
DYNAMIC MATHEMATICAL TOOLS FOR THE IDENTIFICATION OF 
REGULATORY STRUCTURES AND KINETIC PARAMETERS IN SYSTEMS 

BIOLOGY.

Antoni Miró Roig

Dipòsit Legal: T 1768-2014

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El  acceso  a  los  contenidos  de  esta  tesis  doctoral  y  su  utilización  debe  respetar  los 
derechos  de  la  persona  autora.  Puede  ser  utilizada  para  consulta  o  estudio  personal,  así  como  en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.  No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 
can be used for reference or private study, as well  as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes.



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

DOCTORAL THESIS 
 
 

Antoni Miró Roig 
 

DYNAMIC MATHEMATICAL TOOLS 
FOR THE IDENTIFICATION OF     

REGULATORY STRUCTURES AND      
KINETIC PARAMETERS IN SYSTEMS 

BIOLOGY 
 
 

 
 

ROVIRA I VIRGILI UNIVERSITY 
 

Department of Chemical Engineering 
 

 

 
 

 
Tarragona 

2014 

UNIVERSITAT ROVIRA I VIRGILI 
DYNAMIC MATHEMATICAL TOOLS FOR THE IDENTIFICATION OF REGULATORY STRUCTURES AND KINETIC PARAMETERS IN 
SYSTEMS BIOLOGY. 
Antoni Miró Roig 
Dipòsit Legal: T 1768-2014 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
DYNAMIC MATHEMATICAL TOOLS FOR THE IDENTIFICATION OF REGULATORY STRUCTURES AND KINETIC PARAMETERS IN 
SYSTEMS BIOLOGY. 
Antoni Miró Roig 
Dipòsit Legal: T 1768-2014 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Antoni Miró Roig 

 

DYNAMIC MATHEMATICAL TOOLS 
FOR THE IDENTIFICATION OF     

REGULATORY STRUCTURES AND      
KINETIC PARAMETERS IN SYSTEMS 

BIOLOGY 
 

 
DOCTORAL THESIS 

 
Supervised by:  

Prof. Gonzalo Guillén Gosálbez 
Prof. Laureano Jiménez Esteller 

 
 

Rovira i Virgili University 
Department of Chemical Engineering 

SUSCAPE research group 
 

 
 

 
 

Tarragona 
2014 

UNIVERSITAT ROVIRA I VIRGILI 
DYNAMIC MATHEMATICAL TOOLS FOR THE IDENTIFICATION OF REGULATORY STRUCTURES AND KINETIC PARAMETERS IN 
SYSTEMS BIOLOGY. 
Antoni Miró Roig 
Dipòsit Legal: T 1768-2014 



IV 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
DYNAMIC MATHEMATICAL TOOLS FOR THE IDENTIFICATION OF REGULATORY STRUCTURES AND KINETIC PARAMETERS IN 
SYSTEMS BIOLOGY. 
Antoni Miró Roig 
Dipòsit Legal: T 1768-2014 



V 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Agradecimientos 

Ante todo quiero expresar mi más sincero agradecimiento a mis directores de tesis 

Dr. Gonzalo Guillén y Dr. Laureano Jiménez. Quiero darles las gracias por la oportuni-

dad que me dieron para ingresar en el programa de doctorado. Quiero agradecerles su 

apoyo, consejos, motivaciones y extensos conocimientos que me han aportado, pero 

especialmente la gran paciencia que han tenido hacia mí. Sin su ayuda, esta tesis no 

habría sido posible. Quiero dar las gracias al Dr. Sebastian Sager por acogerme en su 

grupo de investigación durante 3 meses, por su apoyo y por los conocimientos que me 

aportó. Agradezco también a los miembros del tribunal al participar en la evaluación de 

esta tesis. Quiero mostrar mi gratitud al Ministerio de Ciencia e Innovación por adjudi-

carme la beca FPI. Quiero agradecer también la colaboración del grupo de investigación 

de Bioestadística y Biomatemáticas de la Universidad de Lleida (IRBLleida). Así como 

también a todos los grupos de investigación que han colaborado en la realización de los 

artículos en los que se basa esta tesis.  

Quiero dar mi agradecimiento también a todo el personal de secretaria del DEQ 

por la gestión de todos los trámites administrativos durante todo el transcurso del docto-

rado.  Quiero agradecer también a todo el personal de mantenimiento y limpieza porque 

gracias a su trabajo hemos podido hacer el nuestro en óptimas condiciones. Quiero dar 

las gracias también la Universidad, a sus directivos y a todos los profesores que he teni-

do durante toda la formación que he recibido. No estoy menos agradecido a mis compa-

ñeros de SUSCAPE: ha sido un placer trabajar con vosotros. 

Quiero dar las gracias a toda mi familia en especial a mis padres por la educación 

la tolerancia i el amor recibidos. Os quiero mucho. A todos mis amigos por serlo. ¿Y 

por qué no? A mí mismo. 

Quiero dar las gracias y que me perdone también todo aquel que me haya ayudado 

y no lo mencione en estos agradecimientos. Finalmente no quiero despedirme sin antes 

agradecerte también a ti querido lector que estas leyendo estas palabras: ¡GRACIAS! 

 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
DYNAMIC MATHEMATICAL TOOLS FOR THE IDENTIFICATION OF REGULATORY STRUCTURES AND KINETIC PARAMETERS IN 
SYSTEMS BIOLOGY. 
Antoni Miró Roig 
Dipòsit Legal: T 1768-2014 



VI 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solo sé que no se nada y,  
al saber que no sé nada, algo sé;  

porque sé que no sé nada. 

Sócrates (470-399 A.C.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
DYNAMIC MATHEMATICAL TOOLS FOR THE IDENTIFICATION OF REGULATORY STRUCTURES AND KINETIC PARAMETERS IN 
SYSTEMS BIOLOGY. 
Antoni Miró Roig 
Dipòsit Legal: T 1768-2014 



VII 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Summary 

In this thesis we developed mathematical programming tools to facilitate the model-

ling of biological systems. Modeling biological systems is a noteworthy task in systems 

biology. In this thesis we focused on two challenging tasks: parameter estimation and 

regulatory structure identification.  

The parameter estimation task can be posed as an optimization problem in which the 

sum of squares between experimental and simulated data is minimized. Regulatory 

structure identification can be addressed in a similar way. In this case, the signals appear 

in a model as parameters accounting for the influence that metabolites others than the 

substrates of a reaction have on its velocity. Parameter estimation of biological systems 

is particularly challenging due to their dynamic and nonlinear nature. 

The main goal of this thesis is to develop mathematical programming tools to sur-

mount these difficulties. Particularly, we make use of global (i.e. outer approximation) 

and dynamic (i.e. orthogonal collocation on finite elements) optimization tools to cope 

with the main challenges arising in this area. This PhD dissertation is presented using 

three articles (two already published and one ready to be submitted to an international 

peer reviewed journal). 

On all publications we deal with parameter estimation problems with differential 

equations embedded. In order to solve this type of problems, we use dynamic optimiza-

tion techniques. Among all available dynamic optimization methods, we selected a di-

rect simultaneous approach: the orthogonal collocation on finite elements method. 

Simultaneous methods allow performing automatic differentiation with respect to the 

control and state variables, avoiding the need to calculate the derivatives numerically. 

Unfortunately, the discretization step can lead to large scale NLPs that are difficult to 

solve. In the orthogonal collocation method, both the control and state profiles are ap-

proximated using polynomials and discretized in time by means of finite elements. Par-

ticularly we used Lagrange polynomials whose collocation coefficients are distributed at 

the shifted (between 0 and 1) roots of the orthogonal Legendre polynomials (see Or-

thogonal collocation approach section in [1] for further information). 

Deterministic global optimization strategies are the only ones that can ensure con-

vergence to the global optimum of a non-convex problem within a desired tolerance in a 
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finite number of iterations. On the other hand, stochastic methods rely on meta-

heuristics in order to guide the search for “good” solutions from a series of pseudoran-

dom generated points. These methods, which are often based on physical and biological 

analogies, tend to provide near optimal solutions in low CPU times, yet they offer no 

guarantee of global optimality. 

In the first publication [1] we presented a deterministic global optimization algo-

rithm for the parameter estimation of nonlinear biological systems. This approach is 

based on an outer approximation algorithm which offers a theoretical guarantee of con-

vergence to the global optimum. In addition to the solution itself, this method provides a 

rigorous interval within the global optimal solution must fall. Unfortunately, this 

method requires a considerable amount of CPU time to ensure global optimality.  

In this work we reformulate the set of ordinary differential equations describing the 

dynamics of the biological system into an equivalent set of algebraic equations through 

the use of orthogonal collocation methods, giving rise to a nonconvex nonlinear pro-

gramming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical 

levels: a master mixed-integer linear programming problem (MILP) that provides a rig-

orous lower bound on the optimal solution, and a reduced-space slave NLP that yields 

an upper bound. The master problem is a relaxation of the original NLP (i.e., it overes-

timates its feasible region) and hence provides a rigorous lower bound on its global op-

timum. A valid upper bound on the global optimum is obtained by optimizing the 

original NLP locally. This NLP is initialized with the solution provided by the MILP. 

The algorithm iterates between these two levels until a termination criterion is satisfied. 

A rigorous relaxation of the original model is constructed by replacing the noncon-

vex terms in the reformulated model by convex estimators. The solution of the convex 

relaxation provides a valid lower bound on the global optimum. Specifically, in this 

work the bilinear terms are replaced by piecewise McCormick relaxations (see Piece-

wise McCormick-based relaxation section in [1]). 

We illustrated the performance of the proposed algorithm through its application to 

two challenging benchmark parameter estimation problems: the isomerisation of α-

pinene and the inhibition of HIV proteinase. The final goal in these problems is to ob-

tain the set of values of the model parameters with which the model response is as close 
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as possible to the experimental data. For comparison purposes, we used the global opti-

mization package BARON (Branch And Reduce Optimization Navigator). BARON is a 

commercial software for solving nonconvex optimization problems to global optimality 

that implements the latest theoretical and algorithmic developments in global optimiza-

tion. 

In the first case study, which focuses on the α-pinene, BARON was able to find the 

global optimum but failed at reducing the optimality gap below the specified tolerance 

after 12h of CPU time. In contrast, our algorithm closed the gap in less than 3h. The 

differences between this algorithm and BARON were more remarkable in the HIV pro-

teinase case study, where BARON failed to identify any feasible solution after 12h of 

CPU time. Our algorithm closed the gap in approximately 4000 CPU s, and outper-

formed BARON and other parameter estimation methods, improving the best known 

solution, and providing a rigorous lower bound on the minimum error that can be at-

tained. 

The overwhelming majority of parameter estimation methods assumes a given struc-

ture and considers a fix regulatory scheme. This simplification is motivated by the diffi-

culty in identifying regulatory effects. In this PhD thesis, we propose a strategy to 

simultaneously address the challenging tasks of estimating the parameters and regula-

tory topology of biochemical networks from time-series data. 

In the second publication [2] we proposed a rigorous and systematic parameter es-

timation and network identification method that makes no assumption regarding the 

regulatory network topology. The capabilities of this methodology were illustrated 

through its application to a case study taken from Voit and Almeida [3]. In this case 

study, a canonical model structure in the context of the power-law kinetic formalism 

called GMA (Generalized Mass-Action) was used for representing the systems’ kinet-

ics. Our approach is not restricted to this particular representation, as it can accommo-

date any general representation flexible enough to account for the regulatory 

interactions in a biological network. 

To model the existence of a regulatory interaction, we apply disjunctive program-

ming techniques that allow transforming the problem into a mixed-integer dynamic op-

timization (MIDO) problem through the use of the big-M reformulation (See section 
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4.2). Particularly, we solved this MIDO by reformulating it into a mixed-integer nonlin-

ear programming (MINLP) problem using orthogonal collocation on finite elements, 

which makes it possible to apply standard MINLP solution algorithms iteratively in or-

der to identify a set of plausible network topologies and associated kinetic parameters. 

Our MIDO approach can be solved using any standard MIDO solution algorithm, and it 

is not restricted to the use of orthogonal collocation and MINLP reformulations. 

One important feature of the approach followed is that rather than calculating a sin-

gle optimal solution, it identifies a set of plausible regulatory topologies by solving the 

model iteratively. That is, the model is first solved to identify a potential regulatory con-

figuration represented by a binary solution (i.e., set of values of the binary variables). 

The model is then calculated again but this time adding an integer cut, which excludes 

solutions identified so far in previous iterations from the search space. 

We tested first the extent to which the method can identify the model parameters 

when the regulatory structure is known and assuming no error. As expected we obtained 

values very close to the reported ones. We observed that parameter trends can be ob-

tained by fixing a given parameter and fitting the remaining ones. In practical terms, this 

means that given an experiment and an estimation procedure, we could obtain different 

parameter sets that closely reproduce the experimental measurements, but that differ 

from the actual values with which the dynamic profile was generated in silico. 

Next, we considered the effect of noisy data on fitting the model. We performed the 

calculations first for one experiment, that is, a single configuration for the initial condi-

tions for state variables. Later we repeated the calculations for three different experi-

ments. The perturbations force the system to move across different dynamic regimes, 

producing additional information that helps in the identification of appropriate parame-

ter values. In both cases, considering one and three experiments, we noticed that despite 

the different parameter values, the various fitted models lead to similar residuals.  

Lastly, we explored the ability of the method to identify the regulatory structure us-

ing one and three experiments with low experimental error. For one experiment, the 

method identifies topologies that are quite close and that show very small residuals, but 

it is unable to uniquely identify the original topology. Considering three experiments, 

the method identifies not only the actual topology, but also several structures that con-
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tain the original one (i.e., topologies that account for all the actual regulatory effects 

plus other signals that were not present originally). 

In the last publication [4] we presented an alternative approach based on bi-

objective optimization to simultaneously identify the regulatory interactions along with 

the kinetic parameters (assuming a kinetic representation) from time series data. The 

performance of this strategy is tested through its application to the same case study 

taken from Voit and Almeida [3] using the ε–constraint method (see section 2.3.1). We 

illustrated the ability of this novel strategy to identify the regulatory structure using one 

and three experiments in four different uncertainty scenarios. In silico data were gener-

ated via Monte Carlo sampling from normal distributions that assuming standard devia-

tions of 5, 10, 15 and 30%. For comparison purposes, we solved the same problem 

using the single-optimization approach previously developed [2]. 

We then assessed the quality of the predictions made by the models produced by 

each approach under untested conditions (using a validation set). 

After performing the calculations for one and three experiments, the results showed 

that for the majority of instances, the minimization of the Akaike information criterion 

(AIC) as single objective produces models with better predictive accuracy, that is, mod-

els with lower residuals in the validation set (as well as lower AIC values). In addition, 

we found that the AIC values of the models identified by both approaches are rather 

similar. Therefore, the alternative models cannot be directly discarded, since their AIC 

values are obtained using a limited number of points, and because of this the model with 

minimum AIC value might not be the best possible model.  

In summary, this thesis introduces a set of advanced mathematical tools for identify-

ing the regulatory structure and kinetic parameters of dynamic biochemical systems. 

The tools used are based on dynamic optimization (DO), mixed integer dynamic opti-

mization (MIDO), multi-objective optimization (MOO) and global optimization (GO). 

The thesis is organized as follows: in the first section we introduce the topic of the 

thesis, the section 2 provides the general background in mathematical programming and 

other tools used in this thesis, in the section 3 the fundamentals of model selection are 

introduced, in the section 4 the type of problems addressed are introduced. In the sec-

tion 5, we illustrate the capabilities and the numerical results of these approaches ap-

UNIVERSITAT ROVIRA I VIRGILI 
DYNAMIC MATHEMATICAL TOOLS FOR THE IDENTIFICATION OF REGULATORY STRUCTURES AND KINETIC PARAMETERS IN 
SYSTEMS BIOLOGY. 
Antoni Miró Roig 
Dipòsit Legal: T 1768-2014 



XII 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

plied to systems biology problems. In the last part, the conclusions and future work sec-

tions are outlined. The publications derived from the work can be found in the Articles 

section. 

 

Resumen 

En esta tesis desarrollamos herramientas de programación matemática para abordar 

la modelización de sistemas biológicos. El modelado de sistemas biológicos es uno de 

los cometidos más importantes en biología de sistemas. En esta tesis nos centramos en 

dos tareas complejas: la estimación de parámetros y la identificación de la estructura 

regulatoria. 

La estimación de parámetros puede formularse como un problema de optimización 

en el que se minimiza la suma de cuadrados entre los datos experimentales y simulados. 

La identificación de la estructura regulatoria puede abordarse de la misma manera, pero 

en este caso las señales aparecen en el modelo como parámetros que representan la in-

fluencia de los metabolitos en las velocidades de reacción. Determinar los parámetros 

de sistemas biológicos es particularmente complejo debido a su naturaleza dinámica y 

no lineal. 

El objetivo principal de esta tesis es desarrollar herramientas de programación ma-

temática para superar estas dificultades. En particular, hacemos uso de herramientas de 

optimización global (outer approximation)  y dinámica (colocación ortogonal en ele-

mentos finitos). Esta tesis doctoral se presenta utilizando tres artículos que se han publi-

cado o están listos para ser presentados a revistas internacionales arbitradas. 

En todas las publicaciones nos ocupamos de problemas de estimación de parámetros 

con ecuaciones diferenciales incorporadas. Para revolver este tipo de problemas hay que 

recurrir a técnicas de optimización dinámica. Entre todos los métodos de optimización 

dinámicos disponibles se optó por un enfoque directo simultáneo: el método de la colo-

cación ortogonal en elementos finitos. Los métodos simultáneos permiten la diferencia-

ción automática con respecto a las variables de control y de estado, evitando la 

necesidad de calcular las derivadas numéricamente. Desafortunadamente, la discretiza-

ción puede conducir a problemas no lineales (NLP) de elevada complejidad que son 
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difíciles de resolver. En el método de colocación ortogonal, tanto los perfiles de control 

como los de estado, se aproximan mediante polinomios y se discretizan en el tiempo por 

medio de elementos finitos. Concretamente se usaron los polinomios de Lagrange cuyos 

coeficientes de colocación se distribuyeron en las raíces de los polinomios ortogonales 

de Legendre normalizados (entre 0 y 1) (ver la sección Orthogonal collocation ap-

proach en [1] para más información). 

Las estrategias de optimización global deterministas son las únicas que pueden ga-

rantizar la convergencia al óptimo global de un problema no convexo con una tolerancia 

deseada en un número finito de iteraciones. Por otro lado, los métodos estocásticos se 

basan en meta-heurísticas para guiar la búsqueda de soluciones “buenas” partiendo de 

una serie de puntos generados pseudo-aleatoriamente. Estos métodos están inspirados a 

menudo en analogías físicas y biológicas y son capaces de obtener soluciones casi ópti-

mas en tiempos de CPU reducidos. Sin embargo, no ofrecen ninguna garantía de opti-

malidad global. 

En la primera publicación [1] presentamos un algoritmo de optimización global de-

terminista para la estimación de parámetros en sistemas biológicos no lineales. Este 

enfoque se basa en el algoritmo outer approximation el cual ofrece una garantía teórica 

de convergencia hacia el óptimo global. Además de la propia solución, este método pro-

porciona un intervalo riguroso que contiene la solución óptima global. Por desgracia, 

este método requiere una cantidad considerable de tiempo de CPU para garantizar la 

optimalidad global.  

Nuestro trabajo se basa en reformular el sistema de ecuaciones diferenciales ordina-

rias en un conjunto equivalente de ecuaciones algebraicas mediante el uso de métodos 

de colocación ortogonal, dando lugar a un problema de programación no lineal (NLP) 

no convexo. Este NLP no convexo se descompone en dos niveles jerárquicos: un pro-

blema master de programación lineal entera mixta (MILP) que proporciona una cota 

inferior rigurosa de la solución óptima global, y un problema NLP esclavo en el espacio 

reducido que ofrece una cota superior. El problema master es una relajación del pro-

blema NLP original (es decir, se sobreestima su región factible) y por lo tanto propor-

ciona un límite inferior riguroso en su óptimo global. La cota superior sobre el óptimo 

global se obtiene optimizando el problema NLP original localmente. Este problema 

NLP se inicializa utilizando la solución aportada por el problema master MILP como 
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punto inicial. El algoritmo itera entre estos dos niveles hasta que uno de los criterios de 

finalización se satisface. 

La relajación rigurosa del modelo original se construye sustituyendo los términos no 

convexos en el modelo reformulado utilizando estimadores convexos. La solución de la 

relajación convexa proporciona una cota inferior válida en el óptimo global. Concreta-

mente, en este trabajo los términos bilineales se reemplazan por relajaciones piecewise 

de McCormick (véase la sección Piecewise McCormick-based relaxation en [1]). 

Ilustramos el rendimiento del algoritmo propuesto a través de su aplicación a dos 

problemas de referencia en la estimación de parámetros: la isomerización del α-pineno y 

la inhibición de la proteinasa del HIV. El objetivo en estos problemas es obtener el con-

junto de valores de los parámetros del modelo de tal manera que su respuesta sea lo más 

cercana posible a los datos experimentales. Para comparar se utilizó el paquete de opti-

mización global BARON (Branch And Reduce Optimization Navigator). BARON es un 

software comercial para la resolución de problemas de optimización no convexos que 

identifica el óptimo global del problema considerando una tolerancia deseada. 

En el caso del α-pineno, BARON fue capaz de encontrar el óptimo global, pero no 

logró reducir el intervalo de optimalidad por debajo de la tolerancia especificada des-

pués de 12h de tiempo de CPU. Por el contrario, el algoritmo desarrollado logró alcan-

zar dicho intervalo en menos de 3 horas. Las diferencias entre nuestro algoritmo y 

BARON fueron más notables en el caso de estudio de la proteinasa del HIV. BARON 

no identificó ninguna solución factible después de 12h de tiempo de CPU. Nuestro algo-

ritmo cerró el intervalo en aproximadamente 4000 segundos de CPU, superando clara-

mente a BARON así como a otros métodos de estimación de parámetros, mejorando la 

mejor solución conocida, y proporcionando un límite inferior riguroso en el mínimo 

error que se puede alcanzar. 

La inmensa mayoría de los métodos de estimación de parámetros asume una estruc-

tura dada y considera un esquema regulatorio fijo. Esta simplificación está motivada por 

la dificultad en la identificación de los efectos regulatorios. Esta tesis doctoral propuso 

una estrategia para abordar simultáneamente las difíciles tareas de estimación de pará-

metros y de identificación de la topología de regulación de las redes bioquímicas a partir 

de datos de series temporales. 
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En la segunda publicación [2] proponemos un método riguroso y sistemático de es-

timación de parámetros y de identificación de la red que no hace ninguna suposición 

con respecto a la topología de la red de regulación. Las capacidades de nuestra metodo-

logía se ilustran a través de su aplicación a un caso de estudio tomado de Voit y Almei-

da [3]. 

En este ejemplo, se utilizó como representación cinética un modelo de estructura 

canónica en el contexto del formalismo cinético de la ley de potencia llamada GMA 

(Generalizad Mass-Action). Sin embargo, nuestro enfoque no está restringido a esta 

representación en particular, ya que cualquier representación general lo suficientemente 

flexible como para tener en cuenta las interacciones de regulación en una red biológica 

puede ser utilizada para el mismo propósito. 

Para modelar la existencia de una interacción regulatoria, hacemos uso de progra-

mación disyuntiva para plantear un problema MIDO (mixed-integer dynamic optimiza-

tion) mediante el uso de la reformulación big-M (Véase la sección 4.2). En particular, se 

resuelve el problema MIDO reformulándolo como un problema de programación no 

lineal entera mixta (MINLP) utilizando la colocación ortogonal en elementos finitos, lo 

que hace posible la aplicación de algoritmos estándar para MINLP de forma iterativa 

con el fin de identificar un conjunto de topologías de red plausibles con sus parámetros 

cinéticos correspondientes. Este problema MIDO, sin embargo, se puede resolver con 

cualquier algoritmo MIDO, y no necesariamente usando colocación ortogonal y refor-

mulaciones MINLP. 

Una característica importante del enfoque desarrollado es que en lugar de calcular 

una única solución óptima, identifica un conjunto de topologías reguladoras plausibles 

resolviendo el modelo de forma iterativa. Es decir, el modelo se resuelve primero para 

identificar una potencial configuración regulatoria representada por una solución binaria 

(un conjunto de valores de las variables binarias). Dicho modelo se calcula entonces de 

nuevo, pero esta vez añadiendo un corte entero, que excluye a las soluciones identifica-

das hasta ahora en anteriores iteraciones del espacio de búsqueda. 

Primero se probó la capacidad de nuestro método para identificar los parámetros del 

modelo cuando la estructura regulatoria es conocida y suponiendo que no hay error. 

Como era de esperar se obtuvieron los valores estimados de los parámetros muy cerca-
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nos a los originales. Hemos observado que se pueden obtener tendencias de los paráme-

tros fijando el valor de un parámetro dado y ajustando los restantes. En términos prácti-

cos, esto significa que dado un experimento y método de estimación, se podrían obtener 

diferentes conjuntos de parámetros que reproducen fielmente las medidas experimenta-

les, pero que difieren de los valores con los que el perfil dinámico se generó in silico. 

A continuación, hemos considerado el efecto de los datos con ruido en el ajuste del 

modelo. Hemos realizado los cálculos primero para un solo experimento, es decir, una 

única configuración para las condiciones iniciales de las variables de estado. Luego re-

petimos los cálculos para tres experimentos diferentes. Las perturbaciones fuerzan al 

sistema a moverse a través de diferentes regímenes dinámicos, produciendo información 

adicional que es de ayuda en la identificación de los valores apropiados de los paráme-

tros. En ambos casos, tanto considerando un único experimento así como tres experi-

mentos, constatamos que a pesar de los diferentes valores de los parámetros, los 

distintos modelos ajustados conducen a residuales similares.  

Por último, hemos explorado el rendimiento del método utilizando uno y tres expe-

rimentos con un error experimental pequeño. Para un experimento, el método identifica 

topologías que se asemejan bastante a la original y que muestran residuos muy peque-

ños, pero no es capaz de identificar de forma unívoca la topología original. Consideran-

do tres experimentos, el método identifica no sólo la topología real, sino también varias 

estructuras que contienen la original (es decir, las topologías que tienen en cuenta todos 

los efectos reguladores reales más las otras señales que no estaban presentes original-

mente). 

En la última publicación [4] hemos presentado un enfoque alternativo basado en la 

optimización bi-objetivo para identificar simultáneamente las interacciones reguladoras 

junto con los parámetros cinéticos (suponiendo una representación cinética) a partir de 

datos de series de tiempo. Esta estrategia fue evaluada a través de su aplicación al mis-

mo caso de estudio tomado de Voit y Almeida [3]. Aquí ilustramos la capacidad de esta 

nueva estrategia para identificar la estructura regulatoria utilizando uno y tres experi-

mentos en cuatro escenarios diferentes de incertidumbre. Los datos in silico fueron ge-

nerados mediante muestreo de Monte Carlo usando una sola muestra y suponiendo 

desviaciones del 5, 10, 15 y 30% en las distribuciones normales. Para fines comparati-
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vos, resolvimos el mismo problema con el enfoque de optimización de un objetivo úni-

co desarrollado anteriormente [2].  

Posteriormente se evaluó qué método es capaz de generar mejores modelos, enten-

diendo por mejores aquéllos que predicen mejor el comportamiento del sistema bajo 

condiciones no testadas (utilizando el set de validación). Después de realizar los cálcu-

los para uno y tres experimentos, los resultados mostraron que para la mayoría de los 

casos la minimización del criterio de información de Akaike (AIC) como único objetivo 

produce modelos con una precisión mejor de predicción, es decir, modelos con residua-

les más pequeños en el conjunto de datos de validación (así como valores más bajos del 

AIC). Sin embargo, estas soluciones no pueden ser directamente descartadas, ya que 

cuando los modelos tienen valores similares del AIC, el modelo con el menor valor del 

AIC puede no ser la mejor opción.  

Idealmente el mínimo valor del AIC debe pertenecer a la frontera de Pareto obtenida 

en el enfoque bi-criterio. Sin embargo, en la práctica esta condición no se cumple en 

todos los casos debido a dos razones. Por un lado, la expresión modificada que tenemos 

usar en este caso para el cálculo de la AIC (es decir, el AIC corregido, también conoci-

do como AICc) no cumple algunas de las propiedades que se requieren para establecer 

la analogía entre el AIC y el bi-criterio entre calidad y complejidad del ajuste. Por otro 

lado, no podemos garantizar el óptimo global de las soluciones de los MINLPs resueltos 

con un optimizador local (véase la sección Methods en [4] para más información). 

La tesis se organiza de la siguiente manera: En la primera sección introducimos el 

tema de la tesis, la sección 2 proporciona el marco general de la programación matemá-

tica y otras herramientas utilizadas en esta tesis. En la sección 3 se introducen los fun-

damentos de la selección de modelos, mientras que en la sección 4 se introducen el tipo 

de problemas abordados. En la sección 5 se ilustran las capacidades y los resultados 

numéricos de estos enfoques aplicados a problemas de biología de sistemas. En la últi-

ma parte se describen las conclusiones y el trabajo futuro. Las publicaciones derivadas 

de esta tesis se encuentran en la sección Articles. 
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1. Introduction 

Since the beginning of the past decade, modern high-throughput techniques have led 

to an explosion in the rate of data generated for characterizing the dynamics of genomic, 

proteomic and metabolic responses in biological systems. Consequently, one of the 

most fundamental challenges in systems biology is to glean biochemical significance 

from mounds of data. The behavior of biological systems is in many cases too complex 

to allow intuitive predictions and require the support of powerful theoretical tools from 

mathematics and physical sciences. Particularly, mathematical models of biochemical 

systems are becoming essential in systems biology to complement and extract informa-

tion from time series.  

The task of biomathematical modeling involves the conversion of the observed bio-

logical system phenomena into a simplified mathematical analogue that mimics its be-

havior and that is easier to study, predict, manipulate and optimize than the biological 

system itself. The typical procedure to end up with a reliable model comprises five chal-

lenges: (i) defining the system’s mass flow structure (stoichiometry); (ii) deciding the 

appropriate mathematical representation (kinetics); (iii) estimating the parameters that 

make the model response consistent with experimental data (parameter estimation); (iv) 

inferring the system’s regulatory structure; and (v) checking the predictive performance 

of the model (model validation). 

The first challenge requires compiling information available about the system in or-

der to generate its corresponding stoichiometric matrix. The next challenge entails the 

selection of the appropriate mathematical model among the different representations 

available. This step depends on the previous knowledge about the system. If enough 

information is known, mechanistic formulations based on physical sciences (e.g., law of 

mass action, Michaelis–Menten rate law…) are a good choice. Unfortunately, optimiz-

ing these systems is not a straightforward task as it usually leads to complex mathemati-

cal formulations [5]. If the degree of knowledge is lower, it is often more convenient to 

use a generic formulation capable of capturing the nonlinear dynamics while keeping 

the model relatively simple. Canonical models are particularly useful for this purpose. 

In addition, canonical models render possible parameter estimation and topology identi-

fication tasks simultaneously [6]. 
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Among them, models using the so called power-law formalism show a good com-

promise between accuracy and simplicity [7]. This group includes the S-System and the 

General Mass Action (GMA) models, which seem a promising alternative [8,9]. The 

main advantage of these models is that they can capture the nonlinearities required to 

describe the regulatory processes of the networks. Additionally, these models constitute 

a very general framework since any kind of metabolic network can be represented 

through their formulations [10]. GMA models only differ from S-System models in the 

way in which the branching points are handled [11]. In S-System models, all the input 

flows in the branching point are collected and modeled together as if they were a single 

flow. The same procedure is followed for the outputs so that, finally, the concentration 

of the metabolite being balanced is the result of just two contributions. On the other 

hand, in GMA models each process is approximated separately so that there are as many 

contributions as actual flows in the real system [12]. If the metabolic network only con-

tains nodes that result from the contribution of one input flow and one output, the S-

System and GMA representations coincide. 

In systems biology there is a strong tendency to build very complex models. In this 

situation, when a model has too many parameters it is said to be overfitted. Overfitted 

models should be avoided since the task of biomathematical modeling is not trying to 

model the data perfectly, instead it has more to do with recovering information from the 

time series data. In other words, since data contain both information and noise the goal 

is to extract the information that applies to the process in general rather than that con-

tained in the particular data set. Conversely underfitted models are highly biased from 

reality and therefore their predictions might be unreliable.  

Clearly, a trade-off between under- and overfitting is needed but we cannot rely on 

intuition to assess such a trade-off, instead a criterion based on deep information theory 

is demanded. Information-theoretic criteria such as the Akaike information criterion 

(AIC) [13] or the Bayesian information criterion (BIC) [14], are now perceived as im-

portant measures to assess quality of the fitting. AIC is often preferred over BIC be-

cause it has a more immediate connection to the theory of information [15]. AIC 

captures the trade-off between the complexity (measured by the number of parameters), 

and accuracy of the fitting. AIC selects the fitted approximating model that is estimated, 

on average, to be closest to the unknown full reality [15]. Smaller AIC values imply a 

better approximation to the model sought (See section 3). 
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The third challenge we deal with is to determinate the appropriate numerical pa-

rameter values. The aim here is to obtain the set of parameter values that make the 

model response consistent with the data observed. Particularly, the parameter estimation 

task can be formulated as an optimization problem in which the sum of squared residu-

als between the measured and simulated data is minimized.  

The fourth challenge can be addressed in a similar way as the third one, since pa-

rameters accounting for the influence that metabolites others than the substrates of a 

reaction have on its velocity can be easily incorporated into the parameter estimation 

model.  

Despite the enormous amount of biological information available in public data-

bases, regulatory signals are, in general, poorly understood and hardly ever properly 

characterized in vivo. Recovering the network topology and associated kinetic parame-

ter values from time-series data is a very challenging task of paramount importance in 

systems biology. Usually, characterization of the regulatory topology is more difficult 

than parameter estimation.  

The type of optimization problem being faced and the technical challenges to be 

solved depend upon the biological model of choice, upon the experimental data avail-

able, upon computational issues, and upon the specific mathematical formalism used. 

Studying dynamic responses of biological systems is particularly appealing in systems 

biology. Dynamic biological systems are described through nonlinear ordinary differen-

tial equations (ODEs) that provide the concentration profiles of certain genes, proteins 

and metabolites over time. The biomathematical modeling of these systems gives rise to 

dynamic optimization problems which are hard to solve. 

Existing approaches to optimize dynamic models can be roughly classified as direct 

or indirect (also known as variational) [16]. Direct methods make use of gradient-based 

nonlinear programming (NLP) and can in turn be divided into sequential and simultane-

ous. In sequential approaches, the optimization of the control variables, which are dis-

cretized, are performed by a NLP solver, whereas the ODE is calculated externally, that 

is, both steps are executed in a sequential manner. In contrast, in simultaneous strate-

gies, both the control and state profiles are approximated using polynomials (e.g., La-

grange polynomials) and discretized in time by means of finite elements [17, 18]. In the 
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latter strategy, the ODE system is replaced by a system of algebraic equations that is 

optimized with a standard gradient-based NLP solver. Simultaneous approaches allow 

performing automatic differentiation with respect to the control and state variables, 

avoiding the need to calculate the derivatives numerically as is the case in the sequential 

approach. Unfortunately, the discretization step can lead to large scale NLPs that are 

difficult to solve. Multiple shooting methods serve as a bridge between sequential and 

simultaneous approaches. 

Optimization problems involving biological systems are usually of nonconvex na-

ture, which gives rise to multiple local solutions (i.e., multimodality). Because of this, 

traditional gradient-based methods used in the sequential and simultaneous approaches 

may fall in local optima. In the context of parameter estimation, these local solutions 

should be avoided, since they may lead to inaccurate models that are unable to predict 

the system’s performance precisely. 

Global optimization (GO) algorithms are a special type of techniques that attempt to 

identify the global optimum in nonconvex problems. These methods can be classified as 

stochastic and deterministic. Stochastic GO methods are based on probabilistic algo-

rithms that provide near optimal solutions in short CPU times. Despite having shown 

great potential with large-scale problems like parameter estimation [19], these methods 

have as major limitation that they are unable to guarantee convergence to the global 

optimum in a finite number of iterations. In other words, they provide solutions whose 

optimality (i.e., quality) is unknown, and may or may not be globally optimal. In con-

trast, deterministic global optimization methods ensure global optimality within a de-

sired tolerance, but lead to larger computational burdens. Hence, in addition to the 

solution itself, these methods provide as output a rigorous interval within which the best 

possible solution (i.e., global optimum) must fall.  

Two main deterministic GO methods exist: spatial branch-and-bound (sBB) [17, 20-

22], and outer approximation [23]. Both algorithms rely on computing valid lower and 

upper bounds on the global optimum. These bounds tend to approach as iterations pro-

ceed, thus offering a theoretical guarantee of convergence to the global optimum. 

A rigorous lower bound on the global optimum of the original nonconvex problem 

is obtained by solving a valid relaxation that contains its feasible space. To construct 
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this relaxed problem, the nonconvex terms in the original formulation are replaced by 

convex envelopes that overestimate its feasible region. There are different types of con-

vex envelopes that provide good relaxations for a wide variety of nonconvexities (See 

section 2.1.1). These relaxations are the main ingredient of deterministic GO methods 

and play a key role in their performance. In general, tighter relaxations provide better 

bounds (i.e., closer to the global optimum), thereby expediting the overall solution pro-

cedure. A valid upper bound on the global optimum is obtained by optimizing the origi-

nal NLP locally. This NLP is initialized using the solution provided by the MILP as 

starting point. The solution of this NLP is used to tighten the MILP, so the lower and 

upper bounds tend to converge as iterations proceed. 

Once the model is well defined, the task of the last challenge is to test the validity of 

the model, that is, the model whose parameters are predicted should be able to predict 

the systemic responses under yet untested experimental conditions. To this end, we 

carry out a model validation procedure. 

This thesis is devoted to overcoming the five challenges described above in the 

process of building a mathematical model in systems biology. Specifically, a determi-

nistic outer approximation-based algorithm was developed in [1] for the global optimi-

zation of dynamic problems in the context of the parameter estimation of models of 

biological systems. This approach is based on the reformulation of a differential-

algebraic system into an equivalent set of algebraic equations through the use of the 

orthogonal collocation on finite elements method evaluated at the shifted roots of Leg-

endre polynomials (See Orthogonal collocation approach section in [1]). The resulting 

NLP is then decomposed into two hierarchical levels: a master MILP that provides a 

rigorous lower bound on the global optimal solution, and a reduced-space slave NLP 

problem that provides an upped bound. Two case studies consisting of the isomerisation 

of α-pinene and the inhibition of HIV proteinase were solved. The results obtained were 

compared with those produced by the state-of-art commercial global optimization pack-

age BARON (Branch And Reduce Optimization Navigator).  

In [2], we presented an approach for simultaneously estimating the parameters and 

regulatory topology of biochemical networks from dynamic time-series data. Following 

this approach, we reformulated a mixed-integer dynamic optimization (MIDO) problem 

into a mixed-integer nonlinear programming (MINLP) problem through the use of or-
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thogonal collocation methods. The goal was to identify the solution that minimizes the 

Akaike information criterion (AIC). We tested the capabilities of our approach through 

its application to a case study taken from Voit and Almeida (2004).  

The last contribution of this Thesis [4] consists of an alternative method to deter-

mine the regulatory topology of biochemical networks from dynamic time-series data. 

In this publication, the inference task is posed as a bi-objective MIDO problem in which 

the complexity and the deviation from reality (i.e., the squared residual of the fitting of 

time series data) are simultaneously minimized. This problem was solved by applying 

the ε-constraint method (see section 2.3.1), which identifies a set of candidate models 

with an increasing number of regulatory interactions. The MIDO problems are further 

reformulated into non-convex MINLP models after complete discretization based on 

orthogonal collocation on finite elements. This method was applied to the same case 

study taken from Voit and Almeida (2004). 

For comparison purposes, we solved the same problem using the single-optimization 

approach previously developed. We thereby assessed the performance of both methods 

using a Cross-validation (CV) strategy and computing the AIC value for each model. 

 

2. Mathematical programming and optimization 

Although optimization started as a methodology of academic interest, it has become 

a useful technology with significant impact in almost all areas of engineering and sci-

ence [24]. In mathematical programming, optimization problems are generally posed as 

minimizations (by reversing the sign of the objective function, we can easily pose 

maximization problems as well): 

( )
( )

1min

. . , 0

, 0

,
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s t h x y

g x y

x R y Z
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≤

∈ ∈

 

                  (1) 
 

Single Objective Optimization problems (SOO) are composed of different parts. On 

the one hand, the objective function f1 can be understood as the performance index of a 
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given solution. Feasible alternatives (the set of which is sometimes referred to as search 

space or solution space) are defined by the constraints in the problem. In particular, 

h(x,y) represents equality constraints whereas g(x,y) refers to inequality constraints. Re-

garding the decision variables, these can either be continuous (denoted by x) or integer 

(represented by y). Note that widely-used binary variables are a particular case of inte-

ger ones. 

The nature of an optimization problem is given by the particular combination of 

variables and equations it embeds. As a result, one may face linear programming prob-

lems (LP, continuous variables and linear equations), non-linear programming problems 

(NLP, continuous variables and one or more non-linear equations), mixed-integer linear 

programming problems (MILP, continuous and integer variables, and linear equations) 

and mixed-integer non-linear programming problems (MINLP, continuous and integer 

variables, and at least one non-linear equation) among others. Special distinction needs 

to be made regarding whether the NLP is convex or not, as this second case may give 

rise to multiple local optimal solutions (i.e., multimodality). The existence of multiple 

local sub-optimal solutions is a handicap when addressing these problems as standard 

algorithms may get trapped in them during the search, reporting a solution far away 

from the global one. 

An optimization problem is said to be convex when its objective function and its 

feasible space are both convex. A feasible space is convex if and only if the inequality 

constraints are convex and the equality constraints are affine (i.e., linear). In a convex 

search space, any linear combination of two points of the feasible space leads to a point 

belonging to the same space, whereas in a non-convex one, it does not (Figure 1). Note 

that according to this definition any problem involving integer variables is non-convex, 

since its solution space is defined by disjoint regions. In practice, however, MINLP 

formulations are in general referred to as non-convex only when the NLP resulting from 

fixing the values of their integer variables is non-convex. Similarly, MILPs are non-

convex because of the presence of binary variables. 
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Figure 1 Example of a convex space C and a non-convex space S. 
 

2.1. Global optimization 

Deterministic global optimization strategies are the only ones that can ensure con-

vergence to the global optimum of a non-convex problem within a desired tolerance in a 

finite number of iterations. Some of these methods have been implemented in software 

applications (for instance, a spatial branch and reduce algorithm is implemented in 

BARON, the state-of-art global optimization solver). 

Here, we should distinguish between stochastic and deterministic approaches. Sto-

chastic methods rely on meta-heuristics in order to guide the search for “good” solutions 

from a series of pseudorandom generated points. These methods are often based on 

physical and biological analogies and are capable of obtaining near optimal solutions in 

low CPU times, yet they offer no guarantee of global optimality in a finite number of 

iterations. On the other hand, as already mentioned, deterministic methods are rigorous 

and, thus, can guarantee global optimality within a desired optimality gap. These meth-

ods are based on calculating valid lower and upper bounds on the global optimum of the 

problem that are gradually tightened until a desired optimality criterion is satisfied. The 

main drawback of such strategies is that they require a large number of iterations to 

converge, and sometimes, even after large CPU times, they cannot close the optimality 

gap (defined as the absolute value of the relative difference between the upper and the 

lower bounds) bellow certain limits [25]. The search for the global optimum can be ex-

pedited by exploiting the mathematical properties of the specific problem. Hence, there 

is still room for improvement in this area by devising customized algorithms for specific 

applications. 

In this thesis, we have developed efficient deterministic global optimization tech-

niques for non-convex NLPs arising in parameter estimation studies. From now on, we 

will refer to deterministic global optimization simply as global optimization. 
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2.1.1. Relaxations in global optimization 

One key feature of any global optimization algorithm is its capability of predicting 

valid lower bounds on the global optimum. This is usually accomplished by solving a so 

called convex relaxation of the original nonconvex problem. A relaxation is an auxiliary 

problem obtained with an objective function that underestimates the original one and a 

search space that contains that of the original problem.  

To program a valid MILP relaxation, we apply the following approach. We first re-

formulate the NLP using the symbolic reformulation method proposed by Smith and 

Pantelides [26]. This technique reformulates any system of nonlinear equations into an 

equivalent canonical form with the only nonlinearities being bilinear product, linear 

fractional, simple exponentiation and univariate function terms with the following stan-

dard form: 
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                  (2) 
 

where vector w comprises continuous variables x as well as integers y, while the sets 

Tbt, Tlft, Tet and Tuft are the bilinear product, linear fractional, simple exponentiation and 

univariate function terms, respectively. A rigorous relaxation of the original model is 

constructed by replacing the nonconvex terms in the reformulated model by convex 

estimators. The solution of the convex relaxation provides a valid lower bound on the 

global optimum. 

The objective of a global optimization algorithm is to approach the lower and upper 

bounds produced to the globally optimal solution. In the case of the lower bound, this 

can only be accomplished by means of tight relaxations. Hence, in this thesis we studied 

how to obtain tight relaxations for the problems of interest. 
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2.2. Dynamic optimization 

Dynamic optimization, sometimes called optimal control, aims to determine a set of 

time profiles for a dynamic system that optimize a given performance index subject to 

specified constraints. We consider the general formulation of a dynamic optimization 

problem described by a set of ordinary differential equations (ODE): 
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                  (3) 
 

where f is the vector of differential equations, h is the vector of equality constraints, g is 

the vector of inequality constraints, x(t), is the vector of state variables, x0 its initial 

conditions and u(t) is the vector of control variables. 

Among all the methods available to solve dynamic optimization problems, we focus 

on simultaneous approaches in the context of direct dynamic optimization methods. 

Simultaneous approaches are particularly appealing because they allow performing 

automatic differentiation with respect to the control and state variables, avoiding the 

need to calculate the derivatives numerically. The downside is that the discretization 

leads to NLP problems of considerable size.  

Particularly, our approach entails the complete discretization of control and state 

variables using orthogonal collocation on finite elements [27, 28]. Notice that the dy-

namic optimization problems we solve here are not strictly speaking optimal control 

problems, but rather problems in the context of parameter estimation. Because of this, 

we do not have to deal with control profiles (see Orthogonal collocation approach sec-

tion in [1] for further details). 

2.3. Multi-objective optimization 

Sometimes it might be interesting to evaluate alternatives considering more than one 

criterion. This can be accomplished by appending additional objectives to the problem 
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formulation and by solving the resulting multi-objective optimization (MOO) problem 

of the following form: 
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                  (4) 
 

Recall that the difference between problem MOO and problem SOO relies on the 

objective function. In particular, in problem SOO, f1 can be regarded as a single objec-

tive function whereas in problem MOO, F is a vector containing a set of B objectives 

ranging from f1 to fB. 

The vector containing the individual minimum of all the objectives is referred to as 

the utopia point. This point is in general unattainable due to the trade-off existing be-

tween the different objectives. As a result, the solution to this kind of problems is usu-

ally composed by a set of points instead of a single one. These points are known as 

Pareto optimal solutions and form the so-called Pareto frontier. A solution is said to be 

Pareto optimal when it is not possible to improve one of the objectives without worsen-

ing any of the others. For this reason, points in a given Pareto set are all considered to 

be equally optimal (see [29] for further information). The most popular MOO methods 

are the weighted sum and the epsilon constraint methods. The former suffers from a 

well-reported inability to obtain non-convex parts of the Pareto frontier. For this reason, 

it was not used in this thesis (see [29] for a description of this method). The epsilon 

constraint does not show this limitation and has been thus adopted in this work due to 

its simplicity and ease of implementation. 

2.3.1. Epsilon constraint 

In this method, one objective (main objective) is regarded as main objective, while 

the rest (secondary objectives) are transferred to auxiliary constraints that impose 

bounds ε on them: 
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The values of the epsilon parameters are obtained by first optimizing each objective 

individually and then splitting the interval defined by the best ( )bf  and worst ( )bf  val-

ues obtained for each objective in this optimization, into a set of subintervals. 

One important feature of the epsilon constraint method is that it transforms a MOO 

problem into a set of single-objective problems, which can be solved by means of any 

single-objective optimization method.  

 

3. Model Selection: the Akaike information criterion (AIC) 

Full reality cannot be extracted from the analysis of a finite amount of data [30]. In 

the model selection problem, the critical issue is the selection of the best model to use 

among a wide range of possibilities. 

In the model selection literature, it is often assumed that the set of candidate models 

contains the true model [15]. However, since models are merely approximations to full 

reality, there is no such thing as the “true model”, except in the case of Monte Carlo 

simulations where a model is used to generate data that mimics reality. George Box 

made the famous statement: “All models are wrong but some are useful”. Multimodel 

inference tries to rank models relative to each other. 

When we build a model, we are trying to minimize the loss of information. The 

Kullback-Leibler information, represent the information lost when approximating real-

ity. Inference from multiple models using methods based on the Kullback–Leibler (K-

L) information is preferred among other statistical methods [15]. In particular, null hy-

pothesis testing approaches, which provide arbitrary dichotomies (e.g., significant vs. 

nonsignificant), are particularly limited in model selection [31] and often perform 

poorly [32]. On the other hand, the use of subjective data inference often leads to over-
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fitted models. Overfitted models contain too many parameters and should be avoided 

since they include noise as a structural part of the model. Conversely, underfitted mod-

els would ignore some important effects that are actually supported by the data. 

The concept of parsimony is a fundamental philosophical issue in science and can 

be seen as the tradeoff between underfitting and overfitting. The principle of parsimony 

is closely related to Occam’s razor. Occam’s razor advocates to “shave away all that is 

not needed”, Parsimony plays an important role in scientific thinking in general and in 

modeling in particular [33]. 

In the early 1970s Hirotugu Akaike presented the Akaike information criterion 

(AIC), a new paradigm for model selection in the analysis of empirical data. AIC, which 

is derived from information theory, is a relatively simple and easy to use scheme for 

selecting a parsimonious model for the analysis of empirical data. AIC establishes a 

fundamental relationship between Boltzmann’s entropy and K-L information (dominant 

paradigms in information and coding theory), and maximum likelihood (the dominant 

paradigm in statistics) [34]. 

Information-theoretic criteria such as AIC based on K-L information and Bayesian 

Information Criterion (BIC) based on Bayes factors are now perceived as important 

measures to assess the quality of the fitting. AIC is often preferred over BIC because it 

has a more immediate connection to the theory of information [15]. AIC captures the 

trade-off between under and overfitting considering the principle of parsimony. 

The “Akaike information criterion” or AIC is an estimate of the expected, relative 

distance between the fitted model and the unknown true mechanism (perhaps of infinite 

dimension) that actually generated the observed data [15].  

Mathematically the Akaike information criterion is described as follows: 

 

( )
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Where AIC denotes the Akaike information criterion, k is the number of estimated pa-

rameters plus one (the standard deviation σ
2) and n is the number of experimental data 

points. 

When the ratio between the number of parameters to be estimated and the number of 

experimental data points is low (i.e., n/k < ~40 [15]), it is recommended to use a correc-

tive term, giving rise to the following corrected AICc expression: 

 
2 ( 1)

1C

k k
AIC AIC

n k

+
= +

− −
 

                                                                                                                                         (7) 
 

Burnham and Anderson [15] strongly recommend using AICc in these instances be-

cause using the AIC increases the probability of selecting models that have too many 

parameters, (i.e., overfitting). 

 

4. Identification of kinetic parameters and regulatory structures in 
    nonlinear dynamic biological systems     

                 
4.1 Parameter estimation 

Parameter estimation has been viewed as an optimization problem for at least nine 

decades. The type of optimization problem being faced and the technical challenges to 

be solved depend upon the biological model of choice, upon the experimental data 

available, upon computational issues, and upon the specific mathematical formalism 

used.  

The study of dynamic responses of biological systems is particularly appealing in 

systems biology. Dynamic biological systems are described through nonlinear ordinary 

differential equations (ODEs) that provide the concentration profiles of certain genes, 

proteins and metabolites over time. The biomathematical modeling of these systems 

gives rise to dynamic optimization problems which are hard to solve. 

 
We consider dynamic parameter estimation optimization problems of the following 

form: 
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Where jzɺ  represents the state variables (i.e., metabolite concentrations), 0z  their ini-

tial conditions, ,û jz  represents the experimental data variables, ,u jz  are the experimental 

observations, J is the set of state variables whose derivatives explicitly appear in the 

model, θ are the parameters to be estimated and tu, is the time associated with the uth 

experimental data point in the set U. Our solution strategy relies on reformulating the 

nonlinear dynamic optimization problem as a finite dimensional NLP by applying a 

complete discretization using orthogonal collocation on finite elements.  

The method devised for globally optimizing the NLP that arises from the reformula-

tion of the parameter estimation problem (Eq. 8) is based on the outer approximation 

algorithm [23]. This approach relies on decomposing the original NLP into two sub-

problems at different hierarchical levels: a lower level based on a master MILP prob-

lem, and an upper level slave NLP problem. The master problem is a relaxation of the 

original NLP (i.e., it overestimates its feasible region) and hence provides a rigorous 

lower bound on its global optimum. The slave NLP yields a valid upper bound when it 

is solved locally. The algorithm iterates between these two levels until the optimality 

gap (i.e., the relative difference between the upper and lower bounds) is reduced below 

a given tolerance (see Results and discussion section in [1] for further information). The 

capabilities of our algorithm are tested through its application to two case studies: the 

isomerisation of α-Pinene and the inhibition of HIV proteinase. The results obtained are 

compared with those produced by the state-of-art commercial global optimization pack-

age BARON. Our algorithm is proved from these numerical examples to produce near 

optimal solutions in a fraction of the CPU time required by BARON. (see table 2 and 3 

in Results and Discussion in [1]) 

One of the key steps in this work is the selection of the appropriate mathematical 

representation. Kinetic models based on the so-called power-law formalism show a 
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good compromise between accuracy and simplicity. Among them, the S-System and 

GMA representations are promising alternatives for the kinetic modeling of biological 

systems. The main advantage of these models is that they can capture the non-linearities 

required to describe the regulatory processes of the networks. 

In particular, the GMA mathematical representation of a metabolic network contain-

ing n internal metabolites whose concentration varies due to the action of p flows can be 

expressed as follows: 

,

,
11
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                  (9) 
 

where µir is the stoichiometric coefficient of metabolite i in process r, γr is the basal-

state enzyme activity, Xj corresponds to the concentration of metabolite j and frj is the 

kinetic order of metabolite Xj in process r, which quantifies its effect on the considered 

rate. Note that contributions of the m (independent) external metabolites are also ac-

counted for in this representation. 

4.2. Parameter estimation with GMA models 

Given a set of experimental observations (i.e., time courses for the metabolites), our 

goal is to find the values of the apparent constants and kinetic orders that minimize the 

sum of least squared errors between the experimental data and the predicted dynamic 

profiles. This problem can be expressed in compact form as follows: 
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where iXɺ  represents the state variables (i.e., metabolite concentrations), 0iX  their initial 

conditions, exp,i uX  denotes the experimental observations, and mod
,i uX  are the values calcu-

lated by the dynamic model (i.e., model predictions). i is the index for the set of state 

variables whose derivatives explicitly appear in the model, γr and fr,j are the parameters 

to be estimated, and tu, is the time associated with experimental point u belonging to the 

set U of observations. k is the total number of experimental data points and n is the 

number of time dependent variables. 

4.3. Structure identification with GMA models 

Conventional parameter estimation approaches seek parameter values that minimize 

the approximation error assuming a given regulatory scheme (i.e., fixing some fr,j to 

zero beforehand according to the aprioristic biochemical knowledge of the system). 

While this assumption simplifies the calculations, it can lead to poor approximations 

and hamper at the same time the discovery of new regulatory loops. In this work we 

introduce a rigorous and systematic parameter estimation and network identification 

method that makes no assumption regarding the regulatory network topology. 

To model the existence of a regulatory interaction, we use the following disjunction: 
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In which Yr,j
-,Yr,j and Yr,j

+ are Boolean variables that are true if parameter fr,j is nega-

tive, zero or positive, respectively, and false otherwise. ε is a very small parameter. Note 

that only one term of the disjunction can be active (i.e., exclusive disjunction), while the 

others must be false. Hence, if Yr,j is true, metabolite i takes no part in velocity r. Con-

versely, if this metabolite has an influence on r, then Yr,j is false and either Yr,j
- or Yr,j

+ 

will be active. This disjunction can be translated into standard algebraic equations using 

either the big-M or convexhull reformulations [35]. By applying the former, we get: 
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where Boolean variables Y have been replaced by auxiliary binary variables y. In these 

equations, M is a sufficiently large parameter whose value must be carefully set accord-

ing to the bounds defined for the kinetic parameters. 

We tested the performance of our algorithm for simultaneously estimating the parame-

ters and regulatory topology of biochemical networks from dynamic time-series data 

through its application to a case study taken from Voit and Almeida [3]. In this ap-

proach a mixed-integer dynamic optimization (MIDO) problem was reformulated into 

an MINLP through the use of orthogonal collocation methods. The objective function of 

this MINLP was the minimization of the Akaike information criterion (AIC).  

We explored an alternative approach to elucidate the network topology of a given bio-

logical system that consists of solving a bi-criteria optimization problem in which the 

complexity and the deviation from reality (i.e., the squared residual of the fitting of time 

series data) are simultaneously minimized. Mathematically, the parameter estimation 

task and the identification of the regulatory interactions are both posed in mathematical 

terms as a multi-objective mixed-integer dynamic optimization (moMIDO) problem. 

We solved this problem using the ε-constraint method which takes the following form: 
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This MIDO model is reformulated into an equivalent multi-objective mixed-integer 

nonlinear programming MINLP (moMINLP) problem using orthogonal collocation on 

finite elements (See Orthogonal collocation approach section in [1] for further details). 

 

5. Results 

In this section we provide a brief description about the most relevant results ob-

tained. Further details can be found in the original publications attached to this docu-

ment. See Case studies section in [1] and Results and Discussion in [2] and [4]. 

5.1. Deterministic global optimization for parameter estimation 

This work presented a deterministic global optimization method for the parameter 

estimation of biological systems. This approach allows globally optimizing medium-

sized biological problems and provides a rigorous interval within which the global solu-

tion must fall. We tested its performance through its application to two case studies: the 

isomerisation of α-pinene and the inhibition of HIV. 
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5.1.1. The isomerisation of α-Pinene 

This process was originally studied by Fuguitt and Hawkins [36], who carried out 

one single experiment for reporting the experimental concentrations (mass fraction) of 

the reactant and the four products measured at eight time intervals. In this homogeneous 

chemical reaction, α-pinene (γ1 in Figure 2) is thermally isomerised to dipentene (γ2) 

and allo-ocimene (γ3), which in turn yields α- and β-pyronene (γ4) and a dimer (γ5) 

(Figure 2). 

 

 
 

Figure 2 Proposed mechanism describing the thermal isomerization of α-Pinene 
 

In this particular case study, the bounds on the collocation coefficients were tight-

ened following a bound contraction procedure in order to reduce the space search. To 

solve this problem, an optimality gap of 5% was set as main termination criterion. For 

comparison purposes, we solved the same problem with the standard global optimiza-

tion package BARON using its default settings. BARON was able to find the global 

optimum, but failed at reducing the optimality gap below the specified tolerance after 

12h of CPU time. In contrast, our algorithm closed the gap in less than 3h (see Table 2 

in Results and Discussion in [1]). The algorithm developed was able to find the same 

solution reported by the literature [19] providing in addition rigorous bounds on the 

global optimum. 

5.1.2. Inhibition of HIV proteinase 

This case study was originally examined by Kuzmic [37]. The enzyme HIV pro-

teinase (E), which is only active in a dimer form, was added to a solution of an irre-
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versible inhibitor (I) and a fluorogenic substrate (S). The product (P) is a competitive 

inhibitor for the substrate (Figure 3). 

 

 
 

Figure 3 Proposed mechanism describing the irreversible inhibition of HIV proteinase. 
 

Mendes and Kell [38] [solved this problem using simulated annealing and reported 

its first known solution. Rodriguez-Fernandez et al. [19] improved that solution by 

means of a scatter search metaheuristic, which required a fraction of the time employed 

by Mendes’ simulated annealing. 

In this case study, the master problem was further tightened by adding a special type 

of strengthening cuts. These cuts were generated by temporally decomposing the origi-

nal full space MILP into a series of MILPs in each of which we fitted only a subset of 

points of the original dataset, and remove the continuity equations corresponding to the 

extreme elements included in the sub-problem. The cuts were expressed as inequalities 

(which were added to the master problem) that impose lower bounds on the error of a 

subset of elements for which the sub-MILPs were solved. These bounds were hence 

obtained from the solution of a set of MILP sub-problems. 

BARON failed to identify any feasible solution after 12h of CPU time. In contrast, 

our algorithm was able to obtain the global optimum (See Table 3 in Results and Dis-

cussion in [1]) with a gap of 18.64% in approximately 4,000 CPU s (See Table 4 in Re-

sults and Discussion in [1]). Remarkably, the solution found by our algorithm improves 

the best known solution reported by Rodriguez-Fernandez et al. [19]. Hence, our algo-

rithm clearly outperformed other parameter estimation methods, improving the best 
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known solution [19, 38], and providing a rigorous lower bound on the minimum error 

that can be attained. 

As observed, solving medium-sized parameter estimation problems in systems biol-

ogy to global optimality using deterministic methods is very challenging. Improving 

both the time required to solve them and the quality of the bounds attained are still open 

issues. 

5.2. Identification of regulatory structure and kinetic parameters 

The problem of identifying the regulatory structure and kinetic parameters of a bio-

logical system can be formally stated as follows: given a known structure of a reaction 

network (stoichiometry), and experimental time series data for the dynamic biological 

system, the goal is to determine the potential reaction and regulatory topologies for the 

target network along with the associated model parameters.  

5.2.1. Branched pathway taken from Voit and Almeida (2004) 

We have tested the capabilities of our approach through its application to a case 

study taken from Voit and Almeida [3]. The system considered is a four-constituent 

pathway branched with six velocities and two regulatory signals. X1 is generated from 

X0, and its production is inhibited by X3 which is produced from X1 via intermediate X2. 

X1 yields also X4, which promotes the degradation of X3 (see Figure 4). 

 

 
Figure 4 Reference system taken from Voit and Almeida [3] [Voit EO 2004]. 

 
 

We addressed in first place the traditional parameter estimation problem, assuming 

that the regulatory structure is known and error-free. As expected, we obtained esti-

mated parameter values that are very close to the original ones (see Table 1 in Results 

and Discussion in  [2]). We observed that GMA models have a certain degree of plastic-
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ity that allows different parameter sets to fit the same data. For instance, figure 2 in Re-

sults and Discussion in [2] shows the results of fixing f32 at different values and fitting 

the other parameters. 

We applied Monte Carlo sampling assuming that every data point follows a normal 

distribution with standard deviation values of 0.5, 1, 5 and 10% of the actual nominal 

value, respectively. Despite obtaining different parameter values, the various fitted 

models lead to similar residuals. Although the regulatory structure is fixed, we obtained 

parameter values representing either positive or negative regulatory effects. 

We later considered an alternative perturbation on the initial concentration of me-

tabolite X3 (0.2, 1.2, and 2.2) for the same values of Monte Carlo sampling. These per-

turbations force the system to move across different dynamic regimes, producing 

additional information that helps in the identification of appropriate parameter values. 

As expected, the estimated parameters are more consistent over the different experi-

ments. They are also closer to the actual parameter set selected to generate the data. 

However, it is still possible to find solutions involving alternative regulatory topologies 

with good fit to data. 

We later studied the ability of our method to identify the regulatory topology of the 

model. To this end, we explored the performance of the method using one experiment 

with low experimental error (i.e., assuming that the data follow normal distributions 

with a standard deviation of 0.5%). In order to simplify the search, we fix a maximum 

of two metabolites (the substrate of the reaction, which is given by the stoichiometric 

information, and one possible additional modifier, which is not characterized a priori) 

as potential variables affecting each velocity. In addition, we introduced kinetic-order 

constraints corresponding to those substrates of a reaction which must be positive. The 

method identifies topologies that are quite close and which show very small residuals, 

but it is unable to uniquely identify the original topology. see Table S3 in Additional 

file in [2]: for a list of topologies generated and their associated kinetic parameters and 

residuals. 

As before, we considered three different initial conditions for X3 (0.2, 1.2, and 2.2). 

With these three time series, the method identifies not only the actual topology, but also 

several structures that contain the original one (i.e., topologies that account for all the 
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actual regulatory effects plus other signals that were not present originally). See Table 

S4 in Additional file in [2]:  

The simple example presented in this paper show that estimating parameters in dy-

namic kinetic models is very challenging. In this context, models based on the power-

law formalism can greatly facilitate the estimation task.  

5.3. Bi-criteria approach for the identification of regulatory structure and kinetic 

parameters 

In this last publication we propose an alternative strategy to characterize biological 

pathways from time series data. This new approach addresses the problem from a dif-

ferent perspective, instead of minimizing the Akaike information criterion this method 

explores a wider range of alternatives which are identified by simultaneously minimiz-

ing the complexity and the deviation from reality (i.e., the squared residual of the fitting 

of time series data) using a multi-objective approach. 

5.3.1. Branched pathway taken from Voit and Almeida (2004) 

We use as benchmark problem the same case study as in the previous publication, 

an artificial branched pathway taken from Voit and Almeida [3] [Voit EO 2004] (See 

section 5.2.1). 

We first explore the performance of our method for one single experiment (i.e., one 

single configuration for the initial conditions) and assuming that the regulatory structure 

is unknown. We consider noisy data that is generated from the in silico model assuming 

that the “true” dynamic profile (i.e., the one generated from the in silico model free of 

error) follows a normal distribution with standard deviation values of 5, 10, 15 and 30% 

(with respect to the actual nominal values). 

We used the ε-constraint method to generate 10 Pareto solutions with an increasing 

number of regulatory interactions for each level of uncertainty (5, 10, 15 and 30%). 

Each of these solutions are obtained by solving a single-objective problem in which the 

sum of squared deviations between experimental and simulated data is kept as main 

objective, while the number of regulatory interactions is transferred to an auxiliary con-

straint. 
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For comparison purposes, we solved the same problem using the single-optimization 

approach previously developed in the previous paper [2]. In this method, the AIC is 

minimized as unique objective. This algorithm is executed iteratively in order to pro-

duce a set of potential regulating configurations along with the corresponding parameter 

values. We generated 10 candidate models that are sorted according to their AIC values. 

We assessed their performance comparing both methods using a CV strategy and com-

puting the AIC value for each model. We also computed the AIC and of the real meta-

bolic network (i.e. the one we used to generate experimental data, without the noise) 

and depicted these points as blue triangles. Note that such last analysis is only possible 

when dealing with an academic problem like this, since in a real situation these points 

are unknowable because they represent reality itself. However in this case we want to 

exploit this possibility in order to assess how far the generated models are from reality. 

We repeated the procedure taking into account three experiments. Thus, we changed 

the initial concentrations of X3 (0.2, 1.2, and 2.2). These perturbations force the system 

to move across different dynamic regimes, producing additional information that con-

strains further the feasible network configurations.  

In most cases (in both instances entailing one and three experiments) the minimiza-

tion of the AIC as single objective produces models with better predictive accuracy, that 

is, models with lower residuals in the validation set (as well as lower AIC values). How-

ever, the Pareto points generated using the bi-objective approach show AIC values very 

close to the minimum AIC value computed by the single-objective optimization ap-

proach. Regarding to the real model, it has worse AIC and better CV values than other 

models obtained by the aforementioned methods, which is the final prove that the best 

AIC is not always the best model. Hence, the models corresponding to the Pareto solu-

tions of the bi-objective optimization formulation cannot be directly discarded, since 

when models have similar AIC values, the model with the lowest AIC value may not be 

the best. This is because the AIC value is calculated with a limited number of points. If 

this calculation was carried out in the space of infinite samples, then the solution with 

minimum AIC value would be indeed the best one. Another reason is that there might 

be additional biological considerations to take into account when choosing a final 

model. 
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6. Conclusions 

The numerical results obtained and the algorithms developed have provided us the 

knowledge to draw the following conclusions: 

In the first work we have proposed a novel strategy for globally optimizing parame-

ter estimation problems with embedded nonlinear dynamic systems. The method pre-

sented was tested through two challenging benchmark problems: the isomerisation of α-

pinene and the inhibition of HIV proteinase. The proposed algorithm was able to iden-

tify the best known solution, which was originally reported by Rodriguez-Fernandez et 

al. [19], in the case of the α-pinene, and improved the best known one in the HIV pro-

teinase case study. In both cases, rigorous lower bounds were provided on the global 

optimum, making it possible to determine the optimality gap of the solutions found. The 

method proposed produced promising results, surpassing the capabilities of BARON. 

In the second work we have proposed a rigorous approach based on mathematical 

programming for the simultaneous identification of the regulatory signals and estima-

tion of the kinetic parameters of models of biochemical networks. With three time se-

ries, the method identifies not only the actual topology, but also several structures that 

contain the original one (i.e., topologies that account for all the actual regulatory effects 

plus other signals that were not present originally). The proposed method can contribute 

to fill the lack of information on the regulatory signals that are in play in a given meta-

bolic scenario. The example presented in this paper show that models based on the 

power-law formalism are particularly appealing for the simultaneous parameter estima-

tion and regulatory structure identification tasks. 

In the third paper we have presented an alternative approach based on multi-

objective optimization to simultaneously identify the regulatory interactions along with 

the kinetic parameters (assuming a kinetic representation) from time series data. Our 

method is a generalization of a previous method that focused on minimizing the AIC as 

unique criterion. The new alternative method solves a bi-objective model that seeks to 

minimize simultaneously the problem complexity and the residual. This bi-objective 

model is solved by the epsilon constraint method, providing as output a set of Pareto 

optimal models. Ideally, the model yielding the minimum AIC should be identified by 

the bi-criteria approach. In practice, this might not always hold because of two reasons. 
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On the one hand, the modified expression we need to use in this case for computing the 

AIC (i.e. the corrected AIC, also known as AICc) does not hold some of the properties 

that are required to establish the analogy between the AIC and the bi-criteria quality-

complexity of the fit. On the other hand, we cannot guarantee the global optimality of 

the solutions calculated by the reformulated MINLPs, which are solved by a local opti-

mizer (see Methods section in [4] for more information).  

Both approaches, the single-objective and bi-objective one show different perform-

ance depending on the case study, and there is no clear winner. Sometimes the single-

objective identifies the solution with minimum AIC value, but others the bi-objective 

does it instead.  

In the academic example addressed in this manuscript we have had the opportunity 

to compare the models obtained with the two methods exposed with the real network 

(i.e., with reality itself). Results of this comparison highlight the fact that both methods 

are quite similar in terms of the reliability of the models generated and that the bottle-

neck for obtaining better models is the ability to manage bigger experimental samples 

that will lead to bigger and more complex problems to solve. Further, this analysis evi-

denced that, for small samples (in the training set), the model yielding the minimum 

AIC might not be the one showing the best performance under new experimental data 

since the real network obtained worse AIC values than other models obtained by the 

aforementioned methods. 

Because of this, the minimum AIC model should be carefully revised and compared 

with other models with similar AIC values so as to select a final model to be used in 

practice. In this context, we recommend to calculate a set of models with low AICs and 

residuals, and further assess them taking into account their accuracy, complexity and 

additional biological knowledge of the system.  

 

7. Future Work 

Our future work will focus on making the global optimization approach more effi-

cient through the use of tailored cutting planes and decomposition strategies. We can 

further tighten the search space of the original problem by adding additional constraints. 
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These constraints could be obtained by decomposing the master problem into a set of 

MILP sub-problems that would optimize the error of only a subset of elements.  

The global optimization algorithm can also be improved through the use of hybridi-

zation of deterministic methods with stochastic approaches. Reducing the time required 

to generate tight bounds is still a major issue in deterministic global optimization. We 

can speed up our algorithm by applying stochastic approaches for attaining rigorous 

bounds on the solution of the master problem and hence on the global solution of the 

original problem. 

In this thesis, we used the piecewise McCormick envelopes to relax the bilinear 

terms. Our methodology should be extended to other nonlinearities. 

Our goal would be to develop a software package (e.g., a toolbox in Matlab…) to 

automate the calculations, so our approach can be easily used by a wider community. 

This is a challenging task, since nonlinear models are hard to handle and typically re-

quire customized solution procedures. 

Many biological systems exhibit saturable and cooperative interactions. The GMA 

formalism, however, cannot account for these phenomena. The next step will be to ex-

tend our method to more accurate and complex representations like the Saturable and 

Cooperative (SC) formalism. 

Ideally, the bi-objective approach should identify the minimum AIC solution. In 

practice, however, this does not happen due to the presence of nonconvexities that lead 

to multiple local optima in which local optimizers might get trapped during the search. 

Hence, there is a clear need for developing more efficient global optimization tools to 

assess such studies. 

The next step to build a biomathematical model, will involve the selection of the fi-

nal model among the models that compete for the first position. When we have models 

with similar AIC values, the model with the lowest AIC value will not be always the 

best.  

From the experience we acquired during the development of this thesis, we conclude 

that the inference of regulatory signals and the estimation of the associated parameters 
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are both very challenging tasks. There is still much work to be done in this area, but we 

strongly believe that such an effort is worthy. 
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Abstract

Background: The estimation of parameter values for mathematical models of biological systems is an optimization

problem that is particularly challenging due to the nonlinearities involved. One major difficulty is the existence of

multiple minima in which standard optimization methods may fall during the search. Deterministic global

optimization methods overcome this limitation, ensuring convergence to the global optimum within a desired

tolerance. Global optimization techniques are usually classified into stochastic and deterministic. The former typically

lead to lower CPU times but offer no guarantee of convergence to the global minimum in a finite number of

iterations. In contrast, deterministic methods provide solutions of a given quality (i.e., optimality gap), but tend to lead

to large computational burdens.

Results: This work presents a deterministic outer approximation-based algorithm for the global optimization of

dynamic problems arising in the parameter estimation of models of biological systems. Our approach, which offers a

theoretical guarantee of convergence to global minimum, is based on reformulating the set of ordinary differential

equations into an equivalent set of algebraic equations through the use of orthogonal collocation methods, giving

rise to a nonconvex nonlinear programming (NLP) problem. This nonconvex NLP is decomposed into two hierarchical

levels: a master mixed-integer linear programming problem (MILP) that provides a rigorous lower bound on the

optimal solution, and a reduced-space slave NLP that yields an upper bound. The algorithm iterates between these

two levels until a termination criterion is satisfied.

Conclusion: The capabilities of our approach were tested in two benchmark problems, in which the performance of

our algorithm was compared with that of the commercial global optimization package BARON. The proposed strategy

produced near optimal solutions (i.e., within a desired tolerance) in a fraction of the CPU time required by BARON.

Background
Elucidation of biological systems has gained wider interest

in the last decade. Despite recent advances, fundamental

understanding of life processes still requires powerful

theoretical tools from mathematics and physical sciences.

Particularly, mathematical modelling of biological sys-

tems is nowadays becoming an essential partner of

experimental work. One of the most challenging tasks
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Spain
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in computational modelling of biological systems is the

estimation of the model parameters. The aim here is to

obtain the set of parameter values that make the model

response consistent with the data observed. Parameter

estimation can be formulated as an optimization prob-

lem in which the sum of squared residuals between the

measured and simulated data is minimized. The biologi-

cal model dictates the type of optimization problem being

faced. Many biological systems are described through

nonlinear ordinary differential equations (ODEs) that pro-

vide the concentration profiles of certain metabolites over

time. Recent methodological developments have enabled

the generation of some dynamic profiles of gene networks

© 2012 Miró et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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and protein expression data, although the latter are still

very rare. In this context, there is a strong motivation for

developing systematic techniques for building dynamic

biological models from experimental data. The param-

eter estimation of these models gives rise to dynamic

optimization problems which are hard to solve.

Existing approaches to optimize dynamic models can

be roughly classified as direct or indirect (also known

as variational) [1]. Direct methods make use of gradient-

based nonlinear programming (NLP) solvers and can in

turn be divided into sequential and simultaneous. In

sequential approaches, the optimization of the control

variables, which are discretized, is performed by a NLP

solver, whereas the ODE is calculated externally, that is,

both steps are executed in a sequential manner. In con-

trast, in simultaneous strategies, both the control and

state profiles are approximated using polynomials (e.g.,

Lagrange polynomials) and discretized in time by means

of finite elements [2,3]. In the latter strategy, the ODE sys-

tem is replaced by a system of algebraic equations that

is optimized with a standard gradient-based NLP solver.

Simultaneous approaches can handle dynamic systems

with unstable modes and with path constraints [1]. Fur-

thermore, they allow performing automatic differentiation

with respect to the control and state variables, avoid-

ing the need to calculate the derivatives numerically as

is the case in the sequential approach. Unfortunately, the

discretization step can lead to large scale NLPs that are

difficult to solve.

Models of biological systems are typically highly nonlin-

ear, which gives rise to nonconvex optimization problems

with multiple local solutions (i.e., multimodality). Because

of this, traditional gradient-based methods used in the

sequential and simultaneous approaches may fall in local

optima. In the context of parameter estimation, these

local solutions should be avoided, since they may lead to

inaccurate models that are unable to predict the system’s

performance precisely.

Global optimization (GO) algorithms are a special class

of techniques that attempt to identify the global optimum

in nonconvex problems. These methods can be classified

as stochastic and deterministic. Stochastic GO meth-

ods are based on probabilistic algorithms that provide

near optimal solutions in short CPU times. Despite hav-

ing shown great potential with large-scale problems like

parameter estimation [4], these methods have as major

limitation that are unable to guarantee convergence to

the global optimum in a finite number of iterations. In

other words, they provide solutions whose optimality (i.e.,

quality) is unknown, and may or may not be globally

optimal. In contrast, deterministic global optimization

methods ensure global optimality within a desired toler-

ance, but lead to larger computational burdens. Hence, in

addition to the solution itself, these methods provide as

output a rigorous interval within which the best possible

solution (i.e., global optimum) must fall. Despite recent

advances in deterministic global optimization methods

[5,6], their application to parameter estimation has been

quite scarce. Two main deterministic GO methods exist:

spatial branch-and-bound (sBB) [2,5-7], and outer approx-

imation [8]. Both algorithms rely on computing valid

lower and upper bounds on the global optimum. These

bounds tend to approach as iterations proceed, thus offer-

ing a theoretical guarantee of convergence to the global

optimum.

A rigorous lower bound on the global optimum of the

original nonconvex problem is obtained by solving a valid

relaxation that contains its feasible space. To construct

this relaxed problem, the nonconvex terms in the orig-

inal formulation are replaced by convex envelopes that

overestimate its feasible region. There are different types

of convex envelopes that provide relaxations for a wide

variety of nonconvexities. These relaxations are the main

ingredient of deterministic GO methods and play a key

role in their performance. In general, tighter relaxations

provide better bounds (i.e., closer to the global optimum),

thereby expediting the overall solution procedure.

To the best of our knowledge, Esposito and Floudas

were the first to propose a deterministic method for the

global solution of dynamic optimization problems with

embedded ODEs [2]. Their approach relies on reformu-

lating the problem as a nonconvex NLP using orthogonal

collocation on finite elements. This reformulated NLPwas

then solved by means of a sBB method. To this end, they

constructed a convex relaxation of the reformulated prob-

lem following the αBB approach previously proposed by

the authors [5-7]. Despite being valid for twice continu-

ous differentiable functions, these relaxationsmay provide

weak bounds in some particular cases and therefore lead

to large CPU times when used in the context of a spatial

branch and bound framework [9].

This work proposes a computational framework for the

deterministic global optimization of parameter estima-

tion problems of nonlinear dynamic biological systems.

The main contributions of our work are: (1) the appli-

cation of deterministic global optimization methods to

dynamic models of biological systems, and (2) the use

of several known techniques employed in dynamic (i.e.,

orthogonal collocation on finite elements) and global opti-

mization (i.e., symbolic reformulation of NLPs and piece-

wise McCormick envelopes) in the context of an outer

approximation algorithm. The approach presented relies

on discretizing the set of nonlinear ODEs using orthog-

onal collocation on finite elements, thereby transforming

the dynamic system into an equivalent nonconvex NLP

problem. A customized outer approximation algorithm

that relies on a mixed-integer linear programming (MILP)

relaxation is used in an iterative scheme along with the
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aforementioned NLP to solve the nonconvex model to

global optimality. The MILP relaxation is tightened using

a special type of cutting plane that exploits the prob-

lem structure, thereby expediting the overall solution

procedure.

The capabilities of our algorithm are tested through

its application to two case studies: the isomerisation of

α-Pinene (case study 1) and the inhibition of HIV pro-

teinase (case study 2). The results obtained are compared

with those produced by the state-of-art commercial global

optimization package BARON (Branch And Reduce Opti-

mization Navigator). Our algorithm is proved from these

numerical examples to produce near optimal solutions in

a fraction of the CPU time required by BARON.

Methods

Problem statement

The problem addressed in this work can be stated as fol-

lows: given is a dynamic kinetic model describing the

mechanism of a set of biochemical reactions. The goal is

to determine the appropriate values of the model coeffi-

cients (e.g., rate constants, initial conditions, etc.), so as to

minimize the sum-of-squares of the residuals between the

simulated data provided by the model and the experimen-

tal observations.

Mathematical formulation

We consider dynamic parameter estimation optimization

problems of the following form:

min
θ ,ẑu

∑

j∈JM

∑

u∈U

(ẑu, j − z̄u, j)
2 (1)

s.t. żj = g(z, θ , t) ∀j ∈ J (2)

zj(t0) = z0 ∀j ∈ J (3)

t ∈ [ t0, tf ] (4)

ẑu, j = zj(tu) ∀u ∈ U ; ∀j ∈ JM (5)

Where ż represents the state variables (i.e., metabolite

concentrations), z0 their initial conditions, ẑu, j represents

the experimental data variables, z̄u, j are the experimental

observations, J is the set of state variables whose deriva-

tives explicitly appear in the model, θ are the parameters

to be estimated and tu, is the time associated with the uth

experimental data point in the set U.

Our solution strategy relies on reformulating the

nonlinear dynamic optimization problem as a finite-

dimensional NLP by applying a complete discretization

using orthogonal collocation on finite elements. This NLP

is next solved using an outer approximation algorithm (see

Figure 1). In the sections that follow, we explain in detail

the main steps of our algorithm.

Figure 1 Solution Strategy. The system of ODEs is first reformulated

into a nonconvex NLP using the orthogonal collocation on finite

elements approach. This NLP is decomposed into two levels: a master

MILP and a slave NLP. The master MILP, which is constructed using

piecewise McCormick envelopes and supporting hyper-planes,

provides a rigorous lower bound on the global optimum. The slave

NLP corresponds to the original nonconvex NLP that is solved using

as starting point the solution of the MILP. The algorithm iterates

between these two levels until the optimality gap (i.e., the relative

difference between the upper and lower bounds) is reduced below a

given tolerance.

Orthogonal collocation approach

There is a considerable number of collocation-based dis-

cretizations for the solution of differential-algebraic sys-

tems [10]. Without loss of generality, we employ herein

the so-called orthogonal collocation on finite elements

method [11,12]. Consider the following set of ODE’s

defined as

żj = g(z, θ , t) ∀j ∈ J (6)

The state variables are first approximated using

Lagrange polynomials as follows:

zNK+1(t) =

NK∑

k=0

ξkφk(t) φk(t) =

NK∏

q=0, q 6=k

t − tq

tk − tq

(7)

These polynomials have the property that at the orthog-

onal collocation points their coefficients, ξk , take the value

of the state profile at that point. Therefore, the collocation

coefficients ξk acquire physical meaning which allows to

generate bounds for these variables.

Because state variables may present steep variations, the

whole solution space is commonly divided into time inter-

vals called finite elements. Hence, the time variable t is

divided into NE elements of length 1ηe and rescaled as

τ ∈[ 0, 1]. Within each finite element, NK + 1 orthogonal

collocation points τ(0), τ(1), τ(2), · · · , τ(NK) are
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distributed at the shifted (between 0 and 1) roots of the

orthogonal Legendre polynomial of NK degree. Recall

that the 0th orthogonal collocation point is located at the

beginning of each element (Figure 2).

Following the collocation method [10], the residual

equations arising from the combination of Eqs. 6 and 7,

are defined for each element e in the set E and state vari-

able in the set J, giving rise to the following constraints:

NK∑

k=0

ξe, k, jφ̇e, k, j(τk′) − 1ηegj(ξe, k′, j, θ , te, k′) = 0

∀e ∈ E k′ = 1, . . . , NK ; ∀j ∈ J (8)

The state variables have to be continuous between ele-

ments, so we enforce the following continuity constrains:

ξe, 0, j−

NK∑

k=0

ξe−1, k, jφk(τ =1)=0 e=2, . . . , NE ∀j ∈ J

(9)

These equations extrapolate the polynomial at element

e-1, providing an accurate initial condition for the next

element e.

Moreover, initial conditions are enforced for the begin-

ning of the first element using the following equation:

ξ1, 0, j − z0, j = 0 ∀j ∈ J (10)

Recall that collocation points in which time has been

discretized will not necessarily match the times at which

experimental profiles were registered. Hence, variable ẑu,j
is added to determine the value of the model states pro-

files at times tu making it possible to fit the model to the

experimental points. This is accomplished by adding the

following equation:

−ẑu, j +

NK∑

k=0

ξeu, k, jφk(τu) = 0 ∀u ∈ U ; ∀j ∈ JM

(11)

Where τu is calculated as follows:

τu =
tu − ηeu

1ηeu
(12)

Here, the subscript eu refers to the element where tu
falls, that is, eu ≡ {e : ηe ≤ tu < ηe+1}.

NPL formulation

The dynamic optimization problem is finally reformulated

into the following NLP:

min
θ , ξ , ẑu

∑

j∈JM

∑

u∈U

(ẑu, j − z̄u, j)
2 (13)

s.t.

NK∑

k=0

ξe, k, jφ̇e, k, j(τk′) − 1ηegj(ξe, k′, j, θ , te, k′)=0

∀e ∈ E k′ = 1, . . . , NK ; ∀j ∈ J (14)

ξe, 0, j −

NK∑

k=0

ξe−1, k, jφk(τ = 1) = 0

e = 2, . . . , NE ∀j ∈ J (15)

ξ1, 0, j − z0, j = 0 ∀j ∈ J (16)

− ẑu, j +

NK∑

k=0

ξeu, k, jφk(τu) = 0

∀u ∈ U ; ∀j ∈ JM (17)

Results and discussion

Optimization approach

The method devised for globally optimizing the NLP that

arises from the reformulation of the parameter estimation

problem (Eqs. 13–17) is based on an outer approxima-

tion algorithm [8] used by the authors in previous works

[13-17]. This approach relies on decomposing the original

NLP into two subproblems at different hierarchical lev-

els: a lower level MILP problem and an upper level slave

NLP problem. The master problem is a relaxation of the

original NLP (i.e., it overestimates its feasible region) and

hence provides a rigorous lower bound on its global opti-

mum. The slave NLP yields a valid upper bound when it

is solved locally. The algorithm iterates between these two

levels until the optimality gap (i.e., the relative difference

between the upper and lower bounds) is reduced below

a given tolerance (Figure 3). In the following subsections,

we provide a detailed description of the algorithm.

Figure 2 Orthogonal collocation discretization over finite elements. The time interval is divided into NE elements which in turn are divided

into NK + 1 collocation points evaluated at the shifted orthogonal Legendre polynomials.
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Figure 3 Optimization algorithm based on outer approximation. Our approach decomposes the problem into two subproblems: a master

MILP, constructed by relaxing the original model using piecewise McCormick envelopes and hyper-planes, that provides a lower bound, and a slave

NLP that yields an upper bound. The algorithm iterates between these two levels until a termination criterion is satisfied.

Lower level master problem

Designing efficient and smart strategies for attaining tight

bounds is a mayor challenge in deterministic global opti-

mization. Both the quality of the bounds and the time

required to generate them drastically influence the over-

all performance of a deterministic global optimization

algorithm.

Any feasible solution of the original NLP is a valid upper

bound and can be obtained by means of a local NLP

solver. To obtain lower bounds, we require a rigorous

convex (linear or nonlinear) relaxation. This relaxation

is obtained by replacing the nonconvex terms by convex

overestimators. Since the relaxed problem is convex, it

is possible to solve it to global optimality using standard

local optimizers. Furthermore, since its feasible region

contains that of the original problem and its objective

function rigorously underestimates the original one, it

is guaranteed to provide a lower bound on the global

optimum of the original nonconvex model [18].

Androulakis et al. [19] proposed a convex quadratic

relaxation for nonconvex functions named αBB under-

estimator which can be applied to general twice

continuously differentiable functions. This technique,

which was used in parameter estimation by Espos-

ito and Floudas [2], might lead in some cases to

weak relaxations and therefore poor numerical perfor-

mance [9].

To construct a valid MILP relaxation, we apply the fol-

lowing approach. We first reformulate the NLP using the

symbolic reformulation method proposed by Smith and

Pantelides [20]. This technique reformulates any system

of nonlinear equations into an equivalent canonical form

with the only nonlinearities being bilinear products, linear

fractional, simple exponentiation and univariate function

terms with the following standard form:

min
w

wobj (18)

s.t. Aw = b (19)

wl ≤ w ≤ wu (20)

y ∈[ yl, . . . , yu] (21)

wk ≡ wiwj ∀(i, j, k) ∈ Tbt (22)

wk ≡
wi

wj
∀(i, j, k) ∈ Tlft (23)

wk ≡ wn
i ∀(i, k, n) ∈ Tet (24)

wk ≡ fn(wi) ∀(i, k) ∈ Tuft (25)

where vector w comprises continuous variables x as well

as integers y, while the sets Tbt, Tlft, Tet and Tuft are the

bilinear product, linear fractional, simple exponentiation

and univariate function terms, respectively.

A rigorous relaxation of the original model is con-

structed by replacing the nonconvex terms in the refor-

mulated model by convex estimators. The solution of the

convex relaxation provides a valid lower bound on the

global optimum. More precisely, the bilinear terms are

replaced by piecewise McCormick relaxations. The frac-

tional terms can be convexified in two different manners.

The first is to replace them by tailored convex envelopes

that exploit their structure [21]. The second is to express

them as bilinear terms by performing a simple algebraic

transformation, and then use the McCormick envelopes

to relax the associated bilinear term. Univariate func-

tions commonly used in process engineering models (e.g.,

logarithms, exponentials, and square roots) are purely

convex or purely concave, and can be replaced by the exact

function-secant pair estimators [22].
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The reader is referred to the work by Smith and

Pantelides [20] for further details on the symbolic

reformulation. We focus next on explaining how the

bilinear terms are approximated in the reformulated NLP.

Piecewise McCormick-based relaxation The bilinear

terms appearing in the reformulated model are approxi-

mated using McCormick’s envelopes [23-26]. For bilinear

terms, this relaxation is tighter than the αBB-based relax-

ations [18,27].

Each bilinear term xy can be replaced by an auxiliary

variable z as follows:

z = xy xL ≤ x ≤ xU yL ≤ y ≤ yU (26)

The best known relaxation for approximating a bilin-

ear term is given by the McCormick envelopes, obtained

by replacing Eq. 26 by the following linear under (Eqs. 27

and 28), and overestimators (Eqs. 29 and 30):

z ≥ xyL + xLy − xLyL (27)

z ≥ xyU + xUy − xUyU (28)

z ≤ xyL + xUy − xUyL (29)

z ≤ xyU + xLy − xLyU (30)

In this work we further tighten the McCormick

envelopes by adding binary variables [25,28]. Particularly,

two additional sets of variables are defined in the piece-

wise formulation:

• Binary switch: λ ∈ {0, 1}NP

• Continuous switch: 1y ∈[ 0, yU − yL]NP

The binary switch λ is active (i.e., λ(nP) = 1) for the

segment where x is located (xL + a(nP − 1) ≤ x ≤ xL +

anP) and is otherwise inactive. Therefore, the partition-

ing scheme activates exactly only one nP ∈ {1, . . . , NP} so

that the feasible region corresponding to the relaxation of

xy is reduced from the parallelogram in Figure 4(a) to a

significantly smaller one depicted in Figure 4(b).

Eq. 31 enforces that only one binary variable is active:

NP∑

nP=1

λ(nP) = 1 (31)

The continuous switch 1y takes on any positive value

between 0 and yU−yL when the binary switch correspond-

ing to the nPth piecewise λ(nP) is active (i.e., λ(nP) = 1)

and 0 otherwise. Therefore:

y = yL +

NP∑

nP=1

1y(nP) (32)

0 ≤ 1y(nP)≤(yU − yL)λ(nP) nP =1, . . . , NP (33)

a

b

Figure 4McCormick convex relaxation over the entire feasible

region (subfigure (a)) compared to a piecewise McCormick

relaxation over a smaller active region (subfigure (b)) where the

tightness of the relaxation is improved.We built the master

problem by replacing the bilinear terms by piecewise McCormick

envelopes. The relaxation can be further improved by adding binary

variables.

Finally, the under and overestimators for the active seg-

ment are defined in algebraic terms as follows:

z ≥ xyL +

NP∑

nP=1

[ xL + a(nP − 1)]1y(nP) (34)

z ≥ xyU +

NP∑

nP=1

[ xL + anP] [1y(nP) − (yU − yL)λ(nP)]

(35)
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z ≤ xyL +

NP∑

nP=1

[ xL + anP]1y(nP) (36)

z ≤ xyU+

NP∑

nP=1

[ xL + a(nP − 1)] [1y(nP)−(yU − yL)

× λ(nP)] (37)

xL ≤ x ≤ xU ; yL ≤ y ≤ yU (38)

Note that the discrete relaxation is tighter than the

continuous one over the entire feasible region. The intro-

duction of the binary variables required in the piecewise

McCormick reformulation gives rise to a mixed-integer

nonlinear programming (MINLP) problem, with the only

nonlinearities appearing in the objective function. While

this MINLP is convex and can be easily solved to global

optimality with standard MINLP solvers, it is more con-

venient to linearize it in order to obtain anMILP formula-

tion, for which more efficient software packages exist. The

section that follows explains how this is accomplished.

Hyper-planes underestimation The convexMINLP can

be further reformulated into an MILP by replacing the

objective function by a set of hyper-planes. For this, we

define two new variables as z′u, j = ẑu, j − z̄u, j and α ≥ z′ 2u, j.

The quadratic terms are then approximated by 1st degree

Taylor series. That is, the square terms are replaced by

l hyper-planes uniformly distributed between the maxi-

mum and minimum desired values of z′u, j (Figure 5) so

that the objective function is reduced to a summation of

quadratic terms as follows:

Figure 5 x squared function underestimated by a 1st degree

Taylor series. The objective function is linearized by a first degree

Taylor series with l hyper-planes.

min
θ , ξ , ẑu

∑

j∈JM

∑

u∈U

αu, j (39)

αu, j ≥ z′ 20 u, j, l + 2z
′
0u, j, l(z

′
u, j − z′0u, j, l)

∀u ∈ U ∀j ∈ JM ∀l ∈ L (40)

Upper level slave problem

A valid upper bound on the global optimum is obtained by

optimizing the original NLP locally. This NLP is initialized

using the solution provided by the MILP as starting point.

The solution of this NLP is used to tighten the MILP, so

the lower and upper bounds tend to converge as iterations

proceed.

Algorithm steps

The proposed algorithm comprises the following steps:

1. Set iteration count it = 0, UB = ∞, LB = −∞ and

tolerance error = tol.

2. Set it = it+ 1. Solve the master problem MILP.

(a) If the MILP is infeasible, stop (since the NLP

is also infeasible).

(b) Otherwise, update the current LB making

LB = maxit(LBit), where LBit is the value of

the objective function of the MILP in the itth

iteration.

3. Solve the slave problem NLP.

(a) If the NLP is infeasible add one more

piecewise term and hyper-plane to the master

MILP and go to step 2 of the algorithm.

(b) Otherwise, update the current UB making

UB =minit (UBit), where UBit is the value of

the objective function of the NLP in the itth

iteration.

4. Calculate the optimality gap OG as OG = |UB−LB|
UB .

(a) If OG ≤ tol, then stop. The current UB is

regarded as the global optimum within the

desired tolerance.

(b) Otherwise, add one more piecewise section

and hyper-plane to the master MILP and go

to step 2 of the algorithm.

Remarks:

• There are different methods to update the piecewise

bilinear approximation. One possible strategy is to

update it by dividing the active piecewise (i.e., the

piecewise term in which the solution is located) into

two equal-length segments.
• The new hyper-plane term z′0u, j, l is added at the

optimal solution of the MILP (solution point z′u, j) in

the previous iteration.
• The univariate convex and concave terms in the

reformulated problem can be either approximated by

UNIVERSITAT ROVIRA I VIRGILI 
DYNAMIC MATHEMATICAL TOOLS FOR THE IDENTIFICATION OF REGULATORY STRUCTURES AND KINETIC PARAMETERS IN 
SYSTEMS BIOLOGY. 
Antoni Miró Roig 
Dipòsit Legal: T 1768-2014 



39 
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the secant or by a piecewise univariate function

similarly as done with the McCormick envelopes.
• Our algorithm needs to be tuned prior to its

application. This is a common practice in any

optimization algorithm. In a previous publication

[13], we studied the issue of defining the number of

piecewise intervals and supporting hyper-planes in an

optimal manner. In practice, however, the optimal

number of piecewise terms and hyper-planes is highly

dependent on the specific instance being solved, so it

is difficult to provide general guidelines on this.
• The approach presented might lead to large

computational burdens in large-scale models of

complex biological systems. Future work will focus

on expediting our algorithm through the addition of

cutting planes and the use of customized

decomposition strategies.

Case studies

We illustrate the performance of the proposed algorithm

through its application to two challenging benchmark

parameter estimation problems: the isomerisation of α-

Pinene (case study 1) and the inhibition of HIV pro-

teinase (case study 2). The objective in these problems

is to obtain the set of values of the model parameters

such that the model response is as close as possible to

the experimental data. For comparison purposes we used

the global optimization package BARON (version 8.1.5).

BARON is a commercial software for solving nonconvex

optimization problems to global optimality. BARON com-

bines constraint propagation, interval analysis, duality,

and enhanced “branch and bound” concepts for efficient

range reduction with rigorous relaxations constructed by

enlarging the feasible region and/or underestimating the

objective function. The interested readers have the pos-

sibility to evaluate this software on their own for free

in this link: http://www.neos-server.org/neos/solvers/go:

BARON/GAMS.html. Our algorithmwas implemented in

GAMS 23.5.2 using CPLEX 12.2.0.0 for the MILPs and

SNOPT 4 for the NLPs subproblems. All the calculations

were performed in a PC/AMDAthlon II at 2.99 Ghz using

a single core. Data about the size of the models can be

found in Table 1.

Case study 1: Isomerisation of α-Pinene

In this first case study, five kinetic parameters describ-

ing the thermal isomerisation of α-Pinene are estimated.

The proposed reaction scheme for this process is depicted

in Figure 6. In this homogeneous chemical reaction, α-

Pinene (γ1) is thermally isomerised to dipentene (γ2) and

allo-ocimene (γ3), which in turn yields α- and β-Pyronene

(γ4) and a dimer (γ5). This process was originally studied

by Fuguitt and Hawkins [29], which carried out a sin-

gle experiment reporting the experimental concentrations

Table 1 Model size in the last iteration

Isomerisation of Inhibition of

α-Pinene HIV proteinase

MILP equations 1,836 138,128

MILP continuous variables 1,096 53,321

MILP binary variables 380 3,625

NLP equations 186 16,306

NLP variables 196 16,361

(mass fraction) of the reactant and the four products

measured at eight time intervals.

Hunter and McGregor [30] postulated first-order

kinetics and proposed the following set of ODE’s

describing the dynamic process:

dγ1

dt
= −(p1 + p2)γ1 (41)

dγ2

dt
= p1γ1 (42)

dγ3

dt
= p2γ1 − (p3 + p4)γ3 + p5γ5 (43)

dγ4

dt
= p3γ3 (44)

dγ5

dt
= p4γ3 − p5γ5 (45)

γ0 = [ 100, 0, 0, 0, 0] t ∈[ 0, 36420] (46)

Figure 6 Proposedmechanism describing the thermal

isomerization of α-Pinene. In this reaction α-Pinene (γ1) is thermally

isomerized to dipentene (γ2) and allo-ocimene (γ3), which in turn

yields α- and β-Pyronene (γ4) and a dimer (γ5).
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Rodriguez-Fernandez et al. [4] addressed this problem

by applying a metaheuristic based on the scatter search

method. This strategy does not offer any theoretical guar-

antee of convergence to the global optimum in a finite

number of iterations.

Following our approach, the state variables were approx-

imated by Lagrange polynomials using three collocation

points evaluated at the shifted roots of orthogonal Leg-

endre polynomials and defining five finite elements of

equal length. The nonconvexities in the resulting resid-

ual equations are given by the bilinear terms θiξe, k, j which

were relaxed using piecewise McCormick approxima-

tions as described previously. The objective function was

underestimated using supporting hyper-planes.

It is well known that the quality of the lower bound pre-

dicted by a relaxation strongly depends on the bounds

imposed on its variables [31]. Hence bounds on colloca-

tion coefficients (ξLe, k, j and ξUe, k, j, originally set to 0 and

100, respectively) were tightened by performing a bound

contraction procedure [21,32]. Particularly, tight lower

and upper bounds were estimated for each collocation

coefficient by maximizing and minimizing its value while

satisfying the constraints contained in the master prob-

lem. This is a costly process (i.e., if bounds for n variables

are to be estimated, 2n optimization problems should be

solved). For this reason, it was only performed recur-

sively 3 times before the initialization of the algorithm.

The MILP was further tightened by adding the following

constraint:

∑

j∈JM

∑

u∈U

(ẑu, j − z̄u, j)
2 ≤ 20 (47)

which forces the model to find a solution better than the

one obtained at the beginning of the search by locally min-

imizing the original NLP (i.e., 20 is a rigorous upper bound

for the objective function). Furthermore, the parameter θi
was allowed to take any value within the [ 0, 1] interval.

The problem was solved with 6 initial hyper-planes.

An extra hyper-plane was added in each iteration, but

the total number of piecewise terms was kept constant

(4 piecewise intervals were considered) in order to keep

the MILP in a manageable size. A tolerance of 5% was set

as termination criterion.

For comparison purposes, we solved the same problem

with the standard global optimization package BARON

using its default settings. BARON was able to find the

global optimum but failed at reducing the optimality gap

below the specified tolerance after 12h of CPU time. In

contrast, our algorithm closed the gap in less than 3h (see

Table 2). As shown in Table 2, the results obtained agree

with those reported in the literature.

Table 2 Global optimization results for the α-Pinene

isomerisation problem

Rodriguez-Fernandez et al. BARON Proposed

algorithm

Sum of squares 19.87 19.87 19.87

UB - 19.87 19.87

LB - 4.112 19.26

Gap (%) - 79.31 3.056

Iterations 9,518 60,614 2

Time (CPU s) 122 43,200 8,916

Case study 2: Inhibition of HIV proteinase

In this second case study, we considered a much more

complex biological dynamic system. Particularly, we stud-

ied the reaction mechanism of the irreversible inhibition

of HIV proteinase, as originally examined by Kuzmic [33]

(Figure 7). Note that this dynamic model has lack of prac-

tical identifiability, as reported in Rodriguez-Fernandez et

al [4]. Nevertheless, we think that this example is still use-

ful for the purpose of our analysis, since the emphasis

here is placed on globally optimizing dynamic models

of biological systems rather than analyzing identifiability

issues.

The model can be described mathematically through a

set of 9 nonlinear ODE’s with ten parameters:

d[M]

dt
= −2k11[M] [M]+2k12[ E] (48)

d[ P]

dt
= k3[ ES]−2k41[ P] [ E]+2k42[ EP] (49)

d[ S]

dt
= −k21[ S] [ E]+k22[ ES] (50)

d[ I]

dt
= −k51[ I] [ E]+k52[ EI] (51)

d[ ES]

dt
= k21[ S] [ E]−k22[ ES]−k3[ ES] (52)

d[ EP]

dt
= k41[ P] [ E]−k42[ EP] (53)

d[ E]

dt
= k11[M] [M]−k12[ E]−k21[ S] [ E]+k22[ ES]

+ k3[ ES]−k41[ P] [ E]+k42[ EP]−k51[ I] [ E]

+ k52[ EI] (54)

d[ EI]

dt
= k51[ I] [ E]−k52[ EI]−k6[ EI] (55)

d[ EJ]

dt
= k6[ EI] (56)

where the following initial conditions and parameters

are known:
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Figure 7 Proposedmechanism describing the irreversible

inhibition of HIV proteinase. The enzyme HIV proteinase (E), which

is only active in a dimer form, was added to a solution of an

irreversible inhibitor (I) and a fluorogenic substrate (S). The product (P)

is a competitive inhibitor for the substrate.

[M]0 = 0 [ P]0 = 0 [ ES]0 = 0

[ EP]0 = 0 [ EI]0 = 0 [ EJ]0 = 0

[ I]0 (exp1) = 0 [ I]0 (exp2) = 0.0015

[ I]0 (exp3) = 0.003 [ I]0 (exp4) = 0.004

[ I]0 (exp5) = 0.004 (57)

k11 = 0.1 k12 = 0.001 k41 = 100

k21 = 100 k51 = 100 (58)

t ∈ [ 0, 3600] (59)

A series of five experiments where the enzyme HIV pro-

teinase (E) (assay concentration 0.004 µM) was added to

a solution of an irreversible inhibitor (I) and a fluorogenic

substrate (S) (25 µM) were considered. The five experi-

ments were carried out at four different concentrations of

the inhibitor (0, 0.0015, 0.003, and 0.004 µM in replicate).

The fluorescence changes were monitored during one

hour. The measured signal is a linear function of the

product (P) concentration, as expressed in the following

equation:

signal = ε[ P]+ offset (60)

In this fit, the offset (baseline) of the fluorimeter was

considered as a degree of freedom. A certain degree of

uncertainty (±50%) was assumed for the value of the

initial concentrations of substrate and enzyme (titration

errors).

The calibration of a total of 20 adjustable parameters

was addressed: five rate constants, five initial concen-

trations of enzyme and substrate and five offset values.

Mendes and Kell [34] solved this problem using simulated

annealing and reported its first known solution. Later,

Table 3 Optimal parameters for the HIV proteinase

inhibition problem

Parameter Rodriguez-Fernandez et al. Proposed algorithm

Sum of squares 0.01997 0.01961

k3 (s
−1) 6.235 5.764

k42 (s
−1) 8,772 968.7

k22 (s
−1) 473 129.9

k52 (s
−1) 0.09726 0.01612

k6 (s
−1) 0.01417 0.01337

S0 exp. 1 (µM) 24.63 24.61

S0 exp. 2 (µM) 23.32 23.4

S0 exp. 3 (µM) 26.93 27.05

S0 exp. 4 (µM) 13.34 13.97

S0 exp. 5 (µM) 12.5 12.5

E0 exp. 1 (µM) 0.005516 0.005286

E0 exp. 2 (µM) 0.005321 0.005168

E0 exp. 3 (µM) 0.006 0.006

E0 exp. 4 (µM) 0.004391 0.004428

E0 exp. 5 (µM) 0.003981 0.004105

offset exp. 1 -0.004339 -0.004234

offset exp. 2 -0.001577 -0.003478

offset exp. 3 -0.01117 -0.0142

offset exp. 4 -0.001661 -0.005177

offset exp. 5 0.007133 0.00486

Rodriguez-Fernandez et al. [4] improved that solution by

means of a scatter search metaheuristic, which required

a fraction of the time employed by Mendes’ simulated

annealing. Recall that, despite producing near optimal

solutions in short CPU times, stochastic algorithms pro-

vide no information on the quality of the solutions found

and are unable to guarantee convergence to the global

optimum in a finite number of iterations. On the contrary,

the proposed methodology ensures the global optimality

of the solution computed within a desired tolerance.

Table 4 Global optimization results for the HIV proteinase

inhibition problem

Rodriguez-Fernandez et al. BARON Proposed

algorithm

Sum of squares 0.01997 failed 0.01961

UB - - 0.01961

LB - - 0.01595

Gap (%) - - 18.64

Iterations 29,345 263 3

Time (CPU s) 1,294 43,200 4,351
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Miró et al. BMC Bioinformatics 2012, 13:90 Page 11 of 12

http://www.biomedcentral.com/1471-2105/13/90

In our study, the state variables were approximated

using five orthogonal collocation points and five equal-

length finite elements. In this case, the nonconvexities

arise from the bilinear terms ξe, k, jξe, k, j and θiξe, k, j.

The parameter bounds θi were set to θi ∈[ 0, 106]. The

lower and upper limits for the collocation coefficients

ξe, k, j, n were fixed to ξe, k, j, n ∈[ 0, 37.5] except for ξe, k, E, n ∈

[ 0.002, 0.006] and ξe, k, S, n ∈[ 12.5, 37.5]. The bounds for

all the offsets were set to offsetn ∈[−0.5, 0.5].

The master problem was further tightened by adding

a special type of strengthening cuts. These cuts are

generated by temporally decomposing the original full

space MILP into a series of MILPs in each of which

we fit only a subset of the original dataset, and remove

the continuity equations corresponding to the extreme

elements included in the sub-problem. The cuts are

expressed as inequalities added to the master problem

that impose lower bounds on the error of a subset of ele-

ments for which the sub-MILPs are solved. These bounds

are hence obtained from the solution of a set of MILP

sub-problems that optimize the error of only a subset

of elements.

This case study was solved with 3 initial piecewise inter-

vals and 6 initial hyper-planes. Two strengthening cuts

involving elements 1, 2, 3 and 4, and 2, 3, 4 and 5,

respectively, were added as constrains. A tolerance of 20%

was used in the calculations. Hyper-planes and piecewise

terms were updated at each iteration of the algorithm. In

this case, BARON failed to identify any feasible solution

after 12h of CPU time.

In contrast, our algorithm was able to obtain the global

optimum (Table 3) with a gap of 18.64% in approximately

4,000 CPU s (Table 4). Remarkably, the solution found by

our algorithm improves the best known solution reported

by Rodriguez-Fernandez et al. [4]. Hence, our algo-

rithm clearly outperformed other parameter estimation

methods, improving the best known solution [4,34], and

providing a rigorous lower bound on the minimum error

that can be attained.

Conclusions
In this work, we have proposed a novel strategy for

globally optimizing parameter estimation problems with

embedded nonlinear dynamic systems. The method pre-

sented was tested through two challenging benchmark

problems: the isomerisation of α-Pinene (case study 1)

and the inhibition of HIV proteinase (case study 2).

The proposed algorithm identified the best known

solution, which was originally reported by Rodriguez-

Fernandez et al. [4], in the case of the α-Pinene, and

improved the best known one in the HIV proteinase case

study. In both cases, rigorous lower bounds were provided

on the global optimum, making it possible to determine

the optimality gap of the solutions found.

The method proposed produced promising results, sur-

passing the capabilities of BARON. Our method requires

some knowledge on optimization theory as well as skills

using modelling systems. Our final goal is to develop a

software to automate the calculations, so our approach

can be easily used by a wider community. This is a

challenging task, since nonlinear models are hard to

handle and typically require customized solution pro-

cedures. Particularly, nonlinear models must be initial-

ized carefully to ensure convergence even to a local

solution. In this regard, the use of an outer approxi-

mation scheme that relies on a master MILP formu-

lation is quite appealing, since the outcome of this

MILP can be used to initialize the NLP in a robust

manner.

Another key point here is how to construct tight relax-

ations of the nonconvex terms. An efficient algorithm

must exploit the problem structure to obtain high qual-

ity relaxations and therefore good bounds close to the

global optimum. These relaxations can be further tight-

ened through the addition of cutting planes or the use

of customized decomposition methods. As observed,

there is still much work to be done in this area, but

we strongly believe that such an effort is worthy. Fur-

thermore, recent advances in global optimization the-

ory and software applications are paving the way to

develop systematic deterministic tools for the global opti-

mization of parameter estimation problems of increas-

ing size. Our future work will focus on making the

approach more efficient through the use of tailored

cutting planes and decomposition strategies and also

through the hybridization of deterministic methods with

stochastic approaches.
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Cite this article as: Miró et al.: Deterministic global optimization algorithm
based on outer approximation for the parameter estimation of nonlinear
dynamic biological systems. BMC Bioinformatics 2012 13:90.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

UNIVERSITAT ROVIRA I VIRGILI 
DYNAMIC MATHEMATICAL TOOLS FOR THE IDENTIFICATION OF REGULATORY STRUCTURES AND KINETIC PARAMETERS IN 
SYSTEMS BIOLOGY. 
Antoni Miró Roig 
Dipòsit Legal: T 1768-2014 



44 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RESEARCH ARTICLE Open Access

Identification of regulatory structure and kinetic
parameters of biochemical networks via
mixed-integer dynamic optimization
Gonzalo Guillén-Gosálbez1*, Antoni Miró1, Rui Alves2, Albert Sorribas2 and Laureano Jiménez2

Abstract

Background: Recovering the network topology and associated kinetic parameter values from time-series data are

central topics in systems biology. Nevertheless, methods that simultaneously do both are few and lack generality.

Results: Here, we present a rigorous approach for simultaneously estimating the parameters and regulatory

topology of biochemical networks from time-series data. The parameter estimation task is formulated as a mixed-

integer dynamic optimization problem with: (i) binary variables, used to model the existence of regulatory interac-

tions and kinetic effects of metabolites in the network processes; and (ii) continuous variables, denoting metabolites

concentrations and kinetic parameters values. The approach simultaneously optimizes the Akaike criterion, which

captures the trade-off between complexity (measured by the number of parameters), and accuracy of the fitting.

This simultaneous optimization mitigates a possible overfitting that could result from addition of spurious regulatory

interactions.

Conclusion: The capabilities of our approach were tested in one benchmark problem. Our algorithm is able to

identify a set of plausible network topologies with their associated parameters.

Keywords: Parameter estimation, Structure identification, Akaike criterion, Orthogonal collocation, Dynamic optimization,

Biochemical networks

Background
Mathematical models of biochemical systems are be-

coming essential in systems biology to complement and

extract information from time series. This information

can be of two types. On the one hand, if the structure of

the molecular circuit that executes the process of inter-

est is known, models can be used to infer the numerical

parameters that govern the dynamics of the system

[1-4]. On the other, models can be used to infer the

structure of the system from time series data (see for

example [5-7]).

In either case, to obtain a useful model, we face different

challenges: (i) defining the system’s mass flow structure

(stoichiometry), (ii), deciding the appropriate mathemat-

ical representation (kinetics), (iii) estimating the parame-

ters that make the model response consistent with

experimental data (parameter estimation), and (iv) infer-

ring the system’s regulatory structure. In addition, once

the model is well defined, it should be able to predict

systemic responses under yet untested experimental

conditions (model validation).

The four challenges described in the previous para-

graph are often addressed in independent steps. Current

solutions to the first challenge are generally based on

compiling information about the system and using that

information to create the stoichiometric matrix for the

system one wants to analyze (see for instance [8]). To

solve the second challenge we need to define kinetic

functions that describe the dynamic behavior of the

dependent variables of the system. If the kinetic func-

tions are unknown, approximate formalisms that have a

solid theoretical support can be used to describe the dy-

namic behavior of the system within a given accuracy

[9,10]. The third challenge is typically formulated as an

optimization problem that minimizes the sum of

squared residuals between the measured and simulated
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data (see a review of methods in [1]). The type of

optimization problem being faced and the technical

challenges to be solved depends upon the biological

model of choice, upon the experimental data available,

and upon the specific mathematical formalism used

[11,12]. In many practical applications, the target bio-

logical system is described through nonlinear ordinary

differential equations (ODEs). Hence, the parameter esti-

mation task gives rise to dynamic optimization problems

that are hard to solve. The fourth challenge could in

principle be addressed in the same way as the first. How-

ever, despite the enormous amount of biological infor-

mation available in public databases, regulatory signals

are, in general, poorly understood and hardly ever prop-

erly characterized in vivo. Regulatory signals appear in a

model as parameters accounting for the influence that

metabolites others than the substrates of a reaction have

on its velocity. Hence, parameter fitting can also be used

to address the fourth challenge. However, the over-

whelming majority of parameter estimation methods as-

sumes a given structure and considers a fix regulatory

scheme (see a review in [1]). This simplification is moti-

vated by the difficulty in identifying regulatory effects, a

task for which a myriad of alternative kinetic models

must be explored [7,13-15].

Traditional methods for the selection of biological sys-

tems have mostly applied regression or chi-squared-

based criteria (rather than information-theoretic fit

criteria) [16]. However, information-theoretic criteria

such as the Akaike’s Information Criterion (AIC) [17] or

the Bayesian Information Criterion (BIC) [18], are now

perceived as important measures to assess quality of fit.

AIC is often preferred over BIC becaue it has a more

immediate connection to the theory of information [19].

AIC captures the trade-off between the complexity

(measured by the number of parameters), and accuracy

of the fitting. Smaller AIC values imply a better approxi-

mation to the model sought.

In this work we propose a strategy to simultaneously

address the four challenges described above that relies

on the use of mixed-integer dynamic optimization

(MIDO) methods. Our approach adopts a structured

mathematical framework to represent the kinetics of the

processes that is flexible enough to reproduce a set of

plausible network topologies (by implementing slight

modifications on a basic model formulation). The power-

law [20] and the saturable and cooperative formalisms are

examples of such general kinetic representations [9].

Based on this type of general kinetic modeling framework,

we develop our systematic parameter estimation method

that provides as output a set of potential reaction and

regulatory topologies for the target network along with

the associated model parameters. We illustrate the

capabilities of our approach using the GMA kinetic

representation, a canonical model structure that uses the

power-law kinetic formalism [21,22].

Results and discussion
As a proof-of-concept, we have tested the capabilities of

our approach through its application to a case study

taken from Voit and Almeida [23]. The system consid-

ered is a four-constituent pathway branched with six vel-

ocities and two regulatory signals. X1 is generated from

X0, and its production is inhibited by X3 which is pro-

duced from X1 via intermediate X2. X1 yields also X4,

which promotes the degradation of X3 (see Figure 1).

Parameter estimation when the regulatory structure

is known

We shall first show that the proposed method is capable

of appropriately identifying the model parameters using

dynamic data when the regulatory structure is known.

This is the classical parameter estimation problem that

is solved in many applications. To this end, we first pro-

duce dynamic data without error from the reference sys-

tem using a specific set of parameter values. Then, this

in silico data is labeled as experimental and we use the

proposed method to estimate the model parameters. We

define a dynamic optimization model that contains a set

of dynamic differential equations describing the system’s

kinetics. This dynamic model is reformulated into a non-

linear program (NLP) using orthogonal collocation on

finite elements. This NLP does not contain binary vari-

ables because we assume that the regulatory signals are

known. The aforementioned NLP was implemented in

GAMS 23.7.3 and calculated with CONOPT 3.15A on a

PC/AMD Athlon at 2.99 Ghz using a single core. The

NLP features 302 variables and 285 constraints, and was

solved in 2.3 CPU seconds. As expected, we obtain

estimated parameters values that are very close to the

original ones (see Table 1), and a least square error of

1.45 × 10-6.

Non-linear kinetic models, like the GMA representa-

tion, have a certain degree of plasticity that allows differ-

ent parameter sets to fit the same data. Clear parameter

Figure 1 Reference system taken from Voit and Almeida [23]

(default parameters are shown in Table 1).
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trends are obtained by fixing a given parameter and fit-

ting the remaining ones. As an example, Figure 2 shows

the results of fixing f32 at different values and fitting the

other parameters. All the points in the figure lead to re-

siduals below 5.88 × 10-4, indicating that it is possible to

obtain good fits with different parameter sets. Similar

patterns are obtained if we choose to fix any other par-

ameter of the set.

As observed, the model is rather flexible, as there are

many combinations of parameters values leading to very

low residuals and essentially the same fit to the data. In

practical terms, this means that given an experiment and

an estimation procedure, we could obtain different par-

ameter sets that closely reproduce the experimental

measurements, but that differ from the actual values

with which the dynamic profile was generated in silico.

Thus, estimated parameter values don’t help comparing

the obtained fit with the reference model. In practice,

the residual error and the resulting time profiles should

be used to assess the fit.

We will now consider the effect of noisy data on fitting

the model, as such noise plays a key role in evaluating

any proposed method for identifying the regulatory

structure of a network. To explore the influence of ran-

dom experimental uncertainty, we generated 100 dy-

namic profiles from the reference model by introducing

statistical noise. For this, we applied Monte Carlo sam-

pling assuming that every data point follows a normal

distribution with standard deviation values of 0.5, 1, 5

and 10% of the actual nominal value. For comparison

purposes, we use the same perturbation experiment as

in the previous example. Table 2 shows the parameter

values and the associated residuals obtained for four of

the samples generated, while Figure 3 depicts the pro-

files associated with a standard deviation of 10%. We

can appreciate that despite the different parameter

values, the various fitted models lead to similar residuals.

Note that although the regulatory structure is fixed, we

obtain parameter values representing either positive or

negative regulatory effects (f54) of X4 on v5. This is a

consequence of the “experimental error” introduced in

the noisy data. That error may force the estimation pro-

cedure to an optimum involving a set of parameter

values that may be different from the set that generates

the noiseless data. In addition, as seen above, different

parameters sets can be used to produce similar time

courses. This means that there are coupled parameters

in the system, which may also contribute for the estima-

tion of regulatory interactions with reversed signals.

In general, even in simple cases as the one considered

here, it will be difficult to obtain a consistent estimation

from a single time-series. Identifying the parameter set

that is more likely to be the correct one requires simul-

taneous fitting to additional time-series, resulting from

more than one set of experiments. By doing so, we will

constraint further the admissible parameter sets (see

[24]). In Table 3, we show the results of fitting three dif-

ferent experiments with experimental error. Each experi-

ment corresponds to an alternative perturbation on the

initial concentration of metabolite X3 (0.2, 1.2, and 2.2).

These perturbations force the system to move across dif-

ferent dynamic regimes, producing additional informa-

tion that helps in the identification of appropriate

parameter values. As observed, the estimated parameters

are more consistent over the various experiments. They

are also closer to the actual parameter set selected for

generating the data. Note, however, that it is still pos-

sible to find solutions involving alternative regulatory

topologies with good fit to data (f54 acting as an inhibitor

in Profile 2).

Table 1 Original and predicted parameters values

Parameter Original parameters Proposed algorithm

f13 −0.8 −0.7999

f21 0.5 0.4996

f32 0.75 0.7494

f41 0.5 0.5006

f53 0.5 0.4996

f54 0.2 0.1996

f64 0.8 0.8010

γ1 12 12.000

γ2 8 8.0031

γ3 3 3.0034

γ4 2 1.9965

γ5 5 5.0014

γ6 6 5.9967

Data is error free (one experiment with only one observation by time point).
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Figure 2 Values of the fitted parameters for different values of

f32. Each point was generated by fixing f32 and solving the NLP

free of error.
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Identifying the regulatory structure

Performance using error free data

After testing the capabilities of the method when the

structure is known, we studied its ability to identify the

regulatory topology of the model. To this end, we ex-

plore the performance of the method using one experi-

ment with low experimental error (i.e., assuming that

the data follow normal distributions with a standard de-

viation of 0.5%). Larger errors result in a wider set of

alternative structures and for simplicity’s sake we shall

not discuss them here.

In order to simplify the search, we fix a maximum of

two metabolites (the substrate of the reaction, which is

given by the stoichiometric information, and one pos-

sible additional modifier, which is not a priori character-

ized) as potential variables affecting each velocity.

We note that it is typical to have some a priori know-

ledge about the biological system one is interested in.

The complexity of the regulatory interactions in the

identification problem is reduced if such knowledge can

be used to constrain further both, the number of poten-

tial regulatory signals in the model and their signs (posi-

tive, negative). In such cases, we can introduce specific

Table 2 Parameters values with noisy data (one experiment)

10%

Profile 1 Profile 2 Profile 3 Profile 4

f13 −0.14 −0.27 −0.84 −0.79

f21 0.26 0.47 0.4 0.29

f32 0.44 1 0.64 0.41

f41 0.04 0 0.9 1

f53 0 0.26 0.42 0.12

f54 −0.06 0.04 0.1 −0.12

f64 0.13 0.07 1 1

Residual 1.88 1.67 1.68 2.29

5%

Profile 5 Profile 6 Profile 7 Profile 8

f13 −0.282 −0.532 −0.631 −0.893

f21 0.56 0.618 0.306 0.6

f32 1 1 0.436 1

f41 0 0.092 0.761 0.742

f53 0.368 0.639 0.273 0.298

f54 0.127 0.244 0.021 0.279

f64 0.064 0.158 1 1

Residual 0.4128 0.4203 0.5706 0.4482

1%

Profile 9 Profile 10 Profile 11 Profile 12

f13 −0.881 −0.427 −0.859 −0.71

f21 0.571 0.523 0.5 0.414

f32 0.885 0.809 0.758 0.608

f41 0.587 0.078 0.661 0.656

f53 0.479 0.467 0.507 0.402

f54 0.2 0.176 0.197 0.136

f64 1 0.162 1 1

Residual 0.0207 0.0163 0.0167 0.0227

0.5%

Profile 13 Profile 14 Profile 15 Profile 16

f13 −0.845 −0.744 −0.843 −0.765

f21 0.535 0.472 0.496 0.453

f32 0.816 0.714 0.749 0.673

f41 0.556 0.492 0.647 0.643

f53 0.492 0.439 0.497 0.443

f54 0.201 0.167 0.196 0.164

f64 0.916 0.816 1 1

Residual 0.0052 0.0041 0.0042 0.0057

We solved a total of 100 problems, each corresponding to a different

replication, generated randomly see Additional file 1: Table S1). The table

shows the 16 cases for which the residual error is low.
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Figure 3 Adjusted profiles for four different noisy data sets (i.e.

one experimental condition and four replications) with a standard

deviation of 10%.

Table 3 Parameter values obtained from simulated noisy

data (with noisy data (three experiments))

Profile 1 Profile 2 Profile 3 Profile 4

f13 −0.67 −0.64 −0.62 −0.92

f21 0.33 0.9 0.49 0.69

f32 0.42 1 0.73 1

f41 0.64 0 0.38 0.26

f53 0.49 0.66 0.3 0.4

f54 0.05 −0.95 0.22 0.34

f64 1 1 0.53 0.58

Residual 6.96 7.10 5.39 4.89

We solved a total of 100 problems, generated randomly. See Additional file 1:

Table S2.
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constraints for the relevant parameters to be fitted. For

example, in our case kinetic-order corresponding to the

substrates of a reaction must be positive.

The MINLP model that simultaneously fits the param-

eters and infers probable regulatory interactions was im-

plemented in GAMS 23.7.3 and solved with the solver

SBB in the same computer as before. The model has 72

binary variables, 391 continuous variables and 414 equa-

tions. The solution time was in the order of few minutes

for each simulation.

Our algorithm identifies a set of compatible systems,

since the model has enough flexibility to play with the

regulatory structure as well as the kinetic parameters

when minimizing the residuals. The method identifies

topologies that are quite close and that show very small

residuals, but it is unable to uniquely identify the ori-

ginal topology (see Additional file 1: Table S3 for a list of

topologies generated and their associated kinetic param-

eters and residuals). As an example, in Figure 4, we

compare three completely different regulatory structures

that produce almost indistinguishable results and similar

fitting to the actual dynamics, leading to residual values

of 0.00223, 0.00283 and 0.00316 (Figure 5).

As before, one strategy for increasing the possibility of

correctly identifying the “true” regulatory structure is to

use additional time-series data of the same system under

different sets of initial conditions. To this end, we chan-

ged the initial concentrations of X3 (0.2, 1.2, and 2.2).

The MINLP model was again implemented in GAMS

and solved with SBB in the same computer. In this case,

the MINLP features 72 binary variables, 967 continuous

variables and 980 equations. The solution time was in

the order of few minutes for each simulation.

In Figure 6 we show the dynamic profiles associated

with three different topologies identified by the MINLP. A

complete list of network topologies and associated kinetic

parameters and residuals is provided as (Additional file 1:

Table S4). With three time series, the method identifies

not only the actual topology, but also several structures

that contain the original one (i.e., topologies that account

for all the actual regulatory effects plus other signals that

were not present originally). Again, we obtained slightly

different parameter sets in each case, since the model

flexibility is rather large.

Additional remarks

The use of MIDO techniques combined with orthogonal

collocation allows posing the parameter estimation task

Figure 4 The proposed method identifies different regulatory

topologies that essentially produce the same output. We show

here the associated profiles corresponding to three regulatory

structures with lowest residual values obtained by analyzing data

from a single experiment with one replicate (see parameters values

and residuals in Additional file 1: Table S3.
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Figure 5 Dynamic responses corresponding to the three

different topologies of Figure 4. Parameter values are indicated

on Additional file 1: Table S3.
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as an algebraic optimization problem that can be efficiently

solved using standard MINLP algorithms. Orthogonal col-

location shows some appealing properties (see [25]), but

has the drawback of increasing the model size because it

adds auxiliary variables and equations that increase the

problem complexity. Our MIDO approach, however, can

be solved by any MIDO algorithm, and it is not re-

stricted to the use of orthogonal collocation and MINLP

reformulations.

A key point in our method is the selection of an ap-

propriate starting point to initialize the MINLP algo-

rithm. Standard MINLP algorithms typically solve an

initial NLP where the binary variables are relaxed. If this

NLP does not converge, the entire algorithm might fail.

An initialization strategy that works well in practice is to

integrate first the original kinetic model for some par-

ameter values, and then use the dynamic profiles gener-

ated in silico to provide a starting point for the NLP

solver. Another method consists of solving an auxiliary

model where we relax some constraints through the

addition of slack variables, and then minimize the sum-

mation of the slacks in order to obtain an initial feasible

point. With this relaxed model, we can identify a feasible

(but not necessarily optimal) solution for the initial NLP.

Even if the MINLP model converges, there is still the

issue of getting trapped in local optima during the

search. To avoid this, we can run the optimization algo-

rithm from different starting points generated randomly.

This strategy does not guarantee convergence to the glo-

bal optimum, but tends to produce high quality solu-

tions in short CPU times. In contrast, deterministic

global optimization methods provide a rigorous interval

within which the optimum should fall, but tend to lead

to large CPU times (see [26,27]).

In our case, we initialize the NLPs by solving a set of

relaxed problems from different starting points and then

pass these results to the first NLP solver. This approach

provides feasible points from which the model converges

to solutions with low residuals.

In general, due to the nonconvex nature of the refor-

mulated MINLP, the nonlinear branch and bound imple-

mented in SBB outperforms the outer-approximation

used by DICOPT. This is because the supporting hyper-

planes defined in the master MILP solved by DICOPT

may chop-off feasible solutions due to the noconvex

nature of some nonlinear inequalities.

We note that nonlinear models are hard to handle,

and even more so when they contain binary variables.

Standard NLP solvers can solve problems containing up

to hundreds of thousands of variables and constraints.

On the other hand, the computational burden of MIDO

(and MINLP) models is rather sensitive to the number

of binary variables. For the type of problems we are deal-

ing with, it is difficult to provide a bound on the number

of binaries above which the algorithm might fail. In prac-

tice, however, we found that this approach efficiently for

less than one hundred binaries (around 30 parameters).

From a practical viewpoint, we face the challenging

problem of discriminating between compatible regula-

tory structures for a given data set. On a worst case sce-

nario, our method provides a ranked set of alternative

regulatory topologies that can be tested and validated

experimentally. If appropriate additional time-series data

are available, the set of admissible solutions for testing

can be further constrained and reduced. Our method

finds a set of alternatives that are consistent with the dy-

namic data available and that can be further refined

using additional information and expert knowledge on

the system. (i.e., complementary biological information).

For instance, kinetic-orders that correspond to substrates

of a reaction may be safely restricted to be positive. Simi-

larly, if we are fairly sure that a given metabolite does not

participate in a reaction, its kinetic-order should be fixed

to zero.

Our method can also be used to explore hypotheses

about the regulatory structure of a system. For instance,

we can force some parameters to take negative values,

thereby representing inhibition effects, and then perform

the optimization so as to determine if the fitting is good

enough. Furthermore, we can follow the same procedure

in order to identify regulatory effects that are consistent

with this hypothesis.

In addition, we note that our approach can be easily

adapted in order to work with other model selection cri-

teria besides AIC. We remark, however, that the assess-

ment of different selection criteria would deserve a
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Figure 6 The Profiles generated from three different topologies

and three experiments with one replication each. The experiments

are generated from the base case by applying different perturbations

in the initial concentration of X3. Details on the topology and

associated parameters are provided on Additional file 1: Table S4.
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comprehensive study that is beyond the scope of this

work.

The simple examples presented in this paper show that

estimating parameters in dynamic kinetic models is far

from being an easy job and that models based on the

power-law formalism facilitate the estimation task. Al-

though this formalism is suitable for a wide variety of

problems, one may argue that it may present some limi-

tations. As an alternative, we can use extensions of this

framework such as the Saturable and Cooperative for-

malism [9], which takes into account saturation effects.

In both cases, a key point is the possibility of using a ca-

nonical mathematical formalism that facilitates the auto-

matic search of alternative regulatory patterns. The

method described here would be applicable to such

models via recasting of the Saturating and Cooperative

formalism into a power law [28].

Conclusions
In this work we have proposed a rigorous approach

based on mathematical programming for the simultan-

eous identification of the regulatory signals and estima-

tion of the kinetic parameters of models of biochemical

networks. Our approach is based on the use of mixed-

integer dynamic optimization (MIDO) models that

minimize the Akaike criterion, and that can be solved by

standard optimization algorithms. Particularly, we solve

this MIDO by reformulating it as a mixed-integer non-

linear program (MINLP) using orthogonal collocation

on finite elements, which makes it possible to apply

standard MINLP solution algorithms in an iterative fash-

ion in order to identify a set of plausible network topolo-

gies and associated kinetic parameters.

It is noteworthy that the difficult task of parameter es-

timation in nonlinear models becomes really compli-

cated as the size of the models increases. Therefore,

such estimation typically requires customized solution

procedures. One key point is to use the appropriate ini-

tial conditions to ensure convergence of the calculations.

The proposed method can contribute to fill the lack of

information on the regulatory signals that are in play in

a given metabolic scenario. Although we cannot deal

with genome-wide models, we have shown that dynamic

profiles can be processed to provide clear hypothesis on

the underlying regulatory structure. This is an important

step towards completing essential information on differ-

ent metabolic processes that are poorly understood.

Methods
The problem we address here is to infer the regulatory

structure of a metabolic system, given a known structure

for the reaction network (stoichiometry) and experimen-

tal time series for the dynamic behavior of that system.

To address this question, and to explore the practical

problems associated, we consider the following general

representation of a biochemical network:

_X i ¼
X

p

r¼1

μi;rυr i ¼ 1;…; n ð1Þ

where Xi denotes the concentration of metabolite i, μi,r
is the stoichiometric coefficient of metabolite i in

process r, which indicates the number of molecules of type

i produced or destroyed by process r, and vr is the rate

function of this process. In general, vr is represented as:

υr X1;…; Xnþm; θð Þ ð2Þ

There are two critical issues in defining this model.

One is the selection of an appropriate mathematical rep-

resentation for vr, which may be a function of an arbi-

trary number of variables (substrates, products, and

modifiers). In most cases the mechanism for each

process are unknown and choosing a specific mechanis-

tic rate law, such as a Michaelis-Menten rate law, be-

comes an act of faith. The other issue is the problem of

identifying the regulatory structure of the system.

The most straightforward and theoretically well sup-

ported solution to both issues is the use of an approxi-

mate formalism based on a standard mathematical

representation [10]. By adopting such a kinetic represen-

tation, identifying the regulatory structure of the system

becomes synonymous to determining the set of values θ

for the model parameters that better fit the available

data. Hence, without losing generality, and as a first step

towards a more complex framework, we will consider

the case where the rates are modeled using a power-law

formalism. Note, however, that our approach could be

easily extended in order to accommodate any other

structured kinetic formalism.

Power-law models

Using the power-law representation, the rate vr is ex-

pressed as follows:

υr ¼ γr

Y

nþm

j=1

X
f r;j
j r ¼ 1;…; p ð3Þ

where γr is an apparent rate constant for reaction r, and

fr,j is the kinetic order of metabolite j in that process.

Note that this equation accounts for the effect of n +m

metabolites (n dependent and m independent) on each

reaction.

The advantage of this representation is that the same

functional form represents all the rates. The reaction

structure of the system will constrain the range of ad-

missible values for some of the parameters. For example,

all γ and f parameters for the substrates and catalysts of

the reactions are by definition larger than zero. In
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addition, the values of the f parameters for all metabo-

lites that are not directly involved in a given process are

zero in the rate that describes the process.

By adopting such a kinetic representation, we can pose

the problem of identifying the regulatory signals in a

very compact mathematical form. If Xj is a modifier of

vr, then the corresponding kinetic order fr,j will be differ-

ent from zero (positive if it is an activator, and negative

if it is an inhibitor). By substituting (3) into equation (1),

we get what is known as a Generalized Mass-Action

(GMA) model.

_X i ¼
X

p

r¼1

μi;r γr

Y

nþm

j¼1

X
f r;j
j

 !

i ¼ 1;…; n ð4Þ

Note that the power-law formalism accounts for both

the stoichiometry of the system (the network structure),

and the reaction and regulatory structures (kinetic or-

ders) using a single systematic nonlinear representation.

This property is very important for defining a systematic

way of exploring alternative regulatory signals. We will

make use of this general and compact formalism in the

derivation of the equations for the parameter estimation

model.

Parameter estimation in a GMA model

Given a set of experimental observations (i.e., time

courses for the metabolites), our goal is to find the

values of the apparent constants and kinetic orders that

minimize the sum of least squared errors between the ex-

perimental data and the predicted dynamic profiles. This

problem can be expressed in compact form as follows:

min
γr ;f r;j

X

k

u¼1

X

n

i¼1

X
exp
i;u −X mod

i;u

$ %2

s:t: _X j ¼
X

p

r−1

μi;rυr i ¼ 1;…; n

υr ¼ γr

Y

nþm

j¼1

X
f r;j
j r ¼ 1;…; p

_X i t0ð Þ ¼ X0i i ¼ 1;…; n; t ∈ t0; tf
& '

X mod
i;u ¼ X i tuð Þ i ¼ 1;…; n; u ¼ 1;…; k

ð5Þ

where Xi represents the state variables (i.e., metabolite

concentrations), X0i their initial conditions, Xi,u
exp denotes

the experimental observations, and Xi,u
mod are the values

calculated by the dynamic model (i.e., model predic-

tions). i is the index for the set of state variables whose

derivatives explicitly appear in the model, γr and fr,j are

the parameters to be estimated, and tu, is the time asso-

ciated with experimental point u belonging to the set U

of observations. k is the total number of experimental

data points and n is the number of time dependent

variables.

Conventional parameter estimation approaches seek

parameter values that minimize the approximation error

assuming a given regulatory scheme (i.e., fixing some fr,j
to zero beforehand according to the aprioristic biochem-

ical knowledge of the system). While this assumption

simplifies the calculations, it can lead to poor approxi-

mations and hamper at the same time the discovery of

new regulatory loops. In this work we introduce a rigor-

ous and systematic parameter estimation and network

identification method that makes no assumption regard-

ing the regulatory network topology.

To model the existence of a regulatory interaction, we

make use of the following disjunction:

Y −

r;j

f r;j ≤ −ε

( )

V
Y r;j

−ε≤f r;j ≤ ε

( )

V
Yþr;j
ε≤f r;j

( )

j ¼ 1;…; n;

r ¼ 1;…; p

Y −

r;j;Y r;j;Y
þ
r;j ∈ True; Falsef g

ð6Þ

In which Yr,j
-,Yr,j and Yr,j

+ are Boolean variables that

are true if parameter fr,j is negative, zero or positive, re-

spectively, and false otherwise. ε is a very small param-

eter. Note that only one term of the disjunction can be

active (i.e., exclusive disjunction), while the others must

be false. Hence, if Yr,j is true, metabolite i takes no part

in velocity r. Conversely, if this metabolite has an influ-

ence on r, then Yr,j is false and either Yr,j
- or Yr,j

+ will be

active. This disjunction can be translated into standard

algebraic equations using either the big-M or convex-

hull reformulations [29]. By applying the former, we get:

f r;j ≤ −εþM 1−y−r;j

$ %

j ¼ 1;…; n; r ¼ 1;…; p

−ε−M 1−yr;j

$ %

≤f r;j ≤εþM 1−yr;j

$ %

j ¼ 1;…; n; r ¼ 1;…; p

f r;j ≤ εþM 1−yþr;j

$ %

j ¼ 1;…; n; r ¼ 1;…; p

y−r;j þ yr;j þ yþr;j ¼ 1 j ¼ 1;…; n; r ¼ 1;…; p

y−r;j þ yr;j þ yþr;j ∈ 0; 1f g

ð7Þ

where Boolean variables Y have been replaced by auxil-

iary binary variables y. In these equations, M is a suffi-

ciently large parameter whose value must be carefully

set according to the bounds defined for the kinetic

parameters.

A key issue in our approach is how to avoid overfit-

ting. To this end, we make use of the Akaike criterion,

which captures the trade-off between the number of kin-

etic parameters contained in the model and its ability to

accurately reproduce the experimental data. If we as-

sume that the error of the observations follows a normal
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distribution, the Akaike criterion takes the following

mathematical form [17]:

AIC ¼ k log

X

k

u¼1

X

n

i¼1

X
exp
i;u − X mod

i;u

! "2

k

0

B

B

B

B

@

1

C

C

C

C

A

þ 2
X

n

j¼1

X

p

r¼1

y−r;j þ yþr;j

! "

þ C ð8Þ

Where AIC denotes the value of the Akaike criterion

and C is a constant value that does not affect the

optimization. The parameter estimation problem can be

finally posed in mathematical terms using the following

MIDO (mixed-integer dynamic optimization) formulation:

Mð Þ min k log
γr ;f r;j;y

−

r;j;yr;j;y
þ
r;j

X

k

u¼1

X

n

i¼1

X̂ i;u−
!X i;u

) *2

k

0

B

B

B

B

@

1

C

C

C

C

A

þ2
X

n

j¼1

X

p

r¼1

y−
r;j
þ yþ

r;j

! "

s:t: _X j ¼
X

p

r−1

μi;rυr i ¼ 1;…; n

υr ¼ γr

Y

nþm

j¼1

X
f r;j
j r ¼ 1;…; p

_X i t0ð Þ ¼ X0i i ¼ 1;…; n; t ∈ t0; tf
, -

!X i;u ¼ X i tuð Þ i ¼ 1;…; n; u ¼ 1;…; k

f r;j ≤ −εþM 1−y−r;j

! "

j ¼ 1;…; n; r ¼ 1;…; p

−ε−M 1−yr;y

! "

≤f r;j ≤εþM 1−yr ;j

! "

j ¼ 1;…; n; r ¼ 1;…; p

f r;j ≤ εþM 1−yþr;j

! "

j ¼ 1;…; n; r ¼ 1;…; p

y−r;j þ yr;y þ yþr;j ¼ 1 j ¼ 1;…; n; r ¼ 1;…; p

y−r;j þ yr;j þ yþr;j ∈ 0; 1f g

ð9Þ

There are different solution methods to solve this

MIDO (see [25]). Without loss of generality, we propose

here to reformulate this problem into an equivalent alge-

braic MINLP (mixed-integer nonlinear program) using

orthogonal collocation on finite elements. This allows

exploiting the rich optimization theory and software ap-

plications available for MINLP in the solution of the

MIDO. Note that the reformulated MINLP might be

nonconvex. This will give rise to multimodality (i.e., ex-

istence of multiple local optima), preventing standard

gradient-based solvers from identifying the global

optimum. Deterministic global optimization methods

could be applied to solve the MINLP, but they might

lead to large CPU times given the size and complexity of

a standard dynamic problem of this type. Details on the

application of deterministic global optimization methods

to parameter estimation problems of small/medium size

can be found elsewhere [30,31]. For the reasons given

above, in this work we will solve the reformulated

MINLP using local optimizers.

One important feature of our approach is that rather

than calculating a single optimal solution, it identifies a

set of plausible regulatory topologies by solving the

model iteratively. That is, the model is first solved to

identify a potential regulatory configuration represented

by a binary solution (i.e., set of values of the binary vari-

ables). The model is then calculated again but this time

adding the following integer cut, which excludes solu-

tions identified so far in previous iterations from the

search space:

X

r;jð Þ∈ONE−it

y− it
r;j þ

X

r;jð Þ∈ONEit

y it
r;j þ

X

r;jð Þ∈ONEþ
it

yþ it
r;j

−

X

r;jð Þ∈ONE−it

y− it
r;j −

X

r;jð Þ∈ONEit

y it
r;j −

X

r;jð Þ∈ONEþ
it

yþ it
r;t

≤ ONE−

it þ ONEit þ ONEþit
.

.

.

.− 1

ONE−

it ¼ f r; jð Þjy− it
r;t ¼ 1 in the solution obtained

in the iteration it g

ONEit ¼ f r; jð Þjy it
r;j ¼ 1 in the solution obtained

in the iteration it g

ONEþit ¼ f r; jð Þjyþ it
r;j ¼ 1 in the solution obtained

in the iteration it g

ZERO−

it ¼ f r; jð Þjy− it
r;j ¼ 0 in the solution obtained

in the iteration it g

ZEROit ¼ f r; jð Þjy it
r;j ¼ 0 in the solution obtained

in the iteration it g

ZEROþit ¼ f r; jð Þjyþ it
r;j ¼ 0 in the solution obtained

in the iteration it g

ð10Þ

Where ONEit and ZEROit represent the sets of binary

variables that take a value of one and zero, respectively,

in iteration it of the algorithm. After adding the integer

cut, the model is solved again to produce a new regula-

tory topology, and this procedure is repeated iteratively

until a desired number of configurations is generated.

Hence, the algorithm produces as output a set of poten-

tial network configurations (encoded in the values of the

binary solutions) rather than a single topology. Note that
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these regulatory topologies show a descendant value of

the Akaike performance criterion.

Additional file

Additional file 1: Table S1. Parameters values obtained from simulated

experiments with noisy data and known regulatory structure. We

generate 100 different datasets by adding random noise using a normal

distribution with a standard deviation of 10%. Table S2. Parameter values

for three experiments with noisy data and known regulatory structure

(we considered three experiments and solved a total of 100 problems,

replications, generated randomly with a normal distribution with a

standard deviation of 10%. Table S3. Kinetic parameters, Akaike values

and residuals corresponding to the regulatory topologies obtained by

fitting an ‘in silico’ experiment generated from the reference model with

added noise (normal distribution with a standard deviation of 0.5% of the

actual concentration value). We show the ten best cases sorted by

residual value. In yellow we indicate kinetic orders that must be greater

than zero as they represent effects of the substrate of the considered

reaction. In green, we indicate the regulatory effects that were included

in the reference model. In light red, we indicate regulatory effects that

are not present in the reference model. Table S4. Kinetic parameters,

Akaike values and residuals corresponding to the regulatory topologies

obtained by fitting three ‘in silico’ experiment generated from the

reference model with added noise (normal distribution with a standard

deviation of 0.5% of the actual concentration value). The experiments are

generated from the base case by applying different perturbations in the

initial concentration of X3. We show the ten best cases sorted by residual

value. See color meaning in Table S3.
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Supplementary table 1. Parameters values obtained from simulated experiments with noisy data and 
known regulatory structure. We generate 100 different datasets by adding random noise using a normal 
distribution with a standard deviation of 10%. In the estimation task, the non-zero parameters are 
indicated and all the other parameters are set to zero. 
 

Profile f13 f21 f32 f41 f53 f54 f64 Residual 

1 -0.14 0.26 0.44 0.04 0 -0.06 0.13 1.88 
2 -0.27 0.47 1 0 0.26 0.04 0.07 1.67 
3 -0.84 0.4 0.64 0.9 0.42 0.1 1 1.68 
4 -0.79 0.29 0.41 1 0.12 -0.12 1 2.29 
5 -0.77 0.58 1 0.88 0 0.22 1 1.81 
6 0.62 0.12 0.2 0 0.41 -1 0.93 2.14 
7 -0.65 0.33 0.5 0.27 0.97 0.21 0.5 1.42 
8 -0.45 0.4 0.62 0 0.12 0.27 0.28 1.78 
9 -0.42 0.66 1 0.19 0 -0.63 0.35 1.93 
10 -1 0.79 0.79 0 0.73 0.58 1 1.64 
11 -0.64 0.86 1 0 0.49 0.61 1 1.89 
12 -0.36 0.33 0.41 0 0.3 0.23 0.38 1.19 
13 -0.39 0.26 0.47 0 0 0.07 1 2.01 
14 -0.42 0.12 0.18 0.58 0 -0.15 0.58 2.06 
15 0.25 0.02 0.53 0 1 -0.16 0.02 5.62 
16 -0.54 0.26 0.39 0.41 0.31 0.06 0.54 1.11 
17 -0.27 0.11 0.38 0.45 0 -0.2 0.72 1.6 
18 0.37 0.07 0.11 0 1 0.12 1 1.53 
19 -1 0.71 1 0.13 0.95 0.7 0.31 1.17 
20 -0.49 0.26 0.41 0.7 0.22 0.08 1 2.03 
21 -0.43 0.84 1 0 0.14 0.11 0.06 2.25 
22 0.56 0.14 0.06 0 1 -1 0.87 2.52 
23 -0.31 0.57 1 0 0 -0.07 1 1.93 
24 -1 0.5 0.89 0.88 0.23 0.13 1 1.27 
25 -0.22 0.22 0.28 0.31 0.13 0.04 1 1.28 
26 -0.3 0.61 1 0 0.42 0.03 0 2.85 
27 -0.05 1 0.67 1 0 -0.12 0.16 37.74 
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28 -0.76 0.72 1 0 0.36 0.58 1 1.89 
29 -0.03 0.91 1 0 0.88 -0.51 0.05 2.33 
30 -0.75 0.22 0.53 0.98 0 -0.1 1 2.24 
31 -0.11 0.19 0.3 0 0.11 -0.06 0.31 1.71 
32 -0.53 0.23 0.37 0.67 0.12 -0.08 1 2.12 
33 -0.84 0.72 1 0.1 1 0.77 0.44 1.3 
34 -0.77 0.24 0.46 0.95 0.18 -0.05 1 2.12 
35 -0.63 0.34 0.55 0.39 0.46 0.26 0.73 2.66 
36 -0.55 0.77 1 0 0.63 0.39 0.07 1.38 
37 -0.33 0.21 0.41 0 0.12 0.07 1 1.94 
38 -0.17 0.27 0.4 0.18 0.02 -0.01 0.26 1.61 
39 -0.6 0.21 0.53 1 0 -0.04 1 1.75 
40 -0.66 0.32 0.54 0.89 0.16 0.07 1 1.75 
41 -0.34 0.18 0.44 0.66 0 -0.03 1 2.07 
42 -0.39 0.31 0.31 0.46 0.16 -0.04 1 1.34 
43 -0.36 0.23 0.27 0 0.18 -1 1 2.81 
44 -1 0.48 0.65 0.87 0.4 0.21 1 1.1 
45 -0.9 0.03 0.02 1 1 0.06 1 18.53 
46 -0.98 0.95 1 0.28 0.12 0.35 0.38 1.04 
47 -0.28 0.49 1 0 0.35 0.16 0.05 2.06 
48 -0.38 0.24 0.45 0 1 0.54 1 1.98 
49 -0.51 0.29 0.41 0.59 0.29 0.1 1 1.48 
50 -0.17 0.2 0.33 0 0.89 0.83 0.49 2.47 
51 -0.94 0.54 0.82 0.62 0.58 0.45 1 1.29 
52 -0.84 0.3 0.43 1 0.2 -0.24 1 2.35 
53 -0.36 1 0.94 0.09 0.38 -0.25 0.03 2.67 
54 -0.83 0.61 1 0.71 0.12 0.22 1 1.64 
55 -1 0.57 1 0.47 1 0.75 0.78 1.16 
56 -0.3 0.36 0.61 0 0.92 1 0.3 1.15 
57 -0.43 0.78 1 0 0.53 1 0.94 1.71 
58 -0.22 0.43 0.63 0 0.89 1 0.28 2.04 
59 -0.37 0.28 0.53 0.04 0.44 0.32 0.35 1.64 
60 -0.38 0.52 1 0 0 0.2 0.1 1.78 
61 -0.91 0.6 1 0.27 0.02 0.19 0.23 1.79 
62 -0.83 0.55 0.62 1 0.13 0 1 1.49 
63 -0.52 0.26 0.42 0 0.26 -1 1 2.23 
64 -1 0.71 1 0.26 0.16 0.19 0.24 1.85 
65 -0.42 0.37 0.48 0.18 0.03 0.12 0.56 1.74 
66 -0.36 0.25 0.43 0 0.13 0.04 0.28 1.11 
67 -0.87 0.74 1 0.23 0.54 0.25 0.18 1.45 
68 0 0.59 1 0 0.09 -0.12 0 9.04 
69 -1 0.57 0.9 1 1 0.03 0.23 1.93 
70 -1 0.64 1 0.88 0.54 0.32 1 1.62 
71 -1 0.73 1 0.7 0.16 0.18 1 1.73 
72 -0.38 0.24 0.39 0 0.33 0.16 0.46 1.42 
73 -0.24 0.25 0.39 0 0.23 0.12 0.37 1.93 
74 -0.36 0.08 0.17 1 0 -0.2 1 2.39 
75 -0.35 0.23 0.38 0 0.09 0.09 0.34 1.27 
76 -1 0.65 1 0.6 0.7 0.46 1 1.69 
77 -1 0.76 1 0.24 0.54 0.08 0.42 1.41 
78 -0.65 0.51 1 0.39 0.45 0.19 0.44 2.02 
79 0.32 0 0.13 0.01 0.37 -0.01 0.13 4.22 

UNIVERSITAT ROVIRA I VIRGILI 
DYNAMIC MATHEMATICAL TOOLS FOR THE IDENTIFICATION OF REGULATORY STRUCTURES AND KINETIC PARAMETERS IN 
SYSTEMS BIOLOGY. 
Antoni Miró Roig 
Dipòsit Legal: T 1768-2014 



57 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

80 -0.54 0.3 0.51 0.48 0.18 0.17 1 1.31 
81 -1 0.75 1 0.33 0.23 0.33 0.49 1.67 
82 -0.54 0.2 0.39 0.97 0 -0.09 1 1.67 
83 -1 0.95 1 0.4 1 1 1 2.12 
84 -1 0.72 1 0.32 0.34 0.21 0.3 1.71 
85 -0.63 0.32 0.54 0.88 0.12 0.07 1 2.77 
86 -1 0.88 1 0.25 0.47 0.3 0.19 1.82 
87 -1 0.64 0.87 0 0.17 0.2 1 1.75 
88 0 0 0.17 0.01 0.4 -0.12 0 12.4 
89 -0.25 0.2 0.3 0 0.16 -0.01 0.86 0.94 
90 -1 0.58 0.81 0.01 1 0.37 0.21 2.13 
91 -0.67 0.7 1 0.01 1 1 0.44 1.44 
92 -0.56 0.6 1 0.17 0.09 0.14 0.17 2.12 
93 -0.15 0.22 0.32 0 0.11 -0.01 0.92 1.94 
94 -0.27 0.19 0.28 0.89 0 -0.09 1 2.09 
95 -0.65 0.26 0.65 1 0.19 0.12 1 1.58 
96 0.4 0.21 0.14 0.23 1 0.02 0 5.62 
97 -0.42 0.47 0.5 0 0.64 0.82 0.46 1.07 
98 -0.75 0.29 0.43 1 0 -0.12 1 1.56 
99 -0.33 0.24 0.28 0 0.26 -1 0 3.19 
100 -0.15 0.16 0.39 0 0.19 0.12 0.69 1.57 

 
 
Supplementary table 2. Parameter values for three experiments with noisy data and known regulatory 
structure (we considered three experiments and solved a total of 100 problems, replications, generated 
randomly with a normal distribution with a standard deviation of 10%. 
 

Profile f12 f14 f23 f31 f35 f45 f46 Residual 

1 0.33 0.64 0.42 -0.67 0.49 0.05 1 6.96 
2 0.9 0 1 -0.64 0.66 -0.95 1 7.1 
3 0.49 0.38 0.73 -0.62 0.3 0.22 0.53 5.39 
4 0.69 0.26 1 -0.92 0.4 0.34 0.58 4.89 
5 0.31 0.71 0.54 -0.49 0.24 0.13 1 5.58 
6 0 0.01 0.2 0.18 0.35 -0.03 0.06 22.51 
7 0.58 0.27 1 -0.64 0.69 0.26 0.44 6.14 
8 0.51 0.12 0.83 -0.72 0.46 0.17 0.17 5.02 
9 0.6 0.59 0.8 -0.79 0.64 0.08 0.86 5.96 
10 0.56 0 1 -0.57 0.26 -0.46 1 8.3 
11 0.31 0.59 0.54 -0.52 0.16 0.12 0.74 7.04 
12 0.55 0.5 1 -1 0.69 0.63 1 6.19 
13 0.49 0.23 0.6 -0.66 0.6 0.18 0.29 6.58 
14 0.61 0.34 1 -0.61 0.42 -0.03 0.48 6.82 
15 0.52 0 0.81 -0.52 0.19 0.26 0.52 7.37 
16 0.68 0.16 0.98 -0.72 0.87 0.52 0.29 5.65 
17 0.56 0.7 1 -0.87 0.41 0.25 1 4.26 
18 0.4 0.74 0.69 -0.78 0.3 0.11 1 5.76 
19 0.26 0.52 0.48 -0.62 0.33 0 0.85 7.54 
20 0.46 0.61 0.77 -0.78 0.38 0.23 1 5.54 
21 0.39 0.72 0.62 -0.72 0.22 0.05 1 5.59 
22 1 0 1 0.14 1 -1 0 36.61 
23 0.17 0.05 0.3 1 0 -1 1 18.13 
24 0.6 0.08 0.94 -0.91 0.52 -0.06 0.66 8.37 
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25 0.55 0 0.84 -0.9 0.57 -0.12 0.65 7.66 
26 0.46 0.68 0.67 -0.78 0.48 0.12 1 5.07 
27 0.2 0 0.04 1 0.99 -0.05 0.02 43.47 
28 0.46 0 0.75 1 0 -1 1 18 
29 0.32 0.13 0.43 -0.5 0.29 0.13 0.3 5.73 
30 0.5 0.39 0.72 -0.76 0.45 0.33 0.53 6.61 
31 0.31 1 0.36 -1 0 -1 0.44 74.29 
32 0.31 0.33 0.49 -0.45 0.14 0.1 1 6.32 
33 0.64 0.22 1 -0.9 0.7 0.47 0.46 5.23 
34 0.72 0.39 1 -0.89 0.82 0.3 0.47 5.6 
35 0.72 0.09 1 -0.74 0.64 0.47 0.19 5.71 
36 0.44 0.65 0.62 -0.77 0.45 0.19 1 6.93 
37 0.75 0.01 0.99 -0.59 0.61 0.2 0.03 7.02 
38 0.6 0.12 1 -0.57 0.49 0.25 0.18 5.35 
39 0.32 0.63 0.53 -0.61 0.15 -0.02 1 4.77 
40 0.6 0.04 0.86 -0.73 0.39 0.36 0.61 8.59 
41 0.54 0.67 0.92 -0.95 0.54 0.18 1 6.05 
42 0.51 0.6 0.73 -0.87 0.55 0.04 1 4.48 
43 0.61 0.1 1 -0.58 0.74 0.35 0.15 4.71 
44 0.39 0.63 0.64 -0.78 0.27 -0.02 1 5.15 
45 0.7 0 1 -0.59 0.6 0.89 0.55 5.71 
46 0.64 0.35 1 -0.96 0.48 0.21 1 7.81 
47 0.35 0.33 0.52 -0.59 0.29 0.02 0.71 5.85 
48 0.46 0.18 0.69 -0.65 0.36 0.16 0.37 4.94 
49 0.66 0.08 1 -0.59 0.72 0.2 0.15 5.39 
50 0.62 0 1 -0.96 0.67 0.33 0.45 5.71 
51 0 1 0.42 0.38 1 -0.13 1 19.11 
52 0.62 0.2 1 -0.83 0.66 0.29 0.32 6.27 
53 0 0 1 0.22 1 -1 0 27.25 
54 1 0 1 1 1 -1 0.02 21.33 
55 0.52 0.09 0.77 -0.64 0.46 0.29 0.39 4.66 
56 0.46 0.17 0.67 -0.67 0.4 0.32 0.42 5.94 
57 0.3 0.11 0.49 -0.39 0.19 0.13 0.38 5.61 
58 0.44 0 0.53 -0.44 0.22 0.23 0.83 5.24 
59 0.41 0.63 0.58 -0.77 0.43 0.26 1 7.23 
60 0.07 0 0 0.4 1 0.01 0.01 42.55 
61 0.17 0.08 0.04 1 0 -0.37 1 33.1 
62 0.61 0.59 1 -0.92 0.37 0.17 1 4.71 
63 0.63 0 0.97 -0.79 0.58 0 0.02 7 
64 0.55 0.3 0.9 -0.68 0.68 0.57 0.53 7.72 
65 0.37 0.67 0.52 -0.68 0.38 0.16 1 6.53 
66 0.44 0.7 0.71 -0.76 0.38 0.16 1 6.25 
67 0.49 0.37 1 -0.7 0.33 0.17 0.59 7.31 
68 0.27 0.69 0.4 -0.45 0.14 0.07 1 6.1 
69 0.56 0.23 0.82 -0.69 0.34 0.08 0.39 5.05 
70 0.63 0 0.94 -0.38 0.49 0.2 0.06 4.82 
71 0.57 0.06 0.96 -0.63 0.52 0.19 0.2 5.71 
72 0.59 0.2 0.92 -0.71 0.56 0.61 0.48 6.15 
73 0.53 0.3 0.95 -0.8 0.49 0.38 0.51 5.75 
74 0.63 0.09 0.96 -0.5 0.48 0.04 0.16 5.93 
75 0.63 0.49 1 -1 0.7 0.26 0.81 4.41 
76 0.42 0.24 0.59 -0.58 0.34 0.19 0.37 5.86 
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77 0.64 0.32 1 -0.88 0.62 0.23 0.39 7.05 
78 0.21 0.02 0.37 -0.01 0.01 -0.01 0 30.56 
79 0.56 0.32 0.92 -0.86 0.39 0.37 0.44 5.66 
80 0.06 0 0.09 1 0.3 -1 0.87 15.24 
81 1 0.01 0.3 0.53 1 0.29 0.01 22.46 
82 0.59 0.25 1 -0.69 0.31 0.23 0.53 6.88 
83 0.32 0.24 0.59 -0.44 0.28 0.31 0.56 5.19 
84 0.48 0 0.82 -0.59 0.29 0.19 0.23 5.8 
85 0.47 0.7 0.77 -0.92 0.34 0.03 1 6.19 
86 0.68 0 1 -1 0.54 0.28 0.8 5.08 
87 0.31 0.41 0.44 -0.51 0.26 0.03 0.71 6.21 
88 0 1 0.9 -1 0 -1 1 34.87 
89 0.36 0.35 0.68 -0.64 0.33 0.2 0.54 5.18 
90 0.56 0.09 1 -0.69 0.46 0.29 0.3 5.72 
91 0.14 0.04 0.04 1 0 -0.41 1 35.86 
92 0.4 0.68 0.71 -0.62 0.35 0.2 1 5.77 
93 0.65 0.08 0.98 -0.86 0.29 0.27 0.54 6.52 
94 0.73 0.25 1 -1 0.52 0.12 0.39 6.48 
95 0.01 0.51 0.48 1 0.42 -0.15 1 26.25 
96 0.46 0.18 0.63 -0.51 0.54 0.16 0.32 6.32 
97 0.42 0.31 0.5 -0.54 0.32 0.01 0.5 5.55 
98 0 0.02 0.32 -1 0.38 -1 0.32 39.4 
99 0.63 0.11 0.98 -0.66 0.85 0.48 0.35 6.14 
100 0.55 0 0.71 -0.87 0.5 0.02 0.34 6.31 

 
 
Supplementary table 3. Kinetic parameters, Akaike values and residuals corresponding to the regulatory 
topologies obtained by fitting an ‘in silico’  experiment generated from the reference model with added 
noise (normal distribution with a standard deviation of 0.5% of the actual concentration value). We show 
the ten best cases sorted by residual value. In yellow we indicate kinetic orders that must be greater than 
zero as they represent effects of the substrate of the considered reaction. In green, we indicate the 
regulatory effects that were included in the reference model. In light red, we indicate regulatory effects 
that are not present in the reference model. 
 

Topology   v1 v2 v3 v4 v5 v6 Akaike Residual 

X1 - 0.59 - 0.4 0.27 - 

X2 - - 1 - - - 

X3 -0.82 - - - 0.88 - 
1 

X4 - - -0.08 - - 0.62 

-176.18 0.00223 

X1 0.08 0.55 - 0.31 - - 

X2 - - 0.83 - - - 

X3 -0.63 - - - 0.62 - 
2 

X4 - - - - 0.3 0.46 

-171.12 0.00283 

X1 -0.01 0.52 - 0.35 - - 

X2 - - 0.77 - - - 

X3 -0.76 - - - 0.49 - 
3 

X4 - - - - 0.21 0.6 

-168.86 0.00316 

X1 -0.06 0.38 - 0.22 - - 

X2 - - 0.55 - 0.07 - 

X3 -0.58 - - - 0.28 - 
4 

X4 - - - - - 0.41 

-168.42 0.00322 

5 X1 - 0.48 - 0.36 0.31 - -167.15 0.00342 
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X2 - - 0.72 - - - 

X3 -0.72 - - - 0.76 - 

X4 - - 0.02 - - 0.62 

X1 - 0.33 - 0.27 - - 

X2 - - 0.48 - - - 

X3 -0.5 - - - 0.28 -0.07 
6 

X4 - - - - - 0.4 

-168.45 0.00354 

X1 - 0.46 - 0.47 - - 

X2 - - 0.59 - - - 

X3 -0.74 - -0.12 - 0.27 - 
7 

X4 - - - - 0.18 0.8 

-166.42 0.00355 

X1 - 0.41 - 0.28 0.2 - 

X2 - - 0.59 - - - 

X3 -0.6 - -0.06 - 0.54 - 
8 

X4 - - - - - 0.52 

-166.06 0.0036 

X1 - 0.47 - 0.14 - - 

X2 - - 0.6 - - - 

X3 -0.56 - - - 0.38 - 
9 

X4 - - 0.08 - 0.27 0.27 

-165.58 0.0037 

X1 - 0.7 - 0.41 0.26 - 

X2 - - 0.89 - - - 

X3 -0.91 - - - 0.87 - 
10 

X4 - -0.15 - - - 0.64 

-165.57 0.00369 

 
 
Supplementary table 4. Kinetic parameters, Akaike values and residuals corresponding to the regulatory 
topologies obtained by fitting three ‘in silico’  experiment generated from the reference model with added 
noise (normal distribution with a standard deviation of 0.5% of the actual concentration value). The 
experiments are generated from the base case by applying different perturbations in the initial 
concentration of X3. We show the ten best cases sorted by residual value. In yellow we indicate kinetic 
orders that must be greater than zero as they represent effects of the substrate of the considered reaction. 
In green, we indicate the regulatory effects that were included in the reference model. In light red, we 
indicate regulatory effects that are not present in the reference model. 
 

Topology   v1 v2 v3 v4 v5 v6 Akaike Residual 

X1 - 0.52 - 0.3 - - 

X2 - - 0.77 -0.01 - - 

X3 -0.74 - - - 0.54 - 

1 X4 - - - - 0.2 0.5 -483.49 0.0137 

X1 - 0.48 - 0.38 - - 

X2 -0.01 - 0.73 - - - 

X3 -0.75 - - - 0.49 - 

2 X4 - - - - 0.2 0.65 -480.62 0.0143 

X1 - 0.49 - 0.35 - - 

X2 - - 0.74 - - - 

X3 -0.75 - 0.02 - 0.5 - 

3 X4 - - - - 0.21 0.61 -480.53 0.01431 

X1 - 0.52 - 0.31 - - 

X2 - - 0.78 - - 0.02 

X3 -0.76 - - - 0.54 - 

4 X4 - - - - 0.2 0.5 -479.19 0.01463 
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X1 - 0.52 - 0.31 - - 

X2 - - 0.8 - - - 

X3 -0.74 - - - 0.57 - 

5 X4 - - - - 0.21 0.54 -484.84 0.0147 

X1 - 0.52 - 0.3 - - 

X2 0.01 - 0.8 - - - 

X3 -0.75 - - - 0.52 - 

6 X4 - - - - 0.21 0.54 -478.44 0.0148 

X1 - 0.53 -0.01 0.29 - - 

X2 - - 0.79 - - - 

X3 -0.72 - - - 0.57 - 

7 X4 - - - - 0.22 0.45 -477.18 0.0151 

X1 - 0.5 - 0.32 - - 

X2 - - 0.76 - - - 

X3 -0.72 - 0.04 - 0.55 - 

8 X4 - - - - 0.21 0.55 -476.31 0.0153 

X1 - 0.53 - 0.33 - 0.01 

X2 - - 0.77 - - - 

X3 -0.75 - - - 0.53 - 

9 X4 - - - - 0.19 0.54 -475.8 0.01544 

X1 - 0.54 - 0.29 - - 

X2 - - 0.8 - - -0.01 

X3 -0.73 - - - 0.54 - 

10 X4 - - - - 0.22 0.48 -475.54 0.0155 
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Abstract 

Background: Standard parameter estimation methods seek the parameters values that 

make the model response consistent with experimental observations assuming a given 

regulatory structure. Methods that characterize simultaneously both, the regulatory in-

teractions and the associated parameters are few and lack generality. Building on a pre-

vious work by the authors, this paper presents an approach to carry out both tasks 

simultaneously. The parameter estimation problem is posed as a multi-criteria mixed-

integer dynamic optimization (MIDO) problem in which the complexity and the quality 

of the fit are simultaneously minimized. This MIDO problem is solved using the epsilon 

constraint method, in which one objective is kept in the objective function while the rest 

are transferred to auxiliary constraints. The MIDO problem is reformulated into a mixed 

integer nonlinear programming model (MINLP) through orthogonal collocation on fi-

nite elements. 

Results: A comparison between our method an another one presented in a previous 

work was carried out using a metabolic network and a series of noisy in silico-generated 

experimental data. Numerical results show that both methods lead to solutions showing 

similar Akaike information criterion (AIC) and residual values. Our method provides as 

output a set of plausible models with similar performance. To make a final choice, it is 

needed to apply advanced biological knowledge on the system. Another important out-
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come of this paper consists of a theoretical discussion on the use of the AIC in parame-

ter estimation, showing its connections with the method presented herein.  

Conclusion: An alternative bi-objective method for parameter estimation and model 

selection was proposed. The method has theoretical connections with the minimization 

of the AIC as unique criterion. Numerical results show that both methods provide simi-

lar results, with each of them displaying better performance in different case studies, 

and with no clear winner between the two. When identifying the best model to be im-

plemented in practice we should not focus on a single metric, but rather look at: (i) the 

value of the AIC; (ii) the residual in the validation set; and (iii) the model complexity; 

and combine these criteria with biological knowledge of the system. Both of our meth-

ods provide as output a set of candidate models rather than a single “best” model, from 

which biologists should identify the most appropriate ones considering the items men-

tioned above. 

Keywords: Parameter estimation, Structure identification, Akaike criterion, Orthogonal 

collocation, Dynamic optimization, epsilon-constraint method, multi-objective optimi-

zation. 

 

Background 

In recent years, the rapid development of high-throughput techniques has produced 

large amounts of data. In this context, mathematical modeling of biochemical systems 

has become an essential tool for complementing and extracting information from time 

series data in systems biology. Parameter values of a given model can be estimated as-

suming that its structure is known [1-4]. Unfortunately, the network topology is seldom 

fully characterized and the regulatory details are in many cases not completely under-

stood or entirely missing. Regulatory topology can be inferred from time series data [5-

7], but there are few systematic methods that accomplish this task.   

In the process of building a reliable model, four main challenges are encountered: (i) 

defining the system’s mass flow structure (stoichiometry); (ii), deciding the appropriate 

mathematical representation (kinetics); (iii) estimating the parameters that make the 

model response consistent with experimental data (parameter estimation); and (iv) infer-
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ring the system’s regulatory structure. Once the model is built, the last task entails test-

ing the quality of the model through model validation. Ideally, the model should be able 

to predict systemic responses under yet untested experimental conditions. 

The first challenge requires compiling information available about the system’s 

mass flow structure in order to generate its corresponding stoichiometric matrix (see 

[8]). The next challenge entails the selection of the appropriate mathematical model 

among the different representations available. This step depends on the amount of in-

formation available. Mechanistic formulations based on physical sciences (e.g., law of 

mass action, Michaelis-Menten rate law, etc.) are good choices when detailed informa-

tion on the system is available. In the remaining cases, it is often preferred to use a ge-

neric formulation capable of capturing the nonlinear dynamics while yet keeping the 

model relatively simple. Canonical models are particularly useful for this purpose, as 

they facilitate both, parameter estimation and topology identification [9]. The third chal-

lenge consists of determining the appropriate numerical parameter values. The aim here 

is to obtain the set of parameter values that make the model response consistent with the 

data observed. This parameter estimation task can be formulated as an optimization 

problem that minimizes the sum of squared residuals between the measured and simu-

lated data. The fourth challenge can be tackled in a similar manner as the third one. 

Regulatory connections can appear in a model as parameters accounting for the influ-

ence that metabolites others than the substrates of a reaction have on its velocity. Hence, 

determining the structure is equivalent to finding the values of these parameters.  

There is a lack of methods that simultaneously identify the regulatory topology of a 

network along with the associated parameters values. Canonical models facilitate both 

tasks, as they are based on a general mathematical representation of a system that can 

model a wide variety of biological effects. The most widely used canonical nonlinear 

models are the Generalized Mass Action (GMA) and S-system formalisms, which are 

both based on the Biochemical Systems Theory (BST) [10-14]. Another recently pro-

posed canonical form is the Saturable and Cooperative Formalism [15], which is based 

on a Taylor approximation that exhibits improved cooperativity and saturation predic-

tions in comparison to other canonical formalisms. This last approach, however, re-

quires a larger number of parameters, thereby increasing the estimation efforts.  
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In systems biology, there is a strong tendency to build very complex models. In this 

situation, when a model has too many parameters it is said to be overfitted. Overfitted 

models must be avoided since in addition to their complexity, they tend to capture noise 

as a real part of the system’s structure [16]. These models display a diminished predic-

tive capacity when they are tested on validation datasets. Conversely, underfitted mod-

els must also be avoided because of their inability to capture the system dynamics, 

which leads to unreliable predictions. Optimization tools provide a sound basis to assess 

the tradeoff between complexity and accuracy. 

Finding the candidate model with the best predictive accuracy is challenging. Dif-

ferent methods have been proposed to carry out this task. One such approach is Cross-

validation (CV), which was first proposed to measure the predictive performance of a 

model, and later expanded in scope to study model selection [17-20]. Simple model 

validation is a simplified variation of CV that relies on a single split of the data avail-

able. Part of the data is used for model fitting (training set), and the remaining part 

(validation set) is used for assessing the predictive accuracy of the model. This predic-

tive accuracy can be measured, for instance, by the sum of squared residuals between 

the measured and simulated data. This residual will be, in general, greater than the error 

in the training set (as the validation set is not used for building the model). 

Other approaches to assess the quality of the fitting include those based on informa-

tion criteria, like Akaike information criterion (AIC) [21] or the Bayesian information 

criterion (BIC) [22]. AIC is often preferred over BIC because it has a more immediate 

connection to the theory of information [16]. Asymptotically (i.e., considering a training 

set of infinite size), the model yielding the minimum AIC will also be the model with 

the minimum error in the validation set of a CV [23]. This property is valid for any 

model and makes the AIC method very useful for inference.  

Smaller AIC values imply better approximations to reality. Considering this, it is 

possible to formulate model selection in mathematical terms as a single-objective opti-

mization problem in which the AIC is minimized. With finite data, however, the model 

with minimum AIC and the one leading to the minimum error in the CV might not be 

the same. If this is the case, further biological knowledge of the system should be em-

ployed to discriminate between them. Furthermore, the model yielding the minimum 

AIC value for a finite sample is not guaranteed to be the best possible model, since the 
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calculation of the AIC is performed considering only a limited number of samples. 

Rather than looking for the model with minimum AIC/residual, we should then focus on 

identifying models with small AICs and residual values, form which the “best” one ac-

cording to additional biological criteria should be final selected [16]. Therefore, a good 

strategy for model selection and identification should have the capability of generating a 

set of plausible models with low AICs/residuals, from which biologists should choose 

the most appropriate ones taking into account their knowledge on the system. 

In a previous work [24], we developed a method based on mixed-integer dynamic 

optimization (MIDO) that simultaneously identifies the regulatory signals and the ki-

netic parameters of models of biochemical networks by minimizing the AIC. This algo-

rithm produces as output a set of candidate regulatory topologies (i.e., models) for the 

target network without previous information about the biological system.  

In this paper, we propose an alternative approach for model generation which for-

mulates the parameter estimation task as a bi-criteria optimization problem. The AIC 

captures the trade-off between model complexity (measured by the number of parame-

ters), and accuracy of the fitting. The way in which the AIC does this is by defining and 

assigning weights to both terms on the basis of information theory concepts. By solving 

the bi-criteria problem, we avoid the need to define these weights, thereby generating a 

set of candidate models representing the optimal trade-off between model accuracy and 

complexity.   

More precisely, the parameter estimation task is posed as a bi-objective mixed-

integer dynamic optimization (MIDO) problem in which the complexity and the devia-

tion from reality (i.e., the squared residual of the fitting of time series data) are simulta-

neously minimized. This problem can be solved by applying the ε-constraint method, 

which identifies a set of candidate models with an increasing number of regulatory in-

teractions. Each of the sub-problems of the ε-constraint method is solved by reformulat-

ing the MIDO into a non-convex mixed-integer nonlinear programming (MINLP) 

model after complete discretization based on orthogonal collocation on finite elements. 

The performance of each Pareto optimal model is assessed using a CV strategy and 

computing also its AIC value. The Pareto set of models showing better performance are 

finally passed to biologists, which will keep the most promising ones based on their 

experience.  
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The overall structure of the manuscript is as follows. The next section presents the 

numerical results produced by our approach. In the following section the conclusions of 

the study are drawn. The last section of the paper describes the mathematical formula-

tion and the methods used for its efficient solution. 

 

Results and discussion 

Our goal is to determine the regulatory structure of a metabolic network from time 

series data. An artificial branched pathway taken from Voit and Almeida [25] is used as 

a test bed to illustrate the capabilities of the method presented. The production of X1 

depends on the source X0, and at the same time is inhibited by X3. X1 produces X4 and 

X2, and X2leads to X3. X4 inhibits the degradation of X3 (See Figure 1). 

 

 
Figure 1 Reference artificial pathway taken from Voit and Almeida [25]. 

 

Given is a known structure for the reaction network (stoichiometry) and experimen-

tal time series data reflecting the dynamic behavior of a metabolic system, the goal of 

the analysis is to infer its regulatory structure. A priori  knowledge about the system is 

available and can be used to constraint both, the complexity of the regulatory topology 

(the number of potential regulatory signals) and their signs (positive or negative) in the 

identification process. In our example, 6 kinetic orders corresponding to the substrates 

of the reactions must be positive. To reduce the number of possible interactions, a 

maximum of two metabolites are fixed as potential modifiers for each velocity, and one 

of them corresponds to the main substrate of the reaction. 

The performance of our method is first assessed considering one single experiment 

(i.e., one single configuration for the initial conditions) and assuming that the regulatory 

structure is unknown. We consider noisy data that is generated from the in silico model 
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assuming that the “true” dynamic profile (i.e., the one generated from the in silico 

model free of error) follows a normal distribution with standard deviation values of 5, 

10, 15 and 30% (with respect to the actual nominal values). A single replication is gen-

erated from the normal distributions via Monte Carlo sampling. 21 experimental data 

points uniformly distributed over the entire dynamic simulation time are used to carry 

out the parameter estimation. 

To assess the predictive capabilities of a dynamic model (entailing a specific regula-

tory structure and kinetic parameters), the in silico data was numbered and divided into 

two partitions. The first partition consisting of 10 experimental points was used for 

model fitting (training sample), and corresponds to data points numbered with even 

numbers. The second partition containing 55 experimental points (5 replications for 11 

points) simulates untested experimental conditions (validation sample), and includes 

odd numbered experimental data points. These points were used for model validation 

(assuming the same level of uncertainty as before, and taking 5 replicates). The valida-

tion sample provides insight into the potential risk of overfitting (note that the training 

sample and the validation sample are fully independent from each other). 

The training set is used to estimate the parameters values. In a previous work, a sin-

gle-objective optimization model that minimizes the AIC criterion [24] was used to find 

the optimal parameters values of the model from a set of points in the training set. This 

paper proposes an alternative approach to generate plausible models based on a bi-

objective formulation in which rather than minimizing a single objective (i.e., the AIC 

value), the model simultaneously optimizes the sum of squared deviations (between the 

“experimental points” in the training set and the ones predicted by the model) and the 

number of regulatory signals. The ε-constraint method is used to generate 10 Pareto 

solutions with an increasing number of regulatory interactions for each level of uncer-

tainty (5, 10, 15 and 30%). Each of these solutions was obtained solving a single-

objective problem in which the sum of squared deviations between experimental and 

simulated data is kept as main objective, while the number of regulatory interactions is 

transferred to an auxiliary constraint. Each of these single-objective MINLP problems 

was implemented in GAMS 24.2.3 and solved with the solver SBB on a PC/AMD Ath-

lon at 2.99 Ghz using a single core. The model features 84 binary variables, 487 con-

tinuous variables and 513 equations. The solution time was in the order of few minutes 

for each simulation.  
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For comparison purposes, the same problem was solved using the single-

optimization approach previously developed by the authors [24]. In this method, the 

AIC1 is minimized as unique objective. This algorithm is executed iteratively in order to 

produce a set of potential network configurations along with the corresponding parame-

ter values. 10 candidate models were generated and sorted according to their AIC val-

ues. The corresponding MINLP problem features 84 binary variables, 487 continuous 

variables and 512 equations. 

Figures 2a, 3a, 4a and 5a show the residuals for each Pareto point (squared error in 

the training set) vs the model complexity (number of regulatory signals), while Figures 

2b, 3b, 4b and 5b depict the residuals of the same models but tested in the validation set. 

The Pareto points are represented by green circles in the figures. The figures show as 

well the solutions produced using the AIC minimization approach, which are repre-

sented by blue squares. Particularly, 10 iterations of the ε-constraint algorithm (each of 

which requires solving a MIDO model) were executed. The AIC of the real metabolic 

network (i.e., the one we used to generate experimental data and without noise) is also 

provided (red triangles). Note that this last analysis is only possible when dealing with 

an academic problem like the one studied here. The numbers attached to the points in 

the aforementioned figures denote the value of the AIC for that particular model. In the 

single-optimization approach, these values correspond to the objective function of the 

problem, whereas in the multi-objective approach, they are computed after running the 

MIDO algorithm. 

We evaluate first which method is able to generate better models, that is, models 

that predict better the behavior of the system under untested conditions (using the vali-

dation set). In almost of the instances, the minimization of the AIC as single objective 

produces models with better predictive accuracy, that is, models with lower residuals in 

the validation set (as well as lower AIC values). However, the Pareto points generated 

using the bi-objective approach show AIC values very close to the minimum AIC value 

computed by the single-objective optimization approach. Recall that when models have 

similar AIC values, the model with the lowest AIC value may not be the best [16]. Fur-

thermore, a finite dataset is used to perform the calculations, so the AIC value is indeed 

                                                 
1 Although for simplicity we refer to it as AIC, we actually minimize the AICc instead, since the sample 
is not large enough to allow the appropriate use of the AIC. Refer to Methods section for further details. 
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an approximation to its “true” value. Additional biological considerations might there-

fore be applied when selecting the final model to be used. 

 
Figure 2 Number of regulations vs sum of squares in the training set (a) and in the validation set (b) for 

one experiment with 5% error. Blue squares refer to models generated with the single-objective optimiza-
tion (SOO) approach whereas green circles represent models generated with the bi-objective optimization 
(BOO) scheme. Red triangles depict the real metabolic network (i.e., the one we used to generate experi-

mental data and without noise). Each point is tagged with its corresponding AIC value. 
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Figure 3 Number of regulations vs sum of squares in the training set (a) and in the validation set (b) for 

one experiment with 10% error. Blue squares refer to models generated with the single-objective optimi-
zation (SOO) approach whereas green circles represent models generated with the bi-objective optimiza-

tion (BOO) scheme. Red triangles depict the real metabolic network (i.e., the one we used to generate 
experimental data and without noise). Each point is tagged with its corresponding AIC value. 
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Figure 4 Number of regulations vs sum of squares in the training set (a) and in the validation set (b) for 

one experiment with 15% error. Blue squares refer to models generated with the single-objective optimi-
zation (SOO) approach whereas green circles represent models generated with the bi-objective optimiza-

tion (BOO) scheme. Red triangles depict the real metabolic network (i.e., the one we used to generate 
experimental data and without noise). Each point is tagged with its corresponding AIC value. 
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Figure 5 Number of regulations vs sum of squares in the training set (a) and in the validation set (b) for 

one experiment with 30% error. Blue squares refer to models generated with the single-objective optimi-
zation (SOO) approach whereas green circles represent models generated with the bi-objective optimiza-

tion (BOO) scheme. Red triangles depict the real metabolic network (i.e., the one we used to generate 
experimental data and without noise). Each point is tagged with its corresponding AIC value. 

 

In the case of a 5% of error (Figure 2b), however, the multi-objective optimization 

identifies models performing better in the validation data set than the best models ob-

tained minimizing the AIC. In this case, the multi-objective approach identifies also a 

model with better AIC value than the ones produced by minimizing the AIC (See Table 

1). Hence, the performance of each method depends on the case study, and there is no 

clear winner between the two.  
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Uncertainty (%) One Experiment 
  Best AIC Approach  AIC real network 
5 -78.73 Epsilon constraint -57.32 
10 -65.65 AIC minimization -43.46 
15 -57.23 AIC minimization -35.35 
30 -51.82 AIC minimization -21.49 
  Best TS error   Real network TS error 
5 0.089 Epsilon constraint 0.281 
10 0.120 AIC minimization 1.126 
15 0.061 AIC minimization 2.533 
30 0.081 AIC minimization 10.132 
  Best VS error   Real network VS error 
5 2.17 Epsilon constraint 1.057 
10 7.88 AIC minimization 4.226 
15 16.53 AIC minimization 9.509 
30 61.70 AIC minimization 38.034 

Table 1 Summary of the main results obtained for one experiment 

 

In general, one single experiment might not be enough for generating a reliable 

model. A better (i.e., more accurate) model can be obtained using additional time-series 

data of the same system under different sets of initial conditions. Different initial con-

centrations of X3 (0.2, 1.2, and 2.2) were considered to simulate three different experi-

ments. These perturbations force the system to move across different dynamic regimes, 

producing additional information that constrains further the set of feasible network con-

figurations.   

The same procedure followed for one single experiment was applied. The points 

were split into a first partition containing 30 points (10 for each experiment in the train-

ing set) and a second one consisting of 165 points (5 replications of 11 points for each 

experiment in the validation set). The training set was used to produce a set of Pareto 

optimal models which were compared with those obtained minimizing the AIC (Figures 

6-9). 10 Pareto solutions for each level of uncertainty (5, 10, 15 and 30%) were gener-

ated using the ε-constraint method (and compared with 10 models obtained minimizing 

the AIC values and using integer cuts). 
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Figure 6 Number of regulations vs sum of squares in the training set (a) and in the validation set (b) for 

three experiments with 5% error. Blue squares refer to models generated with the single-objective optimi-
zation (SOO) approach whereas green circles represent models generated with the bi-objective optimiza-

tion (BOO) scheme. Red triangles depict the real metabolic network (i.e., the one we used to generate 
experimental data and without noise). Each point is tagged with its corresponding AIC value. 
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Figure 7 Number of regulations vs sum of squares in the training set (a) and in the validation set (b) for 
three experiments with 10% error. Blue squares refer to models generated with the single-objective opti-
mization (SOO) approach whereas green circles represent models generated with the bi-objective optimi-
zation (BOO) scheme. Red triangles depict the real metabolic network (i.e., the one we used to generate 

experimental data and without noise). Each point is tagged with its corresponding AIC value. 
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Figure 8 Number of regulations vs sum of squares in the training set (a) and in the validation set (b) for 
three experiments with 15% error. Blue squares refer to models generated with the single-objective opti-
mization (SOO) approach whereas green circles represent models generated with the bi-objective optimi-
zation (BOO) scheme. Red triangles depict the real metabolic network (i.e., the one we used to generate 

experimental data and without noise). Each point is tagged with its corresponding AIC value. 
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Figure 9 Number of regulations vs sum of squares in the training set (a) and in the validation set (b) for 
three experiments with 30% error. Blue squares refer to models generated with the single-objective opti-
mization (SOO) approach whereas green circles represent models generated with the bi-objective optimi-
zation (BOO) scheme. Red triangles depict the real metabolic network (i.e., the one we used to generate 

experimental data and without noise). Each point is tagged with its corresponding AIC value. 
 

The single-objective MINLP models solved by the epsilon constraint method were 

again implemented in GAMS and solved with SBB in the same computer. In this case, 

the MINLPs feature 67 binary variables, 967 continuous variables and 980 equations. 

The solution time was in the order of few minutes for each simulation.  

For three experiments and 5% error (see Figure 6b), the ε-constraint method was 

able to identify a model with lower error in the validation set than those obtained mini-

mizing the AIC. In the other cases, the minimization of the AIC led to models with 

lower residuals in the validation set (see Figures 7-9). The models identified minimizing 

the AIC show, as expected, better AIC values than those generated with the bi-objective 

model. Nevertheless, the AIC values obtained by the ε-constraint method are very close 

to the minimum AIC value identified by the single-objective approach. Particularly, for 

the case of 5% of error, (Figure 6b), the multi-objective optimization approach identifies 

the best solution in terms of AIC value. We summarize the results in Table 2. 
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Uncertainty (%) Three Experiment  
  Best AIC Approach AIC real network 
5 33.81 Both 45.42 
10 75.88 AIC minimization 87.01 
15 104.5 AIC minimization 111.34 
30 136.87 AIC minimization 152.93 
  Best TS error   Real network TS error 
5 0.63 AIC minimization 0.937 
10 2.55 Epsilon constraint 3.746 
15 8.09 Epsilon constraint 8.43 
30 25.59 Epsilon constraint 33.72 
  Best VS error   Real network VS error 
5 5.27 Epsilon constraint 4.257 
10 19.93 AIC minimization 17.028 
15 55.98 AIC minimization 38.31 
30 169.11 AIC minimization 153.25 
Table 2 Summary of the main results obtained for three experiments 

 

Recall that the model yielding the minimum AIC might not be the one showing bet-

ter performance under new experimental data. To further investigate this idea, the AIC 

values are plotted against the errors in the validation set for the models generated by 

both, the minimum AIC and the ε-constraint approaches. As seen, there is no clear trend 

between the error in the validation set and the AIC value (see Figures 10 and 11). Re-

markably, the real model shows worse AIC value and better CV value than other mod-

els, confirming the fact that the model with minimum AIC might not always be the best 

model. For this reason, it is recommended to keep models with similar (and always as 

low as possible) AIC values rather than just retaining the one with minimum AIC value 

and discarding the others. In addition to these models, we might be interested in keeping 

those models showing low residuals in the validation set. 
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Figure 10 Relationship between the Akaike information criterion and cross validation values for one ex-

periment. Blue squares refer to models generated with the single-objective optimization approach whereas 
green circles represent models generated with the bi-objective optimization scheme. 
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Figure 11 Relationship between the Akaike information criterion and cross validation values for three 
experiments. Blue squares refer to models generated with the single-objective optimization approach 

whereas green circles represent models generated with the bi-objective optimization scheme. 
 

In general, models with lower AIC values contain fewer regulatory loops. In some 

instances, however, the single optimization approach produces overfitted models. For 

example, in 1 experiment with 15% of error, the algorithm identifies a model with 11 

regulations (Figure 4b). This model shows a good AIC value, but it is clearly overfitted 

because it displays many regulations and shows a very poor predictive accuracy in the 

validation dataset (Figure 4b). 

The minimum Akaike solution could be identified by solving a bi-criteria model 

with two objective functions: minimum residual and minimum complexity. Ideally, the 

minimum AIC solution should belong to the Pareto frontier of the corresponding bi-

objective model. In our case studies, however, this occurs only in few cases. The reason 

for this is two-fold. On the one hand, we are using the corrected AIC (AICc) rather than 

the standard AIC (see the Methods section for further details). On the other hand, the 

models are not solved to global optimality, since a local optimizer is used in the calcula-

tions. Global optimization methods could have been applied, but in the case of MIDO 

problems they tend to lead to very large CPU times.  
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Conclusions 

In this paper we have presented an alternative approach based on multi-objective op-

timization to simultaneously identify the regulatory interactions along with the kinetic 

parameters (assuming a given kinetic representation) from time series data. Our ap-

proach is based on a previous method that focused on minimizing the AIC as unique 

criterion. A bi-objective model is herein presented that seeks to minimize simultane-

ously the problem complexity and the residual, providing as output a set of Pareto opti-

mal models representing the compromise trade-off between both objectives. This bi-

objective model is solved by the epsilon constraint method, which calculates a series of 

single-objective MIDO models. These MIDOs are reformulated into MINLPs using 

orthogonal collocation on finite elements.  

Ideally, the bi-objective approach should identify also the minimum AIC solution. 

However, this does not hold when using the corrected AIC (AICc) instead of the AIC. 

Furthermore, the nonconvexities of the MINLPs lead to multiple local optima in which 

local optimizers might get trapped during the search (on the other hand, the application 

of global optimization algorithms would lead to prohibitive CPU times due to the size 

and complexity of the model).  

The bi-objective method presented provides as output alternative models with 

"good" AIC values and residuals in the validation set. From this set of models, experts 

should choose the best ones according to their biological knowledge of the system. Both 

approaches, the single-objective and bi-objective one show different performance de-

pending on the case study, and there is no clear winner. Sometimes the single-objective 

identifies the solution with minimum AIC value, but others the bi-objective does it in-

stead. Furthermore, the solution with minimum AIC value is not guaranteed to lead to 

the minimum residual. Again, sometimes the solution with minimum residual in the 

validation set is produced by the single-objective approach and some others with the bi-

objective one. 

Our approach assesses the compromise between the predictive capabilities of a 

model and the associated complexity. The results obtained confirm the theoretical ob-

servation that for small samples the model with minimum AIC value might not make 

the best predictions for new untested experimental data (i.e., other models with worst 
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AIC values in the sample might perform better). Hence, the AIC and other metrics 

based on information theory must be used with care when dealing with finite sets of 

points of small size. In practice, larger experimental data sets are required to produce 

better models, but this will eventually lead to more complex problems. In light of this, 

we recommend to calculate a set of models with low AICs and residuals, and further 

assess them taking into account their accuracy, complexity and additional biological 

knowledge of the system. 

 

Methods 

Given a reaction network along with a set of potential regulatory signals, and ex-

perimental time series data, the goal of the analysis is to infer the regulatory structure of 

a metabolic system and the associated kinetic parameter values. The concentration Xi of 

every metabolite i present in a metabolic network is assumed to vary with time t as a 

result of the action of p flows: 

    ,
1

1,...,
p

i i r r
r

X v i nµ

=

= =∑ɺ                                              (1) 

where Xi refers to the concentration of metabolite i, ,i rµ  is the stoichiometric coefficient 

of metabolite i in process r, which is positive when reaction r produces metabolite Xi 

and negative when r consumes Xi, and vr is the rate function of this process. 

There are two key issues that arise in building an accurate model of the system un-

der study. The first is the selection of an appropriate mathematical representation for vr. 

The second is the definition of the regulatory structure of the system. In this work, an 

approximate formalism based on a standard mathematical representation is used to deal 

with these challenges [26].  

Power-law models 

Using the power-law representation, the rate vr is expressed as follows: 

,

1

1,...,r j

n m
f

r r j

j

v X r pγ

+

=

= =∏            (2) 
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where rγ  is an apparent rate constant for reaction r, and fr,j is the kinetic order of me-

tabolite j in that process. This equation considers the effect of n+m metabolites (n de-

pendent and m independent) on each reaction. This kinetic representation facilitates the 

task of simultaneously identifying the network topology and its corresponding kinetic 

parameters. 

By substituting (2) into equation (1), we get what is known as a Generalized Mass-

Action (GMA) model. 

,

,
1 1

1,..,r j

n mp
f

i i r r j
r j

X X i nµ γ

+

= =

   = =   
∑ ∏ɺ          (3) 

Our method, however, is not restricted to any particular kinetic formalism, as any 

general representation flexible enough to account for the regulatory interactions in a 

biological network can be used for the same purpose. The power law [13] and the satur-

able and cooperative formalisms are examples of such general kinetic representations 

[15].  

Multi-objective optimization approach 

The literature about multi-objective optimization in the context of parameter estima-

tion is quite scarce. In these approaches more than one objective, typically conflicting, 

are minimized. Some authors have selected as objectives the concentration error, slope 

error and interaction measure [27], while others have optimized the least-squares error 

from dynamic or steady-state data [28]. 

This paper uses the ε-constraint method in order to simultaneously minimize the 

sum of squared deviations in the training set and the number of regulations. The tasks of 

parameter estimation and identification of regulatory interactions are both posed in 

mathematical terms as a multi-objective mixed-integer dynamic optimization (mo-

MIDO) problem. This MIDO is reformulated into an equivalent multi-objective mixed-

integer nonlinear programming (moMINLP) problem using orthogonal collocation on 

finite elements. This moMIDO takes the following form: 
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The ε-constraint method entails solving a set of single objective MINLP problems in 

which one objective is treated as main objective function while the rest are transferred 

to auxiliary constraints in which upper bounds є
e
b  are imposed on them using a set of 

epsilon parameters. In our case, the sum of squared errors is regarded as main objective, 

while the number of regulatory interactions is bounded using an auxiliary constraint. 

Hence, the single-objective mixed-integer nonlinear programming (soMIDO) problems 

are finally formulated as follows: 
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Single-objective optimization approach 

A possible manner to avoid overfitting consists of minimizing the Akaike informa-

tion criterion rather than the error between the experimental and in silico data. The AIC 

captures the trade-off between the number of parameters (i.e., the complexity) of the 

model and its ability to accurately reproduce the experimental data. In a previous work 

[24], we developed an MIDO approach that minimizes the AIC, which is mathemati-

cally described as follows: 

( )
2

, ,
1 1

ˆ2 log(2 ) l og nog l 1
k n

i u i u
u i

AIC k n X Xπ

= =

    − +   

   = + + −      
∑∑          (6) 

Where AIC denotes the Akaike information criterion, k is the number of estimated 

parameters plus one (the standard deviation σ
2) and n is the number of experimental 

data points. Note that in the Results and Discussion section when we refer to complexity 

we use the number of regulations instead of k, with the correspondence between both 

being given by k = 2p + number of regulations + 1. Note that the factor 2 multiplying p 

is added to account for the fact that for each velocity r we need to find the values of two 

parameters: the apparent rate constant γr and the kinetic order of the substrate of the 

reaction frj. 

When the ratio between the number of parameters to be estimated and the number of 

experimental data points is low (i.e., n/k < ~40 [16]), it is recommended to use a correc-

tive term, giving rise to the following corrected AICc expression: 

   2 ( 1)

1C

k k
AIC AIC

n k

+
= +

− −
           (7) 

Burnham and Anderson [16] strongly recommend the use of the AICc in these in-

stances because the standard AIC increases the probability of selecting models that have 

too many parameters, (i.e., overfitting). In this manuscript, the AICc is used instead of 

the AIC, because the samples contain a small number of points that keep the MIDO in a 

manageable size, yet we refer to it simply as AIC for keeping the notation as simple as 

possible. 
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The single-objective parameter estimation problem can be finally posed in mathe-

matical terms using the following MIDO (mixed-integer dynamic optimization) formu-

lation where the objective function is the AICc: 

( )

( )
( )

, , , ,

,

2

, ,
1 1, , , ,

,
1

1

0 0

,

2 ( 1)ˆ2 log(2 ) log
1

. . 1,...,

1,...,

1,..., ;

1,.

log n 1

.

min
r r j r j r j r j

r j

k n

i u i u
u if y y y

p

i i r r
r
n m

f

r r j

j

i i

i u i u

k k
k n X X

n k

s t X v i n

v X r p

X t X i n

X X t i

γ

π

µ

γ

− + = =

=
+

=

   − + 

  + + + − +   − − 

= =

= =

=



=



= =


∑∑

∑

∏

ɺ

ɺ

( )
( ) ( )

( )

{ }

0

, ,

, , ,

, ,

, , ,

, , ,

., ; 1,..., ; ,

1 1,..., ; 1,...,

1 1 1,..., ; 1,...,

1 1,..., ; 1,...,

1 1,..., ; 1,...,

, , 0,1

f

r j r j

r j r j r j

r j r j

r j r j r j

r j r j r j

n u k t t t

f M y j n r p

M y f M y j n r p

f M y j n r p

y y y j n r p

y y y

ε

ε ε

ε

−

+

− +

− +

 = ∈  
≤ − + − = =

− − − ≤ ≤ + − = =

≤ + − = =

+ + = = =

∈

 

                  (8) 
 

The MIDO algorithm is applied iteratively in order to identify a set of plausible 

regulatory topologies. The algorithm identifies first one solution encoded in a set of 

values of the binary variables. The model is then executed again, but this time adding an 

integer cut (valid inequality), which excludes the solutions identified so far in previous 

iterations. The integer cut is hence a valid inequality that takes the following form:   
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                  (9) 
 

Where ONEit and ZEROit represent the sets of binary variables that take a value of 

one and zero, respectively, in iteration it of the algorithm. After adding the integer cut to 

the MINLP, the algorithm is solved iteratively to obtain a given desired number of con-
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figurations. Hence, our algorithm produces as output a set of potential network configu-

rations (encoded in the values of the binary variables) rather than a single topology. 

Note that the AIC values tend to increase as iterations proceed. 

Theoretical connections between the minimization of the AIC and the bi-objective 

optimization 

We discuss next the theoretical connections between our two methods. The bi-

criteria model seeks to optimize simultaneously the residual and the problem complex-

ity. The bi-objective function is as follows 

( ) ( )
2

, , , ,
1 1 1 1

ˆ,
n p k n

r j r j i u i u
j r u i

MOF y y X X− +

= = = =

   = + −     
∑∑ ∑∑         (10) 

On the other hand, the single-objective model that minimizes the AIC optimizes the 

following objective function: 
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2
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i u i u
u i

S X nO n X nF k π

= =
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=



+
 

+ −∑∑       (11) 

As shown, this objective function is composed of a fixed and a variable term. The 

fixed term n log(2 ) log nn nπ − +  is constant that does not affect the optimization and 

could be therefore removed. The variable term can be further disaggregated into a term 

that depends on the model complexity (number of binary variables that take a value of 

one), and another one that depends on the residual (error between the experimental and 

the in silico data). In essence, the AIC assigns a weight to each of these terms in order 

to find a “good” compromise solution that properly balances both aspects of the model. 

Hence, the solution with minimum AIC should in principle belong to the Pareto front of 

the following bi-objective model: 

    ( )
, , , ,
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1 1, , , ,
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r r j r j r j r j
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i u i u
u if y y y
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∑∑       (12) 

In which the model complexity and the logarithm of the residual are the objectives 

to be minimized. Note that minimizing the natural logarithm function is equivalent to 

minimizing the squared residuals, since the function is monotonically increasing func-

tion. This bi-objective model can be solved by any standard MOO algorithm, like the 
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epsilon constraint or the weighted sum methods. The weighted sum relies on solving a 

set of single-objective auxiliary problems of the following form: 

      1 1 2 2AO w O w O= +          (13) 

Where the single aggregated objective AO that is minimized, consists of a linear 

combination of two objectives using the weights 1w and 2w In the case of the AIC, the 

objectives are O1 = k and O2 = sum of squared residuals, whereas the weights corre-

spond to w1 = 2 and w2 = n. Note that the weighted sum method is unable to identify 

points in the nonconvex part of the Pareto set, and for this reason was not used in the 

calculations. 

Figure 12 provides a graphical interpretation of the weighted sum method. In the 

figure, the weighted sum is represented by a straight line with slope −w2/w1. The mini-

mization problem seeks to push this line towards the origin until it intersects the convex 

region on the boundary. The solution obtained by optimizing a given weighted combi-

nation is given by the intersection between the straight line and the curve that trades-off 

both objectives (i.e., the Pareto front).  

 

Figure 12. Weighted sum method applied to a bi-objective problem with a Pareto front of two conflicting 
objectives. The straight line with slope −w2/w1 is pushed towards the origin until it touches the Pareto set 

in at least one single point. 
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The AIC value is calculated using specific weight values assigned to the sum of 

squares and the complexity of a model. Hence, minimizing the AIC is equivalent to 

running one single iteration of the weighted sum method, and hence produces a Pareto 

solution lying on the convex part of the Pareto set. 

We now show that the bi-criteria problem mentioned above is equivalent to the bi-

objective model used in this paper. In fact, both models optimize the model complexity. 

As for the second objective, one model optimizes the residual and the other the loga-

rithm of the residual. Since the logarithm is a monotonically increasing function, both 

objectives are indeed equivalent. 

 

Figure 13. Pareto front of sum of squares in the training set vs. number of regulations. Green circles rep-
resent solutions obtained with the epsilon constraint method, whereas the blue square represents the solu-

tion obtained minimizing the AIC. All marks represent Pareto solutions. 
 

Figure 13 illustrates the observation that the solution with minimum AIC value 

should belong to the Pareto front of the bi-objective problem solved in this paper. As 

observed, the minimum AIC value lies in the convex part of the Pareto front. Hence, it 

should be ideally identified using the bi-objective approach, which is a generalization of 

the single-objective one. Because of the nonconvexities present in the MINLP, local 

optimizers may get trapped in local optima. Hence, the solution with minimum AIC 

value provided by the local optimizer might not be globally optimal and, similarly, the 

bi-objective approach might be unable to identify the solution with global minimum 

AIC value. Ideally, the use of a global optimization package would avoid these prob-
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lems, but unfortunately it tends to lead to large CPU times considering the size and 

complexity of our MINLP. 

Note, however, that the above reasoning is only valid when the standard AIC formu-

lation is used, since the term 2 ( 1)
2

1

k k
k
n k

+
+
− −

 of the AICc is not monotonically increasing 

in the entire domain. Hence, for the latter case, minimizing the AICc is not equivalent to 

simultaneously minimizing the complexity and the squared residuals. Further analysis 

of this term reveals that it is indeed monotonically increasing in the interval 0 ≤ k ≤ n-1 

(note that it has an asymptote at k = n-1). For this reason all the above conclusions are 

also valid when the AICc expression is used for k lower than n-1 or, what is the same, 

when number of regulations < n – 2p - 2. In this particularly case study, p = 6 and n = 

10 for one experiment and n = 30 for three experiments. Hence, the solution of one ex-

periment might not belong to the Pareto front k vs squared residuals when the AICc is 

used instead of the AIC, but it would belong for the case when number of regulations < 

-4. On the other hand, in the case of three experiments, when number of regulations < 

16 (which are all) then we can still use the AICc with full guarantees.  Note that these 

two conditions (i.e., number of regulations < -4 or < 16) differ because so do the sam-

ple sizes. 
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