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PROTEIN DYNAMICS AND FUNCTION STUDIED BY COARSE-GRAINED AND ATOMISTIC 

THEORETICAL APPROACHES 

 

Laura Orellana, Ph.D.  

University of Barcelona, 2014 

 

Protein structure, dynamics and function, are inseparable in order to understand the 

mechanisms of Life at the molecular level. From the structure comes dynamics, and from 

dynamics many, if not all, protein functions. Usually functional motions operate at 

timescales and conditions that are far beyond the limits of current experimental 

techniques. In order to address rationally the complex interplay between these three 

aspects of proteins, we will deepen into and compare both coarse-grained and atomistic 

simulation methods. In the first part of this thesis, coarse-grained Elastic Network Models 

are compared with Molecular Dynamics and experimental flexibility in order to obtain a 

more accurate representation of protein dynamics. We propose a novel ENM algorithm 

based on local chain topology, which renders results close to atomistic simulation 

methods. In the second part of the thesis, the novel method is used to detect dynamical 

hot spots in the Tyrosine-Kinase HER1, revealing why a number of oncogenic mutations 

are accumulated at hinge interdomain regions. Near-microsecond long simulations of the 

detected dynamical mutants are presented which unravel a critical intermediate in the 

large-scale conformational change that activates the protein. Finally, we explore the 

validity of the ENM potentials in a number of applications, from sampling transition 

pathways to understanding how correlated motions in secondary structures transmit 

information or why dynamics is tightly related with the connectivity of residue networks.  

The present thesis demonstrates that functional motions are encoded in shape and local-

topology, and that perturbations hitting key regions can shift protein dynamics, suggesting 

a novel oncogenic and evolutive mechanism. 
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DINÀMICA I FUNCIÓ DE PROTEÏNES: UN ESTUDI AMB MÈTODES TEÒRICS ATOMÍSTICS I 

DE BAIXA RESOLUCIÓ 

 

Laura Orellana, Ph.D.  

University of Barcelona, 2014 

 

L’estructura, la dinàmica i la funció de les proteïnes són inseparables alhora d’entendre els 

mecanismes de la vida al nivell molecular.  La estructura determina la dinàmica, i és la 

dinàmica la que decideix la majoria, si no totes, les funcions de les proteïnes. Molt sovint 

els moviments funcionals operen en escales de temps i condicions que desafien els límits 

de les tècniques experimentals actuals. Per tal d’entendre racionalment la complexa 

interrelació existent entre aquests tres aspectes de les proteïnes, aprofundirem i 

compararem diferents mètodes de simulació, atomístics i també de baixa resolució.  En la 

primera part d’aquesta tesis, els models de baixa resolució anomenats de “Xarxa Elàstica” 

es comparen amb Dinàmica Molecular i flexibilitat experimental per obtenir una 

representació més acurada de la dinàmica de les proteïnes. Proposem un nou algoritme de 

xarxa elàstica basat en la topologia local de la cadena, que proporciona resultats molt 

pròxims als mètodes de simulació atomístics. En la segona part de la tesis, el nou mètode 

s’utilitza per detectar punts calents per la dinàmica de la Tirosina Cinasa HER1, revelant 

perquè nombroses mutacions oncogèniques s’acumulen en regions interdomini clau. 

Presentem simulacions dels mutants dinàmics a prop de l’escala de microsegons que 

revelen un intermediari crític en el canvi conformacional de gran escala que activa la 

proteïna. Finalment, analitzem la validesa dels potencials de xarxa elàstica en una sèrie 

d’aplicacions: des d’explorar possibles camins per realitzar transicions conformacionals,  a 

entendre com els moviments correlacionats de les estructures secundàries transmeten 

informació, o perquè la dinàmica esta estretament lligada a la connectivitat de la xarxa 

d’aminoàcids. La present tesis demostra que els moviments funcionals es troben codificats 

en la forma i la topologia local, i que les pertorbacions en regions crítiques poden alterar la 

dinàmica de les proteïnes, suggerint un nou mecanisme oncogènic i evolutiu. 
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Chapter 1 Introduction: Protein Structure, 
Function and Motion 

In this first chapter, we introduce the problem of protein flexibility and how it is 
related to biological shape and function. Then we outline briefly the two main 
theoretical approaches to explore protein motions: atomistic and coarse-grained, 
which will be discussed throughout this thesis, from the methodological basis (Chapter 
2) to their comparison with experimental data (Chapters 3), and how they can be 
applied to dissect the function of a protein in disease (Chapter 4), or to solve a diverse 
array of problems in structural biology and dynamics (Chapter 5). 

1.1 Protein Flexibility and Function 

Dynamics is the key to understand function 
In the late XIXth century, fast photography techniques were developed allowing for the 
first time to capture sequences of motion, such as the one entitled “Sallie Gardner at a 
Gallop” (Figure 1. 1, left), one of the first movies in history. The author of this amazing 
photographic series was Edwaeard Muybridge (1840-1904), a visionary photographer 
interested in body motion, which helped to develop fast photography. Using his 
improved camera, he took the “Horse in motion” series and won a bet to figure out 
whether all four feet of a horse were off the ground at the same time while galloping. 
Looking at these beautiful sequences of images, it is evident that not only the shape of 
the horse’s body, but also the coordinated motion of the legs, has been designed to 
run. Evolution selects the shapes best suited to perform certain functional motions – 
from running to swimming or flying – and the same principle is valid for horses, 
biomolecules, and all living matter (Bejan & Lorente, 2010). Protein structural changes 
are encoded in the sequence, which determines the overall fold and in the end, the 
intrinsic motions and the resulting biological function. These functional movements 
exist by evolutionary selection which guide protein sequences evolution, not only to 
adopt certain structures, but to favor dynamical properties required for function 
(Velázquez-Muriel et al., 2009). Each structure can only sample a limited part of the 
conformational space, and thus, displays a reduced set of elemental motions; the 
shape determines the conformations/motions, and the motions determine the 
function. Therefore, when two sequences have even a remote but sizeable sequence 
similarity (around 30 %), it is very probable that they will share a common fold, and 
even more, a similar flexibility pattern and function.  
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In spite of the relevance of dynamics for evolution, we usually think of proteins as 
fixed, rigid structures, like the flat, static images that appear in every biochemistry 
book - the so-called native conformations nicely trapped in crystals. However, proteins  
are highly dynamical molecules, ever-changing and continuously exploring the 
conformational space - in some sense, they behave as living entities (Henzler-Wildman 
& Kern, 2007). If biomolecules had rigid structures, they could not perform any useful 
task in the cell other than mechanical support as mere building blocks - such as 
collagen, or keratin. Proteins need to change their form, to have a certain degree of 
conformational flexibility to act in their environment. This is obvious for motor 
proteins such as myosin, responsible of muscle contraction (see Figure 1. 2), or kinesin, 
involved in the busy vesicle trafficking inside the cells. But even processes like enzyme 
catalysis or protein-protein binding involve important structural changes (Karplus & 
Kuriyan, 2005; Karplus & McCammon, 2002). Almost any interaction between a protein 
and another molecule is associated with smaller or larger conformational changes: 
ligand recognition, signal transduction, assembly of multiprotein machines or allosteric 
regulation. Extreme cases of flexibility are the molten globule  (Naganathan & Orozco, 
2011) and intrinsically disordered proteins (Babu, Van Der Lee, De Groot, & Gsponer, 
2011), in which the traditional concept of shape is lost and function arises from 
conformational freedom.  
 

  

Figure 1. 1 Edwaeard Muybridge “Sallie Gardner at gallop” and a XIXth Century equestrian painting.  
Thanks to the development of a fast camera, the British photographer Edwaeard Muybridge won a bet to figure out 
whether all four feet of a horse are off the ground simultaneously while galloping. Until Muybridge took multiple 
snapshots of running horses (“The Horse in Motion” series, left) nobody understood correctly the gallop mechanism. 
The detailed mechanics of this motion is too fast for the human eye, and thus it’s not surprising that all artistic 
representations of running horses before the 20th century were remarkably wrong, with a “flying gallop” pose (note 
that at the moment that no hoof touches the ground, the horse’s legs are gathered together, not splayed, right). 
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Under the thermal noise and multiple influences from the cell environment, each one 
of the atoms of a protein is departing at every femtosecond from its average position, 
only subject to the constraints imposed by chemical interactions, which dictate the 
overall protein shape. Some constraints are stronger that others (i.e. covalent bonds) 
but as a whole they allow the structure to display a range of typical motions near 
equilibrium, to visit a finite but wide range of thermally-accessible states. However, 
the most powerful structural technique available, X-ray diffraction, provides only a 
single frozen picture from a conformational ensemble in terms of average positions. 
These coordinates provide as much information as an isolated view from a resting 
horse, and no dynamic mechanisms can be inferred from it. Not surprisingly, all 
pictorial representations of galloping horses before the advent of fast cameras were 
radically wrong (see Figure 1. 1, right). Although cavemen were better observers than 
all modern people, the fine details of these complex series of motions were also too 
fast for their gaze (Horvath, Farkas, Boncz, Blaho, & Kriska, 2012). Up to now there is 
no experimental technique that can provide us with a video of a moving, real, protein 
structure, and in the best of the cases, we have a couple of photos from different 
poses (conformations). As Muybridge’s history shows, it is extremely difficult to 
reconstruct the mechanics of motion from static views. However, we can always try to 
compute the motions using the laws of physics; ultimately, the key to truly understand 
the link between molecular shapes, motion and function is to explain their action in 
terms of physical forces. In other words, simulations provide the most rational 
approach to dissect protein dynamics. 

 

Figure 1. 2 Protein motion is necessary for biological function.  
ATP hydrolysis provides the energy to trigger conformational changes in the molecular motor myosin, responsible 
for motion in all muscular cells. When ATP is cleaved, myosin adopts a bent, flexed form, like in the structure on the 
left (shown in pink and ochre, PDB 1br1). This prepares myosin for the power stroke. The flexed myosin then grabs 
the actin filament (shown in green and blue, from PDB 1atn), and it is the release of phosphate that snaps the 
motor into a straight "rigor" form, as shown on the right (PDB 2mys). This power stroke pushes the myosin molecule 
along the actin filament. When finished, the remaining ADP is replaced by a new ATP, the myosin lets go of the actin 
filament and it’s ready for the next stroke.  
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The evolving view on protein function: from aperiodic crystals to 
disordered structures 

The concept of proteins as static entities appeared long before any structural data was 
available; actually, it can be traced back to the ‘‘key-lock’’ hypothesis proposed at the 
end of the XIXth century by Emil Fischer (Fischer, 1894) to explain enzymatic activity in 
terms of what we would call today a “rigid docking” – a  well-defined active site 
complementary to a substrate’s fixed shape. This idea persisted throughout the first 
half of the past century, even in revolutionary physicists such as Erwin Schrödinger 
(Schrödinger, 1992) which conceived the molecules of life as some sort of “aperiodic 
crystals”. However, this view of proteins as static and rigid objects proved to be 
insufficient to explain an increasing body of experimental data, especially in the field of 
enzymology.  The first to envision a structural explanation for the function of a protein, 
Hemoglobin, in terms of ligand-mediated conformational changes, was the brilliant 
Linus Pauling, almost three decades before the first X-ray structures were solved 
(Pauling, 1935). The fundamental link between the protein structure, and its dynamics 
and biological function, became evident when the first atomic-resolution models were 
obtained by John Kendrew and Max Perutz  (Kendrew et al., 1958). In the same year, 
Daniel Koshland (Koshland, 1958) introduced the ‘‘induced fit’’ theory and with it the 
idea of  “structural changes” in proteins upon binding of a substrate; and a year later, 
Linderstrom-Lang and Schellmann (Linderstrom-Lang & Schellmann, 1959) proposed a 
breath-like continuous movement of the proteins, a fruitful idea experimentally 
probed during the following decades. When the crystallographic apo and holo 
structures of Lysozyme were solved (alone and in complex with inhibitors (Blake et al., 
1965; Johnson & Phillips, 1965)) – the role of conformational flexibility for catalytic 
mechanisms, and for protein function in general, began to be widely accepted. The 
alternative view to the induced-fit theory of allostery, the “conformational selection” 
or Monod-Wyman-Changeux model, based on concerted transitions between 
preexisting protein conformations was proposed that same year (Monod, Wyman, & 
Changeux, 1965). The development of Molecular Dynamics (MD) simulations in the 70s 
(J A McCammon, Gelin, & Karplus, 1977) and Nuclear Magnetic Resonance (NMR) 
(Wuethrich, 1989) in the 80s confirmed the view that proteins are highly dynamic and 
that their different scales of motion - from femtosecond atom vibrations to second-
long folding and unfolding processes - are fundamental for their functions. This 
dynamic picture has been confirmed by time-resolved crystallography (Hajdu et al., 
2000), Förster resonance energy transfer (FRET) (Brunger, Strop, Vrljic, Chu, & 
Weninger, 2011; Heyduk, 2002), or neutron scattering (Bernadó, Mylonas, Petoukhov, 
Blackledge, & Svergun, 2007; Gabel et al., 2002; Putnam, Hammel, Hura, & Tainer, 
2007), that provide precious information from functional conformational changes.   
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The problem of time and length scales in living matter: the gap between 
theory and experimentation  

Despite the huge advances in the past few years, one of the main unresolved problems 
in biology is the huge gap existing between the time and length scales that can be 
addressed at the computational and experimental levels. The study of protein 
flexibility is still very challenging for experimental techniques and much information is 
derived from theoretical methods, Molecular Dynamics (MD) being the most rigorous 
one. However, whereas experimental approaches reach a maximal resolution of ms-μs 
in time, and a length order of nm, theoretical-computational methods allow simulating 
the microscopic level, but in general only on the order of 102 ns/101 nm, for small-to-
middle sized proteins. Simulations in the microsecond timescale for large systems are 
still prohibitive in terms of computational cost, not to say the study of protein-protein 
or protein-membrane interactions, only available with specialized supercomputers 
(Arkhipov et al., 2013). Precisely, the most relevant interactions in vivo, such as 
concerted domain motions, docking or protein folding, occur in this blurred boundary 
between theory and experimentation: they are slow motions, and often involve great 
macromolecular complexes (see Table 1. 1 below). In these fundamental processes, 
the number of degrees of freedom is still many orders of magnitude beyond the 
frontier we can reach in the present in length and time scales.    

Table 1. 1 Time scale and Amplitude of Biomolecular motions.  

TIME SCALE AMPLITUDE DESCRIPTION 
  

short femto, pico  
10-15 - 10-12s 0.001 - 0.1 Å 

Local motions (0.01 to 5 Å, 10-15 to 10-1 s) 

- Atomic fluctuations: bond stretching, angle bending, dihedral 

motion 

- Side chain motions  

- Loop motions 

 

  

medium pico, nano  
10-12 - 10-9s 0.1 - 10 Å 

Rigid Body Motions  (1 to 10Å, 10-9 to 1s) 

- Helix motions 

- Collective motions: Subunit and Domain Motions (hinge bending)  

 

  

long nano, micro  
10-9 - 10-6s 1 - 100 Å 

Large- Scale Motions (> 5Å, 10-7 to 104 s) 

- Folding in small peptides  

- Helix coil transitions 

- Dissociation/Association  

 

  

very long micro, 
second  
10-6 - 10-1s 

10 - 100 Å - Folding and Unfolding 
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1.2 Overview: Molecular Dynamics and Coarse-Grained Models 
 
The limitations of MD: coarse-graining to reach the mesoscopic scale 

Molecular dynamics (MD) simulation, based on physical potentials which proceed 
from the rigorous formalism of molecular physics (see below), is the most powerful 
approach to model protein motions. Since the first protein simulation in the late 70s (J 
A McCammon et al., 1977), the size of the system that can be addressed by MD has 
been increasing gradually thanks to the better computational architectures, more 
efficient sampling techniques, and ever improved parameterization of the force-fields. 
In its current implementation the technique allows exploring dynamics in the multi-
microsecond simulation range (Klepeis, Lindorff-Larsen, Dror, & Shaw, 2009), reaching 
the millisecond scale when special computers are used. However, the computational 
cost of MD still limits the accessible timescale, particularly for large molecular 
assemblies. Analysis of the current version of the protein databank (Berman et al., 
2000) illustrates that most proteins with solved experimental structures have between 
500 and 7000 atoms, but in some cases systems reach more than 16000 atoms (see 
Figure 1. 3). As experimental resolution techniques advance and larger protein 
assemblies are incorporated, the size-histogram is expected to displace more and 
more to the right.  
 
Size is a major limitation for the theoretical simulation of proteins, but even more 
dramatic than the size-problem is the time-problem. Proteins are flexible, they move 
continuously at physiological temperatures, and as discussed above, although atomic 
vibrations happen in the nanosecond time scale, most biologically-relevant protein 
movements happen in the millisecond to second range. Each level of protein motion 
translates into the next, creating wider and slower movements. For example, local 
atomic vibrations are transmitted via hydrogen bond networks that make up 
secondary structures, creating higher amplitude motions; as we will see in Chapter 5, 
the coupled movements of interacting atoms in beta-sheet motifs create collective 
motions such as bending and twisting, which also play a role in higher order, collective 
movements of the protein related to function. 
 
If we want to follow with atomistic detail the relevant motions, we have to start in the 
scale of femtosecond vibrations and beyond, and therefore, protein energy (and 
associated forces) has to be computed at least 1012 times for a modest millisecond of 
trajectory. For a typical 50000 atoms system, just the calculation of inter-atomic 
distances would require in the order of 1021 floating point operations, not far from the 
Avogadro number. In our MoDEL (Molecular Dynamics Extended Library) database of 
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atomistic simulations (Meyer et al., 2010; Rueda, Ferrer-Costa, et al., 2007a) of 
representative PDB proteins in water, typical protein systems are in the order of 10000 
to 50000 atoms, but some of them have more than 150000 atoms, i.e we are dealing 
with systems with up to half a million degrees of freedom. We will find a clear example 
in Chapter 4, where the simulation of the HER extracellular domain has required 
protein-solvent systems in the order of 200000-400000 atoms. Even more, if we are 
interested in studying more realistic protein-protein interactions, large 
macromolecular assemblies such as the ribosome, cell membranes, etc  or diffusion or 
aggregation processes, sizes of simulated systems easily reach the many millions 
degrees of freedom, making atomistic simulation unattainable even for specialized 
supercomputers (Shaw et al., 2009). Therefore, simulations including all atoms and 
explicit solvent are only feasible for ns-μs motions, and to approach the larger, 
mesoscopic scale, where biologically relevant processes occur, the physical description 
of the system must change from the atomistic to a lower-resolution Coarse-Grained 
(CG) model.  

 

Figure 1. 3 Distribution of protein atoms in the Protein Data Bank (PDB).  
Vertical histograms show the distribution of protein atoms in 2010 version. The prokaryotic ribosomes solved by the 
group of Ada Yonath (Nobel Prize in Chemistry, 2009) are among the largest high-resolution X-ray structures 
deposited in the PDB (right, 30S subunit of T.termophilus, 1FKA). Published in: Schluenzen et al; Cell.  2000, 102 (5): 615-23.   
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In physical modeling, coarse-graining consists in reducing the studied system to its 
main features, i.e. to simplify the description in order to be able to describe its 
behavior with a minimal number of parameters. Although renouncing to details, 
coarse-graining is not bad, as a master like the 17th century painter Diego Velázquez 
probably knew very well: he only needed a couple of fast strokes to capture the 
essential traits of a subject (see Figure 1. 4). Actually, this attitude is not only in the 
core of science but also constitutes a measure of the goodness of any scientific model; 
according to Occam’s razor, "Entities should not be multiplied unnecessarily", and 
therefore, the simpler a model is, the better. If we want to include small-scale details, 
a high resolution view is needed – an atomistic portrait of the system, like a 
hyperrealistic Coello painting (see Figure 1. 4) – but if we deal with large-scale 
phenomena, simplification is not only useful, but necessary.  
 
 

 

Figure 1. 4  Fine-grained and Coarse-grained views in Protein Structure and Art.  
The atomistic description of proteins (upper right corner) can be compared to the hyperrealistic portraits of 
Spanish painter Claudio Coello (upper left corner), where the smallest details are registered – even the eyelashes of 
the girl. On the contrary, the impressionistic style of its contemporary Diego Velázquez (lower right corner) 
captures a face with few essential but blurred strokes; just as the coarse-graining of a protein reduces the 
complexity of a thousand of atoms system to the nude C-alpha carbon trace (lower left corner). 
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Fortunately, near-equilibrium protein dynamics is much simpler than one could expect; 
it can be described by a surprisingly low number of collective degrees of freedom. 
Since protein fundamental motions are often large scale-concerted displacements, 
there is no need to integrate the fine fluctuations of each atom to get the global 
picture of concerted motions of secondary structure elements and domains. When 
dealing with large biomolecular aggregates, experimentalists apply low resolution 
techniques such as Electron Microscopy or X-ray dispersion. Their computational 
counterpart is CG models, which simplify both the potentials and the structure 
description to extend the simulations near the experimental level. By eliminating fine 
details, computation is accelerated increasing many orders of magnitude the time and 
length scales available. However, one has to take into account that, in order to 
increase computer efficiency, there is a certain loss of accuracy and resolution of the 
data derived. Among CG methods, Normal Mode Analysis (NMA) (Case, 1994) stands 
out, being a classical technique based on simple harmonic potentials, which was 
developed to analyze the infrared spectra of simple atoms, but that has been proven 
to trace near equilibrium large-scale motions. Further coarse-graining of both the 
potential and the protein description, limited to the network of alpha-carbons, leads to 
the minimal Elastic Network Models (ENMs) (Atilgan et al., 2001; I Bahar, Atilgan, & 
Erman, 1997; Tirion, 1996), that will be analyzed in this thesis, both at the 
methodological (Chapter 3) and at the applications level (Chapter 4), studying a 
biomedically relevant protein that undergoes a large functional transition. We will 
combine both atomistic simulations and coarse-grained methods to study protein 
dynamics, with a particular focus on large-scale conformational changes. As we will 
see, the fact that large-scale motions define the functional dynamics also facilitates the 
analysis of MD trajectories through Essential Dynamics (ED), a technique that we will 
use repeatedly as reference. We will develop in detail the theory behind these 
methods in the next chapter (Chapter 2).  
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“Everything that is living can be understood in terms of the jiggling and wiggling of 
atoms.” 

 
Richard Feynman 
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Chapter 2 Theoretical Frameworks: atomistic 
versus coarse-grained  

In this Chapter, we will explain the basis of molecular simulations of proteins, and 
discuss in detail the two main approaches to predict “in silico” the dynamics of 
proteins: the more classical, atomistic view, and the coarse-grained, low resolution 
view. 

2.1 Molecular and Essential Dynamics:  

2.1.1 Molecular Dynamics: describing motions from Newton Laws  

An historical overview: Laplace's vision of Newton Mechanics 
Molecular Dynamics (MD) is a set of computational techniques to simulate the 
behavior of atoms and molecules based on the laws of physics. It appeared in the late 
50s from the theoretical physics, studying interactions between hard spheres (Alder & 
Wainbright, 1957). The approach was later extended to study simple liquids such as 
noble gases (Rahman, 1964), and soon was applied to material sciences. Yet in the 70s, 
the first realistic simulation with molecular interactions was that of liquid water 
(Stillinger & Rahman, 1974),  whereas the first dynamics of a protein was the small 
BTPI (Bovine Trypsin Inhibitor) which was simulated for barely 3ps in gas phase (J A 
McCammon et al., 1977) (see Figure 2. 1). 

The main theoretical basis of MD is 
Boltzmann's statistical mechanics - for 
this reason, has been also referred as 
"statistical mechanics by numbers" - 
but its formulation requires Newton's 
mechanics. In MD simulations, thermal 
motion drives a random walk for each 
atom, whereas bonds and steric 
repulsions restrict the degrees of 
freedom to the chemically meaningful 
region of the Ramachandran plot. The 
result is an ensemble of conformations 
(snapshots) across the time, which is 

assumed to be equal to the average of the statistical ensemble under the ergodic 
hypothesis. To satisfy this equality and assure empirical relevance of the results, we 

 
Figure 2. 1 The first MD simulation of a protein by 
McCammon, Gelin and Karplus (1977).  
C-alpha backbone and disulphide bonds of BPTI, before 
(left) and after (right) 3.2 picoseconds. 
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must sample a significant region of the phase space. Since the ultimate goal of MD is to 
predict the future behavior of a system based solely on its prior knowledge by using 
the rules of Physics, MD has been called "Laplace's vision of Newtonian Mechanics". In 
the words of the great French mathematician, Pierre-Simon de Laplace (1749-1827), 
an Omniscient Calculator, only provided with exact knowledge of the present, could 
predict the entire future: 
 
"We may regard the present state of the universe as the effect of its past and the cause 
of its future. An intellect which at any given moment knew all of the forces that 
animate nature and the mutual positions of the beings that compose it, if this intellect 
were far-reaching enough to subject these data to analysis, could condense into a 
single formula the movement of the greatest bodies of the universe and that of the 
lightest atom; for such an intellect nothing could be uncertain and the future just like 
the past would be present before its eyes." 

Laplace, 1820 

The limitations of the deterministic dream: Classical and Quantum 
Methods 

During the last century, the Laplacian dream of finding a link between past and future 
was definitely broken by the Heisenberg's Principle of Uncertainty and the three-body 
chaos discovered by Poincaré. Therefore, it is not surprising that when Newtonian 
mechanics is applied to a complex molecular system such as a protein, some problems 
and limitations emerge. For example, chaotic effects, that are unavoidable in many-
body systems and make MD trajectories extremely sensible to initial conditions and 
thus irreproducible (Braxenthaler, Unger, Auerbach, Given, & Moult, 1997; de Groot, 
van Aalten, Amadei, & Berendsen, 1996; Elofsson & Nilsson, 1993), or the neglect of 
electrons in the calculations, which eliminates many subtleties in the description of 
electrostatic bonds and forces, such as polarization effects or the way hydrogen bonds 
are modelled in water and secondary structures (Guvench & MacKerell, 2008; Ponder 
& Case, 2003). Ideally, we should calculate the potential energy of a molecule energy 
with a quantum Hamiltonian, resulting of all the nuclei and electrons. In practice, the 
computational cost makes unfeasible this approach to systems such as proteins, and 
quantum or hybrid QM/MM methods (Senn & Thiel, 2009) are restricted to small 
systems where charge transfer processes are decisive, such as bond formation, 
cleavage or polarization.  Therefore, the bases of MD are empirical functions of the 
potential energy (the force-fields), only dependent on the nuclei positions, and where 
electrons are not considered in an explicit manner, as we will see next.   
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2.1.2 The Basics: Force-field definition and Integration of Motion's 
Equations 

The acting potential energy: molecular force-fields  
Empirical Force-Fields intend to describe the potential energy of a given configuration 
with simple potential functions of the form: � = ������� + ����������  (Equation 2. 1 Force-field Potential Energy) 

in order to differentiate covalent and non-covalent interactions (Figure 2. 2). Only 
nuclei positions are considered; electrons are taken into account in an implicit manner, 
through the values of bond constants. For bonded interactions the potential is usually 
a sum of harmonic and Fourier terms, such as: 
      ���������� = 

�  	
(� − �0)2����
 +  �  ����
 	� (� − �0)2 + �  ���
���
 � ��23
�=1 (1 + cos(�∅ − �)) 

     (Equation 2. 2 Bonded Terms)                                   

to model energy of the stretching, bending and torsion motions between atoms, 
where l and θ are bond length and angle, Ks and Kb are the associated force constants, 
and Vi, φ and ξ are the amplitudes, torsion angle and phase angle associated with 
Fourier terms. The non-covalent forces are modeled with a sum of a Coulomb 
potential for electrostatic interactions and Lennard-Jones inverse exponential function 
of -6 and -12, to account for short range internuclear attraction and repulsion: 

                                   ���������� = � �� ������,� + � �������� �12 − ������� �6��,�  

 (Equation 2. 3 Non-bonded terms)      

Where the constants introducing electronic 
effects are empirical parameters that must be 
determined  from Raman and infrared 
spectroscopy data, NMR restraints (Fourier 
terms), liquid phase simulations, lattice energies 
and crystal structures (Van der Waals) or ab-initio 
quantum mechanical calculations (Torsional 
terms) (parameterization) (Monticelli & Tieleman, 
2013). 

 

Figure 2. 2. MD Bonded and non-
Bonded interactions. 
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Molecular Dynamics Algorithms and Computational Bottlenecks 

In an MD simulation algorithm (see Figure 2. 3), we only need an initial configuration 
of the system, r (for example, a set of PDB coordinates) and a force-field, E(r).  Since 
the force acting on each particle is the negative gradient of the potential energy, we 
can calculate its acceleration: 

ii
i

i
i am

r
Ef �
�

�
�

�
�

��                                                                                           (Equation 2. 4 

Force)                                

From the integration of the acceleration, we can get velocities:  

dtav ii ��
��

                                                                                               (Equation 2. 5 Velocity)                                

And integrating velocities, we can get a new set of positions: 

dtvr ii ��
��

                                                                                               (Equation 2. 6 Position)                                

These equations must be integrated numerically, since analytic solutions are only 
known for the simplest systems. Numerical integration generates a sequence of 
positions and velocity pairs {rn, vn} for integers n that represent discrete times t=n∆t at 
intervals or time steps ∆t. The feasible size of the integration step is limited both by the 
accuracy and the stability of the procedure, constituting a great bottleneck – since the 
integration step cannot be larger than the fastest motion. The high-frequency modes 
of motion (bond vibrations) require time steps of the order of 1 fs or less for 
acceptable resolution, which imply that we need one million steps to cover a 
nanosecond, a time scale ten orders of magnitude below the slow, large motions of 
biological significance. On the other hand, larger time steps result in unstable 
trajectories. Hence, the computational power limits greatly the simulation of 
biologically relevant dynamics. The most common and simplest family of integrators 
for biomolecular simulations is the leapfrog group, a truncation of a higher-order 
method developed by Störmer and later adapted by Verlet (Verlet, 1967), which is 
characterized by exceptional stability over long time when compared to other methods 
such as Runge-Kutta. Since stability is the main limitation to increase the timestep and 
thus the simulation length, the Verlet algorithm remains still the most popular 
integrator in MD and all the variations of its basic scheme, from constrained to 
stochastic dynamics or the different extensions to statistical thermodynamic 
ensembles (Schlick, 2001). 
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2.1.3. Essential Dynamics: a Principal Component Analysis of MD  

MD provides a Boltzmann’s ensemble of configurations of the protein, from which 
flexibility descriptors can be derived. Nevertheless, inside the trajectory there is full of 
noise arising from short-range atomic fluctuations, mixed with the important 
information on large rearrangements. This complexity makes the analysis of MD 
simulations hard, rendering it difficult to uncover motions of interest or functional 
mechanisms. To analyze the trajectories, one can cluster conformations to detect 
highly sampled regions in conformation space or alternatively, one can employ 
Principal Component Analysis (PCA) to filter the main modes of collective motion from 
local fluctuations. By a change of orthonormal basis, a complex trajectory is reduced to 
a lower-dimensional description of the functional motions. This allows enhanced 
sampling algorithms to search the conformational subspace (Amadei, Linssen, De 
Groot, Van Aalten, & Berendsen, 1996; De Groot, Amadei, Scheek, Van Nuland, & 
Berendsen, 1996; De Groot, Amadei, Van Aalten, & Berendsen, 1996; Grubmüller, 
1995). The dynamics in the low-dimensional subspace defined by these global modes is 
called “Essential Dynamics” (ED) (Amadei, Linssen, & Berendsen, 1993), since these 
modes are often linked to function, and  accordingly, the subspace they define is 
referred to as “essential subspace”.   

 
Figure 2. 3. Molecular Dynamics Simulation.   
The basic algorithm is based on the iterative integration of Newton’s Equations of motion (right). A typical simulation 
box is shown (left). 
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To perform a PCA, it is necessary to have an ensemble of conformations from a MD 
trajectory (or from an experimental source, i.e. NMR, see Chapter 3). These multiple 
conformations must be superposed by a least-squares fit (Kabsch, 1978) to a common 
reference structure, to filter the internal motions from global rotation and translation. 
The fitted ensemble is used to build a Cartesian variance–covariance matrix of 
positional fluctuations, C (Figure 2. 4): 

� � � �TxtxxtxC �	�� )()(                                                     (Equation 2. 7 Covariance Matrix)                                 

Where <> denotes an ensemble average; C is a symmetric matrix with the variances of 
each atom displacement as diagonal elements, and as off-diagonal elements, the 
covariances of the atomic fluctuations for each atom pair relative to their respective 
averages. Correlated motions give positive covariances, anticorrelated motions 
negative ones, and non-correlated motions near-zero values. A PCA can be carried out 
on any subset of atoms, but usually only Cα or backbone atoms are considered. This 
matrix C can be diagonalized by an orthogonal coordinate transformation T, yielding a 
set of eigenvectors and eigenvalues defining the Principal Components (PCs):    
 

TC 
�                                                            (Equation 2. 8 Covariance Matrix Diagonalization)                                

where 
 is the diagonal eigenvalue matrix, �and T 
contains, as columns, the eigenvectors. Given a protein 
of N residues, if only Cα’s are taken into account, C is a 
3N × 3N matrix. Six eigenvalues must be zero, 
corresponding to the eigenvectors that describe the 
three rotational and translational modes along the 
three axis of the Cartesian space. Then, with at least 3N 
configurations to build the matrix C, 3N-6 eigenvectors 
with nonzero eigenvalues will be obtained. The 
eigenvectors ei indicate the directions of the collective 
modes in Cartesian space (Figure 2. 4), and the 
corresponding set of eigenvalues, λi, describe their 
mean square fluctuation (the contribution of each 
component to the total fluctuation); they are sorted 
according to decreasing order of variance (in units of 
length squared, Å²). Though there is no harmonic 
assumption in ED, these largest-amplitude modes 
match to a high degree the NMA slowest, low-
frequency motions, as we will discuss below.  

  

Figure 2. 4. Matrix of variance-
covariance from MD and PCs.  
The diagonalization of the covariance 
matrix (above) yields eigenvectors ei 
that represent the preferred 
equilibrium directions (below) 
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2.2 Coarse-graining: simplifying forces and structures 

Coarse-graining is seen by many just as the cheap alternative to costly MD simulations. 
Technically speaking, it is a process of renormalizing interactions into a new 
representation with a lower overall dimensionality  (Orozco et al., 2011; Saunders & 
Voth, 2013; Tozzini, 2005). In the case of proteins, coarse-graining usually implies: a) 
the compression of a series of atoms into pseudoparticles, b) the simplification in the 
representation of the solvent that can be neglected, simulated as a continuum or also 
compressed into pseudoparticles and, c) a simplification in the potentials (Ha-Duong, 
Basdevant, & Borgis, 2009; Rzepiela, Louhivuori, Peter, & Marrink, 2011; Yesylevskyy, 
Schäfer, Sengupta, & Marrink, 2010). As the number of beads in the united-atom 
representation of the structural elements decreases, the simulation is faster and the 
modeled system can be larger (see Figure 2. 5).  

 

Figure 2. 5. Coarse-grained models classified by complexity of the representation and the 
parameterization.  
For each class of model, the following aspects are reported: schematic representation of the model, indicative 
number of parameters, methods of solution, main characteristics and applications. Sample applications are also 
illustrated with representative pictures (prepared using crystallographic coordinates from the PDB [codes 1hhp, 
1cwp, 1mwr, 486d]) intended to show the size of system that can be studied and the kind of study that can be done. 
The location of the models in the x-y plane is intended to qualitatively illustrate their complexity, which increases 
following the direction of the arrows (see (Tozzini, 2005)) 
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The most common level of coarse graining for proteins, as mentioned in Chapter 1, 
implies the representation of every residue by a single particle located at the Cα 

(Atilgan et al., 2001; Navizet, Cailliez, & Lavery, 2004). This useful compression 
averages out all chemical properties, and therefore, requires massive re-calibration of 
the potential functions (the force-fields) to include more specific interactions into 
fewer variables, or to use information-based potentials. Furthermore, CG models are 
usually parameterized based on a single reference configuration and as a 
consequence, the dynamics they reproduce is strongly biased towards it. As the 
graining becomes ‘coarser’, the parameterization of force-fields that are both accurate 
and transferable becomes increasingly difficult, with different degrees of 
independence from the reference configuration. Refinements of CG models consist on 
using additional particles to mimic side chains or backbone atoms  (Sacquin-Mora & 
Lavery, 2006; Zacharias, 2003) or on applying more sophisticated physical potentials 
(Pasi, Lavery, & Ceres, 2012), which are calculated by comparisons with different 
sources of flexibility data such as crystallographic B-factors, NMR observables, MD 
simulations, etc (see examples in (Eyal, Chennubhotla, Yang, & Bahar, 2007; Jernigan, 
2007; Kondrashov, Cui, & Phillips, 2006; Kondrashov, Van Wynsberghe, Bannen, Cui, & 
Phillips, 2007; L. Yang, Song, Carriquiry, & Jernigan, 2008; L. Yang, Song, & Jernigan, 
2009; L.-W. Yang et al., 2007)). Next we will review briefly the theory behind the 
potentials and sampling techniques usually used in coarse-grained methods, to focus 
later in NMA, which will be explored from many points of view throughout this thesis. 
 
Coarse-grained potentials and sampling techniques  

The approach to coarse-grain a biomolecular structure and model its dynamics 
requires two steps: first, the potential energy of the structure must be described by a 
simple function, and then, this function must be used to sample the conformational 
space, a step which consumes the greatest computational power. In general, three 
kinds of simplified potentials are used in CG simulations: 

- Go-like potentials, which are in the basis of information-based potentials and are 
often used in conjunction with Cα coarse-graining (Nobuhiro Go, Noguti, & 
Nishikawa, 1983). They consider that two residues in contact in the three 
dimensional structure of the protein have a favorable interaction, while if they are 
not in contact such interaction is irrelevant. Despite its extreme simplicity, Go-
potentials, which assure the principle of minimal frustration, have been 
successfully applied to study protein folding and coupled to Langevin dynamics 
(see below), have been used to analyze experimental measures on folding and 
unfolding.    
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- Harmonic potentials: an evolution of Go-like potentials that widely used for the 

study of the “near-equilibrium” dynamics of proteins when implemented in 
sampling techniques derived from normal mode analysis (NMA). Inspired by Flory’s 
networks (Flory, Gordon, & McCrum, 1976) and Rouse bead-and-springs models 
(Rouse, 1953), their basic assumption is that a protein behaves as an Elastic 
Network Model (ENM) (Tirion, 1996), where Cα’s act as nodes which are connected 
by harmonic springs. The refinement of elastic network harmonic potentials based 
on protein flexibility data will be the focus of Chapter 3.  
 

- Flat potentials: discontinuous flat potentials (i.e. stepwise potentials) are based on 
the concept that the continuum physical potentials can be approximated as a 
series of discontinuous potentials defined by square wells. The simplest flat square 
potential is that describing hardcore spheres undergoing elastic collisions, which 
are then defined by an interaction potential with an infinite step at the distance 
corresponding to the sum of the radii of two particles, allowing the treatment of 
trajectories within the ballistic regime. Stepwise potentials have been widely used 
in the last years in discrete Molecular Dynamics (dMD) (Proctor, Ding, & 
Dokholyan, 2011; Shirvanyants, Ding, Tsao, Ramachandran, & Dokholyan, 2012) 
discussed below, and can be adapted to work with Go-like and pseudo-physical or 
physical potentials. These potentials can reproduce not only near-equilibrium 
dynamics, but also local motions like those happening during protein-protein 
interactions or folding.  
  

- Physical or pseudo-physical potentials:  these force-fields try to maintain a 
physical foundation while reducing the degrees of freedom of the system. The 
most popular example is the MARTINI force-field developed by Marrink et al. 
(Marrink & Tieleman, 2013; Periole & Marrink, 2013), in which four heavy atoms 
are represented by a single bead annotated in four types (polar, nonpolar, apolar 
and charged). The interactions between beads are represented by a physical force-
field containing both “bonded” and “non-bonded” terms, very similar to atomistic 
force fields and that works using the same molecular dynamics algorithms, 
particularly the GROMACS simulation package. The coarse-graining not only 
decreases dramatically the degrees of freedom in the system, but also allows the 
use of large integration steps increasing the time window accessible to simulations.  

Irrespective of the nature of the Hamiltonian used to model the dependence of the 
energy on the protein conformation, the study of flexibility requires the use of 
sampling techniques. Among the most widely used are the following: 
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- Normal Mode Analysis (NMA). NMA is a technique employed since the 50s for the 
assignment of vibrational spectra in infrared, Raman or inelastic neutron scattering 
spectroscopy (Herzberg, 1945). In the last years, it has been established as a 
common computational tool for the analysis of near-equilibrium protein motions. 
Instead of numerically solving Newton’s equations, NMA assumes the harmonicity 
of the system (small movements around an equilibrium configuration) and thus 
allows the computation of a unique analytical solution (i.e. a series of normal 
modes) by expansion of the potential function in a Taylor series (as we will see in 
next section). Diagonalization of the mass weighted Hessian matrix yields a series 
of eigenvectors (νi) and their corresponding eigenvalues (given as frequencies, λi), 
which define the normal modes, i.e. the lowest energy movements of the system.   
 
NMA can be applied in conjunction with any continuum and differentiable 
potential function, but in general, CG-potential functions, such as the ENMs, are 
preferred to all-atom potentials, because they increase the speed of the 
computation and eliminate the problems derived from the initial energy 
minimization. As we will discuss throughout this thesis, ENM-NMA methods 
describe extremely well large biologically relevant movements (Navizet, Lavery, & 
Jernigan, 2004; F Tama & Sanejouand, 2001; Zheng & Doniach, 2003), and are able 
to reproduce with reasonable accuracy experimental B-factors (Kondrashov et al., 
2006; Kundu, Melton, Sorensen, & Phillips, 2002), as well as the pattern of 
flexibility detected in NMR experiments (L.-W. Yang et al., 2007; L.-W. Yang, Eyal, 
Bahar, & Kitao, 2009a) or MD simulations (Orellana et al., 2010; Romo & Grossfield, 
2011; Rueda, Chacón, & Orozco, 2007).  Normal modes are also used to improve 
fitting of protein structures to electron density maps (Lopéz-Blanco & Chacón, n.d.; 
Suhre, Navaza, & Sanejouand, 2006; Florence Tama, Miyashita, & Brooks, 2004), to 
introduce flexibility in small molecule or protein-protein docking (Court, 2009; 
Dobbins, Lesk, & Sternberg, 2008; Lindahl & Delarue, 2005; Rueda, Bottegoni, & 
Abagyan, 2009), or to guide sampling in large conformational transitions (Sfriso et 
al., 2012), among others. Although NMA is usually performed in Cartesian space, 
the implementation in internal coordinates such as the dihedral torsional space can 
further reduce the degrees of freedom of the system and increase computational 
efficiency (see for example recent examples (Dos Santos, Klett, Méndez, & Bastolla, 
2013; Mendez & Bastolla, 2010) and an application of (Lopéz-Blanco, Garzón, & 
Chacón, 2011) in Chapter 5) 
 

- Monte Carlo (MC). In the Metropolis procedure (Metropolis, Rosenbluth, 
Rosenbluth, & Teller, 1953), the conformational landscape is sampled by 
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perturbing randomly an initial configuration ( 0X ) to generate a trial configuration, 
which is accepted ( '

1 oXX � ) if its potential energy is smaller than the starting one (
)()( 0

'
0 XEXE � ); otherwise, the acceptance or not ( 01 XX � ) depends on a 

probability function, usually, a Boltzmann distribution for a given temperature. This 
process is repeated millions of times to allow for a proper Boltzmann’s sampling of 
all the degrees of freedom. As in NMA, in spite of the fact that the lost of time 
coordinate in the simulation poses a major problem, for example, in non-
equilibrium processes, MC has been extremely useful to model protein folding 
(Hansmann & Okamoto, 1999; Jorgensen & Tirado-rives, 1996). Strategies to 
couple Monte Carlo with ENM-NMA have been suggested (Rueda, Chacón, et al., 
2007) to activate protein movements as displacements along the normal modes.   
 

- Langevin and Brownian dynamics (BD) assume that the motion of a particle (of 
mass m) in a fluid is due to the molecular-thermal agitation of the surrounding 
solvent (which lead to random collisions on the particle, 

�
) and to a dispersive 

force accounting for the viscous resistance the particle feels on going through the 
fluid ( v�� �

) at velocity v� . Implementation of these equations with different type 
of pseudo-physical coarse-graining is straightforward using standard atomistic MD 
codes. Specific methods (Carrillo, Laughton, & Orozco, 2012; Emperador, Carrillo, 
Rueda, & Orozco, 2008) have been developed to deal with simpler 
pseudoharmonic potentials, such as the ENMs typically implemented in NMA 
samplings (see Chapter 5).  
 

- Discrete Molecular dynamics (dMD). This MD-like technique is based on the 
assumption of a ballistic regime, i.e. that the particles move at constant velocity in 
flat well potentials (see above), which avoid the need of integration of Newton’s 
equations of motion since the trajectory progresses from collision to collision, 
irrespective of the collision time (Emperador et al., 2008). Despite its simplicity, 
dMD provides reasonable approximations to the real dynamics of proteins, and it is 
especially useful in systems with very slow dynamics, for example, diffusion and 
protein aggregation processes. Discrete-MD can be coupled to any potential 
function that can be represented by multiple flat well potentials. Together with 
normal modes directed sampling, dMD allows for the fast exploration of 
conformational transition pathways (see Chapter 5) 

 
A more detailed description of coarse-grained potential energy functions and sampling 
algorithms can be found in (Orozco et al., 2011). 
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2.3 Coarse-grained Normal Mode Analysis: Elastic Network 
Models (ENMs) 
  
As mentioned, Normal Mode Analysis (NMA) (Case, 1994) is widely used as a 
simulation method to predict the large-scale motions in biomolecules. Atoms in a 
molecule are considered coupled by harmonic oscillators, which fluctuate around their 
equilibrium positions. Therefore, NMA is just an extension of the classical problem of 
the two-coupled harmonic oscillators (Figure 2. 6), to an N-coupled system with 3 
degrees of freedom. It is based on the assumption that the conformational energy 
surface at an energy minimum can be approximated by a Taylor series truncated at the 
second order term (the so-called harmonic hypothesis). It can use any force-field 
included those developed for MD; however, most applications imply the use of simpler 
potentials. The pioneering work of Tirion (Tirion, 1996), that proposed a very simple 
all-atom NMA with uniform harmonic potentials, inspired the concept of an Elastic 
Network (EN) to model equilibrium dynamics some years ago (I Bahar et al., 1997; 
Haliloglu, Bahar, & Erman, 1997). As the name suggests, the protein is modeled as a 
simple network of atoms or residues connected by elastic springs. There is no 
conceptual difference between these EN-NMA and standard atomistic NMA other than 
the simpler force field, and the very convenient assumption that the reference 
experimental structure is a minimum in the potential energy function, as we will 
discuss in the following sections. 

2.3.1 Normal Mode Analysis and the Limits of the Harmonic Hypothesis 

Normal Mode Analysis Formulation  
Given r = {ri = (ri,1, ri,2, ri,3)T : i = 1, …, n} , the 3N-dimensional set of vectors representing 
N atom coordinates in the cartesian space, and a potential energy function U(r) as 
defined by a force-field. First, we define a stable conformation, Rmin, representing a 
local minimum in the potential energy surface, by means of a minimization algorithm. 
We assume that the potential energy follows a quadratic function (U~X 2) around this 
equilibrium point. If we expand the function U(r) in a second-order Taylor series, 
ignoring third and higher-order derivatives, the expansion is truncated at the quadratic 
level. Thus, the energy surface is approximated by a parabola characterized by the 
second derivatives evaluated at the equilibrium conformation 11: 

),(,
2
1)()( min

2
min RUHrHrRUrU T ������      (Equation 2. 9 Harmonic Hypothesis)                                

                                                           
1 * We are assuming an energy minima, so that U(Rmin)=0 
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where Δr = r – Rmin, and H is the Hessian matrix of the system, a 3Nx3N symmetric and 
defined positive matrix, whose elements Kij , the hookean constants associated to the 
harmonic potential, are the second derivatives of the potential energy U with respect 
to the mass-weighted atomic coordinates, dr:                                                                                                         

min

2

Rrji
ij rr

UK
��

�
�

�

�
�
�

�

��
�

�                                                                      (Equation 2. 10 Hessian Matrix)                                

The matrix H is called the stiffness matrix in classical mechanics and describes the 
shape of the potential surface. To calculate the vibrational frequencies for this system 
and the directions of the corresponding motions, we must solve the eigenvalue 
problem:   

NieeH iii ,...1,. �� �                                                (Equation 2. 11 Hessian Diagonalization)                                

 
The normal mode vectors are the 
eigenvectors, ei, of the hessian matrix H, 
and their associated eigenvalues, λi, 
represent the shape of the potential well 
in the direction of these modes.  After 
removing the six eigenvalues equal to 
zero for the translation and rotation 
modes, a non-lineal molecule of N atoms 
will have 3N-6 normal modes. 
Displacements in these directions are 
independent, and hence, the normal 
modes form an orthogonal basis. In NMA 
the modes are sorted by frequency, being the lowest frequency modes those with the 
greatest fluctuation (N Go, 1990), i.e. those explaining most of structural variance. 
 

The limits of the harmonic approximation: a rugged energy landscape  
 
The harmonic hypothesis exposed in the former section assumes that:   
 

� the reference structure is an energy minimum, 
� no other minima are populated, and  
� all displacements from the reference structure are harmonic 

 
Figure 2. 6. Two coupled harmonic oscillators.  
The NMA approach is a generalization of this problem to 
the N-coupled case in the three dimensional cartesian 
space. The protein is considered a set of N coupled 
harmonic oscillators, so that the normal modes of 
vibration can be calculated straightforward from the 
diagonalization of the matrix containing hookean 
constants. 
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One has to be aware of these strong assumptions and its limitations. The fact that the 
harmonic potential is defined around a particular point, and that only small harmonic 
departures are allowed, apparently makes it difficult to trace transitions from one local 
minimum to another. Energy landscapes of proteins were first introduced to explain 
how proteins overcome the Levinthal paradox (Levinthal, 1969), but became also 
useful to understand protein dynamics. The energy landscape of an N-atoms protein is 
a theoretical construct in 3N-6 dimensions, where N is the number of atoms in the 
protein and its hydration shell and each multidimensional point describes a structural 
substate of the protein. The complex landscape is organized hierarchically, with 
multiple barriers and valleys within valleys; proteins diffuse between substates 
crossing energy barriers of various heights (see Figure 2. 7) which correspond to 
motions in different timescales (Henzler-Wildman & Kern, 2007). These internal 
motions have different amplitudes and frequencies: from bond vibrations at the 
femto- to pico-seconds time scale, or side-chain rotations at nanoseconds, to motions 
of flexible termini and loops, large concerted domain motions or conformational 
changes upon ligand binding in larger micro- to mili-seconds time scale. While on short 
timescales the dynamics of proteins are dominated by fluctuations within a minimum, 
on longer timescales, the major modes of collective motion are mainly anharmonic 
transitions between minima, in principle beyond the normal modes approach. 
 

 

Figure 2. 7. The rugged energy landscape of proteins and the smooth harmonic approach.  
The rugged energy landscape of protein motions (upper left) can be approached by an ideal harmonic 
parabola (lower left).  A hierarchy of energies and timescales of the landscape defines motions (right)* 
*Published in: Katherine Henzler-Wildman & Dorothee Kern; Nature.  2007, 450, 964-972. DOI: 10.1038/nature06522 Copyright © 2014 Nature 
Publishing Group 
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Nevertheless, though NMA ignores the "rugged" nature of energy landscapes, normal 
modes are often more correct that one might expect. Despite the energy surface 
contains many local minima, proteins tend to behave as this surface was harmonic. In 
principle, conformational changes involve transitions between different potential wells 
out of the harmonic regime, but from dynamical systems theory, it is known that NMs 
are very robust under small perturbations. Many studies that compare NMA modes 
with functional transitions derived from experimental data confirm that the normal 
modes with the largest fluctuation (lowest frequency modes) are indeed both 
biologically and functionally relevant (Petrone & Pande, 2006).  Therefore, most 
conformation changes in proteins can be strikingly well described by a small number of 
modes, which predict with great accuracy functional large-scale changes such as 
domain or hinge-bending motions (Gerstein & Krebs, 1998; Krebs et al., 2002; F Tama 
& Sanejouand, 2001). 
 

2.3.2 Elastic network-Normal Mode Analysis  

Elastic Network Models (ENMs) represent a further step in the simplification 
embodied by NMA.  All ENM assume that protein flexibility is due to harmonic 
deformations around a reference structure. The first ENM, proposed by Tirion (Tirion, 
1996), was an all-atom model with a simple pairwise Hookean potential. In Tirion's 
model, the native structure is defined as a minimum, and the detailed atomic force-
fields are replaced by a simple harmonic potential, with a uniform constant to all 
interactions within a cutoff. Tirion showed that this minimal model reproduced both 
the low-frequency modes and the Cα fluctuations accurately.  Later, the Gaussian 
Network Model (GNM) (I Bahar et al., 1997) introduced the coarse-graining of the 
protein structure, reduced to the Cα backbone. Mathematically, though GNM is 
defined as a coarse-grained ENM reduced to one coordinate per atom, it is very 
different from a physical point of view. As the ENMs, it predicts the atomic fluctuations 
and, via the correlations, some dynamical information, but cannot provide information 
about the directions of motions. Due to its insensitivity to the directions, GNM assigns 
a non-zero energetic cost to global rotations, therefore violating the principle of 
invariance under rotation. On the contrary, the ENMs are physical models describing 
small-amplitude harmonic departures from a stable conformation. The Anisotropic 
network model (ANM) (Atilgan et al., 2001), that we will use in this work, is often 
presented as an extension of the GNM to the 3-D space to consider directionality. 
However, it is nothing else but an ENM for the Cα atoms (Figure 2. 8), as we will explain 
in the next section. 
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Elastic Network Model Formulation  
In the original Tirion's form, nodes in the network are identified by the positions of all 
atoms, and all nodes within a cutoff distance are connected with a uniform force-
constant. The network topology is then described by a Kirchhoff matrix Γ of inter-
residue contacts where the ij-th element is equal to -1 if nodes i and j are within the 
cutoff distance rc, and zero otherwise, and the diagonal elements (ii-th) are equal to 
residue connectivity: 
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            (Equation 2. 12 Kirchhoff Matrix)  

                                       

The potential energies between each residue pair i-j are given by: 
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                                                                    (Equation 2. 13 Pair Energies)                                

 And the overall potential of the system is given by a sum of these harmonic potentials: 

� �20
/2

)( ijijijijj
rrrU ��� �  

�
                                                         (Equation 2. 14 Hamiltonian)                                

where rij and rij
0 are the instantaneous and equilibrium distances between nodes i and 

j, Γij is the ij-th element of the Kirchhoff matrix, and γ is the spring, or force constant for 

 
Figure 2. 8.  Coarse-graining of the 3-D structure as an Elastic Network.  
The protein is represented by the C-alpha carbon trace (left), where each residue or node is connected to other 
residues with Hookean springs (right) modelling intramolecular interactions. 
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the elastic bond between the atoms and is the same for all atoms pairs; this 
summation is only performed over atoms less than the cut-off distance rc.   
For the sake of simplicity, the product of the topology matrix and the force constant 
can be expressed as a single parameter:  

 ij ijK �� 	�                                                                                  (Equation 2. 15 Stiffness Matrix)                   

Then, the molecular Hamiltonian describing the elastic energy to displace a protein 
from its equilibrium conformation can be expressed as:  

� �20
/

)( ijijijijj
rrKrU ���  

                                                           (Equation 2. 16 Elastic Energy)                                

The energy function in Eq.2.16 is the most widely used, although others such as the 
GNM are possible; we will not discuss them. When nodes in the network are identified 
by the positions of Cα atoms, the energy function corresponds to the ANM.  Actually, 
this functional can be implemented into Monte-Carlo or dynamics algorithms 
(Emperador et al., 2008) to obtain ensembles of accessible configurations. Within the 
NMA described above it is used to build the Hessian matrix (H); for a protein network 
of N nodes (residues), the Hessian matrix H is a 3N x 3N matrix consisting of 
submatrices Hij. The N x N out-diagonal super elements, Hij (i≠j) are found from the 
second derivatives of V with respect to node positions: 
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Where Xij, Yij and Zij are the components of the cartesian equilibrium distance vector 
Rij

0. The diagonal submatrices of H are defined as follows: 

��� = − ∑ ���� ,� ≠�                                                (Equation 2. 18 Hessian Diagonal elements)                                

Once the hessian has been calculated, the procedure is the same as for standard NMA: 
diagonalization of the Hessian matrix of Force Constants (also called the stiffness 
matrix) yields the eigenvectors representing the principal modes, and their associated 
eigenvalues (in energy/frequency units), that indicate their amplitude or vibrational 
frequencies (Figure 2. 9).  
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Figure 2. 9.  Normal Mode Analysis of an Elastic Network Model.  
The protein is represented by the Cα trace (left), and based on the inter-residue distances a stiffness matrix of spring 
constants is build and assuming the harmonic hypothesis (center) diagonalized to obtain eigenvectors and 
eigenvalues representing the molecular motions (right). 
 

Computational and conceptual simplicity  

The atomistic force-field based NMA described in the first section is often referred as 
”standard” NMA to be distinguished from the coarse-grained EN-NMA. As we have 
seen, standard NMA requires three calculation steps:  

1. Minimization of the potential energy  as a function of the atomic coordinates; 
2. Calculation of the second derivatives of the potential energy, the Hessian 

matrix 
3. Diagonalization of the Hessian  matrix yielding normal modes 

Depending on the size of the molecule, each one of these steps can have a significant 
computational cost; the bottlenecks are often the first and final steps: energy 
minimization demands CPU time, whereas numerical diagonalization needs, in 
addition, memory. This explains the current popularity of the ENMs, that are still NMA, 
but with a dramatically simplified force-field. The standard NMA is performed on all 
atoms as the force field requires, but the ENM can be restricted to a subset; in 
addition, the reference structure is assumed to be a minimum. Consequently, there 
are two advantages:  1)  there is no need of energy minimization, since the distances 
of all springs are taken at their equilibrium length, and 2) the diagonalization is easier 
because only Cα are considered, leading to a tenfold reduction in the hessian. The 
main drawback is that there are two parameters to be set: the γ force constant, and 
the cut-off distance, rc; we will discuss them next. 
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2.3.3 Network topology and weighting in the ENMs  

Several attempts have been made to improve the performance of ENMs, and all of 
them are based on the refinement of the network connectivity and the associated 
energy functional. In other words, they aim to find an optimal definition for the nodes 
and for the strength of the simplified interactions that will connect them: when and 
how strong nodes are linked i.e. the connection rules to build the network. Though the 
original model by Tirion considered all the atoms as nodes, current ENMs reduce 
typically each residue to the position of the alpha-carbon. However, it is possible to 
increase the resolution introducing other atoms in the network, such as the beta-
carbons to account for the side chains. On the contrary, some models decrease the 
resolution by grouping atoms into rigid blocks Rotating/Translating Blocks (RTB) 
(Durand, Trinquier, & Sanejouand, 1994; Li & Cui, 2002; Navizet, Lavery, et al., 2004; F 
Tama, Gadea, Marques, & Sanejouand, 2000).  In this thesis we will focus in the most 
widely used and natural level of coarse-grain, based on the C-alpha carbon network.  

Connectivity rules: Cutoff Models versus Continuous Functions  
All physical forces in matter decrease with distance: the interactions between a pair of 
nearby atoms are on average stronger than the interactions between a distant pair. 
This property implies that the force constant linking two atoms must be inversely 
proportional to a power of the distance between them. According to this, connectivity 
rules are mainly based on the physical distance between interacting nodes. The rules 
range from a discrete cutoff function to decide the status of connectivity, to 
continuous functions connecting all nodes in the network with a distance-decaying 
strength (Figure 2. 10). Then, the selection of the spring constant can be further 
divided into two parts: i) which nodes in the network will be connected/interact? , 
and ii) which is the magnitude of the force constant assigned to an interaction? 
 
Tirion's original all-atom model used the simplest possible approach to assign the force 
constant: a step function with the same spring for all pairs within a cutoff and zero 
otherwise. This approach has the drawback that small changes in the input 
conformation can modify significantly the interactions. The choice of the cutoff also 
introduces a source of arbitrariness, and therefore, other approaches have been 
developed to replace the discontinuous Hamiltonians by continuum functions based 
on the scaling down of the force-constants with distance between nodes (K Hinsen, 
1998; Kovacs, Chacón, & Abagyan, 2004).  Though the continuum approaches avoid 
the problems intrinsic to the use of an empirical cutoff, the introduction of remote 
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interactions (relevant or not) can introduce noise and extra rigidity in the network, 
besides increasing the computational cost.   
 
Usually, connectivity rules do not take into 
account the chemical properties of the 
residues or the physics of their interactions 
(which is partially implicit in the structure, 
since each force has a typical range length), 
but some authors do have explored different 
scaling of covalent and non-covalent 
interactions (Konrad Hinsen, Petrescu, 
Dellerue, Bellissent-Funel, & Kneller, 2000; 
Jeong, Jang, & Kim, 2006; Kondrashov et al., 
2006). The Cα- Cα distance as criteria to assign 
couplings seems most reasonable and simple, 
because reflects the kind of interactions, 
dependent on the chemical identity. 
Nevertheless, there are other parameters to assign springs, such as the packing 
environment, but we will not discuss them (Chennubhotla & Bahar, 2007; Sen & 
Jernigan, 2006). Since any decaying function has a horizontal asymptote when the 
distance goes to infinity, it is also possible to define a threshold distance beyond which 
the constant approaches to zero – though strictly speaking never reaches it. In the case 
of an inverse exponential, the arbitrary choice of the exponent plays the same role as 
the cutoff distance, since it determines the inflexion point of the curve – that would 
correspond to the discontinuity in a cutoff function. In practice, the important 
question is not to determine if it is preferable to use a continuous or discrete function, 
but to find the distance beyond which interactions become irrelevant, and how can be 
related to known factors such as chain length or packing density.  We will try to 
address this question in the next Chapter of this thesis. 
 

Cartesian distance and sequential distance 
The EN models are closely related to the bead-and-strings Rouse chain model for 
polymers (Rouse, 1953). However, Rouse chains only connect sequentially adjacent 
beads, whereas in the ENMs distant pairs in close contact are coupled, in addition to 
neighbours along the sequence. This modification allows for the relevance of the non-
covalent interactions that make the 3-D structure of proteins. By relying exclusively on 
the Cartesian distance between nodes, ENMs ignore sequential information, and thus 
are not able to distinguish between residues directly connected (strong covalent 

 
Figure 2. 10. Force Constants: discrete and 
continuous distance-dependent functions. 

A discrete step function (red) based on a 
threshold distance (Rij) and a continuous inverse 
exponential of the distance (blue) 
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bonds) and distant interactions (weak, non-covalent interactions) (see Figure 2. 11), 
which can generate artifacts in the representation of protein flexibility.   

  

 

Figure 2. 11. Spring Assignation with Ca-
Ca distance. 
  
Example from a training set protein (1sur, 215 
residues). Standard cutoff values around 8-9 Å 
discard the chain coupling between ASN42 
and its close neighbor GLY45, but introduce an 
artefactual bond with the distant, non-
chemically interacting residue LEU3. Distance-
dependent functions assign a lower force 
constant to the closer, i→i+3 coupling (ASN42-
GLY45),  than to the far i→i+41 interaction 
(LEU3-ASN42).    

2.3.4 Experimental and Theoretical Validation of ENMs  

The rigorous validation of coarse-grained approaches is not trivial, since experimental 
data on protein flexibility is scarce and quite indirect. Some works modelled chemical 
interactions using the magnitude and direction of computational variance as 
optimizing parameter (Kondrashov et al., 2007; Leioatts, Romo, & Grossfield, 2012), 
others have relied mostly on comparisons with experimental B-Factors (Riccardi, Cui, & 
Phillips, 2010; Xia, Tong, & Lu, 2013; L. Yang et al., 2009), but did not assessed other 
flexibility descriptors such as similarity with principal components. Thus, concern exists 
on whether a small advance in the quality of the model compensates the increase in 
model complexity and the need for adjusting more ad hoc parameters. Next we briefly 
discuss some of the experimental and theoretical sources of accurate data and 
flexibility, and how they compare with ENMs.    
 
X-ray crystallography: B-Factors and multiple conformers 

X-ray crystallography is a method to determine the atomic and molecular structure of 
materials based on the diffraction of a beam of X-rays by a single crystal into many 
specific directions. The angles and intensities of the diffracted beams are registered in 
a photographic plate or any suitable detector at different orientations as a diffraction 
pattern of regularly spaced spots known as reflections. Multiple two-dimensional 
images taken at different rotations allow reconstructing a three-dimensional model of 
the electron density within the crystal using Fourier transforms.  The mean positions of 
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the atoms and their chemical bonds - i.e. an atomic model of the molecule – are 
determined by iteratively fitting to the electron density map, with a resolution that 
depends on the size of the crystal or the degree of disorder among other factors. 
When single crystals of sufficient size are not available, other X-ray methods such as 
Small-Angle X-ray Scattering (SAXS) or Electron crystallography are useful to obtain 
lower resolution information.  
 
The idea that crystals could be a diffraction media for X-rays was first envisioned by 
Max Von Laue, who realized that electromagnetic radiation of a wavelength 
comparable to the unit-cell spacing could allow inferring data from atomic structures. 
Von Laue not only obtained the first diffraction pattern from a copper sulfate crystal 
but also deduced the law that relates the scattering angles and the size and orientation 
of the unit-cells, which granted him the Nobel Prize in 1914. The next year the Braggs’ 
(father and son) developed the law that relates the observed scattering with 
reflections, for which they shared the 1915 Nobel Prize. 
 

 
Figure 2. 12. First crystal structures of proteins by Kendrew et al. (1958). 
Left: The low-resolution structure of myoglobin solved by John Kendrew and colleagues as appeared in the original 
1958 Nature paper. Polypeptide chains are in white and the grey disc represents the haem group. Note that in spite 
of the coarse-graining of the structure (with marks on the scale at the astonishing distance of 1 Å apart) the shape is 
perfectly recognizable. Right: Max Perutz (left) holding a manually-built wood model of haemoglobin structure 
solved at 6-Å resolution, and John Kendrew (right) holding a wire model of myoglobin at 1.4-Å resolution (1962).   
 

The potential of X-ray crystallography for determining the structure of molecules was 
soon realized and, as the field rapidly evolved from obtaining the structures of simple 
inorganic crystals (such as table salt, the first atomic-resolution structure to be 
"solved") to more complex organic molecules such as fatty acids or porphyrins yet in 
the 20-30s. The crystallography of biomolecules advanced dramatically with the work 
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of Dorothy Crowfoot Hodgkin, who solved the structures of cholesterol (1937), 
penicillin (1946) and vitamin B12 (1956) for which she was awarded the Nobel Prize in 
1964. During the 60s, the first low-resolution structures of proteins were obtained: 
first sperm whale myoglobin, by Sir John Kendrew, and later haemoglobin, by Max 
Perutz, for which they shared the 1962 Nobel Prize (Figure 2. 12). There are more than 
80000 crystal structures deposited in the Protein Data Bank (Berman et al., 2000). 
However overexpressing a protein and obtaining crystals is extremely challenging, and 
despite advances such as high-throughput techniques or synchrotron radiation, it 
poises great difficulties for example in the case of very flexible or disordered proteins 
and specially in membrane proteins – underrepresented in the PDB with less than 100 
structures, although they constitute 1/3 of the genes and play key biological roles.     

An intrinsic limitation of crystal structures comes from the unnatural environment that 
represents the ordered lattice, which largely restricts large-scale movements: as 
discussed in Chapter 1, crystal structures are static pictures of an energetically 
minimized conformer under crystallization conditions, although functional proteins in 
the cell are best represented by an ensemble of different conformations. Occasionally, 
a pair of extreme conformers can be captured – such as open/close unbound and 
bound states (see Chapter 3). More often the only information on flexibility is reduced 
to the Debye-Waller factors (DWFs) or temperature factors, used to describe the 
attenuation of x-ray scattering caused by thermal motion. In protein crystallography, 
the variability of the atomic positions is described by a symmetric fluctuation tensor 
composed of six independent elements called "Anisotropic Displacement Parameters" 
(ADPs). If resolution is not enough, fluctuations are assumed to be isotropic and thus 
reduced to a single number per atom commonly known as the B-factor, which is 
related to atomic fluctuations by a simple relation: 

!� = "8#2 3$ % . 〈(∆��)2〉    
 (Equation 2. 19 Crystallographic Thermal B-Factors) 

and measured in units of Å2. For the majority of structures in the PDB, the DWFs are 
considered isotropic and reported as B-factors; only recently some high-resolution 
structures have computed the ADPs. The B-factors are assumed to indicate the relative 
vibrational motion of different parts of the structure: low B-factors correspond to well-
ordered and rigid regions, whereas large B-factors generally belong to flexible parts. 
The majority of proposed ENM-like models have relied on the prediction of thermal 
fluctuations for their comparison with B-factors (Eyal, Yang, & Bahar, 2006; Hamacher 
& McCammon, 2006; Kondrashov et al., 2007). However, the use of B-Factors as the 
gold standard for ENMs has several problems. ENMs are applied to single proteins, 
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whereas X-ray crystallography is performed on protein crystals. The fluctuations 
calculated from an ENM represent thermal motions, whereas the mobility described 
by DWFs is not only due to the spread of the electron density of vibrating atoms but 
also to static disorder, crystal defects, experimental artifacts, etc. A study considering 
an ENM for a whole protein crystal (Konrad Hinsen, 2008) showed that thermal 
fluctuations indeed contribute very few to B factors. Second and more important, both 
B-factors and ADPs are not experimental observables, but parameters in a theoretical 
model that is fitted to the experimental diffraction intensities (the real observables). 
The goal of the refinement process is to obtain a good structure, and they are included 
because are needed to obtain a good fit. Usually, restraints are imposed on DWFs to 
reduce the number of independent parameters to fit, for example, using a theoretical 
model for collective motions from which the ADPs are derived. The standard model for 
collective motions is the Translation-Libration-Screw Rotation or TLS model 
(Schomaker and Trueblood, 1968; Winn et al., 2001) describing the protein as rigid 
subunits; most worrying, low-frequency normal modes are also used to compute the 
ADPs used to calibrate NMA (Diamond, 1990; Kidera and Go, 1990; Poon et al., 2007). 
Therefore the use of model fitted parameters to fit another (or even the same) model 
seems at least, not ideal. Although the main utility of crystallographic DWFs in the 
study of protein flexibility lies thus in their use to evaluate theoretical models for large-
amplitude collective motions, they cannot be used in isolation and caution must be 
taken in their interpretation.  
 
Nuclear Magnetic Resonance: RDCs and Structural Ensembles 

Nuclear Magnetic Resonance (NMR) and X-ray crystallography are still the only 
methods capable of solving the structures of biological macromolecules at atomic 
resolution. NMR is based on the splitting of energy levels of atomic nuclei by a 
magnetic field. Atomic nuclei with nonzero spin (i.e. with an uneven number of 
nucleons and thus a magnetic moment and angular momentum), such as 1H or 13C, can 
be excited by electromagnetic radiation whose frequency is equivalent to the energy 
difference between levels and then relax, re-emitting radiation in a similar wavelength. 
Usually, transitions between these magnetic-induced energy levels involve frequencies 
in the radio spectra. Although the basic phenomenon of NMR was discovered in the 
40s (Bloch, Hansen, & Packard, 1946; Purcell, Torrey, & Pound, 1946), the technique 
started to be used in chemistry to study metal complexes in solution in the 50s-60s, 
and only in the 1980s, when powerful enough equipment and techniques where 
available, was applied to protein structure determination, led by pioneers such as Kurt 
Wüthrich, who received the Nobel Prize in 2002 (Wüthrich, 2001). 
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Figure 2. 13. First NMR structures of proteins by Wüthrich et al. (1984). 
The structure of BUSI (Left) was presented informally in 1984, and the reaction was one of disbelief, 
even receiving accusations of having been modelled after an independent crystallographic study of the 
homologous protein PSTI. Then, Robert Huber (Nobel Prize in Chemistry, 1988) proposed to settle the 
matter by independently solving a new protein structure by X-ray crystallography and by NMR. Wüthrich 
and Huber groups received supply of the α-amylase inhibitor tendamistat from Hoechst, obtaining 
virtually identical three-dimensional structures (Right). 
 
 

The first protein structure solved by NMR was the small proteinase inhibitor IIA from 
bull seminal plasma (BUSI II) presented in 1984 (see Figure 2. 13) (Williamson, Havel, & 
Wüthrich, 1985). Nowadays, near 20% of all newly deposited protein structures are 
solved by NMR spectroscopy.  
 
The limitations of the technique come from its intrinsically low sensitivity and the high 
complexity of spectra obtained, which usually hampers its application to proteins over 
40-60kDa. The sequence-specific assignment of the hundred to several thousand NMR 
peaks for a protein is possible thanks to multidimensional techniques that simplify 
spectra and allow determining the experimental restraints that, in combination with 
computational tools, make possible to elucidate the protein fold.  As a counterpart to 
the size drawback, NMR allows studying proteins in its native aqueous environment 
which makes the method applicable in principle to intrinsically unstructured or very 
mobile proteins. Most interesting, it also provides dynamic information on a wide 
range of timescales, from picoseconds to even days – from reaction kinetics to protein 
folding or protein-ligand interactions - and thus provides results complementary to the 
detailed but static information of X-ray crystallography.  
 
NMR experiments range from relatively simple (1D, organic molecules) to quite 
complex (multidimensional 15N 13C NMR). The NMR method for protein structure 
determination is based on the Nuclear Overhauser Effect (NOE), which explains spin 
polarization transfer between two neighboring spin populations via cross-relaxation. 
Distance restraints originate from NOE measurements, whereas angle restraints are 
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obtained from J-coupling (indirect dipole-dipole coupling) between active spin nuclei 
(such as 13C or 15N) linked by covalent bonds. NOE peak intensities are proportional to 
r-6, where r is the distance between two spin active nuclei and can only be measured 
from 1.8 to 6Ǻ. In addition, the signal peak intensity is not exact and needs to be 
interpreted as a distance range. Usually, secondary structure elements are well 
defined but hydrophobic core and flexible loops might remain under-determined. The 
J-coupling depends on the dihedral angles between bonds and thus allows estimating 
Φ-Ψ values via the Karplus equation (Karplus, 1963). Finally, a third class of orientation 
restraints can be obtained measuring Residual Dipolar Couplings (RDCs) from solid-
phase or special field oriented NMR, which contains also information on dynamics up 
to the millisecond range that is inaccessible to other techniques. Initially, NMR 
ensembles were generated by fitting every structure to all available restraints which 
led to very rigid ensembles, but recent developments such as Dynamic Ensemble 
Refinement (DER) or Ensemble Refinement with Orientational Restraints (EROS), 
which introduce besides NOEs, S2-order parameters and RDC data for fitting. As we 
will see in Chapter 3, some recent NMR ensembles contain indeed information on 
protein flexibility and thus can be used as reference for MD and NMA calculations. 
 
Comparison with Atomistic Simulations 
In a previous work, we compared the performance of the classical cutoff approach 
with the distance-dependent form (Rueda, Chacón, et al., 2007), using as reference the 
ED predictions in addition to experimental B-factors. The results showed that, though 
both methods provide a reasonable description of the deformability pattern by MD, 
the continuous weighting of the constants improved the predictions, approaching the 
calculated deformations to the ED- calculated modes. However, they fail to describe 
the pattern of variance found in MD. In all these models, phenomenological force 
constants are chosen and define an arbitrary energy scale, which correctly describe 
structural flexibility, but have problems to predict the time amplitude and frequency of 
the slow motions (Konrad Hinsen et al., 2000).  

The striking accuracy of the method: global dynamics does not rely on 
details  
Due to the extreme simplification, it can be questioned the accuracy of EN-NMA versus 
the standard, atomistic NMA. There is both theoretical and experimental evidence that 
NMA and ENMs show a high correspondence (Kondrashov et al., 2007). Probably, 
given the strong assumptions underlying the harmonic hypothesis, the differences 
between CG and atomistic NMA are irrelevant when both methods are compared with 
more realistic approaches such as MD. Furthermore, ENM predictions are in good 
agreement not only with atomistic simulations, but also with experimental data on 
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flexibility (Ivet Bahar & Rader, 2005; J. Ma, 2005; Rueda, Chacón, et al., 2007). Due to 
the coarse-graining, ENMs have a strong cooperativity and can predict large 
conformational changes with astonishing accuracy, even outperforming atomistic NMA 
or ED. Coarse-grain a protein is a drawback when looking at local rearrangements but 
can even improve the results if we are trying to capture global motions – by adapting 
the physical model to the scale of the movements we want to describe. 
  
The accuracy of these methods to trace the natural motions, considering their 
simplicity, is remarkable and is teaching us an important lesson. The fact that large-
scale transitions can be reproduced by a network of simple springs, with just one 
connection per amino acid, shows that these collective motions do not depend on fine 
details of atomic potentials but rather on the size, shape and general connectivity of 
the system, as we will explore in the next Chapter. 
 

2.4 Publications from this chapter    
 

Orozco M., Orellana L., Hospital A., Naganathan A.N., Emperador A., Carrillo O. and 
Gelpí J.L. (2010) Coarse Grained Representation of Protein Flexibility. Foundations, 
successes and shortcomings. In “Computational Chemistry Methods in Structural 
Biology". Advances in Protein Chemistry and Structural Biology, vol 80. Ed. C.Christov. 
Elsevier.  
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“It is more important to have beauty in one's equations  
that to have them fit experiment” 
 

Paul Dirac 
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Chapter 3 Approaching Elastic Network 
Models to Molecular Dynamics 

In this Chapter, we will perform a thorough comparison of the flexibility derived from 
ENMs and compare it with ED/MD simulations, in order to optimize the network 
connectivity rules. In a first phase, we explore the influence of threshold distance and 
spring strength, to find the connectivity rules for an optimized ANM. We define a 
nearest-neighbours mixed algorithm, called ED-derived ENM or ED-ENM (Orellana et 
al., 2010), which is based on the sequential and cartesian distance between Cα pairs. In 
the second phase, the reference MD is compared with ED-ENM and two classical ENM-
NMA implementations: i) ANM in its original implementation with a cutoff function; 
and ii) ANM with an inverse exponential function. Finally, the new approach is further 
compared with experimental data from X-ray and NMR ensembles (Figure 3. 1).  
 

 
Figure 3. 1  Protocol to compare the flexibility from ENMs with MD and experimental samplings 
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3.1 The Benchmark Proteins 
Our reference set of MD simulations is taken from MoDeL, the largest database of 
state-of-the-art MD trajectories available (Meyer et al., 2010; Rueda, Ferrer-Costa, et 
al., 2007b) with a fully atomistic force-field and explicit solvent. This database contains 
the trajectories for highly representative proteins with distinct folds, amino acid 
compositions, secondary structure, topology and stability. Tests of the model were 
performed taking 32 proteins from MoDeL that configure the μMoDeL subset, which 
contains representatives of all protein metafolds and covers different classes, 
topologies and sizes (from N=31 to more than 2500 residues, including both mono and 
multidomain proteins). Initial training was performed taking 6 proteins of different 
range size (1i6f, 1pht, 1agi, 1jli, 1bsn and 1sur). The optimized parameters were 
validated against a test set defined by the remaining 26. To avoid overtraining, the 
model was further tested in randomly selected proteins of larger size and multidomain 
(3adk, 1bud, 1ssx, 1ppo, 1dua, 1qlj, 1pmi), plus some very large proteins: 1sqc (619 
residues), 1e5t (710 residues), 1j0m (747 residues) and 1e9s (2545 residues). As a final 
test of the ENMs to represent flexibility in large time scale, results were also compared 
with those from long MD trajectories (0.1 μsec) in a few illustrative cases: 2gb1, 1ce1, 
1cqy and 1opc. Benchmarks for comparisons with X-ray and NMR experimental 
flexibility are described below. 

3.2 Molecular Dynamics and Essential Dynamics protocols 
Protein structures considered here were titrated, neutralized by ions, hydrated, 
minimized, heated and equilibrated for at least 0.5 ns (Rueda, Ferrer-Costa, et al., 
2007b). Trajectories were collected for at least 10 ns at 300K by using the isothermal-
isobaric periodic boundary simulations in explicit water and ions and the Particle Mesh 
Ewald technique to account for long-rang electrostatic interactions. The quality of MD 
simulations is dependent on the quality of the force field used, and thus, for each 
protein 10 ns trajectories were repeated using three all-atoms force-fields (AMBER 
parm99 (Cornell et al., 1995); CHARMM22 (MacKerell et al., 1998), and OPLS/AA 
(Jorgensen, Maxwell, & Tirado-Rives, 1996). For computational reasons, trajectories in 
the 102 ns range (or from very large proteins) were collected only with the AMBER 
force-field. Due to the strong similarity among force fields, when trajectories of the 
same protein for different force-fields were available they were combined into 30 ns 
“force-field independent meta-trajectories”, which provide an averaged view of 
protein flexibility.  The meta-trajectories are compressed through an ED approach (see 
Chapter 2, 2.1.3), and the 3N-6 eigenvectors computed only for C-alpha carbons as in 
coarse-grained ANM. To discard artifacts in these meta-simulations, comparisons were 
performed also with single force-field trajectories.  
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3.3 Descriptors for Eigenspaces Flexibility Comparison 
 
The ability of NMA to reproduce MD flexibility can be examined through a variety of 
metrics that analyze the respective sets of eigenvalues and eigenvectors. Several 
complementary aspects have been addressed to quantify the degree of similarity 
between the deformation patterns: 
 
1) Global deformability: The size and complexity of the ‘‘important’’ deformation 
space were characterized by different measures, such as i) the variance, ii) the number 
of modes needed to explain 90% of this structural variance and iii) the variance 
profile, i.e. how it is distributed along the mode spectra, iv) the “reduced variance” 
defined as the variance explained by the first 5 modes, which for average-sized 
proteins account for 70-80% of the total ED variance (see Figure 3. 2; similar results in 
(L. Yang et al., 2008) and finally, v) the strength (force constants) of the softer 
deformation modes. Note that in NMA, the hessian eigenvalues are related to mode 
frequency and thus given in force constants units (kcal/molÅ²). However, ED 
eigenvalues are structural variances (Å²), which can be converted to stiffness constants 
assuming each of the 3N-6 modes (N=number of Cα) has an energy kBT, according to 
the Equipartition Theorem:   
 

�!
TkK B�                                                                                       (Equation 3. 1 Mode Stiffness)                   

                                            
Where ν stands for a given mode, �" stands for the eigenvalue in square distance units, 
and kBT is the thermal energy. Accordingly, the variance associated with each NMA 
mode is given by the inverse of the corresponding force constant multiplied by kBT. 
 

 

Figure 3. 2 Percentage of 
total variance captured by 
the first 5 essential modes 
in MD trajectories.  
For the proteins considered in 
this study, including the 
extremely large ones (up to 
2545 residues). Note how MD 
principal components tend to 
concentrate most of the 
structural variance (70-80%) 
associated with collective 
motions in the first five 
modes. 
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2) Deformational space overlap: To evaluate similarity in NMA and ED deformation 
spaces, the eigenvectors (y) directions are compared by Hess’s metrics (Hess, 2000): 

-/! = 14  � � 579�/  °  9�!:2;4
j=1

4
i=1  

 

(Equation 3. 2 Hess Overlap)   

where A and B stands here for the two methods (NMA and ED), the indexes i and j 
stand for the orders of eigenvectors and m stands for the number of eigenvectors in 
the “important space”. Similarity index in Eq. 3.2 presents two shortcomings: i) it 
increases with the size of the important space (for m= 3N - 6 will be equal to one, ii) 
the index is not sensitive to permutation of eigenvectors (i.e. the same index will be 
obtained with a perfect 1st ��1st and 10th ��10th correspondence than with a 1st 
��10th and 10th ��1st correspondence). To solve the first limitation we refer Hess’s 
indexes to background models using statistical Z-score indexes:                                               

<
>��� = 5-/!(��
��?��) − -/!(�����4);
�� 5-/!(�����4);  
 

 

(Equation 3. 3 Z-Score)   

Physically-meaningful random models are obtained by diagonalization of a covariance 
matrix obtained from discrete molecular dynamics simulation, using a limited 
Hamiltonian consisting only of covalent bonds plus a hard sphere potential at Cα 
(Emperador et al., 2008). The standard deviation appearing in Eq. 3.3 is obtained by 
considering 500 different random models. To evaluate the impact of permutation, we 
computed dot products between pairs of eigenvectors, determining difference in rank 
between the eigenvectors showing the largest overlap, and used Perez’s index, which 
weights the similarity of each pair of eigenvectors by their associated Boltzmann’s 
factor (see (Pérez et al., 2005)) for details): 
 

   
 
 
 
 
 
 

   (Equation 3. 4  
Weighted Overlap)   

 

where the common displacement (∆x) is selected as the minimum value, and is 
negligible the impact outside the important space. Note that Z-score associated to 
Perez’s index is straightforward using Eq.3.3. 
 

� �
� � � �

� � � �

� �

� �

� �

� �
� �

��

��
� �

�

�

�

� �

�

�

�

�

�

�

�
�

�

�

�

#
#
#
#
#
#

$

%

&
&
&
&
&
&

'

(

#
#
$

%
&
&
'

(

)
*
+

�
�
� ��

)
*
+

�
�
� ��

�

##
#
#
#
#

$

%

&&
&
&
&
&

'

(

#
#
$

%
&
&
'

(

)
*
+

�
�
� ��

)
*
+

�
�
� ��

�
�
�
�
�

�

�

�
�
�
�
�

�

�

)
*
+

�
�
� �
�

)
*
+

�
�
� �
�

)
*
+

�
�
� ����

�

zi

i

zj

j zj

j
B
j

B
j

zi

i
A
i

A
i

zi

i

zj

j
zi

i

zj

j
B
j

A
i

B
j

A
iB

j
A
i

AB

x

x

x

x

xx

xx

1 1

2

2

1

2

2
2

2

1

2

2

1 1

2

1 1

22

22

exp

2exp

exp

2exp

expexp

exp
2

�

�

�

�

��

��
!!



�



75 
 

An additional metrics that helps in determining the similarity between MD and NMA-
based eigenvectors is the “spread” index by Hinsen (K Hinsen, 1998): 
 


�= @� �2A��2 − B� �A��2
4
� C24

� D
1/2

 
  

(Equation 3. 5 Mode Spread) 

 
Where 

B
j

A
iij !!, ��  . Note that for two identical sets of modes 02  ij, only if i=j spread 

becomes equal to 0; higher values indicate the distribution of the eigenvector i from 
space A spreads on a larger number of eigenvectors j of space B. 
 
3) Relative distribution of deformational pattern: The relative distribution of the 
flexibility along the different residues can be analyzed from different metrics. A 
powerful one is the “collectivity” index suggested by Brüschweiler (Brüschweiler, 
1995), which evaluates the number of residues involved in every essential movement: 

F� = 1G �HI J− � K�,�2 ��G
�=1 K�,�2 L 

 

 (Equation 3. 6 Mode Collectivity)   

 
Where N is the total number of residues in the protein, is the mass of each residue and 
the factor: 

K�,�2 = M�,N2 + M�,O2 + M�,<24�  
  (Equation 3. 7 Residue Collectivity) 

are the mass-weighted fluctuations of each residue of mass mn along mode i.                                                   
 
4) Thermal Fluctuations:  B-factors (see Eq.2.19) were computed to obtain a measure 
of residue mobility as in (Atilgan et al., 2001): 

〈(P��)2〉 =  �3Q!R� � [S−1]�� = �3Q!R� � �[TQ−1MQMQR]��
4
Q  

 

(Equation 3. 8  

Residue Fluctuation)  
The correlation between the calculated B-factors from ED and NMA was measured by 
the Pearson and Spearman Correlation Coefficients. 
 
5) Lindemann Coefficients are another useful measure derived from mean fluctuations  
to evaluate the macroscopic behavior (liquid or solid) of proteins or structural 
elements (Lindemann, 1910; Rueda, Ferrer-Costa, et al., 2007a; Zhou, Vitkup, & 
Karplus, 1999):                                                                      
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ΔV = (∑ 〈P��2〉/GG� )1/2�′  
 

(Equation 3. 9 Lindemann Index)   

Where a’ is the most probable non-bonded near-neighbor distance (taken as 4.5 Å). 

To avoid noise introduced by high frequency modes, both B-factors and Lindeman’s 
Coefficients were computed taking only the first m=50 modes. 

 
6) Dot Product against transition vectors and NMR ensembles: The ability of the 
refined model presented here to trace biologically relevant transitions was tested by 
computing: i) the accumulated dot products (Eq.3.2) between the 5 (Overlap (5)) and 
10 (Overlap (10)) first eigenvectors of the structure to the vector driving the 
transition, and ii) the rank or distance of the best overlapped eigenvector (a distance 
of 0 means is the first one). Systems selected for analysis include three cases displaying 
large- conformational changes, some of them upon ligand binding: a) the formin 
homology-2 domain (1ux5→1y64 transition) (Xu et al., 2004), b) the ligand 
(neurotrophin) binding domain of human TRKB receptor (1wwb→1hfc transition) 
(Ultsch et al., 1999), and c) focal adhesion targeting domain of focal adhesion kinase 
(1k04→1k05) (Arold, Hoellerer, & Noble, 2002); and three other systems showing 

 

Figure 3. 3. Small benchmark of unbound (red) to bound (green) conformational transitions.  

TOP: Large conformational transitions:  a) FH2 (formin homology-2 domain) (1ux5→1y64), b) Neurotrophin-binding 
domain of human TRKB receptor (1wwb→1hfc) , c) Focal adhesion targeting domain of FAK (focal adhesion kinase)  
(1k04→1k05). BOTTOM: Local conformational changes:  d) L-Leucine Binding Protein upon binding with 
phenylalanine (1usg→1usi), e) Equine Infectious Anemia Virus (EIAV) capsid protein P26 (1eia→2eia), and f) the 
extracellular ligand-binding protein (ProX) from Archeoglobus fulgidus upon complex with glycine betaine (GB) 
(1sw2→1sw5). See main text for details. 
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moderate-local transitions: d) L-Leucine Binding Protein (1usg→1usi) (Magnusson, 
Salopek-Sondi, Luck, & Mowbray, 2004), e) Equine Infectious Anemia Virus (EIAV) 
capsid protein P26 (1eia→2eia) (Jin, Jin, Peterson, & Lawson, 1999), and f) 
Extracellular binding protein Pro-X from Archeoglobus fulgidus (1sw2→1sw5) 
(Schiefner, Holtmann, Diederichs, Welte, & Bremer, 2004) (Figure 3. 3). To further 
verify our model, we extended the study to a larger benchmark of 28 open/close 
conformational changes over 2 Å (comprising 54 structures) from the database 
MolMovDB (Gerstein & Krebs, 1998), and 20 high-quality NMR ensembles for PCA. 
 

3.4 ED-ENM Model Formulation and Parameterization  

As we explained before, ENM can be considered a generalization of the bead-and-
strings Rouse polymer chain model (Rouse, 1953), but contrary to this model where 
only sequentially adjacent monomers are coupled, ENMs consider that all Cα’s within a 
given threshold are equally connected. Clearly, this is not a realistic approach, since 
assumes that all interactions within a cut-off are harmonic and identical (irrespective 
of their chemical nature), and outside are negligible. In order to derive a more 
physically-sound model we decided to explore alternative approaches.  After extensive 
testing of different connectivity rules, potential functionals and cut-off schemes, we 
analyzed in detail three models that represent increasing levels of topological 
complexity and scaling of the constants: 

i) A simple cut-off model with an uniform constant; this is the most widely used 
ENM approach (Atilgan et al., 2001; Suhre & Sanejouand, 2004) 	�� = � �X �> > 10Å ���  	�� = 0 ��ℎ��^�
� 

 (Equation 3. 10 Cutoff ENM) 

ii) A non-cut-off model similar to that developed by Kovacs et al. (Kovacs et al., 
2004) based on an exponential decay function (Rueda, Chacón, et al., 2007): 

	�� =  � _���0��� `6
   (Equation 3. 11 Inverse ENM) 

Where dij
0=3.8 Å (Cα- Cα equilibrium distance) and C=40 kcal/mol.Å2 

iii) A hybrid cut-off model in which springs for the first M neighbors are weighted 
according to their sequential distance, while the rest are represented by an 
optimized exponential decay function (Orellana et al., 2010) (see below)    

The proposed hybrid scheme is strongly inspired by the Rouse model, to account for 
the covalent coupling between chain neighbours. Though there have been attempts to 
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differentiate covalent and non-covalent interactions in ENMs (Kondrashov et al., 
2007), they do not consider the covalent peptide backbone coupling and only 
distinguish direct covalent/non-covalent bonds through the scaling of the constants. As 
we will show, the directions of the main motions are robust to changes in the values 
given to the springs. Therefore, approaches based on selecting the constants according 
to the residue identity have not been as successful as expected. Our model defines 
optimal values for the constants that give ED-closest variances, but also translates the 
covalent/non-covalent differentiation as topological information.  

To properly scale the bonded and non-bonded interactions, we connect the first three 
neighbors independently of the Cartesian distance between the C-alpha of the 
residues, with a sequential-distance dependent function (Figure 3. 4). Beyond the first 
three relevant neighbours, the elastic potential is based on distances between the Ca 
atoms that define the covalent skeleton of the peptide chain.  

In order to obtain spring weights for the first 1-3 sequential neighbours in an unbiased 
way we computed the dependence of topological-linked residue-residue “apparent” 
stiffness constants from MD (see Eq. 3.12 and Figure 3. 5) and fitted them to a inverse 
exponential function of the sequential distance (Eq. 3.13) using a non-linear regression 
routine for a small set of proteins:   

	���II =  Q!R〈7��� − ���0 :2〉 
(Equation 3. 12 Apparent Force Constant) 

Where kBT is the thermal energy, and Rij and Rij
0

 are the instantaneous and equilibrium 
distances between any residue pair i, j. From the MD data, the dependence between 
sequential distance and interaction strength can be adjusted to a function of the form: 

	���II 7a�� : =  �
�b�II
a���
�b  

 

 (Equation 3. 13 Apparent sequential Force Constant) 

 Figure 3. 4. The ED-ENM 
model as a nearest-
neighbors model.  
 
The ED-ENM is a nearest-
neighbours based model, 
maintaining the secondary 
structure stereochemistry, 
where the three first order 
constants acquire values close to 
a 100:10:1 ratio.   
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where Sij stands for a dimensionless distance in sequence between residues i and j, and �
�b�II  has units of kcal.mol/Å2. The optimum exponent determining the shape of the 
variation is used in the rest of the study, while the constant (Cseq) is further refined to 
reproduce “real” instead of “apparent” force-constants. A similar strategy was also 
used to derive the distance-dependence of weighting constants for non-sequential 
interactions, obtaining a relation for the force-constants with the Cartesian distance:  

	���II 7��� : =  �>����II����>���  
  

(Equation 3. 14 Apparent Cartesian Force Constant) 

where ijd  is the distance in Å between residues i and j in the native conformation, and �>����II  has units of kcal.mol.Åncart-2. An additional size-dependent cut-off, rC, was 
introduced to further annihilate artefactual distant interactions (see below). Then, we 
define network topology by a hybrid matrix equal to the sum of  a Rouse Chain 
topology matrix for the first M neighbours plus a Kirchhoff matrix Γ for distant 
interactions, rendering a mixed connectivity matrix that both combines sequential and 
distant information. Thus, given a pair of residues i, and j with sequential distance Sij > 
0 and Cartesian distance dij, the ij-th element of the inter-residue contact matrix is:     

, 1
1

,
0

ij ij

ij ij cij
ij

ij

S M
if d r

S M
otherwise

� � ��
- � � �� �� � �- � ���

 
   

(Equation 3. 15 ED-ENM Topology matrix)   

Where Γij is a Kirchhoff matrix with non-zero hepta-diagonal entries defining neighbor 
sequential contacts and the usual cutoff background for distant interactions. The 
submatrices for diagonal elements (Sij =0) are defined as in Eq.2.18:                                       S�� = − ∑ S�QGQ,Q≠�                 

   

(Equation 3. 16 ED-ENM Diagonal Elements) 

Thus, the force-constant γ associated to any residue pair i, j is not uniform but 
dependent on the Cartesian and the sequential distance between them. In terms of 
the stiffness matrix, Kij=γΓij:  

,

,
0

seq

cart

seq
nij ij
ij

n
cartij

ij c ij
ijij

ij

CS M K
S

K Cif d r then K dS M
K otherwise

� � �
-
-- � ( %� � �- & #- � ' $�- - �- ��

 

 

 

(Equation 3. 17  

ED-ENM Stiffness matrix) 
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Where the exponents nseq and ncart and the magnitude of the effective force constants, 
Cseq (in kcal.mol/Å2 units) and Ccart ((kcal.mol/Å)1/ncart units) are obtained by fitting the 
apparent force-constant to ED variance profiles for a small set of training proteins. The 
cut-off radius, rc, was found to be approximately size-dependent in a range of 8-14 Å. 
An M = 3 limit for sequential interactions was determined from MD apparent 
constants and tested in networks where these contacts are switched on and off.             
           

3.5 Optimization of the Method against the MoDeL Training Set 
As described above, we used MD results in a few training proteins to refine the key 
elements of the model, testing it later in a larger set. The elements to analyze in the 
training part of the study were: i) the functional for the dependence of the force-
constant with the distance, ii) the relevance of sequential and spatial relationships, iii) 
the optimal cut-off for distant interactions, and iv) the magnitude of the constants (Cseq 

and Ccart) to be used in the calculation of the effective force-constants (see Eq. 3.13-
3.14). Since a multi-parametric fitting of all these elements to MD might yield to an 
over-trained method without physical sense, we decided to follow a conservative 
stepwise optimization strategy to guarantee the generality of the method.  

 

3.6.1 Pseudo-Harmonic Constants Dependence on Cartesian and 
Sequential distance  

The first step in our optimization procedure was to analyze the MD simulations (see 
Eq. 3.11) to determine reasonable functions for the distance-dependence of apparent 

  

Figure 3. 5. Dependence of the apparent residue-residue force constant with distance.  
In Cartesian and sequence space as determined for MD simulations of the training proteins. Results shown 
correspond to three proteins of different size from the training set: 1PHT (red), 1AGI (green) and 1SUR (blue). Note 
how first, second and third order neighbor contacts are well defined against the background interactions.  
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inter-residue force-constants. As can be seen (Figure 3. 5, left), in the limit of 
uncoupled oscillators the apparent force-constants decay exponentially with Cα-Cα 
distance, with evident deviations at distances corresponding to i�i+1 residue 
interactions (around 3.8 Å) and to a lower extent at distances corresponding to i�i+2 
and i�i+3 sequential interactions (around 6 and 10 Å). The differential nature of i�i+1 
interactions (and to a lower extent i�i+2 and i�i+3) becomes evident when the 
dependence of the apparent force-constant with the sequential distance is 
represented (Figure 3. 5 right). Fitting of force-constants to sequence distance for close 
chain neighbours reveals an approximate order two exponential relationship (nseq=2 in 
Eq. 3.13). However, the pre-exponential factor (Cseq) in Eq. 3.13 cannot be taken 
directly from MD apparent force-profiles, but must be re-fitted to avoid over-
restriction of the protein movement, resulting from indirect interactions if effective 
force-constants were set equal to apparent ones (see section 3.6.3). 

  

3.6.2 Flexibility Patterns for changing topologies and connectivity rules  

The rules to assign connectivity status to a given pair of nodes are usually based on the 
Cartesian distance. To further prove that the weight of the first j=3 neighbors is critical 
and to better determine the influence of the sequential distance (Sij), we built test 
networks in which sequential couplings are switched on and off.  Deletion of distant 
sequential interactions in continuous networks, such as the Kovacs model, does not 

 
 

Figure 3. 6. Coupling and 
uncoupling of interacting 
residues in protein networks. 
 TOP: similarity index (γ 90% 
variance) between ENM and ED 
eigenvectors, when in the ENM 
sequential constants i, i+j with 
j=[1,25] (right labels) were 
deleted keeping a background 
continuous network connecting 
all pairs within a cutoff with a 
distance-dependent spring. 
BOTTOM: similarity index ( γ  90% 
variance) with ED eigenvectors in 
a minimal network connecting 
only close neighbors i, i+j with 
j=[1,5] with sequentially-
weighted constants. The 
reference is a fully connected 
network as in the Kovacs 
formalism. 
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affect overlap with ED, whereas contacts with close neighbors (specially i, i+2 and i+3) 
appear to be critical for the main modes directions (see Figure 3. 6, top). This leads us 
to question which accuracy of prediction could reach a true Rouse-chain model. We 
built a minimalist ENM, where only sequential-level i�i+1, ..i+3 interactions are 
included and all distant contacts are ignored. Not surprising, just coupling the first 
three neighbors the minimal model can reproduce the deformation patterns obtained 
more complex models, reaching 50% or more of the maximum overlap with ED 
obtained with a fully connected reference network (Figure 3. 6, bottom).  

 

The order-two exponential function weights the relative strength of the interactions 
between these three nearest-neighbours as :100:10:1, a proportion crucial for mode 
directionality. The possibility to use other definitions of the chained residues (including 
more or less terms) was further analyzed in simpler networks where an increasing 
range of sequential contacts was weighted over a cutoff background, confirming again 
the i, i+3 limit for main-chain interactions. For example, the 1-neighbour sequence list 
proposed as a minimum requirement for mechanical stability by Jeong (Jeong et al., 
2006), and topologically equivalent to a constants scaling of 100:1:1, gives suboptimal 
results. As shown in Figure 3. 7, i→i+2 and i→i+3 contacts must be clearly weighted 
over the background, and a cutoff larger than 8 Å has to be considered for non-bonded 

  

Figure 3. 7. Similarity index in minimalist nearest-neighbors networks.  
(Gamma 90% variance) between ENM and ED eigenvectors when ENM is computed considering simple 1/0 
networks where only close sequential constants i, i+j with j=[1, 5] are weighted over the background. Cutoff range 
is also explored from 7-25 Å (right labels). 
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contacts. By introducing stronger force constants between close chain-neighbours, the 
backbone motions around torsional angles are restrained to near-equilibrium 
stereochemically allowed conformations. On the contrary, extension of the chained 
residues to i→i+5 interactions did not yield any improvement, as could be already 
anticipated from Figure 3. 5. All these findings strongly suggest that interactions 
between close chain neighbours, defining the local covalent topology, are the key to 
define soft modes directions and that protein behave in practice as networks of 
reduced connectivity regarding its dynamics.  

3.6.3 Topology of interactions and threshold distance 

Analysis of Figure 3. 5. and inspection of the essential dynamics of training trajectories 
reveals that there is a threshold distance from which the apparent restriction in the 
movement of two pairs of residues is very small and can be fully explained by indirect 
interactions (see Figure 3. 8), without the need to include direct interactions. This 
recommends the use of a cut-off to eliminate artefactual restrictions to movement due 
to unrealistic distant interactions and to reduce computational cost in large proteins. 
 

 

Figure 3. 8. Schematic representation of direct and indirect interactions between residues. 
The difference between apparent and real interactions between two particles is illustrated. 

 

Optimum cut-offs were determined by analyzing the overlap (Eq. 3.2) between ENM-
based NMA and MD essential deformation modes and the relative variance profile, 
which are independent of the magnitude of force constants. For most average-density 
globular proteins the optimum cut-off is roughly proportional to the length of the 
protein as given by the number of residues, N (see Figure 3. 9): �> = ���(3 �� G − 2.8), �X G > 50 ���  �> = 8 ��ℎ��^�
� 

 

  

(Equation 3. 18 Cutoff radius) 
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A relation used in the following to determine the cut-off radii for our model in the 
remaining calculations. Exceptional deviations from this general rule are found for 
proteins with extreme packing densities or ellipsoidal shapes. However, it must be 
noticed that our model is not cutoff-dependent, and the precise election of the 
threshold distance within the size-cutoff range, does not affect the results as the main 
topological information is encoded by the nearest-neighbours sequential connectivity. 
 

 

Figure 3. 9. Optimum cutoffs (in Å) depending on 
the length (in number of residues) of the protein.   
We define the optimum cutoff as the distance rmax that 
gives best overlap with ED flexibility descriptors for the 
range rmax+/-1 Angstrom. The boundaries for optimal 
cutoff assignation are between 8-20 Angstroms. 

3.6.4   Springs  magnitude: Robustness of mode directionality   

When sequential interactions are removed from Figure 3. 5 the apparent force-
constants accounting for long-range non-covalent interactions are found to decay with 
the cartesian distance following an order 6 exponential (n=6 in Eq. 3.13), which 
matches that suggested by Kovacs (Kovacs et al., 2004).  Such dependence was directly 
incorporated in the method, whereas the pre-exponential factor Ccart is fitted to 
improve the overlap with variance plots from MD trajectories. Once the ideal 
functional forms were determined, we fitted the force-constants by comparison with 
ED-MD estimates of: i) total variance, ii) variance profile, and iii) variance of the first 
five modes. We explored systematically values for the effective sequential Cseq

 (in the 
range 40-200 kcal/molÅ2) and Cartesian Ccart (in the range 2-12 kcal/molÅ2) constants 
finding optimal agreement for Cseq =60 kcal/molÅ2 and Ccart= 6 (kcal/molÅ) 1/6. It is 
worth noting that these results are quite robust to changes of ±10 kcal/molÅ2 in Cseq 
and ±1 (kcal/molÅ) 1/6 in Ccart (see Figure 3. 10). The direction of the soft modes, as 
reflected by Hess metrics, is not sensible to the magnitude of the force constants.  
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3.6 Validation of the method.  

3.7.1 Comparison of the Mixed Algorithm with standard ANM Methods 

As described before, we analyzed the behavior of the new model by comparing our ED-
ENM with ED analysis of MD meta-trajectories (Rueda, Chacón, et al., 2007). We also 
included as reference comparisons with the most widely used linear cutoff-method 
and with the six-power exponential function developed by Kovacs et al. In all cases 
calculations were performed using the MD-averaged structure as reference to allow us 
a direct comparison between coarse-grained NMA methods and atomistic MD 
simulations.  All ENMs considered here show a reasonably good ability to reproduce 
the flexibility pattern determined by MD simulations. Average results on the test set 
displayed in Figure 3. 11 illustrate that any of the ENMs is actually displaying a 
reasonable ability to reproduce the MD samplings. We computed the dot product or 
similarity index (Eq. 3.2) and their Z-score (Eq. 3.3), to evaluate the similarity of the 
directions in the eigenvectors from ED and NMA. Similarity indexes for 90% variance 
are in the range 0.5-0.6 (0.6-0.7 if index is computed considering always 50 
eigenvectors), with highly significant associated Z-scores (around 100). The large Z 
score values indicate that all similarity measures are far from random noise. These 
similarity indexes are not far from those obtained by comparing MD trajectories 
obtained with different force-fields (0.7-0.8) ((Emperador et al., 2008); see Table 3. 2).  

 

Figure 3. 10. Examples of the robustness of ED-ENM modes  directionality  to changes in Cseq and Ccart.  
TOP: changes in similarity index (γ 90% variance) with Cseq in a 1/0 network where only first 3 neighbours are 
weighted according to equation 6 (M=3, nseq=2, size-dependent cutoff). BOTTOM: changes in similarity index (  90% 
variance) with Ccart  in a 1/0 network where contacts are weighted according to continuous function in   (ncart=6, 
size-dependent cutoff). The change of Cseq and Ccart introduces larger changes in total and mode variances. 
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However, despite the general good agreement it is clear that not all the ENM 
presented here show the same performance: in general, the simple cut-off method 
fails in difficult cases where stiffer interactions may block the rearrangements required 
for a large-scale movement, whereas our model yields the better results in most 
proteins, with near-top similarities in all cases (see Table 3. 1, Figure 3. 11). The ED-
ENM model leads to a moderate, but significant increase in the average similarity index 
respect to the cutoff/inverse models (from 0.54/0.57 to 0.60 in γ (90%) and 0.61/0.65 
to 0.68 for γ (50)), which reflects that the type of movements sampled in MD are 
closer to ED-ENM calculations. Interestingly, the improvement is focalized in the most 
prevalent eigenvectors, as shown by the increase in the weighted similarity index for 
the γ90 (from 0.45/0.56 to 0.62) (see Table 3. 1). When exploring the entire similarity 
index space, it becomes clear that the mixed model improvement in similarity indices 
is due preferently to the increase in the Dot Product between the first ten 
eigenvectors, which are at the same time the most representative of the collective 
motions. This improvement is more noticeable for medium-small proteins, which gave 
the worst results with the standard models. The close correspondence between MD 
and ED-ENM deformation movements becomes also clear in the corresponding 
“spread” of each NMA eigenvector in ED modes, which is smaller (Figure 3. 11) 
especially considering the first lowest frequency eigenvectors (Figure 3. 12).  

 

Figure 3. 11 Different metrics for the comparison between MD and ENM-NMA.  
Color code in this and the next figures: Black: reference MD simulations Green: ED-ENM model, Red: standard cut-off 
model and Blue: Kovac’s formalism. 
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Analysis of total variances and variance profiles reveals some of the most serious 
shortcomings of the standard ENM-based NMA models, which largely underestimate 
the total variance with respect to MD simulations (by a factor of 3-4 when standard 
cut-off and Kovac’s methods are used). Note that this deviation cannot be fully 
explained by the fact that we are using a MD meta-trajectory as reference, which 
might include some variance differences associated to each force-field (see Table 3. 2).  
Very interestingly, the deviation in variance between ENM-NMA and MD simulations is 
not uniform for the entire deformation space (which will make easy the correction by 
scaling down residue-residue force-constants), but it is larger for the first essential 
movements, as shown in the fact that the “reduced” variance (i.e. that of the first 5 
eigenvectors) in standard ENM is 5-8 times smaller than that computed by atomistic 
MD simulations. The MD deformation space that is bigger (in terms of variance) is also 
less complex (i.e. less eigenvectors are required to explain a given variance threshold) 
than the deformation space obtained from standard ENMs (see Table 3. 1 and Figure 

Table 3. 1 Comparative Measurements of Flexibility Patterns Obtained with NMA and ED. 

PDB code 
(CATH) 

Total Variance*  
Eigenvectors  

90% Variance* 

Similarity 
(γ(10)) # 

Similarity 
(γ(90%))

&# 
Z-score 

(90% var) # 
Similarity 
( γ(50))

# 
Z-score  

(50 eig) # 
Pearson 
Coeffic.#$ 

1OPC 

99 ��.���

201/67/56/140 

19/46/96/44 

0.46/0.49/0.48 0.56/0.59/0.61 

0.49/0.60/0.60 

26/29/31 0.63/0.68/0.70 93/104/109 0.50 / 0.59 / 0.65  

0.33 / 0.25 / 0.39 

1CSP 

67 ��/���

86/45/46/73 

20/30/61/38 

0.51/0.54/0.61 0.62/0.64/0.68 

0.61/0.68/0.72 

37/39/44 0.64/0.70/0.72 64/75/79 0.46 / 0.55 / 0.71 

0.49 / 0.54 / 0.62 

1SDF 

67 ��.�/���

460/76/92/556 

7/15/38/9 

0.48/0.53/0.53 0.43/0.43/0.49 

0.16/0.22/0.52 

23/23/28 0.66/0.63/0.67 48/43/50 0.76 / 0.77 / 0.79 

- 

1OOI 

124 ��.���

131/38/53/103 

37/131/133/74 

0.28/0.36/0.40 0.59/0.66/0.68 

0.47/0.21/0.69 

20/34/38 0.63/0.71/0.72 127/149/151 0.40 / 0.61 / 0.60 

0.23 / 0.46 / 0.65 

1BFG 

126 ��/���

85/27/52/75 

54/166/143/94 

0.44/0.49/0.51 0.62/0.67/0.71 

0.66/0.73/0.74 

37/50/61 0.62/0.66/0.70 145/158/170 0.39 / 0.58 / 0.59 

0.30 / 0.30 / 0.50 

1CHN 

126 ��.�/���

359/138/71/160 

15/29/118/62 

0.46/0.47/0.49 0.48/0.52/0.53 

0.38/0.52/0.55 

19/23/24 0.61/0.66/0.68 131/146/151 0.54 / 0.68 / 0.74 

0.35 / 0.62 / 0.53 

1IL6 

166 ��.���

840/43/105/252 

9/164/139/77 

0.50/0.50/0.49 0.49/0.50/0.50 

0.09/0.28/0.43 

27/28/28 0.60/0.66/0.66 95/109/109 0.68 / 0.81 / 0.83 

- 

1CZT 

158 ��/���

197/42/112/146 

38/140/140/97 

0.42/0.49/0.49 0.58/0.65/0.69 

0.54/0.70/0.72 

42/54/61 0.60/0.65/0.69 111/124/134 0.51 / 0.56/ 0.72 

0.66 / 0.67 / 0.77 

1GND 

430 ��.�/���

1022/83/248/484 

30/521/409/214 

0.45/0.51/0.51 0.53/0.56/0.58 

0.27/0.32/0.65 

23/25/27 0.56/0.61/0.62 330/363/370 0.75 / 0.77 / 0.72 

0.48 / 0.57 / 0.53 

1BR5 

267 ��.���

185/47/150/274 

85/353/261/146 

0.40/0.44/0.45 0.62/0.68/0.68 

0.56/0.73/0.72 

41/59/59 0.58/0.64/0.64 200/225/225 0.65 / 0.71 / 0.73 

- 

2PIA 

321 ��/���

255/69/210/364 

96/366/305/162 

0.54/0.59/0.60 0.60/0.65/0.66 

0.56/0.63/0.71 

33/43/46 0.57/0.62/0.62 170/189/189 0.55 / 0.60 / 0.62 

0.49 / 0.52 / 0.50 

2HVM 

273 ��.�/��

376/32/112/183 

44/449/307/184 

0.41/0.45/0.45 0.55/0.61/0.60 

0.27/0.55/0.61 

33/43/42 0.56/0.62/0.61 177/200/196 0.68 / 0.84 / 0.81 

- 

* Values in the cells correspond always to: MD/cut-off NMA/Kovac’s/ED-ENM method. & Values in the first line of the cells correspond 
to the standard Hess’s metrics (Eq. 3.2) and values in the second line to Perez’s index (Eq. 3.4). In every line results displayed 
correspond to cut-off NMA/Kovac’s/ED-ENM method. # Values in the cells correspond to cut-off NMA/Kovac’s/ED-ENM method. $ 

Values in the first line of the cells correspond to correlations against ED atomic fluctuations, and values in the second line to 
correlations against experimental B-Factors. In every line results displayed correspond to cut-off NMA/Kovac’s/ED-ENM method.   
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3.13). The reason for this behavior is clear from the analysis of the variance profiles 
and of the force-constants (Kν in Eq. 3.1) associated to essential deformations, which 
illustrates the very different way in which standard NMA and MD simulations 
distribute variance along the intrinsic deformation patterns (see Figure 3.13). Thus, 
while MD defines a small number of movements which concentrate most of the 
variance, the deformability is distributed along a larger number of eigenvectors in 
standard ENM. In summary, not only the total variance is different, but MD and 
standard ENM differ also in how this variance is partitioned between modes, and this is 
something that cannot be modified by modifying a universal spring constant.  

 

 
The hybrid ED-ENM presented here is still a NMA-based approach and accordingly 
cannot be expected to fully capture non-harmonic MD movements which are the main 
responsible for the softer deformation modes in atomistic trajectories and accordingly, 
for the large MD variance. However, the method yields to a clear improvement in the 
total variance and, more important, in the balance of deformation movements (Table 
3. 1 and Figure 3. 11-Figure 3.13).  Thus, the deviation from MD in total variance is only 
by a factor of 1.6 (2.5 in “reduced” variance) and the complexity of the deformation 
space decreases by a factor of 5 with respect to the other ENM. The variance and 
force-constant (Kν in Eq. 3.1) profiles are also in much better agreement with those 
derived from MD simulations. It is worth to note that the improvement in the 
representation of the MD essential deformation space obtained by using the ED-ENM 
model is constant for all the range of proteins considered and for all structural families,  

 

Figure 3. 12. Spread of the Eigenvectors in the ED eigenspace for randomly selected proteins.  
The standard ENM approaches split the MD important space in a greater number of eigenvectors. Color code is as in 
Figure 3.11.    
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Table 3. 2 Comparative Measures of Flexibility Patterns Obtained with different MD force-fields and 
our mixed ENM model for some representative proteins.  
PDB  Force-

Field 
Total 
Variance* 
 

Eigenvec. 
90% Var 

ACO1/AMBER/CHARMM/OPLS 
Similarity (90% var)& 

ACO/AMBER/CHARMM/OPLS 
Similarity (50 eig)# 

1OPC 

 

ED-ENM 

ACO 

amber       

charmm 

opls 

137(62,45%) 

212(149,70%) 

132(85,64%)  

99(58,59%) 

112(74,66%) 

43 

22 

29 

35 

30 

0.58/0.59/0.68/0.62 

1/0.74/0.75/0.70 

0.69/1/0.65/0.57 

0.69/0.60/1/0.64 

0.65/0.56/0.68/1 

0.68/0.67/0.69/0.67 

1/0.82/0.82/0.80 

0.82/1/0.73/0.70 

0.82/0.73/1/0.74 

0.80/0.70/0.74/1 

1OOI 

 

ED-ENM 

ACO 

amber  

charmm 

opls 

102(30,30%) 

152(94,62%) 

101(61,61%) 

130(82,63%) 

107(67,63%) 

73 

35 

44 

35 

39 

0.64/0.68/0.67/0.66 

1/0.80/0.80/0.81 

0.77/1/0.68/0.70 

0.80/0.72/1/0.71 

0.78/0.72/0.69/1 

0.70/0.69/0.71/0.69 

1/0.81/0.84/0.83 

0.81/1/0.74/0.73 

0.84/0.74/1/0.75 

0.83/0.73/0.75/1 

1CZT 

 

ED-ENM 

ACO 

amber 

charmm 

opls 

146(44,30%) 

236(152,64%) 

139(79,57%) 

150(86,57%) 

142(78,54%) 

97 

37 

48 

51 

49 

0.66/0.65/0.66/0.64 

1/0.77/0.78/0.78 

0.74/1/0.67/0.67 

0.75/0.66/1/0.67 

0.77/0.67/0.68/1 

0.66/0.65/0.66/0.64 

1/0.77/0.78/0.78 

0.77/1/0.67/0.67 

0.78/0.66/1/0.67 

0.78/0.67/0.68/1 

2HVM 

 

ED-ENM 

ACO 

amber 

charmm 

opls 

181(38,21%) 

384(268,70%) 

148(57,39%) 

211(117,55%) 

234(137,58%) 

184 

54 

124 

93 

79 

0.58/0.67/0.63/0.62 

1/0.80/0.79/0.77 

0.71/1/0.66/0.65 

0.72/0.70/1/0.65 

0.73/0.72/0.68/1 

0.57/0.59/0.55/0.57 

1/0.70/0.71/0.72 

0.70/1/0.55/0.57 

0.71/0.55/1/0.57 

0.72/0.57/0.57/1 

1 ACO=AMBER-CHARMM-OPLS metatrajectories  

* Values in the cells correspond to: Total Variance (Reduced Variance, %)  
& Values obtained considering standard Hess metrics (Eq.3.2) with a number of evec representing 90% of the Variance for the 
corresponding reference Force-field (top labels in columns 3-4) 
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as shown by selected examples in Table 3. 1. The amount of residues involved in 
essential deformation movements is quite similar in ENM and MD, as noted in 
collectivity measures (see collectivity for the first 50 modes, Figure 3. 11), but even 
small there is a uniform tendency of standard methods to less collective movements 
than those detected in MD. Such a tendency is corrected in our ED-ENM method, 
suggesting that residue mobility is more realistic in hybrid calculations than in the 
other two standard ENM approaches. This suggests that collective motions are more 
cooperative in ED-ENM, possibly due to the strongest nearest-neighbors coupling.  
 
 
Table 3. 3 Statistical Correlation Coefficients of the B-factor distributions obtained from NMA 
calculations and reference values (MD or X-ray)  

REFERENCE DATA  MD CUT-OFF KOVACS ED-ENM 

X-ray B-factors 0,51±0,11 0,46±0,12 0,55±0,12 0,56±0,12 

MD simulations 

MD in the X-ray subset (21) 

MD in the NMR subset (10) 

- 0,52±0,14 

0,53±0,14 

0,48±0,12 

0,63±0,16 

0,63±0,11 

0,64±0,23 

0,64±0,14 

0,65±0,10 

0,58±0,15 

* NMA and MD (ED) values were computed always from the mean-square fluctuations obtained when activating the first 50 eigenvectors.  

 
Projection of the collective modes on individual residues allowed estimating residue 
fluctuations in solution (Eq.3.8). As previously reported all ENMs reproduce (see Table 
3. 3) the MD atomic fluctuations reasonably well, with Pearson’s correlation factors in 
the range 0.5-0.6 (typically 0.7-0.8 Spearman’s coefficients). But, when individual 
fluctuations distributions are compared (see Figure 3. 14) the shortcomings of 
standard ENMs become evident in a flattening of the B-factor profiles, resulting from 
inability of ENM to capture local but large non-harmonic deformations. It is also worth 
to note that, even our interest was not on the description of flexibility in the crystal 
but in solution, the ED-ENM approach yields also a sizeable in the X-ray B-factor 
profiles. We also found that it is possible to raise the correlations for B-Factors by 
increasing the distance threshold (unpublished data), but as a result the structure 
becomes stiffened and accuracy decreases in other global flexibility measurements, 
such as similarity index, variance profiles, or the ability to trace large conformational 
changes as we will discuss below.  
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Figure 3. 13 Percentage of Accumulated Variance and Force Constants for random proteins.  
(A) ABOVE: Cumulative variance with respect to the number of eigenvectors and (B) BELOW: Strengths of the 
essential deformation modes (Kν, Eq. 3.1) computed by the different methods for a selected number of typical 
proteins (insert correspond to a zoom of first eigenvalues. Illustrative proteins of different sizes and secondary 
structure compositions are displayed (the name and number of residues is shown). Color code is as in Figure 3.11.    
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A simple post-processing of B-factors allows the derivation of Lindemann’s index (see 
Methods) a key descriptor to analyze the macroscopic nature of proteins. The results 
in Table 3. 4 illustrate the superiority of the ED-ENM method with respect to the 
standard ENMs to reproduce the absolute MD-derived Lindemann’s index. It is also 
worth noting that the ED-ENM method reproduces nicely the inside/outside 
(solid/liquid) asymmetry of proteins and the different macroscopic behavior of the 
three kind of secondary structures considered here. That indicates that our ED-refined 
ENM method provides a reasonable and improved description of the solid/liquid 
macroscopic nature of the different protein regions. 
 
Table 3. 4 Lindemann’s coefficients* for different secondary structure elements and residue 
positions in MD and NMA calculations.  

 MD Cut-off Kovacs ED-ENM 

All residues 0.24 0.15 0.15 0.25 

Buried 0.19 0.09 0.11 0.18 

Exposed 0.26 0.17 0.17 0.28 

α-helices 0.21 0.10 0.12 0.22 

β-sheets 0.17 0.11 0.11 0.19 

Turns 0.28 0,20 0.19 0.28 

* Averaged values for MICROMODEL database. 

 

Figure 3. 14. B-factor profiles (Å2) computed by the different methods for a selected number of typical 
proteins. 
Illustrative proteins of different sizes and secondary structure compositions are displayed (the name and number of 
residues is shown). Values obtained considering in all cases movements along the first 50 eigenvectors. Note the 
flattening of standard ENM profiles compared with MD. Color code is as in Figure 3.11.    
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All the results reported to this point suggest that the ED-ENM is able to provide 
reasonable approximations to MD, improving significantly the results obtained by 
current ENMs without increasing formal or computational complexity. There are 
however, two reasons for concern regarding the behavior and transferability of the 
model in the biologically relevant time and length scales, namely: i) what happens 
when very large or multidomain proteins are considered, over the size range 
considered in its calibration, and ii) what happens when the new ED-ENM is 
compared with the flexibility description obtained from submicrosecond trajectories, 
where the protein is expected to display non-harmonic deformations a priori difficult 
to tackle by a pseudoharmonic- approach. We will address these questions next. 

3.7.2   Influence of Protein length: Flexibility Patterns for Extremely 
Large Proteins 

In order to answer the first question, we extended our study to several very large and 
multimeric proteins from MoDeL (see Methods), finding that ED-ENM captures well 
their fundamental dynamics (see Table 3. 5 and Figure 3. 15 - Figure 3. 16) as reported 
by atomistic MD simulations. This confirms that the method can be transferred to 
analyze large systems, difficult to tackle by MD simulations.  In all cases very good 
results are obtained; in general, the larger the protein, the better the description of 
protein motions. Large proteins are more likely to contain well-defined domains and 
structural elements and motifs that display simpler rigid-solid motions, which are 
perfectly traced by our approach based on nearest-neighbours connectivity. Overall, 
these results confirm that the present method can be used to obtain a first hint on the 
dynamics of very large proteins and complexes, for which MD is prohibitive.  
 

 

Figure 3. 15. Metrics for the comparison between MD and NMA models for extremely large proteins.  
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3.7.3 Influence of Simulation time length: Stability of the Modes over 
long trajectories    

The second challenge was to compare the ED-ENM modes to those derived from very long 

MD trajectories (from 0.1 to 0.5-1 μs), where non-harmonic movements are likely to have 

more impact on the dynamics (see Methods). We also wanted to discard any bias 
introduced by the simulation length, for example, in the strong i, i+3 coupling effect 
observed, and to reassure that the 30 ns metatrajectories can capture the main traits 
of the low frequency movements. Once again, all the metrics demonstrate the 
robustness and generality of the ED-ENM here presented and its ability to reproduce 
the sub-microsecond pattern of flexibility, in particular, to correct the splitting of the soft 

modes observed in standard approaches (see variance distribution in Table 3. 6 and Figure 
3.17 -Figure 3. 18).  
 

  

Figure 3. 16. Variance distribution and Mode Stiffness in extremely large proteins. 

Table 3. 5 Comparative Measures of Flexibility Patterns Obtained with MD and our ED-ENM NMA 
method for a set of very large proteins.  

PDB Total Variance* Reduced Variance* Eigenvectors 90% Variance* Similarity 
(90% var)& 

1SQC (619) 306/477 109/95 264/373 0.69 

1E5T (710) 485/532 226/71 217/463 0.59 

1J0M (747) 1023/1131 705/621 85/267 0.62 

1E9S (2545) 1237/1650 455/100 790/1753 0.62 
* Values in the cells correspond to: MD (AMBER force-field)/ED-ENM method 
& Values obtained considering standard Hess metrics (Eq. 3.2)  

A) LEFT: Cumulative variance with respect to the number of eigenvectors and B) RIGHT: Strengths of the essential 
deformation modes (Kν, Eq. 3.1) for extremely large proteins (insert correspond to a zoom of first 10 eigenvalues).  
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Figure 3. 17. Metrics for the comparison between MD and NMA models for long MD trajectories.  
The most remarkable difference between the ED-ENM method (green) and the standard cutoff (red) and inverse 
(blue) approaches is that it concentrates most of the variance in the first dominant modes in a similar way to MD 
(black), yielding larger scale and more collective lowest-frequency motions. 

 

Figure 3. 18. Variance distribution in long MD trajectories. 
A) TOP: Cumulative variance with respect to the number of eigenvectors in long MD trajectories. B) BOTTOM: 
Strengths of the essential deformation modes (Kν, Eq. 3.1) (insert correspond to a zoom of first 10 eigenvalues). 
Color code as in Fig.3.11. 

Table 3. 6 Comparative Measures of Flexibility Patterns Obtained with extended MD and our ED-ENM 
method for four small proteins. 

PDB Total Variance Reduced 
Variance 

Nevec 
90% 

Similarity 
(90% 
var)& 

Similarity 
(50 eig)& 

Lindeman’s 
Indexes* 

2GB1 (56) 43/70 30/40 23/25 0.60/0.67 0.69/0.74 0.50/0.25 

1CEI (85) 300/140 230/60 17/36 0.53/0.60 0.62/0.68 0.34/0.28 

1CQY (99) 43/100 21/44 59/54 0.66/0.72 0.64/0.71 0.30//0.21 

1OPC (99) 230/136 170/62 21/44 0.56/0.63 0.62/0.69 0.20/0.25 

* Values in the cells correspond to: MD/ED-ENM method.  
& Values obtained considering standard Hess metrics; Eq. 3.2. Weighted similarities are typically around 0.05 to 0.1 larger. 
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However, although the variance descriptors remain in the same order of magnitude, 
there is a uniform tendency for all ENMs to lower similarity indexes when extending 
the time span of the MD (see similarity index values falling from 0.6-0.7 to 0.4-0.5 for 
1cqy, 1opc in Table 3. 6). This is not surprising, since in a longer trajectory, the 
structures are able to explore a wider conformational subspace and thus undergo 
anharmonic departures from equilibrium that cannot be fully captured by any NMA-
based approach as discussed above.   

3.7.4 Experimental X-ray conformers and NMR ensembles   

Finally, we tested the method against experimental data on flexibility from both X-ray 
conformers’ transitions and PCA of selected NMR ensembles. First, we analyzed the 
ability of ED-ENM to predict functional important bound/unbound and open/close 
transitions between X-ray conformers. These large-scale rearrangements involve 
cooperative motions of domains or subunits, behaving as rigid clusters but preserving 
the overall fold – in this case the local cohesion prevails over inter-domain, long range 
interactions. Hence, a great shortcoming in continuum approaches is the over-
restriction of displacements between domains, as noticed before. On the other hand, 
cutoff approaches display a difficult balance between violation of stereochemical 
constraints for lower distance thresholds, and over-restriction of motions if increased. 
We expected that the combination of a 6-th power law with a soft size-dependent 
cutoff, together with the strongest, inverse-square cohesion limited to neighbors, 
would allow more natural internal movements.  
 
Flexibility encoded in X-ray bound-unbound pairs. First we investigated if ED-ENM can 
trace functional important movements upon ligand binding. Three models displaying 
massive transitions (rMSD between the two conformers > 5Å) were selected: i) the 
1ux5→1y64 transition related to a rearrangement of helices along a flexible linker 
occurring upon actin binding, ii) the 1wwb→1hcf transition related to a massive tail 
rearrangement upon ligand binding, and iii) the 1k04→1k05 transition, in which the N-
terminus and alpha-helix 1 are swapped from a highly parallel four-helical bundle 
following a rotation around a proline-rich hinge. Three additional models, showing 
local-less dramatic transitions were also studied: i) 1eia→2eia from cubic to hexagonal 
tetrameric forms, a transition where the motion of the C-terminal domain (CTD) along 
a flexible stem allows homodimer interactions required for viral capsid assembly, ii) 
1usg→1usi transition, where a rotation around a three-stranded hinge point drives a 
transition from an unbound-open conformation to a bound-closed form,  and iii) 
1sw2→1sw5, a conformational change related to an inter-domain rearrangement in a 
protein from an ABC transporter (see Figure 3. 3 for visual description of the different 
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transitions). Results displayed in Table 3. 7 demonstrate that the transitions required 
for biological function are precisely encoded in the intrinsic deformation pattern of the 
ENM, as observed previously (F Tama & Sanejouand, 2001). 

 
Table 3. 7 Overlaps between ED-ENM modes and six unbound-bound conformational transitions.  
rMSD (in Å) between the bound and unbound form, overlap (in %) between deformation spaces (considering the 
first 5 and 10 eigenvectors) and the transition vector, and rank of maximum overlap with the bound transitions 
(see Methods).   

 RMSD    Overlap (5)  Overlap (10)  Rank& 

TRKB, 92  
1wwb↔1hcf  13.2 50 60 1(29) 

FAK, 135     
1k04↔1k05 12.1 82 90 0(75) 

P26, 204     
1eia↔2eia 7.7 76 80 0(71) 
PROX, 265     

1sw2↔1sw5 5.0  76 80 1(51) 
LBP, 319     

1usg↔1usi 7.0   91 93 0(41) 
FH2, 392     

1ux5↔1y64 10  87 90 1(41) 
 

& Dot product for the maximum overlap between individual eigenvectors and the transition vector in parenthesis 

 

In all the six cases considered here the best overlap with the transition vector is found 
for the first 2 deformation modes, something for which random models give a 
probability of c.a 10-16. Furthermore, extremely good overlaps are found between the 
transition vector and the essential deformation space of the unbound forms of the 
proteins: from 50 to 91% (average 77%) considering only five modes and from 60 to 
93% (average 82%) if the essential space is extended to the first ten modes from the 
unbound form. The significance of these striking similarities becomes clear when 
considering that random deformations will yield to average overlaps around 0.8% (5 
eigenvectors) and 1.6 % (10 eigenvectors).  
 

Flexibility encoded in a benchmark of hinge/shear conformational transitions. To 
further verify our model, we extended the study to a larger benchmark including 
hinge, shear and complex motions from the database MolMovDB (Gerstein & Krebs, 
1998) and compared ED-ENM results with those from standard methods. Average 
results for the full benchmark and detailed data for ten selected cases are displayed in 
Table 3. 8: there are four structures undergoing large transitions (RMSd > 7 Å) and six 
more with local, less dramatic changes (RMSd 2-6 Å). However, the ED-ENM provides 
in most cases the best agreement between the transition vector and the harmonic 
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deformation space. In the open forms, considering only the five modes, the overlaps 
range from 0.60 to 0.95 (average 0.7), and from 0.70 to 0.97 (average 0.76) 
considering ten modes (see Table 2); note that random deformations would yield 
overlaps around 0.08 (5 eigenvectors) and 0.16 (10 eigenvectors).  
 
 

 
 
There is a systematic trend to better performance of the ED-ENM (2-5%) regardless of 
the extent of the transition, especially considering only the first five modes. The 
greatest improvement is achieved for the closed forms, more difficult to treat since the 
can be easily over-constrained by long-range springs: in this case the γ(5) increases by 
nearly 10% (from 0.50 in standard ENM to 0.60).  The agreement is remarkable in the 
most challenging cases, where other ENMs fail dramatically (see for example, the 
closed → open transition for 1ckmB, 1ama, 1dap). These notable differences are 
related to the concentration of the conformational change in the first dominant 
eigenvectors. Accordingly, the rank differences are also smaller and the best 
overlapped eigenvectors closest to the transition direction.  In summary, the ED-ENM 
displays a higher cooperativity and less dispersion of the motions - as in the above 
comparison with ED - and thus traces the functional changes with fewer modes.  
  

Figure 3. 19. Lowest frequency modes of the open conformer of the Oligopeptide binding protein, 
OppA (1rkm). 

The transition to the close bound state is fully mapped in a 90% by the first ED-ENM mode of the open state (right). 
 

1st mode                 2nd mode            3rd mode 
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Table 3. 8 Overlaps for the NMAFIT 54 conformational transitions benchmark.  
RMSd (in Å) between X-ray conformations, overlaps (in %) between essential deformation spaces (considering the 
first 5 and 10 eigenvectors) and the transition vector, and Rank of maximum overlap (see Methods for description of 
the different metrics) for the cutoff, the inverse exponential model and the ED-ENM.   
Length 

(CATH) 

PDB RMSD Overlap(5)* Overlap(10)* Rank & 

Overlapmax *
& 
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1l5e (open) 

1l5b (closed) 

8.8 0.76 / 0.43 / 0.81 

0.83 / 0.80 / 0.81 

0.81 / 0.76 / 0.85 

0.86 / 0.85 / 0.87 

0 (0.70) / 0 (0.66) / 0 (0.65) 

1 (0.27) / 1 (0.28) / 2 (0.55) 

148 

 

1cfd (open) 

1cfc (closed) 

10.2 0.88 / 0.93 / 0.94 

0.83 / 0.89 / 0.89 

0.93 / 0.94 / 0.95 

0.93 / 0.92 / 0.94 

1 (0.38) / 0 (0.62) / 1 (0.55) 

1 (0.55) / 0 (0.45) / 1 (0.55) 

 214 4ake (open) 

1ake (closed) 

8.3 0.90 / 0.90 / 0.92 

0.55 / 0.57 / 0.64 

0.93 / 0.92 / 0.93 

0.61 / 0.68 / 0.71 

0 (0.67) / 0 (0.38) / 0 (0.67) 

0 (0.32) / 0 (0.36) / 0 (0.40) 

219 1nbv (H) (open) 

1cbv (H) (closed) 

2.2 0.69 / 0.69 / 0.70 

0.68 / 0.69 / 0.71 

0.73 / 0.72 / 0.73 

0.72 / 0.71 / 0.72 

2 (0.68) / 0 (0.29) / 0 (0.32) 

2 (0.38) / 2 (0.40) / 0 (0.37) 

271 1urp (open) 

2dri (closed) 

7.7 0.96 / 0.93 / 0.95 

0.83 / 0.82 / 0.88 

0.96 / 0.95 / 0.97 

0.86 / 0.88 / 0.92 

1 (0.94) / 1 (0.72) / 1 (0.80) 

0 (0.62) / 0 (0.56) / 1 (0.71) 

317 1ckm (A) (open) 

1ckm (B) (closed) 

4.3 0.93 / 0.91 / 0.93 

0.21 / 0.49 / 0.57 

0.94 / 0.93 / 0.95 

0.65 / 0.73 / 0.78 

0 (0.86) / 0 (0.44)  / 0 (0.88) 

6 (0.29) / 2 (0.14) / 4 (0.23) 

320 3dap (open) 

1dap (closed) 

5.8 0.89 / 0.90 / 0.93 

0.20 / 0.18 / 0.27 

0.94 / 0.92 / 0.95 

0.44 / 0.62 / 0.78 

0 (0.75) / 1 (0.58) / 0 (0.68) 

9 (0.19) / 7 (0.33) / 4 (0.22) 

401 9aat (open) 

1ama (closed) 

2.2 0.15 / 0.07 / 0.55 

0.07 / 0.08 / 0.60 

0.68 / 0.64 / 0.71 

0.68 / 0.67 / 0.76 

5 (0.26) / 5 (0.45) / 4 (0.44) 

6 (0.30) / 5 (0.39) / 6 (0.30) 

452 1bnc (open) 

1dv2 (closed) 

5.4 0.84 / 0.85 / 0.87 

0.70 / 0.69 / 0.76 

0.87 / 0.90 / 0.90 

0.77 / 0.80 / 0.85 

0 (0.83) / 0 (0.71) / 0 (0.81) 

4 (0.22) / 0 (0.40) / 0 (0.48) 

517 1rkm (open) 

2rkm (closed) 

5.8 0.93 / 0.92 / 0.93 

0.62 / 0.64 / 0.67 

0.94 / 0.94 / 0.95 

0.68 / 0.75 / 0.73 

0 (0.91) / 0 (0.84) / 0 (0.92) 

1 (0.32) / 0 (0.52) / 0 (0.42) 

NMAFIT Average open 

closed 

0.66 / 0.67 / 0.70 

0.51 / 0.53 / 0.58 

0.75 / 0.75 / 0.76 

0.65 / 0.67 / 0.69 

0.9(0.69)/ 0.6(0.57)/0.6(0.67) 

3.0(0.35)/1.7(0.38)/ 1.7(0.42) 

 

* Values in these columns as cutoff/inverse/ED-ENM & In parenthesis, dot product of the best overlapped vector  
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Flexibility encoded in NMR ensembles. Finally, 
we analyzed the ability of ED-ENM to approach 
the structural diversity of NMR ensembles 
(Figure 3. 20). The PCA of high-quality NMR 
ensembles has been shown to correlate well 
with ED and ENMs normal modes (Abseher, 
Horstink, Hilbers, & Nilges, 1998; L.-W. Yang, 
Eyal, Bahar, & Kitao, 2009b), and thus it is 
expected to provide qualitative information on 
the more flexible regions of a protein.  

 

 

Figure 3. 20. NMR ensemble (2d21). 

Table 3. 9 Comparative Measurements of Flexibility Patterns obtained from NMR and Normal Modes.  
 

PDB N M Overlap(5)* Overlap(10)* Overlapmax 

1ro4 58 35 0.56 0.52 0.58 0.57 0.53 0.62 0.59 0.33 0.72 

1e9t 59 59 0.51 0.48 0.63 0.53 0.54 0.58 0.48 0.57 0.64 

1bw5 66 50 0.69 0.59 0.74 0.56 0.56 0.62 0.53 0.63 0.78 

2eot 74 32 0.52 0.42 0.61 0.56 0.41 0.55 0.57 0.76 0.54 

1a6x 87 49 0.55 0.44 0.56 0.41 0.37 0.48 0.54 0.37 0.95 

1bve 99 28 0.47 0.52 0.49 0.33 0.36 0.37 0.81 0.7 0.88 

1q06 101 55 0.57 0.58 0.57 0.51 0.60 0.57 0.51 0.58 0.77 

2czn 103 38 0.62 0.55 0.66 0.50 0.53 0.51 0.87 0.65 0.70 

1a90 108 31 0.36 0.44 0.49 0.38 0.40 0.42 0.65 0.49 0.83 

2bo5 120 44 0.54 0.37 0.58 0.55 0.45 0.56 0.73 0.57 0.68 

1e5g 120 50 0.71 0.70 0.69 0.60 0.64 0.63 0.93 0.90 0.96 

1cmo 127 43 0.70 0.61 0.70 0.56 0.52 0.59 0.56 0.60 0.52 

1iti 133 31 0.53 0.65 0.59 0.46 0.51 0.44 0.78 0.78 0.89 

1c89 134 40 0.70 0.76 0.80 0.55 0.60 0.63 0.53 0.69 0.63 

1xsb 153 39 0.46 0.43 0.49 0.44 0.38 0.43 0.89 0.41 0.92 

1bf8 205 20 0.47 0.55 0.54 0.43 0.47 0.48 0.86 0.78 0.88 

1by1 209 20 0.55 0.55 0.56 0.42 0.46 0.47 0.50 0.65 0.53 

1n6u 212 22 0.63 0.61 0.59 0.58 0.58 0.58 0.64 0.37 0.60 

2jz4 299 20 0.53 0.51 0.61 0.41 0.40 0.45 0.49 0.80 0.74 

2d21 370 20 0.60 0.56 0.65 0.50 0.47 0.50 0.67 0.62 0.62 

Average   0.56 0.54 0.61 0.49 0.49 0.53 0.53 0.61 0.74 

* Values in these columns as cutoff/inverse/ED-ENM   (see Methods for metrics definitions) 
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The analysis of 26 selected NMR multiple structures shows striking correlations with 
the first ENMs modes (see Table 3. 9), in agreement with the above mentioned 
observations, and supports the validity of ENMs to sample the near-equilibrium 
conformational space in solution. In this case, it is also clear that the ED-ENM method 
outperforms the cutoff method and the Kovacs approach, especially when considering 
only the first 5 eigenvectors whose overlap raises from 0.56/0.54 to 0.61 (an average 
increase of around 5%) and the best overlapped pair, which increases from a 0.65/0.61 
average to 0.74 (more than a 10% increase), reaching values near 0.90 (see 1bve, 1iti, 
1bf8) or even above (1a6x, 1e5g and 1xsb). In more than half of the proteins (11 
cases), the best overlapped vector is found in the ED-ENM method, followed by the 
inverse (5 cases) and cutoff (4 cases) approaches, following the trend observed in the 
rest of tests against experimental flexibility sources.  

 

3.7 The FlexServ interface 
The great computational efficiency of the ED-ENM method allows its implementation 
in webservers. We have developed an integrated platform to launch coarse-grained 
simulations, FlexServ: http://mmb.pcb.ub.es/FlexServ, which provides a friendly access 
for non-expert users in an intuitive graphical interface. FlexServ (Camps et al., 2009) is 
a web-based tool for the analysis of protein flexibility. The server incorporates 
powerful protocols for the three standard coarse-grained simulation methods 
presented in Chapter 2: Normal Mode Analysis (NMA), Brownian dynamics (BD) and 
Discrete Molecular Dynamics (DMD), as well as for PCA analysis of atomistic 
trajectories (ED). Besides allowing to launch coarse-grained simulations, and to analyze 
the results, it also incorporates direct links with the main structural databases. 
  
The NMA interface allows the calculation of the normal modes in the cutoff-like and 
Kovacs schemes as well as using the ED-ENM method. The server allows a complete 
analysis of flexibility using a large variety of metrics, including most of the measures 
introduced in this Chapter: from basic geometrical analysis, B-factors, essential 
dynamics, stiffness analysis, to collectivity measures, Lindemann’s indexes, residue 
correlation, chain-correlations, dynamic domain determination, hinge point 
detections, etc. The resulting data is presented through a web interface as plain text, 
and intuitive 2D and 3D graphics. 
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3.8 Summary  
The ability of the elastic network NMA models to predict the intrinsic motions of 
proteins has been widely demonstrated in the last years. However, predictions are 
eminently qualitative and often need ad-hoc re-scaling of the mode amplitudes. In 
comparisons with MD, ENMs yield a sparser pattern of flexibility, related to their 
harmonic character, and the information required for a realistic description of a 
functional motion is dispersed into multiple modes. Another problem has been the 
lack of consensus in the ENMs refinement, mainly due to the scarcity of measurements 
of protein flexibility. In this work we have used atomistic simulations as reference to 
infer more realistic connectivity rules and obtain a scaling of the force constants.   

Our findings point out that, whereas the directions of the low frequency motions 
depend entirely on the network topology, the strength of the constants determines 
the amplitude of the modes and the variance profiles. We found that low frequency 
motions are mainly encoded on the strong, covalent interactions linking sequentially 
close residues, with the long range noncovalent interactions playing a minor tuning 
role. These constraints led to the formulation of an ED-refined ENM (ED-ENM), based 
on a simple hybrid potential based on chain topology. The method proposes a simple 
and robust scaling of the local backbone and long-range contacts. The new method has 
been validated with the largest available collection of consensus force-field meta-
trajectories and has shown ability to improve the representation of local and global 
flexibility from small to large proteins. 
 
The goal was not to reproduce any particular flexibility measurement (such as B-Factor 
profiles), but rather to develop a general method able to trace motions better than or 

  

Figure 3. 21. The FlexServ website 
Screen capture of the FlexServ webpage. 
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at least as well as the best-performing standard approach, for the widest range of 
descriptors and protein sizes and folds. Clearly, when considering all the flexibility 
measurements here presented, the ED-ENM outperforms standard approaches 
without any ad-hoc adjustments.  

Finally, we have demonstrated that ED-ENM captures the experimental flexibility, such 
as large functional X-ray transitions, or NMR structural ensembles, with remarkable 
precision. Therefore, the results demonstrate that ED- ENM can be a useful alternative 
to well established coarse-grained NMA methods. In a wider context, the ability of a 
simple nearest-neighbors model to match MD and to trace functional changes suggests 
that local covalent topology greatly influences the intrinsic motions of proteins, and 
that this shape-encoded deformability guides biological conformational changes.   
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“Owing to this struggle for life, any variation, however slight and from whatever cause 
proceeding, if it be in any degree profitable to an individual of any species… will tend to 
the preservation of that individual, and will be inherited by its offspring.” 
 

Charles Darwin 
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Chapter 4 Local Perturbations impact in large-
scale conformational changes: the HER1 case    

In this central part of the present thesis, we take one step further and want to explore 
which are the mechanisms behind large-scale protein flexibility responsible for 
function. How a protein shape and its movement are related, and how they change and 
evolve through mutations? How can a single residue change cause protein malfunction 
and disease? Which are the key regions orchestrating protein dynamics? To answer 
these questions, we focus on a protein undergoing a large-scale conformational 
change clearly linked to function, the Epidermal Growth Factor Receptor (EGFR). The 
EGFR family is the prototype of protein tyrosine kinase receptors, which are key 
regulators of cellular growth. EGFR signaling is thought to be initiated by a dramatic 
ligand-favored conformational change of the extracellular domain (ectodomain or 
sEGFR) from a closed, self-inhibited tethered monomer, to an open untethered state, 
which exposes a loop required for dimerization and activation. Many evidences 
suggest that the ectodomain also untethers spontaneously, and it is widely assumed 
that unbound untethered states are open as in crystal structures. In the brain tumor 
glioblastoma multiforme, multiple clusters of point missense mutations appear located 
in the extracellular domain, which cause ligand-independent activation, and 
presumably, an active, open conformation. Here we explore impact of cancer mutation 
clusters on the ectodomain dynamics using a perturbative screening based on the ED-
ENM algorithm (Chapter 3) to locate dynamical hot spots for the conformational 
changes, determine the impact of mutations and guide Molecular Dynamics 
simulations comprising several microseconds. Our results show that key interdomain 
contacts crucial for conformational changes are precisely mutated in cancer, 
suggesting a novel oncogenic mechanism based on the perturbation of the native 
motions. Simulation of a mutation targeting a dynamical hot spot reveals the 
spontaneous formation of an untethered intermediate, which is unexpectedly closed 
but capable to dimerize and which exposes the mAb806 conformational epitope 
characteristic of tumors. Our findings point out to different mechanisms driving ligand-
dependent and independent untethering, and highlight the connection between 
oncogenic mutations and the ectodomain conformational changes.   
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4.1 Mutation, protein evolution and disease 
How is it possible that a change in a single residue perturbs the function of a protein? 
This question is of great relevance, since it underlies the basis of many diseases, but is 
also the driving force for protein evolution. Although function and dynamics are 
robustly encoded in the structure, perturbations in sensitive regions can have a 
dramatic impact. Near-equilibrium equilibrium fluctuations allow proteins to explore 
the conformational space encoded in their structure. Back in the 60s, the Monod-
Wyman-Changeux (MWC) (Monod et al., 1965) model of allostery proposed 
conformational selection amongst accessible conformers as the basis for molecular 
recognition: according to this model, the presence of a ligand just shifts the population 
in favor of the conformer best suited to bind, in contrast to the induced-fit model 
where the ligand ‘induces’ the change in conformation (Koshland, 1958). However, the 
concept of allostery has evolved to a more complex vision where multiple dynamic 
ensembles coexist and change in response to perturbations (Acuner Ozbabacan, 
Gursoy, Keskin, & Nussinov, 2010; Csermely, Palotai, & Nussinov, 2010; del Sol, Tsai, 
Ma, & Nussinov, 2009). Understanding which regions control the intrinsic dynamics of 
a protein and how different states are sampled can help to unravel the mechanisms by 
which mutations change biological function and drive evolution.  

4.2 The HER case: a large-scale mutation-sensitive transition 
As presented in the introduction, a dramatic example of point mutations related to 
changes in activity is the Epidermal Growth Factor Receptor main isoform, EGFR or 
HER1 (Human EGFR 1). HER1 is the founding member of the large family of 
transmembrane tyrosine kinase receptors (TKRs), which are fundamental regulators of 
cell growth, survival, differentiation and migration in mammalian cells (Schneider & 
Wolf, 2009; Wieduwilt & Moasser, 2008). All proteins of the TKRs family act as 
sophisticated molecular machines, transducing information in a unidirectional fashion 
from the environment across the cell membrane. These glycoproteins consist of a large 
extracellular region followed by a single transmembrane-spanning region and a 
cytoplasmic kinase domain, acting in a highly concerted fashion. In humans the EGFR 
family includes four receptors: EGFR itself (HER1, ErbB1), ErbB2 (HER2/Neu), ErbB3 
(HER3) and ErbB4 (HER4), which play a crucial function in both ectodermal and 
mesodermal cell lineages, being thus very potent oncogenes: disregulation of their 
signaling pathways by overexpression or hyperactivation has been related to many 
carcinomas such as erythroid leukemia, fibrosarcoma, angiosarcoma, glioblastoma, 
and melanoma (Baselga, 2002; Zandi, Larsen, Andersen, Stockhausen, & Poulsen, 
2007). The ligand-sensing piece of these receptors is the 600 residue long extracellular 
domain (sEGFR), composed of a tandem repeat of two homologous ligand binding 
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large subdomains (I and III) of around 200 residues length, plus two small or cysteine-
rich subdomains (II and IV) of around 130 residues length, containing serial Cys-linked 
modules. In the inactive states crystallized, a self-inhibitory tether in domain IV (T561-
K585) holds hidden the dimerization arm in domain II (T246-M253). 
 

 

Figure 4. 1 sEGFR inactive closed monomer (A) and active open dimer (B).  
Known mutations in glioblastoma are shown, highlighting in yellow those reported to increase activity. Note the 
evident clustering of mutations at the interface between domain I (red) and II (green), and domains II and IV (blue), 
as well as the position of R84K mutation away from domain I-III binding cleft as well as domain II dimerization 
interface.  Mutations in domain III (ochre) - IV interface are also described in other tumors. (C) A close-up to domain 
I-II interface where most glioblastoma mutations appear clustered. 

Despite the effort focused in its characterization, the molecular mechanism for 
activation at the extracellular level is still not fully understood, and the question 
whether the ligand triggers a tethered to untethered transition or whether there is a 
preexisting conformational equilibrium remains unanswered. Crystal structures 
suggest that ligand binding favors a large conformational change, from the tethered 
closed inactive monomer (Ferguson et al., 2003) to an untethered, open dimer (Garrett 
et al., 2008; Ogiso et al., 2002) thought to represent the active state (Figure 4. 1, A and 
B, respectively). In this process, the subdomains I and III reorient to bind 
simultaneously EGF, whereas the tether releases the dimerization arm to form key 
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receptor-receptor contacts in the active dimer. Recent long simulations of HER4 (Du et 
al., 2012) have confirmed this classical induced-fit model where ligand binding drives 
the transition from the closed to an extended, open-like conformation with a free 
dimerization arm. There are however several observations that do not fit in the ligand-
driven dimerization scheme. For example, although the crystallographic dimer is 
doubly-ligated, experimental evidences point out that unbound and singly-ligated (Liu 
et al., 2012) dimeric species also exist suggesting that untethering also occurs in the 
absence of ligand. Therefore, current thinking rather assumes a conformational 
selection mechanism, where the ectodomain samples untethered conformations, 
which are stabilized by ligand binding. It is widely assumed that these unbound 
untethered monomers would be open as in the crystal dimer. Although there is data 
supporting a preexisting tethered-untethered equilibrium (Kozer, Rothacker, Burgess, 
Nice, & Clayton, 2011), a spontaneous transition of unbound sEGFR towards an 
extended form is still to be detected experimentally (Dawson, Bu, & Lemmon, 2007) or 
in microsecond-long MD (Arkhipov et al., 2013).  Intriguingly, one of the features of the 
tethered →untethered conformational change seems to be the transient exposure of a 
Cys-bonded module (C287-C302) in domain II (Johns et al., 2004). This region acts as 
“cryptic” epitope triggering immune response by antibodies mAb806 and mAb175 
against overexpressed and N-terminally truncated EGFR (EGFRvIII), but appears hidden 
in all known ectodomain structures (Garrett et al., 2009).  

In comparison with the thorough studies on kinase-targeting mutations (Shan et al., 
2012; Shan, Arkhipov, Kim, Pan, & Shaw, 2013; Sutto & Gervasio, 2013), missense 
mutations mapping on the EGFR extracellular domain (found in brain gliomas) have 
received little attention to date. These gain-of-function mutations (see Figure 4. 1, C 
and Table 4. 1) cause ligand-independent activation of EGFR (Huang, Xu, & White, 
2009; Lee et al., 2006) by an unknown mechanism: although some target the self-
inhibitory tether or the ligand-binding sites, most of them appear far away, clustered 
at interdomain conserved surfaces. In order to figure out if and how these mutations 
alter the ectodomain conformational change, we performed a comprehensive study of 
the dynamics of Wild Type (WT) and mutated forms of sEGFR. By combining ENMs 
(Atilgan et al., 2001; Tirion, 1996) with near 5 microseconds of atomistic MD (Karplus & 
McCammon, 2002), we have characterized the major conformational states of HER1, 
outlining a complete picture of spontaneous and ligand-induced untethering. 
Simulations of ectodomain activator mutations have revealed a spontaneous 
untethering process, surprisingly, not to an extended but to a close untethered state 
which may correspond with the immunogenic mAb806- intermediate in cancer. Our 
results point to an unexpected mechanism for ligand-independent activation, and 
provide a simple molecular explanation for oncogenic mutations mapping on sEGFR.  
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Table 4. 1 Summary of isolated and clustered missense mutation in the EGFR ectodomain targeting interdomain 
regions, as registered in the COSMIC database.   
Mutated residues are considered as neighbors up to three residues apart in the sequence. Residues related to 
increased activity underlined in column 1.  
Mutation Interdomain 

region 
Sequence  
Cluster 

Tissue & Frequency Conservation 
(ConSurf) 

Kinase activity 

V36R 
L38R/P 
G39R/W 
  
Q81H 
R84K/G 
   
C195G 
R198C 
 
R228C 
D232A 
 
T239P 
 
T249N 
 
A265V/D/T 
V268L 
  
G298C 
V299I 
R300L 
C302Y 
E306K* 
  
R427F 
 
I451V 
 
P572L 
A573P/T 
G574V 
E578Q 

I-II 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
II-III 
 
 
 
 
 
III-IV 
 
 
 
II-IV 

3X-cluster 
 
 
 

8X-cluster 
 
 

19X-cluster 
 
 

23X-cluster 
 
 
 
 
 
 

26X-cluster 
 
 

30X-cluster 
 
 
 
 
 
 
 
 
 

57X-cluster 

Glioma, 1 
Glioma, 2 & Lung, 3 /Colon,1 
Glioma, 1 & Colon, 2/Colon,1 
 
Glioma, 2 
Glioma, 9 & Skin, 1 / Colon, 1 
 
Glioma, 1 
Glioma, 2 & Colon carcinoma, 1 
 
Glioma, 1 
Glioma, 1 
 
Glioma, 4 
 

CNS Glioma, 1 
 
Glioma, 20/3/3 
Glioma, 1 
 
Thyroid carcinoma, 1 
Lymphoid neoplasm, 20/3/3 
Glioma, 2 
Glioma, 1 
Glioma, 1 
 
Lung, 1 
 
Upper dig. tract, 1 
 
Glioma,2/ Colon, 1 
Glioma, 1/ Lung, 1 
Glioma, 16 
Glioma, 1 

8 
8 
9 
  
7 
9 
  
8 
6 
 
6 
4 
 
3 
 
4 
 
5 
7 
  
4 
2 
7 
9 
1 
 
   
 
 
 
8 
1 
6 
3 

 
 
 
 
 
Ligand-independent kinase, 
Tumorigenic (Lee et al.) 
 
 
 
 
 
 
Ligand-independent kinase, 
Tumorigenic (Lee et al.) 
 
 
Ligand-independent kinase, 
Tumorigenic (Lee et al.) 
 
 
 
 
 
 
 
 
 
 
 
Ligand-independent kinase, 
Tumorigenic (Lee et al.) 
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4.3 Methods 
Structural data and naming scheme for extracellular domains of HER. We follow the 
naming scheme for sEGFR, distinguishing four CATH (Orengo et al., 1997) subdomains: 
large domain I (residues 1-190), cysteine-rich domain II (191-309), large domain III 
(310-481) and cysteine-rich domain IV (482-614). Our reference are the coordinates of 
the 612-long fragment Glu3-Thr614 from closed (PDB: 1nql) and open dimeric (PDB: 
3njp, chain A) structures.  

Elastic Network-Normal Mode Analysis. We use the ED-ENM algorithm (Orellana et 
al., 2010) based on the Anisotropic Network Model (ANM) (Atilgan et al., 2001; Tirion, 
1996) (see details in Chapter 3). 

Perturbation screening of interdomain contacts. Structural perturbation methods for 
ENMs are used to identify the residues coupled with important motions and whose 
mutations may impact the protein’s function (Zheng Brooks, 2005; Zheng et al., 2007, 
2005; Matsumoto el al., 2008). Usually, an energetic perturbation dEi is introduced at 
residue i as a change in the force constants of those springs connecting residue i to its 
neighbors (residue j) within a cutoff, and the response of the rest or a subset of 
residues j, measured in terms of the changes in the mean-square fluctuations. The 
residues i causing the largest change in the fluctuations of residues j are considered 
dynamically important residues. Due to the robustness of ENMs and the highly 
nonlinear effect of the force constants, it is difficult to model realistically the effects of 
perturbative changes in the volume or charge of a residue.  

Here we design a novel technique, not residue-centered but region-centered, to trace 
those interactions whose perturbation is expected to have the largest impact in the 
essential motions. The idea is very simple: to mimic the effects of mutations in the 
elastic network, we assume that a pathogenic change will disrupt locally all the 
pattern of neighbor residue interactions, impacting not one single spring, but a bunch 
of them close in the space. Thus, we screen pair interactions by perturbing one by one 
each spring plus its local neighbors. For each perturbed state we compute the essential 
movements using ENM, and the effect is measured by the similarity between the 
modes and the transition vector, which recapitulates the known movements. Looking 
at the perturbations impacting more dramatically the alignment between the modes 
and the conformational change, we detect dynamically hot regions.  For computational 
efficiency, we focus our screening in inter-domain contacts (pairs of residues which 
belong to different CATH domains and are located at less than 11Å in the close (1nql) 
state). This yields a list of 439 contacts, which are used as seeds to detect small regions 
(2, 3 and 4 Å cutoffs radii), which define neighboring interactions within a threshold 
(the distance between two springs is defined by the mean point between their 
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centers). Then, for each primary spring ij, we have from 1-5 (2Å threshold) to 10-30 (4Å 
threshold) non-sequential neighbor springs. Altogether, each primary interaction and 
all its neighboring contacts are perturbed by either decreasing (leading the spring to 
zero) or increasing (to 10 kcal/mol.Å2, which is above the network background) their 
strength. Therefore, we scan each primary interaction between a pair of residues (i, j) 
performing S=6 different perturbation experiments (the result of increasing and 
decreasing the strength of the local contacts for 3 different neighbors definitions). 
Note that the total number of springs is around 33000 in the ED-ENM, so our 
perturbation affects to less than 0.1% of the system. Once a locally perturbed elastic 
network is defined, we compute the modes. For each perturbation i, j and each mode k 
we compute then the resulting overlap with the vector mapping the close -> open 
transition, .ij

S (see below, Eq. 4.4); this overlap computed over all the interactions 
defines a “baseline” (an average overlap, Avg (..k

S)) that represents the dynamical 
effect of a random perturbation (i.e. the background).  

Sensitive interactions would largely depart from the baseline (“signal peaks”), and 
thus could be evaluated by the number of times above the average standard deviation 
in the overlap, nSD (.k

S): 

�a� (e��a ) = fe��a − /?(eQa)fa�(eQa)                      (Equation 4. 1 Overlap Average SD)  

Then, for each essential mode k and each perturbation ij, we add the nSD accumulated 
across the S=6 perturbation experiments: 

g��Q = � �a� (e��a )a
1  (Equation 4. 2 Accumulated Average SD) 

Then we normalize this sum, gQ , for all the perturbations (in a scale from 0 to 100), to 
obtain a final score for the mode k, gQ ʹ. The process is repeated for all the first m=5 
important modes and finally, the normalized results for each mode are added to derive 
a simple perturbation dynamical impact score for the m-essential motion space, g4 .:  

 

g��4 = � g��Q ʹ
4
1  (Equation 4. 3 Dynamical Impact Score) 

The maximal score here is 400, since modes 1st -2nd are considered together due to 
their close frequencies. A high score reflects a SD for an interaction systematically over 
the baseline across different perturbative experiments. Here most interactions have 
scores below 100-150; thus scores over 150-200 for a set of neighbor interactions 
identify a region where a mutation impacts the essential deformation modes.  
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Figure 4. 2 Elastic-Network perturbation screening of the interdomain interactions for closed sEGFR.  
A) Schematic representation of the perturbation method. In red, residue pair defining the target spring and all its 
space neighbors for the pair 37VAL-265ALA at cutoff 4Å. The elastic network defined by ENM appears in gray; for 
the sake of clarity, only springs with values greater than 5kcal/mol.Å2 are represented.  B) Response profiles based 
in the overlap (..) of the ENM collective motions with the known transition. The responses of ENM-networks to 
perturbations across the interdomain interactions ij for a given screening is represented for each lowest-energy 
motion (modes 1-2=red, 3=green, 4=blue, 5=purple). Average overlap and standard deviation of each group of 
modes is indicated in the same colors. C) Normalized Standard Deviations Sum for the first 5 modes averaged over 
6 different perturbative experiments (see Extended Methods). Most clustered peaks in the 1st-2nd top bins (scores 
over 200, Table 4.3) involve either mutated residues (red) or their nearest neighbors (orange-yellow scale), and 
target the same sites on 3D space. 
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Molecular Dynamics and Docking. We simulated both WT (unbound and bound) and 
mutant R84K sEGFR in closed and open states. Proteins were titrated, neutralized, 
hydrated, minimized, heated and equilibrated, and four replica trajectories for the six 
conditions were collected for 50 ns using the all-atom AMBER99SB-ildn force-field with 
GROMACS (Hess, Kutzner, Van Der Spoel, & Lindahl, 2008; Lindorff-Larsen et al., 2010), 
extending two of them up to 0,2μs (closed) or 0.1μs (open). Three of the closed state 
simulations were finally extended to 0,5μs, summing up a total simulated time of 2.5μs 
(See scheme and list of simulations in Figure 4. 3 and Table 4. 6). Further simulations of 
other mutations were performed for the close state. Together, the total simulated 
time for sEGFR is near 5 μs distributed in more than 30 MD runs.  

a) Intermediate sEGFR WT simulations: In order to validate that the untethered state 
can be stable for the WT sEGFR we took a representative untethered configuration 
reached by the R84K mutant and reverted it to the WT sequence. The system was then 
subjected to five replicas of 50 ns unrestrained MD simulation. Only in one case the 
protein re-tethers back to the closed state at the end of the simulation, confirming 
that untethered state is possible for the WT protein (even though less probable that 
for the R84K mutant) and that the tethered/untethered transition is reversible.  

b) Intermediate sEGFR ligand binding in R84K and WT state:  EGF was docked by in 
house tools to domain I of WT and R84K intermediate states of sEGFR using as binding 
mode that in the 1NQL structure, and was then subjected to five 50ns replicas. Ligand 
remained bound to domain I and also interacted simultaneously with domain III.  

c) Intermediate sEGFR-Antibody complexes simulations: mAb806 and maAb175 
antibody complexes with the sEGFR epitope were taken from PDB coordinates 3G5V 
and 3G5Y respectively and used to guide docking of the exposed epitope of our 
putative intermediate from the R84K simulation. The selected docked pose was then 
subjected to MD (5x 50ns trajectories), which confirmed that the intermediate 
conformation is stable and well suited for the recognition of the cryptic epitope by 
antibodies (impossible for known closed and open states).  

d) Intermediate sEGFR dimer structures: We used as reference the active 
configuration found in 3njp dimer to guide docking of the dimerization arms exposed 
in two intermediate structures, obtaining an unbound homodimer without steric 
clashes. The same docking/MD relaxation (5x 50ns replicas) procedure again revealed 
stable intermediate structures.  
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Figure 4. 3 Enhanced sampling by tree-extension of MD trajectories to the submicrosecond range.  
The scheme was repeated for WT and R84K mutant; in the last one, two replicas were extended to 500ns. 

Molecular Dynamics Analysis.- The noise arising from short-range vibrations is filtered 
by Essential Dynamics, ED (Amadei et al., 1993) to obtain Principal Components (PCs) 
representing the essential movements.  We use AMBER and GROMACS utilities to 
compute PCA, rMSD, rMSF, Rg and clusters. Hydrogen-bond analysis was performed 
using VMD defaults to detect bonds present in at least 40% of the trajectory. For 
analysis the noise arising from short-range vibrations is filtered by Essential Dynamics, 
ED (Amadei et al., 1993) to obtain Principal Components (PCs) representing the 
essential movements.  To monitor structural changes, we use Cα-Cα distances and 
angles definitions for comparison with ENM generated structures.  

a) Domain II curvature: we define it by the angle between Cα positions at the basis of 
the dimerization arm and the two extremes of domain II (residues 190-260-309);  

b) Domain I-III distance: in the unbound state, is monitored by the Cα-Cα distance for 
the salt bridge LYS13-ASP364, which is characteristic of ≈102 ns samplings for both 
R84K and WT sEGFR; in the bound state, is monitored by the Cα-Cα distance for the 
EGF-sEGFR salt bridge LYS48-ASP321, which approaches and stabilizes domains I-III 
surfaces through bound EGF  

c) Domain II-IV tether distance: is monitored by the CΑ-CΑ distance between the key 
hydrogen bond TYR251-GLU578.  

Note that other alternative angle and bond definitions are possible yielding similar 
results to track conformational changes. 
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Comparison metrics. Once obtained the principal motions of the structure (the set of 
modes, i.e. eigenvectors, 9Q , and eigenvalues,  TQ , from either ENM or MD, see details 
in Chapter 3), we measured the similarity and correlated motions:  

 

1) Overlap of essential motions with the observed X-ray conformational change. The 
similarity between the essential deformation of the protein (in open or close state) and 
the transition is measured for each mode using a variation of Hess metrics (Eq. 3.2):  
 

eQ =  Δ� ∙ 9Q‖Δ�‖‖9Q ‖ (Equation 4. 4 Overlap to transition vector) 

 

where ∆r = (R2 - R1) / ║R2 - R1║ is the unitary transition vector between the two sets of 
coordinates, R1 and R2 , describing the observed states of the protein (close and open) 
and 9Q  is the k-th essential deformation mode. Generalization of Eq.4.4 for the m-
important deformation modes (the minimum set explaining a given threshold of 
variance) yields to a similarity index ranging from 0 (no similarity) to 1 (perfect 
similarity) (F Tama & Sanejouand, 2001; L.-W. Yang et al., 2009b): 

 

l Q = 14 "� eQ2
4

Q=1 %1/2
 

(Equation 4. 5 Squared Cumulative Overlap) 

 
2) Overlap between the essential motions computed from ENM and MD. Hess’s 
metric (Hess, 2000) is used to estimate the similarity of ENM and MD-spaces for the 
first m-important modes  

 

3) Cross-correlated movements. The covariance matrix describing the residue-residue 
correlations is computed from (Van Wynsberghe & Cui, 2006)  

 
  

��� =  〈Δmi ∙ Δmj〉〈(Δmi)2〉1/2〈(Δmi)2〉1/2 (Equation 4. 6 Cross-correlation matrix) 
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4.3 Unraveling dynamical hot spots: ENM analysis and network 
perturbation 

4.3.1 Normal Mode Analysis of the HER1 ectodomain 

The ectodomain is intrinsically prepared to perform close���open transitions. The 
structural transition between close (1NQL (Ferguson et al., 2003)) and open (3NJP (C. 
Lu et al., 2010)) states of sEGFR is dramatic (rMSD=25.14Å), and involves a complex 
series of rigid domain movements, with minimal local changes in all domains except 
domain II, which bends as a spinal backbone to allow dimerization.  

ENM analysis reveals that these motions are intrinsically imprinted in the ectodomain 
structure. The lowest-energy ED-ENM normal modes of the close state predict large 
relative rotations of the ligand-binding domains accompanied by bending of domain II 
(Figure 4. 4B, top), similar to those in known crystal structures. In fact, most of the 
close → open conformational change (75%) is explained by just the five lowest 
frequency modes (82% considering 10) (See Table 4. 2). The modes better aligned with 
the transition (the 1st, 3rd and 4th, with overlaps around 0.4) involve the inward 
rotation and apposition of the ligand binding domains, as well as tether extension 
(Figure 4. 4A, double arrow).  

However, the reverse open → close conformational change maps even better with the 
collective modes from the open state (80% for 5 modes and 84% for 10, Table 4. 2). In 
contrast with the close form, which requires several modes to be described, now there 
is a major contribution of the 1st mode (overlap 0.75) guiding the closure of domains 
III-IV (Figure 4. 5, A and B, top). However, when EGF is introduced, the overlap 
between the open → close conformational change and the intrinsic motions of the 
open form significantly drops (grey line in Figure 4. 5B, top), suggesting that once the 
ligand is bound in its high-affinity configuration, may help to keep the receptor in the 
active state. Altogether, ENM suggests that sEGFR is intrinsically prepared to switch 
between close and open states, but the close → open transition needs the recruitment 
of several modes whereas the open → close inactivating change is easier and described 
by a single one, blocked by ligand binding. 

 

Table 4. 2  Overlaps between the ED-ENM lowest frequency motions and the experimental transition 
vector for the 1nql ↔ 3njp conformational change in both directions.  

PDB overlap (5) overlap (10) Best Rank  Nevec 90% 

Closed (1nql) 0,75 0,82 0,44  3 8 

Open (3njp) 0,80 0,84 0,58 1 11 
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Molecular joints control the transition between active and inactive states of the 
receptor. To better identify the key regions acting as hinges or “molecular joints” to 
transmit the collective motions, we analyzed the ENM-derived residue root mean 
square fluctuations (rMSF) and residue-residue correlations matrices (see Methods). 
Residue fluctuations show that in the close form, domains II and IV define a rigid 
region with coupled movements (Figure 4. 4, left, red circle) of the dimerization arm 
(Figure 4. 4B bottom, green box) and the tether (same figure, blue box); this region is 
surrounded by highly mobile modules, which allow domain II bending (Figure 4. 4C). 
Hinge-like interdomain points (seen as rigid sites next to high mobility segments in 
domain I; Figure 4. 4B bottom, yellow box) define a surface that acts as a “molecular 
joint” for the oscillations of domain I over domain II (Figure 4. 4A, yellow star).  
 
This molecular joint target a series of small β-strands (Val36-Leu38, Glu60-Ala62, and 
Leu80-Arg84) at the basis of domain I, where glioma mutations appear clustered 
(Figure 4. 4C). The analysis of the residue-residue correlated motions contacts at this I-
II interface transmit mechanical information from the mobile domain I to domain II, 
which in turns transfers motions to domain III (Figure 4. 6, left, note the block formed 
by domain I-IINtal (green square) and their sparser correlations with IICtal, coupled to 
domain III (orange square)).  
 
Contrary to the complex pattern of natural motions in the close form, intrinsic mobility 
of the open state is simpler: the most flexible parts are the dimerization arm and the 
tether-Ctal portion of domain IV (Figure 4. 5B bottom, blue and green boxes); 
considering that the IV tail is fixed by the membrane, this movements may help to find 
the proper orientations for dimerization or retethering (Figure 4. 5A, 1st mode). Here 
the “molecular joint” between domains I and II appears again as a key region to control 
the coupled movements of both domains (Figure 4. 6, right, green square), which 
transfer the mechanical information to the rigid block formed by domains III-IV (Figure 
4. 6, right, orange square). Altogether, these movements define an intrinsic pattern of 
motions that contains the biologically-relevant conformational changes, and suggest a 
key role for domain I-II interface in the control of the overall dynamics.  A second 
aggregation of hinge points defines another “molecular joint” in domain III, around 
Glu388-His394, 400Glu and Leu419-Leu429 (see Figure 4. 4B bottom), which controls 
minor displacements with respect to domain IV (Figure 4. 4), and also contains a few 
reported mutations (see below).   
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Figure 4. 4 The Elastic Network Model of closed sEGFR encodes the transition towards the open state. 

A) Structural ensembles along the first three modes of the sEGFR close conformation show large domain I-III 
rotations, domain II bending and untethering. The directions of motion of the ligand binding domains I and III are 
indicated with curved arrows. Note the large domain I oscillations, which are coupled to I-III relative rotation 
movements, domain II bending and tether-breaking oscillations in mode 3 (double arrow). Domains I-IV colored red-
green-brown-blue. B) Motion pattern from ED-ENM. TOP: Single (red) and cumulative (blue) overlap of the principal 
motions with the close-> open transition. BOTTOM: Residue Fluctuations for the first 10 modes; rigid sites appear as 
minima and flexible regions as peaks. The dimerization arm/tether are marked with green/blue boxes to facilitate 
discussion and some oncogenic mutation clusters in the domain I-II hinge surface (highlighted in yellow) are shown 
as solid black circles C) A focus on the hinge-like points acting in the collective motions of closed sEGFR. A 
structural ensemble for the first 10 modes is represented, with residues acting as hinges highlighted as orange 
spheres. Left: residues at the hinge surface in the base of domain I, contacting with domain II (II*, not shown), 
contain the 3X- and 8X- mutation clusters (see main text). Middle: domain II is also bent around the basis of the 
dimerization arm; note that bending motions are focused in the loop connected to domain III (III*, not shown). 
Right: domain III-IV interdomain surface showing hinge points, which also target some mutations (see main text).   



121 
 

 

Figure 4. 6 Residue-residue cross-correlations for the closed (left) and open (right) states.  
Positive correlations appear in red and negative ones in blue. LEFT: In the closed state, mechanical oscillations of 
the domain I can be transferred to domain II and the dimerization arm (green box) and through domain II to 
domain III (yellow square) and the tether arm (red circle). RIGHT: In the open state, the extent of domain I-II 
correlations (green square) is smaller, and domain I moves coupled mostly to domain II Ntal (labeled I-IINtal) and 
domain IV Ctal (red square); the rest of the protein forms a large block (domains IICtal-III-IVNtal, yellow square). 

 

Figure 4. 5 The Elastic Network Model of the sEGFR open state describes the inactivating transition. 
A) Structural ensemble along the lowest-frequency modes of the sEGFR open conformation. Note the large 
oscillations in the first mode approaching domain II (green) dimerization arm and domain IV (blue) C-terminal 
tail (including the tether arm). B) Elastic Network Normal Mode Analysis of the flexibility of sEGFR open state. 
TOP: Single (red) and Cumulative (blue) overlap of essential movements with the open� close transition. Note 
how similarity drops when ligand is introduced in the elastic network (gray plot), indicating a more difficult 
inactivating open�close transition. BOTTOM: Residue Fluctuations (first 10 modes). Note that the dimerization 
arm (green box) and the C-terminal part of domain IV including the tether (blue box) are very flexible.  
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4.3.2 Local perturbation methods: hot spots target mutation clusters 

Perturbation Analysis identifies dynamical hot spots targeting interdomain 
mutations.   The ENM results suggest that mutations, especially at hinge interdomain 
surfaces, could interfere with the close ectodomain dynamics. We applied our ENM-
perturbation scheme (see Methods and Figure 4. 2) to detect structural regions whose 
perturbation can have a strong effect in the biologically-relevant intrinsic pattern of 
motions. We screen all interdomain interactions by perturbing one by one each spring 
plus its local neighbors and measure the effect in the similarity between the dominant 
lowest frequency modes and the vector describing the transition. Dynamically critical 
regions are detected by computing the average standard deviation across different 
perturbative experiments for each screened interaction. The screened interactions are 
colored by the number of standard deviations versus the overall average in Figure 4. 7. 
As can be observed, critical interactions appear clustered in three-dimensional space 
and display a high correlation with hot mutation sites, which are also highly conserved.   

 

Figure 4. 7 Spatial clustering of the dynamically hot interactions targets mutated sites.  

Springs colored by dynamical impact score for the first m=5 modes (ζij
m, see Methods); mutated residues or their 

nearest-neighbors connected by high-scoring springs are represented as red and orange balls, respectively. Note the 
clustering of top-scoring springs (red-magenta) in regions that concentrate oncogenic mutations. A close-up to the 
hot spot at interdomain I-II hinge interface showing clustered glioblastoma mutations is shown in the lower right 
corner. Domains I-IV colored pale pink-green-brown-blue.   
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Most of the sensitive contacts detected by the analysis (Table 4. 3) appear clustered 
(red-pink pseudobonds in Figure 4. 7) at well-defined sites coincident with cancer-
mutation spots. As could be anticipated, the interface of domains II-IV (tether) - which 
concentrates known mutations whose functional impact is clear (such as G574V or 
T239P) - is a perturbation-sensitive region (highest peak in Figure 4. 2C). Other hot 
region is the Cys-loop connecting the II-III interface, which targets a large mutation 
cluster in HER1 (G298C-E306K) and its C.elegans homolog LET-23 (Katz et al., 1996), 
and plays a key dynamical role in HER4 (Du et al., 2012). At the domain I-II hinge 
surface, the hottest spots involve interactions between the Val36-Gly39 (V36L-L38R-
G39R cluster) and the most prevalent glioma mutation, Ala265 (A265V/D/T), followed 
by neighbor contacts between the Gln81-Arg84 (Q81H-R84K cluster) and the opposite 
domain II surface (Figure 4. 7., detail) which mediate key domain I-II dynamical 
coupling. Further hot spots appear in the hinge surface between domains III-IV 
including non-glioma mutations such as R427F and I451V (in lung and head/neck 
carcinomas). This suggests that mutations at interdomain hinge-like regions and loops 
perturb the intrinsic functional motions, and outlines a new oncogenic mechanism 
based on the alteration of protein dynamics.  
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Table 4. 3  Top scoring peaks at the Local Perturbation Screening considering the first five modes.  
In column 1, mutated residues are highlighted in bold letters. nSD sum = nSD across the perturbation 
experiments added for the first 5 modes; NnSD sum= normalized ASD across the perturbation experiments 
added for the first 5 modes.  
Pseudo-bond Peak Group nSD sum  NnSD sum Sequence-related 

mutations  
 
242PRO 
254ASP  
243LEU 
241PRO 
256ASN   
257PRO  
245LEU 
244MET 
 
 
309CYS 
308PRO 
307GLY 
308PRO 
 
 
447TYR     
424LEU  
451ILE 
427ARG  
424LEU  
427ARG 
481VAL  
 
 
4LYS  
37VAL 
38LEU  
187THR  
187THR  
115ASN  
84ARG  
37VAL  

 
577GLY 
578GLU 
576MET   
577GLY 
577GLY 
579ASN 
578GLU 
576MET 
 
 
337ASN 
375LYS 
337ASN   
310ARG 
 
 
483HIS 
492TRP  
492TRP 
497ARG 
491CYS 
495GLU 
482CYS 
 
 
266THR     
265ALA    
266THR    
207CYS     
208CYS    
214ALA     
213ALA     
264GLY  

 
II-IV (tether) 
 
 
 
 
 
 
 
 
 
II-III hinge      
 
 
 
 
 
III-IV hinge surface    
 
 
 
 
 
 
 
 
I-II hinge surface     

 
9.2   
6.9    
6.8    
6.8    
6.7    
6.2    
6.0    
5.7    
 
 
8.6 
7.9 
5.9   
5.7    
 
 
8.3   
7.2    
7.2   
6.8     
6.2    
5.9   
5.1  
   
 
7.8  
7.2      
7.0 
6.7    
6.2    
6.1    
5.7      
5.7  

 
319 
206 
188 
210 
142 
195 
160 
200 
 
 
238 
197 
169 
218 
 
 
241 
155 
195 
163 
164 
158 
172 
 
 
226 
177 
162 
192 
166 
140 
134 
130 

 
T239P 
57X-cluster 
 
 
 
 
 
 
 
 
30X-cluster 
 
 
 
 
 
R427F 
I451V 
 
 
 
 
 
 
 
3X-cluster 
8X-cluster * 
26X-cluster * 
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4.4 Molecular Dynamics in the submicrosecond scale  
 

Molecular dynamics (MD) simulations reveal dramatic motions of the ligand-binding 
domains in closed sEGFR. To sample more accurately the flexibility of HER1 we 
performed multiple unbiased MD simulations of the unbound close state and as 
control, also in the open one, extending some of them to the near-microsecond 
timescale (see Methods). Trajectories show that both conformations are quite flexible, 
displaying a pattern of motions that fits perfectly with ENM modes and with the 
open1close change (overlaps of 81% (close) and 87% (open) between the first five 
modes and the transition) (see Table 4. 4).  
 
Table 4. 4  rMSD and Essential Dynamics of Metatrajectories.  

Overlaps between MD Principal Components and the transition vector for the 1nql ↔ 3njp conformational change 
(in brackets: similarity to ED-ENM low frequency motions).  500ns-long trajectories not included. 

STATE  Total 
Time 

Variant Avg 
rMSD 

rMSD 
Max/Min 

Avg 
Rg 

Rg 
Max/Min 

α5 α10 
(αNMA) 

αmax(αNMA) rank Number 
of 

Clusters  
Closed 
(1nql) 

500ns WT 

WT+EGF  

R84K 

8.22 ± 

1.74 

6.62 ± 

1.75 

8.68 ± 

3.02 

14.00 / 

1.20 

14.25 / 

1.06 

14.93 / 

1.34 

 

35.29 

± 0.76 

34.20 

± 1.12 

32.57 

± 2.46 

38.84 / 

32.50 

38.14 / 

27.92  

38.64 / 

30.95 

0.81 

0.86 

0.77 

 

0.85 

(0.69) 

0.91 

(0.77) 

0.91 

(0.72) 

 

0.60 (0.56) 

0.78 (0.84) 

0.46 (0.58) 

 

2 

2 

3 

 

9 

10 

10 

Open 
(3njp)  

300ns WT 

WT+EGF 

R84K 

 

5.29 ± 

1.24 

2.79 ± 

0.71 

4.44 ± 

0.83 

11.03 / 

1.29 

 6.54 / 0.98 

 8.30 / 1.15 

 

33.92 

± 0.60 

34.83 

± 0.47  

33.95 

± 0.62 

36.68 / 

31.35 

36.70 / 

33.05 

37.02 / 

32.07 

0.87 

0.83 

0.85 

0.89 

(0.84) 

0.84 

(0.72) 

0.86 

(0.83) 

0.69 (0.74) 

0.69 (0.92) 

0.82 (0.54) 

 

3 

2 

2 

 

3 

1 

4 

 
MD simulations also confirm that the closed WT sEGFR is extremely flexible and 
samples spontaneously a wide range of conformations (Figure 4. 8, note the rMSD 
spanning 8Å). This surprising mobility is mainly due to large oscillation motions of 
domain I over domain II (Figure 4. 8 top, head movements marked with arrows), where 
the interface between both acts as a hinge as predicted from ENM (Figure 4. 9A top, 
highlighted in yellow). The domain I oscillation motions lead in some sampled 
structures to dramatic increases in domain I-III distances, stretching domain II and 
loosening the tether-dimerization arm contacts (see for example Figure 4. 10B, green 
cluster 6). All these movements are enhanced as trajectories extend to the 
microsecond range Figure 4. 12A), with the domain I-III cleft increasing up to 60Å (see 
Figure 4. 13A, arrow in the 3rd column), domain II stretching to near 180 o, and the 
tether breaking transiently (see Figure 4. 13A, 2nd and 3rd columns). After each 
stretching event, domain II relaxes and bends again, finally triggering a collapse of the 
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ligand-binding domains at the end of the simulation (Figure 4. 12A, last frame). This 
remarkable stretching/bending mechanics of domain II is allowed by the plasticity of 
the hot Cys-loop which connects it to domain III, as noted in HER4 by (Du et al., 2012).  
 

Figure 4. 8 Root mean square deviations (rMSD) distribution for MD metatrajectories sampling 0.5��s 
for the closed state (upper row) and 0.3�s for the open state (lower row), with respect to the starting 
crystal structures.  

Aligned clusters from metatrajectories appear in green (Wild-Type, WT, unbound), red (WT+EGF, bound) and blue 
(R84K mutant, unbound); for the closed state (upper row) a view from the front (left) and the bottom (right) is 
shown, to highlight domain I oscillation movements (curved arrows). Compare the amplitude of domain I 
oscillations in the bound and R84K states with the WT reduced motions. The mobility of the open state is 
remarkably lower than that of the close state, with a narrower rMSD distribution shifted to lower values, and a 
smaller number of clusters, especially in the bound state.  N= average number of clusters for each state.  
 

The observed relative large-scale fluctuation motions of the unbound ligand-binding 
domains agree well with tryptophan fluorescence data (Kozer et al., 2011) suggesting 
that domain I and III rotate freely until ligand binds, whereas tether stretching and 
loosening is also consistent with the low barrier for untethering suggested previously 
(Arkhipov et al., 2013; Du et al., 2012; Ferguson, 2009). However, in the absence of 
ligand these spontaneous movements never lead to an open-state, and the tether 
holds the dimerization arm hidden in the observed timescale, as in microsecond-long 
simulations (Arkhipov et al., 2013). As anticipated by ENM, the open structure displays 
less flexibility than the close form (note the narrower rMSD distributions in Figure 4. 8 
lower row), mainly limited to oscillations of the free dimerization arm and the tether- 
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domain IV Ctal region (Figure 4. 9A bottom, green and blue boxes), movements 
previously observed in long timescale simulations (Arkhipov et al., 2013). Domain I-II 
motions (Figure 4. 9A bottom, yellow box) however are smaller, as consequence of the 
greater stiffness and stability of this configuration even in the absence of ligand.  
 

 

Figure 4. 9 Residue root Mean Square Fluctuations (rMSF) in metatrajectories sampling 500ns for the 
closed state (upper row) and 300ns for the open state (lower row).  
For the closed state, domain I-II hinge surfaces are highlighted in yellow with mutation clusters as black dots. Note 
the overall increase in the flexibility of R84K mutant compared with WT (blue profile), especially at the I-II hinge 
surface and the tether (marked with a green box). See also the reduced flexibility of the close state in all cases 
(especially bound to the EGF).   

 
Ligand binding drives the close state to an open but inactive conformation, while 
keeping rigid the active one. In order to characterize ligand-driven untethering, we 
performed several simulations of the ectodomain bound to domain I as appears in the 
crystal.  EGF binding to the WT close state leads to an even better alignment of the 
intrinsic dynamics along the close → open transition pathway (Table 4. 4). In our 
trajectories, the ligand remains bound to the binding site at domain I, shifting its 
intrinsic oscillation motions over domain II to rotate and orthogonally approach 
domain III (Figure 4. 10B, red cluster 2). As domains I-III get closer, domain II is forced 
to bend, contrary to the free stretching movement predominant in the unbound forms 
of WT (discussed before) and R84K sEGFR (see below). After each bending event, 
relaxation of domain II separates again domains I-III. This alternative 
binding/unbinding of EGF to domain III coupled to bending/relaxation of domain II, is 
followed by loosening of the tether, up to the point that transient untethering is 
detected even in short trajectories (Figure 4. 10B red cluster 13, tether detail below).  
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Figure 4. 10.  Major clusters and spontaneous untethering in closed state 0.5 ��s metatrajectories.  
WT=Wild type sEGFR (green structures); WT+EGF=sEGFR with EGF (ochre structures); R84K mutant =sEGFR (blue 
structures). The starting structure (1NQL) is shown as reference with domains I-IV red-green-ochre-blue. 
Interdomain C.-C. distances between domains I-III and domains II-IV appear in red (dashed lines); see Methods for 
definitions. The orientation of domains I and III are highlighted with arrows (N to C-tal); a circle indicates an arrow 
perpendicular to the page). Mutant and bound states are very polymorphic, with twice the number of clusters of 
WT sEGFR. Ligand-independent untethering is observed after domain I-III extension in WT state (cluster 6, detail) as 
well as in R84K (cluster 3), but in the last proceeds fast to an intermediate domain I-tilted state (cluster 2, detail) or 
to a collapsed I-III state (cluster 4). On the contrary, ligand binding approaches and orientates domain I orthogonal 
to domain III instead of parallel (clusters 1-2).  
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Analysis of a 0.5 �s simulation (Figure 4. 12B) clearly shows how the ligand triggers 
periodic bending of domain II (see Figure 4. 13B, 2nd column grey arrows), coupled to 
successive and longer tether opening events. When irreversible untethering finally 
happens (Figure 4. 12B, 4th frame, yellow circle and also Figure 4. 13B), domain IV 
quickly departs from domain III. A was observed in HER4 (Du et al., 2012), such 
transition leads to an extended conformation similar to the open state (Figure 4. 12B, 
last frame), but that still needs a major rotation of domain IV to form the high-affinity 
binding site of the fully active conformation in the crystal dimer as we will discuss 
below. Finally, as predicted from ENM, MD suggests that EGF high-affinity binding in 
the open state next to the domain I-II hinge surface, blocks domain I motions (Figure 4. 
9A bottom, yellow box) and stabilizes this conformation (note the extremely narrow 
rMSD in Figure 4. 8 bottom) reducing the possibility of the inactivating open → close 
transition.  This stabilizing role of the ligand is in agreement with several experimental 
observations.  

 
MD simulations of the R84K mutant reveal an alternative ligand-independent 
transition leading to a closed untethered state capable to dimerize. ENM calculations 
suggest that oncogenic mutations affect the intrinsic motions of the close state, and 
thus, it is tempting to argue that they might favor spontaneous transitions to partially 
or fully untethered structures. To test this hypothesis we performed multiple MD 
simulations of the aggressive R84K mutation of sEFGR (which targets a domain I-II 
hotspot) in the unbound close state. Despite the apparently conservative nature of the 
change, the R84K ectodomain displays important changes in the close state dynamics 
compared to the WT protein. In all replicas a crucial hydrogen bond connecting the 
highly conserved Arg84 and Cys225 is lost (Table 4. 5) leading to a dramatic increase in 
flexibility, with multiple subpopulations in rMSD spanning 14Å (Figure 4. 8top).  
 

Table 4. 5  Summary of persistent I-II interdomain hydrogen bonds during 500ns MD meta-
trajectories.  
Note the disappearance of the key Arg84-Cys227 hydrogen bond in R84K. Results are reported as time 
percentage of the trajectory when bonds are present.  
Domain I-II H-bond   WT R84K WT+EGF 

ARG198-side GLU118-side 95% 100% 90% 

ARG84-side CYS227-main 45% 0% 40% 

CYS199-main THRE187-main 31% 30% 30% 

ARG231-side NGL3-side 30% 18% 30% 

ALA214-main GLU118-side 22% 31% 60% 

ARG198-side THRE187-side 24% 23% 33% 

THRE187-side ALA214-main 28% 18% 38% 

TYR275-side GLN8-side 18% 11% 22% 

ARG198-side ASP142-main 20% 27% 11% 

ARG228-side GLU118-side 15% 8% 0% 
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This augmented flexibility of the mutant is due to a extremely floppy I-II interface, 
which allows the mutant to display enhanced WT-like motions: there are large-scale 
oscillations of domain I over domain II (Figure 4. 9A top and Figure 4. 10top) leading to 
extreme domain I-III rearrangements and variations in the dimension of the binding 
cleft (note changing I-III distances and orientations, Figure 4. 10B), accompanied by 
stable untethering (Figure 4. 10, blue clusters detail). Analysis of a 0.5 �s trajectory of 
the R84K mutant (Figure 4. 12C) confirms that spontaneous untethering is caused by 
maximization of the WT motions. The enlargement of domain I-III distance (near 60Å, 
see Figure 4. 13C) stretches domain II (up to 180o, Figure 4. 12C and Figure 4. 13) but in 
the mutant, the floppy domain I rotates more freely and tilts back up to contact 
domain IV breaking the tether (see Figure 4. 12C, yellow circle and Figure 4. 13C, star). 
This sequence of movements, never observed in WT runs, generates the complete 
exposure of the dimerization arm in a closed but untethered conformation (Figure 4. 
16A) which remains stable throughout the remaining 500ns simulation (Figure 4. 13C) 
and is remarkably similar to the first ENM mode which separates WT and mutant 
samplings (see Figure 4.11 and Figure 4. 14). The most salient features of the 
intermediate identified are the evident exposure of both the dimerization arm and the 
mAb806/175 conformational epitope, as we will discuss later. We have detected 
virtually identical transitions in independent short MD runs of nearby mutations such 
as G39R, where the introduction of a charged residue disrupts a hydrophobic patch in 
the I-II interface (not shown). In both cases the intermediate appears in the first 50ns 
and remains stable during the rest of the simulation. Contrary to the general view, this 
mutant untethered and unbound state, different from all solved structures, is more 
similar to the close than to the open conformation. We also tested if this novel state is 
stable for WT sEGFR running five 50ns replicas of this configuration with the original 
sequence; only in one case the structure re-tethers back to the starting state, 
confirming that the tethered/untethered transition is stable but also reversible.   

 
Figure 4. 11 Projections of the major clusters for WT (left) and R84K (right) 0.5 μs metatrajectories onto 
the first two normal modes.  
The projection onto the normal modes clearly shows that mutant R84K sEGFR sample extensively the first principal 
component and populate a different region of the conformational space (cluster 2, in yellow, corresponds to the 
closed untethered state).    
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Figure 4. 12  Representative structures obtained in very long MD trajectories display untethering transitions for 
unbound R84K (C) and bound WT sEGFR (B), but not WT sEGFR (A). 
Domains I-IV colored red-green-brown-blue. The starting state is the same for all simulations (1st frame). For each 
box A-C: Front view of representative snapshots with domain I-III distances in red (upper row); a view from below to 
highlight domain II bending coupled to changing domain I-III distances (domain IV removed) with the bending angle 
in white (middle row); close-up to the tether region, II-IV distance in orange with irreversible untethering events 
highlighted with a circle (lower row). (A) WT sEGFR undergoes large domain II stretching motions (2180o) coupled to 
domain I-III separation, followed by slow domain II relaxation and bending. (B) Ligand-driven untethering follows 
domain I-III apposition and repeated domain II bending. (C) Spontaneous untethering in the R84K mutant follows 
domain I-III separation and domain II stretching as in (A), but here the extreme flexibility of the I-II interface traps 
domain I in a tilted-back configuration breaking the tether. In both B-C, the tether is broken when domain II returns 
to its native state bending angle (2140-150o, 1st frames).  
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Figure 4. 13  Extended 0.5 ��s trajectories for WT unbound sEGFR (A), WT bound sEGFR (B) and R84K 
unbound sEGFR (C).  
From the first to the third column, geometrical descriptors are: rMSD versus initial state colored according to major 
clusters (1-10), domain II angle bending, and domain I-III and II-IV distances (see Methods for definitions). 
Untethering events are marked with stars in column 3 (green plot). Note how in WT (A) and R84K (C) domain II 
stretching peaks (black arrows in column 2) are associated with domain I-III separation (arrows in column 3, red) 
and breaking of the tether. Ligand binding (see B) forces domain II bending rather than extension (grey arrows in 
column 2), which is followed by increasing tether breaking events after periodic relaxation times (column 3). 
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4.5 Discussion: A novel mechanism for HER1 activation 
As we mentioned above, the dynamics and oncogenic mutations of the extracellular 
domain have still not been analyzed in-depth. Therefore, in spite of the recent efforts 
to simulate the ectodomain (Arkhipov et al., 2013; Du et al., 2012), key aspects of the 
activation process at the extracellular level are still poorly understood. It is widely 
assumed that, either triggered by ligand binding or spontaneous, untethering and 
receptor opening are parallel i.e. that untethered states have an extended 
configuration similar to that found in crystals for bound HER1 or unbound HER2. 
Therefore, activating mutations are expected to shift the ectodomain towards open 
untethered states. Here, the combination of coarse-grained and atomistic simulations 
has revealed, on the contrary, that mutations shift the dynamics towards an 
untethered but closed state. 

Our initial ENM analysis suggested that: i) the intrinsic motions of closed sEGFR are 
mainly relative rotations of the ligand binding domains, ii) this pattern of motions is 
altered by perturbations at the interdomain regions where mutations cluster, and iii) 
although the transition towards the open state is encoded in the intrinsic motions, it is 
not described by a single mode but requires a combination of several of them. Based 
on the ED-ENM screening results we focused on the R84K mutation at the I-II 
dynamical hot spot for MD simulations. The atomistic trajectories confirmed the ENM 
findings and demonstrated that, while the unbound ligand-binding domains 

  
Figure 4. 14 Spontaneous domain rearrangements in WT and R84K/G39R sEGFR follow the first normal modes. 
Comparison between the two lowest-frequency modes of unbound closed sEGFR computed with ED-ENM 
(above) and unbiased MD samplings (below). Whereas WT-sEGFR can acquire a configuration with a closed 
binding cleft virtually identical to the 2nd normal mode after 500ns (right), the domain I-II R84K/G39R mutants 
sample this configuration in shorter timescales as well as the novel intermediate which clearly follows the 1st ED-
ENM mode (left).  
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spontaneously display rearrangements strikingly similar to the normal modes (Figure 4. 
14) the transition towards an extended conformation is never observed in the absence 
of ligand. Apparently, the mutations at the I-II hinge interface act increasing the 
mobility of domain I, which enhances the sampling in the ns-timescale. Instead of the 
expected open untethered structure, R84K and nearby mutations at the I-II hinge 
interface can acquire a closed untethered configuration similar to the 1st mode. The 
biological significance of the observed intermediate, with an intriguing configuration 
different from known structures, is supported by a number of experimental evidences 
that do not fit with the open/closed conformers as we will discuss now.  

First of all, the tilting back of domain I 
exposes completely the Cys-bonded loop 
C287-C302. As mentioned in the introduction, 
cancer-specific monoclonal antibodies 
mAb806 and mAb175 recognize an epitope in 
this Cys-linked module inaccessible in both 
close-tethered and open-untethered sEGFR 
(Gan et al., 2012; Johns et al., 2004; Jungbluth 
et al., 2003). Exposure of this epitope is the 
hallmark of EGFRvIII glioblastomas, where a 
deletion of the entire domain I leaves this 
region free. In fact, mAb806 and mAb175 
were raised in mice against EGFRvIII and thus 
it came as a surprise that they can also bind 
WT EGFR. Further research demonstrated that 
mAb806 target what is called a “cryptic 
epitope”, i.e. one that is only exposed in a 
transient conformation of the receptor. In the 
intermediate state found this region is fully 
accessible, making easy for docking and MD to obtain sEGFR-antibody complexes (see 
Figure 4. 16B) which agree with crystallographic and mutagenesis data (Figure 4. 17) 
(Chao, Cochran, & Wittrup, 2004; Garrett et al., 2009). Not surprising, the 
superposition of the R84K intermediate and EGFRvIII reveals that both configurations 
remove the sterical block by domain I (Figure 4. 15). Recent work has shown that 
ectodomain mutations bind selectively the inhibitors targeting the so-called “inactive” 
configuration of the kinase (Vivanco et al., 2012). It is tempting to suggest that this 
removal of domain I steric restriction not only exposes the cryptic site but affects the 
configuration of the kinase in a particular way, triggering specific signalling pathways. 
This could explain why these positions are recurrently mutated in diverse tumors (CNS, 

 

Figure 4. 15. Alignment between the deletion 
mutant EGFRvIII and the R84K/G39R 
intermediate.  
 
EGFRvIII mutation (brown) is shown 
superimposed to R84K/G39R intermediate 
(light grey). The mAb806/175 epitope is 
shown in purple. Note how both states of 
the receptor remove the sterical blockage by 
domain I, exposing the cryptic epitope 
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lung, colon or skin). Detailed sequencing of gliomas reveals that even different regions 
of the same tumor display multiple mutations belonging to this potential “functional” 
group - for example, EGFRvIII plus R84K  (Joan Seoane, personal communication) - 
suggesting that tumor heterogeneity and mutation clustering could be the expression 
of a convergent evolution process. 
 

Figure 4. 16. Ectodomain R84K untethered state. A) Domain disposition of sEGFR after the untethering transition. 
 Domains I-IV are colored red-green-brown-blue. Note how the extreme backward rotation of domain I, up to 
interact with domain IV, allows full access to the cryptic epitope (highlighted in purple). B) Model of the complex of 
the antibody mAb806 bound to the R84K mutant intermediate state. This figure shows one of the multiple 
possible models obtained after docking one of the intermediate snapshots to the crystal complex (PDB: 35GV), and 
performing a short MD simulation. During the simulation the epitope tends to extend making further contacts with 
the light chain. C) Hypothetical “Crouched” unbound dimer of sEGFR, resulting from direct docking through 
exposed dimerization arms from the same snapshot in A), front (left) and bottom view (right); note that the cryptic 
epitope (purple) remains exposed. The plane of the membrane passes under the structure in the front view (dashed 
line) and parallel to the paper in the bottom view (not shown). Note also the anti-parallel disposition of domain IV-
IV, as well as the large domain III-III distance (right).  

Second, the closed untethered intermediate seems perfectly designed to form a 
symmetric unbound dimer through the interaction of the dimerization arms (see 
Figure 4. 16C, details in Methods). The resulting dimeric structure can be described as 
“crouched” or “rod-shaped”, as opposed to the symmetric doubly-bound dimers 
formed by open monomers (compare with Figure 4. 1B), which have a “proud” or 
“heart-shaped” configuration. The existence of such alternative dimers is supported by 
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a number of evidences which do not fit into the known crystal structures. The 
“crouched” dimer is still fully capable for the interaction with mAb806 (Figure 4. 16C 
left) (a feature of unbound dimers reported by (Gan et al., 2007)), and has an anti-
parallel arrangement of IV domains (Figure 4. 16C right) in agreement with cross-
linking and EM experiments (Mi et al., 2008). Similar domain IV arrangements have 
been observed in crystallographic closed dimers (Ferguson et al., 2003) and in long 
simulations of unbound and singly-ligated dimers (Arkhipov et al., 2013). A last piece of 
evidence supporting the existence of “crouched” dimeric structures comes from EM 
experiments (C. Lu, Mi, Walz, Springer, & Avenue, 2012) reporting unbound dimers 
with a distance between domains III-III of 118 ± 25 Å, close to the ones here found 
(115Å, see Figure 4. 16C right,  yellow stars), but much larger than in X-Ray ligand-
bound dimers (70-80Å). In summary, our simulations strongly suggest that WT sEGFR 
has a small but intrinsic tendency to spontaneously untether, exploring states that can 
form dimers different from the crystal ones but compatible with experimental data.   
 

Figure 4. 17. Detailed stereoview of the ma806 antigen-binding site and the R84K exposed epitope.  
Two levels of zooming showing the interaction between the mAb806 antibody and the R84K exposed epitope: (A) 
Overall view showing domain disposition and (B) Detail of the antigen-binding site. The ectodomain peptide 
backbone is shown as cartoon, with domains colored red (I), green (II) and tan (III), and the epitope loop (C287–
C302) in magenta; the antibody is shown as surface with colored light (yellow) and heavy (gray) chains.  Known 
interacting residues (E293-H50/R101, D297-Y51/N57, and R300-D32) are highlighted as white (heavy chain), yellow 
(light chain) or violet (EGFR epitope) spheres. Simple docking to the crystallographic complex (PDB: 35GV), followed 
by minimization to remove minor steric clashes, allows for close apposition of the main binding residues and the 
806 binding site. This figure shows one of the multiple possible models in which the exposed C287–302 epitope can 
be inserted into the antigen-binding site; note the dimerization arm (asterisk), away from the binding region in (B).  

Finally, the intermediate found, characterized by a closed and compact but 
untethered configuration, is also compatible with SAXS experiments (Dawson et al., 
2007), which unexpectedly revealed minor conformational changes upon tether 
weakening mutations, but not a transition towards the open state. Overall, our data 
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suggest that ligand-independent untethering may not lead to extended, but to close-
like configurations of sEGFR. 

These results also confirm previous simulations of HER4 (Du et al., 2012) that indicate 
that the ligand is essential to drive the ectodomain to an extended, but still inactive 
configuration. Clearly, this suggests that an additional dimerization-mediated step is 
required to reach the fully active state, characterized by a “high-affinity” binding site. 
Our ENM and MD simulations also indicate that once reached, this active open 
structure is the most stable conformation of the receptor, and that not only the 
tethering motive, but also other interdomain contacts (such as the ones restricting 
domain I oscillations) contribute to keep unbound sEGFR in a tethered state – a self-
inhibition mechanism bypassed by oncogenic mutations. Our simulations support then 
the hypothesis (Liu et al., 2012) that vertebrate sEGFR evolved from an open structure 
in invertebrates (Alvarado, Klein, & Lemmon, 2009, 2010), by creating molecular 
restraints to stabilize a tethered form and allow a more sophisticated regulation.   

 

 

Figure 4. 18. Domain I -
III observed 
orientations for EGF 
binding (top view).  
 
Domains I-IV colored 
red-green-brown-blue, 
EGF in purple. Whereas 
EGF only binds domain 
I in the closed state (D), 
the smaller cleft in the 
intermediate state (C) 
and at extended state 
found at the end of WT 
+ ligand simulations (B) 
allows for simultaneous 
binding to both 
surfaces at the same 
time. However, a large 
rotation of domain III is 
still needed to allow for 
high-affinity binding as 
observed in the active 
state (A).  
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Another point of interest highlighted by our simulations is the role of the ligand in the 
activation process. Ligand binding to EGFR displays a characteristic concave-up 
Scatchard-plot, related either to negative cooperativity or heterogeneity of binding 
sites, typically identified by two “high-affinity” and “low-affinity” classes corresponding 
to open and close states (Krall, Beyer, & MacBeath, 2011; Özcan, Klein, Lemmon, Lax, 
& Schlessinger, 2006). Although the role of negative cooperativity in the ectodomain is 
clear according to recent studies (Alvarado et al., 2010; Pike, 2012), our simulations 
also suggest a significant diversity of binding modes due to the changing arrangements 
of the ligand-binding domains. Whereas EGF binds always to the same site in domain I, 
domain III can present very different surfaces for binding in untethered states (see 
domain I-III orientations in the intermediate, and open inactive and active states, 
Figure 4. 18); in the tethered conformation, both domains can even collapse occluding 
the binding site, presumably leading to a low-affinity state. Such different 
configurations can clearly determine variable binding affinities and modulate the 
overall dynamics directing the motions of the flexible domain I. Our simulations show 
that first, low/intermediate affinity binding to domain I can drive receptor opening by 
an induced fit mechanism and suggest that after dimerization and activation, high 
affinity binding locks the domain I-II hinge and stabilizes the bound dimer.  

To end this discussion we will address the potential significance of a ligand-
independent untethering process. Recent data demonstrates that the bioactive species 
at the low EGF levels existing in vivo is an asymmetric singly-, not doubly-, ligated 
symmetric dimer (Alvarado et al., 2010; Liu et al., 2012) which would require higher 
ligand concentrations (such as that found in the crystal). Clearly, the formation of 
singly-ligated dimers requires the spontaneous untethering of one monomer. The 
similarity of WT and R84K spontaneous motions observed in our simulations strongly 
suggest that the WT ectodomain may also sample closed-untethered structures. It has 
been reported that the mAb806 epitope is exposed in a small population of WT 
untethered receptors, especially when glycosylation is altered – a condition which 
clearly can change domain I-II relative flexibility (Gan et al., 2012; Johns et al., 2005).    

Such ligand-independent untethering mechanism (see Figure 4. 19) similar to the one 
described for the R84K mutation, running in parallel to ligand-driven untethering, 
would imply the existence of a small but basal subpopulation of untethered 
intermediates, as well as of pre-assembled unbound “flat” dimers (see Figure 4. 19). 
Whereas free untethered monomers could act as ready-to-dimerize partners for the 
ligand-untethered ones, the unbound pre-active dimers could also act as first target for 
ligand binding (as suggested by (Teramura et al., 2006)), forming in both cases 
asymmetric singly-ligated dimers (Figure 4. 19) at low EGF levels. The transition 
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towards the fully active state would hide again the cryptic epitope, as reported by 
Walker et al. (Walker et al., 2004), who demonstrated that tether-weakening 
mutations increase mAb806-reactivity, but that this disappears as EGF binds. In the 
presence of oncogenic mutations, the populations of untethered monomers and 
unbound dimers would increase dramatically, enhancing basal kinase activity and EGF-
response. Overall, the proposed model reveals the existence of multiple patterns for 
EGF-response, which could be sensitive to differential ligand concentrations or post-
translational modifications.  
 

Figure 4. 19. A novel model for EGFR activation.  
A) Proposed pathways for sEGFR untethering, showing domain I-III rearrangement and exposure of the 
dimerization arm (green) and the cryptic epitope 806/175 (magenta). B) A model for sEGFR dimerization and its 
relationship with 806/175 epitope recognition. Closed sEGFR is mostly closed (green square), but a small 
population untethers spontaneously into the 806/175 reactive-intermediate (blue triangle), specially under certain 
conditions changing local flexibility at the hot spots (mutations, glycosilation, etc.). At low, physiological EGF 
concentrations, this constitutive population of untethered intermediates can either form unbound dimers that react 
to EGF, or act as a ready-to-dimerize partner for EGF-untethered receptors (pink rectangles), forming the bioactive 
singly-ligated dimers, upon further conformational changes. At high EGF concentrations, the doubly-ligated dimers 
can be formed either from ligand binding to the singly-ligated ones or from two EGF-untethered monomers (not 
shown). All dimers shown represent an interaction between domain II-II dimerization arms; pre-dimerization 
through domain IV-IV interactions is excluded for the sake of clarity but could play an important role in an fast EGF 
response. 
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Table 4. 6  Summary of the MD simulations performed.   
 

DESCRIPTION DURATION (ns) NUMBER OF REPLICAS NUMBER OF 
ATOMS 

SIMULATIONS CLOSED STATE  
Closed state (1NQL, chain A) WT, no ligand 500 1 180,834 

200 1 
50 2 

Total simulated time closed WT (μs) 0.8 
Closed state (1NQL, chain A) R84K, no ligand 500 2 180,461 

50 2 
Total simulated time closed R84K (μs) 1.1 
Closed state (1NQL, chain A) WT + EGF  (1NQL, chain B) 500 1 181,189 

200 1 
50 2 

Total simulated time closed bound WT (μs) 0.8 
Total simulated time closed state (μs) 2.7 
SIMULATIONS OPEN STATE  
Open state (3NJP, chain A, residues 3-614) WT, no ligand 200 2 329,799 

50 2 
Total simulated time open WT (μs) 0.3 
Open state (3NJP, chain A, residues 3-614) R84K, no ligand 200 2 329,614 

50 2 
Total simulated time open R84K (μs) 0.3 
Open state (3NJP, chain A, residues 3-614) WT + EGF 
(3NJP, chain C) 

200 2 330,379 
50 2 

Total simulated time open bound WT (μs) 0.3 
Total simulated time open state(μs) 0.9 
SIMULATIONS INTERMEDIATE STATE&    
Intermediate state, R84K, no ligand 50 5 136,374 
Intermediate state, R84K, + EGF$ 50 5 162,563 
Total simulated time R84K intermediate (μs) 0.5 
Intermediate state, R84K, II-II docked dimer# 50 1 442,127 
Intermediate state, R84K +mAb806 docked antibody1 50 1 225,483 
Intermediate state, R84K +mAb806 docked antibody2 50 1 299,587 
Intermediate state, R84K + mAb175 docked antibody3 50 1 300,146 
Total simulated time R84Kintermediate complexes (μs) 0.2 
Intermediate state, WT, no ligand 50 5 136,208 
Intermediate state, WT, + EGF$ 50 5 162,670 
Total simulated time intermediate WT (μs) 0.5 
Total simulated time intermediate state (μs) 1.2 
  
Total simulated time closed + open + intermediate states 
(μs) 

4.8 

 
&Intermediate state shown in Fig.6A (representative frame from the R84K 500ns trajectory), $Intermediate state with EGF docked to domain I as in 
1NQL, #Crouched dimer shown in Fig.6B-C, obtained by docking the intermediates through dimerization arms as in the 3NJP open dimer, 
1Intermediate state epitope docked to mAb806 as in model 2EXQ, 2Intermediate state epitope docked to mAb806 as in crystal 3G5V, 3Intermediate 
state epitope docked to mAb175 as in crystal 3G5Y. All computations done in this work were performed on a 64 Intel(R) Xeon(R) CPU E5-2670, 
2.60GHz from a 768-machine (48x16cores) HP cluster (parallel computer), totaling 60 years of cpu time. 
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4.6 Summary 
Present simulations outline a complex mechanism for sEGFR activation that reconciles 
the physics of the system with functional evidences, still unexplained by current 
structural models. The starting NMA study suggests that the ectodomain has intrinsic 
large-scale motions of the different domains, which are controlled by strategic hinge 
sites and interdomain contacts. We develop a simple local perturbation algorithm, 
designed to detect critical regions for the conformational dynamics. Our study reveals 
how cancer-related mutations cluster in these interdomain hinge points and loops that 
control the biologically relevant motions, outlining a new dynamics-based mechanism 
of oncogenicity.  
 
Molecular Dynamics confirms that wild-type HER possesses an extraordinary flexibility, 
exploring wide regions of the conformational landscape even in the ns timescale and 
spontaneously reorienting the main subdomains as predicted by NMA. Simulations of 
the known activator mutation R84K further confirm the dynamical impact predicted by 
the Normal Modes perturbation and prove that mutations can shift the large-scale 
motions and untether the receptor, supporting the coexistence of ligand dependent 
and independent untethering pathways. The close untethered state found, which 
exposes the mAb806 epitope, helps to rationalize a large amount of structural and 
functional data and may play a major role in EGFR activation. Overall, our findings 
unveil a previously unknown connection between ectodomain missense mutations, its 
immunogenic properties in cancer and its activation mechanism, which clearly can 
open novel avenues for basic and clinical research. On a purely theoretical level, the 
surprising correlations found between the MD and NMA and the spontaneous 
transitions observed, plus the coincidence between the predicted critical sites with 
oncogenic mutations, strongly suggest that some multidomain proteins explore a 
highly harmonical energy landscape, and that this intrinsic structure-encoded 
equilibrium dynamics can be regulated by specific interfacial contacts conserved 
during evolution.  
 

4.6 Publications from this Chapter 

Orellana L., Hospital A. and Orozco M. (2014) Unraveling the dynamics of epidermal 
growth factor receptor through oncogenic mutations. JACS (submitted)   

 

 
 



142 
 

 “We all behave like Maxwell’s demon. Organisms organize.” 
 

James Gleick 
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Chapter 5 Further topics: from global to local 
conformational changes and network theory 

In this chapter, we will present different applications of the ED-ENM method 
developed in Chapter 3 to sample both local motions and large-scale conformational 
changes. As we have discussed throughout this thesis, proteins undergo large 
structural transitions to perform different functions, as demonstrated by open/close 
and bound/unbound pairs often observed by X-ray crystallography; an extreme 
example is the dramatic domain rearrangement of the EGF receptor seen in Chapter 4. 
Most of these conformational changes are encoded in the structure and intrinsic 
topology of each protein, and can be easily traced by one or two normal modes that 
provide precious information on the direction of functional transitions. However, if we 
want to analyze the detailed pathways for conformational changes, it is necessary to 
reconstruct some sort of ensemble or pseudo-trajectory to extract all the information 
contained in the normal modes and investigate the possible routes. In the next 
sections, we describe an ENM-derived algorithm to trace large transitions with minimal 
information from the target structure (Orellana, Carrillo, & Orozco, 2014), which can 
be applied to analyze large rearrangements. We also describe briefly an application of 
ED-ENM modes to guide the sampling of the conformational landscape by a coarse-
grained model based on pseudo-physical potentials (Sfriso et al., 2012). A variation of 
the same method is used to generate ensembles from the ED or NMA principal 
motions, in order to analyze long-range concerted motions across beta-sheet motifs 
(Fenwick, Orellana, Esteban-Martín, Orozco, & Salvatella, 2013). Finally, the link 
between protein dynamics and intrinsic network properties is explored by a fast 
internal coordinates NMA (Orellana, Lopéz-Blanco, Chacón, & Orozco, 2014).  

5.1 From the analytical to the numerical solution of the 
harmonic equation: Langevin-driven ensembles 

An elegant alternative to unfold the information contained in the harmonic equation 
(Eq.2.9) is, instead of solving analytically by matrix diagonalization, solving numerically 
by performing a Brownian Dynamics (BD) simulation (J.A. McCammon & Harvey, 
1987). Just three years after the publication of Einstein’s description of Brownian 
motion, Paul Langevin modelled the movement of particles in a fluid with Newton’s 
second law (Langevin, 1908). The protein is in a stochastic bath that keeps 
temperature constant, and the equation of motion for each residue i, represented by 
the coordinates of its C-alpha carbon (ri), is given by the so-called Langevin equation: 
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 4���̈ = p� − -��̇ + ��(�)                                 (Equation 5. 1 Langevin Equation)                                   

The second term of the above equation is a dispersive force, accounting for the viscous 
resistance the particle feels on going through the fluid (depending on a friction 
coefficient γ), whereas ξi(t) is a Gaussian noise term, due to the molecular-thermal 
agitation of the surrounding solvent, which leads to random collisions on the particle. 
The force acting on each residue i, Fi, is computed assuming harmonic potentials for its 
interactions with the rest of residues j as in Eq. 2.16, with the corresponding spring 
constants defined by the ED-ENM algorithm, which couples strongly the first chain 
neighbours, as described in Chapter 3. To solve the stochastic differential Eq.5.1, the 
Verlet Algorithm can be used to integrate numerically velocities from positions (as in 
(Carrillo et al., 2012)). Using this simple approach, different pseudotrajectories for the 
ENMs can be obtained changing the random seed of the algorithm each time. In this 
scheme, it is possible to further bias the stochastic dynamics to generate, for example, 
ensembles reproducing the normal modes. An additional force along the coordinates 
of the m-normal modes or principal components can be introduced, so that two forces 
act on each residue i:  

p� =  ∑ Q! R�QTQ (� − �0)4Q �� + p�∗                      (Equation 5. 2 Modes Biasing Force)                                

where ek and λk are the eigenvectors and eigenvalues defining the external 
perturbation force due to the first k-principal components (or normal modes), and Fi

* 
is the force due to the harmonic interactions mimicking the internal covalent and non-
covalent short-range forces computed from ED-ENM, acting here as a constraint 
SHAKE-like potential to keep the secondary structures intact. This approach is used in 
section 5.3 to create a conformational ensemble that follows the essential motions and 
reproduces correlated motions in beta-sheets (Fenwick et al., 2013), under revision).  
 
Alternatively, instead of an external force, a biasing Dynamic Importance Sampling 
(DIMS) algorithm based on an informational criterion (Beckstein, Denning, Perilla, & 
Woolf, 2009; Woolf, 1998; Zuckerman & Woolf, 1999, 2000), acting as a Maxwell 
demon, can be applied to generate transition pathways, for example, only accepting 
the moves that approach the initial structure towards the known target, as described 
in section 5.2 ((Orellana, Carrillo, et al., 2014), in preparation)).   
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5.2 Large conformational changes: Exploring transition 
pathways with elastic networks 

Proteins function as dynamic molecular machines that cycle between different states, 
changing in response to temperature, electrochemical gradients or presence of 
ligands. There are many examples of structures trapped in different conformations due 
to binding to diverse molecules, changes in pH or mutations, to name a few.  However, 
since dynamic high-resolution techniques are still limited to small systems, the detailed 
mechanisms driving large-scale conformational changes are unattainable by 
experiments. Typically, very limited structural information is available for the 
intermediate conformations along a transition pathway. In conventional equilibrium 
MD, protein spends most of the time moving in a local minimum and only rare 
fluctuations allow overcoming free-energy barriers to access other states. The 
elucidation of the mechanisms behind conformational changes is difficult due to the 
multiple paths accessible and the transient nature of the intermediates involved. In 
systems with thousands of atoms, conformational changes are rarely observed – with 
exceptions such as the mutant EGFR simulations in Chapter 4. In spite of novel 
methods to force the sampling along the direction of the transition, MD simulations of 
large transitions are still very expensive computationally, as discussed in Chapter 2,. 
Therefore, CG approaches are a useful alternative and, as we also saw in Chapter 4, 
can help to define initial pathways for further exploration by atomistic MD. Among CG 
methods, ENMs are extremely powerful to predict with striking accuracy experimental 
conformational changes (F Tama & Sanejouand, 2001). More than 95% of the 
transitions in the MolMov database (Alexandrov et al., 2005) can be described by just a 

 

  
Figure 5. 1 Flowchart of 
the basic hybrid ENM-BD 
algorithm.  
 
Biasing towards the target 
structure is introduced 
comparing with the sum of 
internal distances or 
following the normal modes 
which describe the 
transition. 
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couple of low-frequency modes from ENM, which therefore provide an excellent initial 
approach to sample large-scale conformational changes. We have seen an outstanding 
example for the large biomolecular machine EGFR in Chapter 4, where the MD 
samplings clearly follow the ED-ENM normal modes.  
 
Usually, algorithms based on iterative NMA are used to trace transition pathways: the 
low-frequency modes are used to perturb the structure and generate new 
conformations from which to seed the next iteration step; this kind of approach is 
often used for building atomic models based on electron microscopy density maps 
(Kawabata, 2008; Suhre et al., 2006; Florence Tama et al., 2004). The computed paths 
are more realistic than those obtained by simple interpolation schemes, but also 
present major drawbacks: the eigenvalues usually render unrealistic amplitudes, and 
the lack of physical restraints produce stereochemically distorted models that require 
further energy minimization steps. These problems can partially be solved 
recomputing the lower modes for intermediate structures along the transition (Z. 
Yang, Májek, & Bahar, 2009), or performing movements in the EN-NMA internal 
coordinate space (Lopéz-Blanco et al., 2011).  However, the trajectories obtained are 
still lineal ones and cannot account for random, short-frequency movements due to 
thermal noise.  
 

Elastic Network-driven transition pathways 

In order to overcome some of the above mentioned limitations of ENM sampling of 
transition pathways, we have developed a novel approach based on the 
implementation of the MD-derived ENM potentials (Orellana et al., 2010) in a Langevin 
Dynamics scheme (Carrillo et al., 2012) as presented in the former section.  Instead of 
perturbing each structure along the lowest frequency modes, we use the EN potential 
to drive a Langevin simulation. In our approach, bond lengths are kept realistic not 
only by the harmonic potentials, but also by projection of the random velocities in 
internal coordinates at each step. Efficient biasing of the trajectory in the direction of 
the transition is achieved using minimal information from the target structure in a 
DIMS-based scheme (see section 5.1). Every certain number (K) of unbiased cycles, the 
sum of internal distances (the progress variable, Γi)  for the instantaneous structure, Ri, 
is recomputed and compared with the target one  (Γt) and according to a Metropolis 
Monte Carlo procedure, used as criteria to accept or reject the proposed random 
moves (see Figure 5. 1). An additional bias to avoid unphysical paths can be introduced 
by explicitly sampling along the ED-ENM encoded direction, selecting the random 
moves that overlap with different combinations of the softest modes. Note that in 
either case the biasing along the normal modes is not directly driven by a force as in 
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Equation 5.3. According with the MoDEL database (Meyer et al., 2010; Rueda, Ferrer-
Costa, et al., 2007c), 2-4 Å (depending on system size) is a good estimate of the 
oscillation around equilibrium structures generated by thermal noise; therefore, we 
assume that convergence into the target basin occurs when the sampled structures 
reach an rMSD with the target within this range, stopping the iteration cycle. Contrary 
to current ENM-based approaches, our method allows obtaining different ensembles 
along multiple transition pathways. To generate slightly different trajectories the 
combination and number of biasing normal modes (that are also chosen in different 
ways) can be changed in each simulation run. The moves following a given 
combination of modes are selected every 10000 cycles computing a simple overlap 
between the instantaneous transition vector (ΔR=Ri-RB) and the normal modes n-
subspace considered Vn (comprising the n-modes chosen) (see Hess’ metrics, Eq. 3.2). 
Furthermore, this EN-based approach allows easily exploring the role of specific 
contacts or particular structural regions in the conformational changes, by introducing 
perturbations in the ENM topology matrix as seen in Chapter 4. Since the particular 
moves in the Langevin scheme depend on the starting random seed, further variability 
can be introduced by changing it at each run. 

 

  
   
Figure 5. 2 Evolution 
of the rMSD to the 
target and the 
experimental 
intermediate along 
the simulations in 
both directions.  
 
Three examples of 
proteins for which an 
experimental 
intermediate in a close 
to open conformational 
change is available are 
shown.  
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An excellent validation of any method to sample conformational transitions is the 
comparison of the trajectories obtained with the path followed by proteins undergoing 
large conformational changes for which there is a transition intermediate solved 
(Weiss & Levitt, 2009). Inspection of the rMSD profiles along our simulations (see 
Figure 5. 2) for some known cases shows that the algorithm can approach the natural 
pathway for the transition within an rMSD below 2Å in just minutes. In more 
challenging transitions, the method also shows an efficient performance, reaching the 
target structure in a few hours. The different trajectories obtained in the forward and 
reverse transitions demonstrate that in general, it is easiest to compute trajectories 
starting from the open state (that generally displays higher overlaps with the normal 
modes, see for example (F Tama & Sanejouand, 2001)). As mentioned before, 
stereochemistry is kept by the ENM potentials as well as an internal coordinates 
projection of the modes, so that further reconstruction of the backbone using the 
software PULCHRA (Rotkiewicz & Skolnick, 2008) renders intermediate structures with 
good geometries according to energy scores such as PROSA (Wiederstein & Sippl, 
2007) (See Figure 5. 3).  

 

 

  
Figure 5. 3 Similarity between 
experimental and ENM-BD 
transition intermediates.  
Left: C-alpha trace alignment 
between the experimental 
intermediate and the closest ENM-
BD sampled structure. Right: PROSA 
profiles for the experimental and 
ENM-BD sampled intermediate.  
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Normal modes to sample the conformational space  
An alternative but very powerful method to perform fast atomistic simulations is, 
instead of just coarse-graining the structure, to use pseudo-physical potentials, as 
discussed in Chapter 2. These techniques, in combination with normal modes biasing, 
can accelerate the sampling of conformational space extremely. In a recent work 
(Sfriso et al., 2012), the combination of discrete Molecular Dynamics (dMD, see 
Chapter 2) with biasing techniques based on normal modes and Maxwell–Demon 
sampling allowed a highly efficient exploration of transition pathways at the atomistic 
level. The core of this morphing procedure is the biasing algorithm, which enhances 
dMD sampling in the direction of the transition and also along the ED-ENM normal 
modes (Figure 5. 4). The good agreement between coarse-grained methods and MD 
(Emperador et al., 2008) guarantees the physical consistency of this hybrid ENM/dMD 
approach. The method follows a biasing Maxwell–Demon approach similar to that 
described above. Here, after a certain simulation step (t), a progress variable (Γ) is 
computed and compared with that at the previous accepted movement (t – Δt), and 
accepted or not based on a probability pt. To avoid that the purely informational 
criterion bias the transition to biologically unphysical paths, a second bias is introduced 
to guarantee that the transition follows the intrinsic flexibility of the protein. Whether 
a move follows the normal modes or not is again quantified by a simple overlap metric 
between the instantaneous transition vector and the subspace defined by the 
combination of ED-ENM eigenvectors that better reconstructs the structural change.  
 

 

Figure 5. 4 Sampling the conformational 
space with normal modes.   
 
Flowchart of the basic MDdMD method. Detail 
on the implementation of the NMA bias based 
on the initial and current overlap between 
transition and essential deformation space.  
 
Published in: Pedro Sfriso; Agusti Emperador; Laura Orellana; 
Adam Hospital; Josep Lluis Gelpí; Modesto Orozco; J. Chem. 
Theory Comput.  2012, 8, 4707-4718. DOI: 10.1021/ct300494q 
Copyright © 2012 American Chemical Society 
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5.3 Local conformational changes: correlated motions  

Correlated motions in beta sheets are an inherent property of proteins 
Current thinking on allostery predicts that correlated motions occur in all proteins 
(Gunasekaran, Ma, & Nussinov, 2004) and are the basis for information transfer and 
signal transduction. Although much work has therefore been directed to measuring 
correlations between distal sites in the conformational dynamics, their detection has 
remained elusive up to date. Most studies have focused on backbone correlations but 
side chains seem also to play a role in propagating conformational changes over long 
distances (Davis, Arendall, Richardson, & Richardson, 2006; DuBay, Geissler, & Bothma, 
2011; Fraser et al., 2009). The existence of pathways of correlated motions via 
hydrogen bonds is strongly suggested from theoretical studies in allosteric enzymes 
that contain a central β-sheet, where weakly correlated motions link interaction sites 
(Tolonen et al., 2011) and store energy for binding and catalysis (Piazza & Sanejouand, 
2008). Recent experimental progress comes mostly from NMR spectroscopy (Istomin, 
Gromiha, Vorov, Jacobs, & Livesay, 2008; Reif, Hennig, & Griesinger, 1997; Vögeli, Yao, 
& Bax, 2008), which has detected non-covalent correlations in the ubiquitin β- motif by 
high-resolution experiments (ERNST ensemble) (Fenwick et al., 2011).  

 
Here we describe an application of the BD algorithm presented in section 5.1 to reveal 
how these important correlated movements are intrinsically encoded in the normal 
modes of the beta-sheet structures (Fenwick et al., 2013). We show that long-range 
concerted motions are a fundamental property of these structural motifs and that they 
are of functional relevance, first, by an analysis of the entire Protein Data Bank, and 
then, demonstrating how these correlations are intrinsic to the bending and twisting 
modes of beta-sheets and participate in signal transfer in allosteric enzymes.  

 

Figure 5. 5 Circular correlation coefficients between dihedral angles show a checkerboard pattern.  
β-sheets ensemble dihedral angle correlations coefficients (ρ, below the diagonal) observed within and between the 
strands (A) of the β-sheet motif (B). The dihedrals of the strands are indicated and labelled i, j, and k, corresponding 
to the three different strands as indicated in B. The long-distance correlations between strands i and k are 
highlighted with a box, while the crankshaft correlations are highlighted with italics. A graphical summary of the 
correlations is shown in C. 



153 
 

An analysis of all the beta-sheets in the Protein Data Bank – considered as a collection 
of snapshots in different conformations - suggests the existence of these correlations 
as a general property in protein structures. To confirm this hypothesis and provide a 
rational explanation for this phenomenon, we analyzed BD/ENM-generated structural 
ensembles reproducing the normal modes and the principal components from MD. As 
noted in Chapter 3, both NMA and ED provide very similar descriptions of protein 
flexibility. The collective motions predicted from both methods show a remarkable 
agreement, and what is more significant, they contain the long-range correlations 
experimentally detected in the analysis of the Protein Data Bank.   
 
The degree of correlation of the structural fluctuations of the different residues of the 
β-sheet motif can be evaluated by the circular correlation coefficient (ρ) for pairs of 
dihedral angles. These correlation coefficients are appropriate when both data come 
from circular or polar distributions (Jammalamadaka & Sengupta, 2001), i.e. of random 
variables whose values are angles in the range [0, 2π]:                                                                                                   

tHu>��>K��� = ∑ sin (N�−N).sin (O�−O)G�=1w∑ sin (N�−N)2G�=1 ∑ sin (O�−O)2G�=1                             (Equation 5. 3 Circular Correlation)                                

the correlations were calculated for all the combinations of 3 (phi) and 4 (psi) torsion 
angles in the /-sheet motif. The analysis of the entire protein data bank detected 
short-range correlations due to the crankshaft motion (Figure 5. 5, note values in the 
order of ρ ≈ -0.6) as well as strong short-distance non-sequential correlations between 
ϕ and ψ angles in neighboring β-strands caused by the β-lever. Most interesting, weak 
but significant long-range correlations between distal strands (i=1, k=3), similar to 
those observed in the ubiquitin ERNST ensemble, are also detected. To demonstrate 
that these correlations are shape-encoded in the topology of beta-sheet motifs, and 
therefore, an intrinsic property of these secondary structures, we studied the low-
frequency motions in a benchmark of 24 β-sheet-rich proteins (see Table 5. 1). 
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Table 5. 1 Structure specific correlation analysis for the minimal beta motif.  

PDB  Nres Fold Total Motifs 1PCA sig 1NMA Sig 5PCA sig 5NMA Sig 

1a4h 214 2-layer sandwich 13 7 11 8 1 

1cbs 137 beta barrel 19 2 1 15 8 

1cpn 208 sandwich 17 5 4 7 7 

1d2u 184 beta barrel 22 10 4 10 7 

1g7n 131 beta barrel 18 7 6 6 8 

1gbg 214 sandwich 21 7 4 11 8 

1gnd 430 2/3-layer sandwiches 12 6 2 2 3 

1gof 639 7-blade propeller 30 15 3 19 4 

1icx 155 2-layer sandwich 17 8 3 9 3 

1ifc 131 beta barrel 16 4 3 5 4 

1ij9 196 sandwich 16 7 1 7 2 

1msc 129 2-layer sandwich 9 5 5 6 2 

1mvg 125 beta barrel 19 8 6 11 6 

1ngl 179 beta barrel 12 1 1 5 2 

1nkg 508 distorted sandwiches 31 12 3 18 6 

1p6p 125 beta barrel 16 7 1 5 6 

1plr 258 Box 25 9 7 12 2 

1wp5 323 6-blade propeller 14 6 6 8 3 

1yfq 342 7-blade propeller 21 8 5 8 6 

2axf 385 1/2-layer sandwiches 18 7 5 9 8 

2axg 385 1/2-layer sandwiches 18 10 7 9 11 

2ayh 214 sandwich 23 10 1 16 6 

2bvo 385 1/2-layer sandwiches 18 9 11 12 11 

2cbr 136 beta barrel 18 5 4 10 4 

Nres – the total number of residues in the structure.  

Fold – the fold definition for the structure.  

Total Motifs – the number of motifs that exist in the structure 

1PCA sig. – the number of motifs that have scores greater than 10 for the ensemble of structures generated with Brownian 

dynamics using just the first PCA component. 

1NMA sig. – the number of motifs that have scores greater than 10 for the ensemble of structures generated with Brownian 

dynamics using just the first NMA mode. 

5PCA sig. – the number of motifs that have scores greater than 10 for the ensemble of structures generated with Brownian 

dynamics using just the first five PCA components. 

5NMA sig. – the number of motifs that have scores greater than 10 for the ensemble of structures generated with Brownian        

dynamics using just the first five NMA modes. 
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These motions, encoded in the first modes, are known to correlate with large-scale, 
concerted motions, and are also in agreement with normal modes and experimentally 
described transitions. Using the mixed ENM-BD, we generated ensembles for the first 
MD-PCA components extracted from the MoDEL database or from the first ED-ENM 
Normal Modes, and later reconstructed with PULCHRA optimizing the hydrogen 
bonding geometry for the backbone atoms.  The circular correlation coefficients are 
compared to those in the checkerboard pattern by a motif score which represents the 
number of correlations with the correct sign (with a maximum value of 15 and a 
minimum of 0); in Figure 5. 6 the regions in which long-range correlations appear along 
the first mode are highlighted in red. As can be observed, motion along the first PC 
from MD/NMA does indeed give rise to the checkerboard pattern. This suggests that 
long-range correlations participate in collective motions associated to function. 
Interestingly, long-range correlations are not detected in μs simulations but become 
apparent after removal of the high-frequency motions by PCA, suggesting that current 
force-fields are not capturing the concerted motions in the simulated timescales. 

 

Figure 5. 6 Beta-sheet correlated motions are intrinsically encoded in the principal components 
and normal modes.  
The β-sheets rich proteins with minimal motifs that behave as predicted from the model β-sheets. The 
structures are coloured according to the motif score (see text) and indicates that the motif moves in a 
correlated way as predicted from the PDB and the NMA analysis. The correlations were extracted from 
coarse-grained BD simulations that were generated using the 1st PCA mode from MoDEL MD simulations. We 
note that the results are invariant if more PCA modes are used in the Brownian dynamics (not shown), similar 
trends are observed if NMA modes are used instead. 
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Twisting and bending of beta-sheets drive allosteric transitions 
To further determine if structural transitions from one state to another occur via 
functional changes that invoke correlated motions we studied a small subset of 
selected X-ray open/close conformers of beta-sheet proteins; the smallest ones (1szv, 
1s2h) are single domains with a central β-motif and the rest are multi-domain 
structures (1ram, 3dap, 1rkm). In all cases we focused our analysis on the major beta-
sheet motif present in each structure, defined as the largest displaying several high-
scoring motifs. The global conformation changes are accompanied by significant local 
twisting or bending deformations of the major β-sheets between 0.5 - 2.5 Å associated 
with binding to other proteins, ligands or small molecules. We sampled the transitions 
from the open to the close conformer using Elastic Network-driven Brownian Dynamics 
as described in section 5.1. The β-sheet-rich regions of all five proteins produced the 
characteristic checkerboard pattern of the long-range correlations, and revealed how 
series of weak but long-range inter-strand correlations can create channels for the 
propagation of structural information from one extreme to the other in the primary β-
sheets, spanning distances up to 20Å and thus connecting distant regions (see 
correlated residues highlighted as yellow balls in Figure 5. 7).   

 

 

Figure 5. 7 Correlated twisting and bending of beta-sheets drive large-scale conformational changes.  
Brownian dynamics transition pathways projected onto the first two PCA components from unrestrained MD 
simulations. β-sheets rich regions are colored red or green to indicate either dominant twisting or dominant 
bending respectively while overlapping channels of motifs associated with the principal motif are shown in yellow. 
Transition pathways are shown and colored with red or green to indicate the dominant twisting or bending 
respectively during the structural transition. The color gradients indicate the change in degrees of the twist or 
bend from the start of the transition pathway. The two experimentally determined structures of the transition 
pathways are shown with larger point sizes. Pathways of signal transfer across the residues of the beta-sheet are 
highlighted as yellow balls. 
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To gain detailed insight of the role of the central β-sheets in these structural 
transitions, we used unrestrained MD simulations to further determine the stiffness of 
the bending and twisting motions and evaluate the deformation energies. For the set 
of five conformational transition pairs, we performed PCA on the MD simulations for 
both the full protein and the isolated primary β-motif present in each. The PCA of the 
entire structure yields a set of essential modes (Full-PCA) that describe the global 
conformational change; whereas the PCA of the reduced covariance matrix for the 
isolated β-motif (β-PCA) filters the pure bending and twisting modes which appear 
distributed in the first principal components of the entire protein. The structural 
transitions are related to significant bending (Θbend) or twisting (Θtwist) of the β-sheet 
(2-10°), both in the crystal structures and the MD simulations. The eigenvalues of the 
first and second β-PCA modes scale with the number of strands as reported previously 
(Emberly, Mukhopadhyay, Tang, & Wingreen, 2004). These eigenvalues were used to 
obtain an estimate of the bending and twisting stiffness of the β-sheets via correlated 
torsions in the ns timescale, yielding values for beta-sheet bending on the order of 0.5-
1 kBT/Å2 and as high as 3kBT/Å2 for twisting (see Table 5.2).  

In order to evaluate the potential energy stored in the correlated deformation of the 
β-sheets along complete functional transitions we used Mahalanobis distance for the 
first ten modes from the Full-PCA (Noy, Luque, & Orozco, 2008). This metric defines 
Euclidean distances weighted by the variance of every degree of freedom, which in the 
principal component orthogonal basis can be written as: 

�x = y� " H�T�1/2%2�
�=1 z1/2

 
  (Equation 5. 4 Mahalanobis distance) 

 

Where xi is the displacement along individual eigenvectors, λi stands for the 
corresponding eigenvalue (in units of distance2), and the sum extends over the space 
of the first ten Full-PCA modes (m=10). The Mahalanobis distance represents the 
simplest deformation coordinate to drive a transition, assuming a harmonic 
relationship between displacements from the minimum and energy. Thus, in the 
harmonic limit the energy associated with displacements along principal components 
to reach the target structure can be easily determined from Mahalanobis distance as: 

� =  Q� R2 �x2  
  (Equation 5. 5 Elastic Energy) 

As can be seen in Table 5.2, the first ten Full-PCA modes from the unrestrained MD 
simulations describe well the conformational change with overlaps of ~80%, being 
therefore possible to estimate the elastic energy of deformation along the 
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conformational change from the Mahalanobis distance. For a conformational 
transition between two states, the minimal displacement along individual 
eigenvectors, xi, is the projection of the transition vector, ∆RAB, onto each PCA mode i: 

H� = Pm/! . >�
 e =  Pm/! . ?�‖Pm/! ‖‖?� ‖   (Equation 5. 6 Langevin Equation) 

Where Pm/!  is considered only for the subset of residues belonging to the primary β-
sheet motif present in each structure. Projections for each one of the transition 
pathways onto the MD subspace defined by the first two principal components of the 
Full-PCA are shown in Figure 5. 7 accompanied by the change in bending or twisting 
angle of the primary motif for each conformer along the transition pathway.  

 

We found that the correlated bending or twisting of 
the beta-sheets can store energies in the range of 5-
15 kBT or ~0.02 kcal/mol/residue (see Table 5.2). 
These energy values are in agreement with previous 
calculations and suggest that twisting and bending 
may be carefully encoded in the structure of β-sheet 
rich proteins (Choe & Sun, 2007; Sun, Chandler, 
Dinner, & Oster, 2003). These additional examples 
show that the correlations that exist within sheet 
twisting and bending may define the routes for 
conformational transitions. One illustrative case is 
the large-scale conformational change found in the 
Periplasmic Binding Protein OppA, where the 
transition between the open and closed states 
involves the propagation of correlated bending and 
twisting motions of the β-sheet.  

 

The ligated (1rkm) and unligated (2rkm) forms of OppA are related by a rigid-body 
rotation of two structural domains. The hinge region that mediates the rotation is 
composed of two β-sheet segments at the interdomain interface; correlated changes 
in the backbone dihedral angles cause a twisting motion of the β-sheet that triggers 
the observed large-scale domain rearrangement (see Figure 5.8). 

  

 

Figure 5. 8 Correlated twisting of a 
beta-sheet in an interdomain hinge 
mediates a large open to close 
change in the protein OppA.  
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Table 5. 2 Twisting and bending of the major beta-sheet motif in large-scale conformational changes.  

PDB  Nres rMSD Total  
Motifs 

Sig Θbend 

Θtwist 

 

 

bend 

twist 

Kbend 

Ktwist 

 

∆bend 

∆twist 
O10 E10 

1szv/1vet 91 5.2 9 3 163±8 º 
155±10 º 

23.7 
4.8 

0.02 
0.12  

5º 
10º 

0.60 4.1 
0.04  

1s2h/1go4 190 4.9 13 3 170±7 º 
130±6 º 

18.4  
4.3 

0.03  
0.14  

12º 
2º 

0.80 
  

6.7 
0.03  

1ram/1lei 273 3.0 5 2 170±5 º 
146±8 º 

0.8  
0.6  

0.74  
0.98  

3º 
1º 

0.94 
  

6.2  
0.02  

3dap/1dap 320 4.2 4 3 162±4 º 
155±5 º 

4.2  
1.6  

0.14  
0.37  

4º 
2º 

0.94 
  

1.1  
0.003 

1rkm/2rkm 517 3.3 7 4 160±5 º 
150±7 º 

0.9  
0.4   

0.66  
1.48  

3º 
10º 

0.96 
  

8.5  
0.02 

Nres – the total number of residues in the structure.  

rMSD – root mean square deviation (Å) between open and closed conformations. 

Fold – the fold definition for the structure.  

Total Motifs – the number of motifs that exist in the structure. 

Sig – the number of β-motifs that have motif scores > 10 for the ensemble of structures. 

Strands/Nres - Number of strands and residues in the major β-sheet motif displaying correlated motions 

θtwist / θbend - Bending and twisting angles in MD simulations for the major β-motif present in the structure (see definition above) 

λtwist / λbend - Bending and twisting eigenvalues (Å2)in MD simulations for the major β-motif present in the structure 

Κtwist/ Kbend- Bending and twisting stiffness constants (kcal/mol. Å2) in MD simulations for the major β-motif present in the structure  

∆twist / ∆bend - Change in bending and twisting angles associated to the conformational change for the major β-motif present in the 

structure between open and closed conformations 

O10– Overlap of the X-ray transition with MD first 10 PCA modes (Eq.10) for the deformation of the major β-motif along the 

transition coordinate. 

E10– Elastic energy (kcal/mol, Eq.13) for the deformation of the primary-motif along the first 10 PCA modes to approach the target 

structure. 

 
Overall, this suggests that the correlations accompanying sheet twisting and bending in 
the lowest-frequency modes may have a functional role in conformational transitions, 
acting as a mechanism to propagate information and store energy across protein 
backbones. We predict that the correlated motions described here are fundamental to 
the geometry of β-sheets but will also be present in other secondary structure 
elements where weak interactions are important. Our results have established that 
these β-sheet correlated motions provide mechanistic pathways that allow functional 
transitions and transfer of energy between distal sites and indicate that the local and 
long-range correlated motions described here, which are derived from the geometry of 
the β-sheets and of the requirement for maintaining the hydrogen bond patterns, can 
be crucial for protein function.  
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5.4 Complex systems theory and protein network description  
In this section of the thesis, we explore the relation between the network properties of 
proteins and its dynamics, using the Elastic Network Model (ENM) approach. Being 
residue network topology the key determinant of the normal modes, it provides a 
quick view of the dynamical impact of any change in the residue interaction patterns. A 
highly efficient elastic network model in internal coordinates, ic-ENM (Lopéz-Blanco et 
al., 2011), has been used to explore the relationship between network topology and 
near-equilibrium motions of proteins. The extreme computational efficiency of ic-ENM 
allows us to explore the entire parameter space for different distance-dependent 
functions used to define the network of residue-residue interactions. Comparing the 
network-dependent ic-ENM deformation modes with those obtained from atomistic 
MD simulations, from the analysis of NMR ensembles, and from the analysis of 
biologically relevant conformational transitions, we found robust connections between 
network topology and protein flexibility, which guide us in the refinement of the ic-
ENM model. The comparison among the near-equilibrium motions predicted by ENMs 
and the flexibility from MD simulations, X-ray and NMR conformers, shows a striking 
regular pattern for all examined proteins, which can be correlated to intrinsic 
properties of the network. These findings point out certain topological properties are a 
universal feature driving protein dynamics, and can provide a rational basis for ENM 
parameterization. 

Protein motions are encoded by network topology 
During the last years, the theory of complex networks has been applied to 
phenomena ranging from statistical mechanics or social sciences to systems biology 
(M. E. J. Newman, 2003; Strogatz, 2001). Eventually, almost any many-bodies physical 
system can be modeled as a network: the elements of the system are represented by 
nodes and the interactions between them by links; within that framework, network 
theory can explain global properties emerging from the local interactions – such as 
information transfer, communication processes or robustness to perturbations. Graph 
and network theories have been used to describe several properties of proteins, for 
example residue fluctuations from packing densities (Halle, 2002), or to analyze 
protein rigidity (Jacobs, Rader, Kuhn, & Thorpe, 2001) or allosteric communication 
processes (del Sol, Fujihashi, Amoros, & Nussinov, 2006; B. Ma, Tsai, Haliloğlu, & 
Nussinov, 2011). It is also well described the correlation between protein topology 
properties and the folding behavior of proteins (Ganesh Bagler & Sinha, 2007; 
Dokholyan, Li, Ding, & Shakhnovich, 2002; Vendruscolo, Dokholyan, Paci, & Karplus, 
2002). However, the possible link between network properties and the dynamical 
behavior of proteins has not been investigated. As we have seen in Chapters 3-4, the 
motions of a protein derived from ENMs are mainly dependent on the protein shape, 
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as defined by the topology matrix of residue-residue contacts.  We found that normal 
modes depend strongly on the local backbone connectivity but at the same time, are 
modulated by long-range contacts (Orellana et al., 2010). This raises the following 
questions: Why is there such dependence between the properties of the network and 
the dynamics? Are there some intrinsic topological features that can explain these 
observations?  To answer this, we have exhaustively explored the impact of network 
properties on protein collective motions, thanks to the use of an ultra-fast ENM-NMA 
implementation in internal coordinates (ICs), iMod, developed by Chacón and 
coworkers (Lopéz-Blanco et al., 2011). The ICs are defined by the canonical backbone 
dihedral angles, φ and ψ – with the exception of the first φ and the last ψ angles of the 
chains – whereas the remaining angles and all covalent bond lengths are fixed to keep 
the backbone structure. In this scheme, the Hamiltonian describing the potential 
energy to displace the protein network from its equilibrium conformation is as follows: 

{ = ∑ |}~7�}~ − �}~� :�}<~ + � ∑ (�� − ��� )��                                   
(Equation 5. 7  Hamiltonian in dihedral space) 

The first term is the elastic energy due to the spring interactions between all residue 
pairs i and j, where Kij is the spring or force constant connecting them, dij is the 
distance and the superindex 0 denotes the equilibrium conformation. The second term 
represents an extra-torsional stiffness, s, related to each dihedral angle, θα, in order to 
avoid the tip effect, i.e. irrational low-frequency modes caused by floppy regions (M. 
Lu, Poon, & Ma, 2006). Within the NMA approach (Case, 1994; Nobuhiro Go et al., 
1983), the energy E is used to build the hessian matrix of second derivatives, H. Then, 
the protein motions are decomposed by solving the generalized eigenvalue problem: 

��� = �|���     k=1... N                     (Equation 5. 8 Generalized Eigenvalue Problem) 

Where λk is the eigenvalue associated with the k-th normal mode ek, and T is the 
kinetic energy matrix of the system; the eigenvalues are related to the frequencies, ωk, 
as λk = (2πωk)2. As in Cartesian NMA, the lowest frequency modes represent the 
directions of motion in the IC space, whereas the eigenvalues describe their amplitude 
of vibration after proper conversion. Note that the low frequency modes computed by 
NMA in internal or Cartesian coordinates (CCs) are almost identical, with deformation 
spaces displaying near perfect overlaps which demonstrate that CC modes correspond 
to dihedral angle motions (Kitao, Hayward, & Go, 1994). We use again a coarse-grained 
model where each residue is represented by the position of the C-alpha carbon (see 
details in (Lopéz-Blanco et al., 2011)). 
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Exploring the parameter space for distance-dependent functions 
In order to perform a systematic exploration of the impact of the topological 
properties on the dynamics, we build a wide range of networks using a smooth sigmoid 
function of the distance, dij, between each residue (node) pair i and j to set the 
corresponding force constant, Kij (the weighted link): 

 

 

- if dij<Rc, then 

 

- if dij≥ Rc, then Kij= 0                                  (Equation 5. 9 Distance-dependent test function) 

 

This function is governed by four parameters: 

I) An equilibrium distance, d0, which sets the inflexion point of the function, and thus 
decides the extension of local versus long-range contacts; we considered values 
ranging from 1 to 9Å, about half to twice the physical value of the average shortest 
Cα-Cα distance linking two neighbor residues (3.8Å). 

II) A power term, p, that determines the slope of the function around the inflexion 
point, ranging from 1 to 20: the increasing power term sets the rate at which long-
range and short-range interactions are distinguished around the equilibrium point; 
at sufficiently higher p the exponential tends towards a discrete cutoff function. 

III) The constant C, that determines the maximum stiffness of the links, and thus the 
magnitude of the eigenvalues, but does not change the variance profiles – i.e. the 
way in which variance is distributed across the different modes. For the sake of 
simplicity, we set a test force constant of 1 kcal/mol.Å2.  

IV) The cutoff value (Rc), which defines the point in which the tails of the curves are 
set to zero. We explored values from 4 to 16 Å but will focus the discussion on the 
results obtained with an average standard value of 10 Å. 
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In Figure 5. 9 the different families of curves, covering almost the entire distance-
dependent functions space, are displayed together with some networks they give rise 
to. Note that each curve is related to a particular network structure, but two main 
variables decide most of the topology of the interactions: the distance at which 
neighbors and non-neighbors are distinguished, which is determined by the inflexion 
point d0 (Figure 5. 9, top) (the greater it is, the larger is the number of long range 
contacts included), and the sharpness of this transition, which depends on the power 
term, p. At low p values, the transition from local to nonlocal is smooth, whereas 
higher p values yield cutoff-like functions (Figure 5. 9, bottom). At middle p values (5 to 
8), more long-range contacts are included as d0 increases, giving rise from close-
neighbors-only to fully connected networks (Figure 5. 9, top). On the other side, when 
both p and d0 are low, networks tend to be fully connected too. The increase in p value 
restricts the number of long-range contacts included, leading again to nearest-

 

Figure 5. 9 Residue networks described by different force-constant function families 
Different families of force constant functions (left), covering almost the entire distance-dependent space, are 
displayed together with some networks they give rise to (right) for a representative protein (1lst) at cutoff=10.  
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neighbors networks at low d0 and high p networks (Figure 5. 9, bottom). Finally, the 
cutoff value Rc controls the length of the curve tail, i.e. the distance at which contacts 
are set to zero. At the wide cutoff range explored, the cutoff annihilates from close 
neighbors (4Å) to long-range contacts (16Å), with different impact on the network 
structure as determined by d0 and p, as well as the network size set by N.  

Network connectivity description 
Here we consider a protein as a network composed of nodes (the protein residues) 
connected by edges (the spring constants) of strength dependent on the physical 
distance between them. There are a number of intrinsic properties that can be 
computed to analyze the structure of a network in terms of topology, i.e. the way 
nodes are connected to each other. In graph theory, the connectivity of a network is 
usually defined by the so-called adjacency matrix, Aij, an NxN matrix composed by 
elements aij=1 if the nodes i and j are connected, and aij=0 otherwise; in the case of 
simple and undirected graphs, all diagonal elements are zero (aii=0) and this matrix is 
symmetric (aij=aji). Thus, by setting a distance cutoff, the topological structures of 
residue networks can be easily represented by the topology or Kirchhoff matrix, Γij, 
which is equivalent to an adjacency matrix and can be analyzed using general network 
properties (Antal, Bode, & Csermely, 2009; G Bagler & Sinha, 2005; Di Paola, De Ruvo, 
Paci, Santoni, & Giuliani, 2012; Vishveshwara, Brinda, & Kannan, 2002).  

However, a more realistic approach consists in substituting the binary topology matrix 
by a weighted graph (Barrat, Barthélemy, Pastor-Satorras, & Vespignani, 2004; M. E. J. 
Newman, 2004), assigning a value to each link. In a weighted network, a strongest 
connection between a pair of vertex/nodes/residues implies a greatest probability of 
contact or information transmission between them, and regarding flexibility, more 
correlated motions. Accordingly, we can naturally consider the stiffness matrix, Kij, 
defined in each point of the (p, d) space, as a weighted network graph, instead of the 
typical 1/0 contact matrix. Here, the weight wij of an edge linking residues i and j 
represents the strength of the pseudo-bond coupling their motions, kij. As a 
consequence, all the metrics to analyze the network structure must be redefined in 
terms of a weighted distribution. We will consider the following network properties: 

1) Average shortest path (characteristic) length, <l>, and average diameter <d>: in 
general, the distance between two nodes of a network is given by the length of the 
shortest path between them, lij, that is, the minimal number of edges (bonds) that 
need to be crossed to go from node i to node j  (Dijkstra, 1959; M. E. Newman, 
2001). In an elastic network, the shortest/strongest the path the fastest the 
information transfer (correlation of motions) between them. Taking the average of 
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all the shortest paths , lij, which connect all residue pairs, we can compute an 
average or characteristic length, <l>, of the entire protein network: 

 

V = 〈�〉 = 2G(G − 1) � � ���
G

� =�+1
G−1
�=1  

   

  (Equation 5. 10 Average Length) 

 

which roughly measures the speed or efficiency of information diffusion between 
residues. From the shortest paths it is possible also to calculate the average 
diameter, <d>, of the network, i.e. the largest shortest path length between a pair 
of residues in the network.                                                                               

2) Average clustering coefficient, <c>: The clustering coefficient measures the local 
group cohesiveness. In real networks, the existence of a link between nodes i and j 
and between nodes i and k often implies a link between nodes j and k. In other 
words, the clustering coefficient of a node i, ci, measures the probability that its 
neighbors are also neighbors of each other; it equals 1 if a node is the center of a 
fully interconnected cluster, and equals 0 if the neighbors of a node are not 
connected to each other. In order to characterize the network as a whole, we 
consider the average clustering coefficient over all the nodes: 

 

� = 〈>〉 = 1G � c�
G

�=1                                             

(Equation 5. 11 Average Length) 

 

That expresses the cohesiveness, i.e. the global density of interconnected vertex 
triplets in the network. As before, we take into account a weighted definition of ci, 
which considers the strength of the pseudobonds. 

3) Average assortativity or assortative mixing. The coefficient of assortativity (M. E. 
J. Newman, 2002) represents the tendency of nodes to connect to others with a 
similar degree or number of connections. It is computed as the Pearson correlation 
coefficient (r) between the connectivity degrees of each pair of linked nodes, which 
takes values between −1 and 1. Positive values of r indicate a correlation between 
nodes of similar degree, while negative values indicate correlations between nodes 
of different degree. When r = 1, the network is said to have perfect assortative 
mixing patterns, while at r = −1 the network is completely disassortative. In terms 
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of protein structure, an assortative structure indicates a trend for hubs (highly 
connected residues, such as the ones in the protein core – inside globular domains, 
or structural elements) to connect preferentially to other hubs.   

 

 The above global connectivity properties of the residue weighted networks were 
computed using in-house developed code and the software radatools: 
http://deim.urv.cat/~sgomez/radatools.php developed by Arenas, Gomez et al. 
(Arenas, Fernandez, & Gomez, 2007; Gomez, Jensen, & Arenas, 2008). The correlation 
between the computed flexibility overlaps (p, d) maps and network properties (p, d) 
maps was measured by Pearson Correlation coefficients, which range from -1 (perfect 
negative correlation) to +1 (perfect positive correlation). 

   

 
Figure 5. 10 Network assortativity measures the trend of a node to connect to others similar.  
 
In a assortative network (left) the highly connected nodes or hubs connect to other hubs, whereas in a 
disassortative network they connect preferentially connect to low-degree nodes (right)  
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The similarity between ENMs and protein flexibility depends on network 
properties 
We performed ENM NMA calculations in internal coordinates for the same MD, X-ray 
and NMR protein benchmarks described in Chapter 3, but extended including longer 
MD simulations, as well as recently solved NMR and X-ray structures spanning a higher 
size range. Each calculation was repeated considering different network definitions, as 
determined by the inflexion point (d0) and the power term (p) in the distance function. 
Eigenvectors obtained for each protein and each combination of parameters (a point in 
the (p, d) map) defined an intrinsic deformation pattern, which was then compared 
with deformation patterns derived from; i) MD ensembles, ii) NMR ensembles, iii) 
conformational transitions in PDB. In the first case we center our analysis in the first 10 
eigenvectors from both ENM and MD simulations computing the similarity index (γ10). 
For NMR ensembles (always much smaller than the MD ones) we limit the comparison 
to just the first three eigenvectors (γ3). Finally, in the case of experimentally know 
transitions, which are described by a single displacement vector, we determine the 
overlap between this vector and the 5 lowest-frequency modes eigenspace (γ5), which 
usually covers most of the conformational change. The best-overlapped vector pair 
(γmax) is also analyzed. 

By changing in a systematic manner p and do we can scan virtually all the reasonable 
network definitions for a given structure (see Figure 5. 9), and check how the similarity 
between normal modes and a reference flexibility source changes with network 
topology. In general, the lowest similarities (around 0.6-0.7) are observed between 
ENMs and MD samplings (Figure 5. 11A, note the blue-black maps), followed by X-ray 
closed conformers (Figure 5. 11B) and ENM/NMR ensembles (values near 0.7 in some 
regions, Figure 5. 11C), while the highest similarities are obtained when ENMs 
eigenvectors are compared with X-ray experimental transitions from open states, with 
nearly homogeneous maps with values above 0.8 for all network structures (Figure 5. 
12). These differences in maximal overlaps can be explained by the different timescale 
of the motions sampled by each one of the methods investigated. Clearly, longer time 
scale movements, as those involved in experimental transitions, are those better 
reproduced by ENMs, followed by NMR ensembles and MD simulations, which tend to 
sample more local motions. 
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Figure 5. 11 Dot product (p, x0) space between NMA and different flexibility sources.  
Note the square-hyperbola transition between a region of low overlap and a region of high overlap. A) MD 
similarity for the model protein 1csp. B) X-ray bound/unbound pair. Dot Product between the first five normal 
modes of the open structure 1lstA and the vector driving the transition 1lst -> 2lao C) NMR ensemble similarity for 
the small protein 1c89. Code color: black=0.5 to yellow=0.8. 

However, in spite of the different flexibility sources examined, and the different 
maximal similarities they reach, we found rather homogeneous gradients in (p, d) 
overlap maps. As can be seen in Figure 5. 11 and Figure 5. 12 square hyperbola-like 
boundaries between high and low overlap regions appear in the virtually all systems 
studied following a function of the kind:  

� ∝ I0 + I1+I    
 

(Equation 5. 12 Hyperboloid boundary) 
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Where d is the optimal equilibrium distance, p is the power term at the boundary and 
p0 its intersection with the axis at d=0 (with values ranging typically from 4 to 10 
depending on protein size). These boundaries mark transitions between high overlap 
(over 0.7- 0.8, in orange-yellow) to low overlap (below 0.5, in black) regions in the (p, 
d0) space. In general, the differences in the maxima and minima found by systematic 
exploration of the parameter space are more relevant in the case of X-ray conformers, 
especially from the closed states (Figure 5. 12, 2nd column). 

 

 
Figure 5. 12 Dot product (p, x0) space between NMA and transitions from open or closed conformers.  

Examples of extreme behaviors in networks for transitions from open (left) and closed (right) states (cutoff=10, 5 
eigenvectors).  a) 2lao to 1lst b) 5at1 to 8atc  c) 1ckmB to 1ckmA 

 



170 
 

Then, we examined if and how the distribution of the similarity across the (p, d) maps 
is related to the intrinsic properties of the network. We found that most protein 
structures display analogous gradients for the examined topological properties when p 
and d change, and that therefore these properties are directly related with the ability 
of a network to trace biological motions, with correlations between the dot product (p, 
d) maps and topology (p, d) maps with absolute correlation coefficients often over 0.5. 
We found that, for most protein networks, the shortest paths oscillate between 0 and 
6 links (Rc= 8) and between 0 and 3 (Rc=10), whereas the diameter oscillates between 0 
and 10 (for Rc=8) and 0-5 (Rc=10). On the other hand, the clustering coefficient 
oscillates between 0.1 and 0.6 whereas assortativity ranges widely from 0.1 to 1. As we 
expected, the maxima and minima of these topological properties appear to be 
strongly related with the distribution of dot products and thus with the ability of the 
explored networks to trace protein flexibility.  

 

Figure 5. 13 Comparison between dot product distribution and network properties for a representative case in a 
X-ray transition from the closed state (1dap). 
Note how highest overlaps (A) are related to small network diameters (2-6) and average paths (< 3) connecting the 
residues (B), and high assortativity values (0.9) and low clustering coefficients (<0.2). 
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In virtually all proteins examined, the network properties display very significant 
correlations with protein flexibility (p, d) maps. We found that in most cases, short 
average path lengths, small diameters and low clustering coefficients are significantly 
associated with dot product maxima, whereas assortativity coefficients display the 
opposite trend. For example, in a typical X-ray transition such as 1dap ↔3dap, the 
lowest frequency space displays the above mentioned circular pattern with maximal 
overlaps at the lower-right corner (Figure 5. 13, A). Inspection of the network 
properties (p, d) maps for network properties reveal similar hyperbola-like boundaries, 
with maxima or minima at either side. The overlap maxima display strong negative 
correlations with cutoff-dependent properties such as network diameter and average 
path (in the order of -0.8) (Figure 5. 13, B). On the other side, cutoff-independent 
properties show sharp transitions at the lower right corner of the (p, d) maps, which 
also correlate with overlap maxima: whereas clustering coefficients also display a 
negative correlation (-0.58) with dot product maxima (Figure 5. 13, C left), assortativity 
strongly correlates (+0.55) with the region of best overlap between ENMs and the 
conformational change (Figure 5. 13, C right). The best representation of protein 
flexibility is achieved in networks with assortativity coefficients near 1 and very low 
clustering coefficients near 0 (lower right corner in the corresponding maps), and a 
very compact topology characterized by small network sizes (2-6 links) and short paths 
(< 3 links). In a protein dynamics system, a short average path length and a small 
diameter indicates that residues are connected at a very local level. This suggests that 
a fast transmission of dynamical correlations across the C-alpha network is needed to 
capture experimental flexibility, suggesting also a greater sensitivity to allosteric 
regulation. On the other side, the requirement of low clustering coefficients, which 
measure the cohesiveness and density of contacts, indicates that although strongly 
connected at a local level, residue networks must be sparse enough to allow for a good 
description of protein motions. The assortativity coefficients close to 1 indicate the 
preference of highly connected residues (hubs) to connect to other hubs. Overall, this 
suggests that a highly selective connectivity between hubs (core residues at each 
structure element), but not high local cohesiveness (which could block structural 
motions), is required for the network to capture conformational changes. These results 
are in agreement with the findings exposed in Chapter 3, which suggest an important 
role for local connectivity in the description of functional motions. 
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5.5 Summary    
We have seen in this Chapter several applications of the ED-ENM method to sample 
local motions and large-scale transitions. We have developed a method to trace 
physical pathways between different conformational states using a Langevin Dynamics 
implementation of the ED-ENM potentials biased by a Maxwell Demon. We also 
present an alternative implementation where ED-ENM modes are used to bias 
atomistic trajectories and explore more efficiently the conformational space. Then, we 
present a detailed study in which the hybrid Langevin/ENM method is used to analyze 
in depth the intrinsically encoded correlated motions in beta-sheets structures. We 
show that these local motions mediate twisting and bending of these structural 
elements which can be propagated across the backbone to trigger larger scale domain 
rearrangements. Finally, we further study the relations between the network 
properties of the backbone topology and the dynamics of proteins. 
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“Computers are incredibly fast, accurate, and stupid: humans are incredibly slow, inaccurate 
and brilliant; together they are powerful beyond imagination” 

Albert Einstein 
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Chapter 6 Conclusions and future frontiers: 
From physics to medicine?    

In this final part of the present thesis, we will summarize and discuss briefly the main 
results obtained and their relevance for the field of protein dynamics: from the 
interface with chemistry and physics (Chapter 3), the ultimate applications of 
theoretical predictions in biomedicine (Chapter 4) or the connections with complex 
networks theory (Chapter 5). A final personal view is given on the challenges in the 
simulation field for the upcoming years. 

6.1 Atomistic versus coarse-grained simulations: sampling 
conformational landscapes. 
As we saw in Chapter 3, the principal motions of a structure are strongly encoded in 
the backbone, nearest-neighbors covalent contacts. We have also seen that these 
shape-encoded motions are very similar irrespective of the source of flexibility: from 
theoretical methods such as ENM or ED, to empirical data from X-ray and NMR 
ensembles; as a rough estimation, one can say that all of them agree around 50-70% in 
the directions of the collective motions. The agreement between coarse-grained and 
atomistic, experimental and theoretical modes is very remarkable in proteins where 
large conformational rearrangements of structural elements occur. The agreement 
between MD and ENMs in the collective motions strongly demonstrates that coarse-
graining is indeed an excellent alternative to guide atomistic simulations. Although to 
dissect the fine details of conformational transitions and protein mechanism atomistic 
simulations are clearly decisive, coarse-graining can help to focus on the interesting 
regions of the energy landscape. As a recent review by Gregory Voth envisions 
(Saunders & Voth, 2013), coarse-grained simulations will be the best-suited starting 
point to make sense of biological data and guide computationally demanding long-
timescale MD simulations. A striking example of convergence of coarse-grained and 
atomistic predictions is the HER receptor, where near-microsecond long MD 
simulations sample almost perfectly the predicted normal modes. We have also seen 
in Chapter 4 that the non-covalent, long range interactions (the out-diagonal contacts 
in the topology matrix) which connect the interfaces between distant structural 
elements also play a key modulatory function in the soft motions. In fact, a small 
perturbation in these contacts can shift dramatically the accessibility (i.e. the 
energies/frequencies) of the soft modes– making easier for example, to explore rare 
configurations, or a wider region in the conformational landscape, in faster timescales.  
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.  
Figure 6. 1 A paradigm for multiscale problems. 
Combining coarse-grained and atomistic simulations to understand biomolecular phenomena and connect 
simulations and experiments. The development of powerful coarse-grained approaches can help to focus the 
computationally-expensive atomistic simulations and connect data from different scales to unveil complex 
biological mechanisms. 

Published in: Marisa G. Saunders; Gregory A. Voth; Annu.Rev.Biophys.  2013, 42, 73-93. 10.1146/annurev-biophys-083012-130348  

6.2 Disease mutations: a key to uncover protein mechanisms? 
As we saw in Chapter 4, the natural, collective motions of a protein are strongly 
encoded in its overall shape. However, we have also seen that mutations hitting at 
sensitive points, such as interdomain hinges and interfaces, can drive dramatic 
changes in the near-equilibrium dynamics. What’s the meaning of such weakness in 
control proteins, which play highly delicate roles in the cell, such as the EGF-receptor? 
Multidomain sensor proteins must clearly signal cell events that require a complex 
modulation of which functional surfaces are going to be exposed at every moment. 
Precisely, these sensitive regions are often the target of environmental cues such as 
ligands, whose binding can drive conformational changes. Mutations targeting control 
sites may therefore shift the equilibrium between different structural states, which 
may result in protein malfunction or deregulation. In other words, mutations at 
sensitive regions can perturb the sampling of the available conformational space. If a 
particular structure has evolved to perform a given transition upon ligand binding, a 
mutation can favor the same shape-encoded movements in the absence of triggering 
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signals. The sensitivity of such structures, required for signaling, becomes a weakness 
exploited by cancer cells, which undergo fast microevolution processes which favor 
those cells harboring growth and survival promoting mutations. This is particularly 
relevant in the case of multidomain proteins. As we have seen in the case of the HER1 
receptor, a simple point mutation targeting non-covalent bonds in a critical interface 
can accelerate the intrinsic dynamics allowing a structure to sample the 
conformational space in a much faster timescale, revealing transitions that can elude 
even microsecond-long simulations. This finding brings the following question: Could 
be use mutations as landmarks to sample more efficiently the conformational space? 
Instead of performing blindly long microsecond simulations, a faster way to explore 
exhaustively the possible configurations of a given structure could be to simulate 
mutations that increase the local flexibility at critical points (interdomain/intermodular 
hinges and surfaces), in order to highlight the less visited regions of the conformational 
landscape.  

 

6.3 Summary and conclusions of this thesis  
As a final summary, the main findings of this thesis are the following: 
 

1. Collective dynamics can be described by coarse-grained methods, and specially, 
by ENMs, which give results of an accuracy comparable to MD regarding large-
scale flexibility 

2. As ENMs demonstrate, protein collective dynamics is shape-encoded in the 
nearest-neighbor covalent connectivity of the backbone that dictates the fold; in 
other words, it depends on the arrangement of large structural elements  

3. Long-range contacts play a critical role governing the accessibility of the different 
large-scale motions available for a particular structure  

4. These critical contacts can target the surfaces between different structural 
elements, and upon mutation, shift dramatically the essential movements; since 
they connect the different structural elements, they can block or allow different 
motions and thus restrict the flexibility space 

Although protein dynamics is a challenging problem, most available methods, 
experimental and theoretical, seem to agree in one point: that the large-scale motions 
of a structure are largely shape and topology dependent. This unity of results 
demonstrates that research is evolving in the correct direction, and that discrepancies 
are not as relevant as it may seem. Experimental and theoretical approaches are telling 
us that the landscape of motions available for a structure is clearly limited and 
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dependent on his shape. The challenge is to distinguish which are the physical ones, 
and among them, those selected by evolution, which can also play sometimes with 
randomness. Coarse-grained approaches should not be considered a minor approach 
compared to atomistic simulations; on the contrary, are well-suited to undertake 
problems in the length scale where conformational changes occur. However, atomistic 
simulations are undeniably needed to sort out the detailed mechanisms and the 
energies involved in these processes.  
 

6.4 A personal view: bridging the gap between scales 
The Award of the Nobel Prize in Chemistry this year to the founders of the 
biomolecular simulation, Martin Karplus, Michael Levitt and Arieh Warshel, 
represents an important and necessary recognition to our field from the research 
community. In 1967, Levitt and Warshel first designed a computer program that used 
traditional, Newtonian physics to perform energy minimization of protein structures, 
the CFF (Consistent Force-Field), which was later used by Karplus and coworkers as a 
launching point for the historical first molecular dynamics simulation of a protein, 
published ten years later (See a nice review in (Levitt, 2001)). Since the bare 3 
picoseconds of BPTI simulated by McCammon, Gelin and Karplus (J A McCammon et 
al., 1977) to the millisecond dynamics by the Anton Supercomputer (Shaw et al., 2010), 
structural bioinformatics has come a very long way. Although being firmly rooted in 
rigorous physical laws – or just because of that – simulations were constrained to very 
small timescales of apparently little biological significance, and therefore have not 
been considered as scientific tools with the same category as “real” (wet-lab, physical 
or material) experiments in Life sciences; computations were for many years 
considered “second-class” evidence by most experimentalists. Now, as we approach 
millisecond scales and start to be able to deal with huge systems, the situation is 
changing and simulations start to occupy an honorable place in Chemistry and Life 
Sciences. 

I think Science should be a table with three interconnected legs: theory, simulation and 
experimentation. Simulations are indeed the most rigorous bridge – a quantitative one 
- between an experiment and any theory behind. However, as the order of magnitude 
and the complexity of a system increase, it is true that more and more difficult 
becomes the modeling and validation by simulations. For this reason, biology has 
escaped so far from the rigorous approach of physics and chemistry, and actually has 
done quite well using mostly qualitative models – the pervasive boxes and arrows, 
“cause-effect” schemes that almost seem to substitute the real things everywhere. As 
the polemic and funny paper by Yuri Lazebnik in Cancer Cell criticized, “Can a biologist 
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fix a radio?” (Lazebnik, 2002), most biologists elude the hard-science quantitative 
approach because of an irrational fear of Mathematics, and are happy accumulating 
massive data with little rational behind: 
 
“I started to contemplate how biologists would determine why my radio does not work 
and how they would attempt to repair it….Eventually, all components will be cataloged, 
connections between them will be described, and the consequences of removing each 
component or their combinations will be documented. This will be the time when the 
question, previously obscured by the excitement of productive research, would have to 
be asked: Can the information that we accumulated help us to repair the radio? “ 
 
During the last century, the development of molecular biology and structural 
techniques has provided a tremendous quantity of data that requires a rational 
framework and at the same time, will allow us, for the first time, to unveil the links 
that connect observations from very different scales of Life: from the molecular level, 
to the cell, tissue and organism scale. Up to date, simulations usually served only as a 
complement to experiments in the field of structural biology. However, as the 
increasing computational power is allowing us to reach the biologically relevant scales, 
the situation will revert, and simulations can start to suggest novel hypothesis and 
guide experiments. By pushing the limits of simulation techniques, we can begin to 
envision and construct rational and quantitative models from the growing amount of 
biological data. From structural bioinformatics to systems biology, probably in the next 
and exciting years, we will be able to dare, for the first time, to explain how the human 
body works and how the normal function is perturbed by disease down to the 
molecular detail. And perhaps we can start to repair radios… 

 

Figure 6. 2 The Nobel Prize in Chemistry 2013. 
The Nobel committee this year has recognized the founding fathers of computational structural biology 
back in the 70s. Martin Karplus with his PhD advisor Linus Pauling (left) Arieh Warshel (center) and 
Michael Levitt (right). 
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