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Abstract 

In prestressed structures subjected to corrosive environments, consideration is being given to replacing the 

steels tendons with non-corrosive tendons.  In this respect, Fibre Reinforced Polymer (FRP) materials are 

a durable option in the design of prestressed concrete structures for use in corrosive environments due to 

their high mechanical properties, light weight and high resistance to corrosion. However, one of the 

challenges associated with this option lies in developing a suitable anchorage system for FRP tendons.  

In the present work, the mechanical response of circular adhesively bonded anchorages for FRP tendons 

has been investigated under quasi-static, time-dependent and fatigue loading. This has been achieved 

through a combination of an experimental campaign and finite element modelling work. 

Experimental quasi-static tests of adhesively bonded anchorages were undertaken with failure occurring in 

the adhesive-tendon interface. The main variables assessed were the adhesive thickness and the bonded 

length. In order to investigate the quasi-static response of the bonded anchorage and its failure mechanism, 

a campaign of numerical modelling was carried out with different material models of increasing complexity 

for the adhesive layer. A cohesive zone model with progressive damage in the bonded joint was found to 

be in reasonable agreement with the experimentally recorded data.   

Additionally, an analytical formulation was developed (and validated against experimental data) with the 

aim to provide an approximate shear stress distribution in the bonded joint for circular anchors with 

adhesives which mainly behave linearly elastic up to failure. 

The adhesively bonded anchor for FRP tendons was also investigated under the time-dependent 

phenomena. Creep tests on Single Lap Joints (SLJs) were conducted in order to obtain an experimental 

creep law whereas stress relaxation tests were conducted on adhesively bonded anchorages to study the 

load loss in time.  

Furthermore, the restressing technique was assessed during the stress relaxation tests by restressing the 

specimens, to the original tensioning load, when the load loss was stabilised and constant. It was found that 

the restressing technique allows for the working load of the composite tendon to be reached with a minimum 

load loss. 

A visco-plastic material model, based on the Bailey-Norton law, was calibrated with the experimental data 

obtained from the creep tests and utilised to predict the creep time to failure of SLJs and anchorages. The 

creep damage was modelled by degrading the plastic yield stress of the adhesive. The viscoelastic model 
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was also used to predict the load loss of the anchors under the stress relaxation phenomenon. The predicted 

load loss results were found to be in good agreement with the experimental results recorded.  

Finally, the fatigue response of the bonded anchorages was investigated. Anchorages with four different 

adhesive thicknesses were evaluated under three constant amplitude fatigue loadings. The experimental 

fatigue response of adhesively bonded anchorages was discussed and an experimental load-life average 

curve was obtained for all the anchorages.  

The fatigue behaviour was also predicted using Finite Element Analysis. A multi-linear traction-separation 

cohesive zone model was implemented at the adhesive-tendon interface. The cohesive law obtained in the 

quasi-static analysis was utilised in the fatigue model. The fatigue damage model utilised in this research 

was based on the degradation of the cohesive elements taking into account the fatigue damage evolution. 

The damage model was able to successfully predict the fatigue damage evolution and failure life 

experimentally observed. 

From the experimental and numerical work conducted in this investigation, the most relevant 

recommendations are proposed for a potential use of adhesively bonded anchorages for CFRP tendons in 

prestressing applications. 
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Resum 

En estructures pretesades sotmeses a ambients corrosius, s'està estudiant la possibilitat de substituir els 

tendons d’acer per tendons que no pateixin els efectes de la corrosió. En aquest sentit, els materials 

compostos Fibre Reinforced Polymer (FRP) són una opció duradora en el disseny d'estructures de formigó 

pretesat degut a les seves altes propietats mecàniques, pes lleuger i alta resistència a la corrosió. No obstant, 

un dels reptes associats amb aquesta opció es troba en el desenvolupament d'un sistema d'ancoratge adequat 

per als tendons de FRP . 

Per això aquesta investigació ha estudiat la resposta mecànica d’ancoratges d’unió adhesiva per a tendons 

de FRP sota càrregues quasi-estàtiques, de fatiga i en funció del temps. Aquest objectiu s'ha aconseguit 

mitjançant la combinació d'una campanya experimental i un treball de modelatge amb el mètode dels 

elements finits. 

En aquest sentit s’han dut a terme assaigs experimentals quasi-estàtics en els ancoratges d’unió adhesiva, 

observant que la ruptura del sistema es produïa en la unió adhesiva entre l’adhesiu i el tendó. En 

conseqüència, les principals variables estudiades van ser l’espessor de l'adhesiu i la longitud d’adhesió. A 

través d’una campanya de modelatge numèric amb diferents models, de complexitat creixent, del material 

adhesiu, es va investigar la resposta quasi-estàtica de l'ancoratge i el seu mecanisme de fallada. El model 

numèric va ser capaç de predir les dades enregistrades experimentalment quan el modelatge de l’adhesiu 

es va realitzar amb elements cohesius amb dany progressiu.  

A més, s’ha desenvolupat una formulació analítica (i validat amb èxit) amb l'objectiu de proporcionar una 

distribució aproximada de les tensions de tall que es produeixen en la capa adhesiva per ancoratges amb 

adhesius que es comporten principalment elàstic lineal fins a ruptura. 

D’altra banda l'ancoratge d’unió adhesiva també es va investigar sota els fenòmens dependents del temps. 

Per això es van dur a terme assaigs de fluència en unions simples Single Lap Joints ( SLJs ), per tal d'obtenir 

una llei experimental de fluència, i es van realitzar assaigs de relaxació de la tensió en els ancoratges per 

estudiar la pèrdua de càrrega en funció del temps. Durant aquests assaigs de relaxació es va estudiar la 

tècnica del retesat amb l’objectiu d’estudiar l’evolució de les pèrdues de tensió. Es va observar que la 

tècnica del retesat permet assolir càrregues de treball superiors amb una pèrdua de càrrega mínima. 

A més a través d’un model visco-plàstic es va predir el temps de fallada a fluència de les SLJs i els 

ancoratges, basat en la llei de Bailey-Norton i calibrat amb les dades experimentals obtingudes en els assaigs 

de fluència de les SLJs. El dany de fluència es va modelar mitjançant la degradació de la tensió de fluència 

plàstica de l'adhesiu i el model numèric es va utilitzar per predir la pèrdua de càrrega dels ancoratges sota 
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el fenomen de relaxació de la tensió. Els resultats enregistrats experimentalment van ser predits 

adequadament amb el model numèric proposat. 

Finalment, es va investigar la resposta a la fatiga dels ancoratges d’unió adhesiva. Es van avaluar quatre 

configuracions d’ancoratge sota tres càrregues de fatiga d'amplitud constant. Els resultats experimentals 

van permetre l’obtenció d’una corba de vida a fatiga dels ancoratges en funció del nombre de cicles. 

Mitjançant el mètode d’elements finits, també es va investigar el comportament a fatiga. La llei cohesiva 

obtinguda en l'anàlisi quasi-estàtic es va utilitzar en el model de la fatiga, on el dany per fatiga s’ha basat 

en la degradació de les propietats dels elements cohesius. El model numèric va predir amb èxit l'evolució 

dany per fatiga i la vida per fatiga observada experimentalment . 

A partir del treball experimental i numèric realitzat en aquesta recerca, es proposen les recomanacions més 

pertinents per a un possible ús dels ancoratges d’unió adhesiva per tendons FRP en aplicacions de pretensat. 
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 Introduction 

1.1 Motivation 

One of the primary causes of deterioration of prestressed concrete structures is the corrosion of the steel 

reinforcement. This is dependent on the environment, the protection of the reinforcement as well as the 

thickness of the concrete cover. In reality, the reinforcement suffers corrosion in aggressive environments 

which may weaken the mechanical properties of the material and thus the durability of the structure. Due 

to the high prestress of steel tendons (generally around 60% of the tensile strength), corrosion may be the 

cause of a brittle fracture of the tendons. Therefore, in large infrastructures such as bridges, maintenance 

campaigns exist which renew and repair the concrete cover and replace the steel tendons when this is 

possible.

In the last decades, researchers around the world have conducted studies in order to incorporate alternative 

materials for the traditional reinforcing in prestressed concrete structures. Fibre Reinforced Polymers 

(FRPs) were found to be some of the best candidates for non-metallic reinforcement for concrete structures. 

The use of FRP composite materials is particularly common in the aeronautical and naval sectors. The 

employment of these materials is currently being increased in civil engineering as they have high 

mechanical properties, are light in weight and, perhaps most importantly, have high resistance to corrosion. 

In some applications where corrosion protection for reinforcement becomes less cost efficient, using 

tendons of composite materials provides a reasonable alternative. 

However, due to the high production costs of composites materials in comparison to conventional materials, 

the use of FRP reinforcement is intended for applications where the characteristics are unique to 

composites. 

The results of research carried out so far indicate that FRP materials are a durable option in the design of 

prestressed concrete structures for use in corrosive environments. Moreover, because of their high 

mechanical properties, higher tensile strength can be reached and a better performance under fatigue loads 

and time-dependent behaviour can be achieved. 

Although composite materials have highly suitable properties for use in prestressed structures, further 

research into their anchoring system is required. Due to the large anisotropy of FRP materials, the normal 

forces produced by traditional anchors may damage the composite tendon transversally. This implies that 

conventional anchoring systems for steel tendons are not entirely suitable, as they give rise to premature 
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failure in the rods. Adhesively bonded joints for composite tendons, however, are considered more efficient 

for composite materials as the stress distribution on the interface is more uniform. For this reason, 

adhesively bonded anchorages are being investigated in order to allow composite material tendons to be 

attached to the concrete structure. However, even though adhesively bonded joints have previously been 

studied, there remains a lack of research on their behaviour related to anchors for prestessing tendons. 

1.2 Objectives 

This research aims to investigate the mechanical response of circular adhesively bonded joints for 

composite materials as well as the development of a reliable predictive model capable of simulating their 

behaviour. In order to accomplish the main aim of this work, the following objectives were established: 

1. To undertake a literature review concerning the anchoring systems for composite materials. This 

will provide the basic fundamentals of the prestressing method, which must be considered in the 

anchorage analysis, and the different alternatives to anchor FRP tendons. Experimental, analytical 

and numerical methods employed to investigate the anchorage will be also reviewed in order to 

initiate this investigation from the state of the art. Particular attention will be paid to the bond-type 

anchoring systems and bonded joints as these anchorage systems do not damage the composite 

tendon during prestressing, unlike other anchoring systems.  

2. To study the mechanical anchorage for FRP tendons. The most relevant parameters, which affect 

the mechanical anchorage for composite materials, will be assessed with the aim to discuss and 

compare the results with the main conclusions considered in the literature review.   

3. To develop an analytical formulation for straight bond-type anchorages. An analytical formulation 

based on the existent analytical solutions and adapted for straight bond-type anchorages will 

provide an approximate distribution of stresses of the bonded joint for anchorages. Knowledge of 

the adhesive stresses is particularly significant important as the failure of these anchorages is 

mainly caused by adhesion failure. 

4. To study the mechanical response of straight bond-type anchorage under quasi-static loading. This 

analysis will determine the quasi-static strength of the anchorages depending on the geometric 

configuration, the behaviour of the whole up to failure as well as the failure mechanism itself.  

5. To investigate the mechanical response of straight bond-type anchorage under time-dependent 

loading. Both creep and stress relaxation phenomena will be studied and discussed with the aim to 

describe the long-term effects on adhesively bonded anchorages depending on the magnitude of 

the applied stress and its duration. 

6. To study the mechanical response of straight bond-type anchorage under constant amplitude fatigue 

loading. The analysis of the anchorage subjected to cyclic loading will focus on the fatigue lifespan 
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as well as the fatigue damage initiation and propagation in order to develop a consistent predictive 

model capable of simulating the anchorage under fatigue loading. 

1.3 Research methodology  

In order to achieve the objectives of this investigation, the scope of this project includes the following:  

To experimentally study the mechanical anchorage for FRP tendons. 

 Split-wedge mechanical anchorages were experimentally tested under quasi-static loading up to 

failure in order to study the failure mode of the tendon and the ultimate load achieved by the 

anchoring system. The effect of introducing a sleeve material, between the tendon and the wedges, 

and the effect of the clamping wedges were also assessed. 

To develop an analytical formulation for straight bond-type anchorages. 

 Double lap joints (DLJs) were considered for the quasi-static experimental investigation of the joint 

where laminated plates of Carbon Fibre Reinforced Polymer (CFRP) were used as a substrate for 

different adhesive systems. The specimens were instrumented with strain gauges bonded onto the 

outside of the laminated plates in order to analyse the shear stress distribution on the adhesive-

laminate interface and compare the results with the existent analytical formulations. 

 An analytical formulation was developed in order to provide an approximate distribution of shear 

stress in the bonded joint for circular anchors for adhesives with primarily elastic behaviour. The 

formulation was developed from the analytical solution that best matched the shear stress 

distribution on the adhesive-adherent interface in DLJs. The analytical formulation was validated 

against the experimental results of an anchor externally instrumented with strain gauges. 

To study the mechanical response of straight bond-type anchorage under quasi-static loading. 

 Adhesively circular bonded anchors for CFRP rods were tested under quasi-static loading and the 

behaviour of the anchorages was assessed experimentally. The parameters assessed include the 

bonded length and the adhesive thickness. In the quasi-static analysis, ten different adhesives were 

investigated. 

 A finite element static model was developed for all the circular adhesive anchor geometries. 

Different adhesive material models of increasing complexity were investigated. Initially the 

adhesive was modelled with linear elastic properties. Following this, adhesive yielding was 

modelled using both von Mises plasticity and Drucker-Prager plasticity. Finally, progressive 

damage modelling with a cohesive zone was investigated where the elements followed a multi-

linear traction-separation response. 
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To investigate the mechanical response of straight bond-type anchorage under time-dependent loading. 

 Experimental creep tests on Single Lap Joints (SLJs) with different adhesive thicknesses were 

undertaken at different loads with failure occurring in the bond. The experimental creep tests 

provided a creep power law which was used to simulate the anchors under the same conditions. 

 A finite element creep model was developed to predict the creep time to failure for SLJs. A visco-

plastic model was implemented where the creep strains were used to degrade the adhesive plastic 

yield stress in order to include progressive damage leading to the creep local failure when a given 

strain was reached. 

 Adhesively bonded anchors for CFRP tendons were investigated under the stress relaxation 

phenomenon. Four different adhesive thicknesses were assessed at three initial tensioning forces. 

The long-term behaviour of the anchorages was assessed experimentally. The behaviour after 

restressing, once the load loss was stabilised, was also studied. 

 A finite element stress relaxation model was utilised to simulate the first load drop of stress 

relaxation and compared with the experimental data recorded where the creep power law provided 

by the experimental creep test on SLJs was used. Similarly to the creep model, visco-plastic and 

elastic-perfectly plastic von Mises response properties were assumed in the adhesive layer. 

To study the mechanical response of straight bond-type anchorage under constant amplitude fatigue 

loading. 

 Experimental fatigue tests on anchorages with four different adhesive thicknesses were conducted 

at different fatigue loading spectra with failure occurring in the bond line. The experimental fatigue 

data of the adhesively bonded CFRP tendon anchors were utilised to calibrate the predicted fatigue 

model. 

 The fatigue response of the adhesively bonded CFRP tendon anchors was predicted using Finite 

Element analysis. A multi-linear traction-separation cohesive zone model was incorporated at the 

adhesive-rod interface. Also, a fatigue damage model based on the degradation of the cohesive 

elements was implemented to take into account the fatigue damage evolution. 

1.4 Outline of the content 

This investigation has mainly included experimental and numerical research. The experimental campaign 

has been conducted in a laboratory environment in the Laboratory for the Technological Innovation of 

Structures and Materials research group (LITEM) in the department of Strength of Materials and Structural 

Engineering of Terrassa (Barcelona) at the Polytechnic University of Catalonia (UPC). Moreover, the 

computer simulation has been carried out using the Finite Element Method (FEM) where the commercial 
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Abaqus/CAE v6.11 software has been utilised in all the modelling work. The structure of the thesis is 

summarised below: 

Chapter 2 reviews the most relevant research concerning to the anchorage systems for prestressing 

composite materials. The fundamentals of the prestressing method are first described, followed by the 

description of the main anchorage systems studied for composite materials. Current knowledge on the 

anchorage systems under quasi-static, fatigue and time-dependent loading is assessed. Finally, a brief 

summary of prestressed concrete structures with FRP tendons is presented. 

In Chapter 3, the manufacturing procedure of single lap joints, double lap joints and straight bond-type 

anchorages is presented. This includes the materials and geometries tested experimentally in this research. 

Also, the most significant manufacturing details are described. 

Chapter 4 presents the quasi-static analysis of mechanical and bonded anchorages. A preliminary work was 

undertaken where the split-wedge anchorage was experimentally studied to determine the main parameters 

which influence the strength of the anchorage. Also, the shear stress distribution of adhesively bonded joints 

(DLJs) were assessed and compared with current analytical formulations. Moreover, the straight bond type 

anchorage was more extensively investigated through experimental tests and numerical modelling. First, 

an analytical approach was developed for straight bond-type anchorage from the data obtained in the 

preliminary work. This analytical formulation is proposed to determine the shear stress distribution on the 

adhesive-tendon interface when an adhesive which mainly behaves linear-elastic is used. Secondly, bond 

anchorages were experimentally tested using different adhesive systems. The adhesive thickness and the 

bonded length were assessed. Finally, the bonded anchorage was numerically modelled using different 

adhesive material models and compared with the experimental data available. 

In Chapter 5, the investigation of time-dependent behaviour of the straight bond-type anchorage is 

presented. Single lap joints were experimentally tested in order to obtain a creep law to predict the creep 

time to failure of the adhesively bonded joints tested. The creep law was numerically implemented to predict 

the lifetime of straight bond-type anchorages where the yield stress of the adhesive layer was degraded with 

a subroutine to simulate the effect of creep damage. Also, straight bond-type anchorages were 

experimentally studied and numerically modelled under stress relaxation using the same parameters used 

in the creep model. Four anchorage geometries were evaluated under three different initial tensioning 

forces. In addition, the stress relaxation test setup is proposed for long-term tests for anchorages.  

Chapter 6 presents the fatigue analysis of straight bond-type anchorage. The anchors were experimentally 

studied under three different fatigue loading spectra where four different geometric cases were assessed. 

Also, a fatigue damage model based on the degradation of a multi-linear traction-separation cohesive zone 

model was implemented to take into account the fatigue damage evolution and compared with the 

experimental results. 
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To conclude, Chapter 7 presents the main conclusions obtained of each chapter from this investigation and 

provides suggestions for the future research. 
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 State of the art 

2.1 Introduction 

The advantages of a unidirectional Fibre Reinforced Polymer (FRP) tendon system for prestressing concrete 

structures are well recognized where their high mechanical properties, light weight and high resistance to 

corrosion can provide an efficient design. However, the main concern lies in the anchoring system which 

attaches the tendons to the structure in order to achieve the highest efficiency of the composite material. 

Bonded and non-bonded anchorages have been studied over the last decades under different loading modes. 

Although these systems have been widely studied through experimental quasi-static work, additional 

research regarding the failure mechanism of the anchoring system and its numerical modelling using the 

finite element method is still required. Time-dependent behaviour and fatigue resistance also need to be 

investigated further. 

The present chapter summarises the current state of the art regarding anchoring systems for FRP tendons. 

The chapter consist of two main parts. In the first part, the basic fundamentals of the prestressing method, 

anchoring systems for composite materials and the behaviour of the materials involved are outlined. The 

second part reviews the most recent experimental investigations in mechanical and bonded anchorages. The 

central focus of the present thesis lies in the bond-type anchorage, which is more extensively investigated 

under quasi-static, fatigue and time-dependent loading. Analytical and numerical methods employed to 

study the anchors are also reviewed.  

2.2 Fundamentals of prestressing 

Concrete is a material with a high compressive strength, but also with a low tensile strength. The tensile 

strength is usually 10 times lower than the compressive strength. Hence, concrete is generally reinforced 

with stronger materials in tension in order to enhance the strength of the structure. Steel bars are the most 

common material for strengthening concrete. This is known as ordinary reinforcement. 

However, it is possible to achieve higher strength than it is practical with ordinary reinforced concrete by 

prestressing method. Prestressed concrete is a method for increasing concrete structures’ strength in tension. 

It is mainly used in civil engineering to increase the span length in numerous applications such as beams, 

floors, bridges, underground structures and nuclear reactor vessels. The prestressed concrete method is 

based on the introduction of stresses (compressive stresses) to counteract those produced by the external 

loads and own weight, in order to reduce the final tensile stresses. Figure 2.1 shows the concrete section 
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stress distribution when prestressing a simple beam under bending moment. By means of external loads 

and its own weight, the structure’s tensile limit may be reached far before its compressive limit. Prestressed 

tendons placed on the tensile area introduce compressive stresses that reduce the resultant tensile stress. 

This allows concrete structures to increase their strength.  

 

Figure 2.1. Concrete section stress distribution 

Prestressing not only enhances concrete structure strength, but also has several other advantages. Increasing 

the strength also allows for greater span length. Furthermore, the effect of cracks in concrete elements is 

reduced when the structure is compressed. Prestressing allows for an efficient design by reducing the depth 

of beams and slabs. Consequently, the cost is reduced and the members are lighter. In addition, these 

advantages enable mass production in a laboratory environment and structures to be formed by a number 

of precast units.  

Prestressing can principally be carried out in two ways: pre-tensioning concrete and post-tensioning 

concrete. 

Pre-tensioning concrete refers to cables or rods that are tensioned prior to casting of the concrete (see Figure 

2.2). 

 Step 1.  Cables or rods are tensioned and anchored in external supports (A and B). 

 Step 2. The mould and the ordinary reinforcement is placed. Afterwards, the concrete is cast into 

the mould. 

 Step 3. Once the placed concrete has developed enough compressive strength, the mould is 

removed and the structure is prepared to the load transfer of tendons from the external supports to 

the concrete structure itself. 

 Step 4.  The load is transferred to the concrete structure by releasing the cables or rods from the 

external support. Through the static friction between the cables or rods and the concrete, the 

structure is in a permanent state of prestress. 
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Figure 2.2. Pre-tensioning process.  

Post-tensioning concrete refers to cables or rods that are tensioned at any given point in time after casting 

(see Figure 2.3). 

 Step 1. The mould and the ordinary reinforcement is placed.  

 Step 2. Ducts that will allocate tendons after casting are placed into the mould. Different paths can 

be assigned according to the areas with higher tensile stresses. 

 Step 3. The concrete is cast into the mould.  

 Step 4. The mould is removed when the cast concrete has developed enough compressive strength. 

 Step 5. The tendons are passed through ducts and are tensioned. Eventually, the stressed tendons 

are locked with mechanical anchors at the ends of the structure and thus, the load is transferred to 

the structure. 

 

Figure 2.3. Post-tensioning process. 
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2.3 Anchorage systems 

Either in the first step of pre-tensioning or in the last step of post-tensioning, tendons must be tensioned by 

anchors. Using composite materials for prestressing reinforcement introduces a notable concern related 

with their anchor because of the anisotropic nature of the composite materials. Unidirectional composite 

materials intended for prestressing concrete structures offer their highest mechanical strength in the 

direction of the fibre. Due to the low transverse mechanical properties of the FRP rods, the traditional 

mechanical anchorage for steel prestressing tendons cannot be used [1]. Furthermore, an anchoring system 

based on holes and bolts would introduce discontinuity in the fibres and generate a stress concentration 

which could damage the joint [2]. Also, Jones [3] indicated that the non-uniform stress distribution around 

the hole may cause unexpected cracks, eventually leading to the premature failure of the joint. For this 

reason, two main anchor systems for composite materials are generally considered: mechanical anchors and 

adhesively bonded anchors (see Figure 2.4).  

 

Figure 2.4. General scheme of a mechanical anchor (left) and an adhesively bonded anchor (right). 

2.3.1 Tendon properties 

The most suitable composite materials for prestressing applications are principally Carbon Fibre Reinforced 

Polymers (CFRP), Glass Fibre Reinforced Polymers (GFRP) and Aramid Fibre Reinforced Polymers 

(AFRP). As mentioned earlier, the high mechanical properties, light weight and high resistance to corrosion 

of FRP tendons can provide an efficient design for prestressed structures in aggressive environments. 

However, the stress-strain response of these materials can vary significantly depending on the fibre 

material, the matrix and the fibre/matrix fraction. As it can be seen in Figure 2.5, CFRP has normally 

superior properties and high strength compared to GFRP and AFRP. Also, the elastic moduli of GFRP and 

AFRP tendons are three times lower than steel tendons while CFRP tendons have a similar modulus to steel 

tendons. Nevertheless, unlike steel tendons, FRP tendons have a linear elastic response until sudden and 

explosive failure whereas the yield of steels tendons provides ductility in the structure at its ultimate limit 

state. 

Whilst fibres provide a high tensile strength to the composite material, the matrix of the composite material 

primarily aims to bind the fibres together in a unique solid, protect the fibres from potentially damaging 
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environments and transfer the forces amongst the fibres. The most usual polymeric matrices for FRP 

tendons are polyester, vinyl ester and epoxy. 

 

Figure 2.5. Stress-strain curves of composite tendon systems and steel varieties [4]. 

Even though the mechanical properties of composite materials also depend on the fibre orientation, for 

prestressing applications the fibres are generally provided throughout the longitudinal direction of the bar 

or rod. A pultrusion process is the most widely used technique to manufacture FRP tendons, which allows 

for the manufacturing of a continuous material with a constant cross-section, usually circular. 

Another important factor is the fibre/matrix fraction. Generally, the more fibre used, the better strength 

tensile properties of the tendon will be achieved. However, the maximum percent of fibre mainly depends 

on the manufacturing process. Usually a fibre percent greater than 70% by volume is not recommended for 

pultruded products such as rods and bars. The typical amount of fibre for prestressing tendons is 35% by 

volume. 

According to the American Concrete Institute (ACI) [5], CFRP can develop the same mechanical properties 

as steel tendons when used to prestress concrete structures with a similar stiffness. For this reason, CFRP 

are normally suggested for prestressed applications.  

2.3.2 Mechanical anchors 

2.3.2.1 Mechanical anchorage systems 

Mechanical anchors for FRP tendons are based on the current mechanical anchors for steel prestressing 

rods. However, several modifications have been introduced during the last decades in order to achieve 

greater efficiency for composite materials. The mechanical anchorage generally consists of a barrel housing 

or steel plates system which grips the tendon through a transverse force. As the weakest mechanical 
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properties of the composite materials lie upon the transverse direction, the tendon-anchor interface has been 

extensively studied and modified. One of the most accepted adaptations is the modification of the contact 

surface roughness of the anchorage. Current anchoring systems have hardened teeth to increase the load 

transfer. In systems with composite materials, these teeth must be removed due to the damage they would 

cause in the FRP tendon. The two most widely used systems are described as follows: 

 Clamp anchorage. This system consists of two steel plates sandwiching the composite material. 

Through mechanical joints, normally bolts, the steel plates are fixed together. The load is 

transferred by a shear-friction mechanism. This system allows for the prestressing of tendons with 

a circular or rectangular section. If local damage occurs in the tendon before reaching its optimal 

workload, a sleeve material with a lower elastic modulus can be introduced between the composite 

rod and plates. As indicated by Malvar and Bish [6], this intermediary material distributes the 

stresses smoother avoiding stress concentrators. 

 Split-wedge anchorage. Because of their similarity with the current systems for steel, compactness, 

ease of assembly, reuse and reliability, these anchors are generally more used to date. They 

commonly consist of a barrel housing which uses several wedges to grip the tendon. The clamping 

mechanism is based on the friction generated between the inner wedges and FRP tendon during 

tensioning. The conical shape of the barrel and wedges must develop enough friction to transfer 

the load properly from the tendon to the anchor. However, as mentioned by Schmidt et al. [1], these 

wedges generate a high radial pressure and tend to dig into the surface of the tendon causing a 

premature failure in the anchorage zone. To avoid these effects, the length of the anchor is generally 

increased to reduce the transverse stress of the tendon. Also, a sleeve material, usually copper, can 

be placed between the wedges and the tendon in order to smoothen the stress distribution. 

2.3.2.2 Failure modes of mechanical anchorage systems 

According to ACI code 440.4R-04 [7], there are generally two failure modes when using mechanical 

anchorages for prestressing FRP tendons; failure of the anchorage system and failure of the tendon.  

 Failure of the anchorage system. This is the most common kind of failure and the most observed 

failure modes are described as follows: 

- Slip of the tendon. When there is an insufficient grip of the wedges/plates and the friction 

generated is not able to keep the longitudinal force balance.  

- Slip of the sleeve and tendon together relative to the wedges/plates. Slip of the sleeve and 

tendon together caused by an insufficient shear force between the sleeve and the wedges/plates.  

- Rupture of the rod inside the anchorage. Because of either the tapered shape of the barrel and 

wedges or the transverse force generated by the plates, a high stress is generated at the loading 
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end of the anchor. This stress concentration may cause the premature failure of the composite 

material due to its high transverse stress component.  

 Failure of the tendon. It is considered that the tendon reaches its maximum tensile strength when 

the rupture is located within its free length (beyond three diameters of the tendon from the loading 

end of the anchorage). In this particular case, the anchorage does not contribute to the failure of the 

tendon and enables the reaching of the maximum capacity of the composite material. 

2.3.2.3 Quasi-static response of mechanical anchorage systems 

Nanni et al. [8] studied the behaviour of the split-wedge anchorage for composite bars. Several pull-out 

tests were conducted on rods and laminates. Also, different wedge materials were assessed. It was found 

that a higher value of load can be reached when a material with a lower elastic modulus was introduced 

into the interface between the composite rod and the wedges as indicated earlier. In this case, the local 

damage was produced in this material instead of the FRP tendon. In addition, it was observed that premature 

failures were mainly caused by the continuous slip between the tendon and wedges during testing when 

semi cylindrical tapered wedges made of polyamide PA6 were used and by the high radial stress generated 

at the loading end of the anchor. However, anchorages with steel wedges and intermediary sleeve exceeded 

95% of the ultimate tensile strength of the rods reported by the manufacturers. 

As mentioned by Nanni et al. [8], transverse forces acting on the tendon may collapse the matrix of the 

composite rod. Determining this component is essential for the design of a split-wedge anchorage that 

allows the developing of the full tensile strength of the tendon. In their study, Taha et al. [9] determined the 

forces interacting among the components involved in the split-wedge anchorage (see Figure 2.6). 

9  

Figure 2.6. Static model for a preliminary design of type-wedge anchorages. 

According to this model, to ensure static equilibrium the loading force of the tendon, P, must be equal to 

the static friction generated between the tendon and the wedges, FTW (see Equation 2.1). 
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ܲ ൌ ௐ்ܨ  (Equation 2.1)

Also, the static friction force can be expressed through the normal force between the tendon and the wedges, 

RTW (see Equation 2.2) 

ௐ்ܨ ൌ ௐ்ߤ ∙ ்ܴௐ  (Equation 2.2)

in which TW is the static coefficient of friction between the tendon and the wedges. In the same way, the 

equation of friction between the wedges and the barrel can be obtained through Equation 2.3.  

ௐ஻ܨ ൌ ௐ஻ߤ ∙ ܴௐ஻  (Equation 2.3)

where FWB is the static friction force between the wedges and the barrel, RWB is the normal force and WB is 

the static coefficient of friction. Moreover, the action P and reaction R can be obtained by a longitudinal 

force balance on the wedges (see Equation 2.4). 

ௐ்ܨ ൌ ܲ ൌ ܴ ൌ ௐ஻ܨ ∙ cos ଶߠ ൅ ܴௐ஻ ∙ sin  ଶ  (Equation 2.4)ߠ

Considering a linear radial stress distribution exerted on the wedge-tendon surface, from zero at the end of 

the anchor to a maximum value at the loading end, the maximum radial stress, TW, is expressed in Equation 

2.5. 

ௐ்ߪ ൌ 2 ∙
்ܴௐ

2 ∙ ߨ ∙ ௧ݎ ∙ ௐܮ
ൌ

்ܴௐ
ߨ ∙ ௧ݎ ∙ ௐܮ

 
(Equation 2.5)

where rt is the FRP tendon radius and LW is the length of the wedge. Therefore, the matrix of the composite 

material must be capable of resisting the maximum radial stress shown in Expression 2.5. 

A new steel split-wedge anchorage system for post-tensioning applications using CFRP was presented by 

Sayed-Ahmed et al. [10,11] which introduced two new concepts in order to decrease the high stress 

concentration that occurs near the leading edge of the tendon (see Figure 2.7).  First, a small differential 

slope between the barrel and the wedges was introduced (difference of 0.1º). This allowed for the 

distributing of the stresses on the prestressing tendon more evenly over the length of the anchorage, 

avoiding the high stress concentration at the loading end of the anchor that occurs when all the components 

have the same angle. The second concept was the rounding of the sharp inner edges of the wedges. This 

enables a smoother stress distribution at the end of the anchor. 

Pincheira and Woyak [12] presented a similar anchor based on the metal split-wedge system with a sleeve  

as described above, that instead employed a cold swaged sleeve to prevent the slip of the rod when 

prestressing. The process consisted of the reduction of the tendon diameter through the use of a mandrel to 
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permanently attach the sleeve to the rod. The system allowed the maximum tensile strength of the rod to be 

developed when a minimum swaging length of 14 rod diameters was used. 

 

Figure 2.7. Steel split-wedge anchorage system for 
post-tensioning FRP tendons [10]. 

 

Figure 2.8. A non-metallic wedge-type anchor for fibre 
reinforced polymer tendons [13]. 

Later, in 2000, Campbell et al. [13] investigated a solution for the galvanic reaction that potentially may 

occur between the components of the anchorage. A non-metallic wedge-type anchor for fibre reinforced 

polymer tendons made with ultra-high performance concrete (UHPC) was developed (see Figure 2.8). The 

authors concluded that size reductions and a better manufacturing process were required. However, this 

anchor was shown to be a potential completely metal-free (corrosion-free) post-tensioning system. It is 

worth noticing that no sleeve was used with this anchorage, and thus the UHPC wedges gripped the tendon 

directly. 

The split-wedge anchorage for FRP tendons made with ultra-high performance concrete (UHPC) was also 

studied by Taha and Shrive [9,14]. A concrete with compressive strength in excess of 200MPa was 

developed specifically for this anchorage. Different parameters of the anchor were modified including the 

anchor geometry, a number of composite layers needed for wrapping the barrel and the anchor seating load. 

The non-metallic anchor showed suitable mechanical performance by assessing the anchor in quasi-static 

and fatigue conditions. 

 

Figure 2.9. Unibody clamp anchorage for prestressing CFRP rods [15]. 
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Although the main studies focus on the split-wedge anchorage because of its similarity with the current 

systems for prestressing steel tendons, the clamp anchorage system was also investigated. A unibody clamp 

anchorage for prestressing CFRP rods was recently investigated by Burningham [15]. Different models of 

the anchor were assessed experimentally and numerically. The author concluded that the unibody clamp 

anchors proposed could be used for pre-tensioning or post-tensioning CFRP rods (see Figure 2.9). 

Recently, the work of Schmidt et al. [4] collected the latest developments concerning mechanical anchors 

for composite materials. The researchers studied different configurations of the components mentioned 

previously. Also, anchorages were assessed through the finite element method consistent with the 

experimental load-displacement data. The study concluded that the current mechanical anchor for FRP 

tendons does not allow the maximum strength of the tendons to be developed.  

2.3.3 Adhesively bonded anchors 

2.3.3.1 Bond-type anchorage systems 

Bond-type anchorages have been widely studied with the aim to replace mechanical anchorages for 

prestressing composite materials. An adhesive bond-type anchorage consists of a metallic housing inside 

which single or multiple rods are bonded with a resin or cement. The performance of a bond-type anchorage 

depends mainly on the geometry of the steel housing and bond length of the tendon, and the mechanical 

properties of the components involved. In contrast to mechanical anchorages, bond-type adhesive anchors 

must be manufactured prior to prestressing. This allows for the developing of anchors in a controlled 

laboratory environment with the possibility of obtaining a high execution quality as well as a mass 

production process. However, unlike mechanical anchorages, adhesively bonded anchors require an 

adhesive curing time before the anchor reaches its maximum strength. There are three types of bond-type 

anchorage between which the main difference lies on either the inner shape of the metallic housing or the 

adhesive stiffness.  

 Straight bond-type anchorage. The metallic housing is tubular and therefore the housing inner 

surface remains parallel to the tendon surface throughout the bonded length. The load-transfer 

mechanism depends mostly on the adhesive bond between the anchorage components. 

 Tapered bond-type anchorage. The metallic housing provides a varied profile of the inner surface, 

which is usually linear or parabolic. In this case, the load-transfer mechanism depends on the 

adhesive bond and the radial stress produced by the variation of the adhesive material section. The 

high radial compression generates a better bond stress distribution over the bonded length and 

improves the anchorage performance. Nevertheless, manufacturing tapered housings is costly and 

a larger cross-section of the housing is needed to make the internal geometry. 
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 Mixed adhesive anchorage. Using diverse adhesives with different elasticity moduli along the 

bonded length can optimize the stress distribution. With this technique, a reduction of the highest 

peaks of shear stress can be achieved. However, a manufacturing process of an anchor with various 

adhesives may result in high costs and, in practice, is not used. 

2.3.3.2 Failure modes of bond-type anchorage systems 

Through experimental tests, many researchers have observed two different failure modes when using 

adhesively bonded anchorages for FRP tendons; 

 Failure of the tendon. The FRP rod reaches its ultimate tensile strength and the failure of the tendon 

is produced on its free length. This failure mode assures that the anchor does not detract from the 

mechanical properties of the FRP tendon. 

 Pull-out of the tendon. This is the most observed type of failure. Slippage of the composite rod 

relative to the adhesive occurs due to the bonded surface failure. When the tendon is pulled, the 

bonded interfaces are mainly loaded by shear forces because of its symmetry. Thus, researchers 

have focused on the analysis of the shear stress distribution on the adhesive-rod interface. 

2.3.3.3 Quasi-static response of adhesively bonded joints 

Experimental analyses 

As mentioned by Katz [16], the bonded joint properties are determined by the chemical bond or adhesion, 

and bearing forces, depending on the surface of the composite material and the stage of bond development. 

The adhesion is the molecular force of attraction between dissimilar materials. The strength of attraction is 

mostly determined by the surface energy of the material which is a function of the contact angle between 

the adhesive and the rod. The higher the surface energy, the greater the molecular attraction. The lower the 

surface energy, the weaker the attractive forces [17].  

During the loading of the tendon, the chemical bond or adhesion is the primary resisting mechanism which 

depends on the chemical interlock between the tendon and the adhesive. The shear stress on the adhesive-

rod interface transfers the load throughout the bonded joint. The higher shear stresses are usually located at 

the ends of the anchor, particularly at the loading end, whereas the lower shear stresses are located in the 

centre of the bonded joint. Once the loading end of the anchor reaches its maximum shear strength, shear 

cracks are initiated in the resin-rod interface and are rapidly propagated to the bottom of the bonded joint. 

At this stage of bond development, the chemical bond is no longer the main resisting mechanism in the 

parts of the interface where the adhesive failure has been initiated and bearing forces perpendicular to the 

interface arise as the rod is loaded and attempts to slide.  
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Bearing forces can be classified in two groups: mechanical friction and mechanical interlock. The first one 

consists in the static and dynamic friction develop between the adhesive and the rod for either plain tendons 

or deformed tendons with bearing face angles of up to 30°. The latter involves the strength and mechanical 

action of deformations on the tendon surface for the rods with bonded fibre spirals or with bearing face 

angles greater than 30°. In this case, the effect of chemical adhesion is small, and the tendon is principally 

sustained by the mechanical interaction between the tendon roughness and the adhesive. Also, friction 

occurs once there is a slip between the tendon and the adhesive [18]. 

The bond between the anchorage components can be enhanced by surface modifications. This includes 

braiding, twisting or the introduction of ribs on the tendon to enhance the adhesive-tendon interface, 

whereas increasing the housing-adhesive interface bonded properties can be reached through using an 

internal thread in order to increase the roughness of the inner surface of the housing. Also, joints with 

adhesives allow an easy handling and accurate adjustment of the anchorage components. Furthermore, 

bond-type anchorages have a somewhat more uniform stress distribution than mechanical anchors. For this 

reason, adhesively bonded joints generally show higher efficiencies with FRP materials as indicated by 

Bahei-El-Din and Dvorak [19]. 

Nanni et al. [8] also studied the behaviour of tubular adhesive bond-type anchorages. The researchers used 

different composite tendons and adhesives in their work. All the anchors were tensioned until failure 

occurred. It was observed that potted anchorages often fail because of the pull-out of the tendon from the 

adhesive component instead of by rupture of the tendon. The maximum load achieved was lower than the 

ultimate tensile strength of the tendons reported by the manufacturers. Pincheira and Woyak [12] found 

that the optimal bond length was 50 times the diameter of the FRP tendon. With this consideration, the 

failure should occur in the FRP tendon as it would reach the maximum value of tensile strength. However, 

this depends on the mechanical properties of the FRP material used. 

Benmokrane et al. [20] presented in their study a comprehensive research concerning the tensile 

characteristics, bond strength and pull-out behaviour of FRP rods embedded in straight bond-type 

anchorages. In agreement with the research of Pincheira and Woyak, the ultimate tensile strength of the 

tendons was reached when a bond length of 50 times the diameter of the FRP tendon was used. For those 

specimens which failed before reaching the maximum capacity of the tendon, the pull-out of the tendon 

occurred along the bond length. Bond failure started at the loading end of the anchor and was propagated 

rapidly to the bottom throughout the adhesive-rod interface. Also, different external housing materials were 

investigated and it was observed that a higher elastic modulus of the external housing allowed for an 

increase in the pull-out capacity and stiffness of the FRP anchorage. 

The resins used for these anchorages are usually methacrylate, polyurethane or epoxy resins since the shear 

strength is higher. However, these resins often show a loss of strength at high temperatures or in moist 
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environments. They may also show drawbacks due to the excessive creep degradation. This fact has 

motivated several researchers who have studied the use of mortar as an adhesive material. Zhang and 

Benmokrane [21] studied the use of cement-based grout as a bonding component with mono-tendon and 

multi-tendon anchorages. The researchers determined through monotonic experimental tests that there was 

an interaction effect when a multi-tendon system was used due to the load transfer mechanism among the 

tendons (see Figure 2.10). The results showed that a double bonded length was needed when multi-tendons 

were inserted in the same anchor to achieve the same ultimate tensioning force as a mono-tendon anchor. 

Therefore, using multi-tendon system anchorage did not optimize the joint. However, it was found that the 

investigated cement-grouted anchorage system provided an adequate and simple mechanism for anchoring 

the FRP rods. 

 

Figure 2.10. Failure bond detail of multi-tendon system [21]. 

The multi-tendon anchorage was also studied by Fang et al. [22]. Several quasi-static tests were conducted 

until the bonds of the multi-tendon anchorage system failed. The experimental data showed that the capacity 

reduction resulting from non-uniformities in multi-tendon anchoring systems must be considered. The 

capacity reduction of the system was analysed and a reduction factor for multi-tendon anchorage systems 

was provided. 

Analytical and numerical modelling 

It has been experimentally observed that the failure in adhesively bonded joints for composite materials 

occurs in or around the composite-adhesive interface. Thus, researchers have focused on the analysis of the 

stresses in the adhesive bonded length. Völkersen [23] was the first to study the shear stress distribution in 

double lap joints introducing the concept of differential shear. Völkersen’s analysis considers the adhesive 

to be deformed by shear stress and the substrates by tension. The highest shear stress occurs at the ends of 

the joint and is lowest in the centre. This analysis is adequate for double lap joints but does not include the 

effect of a substrate bending moment caused by the eccentric loading that is more dominant in single lap 

joints. The shear stress distribution along the bonded joint predicted by Völkersen’s analysis can be 

obtained through Equations 2.6 - 2.10. 
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(Equation 2.6) 

where T is the load, b is the width of the joints and l is the bonded length. 
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(Equation 2.10)

where to and ti are the outer and inner adherent thickness, respectively, tc is the adhesive thickness, E is the 

adherent modulus and Gc is the adhesive shear modulus. 

Subsequently, Goland and Reissner [24] considered bending and transverse loads, as well as axial loads, in 

the substrate by introducing a bending moment factor, k, and a transverse force factor, k’. Both factors were 

used to relate the force applied in the adherent, T, to the rotation of the joint due to the bending moment, 

M, and the transverse force, V, as shown in Equations 2.11 and 2.12. 

ܯ ൌ ݇ ∙
ܲ ∙ ௢ି௜ݐ
2

 
 

(Equation 2.11)  ܸ ൌ ݇′ ∙
ܲ ∙ ௢ି௜ݐ

݈
 

(Equation 2.12) 

The analytical formulations proposed by Völkersen and Goland and Reissner were the first theories that 

allowed for the analysing of the shear stress distribution of adhesively bonded joints. Most of the analytical 

solutions proposed hereon after were developed from these theories. 

Hart-Smith [25,26], developed Völkersen’s analysis for double lap joints and Goland-Reissner’s analysis 

for single lap joints by including plasticity within the adhesive. However, these analytical formulations do 

not take into account the shear and normal deformations through the thickness which are particularly 

important in adherents such as composites.  

Ojalvo and Eidinoff [27] extended the Goland and Reissner's formulation using a more complex shear strain 

and displacement equations to study the influence of the adhesive thickness on the stress distribution. Their 

study concluded that the main difference in formulations that take into account the adhesive thickness lies 

in the stress distribution at the ends of the overlap bonds. With this consideration, the shear stress increases 

and the peel stress decreases at the ends of the bonded joint. It was found that the effect of the adhesive 

thickness was more significant for relatively short overlap bonds, thick adherents and high stiffness 

adhesives.  
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Moreover, other analytical formulations, such as the theories presented by Allman [28] and Chen and Cheng 

[29], considered the stress-free condition that occurs at the ends of the overlap length. These theories took 

into account the zero shear stress at the end of the adhesive layer and it was determined that the distance 

from the maximum shear stress to the end of the adhesive layer depends on the flexibility among the 

materials involved in the joint. Chen and Cheng pointed out that this distance is usually 20% of the adhesive 

thickness. Later, Tsai et al. [30] incorporated shear strains in the substrates assuming a linear evolution 

through the adherent thickness. It was shown that the improved solution provided a better prediction for the 

adhesive shear stress distribution than the classical solutions, especially for adherents with low transverse 

shear stiffness, which is the case of laminated composite materials. Due to its relevance to the present 

research, the theoretical formulation of Tsai et al. for double lap joints is presented as follows in Equations 

2.13 - 2.16. 

߬௜ ൌ ܣ ∙ ݄ܵ݅݊ሺߚ ∙ ሻݔ ൅ ܤ ∙ ߚሺ݄ݏ݋ܥ ∙ ሻݔ  (Equation 2.13) 

where A and B are coefficients which depend on the boundary conditions, and  is a parameter which 

depends on the geometry of the bonded joint and the mechanical properties of the materials involved. 
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(Equation 2.16) 

where avg is the average shear stress along the bonded joint, E0 is the elastic modulus in the longitudinal 

direction of the outer adherent, Ei is the elastic modulus in the longitudinal direction of the inner adherent, 

G0 is the shear modulus in the longitudinal direction of the outer adherent, Gi is the shear modulus in the 

longitudinal direction of the inner adherent. 

However, the formulations presented above have been mainly used for plane geometry bonded joints. These 

need to be extended to accommodate circular geometries such as the anchors being considered in this 

research. 

Other analyses of increasing complexity were proposed to obtain more general closed-form solutions which 

require the use of a computer for a solution. These analyses consider the shear and normal deformations 

through the thickness of the adherents. One of these analyses was conducted by Adams and Mallick [31] 
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where the authors proposed a formulation which considered an elastic response on symmetrical 

unidirectional composite adherents and an elasto-plastic response on the adhesive layer. The adherents also 

could be dissimilar with different geometry and mechanical properties. Also, Sawa et al. [32,33] completed 

a comprehensively analysis of the stresses on the adherent-adhesive interface. Da Silva et al. [34][35] have 

collected  and compared many of  these analytical approaches.  

In addition, stress distributions of mixed adhesive joints were also investigated. This technique considers 

using several adhesives of different stiffness to obtain a more uniform stress distribution on the adherent-

adhesive interface. Raphael [36] considered that the adhesive failure occurs when the adhesive shear strain 

exceeds a certain value. This research proposed using a ductile adhesive at the ends of the overlap length 

due to the higher adhesive shear strains, whereas a less ductile adhesive could be used in the middle of the 

joint. Later, Srinivas [37] studied the effect of the overlap length on mixed adhesive joints. It was found 

that the stresses on the adherent-adhesive interface can be reduced when a long overlap for the stiff adhesive 

is used in comparison to the overlap for the flexible adhesive. 

Also, three-dimensional analyses were conducted by Adams and Peppiatt [38] and, more recently, by 

Oterkus et al. [39] where the Poisson’s ratio was included  and the transverse stress distributions along the 

width of the bonded joint was analysed.  

Moreover, more advanced analyses were carried out using the finite element method which enables 

adhesive and substrate non-linearities, progressive damage and coupled hygro-mechano-thermal effects to 

be included [40–43]. Non-linear response in adhesively bonded joints can generally be modelled through 

continuum damage response, von Mises plasticity [44] and Drucker-Prager plasticity [45].  

The continuum damage response considers that the fracture is mainly caused by nucleation, growth, and 

merging of voids in ductile materials. This concept was first developed by Gurson  [46], where a yield 

criterion and flow rule for a material containing a given volume fraction of voids was proposed and, later, 

extended by Tvergaard and Needleman [47] who included void nucleation and growth. Efforts were made 

to extend this approach in order to model the continuum damage response with the finite element method 

(FEM) [48–51]. Recently, Hua et al. [52] proposed a continuum damage model to undertake progressive 

damage modelling in adhesive joint systems. The model proposed was able to predict the initiation and 

propagation of the damage, as well as, the failure load of the joints. 

Also, polymers usually exhibit higher yield stresses in compression to tension. This allows for hydrostatic 

yield dependency to be used through Drucker-Prager plasticity. The Drucker-Prager model was first 

developed for determining the pressure dependent yield failure of soils which enables the characterising of 

the yield surface and predicting the effect of compressive hydrostatic stress on yielding. Recently, the 

Drucker-Prager model was mathematically modified to take into account both tensile and compressive 

hydrostatic stresses [53] and utilised successfully for adhesively bonded joints [54–57]. 
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Progressive damage can also be used to analyse adhesively bonded joints through the cohesive zone model 

(CZM). In 1959, the CZM was originally introduced by Barenblatt [58,59] based on the Griffith’s theory 

of brittle fracture. This was followed by Dugdale [60] who introduced a relationship between the process 

zone at the crack, or cohesive stress, and the plastic yield stress of the materials involved. The cohesive 

forces were taken to be the same as the yield stress. The CZM was first implemented by Hillerborg et al. 

[61] through the FEM. As it can be seen in Figure 2.11, the basic idea of the CZM is that the cohesion 

forces between two atomic planes increase at the same time as the distance between both mentioned atomic 

planes increases up to a maximum cohesion force is reached. At this point, damage starts and further 

separation of the atomic planes results in a rapid increase of the damage and decrease of the cohesion forces.  

Usually the damage propagation phase or strain softening branch after damage is defined as linear, although 

it could be defined multi-linear. Tvergaard and Hutchison [62,63] used a trapezoidal shape traction-

separation in order to study the crack growth of elastic solids. Also, Yang et al. [64–66] used the trapezoidal 

shape traction-separation to model progressive damage in adhesively bonded joints.  

An important advantage of CZM for adhesively bonded joint analysis lies in the possibility of it being used 

in interfaces as it does not represent any physical material, but allows for the cohesive forces between two 

materials that are pulled apart to be described. By inserting a layer of cohesive elements between two 

continuum elements throughout the potential crack path, a progressive damage can be successfully utilised 

to study adhesively bonded joints, especially when the crack path is known in advance. 

 

Figure 2.11. Bi-linear traction-separation law CZM in adhesively bonded joint. 
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Ouyang et al. [67] used a cohesive zone model for adhesively bonded pipe joints under torsional loading. 

Bi-linear cohesive laws were utilised with isotropic materials in order to obtain a first understanding of the 

joint response. Furthermore, Li et al. [68] proposed an analytical solution for bond anchorages for FRP 

tendons under axial load. The analytical formulation was based on a bi-linear cohesive zone model placed 

in the adhesive layer. It was experimentally and analytically found that the adhesive thickness was the main 

factor affecting the strength tensile capacity. In addition, the authors concluded that the characteristic 

strength bond was also dependent on the properties of the adhesive, the geometry and surface conditions of 

the tendon, as well as the radial stiffness of the confining medium. This work indicated that the cohesive 

zone method can be used to predict the tensile capacity of the bond anchorages under quasi-static loading.  

Moreover, there are many theoretical models developed by Wang [69] and Yue and Looi [70] regarding 

the pull-out of fibres in the literature based on either fracture energy or shear stress analysis. However, 

these models are developed in order to understand the mechanics of the debonding process of a single fibre 

from a brittle matrix.  

2.3.3.4 Time-dependent response of adhesively bonded joints 

Adhesives usually exhibit both elastic and viscous properties when subjected to deformation. An immediate 

elastic strain response is obtained when a load is applied whereas a slow increase of strain is observed as a 

function of time due to the viscous characteristics of the material. These materials are called time-dependent 

materials or viscoelastic materials. Time-dependent effects can be observed by the phenomena of creep 

under constant stress or stress relaxation under constant strain. Also, even though the applied forces are 

constant, time-dependent phenomena may have a considerable effect on the stress distribution developed 

[71]. The stress or strain at a particular point can vary substantially with time and for this reason bond 

anchorages need to be studied whilst taking into account the viscoelastic phenomena. Time-dependent 

behaviour of materials can be studied experimentally through three different tests; creep, stress relaxation 

and constant rate stressing. However, the most common method used to assess time-dependent behaviour 

is uniaxial creep testing.  

Creep response of adhesively bonded joints 

Creep phenomenon is the tendency of a solid material to deform continuously under the influence of a 

constant load (below the yield strength of the material) over long periods of time. Usually, the strain-time 

curves exhibit three characteristic stages (see Figure 2.12). 

 Primary or transient creep. Once the load is applied and the instantaneous elastic strain occurs (0), 

the material deforms rapidly but at a decreasing rate. The duration of this stage is usually relatively 

short as it reaches a constant deformation rate quickly. 
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 Secondary or steady-state creep. The creep strain reaches a minimum deformation rate and remains 

approximately constant over a relatively long period of time. 

 Tertiary Creep. The creep strain rate accelerates rapidly until the failure of the material is reached 

(rupture). The material in unable to withstand the load and fails. 

 

Figure 2.12. Characteristic creep stages. 

Regarding the composite material, Yamaguchi et al. [72] conducted creep tests with GFRP, CFRP and 

AFRP tendons. The bars were tested experimentally at different loads. The results indicated that there was 

a linear relationship between stress and the logarithm of the creep time to failure. Through a linear 

extrapolation, it was shown that it was possible to stress CFRP tendons over 80% of their ultimate tensile 

strength to obtain a lifespan of over 50 years. However, the bonded joint is more sensitive to suffering 

premature failure caused by creep. 

Most stress analyses of adhesives and adhesively bonded joints are generally carried out using time-

independent plasticity materials models where the yield surface is used to define the onset of inelastic 

strains. Von Mises [44] and Druker-Prager yield criteria [45] that are often used to predict the creep 

phenomenon in polymers and adhesively bonded joints. As mentioned in the quasi-static section, the latter 

allows for the inclusion of a hydrostatic term which associates the plastic flow with an increase in volume. 

The yield function for von Mises theory is defined as follows in Equation 2.17. 

ܨ ൌ ݍ െ ଴ߪ ∙ ൫ߝ௘௤
௣௟ , ൯ߠ ൌ 0  (Equation 2.17)

where q is the von Mises equivalent stress, 0 is the uniaxial tensile stress and the pl
eq is the equivalent 

plastic strain corresponding to the tensile stress. On the other hand, the yield function for Druker-Prager 

theory is defined in Equation 2.18. 
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ܨ ൌ ܽ ∙ ௕ݍ െ ݌ െ ௧݌ ∙ ൫ߝ௘௤
௣௟ , ൯ߠ ൌ 0  (Equation 2.18)

where a and b are material parameters to be determined from available data, pt is the initial hydrostatic 

stress strength of the material (hardening parameter), p is the equivalent pressure stress and q is the von 

Mises equivalent stress. 

It is worth noticing that the plasticity models described above are independent of strain rate effects. 

However, a rate dependent yield strength can be combined with these models to include rate-dependent 

plasticity. This rate dependency can be introduced in many different ways. One of the most used theories 

was proposed by Norton [73] and Bailey [74], better known as creep power law. The creep power law 

model is presented in Equation 2.19. 

ሶ௘௤௖௥ߝ ൌ ܣ ∙ ஻ݍ ∙ ௠ݐ  (Equation 2.19)

where cr
eq is the uniaxial equivalent creep strain rate, q is the von Mises equivalent stress, t is the total time 

and A, B and m are material parameters to be determined from available data. 

Although the presented models have been used to successfully represent the creep phenomenon in adhesives 

and bonded joints, the main limitation lies in the inability to model substantial strain recovery on unloading. 

In situations where the strain recovery is required, an alternative approach must be utilised. There are many 

visco-elastic [75,76] and visco-plastic [77,78] models able to accurately predict the non-linear volumetric 

deformation. However, most of them do not take into account the hydrostatic stress sensitivity and do not 

allow for a varying volume of non-linear deformation. Also, a large experimental campaign is required in 

order to correctly calibrate all the parameters of the mentioned theories.  

Creep phenomenon in adhesively bonded joints has mainly been studied through single lap joints (SLJs) 

and double lap joints (DLJs) [54,79,80] where different creep models for finite element analysis were 

investigated and compared with available experimental data in order to investigate the main parameters 

involved in the damage initiation and propagation, and the creep time to failure of bonded joints. Creep 

experimental tests on either SLJs or DLJs are usually based on a double cantilever with a specified load 

ratio (ordinarily of 10:1). Specimens are attached to the shortest horizontal cantilever whereas a sustained 

dead weight is placed on the longest end. The load remains constant until the failure of the specimen occurs. 

The use of a cantilever test setup is a well-known technique for creep testing [71].  

Su and Mackie [81] developed a two dimensional finite element model to simulate the creep phenomenon 

in adhesively bonded joints. A viscoplastic model was used for the adhesive and the creep was modelled 

by reducing the plastic yield stress to zero. When the specimen was loaded, a peak was observed in normal 

and shear stress distributions along the bond line. Creep led to a more even distribution of the stresses, 

reducing these peaks and showing a large increase of strains with time. 
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Some other models [82,83]  studied the stress distribution in adhesive joints at high temperatures, where 

the increasing rate of creep strain is even higher. The aim of these investigations was based on finding the 

best adhesive joint design at high temperatures. In this sense, in order to enhance the mechanical properties 

of adhesive joints, especially the creep behaviour, Khalili et al. [79] proposed the reinforcement of the 

adhesively bonded joints by adding carbon fibres to the bond line with a fibre orientation ±45º.  

Stress relaxation response of adhesively bonded joints 

Time-dependent phenomena are usually studied through uniaxial creep testing because of its simplicity. 

For this reason, stress relaxation tests are rarely carried out to study time-dependent behaviour. However, 

there are several studies worth mentioning. 

Adhesively single lap joints were studied under stress relaxation by Tomblin et al. [84]. Calibrated stressing 

rings were used to keep the displacement between the ends of the specimen constant. The ends of the SLJs 

were fixed in the inner part of the ring. The stress relaxation tests were conducted by monitoring the strain 

of the outer part of the rings exerted during the load application. However, this test setup is more suitable 

for small specimens. Other studies conducted the stress relaxation tests by using actuators or testing 

machines [85]. In these cases, short duration of analysis is usually recommended due to the cost of carrying 

out an experimental test lasting days or even weeks. 

Moreover, partial elements of a structure can be tested under stress relaxation when the whole structure in 

service is subject to being tested. A partial element is prestressed and the rest of the structure keeps this 

element under tension. In this sense, Delhomme et al. [86] carried out a stress relaxation study on anchoring 

systems used for ski-lift pylons by using a concrete block which was part of the structure in service. The 

concrete block allocated the bolt and the ends of the bolt were fixed by locking plates.  This is appropriate 

for relatively small structures. In addition, these structures were simulated using Abaqus where time-

dependent behaviour was taken into account in a viscoelastic analysis using a power law creep model based 

on the Bailey-Norton law [87].  

In spite of time-dependent phenomena being studied in adhesively bonded joints, especially through 

experimental creep tests, there is still a lack of knowledge of these phenomena relating to bond-type 

anchorages for composite materials.  

2.3.3.5 Fatigue response of adhesively bonded joints 

Although fatigue is a phenomenon associated with metals, it is also present in polymers and ceramic 

materials. Most composite materials are also sensitive to cyclic fatigue loads, which can lead to premature 

failure of the structure. Fatigue failure in composite materials arises from different damage mechanisms 

that appear in different zones of the material throughout its life. The combination of these local damages 
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causes the degradation of the mechanical properties globally [88]. Although composite materials may 

exhibit a reasonable fatigue performance, the major concern in this work lies in the adhesive bond [89]. 

Adhesively bonded joints under fatigue load have primarily been studied through single lap joints, double 

lap joints and laminated doublers in bending (LDB) [73,89–95]. Usually, experimental tests are combined 

with predictive numerical models in order to reduce time and costs of the final design. The typical variables 

assessed are the maximum fatigue load, the load ratio (R) and the frequency.  The effect of the maximum 

fatigue load and the load ratio generally determine the fatigue response of adhesively bonded joints, whilst 

the loading frequency is often less important over the range 1-10Hz, as mentioned by Crocombe et al. [90]. 

Different methods have been employed to model the fatigue damage in the adhesive joints based on the 

stress singularity or fracture mechanics. Quaresimin and Ricotta [91,96,97] experimentally studied SLJs, 

which consisted of Carbon/epoxy laminates bonded with epoxy adhesives, under fatigue loading. Extensive 

research of the stress intensity factors (SIFs) and strain energy release rate (SERR) was investigated. The 

authors proposed a life prediction methodology based on the actual mechanics of the fatigue damage 

evolution which described the lifetime of the bonded joint as a sequence of a crack nucleation phase. 

However, this approach cannot successfully study progressive damage during the initiation phase. Also, it 

is based on the elastic stress field, which might not be completely appropriate for adhesives with plastic 

response. 

Other approaches, such as the investigations conducted by Gilbert et al. [98] and Xu et al. [99], were based 

on the fracture mechanics where the damage propagation phase was considered, predicting the number of 

cycles to failure of adhesively bonded joints. However, these theories do not take into account the damage 

initiation. 

The cohesive zone model (CZM) has recently been considered for predicting fatigue response where the 

crack path is known in advance. The cohesive elements consider damage initiation (once the cohesive 

elements reach the maximum traction allowed) and damage propagation (that can be defined as a function 

of the fracture energy or the displacement at failure).  

Maiti et al. [100] and Nguyen et al. [101] modelled fatigue loading using cohesive zone modelling with a 

damage evolution equation which was evaluated cycle by cycle. This was computationally very expensive 

and limited to low cycle fatigue. More recently, the fatigue damage response of adhesively bonded was 

modelled with cohesive elements with progressive fatigue damage degrading the parameters of the cohesive 

elements [92–94] (see Figure 2.13). The damage evolution law was assessed for blocks of cycles.  This 

allows an efficient use of computing resources to be acquired and can simulate high cycle fatigue. For each 

block of cycles, the cohesive element properties were degraded following a cyclic fatigue damage evolution 

law. These parameters were calibrated with experimental data. 
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Figure 2.13. Fatigue degradation of cohesive element properties [94]. 

Khoramishad et al. [94] proposed the fatigue analysis of adhesively bonded joints through a cohesive zone 

between the adhesive and the substrate. As mentioned earlier, the influence of fatigue was simulated by 

assessing the evolution law for blocks of cycles and degrading the traction-separation response of the 

cohesive elements. The fatigue degradation process was implemented through Equation 2.20 and 2.21. 
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 (Equation 2.21) 

where D is the increment of damage and N the increment of cycles, n and s are the averaged bond line 

normal and shear strains, max is a combination of these normal and shear strain components, th is a 

threshold value which specifies the minimum strain to initiate the fatigue damage, and  and  are material 

constants.  
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It was found that the numerical fatigue damage model gave a consistent match with the available 

experimental data. However, this approach is valid for applications were the load ratio does not significantly 

influence the fatigue response of the adhesively bonded joint.  

Khoramishad et al. [92,93] later considered the load ratio and variable fatigue loading effect in their 

formulation. This was included by introducing a parameter, n, to accommodate the ductility of the adhesive 

and a correction factor, which relates the maximum fatigue load, Pmax, the static strength, Ps, and the 

fatigue ratio, R. Equations 2.20 and 2.21 present the fatigue damage law used for predicting fatigue damage 

modelling of adhesively bonded joints under variable amplitude loading.
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2.4 Brief summary of prestressed concrete structures with FRP tendons 

In the 1970s, the deterioration caused by the reinforcement corrosion, especially in bridges, raised the 

interest in new strategies to reduce the susceptibility of structures in corrosive environments. This section 

summarises the most outstanding constructions of concrete structures prestressed with composite tendons. 

Research activities began in Germany with the aim to use glass fibres for prestressed applications. As a 

result of this research, in 1978, Strabag-Bau and Bayer developed a GFRP tendon called Polystal and an 

anchoring system for post-tensioning. Polystal tendons consisted of a set of 19 rods with a characteristic 

diameter of 7.5mm each rod and a fibre fraction of 68% by volume. These tendons were incorporated in 

several bridges in Germany and Austria. The first bridge with prestressed Polystal tendons was built in 

Düsseldorf in 1986 where a total of 59 tendons with a capacity of 600kN per tendon were utilised.  

The interest in the non-metallic tendons continued raising during 1980. In 1983, AKZO, a chemical 

manufacturer, and Hollandsche Beton Groep HBG, developed an AFRP tendon. In 1989, ninety AFRP 

tendons were used for prestressing pillars of an acoustic screen along a road in Schiedam (Netherlands). 

Although the behaviour of the pillars was satisfactory, small cracks appeared in the outer surface of the 

pillars due to thermal expansion of the tendons. 

In addition, several European projects were conducted during the last two decades which focused on 

investigating new composite materials, researching the durability of composite materials in aggressive 

environments and developing of design guides and feasibility of projects. The most important activities in 

Europe were summarised by Taerwe and Matthys [102,103]. 



Chapter 2. State of the art 

 

 

31 

In 1980, Japan also started a comprehensive national program to study the use of FRP tendons in concrete 

structures. Researches focused on developing GFRP tendons and their application in concrete structures. 

The main aim was to replace the steel reinforcement bars for composite tendons. The investigations 

undertaken in Japan were summarised by Fukuyama [104], and details of the recent projects were included 

in the Advanced Composites Centre (ACC). 

Furthermore, in 1988 a new anchorage for the GFRP tendon was developed by Iyer and Kumaraswamy in 

the United States [105]. The anchorage was based on the systems for steel tendons with several 

modifications. In 1990, the first prestressed bridge with GFRP in the United States was built in Rapid City 

using the Iyer anchorage [106]. In 1992, the Iyer anchorage was comprehensively studied by Sen et al. 

[107] in order to prestress pillars with GFRP tendons in marine environments. This research culminated 

with the first conference focused on FRP composites for civil engineering applications. 

Much of the research on prestressed structures with FRP tendons in the United States was conducted by 

different researchers. The most important works were carried out by Charles W. Dolan [108,109], Antonio 

Nanni [8,109,110] and Nabil F. Grace [111,112]. The latter work allowed for the designing and building of 

the first traffic bridge with CFRP tendons in the United States (see Figure 2.14). These investigations led 

to developing commercial systems tendons, many of which were summarised in the First International 

Symposium for FRP in Reinforced Concrete Structures. 

In Canada, several researchers, especially within the ISIS Canada Resource Centre, investigated the 

application FRP tendons in prestressed concrete structures. The Canadian Society for Civil Engineering 

Technical Sub-Committee on Advanced Composite Materials (ACM) was formed in 1989. As a result, the 

Beddington Trail Bridge (Calgary, Alberta) was the first road bridge built in Canada with some of the 

concrete beams prestressed with CFRP tendons. It was also the first bridge which utilised an integrated 

optical sensor system to measure and monitor the behaviour of the prestressed beams with composite 

materials. The building of the bridge was completed in 1994. 

 

Figure 2.14.  First traffic bridge with CFRP tendons built in United States [111,112]. 
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It is worth mentioning that mechanical anchorages were utilised in all the applications in order to attach the 

FRP tendons to the concrete structure due to their similarity with the current anchorage systems for steel 

tendons. 

2.5 Concluding remarks 

A review of anchorage systems for prestressing composite tendons under quasi-static, dynamic and time-

dependent loads has been performed. The state of the art has primarily focused on the most noteworthy 

analytical and numerical modelling methods of anchorage systems for FRP tendons. Also, the fundamentals 

of the prestressing method and a brief summary of prestressed concrete structures with composite materials 

have been presented. Based on the literature review provided in this chapter, the following conclusions, 

which directly affect this research, were drawn; 

1. It has been observed that one of the most important causes of deterioration of prestressed structures 

is the corrosion suffered by the steel reinforcement. In recent decades, researchers around the world 

have conducted studies with the aim to replace the traditional steel tendons for alternative materials 

with high resistance to corrosion. 

2. The most suitable alternative materials for prestressing applications are FRP materials due to their 

high mechanical properties, light weight and high resistance to degradation in harsh environments. 

Several studies have investigated the feasibility of utilising Carbon Fibre Reinforced Polymers 

(CFRP), Glass Fibre Reinforced Polymers (GFRP) and Aramid Fibre Reinforced Polymers (AFRP) 

for prestressed applications. It has been seen that CFRP provides higher mechanical properties in 

comparison to steel tendons and a similar stiffness, unlike other FRP systems.  

3. Due to the anisotropic nature of composite materials, the conventional anchoring systems cannot 

be used. There are two main anchoring systems for composite materials: mechanical anchors and 

adhesively bonded anchors. 

4. Mechanical anchorages for FRP tendons are based on the current anchoring systems for steel 

prestressing rods. Several modifications have been considered in order to homogenise the radial 

pressure acting transversally on the tendon, which generally causes a premature failure of the 

tendon in the anchorage area. Because of their similarity with the current systems for steel, 

compactness, ease of assembly, reuse and reliability, these anchoring systems have been 

extensively investigated and used in real applications. For this reason, the present research mainly 

focuses on the investigation of adhesively bonded anchorages although a preliminary experimental 

work with mechanical anchorages for FRP tendons has been undertaken in order to confirm the 

main conclusions obtained by different researches. 

5. An adhesive bond-type anchorage for composite tendons consists of a metallic housing inside 

which single or multiple rods are bonded with an adhesive. The quasi-static response has been 
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experimentally studied with failure occurring in the bond line. For this reason, the stress 

distributions on the adhesive layer have been investigated by many researches under different 

loadings. The analytical formulations for adhesively bonded joints were mostly formulated for 

plane geometries, such single lap joints or double lap joints. It was found that the theoretical 

solution of Tsai et al. [30] allows obtaining a good prediction of the shear stress distribution on the 

adhesive-adherent interface, particularly when the adherent is a composite materials. Also, 

analytical formulations for bonded joints have not been extended to tubular bonded anchorages. 

6. Different techniques have been investigated in order to numerically model adhesively bonded joints 

for composite materials in plane geometries. These analyses consider non-linearities, continuum 

damage, coupled hygro-mechano-thermal effects or progressive damage. It was found that using a 

cohesive zone model for adhesively bonded joints allows for the accurate prediction of the damage 

initiation of the bonded joint and the damage propagation throughout a potential crack path.  

7. Time-dependent phenomena have mainly been studied through the creep response of plane 

geometries of adhesively bonded joints. Time-independent plasticity material models and time 

dependent visco-elastic and visco-plastic models have been described and discussed. It was found 

that a model which uses a multi-axial visco-plasticity theory is able to precisely model the creep 

phenomenon by reducing the plastic yield properties of the adhesive layer.  

8. Fatigue response of adhesively bonded joints has primarily been studied through SLJs, DLJs and 

LDB. Stress singularity factor and fracture mechanics have been used to study the lifetime of 

bonded joints. However, these models do not allow both damage initiation and propagation damage 

to be obtained. Moreover, it was found that the cohesive zone model efficiently permits indication 

of the evolution of damage and predicts the onset and growth of damage to bonded joints under 

fatigue loading with constant or variable amplitude. 

9. Although many researchers have experimentally studied straight bond-type anchorages, little 

attention has been paid to the failure mechanism and its analytical and numerical modelling. Also, 

the straight bond-type anchorage has not been extensively studied under constant fatigue and time-

dependent loading. The present research aims to investigate all these aspects experimentally and 

numerically. 
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 Specimens manufacture 

3.1 Introduction 

Experimental work was carried out in order to study the bond-type anchorage behaviour under quasi-static, 

fatigue and time-dependent loading. As it was described in the research methodology, single lap joints 

(SLJs) were tested under creep loading in order to provide an experimental creep law, double lap joints 

(DLJs) were considered for the quasi-static experimental investigation with the aim to study the shear stress 

distribution along the adherent-adhesive interface, and straight bond-type anchorages were tested under 

quasi-static, fatigue and time-dependent loading in order to investigate the mechanical response of the 

anchorages for FRP tendons.  For this purpose, three types of specimens were manufactured during this 

research work: single lap joints, double lap joints and straight bond-type anchorages. This chapter presents 

the manufacturing techniques of all these configurations, details of each specimen geometry and the 

mechanical properties of the materials involved. 

Moreover, mechanical anchors with and without sleeve material were also tested as preliminary 

experimental work to discuss the quasi-static behaviour reported in the state of the art. However, the 

preparation of specimens with mechanical anchors is not described in this section due to its assembling 

simplicity just before testing.  

3.2 Materials 

As the stress analysis of an adhesively bonded joint typically requires the knowledge of material properties 

of all the components involved, Table 3.1 and  

Table 3.2 summarise the available information provided by manufacturers of the adhesive systems and the 

adherents used in this research work, respectively. All the adhesives were two component resins based on 

methacrylate, polyurethane or epoxy since the shear strength is higher. Two component adhesives feature 

a high versatility in application and performance. These systems consist of a resin and a hardener and may 

be cured either at ambient temperatures or at elevated temperatures for more rapid cures. The adhesives 

were prepared using a mechanical mixer at the revolutions per minute specified by the manufacturer, 

usually no more than 400rpm. The mixing procedure with the mechanical mixer was sustained until a 

uniform paste was obtained. 
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Although, GFRP structural rods have been used in this study, the main study focuses on CFRP because of 

its higher mechanical properties. The composite materials used in this study for the SLJs, DLJs and the 

anchor rods were manufactured using a pultrusion process. The composite material were MBrace Laminate 

LM [113] for the SLJs and DLJs, and MBar Galileo [114] and Aslan GFRP [115] for the anchors. The 

contents of fibre and resin were 65% and 35% by volume, respectively. The composite material was 

provided with a peel ply that was removed immediately prior to bonding. No other preparation in the FRP 

laminates and rods was required. In addition, the composite material had shallow depressions on the surface 

in order to optimise the bond with the adhesive (see Figure 3.1). 

Moreover, numerical modelling was undertaken in order to predict the behaviour of the SLJs and straight 

bond-type anchorages joined with adhesive 02. For this reason, Table 3.3 summarises the tensile and 

compressive properties of the adhesive 02 needed to model the adhesive layer. Tensile and compressive 

data of the bulk adhesive were provided by the company performed through ASTM D 638 and ASTM D 

695. 

Table 3.1. Nomenclature and mechanical properties of the adhesives used in this work. 

Adhesive Commercial name 
Elastic 

modulus, 
E [MPa] 

Poisson 
coefficient, 

 [-] 

Viscosity 
[mPa·s] 

Density,
[g/cm3] 

Resin 
curing time 

[days] 

Adhesive 01 Basf Apogel 1360 3,380 0.45 250 1.10 3 

Adhesive 02 Basf MBrace Primer 700 0.42 250 1.10 3 

Adhesive 03 Basf MBrace Adhesivo 3,000 0.40 90,000 1.70 3 

Adhesive 04 ITW Plexus MA300 1,000 - 60,000 1.00 1 

Adhesive 05 ITW Plexus MA420 1,200 - 80,000 1.00 1 

Adhesive 06 Resoltech 3050CT & 3054CT - - 40,000 1.05 7 

Adhesive 07 Huntsman Araldite 2011 1,900 - 45,000 1.05 1 

Adhesive 08 Huntsman Araldite 2029 570 - 60,000 1.32 1 

Adhesive 09 Resoltech 3040 & 3045 - - 45,000 1.40 7 

Adhesive 10 Scott Bader Crestabond M1-05 700 - 120,000 - 1 

 

Table 3.2. Nomenclature and mechanical properties of the adherents used in this work. 

Adherents 
Elastic 

modulus, E 
[GPa] 

Transversal 
modulus, G 

[MPa] 

Poisson 

coefficient,  [-] 

Ultimate tensile 
strength 

[MPa] 

Ultimate tensile force 

[kN] 

CFRP (MBar 
Galileo & MBrace 
Laminate BASF) 

Ex= 141 Gyz= 1,190  yz=zx=0.007 

2,500 
Tendon mm=125 

Laminate50x1.5mm=187 
Ey= 3.3 Gzx= 1,930  xy= xz=0.288 

Ey= 3.3 Gxy= 1,930  zy= yz=0.374 

GFRP (Aslan FRP 
Hughes Brothers) 

Ex=40.8 [-] [-] 1,000 
Tendon mm=28 

Tendon mm=75 

Steel housing E=200 G=80 0.3 355 [-] 
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Figure 3.1. MBar Galileo bar. 

Table 3.3. Tensile and compressive data of the bulk adhesive (Basf MBrace Primer). 

Properties Yield strength [MPa] Strain at yield [%] Ultimate Strength [MPa] Rupture strain [%] 

Tensile 14.5 2.0 17.2 40 

Compressive 26.2 4.0 28.3 10 

All the specimens (SLJs, DLJs and straight bond-type anchorages) were cured at room temperature, 

according to the specifications of the adhesive manufacturer. Standard laboratory conditions were assured 

during the curing process. This includes a temperature of 23±2ºC and a relative humidity of 50±5%. 

3.3 Single lap joint (SLJ) 

Manufacturing of SLJs were based on ASTM D3165 [116]. Four configurations of single lap joints were 

prepared in the laboratory to be tested under creep loading. The dimensions of the SLJs are shown in Figure 

3.2. The overlap length, the width and thickness of the bond line are summarised in Table 3.4. SLJs were 

tested in order to obtain additional information of the bonded joint to model the straight bond-type 

anchorage. As the primary parameter of interest in the anchorages was the adhesive thickness, different 

thicknesses in SLJs were investigated. However, as the overlap length of the anchorages was large enough 

for the full adhesive stress field to be developed, the joint superposition length was not studied in SLJs. All 

the specimens were made up using the adhesive MBrace Primer [117], a low viscosity polyamine cured 

epoxy. The low viscosity of the adhesive usually enables an easy preparation of the joints avoiding air 

cavities and undesirable imperfections. This allows manufacturing of the joint by pouring the adhesive into 

the overlap length unlike adhesives with high viscosity which require a more complex procedure. 

It is worth mentioning that SLJs were manufactured with no adhesive spew fillets. Adhesive spew fillet is 

the portion of adhesive that is squeezed out from the bonded area and forms a bead at the ends of the 

substrates assembled. Even though the spew fillet is normally present in an adhesive joint, it is usually 

neglected in the stress analysis of adhesively bonded joints. However, the presence of spew fillets can 

reduce peak stresses in function of their shape and size, and thus the joint strength can be increased. As 
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adhesive spew fillets were not considered in the straight bond-type anchorage, SLJs were made up without 

spew fillets in order to transfer results between both geometries. 

 

Figure 3.2. Dimensional details of SLJ. 

Table 3.4. Geometric characteristics of SLJ. 

Specimen Adhesive Repetitions Length, L[mm] Width [mm] Thickness, t [mm] 

SLJ_01_02 02 3 10 25 1.6 

SLJ_02_02 02 4 10 25 3.2 

SLJ_03_02 02 3 10 25 4.8 

SLJ_04_02 02 3 10 25 6.4 

SLJs were prepared in the laboratory according to the following procedure: 

1. The CFRP laminates were cut and machined in the laboratory according to the dimensions shown 

in Figure 3.2. 

2. The peel ply provided to protect the composite material surface was removed carefully ensuring 

the good condition of the surfaces to be bonded. 

3. Joints were made up in a working glass area (see Figure 3.3 left). Square end spacers were used to 

make up the SLJs with no adhesive spew fillets. The overlap length and the bond layer thickness 

of the SLJs were controlled by the spacers. 

4. The CFRP laminates were placed edge-on on the glass support. Once the required dimensions of 

the specimens were ensured with the spacers, a thermoplastic glue gun was utilised to seal all the 

sides of the overlap length.  

5. The thermoplastic glue gun was plugged in for a few minutes before applying in order to ascertain 

that the glue was hot enough to flow out of the nozzle. The sides of the joints were then sealed with 

the sealant. The top side of the SLJs remained open in order to pour the adhesive in later (see Figure 

3.3 left). 

6. Once the sealant was totally cured, after approximately 30 min., the spacers were removed and the 

overlap dimensions were checked. If the dimensions were not suitable, the procedure was started 

again from step number 3 after removing the glue. Only in a few cases the dimensions of the joints 

were found not to be appropriate.  

7. The adhesive was prepared with a mechanical mixer and poured into the overlap gap. The 

application of the adhesive was carried out slowly to avoid the formation of voids or gaps in the 
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bond layer. It is important to mention that pouring was realised within a short period of time as the 

adhesive pot-life was between 30 and 60 minutes. 

8. Specimens were cured at room temperature for three days as suggested by the manufacturer before 

testing (see Figure 3.3 middle). 

9. The sealant was removed of the SLJs and the specimens were ready to be tested. Specimens were 

named indicating the adhesive thickness and specimen number (see Figure 3.3 right). 

 

Figure 3.3. Preparation method of SLJ. 

3.4 Double lap joint (DLJ) 

Double lap joints were based on ASTM D3528 [118]. Seven configurations of double lap joints were 

prepared in the laboratory with three adhesive systems [117,119,120] to be tested under quasi-static loading. 

Alike SLJs, spew fillets were not considered in the manufacture of DLJs. Dimensional details and geometric 

characteristics of DLJs are summarised in Figure 3.4 and Table 3.5, respectively. 

 

Figure 3.4. Dimensional details of DLJ. 

DLJs were prepared in a laboratory environment and different procedures were undertaken depending on 

the adhesive viscosity. For those adhesives which the viscosity was lower than 1,000mPa·s, the procedure 

carried out with SLJs was assumed. Steps 1-9 mentioned in the preparation of SLJs were followed. Figure 

3.5 (left) shows the two components of the adhesive 02 before mixing. As it can be seen, the different 

colour hue determines the proportion of each component. Whilst low viscosity adhesives are normally 

provided individually and the mixing is realised in a mixing recipe not provided by the manufacturers, high 

viscosity adhesives are frequently provided with a dynamic mixing gun which mixes the two components 

when applying. 
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Table 3.5. Geometric characteristics of DLJ. 

Specimen Adhesive Geometry Repetitions Length, L[mm] Width, W [mm] Thickness, t [mm] 

DLJ_01_01 01 01 4 100 40 1.35 

DLJ_01_02 02 01 2 100 40 1.35 

DLJ_01_03 03 01 2 100 40 1.35 

DLJ_02_01 01 02 1 200 30 1.35 

DLJ_03_02 02 03 1 200 40 1.35 

DLJ_04_02 02 04 3 200 10 1.35 

DLJ_05_02 02 05 3 50 15 1.35 

 

Figure 3.5. Preparation method of DLJ with low density adhesives. 

Double lap joints made up with low viscosity adhesives were placed in a glass work area and a thermoplastic 

gun and square end spacers were used to provide the required dimensions as mentioned with SLJs. The 

adhesive was set into the overlap length either by pouring the adhesive or by injection moulding with a 

syringe (see Figure 3.5 middle). Specimens were cured at room temperature according to the manufacturers’ 

specifications and the sealant was removed after curing (see Figure 3.5 right). 

On the other hand, a different procedure was adapted for high density adhesives (>1,000mPa·s). Steps 1-2 

mentioned earlier were followed in order to obtain the required dimensions of CFRP laminates.  The 

procedure undertaken during the preparation of DLJs with high viscosity adhesives is detailed as follows: 

3. Placing the adhesive was not carried out by pouring but by squeezing out the adhesive with a small 

spatula. For this reason, laminates were placed on the working area horizontally and the sides of 

the overlap lengths were sealed with squares end spacers and thermoplastic glue. As it is shown in 

Figure 3.6 (middle) the spacers were fixed in the contour of the bonded joint of the outer adherent. 

The height of the spacers determined the required thickness of the joint. This procedure was realised 

for both outer adherents of each specimen.  
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4. The adhesive was prepared with a mechanical mixer according to the manufacturers’ specifications. 

As it can be observed in Figure 3.6 (left), the consistency of the adhesive was higher than low 

viscosity adhesives.  

5. Once a uniform adhesive paste was obtained, the adhesive was carefully spread on the outer and 

inner adherents with a small spatula. This step was especially important because an incorrect 

application of the adhesive could have substantially increased the number of voids, air bubbles and 

imperfections of the joint. Thin layers of adhesive were continuously placed on the outer adherents 

until the required thickness was reached. This allowed detecting the formation of bubbles that were 

removed by applying pressure. One layer was placed on both faces of the inner adherent following 

the same procedure.  It is worth noting that extra layers were placed to guarantee excess adhesive 

to prevent gaps in the joints. Control of the adhesive layer thickness and imperfections were major 

factors during the preparation of the joints. 

6. Substrates were joined by placing all the adherents according to the required dimensions and 

squeezing out softly. Excess adhesive flowed between the spacers and the adherent. When the 

adherents were in contact with the spacers, the manual pressure was released (see Figure 3.6 right). 

7. Specimens were cured at room temperature according to the manufacturers’ specifications. 

Afterwards, spacers and thermoplastic glue were removed. 

Despite all the effort made to prevent air bubbles formations and voids, a greater number of defects 

were found in joints with high viscosity adhesives as it can be seen reported in the experimental work. 

Specimens were named indicating the geometry and adhesive used. 

 

Figure 3.6. Preparation method of DLJ with high density adhesives. 

3.5 Straight bond-type anchorage  

Straight bond-type anchorage based on ACI 440.3R [121] were prepared in the laboratory. An adhesive 

bond-type anchorage consisted of a steel housing inside which a single FRP tendon was bonded with an 

adhesive. Each specimen included one tendon and two steel housings. Steel housings were provided with 

an external metric screw thread in order to attach both anchors to the clamping system of the actuator and 

the reaction plate, respectively. Any other system such as a British standard Whitworth thread or a Dywidag 
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system could have been used instead of the metric screw thread. Anchorages were tested under quasi-static, 

fatigue and time-dependent loading. Dimensional details are summarised in Figure 3.7 and Table 3.6. Spew 

fillets were not considered in the manufacture of straight bond-type anchorages. Two different 

nomenclature were assumed in the experimental work with straight bond-type anchorage. First, all the 

adhesive systems [117,119,120,122–128]  presented in this work were tested in quasi-static loading. 

Secondly, fatigue and time-dependent experimental work were carried out with the adhesive 02 because of 

its handling ease and its high mechanical properties. 

 

Figure 3.7. Dimensional details of straight bond-type anchorage. 

Table 3.6. Geometric characteristics of anchorage. 

 
QUASI-STATIC EXPERIMENTAL WORK 

Specimen Adhesive Repetitions 
Length, 
L[mm] 

Steel tube outer 
diameter, A [mm] 

Tendon 
material 

FRP rod 
diameter, B 

[mm] 

Steel tube 
bore, C [mm] 

A_01_02 02 4 200 26 CFRP 8 14 
A_02_02 02 2 200 26 CFRP 8 20 
A_03_02 02 1 200 26 CFRP 8 24 
A_04_02 02 1 200 26 GFRP 6 14 
A_05_02 02 1 200 26 GFRP 8 14 
A_01_03 03 1 200 26 CFRP 8 14 
A_01_04 04 1 200 26 CFRP 8 14 
A_01_06 06 2 200 26 CFRP 8 14 
A_01_07 07 1 200 26 CFRP 8 14 
A_01_08 08 1 200 26 CFRP 8 14 
A_01_09 09 1 200 26 CFRP 8 14 
A_01_10 10 1 200 26 CFRP 8 14 
A_06_04 04 2 300 26 CFRP 8 14 
A_06_05 05 1 300 26 CFRP 8 14 
A_07_02 02 1 460 26 CFRP 8 14 

 
FATIGUE AND TIME-DEPENDENT EXPERIMENTAL WORK 

Specimen Adhesive Repetitions 
Length, 
L[mm] 

Steel tube outer 
diameter, A [mm] 

Tendon 
material 

FRP rod 
diameter, B 

[mm] 

Steel tube 
bore, C [mm] 

A_14 02 5 200 26 CFRP 8 14 
A_16 02 5 200 26 CFRP 8 16 
A_18 02 6 200 26 CFRP 8 18 
A_20 02 6 200 26 CFRP 8 20 

As mentioned earlier, two different procedures were undertaken according to the adhesive viscosity. The 

followed procedure during the preparation of anchorages with high viscosity adhesives is detailed as 

follows: 
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1. The FRP rods were cut and machined in the laboratory. Following the recommendations of the 

guide test ACI 440.3R, a length of three anchors lengths was provided for each specimen to 

guarantee a smooth stress distribution between anchors. Afterwards, the peel ply provided to 

protect the composite material surface was removed carefully ensuring there were not impurities 

on the surface of the rod to be bonded. 

2. Steel housings were machined by an external company. Steel housings were cut at the specified 

length and drilled according to the diameter in Table 3.6. The inner surface of each housing was 

prepared before attaching the tendon using acetone, a solvent degreasing agent with low hazard 

rating, to remove any impurities. 

3. The first anchor of a specimen was manufactured using a simple beam lying on a support and fixed 

with nuts and washers (see Figure 3.8). Small centring pieces were placed at both ends of the anchor 

to subsequently locate the FRP rod and assure co-axiality of the rod inside the steel housing (see 

Figure 3.9). The bottom of the anchor was also sealed with a thermoplastic sealant to avoid leaks. 

 

Figure 3.8. Preparation of the first anchor of straight bond-type anchorages. 

4. Once the dimensions were ensured with centring pieces, the adhesive was slowly injected with a 

mixing gun as it can be seen in Figure 3.10 (left). The difficulty of the process lies in the high 

possibility of air gaps. For this reason, when the anchor was filled with the volume of adhesive 

required for the joint, the rod was inserted into the steel housing bore and slowly immersed into the 

adhesive in order to push out the air accumulated into the bore (see Figure 3.10 middle).  

5. Manual vibration was applied to the anchor to bring to the surface the small bubbles generated 

during the process. Afterwards, the necessary adhesive was injected to reach the top of the anchor 

(see Figure 3.10 right). This step was repeated until there was no evidence of air bubbles or gaps 

located into the bore. 
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Figure 3.9. Small centring pieces placed at the top (right) and bottom (left) of each anchorage to assure co-axiality of the 
rod inside the cylinder. 

6. The first anchor of the specimen was cured at room temperature according to the manufacturers’ 

specifications. The specimens remained in the beam until the adhesive was completely cured. 

 

Figure 3.10. Preparation method of straight bond-type anchorage with a high density adhesive. 

7. Once the first anchor was entirely cured, the other side of the specimen was manufactured using a 

double-beam (see Figure 3.11). The cured anchor was placed and fixed on the upper beam and in 

the lower beam the steps 4-6 were repeated to build the anchor of the other end of the specimen. 

An easier procedure was adapted for low viscosity adhesives. Steps 1-3 and 6-7 mentioned earlier were 

followed to prepare the anchors. However, placing the adhesive was realised by injection moulding. This 

allowed a better quality joint with a lower imperfections rate on the adhesive interfaces. Before applying 

the adhesive, the rod was placed into the steel housing and the required dimensions were ensured through 

centring pieces. Afterwards, the adhesive was injected with a syringe until the top of the joint was reached. 

After curing, the same process was undertaken on the other anchor of the specimen (see Figure 3.12). 
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Figure 3.11. Preparation of the second anchor of straight bond-type anchorages using a double-beam. 

 

Figure 3.12. Preparation method of straight bond-type anchorage with a low density adhesive. 

3.6 Concluding remarks 

Single lap joints, double lap joints and straight bond-type anchorages were manufactured and specimens of 

high quality were obtained. Manufacturing techniques were adapted and modified in order to achieve the 

best quality for each geometry and adhesive. In all the cases, thickness and overlap length were the main 

parameters during the preparation of the specimens. 

All the specimens were manufactured in a laboratory environment at an average temperature of 23±2ºC and 

a relative humidity of 50±5%, and techniques depended on the adhesive viscosity. A previous mould was 

required in all cases in the overlap area in order to maximise the accuracy of the thicknesses and, for low 

viscosity adhesives, to avoid possible adhesive leaks. For those adhesives with low viscosity 

(<1,000mPa·s), the adhesive was placed by pouring and injection, whereas for adhesives with high viscosity 

the adhesive was set by moulding and squeezing.  
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Due to the procedure, specimens with high viscosity adhesives presented a greater number of imperfections 

on the interfaces with the adherents than low viscosity adhesives. The main imperfection detected was the 

accumulation of air bubbles on the interfaces. This caused a reduction of the bonded area and a distortion 

of the stress distribution. Consequently, the ultimate load and the mechanical properties were decreased. 

It is worth mentioning that during the moulding and squeezing procedure, twice the adhesive volume was 

required for high viscosity adhesives whilst no material was lost when an adhesive of low viscosity was 

used. Moreover, no other effects such as shrinkage were observed during the adhesive curing which might 

have changed the geometry and/or mechanical properties of the specimens.  

Before testing, specimens were stored in a protective environment away from excessive temperatures and 

humidity. 
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 Quasi-static analysis 

4.1 Introduction 

Experimental tests were undertaken on mechanical anchors, double lap joints (DLJs) and straight bond-

type anchorages to study the quasi-static response of the joints. The main study focuses on the ultimate 

failure load and failure mode for all the joints, as well as the shear stress distribution on the composite 

material - adhesive interface during the loading process.  

A preliminary work was conducted on mechanical anchors in order to assess the general behaviour of this 

type of anchor and to compare the results with the main conclusions reported in the state of the art. DLJs 

were performed to analyse and compare the experimental shear stress distribution on the interface with the 

analytical models of Olaf Völkersen [23] and, Tsai, Oplinger and Morton [30]. Also, an analytical 

formulation was developed in this research to determine the shear stress distribution on the adhesive 

interfaces for straight bond type anchorages. The analytical formulation was validated against experimental 

results in order to provide an approximate distribution of shear stress in the bonded joint for adhesively 

bonded anchors which behave similarly to linear elastic.  

Moreover, numerical modelling was carried out with different adhesive material models in order to 

investigate the static response of the straight bond-type anchorage and its failure mechanism. The adhesive 

was modelled with linear elastic properties, von Mises plasticity [44], Drucker-Prager plasticity [45] and 

progressive damage.  

This chapter describes the experimental work, analytical and numerical modelling of mechanical anchors, 

DLJs and bonded anchors under quasi-static loading. 

4.2 Preliminary experimental work 

4.2.1 Objectives 

Preliminary experimental work was carried out on split-wedge anchorages and double lap joints. The goals 

of this work were to:  

4.2.1.1 Split-wedge anchorages 

1. Assess the ultimate load of the split-wedge anchorage system. As mentioned in the state of the art, 

the transverse force of the wedges tends to cause the premature failure of the tendon. This reduction 
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of the failure load was assessed and compared among the mechanical anchors with and without a 

sleeve material. 

2. Investigate the failure mode of the anchorage system. Because of the high radial pressure generated 

by the wedges, the wedges tend to crush and cut the rod in the anchor area at a failure load lower 

than that specified by the manufacturers. Moreover, failure mode caused by slipping can also occur 

when the static friction between wedges and the rod cannot equate the load applied to the tendon 

and the rod is pulled out of the wedges.  The ideal failure mode would be the rupture of the fibres 

along the free length, as this would allow the maximum tensile capacity of the tendon to be reached. 

The failure modes observed in the experimental work were assessed for mechanical anchors with 

and without the sleeve material. 

3. Analyse the effects of the sleeve material. A copper sleeve material was introduced between the 

wedges and the rod in order to smoothen the stress concentration at the top of the anchor. Two 

different thicknesses of sleeve were used and the failure mode as well as ultimate load were studied 

and compared to the experimental data obtained with mechanical anchors without sleeve material. 

4. Analyse the effects of the clamping wedges. As reported in the state of the art, the use of several 

wedges does not guarantee the same static friction between the wedges and the rod. The failure 

mode by slipping is usually caused by the non-uniform static friction generated by the wedges of 

the anchorage. The displacement of the wedges during the experimental tests was also investigated 

in the preliminary experimental work with mechanical anchors. 

4.2.1.2 Double lap joints 

1. Study the failure mode of the DLJs. The failure mode of the double lap joints was one of the main 

goals of the preliminary work. Three different failure mode types may occur with double lap joint. 

In the first case, the failure takes place in one of the external adherents of the joint. In the second 

case, the failure is produced by fractures to the adhesive layer, better known as cohesion failure. 

Finally, the third case, and most common, is the interfacial failure between the adhesive and one 

of the adherents (adhesion failure). The failure mode was mainly investigated by means of a 

conventional naked-eye examination of the specimen after failure as well as a thorough microscopy 

examination of the failure surface. 

2. Investigate the stress distribution within the adhesive layer. In order to predict the joint strength, 

choose an adequate design for each application and know the behaviour of the joints, the stress 

distribution within the adhesive layer must be known. In this research, the experimental shear stress 

distribution on the failure surface was obtained through the instrumentation of strain gauges 

throughout the outer surface of the adherents. The experimental data was compared with the 

existing analytical formulations of Völkersen and TOM at the failure load in order to find the most 

suitable failure criterion for the DLJs tested.  
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3. Investigate the influence of bonded length on the shear stress distribution at the failure load and the 

ultimate load of the joints, by testing specimens with different adhesive systems and bonded 

lengths. 

4. Develop of an analytical formulation for straight bond-type anchorages. One of the goals that links 

the experimental work conducted with DLJs and straight bond-type anchorages is the possibility to 

develop a suitable analytical formulation for straight bond-type anchorages from the analytical 

formulation that best matches DLJs. The development of an analytical formulation is presented in 

the straight bond-type anchorage section. 

4.2.2 Split-wedge anchorage 

A split-wedge anchorage specimen consisted of a CFRP rod of 700mm length and two split-wedge 

anchorages. The external barrel and wedges were machined by an external company, where the length of 

the barrel was 128mm and the outer diameter was 117mm. A conical bore was machined in the inner section 

of the barrel with a large and small bore of 75.8 and 67.3mm, respectively. The evolution of the bore 

throughout the barrel was linear. Four identical wedges with the same length were machined with an inner 

bore equal to the tendon diameter. As only CFRP Mbar Galileo tendons were tested with mechanical 

anchorages, the inner bore of the wedges was 8mm. The outer surface of the wedges was provided with the 

same angle as the inner bore of the barrel. Split-wedge anchorages for steel tendons generally provide a 

rough surface in the wedges in contact with the tendon in order to increase the adherence and the load 

transfer.  

Figure 4.1. Split-wedge anchorage components. Figure 4.2. Split-wedge anchorage assembly. 

As mentioned in the state of the art, one the most accepted modifications is the removal of the roughness 

of the wedges in order to prevent local damage to the matrix of the composite material and homogenise the 

stress distribution exerted on the rod. For this reason, the wedge surfaces in contact with the tendon were 

completely smooth.  When a sleeve material was used between the wedges and a barrel, two semi-circular 

copper tubes of the same rod diameter were attached at each end of the composite material. The length of 
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the sleeve material was 130mm and the thicknesses tested were 0.5 and 1mm. The split-wedge anchorage 

components and the assembly with the CFRP tendon can be seen in Figure 4.1 and Figure 4.2, respectively. 

4.2.2.1 Test setup 

Quasi-static experimental test were undertaken using a universal testing machine with a capacity of up to 

200kN. Split-wedge anchorages were tested in tension to failure under force control at 50N/s. The load and 

displacement were recorded at a frequency of 50Hz using a Suzpecar data acquisition system. The pull-out 

test setup is shown in Figure 4.3.  

 

Figure 4.3. Quasi-static test setup for split-wedge anchorages. 

The specimen was mounted just before testing. The rod was placed among the wedges and the whole was 

introduced into the barrel. A uniform pressure was manually applied to the bottom of the wedges in order 

to clamp the tendon. It is worth mentioning, that during the clamping process it was important to clamp all 

the wedges simultaneously so that relative displacements could be avoided. This allows a proper 

functioning of all the wedges during the loading process. When a sleeve material was used, the two semi-

circular tubes were previously positioned at each end of the rod. The specimen was placed into the universal 

testing machine and the final clamping process was completed at the same time as the anchorage was 

loaded. The geometries of all the configurations are summarised in Table 4.1. 

Table 4.1. Mechanical anchor configurations. 

Specimen Repetitions Sleeve material thickness, t [mm] 

SW_01 1 - 

SW_02 1 0.5 

SW_03 3 1.0 

The load cell placed on the crosshead of the universal testing machine continuously recorded the force 

during the test. Also, an external linear variable displacement transducer (LVDT) was placed in the movable 

crosshead of the testing machine. It is important to notice that the LVDT recorded the rate of extension of 



Chapter 4. Quasi-static analysis  

 

 

50 

the movable crosshead precisely, and therefore the real displacement of the anchorages might not have been 

the same. However, the measured displacement can give an approximation of the behaviour of the entire 

system. In addition, a high-speed recording camera MotionBLITZ was used to record the failure of the 

specimen. 

4.2.2.2 Results and discussion 

The experimental load-displacement curve measured from all the split-wedge anchorages and the failure 

load reached in each case are summarised in and Figure 4.4 and Table 4.2. It can be noticed that the 

specimen without the sleeve material reached the lowest ultimate load. As mentioned by Nanni et al. [8], 

Malvar and Bish [6], Sayed-Ahmed et al. [10], Taha et al. [9,14], Schmidt et al. [1] and Bennitz [129], there 

is a high radial pressure generated by the wedges at the loading end of the anchor which caused the 

premature failure of the rod. The high stress concentration generally crushes and cuts the tendon fibres at 

the loading end of the anchor. This result was confirmed during the post-testing examination of the 

specimen. Figure 4.5 shows a failure detail at the end of the anchor. It can clearly be seen that the failure 

was caused by crushing and splintering of the tendon. The matrix of the composite material was not able to 

carry the transverse load generated by the static friction at the loading end of the anchor and it collapsed 

instantaneously, causing a partial cut across the tendon. Since the ultimate tensile strength of the tendon is 

2500MPa (125kN according to its section), the SW_01 configuration approximately reduced its tensile 

strength in a 35%.  

 

Figure 4.4. Measured load and displacement response of all the specimens with split-wedge anchorages. 

As indicated by Malvar and Bish [6], an intermediary material between the tendon and the wedges with a 

low stiffness smoothens the stress distribution at the loading end of the anchor. This allows for the stress 

concentration and the premature failure of the tendon by crushing or splintering to be avoided. For this 

purpose, SW_02 and SW_03 configurations were equipped with a thin layer of copper with an elastic 
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modulus of 120GPa attached to end of the tendon. As can be seen in Table 4.2, these configurations reached 

the highest failure load, particularly the specimen SW_02_1 with a copper sleeve thickness of 0.5mm. Even 

though the failure mode of the specimens was a combination of crushing and slipping, Figure 4.6 shows 

how the failure of the specimen was closer to the ideal failure of the anchor, where the rupture of the fibres 

is produced along the free length. In all the cases the failure of the tendon was instantaneous and explosive, 

releasing all the energy stored in the rod. Figure 4.7 shows the recorded failure of specimen SW_02_1 with 

the high-speed recording camera which elapsed in 396 msec. 

Table 4.2. Summary of experimental failure load of specimens with split-wedge anchorages. 

Specimen Experimental failure load [kN] 

SW_01_1 79.96 

SW_02_1 93.69 

SW_03_1 86.70 

SW_03_2 80.17 

SW_03_3 80.72 

 

Figure 4.5. Failure detail of the specimen SW_01_1. 

 

Figure 4.6. Failure detail of the specimen SW_02_1. 
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Figure 4.7. Recorded failure of specimen SW_02_1 (396msec) 

Although a higher failure load was reached in specimens with the sleeve material, it was not enough to 

achieve the maximum tensile strength of the rods. The sharp edge of the wedges caused a 25% reduction 

of the tendon tensile strength. Also, these configurations reached the plastic yield stress of the sleeve 

material initiating the slipping of the rod until the specimen was not able to carry more load. As the sleeve 

material enhanced the behaviour of the mechanical anchorages, a material with a higher yield stress is 

suggested for further research. The yield strength of the copper used in this research was 70MPa. 

Aluminium alloys, on the other hand have yield strengths ranging from 200MPa to 600MPa and a stiffness 

of about one-third of steel. This would enable a smooth stress distribution at the loading end of the anchor, 

allowing the specimens to reach higher loads. 

Furthermore, there was a large difference amongst the displacement demonstrated by the specimens during 

the loading process. As mentioned earlier, a large displacement during loading may cause a premature 

failure of the joint by slipping and is mainly produced by a non-uniform clamping of the wedges. Although 

the wedges were positioned carefully, a negligible difference to the naked eye might result in a large 

displacement difference amongst wedges at high loads. It can be seen in Figure 4.5 how the penetration of 

the wedges into the barrel was different at the end of the test. This is one of the causes of a premature failure 

by crushing or slipping. As shown in Figure 4.4, the configurations SW_01 and SW_02 demonstrated a 

large displacement mainly due to the non-uniform displacement of the wedges. The configuration SW_03, 

on the other hand, showed a large slip of the tendon because of the non-uniform displacement of the wedges 

combined with the plastic response of the sleeve material. As illustrated in Figure 4.4, when the plastic 
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yield stress of the sleeve material was reached, the specimen was not able to keep carrying higher loads and 

the displacement kept increasing until the premature failure of the tendon was produced. 

4.2.2.3 Concluding remarks 

A preliminary experimental work with mechanical anchorages was carried out in the laboratory under 

quasi-static loading until failure. Because of its similarity with the current systems for steel and 

compactness, a split-wedge anchorage for composite materials was investigated with and without a sleeve 

material. Based on this study, the following conclusions can be drawn: 

1. As mentioned by many researchers, the tapered shape of the wedges introduces a transverse force 

which tends to damage the matrix of the composite material at the loading end of the anchor. The 

transverse force generally causes the premature failure of the tendon in the area of the anchorage. 

In this research, wedges dug into the tendon causing premature failure of the rod. The tensile 

strength capacity of the rods was reduced by around 25-36% of its maximum tensile strength. 

2. Failure modes by crushing or splintering and slipping were observed in this study. When the 

anchorages were used without a sleeve material, the wedges cut the fibres of the rod transversely 

at the loading end of the anchor, leading to a crushing failure mode. Placing a copper sleeve 

between the wedges and the tendon allowed an increase of the failure load to be obtained. 

Furthermore, the failure mode was closer to the rupture of the fibres along the free length. However, 

the failure was still located at the anchorage area. In all cases, the failure was instantaneous and 

catastrophic, rapidly releasing all the energy accumulated in the rods. 

3. The sleeve material placed between the wedges and the tendon clearly enhanced the behaviour of 

the specimen. Nevertheless, the plastic yield stress of the copper was reached during loading which 

produced the slipping of the tendon. Aluminium alloys are suggested for further research because 

of their low elastic modulus (70GPa) and their high plastic yield stress (>200GPa). These would 

allow the stresses at the top of the anchor to be smoothed and the plastic yield stress would not be 

reached during the loading procedure. 

4. The non-uniform displacement of the wedges during the loading caused a premature failure of the 

rods by crushing and slipping. With the aim of increasing the efficiency of the whole, the uniform 

penetration of the wedges into the barrel must be guaranteed.  

4.2.3 Double lap joint 

Double lap joints were manufactured as indicated in Chapter 3 with the adhesives 01, 02 and 03, and tested 

under quasi-static loading up to the point of failure. It is worth noticing that the experimental campaign on 

DLJs was undertaken progressively. First, joints with geometry 01 were tested until failure and the rest of 

the geometries were designed from the results obtained. 
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4.2.3.1 Test setup 

Quasi-static tests on double lap joints, based on ASTM D-3528 [118], were carried out using a Suzpecar 

electromechanical testing machine. The test setup is shown in Figure 4.8. Pneumatic metallic clamps were 

used to grip the ends of each specimen which were perfectly aligned to avoid unwanted effects. The surfaces 

of the grips were provided with shallow hollows so that the load transfer with the specimen could be 

increased. Although this system seems more suitable for metallic specimens it worked correctly where the 

grips were in direct contact with the composite material. However, there was a small slip between the grips 

and the specimen and therefore, the displacement recorded by the movable crosshead was greater than the 

displacement experimented by the joint.  

 

Figure 4.8. DLJ test setup. 

In addition, several specimens were instrumented with strain gauges in order to obtain the experimental 

shear stress distribution on the adherent-adhesive interface. The strain gauges were placed longitudinally 

every 25mm throughout the outer surface of the composite material in the direction of the bonded length. 

The strain gauges used in this research had a gauge length of 10mm and a resistance of 350 .The surface 

beneath the gauges was prepared before attaching the gauges using an abrasive paper (grade 220) and M-

Prep Conditioner A immediately followed by M-Prep Neutralizer 5A from Vishay. The gauges were then 

bonded on the prepared area using a cyanoacrylate adhesive M-bond 200. The specimens instrumented with 

strain gauges were DLJ_01_01_1, DLJ_01_03_1, DLJ_02_01 and DLJ_03_02. The force, displacement 

and strain were continuously recorded during the test at a frequency of 50Hz using an MGCPlus acquisition 

system.  
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4.2.3.2 Strain data acquisition 

The experimental shear stress distribution on the adhesive interface is one of the main aims of the 

experimental campaign for both double lap joints and straight bond-type anchorages. For this purpose, 

several specimens were instrumented with strains gauges attached longitudinally in the external face of the 

outer adherent. Given that the inner adherent cannot be instrumented, the shear stress analysis was carried 

out on the outer adherent - adhesive interface. 

The experimental shear stress distribution on the interface for DLJs was obtained through the experimental 

data recorded along the outer adherent with the strain gauges. Considering uniaxial stress on the outer 

adherent allows the normal stress of the outer adherent to be related with the shear stress transferred on the 

adhesive interface between two strain gauges. The external surface of the outer adherent was divided in 

several lengths. The position of two consecutive strain gauges defined a length. 

The normal strain difference measured between two consecutive strain gauges gave the average normal 

stress transferred to the adhesive through shear stress for each length. The average shear stress of each 

length transferred to the adhesive was represented with a unique value in the centre of each length (see 

Figure 4.9). 

 

Figure 4.9. Experimental shear stress distribution on the outer adherent - adhesive interface. 

The variation of longitudinal force acting on the outer adherent, Fi, can be expressed as follows through 

Equation 4.1:  

(Equation 4.1)

where At is the transversal section of the outer adherent, E is the longitudinal elastic modulus of the outer 

adherent and, i and i-1 are the strain measures between two consecutive strain gauges. Moreover, the 

average shear stress on the outer adherent-adhesive interface can be expressed as shown in Equation 4.2: 

(Equation 4.2)
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where avg_i is the average shear stress for each length between two consecutive strain gauges and Al is the 

longitudinal section of the outer adherent-adhesive interface for each length. The uniaxial stress hypothesis 

on the outer adherent allows equating Equations 4.1 and 4.2 (see Equation 4.3).  

 

(Equation 4.3)

The experimental shear stress distribution of the double lap joints was directly compared with the classical 

analytical formulations of Olaf Völkersen for double lap joints, which neglects adherent shear 

deformations, and the improved theoretical solution of Tsai, Oplinger and Morton (TOM), which includes 

the effect of adherent shear deformations. The comparison of the experimental data and the analytical 

formulations is discussed in the next subsection.  

4.2.3.3 Results and discussion  

The experimental failure load of all double lap joints that were tested are summarised in Table 4.3. It is 

worth noticing that the maximum capacity of the testing machine utilised was 35kN. In the cases where the 

maximum capacity of the machine was reached, the test was stopped and the failure load of the specimen 

was not obtained. 

Table 4.3. Summary of experimental failure load of double lap joint specimens. 

Specimen 
Experimental 

failure load [kN] 

Average shear stress 
on the bonded joint at 

failure [MPa] 
Specimen 

Experimental 
failure load [kN] 

Average shear stress 
on the bonded joint at 

failure [MPa] 

DLJ_01_01_1 21.70 2.70 DLJ_01_03_2 23.65 2.95 

DLJ_01_01_2 18.05 2.25 DLJ_02_01 25.60 2.20 

DLJ_01_01_3 22.70 2.80 DLJ_03_02 - >4.50 

DLJ_01_01_4 20.30 2.55 DLJ_04_02 23.901 >6.00 

DLJ_01_02_1 

DLJ_01_02_2 

DLJ_01_03_1 

- >4.50 DLJ_05_02_1 

DLJ_05_02_2 

DLJ_05_02_3 

18.05 12.90 

- >4.50 16.40 11.70 

22.90 2.85 15.95 11.40 

As shown in Figure 4.10, force-displacement curves for specimens with geometry 01 were principally linear 

up to the instantaneous and explosive failure. Specimens manufactured with adhesives 01 and 03 showed 

a comparable response under quasi-static loading until failure. This may be primarily due to their similar 

stiffness. Moreover, as detailed in Table 4.3, the average shear stress on the adhesive-inner adherent joint 

at the failure load was reported. Similarly, specimens with adhesive 01 and 03 showed a similar maximum 

average shear stress on the bonded length ranging between 2.50 and 3.00MPa. 

                                                      
1 The maximum tensile strength of the composite material was reached and thus the failure did not occur in the bonded 
joint. However, the average shear stress on the bonded joint at failure was 6MPa. 
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Figure 4.10. Measured load and displacement response of DLJs with geometry 01. 

Specimens with adhesive 02 reached the maximum tensile capacity of the tensile machine and the test was 

stopped. Force-displacement curves were linear up to 35kN. At this point of the investigation, the failure 

was not reached for specimens with this adhesive and the average shear stress at the failure load was 

unknown. In all cases where the failure was reached, it occurred within the adhesive but very close to the 

interface between the adhesive and the adherent. Figure 4.11 shows a representative failure surface of all 

the specimens with adhesive 01 and 03. It can be seen that the adhesive layer was broken into small pieces. 

When the failure load was reached, the debonding of the adhesive-adherent interface occurred followed by 

a release of all the energy stored in the adhesive during the loading process.  

 

Figure 4.11. Typical failure surfaces in the DLJs for adhesive 01 (left) and adhesive 03 (right). 

Due to the symmetry of double lap joints, the load is mainly transferred by shear stress through the adhesive-

adherents interfaces. Thus, research has focused on the analysis of the stresses in the adhesive bonded 

length. Specimens DLJ_01_01_1 and DLJ_01_03_1 were therefore instrumented with strain gauges and 

the shear stress distribution along the bonded length was obtained at the failure load of each sample. The 

experimental shear stress distribution on the bonded joint was compared to the classical analytical 

formulation of Völkersen and the improved theoretical solution of TOM. These comparisons are presented 
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in Figure 4.12 and Figure 4.13. It can be seen that the prediction from TOM’s analytical formulation is 

more consistent in both cases than the classical analytical formulation. This reflects the importance of 

considering the shear deformation of the adherents in the analysis for double lap joints.  

 

Figure 4.12. Experimental shear stress distribution along the overlap length of specimen DLJ_01_01_1 compared to the 
analytical formulation of Völkersen and TOM. 

 

Figure 4.13. Experimental shear stress distribution along the overlap length of specimen DLJ_01_03_1 compared to the 
analytical formulation of Völkersen and TOM. 

According to the experimental data, the shear stress distribution in the centre of the joints remained very 

close to zero, whereas the highest values of shear stress were located at the ends of the bonded joint (see 

Figure 4.12 and Figure 4.13). This may be caused by the high stiffness of the adhesives used where the 

adhesive layer cannot develop large deformations. As the centre of the bond line barely contributed to the 

load transfer between the adhesive and the adherents, longer bonded joints were manufactured and tested 

in order to investigate the length influence. As it can be seen in Figure 4.11 (right), a greater number of air 

bubbles formed during the manufacturing of specimens with high viscosity adhesives. This generates a 

distortion of the stress distribution along the bond line and a decrease of the failure load. This issue will be 
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investigated in further detail in the failure surface analysis section. For this reason, and taking into account 

the similar results between specimens with adhesives 01 and 03, solely adhesive 01 was considered for 

further investigation. 

Returning to the comparison of the shear stress distribution, it can be seen that there was a high non-

uniformity of stress distribution along the overlap length. The maximum stresses predicted by the analytical 

formulations were located at the end of the overlap length where, clearly, the classical analytical 

formulation overestimated the experimental shear stress at the ends of the joint. 

As mentioned before, the geometry 02 was manufactured in order to investigate the length influence of the 

bonded joint where the width of the specimen was reduced to ensure the failure within the range capacity 

of the testing machine. In spite the specimen failure not having being reached for samples with adhesive 

02, a longer specimen was manufactured and instrumented with strain gauges to investigate the shear stress 

distribution along the overlap length with the adhesive 02 at the maximum capacity load of the testing 

machine. Due to its lower stiffness, a somewhat more uniform stress distribution was expected than the 

other adhesive systems tested. The load-displacement curves recorded during the loading process were 

fundamentally linear up to either the point of failure, for the specimen DLJ_02_01, or the maximum 

capacity of the testing machine, for the specimen SLJ_03_02.   

Both specimens were longitudinally instrumented with strain gauges along the outer surface of the adherent 

in order to obtain the experimental shear stress distribution on the adhesive-adherent interface. Figure 4.14 

shows the comparison of the experimental data obtained with specimen DLJ_02_01 against the analytical 

formulations of Völkersen and TOM at the failure load. The same behaviour as in previous tests was 

observed. The shear stress at the centre of the overlap length was almost zero, whilst the highest values 

were located at the end of the bonded length. TOM’s analytical formulation fitted the experimental data 

more closely, whereas the classical analytical formulation overestimated the shear stress distribution at the 

ends of the joint. 

Furthermore, increasing the overlap length enlarged the shear stresses close to zero. This suggests that there 

was an effective bonded length for high stiffness adhesives which in this case was approximately 75mm. 

The high stiffness of the adhesive did not allow the deformation of the adhesive layer and, consequently, 

only the ends of the overlap length transferred the load from the inner adherent to the outer adherent through 

the adhesive layer. Once a maximum value of shear stress was reached on the bonded joint, the failure 

started and it was rapidly propagated throughout the overlap length causing the collapse of the specimen. 

This result suggests that high stiffness adhesives are not entirely suitable for straight bond-type anchorages 

as a short effective overlap length limits the overlap length. It is important to mention that ACI [121] 

recommends a minimum length of the steel tube ranging between 300 and 460mm. 
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Figure 4.14. Experimental shear stress distribution along the overlap length of specimen DLJ_02_01 compared to the 
analytical formulation of Völkersen and TOM. 

Furthermore, the experimental shear stress distribution on the adhesive-adherent interface of the 

DLJ_03_02 was obtained at 30kN and compared with the existent analytical formulations as shown in 

Figure 4.15. It can be seen that TOM’s analytical formulation matched with the experimental distribution 

along the overlap length. The difference between the analytical formulations was higher in this case as the 

shear stress distribution predicted by the classical analytical formulation was overrated at the ends of the 

bonded joint and underrated at the centre.  

 

Figure 4.15. Experimental shear stress distribution along the overlap length of specimen DLJ_03_02 compared to the 
analytical formulation of Völkersen and TOM. 

In contrast to previous shear stress comparisons, DLJ_03_02 developed a more uniform stress distribution 

along the overlap length. This result was mainly caused by the low stiffness of the adhesive allowing the 

deformation of the adhesive layer along the bonded joint. Clearly, this behaviour of the joint caused by a 

low stiffness adhesive fitted conveniently with the intended purpose for straight bond-type anchorages as 

the effective length can be much larger in comparison with high stiffness adhesives.  
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In order to reach the failure on DLJs with adhesive 02, the geometry 04 was manufactured where the width 

was reduced four times. However, during the loading process the ultimate tensile strength of the composite 

material was reached causing the failure of the laminate. For this reason, the geometry 05 was designed 

with a smaller overlap area and the failure occurred on the bonded joint.  Figure 4.16 shows the measured 

load and displacement of these specimens during the loading process.  

 

Figure 4.16. Measured load and displacement response of DLJs with geometries 04 and 05. 

The load-displacement curves were mainly elastic up to the point of failure, which occurred 

instantaneously. As it can be seen from curves of specimens DLJ_05_02, there was a significant change in 

the slope between 3 and 4mm of displacement. This slope change was produced when the average shear 

stress on the adhesive-adherent interface was greater than 6MPa. This suggests that adhesive 02 might be 

yielded or damaged before failure. As the average shear stress on the interfaces of the specimen DLJ_04_2 

was 6MPa at failure load, this slope change was not perceived. Also, in specimens DLJ_05_02, the failure 

occurred suddenly on the bonded joint and all the energy accumulated in the adhesive layer was released. 

However, as shown in Figure 4.17, the adhesive layer remained in one piece due to its higher flexibility. 

 

Figure 4.17. Typical failure surfaces in the DLJs with adhesive 02. 
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Finally, it was determined through DLJ_05_02 specimens that the maximum average shear stress on the 

interface of the joint was approximately 12MPa. A parametric study was conducted with TOM’s analytical 

formulation in order to determine the effective length of bond line for double lap joints with adhesive 02. 

The effective length was found to be about 400mm. 

4.2.3.4 Failure surface analysis 

A failure surface analysis was conducted on DLJs using a stereoscope microscope SCZ-T4P Carton at 20x 

magnification. Pictures of the failure surface were taken with a USB Microscopic camera Deltapix DP300. 

DLJs with all three adhesives tested in this preliminary work were examined. Figure 4.18, Figure 4.19 and 

Figure 4.20 show the results of the failure surface analysis of specimens with adhesive 01, 02 and 03, 

respectively. The failure surface analyses for each adhesive displayed are representative of the failure mode 

of all specimens tested. The conventional naked-eye examination after failure showed in Figure 4.11 and 

Figure 4.17, revealed that the failure in all specimens was produced within the adhesive but very close to 

the adhesive-adherent interface, better known as adhesive failure. This failure mode was confirmed with 

the microscopic analysis, where the CFRP laminate (from the failure area) was impregnated with a small 

layer of adhesive. It also contained adhesive particles due to a local cohesive failure of the adhesive. 

It can be seen that the failure surface of specimens with adhesive 01 and 02 was very close to the adhesive-

adherent interface where the laminate surface roughness largely remained complete. In these cases, the 

layer of adhesive impregnated on the laminate was very thin and thus the braided surface of the composite 

material was visible. The microscopic analysis revealed that the laminate surface roughness contained small 

air formations in the shallow depressions of the composite material mainly caused by the manufacturing 

procedure.  

 

Figure 4.18. CFRP laminate failure surface of specimen DLJ_01_01_1 magnified 20x. 
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Figure 4.19. CFRP laminate failure surface of specimen DLJ_05_02_1 magnified 20x. 

 

Figure 4.20. CFRP laminate failure surface of specimen DLJ_01_03_1 magnified 20x. 

The failure surface of the specimen with adhesive 03 was also close to the adhesive-adherent interface but 

there was a thicker layer of adhesive on the CFRP laminate. In Figure 4.20 it can be clearly seen that the 

number of imperfections due to the manufacturing procedure was greater in this case. As mentioned in 

Chapter 3, low viscosity adhesives (adhesives 01 and 02) were manufactured by pouring and injecting, 

whereas high viscosity adhesives (adhesive 03) were prepared by moulding and squeezing. The latter 

generated a greater number of imperfections on the interfaces due to the procedure, as it can be seen in 

Figure 4.20. 

The amount of defects detected on the failure surfaces, mainly formation of voids and air bubbles, were 

quantified. The commercial software Autocad/CAD 2011 was used to analyse the images and it was found 

that imperfections caused an area reduction of the overlap bond of 0.9 and 0.7% for specimens with 

adhesives 01 and 02, respectively. For specimens with adhesive 03 there was an area reduction of the 

overlap bond of around 11%.  
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4.2.3.5 Concluding remarks 

Preliminary experimental work with double lap joints was conducted in the laboratory under quasi-static 

loading until failure. The different adhesives that were tested offered an understanding of the failure 

mechanism and the load transfer behaviour of the bonded joints. The following conclusions can be drawn: 

1. In all cases, the failure was produced within the adhesive but very close to the adhesive-inner 

adherent interface. The damage began at the loading end of the joint and it was propagated very 

rapidly throughout the overlap bonded length releasing all the energy stored during the loading 

process.  

2. The failure surface analyses with a stereoscope microscope revealed that low viscosity adhesives 

presented a lower number of defects on the adhesive-adherent interface than high viscosity 

adhesives due to the manufacturing process undertaken in this research. 

3. For all the DLJs, the failure mode occurred instantly and explosively. Double lap joints with 

adhesives 01 and 03 mainly showed an elastic-linear behaviour up to failure whilst specimens with 

adhesive 02 showed a slight softening of the stiffness. This might be caused due to the yielding or 

damaging of the adhesive during the loading process. 

4. The experimental shear stress distribution on the failure surface was obtained and compared with 

the existent analytical formulations for DLJs of Völkersen and TOM. It was found that the TOM’s 

analytical formulation offered a high prediction of the stress distribution on the interface up to 

failure, highlighting the importance of the adherent shear deformation. The classical analytical 

formulation, on the other hand, overestimated the shear stress prediction at the ends of the bonded 

joint.  

5. The highest shear stresses on the failure surface at the ultimate load were at the ends of the bonded 

length whilst the lowest shear stresses were placed at the centre of the joint. For the adhesives with 

high stiffness, the lowest shear stresses were very close to zero limiting the usable bonded length. 

Increasing the overlap length for high stiffness adhesive resulted in a length increase of the shear 

stresses close to zero. Thus, there is an effective bonded length that can be much larger for low 

stiffness adhesives.  

4.3 Straight bond type anchorage 

4.3.1 Objectives 

Straight bond-type anchorages were experimentally and numerically studied under quasi-static loading up 

to failure. Also, an analytical formulation was developed to predict the shear stress distribution on the 

adhesive-inner adherent interface. Notably, the geometry of the anchorages was designed in order to obtain 

the failure of the joint in the bonded interface between the adhesive and the composite material. This 



Chapter 4. Quasi-static analysis  

 

 

65 

allowed the failure mechanism of the bonded joint to be investigated. The objectives of this section were 

as follows: 

1. To study the failure mode of the straight bond-type anchorages. As was observed in the preliminary 

experimental work with DLJs, the failure was expected on the adhesive-adherent interface by 

adhesion failure. The failure mode was examined after testing through a conventional naked-eye 

and microscopy examination of the failure surface. In addition, two specimens with GFRP rods 

were designed and tested in order to study the failure mode in the free length of the rod.  

2. To investigate the different mechanical response of anchorages by using different adhesive 

systems. Ten adhesives were tested and the behaviour during the loading process was assessed. As 

was seen in the experimental preliminary work, force-displacement curves can show either an 

elastic-linear behaviour or a change in the slope due to yielding or damage of the adhesive. For this 

purpose, ten structural adhesives for composite materials with high strength were tested and, force 

and displacement were measured continuously until failure. The failure load of the specimen as a 

whole was also assessed.  

3. To analyse the influence of the anchor length during the loading process and the failure load by 

testing specimens with different bonded length. This was then done with straight bond-type 

anchorages with adhesive 02. 

4. To investigate the influence of the adhesive thickness with anchorages with adhesive 02. Three 

different adhesives thicknesses were tested so that the evolution of shear stress along the overlap 

bonded length and their influence on the failure load could be studied. 

5. To obtain the static strength of the anchor geometries which are studied under time-dependent and 

fatigue loads. In order to normalise the time-dependent and fatigue experimental data, the static 

strength of the anchorages is required. However, even though CFRP rods were provided under the 

same trade name to perform fatigue and stress relaxation testing activities, the superficial roughness 

of the tendons was differed slightly. For this reason, quasi-static tests were also conducted on the 

anchors with the rods with the thinnest and thickest adhesive layers of the geometries studied in 

Chapter 5 and 6 (A_01_02 and A_02_02). The ultimate failure load was evaluated in order to 

determine whether the superficial roughness had a significant influence on the final failure load of 

the straight bond-type anchorages. 

6. To develop an analytical formulation for straight bond-type anchorages from TOM’s analytical 

formulation for double lap joints. In addition, an anchorage was instrumented with strain gauges 

on its outer surface in order to compare and validate the proposed analytical formulation. 

7. To numerically research the response of straight bond-type anchorages with adhesive 02 under 

quasi-static loading. The bonded length and adhesive thickness influence was also numerically 
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investigated. Different adhesive models were investigated and compared with the experimental 

data in order to obtain a model able to predict the response of the straight bond-type anchorages. 

4.3.2 Experimental work 

Straight bond-type anchorages with ten different adhesives were experimentally tested under quasi-static 

loading in the laboratory up to failure. The composite material used in this research was principally CFRP, 

except for specimens A_04_02 and A_05_02 which were manufactured with GFRP tendons. Due to the 

lower tensile strength of GFRP, the failure mode in the free length of the tendon was studied. However, the 

main study focuses on the analysis of the stresses on the adhesive-tendon interface which was achieved 

through anchorages with CFRP rods. 

4.3.2.1 Test setup 

Pull-out tests on the anchor models based on ACI 440.3R B.10 [121] were carried out using an MTS 

actuator. All specimens were tested in tension until failure under displacement control, at 1mm/min. The 

casings had external metric screw threads which were used to attach the specimens to the test machine. 

However, the specimen A_03_02_1 was not provided with an external metric screw as it was longitudinally 

instrumented with eight strain gauges placed every 25mm throughout the outer surface of the steel housing 

in order to validate the analytical formulation developed in this research.  

 

Figure 4.21. Test setup of straight bond-type anchorage. 

The strain gauges used in this study had a gauge length of 10mm and a resistance of 350 .The surface 

beneath the gauges was prepared before attaching them with the use of abrasive paper (grade 220) and M-

Prep Conditioner A immediately followed by M-Prep Neutralizer 5A from Vishay. The gauges were then 

attached to the prepared area of the housing steel using a cyanoacrylate adhesive M-bond 200. The load, 
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displacement and strain data were recorded at a frequency of 50 Hz using an MGCPlus data acquisition 

system. The pull-out test specimens, with and without strain gauges, is shown in Figure 4.21. Also, a high-

speed recording camera MotionBLITZ was used to record the failure. 

4.3.2.2 Results and discussion of CFRP rod anchorages 

In all specimens with CFRP rods the failure occurred within the adhesive but very close to the interface 

between the adhesive and the tendon. The failure produced on the interface allows the failure mechanism 

of the bonded joint and the influence of the anchor geometry to be studied.  Figure 4.22 shows the typical 

failure phenomenon throughout the bond length. It can be seen how there are still some adhesive particles 

attached to the CFRP tendon after failure.  

 

Figure 4.22. Typical failure surface in the bonded anchorages with CFRP. 

Table 4.4. Summary of experimental failure load of straight bond-type anchorages. 

Specimen Experimental failure load [kN] 

A_01_02_1 58.70 

A_01_02_2 60.20 

A_01_02_3 64.97 

A_01_02_4 39.95 

A_02_02_1 75.10 

A_02_02_2 51.15 

A_03_02_1 87.24 

A_01_03_1 37.70 

A_01_04_1 84.70 

A_01_06_1 49.53 

A_01_06_2 45.42 

A_01_07_1 59.02 

A_01_08_1 72.77 

A_01_09_1 73.85 

A_01_10_1 43.72 

A_06_04_1 107.86 

A_06_04_2 104.26 

A_06_05_1 78.01 

A_07_02_1 110.70 
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Table 4.4 summarises the experimental failure load measured in straight bond-type anchorages with CFRP 

rod tested under quasi-static loading. Although different failure mechanisms were observed depending on 

the adhesive used, the experimental failure load was considered as a reference of the maximum tensile 

strength of each anchorage. All specimens showed similar behaviour during the loading process which was 

either principally linear elastic up to the point of instantaneous failure or elastic-plastic with a significant 

change in the slope of force-displacement curve. Figure 4.23 shows the recorded failure of specimen 

A_01_03_1 with a high-speed recording camera which elapsed in 1.3 sec. 

 

Figure 4.23. Recorded failure of specimen A_01_03_1. (1.3 sec) 

Specimens with adhesive 02 were studied more thoroughly where the influence of the overlap length and 

thickness were assessed. The adhesive 02 was chosen for further investigation due to its high experimental 

failure load in comparison with other adhesive systems tested. Furthermore, the low viscosity of the 

adhesive also allowed for specimens of high quality to be manufactured. With low viscosity adhesives, a 

lower number of imperfections on the adhesive, such as accumulation of air bubbles, than high viscosity 

adhesives were obtained, avoiding a reduction of the bonded area and a distortion of the stress distribution 

due to the imperfections. 

Figure 4.24 shows the measured load and displacement response of the specimens with adhesive 02. As 

can be seen, force-displacement curves were generally linear up to the point of failure, which occurred 

suddenly and explosively. It is worth noticing that the displacement was measured by the internal linear 

variable differential transformer of the actuator which registered the displacement of the MTS actuator 

cylinder accurately but did not represent the real displacement of the specimen due to little relative 

displacements among all the components of the testing system. However, the measured displacement offers 

an understanding of the behaviour of the specimens under quasi-static loading. 
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Figure 4.24. Measured load and displacement response of anchorages with CFRP rods and adhesive 02. 

On some force-displacement curves there was a slight softening in the slope. This might be due to yielding 

of or damage to the adhesive before failure. Also, the slope change was more evident for specimens that 

reached greater failure loads. Furthermore, it can be noticed that the specimens with higher adhesive 

thickness achieved a higher ultimate force. The relationship between the failure load reached and the 

adhesive layer thickness was mainly linear. A reason for this result may be that a more uniform distribution 

of adhesive stress occurred at the top of the bonded joint with the thicker adhesive layers. Moreover, with 

the same adhesive thickness a higher ultimate force was reached with the longer bonded joint. This was 

probably due to the fact that there was more load-carrying area of the adhesive in the longer joints. 

 

Figure 4.25. Measured load and displacement response of anchorages with geometry 01.hesive 02 
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Diverse structural adhesives for composite materials with high strength were also tested and assessed. It 

was observed that the force-displacement curves were mainly linear up to sudden failure. However, a few 

specimens presented a plastic region before failure.  Specifically, specimens A_01_04_1 and A_01_08_1 

behaved mostly liner-elastically up to the point that specimens reached a small plastic region very close to 

the failure load. Specimens A_01_06 and A_01_10_1 showed a larger plastic region when approximately 

the 80% of the failure load was exceeded. Finally, the specimen A_06_05_1 showed an extensive plastic 

region when the maximum load was reached. The measured load and displacement responses of all these 

specimens are shown in Figure 4.25 and Figure 4.26. 

 

Figure 4.26. Measured load and displacement response of anchorages with geometry 06. 

As mentioned in the introduction of this section, the CFRP rods utilised for fatigue and time-dependent 

analyses were provided with a slightly different superficial roughness. As the static strength of the 

anchorages is an essential value for normalising the fatigue and time-dependent data, quasi-static tests were 

conducted on the anchors with the rods with the thinnest and thickest adhesive layers (specimens 

A_01_02_4 and A_02_02_2). The failure loads obtained were compared with the failure loads of specimens 

A_01_02 and A_02_02_1. Quasi-static tests were undertaken according to the test setup and static strengths 

of 39.95 and 51.15kN were obtained for the thinnest and thickest adhesive layers, respectively. It is clear 

that there was a significant reduction in the ultimate load of the specimens when compared to the 

experimental results shown in Figure 4.24 (reduction of 30-35%). Therefore, these results will be used 

solely as static tensile strength of the anchors for fatigue and time-dependent analyses. The force-

displacement curves of these specimens are shown in Figure 4.27. Similarly, these specimens behaved 

mostly linear up to instantaneous failure. 
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Figure 4.27. Measured load and displacement response of anchorages A_01_02_4 and A_02_02_2. 

4.3.2.3 Results and discussion of GFRP rod anchorages 

Specimens with GFRP were designed so that the maximum tensile strength of the rod can be reached and 

that the failure mechanism when it is produced in the free length of tendon can be studied. Figure 4.28 

shows the failure of the GFRP tendons in their free length. Due to the lower tensile strength of the GFRP2 

used, the ultimate capacity of the chemical bond was not expected, as the tendon would reach its maximum 

tensile strength. During the loading process, premature fibre failures in the tendon were noticed as the 

applied load approached the failure load. When the maximum capacity of the tendon was exceeded, the 

failure in the free length of the rod was produced rapidly and suddenly. Figure 4.29 shows the recorded 

failure of specimen A_04_02_1 with high-speed recording camera which elapsed in 332 msec. The failure 

loads of specimens A_04_02 and A_05_02 were 29.85 and 50.94kN, respectively. 

 

Figure 4.28. Failure mode of straight bond-type anchorages with GFRP. 

                                                      
2 The tensile strength of the GFRP was 2.5 times lower than CFRP rods used in this research. 
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Figure 4.29. Recorded failure of specimen A_04_02_1. (332 msec) 

The force-displacement curves of both specimens measured during the loading process up to failure are 

shown in Figure 4.30.  It can be seen that a substantial change occurred in the slope of the specimen 

A_05_02_1 when approximately 60% of the failure load was exceeded. This may largely be caused by the 

onset of damage in the adhesive layer. However, the ultimate tensile strength of the tendon was reached 

before the failure of the chemical bond. Furthermore, the specimen A_04_02_1 showed an elastic-linear 

behaviour up to sudden failure. This may be caused due to the ultimate tensile strength of the rod was 

reached before the damage in the adhesive layer was initiated. 

 

Figure 4.30. Measured load and displacement response of the anchorages with GFRP rods. 

4.3.2.4 Failure surface analysis 

A failure surface analysis was conducted on straight bond-type anchorages with adhesive 02 using a 

stereoscope microscope SCZ-T4P Carton with magnification levels ranging from 8x to 20x. Pictures of the 

failure surface were taken with a USB Microscopic camera Deltapix DP300. Figure 4.31 and Figure 4.32 
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show the failure surface of the specimen A_01_02_1 magnified x8 and x20, respectively. As mentioned 

earlier, the failure occurred within the adhesive but very close to the adhesive-rod interface. It can be seen, 

that the CFRP rod contained a large amount of adhesive particles and it is considered that the adhesive 

reached its maximum adhesion strength during the loading process causing it to fail very close to the 

interface. As shown in more detail in Figure 4.32, the tendon contained adhesive particles on its entire 

surface. The failure surfaces displayed are considered representative of all specimens tested with adhesive 

02 under quasi-static loading (excluding specimens A_01_02_4 and A_02_02_2). 

 

Figure 4.31. CFRP tendon failure surface of specimen A_01_02_1 magnified x8. 

 

Figure 4.32. CFRP tendon failure surface of specimen A_01_02_1 magnified x20. 

Figure 4.33 and Figure 4.34 show the failure surface of the specimen A_01_02_1 magnified x8 and x20. 

As previously mentioned, a second batch of CFRP rods was used in order to study the fatigue and time-

dependent behaviour of the straight bond-type anchorages. It was detected that the superficial roughness of 

these tendons was differed slightly from the first batch and the quasi-static results showed that there was a 

reduction of the static strength of around 30-35%. As expected, the failure surface analysis revealed that 

the chemical bond with the composite rod was not completely successful. The strength of attraction between 
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the adhesive and the rod was reduced, and the number of adhesive particles attached to the failure surface 

was lower. As mentioned by Packham [130] the surface energies of the adhesive and substrate mainly 

determine the adhesive bond and the molecular attraction between adhesive and tendon. In this case, the 

adhesion strength reduction might be caused due to a lower surface energy of the second batch of rods. 

 

Figure 4.33. CFRP tendon failure surface of specimen A_01_02_4 magnified x8. 

 

Figure 4.34. CFRP tendon failure surface of specimen A_01_02_4 magnified x20. 

4.3.3 Analytical modelling 

An analytical formulation is proposed in this section in order to determine the shear stress distribution in 

straight bond-type anchorages. As TOM’s analytical formulation offered an accurate prediction of the shear 

stress distribution in DLJs, the equilibrium equations presented by Tsai, Oplinger and Morton [30] were 

modified in order to take into account the circular geometry of the anchor. A linear constitutive equation of 

the materials involved was considered. Also, a linear shear distribution through the thickness of the 

substrates was assumed. 
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Only an outline of the analysis is presented in this section, full details are provided in Appendix A. 

Following the nomenclature of Figure 4.35, the shear stress distribution on the interface between the 

adhesive and the rod, i can be determined through Equation 4.4. 

 

Figure 4.35. Anchor geometry. 
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(Equation 

4.5) 

where E0 is the elastic modulus in the longitudinal direction of the steel housing, Ei is the elastic modulus 

in the longitudinal direction of the FRP tendon, G0 is the shear modulus in the longitudinal direction of the 

steel housing, Gi is the shear modulus in the longitudinal direction of the FRP tendon and Gc is the shear 

modulus in the longitudinal direction of the adhesive layer. The coefficients A and B for a ‘Pull-Pull’ 

solution are determined by: 
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(Equation 4.6)  

  

ܤ ൌ
ߚ ∙ ݈ ∙ ߬௠௜
sinhሺߚ ∙ ݈ሻ

 (Equation 4.7) 

in which mi is the average shear stress on the adhesive-rod interface and is defined by Equation 4.8; 
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(Equation 4.8)
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It should be noted that this formulation assumes that the adhesive behaves like a linear elastic material. The 

adhesive used in the experimental tests was ductile and it was likely that a plastic zone may have been 

developed before final failure. Thus the analytical formulation was validated at lower levels of load for the 

specimen A_03_02_1, which was instrumented with strain gauges on the outer steel tube (adapted to 

introduce a region with no thread) for this purpose. 

Considering the axial stresses in the steel housing and the steel constitutive equation, the analytical 

formulation for the shear stress on the adhesive-tube interface can be used to find the normal strain in the 

steel housing (assumed constant across the wall thickness). This was compared with the experimental 

recorded data at low values of load where the adhesive remained within its linear region. Figure 4.36 

compares the experimental and analytical strains along the external surface of the anchor. It can be seen 

that the correlation between the two shows a good agreement, thus validating this analysis at lower loads.  

 

Figure 4.36. Normal stress distribution along the external surface of the steel housing of the specimen A_03_02 at 
different loads. 

In addition, the analytical solution was used to predict the shear stress distribution at the adhesive-rod 

interface for the four geometries at their respective experimental failure loads presented in Figure 4.24. As 

anticipated, the maximum shear stresses developed, were considerably in excess of the yield stress for the 

adhesive. However, it can be seen that the maximum shear stress predicted was common for all the 

configurations with the same anchor length independent of the adhesive thickness. Thus, in principle, it 

might be possible to use the analytical solution in order to predict the failure load of the anchor for different 

thicknesses. However the failure stress would have no physical significance. Further, it would not be 

applicable for different anchor lengths as can be seen in Figure 4.37 shows that using this elastic analysis a 

higher “adhesive failure stress” is required for a longer anchor length where the bond length refers to the 

adhesive-rod interface bond from the loading end of the anchor to the bottom of the anchor. In practice, it 



Chapter 4. Quasi-static analysis  

 

 

77 

is likely that yielding occurs and that the longer anchor length enables a longer yield zone to be developed, 

producing higher joint strengths. To investigate this further and model some of these more complex aspects 

it was necessary to undertake FE modelling, which will be discussed in the next section. Also, the developed 

solution analysis and the linear finite element method were found to be in very good agreement with each 

other (see Figure 4.39). 

 

Figure 4.37. Shear stress distribution along the adhesive-rod interface obtained with the analytical formulation. 

4.3.4 Numerical modelling 

In order to predict the quasi-static response of the bonded anchorage, a finite element model was developed 

in Abaqus/CAE.  This study focuses on the experimental results obtained with straight bond-type 

anchorages with adhesive 02 shown in Figure 4.24. Owing to the shape of the anchor, a 2D axisymmetric 

model was used (see Figure 4.38). This simplified the model and hence optimised computing resources. 

Four different geometries were modelled according to the geometries that were tested experimentally 

(A_01_02, A_02_02, A_03_02 and A_07_02). The bottom of the steel housing was fully fixed and the top 

of the CFRP rod was loaded either with an axial force or an axial displacement. Different material models 

of increasing complexity were investigated for the adhesive layer. Initially the adhesive was modelled with 

linear elastic properties. Following this, adhesive yielding was modelled using both von Mises plasticity 

and Drucker-Prager plasticity, the latter enabling the hydrostatic dependency of the adhesive to be included 

in the modelling. Finally, progressive damage was included in the modelling in order to capture the entire 

mechanical response of the anchor including the damage initiation and evolution leading to joint failure. 

Progressive damage modelling with a cohesive zone was investigated where the elements followed a 

traction-separation law. This section contains a more detailed discussion on a number of these aspects. 

Geometric non-linearity was included in all the analyses.  



Chapter 4. Quasi-static analysis  

 

 

78 

A structured mesh composed by four-noded axisymmetric stress elements (CAX4R) with a mesh density 

of 0.5mm was used for the whole model. When a cohesive zone was used, structured four-node 

axisymmetric cohesive elements (COHAX4) with a multi-linear traction-separation response were utilised 

to study the progressive damage in the adhesive bond line. The size of the cohesive element was 0.5x0.5mm 

throughout the adhesive bond line.  

A sensitivity analysis of the mesh was conducted for all the geometries in order to determine the most 

suitable mesh size for the straight bond-type anchorages. As the experimental failure load was located on 

the adhesive-tendon interface, numerical modelling work focused on the stress distribution on the adhesive 

layer.  A convergence analysis was undertaken reducing the mesh size until a lower variation of 1% of the 

maximum shear stress distribution on the adhesive-tendon interface was obtained. The sensitivity analysis 

was performed through a linear elastic analysis of all the geometries and it was considered suitable for the 

rest of the analyses. 

 

Figure 4.38. Finite element mesh and boundary conditions for the geometry with a bore and length of 14 and 200mm 
respectively. 

Finally, it is worth mentioning that the main objectives of the numerical modelling lied in the stress 

distribution of the adhesive layer due to the premature failure of the straight bond-type anchorages on the 

adhesive-tendon interface. For this reason, the composite material tendon was modelled as an elastic 

orthotropic material in all cases, as the failure mode was not achieved in the rod. The steel housing was 

also modelled as an isotropic elastic material as there were no evidence of local failures during the 

experimental campaign. 

4.3.4.1 Linear elastic modelling  

Initially a linear elastic analysis was undertaken for all four configurations. The material properties required 

for each material for this analysis were the Young's modulus and Poisson's ratio. The mechanical properties 

of the materials are summarised in Chapter 3. In these linear elastic analyses the experimental failure load 
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was applied to the CFRP bar with a linear ramps instead of a displacement. The shear stress distribution 

along the adhesive-rod interface was assessed at the failure load for all the geometries (see Figure 4.39). 

 

Figure 4.39. Shear stress distribution along the adhesive-rod interface obtained with lineal elastic modelling. 

The results were consistent with and confirm the analytical modelling discussed above (compare Figure 

4.37 and Figure 4.39). The anchors with the same bonded length but different adhesive thicknesses all 

reached similar shear stress values when loaded at their respective failure loads even though their 

geometries were moderately different. According to these results, a higher load can be reached for the same 

level of maximum stress as the adhesive thickness increases (as noted with the analytical solution 

proposed). However, the linear elastic finite element analyses showed a perturbation in the stress at both 

ends of the adhesive layer due to the end effects. The analytical solution was not able to provide this level 

of detail. Figure 4.40 illustrates the shear stress distribution through the different materials at the top of the 

anchor where the stresses were at their highest. The in-board peak in the adhesive shear stress, which gave 

rise to the perturbation discussed above and seen in Figure 4.39, is clearly seen in this more localised view. 

However, although the maximum adhesive stresses at the failure load were the same for all three anchors 

of the same length, there are two main drawbacks. The first is that this value is not the same for the longer 

anchor and the second is that these maximum stresses are well in excess (>40%) of the yield stresses 

provided by the manufacturer for this adhesive3. Both factors suggest that the behaviour of the adhesive 

cannot be modelled as linear elastic. The adhesive is reasonably ductile and clearly there will be 

considerable yielding in the joint prior to failure. Consequently, further analyses were carried out 

considering non-linear behaviour of the adhesive. From the linear analyses it was clear that stress levels in 

                                                      
3 The tensile and compressive yield stresses for the adhesive MBrace Primer are 14.5 and 26.2MPa respectively. 
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the CFRP rod and steel were not sufficiently high to cause yielding in these materials and hence linear 

elastic models were retained for these. 

 

Figure 4.40. Shear stress distribution at the top of the anchor (MPa). 

4.3.4.2 Elasto-plastic modelling (von Mises plasticity) 

Initial analyses were elastic-perfectly plastic (i.e. no strain hardening) assuming von Mises yielding. The 

analyses were carried out with the experimental failure load for all the geometries for a range of different 

adhesive yield stresses from 15 to 45MPa. Figure 4.41 shows the predicted relationship obtained between 

the adhesive yield stress and the maximum equivalent plastic strain (PEEQ) at the experimental failure load 

for each of all four configurations. When the yield stresses were below a certain (configuration dependent) 

value the maximum failure load could not be achieved. This was because global yielding occurred at these 

yield stresses, at loads below the experimental failure load recorded. When selecting a yield stress above 

these levels the failure load could be achieved but, for a specified yield stress, a different maximum plastic 

strain (i.e. a differing extent of yield) was reached in each configuration.  

It is clear that the use of a critical plastic strain for predicting the strength of these anchor joints is not 

possible. Whilst the use of an adhesive thickness dependent failure strain might be feasible it would be 

difficult to justify physically and the value of these strains are considerably higher than the stated material 

data provided by the manufacturer. Furthermore, the mismatch in failure strains for the two anchors that 

have the same adhesive thickness but different overlap length (see Figure 4.41) suggest that this approach 

is inappropriate. 
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Figure 4.41. Variation of maximum equivalent plastic strain at failure with yield stress (von Mises plasticity). 

4.3.4.3 Elasto-plastic modelling (Drucker-Prager plasticity) 

As shown in previous studies [131][132], polymers generally exhibit greater yield stresses in compression 

than in tension. This is certainly the case for the adhesive 02 as the tensile and compressive yield stresses 

are 14.5 and 26.2MPa, respectively. Therefore, the classical von Mises yield criterion, which has no 

hydrostatic yield dependency, did not fully model the adhesive. In order to take into account the hydrostatic 

pressure sensitivity in the adhesive, Drucker-Prager plasticity was considered. The yield criterion for this 

model was based on the shape of the yield surface in the meridional plane, where the equivalent stress 

depends on the hydrostatic pressure. The Equation 4.9 gives the Drucker-Prager yield criterion for 

hydrostatic pressure sensitivity in materials.  

ߞ ∙ ௬௧ߪ
ଶ ൌ 3 ∙ ଶܬ ൅ ሺߞ െ 1ሻ ∙ ଵܫ (Equation 4.9)

where is the ratio between the yield stress in compression, yc, to the yield stress in tension,yt, at the 

same equivalent plastic strain, J2 is the second invariant of the deviatoric stress sensor and I1 is the first 

invariant of the deviatoric stress tensor. The yield surface can be expressed in Abaqus/CAE as a linear, a 

hyperbolic or a general exponent form. The linear model offers the most complex form which provides a 

possibly noncircular yield surface in the deviatoric plane. The hyperbolic and general exponent models use 

a von Mises section in the deviatoric stress plane, which means that the yield surface in the deviatoric plane 

is circular. In this research, the general exponent form was used because of the experimental data available 

for calibration of the model parameters. Also, the exponent form is the most general of the three yield 

criteria. The yield surface in the meridional plane for the general exponent form is presented in Equation 

4.10 and Figure 4.42. 
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ܨ ൌ ܽ ∙ ௕ݍ െ ݌ െ ௧݌ ൌ 0 (Equation 4.10)

where a and b are independent material parameters of the plastic deformation, pt is the initial hydrostatic 

stress strength of the material (hardening parameter), p is the equivalent pressure stress and q is the von 

Mises equivalent stress expressed in Equation 4.11. 
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∙ ௜௝ݏ ∙ ௜௝ݏ ൌ ඥ3 ∙ ଶܬ (Equation 4.11)

in which sij are the components of the stress deviator tensor. Comparing Equations 4.10, the yield surface 

on the meridional plane, and 4.9, the yield criterion for this model, and setting the parameter b=2 (as 

indicated by Charalambides and Dean [133]), the parameters a and pt can be obtained as shown in Equation 

4.12 and 4.13. 
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Figure 4.42. Yield surface in the meridional plane in Drucker-Prager plasticity for the general exponent form. 

The material parameters used in this Drucker-Prager model are summarised in Table 4.5. The experimental 

failure load was applied to each of the four joint configurations and the resulting stress and plastic strain 

distributions were obtained. A plot of the equivalent stress, which was the yield stress for the plastic region, 

for all the geometric cases at their failure load is shown in Figure 4.43 where the red dash lines divide the 

plastic region from the elastic region of each geometric case. It can be seen that, unlike the von Mises 

plasticity, the yield stress varied along the length of the anchor. This was because the hydrostatic pressure 

varied along the overlap length, tending to be highest towards the overlap ends. Nevertheless, the maximum 

equivalent stresses are still well in excess of the yield stresses provided by the manufacturer. 
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Table 4.5. Drucker-Prager plasticity 
parameters. 

Drucker-Prager Parameters 

Type Exponent form 

Material constant a 0.02849 

Exponent b 2 

Dilation angle,  24.23 
 

Table 4.6. The equivalent plastic strains at the experimental failure 
load. 

Geometry PEEQ [%] 

A_01 48.2 

A_02 29.1 

A_03 40.5 

A_07 53.6 
 

The equivalent plastic strains corresponding to the failure load of each joint are shown in Table 4.6. It can 

be seen that the strains were generally lower than those obtained with von Mises plasticity and were more 

physically reasonable. This was because higher levels of yield stress were sustained due to the hydrostatic 

pressure. Figure 4.44 illustrates the maximum equivalent strain along the adhesive-tendon interface of each 

geometry at the corresponding failure load. It can be seen that the maximum values shown in Table 4.6 

correspond with the maximum equivalent stress very close to the loading end of the anchorage.  Further, 

there was less variation between the critical strain levels, suggesting that these would predict the anchor 

loads more accurately. However, even with this model the loads would not be better predicted than around 

+/- 20%. 

 

Figure 4.43. Equivalent stress distribution along the adhesive-rod interface (Drucker-Prager plasticity). 

The fact that an elasto-plastic model with a critical plastic strain was unable to properly explain the effect 

of anchor length on joint strength suggests that a more complex failure mechanism might be active. 

Specifically, failure might occur in the more stressed regions followed by a frictional force resisting 

separation at the failed surfaces. Such a mechanism would account for the dependency of the strength on 

anchor length, but in a way that better matched the measured experimental data. To consider this further, it 

was necessary to undertake progressive damage modelling where the material can reach a peak, fail, and 
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then experience further deformation at a reduced level of (frictional) load. This is reported in the progressive 

damage modelling subsection. 

 

Figure 4.44. Maximum equivalent plastic strain along the adhesive-rod interface (Drucker-Prager plasticity). 

4.3.4.4 Progressive damage modelling 

The adhesive was modelled with a progressive damage model (CZM) where the constitutive behaviour of 

the cohesive element was defined by a traction-separation response. This is implemented by following the 

assigned elastic curve until a point of damage initiation. Subsequently, the stress is modified by a damage 

parameter that ranges between 0 (no damage) and 1 (fully damaged). There are various ways of defining 

damage. In this work it was defined as a function of separation to give a sharp drop (to simulate fracture) 

followed by a long region of constant but high damage (to simulate the friction process). A multi-linear 

traction-separation response was utilised to simulate the loading, failure and subsequent (post-failure) 

friction between both materials. This is illustrated in Figure 4.45, which shows the resulting traction-

separation response calibrated with the experimental results.  

 

Figure 4.45. Progressive damage modelling response used in CZM in the normal direction. 
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Damage initiates in the cohesive elements when a quadratic interaction function involving the nominal 

stress ratios reaches a value of one. Unlike other criteria, this criterion considers the interaction of all the 

nominal stresses instead of only one nominal stress. A quadratic interaction damage initiation criterion was 

used to link the tractions as outlined in Equation 4.14.  
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where ‹› is the Macaulay bracket meaning that the compression stress state does not contribute to damage 

initiation, tn, ts and tt are the stress components predicted by the elastic traction-separation without damage, 

and tn
0, ts

0 and tt
0 are the nominal threshold stresses which specify the maximum traction allowed. The 

normal and shear yield stress were set at 28.30 and 16.34MPa, respectively, as it was considered that the 

chemical bond allows reaching the ultimate strength of the adhesive provided by the manufacturer. 

The damage after the point of initiation was defined to increase with displacement up to complete failure 

at a critical value of displacement. The damage evolution for a linear softening is expressed through the 

equation proposed by Camanho and Davila (see Equation 4.15) [134]. 
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 (Equation 4.15) 

where m
max refers to the maximum value of the effective displacement during each loading increment, m

f 

specifies the effective displacement at complete failure and m
0 specifies the effective displacement at 

damage initiation. The effective displacement in all the cases was defined as the quadratic interaction of 

the displacement components as shown in Equation 4.16. 

௠ߜ ൌ ට〈ߜ௡〉ଶ ൅ ௦ଶߜ ൅ ௧ߜ
ଶ (Equation 4.16) 

where ‹› is the Macaulay bracket, n, s and t are the displacement components predicted and m is the 

effective displacement predicted. In addition, the displacement components were defined as the nominal 

strain components multiplied by the original thickness of the cohesive elements. 

However, in this research a tabular damage evolution was utilised to simulate the friction process. For a 

tabular softening, the damage, D, was directly defined as a function of the effective displacement relative 

to the effective displacement at damage initiation. Ten points of damage were defined (see  

Table 4.7) where the damage between consecutive points was linearly obtained through Equation 4.15. 
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Table 4.7. Tabular damage evolution 

Damage m
max -m

0 

0.00 0.000 

0.50 0.015 

0.78 

0.89 

0.030 

0.060 

0.95 0.180 

0.98 0.540 

0.99 1.500 

1.00 4.000 

Furthermore, severe convergence difficulties were found during solving, due to the damage evolution and 

stiffness degradation specified. In this sense, Abaqus/CAE allows regularising the traction-separation laws 

using a viscous parameter permitting the stresses to be slightly outside of the limits set by the traction-

separation law. This regularisation process involves the consideration of a viscous stiffness degradation 

parameter, Dv, which depends on the viscosity parameter, and the degradation variable considered in 

Equation 4.15. It is worth noticing that the viscosity parameter must be a small value compared to the 

characteristic time increment in order to improve the convergence of the model without compromising 

results. In this work, a viscosity parameter of 0.001 was considered for a characteristic time increment of 

0.1. The stress components predicted by the traction-separation elements were affected by the viscous 

stiffness degradation after damage initiation as described in Equations 4.17. 

࢚ ൌ ሺ1 െ ௩ሻܦ ∙  (Equation 4.17) ࢚̅

 

Figure 4.46. Force – displacement diagram obtained with CZM. 
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Figure 4.47. Shear stress distribution along the adhesive-rod interface obtained with CZM. 

When damage was initiated, the maximum stress moved down the adhesive-rod interface. The predicted 

load-displacement response for each of the four joints is shown in Figure 4.46 and is discussed in more 

detail later. Figure 4.47 shows the shear stress distribution along the CFRP interface at the maximum load 

reached in each of the geometries (as shown in Figure 4.46). Damage spreads in from both ends of the bond 

but mainly from the end where the CFRP was loaded (0mm bond length in Figure 4.47). The region where 

the shear stress was at its maximum (at about 18MPa) indicates the current damage front (i.e. damage has 

spread about 150mm in the 200mm long anchors and about 350mm in the 460mm long anchor). Material 

to the left of this front was damaged and to the right remained undamaged (until the other end was 

approached). The rapid fall in shear stress corresponds with the rapid damage in the traction-separation 

model whilst the plateau lower level corresponds to the friction region. In the shorter anchors the damage 

was spread furthest in the anchor with the thinnest adhesive layer. It can be seen that the maximum load in 

each anchor was reached when the maximum stress was close (less than 50mm) to the bottom of the bonded 

joint. The longer “friction” region in Figure 4.46 for the 460mm long anchor enabled this configuration to 

sustain the higher failure load observed experimentally.  

Moreover, Figure 4.48 illustrates three different stages of the damage front evolution and its shear stress 

distribution in the adhesive section for the anchor with the thickest adhesive4. Point “a” shows the shear 

stress distribution when damage started at the top of the joint. The corresponding force at this stage was 

slightly greater than 37kN. Below this force, the joint behaved completely linearly with the maximum shear 

stress occurring at the top of the bonded joint. When damage was initiated, the maximum shear stress 

travelled along the joint towards the bottom. At the point “b”, the damage front and the maximum values 

                                                      
4 Geometry A_03. 



Chapter 4. Quasi-static analysis  

 

 

88 

of shear stress reached around the middle of the joint. It can be noticed that the top of the bonded joint was 

highly damaged with values between 0.9 and 1. This damage zone was transmitting the lower frictional 

loads. Finally, point “c” shows the shear stress distribution in the adhesive when the joint reached the 

maximum damage it can sustain. The force at this stage was very close to the experimental failure load. 

The maximum values of shear stress occurred at the bottom of the joint where most of the overlap length 

was in the frictional region. 

 

Figure 4.48. Damage and shear stress evolution along the cohesive layer and adhesive section respectively for the 
geometry 24_200mm. 

Returning to consider the predicted failure loads in Figure 4.46, as discussed in the elastic analysis, for 

joints of the same length, initial damage (at a given stress) occurred at higher loads for the larger adhesive 

thicknesses due to a more uniform stress distribution along the adhesive length. This results in the joints 

with thicker adhesive layers having the higher predicted strengths seen in Figure 4.46. These features match 

the measured joints strengths very well and show good correlation between the measured and predicted 

strengths of the four anchor geometries. 

Finally, geometric cases corresponding to specimens A_01_02_4 and A_02_02_2 were also simulated with 

progressive damage evolution. Experimental data under quasi-static loading showed that, in both cases, 

there was a reduction of 30-35% of the static failure load in comparison with the experimental results 

obtained in Figure 4.24. This was mainly caused by the batch of CFRP tendons intended for the fatigue and 
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stress relaxation analyses presented a slightly different superficial roughness. In these cases, the strength of 

attraction between the adhesive and the rod decreased and thus did not allow the ultimate strength of the 

adhesive provided by the manufacturer to be reached due to a premature failure in the tendon-adhesive 

interface. For this reason, the traction-separation law response was recalibrated for these specimens 

reducing the normal and shear yield stresses proportionally, as well as the tabular damage evolution.  

 

Figure 4.49. Force – displacement diagram obtained with CZM for specimens A_01_02_4 and A_02_02_2. 

As shown in Figure 4.49, the progressive damage evolution provided a predictive failure load very close to 

the experimental data recorded. Predicted static strengths of 41.30 and 50.10kN were obtained for the 

thinnest and thickest adhesive layers, respectively. The recalibrated normal and shear yield stresses, which 

provided a predictive failure close to the experimental data, were 17.20 and 9.93MPa, respectively. The 

tabular damage evolution parameters were also readjusted and summarised in Table 4.8. It is worth 

mentioning that all these parameters will be used in Chapter 6 in order to simulate the fatigue behaviour of 

the straight bond-type anchorages.  

Table 4.8. Tabular damage evolution for specimens A_01_02_4 and A_02_02_2. 

Damage m
max -m

0 

0.00 0.000 

0.50 0.009 

0.78 

0.89 

0.018 

0.036 

0.95 0.108 

0.98 0.324 

0.99 0.900 

1 2.400 

Moreover, Figure 4.50 illustrates the shear stress distribution along the adhesive-rod interface at the failure 

load of each geometric case. As mentioned earlier, the damage was initiated at the loading end of the 
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anchorage (0mm bond length) and propagated throughout the overlap joint from the top to the bottom of 

the anchorage (200mm bond length). The maximum shear stresses (at about 12MPa) indicate the current 

front damage, which is placed at the bottom of the bonded joint. At this stage, the failure load of each 

specimen was reached, although the material placed on the left of the front damage corresponds to the 

damaged bonded length, which represents the friction region of the traction-separation law of the cohesive 

elements (at about 5MPa).  

 

Figure 4.50. Shear stress distribution along the adhesive-rod interface obtained with CZM for specimens A_01_02_4 and 
A_02_02_2. 

4.3.5 Concluding remarks 

In this section, experimental, analytical and numerical results of the tensile characteristics of straight bond-

type anchorages for CFRP tendons under quasi-static loading have been investigated. Based on the 

experimental results, the following conclusions can be drawn: 

1. In all specimens with CFRP tendons, a premature failure of adhesive-tendon interface was 

observed. The failure started at the top of the anchorage (loading end) and was quickly propagated 

to the bottom of the joint throughout the overlap length. The naked-eye examination and the 

microscopic analysis revealed that the failure surface occurred within the adhesive but very close 

to the interface. 

2. Force-displacement curves were largely linear up to the point of failure, which occurred rapidly 

and explosively. However, several specimens showed a significant change in the slope revealing 

that nonlinearities in the adhesive must occur. This was the case with adhesive 02 which was 

considered for further investigation. 

3. Different geometries of adhesively bonded anchors were tested in tension to failure and higher 

failure loads were reached when either the adhesive thickness or the bonded length was higher.  
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Moreover, an analytical formulation from TOM’s theoretical solution was developed and validated with 

experimental data at low loads in order to predict the shear stress distribution in circular anchorages. From 

the analytical modelling, it can be drawn that: 

4. The analytical solution proposed for the adhesive stresses in the anchor was able to predict the 

stress state in the anchor for low values of load but not at higher loads, where the material yields. 

For this reason, this formulation allows providing an approximate distribution of shear stress in the 

bonded joint for circular anchors for adhesives which mainly behave linear elastic up to failure.  

Finally, numerical modelling was conducted to predict the static strength and the failure mechanism of 

straight bond-type anchorages with adhesive 02. From the numerical modelling, the next conclusions can 

be drawn: 

5. An axisymmetric FE model was developed to assess the anchor under static tensile loading. Elastic 

analyses were unable to successfully predict the measured responses as the required stresses where 

physically unreasonable and were different for different anchor lengths. 

6. Similarly, when using von Mises plasticity there was no correlation between the maximum 

equivalent plastic strains of the adhesive at the point of failure of each configuration. 

7. When the adhesive was modelled with Drucker-Prager plasticity, the scatter in the adhesive failure 

strains, although improved, was still too high to enable reliable strength prediction to be made. 

8. A cohesive zone model with progressive damage and a “frictional” post-damage region was shown 

to provide predicted joint strengths that correlate closely with the measured experimental data. This 

model was able to successfully describe the different failure loads with different thicknesses and 

lengths of adhesive layer. 
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 Time-dependent analyses 

5.1 Introduction 

Adhesives and bonded joints often exhibit time-dependent mechanical properties which may affect the 

functionality and durability of a structure. These effects can be observed by the phenomena of creep under 

constant load or stress relaxation under constant strain. Also, time-dependent effects may vary the stress or 

strain noticeably at a particular point which may lead to a malfunction of the structure or, in the worst-case 

scenario, an unexpected premature failure. 

Therefore, the adhesively bonded anchorage needs to be investigated under time dependent phenomena in 

order to determine the durability of the anchorage and the stress field variation of the adhesive during its 

lifespan. This chapter summarises the experimental work and numerical modelling of straight bond-type 

anchorages for CFRP tendons with the adhesive 02 under creep and stress relaxation loading. 

5.2 Creep analysis 

5.2.1 Introduction 

The creep phenomenon is the continuous deformation of a solid material under the action of a constant load 

or mechanical stress over long periods of time. As mentioned in the state of the art, there are three 

characteristic stages of creep. In the first stage, known as primary creep, the material deforms quickly but 

slows with increasing time until a relatively uniform rate of deformation is reached. The second stage or 

secondary creep is the dominant phase of the creep phenomenon. It is also the most studied and understood 

stage of the creep phenomenon. In the last stage or tertiary creep, the deformation rate increases and the 

material fails due to a large amount of strain. In this research the straight bond-type anchorage was studied 

under axial creep loading with the aim to investigate the influence of constant loads over long periods of 

time. 

Experimental creep tests on single lap joints (SLJs) with the adhesive 02 were undertaken. The variables 

assessed were the adhesive thickness and the creep loading. In addition, the creep response of the SLJs was 

predicted using Finite Element Analysis. A visco-plastic material model, based on the Bailey-Norton law 

(creep power law) [74,135] was calibrated with the experimental data and utilised to predict the creep time 

until failure of SLJs. The effect of creep damage was modelled by degrading the adhesive plastic yield 

stress.  
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The creep model developed was also applied to the straight bond type anchorage with the aim to study the 

creep aspects requiring consideration in the anchorages. Furthermore, creep times to failure on anchorages 

were assessed at the average fatigue loads utilised in this research in order to investigate the influence of 

the creep phenomenon on the fatigue testing activities carried out in this investigation. 

5.2.2 Objectives 

Single lap joints with the adhesive 02 were experimentally and numerically studied under creep loading up 

to failure. Different adhesive thicknesses were tested with the same overlap length in order to obtain a creep 

law able to predict the creep failure time. The parameters of the creep law were calibrated with the 

experimental data obtained from the SLJs. Finally, the creep law was used to predict the creep time to 

failure of the bonded anchorages. The objectives in this section are drawn in the flowchart presented in 

Figure 5.1 and described as follows: 

1. To obtain an experimental creep law. Single lap joints were tested under creep loading up until 

failure. The parameters assessed include the adhesive thickness of SLJs and creep loads. Although 

the joint superposition length, also known as overlap length, is a well-known influencing variable 

in bonded lap joints, it has not been included as a variable. SLJs were tested in order to obtain 

additional information about the bonded joint to model the straight bond-type anchorage. In this 

sense, the overlap length of the anchorages was large enough for the full adhesive stress field to be 

developed. Thus the primary parameter of interest in the anchorages was the adhesive thickness 

and not the overlap length. This was the reason why only the adhesive thickness was varied in the 

SLJ. It was considered that the overlap length in the short overlap SLJ would not add significant 

information. The most suitable mathematical formulation of creep was used in order to fit the 

experimental creep response obtained. 

2. To develop a numerical model considering time-dependent phenomena for SLJs and straight bond-

type anchorages. As was mentioned in the state of the art, the model proposed by Su and Mackie 

[81], which was able to simulate adhesively bonded joints under time-dependent loading by 

reducing the plastic yield stress of the adhesive layer to zero, was found to fit the boundary 

conditions of the topic covered in this chapter. A numerical model, which follows the main features 

of the model developed by Su and Mackie, was investigated for SLJs and straight bond-type 

anchorages.  

3. To predict the creep times until failure of the anchors that were tested under fatigue loading by 

using the numerical model. The aim of this study lies in the possible influence of time-dependent 

phenomena during the fatigue testing activities. Creep times to failure of the anchorages were 

obtained at the mean fatigue loads and compared with the longest times to failure of fatigue test in 
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order to evaluate whether it was necessary to include time-dependent effects on the fatigue analysis 

(Chapter 6). 

 

Figure 5.1. The flowchart of the creep analysis objectives. 

5.2.3 Experimental work 

5.2.3.1 Test setup 

With the aim to determine the most suitable creep loads, pull-out tests on SLJs were undertaken to 

determine the static strength. The static tests were carried out using an MTS actuator under displacement 

control at 0.5mm/min. Force and displacement were recorded at a frequency of 50 Hz using an HBM 

MGCPlus data acquisition system. One specimen of each geometry was tested up to failure in order to 

obtain the static strength. The overlap length, the width and thickness of the bond line are summarised in 

Chapter 3. 
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Obtain a creep failure criterion calibrated 

with the experimental data (SLJs). 

Apply the numerical model and the creep failure criterion to simulate 

the straight bond-type anchorages under creep phenomenon. 

Obtain an experimental creep 

response of the joints studied through 

creep tests on SLJs.

Adjustment of a creep mathematical model 

(creep law) to the experimental data. 

Develop a numerical model, which takes into account the creep law and 

the reduction of the plastic yield stress of the adhesive, in order to simulate 

time-dependent phenomena on SLJs.  

Compare the creep times to failure of the anchors that were tested under fatigue loading 

with the aim to determine the influence of time-dependent effects during the fatigue 

testing activities. 
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Moreover, creep tests on the SLJs based on ASTM D2294 [136] were undertaken. The creep test machine 

was based on a levered beam with a load ratio of 10:1, as seen in Figure 5.2. SLJs were attached to the 

shortest arm of the beam and the specimens were aligned vertically in order to avoid unwanted bending 

effects. Specimens were loaded by applying a dead weight at the other end of the beam. The weight was 

gradually applied by hand over a short timespan so that any sharp impulse on the beam could be avoided. 

The load remained constant after application until failure of the specimen. The use of a levered beam test 

setup is a well-known technique for creep testing [71].  

 

Figure 5.2. Creep test setup for SLJs. 

Time to failure was recorded using an HBM Spider 8 acquisition system. When the specimen failed, the 

loading weight on the other side of the beam fell on an aluminium plate. This plate was instrumented with 

a strain gage and the values of strain were continuously recorded at a very low frequency (1 Hz). When the 

loading weight fell, a large jump in the strain was recorded. This enabled the time, when the specimen 

failed, to be accurately determined. The creep test setup for the SLJs is shown in Figure 5.2. The different 

loads assessed were the 80, 60 and 40% of the average static strength of the SLJs for all the geometries and 

an additional load of 20% for the geometry SLJ_02_02.  

A detailed view of the test setup is shown in Figure 5.3. It can be seen that the specimen was mainly loaded 

under shear stresses. It is worth noticing that the non-symmetric geometry of SLJs also introduced a bending 

moment on the joint. In this sense, metallic square spacers were placed between the grips in order to avoid 

the load eccentricity and reduce the effect of bending moment on the adhesive layer. The thickness of the 

metallic square spacers utilised were equal to the thickness of the adhesive layer as well as one substrate 

for each geometric case. 



Chapter 5. Time-dependent analyses 

 

 

96 

 

Figure 5.3. Detail of creep test setup for SLJs. 

5.2.3.2 Results and discussion 

In all the specimens, failure occurred within the adhesive but very close to the interface between the 

adhesive and the composite material.  Figure 5.4 shows the typical failure phenomenon throughout the bond 

length for the single lap joints. Detailed pictures of the failure surface can be seen in the next subsection 

(failure surface analysis). 

 

Figure 5.4. Typical failure surfaces in the SLJs. 

In the pull-out tests, the experimental force-displacement curves were largely linear up to the point of 

failure, which occurred suddenly. The average static strength obtained from all four specimens was 1,563N. 

This result defined the creep loads assessed which were 1250, 940, 625 and 325 N as they represented the 

80, 60, 40 and 20% of the average static strength of SLJs. 

Moreover, the experimental creep times to failure obtained from the single lap joints are shown in Figure 

5.5 and Table 5.1. Clearly, the average shear stress is the same for all the specimens which were loaded 
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with the same load. Generally, the increased load eccentricity associated with the thicker adhesive layers 

introduced an increased bending moment and hence increased the adhesive stresses. This resulted in thicker 

specimens tending to have a shorter lifetime than thinner specimens at the same creep load. The 

experimental results were assessed with the aim to obtain individual curves for each geometric case, 

however the experimental tests were limited and the trends obtained were not wholly consistent. In this 

approach, introducing a thickness dependent creep failure strain accommodated the effect of adhesive 

thickness. For this reason, the experimental data were combined into one unique linear curve, giving the 

relation between the average shear stress and the creep time to failure (see Figure 5.5). As the average stress 

was reduced, the lifespan was increased. 

 

Figure 5.5. Experimental load-life creep data for the single lap joints. 

Table 5.1. Experimental creep time to failure of SLJs. 

Specimen Average shear stress [MPa] Creep load [N] Creep time to failure [hours] 

SLJ_01_02_1 8.95 1,250 57.17 
SLJ_01_02_2 6.70 940 2552.89 
SLJ_01_02_3 4.50 625 999.84 
SLJ_02_02_1 8.95 1,250 6.04 
SLJ_02_02_2 6.70 940 87.88 
SLJ_02_02_3 4.50 625 4232.95 
SLJ_02_02_4 2.25 312 5262.34 
SLJ_03_02_1 8.95 1,250 3.94 
SLJ_03_02_2 6.70 940 2163.32 
SLJ_03_02_3 4.50 625 140.68 
SLJ_04_02_1 8.95 1,250 3.02 
SLJ_04_02_2 6.70 940 179.25 
SLJ_04_02_3 4.50 625 57.41 
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5.2.3.3 Failure surface analysis 

Failure surface analyses were conducted on single lap joints using a stereoscope microscope SCZ-T4P 

Carton with magnification levels ranging from 10x to 25x. Pictures of the failure surface were obtained 

with a USB Microscopic camera Deltapix DP300. Figure 5.6, Figure 5.7 and Figure 5.8 show the most 

characteristic SLJ failure surfaces after testing.  

The conventional naked-eye examination revealed that the failure occurred in the adhesive-adherent 

interface due to adhesive failure. It was observed that the CFRP laminates contained small adhesive 

particles which indicated local failures caused by adhesive cohesive failure, similar to DLJs and anchorages 

experimentally studied in Chapter 4. As discussed earlier, the strength of the chemical bond mainly depends 

on the surface energy and can therefore be revealed in the failure surface analysed. In Chapter 4 it was seen 

that specimens, which were considered to reach the maximum adhesion strength during the loading process, 

contained adhesive particles on their entire failure surface. Specimens, which reached lower static strength 

due to lower attraction strength between the adhesive and the rod, contained a lower number of adhesive 

particles on their failure surface.  

Figure 5.6 shows the failure surface of the CFRP laminate magnified x10. The failure mainly occurred 

because of adhesion failure, although there are several adhesive particles attached to the composite material 

due to local cohesive failures of the adhesive. These small adhesive particles were spread on the failure 

surface of SLJs, covering their entire surface. The failure surfaces of the SLJs were found to be analogous 

to the failure surfaces observed in specimens A_01_02_4 and A_02_02_2, where the surface energy was 

lower (see Chapter 4). This result allows for the use of the experimental load-life data from the SLJs in 

order to predict the time-dependent behaviour of the straight bond-type anchorages. 

 

Figure 5.6. CFRP laminate failure surface of specimen SLJ_04_1 magnified x10. 
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Moreover, the conventional naked-eye examination of the SLJ failure surfaces occasionally detected 

different local failure modes worth mentioning. Figure 5.7 shows a local failure surface on the adhesive 

layer where the cohesive failure of the adhesive was more evident, especially at the top of the image. This 

local failure was solely detected in the specimen SLJ_04_01 and located at the end of the overlap bonded 

length. Further, Figure 5.8 shows the adhesive layer surface where the epoxy resin acquired the shape of 

the shallow hollows of the composite material and, locally, some particles of the CFRP laminate attached 

to the adhesive layer. 

 

Figure 5.7. Adhesive failure surface of specimen SLJ_04_1 magnified x10. 

 

 

Figure 5.8. Adhesive failure surface of specimen SLJ_01_1 magnified x25. 
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5.2.4 Numerical modelling 

Finite element models were developed in Abaqus/CAE for SLJs and anchors in order to develop a model 

able to predict the creep response of the straight bond-type anchorages. A 2D plane stress finite element 

model, shown in Figure 5.9, was developed to predict the SLJ behaviour under creep loading. Four different 

geometries were modelled according to the geometries tested experimentally presented in Chapter 3. A 

convergence analysis of the mesh was undertaken for all the geometries to determine the most suitable 

mesh size for the single lap joints. The mesh size was progressively reduced until a lower variation of 1% 

of the maximum shear stress distribution on the adhesive-adherent interface was obtained. Four-noded 

plane stress elements (CPS4R) with a mesh density of 0.1mm were used for the whole model. One end of 

the substrate was assigned an encastre constraint. At the other end the transverse displacement and the 

rotation were constrained and the (axial) creep load was applied.  

 

Figure 5.9. Finite element mesh and boundary conditions for the geometry SLJ_01_02. 

Furthermore, a 2D axisymmetric model was developed for the anchor (see Figure 5.10). An axisymmetric 

model, rather than a full 3D model, was considered to minimise the computational effort. The anchorage 

geometries were experimentally tested under fatigue and stress relaxation loading was modelled5. The 

bottom of the steel housing was entirely fixed and the top of the CFRP was loaded with an axial force. The 

anchor models were used to predict the creep time to failure of the geometries in order to assess the creep 

influence during the fatigue analysis (see Chapter 6).  Four-noded axisymmetric stress elements (CAX4R) 

with a mesh density of 0.1mm were used for the creep model. It is worth mentioning that the same mesh 

density as the SLJs was used for the anchors. Even though the mesh produced is, possibly, sufficient, the 

same mesh was required as the maximum creep strain from the SLJs simulations was taken to determine 

the creep failure time of the anchors. This is more valid if the meshes are the same size in both cases. 

                                                      
5 Geometries A_14, A_16, A_18 and A_20. 
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Figure 5.10. Finite element mesh and boundary conditions for the anchor with a bore and length of 14 and 200mm 
respectively. 

 

Figure 5.11. a) Steps applied in the creep modelling b) Creep degradation scheme implemented. 

The creep modelling of both models (SLJs and anchors) were conducted considering elastic-perfectly 

plastic von Mises plasticity, creep and progressive damage for the adhesive. An elastic-perfectly plastic 

model was deemed a reasonable starting point for two reasons a) the post-yield hardening was relatively 

modest and b) the elastic-plastic model parameters were to be degraded by the accumulated creep strain 

and so the exact form of plasticity is less critical as in an analysis where the plasticity is not degraded. A 

time-dependent analysis was required to consider the creep phenomenon. As can be seen in Figure 5.11a, 

two steps were applied. In the first step, the force was applied linearly from 0 to Pmax in 1 second. In the 

second step, much longer, the force remained constant until the creep failure of the joint was reached. In 
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the SLJs, Pmax was based on the experimental creep loads used. As there was no experimental creep data 

for the anchors, forces used in the anchor modelling were equal to the mean force applied in the fatigue 

experimental tests. This anchor modelling was undertaken in order to assess whether the predicted creep 

time to failure was long enough for creep damage to be neglected, when compared with the fatigue damage 

in the fatigue modelling. Although the anchor and the SLJ do not experience the same mode mix of loading 

both experience peel and shear stresses at the site of failure and thus the material response generated from 

the SLJ was applied directly to the anchor modelling. 

 

Figure 5.12. The flowchart of the creep model in Abaqus/CAE. 

The von Mises yield stress for the adhesive was defined initially at 17.20MPa as this was the maximum 

strength obtained in the quasi-static analysis of the joints (see Chapter 4). In order to simulate the damage 

in the joint, a subroutine in FORTRAN was implemented to take into account a progressive damage based 

on the reduction of the yield stress. Figure 5.11b shows the creep degradation scheme implemented. Once 

the equivalent creep strain, CEEQ, was greater than 90% of the maximum equivalent creep strain allowed, 

CEEQ*, the yield stress, initially set at 17.20MPa, was degraded linearly to 1MPa, thus effectively 

producing local adhesive failure.  

The creep model is illustrated in more detail in a flowchart form in Figure 5.12. The maximum equivalent 

creep strain was set at the beginning of the simulation when both damage and time increment were still 

zero.  The time-dependent analysis started in the first time increment of the second step (see Figure 5.11a) 

and the equivalent creep strain of each adhesive element was obtained. The damage of each adhesive 

element was calculated through the user subroutine and the adhesive plastic properties were linearly 

degraded if the damage was greater than 0.9. Once the damage and plastic yield stress of each adhesive 
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element was updated, a new time increment was evaluated. This loop was repeated until the joint was not 

able to keep carrying the load applied. 

5.2.4.1 Creep modelling of SLJ 

A creep mathematical model was utilised in order to fit the average curve obtained from the SLJ 

experimental data (see Figure 5.5). This permitted implementing the creep in the numerical model to 

simulate the joint under the creep phenomenon. A commonly used creep model response is provided by the 

Bailey-Norton law, also known as creep power law. The classical power law for creep allows for the 

characterisation of the primary and secondary creep regimes whereas a tertiary creep regime is not 

considered. The creep power law is presented in Equation 5.1. 

௖௥ߝ݀
ݐ݀

ൌ ܣ ∙ ஻ߪ (Equation 5.1)

where A and B are material constants, cr is the creep strain, t is the creep time and  is the normal tensile 

stress at which the specimen is subjected. The experimental creep times to failure obtained from the single 

lap joints were used to find the material constants of the creep power law. The power law multiplier, A, and 

the equivalent stress order, B, were found to be 1.75E-13 and 7, respectively. It can be seen in Figure 5.13 

that the creep power law fits the average experimental stress-time to failure data very well (see Figure 5.5). 

 

Figure 5.13. Creep power law and average. 

However, the maximum local equivalent creep strain (CEEQ*) in each geometry at failure was unknown. 

The maximum local equivalent creep strain was determined for each single lap joint geometry with the aim 

to obtain the failure time of the joint according to the experimental creep law. This was undertaken in an 

iterative manner, i) selecting a value of CEEQ*, ii) using progressive damage FEA to determine the time 

to failure for that CEEQ*, iii) adjusting the value of CEEQ* accordingly and repeating the process. The 
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value of CEEQ* required was found to be adhesive thickness dependent. As the number of SLJs tests was 

limited, it was not possible to fit curves to individual thicknesses and the data were insufficient to obtain 

consistent trends. For this reason, a single regression line was adopted where the creep failure strain was 

found to be thickness dependent. Figure 5.14 shows the variation of CEEQ* as a function of the adhesive 

thickness. These data were used to determine the maximum equivalent creep strain allowed for the anchors 

of different adhesive thicknesses. The anchor thicknesses studied were 3, 4, 5 and 6mm and the maximum 

equivalent creep strain allowed for the creep modelling of the anchorages were obtained through a quadratic 

polynomial equation (as shown in Figure 5.14), which is displayed on the graph. The maximum equivalent 

creep strains used in this research for both SLJs and anchorages are summarised in Table 5.2. 

 

Figure 5.14. Maximum equivalent creep strain allowed as a function of the adhesive thickness. 

 

 

Table 5.2. Maximum equivalent creep strain for SLJs and anchorages. 

Geometry CEEQ* 

SLJ_01_02 0.0700 

SLJ_02_02 0.1300 

SLJ_03_02 0.3000 

SLJ_04_02 0.5750 

A_14 0.1171 

A_16 0.2014 

A_18 0.3277 

A_20 0.4960 
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Figure 5.15. The ratio CEEQ/CEEQ* at creep failure for all SLJs at the lowest creep load. 

Figure 5.15 shows the creep strain distribution (normalised by the creep failure strain) at the point of failure 

for all SLJs at the lowest creep load. This is representative of the mode of failure in all the SLJs at all the 

creep loads. In all joints, the damage initiated at the ends of the joint and grew towards the centre on both 

interfaces. Both damage fronts were joined in the centre of the joint when they were adjacent to each other. 

When this occurred, the values of CEEQ/CEEQ* on the adhesive-substrate interfaces were greater than 0.9 

and the joint was not able to carry the load specified because of the degradation of the plastic yield stress 

and thus failure was predicted. 

5.2.4.2 Creep modelling of straight bond-type anchorage 

The anchors were modelled using the same creep power law as the SLJs. It is known that the secondary 

bending is one of the key factors which influence the peel stress distribution in SLJs, whilst the effect of 

Poisson’s ratio at the entry point of the bonded anchorages introduces peel stresses. Even though the mode 

mix in the SLJ and the anchor were not the same, they both experienced peel and shear stresses and thus it 

was considered that the results could be transferable. The maximum equivalent creep strain was determined 

according to the geometry of the anchor (see Figure 5.14). In these models the creep time to failure was the 

unknown variable which was determined in the same way as in the SLJ (i.e. by the evolution of the localised 

creep failure). Therefore, the anchors were modelled until the joint was no longer able to carry the load 

specified.  As mentioned earlier, the creep modelling of the anchorages was used to predict the creep time 

to failure of each geometry to assess the creep influence during the fatigue analysis. For this reason the 

mean fatigue loads which were used in fatigue testing activities, were utilised in this section. The forces 

assessed were 24 and 36kN. 
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In the same way as in the SLJs, the damage initiated at the top of the adhesive-tendon interface where 

stresses were highest, and grew along the bonded length towards the bottom. Figure 5.16 shows the shear 

stress distribution at the last time increment of each anchor on the adhesive-tendon interface at a creep load 

of 24kN. The damage front travelled along the joint until it reached the bottom of the joint. At this point 

the joint was no longer able to carry the load and the failure of the anchor was assumed. It is worth 

mentioning that the damage front started to travel when the elements were not fully damaged. This means 

that these elements still had some capacity to sustain load. This is perfectly reflected in Figure 5.16 where 

the lowest values of shear stress were about 3MPa. 

 

Figure 5.16. Shear stress distribution along the adhesive-rod interface at the last time increment at a creep load of 24kN. 

 

Figure 5.17. Predicted creep failure times for all the geometries. 

Figure 5.17 and Table 5.3 show the predicted creep failure times for all the geometries at the two loads. In 

Figure 5.17 the creep loads were normalised by the static failure load of each anchor (see Chapter 4). The 

predicted creep failure times of each geometry gave a unique curve showing a consistent trend. As can be 
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seen in Table 5.3, the predicted creep failure times were greater for each geometry (by a factor ranging 

between 1.5 to 17.5) than the experimental fatigue tests. This suggests that in many of the cases considered, 

creep may not significantly influence the fatigue experimental tests. Thus, the creep phenomenon was not 

considered in the subsequent fatigue modelling (see Chapter 6). This should be considered a starting point 

and subsequent research should address the combination of creep and fatigue damage. 

It can be concluded from Figure 5.17 and Table 5.3, that the adhesively bonded anchors for CFRP rods, 

might suffer failure by creep at short values of time for high loads. This suggests the anchors should 

preferably be loaded at low loads so that the creep phenomenon does not become a problem. 

Table 5.3. Predicted creep failure times and longest experimental fatigue tests. 

Specimens 

Time to failure at 24 kN Time to failure at 36 kN 

Predicted creep 
failure time [s] 

Longest experimental 
fatigue test [s] 

Predicted creep 
failure time [s] 

Longest experimental 
fatigue test [s] 

A_14 58,453 6,311 1,920 64 

A_16 206,020 138,845 8,644 1,567 

A_18 524,775 160,586 24,865 1,986 

A_20 956,942 271,616 50,122 2,876 

5.2.5 Concluding remarks 

Creep tests at different loads were conducted on SLJs of various geometries. The creep model, developed 

from SLJs and applied to the anchors, was based on a time-dependent analysis where the progressive 

damage and final creep failure were implemented by degrading the plastic yield stress of the adhesive 

material. Regarding the creep analysis, the following conclusions can be drawn: 

1. Creep tests conducted on SLJs showed that specimens with thicker adhesive layers tended to have 

a shorter lifespan than specimens with thinner layers at the same creep load. The load eccentricity 

associated with the non-symmetric geometry of SLJs introduced a bending moment which 

increased the adhesive stresses depending on the adhesive layer thickness. An experimental creep 

law, which related average shear stress of the bonded joint and time to failure, was obtained and 

utilised to calibrate the numerical model. 

2. A creep power law based on the Bailey-Norton law was utilised in the numerical work. The 

parameters of the creep power law were calibrated with the experimental data available and it was 

found that the maximum equivalent creep strain in the SLJs at failure load was thickness dependent. 

The thickness dependency was mainly caused by the utilisation of a single load-time regression 

curve of the experimental data. Although, it is considered that this thickness dependency might be 

physically non-existent, this solution is an artificial way allowing the bonded joints to be simulated 

under the creep phenomenon. A quadratic polynomial equation which related both variables 

(CEEQ* and thickness) was found and utilised to obtain the maximum equivalent creep strain most 

suitable for the thicknesses used in the anchorages.  
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3. Creep modelling of the straight bond-type anchorages was undertaken successfully. This revealed 

that the lifespan of the anchors was short at high loads suggesting that they should be loaded at low 

loads in order to increase their lifespan in real structures. 

4. The large predicted creep time to failure at the mean fatigue loads indicated that the creep loading 

aspect during fatigue testing activities should not significantly influence the fatigue lifetime. 

Consequently, the influence of the creep phenomenon was not considered in the fatigue modelling 

(see Chapter 6). 

5.3 Stress relaxation analysis 

5.3.1 Introduction 

The stress relaxation phenomenon is the stress relief of a solid material under the action of a constant strain. 

The rate of relaxation is usually higher just after the constant strain is applied and it is progressively reduced 

until a near to constant rate of relaxation is reached. The rate of relaxation is mainly determined by several 

mechanisms including grain boundary slipping, movement of dislocations, and the formation of vacancies 

or free volumes. 

The long-term load loss in prestressed structures is an important factor which is usually estimated and 

incorporated into the calculation together with the effective stress. The relaxation stress losses of the 

prestressing cables mainly depend upon the type of tendon, the anchorage and the initial stress. For this 

reason, the adhesively bonded anchorage investigated in this research has been studied under the effect of 

stress relaxation. 

On one hand, experimental stress relaxation tests were undertaken on anchorages with adhesive 02 where 

the main parameter assessed was the adhesive thickness of the anchorage. Ten specimens were prestressed 

at three different initial tensioning forces and the displacement was held constant in order to study the 

experimental load loss in the specimens. During this time, seven specimens were additionally restressed to 

the original tensioning load when the load loss was stabilised and constant. 

On the other hand, the creep power law found in the creep analysis was used to predict the stress relaxation 

of the anchors. The model was implemented in Abaqus/CAE and the load loss of each anchor was simulated 

during the relaxation process before restressing, and compared with the experimental data.  

5.3.2 Objectives 

Straight bond-type anchorages were experimentally and numerically investigated under stress relaxation 

loading. Different geometries were tested at three different initial tensioning forces6. The initial tensioning 

                                                      
6 The initial tensioning forces were 16, 24 and 32kN. 
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forces were approximately distributed equidistantly within the static strength range of the anchorages. Also, 

the geometries cases were simulated numerically using the numerical model found in the creep analysis 

section from SLJs. The main objectives of this section are described as follows: 

1. To design and propose a test setup for long term tests in order to study the stress relaxation on 

straight bond-type anchorages after applying the initial tensioning force. The system mainly 

consists of a tubular support, which kept a constant distance between both anchorages of each 

specimen, and a load cell that continuously recorded the tensioning force. 

2. To investigate the load loss experimented by the anchorages when an initial loading force was 

applied. The tendency and the relationship between the load loss and the different geometries was 

studied. The influence of the different initial tensioning forces in the load loss evolution was also 

investigated. 

3. To study the restressing technique on straight bond-type anchorages. Several specimens were 

restressed up to four times at their corresponding initial tensioning force once the load loss was 

stabilised and constant. The load loss evolution after restressing was experimentally studied. 

4. To predict the stress relaxation of the different geometries of the straight bond-type anchorages by 

using the numerical model described in the creep analysis section. The model was implemented in 

Abaqus/CAE through the Bailey-Norton creep law and the load loss of each anchor was 

investigated and compared to the experimental results during the relaxation process before 

restressing. 

5. To establish the most relevant recommendations for a potential use of straight bond-type 

anchorages in prestressing applications by discussing the experimental and numerical results. 

5.3.3 Experimental work 

5.3.3.1 Test setup  

A new system was developed in order to measure the load loss when the displacement between anchorages 

is fixed. Figure 5.18a shows half a section of the specimen and its system for keeping the displacement 

constant. Specimens were located into a tube and both ends were fixed. At one end, a load cell of 100kN 

was placed to continuously measure the tensioning force of the anchor. Through a thread adapter, this 

anchor of the specimen was completely attached to the load cell. At the other end, a reaction steel plate, nut 

and washer were placed but not attached to the anchor. The specimen was pulled with a hydraulic jack for 

stretching cables. However, the jack did not prestress the anchor directly. Instead, a prestressing steel cable, 

which was attached to the anchor through a cable-anchor connector, was used. It is worth noticing that 

during the prestressing process, the jack produced the action over the steel cable (tensioned) and the reaction 

over the reaction plate 2, the double H-beam (also known as double I-beam) and the reaction plate 1 

(compressed). The double H-beam was chosen because its cross section allowed the free movement of the 
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steel cable between its webs during the prestressing process. As the double H-beam did not allow the access 

for screwing the nut to the reaction plate 1, separating wedges were introduced between the reaction plate 

1 and the double H-beam. This allowed for the nut to be accessed. Once the specimen reached the desired 

tensioning force, the reaction plate 1 was attached to the specimen through the nut and washer and the force 

made for the hydraulic jack was released and transferred to the reaction plate 1. The tubular support kept 

the distance between load cell and reaction plate 1 constant. As in a real prestressed concrete structure, the 

tubular support was the compressed element. For this reason, the tube has to be thick enough to assure that 

the load loss is caused primarily by the large adhesive deformation in comparison with the steel tube 

deformation. The length and thickness of the tubular support used in this research were 720 and 4mm, 

respectively. The procedure for pulling the specimen and all the components can be seen in Figure 5.18b. 

 

Figure 5.18. a) anchor dimensional details b) scheme of the stress relaxation test setup b) scheme of the tensioning 
process. All the dimensions in millimetres. 

A 250kN CTT-Stronghold hydraulic jack was used to pull the specimens. Force and time were recorded at 

a frequency of 1 Hz using an HBM Spider 8 acquisition system. Despite there being an equivalence between 

the pressure of the jack and the pulled force, the values of the load cell were used during the prestressing 

procedure to determine at what point the specimen should be attached to the reaction plate 1. The hydraulic 

jack was manually controlled at approximately 5 kN/min.  The anchors were pulled at three different 

loading forces; 16, 24 and 32kN. When the specified force was reached, the jack pressure was locked and 

the specimen was attached to the reaction plate 1. Then, the force was unloaded with the hydraulic jack and 

was transferred to the structure (see Figure 5.18a).  

The stress relaxation setup and posttensioning system are shown in Figure 5.19. Four different geometries 

were assessed under stress relaxation in the present work, where the main parameter assessed was the 
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adhesive thickness of the anchorage. The specimens tested, and the initial tensioning force (target and 

experimentally achieved), are summarised in Table 5.4. The last number of the nomenclature used for the 

specimens refers to the repetitions of each geometry. Geometries A_14 and A_16 were evaluated under 

two initial tensioning forces (16 and 24kN) whilst geometries A_18 and A_20 were studied under three 

initial tensioning forces (16, 24 and 32kN). It is worth noticing that not all the specimens of the same group 

had exactly the same initial tensile load. This was due to a loss of load during the manual load transfer 

between the hydraulic jack and the structure (see Table 5.4). Also, seven specimens were restressed up to 

four times at the same initial tensioning force when the load loss was lower than 0.5% per day of each 

specimen’s initial tensioning force in order to evaluate whether the evolution of the load loss was similar 

for all the stressing steps. Three specimens were not restressed to assess the long-term influence (specimens 

A_16_1, A_14_2 and A_16_2). 

 

Figure 5.19. Loading process of the specimens. 

Table 5.4. Target and experimental initial tensioning forces. 

Specimen Initial force target [kN] Experimental initial force [kN] 

A_14_1 16.00 15.52 

A_16_1 16.00 11.64 

A_18_1 16.00 16.78 

A_20_1 16.00 17.01 

A_14_2 24.00 21.40 

A_16_2 24.00 24.05 

A_18_2 24.00 22.42 

A_20_2 24.00 26.13 

A_18_3 32.00 31.43 

A_20_3 32.00 30.83 
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5.3.3.2 Results and discussion 

The static strength of the anchorages was required to normalise and compare the experimental stress 

relaxation data amongst the different geometries. For this reason, in the quasi-static analysis of the 

anchorages, static tests were conducted on the anchors with the thinnest and thickest adhesive layer (see 

Chapter 4). Static strengths of 39.95 and 51.15kN were obtained for the thinnest and thickest adhesive layer 

respectively. From these values, a linear interpolation was considered between the adhesive thickness and 

static strength, as it was observed in previous works [137]. 

 

Figure 5.20. Experimental normalised load-time data for the anchors tensioned at 16kN. 

 

Figure 5.21. Experimental normalised load-time data for the anchors tensioned at 24kN. 
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Figure 5.22. Experimental normalised load-time data for the anchors tensioned at 32kN. 

Figure 5.20, Figure 5.21 and Figure 5.22 show the experimental normalised load-time data at three different 

initial tensioning forces (16, 24 and 32 kN) where the recorded load, P, was normalised by the static failure 

load of the anchorage, Ps. In general, it was observed that the load loss was similar for all the specimens 

with the same initial tensioning force but different amongst those with different initial tensioning forces. 

The greater the tensioning force, the greater was the load loss recorded. Moreover, restressed specimens 

show a lower load loss in each stressing step. This might be caused by the reduced mobility of the polymer 

chains of the adhesive after successive tensioning. Whereas the specimens which remained with the same 

tensioning force show that the load loss was gradually stabilised until a constant load loss rate was reached.  

Figure 5.23 shows the normalised load loss of the all the specimens during the first 300 hours of the first 

stressing step. The normalised load loss was calculated through the Equation 5.2, which gave the normalised 

load loss ratio per unit of time. The specimens were grouped into three main groups according to the initial 

tensioning forces under which they were stressed (16, 24 and 32 kN). The maximum load loss for all the 

specimens occurred at the beginning of the test. Then, the ratio load loss decreased until a constant load 

loss ratio of 0.00125 per hour was reached. This constant load loss ratio was reached approximately after 

25 hours of testing. From this value towards either the end of the test or the end of the stressing step, the 

load loss ratio remained constant for all specimens.  

݀ܽ݋݈	݀݁ݏ݈݅ܽ݉ݎ݋ܰ ݏݏ݋݈ ൌ
ቚ ௜ܲାଵ

௦ܲ
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ቚ

௜ାଵݐ െ ௜ݐ
(Equation 5.2) 

where Pi is the current loading force in the step i, Ps  is the static failure load of the anchorage and t is the 

time in the step i. Figure 5.24 is a zoom-in of the load loss during the first 25 hours of testing where the 

load loss was markedly more pronounced. It can be seen, that there was an experimental trend for each 
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initial loading force. A three-term exponential equation was used to match the experimental stress 

relaxation data as it usually provides a reasonably good fit for expressing the relaxation curve as mentioned 

by Rudra [138]. The normalised load loss during the first 25 hours was more significant for the highest 

initial tensioning force (32kN). As the initial tensioning force was lower, the normalised load loss was 

reduced. The increase of load loss at the beginning of the test was found to be non-proportional whilst the 

initial stress increased proportionally (increments of 8 kN). A physical reason of this result might be the 

molecular rearrangement in the adhesive layer. The overall molecular structure of a cured epoxy is a 

disordered crystalline structure [139]. The epoxy resin and hardener (polyamines for MBrace Primer) are 

mixed together in a liquid state (not crystalline state).  Once they are mixed, the crosslinking process, 

between polymer chains, starts through ionic bonds. The resultant network is a three-dimensional block 

with a disordered molecular structure. This results in significant spaces in the molecular structure called 

free volume. As a viscoelastic material combines both viscous and elastic characteristics, when a load is 

applied, creep or stress relaxation phenomena appear as a molecular rearrangement [71]. When the loading 

process started, crystalline structures were deformed due to the load stress. At the same time, due to the 

disorder of the crystalline chains (free volume), these were rearranged very rapidly. As the load increased 

during the loading process, the molecules kept being rearranged at a lower rate because of the crystalline 

structure’s compaction 

 

Figure 5.23. Experimental normalised load loss of all the anchors during the first 300 hours grouped according to the 
three initial tensioning forces. 
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Figure 5.24. Experimental normalised load loss of all the anchors during the first 25 hours grouped according to the three 
initial tensioning forces and experimental trend curves. 

Additionally, the influence of restressing was experimentally studied. Seven specimens were restressed up 

to four times when the load loss was lower than 0.5% per day of the initial tensioning force of each 

specimen. As discussed previously, creep or stress relaxation phenomena mainly appear as a molecular 

rearrangement. As can be seen in Figure 5.25, Figure 5.26 and Figure 5.27, the load loss was more 

accentuated just after the load was applied (first stressing step). Once the specimens were restressed again 

to the original tensioning force, the molecular rearrangement rate increased but not as strongly as in the 

first restressing. This was because the molecules were already rearranged and the spaces between the chains 

were reduced.  

 

Figure 5.25. Experimental normalised load loss of all the anchors loaded at 16kN. 
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Figure 5.26. Experimental normalised load loss of all the anchors loaded at 24kN. 

 

Figure 5.27. Experimental normalised load loss of all the anchors loaded at 32kN. 

It was observed that the load loss after restressing remained at a very low rate for specimens stretched at 

low initial tensioning forces. In these cases, restressing allowed the specimens to reach the working 

tensioning force without increasing the load loss ratio. This suggests that spaces between molecular chains 

did not increase and so the load loss ratio was largely kept at the same value. Figure 5.25 shows how the 

load loss rate at the second and third stressing step of the restressed specimens mainly remained constant. 

The results demonstrate that the restressing technique allows the desired working tensioning force to be 

reached once it has been reduced by time-dependent phenomena. For adhesively bonded anchorages loaded 

up to 40% of the static failure load of the anchorage, one restressing permitted the initial tensioning force 

to be reached almost without increasing the load loss ratio. 
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For higher initial tensioning forces (anchorages loaded more than 40% of the static failure load of the 

anchorage), the load loss ratio was increased during the second, third and fourth restressing, once it was 

established in the previous stressing step. This may be due to high initial tensioning forces allowing for a 

higher molecular rearrangement when the specimens were restressed. Nevertheless, in each stressing step 

the load loss ratio was lower than the previous stressing step. This can be observed in Figure 5.26 and 

Figure 5.27 where the load loss achieved the lowest rate after successive restressing. 

It is worth noticing that this increase of the load loss ratio was lower for each extra prestressing step. 

However, attention has to be paid with strain failure criteria as these consider that the material fails when 

it exceeds a certain strain limit in a given area. In this study, strain effects were not a limitation. 

Finally, three specimens were not restressed and the long-term influence was assessed. As previously 

mentioned, the maximum load loss and, therefore, the highest molecular rearrangement rate for these 

specimens occurred at the beginning of the test. The ratio load loss then decreased until the specimens 

reached a constant load loss ratio up to the end of the test.  

5.3.4 Numerical modelling 

A finite element model was developed in Abaqus/CAE to predict the stress relaxation response of the 

bonded anchorage. A 2D axisymmetric model was used (see Figure 5.28) in order to simplify the geometry 

and optimise the computing resources. Four different geometries were modelled according to the 

geometries tested experimentally7. The bottom of the steel housing was fully fixed and the top of the CFRP 

rod was loaded with an axial displacement.  

A sensitivity analysis of the mesh was conducted in order to determine the most suitable mesh size for the 

straight bond-type anchorages under stress relaxation loading. It is worth noticing that the mesh density 

used for the anchorages in the creep analysis was the same mesh used with SLJs (0.1mm). Using the same 

mesh density for both cases (anchorages and SLJs) was more valid in the creep analysis as the results from 

the SLJs simulation were used to determine the maximum equivalent creep strain allowed for the anchors. 

However, the same mesh density was not required for the anchorages under stress relaxation loading as the 

maximum equivalent creep strain depending on the thickness was not used. The converge analysis revealed 

that a variation of the maximum equivalent creep strain (CEEQ) and maximum shear stress distribution on 

the adhesive-tendon interface, between the mesh density utilised in the creep analysis (0.1mm) and the 

optimum mesh size obtained in quasi-static modelling of the anchors (0.5mm), was lower than 0.5%.  

Therefore, four-noded axisymmetric stress elements (CAX4R) with a mesh density of 0.5mm were used 

for the whole model. Geometric non-linearity was included in all the analyses. A time-dependent analysis 

                                                      
7 Geometries A_14, A_16, A_18 and A_20. 
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was required to consider the viscoelastic phenomenon. The Young's modulus and Poisson's ratio used for 

each material are summarised in Chapter 3. Elastic-perfectly plastic von Mises response was assumed in 

the adhesive and the plastic yield stress was defined at 17.20MPa as this was the maximum strength 

obtained in the quasi-static analysis (see Chapter 4). 

In the first step, the displacement was applied linearly from 0 to dmax in 1 second.  A different dmax was used 

for each specimen in order to obtain the experimental initial load of each tested anchor (see Table 5.4). In 

the second step, the displacement remained constant and the stress relaxation was analysed. 

 

Figure 5.28. Finite element mesh and boundary conditions for the anchor with a bore of 14mm and length of 200mm. 

The viscoelastic properties of the adhesive were assumed through the Bailey-Norton power law, better 

known as creep power law. The power law is presented in Equation 5.3. 

௖௥ߝ݀
ݐ݀

ൌ ܣ ∙ ஻ߪ (Equation 5.3)

where A and B are material constants, cr is the creep strain, t is the creep time and   is the normal tensile 

stress at which the specimen is subjected. As discussed in the creep analysis section, the experimental creep 

times to failure from the single lap joints were used to find and calibrate a creep power law able to predict 

the creep failure time in anchorages [140]. The power law multiplier, A, and the equivalent stress order, B, 

were found to be 1.75E-13 and 7, respectively.  

The time-dependent behaviour of viscoelastic materials must be expressed by a constitutive equation which 

includes time as a variable, in addition to the stress and strain variables. Therefore, the power law presented 

in Equation 5.3 can be adapted to describe the stress relaxation phenomenon where there is a variation of 

stress with respect to time. Due to the fact that the displacement between anchors was held constant in this 

study, the total strain differential with respect to time must be zero. Thus, the Equation 5.4 can be written: 
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where el is the elastic strain and cr the creep strain. Moreover by Hooke’s law is known that; 
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(Equation 5.5)

where E is the elastic modulus of the adhesive. Combining Equations 5.3 and 5.5 into the Equation 5.4, the 

creep power law for stress relaxation can be written: 

ߪ݀
ݐ݀

ൌ െܣ ∙ ܧ ∙ ஻ߪ (Equation 5.6)

 

Figure 5.29. Predicted average curves of the normalised load loss for each initial tensioning force during the first 25 
hours. 

Equation 5.6 was implemented into the model which was utilised to predict the load loss of the first stressing 

step for each anchor. All the geometries were simulated at their experimental initial tensioning forces (see 

Table 5.4) with the parameters mentioned earlier. The predicted normalised load loss was obtained for all 

the geometries during the first 25 hours of the first stressing step. Similarly to the experimental data, the 

predicted stress relaxation curves for all the specimens of each initial tensioning force were grouped in an 

average curve. The average curves of each initial tensioning force are shown in Figure 5.29. Analogous 

behaviour was numerically observed in all the average curves, with no sudden changes. Consistent with the 

experimental data, the load drop was greater for the highest initial tensioning force and smaller for the 

lowest initial tensioning force. Also, the increase of load loss at the beginning of the test was found to be 

non-proportional with the initial tensioning force. 
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Figure 5.30. Experimental and predicted average curves of the normalised load loss for each initial tensioning force 
during the first 25 hours. 

Comparing Figure 5.24 and Figure 5.29, the experimental results were broadly consistent with the 

numerical data along the load drop. This is illustrated in Figure 5.30. On the whole, there is a slight 

difference between both curves of each initial tensioning force that decreases over time. Once the curves 

reach stabilisation at around 25 hours, experimental and numerical trends are practically at the same value 

of normalised load loss per unit of time. 

Figure 5.31 illustrates five different time stages of the predicted shear stress distribution in the adhesive 

layer during the stress relaxation process for the anchor with the thickest adhesive layer (A_20_3) at the 

highest initial tensioning force. The behaviour of this anchor was representative of the behaviour of all the 

anchors. On the left, shear stress contour plots on the adhesive layer are displayed whereas on the right, the 

shear stress distributions along the rod-adhesive interface are plotted. Also, in each time stage displayed in 

Figure 5.31, time, t, and the predicted resulting loading force, P, normalised by the static failure load of the 

anchorage, Ps, are provided. Time step “A” shows the shear stress distribution in the first second of the 

simulation. At this point there was not enough time for the molecular rearrangement to occur in the bonded 

joint and so the joint behaved entirely with no time-dependent effects. Although the plastic yield stress was 

reached at the first elements of the top of the bonded joint, the rod-adhesive interface mainly behaved linear-

elastically with the maximum stresses occurring at the top of the bonded joint as can be seen in the plot. 

After approximately two minutes, at the time step “B”, the shear stress peak at the top of the bonded joint 

suffered a quick reduction that affected the first 25mm of the bonded length. As shown in the plot, the 

maximum value of shear stress was reduced by about 20% of its initial value (reduction of 2.5MPa). 

Subsequently, the shear stress distribution kept reducing but in a lower ratio. At the time step “C”, after 75 

minutes, the shear stress distribution was completely flat within the first 75mm of the bonded joint. The 

maximum value of shear stress was reduced by around 40% of its initial value (total reduction of 4.5MPa) 
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and the shear stress distribution was more uniform. Time steps “D” and “E” show the shear stress 

distribution after 675 and 10,000 minutes. At these stages, the distribution was practically flat along the 

overlap length and the load loss per unit of time was very small. 

 

Figure 5.31. Shear stress evolution along the adhesive layer for the geometry A_20_3. 

5.3.5 Concluding remarks 

Adhesively bonded anchors under stress relaxation were examined experimentally and numerically at three 

different initial tensioning forces. Ten specimens were tested, seven of which were restressed up to four 

times at the initial tensioning force when the load loss rate was stabilised. Regarding the experimental 

normalised load-time data the following conclusions can be drawn: 

1. The load loss was similar for all the geometries of each initial tensioning force. A unique and clear 

experimental trend for all the geometries of each initial loading force was found. 

2. The load loss was found to be different among the initial tensioning forces. The greater the initial 

tensioning force, the greater was the load loss recorded. Also, this increase of load loss was non-

proportional to the increase of initial stress. 

3. Restressed specimens showed that restressing might increase the molecular rearrangement among 

molecular chains of the adhesive layer and thus, this results increasing the load loss ratio once it 

was stabilised in the previous stressing step. 

4. The increase of load loss ratio for each restressing was found to be lower for each successive 

restressing. However, specimens might fail if the adhesive ultimate strain is reached for a given 

area. 
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A finite element model was developed in Abaqus/CAE to predict the stress relaxation response of the 

bonded anchorage using a time-dependent analysis. Elastic-perfectly plastic von Mises response was 

assumed in the adhesive layer and the time-dependent behaviour of the adhesive was considered through 

the Bailey-Norton law. From the prediction of the first stressing step of load loss of each anchor, the 

following conclusions can be drawn: 

5. Stress relaxation modelling of anchors was undertaken successfully. The creep power law has 

provided a predicted joint time-dependent behaviour that correlate closely with the experimental 

trend curves for the first stressing step. 

6. It was observed experimentally and numerically that the anchors suffered the highest molecular 

rearrangement on the adhesive layer once the load was applied. Afterwards, the molecular 

rearrangement was gradually reduced until a constant load loss rate was reached. For all the 

specimens, the stabilisation of the load loss rate was reached approximately 25 hours after the 

loading force was transferred. 

To conclude, experimental and finite element modelling results provide valuable information in order to 

develop future design recommendations for adhesively bonded anchorages for CFRP tendons with the 

specified configuration in this study. The most notable recommendations are described below. 

1. The restressing technique allows for the working load of the composite bar to be increased by 

successive restressing once time-dependent phenomena has reduced the initial tensioning load. 

2. The load loss rate caused by the stress relaxation reaches a stabilised and constant value after 

approximately 25 hours. Restressing is suggested when the load loss rate has been stabilised after 

each restressing.  

3. The load loss achieves the lowest rate after the fourth consecutive restressing for initial loading 

forces ranging between 60 and 70% of the static failure load of the joint. 

4. The load loss achieves the lowest rate after the third consecutive restressing for initial loading 

forces ranging between 45 and 55% of the static failure load of the joint. 

5. For the anchorages loaded up to 40% of the static failure load of the joint, one restressing allows 

the initial tensioning force to be reached without further load loss. 
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 Constant amplitude fatigue analysis 

6.1 Introduction 

One of the most visible prestressed concrete products is the prestressed girder in large infrastructures such 

as bridges. These structures are usually subjected to cyclic loading below their maximum strength. 

However, the repeated loading and unloading may cause certain damage mechanisms that may lead to the 

unexpected failure of the structure. For this reason, fatigue is an important factor which needs to be 

considered in prestressed structures. 

Experimental fatigue tests on straight bond-type anchorages were undertaken with failure occurring on the 

adhesive-tendon interface. Four different adhesive thicknesses were evaluated under three constant 

amplitude fatigue loadings. The experimental fatigue response of adhesively bonded anchorages was 

discussed and an experimental load-life average curve was obtained for all the anchorages. 

The fatigue response of the straight bond-type anchorages was also predicted using Finite Element 

Analysis. A multi-linear traction-separation cohesive zone model was implemented at the adhesive-tendon 

interface when simulating the fatigue loading of the anchorages. The cohesive law obtained in the quasi-

static analysis in Chapter 4 was used in the fatigue model. The fatigue damage model used in this research 

was based on the degradation of the cohesive elements taking into account the fatigue damage evolution.  

This chapter summarises the experimental work and numerical modelling of the straight bond-type 

anchorages under constant amplitude fatigue. 

6.2 Objectives 

Adhesively bonded anchorages for CFRP tendons with adhesive 02 were experimentally and numerically 

studied under constant amplitude fatigue loading. Four geometric cases were assessed under three different 

fatigue loading spectra. The main objectives of this analysis were to: 

1. Obtain an experimental load-life curve for the straight bond-type anchorages. Specimens with 

different adhesive thickness were experimentally tested under three fatigue loading spectra. The 

influence of the adhesive thickness during the loading process and the number of cycles to failure 

of each specimen was investigated. With the aim to normalise the experimental data, the influence 

of the maximum load and the loading range was also assessed.   



Chapter 6. Constant amplitude fatigue analysis  

 

 

124 

2. Analyse the failure mode of anchorages under constant amplitude fatigue. As it has been seen in 

previous chapters, the specimen failure was expected on the adhesive-tendon interface, mainly due 

to adhesion failure. For this reason, a failure surface analysis of specimens was also carried out 

through a conventional naked-eye and microscopic examination after testing. 

3. Develop a numerical fatigue model to predict the number of cycles to failure of straight bond-type 

anchorages under constant amplitude fatigue loading. The models presented by Khoramishad et al. 

[92–94] for SLJs were investigated in order to accommodate a cohesive zone between the adhesive 

layer and the tendon. The influence of fatigue was simulated by assessing the evolution law for 

blocks of cycles and degrading the traction-separation response of the cohesive elements. The 

multi-linear traction-separation law found in the quasi-static analysis for circular straight bond-type 

anchorages was used. 

6.3 Experimental work 

6.3.1 Test setup 

Fatigue tests on the anchor joints were carried out using an MTS actuator by applying a sinusoidal 

waveform controlled by force at a loading frequency of 4 Hz. The loading frequency was chosen according 

to the investigation conducted by Crocombe et al. [90] where it was found that, in many cases, the maximum 

fatigue load and the load ratio determine the fatigue response of adhesively bonded joints when the 

frequency ranges between 1-10Hz. The number of cycles, load, displacement and time were recorded at a 

frequency of 100 Hz using an MGCPlus acquisition system. The fatigue test setup is shown in Figure 6.1.  

 

Figure 6.1. Fatigue test setup for anchors. 

First, one anchorage of the test specimen was completely attached with nuts and washers to the MTS 

actuator load cell, whereas the other anchorage remained free. The displacement of the actuator was then 
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adjusted to place the second anchorage of the specimen through the reaction plate hole. Subsequently, this 

anchorage was fixed with nuts and washers. Once both anchorages of the test specimen were fixed, the 

MTS actuator was manually controlled to reach the specified average load of each test. During this process 

the alignment was carefully verified and confirmed in order to avoid unwanted effects such as a bending 

moment due to an eccentricity. Once the average load was reached, the fatigue test started and was 

controlled by the MTS actuator. The fatigue loading spectra that were assessed are summarised in Table 

6.1.  

Table 6.1. Fatigue loading spectra conditions. 

Fatigue loading spectra R=Pmin/Pmax Pmin [kN] Pmean [kN] Pmax [kN] 

A 0.84 33 36 39 

B 0.77 21 24 27 

C 0.92 23 24 25 

6.3.2 Results and discussion  

As anticipated in previous chapters, the failure occurred in the adhesive-tendon interface by adhesive 

failure. Figure 6.2 shows slippage of the composite rod relative to the adhesive due to the pull-out of the 

tendon. It can be seen that small particles of the adhesive remained attached to the CFRP tendon after 

failure. 

 

Figure 6.2. Typical failure surface in the bonded anchorages with CFRP under fatigue loading. 

Table 6.2 summarises the experimental number of cycles to failure of straight bond-type anchorages tested 

under fatigue loading. It is worth mentioning that three specimens did not reach the failure by the end of 

the fatigue test. The case with the lowest cycles was due to a clamping system failure halting the test. In 

the remaining two cases this was because the maximum number of cycles (1x106) was reached. The 

maximum number of cycles that were recorded in these three cases are specified in Table 6.2. 
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Table 6.2. Experimental fatigue results. 

Specimen Fatigue loading spectra Number of cycles to failure 

A_14_3 A 254 

A_14_4 B 14,058 

A_14_5 C 25,242 

A_16_3 A 6,269 

A_16_4 B 22,209 

A_16_5 C 555,382 

A_18_4 A 7,946 

A_18_5 B 50,127 

A_18_6 C 642,345 

A_20_4 A > 11,506 

A_20_5 B > 615,700 

A_20_6 C > 1,086,463 

In the present work, the maximum fatigue loads were approximately set from the usual stress levels of steel 

tendons for prestressing. According to the static strength of the geometries tested, the maximum fatigue 

load of the static strength of the anchorage bonded joints ranged between 50%, for the lowest average 

fatigue load applied to the anchorage with the thickest adhesive layer, and 90%, for the highest average 

fatigue load applied in the anchorage with the thinnest adhesive layer. 

 

Figure 6.3. Experimental non-normalised load-life fatigue data for the anchors. 

The experimental fatigue results are plotted in Figure 6.3. The maximum fatigue load, Pmax, has been plotted 

against the number of cycles to failure. From the experimental fatigue test results of the anchors, it was 

observed that the specimens with a higher adhesive thickness generally achieved a higher number of cycles 

to failure. This is probably due to the fact that the thicker adhesive layers produced a more uniform 

distribution of adhesive stress along the bonded anchor. It is worth noticing that the three specimens which 
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did not reach the failure are marked with arrows in the figure. These "unfailed" joints were not considered 

in determining the trend curves for the fatigue load-life data.  

In order to normalise the experimental load-life fatigue data, the quasi-static strength of the anchorages was 

used. The normalised fatigue results are plotted in Figure 6.4 and Figure 6.5. The first figure shows the 

fatigue life plotted against the maximum fatigue load, Pmax, of the anchors, normalised by the quasi-static 

failure load, Ps. The latter shows the fatigue life plotted against the loading range, P, normalised by the 

quasi-static failure load.  

 

Figure 6.4. Experimental normalised load-life fatigue data for the anchors (loading characterised by the maximum load). 

 

Figure 6.5. Experimental normalised load-life fatigue data for the anchors (loading characterised by the load range). 

The experimental dispersion was calculated through the relative standard deviation. It was found that the 

relative standard deviation to the mean was 10.57% when normalising by the maximum fatigue load whilst 
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it was 30.51% when normalising by the loading range. As can be observed, when the fatigue loading was 

defined by the maximum fatigue load (see Figure 6.4), the experimental data dispersion was much lower 

than when using the loading range (see Figure 6.5). This suggests the maximum load may be the most 

appropriate way of characterising the fatigue loading applied in this research. 

As it was concluded in Chapter 5, the predicted creep time to failure was greater than the longest 

experimental fatigue tests. For this reason, it was considered that the creep phenomenon did not influence 

the fatigue tests conducted on straight bond-type anchorages significantly. Nevertheless, the specimen 

A_16_5 was investigated in more detail, as it was one of the longest fatigue tests carried out. The 

experimental fatigue time to failure of this specimen was also the closest to its corresponding predicted 

creep time to failure. 

Figure 6.6 shows load-time and displacement-time curves recorded during the fatigue test of specimen 

A_16_5. As the MTS actuator was controlled by force, the force range remained constant from the 

beginning of the test to the fatigue failure of the specimen. However, a small variation of displacement was 

observed throughout the fatigue test. In this case, the fatigue mean load experimented a displacement of 

approximately 0.5mm from the beginning of the test to the fatigue failure. This suggests that the creep 

loading effect during the fatigue test might have an unimportant influence in the fatigue lifetime. Also, it is 

worth mentioning that the displacement was measured by the internal LVDT of the MTS actuator cylinder 

and did not only measure the real displacement of the specimen as it also took into account small relative 

displacements amongst all the components of the testing system.  

 

Figure 6.6. Measured load-time and displacement-time curves of specimen A_16_5 under fatigue loading. 

This research is therefore primarily concerned with the experimental and numerical fatigue analyses of the 

straight bond-type anchorage where time-dependent effects did not have a significant influence. The fatigue 
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loads appeared to be dominant and the test durations were not long enough for time-dependent phenomena 

to be developed. Even though this consideration is reasonable as a starting position, it is worth noticing that 

in a real application time-dependent damaging must be taken into account during fatigue analysis. This 

concept is developed in-depth in next chapter (future work). 

6.3.3 Failure surface analysis 

The fatigue failure surfaces of the straight bond-type anchorages are shown in Figure 6.7 and Figure 6.8. A 

stereoscope microscope SCZ-T4P Carton with magnification levels ranging from 10x to 25x was used to 

conduct the failure surface analysis. Pictures of failure surfaces were taken through a USB Microscopic 

camera Deltapix DP300. 

 

Figure 6.7. CFRP tendon failure surface of the specimen A_14_3 magnified 10x 

 

Figure 6.8. CFRP tendon failure surface of the specimen A_14_3 magnified 25x. 

It is worth mentioning that a second batch of CFRP rods was provided by the manufacturer, with the aim 

to study the time-dependent and fatigue behaviour of the straight bond-type anchorages. A naked-eye 

examination revealed that the superficial roughness of the second batch of CFRP tendons was slightly 

different. This led to the realisation of quasi-static tests for the geometries with the thinnest and thickest 
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adhesive layers (geometries A_14 and A_20) in order to compare the quasi-static strengths and failure 

surfaces between anchorages with tendons with different surface roughness (see Chapter 4). It was found 

that there was a reduction of the static strength of about 30-35% for the specimens with CFRP rods from 

the second batch. Also, the microscopic analysis revealed that the number of adhesive particles attached to 

the failure surface was lower. 

As was seen in the naked-eye examination (see Figure 6.2), the failure surfaces for the fatigue tests were 

mostly caused by adhesion failure. Nevertheless, small particles remained attached to the composite tendon 

after failure, indicating local cohesive failures of the adhesive. Although the small adhesive particles were 

spread on the whole failure surface of the rod, this was not entirely covered by adhesive particles revealing 

that the maximum adhesion strength between the adhesive and the rod was not fully reached. This result 

was found to be broadly analogous to the microscopic analyses carried out in the specimens with CFRP 

rods from the second batch (specimens A_01_04_4 and A_02_02_2 tested under quasi-static loading). This 

equivalence allows for the use of the multi-linear traction-separation parameters of these specimens, which 

were found in Chapter for 4, in order to model the cohesive layer in the adhesive-tendon interface in the 

fatigue numerical modelling. 

6.4 Numerical modelling 

In order to predict the fatigue response of straight bond-type anchorage, a finite element model was 

developed in Abaqus/CAE. Due to the revolution geometry of the anchorages, a 2D axisymmetric model 

was considered with the aim to optimise computing resources. The geometry cases tested experimentally 

under constant amplitude fatigue loading were modelled8, where the bottom of the steel housing was 

entirely fixed, and the top of the CFRP was loaded with an axial force. Four-noded axisymmetric stress 

elements (CAX4R) with a mesh density of 0.5mm were used for the fatigue model. In the fatigue model, a 

cohesive layer was used adjacent to the adhesive-rod interface, as it was determined from the experimental 

observations that the failure always occurred in this adhesive-rod interface region. Four-node axisymmetric 

cohesive elements (COHAX4) with a multi-linear traction-separation response were utilised to study the 

progressive damage in the adhesive bond line. The size of the cohesive element was 0.5 x 0.5mm along the 

entire adhesive bond line. Geometric non-linearity was included in all the analyses (see Figure 6.9).  

According to the sensitivity analysis of the mesh conducted in Chapter 4, the most suitable mesh size for 

the straight bond-type anchorages was found to be 0.5mm for obtaining a lower variation of 1% of the 

maximum shear stress distribution on the adhesive-tendon interface. The same mesh size was used for 

fatigue modelling.  

                                                      
8 Geometries A_14, A_16, A_18 and A_20. 
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Figure 6.9.  Finite element mesh and boundary conditions for the anchor with a bore and length of 14 and 200mm, 
respectively. 

Fatigue modelling of the anchors was undertaken using a progressive damage cohesive zone model (CZM) 

adjacent to the adhesive-rod interface. Von Mises plasticity was not considered in the adhesive material as 

the maximum tractions in the cohesive layer along the entire bond line essentially limited the maximum 

stress on the remaining adhesive continuum. The constitutive behaviour of the cohesive element was 

defined by traction-separation response. A quadratic interaction damage initiation criterion was used to link 

the tractions as outlined in Equation 4.14 (see Chapter 4).  

The same progressive damage model features applied in the quasi-static modelling were considered in the 

fatigue modelling. A multi-linear damage evolution was used to simulate the friction process caused by the 

bearing forces after damage initiation. The damage was directly defined as a function of the effective 

displacement relative to the effective displacement at damage initiation, where the damage between 

consecutive points was linearly obtained through Equation 4.15 (see Chapter 4). Also, in order to avoid 

convergence difficulties, a viscous parameter was used to allow the stresses to be slightly exterior to the 

limits established by the traction-separation model (see Equation 4.17, Chapter 4). 

The fatigue damage model developed by Khoramishad et al. [94] was used to predict the fatigue response 

of the straight bond-type anchorage. The maximum fatigue load of the actual cyclic loading defined the 

sinusoidal fatigue loading and degrading the multi-linear traction-separation cohesive properties simulated 

the influence of the fatigue damage. The fatigue damage evolution law describing the fatigue damage on 

the adhesive-rod interface is presented in Equation 6.1. 
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where D is the increment of damage and N is the cycle increment. The parameters n and s are the 

averaged bond line normal and shear strains, max is a combination of these normal and shear strain 

components, th is a threshold value which specifies the minimum strain to initiate the fatigue damage. The 

parameters ,  and th are calibrated with experimental results.  

In this model, changing  modifies the slope of the fatigue load-life (P-N) curve, decelerating the damage 

evolution and increasing the lifetime when  is increased, having a greater effect at higher strains (loads). 

When changing the constant  the P-N curve is shifted horizontally. When is increased, the damage 

evolution is accelerated and the lifetime is reduced. 

It is worth noticing that the fatigue damage is a function of the number of cycles and the maximum principal 

strain, the latter depending on the maximum fatigue load applied. As the experimental fatigue results were 

found to better correlate with the maximum fatigue load (Pmax) than the load range (P) (see Figure 6.4 and 

Figure 6.5), this load parameter was used in the modelling (see Figure 6.10a). This formulation was 

successfully conducted by Khoramishad et al. [94] and a simpler form of this was also utilised satisfactorily 

by Graner et al. [95]. 

 

Figure 6.10. a) Steps applied in the fatigue modelling b) Fatigue degradation of the CZM. 

Figure 6.10a shows the steps applied in the FE solution and Figure 6.10b the fatigue degradation of the 

cohesive zone model. In the first step, the force was ramped linearly from 0 to Pmax in 1 second. In the 
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second step, the load remained constant and a fatigue damage variable was introduced into the model until 

the joint failed. Three different levels of fatigue loading were modelled, following the experimental tests 

(see Table 6.1). Figure 6.10b shows the multi-linear traction-separation cohesive elements utilised, as well 

as the effect of the degradation. During the second step, the fatigue damage variable at each element 

integration point was evaluated and linearly degraded according to the level of damage reached through 

Equation 6.1. According to Chapter 4, the initial normal and shear traction of the cohesive elements were 

established at 17.20 and 9.93MPa, respectively. The tabular damage evolution parameters are summarised 

in Table 4.8 (see Chapter 4). 

 

Figure 6.11. The flowchart of the fatigue damage model in Abaqus/CAE. 

The progressive damage in the joint was implemented by coupling Abaqus/CAE with a FORTRAN 

subroutine. The fatigue model is illustrated in more detail in a flowchart form in Figure 6.11. The fatigue 

analysis started in the first increment of the second step, when the number of cycles was still equal to zero 

(see Figure 6.10). This provided the state at the beginning of the fatigue test. The maximum principal strains 

of the cohesive elements were then obtained using the subroutine *GETVRM and compared with the 

minimum strain to initiate the fatigue damage. If the maximum principal strain was higher than the threshold 

strain, the multi-linear traction-separation cohesive properties were linearly degraded according to Equation 

6.1. Once the parameters were updated, a new increment of cycles was evaluated. For each increment of 

cycles (), this loop was repeated where Equation 6.1 was evaluated and the damage accumulated and 

stored at every cohesive element integration point, until the joint was not able to keep carrying the 
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maximum fatigue load applied. In this research, each increment of cycles consisted in a block of 1000 

cycles. 

Also, an iterative approach was undertaken to assess the effect of the fatigue damage model parameters on 

the fatigue response of the different geometries of the anchors. The fatigue damage model parameter values 

that matched the experimental fatigue response of the anchors are summarised in Table 6.3. 

Table 6.3. Fatigue damage model parameters. 

  th

 3.5 0.0225 

 

Figure 6.12. Damage and shear stress evolution along the cohesive layer and adhesive section respectively for the 
geometry A_14 loaded at 24kN. 

Like the quasi-static and time-dependent analyses, stresses were initially highest at the end of the joint 

where the rod was loaded. When damage was initiated, the maximum stress moved down the adhesive-rod 

interface. As the damage front approached the bottom of the joint, the anchor was not able to carry the 

applied maximum load specified (24 or 36 kN), and this was taken as the point of final fatigue failure. This 

is illustrated in Figure 6.12 through four different stages of the fatigue damage front evolution and the 

corresponding shear stress distributions in the adhesive section for the anchor with the thinnest adhesive 

thickness (specimen A_14) loaded at 24kN. This is representative of the mode of failure in all the anchors. 
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Point “A” shows the shear stress distribution in the first fatigue cycle. At this point there was no damage in 

the bonded joint and so the joint behaved entirely linearly with the maximum stresses occurring at the top 

of the bonded joint. Once the damage was reached in the first elements of the cohesive layer, both damage 

front evolution and maximum shear stress moved down the bond line, as can be seen in the points “B”, “C” 

and “D”. Eventually, the bonded joint was not able to carry the maximum applied fatigue load and the 

fatigue failure was reached (point “D”). 

 

Figure 6.13. Experimental and numerical non-normalised load-life fatigue results for the anchors. 

 

Figure 6.14. Experimental and numerical load-life fatigue data for the anchors normalised by the quasi-static failure load. 

The predicted load-life data of each geometry correlated well with the experimental data, as shown in Figure 

6.13. Figure 6.14 shows the results normalised by the experimental quasi-static load for each anchor 

configuration. As mentioned in the fatigue experimental work, the predicted fatigue results showed that the 

anchors with a larger adhesive thickness reached a greater number of cycles to failure for the same level of 
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load. An illustration of this can be seen in Figure 6.13, where the non-normalised results are shown. 

However, as shown in Figure 6.14, when the maximum fatigue load, Pmax, of the anchors, is normalised by 

the respective quasi-static failure load, the anchors with a thinner adhesive layer achieved higher number 

of cycles to failure for the same normalised load. Therefore, when the adhesive thickness was higher, the 

number of cycles to failure increased proportionally less than the quasi-static failure load.  

As shown in Figure 6.13and Figure 6.14, the proposed fatigue damage model for anchors gave a consistent 

match with the experimental fatigue data in terms of life. This can provide confidence in the model in order 

to explore the fatigue life of other geometries and load cases.  

6.5 Concluding remarks 

Fatigue tests were experimentally undertaken on straight bond-type anchorages with different load ratios, 

maximum fatigue loads and different adhesive thicknesses with failure occurring in the bond line. Also, a 

fatigue model based on a multi-linear traction-separation cohesive zone model, located throughout the 

adhesive-tendon interface, was developed and controlled using a fatigue evolution damage law by 

degrading the cohesive properties of the elements according to the level of damage. From this section, the 

following conclusions can be drawn: 

1. In all fatigue tests the failure of adhesive-tendon interface of the straight bond-type anchorage was 

observed. The failure started at the loading end of the anchor and travelled rapidly to the bottom of 

the anchorage throughout the bonded length. The naked-eye examination and the microscopic 

analysis revealed that the failure surface occurred in the adhesive-tendon interface mainly caused 

by adhesion failure. 

2. Experimental fatigue results were more consistent when considering the maximum fatigue load 

than the loading range.  If the quasi-static strength is known, the normalised results with the 

maximum fatigue load could be used to estimate the fatigue life of other configurations as a 

reasonably consistent normalised load-life curve was obtained. 

3. The predicted fatigue results using a multi-linear traction-separation cohesive zone model with a 

fatigue damage evolution model were compared with the experimental results. It was found that 

the numerical model could successfully predict the fatigue life of adhesively bonded anchors for 

CFRP rods. 

4. A parametric study was conducted in order to obtain the fatigue model parameters required for the 

degradation of the cohesive element properties. An iterative approach was used to obtain the 

required parameters that better matched the experimental load-life data. It was qualitatively found 

that the fatigue model was very sensitive to small variations on andth whilst greater variation on 

was required for obtaining a different response in the fatigue model. 
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5. It was observed experimentally and numerically that the anchors with thicker adhesive layers 

showed a higher number of cycles to failure at the same fatigue load. Nevertheless, for the same 

normalised fatigue load, anchors with thinner adhesive thickness were able to reach a greater 

number of cycles before failure. 
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 Conclusions and future research 

7.1 Summary of the chapter 

In this research, straight bond-type anchorages for CFRP tendons were experimentally and numerically 

investigated under quasi-static, fatigue and time-dependent loads. A multi-linear traction-separation 

description of the cohesive zone model was successfully used for simulating the progressive damage of the 

anchorages under quasi-static and fatigue loading whilst a creep power law combined with von Mises 

plasticity was utilised for predicting time-dependent phenomena on the anchorages. In all cases, the 

predicted data were calibrated and compared with the experimental results and proved a good agreement. 

Split wedge anchorages and double lap joints (DLJs) were also studied experimentally. The first one 

allowed for the most relevant parameters found in the literature review, which affect the mechanical 

anchorage for composite materials, to be studied and confirmed. The second permitted finding the most 

suitable analytical formulation to predict the shear stress distribution on the adhesive-adherent interface for 

DLJs which was developed in order to obtain an analytical model for straight bond-type anchorages with 

adhesives that behave primarily in an elastically-linear manner. 

This chapter summarises the main conclusions drawn from this investigation and provides suggestions for 

future work research. 

7.2 Conclusions 

Numerous investigations have been carried out in the last decades in order to replace the conventional steel 

tendons with alternative materials that are highly resistant to corrosion. In this sense, FRP tendons provide 

a suitable alternative for this purpose due to their high mechanical properties in the fibre’s direction, light 

weight and high resistance to corrosion. In addition, CFRP tendons stand out over other FRP systems, due 

to their higher mechanical properties and a similar stiffness in comparison with steel tendons. 

Although FRP tendons can provide higher mechanical properties in the fibres’ direction than current steel 

tendons, the anisotropic nature of composite material does not allow for the conventional anchoring systems 

to be utilised, as FRP tendons would be damaged in the transverse direction causing a premature failure of 

the system. For this reason, two main anchoring systems for FRP rods have been considered in the literature 

review: mechanical anchors and adhesively bonded anchors. 
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Mechanical anchorages for FRP rods are usually based on the current anchoring systems and have been 

extensively studied because of their similarity, compactness, and ease of assembly, reuse and reliability. A 

mechanical anchorage principally consists of a barrel housing or steel plates which grip the tendon through 

a transverse force. As the weakest mechanical properties of the FRP tendons lie in the transverse direction, 

the wedges or plates, which grip the tendon, tend to dig into the composite material causing a premature 

failure. For this reason, investigations on mechanical anchorages have mainly focused on the contact 

surface between the wedges or plates and FRP tendons. 

Several modifications of the contact surface have been proposed in the literature with the aim to homogenise 

the pressure exerted by the wedges or plates on the tendon. These modifications generally consist of 

removing the hardened teeth (which are included in conventional anchoring systems) for steel tendons, 

introducing a sleeve material between the wedges and the tendon in order to smoothen the stresses at the 

loading end of the anchorage, introducing a small differential slope between the barrel and the wedges, and 

rounding of the sharp inner edges of the wedges. 

In this research, split-wedge anchorages for CFRP tendons with and without sleeves have been 

experimentally tested under quasi-static loading. It was confirmed that the tapered shape of the wedges 

introduces a transverse force which damages the matrix of the composite material at the loading end of the 

anchor causing a reduction of the tendon strength. The tensile strength capacity of the rods was reduced by 

around 25-36% of its maximum tensile strength provided by the manufacturer.  

Also, it was seen that in all the cases the failure was sudden and explosive, releasing all the energy stored 

in the rod rapidly. When the anchoring system was used without the sleeve material a crushing failure mode 

of the tendon was obtained. Introducing a copper sleeve between the wedges and the tendon permitted an 

increase of the ultimate load to be obtained and the failure mode to be closer to the rupture of the fibres 

along the free length.  

In addition, it was observed that the uniform penetration of the wedges into the barrel during the prestressing 

process must be guaranteed with the aim to avoid a premature failure of the system caused by slipping and 

crushing. 

Adhesive bond-type anchorages for composite tendons generally consist of a metallic housing inside which 

single or multiple tendons are bonded with an adhesive agent. The quasi-static response of adhesively 

bonded anchorages has been experimentally investigated by many researches with failure occurring in the 

bond line. For this reason, in this research the shear stress distribution along the overlap length has been 

studied and compared to the existent analytical formulations. 

As the analytical formulations for adhesively bonded joints were mostly formulated for plane geometries, 

DLJs were manufactured and tested under quasi-static loading. The experimental shear stress distribution 
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was obtained through strain gauges installed on the external surface of the adherents and compared to the 

existent analytical formulations. The failure surface analyses with a stereoscope microscope revealed that 

DLJs bonded with low viscosity adhesives present a lower number of defects on the adhesive-adherent 

interface than high viscosity adhesives due to the manufacturing process undertaken in this research.  

It is worth mentioning, that for the adhesives with a viscosity lower than 1,000mPa·s, the adhesive was 

placed by pouring and injection, whereas for adhesives with higher viscosity, the adhesive was set by 

moulding and squeezing. Due to this procedure, specimens with high viscosity adhesives presented a greater 

number of imperfections on the interfaces with the adherents than low viscosity adhesives. 

Comparing the experimental shear stress distributions from DLJs against the analytical formulations for 

DLJs of Völkersen and TOM revealed that TOM’s analytical formulation offered a more accurate 

prediction of the stress distribution on the interface where the highest shear stresses on the interface were 

at the ends of the bonded joint and the lowest shear stresses were placed at the centre of the joint. 

As the analytical formulation of TOM was found to be consistent with the experimental shear stress 

distribution obtained for DLJs, an analytical formulation for straight bond-type anchorages was developed 

from the formulation of TOM where a third differential equation in the force balance was introduced to 

take into account the circular section of the anchorages. The analytical solution was validated against the 

experimental data and it was found that the proposed formulation provides an approximate distribution of 

shear stress in the bonded joint for circular anchorages with adhesives which behave elastically-linearly up 

to failure.  

Also, different geometries of circular straight bond-type anchorages were investigated under quasi-static 

loading up to failure using different adhesives systems. As mentioned in the literature review, in most cases 

a premature failure of adhesive-tendon interface was observed. The failure started at the top of the 

anchorage and it was quickly propagated to the bottom of the joint throughout the overlap length. The 

naked-eye examination and the microscopic analysis revealed that the failure surface occurred within the 

adhesive but very close to the interface by adhesion failure. 

The force-displacement curves showed that anchorages behaved largely linearly up to the point of failure, 

which occurred rapidly and explosively. However, several specimens showed a significant change in the 

slope revealing that nonlinearities in the adhesive must occur. Finally, it was determined from the 

experimental campaign that higher failure loads can be reached when either the adhesive thickness or the 

bonded length are higher.  

Moreover, the literature review showed that different techniques have been investigated to model 

adhesively bonded joints for composite materials. The majority of these have been intended for plane 
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geometries, such as single lap joints and double lap joints. These analyses consider non-linearities, 

continuum damage, coupled hygro-mechano-thermal effect or progressive damage.  

In this investigation, a numerical modelling work was conducted to predict the static strength and the failure 

mechanism of straight bond-type anchorages with adhesive 02. Different material models of increasing 

complexity were investigated for the adhesive layer. Initially the adhesive was modelled with linear elastic 

properties. However, this analysis was unable to effectively predict the measured responses as the required 

stresses were physically unreasonable and were different amongst the geometric cases that were studied. 

Adhesive yielding was then modelled using, in the first place, von Mises plasticity followed by Druker-

Prager plasticity. Similarly to the elastic analysis, when using von Mises plasticity there was no correlation 

between the maximum equivalent plastic strains of the adhesive at the point of failure of each configuration. 

Also, these strains were substantially higher than the stated material data provided by the manufacturer. 

Furthermore, as mentioned in the literature review, Druker-Prager plasticity, which enables the hydrostatic 

dependency of the adhesive, is normally used to model polymers which exhibit higher yield stresses than 

tension in compression. Even though, the predicted adhesive failure strains were reduced when using 

Drucker-Prager plasticity, they were still too high to enable a reliable strength prediction to be made. 

Finally, progressive damage was included in the modelling in order to capture the entire mechanical 

response of the anchor including the damage initiation and evolution leading to the anchorage failure. As 

the crack path was known in advance, a layer of cohesive elements was implemented between the adhesive 

and tendon. The cohesive layer simulated the chemical adhesion of the joint by following the assigned 

elastic curve until a point of damage initiation. Once the damage started, the bearing forces were simulated 

by a multi-linear softening which was utilised to simulate the subsequent (post-failure) friction between 

adhesive and CFRP tendon. It was found that the cohesive zone model with progressive damage and a 

“frictional” post-damage region was shown to provide predicted joint strengths that correlate closely with 

the measured experimental data. This data successfully described the different failure loads with different 

thicknesses and lengths of adhesive layer. 

Moreover, it was found in the literature review that time-dependent phenomena have also been investigated 

in adhesively bonded joints especially through plane geometries. Time-independent plasticity material 

models and time dependent visco-elastic and visco-plastic models have been studied in order to provide a 

time-dependent response in adhesives and bonded joints. According to the purpose of this research, it was 

found that a visco-plasticity model, which predicted the lifespan of bonded joints under creep loading by 

degrading the plastic yield properties of the adhesive layer, was able to accurately model the creep 

phenomenon in plane adhesive joints. 

Creep tests at different loads were conducted on single lap joints (SLJs) with four different adhesive 

thicknesses where the creep time to failure of each specimen was recorded. It was observed that samples 
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with a thicker adhesive layer tended to have shorter lifespans than samples with thinner layers at the same 

creep load. The increased load eccentricity, associated with the thicker adhesive layers, introduced an 

increased bending moment and hence increased the adhesive stresses. The experimental results permitted 

an experimental creep law which related the average shear stress of the bonded joint and creep lifetime to 

be obtained.  

Based on the state of the art, a creep power law based on the Bailey-Norton law was utilised in the numerical 

work. The parameters of the creep power law were calibrated with the experimental data available. Also, 

the adhesive plastic yield stress was linearly degraded when the equivalent creep strain was greater than 

90% of the maximum equivalent creep strain allowed. The numerical results showed that the maximum 

equivalent creep strain in the SLJs at failure load was thickness dependent. However, a quadratic 

polynomial equation which related both variables was found with the aim to obtain the maximum equivalent 

creep strain most suitable to be implemented in the model in function of the adhesive thickness.   

The creep phenomenon was not experimentally investigated on the straight bond-type anchorages. 

However, the creep model was utilised for predicting the creep time to failure of the anchorages under the 

loads used in the fatigue experimental campaign. It was revealed that the creep loading aspect during the 

fatigue testing activities did not have a significant influence and thus it was not considered in the fatigue 

modelling work. It was also found that the lifespan of the anchors was relatively short at high loads, 

suggesting that these anchors should be loaded either at low loads in order to increase their lifespan in real 

structures or at higher loads in temporary prestressed concrete structures or auxiliary structures where the 

properties of the tendon are unique for their purpose. 

Moreover, the time-dependent phenomenon was directly investigated on straight bond-type anchorages 

through experimental stress relaxation tests. Four geometric cases were tested under three initial tensioning 

forces. It was observed that the experimental normalised load loss was similar for all the geometries of each 

initial tensioning force. For this reason, a unique experimental trend for all the geometries was obtained for 

each initial tensioning force. However, the normalised load loss was found to be different among the initial 

tensioning forces. The greater the initial tensioning force, the greater the load loss recorded. Also, this 

increase of load loss was non-proportional to the increase of initial stress. 

For all the specimens, it was observed that the anchorages suffered the highest load loss rate or molecular 

rearrangement on the adhesive layer once the load was applied. Afterwards, the molecular rearrangement 

was gradually reduced until a constant load loss rate was reached. The stabilisation of the load loss rate was 

reached approximately 25 hours after the loading force was transferred to the anchorage.  

The experimental campaign also showed that the restressing technique allows for a higher stabilised load 

to be achieved as the load loss ratio was found to be lower for each successive restressing. It is suggested 
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that the straight bond-type anchorage is restressed when the load loss rate is stabilised, after approximately 

25 hours.  

It was also seen that the number of restressings to achieve a desired stabilised load in the anchorage depends 

on the initial tensioning force. The normalised load loss achieves the lowest rate after four consecutive 

restressings for initial loading forces ranging between 70 and 60% of the static failure load whereas three 

consecutive restressing are required for initial loading forces ranging between 55 and 45%. Solely one 

restressing is needed for initial tensioning forces under 40% of the static failure load. 

Additionally, a numerical model was utilised to predict the stress relaxation response of the bonded 

anchorage and compared with the experimental data obtained. Similarly to the creep modelling, elastic-

perfectly plastic von Mises response was assumed in the adhesive layer and the time-dependent behaviour 

of the adhesive was considered through the Bailey-Norton law. The numerical model provided a predicted 

time-dependent behaviour of the straight bond-type anchorage that correlate closely with the experimental 

trend curves for the first stressing step. 

Finally, the fatigue response of adhesively bonded anchorages has been studied in this research. It was 

found in the literature review, that a cohesive zone model permits the accurate onset and growth of damage 

of bonded joints under fatigue loading with constant or variable amplitude. It was studied on adhesive plane 

geometries where the lifespan under fatigue loading was simulated by degrading the properties of the 

cohesive elements. 

In this research, the numerical model was applied to straight bond-type anchorages where a multi-linear 

traction-separation law was considered in order to take into account the influence of the bearing forces 

between the adhesive and tendon once the chemical bond failed. 

Fatigue tests were experimentally undertaken on straight bond-type anchorages with different load ratios, 

maximum fatigue loads and different adhesive thicknesses with failure occurring in the bond line. The 

experimental data were normalised with the maximum fatigue load instead of the loading range as the 

dispersion was lower. This permitted a consistent load-life curve to be obtained which allows for the fatigue 

life of other configurations to be estimated if the quasi-static strength is known. 

As previously mentioned, a multi-linear traction-separation cohesive zone was modelled between the 

adhesive and the tendon, as the crack path was known. The fatigue model parameters required for the 

degradation of the cohesive element properties were calibrated with the experimental load-life curve 

obtained in the fatigue experimental campaign. It was found that the predicted fatigue results obtained were 

able to successfully predict the fatigue life of adhesively bonded anchors for CFRP rods. 

It was also observed, experimentally and numerically, that the anchors with thicker adhesive layers showed 

a higher number of cycles before failure at the same fatigue loading. Nevertheless, anchors with thinner 
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adhesive thickness were able to reach a greater number of cycles to failure at the same normalised fatigue 

load. This suggest that the increase of quasi-static strength of the joint, produced when the anchorage 

adhesive thickness increases, is non-proportional to the increase of the fatigue time to failure. 

7.3 Future research 

The adhesively bonded anchorages for CFRP tendons have been experimentally and numerically 

investigated under quasi-static, fatigue and time-dependent loads. The main parameters studied in this 

research have been the adhesive thickness and the bonded length (solely in the quasi-static analysis) of the 

straight bond-type anchorage within certain limits.  

More detailed experimental work will be useful with the aim to more accurately assess and validate the 

integrity of the numerical work. This includes a great variety of geometric cases to be assessed under quasi-

static, fatigue and time-dependent loads. Also, the number of SLJs tests were limited and the results 

appeared to be thickness dependent. This did not permit fitting curves to individual thicknesses, as the data 

were insufficient to acquire a consistent trend. As the creep failure strain is physically expected to be a 

material characteristic and not thickness dependent, further experimental research is needed in order to 

investigate and discuss this aspect in depth. 

Moreover, further research is also required for the numerical models developed in this research, in order to 

extend the use of these models in more general configurations of adhesively bonded anchorages. In this 

research, a continuum approach was used for the time-dependent analyses whereas a cohesive zone 

modelling was utilised for quasi-static and fatigue analyses. As these analyses were not combined in a 

single analysis, it was reasonable to adopt different damage approaches. However, it would be of interest 

to develop a time-dependent cohesive zone model combining both time-dependent model and a cohesive 

zone model (utilised in the quasi-static and fatigue analyses) into one unique model. This would provide a 

significant improvement for modelling straight bond-type anchorages under different types of loads acting 

simultaneously, which is more representative of a real application. 

Finally, it would be very interesting to experimentally investigate the behaviour of a prestressed concrete 

structure with CFRP tendons using straight bond-type anchorages. This would provide valuable information 

in order to design and apply this prestessing system in real applications. The numerical simulation of the 

whole would however require a lot of computer power which cannot be carried out on ordinary computers. 
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Appendix A. Analytical formulation for circular adhesive bonded 

joints 

A.1 Analytical formulation 

A theoretical solution for circular adhesively bonded joints are proposed in this annex. In this formulation, 

the adhesive layer was considered to carry only shear stresses needed to transfer the longitudinal forces 

from the inner (FRP tendon) to the outer (steel housing) adherents. However, linear shear and normal stress 

distributions through the thickness of the adherents were adopted. Figure A.1 shows the configuration and 

material parameters of the adhesive anchor. 

 

Figure A.1. Configuration bond-type anchorage. 

E0 Elastic modulus in the longitudinal direction of the outer adherent (steel housing). 

G0 Shear modulus in the longitudinal direction of the outer adherent (steel housing). 

Ec Elastic modulus in the longitudinal direction of the adhesive. 

Gc Shear modulus in the longitudinal direction of the adhesive. 

Ei Elastic modulus in the longitudinal direction of the inner adherent (FRP tendon). 

Gi Shear modulus in the longitudinal direction of the inner adherent (FRP tendon). 

ro Outer radius of the steel housing. 

rc Outer radius of the adhesive layer. 

ri Outer radius of the FRP tendon. 

T Longitudinal forces acting at the outer and inner adherents. 
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l Bonded length. The bonded length is considered 2l. 

Figure A.2 shows a differential element of the bonded joint. Due to its symmetry, only half of the anchor 

was considered. In each material element the equilibrium must be balanced according to Equation A.1. 

 0xF  (Equation A.1) 

 

Figure A.2. Geometry and parameters for the basic elements. 

The equilibrium equations for the basic elements of the outer and inner adherents can be written as follows: 

02  co
o r

dx

dT    (Equation A.2)  02  ii
i r

dx

dT    (Equation A.3) 

where To and Ti  represent the longitudinal forces per unit of width acting on the adherents. In addition, the 

balance in the adhesive element leads to the Equation A.4. 

dxrdxr coii   22     (Equation A.4)       therefore     
c

i
io r

r
      (Equation A.5) 

Equation A.5 is used to rewrite Equation A.2 and allows for the writing of differential equations of 

equilibrium (Equations A.2 and A.3) based on the same value of inner shear stress, i. This stress was 

considered more significant because it acts on the surface with less area and thereby with higher shear 

stresses.                   

02  ii
o r

dx

dT    (Equation A.6) 
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Therefore, the differential equations of equilibrium that will be used to determine the shear stress 

distribution on the tendon-adhesive interface are Equations A.6 and A.3. 

 

Figure A.3. Shear stress distribution through the thickness of adherents. 

According to the hypothesis of Tsai, Oplinger and Morton, the shear stress distribution was considered 

linear along the thickness of the steel housing and tendon as shown in Figure A.3. Therefore, 0  represents 

the maximum shear stress for the outer adherent and i represents the maximum shear stress for the inner 

adherent. Due to the circular geometry of the anchor, the maximum shear stress for the adherents are 

different between them. Thus, the shear stresses for the adherents can be expressed as: 

  11)( y
rr

y
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o
o 




     (Equation A.7) 



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
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i
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y
y 2

2 1)(      (Equation A.8) 

where y1 and y2 are a local coordinate system with the origin at the top surface of the outer and inner 

adherents, respectively. In the inner adherent, the shear stress will be zero when y2 is ri and maximum when 

y2 is zero. In the outer adherent, the shear stress will be zero when y1 is zero and maximum on the adhesive-

outer adherent interface. 

As mentioned earlier, Equations A.7 and A.8 can be written in function of the inner shear stress. Therefore, 

Equation A.7 can be rewritten using Equation A.5.  

  11)( y
rrr

r
y

ioo

ii
o 





  (Equation A.9) 

Moreover, a linear material constitutive relationship for the adherents was considered where the constitutive 

equations are determined by the Equation A.10.  
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klijklij C     (Equation A.10) 

where ij is the stress tensor, Cijkl is the elastic constitutive tensor and ij is the strain tensor. Considering 

the shear component of the constitutive equation (see Equation A.11), it is possible to rewrite Equations 

A.8 and 9 in function of the shear strain of the outer and inner adherents.  

  G  (Equation A.11) 

where G and   are the shear modulus and the shear strain in the longitudinal direction, respectively. 
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  (Equation A.13) 

The longitudinal displacement functions for the outer and inner adherents are shown in Figure A.4. 

 

Figure A.4. Longitudinal displacement of the materials involved in the adhesive bond 

The longitudinal displacement of the outer adherent, uo (y1), can be expressed as follows: 

10 11

1

)()( dyyuuyu
y

ooscoo     (Equation A.14) 

where uos is the displacement at the top of the outer adherent, uco is the displacement at the bottom of the 

outer adherent and is the shear strain of the outer adherent. It is worth noting that a perfect bond among 

the elements was considered and therefore, the displacements are continuous on the interfaces. 

Consequently, the Equation A.15 is obtained by integrating and rearranging. 
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      (Equation A.15) 

By means of the general theory of the elasticity, the longitudinal strain for the outer adherent, xxo, can be 

obtained from the longitudinal displacement (see Equation A.16). 
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In the same way, the longitudinal displacement of the inner adherent, ui (y2), can be expressed as shown in 

Equation A.17. 

 2

0 222 )()(
y

icii dyyuyu         (Equation A.17) 

where uci represents the displacement at the top of the inner adherent and represents the shear strain for 

the inner adherent. By integrating and rearranging, Equation A.18 is obtained. 
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By differentiating Equation A.18 with respect to x, the longitudinal strain in the inner adherent can be found, 

xxi. 
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Moreover, the longitudinal resultant forces acting in the outer, To, and inner, Ti, adherents can be written as 

follows: 
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     (Equation A.21) 

where o represents the longitudinal normal stress for the steel housing and i represents the longitudinal 

normal stress for the tendon. It is worth mentioning that both equations consider the circular geometry of 

the anchor. Also, Equations A.16 and A.19 can be introduced into the longitudinal normal strains of 

Equations A.20 and A.21 respectively, by previously transforming the longitudinal normal stresses into 

functions of normal strains. By integrating and rearranging, the longitudinal resultant forces expressed in 

Equations A.20 and A.21 can then be formulated in function of the longitudinal normal strains (see 

Equations A.22 and A.23). 
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 (Equation A.23) 

Considering the adhesive as a thermosetting polymer with a low viscosity behaviour for short-term loading 

applications, the adhesive shear strain, c, can be defined linearly as shown in Equation A.24 (see Figure 

A.5). 
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Figure A.5. Longitudinal displacement of the adhesive. 

Consequently: 
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By differentiating Equation A.25 with respect to x,  

  





 




dx

du

dx

du

rr

G

dx

d coci

ic

ci  (Equation A.26) 

By substituting Equations A.22 and A.23 (longitudinal normal stresses) into the Equation A.26, the equation 

becomes, 
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By differentiating again with respect to x, 



Appendix A. Analytical formulation for circular adhesive bonded joints 

 

 

158 

   

   
     

  
























































cooo

coi

oo

cocoi

coi

i

ic

c

coo

o

ii

i

ic

c

i

rrrG
rrr

rG
rrrrr

rrG
r

rr
G

rrEdx

dT

rEdx

dT

rr

G

dx

d

42
1

12
5

1

11

4422

22

222

2

2   (Equation A.28) 

By substituting the equilibrium differential Equations A.3 and A.6 into the Equation A.28, Equation A.29 

is obtained: 
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 (Equation A.29) 

Equation A.29 can be written as follows, 
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And the general solution for the Equation A.30 is, 

   xCoshBxSinhAi     (Equation A.32) 

Equation A.32 allows for the shear stress distribution along the tendon-adhesive interface at a given load 

to be obtained, where A and B are coefficients which depend on the boundary conditions. For circular 

adhesively bonded anchors, the boundary conditions depend on the stressing system. 

Moreover the average shear stress on the tendon-adhesive interface, mi, can be defined as shown in 

Equation A.33. 
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A.2 Pull-Pull model 

Boundary conditions for a pull-pull model are shown in Figure A.6 and Equations A.34a and A.34b. 
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Figure A.6. Pull-Pull model. 

To = 0  Ti = mii lr   22          when    x = l (Equation A.34a) 

To = mii lr   22   Ti = 0     when  x = - l (Equation A.34b) 

The coefficient B is obtained by introducing Equation A.32 into the shear stress of Equation A.33 and 

integrating as shown in Equations A.35 and A.36. 

     mi

l

l i
i

ddxrxCoshBxSinhA
cr





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  




2

022

1
 (Equation A.35) 

     mi
l

l
xCoshBxSinhA

c








2

1
 (Equation A.36) 

By rearranging, the coefficient B results, 

 lSinh

l
B mi








 (Equation A.37) 

The coefficient A is obtained by differentiating Equation A.32 with respect to x and equating against 

Equation A.27, taking into account the boundary conditions equations (Equations A.34a and A.34b). By 

using the boundary conditions provided either by Equation A.34a or by Equation A.34b, the same value of 

coefficient A is obtained. 

On one hand, differentiating Equation A.32 is provided in Equation A.38. 

   lSinhBlCoshA
dx

d i  


 (Equation A.38) 

By substituting the coefficient B (see Equation A.37) into the Equation A.38, 

  mi
i lxCoshA

dx

d



 2      (Equation A.39) 

On the other hand, Equation A.40 is obtained by applying the boundary condition equations into Equation 

A.27. In this case, the boundary condition of Equation A.34a was used. 
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  (Equation A.40) 

By equating and rearranging Equation A.39 against Equation A.40, the coefficient A can be found (see 

Equation A.41). 
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  (Equation A.41) 

A.3 Pull-Push model 

Boundary conditions for a pull-push model are shown in Figure A.7 and Equations A.42a and A.42b. 

 

Figure A.7. Pull-Push model. 

To = mii lr   22     Ti = mii lr   22       when   x = + l     (Equation A.42a) 

To = 0      Ti =  0      when   x = - l      (Equation A.42b) 

As mentioned in the pull-pull model, the coefficient B is obtained by introducing Equation A.32 into the 

shear stress of Equation A.33 and integrating. Hence, the same equation as the pull-pull model allows 

obtaining the coefficient B. 

The same process as used in the pull-pull model is needed to find the coefficient A. This can be found by 

differentiating Equation A.32 with respect to x (through the same process as the pull-pull model) and 

equating against Equation A.27, taking into account the boundary conditions equations (Equations A.42a 

and A.42b). As mentioned before, by using the boundary conditions provided either by Equation A.42a or 

by Equation A.42b, the same value of coefficient A is obtained. In this case, the boundary condition of 

Equation A.42a was substituted into Equation A.27 and Equation A.43 was obtained. 
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 (Equation A.43) 

By equating and rearranging Equation A.39 against Equation A.43, the coefficient A can be found (see 

Equation A.44). 

 lCosh

l
A mi



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
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 (Equation A.44) 
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