering, Valencia.
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• M. Vázquez, R. Aŕıs, A. Rosolen and G. Houzeaux (2008). A high performance

computational electrophysiology model, 8th. World Congress on Computational

Mechanics ECCOMAS, Venice.

• D. Gil, J. Garcia-Barnés, F. Carreras, M. Vázquez, R. Aŕıs and G. Houzeaux
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• R. Aŕıs, M. Vázquez, J. Aguado-Sierra, M. Rivero and G. Houzeaux (2013). HPC

techniques in Cardiac Modeling. 1st International Workshop on Latest Advances

in Cardiac Modeling, Munich.
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