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Preface
While the results of this dissertation were produced during the PhD Pro-
gram of Biomedicine of Universitat Pompeu Fabra and could be broadly
classified as basic biology research, one of the main results has been the
development of software for the analysis of High Throughput Sequencing
(HTS) data. Because of this, before introducing the work of the thesis I
will like to define where it stands in the scientific spectrum, and make some
personal observations.

Bioinformatics and Computational Biology have evolved from being simply
popular terms to fully grown disciplines that name whole University depart-
ments. However, up to date, there seems to be a confusion on what exactly
Bioinformatics is, and the scientific community seems to struggle with the
difference between Computational Biology and Bioinformatics. The greater
the confusion, the more popular these terms have become, to the point when
the United States National Institute of Health (NIH) stepped in, defining in
2000 “Bioinformatics” as:

Research, development, or application of computational tools
and approaches for expanding the use of biological, medical,
behavioral or health data, including those to acquire, store, or-
ganize, archive, analyze, or visualize such data.

This broad definition officially made Bioinformatics an umbrella word to
define any department in the life sciences using or producing software as
a tool for research. This will include researchers traditionally in the fields
of Evolutionary Biology, Genetics, Genomics, Proteomics (and any other
-omics field), Systems Biology, Ecology, Molecular Biology...

In my personal opinion, the reason why this confusion persists is because
bioinformatics may be a bit too broad to describe a field of research. I
suspect that the tendency to define bioinformatics as a field comes from the
considerable difference in expertise required for the usage of these particular
tools: experimental laboratory training, or wet lab, compared with software
usage and development training, or dry lab.

While it is obvious that the tools and the expertise required to operate a wet
lab or a dry lab are significantly different, there is no real reason to differ-
entiate researchers that use computers and software from the rest, the same
way that it does not make sense to separate researchers that use different
animal models to study the same problem. Not only the use of computa-
tional and laboratory techniques are not mutually exclusive, they are also
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increasingly complementary. For example, in a standard High Through-
put Sequencing (HTS) experiment, both experimental and computational
tools and researchers are needed to successfully complete the standard, ba-
sic pipeline that all HTS projects share.

In consequence, I would like to define this thesis as part of the field of
genomics as defined by the World Health Organization the study of genes
and their functions, and related techniques, in the sub-field of Regulation
of gene expression. The technologies used and developed during this thesis
could still be broadly classified as bioinformatics techniques. In addition,
some of the techniques fall into the category of Algorithms and Software
Engineering.

Finally, I will like to end this section with a personal opinion. I fear that
the artificial segregation of researchers studying the same problems with
different tools in bioinformatics departments may create an artificial scien-
tific division. I insist that I have no other proof of this than my personal
experience in the field, but I worry that dry lab research groups are becom-
ing increasingly detached from wet lab groups, creating their own body of
knowledge through their own ecosystem of journals, and increasingly not
listening and reading what the “others” are doing. The ENCODE project
(one of the biggest genomics releases in years) and some of its media hyped
conclusions have produced some very bitter responses (See for Example
Dan Graur’s On the immortality of television sets: “function” in the human
genome according to the evolution-free gospel of ENCODE), this could very
well be a symptom of the tendency I am describing. I believe that this situ-
ation is ultimately harmful for the global scientific productivity.

x
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Abstract
High Throughput Sequencing technologies (HTS) are becoming the stan-
dard in genomic regulation analysis. During my thesis I developed software
for the analysis of HTS data. Through collaborations with other research
groups, I specialized in the analysis of ChIP-Seq short mapped reads. For
instance, I collaborated in the analysis of the effect of Hog1 stress induced
response in Yeast and helped in the design of a multiple promoter-alignment
method using ChIP-Seq data, among other collaborations.

Making use of expertise and the software developed during this time, I an-
alyzed ENCODE datasets in order to detect active genomic enhancers. Ge-
nomic enhancers are regions in the genome known to regulate transcription
levels of close by or distant genes. Mechanism of activation and silencing
of enhancers is still poorly understood. Epigenomic elements, like histone
modifications and transcription factors play a critical role in enhancer activ-
ity. Modeling epigenomic signals, I predicted active and silenced enhancers
in two cell lines and studied their effect in splicing and transcription initia-
tion.

Resumen
Las tecnologı́as High Throughput Sequencing (HTS) se están convirtiendo
en el método standard de análisis de la regulación genómica. Durante mi
tesis, he desarrollado software para el análisis de datos HTS. Mediante la
colaboración con otros grupos de investigación, me he especializado en el
análisis de datos de ChIP-Seq. Por ejemplo, colaborado en el análisis del
efecto de Hog1 en células de levadura afectadas por stress, colaboré en el
diseño de un método para el alineamiento múltiple de promotores usando
datos de ChIP-Seq, entre otras colaboraciones.

Usando el conocimiento y el software desarrollados durante este tiempo,
analicé datos producidos por el proyecto ENCODE para detectar enhancers
genómicos activos. Los enhancers son áreas del genoma conocidas por reg-
ular la transcripción de genes cercanos y lejanos. Los mecanismos de ac-
tivación y silenciamiento de enhancers son aún poco entendidos. Elemen-
tos epigenómicos, como las modificaciones de histonas y los factores de
transcripción juegan un papel crucial en la actividad de enhancers. Con-
struyendo un modelo con estas señales epigenómicas, predije enhancers ac-
tivos y silenciados en dos lineas celulares y estudié su efecto sobre splicing
y sobre la iniciacion de la transcripción.
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Chapter 1

Introduction

1.1 The state of the art in Software Engineering
for the life sciences

1.1.1 The Information Revolution

Scientific research, as many other professions, has been going through a
revolution because of information technologies, in particular data analysis
through computational means and online communication.

The Internet now allows for scientific publications to achieve global reach
at a fraction of the cost of the printing press. Without factoring in marketing
costs, publishing text and static images for a global audience only requires
an Internet connection and a publicly accessible server with little storage
(less than one Gigabyte, and a few Gigabytes of disk in the worst case sce-
nario). While the costs of maintaining a reliable and accessible server can-
not be ignored, this cost is trivial compared with paper printing for a global
audience.

The TCP/IP protocol and the modern computer both were designed and de-
veloped at first at universities and research institutions. According to Leiner
et al. the scientific community was also an early adopter of the new com-
munication technologies36

Without the scientific community the development and adoption of these
new technologies would have been impossible, but paradoxically, the com-
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munity is still heavily dependent on a publication and credit system that uses
editorial and distribution restrictions still attributable to the printing press.
Big organizational changes are slow. The bigger and better established the
organization is, the more challenging it is. This is the current case of Aca-
demic Publication.

The resilience of Academic Publication to change is not a new issue. In
1969, during the beginnings of ARPANET (one of the predecessors of The
Internet) this was already perceived as an issue by the community. As Leiner
writes36:

The beginnings of the ARPANET and the Internet in the uni-
versity research community promoted the academic tradition of
open publication of ideas and results. However, the normal cy-
cle of traditional Academic Publication was too formal and too
slow for the dynamic exchange of ideas essential to creating
networks

The cultural successor of this “open publication tradition” is the so called
Open Science movement, which is a loose term to define multiple initiatives
that aim to improve scientific publication and standards to allow easier ac-
cess of the public to research and improve the productivity and professional
standards of the scientific community.

1.1.2 The case of Software Engineering (SE)

The issue of Academic Publication becomes increasingly detached from the
scientific realities and needs when the main result of a research project im-
plies publishing software. This issue has recently been addressed by The
Science Code Manifesto (http://sciencecodemanifesto.org/). This manifesto
is a document endorsed by close to 1000 researchers worldwide (as of early
2013). According to the original author, it is inspired in both Open Source
and the Open Science movements. While I fully endorse the 5 main issues
raised by the manifesto (Code, Copyright, Citation, Credit and Curation),
for the scope of this dissertation I will focus mainly in Code and Credit, and
will make specific observations regarding the particular issue of Software
Engineering.

2
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1.1.3 Code

Recent studies have shown that scientists spend typically a significant
amount of their time developing software (around 30% or more). However,
90% or more of them are primarily self-taught15, therefore lack exposure to
software engineering common practices.

Software Engineering (SE) is the body of knowledge concerning the design,
implementation and maintenance of software, as well as testing and quality
standards27. This body of knowledge has been developed by Computer Sci-
ence departments and the private software industry and in most cases (with
some notable exceptions) it continues to be ignored by the majority of re-
search groups producing software in the genomics field. The quality of the
software published is dismal in many cases (if accessible at all)65. Basic
testing, quality assurance and usability practices common in the software
development industry (to the point that companies, no matter how small,
that do not follow them are not considered professional) are systematically
ignored. The simple statistics shown in Figure 1.1, published in Nature
News45, point out the systematic lack of basic SE training of scientists.

There is a variety of different and important issues regarding code standards,
I will try to briefly cover the main ones.

Object Oriented Programming

Object-oriented programming (OOP) is a programming paradigm that al-
lows for greater abstraction and modularity of code. The main concepts
are classes, which could be seen as “templates” or “blueprints” of their in-
stances (also known as objects) that are loaded into memory and interact
with other objects. A class can inherit functionality from another class or
from multiple classes, allowing for abstraction. Objects are supposed to ab-
stract the user from what is inside them through their methods, allowing for
modularity. OOP, while not an indispensable tool for many researchers, its
a useful framework for abstraction when programming complex systems. I
see OOP as a useful tool for some programming problems, but not like the
only way of doing so. The software I developed during this thesis work
follows OOP in some of its core functionality.

3
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Figure 1.1: Software development and scientists

Version Control Systems (VCS)

Version control systems (VCS) are programs that track and store changes
in a file or set of files. Software development using automated VCS can be
traced back to the seventies with SCSS in Unix systems5. Modern VCS can
be both centralized (with a central repository system) and distributed, where
every user of the system has a local repository and changes by participants
are periodically updated (merged). Common features of modern VCS are:

1. User access management

2. Source changes documentation

3. Delta compression (Storing only changes of files)

4. Networking capabilities

5. Efficient and controlled merging and branching

4
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6. Atomic operations (either a change in the repository succeeds com-
pletely or gets reverted)

Currently, releasing software under version control is not a requirement for
most scientific journals accepting software packages as the main product.
On the other hand, it is globally accepted by the software development com-
munity (both professional and amateur, close-sourced and open sourced) as
an essential tool.

While 1) might not be relevant to small science projects, the rest of the fea-
tures of these systems are relevant to every software project, including one-
person projects. It has been shown that software development productivity
increases up to 40% when VCS is used (without involving teamwork)6.

The reason why small science software projects are so common is also dis-
cussed in the Credit (and open source) section.

I want to further emphasize the benefits of VCS, even for one developer
projects. Documenting what changes had been made to the code, when and
why, can be crucial to spot a software error introduced months ago. Delta
compression allows for significant storage space saving (and help with file
order). Network capabilities makes easier accessing remote servers, serving
both as backup and syncronization between computers (like a workstation
and a laptop, for example). Merging and branching are useful for the single
developer for exploration of alternative branches of development, for exam-
ple like the usage of a library whose performance and reliability cannot be
fully determined until the program has been written and tested.

Not only software development benefits from version control. As anecdotal
evidence, this thesis has been written using a VCS called git23. Further-
more, sharing not only the final computer code to generate a result, but also
the evolution of such code leads to increased scientific transparency and
reproducibility.53

End User Software documentation

If it’s not documented it doesn’t exist

—Mike Pope, programming documentation writer (Microsoft,
Amazon)

5
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“Good software with poor documentation” is an oxymoron, since even
seemingly simple software (according to the developer) is rarely self ex-
planatory. Good documentation saves time to both users and developers,
since is needed not only to help users get their desired results, but also helps
developers not spend their time answering frustrated users. If a user fails
to understand how to use a piece of software, this software is useless to the
user. If this is the case for most users, the software is by definition mostly
unusable. The reason for a piece of software to be unusable can very well
be more technical (errors/bugs, too many resources needed, usability...), but
it doesn’t really matter if the end result (potential user lost) is the same.

Documentation starts in the code itself. Literate programming is an ap-
proach to programming proposed by Donald Knuth32 that encourages writ-
ing of code as understandable as possible together with technical documen-
tation. The next layer of documentation is comment documentation. Com-
plex and non self-evident lines of code should be documented with com-
ments in order to make it easier to come back and allow other developers to
access them. After this, documenting the functions, classes and modules in
a comprehensive way is necessary if the code is building a software library,
written to be reused in other programs. Finally, the end user documentation
is the documentation that explains to users how to use the software, doc-
umenting the program, making clear what options there are, what input it
requires and what output is expected from it.

Specially in scientific environments, a user of a piece of software can range
from someone that clicks one single Run button, to a programmer that is us-
ing a library of sub-routines for his own scripts. This is why documentation
needs to be tailored for the type of end user it is targeting.

The software I have developed during my thesis (Chapters 2 and 3) has both
an extensive user documentation and a library documentation. I also tried to
follow Dr. Knuth principles of literate programming and comment the code,
while I have to admit that I am not as disciplined in this topic as I would like
to be.

6
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1.1.4 Credit (and open source)

If programmers deserve to be rewarded for creating innovative
programs, by the same token they deserve to be punished if they
restrict the use of these programs.

—Richard Stallman, activist and founder of GNU open Source
foundation

Why is scientific software quality sub-par? Some possible reasons have
already been mentioned: Cultural inertia, lack of standards and training...
However, in my opinion the problem will persist until there is a clear and
quantifiable credit system for producing quality software; and more impor-
tantly, give incentives and recognition to researchers collaborating in (not
starting) open source collaborative science projects.

The open source model for software development, where a group of pro-
grammers join in the same software project and develop it together by shar-
ing the code, increases collaboration and is the perfect fit for the publicly
funded scientific software production enterprise. And while it is true that
most of the researchers publishing free software publish the code too, the
collaborative side of the open source movement is missing in most cases,
since most projects are undertaken by small research groups (with one sin-
gle programmer normally)

As an example, let’s consider recent developments in the task of mapping
short genomic sequences (36-100 nucleotides long) coming from HTS ex-
periments to a reference genome. The software tools that perform this task
are commonly called mappers. There are currently at least 75 mappers pub-
lished in peer-reviewed journals20. In the case of mappers for the specific
task of spliced junctions, the count is around 312. If some of the smaller
groups had some kind of incentive to participate in the improvement of al-
ready started, open-source mappers projects, these tools would be of greater
quality and make the task of selecting which one to use an easier endeav-
our. The problem is that small research groups need papers for survival, and
PhD students and Postdoctoral fellows need first author papers. As a result,
collaborating in open source projects is disincentivized by the publishing
system itself. This is a big challenge that if overcome, will dramatically
improve the quality standards of scientific software.

7
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1.1.5 Things are not that bad

I am sometimes told by my peers that I can be a bit of a pessimist, this is
why I will try to make an effort to end this section on a more positive note.
It seems to me that slowly but surely, things are changing for the better.
For example, current Marie Curie grants by the European Union encourage
the publication of code in a repository written for the publication of a pa-
per19. All digital journals like PLoS and BMC are rising in popularity and
there are new technical journals specialized in this topic, like the “Source
Code for Biology and Medicine” journal58. Also, open-source collaborative
platforms like Bioconductor22, and Galaxy24, while they do not explicitly
encourage collaboration between programmers and small research groups,
are in the right direction of collaborative software development.

8
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1.2 High Throughput Sequencing (HTS) for ge-
nomic regulation

1.2.1 DNA Sequencing

Scientific research is one of the most exciting and rewarding
of occupations. It is like a voyage of discovery into unknown
lands, seeking not for new territory but for new knowledge. It
should appeal to those with a good sense of adventure

—Frederick Sanger

Deoxyribonucleic Acid polymers (DNA) were established as the genetic
material by Avery et al. in 19447. In 1949, Sanger determined that the
sequential order of the nucleotides a particular chain of DNA nucleotides
in the insulin molecule was critical for its functioning56. After these two
discoveries, even before knowing about genomic transcription or the DNA
double-helix structure, a technique that will allow to determine a sequence
of DNA (or in other words, being able to perform DNA sequencing) became
one exciting problem waiting to be solved.

In 1975, Sanger and Coulston developed the first DNA sequencing tech-
nique, which they called plus and minus, using a reaction involving Es-
cherichia Coli DNA polymerase I57. In 1977 Maxam and Gilbert devel-
oped another technique (called Maxam-Gilbert) for the sequencing of DNA
based on chemical degradation of nucleotides instead of enzymatic activ-
ity44. The same year, Sanger et al. improved their enzymatic plus-minus
technique by adding dideoxynucleotide triphosphates as DNA chain termi-
nators. While Maxam-Gilbert chemical sequencing was also used, Sangers
dideoxy method became the most widely adopted method in the years to
come26.

Automation of DNA sequencing

Originally, the dideoxy method was a manual laboratory process that al-
lowed the sequencing of a single chain of approximately 100 DNA nu-
cleotides. Improvements in the technique, like the use of gel electrophore-
sis allowed for longer sequences (around 400 nucleotides) and greatly in-
creased productivity. This increase of productivity led to data management

9
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problems. As Clyde A. Hutchison III describes26 working in the seventies
on the bacteriophage psi genome:

Beginning with psiX, the management and analysis of sequenc-
ing data became a major undertaking. The original psiX data
was in the notebooks of nine different workers each concerned
with particular portions of the molecule. Michael Smith, on
sabbatical in the Sanger group, had a brother-in-law named
Duncan McCallum who was a business computer programmer
in Cambridge. He wrote the first programs to help with the
compilation and analysis of DNA sequence data (in COBOL).

Sequencing automation was first achieved in 1986 by a Caltech group to-
gether with Applied Biosystems61. After this, followed the expressed se-
quence tag (EST)1 approach to gene discovery, that reinforced the tendency
for logarithmic growth in sequencing (Figure 1.2)

While automation of sequencing can be seen now as an indispensable step
that modern genomics heavily relies on, it comes at a price. Large scale
sequencing meant the need of more sophisticated computation and statistical
analysis.

The Human Genome Project28 has been a critical hallmark for the history of
sequencing. It was probably one of the most publicised scientific achieve-
ments in the last decade, a competition between the public34 and the pri-
vate63 sectors of science, ending up in a disputed tie.

The project, in combination with competition, became again a driving force
of innovation in DNA Sequencing. From 1975 to 2001, the sequencing
capacity increased from a few hundred nucleotides up to the more that 4
gigabases that the human genome allows. The public awareness and force
of innovation in DNA Sequencing, combined with the experience obtained
by many scientists and the subsequent interest and funding in the field were
critical for the development of High Throughput Sequencing technologies.

1.2.2 High Throughput Sequencing

The first rule of any technology used in a business is that au-
tomation applied to an efficient operation will magnify the effi-
ciency. The second is that automation applied to an inefficient
operation will magnify the inefficiency.

10
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Figure 1.2: Technology and bigger genomes have been the main driving
forces of the logarithmic increase of DNA sequencing output/throughput
(Adapted from Hutchison 2007)26

—Bill Gates, Microsoft founder

The funding and interest on the Human Genome Project accelerated the
development of High Throughput Sequencing technologies (HTS), also
known as Next Generation Sequencing (NGS) and Deep Sequencing. HTS
is a set of technologies that differs from the classic Sanger methods because
of its high throughput and sequencing cost reduction40.

Many HTS platforms based on different approaches have been developed in
parallel. For example, 454 Sequencing is based on pyrosequencing technol-
ogy55, the SOLiD platform (developed by Applied Biosystem) is based on
Sequencing by Oligonucleotide Ligation and Detection and the Solexa/Illu-
mina platforms (developed by Solexa, now owned by Illumina) are based
on sequencing by synthesis (SBS) technology11 (Figure 1.3)

11
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Figure 1.3: Different technologies used by High Throughput sequencing
platforms (Figure from Mutz et al. 2013)47

However, as it happened with sequencing automation, increasing produc-
tivity has some side effects, since the cost reduction comes as a trade-off
with read length and quality. For instance, in the case of Solexa/Illumina
platform, the ones I have used in the projects and collaborations described
in this thesis, the average read length started to be 36 nucleotides and only
recently reads of aproximately 100 nucleotides can be obtained. HTS reads
come with new technical problems that need new computational tools.

Because of its low cost and wide adoption, this new sequencing technology
has surpassed its original purpose of DNA sequencing and assembly and is
now being used for a greater variety of tasks, like novel diagnostic methods
and therapy selection for cancer13. However, the focus of my work has been
on the analysis of HTS data for genomic regulation, therefore the use of
these set of technologies in this particular case is for the detection of RNA
transcription and epigenetic elements. In particular, I developed software
and analyzed HTS data with the following goals:

• Protein-DNA interaction detection

• Protein-RNA interaction detection

• Differential RNA transcription quantification

12
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From now on, I will focus on the particular use of HTS for genomic regula-
tion. Also, since all my work has been done using Solexa/Illumina data, all
that I write from now on should be considered with this in mind. I would
like to note though that most of the software and analysis techniques I de-
veloped will probably be useful with other similar sequencing platforms.

In the following section I will also introduce the relevant HTS protocols that
I used during my work and the biological mechanisms that I studied with
them.

1.2.3 HTS for Genomic Regulation

Genome wide analysis of gene expression and transcription factor binding
has been dominated since the nineties until very recently by microarray hy-
bridization technologies59. Microarray technologies are better established
and more mature, and they are by no means obsolete. However, HTS tech-
nologies have some advantages over microarrays. In addition to a reduced
cost there is no problem with cross-hybridization, there is no need to con-
struct a plasmid library, it has the potential to study genomes at single nu-
cleotide resolution and has possibly better sensitivity. All these provide
enough incentive for many research groups and companies to change the
microarrays for HTS based techniques29.

High Throughput Sequencing protocols, even if we limit ourselves to the
experiments used for the analysis of genomic regulation, can be very differ-
ent to each other and used for different tasks. However, at the in silico part
of the experiment, there are many common shared procedures among them.

Sequencing machines output a list of DNA sequences and quality scores.
The usual process after this is mapping to a reference genome or transcrip-
tome. The result of mapping is a list of coordinates corresponding to the pu-
tative position in the reference of the sequences. Sequence alignment soft-
ware like BLAST49 is not appropriate for the mapping of massive amounts
of short sequence reads, accordingly, new mapping tools have been devel-
oped in the last few years20.

With the mapped reads available, depending on the objective of the study,
the procedure is different in many cases. However, many of the pipelines
and normalization methods are common between technologies (See for ex-
ample the common steps between ChIP-Seq, FAIRE-Seq and Dnase-Seq in

13



“thesis” — 2013/6/10 — 8:15 — page 14 — #28

Figure 1.4: Variations of the ChIP-Seq protocol and their different uses
(Figure from Furey et. al 2012)21

Figure 1.4). This is why I developed software as modular and extensible as
possible (Chapter 2 and 3)

Reusability of methods does not only happen between HTS analysis pro-
tocols. Many of the normalization methods for microarrays have nowa-
days been adapted to HTS data analysis. For instance Samr62 and Sam-
Seq,37 developed by Tibshirani’s lab, Conditional Quantile Normalization25

by Irizarry’s lab to name a few.

1.2.4 Mnase-Seq

Micrococcal nuclease (Mnase) is an enzyme that cleaves and digests DNA
until it reaches an obstacle, normally a nucleosome67. Digestion of chro-
matin using Mnase has been used to study chromatin since at least 197450.
Mnase-chip was then developed in combination with microarray technol-
ogy, and more recently, Mnase-seq69 in combination with HTS technology.
Mnase-seq has been used to determine nucleosome positioning genome-

14
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Figure 1.5: Chromatin and its different levels of organization. (Figure from
Pierce 2005)52

wide.67 We analyzed Mnase-seq data using our software for determining
relative occupancy of nucleosomes in Yeast (see Appendix A).

Mnase-Seq uses: Nucleosome occupancy

The DNA-protein complex in eukaryotic cells that gives structure to the
genome and allows for the different levels of structure complexity of the
chromosomes is called Chromatin (Figure 1.5). The building units of chro-
matin are the nucleosomes: 145-147 bases of DNA wrap around each nu-
cleosome protein complex in a left-handed superhelical manner.41.

The protein core is made of histones. The abundant types of histones are
H1, H2A, H2B, H3, and H4. H1 histone is not part of the “core” nucleo-
some, instead it is part of the linker and participates in the stability of the
chromatin structure, while H2A, H2B, H3, and H4 form the core nucleo-
some octamer. In addition to the common histones, there have been many
variants reported, some of which are though to have important regulatory
functions, like H2A.Z, a variant of H2A that has been reported to be highly
enriched in regulatory elements10.

15
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Figure 1.6: Chromatin Immunoprecipitation technique46

1.2.5 ChIP-Seq

Chromatin Immunoprecipitation (ChIP)31 followed by High Throughput
Sequencing (ChIP-Seq) allows for the detection of protein-DNA interac-
tions.29. The experimental part of the protocol is described in Figure 1.6.
It consists in first cross-linking the chromatin, then sonicating the DNA in
order to slice it into smaller pieces to then immunoprecipitate the proteins
of interest attached to the DNA through a specific antibody. The resulting
sequences are then purified and prepared for sequencing using PCR ampli-
fication. In order to immunoprecipitate a particular protein using ChIP, a
specific antibody that exclusively targets the protein is needed.

Some of the pioneer ChIP-Seq analysis54;14 assumed a uniform read dis-
tribution when determining if read enriched sites where significant or not.
There are now several documented biases of the technology, including map-
pability, GC content bias, chromatin accessibility (open chromatin is easier
to shear30) and copy number variation38, which account for non-uniform
read distributions.
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The mappability problem is a side effect of the short reads, because small
DNA sequences with low complexity are more likely to be repeated in the
genome, and in consequence regions of the genome with low complexity
will get less or even no reads. Copy number variation is another problem
happening because of short reads, since repeated regions of the genome
larger than the read length cannot be uniquely mapped. The GC content
bias is complex to correct, because it is sample-specific. In one sample,
regions of the genome with many reads may have a higher (or maybe lower)
content of GC.51. Normalization methods aim to correct these biases, but
they will never be perfect, since in most cases it is impossible to delete noise
without also deleting some signal. There are other two strategies that can be
used in order to improve the quality of ChIP-Seq data:

Control experiments

By either immunoprecipitating DNA with a non specific antibody like im-
munoglobulin G (IgG) antibody (Control) or using raw Input DNA without
immunoprecipitation (Input). As with normalization methods, both Control
and Input have limitations: Control experiments output fewer sequences,
so in the amplification phase some sequences can be extremely amplified,
leading to very large blocks of reads. Input experiments, while they output
more DNA and do not get as distorted by PCR amplification, they are biased
towards nucleosomes.

Multiple replicas

Producing many replicas is probably still time consuming and expensive
for most experimental groups. However, it might be the best solution for
correcting some of the biases (see also Discussion).

Despite of these limitations, ChIP-Seq technology is an increasingly popular
method for DNA-protein interaction detection. Since ChIP-Seq allows for
the exploration of the whole genome without a library construction, many
whole genome transcription factor mappings using ChIP-Seq have been car-
ried out in the recent years. This can be confirmed looking at the data sub-
mission rates. Many of the independent genomic studies datasets are sub-
mitted to the Gene Expression Omnibus (GEO) database9, maintained by
NCBI. ChIP-seq submission rates have increased dramatically since 2008,
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Figure 1.7: Distribution of the number and types of different experimental
studies released by GEO each year since inception (Figure from Barrett et
al. 2013)9

to the point that they are growing at a higher rate than the competing mi-
croarray based technology ChIP-chip (as illustrated in Figure 1.7, under the
section Genome binding / occupancy profiling by NGS)

This shows that ChIP-Seq is a useful, rapidly maturing technology. ChIP-
Seq is the HTS data type I have worked with the most. The software I devel-
oped at first focused mainly of ChIP-Seq (Chapter 2), but then expanded to
other technologies. I have analyzed ChIP-Seq data for most of my scientific
collaborations (Appendix A, B) and it is the main type of data I use for the
detection of genomic enhancers (Chapter 4)

ChIP-Seq uses: Transcription factor detection

Transcription factors (TFs) are proteins that are of critical importance for
genomic transcription regulation. TFs bind on promoter and enhancer re-
gions (transcription factor binding sites, or TFBS) and can either activate

18
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or repress transcription35. TFs with relatively short binding sites (<100 bp)
can be detected using a process called “peak calling”, where a set of statis-
tical and heuristic methods are combined in order to find “peaks” of signal,
normally with a Gaussian-like shape (See Chapter 2). Part of the software I
developed included a peak caller algorithm (See Chapter 2), that I used to
evaluate the detection of a multiple promoter-alignment method (See Ap-
pendix B).

Another approach to detection of transcription factors is differential enrich-
ment between two conditions. We did this in a collaboration in Yeast cells
before and after stress for Hog1 transcription factor and RNAPII, where we
observed stress-mediated down-regulation of transcription (See Appendix
A), and for the prediction of active enhancers (Chapter 4)

ChIP-Seq uses: Histone Modification detection

Histones are the building blocks of nucleosomes. The first post-translational
histone modification was demonstrated by Vincent Allfrey in 19643. In
1997, the nucleosome structure was shown at a 2.8 Angstrom resolution by
Luger et. al using X-ray crystallography41. This image (Figure 1.8) showed
that the N-terminal tails of the histones H2A, H2B, H3 and H4 portrude
from the nucleosome, allowing for interaction with other nucleosomes and
DNA itself. Since then, the relevance of histone modifications in genomic
regulation has been shown to be critical for the manipulation and expression
of DNA. There is a long list of reported modifications, the most prominently
studied being histone acetylation, methylation and phosphorylation8.

The two main mechanisms through which histone modifications can affect
gene expression are direct structural perturbation and regulation of the bind-
ing of transcription factors. For instance, acetylation and phosphorilation
are known to reduce the charge of histones, effectively opening chromatin,
which facilitates the binding of TFs8. A second example involving regu-
lation by binding of chromatin factors can be found in the regulation by
enhancers. Tissue specific TFs and acetyltransferase P300 bind to regions
of the genome marked with H3K4me1 and H3K4me2, regulating enhancer
activity.68 (See also Chapter 4).
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Figure 1.8: Original image published by Luger et. al, showing the structure
of DNA wrapped around of histones. The N-terminal tails can be seen as
small strings coming out of the structure41

Figure 1.9: A pioneer factor promotes nucleosome remodeling by facili-
tating nucleosome sliding. This chromatin remodeling facilitates access of
general enhancer-binding proteins like P300 and additional factors involved
in the establishment of different enhancer states. (Adapted from Zentner
and Scacheri)68
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1.2.6 RNA-Seq

As it was the case of Protein-DNA interaction detection, since the mid-
1990s microarray based sequencing technologies dominated the task of
RNA quantification. Recently, RNA-Seq was developed as an attractive
alternative. In its non-extended form, RNA-Seq uses Illumina/Solexa to
sequence millions of fragments of cDNA coming from reverse transcription
of RNA48 (Figure 1.10)

As it happened with ChIP-Seq, at first RNA-Seq technology was expected
to have very little to no biases64. However, mappability, GC content bias
and other biases mentioned in the ChIP-Seq section also apply on RNA-
Seq. In addition to these technical biases, there is another technical bias on
the along mRNA and an added biological complexity coming from multiple
transcripts overlapping in the same region by the same or different genes,
and different kinds of sense and antisense RNA. Despite these challenges,
RNA-Seq is widely used in the exploration of RNA transcription.

RNA-Seq uses: Alternative Splicing prediction

Alternative splicing is a process through which a single gene can produce
multiple different mRNAs by inclusion or exclusion of exons during the
splicing process of the pre-mRNA. It is an important mechanism believed to
be key to higher eukaryotes transcript diversity and is regulated by splicing
factors, interacting with the pre-mRNA33.

There is increasing evidence that splicing and transcription are not, as ini-
tially believed, independent processes. They seem to happen predominantly
together, allowing for interaction between the transcriptional and splicing
machineries16. Furthermore, there is evidence that there is an influence
of nucleosome positioning and histone modifications through and effect of
RNAPII elongation and partly through a direct interaction of splicing factors
with chromatin, and in alternative splicing4.

Using RNA-Seq data, we measured the levels of differential alternative
splicing between two cell lines in order to compare them with our active
enhancer predictions. (See Chapter 4).
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Figure 1.10: RNA sequences converted into a library of cDNA fragments.
Sequencing adaptors are added to each cDNA fragment sequenced using
HTS sequencing technology. (Adapted from Wang et al. 2009)64
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RNA-Seq uses: RNA quantification

Comparing the relative number of normalized counts between two condi-
tions in a particular genomic region, one can determine up and down regu-
lation of RNA from a RNA-seq experiment. Using our method for relative
enrichment (Chapter 2), I measured the regulation of RNA expression in
intergenic regions of the genome in order to determine whether our putative
active genomic enhancers produce enhancer RNAs (eRNAs). (Chapter 4)

1.2.7 CLIP-Seq

Cross-linking and immunoprecipitation a protein bound to RNA (CLIP-
Seq)39 has been used for the analysis of Protein-RNA interactions. Due
to the level of noise produced by this experiment and the lack of a reliable
control (Inmunoprecipitating with a non specific antibody outputs almost
no reads66), I implemented a bootstrapping method that models a technical
background on genes called modified FDR66 for the analysis of CLIP-Seq
data. (Chapter 2) and used it in order to detect the interaction between RNA
and the RNA binding protein G3BP.

23



“thesis” — 2013/6/10 — 8:15 — page 24 — #38

1.3 ENCODE

From the release of the ENCODE pilot project in 200712 to their final,
media amplified release in 201217, ENCODE has become the most ambi-
tious repository of exploratory genomic datasets to date. The ENCODE
project is a global collaborative effort started in 2003 by the National Hu-
man Genome Research Institute (NHGRI), the same institution that was in
charge of launching the Human Genome Project 198912, and is therefore
considered the direct heir of the human genome project, together with the
1000 genomes project datasets.

In its last release, 1,640 datasets where provided involving 147 different hu-
man cell types. All datasets follow the same quality standards, both at the
experimental and computational aspect of the experiments. The release has
been done for both human (referenced to human assemblies hg18 and hg19)
and mice (assembly mm9). The amount of data is vast, diverse and therefore
complex to represent in a single table (Figure 1.11) To solve this problem,
the ENCODE consortium has produced interactive web tools like the RNA
dashboard (http://genome.crg.es/encode RNA dashboard)42 and the ChIP-
Seq experiment matrix (http://encodeproject.org/ENCODE/dataMatrix/)18

to explore, visualize and download the data released.

The ENCODE project is still ongoing and is now it its third phase, aiming
to produce data for all genomic and epigenomic datasets as well as for all
protein-RNA interactions for all cell lines listed, dividing the cell lines by
priority given in three Tiers: Tier 1, Tier 2 and Tier 3. I analyzed data for
multiple histone modification and transcription factor datasets for two of the
main cell lines in the ENCODE project (Tier 1), the leukemia line K562 and
the lymphoblastoid cell line GM12878 (Chapter 4).
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Figure 1.11: A data matrix representing all ENCODE data types. Each
row is an experimental technique and each column is a cell line. Colors
represent the produced datasets as of 2010. B) Data generated by ChIP-Seq
are split into a second matrix where each row represents a cell type and each
column represents the factor or histone modification to which the antibody is
raised. (Adapted from A user’s guide to the encyclopedia of DNA elements,
ENCODE Consortium, 2010)
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Objectives

This thesis work had 2 stages: The first stage was the development of soft-
ware and analysis pipelines for HTS datasets. The second stage was the
usage of this software (and the HTS analysis expertise obtained) for the
detection of active genomic enhancers.

Development of HTS software for the analysis of HTS datasets

• The development of genomic coordinates manipulation software.

• The development of a ChIP-Seq peak calling algorithm.

• The development of software for differential enrichment to compare
relative changes of HTS signals between conditions.

• The design of pipelines for the automation of HTS data analysis.

• Demonstration of the usefulness of this software in scientific collabo-
rations.

Detection of intragenic active genomic enhancers and study their effect in
RNA processing

• Determination of relevant histone modifications and transcription fac-
tor in active enhancers using human ENCODE data.

• Using relative enrichment of the selected features to build a model
to predict activated and silenced enhancers (relative between two cell
lines) in the intergenic space of the genome.

• Verify that our predictions have properties of known active enhancers.

• Use the model for the intergenic enhancers, to predict in the active
intragenic enhancers.
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• Explore the effect of intragenic active enhancers in transcription and
splicing.
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Chapter 2

Pyicos/Pyicoteo

This chapter is about Pyicos (now named Pyicoteo suite), a collaborative
project in the Regulatory Genomics group. I did the initial design of the
software arquitecture, the implementation and the performance benchmark-
ing, while Sonja Althammer did testing, analysis benchmarking, and was
the first user of the software. Together with Eduardo Eyras, we both de-
signed the software depending on the analysis needs. Pyicos is a flexible
tool for the analysis of HTS mapped reads and can be used for basic manip-
ulation of HTS files, manipulation of genomic coordinates, peak calling and
enrichment analysis between two conditions. Cecilia Ballare with Miguel
Beato produced some of the experimental data that we used to test our soft-
ware.

We published 2 articles:

González-Vallinas J*, Althammer S*, Eyras E. Pyicos: A Flexible Tool
Library for Analyzing Protein-Nucleotide Interactions with Mapped Reads
from Deep Sequencing. Bioinformatics for Personalized Medicine. 2012.
p. 83–8.

Available from:

http://link.springer.com/chapter/10.1007/978-3-642-28062-7 9

Althammer S*, González-Vallinas J*, Ballaré C, Beato M, Eyras E. Pyi-
cos: a versatile toolkit for the analysis of high-throughput sequencing data.
Bioinformatics. 2011 Dec 15;27(24):3333–40.

Available from:
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http://bioinformatics.oxfordjournals.org/content/27/24/3333.long

The documentation can be found at:

http://regulatorygenomics.upf.edu/pyicoteo
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Chapter 3

Pyicoteolib

Pyicoteolib is a library for the analysis of HTS mapped reads. It contains
the building blocks of the different tools of what I have named the Pyicoteo
suite (a refactoring of the old Pyicos project). In addition of being part of
the library for the implementation of the Pyicoteo suite tools, Pyicoteolib is
designed to be used in custom python scripts for the analysis of HTS data.
In this chapter I will describe the some of the more technical details and
interesting modules and classes of the implementation of the library. Pyico-
teolib is implemented in the Python programming language and compatible
with CPython ¿2.6 and PyPy 2. In the Python convention, logical groups of
functions and/or classes are grouped into modules

3.1 pyicoteolib.core

Pyicoteolib.core is a module that contains the most basic classes in the li-
brary, the holder of reads and regions of reads, the readers of the different
formats and the exceptions. The two main and more interesting classes are
ReadCluster and ReadRegion. A ReadCluster instance is an object that
can contain one read or a group of overlapping reads. It can can be initial-
ized to read in multiple formats, as read-like formats, like BED, Sam, BAM,
eland and custom text formats by specifying the name, start, end and strand
column positions of a plain delimited file and histogram like formats (our
own bedpk format and different versions of the UCSC wiggle format).
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The object has a format agnostic internal representation of the data, and
therefore it is easily extensible to new formats. Instances of the ReadClus-
ter object can be added, compared using common comparison operators (<
> == and !=) and subtracted to other ReadCluster objects. ReadCluster
also implements common useful python idioms, for example, len() to deter-
mine the length of a ReadCluster and str() to obtain a string description,
and are iterable with standard Python syntax ( for example, in a for loop
for length, height in read cluster will iterate through the different levels
of the ReadCluster, outputting the length and the number of ). Both the
subtraction and addition of ReadCluster objects are optimized to be mem-
ory efficient and as fast as possible (See the Supplementary material of the
Pyicos Bioinformatics paper for details on the subtract algorithm).

Other useful functions of the ReadCluster object include:

• extend() and push(), to extend and displace the reads in the strand
direction respectively

• trim() to trim the borders of the histogram given a threshold

• split() to divide into different sub-clusters of reads based on a ratio
parameter between local maxima an minima

• get max height() and get max height pos() in order to get the max-
imum number of reads overlapping in the same position and the ge-
nomic coordinate of the height respectively

• overlap() returns a ratio of overlap between two ReadCluster objects
overlap.

The ReadCluster object is optimized following the design principles of
compression and “lazy loading”. When a ReadCluster object is given a
list of reads with the same genomic coordinates, it stores them in a com-
pressed list of coordinates. As an example, lets assume we have these three
reads (columns correspond to “chromosome”, “start” and “end” coordinates
respectively)

chr1 1 100
chr1 1 100
chr1 1 100
chr1 50 150

After reading into the ReadCluster, the representation in the object will
look like this.
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chromosome = ‘‘chr1’’

readList begin

occurrences: 3, start: 1, end: 100
occurrences: 1, start: 50, end: 150

end readList

This compression, while simple, is critical for HTS analysis, since dupli-
cated short reads can sometimes reach the millions. Storing millions of
reads uncompressed in the same object will mean having performance and
memory problems.

The second stage of the optimization of the ReadCluster class is the
“lazy loading” of the clustering of the reads. Many useful functions in
the ReadCluster object require of a clustering calculation (for example,
split()), but some other do not. The reason why this is not calculated at
the initialization of the object (lazy loading) is that in cases with many
reads, it is computationally intensive to do so, and in some cases it is not
really needed. Continuing with the example above, after clustering, the
representation of the data in memory will be as follows.

readList = Empty

clusterLevels begin

start: 1, end: 50, number of reads: 1
start: 51, end: 100, number of reads: 4
start: 101, end: 150, number of reads: 3

end clusterLevels

The second basic class is the ReadRegion. An instance of this class can con-
tain multiple ReadCluster classes, and has a higher level functionality, like
getting normalized counts of reads in a region, shuffling them for random-
ization purposes or generating density visualizations of the reads. As for the
ReadCluster, it also has a lazy loading system that stops the ReadRegion ob-
ject from creating all ReadCluster objects on initialization, unless needed.

Some useful functions of this class are:

• shuffle tags(), that mixes the read positions in the region randomly
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• percentage covered(), that returns the percentage of the region cov-
ered by reads

• swap(), a function that given two regions swaps the reads randomly
between them taking into consideration a ratio parameter for the prob-
ability of landing in one particular region

• normalized counts(), that returns a normalized count of the reads
based on the chosen normalizations (region length and/or total num-
ber of reads in the dataset).

3.2 pyicoteolib.utils

In the utils module there are some utility classes and functions used for the
parsing, filtering and sorting of big text files. Because we wanted Pyico-
teolib to have as little external dependencies as possible, instead of using
an statistical python package like scipy (http://www.scipy.org), the module
some statistical calculation functions were included (a Pearson correlation
and the calculation of Poisson probability). The most interesting classes
that I have used in my analysis scripts outside of the Pyicoteo suite and
that could be of interest for the community are the file iteration classes,
namely SortedFileReader (Figure ), SortedFileCountReader (Figure ) and
DualSortedReader and the sorting class BigSort. All these classes have in
common the principle of working with big files without loading them fully
into memory.

BigSort is a class designed to sort text files without loading them fully into
memory. This is particularly useful for HTS datasets, since they normally
occupy several Gigabytes in disk. It accepts as input a sorting pattern (in
functional programming mode) matching the selected HTS format. It uses
temporary files, which size can be modified through configuration parame-
ters, sorts them and finally merges them into a single, sorted file.

Taking advantage of the fact that after passing a big file through the BigSort
algorithm we can be certain that the file is sorted, I implemented the
sorted files iteration classes SortedFileReader, SortedFileCountReader
and DualSortedReader. SortedFileReader holds a cursor position of
the file in disk and a file path. Given a ReadRegion, it iterates through
the file starting on the cursor position, and will return the overlapping
reads in form of ReadCluster objects found in the position that overlap
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Figure 3.1: Representation of the behaviour of a SortedFileReader in-
stance. The yellow rectangles represent sorted files with genomic coordi-
nates (chromosome, start, end and identifier). The SortedFileReader is fed
a list of regions sequentially and yields one ReadCluster object per group
of overlapping reads. The read line in bold corresponding to identifier id5
is shared between two overlapping regions.

with the start and end positions of the region specified (including). The
cursor will be left behind the position of the start of the last ReadRegion
fed to the SortedFileReader. The behavior of the cursor allows for the
iteration through the file using overlapping regions without loading the
file into memory and without iterating the file more than once. The
SortedFileCountReader class is similar to SortedFileReader, but instead
of returning ReadCluster objects, it returns the total number of reads en-
countered in the region. This again is a performance optimization, since not
generating ReadCluster objects makes for a much faster iteration through
the file. The DualSortedReader can be fed two sorted files, and will return
them in order without loading them entirely into memory.

The functionality of the file iteration classes of the utils module is critical for
being able to read big files with overlapping regions without loading them
entirely into memory while at the same time not compromising processing
time significantly because the file is read only once.

3.3 Other interesting remarks

Because our interest was not to depend on external libraries, I programmed
native python implementation for the reading of the binary BAM format.
The Pyicoteo suite and Pyicoteolib are not compatible yet with Python 3,
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Figure 3.2: The SortedFileCountReader class has a similar behaviour
than the SortedFileReader class, with the difference that instead of yield-
ing ReadCluster objects, it yields integers with the number of overlapping
reads.

but has been made compatible to run with PyPy. PyPy is a fast, compli-
ant alternative implementation of the Python language (2.7.3) and thanks
to its Just-in-Time compiler, Python programs often run faster on PyPy
(http://pypy.org/)
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Chapter 4

Regulation of alternative
transcription and splicing by
intragenic enhancers

(At the time of deposit, the manuscript was under preparation)
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Abstract

Background

Alternative splicing (AS) is a key mechanism to generate functional diversity in most 

eukaryotic cells. The regulation of alternative splicing has been generally thought of being 

primarily controlled by the activity of splicing factors and by the elongation rate of the RNA 

polymerase II. Recent evidence has highlighted a complex network of AS regulation that 

involves interactions between RNA, chromatin and protein factors. Transcriptional enhancers, 

which are characterized by specific epigenetic patterns, can regulate gene transcription from 

afar or inside genes. Intragenic enhancer activity modifies locally the chromatin, thereby 

potentially affecting the processing of the nascent RNA. 

Results

Using high-throughput data from ENCODE we have compared the chromatin patterns of the 

tumoral K562 and normal GM12878 cell-lines to build a predictive model of active enhancers. 

We use a novel approach based on the relative signal changes between these 2 cell-lines. 

We therefore exclusively predict enhancers that are active in one cell type but silent in the 

other. Using this approach, we identified 10,365 intergenic enhancers that are active K562 but 

silent in GM12878,  and 9,777 intergenic enhancers that are silent in K562 but are active in 

GM12878. We validate our predictions by showing that they have general properties of known 

enhancers. In particular, active enhancers produce long (>200nt) nuclear RNAs and correlate 

with DNaseI and RNAPII signals. Using this model, we also predict 11,055 (11,917) intragenic 

active enhancers in  K562 (GM12878)  that  are silent  in  the other  cell  line.  We relate  the 

activation and silencing of intragenic enhancers with the expression and splicing changes of 
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the host genes. We found that intragenic enhancers activate alternative transcription initiation 

sites. Moreover, active enhancers nearby alternative exons are associated to exon inclusion, 

whereas enhancers that  are silent  relative to  the other  cell  line are mainly  associated to 

skipping events. 

Conclusions

The activation or silencing of intragenic transcriptional enhancers can modulate the 

expression of the host genes as well  as the  splicing regulation of nearby exons, likely by 

modifying the local state of the chromatin.
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Introduction

The activity of the RNA Polymerase II (RNAPII) is highly connected with RNA processing 

(Neugebauer 2002). Indeed, there is evidence that the majority of pre-mRNA splicing takes 

place as transcripts are synthesized by RNAPII (see e.g. Carmo-Fonseca and Carvalho 

2007). An important consequence of this is that RNAPII activity can affect how splicing occurs 

(Kornblihtt 2007, Ip et al 2011).  Numerous studies have identified exons with splicing 

variability due to the modulation of the activity of RNAPII (Kornblihtt 2007). This can occur 

through interactions  between  the  splicing and  transcription  machineries  (de la Mata and 

Kornblihtt 2006; Loomis et al. 2009) or through mechanisms that affect RNAPII elongation (de 

la Mata et al. 2003, Ip et al. 2011, Shukla et al. 2011). The chromatin state, characterized by 

specific  histone post-translational  modifications, can affect RNAPII elongation and, in turn, 

splicing (Batsche et al. 2006, Schor et al. 2009, Allo et al. 2009, Saint-Andre et al. 2011, 

Shukla et al. 2011). Chromatin and splicing can also be related through the recruitment of 

splicing  factors  by  chromatin  adaptor  proteins  (Sims et al. 2007, Loomis et al. 2009, 

Gunderson et al. 2009, Luco et al. 2010) or by the modulation of the chromatin state through 

splicing activity (Lin et al. 2008, Zhou et al. 2011, de Almeida et al. 2011, Kim et al. 2011). 

It has been estimated that more than 90% of human genes produce alternatively spliced 

transcripts (Pan et al. 2008, Wang et al. 2008). However, it is still unknown the extent to which 

chromatin regulation impacts alternative splicing  in  the  cell. Besides the mechanisms 

described so far, other processes involving chromatin changes may influence RNAPII activity 

and splicing, like the spatial organization of the genome (Dixon et al. 2012) or ageing (Han 

and Brunet 2012). Transcriptional enhancers, which generally regulate transcription of genes 

from afar, are also characterized by specific chromatin signatures, which  may  differ 

depending of whether the enhancer is active or not  (Heitzman et al 2007, Heintzman et al. 

2009, Creyghton et al. 2010, Rada-Iglesias et al. 2011, Bonn et al. 2012). Interestingly, it was 

shown before that a transcriptional enhancer activity could modulate RNAPII elongation and 

thereby affect splicing in a reporter gene (Kadener et al. 2002). Putting these various results 

together, we hypothesized that the activity of transcriptional enhancers, in particular,  when 

they are at intragenic regions, could affect the alternative splicing of genes. In this article, we 

study how the activity of transcriptional enhancers can modulate transcription initiation and 
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alternative splicing by means of the associated changes in the chromatin state.

Transcriptional enhancers have been generally characterized by studying the genome-wide 

binding of the acetyltransferase P300, an ubiquitous enhancer co-activator (Heintzman et al. 

2012, Visel et al. 2009; Blow et al. 2010). However, not all  enhancers show P300 activity 

(see Maston et al. 2012 and references therein). Enhancers have also been characterized by 

their chromatin state (Boyle et al. 2008, Lupien et al. 2008, Heintzman et al 2007, Heintzman 

et al. 2009). Although the mono-methylation of histone 3 lysine 4 (H3K4me1) has been 

identified to be an important signature for enhancers (Heintzman et al. 2007), this mark might 

not be sufficient for enhancer activation (Creyghton et al. 2010, Pekowska et al. 2011). In fact, 

recent evidence shows that other marks like H3K27ac (Heintzman et al. 2009, Creyghton et 

al. 2010, Rada-Iglesias et al. 2011, Bonn et al. 2012) and H3K4me3 (Pekowska et al. 2011, 

Bonn et al. 2012) may be necessary for enhancer activity. Additionally, the recruitment of 

RNAPII and the concomitant production of enhancer-associated RNAs (eRNAs) have also 

been associated to active enhancers (de Santa et al. 2010, Kim et al. 2010, Creyghton et al. 

2010, Rada-Iglesias et al. 2011, Bonn et al. 2012). Thus,  the activation or silencing  of 

enhancers is associated to specific chromatin signatures. 

Although enhancers are typically defined to regulate gene transcription at a distance, about 

50% of enhancers predicted by high-throughput methods lie within protein-coding genes 

(Heintzman et al. 2007) and some overlap exons (Ritter et al. 2012, Birnbaum et al. 2012). 

Intragenic enhancers can regulate the host gene (Ritter et al. 2012), a different nearby gene 

(Birnbaum et al. 2012) or  can act as alternative promoters (Kowalczyk et al. 2012). These 

results raise the question of whether intragenic enhancers, upon activation or silencing, by 

means of the associated  local changes of the chromatin state, may affect the alternative 

splicing of nearby exons, possibly through the modulation of RNAPII elongation. 

In this work we investigate whether activation or silencing of enhancers inside genes affect 

the alternative splicing of nearby exons. Measuring the relative differences in histone marks 

and activity of various complexes between two cell lines, we build a computational predictive 

model for active and silent enhancers, using high-throughput epigenomic data from ENCODE 

(Dunham et al. 2012). 
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Our predictions show enhancer-like properties according to positional distribution, correlation 

with gene expression and production of eRNAs. By applying our method to intragenic regions, 

we predict 10,365 active and 9,777 silent intragenic enhancers. 

Results

We started our analysis by building a computational model to detect enhancers that are either 

active or silent relative to two samples. The model is based on the relative differences in 

chromatin marks between the two cell lines using a sliding window genome-wide. Considering 

the length distribution of the experimentally validated VISTA enhancers (Visel et al.  2007) 

(Supplementary figure 1A), we used 1500bp length windows along the entire human genome, 

overlapping 500bp. Additionally, we considered only those windows that are located at least 

500bp of any annotated gene. This resulted in a total of 3,086,047 overlapping windows. For 

all these windows, we considered the relative enrichment of a number of histone marks and 

protein factors, as well as Histone variant H2A.Z and RNAPII (Supplementary  Table 1), 

comparing K562 with GM12878. We assigned to each region a list of attributes, consisting of 

the 17 enrichment z-scores for the relative enrichment of the ChIP-Seq signals  (Methods). 

Additionally, we considered the z-scores obtained for a Control ChIP-Seq experiment and a 

DNA Input sample from the same cell lines. 

We hypothesized that, since active enhancers are associated with specific histone signals 

that  distinguish  them  from  poised  enhancers  and  from  arbitrary  genomic  regions,  the 

calculated  features  would  group  together  regions  with  similar  activity.  Accordingly,  the 

clustering of regions according to chromatin features would produce different types of regions, 

among which we should find active enhancers.  In  order  to  determine which features are 

relevant  for  such classification,  we performed feature  selection  with  the  Boruta  algorithm 

(Kursa  et  al.  2010)  (Methods).  This  method  finds  relevant  features  by  measuring  the 

relevance of attributes with respect to a reference attribute. That is, we considered one signal 

as a correlation feature against which all other signals are compared. This correlation feature 

works as proxy for the enhancer activity. 
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We considered two of  the main epigenomic marks related to active enhancers:  H3K27ac 

(Creyghton et al. 2007) (Figure 1B) and H3K4me3 (Pekowska et al. 2011) (Supplementary 

figure 3A). We found the signals H3K4me1 and H3K4me2, which have been observed to be 

always present in enhancers, active or not (Pekowska et al. 2011). We also consistently found 

H2A.Z, which is a histone variant associated to open chromatin and has been observed in 

promoters and enhancers in association with H3K4 methylation (Ku et al.  2012). We also 

found P300, which is ubiquitously present in enhancers (Visel et al. 2009). We argue that 

these  signals  are  consistently  associated  in  the  activation  of  enhancers,  and  possibly 

sufficient and general enough to characterize active enhancers in any given cell type. 

Interestingly, when P300 or H3K4me1 are used as a correlation feature, the signals H3K27ac 

and H3K4me3 are not  the most significant features (Supplementary Figures 3B and 3C). 

Additionally, P300 seems to associate with the largest subset of features . This is consistent 

with experimental evidence showing that P300 associates to enhancers ubiquitously (Wang et 

al. 2005, Heintzman et al. 2009, Visel et al. 2009) and that enhancers with H3K4me1 and/or 

P300 occupancy do not  always imply activation (Creyghton et al. 2010, Pekowska et al. 

2011). In fact,  H3K4me1 precedes enhancer-binding factors and P300 may be present in 

poised and intermediate enhancer states (Zentner et al. 2012).  When correlated against the 

other 2, these 3 features consistently appeared above all technical and biological controls in 

importance  when not used as a correlation class, along with H3k4me1 and H3k4me2 and the 

histone  variant  H2A.Z.  Although  RNAPII  and  H3K36me3  have  been  detected  before  on 

enhancers (de Santa et al. 2010, Kim et al. 2010), we did not find them as strong predictors of 

enhancer activity. Interestingly, we did find a strong correlation of the transcription factor PU.1 

with  H3K27ac  but  not  with  H3K4me3.  Moreover,  although  enhancers  are  modulated  by 

transcription factors in a tissue and developmental state specific manner (Ong et al. 2011), we 

wanted to find a general description of active enhancers. Accordingly, we did not include PU.1 

in  the model,  and decided to  select  only  the features that  scored consistently  above the 

technical  and biological  controls  for  both  H3K27ac and H3K4me3 feature  selection  runs, 

including both of them. Therefore, the features we selected for the statistical model for the 

prediction of active enhancers are: P300, H3K27ac, H3K9ac, H3k4me1-2-3 and H2A.Z. 

In order to validate our feature selection process, we used as correlation class the signal 
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Control signal (Supplementary Figure 3D) and H4K20me1 (Supplementary Figure 3E). The 

Control ChIP-Seq experiment with no specific antibody did not correlate significantly with any 

of  the  other  features.  On  the  other  hand,  H4K20me1,  which  has  been  associated  to 

transcription repression and heterochromatin (Balakrishnan et al. 2010) (Beck et al. 2012) but 

not to enhancer activity, shows some correlation with EZH2, but no correlation with any other 

signal.

Intergenic enhancers were predicted using overlapping 1500bp windows that are further away 

than 500bp from any gene locus (Supplementary Figure 2A) (Methods).  We clustered using 

mclust (Fraley et al. 2007). The model analysis shows that there are mainly three clusters and 

that  considering more clusters does not  improve significantly  the quality  of  the clustering 

(Methods) (Supplementary Figure 4A).  We thus considered three enhancer classes: One of 

these classes, which we call  active, is  characterized for being  enriched in H3K4me3 and 

H3K27ac (Figure 1B), which is considered to represent enhancers that appear to be activated 

in  K562  cells  but  were  silent  in  GM12878.  A second class,  which  we  call  silent,  is 

characterized by a depletion of the same previous  marks, which we can  interpret  as 

enhancers that are silent in K562 but were active in GM12878. Finally, there is a third cluster 

of regions with small or no changes in most of the signals, indicating that these regions do not 

have differential activity between the two cell lines. This class is referred to as no-change. 

These three groups (active, silent, no-change) define thus the three predictable enhancer 

classes. With the classification model selected by mclust, we classify genome-wide to predict 

active and silent intergenic enhancers. This resulted in 66,079 windows active in K562 (silent 

in GM12878) and 64,436 windows silent in K562 (active in GM12878). 

In order to evaluate the accuracy of our predictions, we compared our predicted active and 

silent windows with the enhancer windows predicted for K562 by ChromHMM (Ernst 2011). 

The  majority  of  our  enhancers  predicted  as  active  in  K562  or  GM12878  overlap  with 

ChromHMM windows labeled as weak or strong enhancers (Supplementary Figure 5A and 

5B). Interestingly, a number of our predicted active windows overlap with regions labeled as 

transcriptionally  active.  On the  other  hand,  when  we  compared  our  active  windows with 

ChromHMM labels in the other cell line, as expected, the majority corresponds to ChromHMM 
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silent windows (Supplementary Figures 5C and 5D). 

We also observed that increasing the threshold on the posterior probability of our predictions 

increases the agreement with ChromHMM enhancers and decreases the coincidence with 

other  categories  (Supplementary  Figures  5E and 5F).  Interestingly,  there  is  also  a  slight 

increase with regions labeled as promoter by ChromHMM. In contrast, when comparing the 

active enhancers in one cell line with the ChromHMM labels from the other cell line, we find 

no correlation with the posterior probability (Supplementary Figures 5G and 5H). Based on 

these comparisons, we decided to keep windows predicted with a posterior probability of > 

0.95,  which  resulted  in  36,301  active  enhancers  and  37,859  silent  filtered  windows  in 

intergenic regions.

Overlapping  windows  were clustered into 16,646  active  and 16,328  silenced  enhancers, 

respectively, which distribute  evenly along the genome (Supplementary Figure 6A). These 

clusters had mean length of 3,053bp and the majority of them (87.65%) were shorter than 5kb 

(Supplementary Figure 6B). There were also 273 (1.38%) predictions longer than 10kb, which 

may correspond to large-scale chromatin domains (Dixon et al. 2012, Han and Brunet 2012) 

or to clusters of enhancers (or super-enhancers) (Whyte et al. 2013). We filtered out those 

predictions longer than 5kb, resulting in 10,365  active  enhancers and 9,777  silenced 

enhancers, with mean lengths of 2,704.6bp and 2,588bp, (median lengths of 2,500bp and 

2,000bp), respectively . These average lengths are in agreement with previous analyses of 

enhancers from ChIP-Seq data of histone marks and protein factors (Pekowska et al. 2011, 

Bonn et al. 2012, Birnbaum 2012). 

We next  studied  the  signals  that  did  not  show  strong  correlation  with  enhancer  activity. 

Interestingly, PU.1 and RNAPII correlate with the predictions, and 25.3% and 20.1% of the 

active enhancers in K562 show a significant relative difference (left-tailed p-value < 0.01) in 

PU.1  (Figure  2A)  and  RNAPII  (Supplementary  Figure  7A),  respectively.  In  contrast, 

H3K27me3 shows a weak inverse correlation with enhancer activity and 6.5% of the silent 

enhancers in K562 show a significant depletion (right-tailed p-value < 0.01) of H3K27me3 

(Supplementary Figure 7B). We also studied CTCF and H3K36me3, which, even though they 

have been detected before on enhancers (de Santa et al. 2010, Kim et al. 2010), we did not 
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find them as strong predictors of enhancer activity and were not included in our predictive 

model. For both of them we find a weak correlation with enhancer activity and only 7.4% and 

4.6% of active enhancers in K562 show a significant enrichment in CTCF and H3K36me3, 

respectively (Supplementary Figures 7C and 7D). 

To validate our predictions, we used DNaseI  signal,  which has been used before for  the 

genome-wide detection of enhancers (Boyle et al. 2008, Lupien et al. 2008, Heintzman et al. 

2007). We therefore used the DNaseI data from the ENCODE project for the same cell lines 

to calculate the relative enrichment in predicted enhancer regions. We found a correlation of 

the  relative  enrichment  of  open  chromatin  with  active  enhancers  (Figure  2B).  Moreover, 

53.6% and 46.7% of the active and silenced enhancers show a significant enrichment (left-

tailed p-value < 0.01) and depletion (right-tailed p-value < 0.01), respectively, in DNaseI signal 

(Figure 2B).

RNAPII bound enhancers can produce RNAs (Kim et al. 2010, De Santa et al. 2010). These 

enhancer-associated RNAs (eRNAs) have been described as being of approximately 2kb and 

non-polyadenylated (polyA-),  but polyA+ RNAs have been detected too  (Kim et al. 2010; 

Creyghton et al. 2010, Rada-Iglesias et al. 2011, Kowalczyk et al. 2011). We therefore 

investigated whether our predicted active enhancers produce RNAs as well. We analyzed the 

relative enrichment of RNA-Seq datasets from ENCODE (Dunham et al. 2012) for polyA+ and 

polyA- RNAs, and separately for short (<200nt) and long (>200) and according to their origin, 

nuclear, cytosolic, and total cell. We found that enhancer  activity  correlates  with  the 

production  of  polyA+ (Figure 2C)  and polyA-  (Supplementary  Figure  8A) long (>200bp) 

nuclear RNAs, compared to silent enhancers and to the set of unchanged regions. This 

increase is much larger than for the other fractions and types of RNAs, for which we did not 

find such a significant difference (Supplementary Figure 8B). Surprisingly, there seems to be 

also an increase in cytosolic polyA+ (Supplementary Figure 8C) and  this difference almost 

disappears for cytosolic polyA- RNAs (Supplementary Figure 8D) and short RNAs (<200bp) 

(Supplementary Figure 8E and 8F). Interestingly, not all enhancers predicted as active seem 

to generate eRNAs. About 26.4% and 32.1% of the predicted active enhancers in K562 have 

a significant (left-tailed p-value < 0.01) increase of nuclear polyA+ and polyA-, respectively. In 
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comparison, we only found a 1.25% of active enhancers with significant (left-tailed p-value < 

0.01)  increase for short nuclear RNAs. For cytosolic polyA+, 18.7% of the predicted active 

enhancers in K562 have a significant (left-tailed p-value < 0.01) increase, but in contrast, only 

5% of short total RNAs and 9.2% of polyA- cytosolic RNAs show a significant enrichment. 

Although enhancers can regulate genes from afar, and one enhancer can regulate multiple 

genes (Li et al. 2012) they are enriched upstream of genes (Visel et al. 2009). We therefore 

connected enhancers to genes by choosing for  each enhancer the closest gene in either 

direction. With this approximation, active intergenic enhancers show enrichment at distances 

close to TSSs compared to random regions (Methods) and to silent enhancers (Figure 2D). 

Using  the  same  enhancer-TSS  pairs,  we  then  calculated  the  relative  change  in  gene 

expression measured from RNA-Seq data from ENCODE (Methods). We observe that genes 

with activated enhancers at a distance between 2kb and 10kb show up-regulation, whereas 

genes with silenced enhancers in the same distance range show down-regulation (Figure 2E). 

Moreover,  this  association  is  conserved  when  the  distance  range  of  the  enhancers  is 

extended to be between 10kb and 100kb from the closest gene (Supplementary Figure 9A). 

Further support for transcription activity in association to our predicted enhancers was found 

measuring RNAPII around the TSS: relative density of RNAPII around the TSS in genes close 

to predicted enhancers correlate with enhancer activity (Supplementary Figure 9B). 

Additionally, we searched for some evidence of direct physical interactions for the enhancer-

TSS pairs calculated above by using ChIA-PET data for RNAPII (Li et al. 2012). Although only 

a small fraction of activated enhancers have ChIA-PET links to TSS regions (1.6%), there is 

an enrichment over silenced enhancers and randomized regions (Supplementary Figure 9C ), 

indicating that predicted active enhancers tend to have more ChIA-PET links than expected 

by chance, and more than when enhancers are silenced. 

Since we are comparing a leukemia cell line (K562) with a normal blood derived cell line, we 

further  investigated  whether  enhancers  active  in  K562  and  not  in  GM12878  have  any 

association  to  genes  that  have  been  involved  in  cancer.  Using  the  cancer  gene  census 

(Futreal et al. 2004), we found that enhancers predicted to be activated in K562 are enriched 
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for genes linked to cancer, compared to random regions and to silent enhancers (Figure 2F). 

In summary, these analyses indicate that our predicted enhancers show properties of active 

enhancers. We therefore set out to predict intragenic enhancers using the same 

computational model.

Intragenic enhancers affect the pre-mRNA regulation of the host gene

Active enhancers regulating the expression of nearby genes have been observed in exons 

(Ritter et al. 2012, Birnbaum et al. 2012) and about 50% of enhancers predicted by high-

throughput methods lie within protein-coding genes (Heintzman et al. 2007). Additionally, by 

comparing  the  overlap  of  VISTA elements  with  the  annotation  in  GENCODE (version  7) 

(Harrow et al.  2012), we observe that there is no bias for intragenic or intergenic regions 

(Supplementary Figures 1B and 1C). All these evidences indicate that intragenic enhancers 

represent  an  important  regulatory component  of  the genome.  Accordingly,  we decided to 

apply our predictive model to localize putative intragenic enhancers that are activated in K562 

relative to GM12878, and vice versa.

In order to predict intragenic active  enhancers, we considered 1.5kb sliding windows inside 

genes, starting 500kb downstream of the first  TSS and eliminating all windows that overlap 

with a 1kb region around every annotated alternative TSS (Supplementary Figure 2B). This 

resulted in an initial set of 2,206,307 possible 1.5kb windows. For these predictions we used 

the same features as for the intergenic enhancers. Additionally, we used the exact same seed 

used in the intragenic prediction for the training, a set of 15,000 intergenic regions  for the 

clustering of intragenic regions (Methods),  composed of 552 active enhancers, 616 silenced 

enhancers and 13,832 regions with no significant difference between the cell lines. Using the 

clustering approach as with the intergenic predictions, we predicted 73,080 active and 92,225 

silenced regions. As we did previously with intergenic enhancers, we compared our predicted 

intragenic  predictions  with  ChromHMM  predictions  with  similar  results  (Supplementary 

Figures  11A to  11H).  Accordingly,  we  also  kept  only  windows  predicted  with  posterior 

probability > 0.95, resulting in 42,297 active and 55,624 silent intragenic enhancer regions. 

After clustering overlapping regions, we obtained 17,791 active intragenic enhancers in K562 
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relative to GM12878 and 21,108 active intragenic enhancers in GM12878 relative to K562, 

falling inside of  a  total  of  5,162 genes (10.11% of  all  genes)  and 5,933 (11.61%)  genes, 

respectively. The mean length of these predictions  is 3,665bp, with the majority (82.81%) 

being shorter than 5kb (Supplementary Figure 10). As before, we kept those shorter than 5kb, 

resulting in 11,055 activated and 11,917 silenced candidate intragenic enhancers. 

Our predicted intragenic enhancers tend to occur in separate genes, with only 29.2% of the 

genes hosting  enhancers  of  both  types.  The majority  of  intragenic  activated  (78.24%)  or 

silenced (80.61%) enhancers fall in intronic regions, and 26.02% of activated and 22.07% of 

silenced  enhancers  overlap  an  exon.  However,  comparing  the  proportion  of  exonic  and 

intronic regions covered by enhancers with the actual proportions in genic regions, we find no 

preference for exons or introns (Supplementary Methods). When we looked at the position of 

the intragenic enhancers, we observed a preference for active and silenced enhancers to fall 

in the first intron (Supplementary Figures 12A to 12F). However, this effect can be explained 

by  the  fact  that  first  introns  are  on  average  longer  in  human  (Supplementary  Methods) 

(Bradnam and Korf 2008). We further checked whether genes hosting predicted enhancers 

tend to show significant differential expression between the two cell lines. Similarly as before 

for  enhancers linked to genes,  we find a correlation of  the relative expression change of 

genes hosting active or silenced enhancers.  Specifically,  23.8% of  5,162 genes with only 

active enhancers show a significant expression up-regulation, whereas 34.5% of the  5,933 

genes with only silent enhancers show a significant expression down-regulation (Methods).

Intragenic  enhancers  have  been  observed  to  regulate  the  expression  of  other  genes 

(Birnbaum et al. 2012). On the other hand, the activation or silencing of an enhancer implies a 

change in the local chromatin state, which can then affect the transcription activity of the host 

gene  (Ritter et al. 2012, Kowalczyk et al. 2012).  We thus hypothesized that this chromatin 

change would then reflect in an effect at the level of the pre-mRNA regulation, possibly at the 

level of transcription initiation  (Kowalczyk et al. 2012) or at the level of splicing (Luco et al. 

2010).  We thus first  tested whether  the activation or  silencing of  internal  enhancers may 

produce the activation or repression of a downstream internal TSS. We considered all active 

and silenced enhancers that fall between the most upstream TSS (TSS1) and the first internal 
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annotated  TSS  (TSS2),  such  that  the  distance  TSS1-TSS2  was  longer  than  20kb.  This 

resulted in a total of 870 TSS1-TSS2 pairs, from which 113 (13%) had at least one active 

enhancer and 135 (15.52%) had at least one silenced enhancer between both TSSs. When 

an active enhancer is present between the two alternative TSSs, we observe that generally 

both TSS1 and TSS2 show an increase in RNAPII density in K562 relative to the other cell 

line (Figure 3A). This indicates that activation of an intragenic enhancer can affect both TSSs, 

not only the downstream one. Conversely, when a silent enhancer is present between both 

TSSs, the relative level of RNAPII tend to decrease at both TSSs relative to the other cell 

lines (Figure 3B), which corroborates the previous finding for GM12878 cells. Interestingly, 

this effect persists for other downstream alternative TSS events (Supplementary Figures 13A 

to  13C),  indicating  that  intragenic  enhancers  can  activate  internal  TSSs,  but  also  affect 

transcription of the most upstream TSS to some extent. 

As for intergenic enhancers, we used ChIA-PET for RNAPII in K562 to validate a possible 

direct  interaction  between  our  intragenic  enhancers  and  the  first  TSS of  each  gene.  As 

obtained before for intergenic enhancers, we observe a higher density of ChIA-PET links for 

active enhancers  than for  silent  ones.  However,  in  this  case there  is  no  clear  distinction 

between the  putative  enhancers and the  intragenic  randomized positions (Supplementary 

Figure 14), probably due to the high RNAPII activity inside genes. 

The  change in chromatin state induced by the activation or silencing of an enhancer may 

change the processing of the pre-mRNA. For instance, it is known that intragenic chromatin 

states can affect RNAPII elongation, which in turn produce changes in alternative splicing 

(Schor et al. 2009, Allo et al 2009). We therefore hypothesized that intragenic enhancers that 

are active in a cell line relative to the other one may be associated with differences in the 

inclusion levels of nearby exons relative to the two same cell lines. Accordingly, we measured 

for all genes the differential inclusion of exons between K562 and GM12878 using cytosolic 

RNA-Seq polyA+ data from ENCODE (Methods). Using as cut-off p-value < 0.05 and log2-fold 

change  >  8  (Supplementary  Figure  15),  we  detected  a  total  of  1,363  and  3,114  exons 

significantly  included  and  skipped  in  K562  relative  to  GM12878.  We  considered  the  top 

(increased  inclusion)  and  bottom  (decreased  inclusion)  1,363  exons  with  a  significant 
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inclusion change and with no significant change in expression of the gene. From these two 

exon sets, 235 (17.1%) and 249 (19.1%) have an active or silent enhancer, respectively, in 

the region spanning the exon and 3kb upstream and downstream of the exon (Methods). For 

this  subset  of  exons,  we  found  an  association  between  active  enhancers  and  increase 

inclusion. From the 162 regulated exons having an active enhancer downstream, 127 exons 

had increased inclusion  and 35 exons decreased inclusion  in  K562 relative  to  GM12878 

(Figure 4A). Similarly, from the 92 exons with an active enhancer upstream, we found 73 

exons with increased inclusion and 19 exons with decreased inclusion in K562 relative to 

GM12878 (Figure 4B). From these cases, 64% and 48.1% from the first and second group, 

respectively, show a significant change in gene expression.  This pattern is replicated by the 

enhancers silent in K562 but active in GM12878: from the 129 regulated exons having a silent 

enhancer downstream, we found 19 with increased inclusion and 110 exons we decreased 

inclusion  in  K562  (Figure  4C).  Similarly,  from  the  101  exons  having  a  silent  enhancer 

upstream, we found 16 exons with increased inclusion and 85 exons with decreased inclusion 

(Figure 4D); and these two groups, 55.0% and 64.4%, respectively, show a significant change 

in gene expression. As a comparison, 47 and 55 control exons that did not change splicing (p-

value < 0.05, absolute log2-fold < 0.1) had a silenced enhancer upstream and downstream, 

respectively (Figure 4E). 

As an example, we show the case of a regulated exon in the gene LTBP (Figure 4E), where 

two active enhancers in K562 correlate with three differentially included exons that are highly 

included in K562 relative to GM12878  ( log2-fold 13.5, 14.17 and 13.90 downstream)

In  conclusion,  we  have  found  a  possible  association  between  the  activity  of  intragenic 

enhancers  and  the  regulation  of  the  pre-mRNA.  In  particular,  the  activation  of  intragenic 

enhancers  can  affect  the  activity  of  internal  transcription  start  sites,  and  the  inclusion  of 

nearby exons.
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Methods

Datasets. Annotated human enhancers with a homologous enhancer in mouse that had been 

experimentally validated were downloaded from VISTA (Visel et al. 2007). The gene set was 

obtained from the 7th release of GENCODE, which is based on the assembly GRCh37 (hg19) 

and was included in the Ensembl release 62. ChIP-Seq and RNA-Seq datasets were 

downloaded from ENCODE (Dunham et al. 2012) for K562 and GM12878 cells. The datasets 

used  were: ChIP-Seq for CTCF, EZH2, P300, Pol2, PU.1,  STAT1,  H3K9ac, H3K27ac, 

H3K4me1, H3K4me2, H3K4me3, H3K27me3, H3K36me3, H3K79me2,  H4K20me1  and 

H2A.Z; one Control ChIP-Seq experiment and one input experiment; and .RNA-Seq for short 

(<200nt) and long (>200nt), polyA+ and polyA- RNAs from whole cell, nucleus and cytosol. All 

datasets were downloaded in the form of mapped reads to the reference hg19 genome in 

BAM format.

Relative enrichment calculation.  Our model  of  active enhancers is based on intergenic 

regions away from gene loci. We used sliding windows of 1,500nt, with a slide shift of 500nt. 

In  order  to  avoid  mixing  enhancer  signal  with  genic  and promoter  signals,  we discarded 

windows that were closer than 500nt to an annotated TSS. Similar approaches were applied 

to intergenic (Supplementary Figure 2A) and intragenic (Supplementary Figure 2B). Although 

there are more intergenic windows (~3x106 vs ~2.2x106) in both cases the amount of windows 

with signal was similar, ~1.5 million windows, which were then kept for further processing. 

We used the relative enrichment of epigenetic signals between 2 cell lines in order to predict 

active enhancers  in  K562  (relative  increase  of  activation  marks  in  K562  with  respect  to 

GM12878) and silent enhancers in K562 (relative decrease of activation marks in GM12878 

with respect to K562).  Full-quantile normalization for counts and GC content was applied 

using EDASeq (Risso et al. 2011).  GC  content  in  each  region  was  calculated as  the 

proportion  of  G+C in  the  1500nt  window.  After normalization, the z-score of the relative 

enrichment of the ChIP-Seq signals between K562 and GM12878 was calculated with 

Pyicoenrich command (Althammer et al. 2011). This method defines a vector of z-scores per 

region, each z-score indicating the significance of the relative enrichment for each ChIP-Seq 

experiment, which we refer to as attributes. A positive z-score in for a region indicates an 

increased in ChIP-Seq signal in K562 relative to GM12878 in that region, whereas a negative 
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z-score indicates a decreased signal in K562 relative to GM12878. Z-scores close to zero 

indicate no significant differences between the cell lines. For all datasets, except for the ChIP-

Seq  with  non-specific  antibody  and  for  the  RNA-Seq  datasets,  we  used  replicates.  The 

relative  enrichments  were  calculated  with  respect  to  the  distribution  described  by  the 

comparison between replicates. When replicates were not available, these were simulated by 

mixing and dividing the two conditions by random sampling.

Feature Selection. Feature selection was performed using Boruta (Kursa et al. 2010), which 

is a feature selection wrapper algorithm that uses random forests (Liaw et al. 2001) to find 

relevant features by measuring the relevance of attributes with respect to a reference attribute 

(or correlation class) in comparison with a random model extracted from the original dataset. 

Boruta requires a correlation class to perform the feature selection, i.e. it uses one single 

feature to evaluate the rest against it, using the Random Forest search. We performed this 

analysis  for  each  of  the  individual  marks:  H3K27ac,  H3k4me3,  etc.  In  each  case,  the 

correlation was performed 10 times using normalized counts on a subset of 5000 intergenic 

windows, sampled randomly for each one of the 10 iterations. As control signals, in addition to 

the  random technical  controls  added by Boruta,  the  ChIP-Seq signal  from a non-specific 

antibody (Dunham et al. 2012) was added in the analysis. 

Window clustering.  Intergenic windows were clustered according to their z-scores in the 

selected features using mclust (Fraley et al. 2007). Mclust is based on finite normal mixture 

modeling  and  uses  the  Bayesian  Information  Criterion  (BIC)  (Schwarz  1978)  for  model 

optimization. As seed for mclust clustering, 15000 randomly selected windows were given as 

input. Various seed selections of this size did not change the results significantly. Calculating 

the BIC score for different models and different number of clusters, this plateaus at around 3 

clusters for most models (Supplementary Figure 4A). This indicates that there are mostly 

three mean classes, two that correspond to active and silenced enhancers, and a number of 

intermediate states are not clearly delimited and conform a gradient of multiple states, which 

are  combined  into  a  single  class,  also  mixed  with  regions  of  no  chromatin  activity.  This 

observation is reinforced by the uncertainty plot, which shows that more “certain” regions are 

on the extreme values of the correlation of the features (Supplementary Figure 4B). The final 

model used for clustering was the centroid type VEV, which creates clusters that correlate 

with Variable volume, Equal shape, and Variable orientation. The algorithm that Mclust uses 
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for predicting this model is Expectation-Maximization.

Intragenic  enhancers.  Intragenic  enhancers  were  calculated  similarly  to  intergenic 

enhancers, but using a set of  15,000 intergenic windows as seeds. These seed windows 

correspond to  552 active,  616 silenced and  13,832 no-change regions. The clustering was 

performed using the same model as for the intergenic windows.

Linking enhancers to genes. In order to connect the predicted (active and silent) enhancers 

with genes, enhancers were linked to the closest TSS on either direction. Random enhancer 

positions  were  generated  by  placing  each  enhancer  in  a  random  location  in  the  same 

chromosome,  avoiding  gaps,  genic  regions,  other  random locations,  and  not  closer  than 

500nt from any gene. Random intragenic enhancers were generated similarly, by placing the 

intragenic enhancers in a random location inside the same gene, avoiding regions of 1kb 

around  any  alternative  TSS  and  avoiding  other  random  enhancers.  ChIA-PET data for 

RNAPII in K562 cells from the ENCODE (Dunham et al. 2012) was also used to link predicted 

enhancers with nearby genes. An enhancer was considered connected to a gene if  there 

were at least 3 ChIA-PET pairs connecting both the predicted enhancer and the region of 1kb 

around the TSS of the gene. For this calculation,  only enhancers that were between 2kb and 

100kb from a TSS were considered. 

Cancer related genes. For those genes connected to active enhancers, the proportion of 

them associated to cancer was calculated using the Cancer Gene Census from the Wellcome 

Trust Sanger Institute (http://www.sanger.ac.uk/genetics/CGP/Census/)  (Futreal et al 2004). 

Alternative  transcription  and  splicing.  For  every  gene  in  the  GENCODE  (version  7) 

annotation, the most upstream TSS (TSS1) and all the alternative TSS positions (TSS2, …) 

were considered. Each pair TSS1-TSS2, TSS2-TSS3, TSS3-TSS4, …,  was considered as an 

alternative transcription event. RNAPII relative enrichment levels were measured around each 

TSS  using the same normalization and calculation method as before.  To control  possible 

association with upstream enhancers, we discarded all alternative TSS events that have a 

predicted  intergenic  enhancer  (active  or  silent)  100kb  upstream of  the  gene.  Differential 

inclusion levels were calculate for Gencode exons using DEXSeq (Anders et al. 2012) with 
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polyA+ cytosolic RNA-Seq. 

Discussion

Using  a  method  that  measures  the  relative  enrichment  and  depletion  of  multiple  signals 

coming  from  ChIP-Seq  experiment,  and  using  a  semi-supervised  approach,  we  predict 

enhancers that are active relative to a different condition or cell  type. We also predict the 

opposite class, which corresponds to enhancers that appear to have been silenced, but are 

active in the other condition or cell type. We have obtained 21,420 enhancers that are active 

in K562 but not in GM12878 cells, which we call active, and 21,694 enhancers that are active 

GM12878 but  not  in  K562,  which  we call  silent  enhancers.  Our  model  provides  a novel 

approach, because while comparable with other methods in the objective of using chromatin 

states  to  predict  regulatory  elements,  we  focus  on  only  exclusively  predicting  active 

enhancers and silent  enhancers in  one condition respect  of  the other.  We do so by first 

predicting  exclusively  in  intergenic  regions  (in  order  to  avoid  mixed signals  coming from 

transcriptional  sites).  Also,  our  method  is  able  to  predict  relative  activation  and  silencing 

between two conditions, unlike other methods. However, our method is blind to enhancers 

active or silent in both conditions. 

The estimation  of  active  enhancers  in  a  given cell  type  is  very  much dependent  on  the 

technique used to  detect  them (Zentner  et  al.  2012).  Although activation of  enhancers is 

generally associated to a number of histone modifications, which enhancers are active is cell 

type specific and only a small fraction of the many candidate enhancers previously identified 

using a variety of techniques (ENCODE Consortium 2012) may be active in a given cell. For 

instance, Heintzman et al. found 24,566 putative enhancers in K562 cells with about 20% of 

them overlapping putative enhancers detected in HeLa cells (Heintzman et al.  2009).  We 

predict 21,420 putative enhancers that are active in K562 and that are non-active or poised in 

GM12878, and 21,694  putative enhancers that are active in GM12878 but they have been 

repressed in K562. In contrast, ChromHMM (Ernst et al. 2010) predicts more than 60,000 

non-abutting genomic regions to be strong enhancers and about three times as much for 

weak enhancers. There are two main reasons for this discrepancies: the resolution of the 
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genome segmentation is very different, and we only predict enhancers that are active in one 

condition, but not in the other. 

Our enhancers are H3K27ac dependent and are defined almost entirely by chromatin signals. 

The features found for our classes confirm that active enhancers are characterized not only 

by the presence of H3K4me1, but also by the presence of H3K27ac, H3K4me3 and RNAPII 

(de Santa et al. 2010, Kim et al. 2010, Rada-Iglesias et al. 2011, Bonn et al. 2012). We also 

observed that active enhancers show an enrichment of the histone variant H2A.Z, which has 

been identified to demarcate regulatory regions (Jin et al. 2009). Interestingly, we also found a 

strong correlation of the transcription factor PU.1, and a significant occupancy of PU.1 in 25.3 

% of active enhancers. PU.1 has been shown before to be an essential co-factor for enhancer 

activity (Ghisletti et al. 2010, Heintzman et al. 2009, Robertson et al. 2008), is known to bind 

to H3K4me1 sites in macrophages and B cells in a cell-specific manner (Heinz et al. 2010, Jin 

et al. 2011) and has sequence similarity lymphoid-specific enhancer (Uniprot 2013) (See also 

supplementary methods). Here we find it strongly associated with potentially active enhancers 

in a leukemia cell line. 

We found that CTCF and EZH2 and the histone marks H3K36me3 and H4K20me1 do not 

seem to  play any general role in enhancer activation.  H3K27me3 is the only feature that 

shows a pattern of depletion in active enhancers and of enrichment in silent enhancers, but 

mainly in long enhancer-like regions, which may be related to other regulatory mechanisms. 

We additionally found that predicted enhancer activity correlates with production of enhancer-

associated  RNAs  (eRNAs).  Moreover,  these  are  mostly  long  nuclear  RNAs  and  can  be 

polyA+ as well as polyA-, although we found cytosolic RNAs too. Additionally,  we observed 

that  not  all  active  enhancers  produce eRNAs.  On the  other  hand,  although  RNAPII  and 

H3K36me3 have been detected on enhancers as well (de Santa et al. 2010, Kim et al. 2010), 

in relation to eRNA production, we did not find them as strong predictors of enhancer activity, 

and only 14.9% of active enhancers have a significant increase in the occupancy of RNAPII. 
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The model built on intergenic enhancers was applied to predict intragenic enhancers. Since 

our model allows us to distinguish between activation or silencing, we can obtain associations 

to relative differences between the same two conditions in expression and splicing. We have 

shown that intragenic transcriptional enhancers,  upon activation or silencing, may affect the 

activity  of alternative transcription  start  sites.  Surprisingly,  we  observe  that  intragenic 

enhancers  can  affect  the  most  upstream  TSS  too.  This  generalizes  previous  findings 

indicating that intragenic enhancers can act as internal alternative promoters  (Kowalczyk et 

al. 2012).

We also found that to a small extent, intragenic enhancers, upon activation or silencing, also 

associate to the regulation of the inclusion of nearby exons. These changes may be mediated 

by the changes in the RNAPII elongation produced by the chromatin change  or  by  the 

recruitment of splicing factors, mediated by the chromatin signals. We observed that active 

enhancers, which show an increase of H3K4me3, H3K27ac and H3K9ac, among others, but 

not of H3K36me3, are associated to an increase in exon inclusion. Moreover, this seems to 

occur  for  enhancers  upstream or  downstream of  the  regulated  exon.  Interestingly,  these 

signals have not been directly associated before to splicing. They are open chromatin marks, 

so one would assume that they should not represent any roadblock for RNAPII. Accordingly, it 

would seem that the expected outcome would be the opposite, i.e. reduced inclusion; possibly 

mediated by a fast RNAPII. Interestingly, splicing changes due to RNAPII elongation changes 

can be in both directions (Ip et al. 2010); and we find both effects on splicing too, although 

one is overrepresented with respect to the other. 

Our results also indicate that the effect that intragenic enhancers may have in the differences 

in splicing observed between two cell types may be very limited.  Additionally, a considerable 

proportion (51.1% for genes containing differentially included genes in K562 and 52.9% for 

differentially excluded genes) of splicing changes occur in genes that change expression. This 

indicates that the main effect of the activation of enhancers may be related to the activation of 

alternative transcription in the gene and alternative splicing is byproduct of that. 
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Our work illustrates the effectiveness of our method in relating relative activity of enhancers to 

RNA processing mechanisms, like transcription activation and splicing. This presents several 

advantages over other methods that find direct associations of the level of histone marks with 

the level of gene expression or exon inclusion. In our case, regardless of the level of inclusion 

in one condition, we can relate the relative change in inclusion with the activity of one or more 

factors, which in turn provides directionality to the association. In this sense, we find that the 

chromatin  signals  generally  linked to  the  activation  of  enhancers  can  activate  alternative 

internal transcription start sites. Additionally, we find that this activity often co-occur with the 

increase of inclusion in nearby exons. Altogether, our analysis suggests that transcription and 

splicing may be often coupled through the activation or silencing of intragenic enhancers.

Figure captions

Figure 1. A predictive model of active enhancers A) Feature selection using H3K27ac as a 

correlation  class.  The  bars  represent  the  average  importance  score  per  feature  after 

averaging over 10 random samples of 5000 intergenic windows extracting from all intergenic 

windows with  signal  in at  least  one cell  type.  Red labels  and bars indicate the minimum 

(randMin), mean (randMean) and maximum (randMax) of the simulated replicates, as well as 

the  ChIP-Seq  with  a  non-specific  antibody  (Control).  The  red  dashed  line  separates  the 

relevant features (in blue)  from the non-relevant features (in grey).  Feature selection and 

graphical  representation  was  performed  with  Boruta  (Methods).  B)  Scatter  plot  of  the 

intergenic  windows  according  to  relative  enrichment  z-scores  for  every  pair  of  selected 

feature (x and y axes). Each dot represents a window and windows are separated according 

to  the  three  clusters  (Methods):  active  enhancers  are  represented  in  green,  unchanged 

enhancers in blue and silent  enhancers in red. The black centroids show the center and 

standard  deviation  of  the  correlation  between  different  features.  Clustering  and  graphical 

representation were performed in mclust (Methods).
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Figure 2. Properties of predicted intergenic enhancers. A) Relative enrichment of PU.1 at 

active and silent enhancer, as well as for regions of no-change in chromatin. The violin plot 

describes the distributions for the z-score of the relative enrichment along the y-axis. Positive 

z-score  values  mean  enrichment  in  K562,  while  negative  z-scores  mean  enrichment  in 

GM12878. B) Distributions of the relative enrichment for polyadenylated long (>200nt) nuclear 

RNA on active, silent and regions with no change in chromatin signals. C) Distributions of the 

relative enrichment of polyadenylated long (>200nt) nuclear RNA on active, silent and regions 

with no change in chromatin signals. Distributions are represented as before. D) Percentage 

of enhancers at a given distance from the TSS, for active (blue), silent (green), as well as for 

the corresponding randomized sets (red and cyan) (Methods). E) Relative expression change 

in genes associated to enhancers by proximity to the TSS..  The violin plot  describes the 

distributions  of  z-score  of  the  relative  enrichment  along  the  y-axis for  active  and  silent 

enhancers,  as  well  as  for  no-change  regions.   Genes  where  linked  to  nearest  putative 

enhancers within a distance range between 2kb and 10kb.   F) Cumulative distribution of 

enhancer nearby genes related to cancer in terms of the distance between the TSS and the 

closes enhancer. The comparison is made between active and silent predicted enhancers, 

and the corresponding randomizations.

Figure 3.  Intragenic  enhancers  and  alternative  Transcription  initiation.  A)  Relative 

enrichment z-scores of RNAPII on the most upstream TSS (TSS1) when there is active (left 

red violin plot) and silent (right blue violin plot) when the enhancer sits between both TSSs 

and at a minimum distance of 1000 nt from either one. The yellow violin plot in the middle 

yellow represents the z-score distribution of all TSS1-TSS2 pairs, with or without predicted 

enhancers, with a dashed green line representing the median value of this distribution.  B) 

Relative enrichment z-scores of RNAPII on the second alternative TSS (TSS2) in TSS1-TSS2 

events. The conventions are as in A). C) A TSS1-TSS2 event in gene MAGED1 with a silent 

enhancer in K562 close to TSS2 (green box). RNA-Seq data from the same cell lines show 

lower RNA-Seq density in K562. 

Figure 4. Effect of intragenic enhancers on alternative splicing. This figure describes the 

found  combinations  of  enhancer  type  and  alternative  splicing  regulation.  We  shod  the 

significant  inclusion  and  skipping  events  in  K562  associated  to A) an  active  enhancer 
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downstream  B)  an active enhancer upstream,  C) a silent enhancer downstream; and  D) a 

silent enhancer upstream. E) Example of an inclusion event in the gene LTBP4 with an active 

enhancer upstream/downstream in K562.
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Supplementary Material

Properties of VISTA enhancers

Supplementary Figure 1A. Length distribution of human VISTA enhancers. The average 
length of the VISTA regions is 1637.9 nt, the median is 1383 and the standard deviation is 891 
nucleotides. Out of the  1447 experimentally validated regions, only 6 (0.41%) are above 5000 
nucleotides.  
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Supplementary Figure 1B. GENCODE coverage of the genome. Pie chart representing the 
percentage of bases covered by different annotated elements in the human genome 
(GENCODE V7): protein coding genes, Processed Transcripts, Pseudogenes, regions and 
Other, which summarizes relatively rare annotated elements. These elements are: 
Immunoglobulin (Ig) variable chain and T-cell receptor (TcR) genes (active and silent), several 
types of small non-coding RNA and lincRNA. The rest of non annotated elements by 
GENCODE are classified as intergenic

Supplementary Figure 1C. VISTA elements positioning. Percentage of the VISTA regions 
that fall in one of the categories described above.
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Exploratory Windows

Supplementary Figure 2A. Intergenic windows representation. The exploratory intergenic 
windows have a size of 1500nt are overlapping 500nt from each other. In order to avoid 
mixing with promoter signal, they are at least 500nt away from Genic regions.

Supplementary Figure 2B. Intragenic windows representation. Same size as the intergenic 
windows. As in with the intragenic windows, other and are at least 500nt away from Genic 
regions.
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Feature Selection with Boruta

Supplementary Figure 3A - Feature selection using H3K27ac as a correlation class. The 
bars represent the average importance score per feature after averaging over 10 random 
samples of 5000 intergenic windows extracting from all intergenic windows with signal in at 
least one cell type. Red labels and bars indicate the minimum (randMin), mean (randMean) 
and maximum (randMax) of the simulated replicates, as well as the ChIP-Seq with a non-
specific antibody (Control). The red dashed line separates the relevant features (in blue) from 
the non-relevant features (in grey). 
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Supplementary Figure 3B Feature selection average scores using P300 as the correlation 
class

Supplementary  Figure  3C  -  Feature  selection  average  scores  using  H3K4me1  as  the 
correlation class

123



“thesis” — 2013/6/10 — 8:15 — page 124 — #138

Supplementary  Figure  3D  - Feature  selection  average  scores  using  Control  as  the 
correlation class 

Supplementary  Figure  3E  -  Feature  selection  average  scores  using  H4k20me1  as  the 
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correlation class.
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Intergenic clustering

 
Supplementary Figure 4A.  BIC information criterion calculation by Mclust. The X axis 
represents the number of clusters, the Y axis the BIC score. Every line correspond to a 
different type of model. The model that scores higher and plateaus faster is VEV  (Variable 
Volume, Equal Shape, Variable Orientation). 
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Supplementary Figure 4B. Mclust visual representation of the uncertainty. Dark dots 
represent more uncertainty (less probable to be good predictions), lighter dots are more 
certain (more probable to be good predictions). As expected, bigger differences between 
K562 and GM12878 levels correlate with less uncertainty. 
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Comparing intergenic predictions with ChromHMM predictions 

Supplementary Figure 5A. Pie chart showing the overlap of our active intergenic enhancer 
windows with different ChromHMM (Ernst et al. 2011) classes for K562.  In blue, predictions 
that correlate with enhancer predictions, in green predictions that correlate with transcription 
predictions,  in red  correlation with promoter regions and in grey Repressed, Repetitive and 
others.  

Supplementary Figure 5B. Pie chart showing the overlap of our silent intergenic enhancers 
with ChromHMM classes for GM12878. 
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Supplementary Figure 5C. Pie chart showing the overlap of our active intergenic enhancers 
with ChromHMM classes for GM12878. In blue, predictions that correlate with enhancer 
predictions, in green predictions that correlate with transcription predictions,  in red 
correlation with promoter regions and in grey Repressed, Repetitive and others.  

Supplementary Figure 5D. Pie chart showing the overlap of our silent intergenic enhancers 
with ChromHMM classes for K562. In blue, predictions that correlate with enhancer 
predictions, in green predictions that correlate with transcription predictions,  in red 
correlation with promoter regions and in grey Repressed, Repetitive and others.  
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Supplementary Figure 5E - Proportion of our enhancers that are labeled by ChromHMM in 
K562 (y axis) as a function of the prediction score in K562, given in terms of the posterior 
probability for the class (x axis) The blue is the proportion of  our active enhancer predictions 
that fall in windows labeled as  weak or strong enhancers by ChromHMM in K562, green for 
all transcription related classes (weak, transition and elongation) and red for promoter (weak, 
poised and active). In Cyan we include all other classes predicted by ChromHMM (polycomb 
repressed, insulator, heterochromatin, repetitive, low signal)
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Supplementary Figure 5F. Proportion of our enhancers that are labeled by ChromHMM 
(Ernst et al. 2011) in GM12878 (y axis) as a function of the prediction score in GM12879, 
given in terms of the posterior probability for the class (x axis) The blue is the proportion of 
our active enhancer predictions that fall in windows labeled as  weak or strong enhancers by 
ChromHMM in K562, green for all transcription related classes (weak, transition and 
elongation) and red for promoter (weak, poised and active). In Cyan we include all other 
classes predicted by ChromHMM (polycomb repressed, insulator, heterochromatin, repetitive, 
low signal)
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Supplementary Figure 5G. Proportion of our active enhancers in K562 that are labeled by 
ChromHMM (Ernst et al. 2011) in GM12878 (y axis) as a function of the prediction score in 
K562, given in terms of the posterior probability for the class (x axis) The blue is the 
proportion of in K562 our active enhancer predictions that fall in windows labeled as weak or 
strong enhancers by ChromHMM in GM12878, green for all transcription related classes 
(weak, transition and elongation) and red for promoter (weak, poised and active). In Cyan we 
include all other classes predicted by ChromHMM (polycomb repressed, insulator, 
heterochromatin, repetitive, low signal)
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Supplementary Figure 5H. Proportion of our silenced enhancers in K562 that are labeled by 
ChromHMM (Ernst et al. 2011) in K562 (y axis) as a function of the prediction score in K562, 
given in terms of the posterior probability for the class (x axis) The blue is the proportion of in 
K562 our active enhancer predictions that fall in windows labeled as weak or strong 
enhancers by ChromHMM in K562, green for all transcription related classes (weak, transition 
and elongation) and red for promoter (weak, poised and active). In Cyan we include all other 
classes predicted by ChromHMM (polycomb repressed, insulator, heterochromatin, repetitive, 
low signal).
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Properties of the intergenic enhancers

Supplementary Figure 6A. Genome wide distribution of intergenic enhancers. Profile of 
the density of predicted intergenic enhancers (activated and silenced) along the human 
karyotype. In dark red, predicted enhancers are represented for all lengths.. In lighter red, 
enhancers of lengths <5000bp are represented.. 
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Supplementary Figure 6B - Length distribution of our predicted intergenic enhancers 

Correlation with other features

Supplementary Figure 7A. Relative enrichment of RNAPII in intergenic enhancers.  Zscore 
distributions for our putative active and silent enhancers, as well as for all regions.
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Supplementary Figure 7B. Relative enrichment of H3K27me3 in intergenic enhancers. 
Zscore distributions for our putative active and silent enhancers, as well as for all windows. 

Supplementary Figure 7C. Relative enrichment of CTCF in intergenic enhancers. Zscore 
distributions for our putative active and silent enhancers, as well as for all enhancers. 
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Supplementary Figure 7D. Relative enrichment of H3K36me3 in intergenic enhancers. 
Zscore distributions for our putative active and silent enhancers, as well as for all enhancers.
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eRNA

Supplementary Figure 8A. Nuclear polyA- eRNAs. Violin plots for Nuclear long (>200nt) 
poly A- RNA-Seq. Relative enrichment of nuclear poly A- reads in K562 relative GM12878 in 
active and silent enhancers, as well as the distribution of all z-scores
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Supplementary Figure 8B. Relative K562 RNA levels of active enhancers and silent 
enhancers for all RNA (RNA total) types.

Supplementary Figure 8C. Cytosolic polyA+ eRNAs. Relative K562 RNA levels of active and 
silent enhancers for cytosolic polyA+ levels. 
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Supplementary Figure 8D. Cytosolic polyA- eRNAs. Relative K562 RNA levels of active and 
silent enhancers for cytosolic polyA- levels. 

Supplementary Figure 8E. Short nuclear RNA. Relative K562 RNA levels of active and silent 
enhancers for short  nuclear (<200nt) RNA.
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Supplementary Figure 8F. Short Total RNA. Relative K562 RNA levels of active and silent 
enhancers for short  nuclear (<200nt) RNA.
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Association of intergenic enhancers and TSS activity

Supplementary Figure 9A. Relative expression change for genes associated to activated 
and silenced  enhancers. The Y axis measures the relative expression change in terms of a 
Z-score for genes associated to activated (left violin plot) and silent enhancers (right violin 
plot), and for all genes (middle violin plots).. Genes were associated to the nearest predicted 
enhancer within a range of  10kb to 100kb from the TSS on either direction..
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Supplementary Figure 9B. RNAPII activity associated to active and silent enhancers. The Y 
axis measures the relative change in RNAPII density in a 1kb window around the TSS in 
terms of a Z-score for genes associated to activated (left violin plot) and silent enhancers 
(right violin plot), and for all genes (middle violin plots). Genes were associated to the nearest 
predicted enhancer within a range of 10kb to 100kb from the TSS on either direction.
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Supplementary Figure 9C. Percentage of intergenic predicted enhancers linked by ChIA-
PET to a nearby TSS. In the Y-axis we plot in log2-scale the fraction of regions with ChIA-PET 
links to a nearby TSS, for activated, silenced, random activated and random silenced 
enhancers. TSS – enhancer pairs are considered when all elements are located at least 3 
kilobases away and as far as 100 kilobases. 
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Supplementary Figure 10 - Length distribution of intragenic enhancers
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Comparison of our intragenic predictions with ChromHMM 
predictions

Supplementary Figure 11A. Pie chart showing the overlap of our active intragenic 
enhancers with ChromHMM classes for K562. 

Supplementary Figure 11B. Pie chart showing the overlap of our silent intragenic 
enhancers with ChromHMM classes for GM12878. 
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Supplementary Figure 11B. Pie chart showing the overlap of our active intragenic 
enhancers with ChromHMM classes for GM12878. 

Supplementary Figure 11C. Pie chart showing the overlap of our silent intragenic 
enhancers with ChromHMM classes for K562. 
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Supplementary Figure 11E – Agreement ratio evolution between of our intragenic active 
predictions and ChromHMM predictions in K562. For legend explanation see Supplementary 
Figure 7.

Supplementary Figure 11F – Agreement ratio evolution of our intragenic silent predictions 
with ChromHMM predictions in GM12878. 
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Supplementary Figure 11G – Agreement ratio evolution of our intragenic active predictions 
with ChromHMM predictions in GM12878. 

Supplementary Figure 11H – Agreement ratio evolution of our intragenic silent predictions 
with ChromHMM predictions in K562. 
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Supplementary Figure 12A – Positioning of intronic active putative enhancers. This barplot 
shows the percentage of introns in the first, second and third exon for active enhancers and 
randomized “active” positions in genes with exclusively 3 introns. Red bars are for intragenic 
active enhancers, grey bars randomized intragenic “active” positions. 

Supplementary Figure 12B – Positioning of intronic active putative enhancers. Positioning 
of elements  in genes with exclusively 4 introns. Red bars are for intragenic active 
enhancers, grey bars randomized intragenic “active” positions. 
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Supplementary Figure 12C – Positioning of intronic active putative enhancers. Positioning 
of elements  in genes with exclusively 5 introns. Red bars are for intragenic active 
enhancers, grey bars randomized intragenic “active” positions. 

Supplementary Figure 12D – Positioning of intronic silent putative enhancers. Positioning of 
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elements  in genes with exclusively 3 introns. Red bars are for intragenic active enhancers, 
grey bars randomized intragenic “silent” positions. 

Supplementary Figure 12E – Positioning of intronic silent putative enhancers. Positioning of 
elements  in genes with exclusively 4 introns. Red bars are for intragenic active enhancers, 
grey bars randomized intragenic “silent” positions.

Supplementary Figure 12F – Positioning of intronic silent putative enhancers. Positioning of 

152



“thesis” — 2013/6/10 — 8:15 — page 153 — #167

elements  in genes with exclusively 5 introns. Red bars are for intragenic active enhancers, 
grey bars randomized intragenic “silent” positions.

Supplementary Figure 13A – TSS levels of nearby enhancers for event 2. The left and rights 
figures corresponds to TSS1 and TSS2 respectively. The observed effect in Figure 3 is still 
present.

  

Supplementary Figure 13B – TSS levels of nearby enhancers for event 3. 
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Supplementary Figure 13C – TSS levels of nearby enhancers for event 4. 

Supplementary Figure 14 - ChIA-PET links for intragenic enhancers. In the Y-axis we plot in 
log2-scale the fraction of regions with ChIA-PET links to a nearby TSS, for activated, silenced, 
random activated and random silenced enhancers. TSS – enhancer pairs are considered 
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when all elements are located at least 3 kilobases away and as far as 100 kilobases. 

Supplementary Figure 15 - Vulcano plots/fold enrichment distribution with cutoffs – We 
consider significant every exonic region with an absolute log2fold bigger than 8 and a p-value 
<  0.05 (-log10(p-value) = 1.3)

155



“thesis” — 2013/6/10 — 8:15 — page 156 — #170

Supplementary Methods

Protocol Dataset type Experiments

ChIP-Seq
Histone Modifications H3K4me1, H3K4me2, H3K4me3, H3k9ac, H3K27ac, 

H3K27me3, H3K36me3, H3K79me2, H4K20me1

Transcription Factors CTCF, EZH2, P300, Pol2, PU.1, Stat1

Histone Variant H2A.Z

SupplementaryTable 1. ChIP-Seq datasets from the ENCODE project we used in our analysis. We downloaded 

the BAM files with the mapped reads for both cell-lines K562 and GM12878. The datasets in bold are the ones 

used in the final model, after the feature selection study. 

Feature selection using Boruta

As a check for the feature selection, we run the Boruta algorithm with the same  parameters 

but  using  P300  as  the  correlation  class.  The  results  (Figure  1B)  validate  the  enhancer 

activation model  already proposed where P300 is  an ubiquitous mark in enhancers in all 

states. Excluding the technical and biological controls and H3K20me1, the rest of the features 

seemed to be at least marginally relevant when correlated to P300. Running the selection 

algorithm with  the  H3K4me1 mark  the  biological  control  average Boruta  score  increased 

notably, suggesting that the mark is present in many repetitive regions along the genome, 

normally found to be “noisy” in ChIP-Seq experiments.

Randomized positions 

For  control  of  the  experiments,  we  calculated  4  sets  of  randomized  positions 

(intergenic/intragenic  and  active/silent  putative  predictions).  These  set  where  calculated 

keeping the same length, number of elements and restrictions of their counterparts.  These 

restrictions are: 

- In the case of intergenic elements, the randomized positions do not overlap any annotated 
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element, and their security distance from TSS (Supplementary Figure 2A)

-  In  the  case  of  the  intragenic  elements,  the  randomized  positions  are  inside  intragenic 

elements, and do not overlap with TSS and their security distance  (Supplementary Figure 2B)

Proportion of intragenic enhancers in introns and exons compared to 
proportion of exon and intron lengths 

Counting the percentage of active and silenced enhancers  nucleotides overlap with exons we 

found that 8.1% and 6.6% bases where exonic respectively. We then counted the number of 

exonic  nucleotides  covered  by  the  GENCODE.V7  annotation  also  discarding  around  1kb 

around TSS, to make the comparison fair with the putative enhancers and the percentage of 

exonic  bases was 9.18% 

First introns are longer on average 

We calculated the average of every intron separating genes in the GENCODE.V7 annotation 

by number of introns, from 2 to 7 introns. The only case where the first intron doesn't seem to 

be longer in the 2 introns genes group.

Total genes with 2 intron(s): 5392
Intron 1 avg. length: 7263.61183234
Intron 2 avg. length: 7199.96735905

Total genes with 3 intron(s): 3089
Intron 1 avg. length: 7832.92651343
Intron 2 avg. length: 4888.83360311
Intron 3 avg. length: 6798.17578504

Total genes with 4 intron(s): 2296
Intron 1 avg. length: 7814.87108014
Intron 2 avg. length: 4712.29790941
Intron 3 avg. length: 4521.63719512
Intron 4 avg. length: 6246.63240418

Total genes with 5 intron(s): 1863
Intron 1 avg. length: 6881.82930757
Intron 2 avg. length: 5561.91250671
Intron 3 avg. length: 4552.50187869
Intron 4 avg. length: 4049.90982287
Intron 5 avg. length: 5628.71604938

Total genes with 6 intron(s): 1554
Intron 1 avg. length: 6973.46718147
Intron 2 avg. length: 5309.77284427
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Intron 3 avg. length: 4375.55984556
Intron 4 avg. length: 4445.78635779
Intron 5 avg. length: 4006.58687259
Intron 6 avg. length: 4861.94144144

Total genes with 7 intron(s): 1290
Intron 1 avg. length: 6926.83333333
Intron 2 avg. length: 5174.78914729
Intron 3 avg. length: 4665.16744186
Intron 4 avg. length: 4541.41782946
Intron 5 avg. length: 3769.95968992
Intron 6 avg. length: 3817.72868217
Intron 7 avg. length: 4435.38294574
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Discussion

Biases in HTS datasets

For many HTS experiments technical biases remain as one of the biggest
challenges to overcome. Ultimately, if the biases mentioned cannot be cor-
rected at the source (the experimental side) and considering there is not
always an appropriate control experiment, it is sometimes not possible to
fully model the distribution of the reads. It has been shown that different
RNA-Seq datasets follow approximately different counts distributions and
therefore they can not be determined a priori37.

A solution to this problem consists in using multiple biological replicas, to
separate the signal from the biological variability. While obviously more
expensive than using a control experiment, will probably become the stan-
dard in future HTS experiments as sequencing technology becomes more
affordable and the technology matures.

Runtime optimization vs memory efficiency

A software analysis pipeline can be reduced from days to hours with the
appropriate optimization techniques. It is a common misconception that
choosing a low-level programming language like C is the straightforward
solution for speed optimization. While it is true that low-level program-
ming languages perform better on average than programming languages that
have more functionality like garbage collection (to manage memory auto-
matically) and dynamic typing (allowing for variables to hold more than
one type), the time invested by a programmer in order to get the desired
results may not be worth the effort in many cases. Ultimately, programming
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languages are just tools, and the appropriate tool must be used for the ap-
propriate problem. Furthermore, modern Just in Time (JiT) compilers that
generate native machine code on execution time are dramatically optimiz-
ing runtime for popular high level programming languages like Java and
Python, closing the performance gap.

During my thesis work, I tried re-coding critical parts of the Pyicoteo library
in C and Cython (a variation of Python that translates directly to C code).
There were some marginal improvements of performance, but the problems
were not actually there. In many cases the critical performance bottlenecks
were more mundane than that, maybe an inefficient loop or a program that
checks too often into a database. By doing some software benchmarking
you may find out that the problem is a vector that in some unusual circum-
stances gets too big. This is one of the main side effects of mapped reads
saturation, and one of the most recurring problems that I found when work-
ing with HTS data. For example, it has been quite common to encounter
HTS datasets that may have around 100 reads on average per genomic re-
gion, but an outlier region (normally artifactual, but not necessarily) may
contain 2 million reads. This lead to huge delays, since the algorithm was
designed to deal with a few thousand reads at a time. The solution did not
involve re-coding the algorithm in a lower level language, but actually do-
ing algorithm profiling to first identify the problem (this was not trivial) and
then implementing a cache system for duplicated reads, which in a relatively
short genomic region with high volume of reads happens quite often. This
is why the algorithm implementation and optimization are so important.

Some of the computations in the Pyicoteo suite could be parallelized. One
performance optimization that remains to be done is parallelizing some of
these computations.

Memory efficiency vs runtime trade-off

We designed Pyicoteo with the principle of trying to be as memory efficient
as possible. Memory efficiency allows for many more instances of Pyicoteo
running concurrently and allows for analysis in smaller machines. However,
there are two shortcomings of this implementation approach, which are disk
usage and execution time. Pyicoteo makes heavy use of temporary files and
can sometimes double the size of the datasets used. Slow access to disk can
be a problem, specially if the software is running in a distributed system
where the disks are saturated or further away from each other. In any case,
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memory is normally smaller than disk, modern disks have terabytes of space
and disk access technology is fast and reliable. memory is also getting big-
ger, but it will always be smaller than disk. The runtime trade-off is another
inevitability of focusing on memory efficiency but at least in the problems I
have focused on solving, it has not been a critical issue. As discussed above,
the main bottlenecks I encountered where mostly algorithmic in nature.

Limitations of active enhancer detection using relative en-
richment between two cell lines

Our method for prediction of active enhancers has some limitations. First,
comparing two cell lines can only give limited results, since enhancers are
known to be activated and silenced differently not only between tissues, but
also between different stages of the cell cycle. While K562 (leukemia) and
GM12878 (lymphoblastoid) are similar tissues, having time series data and
more replicas will surely improve the outcome of studies like this one. Also,
it has to be noted that HTS data is relatively new and that HTS technology
still has problems that need to be overcome. Furthermore, while our method
is interesting because we are able to see relative activation and silencing be-
tween two conditions and, unlike other methods, we are able to see relative
activation, our method is blind to enhancers activated or silenced in both
conditions. Finally, enhancer activation is still poorly understood, and a
model like ours could help revealing more pieces of this puzzle.

Because we wanted to prove that histone modifications and transcription
factors are sufficient for enhancer activation prediction, we did not take into
consideration in our model other properties known to be associated to en-
hancer activation like DNA methylation, Dnase I sensitivity and sequence
conservation. In fact, some of these properties are not necessarily specific
of enhancers, as enhancers for example are not necessarily conserved and
not all Dnase I sensitive sites are active enhancers.
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Conclusions

The contributions of this thesis can be summarized as follows:

• I implemented a flexible tool for the analysis of HTS data (Pyicoteo),
and used it for analyzing data in multiple scientific collaborations.
The tool is open source and publicly available and is being used by
the scientific community for the analysis of HTS data. I estimate it is
being routinely used in the projects of our group and at least 3 or 4
more groups. It has been used in 4 published works, and there are at
least another 6 in the publishing pipeline in different groups.

• The flexibility of Pyicoteo allows for it to be used in many different
ways:

– As a python library in custom scripts, as a genomics coordinates
manipulation package

– As a file manipulator and format converter

– As a for peak calling for ChIP-Seq and CLIP-Seq

– As a tool for measuring relative changes between two conditions
with and without replica

• Pyicoteo is an ongoing project and it has been released as an Open
Source project. The objective is to turn it into a useful tool for the
community.

• Using a method that measures the relative enrichment and depletion
of multiple signals coming from ChIP-Seq experiment and using a
semi-supervised clustering approach I predicted enhancers that are
active relative to a different condition or cell type.
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• Active enhancers produce enhancer RNA (eRNA) of different types.
Nuclear RNA seems to be both polyadenilated and not polyadenilated,
but also there seems to be cytosolic polyadenilated RNA coming from
enhancer sites. RNA produced also seems to be mostly

• Looking at the relative changes between leukemia and lymphoblas-
toid cell lines, we observe possible activation of cancer related genes
and enhancers.

• The activation or silencing of intragenic transcriptional enhancers can
modulate the expression of the host genes as well as the splicing reg-
ulation of nearby exons, likely by modifying the local state of the
chromatin.
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Appendix A

Hog1 bypasses stress-mediated
down-regulation of transcription
by RNA polymerase II
redistribution and chromatin
remodeling

For this collaboration, I was part of the analysis of Hog1 and RNAPII ChIP-
Seq datasets. We carried out relative enrichment analysis for the genome-
wide localization study of RNAPII and Hog1. We showed that stress in
Yeast cells reduces RNAPII levels in housekeeping genes and is enriched in
stress-responsive genes. We also observed that Hog1 was required for this
effect to happen, as we also found it in stress-responsive genes.

The article was published at:

Nadal-Ribelles M, Conde N, Flores O, González-Vallinas J, Eyras E,
Orozco M, et al. Hog1 bypasses stress-mediated down-regulation of tran-
scription by RNA polymerase II redistribution and chromatin remodeling.
Genome Biol. 2012 Nov 18;13(11):R106.

Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580498/
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My contribution

ChIP reads were extended by 250 bp (a bit above fragment size) and nor-
malized between sample and control using Pyicos. Enrichment of Hog1 and
RNA Pol II was done by running the Pyicos enrichment protocol compar-
ing untreated to treated samples. Hog1-dependent RNA Pol II recruitment
was determined by comparing salt-treated samples with wild-type and hog1
strains. For all comparisons, enrichment was considered significant for a
Z-score > 4 (p-value = 0.0001). MA plots were done using the Pyicos
software, where M represents the log ratio of stressed versus non-stressed
(y-axis) and A is the average of the log intensities (x-axis) of all the genes,
for enrichment of Hog1 and RNA Pol II.

The percentage of nucleosome occupancy was determined by running the
extension and normalization (Using TRPK) protocols using the first 200 bp
downstream of the TSS, which encompasses the +1 nucleosome for all the
gene clusters, using Pyicos.
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Appendix B

Use of ChIP-Seq data for the
design of a multiple
promoter-alignment method

Pro-Coffee is a multiple aligner specifically designed for homologous pro-
moter regions. I collaborated in the design of a novel validation procedure
based on multi-species ChIP-seq dataset for different species of vertebrates
by doing the ChIP-Seq mapping and peak detection in Human, Mouse, Dog
and Chicken for transcription factors HNF4A and CEBPA.

The article was published at:

Erb I, González-Vallinas JR, Bussotti G, Blanco E, Eyras E, Notredame
C. Use of ChIP-Seq data for the design of a multiple promoter-alignment
method. Nucleic Acids Res. 2012 Apr;40(7):e52.

The online reference can be found at:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326335/#gkr1292-B4

My contribution

I downloaded the raw HTS reads coming from Illumina sequencing
produced by Schmidt et al.60 (http://www.ebi.ac.uk/arrayexpress/files/E-
TABM-722/E-TABM-722.idf.txt). I constructed the assembly indexes for
human (hg18), mouse (mm9), dog (canFam2) and chicken (galGal3) using
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GEM index43 (http://gemlibrary.sourceforge.net) and run the mapping of
the data for both experiment and control sequence files using GEM allowing
up to two mismatches, with default settings as quality filter.

I did the Peak Calling using Pyicos, in each case extending reads to the
value calculated by the strand correlation algorithm, and using the opera-
tions of normalization, subtraction of control and filtering with a Poisson
test based on the height of the peaks. We selected the p-value cut off based
on benchmarking with other methods. Finally, I obtained the binding re-
gions by centering regions of 100 nucleotides over the genomic coordinates
of significant peaks.
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Appendix C

Mapping of HITS-CLIP data to
the mouse genome

I did the mapping and peak calling of CLIP-Seq data for the analysis of
G3BP protein.

Publication:

Sophie Martin, Juan González-Vallinas, Nicolas Bellora, Manuel Irimia,
Gracja Michlewski, Monika Raabe, Eduardo Eyras, Henning Urlaub, Ben
Blencowe, Jamal Tazi, Javier Caceres. HITS-CLIP of G3BP Reveals a Ri-
bonucleoprotein Complex that Preferentially Binds to Intron-retaining Tran-
scripts in Mouse Brain and Influences their Expression Level in the Cere-
bellum (Submitted to PLOS Genetics)

My contribution

For each sample, we filtered out reads shorter than 21 nucleotides to avoid
ambiguous mapping locations, as any random sequence shorter than 21nt
is highly likely to be found in the genome. We did a 2 step mapping,
first using as reference the mouse mm9 genome (NCBI Build 37 assem-
bly, July 2007) using Bowtie v0.12.7 (Langmead et al. 2009) allowing
up to 2 mismatches. Furthermore, to avoid missing any tags from ma-
ture transcripts, split reads that could correspond to exon junctions were
mapped using the GEM split mapper (build 592) from the GEM library
(http://gemlibrary.sourceforge.net) using the following filters: same strand,
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same chromosome, and maximum of 100,000 bases in distance, based on a
distance estimation between exons in mm9. Significant clusters of mapped
reads where identified using the modified FDR method for CLIP-Seq (Yeo
et al 2009) as implemented in Pyicos software version 0.9.9.2 (Chapter 2)
using default parameters.
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A., Eyras, E., Hallgrı́msdóttir, I. B., Huppert, J., Zody, M. C., Abecasis,
G. R., Estivill, X., Bouffard, G. G., Guan, X., Hansen, N. F., Idol, J. R.,
Maduro, V. V. B., Maskeri, B., McDowell, J. C., Park, M., Thomas, P. J.,
Young, A. C., Blakesley, R. W., Muzny, D. M., Sodergren, E., Wheeler,
D. A., Worley, K. C., Jiang, H., Weinstock, G. M., Gibbs, R. A., Graves,
T., Fulton, R., Mardis, E. R., Wilson, R. K., Clamp, M., Cuff, J., Gn-
erre, S., Jaffe, D. B., Chang, J. L., Lindblad-Toh, K., Lander, E. S., Ko-
riabine, M., Nefedov, M., Osoegawa, K., Yoshinaga, Y., Zhu, B., and
de Jong, P. J. (2007). Identification and analysis of functional elements
in 1% of the human genome by the ENCODE pilot project. Nature,

173



“thesis” — 2013/6/10 — 8:15 — page 174 — #188

447(7146):799–816. PMID: 17571346.

[13] Boyd, S. D. (2013). Diagnostic applications of high-throughput DNA
sequencing. Annual review of pathology, 8:381–410. PMID: 23121054.

[14] Boyle, A. P., Guinney, J., Crawford, G. E., and Furey, T. S.
(2008). F-seq: a feature density estimator for high-throughput sequence
tags. Bioinformatics (Oxford, England), 24(21):2537–2538. PMID:
18784119.

[15] Climate Code Foundation (2013). Science code manifesto.
http://sciencecodemanifesto.org/.

[16] Dujardin, G., Lafaille, C., Petrillo, E., Buggiano, V., Gómez Acuña,
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K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J. A., Bateman, A.,
Batzoglou, S., Birney, E., Bork, P., Brown, D. G., Burge, C. B., Cerutti,
L., Chen, H. C., Church, D., Clamp, M., Copley, R. R., Doerks, T., Eddy,
S. R., Eichler, E. E., Furey, T. S., Galagan, J., Gilbert, J. G., Harmon,
C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W.,
Johnson, L. S., Jones, T. A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent,
W. J., Kitts, P., Koonin, E. V., Korf, I., Kulp, D., Lancet, D., Lowe, T. M.,
McLysaght, A., Mikkelsen, T., Moran, J. V., Mulder, N., Pollara, V. J.,
Ponting, C. P., Schuler, G., Schultz, J., Slater, G., Smit, A. F., Stupka, E.,
Szustakowski, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wal-
lis, J., Wheeler, R., Williams, A., Wolf, Y. I., Wolfe, K. H., Yang, S. P.,
Yeh, R. F., Collins, F., Guyer, M. S., Peterson, J., Felsenfeld, A., Wet-
terstrand, K. A., Patrinos, A., Morgan, M. J., de Jong, P., Catanese, J. J.,
Osoegawa, K., Shizuya, H., Choi, S., Chen, Y. J., and Szustakowki, J.
(2001). Initial sequencing and analysis of the human genome. Nature,

178



“thesis” — 2013/6/10 — 8:15 — page 179 — #193

409(6822):860–921. PMID: 11237011.

[35] Latchman, D. S. (1997). Transcription factors: An overview. The In-
ternational Journal of Biochemistry & Cell Biology, 29(12):1305–1312.

[36] Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L.,
Lynch, D. C., Postel, J., Roberts, L. G., and Wolf, S. (1999). A brief
history of the internet. arXiv:cs/9901011.

[37] Li, J. and Tibshirani, R. (2011). Finding consistent patterns: A non-
parametric approach for identifying differential expression in RNA-Seq
data. Statistical methods in medical research. PMID: 22127579.

[38] Liang, K. and Keleş, S. (2012). Normalization of ChIP-seq data with
control. BMC Bioinformatics, 13(1):199. PMID: 22883957.

[39] Licatalosi, D. D., Mele, A., Fak, J. J., Ule, J., Kayikci, M., Chi, S. W.,
Clark, T. A., Schweitzer, A. C., Blume, J. E., Wang, X., Darnell, J. C.,
and Darnell, R. B. (2008). HITS-CLIP yields genome-wide insights into
brain alternative RNA processing. Nature, 456(7221):464–469. PMID:
18978773 PMCID: PMC2597294.

[40] Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., and
Law, M. (2012). Comparison of next-generation sequencing systems.
Journal of Biomedicine and Biotechnology, 2012. PMID: 22829749 PM-
CID: PMC3398667.
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