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Abstract 
 
Virtual screening plays a central role in the world of drug discovery today. In silico 
testing allows to screen millions of small molecules and to choose only the most 
promising ones for experimental testing. To find potential drug candidates, it is crucial 
to bring together individual and complementary computational tools. In this thesis, I 
describe an automated virtual screening procedure that combines pharmacophore 
modeling and searches, high-throughput molecular docking, consensus scoring and 
binding free energy estimation with the linear interaction energy (LIE) method through 
molecular dynamics simulations. 
One goal of this thesis was to build an evolving and versatile virtual screening 
methodology, which enables integration of different tools at different steps. The 
procedure that started as a combination of a simple size filter, molecular docking and 
consensus scoring, advanced into an elaborate and automated computational workflow 
with the addition of pharmacophore searches and binding free energy estimation with 
LIE. This integrated method intends to compensate for weaknesses of individual 
structure-based techniques and allows the evaluation and comparison of the 
performance and accuracy of these techniques. Another important goal was to apply the 
computational workflow to target proteins and find hits that could be drug candidates. 
Experimental testing performed for human acid β-Glucosidase and bleomycin hydrolase 
indicate that several small molecules selected by the computational workflow display 
micromolar inhibitory activity. The standard LIE method used in this work was applied 
to more than ten thousand ligand-protein complexes for three different targets, which is, 
to our knowledge, the first time application of LIE at such large scale. 
 

Resum 
 
Actualment, el cribratge virtual juga un paper central en el món del descobriment de 
fàrmacs. L’anàlisi in silico permet el cribatge de milions de molècules petites i la tria de 
les més prometedores per a les proves experimentals. Per trobar candidats que puguin 
esdevenir fàrmacs, és crucial reunir una sèrie d’eines computacionals individuals i 
complementàries. En aquesta tesi, es descriu un procediment automatitzat de cribatge 
virtual que combina el modelat de farmacòfors i el seu ús en cerques, mètodes d’alt 
rendiment d’acoblament molecular, puntuació de consens i estimació d'energia lliure 
d'unió mitjançant el mètode d’energia d'interacció lineal (LIE) a partir de simulacions 
de dinàmica molecular. 
Un dels objectius d'aquesta tesi ha estat el de construir una metodologia flexible i 
versàtil de cribratge virtual, que permeti la integració de diferents eines en les diferents 
etapes de l’estudi. El procediment, que es va iniciar com la combinació d'un senzill filtre 
per tamany, la simulació de l’acoblament molecular i una puntuació de consens, ha 
derivat en un procediment computacional elaborat i automatitzat amb l'addició de 
cerques basades en farmacòfor i l'estimació de l'energia lliure d'unió mitjançant el 
mètode LIE. Aquest mètode integrat té l’objectiu de compensar les debilitats individuals 
de les diferents tècniques usades i permet avaluar i comparar el rendiment i la 
l’exactitud d'aquestes tècniques. Una altra fita important ha estat l'aplicació del 
procediment computacional a proteïnes diana concretes per tal d’avaluar-ne la capacitat 
de trobar molècules que puguin ser candidats a fàrmacs. Tests experimentals realitzats 



 x 

per a la β-Glucosidasa àcida i la hidrolasa de Bleomicina humanes indiquen que 
diverses molècules petites seleccionades pel procediment computacional tenen activitat 
inhibitòria micromolar. El mètode LIE emprat en aquest treball es va aplicar sobre més 
de deu mil complexos proteïna-lligand per a tres proteïnes diana diferents, el que és, al 
nostre entendre, la primera aplicació del mètode LIE a aquesta escala. 
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Preface 
 
What is all this about?  

 
The world of drug design is nothing but a huge maze with maybe thousands of dead-ends 
trapped with bad strategies, disguised as seemingly “good ideas”, that cannot be predicted 
beforehand, and a single exit—the existence of which is open to discussion. It is a very 
complex world that includes a roughly estimated number of 500,000 proteins, only around 
10,000 of which have been characterized structurally, generated by an estimated 20.000 to 
25.000 open reading frames in the human genome.1 Also, the project of developing a new 
drug may need tens of researchers working for up to ten years only to reach to the point of 
clinical trials, costing around half a billion dollars and may still fail miserably for many 
different reasons.2 So, in this world of unknowns, estimations and an overwhelming 
probability of failure, is there a magical way that would solve the problem of drug design and 
if there is, are we close to find it? This is a question that cannot be answered till this magical 
way is found and till then, what can be done is, basically, trial and error. 
With the hope and aim of surmounting some of the obstacles found at the early stages of drug 
discovery, an automated computational workflow was created in this study. In the following 
introductory chapter, I begin by introducing the most important concepts and methodologies 
of computational drug design. The second chapter summarizes my motivations and goals for 
pursuing computational drug design research. The third chapter tells the story of a simple 
computational methodology emerging and evolving into a more complicated approach 
combining widely used computational drug design techniques. The fourth chapter is about the 
establishment and application of the final and automated version of the methodology 
explained in chapter three, with the addition of molecular dynamics simulation and binding 
free energy prediction by the linear interaction energy method. Finally, the last chapter 
summarizes and concludes the overall study. A successful computational drug design 
procedure needs several methodologies combined, and the workflow developed and evolved 
in this thesis aims to become a useful tool by doing so.  
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Drug Design Introduction 
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1. Drug Design Introduction 
 
Biological systems are the most complex type of systems we know and molecular recognition 
between small molecules (ligands) and their target proteins (receptors) lie at the center of 
many of the processes taking part in biological systems. The rapid increase in the number of 
receptor proteins with known three-dimensional structure has opened the possibility to 
discover the accurate binding poses of their natural or pharmacological ligands in their 
binding sites, one of the keys towards understanding the proteins’ function mechanisms. 
Protein activity is often modulated by binding of a small molecule to specific sites on the 
protein, and the disturbance of such regulation is mostly a cause for a disease.2 Hence, many 
drugs work by inhibiting the function of proteins with enhanced or unbalanced activity. Also, 
the proper activity of malfunctioning or non-functioning proteins causing a disease can 
sometimes be restored by the binding a specific chemical.  
The development of a new drug is a highly expensive, difficult and painstaking process, 
which can last for years and consists of several steps that start with a search for a candidate 
ligand with a noticeable affinity for the target protein in question. This step is called “lead 
discovery” and outputs a ligand to be further optimized for an increased affinity and 
selectivity. With increased affinity and selectivity, the candidate drug should also show 
optimum pharmacokinetic properties, including its absorption, distribution and metabolism in 
the body, along with its excretion and lack of toxicity. It is after all these criteria are met that 
the drug enters several steps of clinical testing before being validated and marketed. 
While finding a potent and high-affinity lead ligand in a fast and reliable way is already a 
challenge quite hard to tackle with as is, the significant increase in the number of therapeutic 
targets without known small molecule ligands made available in the current “post-genome 
era” has made the search for a lead structure even a bigger challenge.3 In the past, most drugs 
were discovered either by identification of the active ingredient from traditional remedies, 
modification of natural ligands or by serendipitous discovery. However, new discovery 
approaches are based on understanding the molecular and physiological control mechanisms 
of the disease. In the big quest for a small lead molecule, there are two major approaches to 
ease these entanglements: high-throughput (experimental) screening4,5 –in vitro testing– and 
virtual screening (rational design)6,7 –in silico testing– of large compound libraries. 
 
 

1.1.  High-Throughput Screening (HTS) 

 
High-throughput screening (HTS) is an experimental random screening method in drug 
discovery and it involves testing of large molecule libraries composed of natural or synthetic 
compounds for possible biological activity, independent of their actual chemical properties. 
The use of robotics systems has boosted the capability to conduct millions of chemical or 
pharmacological tests, enabling synthesis of thousands of compounds in a short time from a 
few reagents and rapid identification of active compounds. Even though HTS methodologies 
can be considered being unbiased without preconceived restrictions about the tested 
compounds, ignoring the biological features of the target makes them “irrational” due to the 
random and untargeted screening of molecules for as many as possible and as fast as possible. 
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Consequently, for more efficient experimental screening, targeted approaches that involve 
preselection of compounds by computer methods based on “drug-likeness” have been 
developed.8 By this way, it has become possible to promptly identify and eliminate candidate 
molecules that are unlikely to survive the later stages of discovery and development. 
 
 

1.2.  Virtual Screening (Computer Aided Rational Design) 
 
Virtual screening is a computational method to scan large numbers of small molecules to see 
whether they bind to a target protein and function in the desired manner, using the available 
information about the target, binding mechanism or the known or hypothetical binding mode.7 
It is a complementary approach to experimental discovery methods that aims to enhance and 
accelerate the lead discovery process. Drug discovery research for both hit identification and 
lead optimization has shifted towards computational methodologies, which are able to handle 
millions of molecules in a much shorter time compared to experimental 
techniques/approaches. The increase in the number of known protein structures and the 
enormous chemical space of conceivable small molecules has drawn particular attention to 
virtual screening techniques.6 
Even though virtual screening is a newly emerging approach, the advances in computer 
technology and methodology promoted its success, and there are already several drugs that 
were developed and optimized fully or partially with rational design techniques (Table 1). 
 
 

Drug  Target  Disease or Infection  
Dorzolamide 9 Carbonic anhydrase Glaucoma 
Imatinib (Gleevec)10,11 Tyrosine kinase Some types of cancer  
Cimetidine12 Histamine H2 receptor Peptidic ulcers 
Zolpidem13 GABAA receptor Insomnia, brain disorders 
Zanamivir14 Neuraminidase Prophylaxis of influenza 
Raltegravir15 HIV integrase HIV infection 
Enfuvirtide16 HIV transmembrane protein HIV infection 

Table 1: List of drugs that were discovered by rational design, or where rational design played a key role in the 
discovery process.  
 
 
Drug discovery is such a difficult problem that every relevant technique has to be utilized to 
its best advantage. All computational techniques may provide different strategies, useful 
insights, new suggestions for molecular structures to synthesize, and cost-effective virtual 
analysis prior to synthesis.1 The strategy to be pursued in rational design strictly depends on 
the availability of the three-dimensional structure of the biological target. Therefore, 
computer-aided drug discovery techniques can be grouped in two classes: ligand-based and 
receptor-based (often also called target-based) methods.17,18  
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1.3.  Ligand-Based Methods 
 
Despite the increase in the number of proteins with known 3-D structure, there are still a fair 
number of drug targets without the structure information. However, if there is at least one 
known active ligand validated through a cell culture assay for a target, ligand-based 
computational techniques that do not require the target structure and binding site geometry 
can be employed. The main idea followed in ligand-based drug design is that ligand structural 
similarity or similarity of steric and electrostatic features implies similar activity, which 
allows deriving the required properties for active molecules from the analysis of already 
known active ligand(s).19 While not requiring a target structure can be advantageous for 
ligand based methods, with respect to receptor-based methods, it can at the same time be a 
drawback not to be able to integrate ligand-target complementarity information in the drug 
design process. On one hand ligand based methods have low computational complexity; 
however, on the other hand they do not allow a chemically diverse set of results due to 
restriction by the known ligand(s). The ligand based techniques range from rather simple 
similarity searches20 –usually applied if there is only one known active ligand– to more 
sophisticated methods like pharmacophore modeling21 or statistical methods (QSAR)22 in 
cases where several active compounds are known.  
 
 

1.3.1. Ligand-Based Pharmacophore Modeling 
 
In computer-aided drug design, one approach to distinguish potentially active from inactive 
compounds in a database of small molecules is to use the knowledge of the physical and 
chemical properties of the target binding site or a set of known actives.21,23 Pharmacophores 
are ensembles of these physical and chemical features that are necessary for optimal 
interactions between a specific biological target and a ligand to enhance or inhibit the target 
function. The most common pharmacophoric features include being aromatic, hydrophobic, 
hydrogen bond donor, hydrogen bond acceptor, an anion or a cation. Therefore, based on 
which pharmacophoric features are used, pharmacophore modeling approaches can be 
categorized in two, whether the structural properties of the target protein and/or the binding 
site are known, namely structure-based pharmacophore models, or a set of known active 
ligands which bind to the same region in the target protein are known, namely ligand-based 
pharmacophore modeling. In this section, we concentrate on the ligand-based approach; the 
receptor-based pharmacophore models are discussed in section 1.5.1. 
For ligand-based pharmacophore modeling, the information of the target protein or the 
binding site is not needed; the model can be created from a set of known actives. However, it 
is crucial that all the known ligands should bind to the same region of the target protein. 
Ligand-based pharmacophore model creation is basically finding the common chemical and 
physical features of the known ligands to be used as a “query” to search for molecules fitting 
the model in a small molecule database.24  
If there are no data available about binding conformations of the known ligands to the target 
protein, finding the active conformations may be quite challenging.1 In this case, all the 
conformers of the ligands should be created and aligned to find the best alignment. The 
alignment can be done first by superimposing the most rigid compounds and then adjusting 
the remaining compounds accordingly with computational tools or manually. To prevent any 
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bias, the known molecules should preferably be derivatives of different structures. Once the 
alignment is completed, the pharmacophore model can be generated via determining the 
features that are present in all the molecules. The model can then be used to search a database 
of molecules, resulting in a qualitative ranking based on how well the molecules fit the model. 
 

 

1.3.2. QSAR 
 
QSAR stands for “quantitative structure-activity relationship” and this technique can be 
categorized into the conventional QSAR and the 3-D QSAR according to the process 
followed, even though the concept is similar for both.25 The quantitative structure-activity 
relationships are basically a set of correlations between the molecular composition and 
structure of a compound and its biological or chemical activity, and the derivation of a simple 
equation that combines these correlations. The equation coefficients, which are weights of 
molecular properties, are derived by curve fitting. These molecular properties are called 
“descriptors” and they can be any numerical value that describes the molecule. In classical 
QSAR, the descriptors can be structural features or physicochemical or steric properties such 
as molecular weight, number of hydrogen bond donor or acceptor atoms, number of heavy 
atoms, number of rotatable bonds etc.25 
3D QSAR methods, on the other hand, analyze three-dimensional structures and binding 
modes and affinity of the ligands to an active site in one specific target. 3D QSAR methods 
attempts to define the properties of an active site, without actually knowing its structure, 
through the computation of steric and electrostatic interactions between a known active ligand 
and putative probe atoms placed at various positions on a grid surrounding the known 
ligand.25 
The classical QSAR methods predict activity from an equation fit to the descriptors of the 
known active ligands and their coefficients. Therefore, the first step is to define a training set 
of known molecules with their experimental activity. The molecules in the training set should 
be diverse enough to span all the possible values for the activity and also abundant enough to 
prevent over-fitting to an outlier. After the selection of the molecules for the training set, the 
descriptors are calculated. Since QSAR models are mostly linear, the correlation coefficients 
of each descriptor with the activity are calculated to choose which descriptors to include in the 
QSAR model. The descriptor with the highest correlation coefficient with the activity can be 
selected. The next descriptor to be selected should have a high correlation with the activity 
but not a strong correlation with the previously chosen descriptor to prevent redundancy and 
also to compensate for the weaknesses of the previous descriptor. At this point using a 
correlation matrix showing the correlations between the descriptors and the activity is quite 
practical and can help choosing the descriptors. Once the descriptors to be included in the 
QSAR model are selected, the coefficients of the linear fitting equation are generated. To 
validate the method, the experimental values can be compared with the values predicted for 
the training set and the model can be further improved if needed. Thereafter, selected 
descriptors and generated coefficients can be used to predict the activity of the ligands in the 
test set. 
In 3D QSAR, like the classical QSAR, the first step is to create a training set of known 
molecules with experimental activity values. However, while 10 known actives are enough 
for a reasonable model in QSAR, 15-20 known actives are required for an ideal 3D QSAR 
model. The goal is to find a bioactive conformer that corresponds to the fitting equation of the 
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classical QSAR. For that, alignments and shapes of the training set molecules are created, 
paying extra attention to put the molecules in conformations with the highest shape similarity 
and the closest alignment of the pharmacophoric features. The alignment is done by primarily 
aligning most rigid molecules and then adjusting the remaining molecules to give the 
optimum fit to shape and pharmacophoric features.  
Overall, any QSAR method can be used if there is a sufficient number of ligands with known 
experimental activity available. This is one of the main drawbacks of QSAR methods and 
restricts its applicability. Also, the QSAR models can only successfully predict the activity 
based on the known active set, meaning they might not be fit for prediction of molecules that 
are not structurally similar. 
 
 

1.4. Receptor-Based Methods 
 
Receptor-based methods (also called target- or structure-based methods) use structural 
information about the target, e.g., crystal structures, structures derived by NMR, or homology 
models.18 The main assumption of receptor-based design is that good inhibitors must possess 
significant structural and chemical complementarity to their target receptor.26 In cases where 
the information about the target protein structure and/or the binding site is available, receptor-
based virtual screening techniques can be applied without any information about known 
active ligands. Receptor-based virtual screening has become popular due to the increasing 
number of three-dimensional structures of proteins that may be potential drug targets. In those 
cases where the target binding site is unknown, binding pocket prediction methods like 
PASS27, PocketPicker28 or LIGSITE29 can be employed to predict potential binding sites. 
Receptor-based methods have the advantage over ligand-based methods that they use 
information from the target and provide insight about the mechanism of action. However, they 
are computationally more expensive and complex because of the existence of the target 
structure in the system. Proteins are complicated systems for which it is quite difficult to find 
optimum solvation and force field parameters. The majority of receptor-based methods also 
assume that the target is rigid or doesn’t show significant conformational changes upon ligand 
binding, thus causing a larger number of false negatives than ligand-based methods due to 
restrictions on the favorable poses.30 
The success of a receptor-based drug discovery project relies on two aspects: the generation 
of reasonable ligand binding modes that would span the entire surface available for the ligand 
(configuration-generation problem) and accurate recognition of the binding modes that would 
be closest to the experimental situation, and reasonable estimation and ranking of binding 
affinities of the ligands to the target (affinity prediction problem).2 

 
 

1.5. Configuration Generation Problem 

 
Ligand-protein interactions lie at the center of most biological processes. It is crucial in 
computational drug design to accurately estimate these interactions. For a reasonable 
estimation, the conformational space available for a ligand in the binding site of a protein 
target should be very well spanned by the ligands tested and the most reasonable conformers 
should be chosen. There are two prominent ways to explore the conformational space: 
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pharmacophore searches and docking. These methods can either be used separately or 
combined in hybrid methodologies. 
 
 

1.5.1. Receptor-Based Pharmacophore Modeling And Searching 
 
The alternative to generating pharmacophore models from known ligands is to generate them 
from the target binding site. This method is preferred if there are not any or enough known 
ligands and also prevents any errors that might arise from the restrictions of a training set of 
known ligands. In receptor-based pharmacophore modeling, it is crucial to examine the 
binding site intensively and deduce the interactions that play major roles in ligand binding and 
action mechanism of the target. Since the pharmacophoric features are derived from the 
residues of the active site and the compounds whose pharmacophoric features match the 
properties of the target binding site are considered to be more active than the other 
compounds, the matching ligands should have the corresponding pharmacophoric features. 
For instance, if a hydrogen bond donor feature is defined on a residue of the target binding 
site, then a corresponding hydrogen bond acceptor feature should be included in the 
pharmacophore model that is used for small molecule database search. 
Even though pharmacophoric features can be automatically derived from the binding site with 
different tools like Catalyst from Accelrys31, MOE from Chemical Computing Group32, Phase 
from Schrödinger33, UNITY from Tripos34, and LigandScout from Inte:Ligand35; visual 
inspection and manual modification are still advisable. Computational tools may output many 
possible interactions from the active site residues, but selecting the strongest and most 
relevant ones is key to a pharmacophore model that would minimize the number of false 
positives.  
One advantage of the receptor-based pharmacophore models to its ligand-based counterpart is 
that it is possible to define excluded volumes. Excluded volumes are the forbidden regions on 
the target that cannot be occupied by the ligands. If a ligand causes clashes with the target, 
then it would be scored with a penalty due to the existence of excluded volume features. 
Once the pharmacophore model has been created, the next step is small molecule database 
search for finding ligands that fit the model. Based on the exhaustiveness of the conformer 
creation for ligands to be searched, the efficiency and time consumption of the 
pharmacophore search can change dramatically. Only ground state conformations of the 
molecules can be stored in a database; however, there is no guarantee that these are the 
biologically active conformations and they are checked against the pharmacophore model.1 
The most plausible solution for the configuration-generation problem is to search all possible 
conformations of all the ligands and to select the conformations that fit best to the 
pharmacophore model. This can be done either by generating all possible conformers and 
creating a very large database beforehand and doing the search against this database, or 
alternatively by storing only one conformer in the database and generating the other 
conformations as each molecule is searched and finishing the search if a matching conformer 
is found without searching all possible conformers. The second alternative is both rigorous 
and practical because it does not only make the search on a single conformer and also finishes 
the search of a molecule as soon as a matching conformer is found. However, no matter which 
strategy is employed, multiple conformer searches are still time consuming.  
Despite all the potential fallbacks and restrictions, pharmacophore models and searches are 
still valuable techniques in computational drug discovery, especially when used in 
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combination with high-throughput docking, either as filters to narrow down the number of 
molecules to be docked or as evaluation methods for the docked ligands in the target binding 
site.36 
 
 

1.5.2. Docking 

 
Docking, which involves a simulation of binding of all molecules in a database to the actual 
or potential binding site of a target protein, may be the most prominently used tool in 
computational drug discovery studies.37,38 Since docking calculations simulate the interactions 
between a ligand and a protein’s binding site, and assign a qualitative score to these 
interactions, the results may be compared to those of biochemical assays. 
Docking studies, in general, have two main aims: accurate structural modeling and correct 
binding affinity predictions. Therefore, most docking algorithms consist of two parts: a search 
algorithm and a scoring function.37,39 The search algorithms focus on ligand and sometimes 
protein flexibility, and explore the conformational space available to the ligand in the binding 
site. According to how ligand flexibility is treated, search algorithms can be mainly 
categorized in three: random or stochastic methods, systematic methods and simulation 
methods.1 The search algorithm of a docking program can apply only a single method or a 
combination of different methods. 
 
Random or stochastic methods employ random changes on a single ligand or a group of 
ligands using Monte Carlo or genetic algorithm approaches. Both approaches share similar 
principles, but differ in application. They both start with an initial single conformation or a set 
of conformations and proceed by making random changes to the initial set, finally evaluating 
the newly generated set with a probability function predefined within the algorithm.37 In 
Monte Carlo algorithm, first an initial random conformation of a ligand is generated in the 
target active site. Then this conformation is scored with a scoring function within the 
algorithm. Afterwards, a random change is made on the ligand conformation and the resulting 
conformation is scored again. At this point, a Metropolis criterion is used to decide whether 
the newly obtained conformation is accepted or not. The Metropolis criterion directly accepts 
the configuration if it scores better than the previous one. When the new configuration does 
not have a better score, its acceptance probability is given by the Boltzmann factor for the 
score difference. This search goes on until the desired number of favorable conformations is 
met. Genetic algorithms, on the other hand, adopt the principles of biological survival and 
competition and apply the rules of natural evolution to generate solutions for the search 
algorithm in docking.37 First, a set of random conformations is generated to form an initial 
population. This set is scored with a fitness function and the fittest conformations are selected 
for the production of the next generation. The next generation of conformations is generated 
through genetic operators: crossover and mutation. When the population size reaches to its 
limit, each offspring conformation is scored again and the fittest ones are chosen for the 
following cycle of the algorithm. These steps are repeated until the fixed number of 
generations is reached or the best fitness score doesn’t improve anymore or a solution is 
found. AutoDock40 and GOLD41 implement genetic algorithms. 
 
Systematic search methods aim to explore all the degrees of freedom in a molecule without 
falling into a combinatorial explosion problem.42 For a systematic conformational search, the 
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number of possible conformations is directly proportional to the number of rotatable bonds in 
the molecule and inversely proportional to the size of the rotational angle increment. For a 
ligand with N rotatable bonds, if an angle increment of θ is used then the number of allowed 
states will be 2π/θ for each bond, ending up in (2π/θ)N possible conformations for a single 
ligand.42 To overcome this combinatorial problem, the ligands are incrementally grown into 
the active site.37 One approach for incremental search starts with decomposing the ligand into 
its fragments and docking these fragments separately into the active site followed by linking 
the best scoring fragments with appropriate linkers.43 This strategy is also widely used for de 
novo drug design.44 An alternative approach is to decompose the ligand in rigid and flexible 
parts followed by docking only the rigid part into the active site and adding the flexible parts 
incrementally.45 DOCK46, FlexX47 and Glide48 use incremental small molecule construction 
as their search algorithm. 
 
For simulation methods, the most popular approach is molecular dynamics; however 
computation time restrictions are the biggest obstacle.39 It cannot be guaranteed that the 
ligands would cross the high energy barriers and leave local minima within the 
computationally-feasible short simulation time. DOCK, Glide and AutoDock also employ 
additional simulation methods as complement to their main search algorithms.  
AutoDock Vina49 uses a simulation based method in which the ligand conformational search 
is started with a random conformation of the ligand, followed by an investigation of the 
binding site, defined by a grid, by modifying the ligand's coordinates, thus allowing flexibility 
only on the ligand (although in principle it is also possible to employ flexibility on the amino 
acid side chains of the binding site of the receptor protein). AutoDock Vina is freely available 
and it has been shown to give quite reliable results in both predicting binding modes in X-ray 
structures of protein-ligand complexes and virtual screening.50,51,52 However, for virtual 
screening studies, the accuracy of docking is highly dependent on the target and estimating 
which docking tool is most suitable for a specific target is still not possible.53,54 

 
 

1.6.  Affinity Prediction Problem 

 
The knowledge of 3D structures of the targets and/or the ligands and the accurate prediction 
of the binding modes and the target-ligand complex structures constitute the basis for 
receptor-based drug design, however understanding protein-ligand interactions on the 
molecular level and the accurate prediction of these interactions determine the true success of 
a receptor-based drug design project. Even though different docking algorithms are able to 
produce experimentally observed binding modes of ligands to a protein, it is still a challenge 
to recognize and pick them in huge libraries and assign accurate scores to rank them.55 The 
efficiency of a computational drug design procedure relies on accurate prediction of binding 
affinities.2 
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1.6.1. Factors Determining Ligand-Receptor Binding Affinity 
 

Ligands bind either covalently or non-covalently to their targets, based on their structural and 
energetic recognition with the target.2 However, the majority of the currently available drugs 
act via non-covalent interactions with their target proteins.24 This makes non-bonded 
interactions of particular interest in drug design and triggers a special interest for finding 
computational methods to predict ligand-target interactions at the atomic level and the binding 
affinity of the ligand.  
The non-covalent and reversible binding of a ligand (L) to a receptor protein (P) to form a 
complex (C) almost always takes place in a solution (Equation 1). 
 

Equation 1 

€ 

Psol + Lsol ↔Csol     
 
The binding affinity is determined by the Gibbs free energy of binding (ΔG) and is related to 
the experimentally measured binding constant, Ki (Equation 2 and Equation 3), where R is the 
ideal gas constant and T the temperature. ΔG is composed of two parts: an ethalpic (ΔH) and 
an entropic (TΔS) component. In, [C], [R] and [L] represent the molar concentrations of the 
complex, protein and the ligand respectively.  
The experimentally determined range of the binding constant, Ki is between 10–2 and 10–12 M, 
which corresponds to a Gibbs free energy of binding, ΔG between –10 and –70 kJ/mol in 
solution at T=298 K.56 

  
Equation 2 

€ 

ΔG = −RT lnKi = ΔH −TΔS  
 
 

Equation 3 

€ 

Ki =
P[ ] L[ ]
C[ ]

 

 
The binding affinity is used to describe how strongly a ligand binds to its target and is 
dominated by non-covalent interactions such as electrostatic and van der Waals forces, 
including solvation and desolvation contributions.24 These interactions are crucial for 
structural and energetic recognition between a ligand and a target. Although non-covalent 
interactions are way weaker than covalent bonds, small stabilizing interactions accumulate to 
make important contributions to stabilize ligand binding. For a tight ligand binding to a target, 
some requirements should be fulfilled:24 
 

• There should be a high level of steric complementarity between the ligand and the 
target protein. 

 
• The surface properties of the ligand and the target protein should chemically 

complement each other. Since lipophilic parts of the protein are mostly in contact with 
the lipophilic parts of the ligand and polar groups are usually paired accordingly to 
form hydrogen bonds or ionic interactions, surface properties of both sides should 
match. 
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• The ligand should be in an energetically favorable conformation for stability. 

 
Electrostatic interactions 
Electrostatic interactions give rise to the forces that are generally accepted to be the most 
important intermolecular driving factors for ligand-protein binding.2 Electrostatic phenomena 
in biomolecular systems are very complex due to the long-range nature of electrostatic forces 
between large numbers of interacting atoms. The presence of charged groups in proteins 
further complicate the scenario. 
The electrostatic potential energy is represented as a pair-wise summation of Coulombic 
interactions (Equation 4). 
 

Equation 4 
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In Equation 4, N is the number of atoms in the system, q is the charge on each atom, r is the 
distance between each atom pair i and j and ε0 is the dielectric constant of the environment. 
The double sum in this interaction function is generally simplified, with a variety of 
approximations that basically reduce the number of pairs to a tractable one. 
 
Van der Waals Interactions 
van der Waals interactions have an attractive and a repulsive component.57 The fluctuations of 
the electronic charge distribution around the atoms arising from the correlated movements of 
electrons in interacting molecules (instantaneous polarisation) cause the van der Waals 
attraction or dispersion force. Repulsion dominates the interaction at short distances and is 
due to the exclusion principle that prevents the overlap of electron orbitals. As two molecules 
come closer, the attraction increases until they are separated by the van der Waals contact 
distance (minimum of the potential energy, see Figure 1). Below this distance, repulsion 
quickly takes over. van der Waals interactions are short ranged: very weak (attractive) at long 
distance (above 3σ) and very strong (repulsive) at short distance (below σ). 
The van der Waals energy for non-bonded interactions is often modeled by a Lennard-Jones 
12-6 function as shown in Equation 5: 
 

Equation 5 
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where N is the number of atoms, rij is the distance between atoms i and j, ε is the well depth of 
the potential (Figure 1) and σij is the distance at which the interaction of atoms i and j is zero. 
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Figure 1: A representation of the Lennard-Jones 12-6 function. Small-distance repulsion forces are provided by 
the exp(12) term of the Equation 5, while exp(6) term is responsible for the attractive force, which approaches 
zero as the distance increases. (Figure taken from Kitchen et.al.37) 
 
 
The non-covalent interactions that govern ligand-protein binding are combinations of 
electrostatic and van der Waals forces and consist of hydrogen bonds (which has been argued 
to partially have bond character), ionic interactions, hydrophobic interactions, salt bridges, π-
π interactions and cation-π interactions, along with solvation and desolvation (Figure 2). 
Hydrogen bond is a form of association resulting from the attraction between an 
electronegative atom and a hydrogen atom bound to another electronegative atom.57 The 
electronegative atoms are mostly, but not exclusively, oxygen, nitrogen or fluorine. Hydrogen 
bonds between a hydrogen bond donor X—H and a hydrogen bond acceptor Y are formed 
within distances of 2.5-3.2 Å and angles of 130°-180°.2 The strength of a hydrogen bond 
depends highly on its environment, however it is estimated to be less than 20-25 kJ/mol (5-6 
kcal/mol) unless a fluorine atom is involved. Hydrogen bonds are weaker than covalent 
bonds; however, they influence ligand binding strongly by their directional nature.  
Salt bridges are ionic interactions formed when oppositely charged moieties (e.g., from a 
residue side chain and a small ligand) are in close proximity to form an ion pair. They are also 
capable of making hydrogen bonds; hence they help increase the stability of binding. 
Another significant contribution to ligand-protein binding originates from so-called π-π 
interactions between side chains of residues like tryptophan, phenylalanine or tyrosine and 
aromatic groups of the ligand.2 π-π interactions lead to stacked arrangements of the aromatic 
moieties involved. π systems may also interact with cations, an interaction that is observed 
with relative frequency in ligand-protein binding.59 The strength of a π-cation interaction is of 
the same order of magnitude as a hydrogen bond, however it is influenced by different factors, 
mainly the nature of the cation and the substitutens of the π system.59,60 The exact nature of π-
π and cation-π interactions is still a matter of debate. 
Hydrophobic interactions are a consequence of the positive free energy of solvation of apolar 
groups by water.58 In the case of protein folding, hydrophobic amino acids such as alanine, 
valine, leucine, isoleucine, phenylalanine, tryptophan and methionine tend to cluster in a 
hydrophobic core within the protein that contributes to the stabilization of the folded state. In 
protein-ligand binding, the same rule applies; hydrophobic moieties of the ligand and the 
protein try to be in contact, contributing to the binding strength.  
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Figure 2: Examples of non-covalent interactions found in protein-ligand complexes.  
 
 
Solvation and desolvation make fundamental contributions to both the entropy and enthalpy 
changes in the system upon protein-ligand binding.57 Since all biological mechanisms take 
place in an aqueous environment and ligand binding is no exception, it is highly influenced by 
solvation and desolvation effects. Therefore the existence of water molecules should be 
accurately described in protein-ligand binding. In bulk state, each water molecule can make 
up to four hydrogen bonds, and thus water can strongly influence hydrogen bonding and 
hydrophobic interactions between the protein and the ligand.61 In the unbound state, both the 
ligand and the protein form hydrogen bonds with the water molecules in the environment, and 
upon complex formation, these water molecules are replaced to allow hydrogen bonding 
between the protein and the ligand (top part of Figure 3).24 In the case of hydrophobic 
interactions (lower part of Figure 3), water molecules are released from the unfavorable 
environment created by the hydrophobic ligand and the protein residues to form hydrogen 
bonds.24 Consequently, hydrophobic interactions between the apolar parts of the ligand and 
the protein are thermodynamically favoured by the replacement and release of water 
molecules. 
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Figure 3: The role of water in protein ligand binding. Top part shows how water intervenes in hydrogen bonding 
while lower part displays the role of water in hydrophobic interactions.24 
 
 

1.7. Approaches For Prediction Of Binding Affinities  

 
The success of computational drug design depends on accurate predictions of the binding free 
energies of small molecules to the target protein.2 The studies on binding affinity prediction 
can be categorized in two major groups based on the presence of the knowledge of the 3D 
structure of the receptor: 
 

• If the 3D structure of the receptor is not known (i.e. ligand-based drug discovery 
methods), the prediction of the binding affinity of the new ligands is based on the 
comparison with the known reference ligands with experimentally observed binding 
affinities. The main assumption for ligand-based affinity prediction is that chemical 
similarity of the ligands reflects the biological activity.2,62 One such approach is to 
compare molecules by considering the presence or absence of functional groups at the 
one or two-dimensional level, called fingerprinting.63 Other methods employing 
topological similarity include substructure mapping64, pharmacophore searches21 and 
ligand superpositioning65. However, these methods only give qualitative binding 
affinity values. On the other hand, quantitative predictions can be accomplished with 
the use of QSAR methods.25 QSAR predicts the binding affinity by finding the 
correlation between ligands with respect to physicochemical and structural parameters. 
However two-dimensional QSAR methods suffer from the lack of spatial structure of 
the individual ligands and lack of receptor interactions. 3D-QSAR, on the other hand, 
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predicts the binding affinity by correlating the spatial structure of the ligands and 
experimentally measured binding affinities of the known ligands. Even though 3D-
QSAR methods yield reasonable and sensible binding affinity predictions, their 
dependence on a diverse set of known ligands is still a weak-point. 
 

•  If the 3D structure of the receptor is known (receptor-based drug discovery methods), 
the binding affinity prediction is done based on chemical and geometrical 
complementarity between the ligands and the target protein. A large variety of 
methods for binding affinity prediction in receptor-based design have been 
developed.2,66 These range from theoretically rigorous to slightly approximate that 
compromise accuracy for computational speed. Being the fastest, scoring functions are 
at one extreme of this range, whereas rigorous force-field based methods like free 
energy perturbation67 (FEP) calculations or thermodynamic integration68 (TI) with 
explicit solvent and flexible ligand and receptor reside at the other extreme. Between 
these two extremes, but closer to the rigorous side, linear interaction energy69,70 (LIE) 
and molecular mechanics Poisson-Boltzmann surface area71,72 (MM-PBSA) methods 
are located, both of which have gained considerable attention in recent years.66 

 
In this thesis, the focus is on methods used when the 3D structure of the receptor is known. 
 
 

1.7.1. Scoring Functions And Consensus Scoring 
 
Scoring functions are approximation methods used to evaluate a docked pose of a ligand to a 
receptor. Even the most accurate prediction of binding modes of ligands to the target binding 
site is of little use without a scoring function that produces an accurate ranking of the binding 
affinities of the test ligands.55,73 In other words, even if the correct binding conformation of a 
high-affinity ligand is found by the search algorithm, the result is irrelevant if this compound 
is not ranked high enough to be selected as a candidate. As for the conformational space 
search algorithms, a variety of methods are commonly used for scoring in molecular docking 
and they can be roughly categorized as empirical, force-field based and knowledge based 
approaches.37,38 While some scoring functions employ a single approach, some scoring 
functions use combinations of different approaches. 
 
Empirical scoring functions  
Empirical scoring functions employ fitting to experimental data and define the binding free 
energy as a sum of parameterized functions obtained from fitting, as first proposed by 
Bohm.74 The basic idea behind empirical scoring functions is that the sum of uncorrelated 
individual terms can be used to approximate the binding affinity. A training set of structurally 
resolved ligand-protein complexes together with their experimental binding affinities is used 
in regression analysis to obtain coefficients for individual terms.37 ChemScore75 and 
LUDI76,77 are scoring functions that employ empirical methods, however individual terms can 
be handled differently by different scoring functions. For instance, while the hydrogen 
bonding term in LUDI differentiates between neutral and ionic hydrogen bonds, ChemScore’s 
hydrogen bonding term doesn’t.37 Another point where these two scoring functions differ is 
the evaluation of the hydrophobic contributions: LUDI uses molecular surface area 
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representation for the calculation of the hydrophobic term whereas ChemScore just evaluates 
contacting hydrophobic atom pairs. 
Empirical scoring functions are appealing because the terms are usually simple to evaluate, 
however they can be disadvantageous due to their strong dependence on the data sets used for 
regression analysis and fitting. 
 
Force-field based scoring functions 
Force-field based scoring functions calculate the sum of the ligand-protein interaction energy 
and the internal energy of the ligand. The affinity is estimated by force-field modeling of non-
bonded interactions; summing the contributions from electrostatic interactions and van der 
Waals forces between the atoms of the ligand and the protein. Electrostatic terms are 
represented by the Coulombic potential-energy function (Equation 4) and van der Waals 
forces are calculated from the Lennard-Jones potential (Equation 5). As a last step, since the 
binding normally takes place in aqueous solution and water is not explicitly present in the 
model, the desolvation energies of the protein and the ligand are implemented by some 
scoring function. However force-field based scoring functions have major limitations due to 
complications in implementation; cut-off distances for non-bonded interactions have to be 
introduced, long-range effects should be accurately handled and solvation terms should be 
added. The GOLD41, G-Score47, D-Score47 and DOCK scoring functions46 are force-field 
based. AutoDock’s scoring function78, on the other hand, combines empirical and force-field 
based terms. 
 
Knowledge-based scoring functions 
Based on statistical observations of intermolecular contacts in large 3D databases like Protein 
Data Bank79, knowledge-based scoring functions try to capture information hidden in the 
structural data of the protein-ligand complexes rather than the binding affinity used by 
empirical scoring functions. They try to reproduce the experimental structures by statistical 
analysis and simple atomic interaction-pair potentials, trying to implicitly capture the binding 
effects that are difficult to model explicitly. Knowledge-based methods use the structural 
information stored in databases of protein-ligand complexes to derive atom pair interaction 
potentials. These methods assume that the frequency of observing individual contacts reflect 
their energetic contribution to binding. When certain types of atoms interact more often than 
would be expected by a random distribution, they are likely to be energetically more 
favorable, thus contributing more to the binding affinity. PMFScore80,81,82 and DrugScore's 
scoring functions83 employ knowledge-based methods for binding affinity calculation.  
 
However, all these methods are imperfect and often rank molecules poorly due to their 
intrinsic biases.84 Knowledge-based and empirical methods are strongly influenced by the 
training sets used for fitting the function parameters or by the quality of the experimental data. 
It is also known that, regardless of the scoring function, larger molecules tend to produce 
better scores than smaller molecules simply because of the abundance of hypothetical 
interactions in the binding sites.37,85 Accurate scoring and ranking is still a challenging 
problem, and different scoring functions can behave very differently in predicting the binding 
affinities of the same ligands to the same targets.55,73,84 However, scoring functions are still 
needed for quick estimation of binding free energies of thousands of ligands in virtual 
screening studies. 
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Consensus scoring 
Consensus scoring is a well-known strategy used to improve the inaccurate ranking obtained 
with single scoring functions and to increase the number of true actives discovered. It 
involves evaluating a ligand-protein complex with several different scoring functions, which 
are then combined to reach a consensus conclusion. The logic behind this is that the 
combination of independent measurements leads to a value that is closer to the actual value 
and that the deficiencies of each scoring function may be compensated by the other scoring 
functions.86 It has been reported that using different scoring functions to score ligand poses 
and deriving a consensus score that combines the outputs of these different scoring functions 
can improve the overall result in virtual screening studies.86,87,88  
Consensus scoring strategies can be divided into three groups: rank-by-vote, rank-by-number 
and rank-by-rank.86 Rank-by-vote gives a vote for each compound either according to its 
presence in the top n% of the database for each scoring function, or if the score of the 
molecule is within the top n% of the full range of scores obtained for the whole database. 
Rank-by-number averages the scores that are given by different scoring functions, allowing 
the introduction of weights. This is only applicable if all the scores are on the same scale, 
which can be achieved by normalization. Rank-by-rank approach simply averages the ranks 
that are output by different scoring functions.  
 
 

1.7.2. FEP And TI 
 
Free energy perturbation (FEP) theory, introduced by R.W. Zwanzig in 1954, is a statistical 
mechanics method used for computing free energy differences from molecular dynamics or 
Metropolis Monte Carlo simulations.68 According to FEP theory, the free energy difference 
for going from state 0 to state 1 is obtained from: 
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where T is the temperature, kB is Boltzmann's constant, and the angle brackets denote an 
average over a simulation run for state 0. The conformational average is taken from either 
molecular dynamics or Monte Carlo simulations. H1 and H0 are the energies of the system, 
computed using the Hamiltonians H1 (corresponding to state 1) and H0 (corresponding to state 
0), respectively, and the coordinates of the particles 
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A problem of this method is that it requires the states 0 and 1 to be sufficiently close for their 
probability distributions to overlap, i.e. for configurations sampled with H0 to be also 
probable under H1. This can be resolved by generating an appropriate number of intermediate 
steps between states 0 and 1. For ligand-protein binding, state 0 typically refers to a ligand A 
(or a ligand A bound to a protein) and state 1 refers to a ligand B whose affinity for the 
protein’s binding site is to be compared to that of A, making ΔF the calculated free energy of 
perturbation of one ligand into the other in solution or in the active site. The relative binding 
free energy of ligands A and B can then be computed by using a thermodynamic cycle. 
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Binding free energies cannot be computed directly unless a proper reaction coordinate is 
known (which strictly is never the case). 
An alternative derivation known as thermodynamic integration makes use of a coupling 
parameter (λ) to bring the system from the initial to the final states:67 
 

Equation 7 
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In TI, simulations are performed at different λ values between 0 (state 0) and 1 (state 1), the 
ensemble average of the derivative of the Hamiltonian with respect to λ denoted by the angle 
brackets is calculated using the corresponding Hλ and the integration of the ensemble-average 
values is then evaluated numerically. As with the FEP method, a sufficient number of 
intermediate λ states needs to be simulated to obtain a smooth integration. 
Even though both FEP and TI are very rigorous methods that enable explicit representation of 
water and protein flexibility, they are only applicable to systems where the structure of the 
protein and the approximate binding mode of the ligand are known. Both methods are limited 
by the high computational demands of a thorough sampling of configuration space, the 
accuracy of the force fields and the required proximity between the initial and final states, e.g. 
two similar ligands to be compared. Since FEP and TI are computationally expensive and 
stringent methods that require considerable initial setup calculations, they are still far away 
from large-scale implementation in virtual screening studies. 
 
 

1.7.3. MM-PBSA  
 
In the mid-range between scoring functions and FEP and TI, stands the Molecular 
Mechanics/Poisson-Boltzmann Surface Area approach. It is faster and computationally less 
demanding than FEP and TI, and at the same time more strict than the scoring functions.  
In the MM-PBSA method, a molecular dynamics simulation of the ligand-target complex is 
done in a periodic box with explicit solvent and counterions, generating an ensemble of 
configurations of the system that is kept for post-processing.71,72 Solvent and counterions are 
then removed from these configurations. Then, the binding free energies are calculated with 
Equation 8:72  
 

Equation 8 
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G = EMM +GPBSA −TSMM   

 
where G stands for the free enthalpy (free energy at constant pressure) <EMM> reflects the 
mean molecular mechanical energy, GPBSA is the free enthalpy of (de)solvation, approximated 
by solving the Poisson-Boltzman (PB) equation for the electrostatic part and including a 
solvent-accessible surface area (SA) term for the hydrophobic part, and TS stands for the 
entropic contribution and is taken from a quasi-harmonic or normal mode analysis of the 
trajectory. These contributions are averaged over the configurations extracted from the 
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molecular dynamics trajectory. Contrary to the previous methods, MM-PBSA only calculates 
the end states. 
It has been reported that binding free energies calculated with the MM-PBSA approach shown 
statistically significant correlation to experimentally measured binding constants in various 
structure-based design studies with diverse target proteins.89,90 
 
 

1.7.4. LIE 

 
The LIE method69 is a semiempirical approach that is faster than FEP/TI, typically requiring a 
few hours per binding estimate, yet more accurate than empirical scoring functions. The 
approximations behind the LIE method, namely electrostatic linear response together with a 
nonpolar binding contribution that depends linearly on ligand size (representing hydrophobic 
effect, translational/rotational entropy loss, etc.), leads to a simple linear relation between the 
binding free energy and the difference in ligand-surrounding average potential energies 
between the bound and free states, i.e. between the compound immersed in water and 
enveloped in the binding pocket. These average energies are then calculated from sufficiently 
long molecular dynamics (MD) or Monte Carlo runs. The standard LIE method has been 
applied in combination with docking in lead optimization studies91,92,93 and it has been 
suggested to have promising potential as a method that can be used at large scale.94  
The relationship between the ligand intermolecular interaction energies and the free energy of 
binding is given by the equation: 
 

Equation 9 
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el  term represents the polar l-s contribution to the binding free energy and is 

based on a linear response approximation, 
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vdw + γ  represents the l-s nonpolar binding 

contributions. The β coefficient can be derived from the linear response approximation, which 
predicts a value of 0.5.95 However, based on rigorous FEP calculations in different 
solvents95,96, in the standard parameterization of the LIE method β is determined by the 
ligand’s chemical groups, with values between 0.33 and 0.5. The value obtained for α by 
fitting to experimental binding free energies is 0.18 and takes all size dependent contributions 
to binding into account, such as the hydrophobic effect and relative translational and 
rotational entropies as well as van der Waals interactions. The constant offset γ has been 
shown to correlate with the hydrophobicity of the binding site pocket96 and is thus generally 
protein specific. Nevertheless, and for this reason, it can be safely ignored when screening 
molecules against one same protein. 
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el  are calculated, respectively, from the 

Lennard-Jones and electrostatic interactions between the ligand and its surrounding (l-s). 
These interactions are evaluated as energy averages (denoted by the angle brackets) from 
separate MD simulations of the free and bound states of the ligand (solvated in water and 
bound to the protein in solution, respectively). The difference (Δ) between the averages for 
the two states is then calculated.69 
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2. Objectives 
 
In light of the information provided in the previous introductory chapter, the objectives of this 
thesis can be listed as follows:  
 
 
1. To design an integrative approach for the computational discovery of drug-like small 
molecules with affinity for a target protein, based on available methodologies. This objective 
can be divided into smaller objectives: 
 

• to find a robust docking protocol that can be applied to any drug target. 
 
• to integrate pharmacophore filtering to high-throughput docking and to investigate the 

possible advantages and disadvantages of using pharmacophore filters. 
 
• to find out the most convenient methodology for consensus scoring. 
 
• to apply large-scale molecular dynamics simulations for late-stage improvement of 

ligand ranking. 
 
 
2. to devise an evolving methodology that enables addition of new approaches at different 
stages; starting as a simple methodology based on high-throughput docking with consensus 
scoring, then getting to a more complicated hybrid methodology that integrates 
pharmacophore filtering and LIE simulations.  
 
 
3. to apply the approach developed in the previous objectives to find candidate ligands for 
three target proteins: human T-protein, human bleomycin hydrolase and human acid β-
glucosidase. 
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3. The Three-Step Docking Procedure Versus The 
Hybrid Procedure 

 

3.1.  Summary 

 
For a very complex problem like drug discovery, using a single straightforward computational 
method or tool is not likely to give reasonable and reliable results. As mentioned earlier, the 
accuracy of docking and scoring is highly dependent on the target; a docking tool producing 
ligand binding modes very close to the experimental mode for a specific target may not be as 
successful for another target.53,54 With the aim of developing a molecular docking based 
automated procedure that can be applied to any target and that produces relevant binding 
modes, a three-step docking procedure was developed. This procedure consists of a very 
trivial size filter to exclude molecules too large for the binding site, a three-step docking with 
AutoDock 4.0 and ranking with consensus scoring at the end of each docking step. The 
docking parameters were calibrated by docking a sample set from a small molecule library to 
a test protein, human endothelial nitric-oxide synthase (eNOS) enzyme, and the parameters 
were validated with a benchmark protein with known active ligands, human checkpoint kinase 
1. The success of the three-step docking procedure was also compared with a hybrid 
procedure, which is a combination of pharmacophore filtering, automated docking with 
AutoDock Vina and consensus scoring. Both procedures were applied to human checkpoint 
kinase 1 to find out the optimal strategy. 
 
 

3.2. Biological Background 

 

3.2.1. Sample Protein: Human Endothelial Nitric-Oxide Synthase (eNOS) 

 
Nitric oxide synthases (NOSs) are a family of enzymes that catalyze the production of nitric 
oxide (NO) from L-arginine.97 Nitric-oxide is an important cellular signaling molecule that 
has a vital role in different biological mechanisms such as controlling vascular tone (hence 
blood pressure), airway tone, insulin secretion, and peristalsis.98 It is also involved in the 
development of the nervous system and in angiogenesis.98 Nitric oxide signaling is mediated 
in mammals by three isoenzymes, eNOS (endothelial NOS), nNOS (neuronal NOS) and iNOS 
(inducible NOS) involved in immune response.97,99,100 All NOSs are homodimeric enzymes 
consisting of two conserved modules:88 an electron-supplying reductase module and a 
catalytic oxygenase module (NOSox).101 Endothelial NOS (eNOS) is a nitric oxide synthase 
that generates NO in blood vessels and is involved in regulating the vascular tone by 
inhibiting smooth muscle contraction and platelet aggregation.102 Variations in the gene 
coding eNOS are associated with susceptibility to coronary spasm, and a polymorphism in the 
gene has been shown to be connected to Alzheimer’s disease.103,104 
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To calibrate the docking parameters for the three-step docking procedure of a library of nearly 
2.000.000 ligands we selected eNOS, which has known ligands and active site. The three-
dimensional structure for the receptor was obtained from the Protein Data Bank (PDB) and 
corresponds to entry 1M9M.105 This structure has a heme group as one of the cofactors along 
with a zinc ion and a known ligand (6-nitroindazole, 6NI) bound (Figure 4).  
 
 

 
Figure 4: Structure of eNOSox binding site co-crystallized with 6-nitroindazole (active site inhibitor orientation). 
Hydrogen bonds with the Met358 amide nitrogen and the Trp356 carbonyl oxygen are shown as green dashed 
lines. 
 
 

3.2.2. Benchmark Protein: Human Checkpoint Kinase 1 
 

The cell cycle is the series of events that takes place in a cell leading to its division and 
duplication and consists of four distinct phases: G1 phase, S phase (synthesis), G2 phase and 
M phase (mitosis).106 G1, S and G2 phases together are called interphase, the phase of the cell 
cycle in which the cell spends the majority of its time and prepares for cell division. Cells that 
have temporarily or reversibly stopped dividing enter a state of resting called G0 phase 
(Figure 5). Activation of each step depends on the proper progression and completion of the 
previous phase, with two checkpoints throughout the cell cycle to ensure completion of the 
preparation for cell division.107 The first checkpoint is located at the end of the G1 phase, 
before entry into the S phase (G1/S checkpoint), making the key decision of whether the cell 
should divide, delay division or enter a resting stage. The second checkpoint is located at the 
end of the G2 phase (G2/M checkpoint), deciding the initiation of mitosis.  
 



 31 

 
Figure 5: Schematic representation of the cell cycle. Outer ring: I: Interphase, M: Mitosis; inner ring: M: 
Mitosis, G1: Gap 1, G2: Gap 2, S: Synthesis; not in ring: G0 = Gap 0/Resting. (Figure taken from 
http://en.wikipedia.org/wiki/Cell_cycle) 
 
 
The understanding of the cell cycle provides the identification of potential targets that may 
become key elements for the development of therapeutics against cancer.108 An important 
stage in the cell cycle is the G2/M checkpoint, which ensures that cells don't initiate mitosis 
before they have a chance to repair damaged DNA after replication.109 If a cell with a 
damaged DNA passes through a defective G2/M checkpoint without DNA repair and enters 
mitosis, it ultimately leads to cell death.110 In many tumor cells, the first checkpoint at G1/S is 
impaired and tumor cells are not arrested at this stage, leaving the G2/M checkpoint as the 
only control. If the G2/M checkpoint is abrogated in these tumor cells, they will enter mitosis 
prematurely with DNA damage resulting in cell death.111 Therefore, inhibition of the G2/M 
checkpoint leads to selective sensitivity of cancer cells and, hence, small molecule inhibitors 
of this checkpoint may have potential use as sensitizing agents for cancer therapy.112 
To test the three-step docking procedure and to compare it with a hybrid method, we used the 
human checkpoint kinase 1113,114 (Chk1), which arrests cells with DNA damage at the G2/M 
checkpoint and prevents cell division. Chk1 has emerged as a promising target for the design 
of small molecule inhibitors and has been studied extensively in therapeutic research for 
cancer.111,112,115 The motivation behind choosing Chk1 as the validation protein is that it has 
many known inhibitors available with experimentally proven activity values.  
The structure with PDB id 1IA8116, which corresponds to apo human Chk1, was used. The 
actual substrate of Chk1 is ATP and therefore the ATP binding site of 1IA8 has been 
determined to be the active site for finding competitive inhibitors. The catalytic site residues 
(Figure 6) are Lys38, Glu55, Asp130, Lys132, Asn135 and Asp148.116 However, the residues 
involved in ligand binding can be extended to include a buried pocket containing Leu15, 
Gly16, Gly18, Tyr20, Val23, Ala36, Val68, Leu82, Leu84, Glu85, Tyr86, Cys87, Ser88, 
Gly90, Glu91, Glu134, Leu137, Ser147 and Phe149.111,112,115,117 
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Figure 6: Catalytic residues and binding site of Chk1. Left side of the figure shows the catalytic site residues of 
Chk1. On the right side, residues that are part of the binding site are displayed as a grey surface to show the 
pocket-like structure that creates the binding site. 
 
 

3.3. Common Methods For Three-Step Docking And The Hybrid Procedure 
 
The three-step docking approach and the hybrid approach basically use the same outline, 
however with different applications. They both consist of a primary filter to reduce the 
number of molecules, followed by docking and consensus scoring. The same small molecule 
and protein files are used as input for both methods. However, they differ at the application of 
the filter and the docking steps. While the three-step docking approach uses a size-filter and a 
three-step docking procedure with AutoDock 4.0, the hybrid method works with a 
pharmacophore filter and a single step docking with AutoDock Vina. This section focuses on 
the common parts of these two approaches; the preparation of the small molecule libraries and 
the proteins, consensus scoring and the selection of known inhibitors of Chk1. Section 3.4 
presents the methodologies used only by the three-step docking approach while Section 3.5 
elaborates on the details specific for the hybrid approach.  
 
 

3.3.1. Preparation Of The Small Molecule Libraries And The Proteins 

 
The preparation of the small molecule library 
The small-molecule library (VSL-1) used in this part of the work is based on the compilation 
of compounds found in the Chemical DataBase Manager (CDBM), built by the group of Dr. 
Xavier Barril at the Department of Physical Chemistry of Universitat de Barcelona and 
containing commercially available compounds from several vendors. In CDBM, molecular 
configurations (states) and three-dimensional conformations are generated with LigPrep118, 
enumerating tautomers, ionization states and, when the chirality is not specified, enantiomers. 
The generated configurations are then minimized using the OPLS force-field119. To this raw 
library, filters such as the Lipinski Rules120, Veber Rules121 and not having reactive moieties 
or more than 4 states (tautomeric, ionization and enantiomeric) are applied. This filtered 
virtual screening library contains 1,961,165 entries stored in 393 multi-SD files each 
containing 5000 molecules. From these SD files, we generated UNITY34 databases for 
pharmacophore search for the hybrid procedure, PDBQT122 files (with MGLTools 1.5.4123) 
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for docking with AutoDock 4.0 for the three-step-docking procedure and AutoDock Vina for 
the hybrid procedure, and MOL2 files124 for consensus scoring with CSCORE87. 
VSL-1 was converted into several different formats required by the different types of software 
used in this work. Using the dbimport function of UNITY34 with the parameters 
+perceive_chiral_c, +perceive_chiral_np, +perceive_stereo_bond, and –prescan 0, the 
UNITY database was created from the SD files. AutoDock 4.0 and AutoDock Vina require 
the compounds in PDBQT format122. The conversion of the whole library from SD format to 
individual PDBQT files for each compound was done in two steps. First, the multi-structure 
SD files were converted into multi-structure MOL2 files124 using UNITY’s dbtranslate 
function. The resulting multi-structure MOL2 files were split into individual files for each 
compound, which were then converted to PDBQT format using AutoDock MGLTools 
1.5.4123. However, during the conversion to PDBQT sometimes problematic “empty 
branches”, i.e., a BRANCH statement immediately followed by an ENDBRANCH statement 
in the PDBQT file, were created. All PDBQT files were scanned for such patterns, and were 
fixed with a program that was developed only for this task. This program checked the atom 
order and coordinates from the PDBQT and corresponding MOL2 files, generating PDBQT 
files with correctly defined atom and bond types. 
 
The preparation of the protein files 
The PDB entry 1M9M has a heme group as one of the cofactors along with a zinc ion and a 
known ligand (6-nitroindazole, 6NI) bound. All solvent molecules and 6NI were removed 
from the coordinate file, leaving only the protein and the heme group. The heme group wasn't 
removed because it is a part of the binding site and the known ligand; 6NI sits on it in the 
bound state. The docking experiments were done only on chain A of 1M9M with the heme 
group bound. For AutoDock’s file format PDBQT, Gasteiger charges125 were added and non-
polar hydrogens were merged to united carbon atoms. For the three-step-docking procedure 
the structure of human eNOS was only used to determine the parameters to be used for high-
throughput docking for Chk1. 
For the benchmark, the crystal structure of apo human Chk1 with PDB id 1IA8 was used. For 
the three-step-docking procedure with AutoDock 4.0 and the AutoDock Vina docking part of 
the hybrid procedure, the PDBQT file for Chk1 was prepared in the same way as eNOS: water 
molecules were removed, non-polar hydrogens were included in united atoms and Gasteiger 
charges were added. However, for the consensus scoring and pharmacophore searches, an 
alternative treatment was needed. This was done with the Biopolymer Structure Preparation 
tool of SYBYL-X34: water molecules were removed, hydrogens and charges (AMBER7_F99 
charge set) were added and a MOL2 file was created as input for pharmacophore searching 
and consensus scoring with CSCORE.  
 
 

3.3.2. Collection Of The Known Actives 

 
To test the efficiency of the three-step docking and the hybrid methods and to compare them, 
we collected 21 known actives of Chk1 and added them to the VSL-1 library to see if these 
two methods would be able to pick the known ligands among the other molecules (Table 2 
and Figure 7). Three of the known ligands are natural products such as staurosporine126 and its 
derivatives and the rest were ligands that have been identified with virtual screening methods.  
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Molecules A1 to A6 and B1to B3 were already present in the library, but the rest of the 
molecule structures were downloaded from PubChem127 and treated in the same way as the 
other compounds in VSL-1, as explained in section 3.3.1. Molecule E1 is the natural product 
staurosporine, and E2 and E3 are derivatives of it. 
 
 

Molecule Name  Reference  In VSL-1  
A1, A2, A3, A4, A5, A6 Foloppe et. al.115 Yes 
B1, B2, B3 Foloppe et. al.111 Yes 
B4, B5, B6, B7 Foloppe et. al.111 No 
C1, C2, C3 Foloppe et. al.117 No 
D1, D2 Lyne et. al.112 No 
E1, E2, E3 Zhao et. al.126 No 

Table 2: The references for the molecules chosen for testing the methods. 
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Figure 7: Known actives of Chk1. 
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3.3.3. Consensus Scoring  
 
In this study, a given ligand-receptor complex produced by AutoDock 4.0 or AutoDock Vina 
was re-scored using D-Score, PMFScore, ChemScore and G-Score with the CSCORE 
program of SYBYL-X. CSCORE program requires MOL2 files, however AutoDock 4.0 and 
AutoDock Vina output PDBQT files. Direct file format conversion is problematic because of 
different atom type identifiers and atom orderings used by these two file formats. Therefore, 
we wrote a small script that orders the atoms of the ligands as in the MOL2 files of the ligand 
library and takes the corresponding docked atomic coordinates from the PDBQT files created 
by AutoDock. This way, we created proper MOL2 files with correct atom types, bonds and 
bond types, avoiding error-prone format conversion. Hydrogen atoms that were missing in the 
created MOL2 files because of AutoDock’s united-atom approach were added using 
SYBYL’s FILLVALENCE function. The four scores produced by CSCORE were combined 
with the score obtained with docking. However, instead of CSCORE’s rank-by-vote 
consensus scoring approach, a modified rank-by-number approach was used to combine these 
five scoring functions. For each scoring function, all scores were normalized to values 
between 0 and 1 (0 representing the most favorable compound, 1 representing the least 
favorable one by each scoring function), such that they were on the same scale and therefore 
comparable. Two different normalization procedures were implemented. The first one was 
applied to all scores of all docked ligands. The second one was applied after truncating the 
0.5% most poorly scoring molecules for each scoring function by directly assigning 1 as their 
normalized scores. In other words, in the second procedure 99.5% of the scores were 
normalized after the deletion of the poorly scoring 0.5% part. 
The normalized score of compound i with scoring function F, Scut-off,F(i), was thus defined as, 
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where EF(i) is the score of compound i (the best pose given by docking) with scoring function 
F, Emin,F is the lowest (best) score obtained with the scoring function F and Ecut-off,F is the 
value of the first score falling above the cut-off% of the scores obtained with function F. This 
equation defines both normalization procedures, with or without truncation. In the first 
normalization procedure, applied to all scores of all docked ligands, setting the truncation cut-
off to 100% implies no truncation. As already mentioned, in the second procedure the cut-off 
was set to 99.5%. 
To obtain a consensus score over all scoring functions we summed all normalized scores for a 
given compound, yielding the “normalized consensus score”. The normalized consensus score 
of compound i, NCScut-off(i), is thus defined as Equation 11: 
 

Equation 11 
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The compound with the smallest normalized consensus score is taken as the best binder. 
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3.4.  Methods For The Three-Step Docking Approach 
 

This section elaborates on the methodologies used only in the three-step docking approach. 
The docking part of the approach consists of three runs; i) a first rapid docking step, ii) a 
second docking step, the exhaustiveness of which is decided according to the number of 
rotatable bonds of the docked molecule, and iii) a very thorough third step. At the end of each 
step, the molecules are ranked according to their consensus scores and only a fraction goes 
through the next step of dockings. 
 
 

3.4.1. Parameter Calibration For Docking With The Sample Protein 
 
The process of docking with AutoDock 4.0 can be divided roughly into three main steps: 
preparation of grid files and calculation of atom types for each ligand, the assignment of 
genetic algorithm docking parameters, and the docking simulation itself. The results depend 
on an appropriate choice of parameters for the docking procedure. With the aim of automating 
the parameter assignment for the second step of this approach according to the number of 
rotatable bonds of the ligand to be docked, we decided to choose human eNOS as sample 
protein. 
 
Preparation of grid files and calculation of atom types for each ligand 
In the AutoDock 4.0 docking algorithm, the interaction between a putative (probe) ligand 
atom and the receptor’s binding site is pre-calculated and given as a set of grid-based potential 
energy files called 'gridmaps'. Each of these gridmap files is specific for a given atom type. If 
an atom type in the ligand is absent in the gridmap file, it is not included in the interaction 
calculation with the receptor atoms. Therefore, the gridmap files should be prepared specific 
for each ligand, covering all atom types. However, when screening a library that contains 
almost two million molecules, calculating the gridmap files for each ligand is computationally 
very costly. In addition, almost all ligands contain the atom types C, N and O, and calculating 
gridmaps for these atoms for each ligand is therefore redundant. To overcome this 
inefficiency and redundancy, and to decrease the time needed, we calculated the interaction 
grids for all possible atom types and used the potential gridmap files created uniquely for the 
receptor. To this end, a grid with 58 x 54 x 60 points and a default spacing of 0.375 Å was 
centered at the binding site of the chain A of the protein. 
 
Assignment of genetic algorithm docking parameters using the sample protein 
In the Lamarckian genetic algorithm implemented in AutoDock, the key parameters are the 
number of docking runs, the maximum number of generations and the maximum number of 
energy evaluations. As these numbers increase, the accuracy of the docking procedure 
increases, as does the computational effort. 
To find out the optimal parameters for each ligand, two docking experiments were done with 
eNOS. First, all molecules in the library were docked to the protein and the results were 
ranked according to their binding free energy calculated by AutoDock 4.0. In a second step, 
1000 molecules were chosen as a sample set and re-docked to the receptor protein with 
different combinations of docking parameters to find out which parameter sets to be used 
according to the number of rotatable bonds of the small molecules. 
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In the first docking experiment, all the molecules in VSL-1 were docked within the grid 
centered on the binding site of eNOS with 10 docking runs per compound and the maximum 
number of generations and energy evaluations set to 27,000 and 250,000, respectively. These 
parameters correspond to a very rapid virtual screening done to differentiate possible hits with 
negative binding free energies from molecules that are not viable. At the end of the docking 
simulations, the minimum-energy pose of each docked ligand was taken and ranked according 
to its calculated binding free energy. 
From the ranked ligands, we chose a sample set of 1000 molecules. To define this set, we first 
divided the energy space spanned by all molecules into two: molecules with positive binding 
free energy and molecules with negative binding free energy. For the positive part, the first 
100 and the last 100 molecules were taken. The negative energy space was divided into eight 
parts and 100 molecules from each part were selected. Thus, the test set contained 1000 
molecules: 200 molecules from the positive energy space and 800 molecules from the 
negative energy space. This set was chosen with the aim to span the energy space obtained 
with the whole library, thus being a representative set for the whole library. The second 
docking experiment was done only with this sample set. 
In the second round of dockings for parameter assignment, sets of different values for each 
parameter of the genetic algorithm were used (Table 3). The values were 10 and 100 for the 
number of docking runs, 250,000, 500,000, 1,000,000 and 2,500,000 for the maximum 
number of energy evaluations, and 10,000 and 27,000 for the maximum number of 
generations. Each of the 1000 selected molecules was docked with all possible combinations 
of these parameters, resulting in 16 different docking simulations per ligand. 
 

ga_run  num_eval  num_gen  
10 250.000 10.000 

100 500.000 27.000 
 1.000.000  
 2.500.000  

Table 3: Parameter values used for docking of the test set of molecules to human eNOS. 
 
 
We divided the test set into four groups according to the number of rotatable bonds of the 
molecules (Table 4) and calculated the error in the resulting binding free energy for each 
group and for the different parameter sets, taking as reference value the one obtained with the 
most thorough parameter combination. The aim of this step is to determine the correlation 
between the number of rotatable bonds of a molecule and the parameters to be used for an 
efficient docking that molecule. Docking each one of the molecules in the test set to the target 
protein's binding site using 16 different parameter sets revealed, as expected, that molecules 
with fewer number of rotatable bonds can be correctly docked with a faster docking, i.e., 
using smaller values for the maximum number of energy evaluations and the number of 
docking runs. On the other end, molecules with several rotatable bonds require relatively large 
values for the maximum number of energy calculations and the number of docking runs.  
 

Molecule Groups  Description  
Group 1 Molecules with 0 or 1 rotatable bond 
Group 2 Molecules with 2 or 3 rotatable bonds 
Group 3 Molecules with 4 or 5 rotatable bonds 
Group 4 Molecules with more than 5 rotatable bonds 

Table 4: Molecule groups divided according to the number of rotatable bonds. 
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We assumed the results with the most thorough parameter combination (ga_run:100, 
num_evals:2.500.000 and num_gen:27.000) were the most accurate and calculated their 
differences in energy with the remaining 15 docking results using alternative parameter sets, 
to obtain an error value for each parameter set and molecule group. According to this, the 
final parameter set-molecule group coupling was (Figure 8): 
 

• For molecules with 0 or 1 rotatable bond (Group 1): (ga_run=10, num_eval=250.000, 
num_gen=27.000). 

• For molecules with 2 or 3 rotatable bonds: (ga_run=10, num_eval=500.000, 
num_gen=27.000).

• For molecules with 4 or 5 rotatable bonds: (ga_run=10, num_eval=1.000.000, 
num_gen=27.000). 

• For molecules with more than 5 rotatable bonds: (ga_run=10, num_eval=2.500.000, 
num_gen=27.000). 

 

 
Figure 8: The energy differences between group parameter sets and the reference set. a) Energy difference 
between docking simulations with the Group1 parameter set (ga_run: 10, num_eval: 250.000, num_gen: 27.000) 
and the most thorough parameter set (ga_run: 100, num_eval:2.500.000, num_gen: 27.000). The docking done 
with the Group1 parameter set is approximately 100 times faster than the docking done with the thorough 
parameter set. The highlighted part contains molecules from Group1. In this figure, it is seen that using this 
parameter set would cause the molecules from groups 3 and 4 to be poorly scored. b) Energy difference between 
docking simulations with the Group2 parameter set (ga_run: 10, num_eval: 500.000, num_gen: 27.000) and the 
most thorough parameter set. The docking done with the Group2 parameter set is approximately 50 times faster 
than the docking done with the thorough parameter set. The highlighted part contains molecules from Group2. c) 
Energy difference between docking simulations with the Group3 parameter set (ga_run: 10, num_eval: 
1.000.000, num_gen: 27.000) and the most thorough parameter set. The docking done with the Group3 
parameter set is approximately 25 times faster than the docking done with the thorough parameter set. The 
highlighted part contains molecules from Group3. d) Energy difference between docking simulations with the 
Group4 parameter set (ga_run: 10, num_eval: 2.500.000, num_gen: 27.000) and the most thorough parameter 
set. The docking done with the Group4 parameter set is approximately 10 times faster than the docking done 
with the thorough parameter set. The highlighted part contains molecules from Group4. 
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3.4.2. The Size Filter 
 

Before the computationally expensive docking experiments, it is a good idea to filter out in a 
fast and simple way the molecules that cannot fit in the binding site. Thus, we filtered our 
library of small molecules according to size; we calculated the diameter of the binding site 
and filtered out the molecules whose length is larger than 1.5 times the binding site diameter. 
The cut-off size corresponding to the benchmark protein (Chk1) was calculated to be 19 Å 
and applied to the ligand configurations present in the library (excluding non-polar 
hydrogens). However, since the binding site of Chk1 is rather large (Figure 6), the size filter 
couldn’t reduce the number of molecules effectively in this case. The VSL-1 library was 
reduced to 1,918,830 molecules from 1,961,165 after the application of this size filter. 
 
 

3.4.3. Docking Experiments For The Three-Step Docking Approach 

 
All three docking steps took place on a grid centered on the ligand binding site of Chk1 with 
58 x 60 x 48 points and 0,375 Å spacing, prepared with MGLTools 1.5.4 of AutoDock 4.0. 
The grid was made large enough to include the binding site residues and the buried pocket. 
The same gridmaps were used for all docking steps done with AutoDock 4.0. 
We integrated parameter-set and molecule-group coupling into an automated docking process, 
namely the three-step docking approach (Figure 9). Prior to the computation-intensive 
docking experiments, we filtered the library of small molecules according to size, by 
excluding the molecules whose lengths were more than 1.5 times the binding site diameter. 
Later, this filtered library was docked to the receptor protein with the same parameter set 
(ga_run:10, num_eval:250.000 and num_gen: 27.000) for all groups of molecules. The 
parameter set for the first docking step corresponds to a very rapid docking, performed to 
differentiate the molecules that score really poorly and exclude them from further steps. 
All the molecules from the first step were ranked according to their normalized consensus 
scores and the best scoring 60000 were selected for the second step of dockings. This was 
performed with parameters determined according to the number of rotatable bonds of the 
compounds, calibrated previously with the parameter set testing (see section 3.4.1). The only 
differing parameter is num_evals; ga_run and num_gen are fixed to 10 and 27.000, 
respectively. 
For the third step, again the conformations resulting from the second step were scored with 
five different scoring functions and their normalized consensus scores were calculated. The 
best 1000 were chosen for a very thorough docking procedure with parameters ga_run:100, 
num_evals:2.500.000 and num_gen: 27.000. 
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Figure 9: The flowchart summarizing the three-step docking algorithm. First the library of small molecules is 
filtered according to size and then all the molecules that pass the filter are docked to the protein with the rapid 
first docking step. Then energies of the poses are calculated by different scoring functions and the different 
scores are combined to a single score with consensus scoring. The molecules ranking at the top after consensus 
scoring are chosen for a second step of docking, however this time the exhaustiveness of docking is decided 
based on the number of rotatable bonds of the molecule. At the end of the second round of docking, energy 
calculations and consensus scoring are done again to select the final set of molecules that will undergo a third 
round of docking, which is done very thoroughly. A final step of energy calculation and consensus scoring is 
done to find the final ranking of the molecules. 
 
 

3.5. Methods For The Hybrid Approach 
 

The hybrid approach integrates pharmacophore filtering instead of a size filter and reduces the 
number of docking steps to only one because pharmacophore filtering prunes the libraries to a 
larger extent than the size filter (Figure 10). For the hybrid approach, the same molecule 
libraries and the structure of 1IA8 used for the three-step docking method were used (section 
3.3.1). However, for the docking part of the hybrid approach AutoDock Vina was used 
instead of AutoDock 4.0. Consensus scoring was done in the same manner as for the three-
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step docking with the only difference being that the binding free energies of the ligands are 
calculated with AutoDock Vina instead of AutoDock 4.0. 
 
 

 
Figure 10: The flowchart summarizing the hybrid method. First the library of small molecules is filtered with a 
pharmacophore filter and then all the molecules that pass the filter are docked to the protein with AutoDock 
Vina. Then energies of the poses are calculated by different scoring functions and the different scores are 
combined to a single score with consensus scoring. The molecules are ranked according to this normalized 
consensus score, and the top-ranking molecules are chosen to be the leads. 
 
 

3.5.1. Pharmacophore Filtering 
 
One of the differing parts between the three-step docking and the hybrid approaches is the use 
of pharmacophore filters and searches. We used two separate pharmacophore filters to reduce 
the number of molecules that would go under docking. Pharmacophore filters are more 
specific than the size filters and can weed out molecules that are not chemically or sterically 
compatible with the binding site. 
The first pharmacophore filter was prepared with features only from the binding site of Chk1 
(Figure 11). A hydrogen bond donor site with a van der Waals tolerance of 1 Å was placed on 
the nitrogen of the Cys87, requiring a hydrogen bond acceptor atom with a 1.5 Å van der 
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Waals tolerance on the candidate ligand. The other pharmacophoric feature added was a 
hydrogen bond acceptor site with a 1 Å tolerance on the side chain oxygen of Asn135. This 
acceptor site required a hydrogen bond donor atom with a 1.5 Å tolerance on the candidate 
ligand. The remaining binding site residues were added as excluded volumes with a scaling 
factor of 0.25 for van der Waals atom radii. 4 of the 21 known ligands passed this filter: A4, 
B4, D1 and D2. The library was reduced to 65671 molecules from 1.96 million with this 
filter.  
 
 

 
Figure 11: The pharmacophore filter created from Chk1 binding site residues Cys87 and Asn135 (excluded 
volumes not shown).  
 
 
The second pharmacophore filter was prepared with features taken from 3 of the known 
ligands—the natural products E1, E2 and E3—and the receptor binding site constraint (Figure 
12). The docked conformations of these three ligands output by AutoDock Vina were 
superimposed and the properties common to all three were chosen to be present in the 
pharmacophore filter. A hydrophobic and aromatic center was defined since all three 
molecules have 5 rings in a planar structure. The van der Waals tolerance for this hydrophobic 
and aromatic center was 0.5 Å. A hydrogen bond donor atom feature with 0.5 Å tolerance, 
needing a hydrogen bond acceptor site with 0.5 Å tolerance on the protein, was also located in 
the query. Finally, a hydrogen bond acceptor atom with 0.5 Å tolerance, binding to the protein 
hydrogen bond donor site with 0.5 Å tolerance, was also defined. The only pharmacophoric 
features added on the sole basis of the binding site characteristics were the excluded volumes, 
derived from the binding site residues and scaled with a factor 0.25. The library was reduced 
to 172339 molecules while 5 of 21 known ligands passed the filter: A3, A5, E1, E2 and E3. 
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Figure 12: The pharmacophore filter created from three known binders of Chk1. In the figure only molecule E1 
(staurosporine) is shown for clarity (excluded volumes not shown). 
 
 

3.5.2. Docking With Autodock Vina For The Hybrid Method 

 
For both sets of molecules that passed the two filters, the same docking procedure was 
applied. The molecules that passed the pharmacophore filters were docked to the Chk1 
binding site using a grid with dimensions 22 x 22 x 20 Å and 1 Å spacing. The center of the 
grid was decided based on the grid center used in section 3.4.3, however some small location 
changes were done in a way to include all pharmacophoric features. An exhaustiveness 
parameter of 8 was used for the docking experiments, generating 9 different poses per 
compound with a maximum energy difference between the best and worst displayed binding 
modes of 3 kcal/mol. For each compound, the pose with the lowest calculated binding free 
energy was saved for consensus scoring. 
 
 

3.6. Results And Discussion 
 
The size filter applied in the three-step docking procedure was not very successful at reducing 
the number of molecules for docking. This resulted in a long computation process followed by 
inefficient ranking. After the first docking step the normalized energy values for each scoring 
function show a sigmoidal pattern, as expected. However, all the plots are rather flat in the 
middle region because the number of molecules docked at the first docking step of the three-
step docking procedure was very high, making the ranking difficult (Figure 13). As a result, a 
small decimal change can cause a molecule to rank much better or much worse. The size cut-
off was not very strict and was chosen in relation to potential large binders, however it wasn’t 
very effective due to the large size of the binding site. Truncating the 0.5% of the poor scoring 
ends from all scoring functions helped weed out the outliers, making the distinction between 
poorly-docked and well-docked molecules more emphasized (Figure 14). 
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Figure 13: Normalized scores after the first docking step of the three-step docking approach before 0.5 % 
truncation. 
 
 

 
Figure 14: Normalized scores after the first docking step of the three-step docking approach after 0.5 % 
truncation. 



 46 

Truncating the 0.5% of the poorly scoring molecules also affected the ranking of the known 
molecules. Table 5 shows the consensus score rank percentages of the known molecules with 
0.5% truncation and without any truncation at the end of the first docking step. Even though 
the rankings for most of the molecules (A1-A6, B1-B4 and B6-B7, C1-C3 and D1-D2) are 
better without the truncation, the differences are too small to have any significant impact on 
the overall ranking. On the other hand 0.5% truncation boosted the rankings of molecules E1, 
E2 and E3 significantly: E1 increased from being in the 17,9% to being in the 3,8%, E2 
increased from 67% to 26% and E3 increased from 8,2% to 6,9%. Therefore, we decided to 
calculate consensus scores with 0.5% truncation for all the molecules in the procedure. 
 
 

Molecule 
Rank Percentage (%) 
(truncation = 0.5%) 

Rank Percentage (%) 
(no truncation ) 

A1 97,5 97,3 
A2 28,6 25,7 
A3 82,1 79,9 
A4 92,2 92,3 
A5 98,8 99,4 
A6 73,8 73,8 
B1 88,1 87,8 
B2 38,5 36,8 
B3 83,7 83,6 
B4 88,7 85,9 
B5 77,7 77,9 
B6 69,7 68,2 
B7 88,3 86,7 
C1 62,2 56,9 
C2 37,9 35,2 
C3 96,4 96,1 
D1 78,5 71,6 
D2 1,6 1,2 
E1 3,8 17,9 
E2 26 67 
E3 6,9 8,2 

Table 5: Relative ranking of known molecules with 0.5% truncation and without any truncation.  
 
 
Consensus scoring was applied with the aim to improve ranking of the docked compounds. 
However, after 0.5 % truncation, the ranks of the known molecules according to their 
normalized consensus scores at the end of first step of docking were not as good as ranking 
only according to AutoDock energy values (Table 6). All molecules except for A5 and D2 
ranked considerably better according to the AutoDock scoring function than the normalized 
consensus scoring. Even though the natural product staurosporine (E1) was able to make it to 
the second step according to the consensus scoring ranking, its rank based only on the 
AutoDock score was significantly better. Since only the molecules ranking in the top 60000 
according to consensus scoring would follow to the second step of dockings, only D2 and E1 
could make it in this case to the next step, out of 21 known binders. At the end of the second 
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step neither D2 nor E1 ranked in the top 1000 molecules, and therefore they couldn’t proceed 
to the last step of docking. 
 
 

Molecule 

Rank at the end of step 
1 

(Consensus scoring 
rank) 

Rank at the end of 
step 1 

(AutoDock rank) 
A1 1861886 1164637 
A2 547653 107788 
A3 1568588 1014641 
A4 1760642 488160 
A5 1887872 1885793 
A6 1409438 860288 
B1 1682831 995741 
B2 736470 397051 
B3 1599758 1538699 
B4 1694189 941281 
B5 1484617 949626 
B6 1332098 745930 
B7 1687037 908304 
C1 1188475 228108 
C2 724956 565467 
C3 1841950 661120 
D1 1500033 1040968 
D2 31500 228107 
E1 73088 641 
E2 497492 27882 
E3 132120 57471 

Table 6: Ranks of known ligands at the end of the first docking step. Both consensus scoring and AutoDock 
scoring function ranks are the values after 0.5% truncation of the poor-scoring molecules. 
 
 
The integration of pharmacophore models clearly improved the results. Both pharmacophore 
filters managed to reduce the number of molecules for docking quite efficiently, thus one step 
of dockings was enough. Even though the number of known ligands that passed the filter was 
low in both cases —4 and 5 for the first and second pharmacophore filters respectively—the 
ranks based on consensus scoring were better than the ranks from the three-step docking 
approach (Table 7 and Table 8). 
The first pharmacophore filter let only molecules A4, B4, D1 and D2, and their consensus 
scoring ranking after 0.5% truncation is better than their three-step docking ranking, although 
not as good as their ranks based on AutoDock Vina scoring (Table 7).  
 

Molecule 
Rank after docking 

(Consensus Scoring) 
Rank after docking 

(Vina Rank) 
A4 59025 25989 
B4 24989 17062 
D1 45880 32264 
D2 4024 659 
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Table 7: Ranks of known ligands that passed the first pharmacophore filter. Both consensus scoring and 
AutoDock scoring function ranks are the values after 0.5% truncation of the poor-scoring molecules. 
 
The molecules that passed the second pharmacophore filter, created from the known 
molecules, were A3, A5, E1, E2 and E3. All these molecules ranked better with the hybrid 
approach than with the three-step docking approach. While in the case of molecules A3 and 
A5 big differences were not observed between consensus scoring rank and AutoDock Vina 
ranks; molecules E1, E2 and E3 ranked significantly better when only the AutoDock Vina 
scoring function was evaluated (Table 8). Even though the pharmacophore filter was created 
from these three natural molecules, the docking and scoring parts are completely independent 
from the pharmacophore model creation and the good docking results of E1, E2 and E3 are 
not direct results of the pharmacophore filter. However, the good docking results suggest an 
effective filtering of the small molecule library by the pharmacophore filter and an efficient 
differentiation of false positives from the true positives.  
 
 

Molecule Rank after docking 
(Consensus Scoring) 

Rank after docking 
(Vina Rank) 

A3 158424 161868 
A5 170758 171777 
E1 3346 231 
E2 8583 7 
E3 967 408 

Table 8: Ranks of known ligands that passed the second pharmacophore filter. Both consensus scoring and 
AutoDock scoring function ranks are the values after 0.5% truncation of the poor-scoring molecules. 
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Figure 15: Docked conformations of the known ligands that passed the first pharmacophore filter.  
 
 
When docked conformations of the molecules that passed the first pharmacophore filter are 
analyzed after docking (Figure 15), it is seen that only A4 satisfies the requirements of the 
pharmacophore filter: hydrogen bonding to Cys87 and Asn135. However, both B4 and D2 
make hydrogen bonds with the other residues: B4 with Lys38 and Asp148, D2 with Glu134 
and Ser147. The only molecule lacking any hydrogen bonds with the target protein in the 
docked pose is D1. 
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Figure 16: Docked conformations of the known ligands that passed the second pharmacophore filter. 
 
 
The molecules that passed the second pharmacophore filter make hydrogen bonds to Cys87 
when docked with AutoDock Vina (Figure 16). A3 makes one hydrogen bond to Cys87, two 
hydrogen bonds to Asn135 and one to Ser147. A5 binds to Lys38, Glu85 and Cys87. Since 
E3 and E2 are derivatives of E1, it is not surprising that all three of them were docked in 
similar poses. They all make hydrogen bonds with Glu85 and Cys87, and E1 makes an 
additional bond with Glu91. 

3.7. Conclusion 
 
A complex problem like drug discovery needs solutions based on integrated approaches. In 
this study, we suggested an approach to high-throughput docking and combined it with a 
consensus scoring methodology we developed. In a first approach, the only criterion for the 
ligand-target complementarity was the size of the binding site and the ligands. However, 
when virtually screening large compound libraries, chemical and steric properties of the target 
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protein and the ligands should be taken into account and more solid properties defining 
ligand-target complementarity should be chosen for a directed screening. The three-step 
docking approach also proved that a more sophisticated and directed approach was needed, as 
only 2 of the 21 known ligands were ranked in positions that would be saved for the next 
round after the first docking step. Therefore, pharmacophore models were integrated to the 
methodology and the approach evolved to a hybrid method. The pharmacophore models 
managed to reduce the library size very efficiently, weeding out potential false positives. The 
hybrid approach was also successful at finding out the known ligands among almost 2000000 
compounds. 
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4. The Computational Workflow 
 
We developed a computational workflow for virtual screening and applied it to two proteins 
that are suggested to take part in the complex neurobiological mechanisms involved in 
Alzheimer's Disease128, human T-protein129 and human bleomycin hydrolase130, and to acid-
beta glucosidase131, involved in Gaucher’s Disease pathology. The workflow includes i) 
pharmacophore creation from either the target protein or the known active ligand or from 
both, ii) pharmacophore filtering to reduce the size of the library, iii) molecular docking of the 
filtered compounds to the target's binding site, iv) scoring the bound poses with different 
scoring functions, and v) running two sets of molecular dynamics simulations on a smaller 
selected subset of compounds to predict their binding free energy to the target protein by the 
LIE method. 
 
 

4.1. Biological Background 
 
This section gives information about the structural properties of the target proteins used for 
this part of the study and their mode of action. 
 
 

4.1.1. Human T-Protein 
 
Human T-protein is a component of the glycine cleavage system (GCS) and works in 
catalyzing the degradation of glycine.132,133 A defect in any component of the GCS can 
abolish the overall activity of this system, resulting in elevated levels of glycine in blood and 
cerebrospinal fluid and leading to non-ketotic hyperglycinemia.134,135,136,137,138,139  
Along with human T-protein, 3 more proteins are involved in GCS: P, L and H proteins 
(Figure 17). Glycine cleavage by GCS starts with P-protein catalyzing the decarboxylation of 
glycine, releasing CO2. As a result, the aminomethylane group binds to the H-protein. H-
protein carries decarboxylated glycine to the T-protein. The T-protein has two binding sites: 
one for the lipoamide and one for folate. It catalyzes the transfer of a methylene carbon unit 
from already decarboxylated glycine attached to the lipoate cofactor of H-protein in the 
lipoamide binding site to the H4folate in the folate binding site, releasing ammonia and 
reducing the H-protein as a result. The reduced H-protein is then re-oxidized by the L-protein 
in a reaction that utilizes NAD+ and produces NADH to complete the cycle. 
The T-protein’s ammonia-releasing step of this mechanism may be directly linked to steady-
state levels of brain ammonia, which has led to an ammonia hypothesis of Alzheimer's 
Disease.140 In addition, various studies showed that glycine is needed for proper functioning 
of NMDA receptors.141,142,143,144 Changes in glycine binding to the glycine recognition sites on 
NMDA receptors lead to psychosis, depression and anxiety, a set of symptoms that are 
common to Alzheimer's disease, and inhibitors of GCS have been proposed as potential 
antipsychotics.145,146  
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Figure 17: Glycine cleavage system mechanism. Human T-protein works with H, L and P proteins for 
degradation of glycine (Figure taken from Douce et.al.147). 
 

 

4.1.2. Human Bleomycin Hydrolase 
 
Human bleomycin hydrolase is a papain superfamily cysteine protease that has the signature 
active site residues of this family and acts as an aminopeptidase with broad substrate 
specificity.148,149,150,151,152 The cysteine protease mechanism of peptide bond cleavage is well 
defined and involves a series of steps that starts with the deprotonation of the thiol of Cys by 
the His side chain, which is oriented by Asn to allow this protonation. Anionic Cys sulphur 
makes a nucleophilic attack on the substrate carbonyl atom, releasing the amino terminus of 
the substrate and changing the His back to its deprotonated form. The intermediary bond 
linking the carboxy terminus to Cys is broken by hydrolysis to release the carboxy terminus of 
the substrate and to restore the enzyme back to its free form (Figure 18).  
Since it deactivates the cancer therapeutic bleomycin, bleomycin hydrolase is thought to be 
the major cause of tumor cell resistance to bleomycin chemotherapy.153 Even though 
bleomycin hydrolase was discovered because of its ability to detoxify bleomycin, the 
abundance of its homologs in different tissues of different organisms and the evolutionary 
conservation of the active residues propose a currently undiscovered cellular function.130 
Human bleomycin hydrolase has been shown to interact with human ribosomal proteins154, 
ubiquitin-conjugating enzyme 9155 and amyloid precursor protein156. Amyloid precursor 
protein is the source of β-amyloid peptides that aggregate creating amyloid plaques of 
sporadic and familial cases of Alzheimer's Disease.157 Various studies have indicated the 
presence of bleomycin hydrolase in dystropic neurites of amyloid plaques and proven its 
presence in the processing of the amyloid precursor protein.158,159 No specific inhibitor for 
Human bleomycin is known, however, the protein is inhibited irreversibly by covalent 
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binding of the cysteine protease specific inhibitor trans-epoxysuccinyl-L-leucylamido(4-
guanidino)butane (E64)149. 
 
 

 
Figure 18: Cysteine protease mechanism of peptide bond cleavage.  The same mode of action is observed for 
human bleomycin hydrolase. All cysteine proteases have the same catalytic residues: Cys, His and Asn (Figure 
taken from http://en.wikipedia.org/wiki/Cysteine_protease). 
 
 

4.1.3. Human Acid β-Glucosidase  
 
Several sporadic and genetic diseases are caused by protein misfolding.160 Gaucher's Disease 
(GD) is a lysosomal storage disease caused by mutations in the gene (GBA) encoding acid β-
glucosidase (GCase) that cause the protein not to fold into the stable form.161,162,163 The 
disease manifests itself with symptoms like enlarged spleen and liver, liver failure, skeletal 
and bone disorders, anemia and in severe cases central nervous system (CNS) disorders. 
Mutations in GCase disrupt the degradation of glucosylceramide into glucose and ceramide 
resulting in accumulation of glucosylceramide in the lysosomes, causing Gaucher's Disease. 
Even though there are over 250 mutations related to GBA, the disease provoking mutations 
are a few prominent ones.164 
GD related mutations either reduce the catalytic activity of GCase or cause a loss of protein 
stability during synthesis.165,166 However; of all these GCase mutations, the ones that cause 
reduced protein stability, and therefore misfolding inside the endoplasmic reticulum, are the 
main reasons for GD.167 Mutant GCase is mostly broken down by endoplasmic reticulum 
associated degradation (ERAD) due to misfolding and cannot be trafficked to the lysosome 
even though the remaining fractional activity of mutant GCase is still enough to hydrolyze 
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glucosylceramide.167 It has been shown that mutant GCase is almost as stable as the wild type 
in the acidic environment of lysosomes while it displays reduced stability in the neutral 
environment of the ER.168 
There are two different types of treatment available for GD: enzyme replacement 
therapy169,170 (ERT) with recombinant human GCase or substrate reduction therapy171 (SRT) 
with N-butyldeoxynojirimycin172. Both therapies aim to reduce the glucosylceramide stock in 
the lysosome, thus treating the maladies caused by its accumulation.173 However, costly and 
life-long treatment with ERT and the abundance of side effects of SRT make it necessary to 
seek new therapeutic approaches.173 
Small molecules that bind to misfolded proteins and guide them to correct folding by 
stabilizing the native state of these mutant proteins are called “pharmacological chaperones” 
and they have been proposed as new methods for treatment of GD and other protein-
misfolding diseases.174  
In the case of GCase, these pharmacological chaperones are competitive inhibitors of the 
protein and bind to the mutant GCase in the ER.175 Newly synthesized GCase is translocated 
into the endoplasmic reticulum, where molecular chaperones facilitate its proper folding. The 
molecular chaperones then dissociate from the folded enzyme, which moves to the Golgi 
apparatus and then to lysosomes, where the enzyme is stable and active in the acidic 
environment of these organelles. In the case of a mutation, misfolded GCase molecules are 
degraded in the endoplasmic reticulum by ERAD. However, certain missense mutations 
decrease the stability of the enzyme, but the conformation of the active site is retained. Most 
of this type of mutant enzyme may be stabilized by pharmacological chaperones that bind to 
the active site of the enzyme, promote folding, and stabilize the mutant enzyme. Some of the 
enzyme then reaches the lysosomes, where it retains low levels of activity. In the lysosomes, 
the accumulated substrates displace the pharmacological chaperones and are hydrolyzed by 
the enzyme. Molecules like N-nonyl-deoxynojirimycin175, N-octyl-β-valienamine176, the 
iminosugar isofagomine177,178 and ambroxol179 have been shown to increase lysosomal GCase 
activity. The concept of pharmacological chaperoning makes it possible that orally 
administered small molecules substitute intravenous enzyme replacement therapy as the 
standard treatment for GD and other lysosomal storage diseases.174 
 
 

4.2. Methods 
 
This section elaborates on the details of the methods employed at different steps of the 
computational workflow created. Since the workflow is a cascade of steps, the output of one 
step is the input for the following. Here we focus on the details of the preparation of the small 
molecule libraries and the target proteins, pharmacophore filter creation and pharmacophore 
searches, docking, consensus scoring and binding free energy calculation using the LIE 
method. 
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4.2.1. Preparation Of Small Molecule Libraries And The Target Proteins: 
 
The small molecule libraries: 
For this part of the work we used two small molecule libraries: VSL-1 and VSL-2. VSL-2 is 
an update of VSL-1 in the sense that it contains some additional vendors, and that the 
availability of each compound was re-checked and compounds no longer available were 
removed. VSL-2 was prepared in the same manner as VSL-1, as explained in section 3.3.1. 
VSL-1 contains 1,961,165 and VSL-2 contains 2,157,575 compounds. We used VSL-1 for 
screening against human T-protein, and VSL-2 for screening against human bleomycin 
hydrolase and GCase. 
 
The target proteins: 
The human T-protein structure, with PDB id 1WSV129, is dimeric. However Okamura-Ikeda 
et.al. mentioned that dimer formation may be the result of crystal contacts. Therefore, the 
procedures were applied on only one chain. We also used only one chain of the homohexamer 
human bleomycin hydrolase (PDB id 1CB5130). The GCase structure used for virtual 
screening, with PDB id 2NSX, has four chains and the competitive inhibitor isofagomine 
(IFG) bound.131 For this study, only chain B of 2NSX was used. 
All proteins were pre-processed with the Biopolymer module of SYBYL-X by Tripos34 before 
docking: bound ligands in case of human T-protein and GCase and water molecules were 
removed, hydrogens and charges (AMBER7_F99 charge set) were added. For each target, a 
short minimization using the AMBER7_F99 force field with the Powell method and 
termination after 500 iterations was done. These pre-processed structures were used as input 
for pharmacophore modeling with UNITY, docking with AutoDock Vina and consensus 
scoring with CSCORE87,34. However, for AutoDock Vina’s file format PDBQT, the charges 
were replaced with Gasteiger charges125 and non-polar hydrogens were merged. 
 
 

4.2.2. Pharmacophore Creation And Search 
 
In this study, the UNITY tool from SYBYL-X was used to create pharmacophore queries and 
to perform 3D flexible database searches for these queries. Unlike a static 3D search, a 3D 
flexible search does not restrict the search to the 3D conformations as stored in the database, 
but generates all feasible conformations giving out only the relevant ones to the query. 
 
The human T-protein 
The structure of T-protein has a folate substrate analog bound in the folate binding site with 
an extensive network of hydrogen bonding and hydrophobic interactions, fostering an 
abundance of pharmacophoric features. The binding site is a hydrophobic pocket deeply 
buried towards the core of the protein. The residues that contribute to hydrogen bonding are 
Val115, Glu204 and Arg233 (Figure 19). The side chain of Glu204 makes a double hydrogen 
bond to the folate analog, reproducing a common behavior of folate-dependent enzymes.129 
Therefore, we decided to use this property of making a double hydrogen bond for creating the 
pharmacophore filter, defining two hydrogen bond acceptor site features on the side chain of 
Glu204 that require two hydrogen bond donor atom features in the candidate ligand (Figure 
20). Even though the overall screening procedure is receptor-based, to make the 
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pharmacophore more specific the property of having an aromatic ring (van der Waals scaling 
factor of 2) and the directionality of hydrogen bonds were taken from the known ligand 
(Figure 20). Both hydrogen bond acceptor and donor features were defined with van der 
Waals tolerance of 1 Å. The filter was completed by adding the residues of the binding site 
and around as excluded volume, which represents the volume that cannot be occupied by the 
candidate ligands. However, the excluded volume spheres around each atom were scaled by 
0.25 to allow for flexibility on the candidate ligands.  
 
 

 
Figure 19: The binding site of human T-protein with the competitive inhibitor.  The hydrogen bonds to Leu88, 
Val115, Arg233 and the double hydrogen bond to Glu204 are shown as yellow dashed lines. 
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Figure 20: The pharmacophore filter created from the T-protein binding site residue Glu204 and from the 
known inhibitor. Two hydrogen bond acceptor site features on the side chain of Glu204 require two hydrogen 
bond donor atom features for the candidate ligand. Having an aromatic ring feature was added from the bound 
inhibitor (excluded volumes not shown). 
 
 
The human bleomycin hydrolase 
Human bleomycin hydrolase is a cysteine protease with a ring barrel structure that has the 
active residues Cys73, His372 and Asn396 embedded in the central cavity (Figure 21).130  
Preventing the deprotonation of Cys by His that starts the catalytic mechanism was the 
approach used for designing the pharmacophore filter. Therefore we defined a hydrogen bond 
donor site feature on Cys73 that would need a torus shaped hydrogen bond acceptor atom 
feature in the pharmacophore filter. Then a hydrogen bond acceptor site feature on His372 
that would need a hydrogen bond acceptor atom feature in the ligand was added to the filter 
(Figure 22). The directionality of the hydrogen between His372 and the candidate ligand was 
adjusted to be towards Cys73. Finally the excluded volume feature was added from the 
binding site residues. The tolerance, i.e. allowed deviation from coordinates to which the 
features are constrained, was 1 Å for all hydrogen bond acceptor and donor features, and the 
van der Waals scaling was 0.25 for the excluded volume features. Although the cysteine 
protease inhibitor E64 makes a covalent bond with the thiol of Cys, this information wasn't 
used for pharmacophore design, making the process strictly structure-based.
 
 



 61 

 
Figure 21: The binding site of human bleomycin hydrolase. The catalytic residues Gln67, Cys73, His372 and 
Asn396 are shown. 
 
 

 
Figure 22: The pharmacophore filter created from the bleomycin hydrolase binding catalytic site residues Cys73 
and His372 (excluded volumes not shown).  
 
 
The human acid β-glucosidase  
The PDB structure 2NSX has the competitive inhibitor IFG bound in the active site with an 
extensive network of hydrogen bonds. The imino group of IFG is stabilized by Glu235 and 
Glu340 while Asp127, Trp179, Trp381 and Asn396 interact with the hydroxyl groups of IFG 
(Figure 23).53 These interactions foster an abundance of pharmacophoric features both on the 
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protein binding site and the known ligand (Figure 23). We created two different 3D flexible 
pharmacophore filters to screen the small molecule library.  
 
 

 
Figure 23: Binding site of 2NSX and IFG. IFG is positioned making an extensive network of hydrogen bonds 
while interacting with Asp127, Trp179, Glu235, Glu340, Trp381 and Asn396. (Image taken from Farrell et. al. 
53) 
 
 
The first pharmacophore filter, pharma1 (Figure 24) was designed from the hydrogen bond 
between Glu340 and the imino group of the pyranose-like ring of IFG, and from the hydrogen 
bond between Asp127 and the hydroxyl group of IFG. A hydrogen bond acceptor site feature 
(tolerance=0.3 Å) was placed on the carbonyl oxygen atom of the carboxyl group of Glu340, 
requiring a hydrogen bond donor atom feature (tolerance=0.3 Å) in the pharmacophore query 
for the candidate ligand. This feature was defined from the protein binding site. On the other 
hand, the pharmacophoric feature for a hydrogen bond donor atom (tolerance=1 Å) on the 
candidate ligand was derived from the hydroxyl group of IFG, which makes a hydrogen bond 
with the carboxyl oxygen of Asp127 (tolerance=1 Å). Afterwards, pharma1 was completed 
by adding all binding site residues as excluded volume with the Van der Waals atom radius 
scaled by 0.25. Consequently, pharma1 consists of two hydrogen bond donor features, first 
requiring a hydrogen bond with Glu340 and second requiring a hydrogen bond with Asp127, 
and excluded volume features, representing the binding site. 
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Figure 24: The first pharmacophore filter (pharma1) designed for GCase. A hydrogen bond acceptor site 
feature was placed on Glu340, requiring a hydrogen bond donor atom feature on the candidate ligand. A 
hydrogen bond donor atom feature on the candidate ligand was derived from the hydroxyl group of IFG, 
hydrogen bonding with hydrogen bond acceptor atom feature on Asp127 (excluded volumes not shown). 
 
 
The features of the second pharmacophore, pharma2 (Figure 25) were mainly deduced from 
the known ligand, IFG. The hydrogen bonds between the imino group of IFG and Glu235 and 
Glu340, stabilizing the ring of IFG, composes the first part of pharma2. A hydrogen bond 
donor atom feature (tolerance=1 Å), making hydrogen bonds with hydrogen bond acceptor 
site features on Glu235 and Glu340 (tolerance=1 Å), was placed on the imino group of the 
pyranose-like ring. The second part of pharma2 was derived from the hydrogen bond 
between a hydroxyl oxygen of IFG and carboxyl oxygen of Asp127. A hydrogen bond donor 
atom feature (tolerance=1 Å) requiring a hydrogen bond acceptor site feature (tolerance=1 Å) 
on Asp127 was located on the corresponding hydroxyl oxygen of IFG. pharma2 was also 
finalized with the addition of excluded volume features as explained in pharma1. 
While the pharma1-filtered library was docked to GCase using AutoDock Vina and Surflex-
Dock, only AutoDock Vina was employed for docking of the pharma2-filtered library. 
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Figure 25: The second pharmacophore filter (pharma2) designed for GCase. A hydrogen bond donor atom 
feature making hydrogen bonds with hydrogen bond acceptor site features on Glu235 and Glu340 constructed 
the first part of the query. The second part of pharma2 was derived from the hydrogen bond between IFG and 
Asp127 (excluded volumes not shown). 
 
 

4.2.3. Docking The Pharmacophore-Filtered Libraries To The Targets 
 
Molecular docking was done to predict the optimum non-covalent binding of the ligands in 
the receptor binding sites and their corresponding binding affinities. For high throughput 
docking of the library to each protein target, AutoDock Vina was used. Even though 
AutoDock Vina allows flexibility on protein residue side chains, we left the target binding 
sites rigid in our study. 
 
Human T-protein and Human Bleomycin Hydrolase 
For human T-protein, the molecules that passed the pharmacophore filter were then docked to 
the receptor using a grid with dimensions 24 x 30 x 30 Å and 1 Å spacing. The grid was 
initially centered on the folate ligand. Subsequently, we manually adjusted the grid center 
such that it covered the whole binding cavity including its mouth, while including as little as 
possible of the protein surface far away from the binding pocket. Since the number of 
molecules that passed the pharmacophore filter for human bleomycin hydrolase is quite larger 
than that for the T-protein, and because the binding site of human bleomycin hydrolase is a 
large surface exposed area, a smaller grid was used to restrain the molecules to the binding 
site and to prevent molecules from being docked to irrelevant regions. The docking 
experiment was done in an 18 x 18 x 18 Å grid with 1 Å spacing and placed on the active site 
residues Cys73, His372 and Asn396. For both targets, Vina docking experiments were 
performed with an exhaustiveness parameter of 8, generating 9 different poses per compound 
with a maximum energy difference between the best and worst displayed binding modes of 3 
kcal/mol. The pose with the lowest calculated binding free energy was kept for each 
compound for the next step of consensus scoring. 
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Human Acid β-glucosidase  
For docking experiments with GCase, AutoDock Vina and Surflex-Dock were employed for 3 
high-throughput docking experiments in total. All docking experiments were done with rigid 
target and flexible ligands. Docking experiment dock1 was done with AutoDock Vina and 
pharma1-filtered library, dock2 was done with AutoDock Vina and pharma2-filtered library 
and dock3 was done with Surflex-Dock and pharma1-filtered library. 
Since the binding site is a small cavity with well-defined residues, determining the center and 
the dimensions of the grid for the docking experiments dock1 and dock2 with AutoDock 
Vina was straightforward. The molecules were docked to the GCase structure using a grid 
with dimensions 20 x 16 x 16 Å and 1 Å spacing, which was placed on the bound ligand, IFG. 
Vina docking experiments with an exhaustiveness parameter of 8 yielded 9 different poses per 
compound and the pose with the lowest calculated binding free energy was kept for each 
compound for the next step of consensus scoring. For docking experiment dock3 with 
Surflex-Dock, the computational representation of the intended binding site, protomol, was 
created from the binding site residues (Asp127, Trp179, Glu235, Glu340, Trp381 and 
Asn396) with default values. The docking experiment was done with the default parameters 
for the “screen” docking mode (parameters can be found in the Surflex-Dock manual181), with 
the only exception being the number of final poses set to 10 instead of the default value of 3. 
Out of 10 poses for each ligand, the pose with the best binding affinity calculated by Surflex-
Dock’s scoring function was kept for consensus scoring. 
 
 

4.2.4. Consensus Scoring 
 
Consensus scoring for a given ligand-receptor complex produced by AutoDock Vina or 
Surflex-Dock was done as explained in section 3.3.3. First, ligand-receptor complexes output 
by AutoDock Vina or Surflex-Dock were rescored using D-Score, PMFScore, ChemScore 
and G-Score with the CSCORE program of SYBYL-X. Then, for each scoring function, all 
scores were normalized to values between 0 and 1 according to Equation 10: 
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The overall consensus score of each compound was defined by Equation 11: 
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For the results of dockings done with AutoDock Vina (docking against human T-protein, 
human bleomycin hydrolase, dock1 and dock2 experiments for GCase),  NCScut-off values of 
ligands vary between 0 and 5 (5 scoring functions), however the molecules docked with 
dock3 experiment for GCase have NCScut-off values varying between 0 and 4 (4 scoring 
functions). 
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4.2.5. LIE 
 
Binding affinities were calculated using the LIE method.69,70 This approach estimates the free 
energy of binding from the difference in interaction energies of the ligand with its 
surroundings in the protein-bound and free states. The relationship between the ligand 
intermolecular interaction energies and the free energy of binding is given by Equation 9: 
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For the non-polar contribution, the coefficient has been empirically set to α = 0.18. The 
scaling factor for the polar contribution was initially derived from the linear response 
approximation (β = 0.5) but has subsequently been found, from free energy perturbation 
(FEP) calculations, to depend on the chemical nature of the ligand.70 According to that 
classification, ligands with net charge maintain the value β = 0.5 associated to the linear 
response approximation, while uncharged ligands have an empirical associated value of β = 
0.43, β = 0.37 or β = 0.33, depending on whether they have 0, 1 or 2 or more hydroxyl 
groups, respectively. We have followed this classification to choose the appropriate β 
parameter for each ligand in the database. To do so, we determined the numbers of positive 
and negative charges and the number of hydroxyl groups of each compound in our databases 
using the dbcomputecolumn program of UNITY with –calctype patterncount. Finally, γ is a 
constant term obtained by fitting experimental data to LIE data with the purpose of fixing the 
scale for absolute binding free energies. The nature of this parameter has been related to 
several descriptors of the binding site, such as its hydrophobic nature.182 Since we were 
mainly interested in prioritizing compounds in our libraries for experimental testing we were 
primarily interested in relative binding free energies, and thus γ was set to 0. 
As stated below, the energies that enter into the LIE equation are averaged interaction 
energies of the ligand with its surroundings obtained from separate MD simulations of the 
ligand in water or bound to the solvated protein system (with initial coordinates of protein and 
ligand obtained from docking experiments). All MD simulations have been performed with 
the program Q183 and the OPLS force field implemented therein.184 Since many of the 
parameters as well as topologies needed for the ligands were not present in the original 
version of the force field, an automated parameterization protocol was followed. First, the 
MOL2 files used for CSCORE were converted to Schrödinger’s Maestro format (.mae) using 
the mol2convert utility of the Schrödinger suite. Next, each ligand was energy-minimized 
with the bmin program of Macromodel185 and the OPLS parameters and topology information 
generated by that program were translated into the syntax required by the program Q, using a 
set of ad hoc scripts. 
MD simulations in Q were performed using spherical boundary conditions, thus a definition 
of a solvation sphere around the ligand was required. In our two cases, the centers of the 
spheres were determined manually, making small adjustments to the docking grid centers 
used. The sphere radii were calculated according to the diameter of the largest compound as 
docked into the protein binding site, according to Equation 12: 
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where rs denotes the radius of the sphere, Lmax(ligand) is the diameter of the largest docked 
compound and c is a constant, which was set to 14 Å for this study. This ensures a margin of 
at least 14 Å of explicit environment around every atom of a ligand centered in the sphere. 
The same size of the sphere was used for the protein-bound and the protein-free simulations. 
The surface of this sphere was subjected to radial and polarization restraints186 in order to 
mimic bulk water at the sphere boundary. Non-bonded interaction energies were calculated up 
to a 10 Å cutoff, except for the ligand atoms, for which no cut-off was used. Beyond the cut-
off, long-range electrostatics was treated with the local reaction field (LRF) multipole 
expansion method.187 Protein atoms outside the simulation sphere were restrained to their 
initial positions, and only interacted with the system through bonds, angles and torsions. The 
ionization states of titratable residues inside the simulation sphere were manually assessed, in 
order to obtain neutral simulation systems in the protein simulation, which is needed to 
compare the ligand-surrounding energies between bound and free states. Any titratable 
residues closer than 3-5 Å to the boundary of the solvation sphere, as well as those outside the 
solvent sphere, were modeled as neutral because of the lack of dielectric screening. Even 
though only movement within the sphere is allowed, amino acids with all their atoms further 
than  rs+ 2 Å away from the sphere center were removed. 
For both the protein-bound and the protein-free simulations, an initial heating and 
equilibration MD simulation was carried out before the data collection phase, starting with a 
very short time step of 0.1 fs, a strong coupling to a temperature bath of 1 K and positional 
restraints of 25 kcal/(mol·Å2) on all non-hydrogen protein and ligand atoms in the case of the 
protein-ligand complex simulation. The system was then gradually heated up to 310 K during 
95.5 and 65.25 ps for the protein-bound and the protein-free simulations, respectively, in 
which the bath coupling was relaxed to a final value of 100 fs, the timestep was increased to 1 
fs and the force constant of the positional restraints was gradually lowered to 0. Detailed 
parameters can be found in Table 9 and Table 10. 
A production-run molecular dynamics simulation then followed for 500 ps at 310 K (100 fs 
coupling time) with a time step of 1 fs. In the case of the protein-free simulation, the center of 
the ligand was restrained to the center of the solvation sphere with a force constant of 5 kcal 
mol-1 Å-2. Energies were collected at regular intervals of 25 fs. Energy averaging was 
performed on this collection period, and stability was addressed by an estimation of the 
convergence errors of the potential energies of the ligand with its surroundings. 
For the estimation of the binding free energies according to Equation 9, only the period 100-
500 ps of the production-run simulations were considered. Convergence of the simulations 
was assessed by calculating the difference between the LIE energy calculated over the periods 
100-300 ps and 300–500 ps of the production-run simulations. We refer to this difference as 
the LIE error. 
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SHAKE 

for 
solvent  

Force 
constant of 
restraint on 
heavy atoms 
(kcal/mol Å2)  

0 – 0.25 ps 2500 0.1 1 0.1 off n.a. 
0.25 – 2.75 ps 2500 1.0 50 5 on n.a. 
2.75 – 5.25 ps 2500 1.0 150 50 on n.a. 

5.25 – 15.25 ps 10000 1.0 310 50 on n.a. 
15.25 – 65.25 

ps 
50000 1.0 310 100 on n.a. 
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Table 9: Parameters used for free state simulation of the ligand in a sphere filled with water in the initial 
equilibration period.  
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Force 
constant of 
restraint on 
heavy atoms 
(kcal/mol Å2)  

0 – 0.5 ps 5000 0.1 1 0.1 off 25 
0.5 – 5.5 ps 5000 1.0 50 5 on 10 

5.5 – 15.5 ps 10000 1.0 150 5 on 5 
15.5 – 25.5 ps 10000 1.0 310 20 on 2 
25.5 – 45.5 ps 20000 1.0 310 100 on 1 
45.5 – 95.5 ps 50000 1.0 310 100 on 0 

Table 10: Parameters used for bound state simulation of the ligand in the protein binding site in the initial 
equilibration period. 
 
 

4.3. Results And Discussion 
 

4.3.1. Results For Human T-Protein And Human Bleomycin Hydrolase 
 
The 3D flexible search with the pharmacophore filter designed for human T-protein reduced 
the size of VSL-1 from 1961165 to 58699 molecules. Even though the pharmacophore filter 
was quite tolerant, the narrow tunnel-like hydrophobic binding site and the use of 
pharmacophoric features from the known ligand allowed a library reduction by a factor of 30. 
However, in the case of human bleomycin hydrolase library reduction was not as efficient. 
The binding site of bleomycin hydrolase is part of a large solvent-exposed cavity. This may 
cause human bleomycin hydrolase to have little substrate specificity, similar to its yeast 
homolog.130 Therefore, the pharmacophore filter created for bleomycin hydrolase was rather 
tolerant with fewer excluded volume features. As a result, 471198 out of the 2157575 
molecules of VSL-2 passed the filter. The solvent-exposed binding site of bleomycin 
hydrolase also brought extra challenges for determining the parameters for the grid size used 
for docking. Using a big grid covering the whole cavity could have caused docking to other 
regions than the binding site region. Therefore, the grid chosen was as big as possible to cover 
the binding site residues and the docked ligands while preventing irrelevant binding. 
After the docking calculations for both target proteins were completed, we selected the 
binding pose with the lowest energy calculated by AutoDock Vina for each ligand. These 
poses were subsequently rescored with the four additional scoring functions implemented in 
CSCORE, and the scores were normalized. 
In the case of human T-protein, normalizing the scores produced by CSCORE and AutoDock 
Vina to values between 0 and 1, with a truncation cut-off of 100% in the normalization 
procedure, produced similarly shaped sigmoidal curves for all scoring functions. However, 
the individual scoring functions showed trails of high values to largely different extents, most 
pronounced in the case of G-Score (Figure 26). These values at the poor-scoring end are 
problematic when trying to combine the different scores to reach a consensus. Using a rank-
by-vote strategy for consensus scoring based on scores being within the top n% of the 
obtained score range, with a frequently-used “vote cut-off” of 0.5, results in G-Score voting 
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for more than 99% of the molecules, and PMFScore and D-Score for around 75% of the 
molecules, rendering these scoring functions nearly redundant. In turn, with a smaller value 
for the vote cut-off, Vina, ChemScore and D-Score vote for only a few percent of the 
molecules, rendering them too decisive. Using the sum of normalized scores to obtain a 
consensus is also problematic in this case, because the different slopes of the curves in the 
range of intermediate ranks results in largely different decisive power of the individual 
methods.  For example, compared with a compound ranking around 1000, a compound 
ranking 20000 receives twice as large a “score penalty” with Vina as it does with G-Score. As 
a result, Vina has a much larger decisive power than G-Score. 
 
 

 
Figure 26: Normalized scores calculated without truncation with the five scoring functions Vina, PMFScore, G-
Score, D-Score and ChemScore for human T-protein. The scores are plotted against compound ranks obtained 
with the individual scoring functions. The dashed line marks the frequently used vote cut-off of 0.5. 
 
 
Therefore, an adjustment excluding poorly scoring compounds for each energy function was 
done with our normalization procedure using a truncation cut-off of 99.5%. As Figure 27 
shows, the discrepancy between scoring functions has become less pronounced after this 
adjustment. In addition, the slopes of the curves for intermediate ranks have increased, 
improving the distinction between well-scored and poorly scored molecules. Hence, the sum 
of normalized scores calculated with the 99.5% truncated normalization procedure was used 
as the final normalized consensus score, NCS, for each compound. NCS values ranges 
between 0 and 5, the values closer to 0 representing well-scored compounds and the values 
closer to 5 representing poorly scored compounds. 
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Figure 27: Normalized scores calculated with the second normalization procedure against compound rank (after 
the 0.5% worst-scoring compounds were excluded) for human T-protein. 
 
 
For human bleomycin hydrolase, the normalization procedure without truncation (truncation 
cut-off=100%) produced results that show a similar pattern as obtained for human T-protein, 
however with more pronounced differences between individual scoring functions. Figure 28 
shows that the ability of the normalized AutoDock Vina score and G-Score to distinguish 
“well docked” molecules from “poorly docked” ones is strongly affected by few compounds 
receiving very high scores. 
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Figure 28: Normalized scores calculated without truncation with the five scoring functions Vina, PMFScore, G-
Score, D-Score and ChemScore for human bleomycin hydrolase. 
 
 
To bring the scoring functions closer to each other, the normalization was done with the 
truncation cut-off set to 99.5%. The resulting distributions of normalized scores after the 
truncation were almost the same for all scoring functions except G-Score. The reason for this 
behavior might be that G-Score scores poorly docked molecules with a very high penalty thus 
losing sensitivity for fairly or slightly well docked molecules. However, making G-Score to 
converge to other functions would need excluding at least 5% of the molecules (around 20000 
molecules). Therefore, it was decided to stop at 0.5 % truncation and calculate the normalized 
consensus scores at this point (Figure 29). 
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Figure 29: Normalized scores calculated with the second normalization procedure against compound rank (after 
the 0.5% worst-scoring compounds were excluded) for human bleomycin hydrolase. 
 
 
Once the normalized consensus scores were calculated for each compound the compounds 
were ranked accordingly. For both target proteins, the top-ranking 5000 compounds were 
chosen for the next step of binding free energy estimation through LIE simulations. 
This step of LIE simulations mainly consists of five tasks: deciding the size and location of 
the solvation sphere, defining the protonation states of ionizable amino acids, deriving force 
field parameters and topologies for the compounds for the molecular dynamics simulations, 
defining the simulation parameters, and finally performing the simulations and binding free 
energy estimation for each compound-protein pair. The size of the solvation sphere depends 
exclusively on the size of the compounds (see section 4.2.5). For human T-protein and human 
bleomycin, the largest diameters of any of the 5000 selected compounds in their docked 
conformations were 24.27 Å and 23.1 Å, respectively, thus defining the radius of the 
solvation sphere as 27 Å and 26 Å, respectively, according to Equation 12. In contrast to the 
bleomycin hydrolase system, with a binding site that is not buried, the solvation sphere 
enclosed a big part of human T-protein. A very important and labor-intensive step is the 
manual adjustment on the protonation states of the protein’s ionizable amino acids. The 
electrostatic environment in both sets of molecular dynamics simulations–protein-bound and 
protein-free–must be as similar as possible for an accurate comparison. Because the protein-
free simulations take place in a sphere filled with water thus carrying no net charge, the inside 
of the sphere located on the protein binding site should also be electrostatically neutral. 
Starting from a state with all ionizable residues neutralized, we tried to ionize as many 
residues as possible inside the sphere and at least 5 Å from the sphere surface, prioritizing 
residues close to the binding site surface, while keeping the entire system electrostatically 
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neutral. Pairs of residues involved in salt bridges were only ionized or kept neutral together. 
Thus, for the human T-protein system the following titratable residues inside the simulation 
sphere were charged: Lys123, Lys266, Lys363, Arg6, Arg45, Arg66, Arg82, Arg191, 
Arg194, Arg233, Arg237, Arg267, Arg268, Arg269, Arg290, Arg291, Arg292, Asp52, 
Asp77, Asp100, Asp101, Asp124, Asp201, Asp234, Asp248, Asp250, Glu71, Glu80, Glu109, 
Glu200, Glu204, Glu239, Glu251 and Glu257. In the human bleomycin hydrolase system the 
charged residues were: Lys68, Lys107, Lys162, Lys309, Lys330, Lys335, Lys359, Lys405, 
Arg72, Arg83, Arg110, Arg175, Arg176, Arg362, Arg393, Asp35, Asp38, Asp106, Asp143, 
Asp179, Asp327, Asp401, Glu60, Glu96, Glu167, Glu172, Glu367, Glu395, Glu400 and 
Glu421. 
Although 5000 molecules had been chosen for molecular dynamics simulations with human 
T-protein, a small number of the molecules failed during different stages of the simulation. In 
the end, binding free energies for 4983 molecules were calculated with the LIE method and 
the correlation analyses between scoring functions were done using Pearson’s correlation 
coefficient. The comparison between LIE results and different scoring functions for human T-
protein show that D-Score gave the best correlation with LIE results; however, the correlation 
was not very significant (Figure 30). Neither the remaining scoring functions nor the 
normalized consensus score showed any significant correlation with binding free energies 
predicted with LIE. Table 11 shows the correlations between the normalized consensus score 
and the scoring functions, and also the correlations of different scoring functions with each 
other. The only significant correlation was between D-Score and G-Score among individual 
scoring functions. 
 
 
  NCS  D-Score  G-Score  PMFScore  ChemScore  VinaScore  
NCS  1 0.53 0.52 0.29 0.49 0.26 
D-Score  0.53 1 0.55 -0.14 0.04 -0.32 
G-Score  0.52 0.55 1 -0.24 0.16 -0.24 
PMFScore  0.29 -0.14 -0.24 1 -0.14 0 
ChemScore  0.49 0.04 0.16 -0.14 1 0.05 
VinaScore  0.26 -0.32 -0.24 0 0.05 1 
Table 11: Pearson’s Correlations of scoring functions with each other and normalized consensus score of the 
selected molecules for human T-protein.  
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Figure 30: Scatter plots showing the correlation of binding free energies (kcal/mol) calculated with the LIE 
method with normalized consensus scores and individual scoring functions for human T-protein. 
 
 
Also in the case of human bleomycin hydrolase, some ligands of the selected 5000 failed 
during the simulations. Binding free energies of 4960 molecules could be calculated in the 
end. Even though the normalized scores were correlated with individual scoring functions, 
binding free energies calculated with LIE only showed minor correlation with the AutoDock 
Vina score (Figure 31). 
In both examples, there is hardly significant correlation between different scoring functions 
(Table 11 and Table 12). However, this is not unexpected taking into account the 
approximations applied by scoring functions. The other reason for the lack of correlation lies 
in the different characteristics of the scoring functions used. The scoring functions of 
AutoDock Vina and ChemScore are empirical and PMF Score is a knowledge-based scoring 
function, which means that they were trained against a set of protein-ligand complexes and 
their performances are distinctly dependent on these training sets. On the other hand, it is 
known that force-field based scoring functions like D-Score and G-Score usually overestimate 
the binding affinities. 
 
 
  NCS  D-Score  G-Score  PMFScore  ChemScore  VinaScore  
NCS  1 0.32 0.31 0.25 0.4 0.28 
D-Score  0.32 1 0.31 -0.31 -0.19 -0.24 
G-Score  0.31 0.31 1 -0.28 -0.17 -0.11 
PMFScore  0.2 -0.31 -0.28 1 -0.03 -0.26 
ChemScore  0.4 -0.19 0.17 -0.03 1 0.05 
VinaScore 0.28 -0.24 -0.11 -0.26 0.07 1
Table 12: Pearson’s Correlations of scoring functions with each other and normalized consensus score of the 
selected molecules for human bleomycin hydrolase.  
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Figure 31: Scatter plots showing the correlation of binding free energies (kcal/mol) calculated with the LIE 
method with normalized consensus scores and individual scoring functions for human bleomycin hydrolase. 
 
 
We also compared the binding modes output by the docking and the molecular dynamics 
simulations done in the solvated spherical system centered on the protein binding site. In the 
dockings, ligand positions were restricted to the grid in the protein binding site. Even though 
the grids were large enough for the ligands to move freely, they were not as spacious as the 
water filled sphere used for LIE simulations. Ligands couldn’t get out of the allowed grid 
during docking. However, in LIE simulations, the solvation sphere did not only cover the 
binding site residues but also all the residues that were at most 27 and 26 Å away from the 
sphere center for the T-protein and bleomycin hydrolase, respectively, enabling a larger area 
for the ligands to explore. 
For the human T-protein, the root-mean-square difference (rmsd) values between the docked 
conformations and final simulation conformations are mostly distributed between 1 and 4 Å 
(Figure 32). Around 90% of 4960 ligands fall into this area. This means that binding modes 
created by the docking are fairly similar to those output by the simulations. In the case of the 
bleomycin hydrolase, though, the percentage of molecules with similar docking and 
simulation binding modes is lower; around 62% of the rmsd values are in the range of 1 to 4 
Å (Figure 33). This might be caused by the large solvent-exposed binding site of bleomycin 
hydrolase. The binding site of the T-protein is narrow and buried, restricting the molecules to 
bind in a certain way. The other factor for larger displacement values for ligands binding to 
the bleomycin hydrolase may be the existence of water molecules. While water molecules 
cannot fill the narrow binding site of the T-protein along with the ligand, the solvent-exposed 
binding site of the bleomycin hydrolase can accommodate water molecules in competing 
interactions. 
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Figure 32: Rmsd differences between the docking ligand configurations and LIE simulation results 
(configuration of last time frame) for human T-protein. 
 
 

 
Figure 33: Rmsd differences between the docking ligand configurations and LIE simulation results 
(configuration of last time frame) for human bleomycin hydrolase. 
 
 
When comparing rmsd differences between the docked and simulation conformations, it can 
be concluded that the rmsd difference is not depended on the size of the ligand (Figure 34 and 
Figure 35). In the case of human T-protein, it seems true that smaller size molecules show 
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smaller rmsd differences between the docked and simulation binding modes (lower left 
quarter of Figure 34), however it is also the smaller size molecules that have the highest rmsd 
differences (lower right quarter of Figure 34). Interestingly, the largest molecules seem to 
have quite similar docked and simulation binding modes and smaller rmsd differences than 
smaller molecules (upper left quarter of Figure 34). This might be thanks to the well-defined 
tunnel-like binding site of the human T-protein. Since larger molecules wouldn’t be as free as 
the smaller ones, they might have been restricted to fewer binding modes in both dockings 
and simulations.  
While we can still find patterns regarding the relation between the rmsd difference and the 
ligand size in the case of human T-protein, a plausible relation between the rmsd difference 
and ligand size is not present for the candidate ligands of human bleomycin hydrolase (Figure 
35). Larger rmsd values were obtained among both the smaller and the larger molecules (right 
half of Figure 35). In addition, the smallest rmsd values don’t seem to be specific for smaller 
molecules, unlike in the case of human T-protein. The large solvent-exposed binding site of 
the human bleomycin hydrolase enables a larger area to explore for both smaller and larger 
molecules, thus allowing a wider variety of binding modes both in dockings and simulations. 
Therefore, it can be concluded that the difference between the docked and simulation binding 
modes is depended on the receptor-binding site rather than the ligand size.  
 
 

 
Figure 34: Rmsd differences between the docking ligand configurations and LIE simulation results 
(configuration of last time frame) versus the ligand size for human T-protein. 
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Figure 35: Rmsd differences between the docking ligand configurations and LIE simulation results 
(configuration of last time frame) versus the ligand size for human bleomycin hydrolase. 
 
 
Since the docked conformations were used as the initial state inputs for the LIE simulations, 
the docked ligand-protein complexes were solvated, enabling an analysis of the relaxation of 
water molecules during the LIE simulations. The comparison of number of water molecules 
around the ligands at the beginning (solvated docked complexes) and end of the LIE 
simulations shows that the degree of solvation of the ligand increases during the simulation 
(Figure 36 and Figure 37). For human T-protein, since the binding site was a narrow pocket, 
the number of water molecules that could be in contact with the bound ligand were overall 
less than the number of water molecules that could surround the ligand in the large and 
exposed binding pocket of the human bleomycin hydrolase. In the case of both target proteins, 
the number of water molecules 4 Å around the bound ligand is less in general for the initial 
docked and solvated structure than after the LIE simulations. This is not only due to water 
relaxation in the binding site but also a reflect of the flexibility of both protein and ligand in 
the LIE simulations, accommodating (solvent-influenced) configurations that are not 
accessible to the docking procedure. 
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Figure 36: The distribution of water molecules within 4 Å of the ligands at the end of docking experiments and 
LIE simulations for human T-protein.  
 
 

 
Figure 37: The distribution of water molecules within 4 Å of the ligands at the end of docking experiments and 
LIE simulations for human bleomycin hydrolase. 
 
 
As a control case, we applied all steps of the workflow on the competitive inhibitor (5-CH3-
H4-folate) of human T-protein and compared the results with the PDB structure. Docking 5-
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CH3-H4-folate with AutoDock Vina to the binding site gave 9 poses and the one with the 
lowest binding free energy was chosen without visual inspection. The calculated energy for 
this pose by AutoDock Vina was -10.9 kcal/mol and it ranked 15th among 58699 molecules of 
VSL-1 when ordered according to AutoDock Vina score. Ordering according to normalized 
consensus score put this binding pose of 5-CH3-H4-folate to 95th place; therefore it was among 
the 5000 molecules selected for LIE simulations. The binding free energy calculated with LIE 
was -8.76 kcal/mol, however it would rank 3067 among 5000 if ordered according to LIE 
calculated binding free energies. The binding mode predicted by AutoDock Vina is very close 
to the PDB structure mode and the same hydrogen bonding pattern can be seen (Figure 38). 
Both poses make the double hydrogen bond with the side chain of Glu204, one hydrogen 
bond with Arg233 and one hydrogen bond with Leu88. The last configuration from the LIE 
simulations displays a very similar pose to both the docked conformation and the reference 
PDB structure (Figure 39 and Figure 40). The hydrogen bonding pattern for the final LIE 
conformation is the same as the reference and docked binding modes, with an additional 
hydrogen bond with Asp101. Even though the LIE binding mode is quite close to the actual 
binding mode, it is not as accurate as the docked one. On the basis of these results, one could 
be tempted to say that the LIE approach is inferior to standard docking with AutoDock Vina. 
However, this will be case dependent, as the comparison of methods shown previously 
suggests. In addition, the information on the dynamics of the system (i.e. stability in the 
binding site) might help deciding on a short list of candidates even when considering the 
docking scores as first filter rather than the LIE free energies. A similar control experiment 
couldn’t be done with human bleomycin hydrolase since a structure with a known ligand is 
not available. 
 
 

 
Figure 38: The competitive inhibitor 5-CH3-H4-folate in the binding site. Yellow colored binding mode is taken 
from the PDB structure 1WSV, while black colored binding mode is the lowest binding free energy pose 
generated by AutoDock Vina. Dashed lines show the corresponding hydrogen bonds. 



 81 

 

 
Figure 39: The competitive inhibitor 5-CH3-H4-folate in the binding site. Yellow colored binding mode is taken 
from the PDB structure 1WSV, while magenta colored binding mode is the last configuration from the LIE 
simulations. Dashed magenta lines show the hydrogen bonds formed between the ligand and the target at the end 
of LIE simulations. Hydrogen bonds for the reference PDB structure 1WSV are not shown. 
 

 
Figure 40: Configurations of the competitive inhibitor 5-CH3-H4-folate superimposed. Yellow molecule is taken 
from the PDB structure 1WSV, black molecule is the lowest binding free energy pose generated by AutoDock 
Vina and magenta molecule is the last configuration from the LIE simulations. 
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The workflow we present here is a combination of different methodologies, where 
information has to be passed between different applications. While developing the workflow 
interoperability, special care had to be taken when working with small molecule coordinate 
files and converting between different formats used by different programs and when re-adding 
protons after a step performed by a tool working with a united-atoms approach. 
For human bleomycin hydrolase, we selected 40 molecules. The selection process was done in 
two parts. In the first part, the 4960 molecules evaluated with LIE were visually analyzed 
according to their docked conformations. A set of 100 compounds was selected based on their 
hydrogen bonding patterns with the binding site residues and the abundance of other 
noncovalent interactions. Then these compounds were ordered according to their binding free 
energy calculated with LIE. Compounds with a binding free energy smaller than -10 kcal/mol 
made it to the final selection set. The final selection set has 14 compounds chosen with this 
criterion. The second part of the selection process was done taking only into account the 
binding free energies calculated with LIE. The 4960 molecules were ordered based on their 
binding free energy and compounds with a value smaller than -15 kcal/mol were included in 
the final selection set. This second criterion contributed 26 compounds to the final selection. 
From this set of 40 molecules, 9 were available from a single vendor and they were purchased 
for experimental testing. Figure 41 shows the 2D structures of the experimentally tested 
molecules, and the selection criteria and binding free energies calculated with the LIE method 
are summarized in ¡Error! No se encuentra el origen de la referencia.. 
 
 

Compound no. 
Selection 
criteria 

LIE Energy 
(kcal/mol) 

Rmsd between docking 
and LIE (Å) 

1 LIE -16 5.2 
2 LIE -17 5.4 
3 Visual -11 2.3 
4 LIE -16 1,6 
5 LIE -16 3,5 
6 LIE -16 5.7 
7 LIE -16 2.3 
8 LIE -15 2.8 
9 LIE -16 4.4 

Table 13: The list of selection criteria fulfilled by the chosen molecules for testing against human bleomycin 
hydrolase. 
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Figure 41: The molecules selected for experimental testing of inhibition of human bleomycin hydrolase. 
 
 
The experimental testing of the chosen molecules was carried out by Dr. Lionel Costenaro. 
The fluorogenic substrate L-citrulline 7-amido-4-methylcoumarin hydrobromide (H-Cit-
AMC·HBr; Bachem) was used to assay the protease activity of recombinant hBH in vitro and 
its inhibition by the compounds. Cleavage reaction mixture contained 50 nM hBH, substrate 
(dissolved in water) and potential inhibitor (dissolved in 100% DMSO), in 140 mM KCl, 100 
mM Tris·HCl pH 7.5, in a total volume of 100 µl. Seven substrate concentrations (S) between 
10 and 1500 µM and four inhibitor concentrations (I) between 1 and 100 µM were typically 
used to assay the effect of one potential inhibitor. The final DMSO concentration was 2%. 
After 30 min. of incubation with the potential inhibitor, the reactions were initiated by the 
addition of the substrate and performed at 30ºC in 96-well microlitre plates (white wells, 
black frame). All conditions were done in triplicates. The fluorescence of the liberated 
product (AMC) was monitored for 6h (excitation at a wavelength of 355 nm and emission at 
460 nm) by a plate reader Victor III (Perkin Elmer). Fluorescence intensities were 
transformed to AMC amount (pmol) using a standard curve of 7-amido-4-methylcoumarin 
(Bachem). 
In inhibition experiments, the cleavage reaction mixture contained 2% of DMSO, regardless 
the potential inhibitor concentrations. To assess the effect of DMSO on hBH kinetics, we 
performed a control experiment with 2% DMSO, but without inhibitor. The differences 
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between V/Vmax values with and without 2% DMSO were similar to the variation between 
experimental replicates for all substrate concentrations. This clearly shows that 2% DMSO 
does not influence hBH activity (Table 14).  
Out of nine compounds, Compounds 3, 6 and 8 did not inhibit the hydrolysis of H-Cit-AMC 
by hBH and Compound 4 was not soluble at a concentration sufficient to be tested. Values of 
Km in presence of inhibitor were similar to that of hBH alone, except for compound 7, which 
had the highest determined Ki. The compounds showed different modes of inhibition: 
competitive, noncompetitive or mixed (Table 14). The derived inhibition constants Ki ranged 
from 30 to 356 µM.  
 
 

No  Mode of 
inhibition  Km [μM]  Ki [μM]  

Control n.a. 182   
±12 n.a. 

1 Noncompetitive 190   
±10 30   ±2 

2 Mixed 195   
±14 89   ±11 

3 No inhibition 163   ±9 n.a 

4 n.a. n.a. n.a. 

5 Noncompetitive 212   
±16 263   ±24 

6 No inhibition 176   
±16 n.a. 

7 Competitive 138   ±7 356   
±155 

8 No inhibition 199   
±10 n.a 

9 Mixed 221   
±14 127   ±48 

Table 14: Observed activities of the candidate compounds for human bleomycin hydrolase.  
 
 
When the position predicted by docking of Compound 1 in the binding site is examined, it is 
seen that the compound is stretched along the binding site contacting the catalytic residues 
and making hydrogen bonds with residues Gln67, Ser334, Thr371 and His372 (Figure 42). 
There is also a π-π interaction between Compound 1 and the indole ring of Trp398. 
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Figure 42: Binding mode of Compound 1 as predicted by docking. Compound 1 is shown in black, catalytic 
residues Cys73, His372 and Asn396 are shown in red while other residues contacting the compound are shown 
in green. 
 
 
Figure 43 shows the conformation of Compound 2 in the binding site predicted with docking. 
Compound 2 is stabilized with a hydrogen bond with Thr371 and π-π interactions with 
Trp398.  
 

 
Figure 43: Binding mode of Compound 2 as predicted by docking. 
 
 
The only interaction that Compound 5 seems to have in its docked conformation is with 
Trp398 (Figure 44). The indole ring of Trp398 stabilizes the ringed tail of Compound 5 
through π-π interactions. 
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Figure 44: Binding mode of Compound 5 as predicted by docking. 
 
 
Compound 7 is also extended along the surface-exposed binding site making hydrogen bonds 
with Gln67, Thr371, His372 and Trp 398 in the docked conformation (Figure 45). Trp398 
also interacts with Compound 7 through π-π interactions.   
 

 
Figure 45: Binding mode of Compound 7 as predicted by docking. 
 
 
In the docked conformation, Compound 9 is also extended along the binding site, making 
contacts with Gln67 and Ser70 (Figure 46). Like the other compounds, Compound 9 also 
makes π-π interactions with the indole ring of Trp398. 
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Figure 46: Binding mode of Compound 9 as predicted by docking. 
 
 
 
 
 
 
 
 
 

4.3.2. Results For Human Gcase 

 
The 3D flexible pharmacophore search with pharma1 reduced the library size to 136252 and 
pharma2 reduced it to 206428 from 2157575. Both filters managed to decrease the number of 
molecules to be docked by a factor of around 10. Even though no primary restrictions about 
the sizes of ligands were designed in either of the pharmacophore filters, large molecules 
(molecules with more than 20 Å for the longest distance between two atoms) were mostly 
filtered out in both cases. Out of the 19678 large molecules in the small molecule library, only 
769 passed the filter pharma1 and 2518 passed pharma2. The sizes of the ligands to be 
docked are important because it is known that, regardless of the scoring function used, larger 
molecules tend to produce better scores than smaller molecules simply because of the 
abundance of hypothetical interactions in the binding sites.37,85 
After the docking experiments dock1, dock2 and dock3, the poses with the lowest binding 
free energies calculated by the corresponding scoring function (AutoDock Vina scoring 
function for dock1 and dock2, Surflex-Dock scoring function for dock3) were selected for 
rescoring with the four scoring functions implemented in CSCORE and subsequent consensus 
scoring. The scores given by each scoring function were normalized to values between 0 and 
1. 
Table 15 shows Pearson’s correlations coefficients between different scoring functions for the 
docking experiment dock1 for the pharma1 filtered library. 
 
 

  NCS  D-Score  PMFScore  G-Score  ChemScore  VinaScore  
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Table 15: Pearson’s Correlation coefficients between different scoring functions and NCS99.5 for docking 
experiment dock1 
 
 
For docking experiment dock1, normalization of the scores output by different scoring 
functions to values between 0 and 1 with a truncation cut-off of 100% generated similarly 
shaped sigmoidal curves for all scoring functions (Figure 47). However, especially in the case 
of G-Score, the individual scoring functions showed trails of high values to largely different 
extents. For the scoring functions except for D-Score and ChemScore, the values at the poor 
scoring ends are quite different than the rest, making the distinction between the fairly well 
docked ligands and the fairly poor docked ones quite difficult. These values at the poorly 
scoring end are also problematic when combining the different scores to reach a consensus. 
Using a rank-by-vote strategy for consensus scoring based on scores being within the top n% 
of the obtained score range, with a frequently-used “vote cut-off” of 0.5 (dashed grey line in 
Figure 47), as in CSCORE, results in G-Score voting for more than 99% of the molecules, 
and PMFScore and Vina score for around 75% of the molecules, rendering these scoring 
functions nearly redundant. 
 
 

NCS 1 0.76 0.62 0.65 0.76 0.75 
D-Score 0.76 1 0.48 0.42 0.49 0.33 
PMFScore 0.62 0.48 1 0.17 0.13 0.36 
G-Score 0.65 0.42 0.17 1 0.43 0.35 
ChemScore 0.76 0.49 0.13 0.43 1 0.63 
VinaScore 0.75 0.33 0.36 0.35 0.63 1 
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Figure 47: Normalized scores calculated without truncation with the five scoring functions Vina, PMFScore, G-
Score, D-Score and ChemScore for dock1 experiment of GCase. 
 
 
Using a smaller “vote cut-off” value (around 0.3) would still not be enough because this time, 
all scoring functions except G-Score would be very specific and decisive and vote for a very 
small amount of molecules, while G-Score would still give a passing vote to more than 90% 
of the molecules. Summing the normalized scores, NCS100, would be problematic as well 
because of the discrepancies between the decisiveness of individual scoring functions. For 
example, a compound ranked around 10,000 by D-Score receives a score that is twice that of 
another molecule ranked around 1,000 by D-Score, making D-Score highly decisive and 
sensitive against fairly poor and fairly well docked molecules. However, G-Score scores 
almost 100,000 of the molecules with almost the same value, showing no sensitivity except 
for very poorly docked molecules. Therefore, a solution to close the gap between the 
decisiveness and sensitivity of different scoring functions was to exclude the very poorly 
scoring end of each scoring function and to calculate the NCS score after the truncation. 
Normalization with a truncation cut-off of 99.5% decreased the slope of G-Score at the poorly 
scoring end, increasing the overall sensitivity (Figure 48). The curves of Vina score, 
ChemScore and PMFScore became more similar to the curve of D-Score. Even though G-
Score’s sensitivity is increased, it is still not close to the rest. To make G-Score converge with 
the rest would require the truncation of at least 5% of the molecules instead of 0.5%. However 
we decided not to diminish the number of molecules and thus it was decided to stop at 0.5% 
truncation and calculate the NCS99.5 values for each compound. 
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Figure 48: Normalized scores calculated with the second normalization procedure against compound rank (after 
the worst-scoring 0.5% were excluded) for dock1 experiment of GCase. 
 
 
Even though the molecules docked in the experiment dock2 were filtered by a different 
pharmacophore filter, the curves of scoring functions are not very different from those of 
dock1, with the curve for Vina score being the exception. Normalization with 100% cut-off 
(Figure 49) shows that Vina score and G-Score gave very high penalties to a few very poorly 
docked molecules, making the area between very well and very poor scoring ends quite 
flattened. Ranking the molecules according to their NCS100 would be problematic for the 
experiment dock2 as well, since D-Score is sensitive to poorly docked molecules while 
almost 99% of the molecules would be classified as well-docked and only a small amount of 
molecules would receive a high normalized score by G-Score and Vina score. 
 
 

Table 16: Pearson’s Correlation coefficients between different scoring functions and NCS99.5 for docking 
experiment dock2. 
 

  NCS  D-
Score  

PMFScore  G-Score  ChemScore  VinaScore  

NCS  1 0.77 0.64 0.67 0.77 0.75 
D-Score  0.77 1 0.51 0.43 0.49 0.33 
PMFScore  0.64 0.51 1 0.23 0.19 0.38 
G-Score  0.67 0.43 0.23 1 0.42 0.35 
ChemScore  0.77 0.49 0.19 0.42 1 0.65 
VinaScore  0.75 0.33 0.38 0.35 0.65 1 
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Figure 49: Normalized scores calculated without truncation with the five scoring functions Vina, PMFScore, G-
Score, D-Score and ChemScore for dock2 experiment of GCase. 
 
 
Using a truncation cut-off of 99.5% for normalization brought the curves of different scoring 
functions close to each other as in the case of dock1 (Figure 50). While cutting the poor-
scoring end brought Vina score on the same order as D-Score, ChemScore and PMFScore, G-
Score’s improvement was not as remarkable. G-Score would need more molecules to be 
excluded to converge, and thus would reduce the number of molecules even further. However, 
even with a truncation cut-off of 99.5%, it would still vote for 50% of the molecules with a 
“vote cut-off” of 0.5, therefore it was decided to stop truncation at 0.5% and calculate the 
NCS99.5 values to proceed to rank the molecules. Even though the number of molecules docked 
in experiment dock2 was twice as large, all correlation values of dock2 are very similar to 
those of dock1 (Table 16).  
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Figure 50: Normalized scores calculated with the second normalization procedure against compound rank (after 
the worst-scoring 0.5% were excluded) for dock2 experiment of GCase. 
 
 
Correlation values of dock3 are overall better than those of dock1 and dock2 (Table 17). 
PMFScore is better correlated with the other scoring functions, while better correlation values 
between NCS99.5 and the scoring functions is also observed. Since dock1 and dock3 
experiments were done with the same set of molecules, the differences between the 
correlation values enables us to make comparisons between dock1 done with AutoDock Vina 
and dock3 done with Surflex-Dock. In dock3, individual scoring functions, especially 
PMFScore, show improved correlations with each other and also with NCS99.5. This shows that 
Surflex-Dock was able to find binding modes that were concurred more consistently and 
coherently by the additional scoring functions. 
 
 
 
 
 
 
 
 
 
Table 17: Pearson’s Correlation coefficients between different scoring functions and NCS99.5 for docking 
experiment dock3. 
 
 

  NCS  D-
Score  

PMFScore  G-Score  ChemScore  

NCS  1 0.9 0.71 0.76 0.79 
D-Score  0.9 1 0.46 0.73 0.66 
PMFScore  0.71 0.46 1 0.28 0.45 
G-Score  0.76 0.73 0.28 1 0.44 
ChemScore  0.79 0.66 0.45 0.44 1 



 93 

When normalized without any truncation, the four scoring functions show two patterns for the 
distributions of normalized values for the docking experiment dock3 (Figure 51). While D-
Score and ChemScore were equally decisive and would vote for 45-50% of the molecules 
with a vote cut-off of 0.5 (dashed grey line in Figure 51), both G-Score and PMF-Score 
scored few molecules with very high penalties, decreasing the overall sensitivity. These 
scoring functions would vote in favor of almost all of the molecules with 0.5 vote cut-off, 
making no contribution to the overall ranking. 
 

 
Figure 51: Normalized scores calculated without truncation with the four scoring functions PMFScore, G-Score, 
D-Score and ChemScore for dock3 experiment of GCase. 
 
 
On the other hand, with a small truncation of 0.5% of the molecules, the curves of all four 
scoring functions could be brought to similar sensitivity levels. G-Score again, like in the case 
of dock1 and dock2, couldn’t converge as good as the rest of the curves (Figure 52). 
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Figure 52: Normalized scores calculated with the second normalization procedure against compounds rank 
(after the worst-scoring 0.5% were excluded) for dock3 experiment of GCase. 
 
 
After the calculation of NCS99.5 values for each compound from each docking experiment, the 
compounds were ranked according to their NCS99.5. From the three docking experiments, the 
compounds ranking in the top 600 were selected for the following step of binding free energy 
estimation with LIE simulations, adding up to 1800 compounds in total. There were some 
intersecting molecules, i.e. 178 molecules were in the top 600 of any two docking 
experiments and 28 were in the top 600 of all three docking experiments. However, repeating 
molecules were not reduced to only one conformation, all docked conformations of the 
repeating molecules from different docking experiments were included in the simulations. 
Each conformation was kept as input for the molecular dynamics simulations because each 
conformation corresponds to a different starting point and different starting points may affect 
the outcome of short molecular dynamics simulations dramatically. Therefore, the number of 
unique molecules was 1566; 1360 molecules with a single conformation, 178 molecules with 
two conformations and 28 molecules with three conformations, adding up to 1800 
conformations in total (Figure 53). 
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Figure 53: Numbers of intersecting molecules chosen by more than one docking experiment in the top 600. 
 
 
For the LIE simulations, the same force-field parameters and ligand topologies as in the case 
of human T-protein and human bleomycin hydrolase were used. The center and the size of the 
solvation sphere were again decided as the former examples. The same solvation sphere was 
used for the simulations of all selected ligands from the three docking experiments. Since the 
defining factor for the size of the solvation sphere is the maximum size of a compound and 
the largest molecule of the final set in its docked conformations was 24 Å, the radius of the 
solvation sphere was set to 27 Å. 
To have a neutral environment for both the free and bound states, the following titratable 
residues were left charged: Arg120, Asp127, Arg131, Glu152, Asp153, Lys157, Lys186, 
Lys194, Glu235, Asp282, Asp283, Arg285, His311, Asp315, Glu340, Lys346, Glu349, 
Arg353, Arg359, Glu388, Arg395 and Asp399. The remaining charged residues were 
neutralized because they were out of the solvation sphere. 1566 molecules with 1800 different 
conformations were simulated for binding free energy calculation with LIE method. 
The 600 selected molecules from the docking experiment dock1 have been evaluated for the 
correlations between the values assigned by individual scoring functions and the binding free 
energies calculated with the LIE method (Table 18). As expected (from the analysis with the 
larger set of molecules given in Table 15), all individual scoring functions gave low 
correlation values to the normalized consensus score, NCS. However, the correlations among 
individual scoring functions were not significant for the selected 600 molecules from dock1 
experiment. The only scoring function that showed significant correlation with LIE energies 
for experiment dock1 was D-Score (Figure 54).  
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Table 18: Pearson’s Correlations of scoring functions with each other and with LIE energies for the selected 
molecules from dock1 experiment. 
 
 

 
Figure 54: Scatter plots showing the correlation of binding free energies (kcal/mol) calculated with the LIE 
method with normalized consensus scores and individual scoring functions for dock1. 
 
 
In the case of experiment dock2, which employed a different pharmacophore filter from 
dock1, the results were not very different (Table 19). Again D-Score was the only scoring 
function with a significant correlation of 0.48 with LIE values (Figure 55). 
 
 
 
 
 
 
 
 
 

   
NCS  

D-
Score  

PMF 
Score  

G- 
Score  

Chem 
Score  

 
Vina  

 
LIE  

NCS  1 0.33 0.36 0.23 0.24 0.26 0.17 
D-Score  0.33 1 0.08 0.12 -0.27 -0.55 0.47 
PMFScore  0.36 0.08 1 -0.27 -0.39 -0.03 0.01 
G-Score  0.23 0.12 -0.27 1 -0.1 -0.28 0.26 
ChemScore  0.24 -0.27 -0.39 -0.1 1 0.26 -0.27 
Vina  0.26 -0.55 -0.03 -0.28 0.26 1 -0.27 
LIE  0.17 0.47 0.01 0.26 -0.27 -0.27 1 
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Table 19: Pearson’s Correlations of scoring functions with each other and with LIE energies for the selected 
molecules from dock2 experiment. 
 
 

 
Figure 55: Scatter plots showing the correlation of binding free energies (kcal/mol) calculated with the LIE 
method with normalized consensus scores and individual scoring functions for dock2. 
 
 
However, for the docking experiment dock3, a different story can be told (Table 20). First, 
individual scoring functions show better overall correlation with the normalized consensus 
scores, NCS. Second, except the correlation between D-Score and G-Score, individual scoring 
functions don’t seem to be associated with each other. Especially PMFScore is significantly 
negatively-correlated with all remaining scoring functions.  And lastly, none of the individual 
scoring functions are correlated with LIE energies (Figure 56). 
 
 
 
 
 

   
NCS  

D-
Score  

PMF 
Score  

G- 
Score  

Chem 
Score  

 
Vina  

 
LIE  

NCS  1 0.27 0.38 0.2 0.15 0.22 0.12 
D-Score  0.27 1 0.07 0.06 -0.33 -0.56 0.48 
PMFScore  0.38 0.07 1 -0.3 -0.46 0.05 -0.04 
G-Score  0.2 0.06 -0.3 1 0.03 -0.35 0.18 
ChemScore  0.15 -0.33 -0.46 0.03 1 0.09 -0.25 
Vina  0.22 -0.56 0.05 -0.35 0.09 1 -0.26 
LIE  0.12 0.48 -0.04 0.18 -0.25 -0.26 1 
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Table 20: 
Pearson’s Correlations of scoring functions with each other and with LIE energies for the selected molecules 
from dock3 experiment. 
 
 

 
Figure 56: Scatter plots showing the correlation of binding free energies (kcal/mol) calculated with the LIE 
method with normalized consensus scores and individual scoring functions for dock3. 
 
 
Comparing between docking experiments dock1 and dock2 means comparing the two 
different pharmacophore filters used in this study. Even though the molecules that passed the 
pharmacophore filter pharma2 were more than twice the number of molecules that passed 
pharma1, the docking experiments dock1 and dock2 didn’t yield very different results. 
There were 150 intersecting molecules in the selected sets of dock1 and dock2. 
On the other hand, comparing dock1 and dock3 enables the comparison of docking programs 
AutoDock Vina and Surflex-Dock since both experiments employed the same pharmacophore 
filter, pharma1. Since correlation values between the NCS and the individual functions are 
higher in the case of dock3, it can be concluded that Surflex-Dock was able to create binding 
modes that were overall more favorable by the individual scoring functions. 

   
NCS  

 
D-
Score  

PMF 
Score  

G- 
Score  

Chem 
Score  

 
LIE  

NCS  1 0.53 0.23 0.38 0.15 0.06 
D-Score  0.53 1 -0.35 0.4 -0.33 0.06 
PMFScore  0.23 -0.35 1 -0.43 -0.46 0.05 
G-Score  0.38 0.4 -0.43 1 0.03 0.11 
ChemScore  0.51 0.07 -0.22 -0.04 1 -0.1 
LIE  0.06 0.06 0.05 0.11 -0.25 1 
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The rmsd comparison between the binding modes output by the docking programs and by the 
molecular dynamics simulations done in the solvated spherical system centered on the protein 
binding site, showed that around 60% of the molecules have similar binding modes (Figure 
57). g_rms command of GROMACS188 was used for rmsd calculations. The rmsd values 
between the docked conformations and final simulation conformations show that most of the 
ligands are 1-4 Å apart. Given the difference of the allowed regions, these rmsd values are 
small enough to conclude that docking and simulations created similar binding modes for over 
1100 ligands. On the other hand, the rest of the ligands show larger displacements from their 
docked binding modes after molecular dynamics simulations. One reason for these large 
values of rmsd can be again the difference of the allowed regions in docking and in 
simulations. In molecular dynamics simulations, the ligands are free to leave the binding site; 
however in docking studies they are not. The other reason may be the existence of water 
molecules. In docking studies, there was no water to interfere with the binding; however LIE 
simulations took place in aqueous environment. There might be water molecules making 
bonds with the binding site residues, thus causing the ligands shift their locations. 
 
 

 
Figure 57: Rmsd differences between the docking results and LIE simulation results for GCase. 
 
 
The plot of the ligand size versus rmsd difference of docked and simulation binding modes for 
human GCase also showed that a visible pattern was not existent, as in the cases of human T-
protein and human bleomycin hydrolase (Figure 58). However, almost 90% of the ligands 
showed small rmsd differences independent of ligand size. This shows that most of the 
molecules could be similarly bound either by docking or by simulation due to the well-
defined pocket-like binding site of GCase. 
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Figure 58: Rmsd differences between the docking ligand configurations and LIE simulation results 
(configuration of last time frame) versus the ligand size for GCase. 
 
 
The comparison of number of water molecules around 4 Å of the ligand at the beginning 
(solvated docked complexes) and end of the LIE simulations shows that the degree of 
solvation of the ligand increases during the simulation, as observed in the two previous cases 
(T-protein and hBH). (Figure 59).  
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Figure 59: The distribution of water molecules within 4 Å of the ligands at the end of docking experiments and 
LIE simulations for Gcase. 
To choose for the candidate molecules that would continue to experimental testing, we 
applied three criteria and the molecules that fulfill at least two of these criteria were chosen 
for experimental testing. The first criterion was passing the visual inspection step. All 1800 
conformations were inspected visually using MOE32. At the end of visual inspection, 100 
molecules were chosen, regarding their abilities to make hydrogen bonds with the binding site 
residues, their exposure to the solvent and the existence of π-π or cation-π interactions with 
the protein. The second determining factor was to be in the intersection set of molecules 
chosen in the top 600 by all three docking experiments. There were 28 molecules (Figure 53) 
in total that fulfilled this requirement. Finally, the last test was to be in the top 100 after 
ranking according to binding free energies calculated with LIE. For this last test, repeating 
conformations of the same molecule were not treated as separate cases, the conformation with 
the lowest binding free energy was chosen, and thus 100 different molecules were taken. 
To define the list of molecules that would be tested experimentally, we selected 22 molecules 
that fulfilled at least two of the three requirements. In addition to this, to increase the number 
of molecules, 7 more molecules ranking in the top 30 according to LIE results, but failing the 
other two criteria were also added. Therefore, 29 molecules in total were selected for 
experimental testing (Figure 60). While selecting the molecules, we also considered the rmsd 
values between docked and simulation conformations, and tried to choose molecules that 
show similar binding modes in both docking and simulation results (Table 21). 
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Figure 60: Molecules chosen for experimental testi 
 
 

Molecule  
Number Selection Criteria 

Rmsd between 
docking and 
LIE (Å) 

1 LIE, Visual Inspection 1.35 
2 LIE* 2.34 
3 LIE, Visual Inspection 5.24 
4 LIE, Visual Inspection 4.73 
5 LIE, Visual Inspection 2.43 
6 Three Dockings, Visual Inspection 2.15 
7 LIE* 3.33 
8 LIE, Visual Inspection 2.50 
9 LIE* 1.90 

10 
LIE, Three Dockings, Visual 
Inspection 2.72 

11 
LIE, Three Dockings, Visual 
Inspection 0.93 

12 LIE* 2.54 
13 LIE* 6.42 
14 LIE, Visual Inspection 6.00 
15 LIE, Visual Inspection 3.69 
16 LIE, Visual Inspection 1.26 
17 LIE, Visual Inspection 2.93 
18 LIE* 2.56 

19 
LIE, Three Dockings, Visual 
Inspection 2.72 

20 LIE, Visual Inspection 2.66 
21 LIE, Visual Inspection 3.13 
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22 LIE, Visual Inspection 2.24 
23 LIE, Three Dockings 2.87 
24 LIE* 1.95 

25 
LIE, Three Dockings, Visual 
Inspection 1.59 

26 LIE, Three Dockings 1.17 
27 LIE, Visual Inspection 3.74 
28 LIE, Visual Inspection 5.38 
29 LIE, Visual Inspection 1.73 

Table 21: The list of selection criteria fulfilled by the chosen molecules. LIE: ranking in the top 100, LIE*: 
ranking in the top 30, Visual Inspection: in the top 100 molecules chosen with visual examination, Three 
Dockings: ranked in the top 600 of all three docking experiments. 
 
 
The 29 chosen molecules were experimentally tested for activity by the Group of Amadeu 
Llebaria from the Institute of Advanced Chemistry of Catalonia, Consejo Superior de 
Investigaciones Científicas (IQAC-CSIC). The determination of the activity of imiglucerase 
(Cerezyme ®, Genzyme), a recombinant analogue of human β -glucocerebrosidase, was 
performed using a fluorimetric method based on the hydrolysis of 4-methylumbelliferyl-β-D-
glucopyranoside (4-UMG) to glucose and 4 methylumbelliferone (4-MU, Figure 61), 
catalyzed by Imiglucerase. Each vial of 200 units contains approximately 5 mg of enzyme. 

 

 
Figure 61: Hydrolysis of the substrate by the imiglucerase activity.  
 

The detection equipment is the SpectraMax M5 (Molecular Devices Corporation) for 96-well 
plates. The fluorescence measurements were performed at a wavelength of 355 nm excitation 
and a 460 nm emission. 
The compounds were dissolved in DMSO at a concentration of 1 mg / mL. From this the 
appropriate dilutions were prepared. The test also included the iminosugar N-nonyl-
deoxynojirimycin (NN-DNJ) to a concentration of 50 µM. This compound has been described 
as an inhibitor of imiglucerase. 
The assays were performed in triplicate. To study a possible dose response, the tests were 
performed at two concentrations (20 and 10 µg / mL). Incubations of 30 minutes were made 
in the presence and absence of inhibitors at varying concentrations with 25 µL of enzyme (0.1 
mg protein / mL) in a total volume of 40 µL of McIlvaine buffer solution, pH 5.2, 0.1% Triton 
X-100 (v / v) and 0.2% sodium taurocholate (w / v). Then 60 µL of the substrate (4-UMG, 4 
mM in McIlvaine buffer solution, pH 5.2) was added and left for reaction for 10 minutes. The 
incubations were stopped with 150 µL of buffer solution glycine / NaOH (100 mM, pH 10.6 ) 
(Table 22). Determinations of the 4-MU formed were made at an exitation wavelength of 355 
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nm and emission 460 nm.
 

 Control  Inhibitor  

Enzyme 25 µL 25 µL 

DMSO 2 µL --- 

Inhibitor --- 2 µL 

Buffer solution 13 µL 13 µL 

Preincubation 30 minutes  

Substrate 60 µL 60 µL 

Incubation 10 minutes  

Glycine/NaOH 150 µL 150 µL 

Table 22: Volume ratio for activity studies of imiglucerase 
 
 
Activities for the selected molecules at two concentrations are listed in Table 23 and plotted in 
Figure 62. Even though the control molecule NN-DNJ performed clearly better than all tested 
molecules, compounds 3, 4, 13, 19 and 21 affect enzyme activity, while the remaining 
compounds hardly have any effect. Therefore, it can be concluded that the computational 
workflow managed to identify five possible hits. 
 
 

 
Figure 62: Experimentally observed activities of the selected molecules. 
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Compound 

Number 
% activity 
20 µg/mL 

% activity 
10 µg/mL 

1 96.8 ± 2.5 
100.1 ± 

3.8 

2 
102.4 ± 

2.9 
104.9 ± 

3.0 
3 49.0± 2.4 73.6 ± 2.1 
4 51.3 ± 2.8 69.1 ± 2.5 

5 95.3 ± 1.4 
103.5 ± 

3.6 

6 97.1 ± 3.7 
105.1 ± 

3.5 

7 
104.4 ± 

2.1 
97.1 ± 5.5 

8 
114.2 ± 

2.6 
104.7 ± 

3.5 

9 97.9 ± 0.6 
105.2 ± 

3.3 

10 
105.1 ± 

1.4 
101.8 ± 

5.4 

11 96.5 ± 4.6 99.7 ± 4.8 

12 
102.2 ± 

0.9 
103.2 ± 

4.5 
13 40.2 ± 1.2 58.8 ± 1.1 
14 97.9 ± 0.9 98.7 ± 2.3 

15 93.8 ± 1.3 95.6 ± 1.1 
19 81.3 ± 1.0 82.5 ± 0.9 

20 
111.1 ± 

1.8 
106.7 ± 

1.0 
21 68.7 ± 4.3 80.8 ± 1.3 

22 
100.3 ± 

2.7 
91.1 ± 5.8 

23 
104.4 ± 

3.0 
98.1 ± 6.8 

24 97.5 ± 3.0 95.9 ± 0.9 
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25 
102.0 ± 

3.0 
100.9 ± 

3.0 

26 
126.5 ± 

3.6 
120.0 ± 

2.0 

27 
103.5 ± 

1.3 
100.6 ± 

1.2 

28 
102.6 ± 

4.5 
102.5 ± 

3.2 

29 95.8 ± 0.8 95.1 ± 2.7 

NN-DNJ (50 µM) 2.2 ± 0.1 2.4 ± 0.4 
Table 23: Experimentally observed activities of the selected molecules. 
 
 
Docked conformations of the five hit molecules show that while most of the hydrogen 
bonding interactions occur with binding site residues (Asp127, Trp179, Glu235, Glu340, 
Trp381 and Asn396), Compounds 3, 4, 19 and 21 also occupy the hydrophobic groove 
between loop L1 (Phe347 and Trp348) and loop L3 (Trp312, Leu314 and Phe316). This 
suggests that Compounds 3, 4, 19 and 21 can establish hydrophobic interactions with the side 
chains of loops L1 and L3 (Figure 63).  
 

 
Figure 63: Docked binding modes of five hits. Yellow molecule: Compound 3, pink molecule: Compound 4, 
cyan molecule: Compound 13, purple molecule: Compound 19 and orange molecule: Compound 21. L1-L4 
denote the four loops that form the entrance to the binding site. Non-polar hydrogens are not shown for clarity.  
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When docked and simulation poses of Compound 3 are examined, it can be seen that both 
poses make hydrogen bonds with the binding site residues. While the docking pose binds to 
residues Asp127 and Glu340, the simulation pose makes hydrogen bonds to residues Glu235 
and Glu340 (left side of Figure 64). Even though hydroxyl moieties of the two poses of the 
ligand interact with the same residues, the ring parts are positioned quite differently (right side 
of Figure 64). While the docked conformation lies in the valley between loops L1 and L3, the 
simulation conformation is positioned between loops L2 and L4. This difference in 
positioning also explains the large value of rmsd difference (5.24 Å) between docked and 
simulation conformations of Compound 3.  
 

 
Figure 64: Docked and simulation binding modes of Compound 3. The magenta molecule represents the docked 
conformation of Compound 3, magenta residues are the residues of GCase structure used in docking and 
magenta dashed lines are the hydrogen bonds between the docked ligand and the target. The cyan molecule 
corresponds to the last configuration of Compound 3 from LIE simulations, cyan residues are the last 
configuration of GCase from LIE simulations and cyan dashed lines are the hydrogen bonds between Compound 
3 and GCase. Non-polar hydrogens are not shown for clarity.  
 
 
Docked conformation of Compound 4 makes hydrogen bonds to binding site residues 
Asp127, Trp179, Glu340 and Asn396, and additionally to residues Tyr313 and Ser345, which 
are located in the valley between loops L1 and L3 (Figure 65). Simulation binding mode of 
Compound 4 also hydrogen bonds to the same binding site residues as the docked 
conformation and additionally to Glu235 (left side of Figure 65). Even though the simulation 
conformation has a part extending to the area between loops L1 and L3, a hydrogen bonding 
pattern is not observed, probably due to the movement of L1 as a result molecular dynamics 
simulations (right side of Figure 65). The 4.23 Å rmsd difference between the docked and 
simulation binding modes may be a result of the movement of loop L1. 
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Figure 65: Docked and simulation binding modes of Compound 4. Magenta colored binding mode represents 
the docking result and cyan colored binding mode represents the LIE simulation result.  
Hydroxyl moieties of both docked and simulation configurations of Compound 13 make 
hydrogen bonds almost in the same fashion (left side of Figure 66). The docked conformation 
hydrogen bonds to binding site residues Asp127, Trp179, Glu235, Glu340 and Asn396, while 
the simulation conformation binds to Asp127, Trp179, Glu235, Glu340 and Trp381. However 
ring parts of these two conformations are located quite separately in the four-loop area. While 
the ring part of the docked conformation is located between loops L3 and L4, the ring part of 
the simulation conformation lies between loops L1 and L3 (right side of Figure 66). If 
magenta colored protein surface (docking target) is examined in Figure 66, it can be seen that 
there is a bridge like connection between loops L1 and L3 and it possibly prevents the bulky 
part of Compound 13 to occupy the valley between L1 and L3. However, the cyan colored 
simulation conformation shows that L1 and L3 moved away from each other as a result of 
LIE simulations, enabling the bulky part of Compound 13 to occupy the valley.  
  

 
Figure 66: Docked and simulation binding modes of Compound 13. Magenta colored binding mode represents 
the docking result and cyan colored binding mode represents the LIE simulation result. 
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The docked conformation of Compound 19 makes single hydrogen bonds to binding site 
residues Trp179 and Glu340, and a double hydrogen bond with Glu235 (left side of Figure 
67). The ringed part of docked Compound 19 also interacts with Asn234 and Tyr244 while 
occupying the area between loops L1 and L3. In the simulation binding mode, Compound 19 
interacts with binding site residues Glu235, Glu340 and Asn396 with hydrogen bonds. The 
ringed part of Compound 19 moves to the area between loops L1 and L2 in the simulation 
binding mode, probably as a result of the movement of loop L1 (right side of Figure 67).  
 

 
Figure 67: Docked and simulation binding modes of Compound 19. Magenta colored binding mode represents 
the docking result and cyan colored binding mode represents the LIE simulation result. 



 111 

 
 
In both binding modes, Compound 21 is similarly located in the binding site. The docking 
binding mode enables hydrogen bonds with residues Trp179, Glu235, Tyr244, Gln284, 
Glu340 and Ser 345, however the hydrogen bonding pattern in the simulation binding mode is 
not as extensive (left side of Figure 68). Compound 21 makes hydrogen bonds only with 
residues Trp179, Glu340 and Lys346 in the simulation binding mode. This is probably due to 
loop L1 moving away from loop L3, thus expanding the valley in between (right side of 
Figure 68). As a result of this expansion, Compound 21 has a larger movement area in the 
simulation binding mode than in the docked binding mode.  
 
 

 
Figure 68: Docked and simulation binding modes of Compound 21. Magenta colored binding mode represents 
the docking result and cyan colored binding mode represents the LIE simulation result. 
 
 
Table 24 shows the hydrogen bonding of the five hit compounds with the GCase made by 
both docked and simulation binding modes. 
 

 
Molecule  
 

 
Dock  

 
LIE  

 
Compound #3 
 

 
Asp127 
Glu340 

 
Glu235 
Glu340 (2) 
 

 
Compound #4 

 
Asp127 
Trp179 
Tyr313 
Glu340 
Ser345 
Asn396 (2) 
 

 
Asp127 
Trp179 
Glu235 (3) 
Glu340 
Asn396 

 
Compound #13 

 
Asp127 

 
Asp127 (2) 
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Trp179 
Glu235 
Gln284 
Tyr313 
Glu340 
Asn396 
 

Trp179 
Glu235 
Tyr244 
Glu340 
Trp381 

 
Compound #19 

 
Trp179 
Asn234 
Glu235 (2) 
Tyr244 
Glu340 
 

 
Asn234 
Glu235 
Glu340 
Asn396 
Phe397 

 
Compound #21 

 
Trp179 
Glu235 
Tyr244 
Gln284 
Glu340 
Ser345 (2) 
 

 
Trp179 
Glu340 
Lys346 

Table 24: Hydrogen bonds made between the hit compounds and GCase. First column is the compound number, 
second column is the hydrogen bonds made by the docked binding mode and second column is the hydrogen 
bonds made by the simulation binding mode. The numbers in parenthesis denote the number of hydrogen bonds 
made with the corresponding residue (if more than 1 bond is made). 

 
 

4.4. Conclusion 
 
In this study, we proposed a virtual screening procedure that combines pharmacophore 
design, high-throughput molecular docking, consensus scoring and evaluation of binding free 
energy by the LIE method. Two large libraries of small molecules have been screened to find 
potential active binders to two proteins, human T-protein and human bleomycin hydrolase, 
that are suggested to take part in Alzheimer's Disease, and human acid beta-glucosidase, 
which is a key protein involved in Gaucher's Disease. Even though human T-protein and 
human bleomycin hydrolase were not primarily discovered for their involvement in 
Alzheimer's Disease, their function may be also important in the pathological pathway of the 
disease and, therefore, they have been proposed as drug targets. For the screening experiment, 
pharmacophore filtering and molecular docking was employed to reduce the library size and 
to find possible hits. The pharmacophore filters used did not contain many different features 
to enable hit variety. The flexible ligand - rigid protein approximation was used for the 
docking experiments in this study for efficiency. However, this approximation restricts 
allowed poses for molecules and may cause primarily false negatives but also false positives. 
The evaluation of binding modes of molecules docked in the protein binding site was done 
with a modified rank-by-number consensus scoring method. Consensus scoring was used to 
find out molecules that scored well with all five scoring functions. For each target, the 
compounds with the best normalized consensus scores were subjected to two molecular 
dynamics simulations for binding free energy estimation by LIE. LIE based methods are 
known to perform better than existing scoring functions, mainly because the proteins are not 
rigid as in docking and the simulations take place in a solvated environment. Therefore, 
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flexibility to both ligand and protein was introduced during the simulations. Predicted binding 
free energies were not significantly correlated with either the individual scoring functions or 
the normalized consensus score for the three screening experiments. 
In the continuously developing world of computer-aided drug design, hybrid approaches are 
needed to compensate for the weaknesses of individual standard methodologies. Increasing 
computation power enables exploration of rigorous but expensive methods, and to our 
knowledge, this study is the first application of standard LIE at large scale (around 11800 
molecules in total for the three targets). Fully automated treatment of small molecules for 
different applications makes the workflow explained in this study a very versatile approach 
for virtual screening of different targets. 
 
 

4.5. Future Work 
 
Candidate ligands need to be chosen for experimental work for the T-protein to see whether 
there are actives and whether there is correlation between experimental binding affinities and 
predicted binding free energies by LIE. Additional studies may be done to improve the 
consensus scoring algorithm, i.e. excluding a scoring function that doesn’t correlate with the 
rest of the scoring functions, or selecting the scoring functions according to the target protein.  
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Chapter 5 
 
 
 
 

Results 
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5. Conclusions 
 
The main conclusions of the work presented in this thesis can be summarized as follows:  
 

• The design of a drug discovery project requires an integrated approach. For this 
purpose, we designed an automated computational workflow combining different 
techniques used in structure-based drug design. 

 
• The computational workflow described here is a result of evolving procedures that 

started with docking parameter assignment according to the properties of the ligands, 
and then continued with the three-step docking approach. With the addition of 
pharmacophore filtering to the three step docking approach, the docking step got more 
efficient, leading to the hybrid approach. By adding binding free energy predictions 
with the LIE method, the workflow reached to its final version. 

 
• The computational workflow brings together pharmacophore modeling, high-

throughput molecular docking, consensus scoring and binding free energy calculations 
for small molecules via molecular dynamics simulations. 

 
• The computational workflow is an almost fully automated procedure that only requires 

manual adjustment at the points of pharmacophore filter creation, grid center 
definition for docking and charge assignment of the target protein for LIE simulations. 

 
• The workflow is applicable to any protein with a three dimensional structure and a 

known binding site, either experimentally resolved or computationally predicted. The 
existence of known inhibitors is not a requirement, however information from the 
known inhibitor can also be integrated to the workflow if available. 

 
• At the time of writing this thesis, this study represents the first large-scale application 

(in the thousands of molecules per target) of molecular-dynamics simulation based 
ligand-binding free energy prediction with the linear interaction energy (LIE) method. 
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