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Abstract

Large scale forest �res suppose a great challenge due to their impact on soci-

ety on many levels. This physical phenomenon is an interdisciplinary problem

that requires the e�orts of researchers across various �elds. Therefore, pre-

dicting the behavior of forest �res and minimizing the e�ects of this hazard is

the main goal of this work. One of the major problems with this kind of haz-

ard is the uncertainty and imprecision of the input parameters. We rely on

a prediction strategy based on calibration techniques that try to tune these

parameters to produce a more accurate prediction and reduce the uncertainty

of the parameters. In this work, we propose strategies to solve some of the

restrictions associated with this technique. The spatial distribution of the

parameters has been considered uniform along the terrain, and we introduce

a complementary model to simulate the wind behavior over complex terrains,

due to the leading role of wind in �re spreading. We also suggest coupling a

meteorological model to enrich the knowledge of the system of the temporal

evolution of the weather variables. All these components are integrated in

a simulation and prediction framework, and a methodology to simulate real

forest �re scenarios is de�ned in which the steps, processes, models and tools

to build an e�ective real-time forest �re assessment system are speci�ed. This

system relies on High Performance Computing resources and paradigms to

provide a response in an acceptable time due to the high computational cost

of evaluating several scenarios and integrating complementary models.

Keywords
Forest �re spread prediction, model coupling, wind �eld model, meteorolog-

ical model, MPI, OpenMP, two-stage prediction.





Resumen

Los incendios a gran escala suponen un gran reto debido al impacto que

tienen en la sociedad a m�ultiples niveles. Este fen�omeno f��sico es un prob-

lema multidisciplinar que requiere del esfuerzo de investigadores de campos

diversos. Por lo tanto, predecir el comportamiento de los incendios forestales

y minimizar sus efectos son las principales metas de este trabajo. Uno de

los problemas principales de este tipo de fen�omenos es la incertidumbre e

imprecisi�on de los par�ametros de entrada. Para abordar este problema, nos

basamos en una estrategia de predicci�on basada en t�ecnicas de calibraci�on,

que trata de sintonizar estos par�ametros para proporcionar una predicci�on

m�as certera, y reducir la incertidumbre sobre los par�ametros. En este tra-

bajo, proponemos estrategias para resolver ciertas restricciones asociadas a

esta t�ecnica. La distribuci�on espacial de los par�ametros ha sido considerada

uniforme a lo largo del terreno, por lo que introducimos un modelo comple-

mentario para simular el efecto del viento sobre terrenos complejos, debido

al papel fundamental del viento en la propagaci�on del fuego. Adem�as, se

sugiere acoplar un modelo meteorol�ogico para enriquecer el conocimiento del

sistema sobre la evoluci�on temporal de las variables meteorol�ogicas. Todos

estos componentes se integran en un entorno de simulaci�on y predicci�on,

y se de�ne una metodolog��a para simular incendios forestales reales donde

se especi�can los pasos, procedimientos, modelos, y herramientas necesarias

para construir un sistema de evaluaci�on del riesgo de incendios forestales en

tiempo real. Este sistema se sirve de recursos y paradigmas propios de la

Computaci�on de Altas Prestaciones para proporcionar una respuesta en un

tiempo aceptable debido al alto coste computacional de evaluar m�ultiples

escenarios, e integrar modelos complementarios.

Palabras clave
Predicci�on de incendios forestales, acoplamiento de modelos, campo de vien-

tos, modelo meteorol�ogico, MPI, OpenMP, predicci�on en dos etapas.





Resum

Els incendis a gran escala suposen un gran repte degut a l'impacte que

tenen en la societat a diversos nivells. Aquest fenomen f��sic �es un prob-

lema multidisciplinar que requereix de l'esfor�c d'investigadors de diferents

camps. Aix�� doncs, predir el comportament dels incendis forestals i minim-

itzar els seus efectes s�on els principals objectius d'aquest treball. Un dels

principals problemes d'aquests tipus de fen�omens �es la incertesa i la impre-

cisi�o dels par�ametres d'entrada. Per abordar aquest problema, ens basem en

una estrat�egia de predicci�o basada en t�ecniques de calibraci�o, que tracten de

sintonitzar aquests par�ametres per tal de proporcionar una predicci�o m�es pre-

cisa, i reduir la incertesa sobre els par�ametres. En aquest treball, proposem

estrat�egies per resoldre certes restriccions associades a aquesta t�ecnica. La

distribuci�o espacial dels par�ametres ha estat considerada uniforme en tot el

terreny, per la qual cosa s'introdueix un model complementari que simula

l'efecte del vent sobre terrenys complexes, degut al paper fonamental del

vent en la propagaci�o del foc. A m�es a m�es, es suggereix acoblar un model

meteorol�ogic, per enriquir el coneixement del sistema sobre l'evoluci�o tem-

poral de les variables meteorol�ogiques. Tots aquests components s'integren

en un entorn de simulaci�o i predicci�o, i es de�neix una metodologia per

simular incendis forestals reals, en la qual s'especi�quen els passos, proced-

iments, models i eines necess�aries per a construir un sistema d'avaluaci�o

del risc d'incendis forestals a temps real. Aquest sistema utilitza recursos

i paradigmes propis de la Computaci�o d'Altes Prestacions per proporcionar

una resposta en un temps acceptable, degut a l'elevat cost computacional de

l'avaluaci�o de m�ultiples escenaris i de la integraci�o de models complementaris.

Paraules clau
Predicci�o d'incendis forestals, acoblament de models, camp de vents, model

meteorol�ogic, MPI, OpenMP, predicci�o en dues etapes.
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Chapter 1

Introduction

Computers have drastically changed the way we do science. Until the emer-

gence of the �rst computers, scienti�c theory and experiments were limited

by human ability to solve problems. This fact was a barrier to facing com-

plex problems where the numerical calculations required were intractable for

us. Computer Science provided the tools and theory necessary to implement

processes or algorithms using computers and opened a new era in which

computation is present in all areas of our lives.

Computational Science is an interdisciplinary science that focuses its ef-

forts on studying, modeling and solving problems related to science and engi-

neering, using a mathematical background and Computer Science tools and

algorithms. Figure 1.1 represents this con
uence of �elds.

Natural hazards such as 
oods, hurricanes or forest �res - the focus of our

research - are phenomena characterized by a stochastic behavior, the large

amount of variables involved and complex physical systems. It is necessary

to simplify these systems to be able to model them and perform simulations

using computational resources. Despite this simpli�cation, we must maintain

a trade-o� between model accuracy and ease.

High Performance Computing (HPC) provides the resources, tools and

programming paradigms to model and simulate complex applications in an

e�cient, fast and reliable way. This computing paradigm opens the door to

new challenges and allows us to tackle very complex problems that cannot

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Computational Science

be solved in an acceptable time by the classical computing view.

1.1 Motivation

The occurrence of forest fires is directly related to the features of the region.

There are zones that are more susceptible to suffering from forest fires due

to their climatology, vegetation or the management policy of their forests.

Forest fires have a global impact and cause severe damage on both environ-

mental and socioeconomic levels. The Joint Research Center, a European

research institution under European Commission control, publishes an an-

nual report about forest fires in Europe. The latest report [1], shows the

forest fire statistics in Europe, analyzing their impact country by country.

Southern European countries (Portugal, Spain, France, Italy, and Greece)

are the countries most affected by this hazard due to their Mediterranean

climatology. They are characterized by a Mediterranean climate with hot,

dry summers and mild winters. These features make these countries critical

regions during the hottest seasons.

Figure 1.2 shows the burnt area and the number of fire occurrences since

1980. Focusing on the particular case of Spain, it is the country with the

highest average of burnt area decade to decade. Only in the last decade
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(1999-2009) was it overcome by Portugal, due to the positive trend in Spain

that has allowed for the reduction in the burnt area from an average of

244,788 ha per year in 1980-1989 to 125,239 ha per year in 2000-2009.

Figure 1.2: Burnt Area and number of �res in Southern European countries

Despite this positive evolution, medium and long-term climatic predic-

tions show that the average temperature will increase, and, consequently,

�re risk will be greater year after year. One of the scales that measures �re

risk is the SSR (Seasonal Severity Rating). It is derived from the Canadian

Fire Weather Index System [2], and o�ers an objective comparison of �re

danger over time in a certain region. Figure 1.3 is an example of a map

where SSR is used and shows the average forest �re danger in Europe from

1981 to 2010, as well as the estimated behavior of this measurement over the

next several years. These predictions foretell a growth in �re risk throughout

most of Europe, so it is necessary to remain vigilant and develop strategies

to mitigate the e�ects of forest �res.

The most visible e�ects of forest �res are the loss of forest area and human

lives. These factors are not negligible, and, every year, we can see examples

of large and devastating �res which cause severe damage.

In 2003, Portugal su�ered one of the worst �re seasons ever seen [3]. More

than 400,000 ha. burnt an area making up 58% of total burnt area in the

�ve most a�ected countries in Europe (Portugal, Spain, France, Italy, and

Greece). The burnt area was almost four times the average recorded from

1980 to 2003. In addition, 21 people died due to forest �res over that season,

and the estimated amount required to mitigate the damages was 1 billion
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Figure 1.3: Average forest �re danger and trend

euros.

In 2007, Greece was also severely punished by wild�res [4], and 78 people

died, most of them civilians (69). Approximately 225,000 ha. were burnt,

comprising almost 40% of the burnt area of the Southern countries. These

facts cannot hide the severe �re season in Italy that year. In that case,

the worst since 1981, the amount of burnt area was similar, accounting for

slightly over 40% of the �ve countries, and the number of victims was 23.

The state of California (US) also su�ered a di�cult �re season in 2007

[5]. More than 400,000 ha. were burnt by several big �res during that season.

The biggest was the Zaca �re in Santa Barbara County that burnt almost

100,000 ha. and lasted 58 days. During that season, 17 people died, and that

year became one of the worst �re seasons in California, along with the 2003

season.

Australia is a high-risk country due to the favorable conditions that wild-

�res �nd when they occur. These conditions led to one of the worst episodes

ever experienced. It is remembered as the Black Saturday Bush�res, and it

burnt around 450,000 ha., with over 400 �res detected. Temperatures reached

46 degrees Celsius, and windspeed topped 100 Km/h. In Fig.1.4, the map

with the burnt areas from that disaster is shown. It is considered one of the
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top-ten worst wildfires in history, and 173 people died because of those fires.

Figure 1.4: Black Saturday Bushfires map, Australia

As we have previously commented, Spain has followed a positive trend

in forest fire burnt area. However, in spite of this, 2012 was the worst year

since 1994. That year, more than 200,000 ha. were burnt, 10 people died and

30,000 were evacuated. The budget directly related to forest fire management

(extinction and prevention) was 75 million euros.

Therefore, developing assessment strategies and tools to reduce the im-

pact of forest fires is a common objective shared by institutions, scientists

and society in general. From the point of view of scientists, the main ob-

jective in this field has been focused on developing models and simulators

to predict fire behavior. Fire spreading is a multidisciplinary issue and re-

quires the combined efforts of physicians, mathematicians, fire analysts and

computer scientists, among others.
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Fire spread behavior models are equation systems, based on physical

and/or empiric knowledge that de�nes the dynamics of �re. These mod-

els are a simpli�cation of the real system due to the high complexity and the

amount of variables involved in these kinds of natural hazards. Because of

this, one of the error sources when a �re simulation is performed comes from

the incompleteness of the model.

This is only one of the many reasons. The input parameters required

to feed the model su�er from a high degree of uncertainty and imprecision.

Input data sources rely on measurement tools that usually have a certain

error. Sometimes this error cannot be determined in advance, and we must

accept it and deal with it. There are several factors that cause these errors,

and they may start in the manufacturing step of the measurement tool. Its

design and manufacturing determine its precision, and it is not exempt from

imperfections. In addition, these tools are subject to wear over time, and

this in
uences their accuracy. The environmental factors also in
uence the

quality of the measurements, and, sometimes, the measurements may present

a high error or be corrupted due to these factors.

Some input parameters can be generated by weather forecast services

that rely on meteorological models, and, as is well known, these predictions

may have a certain deviation from reality. Taking all of these considerations

into account, developing strategies to minimize these errors seemed to be a

promising way to improve forest �re prediction.

Based on the idea of minimizing the impact of the uncertainty of the input

parameters, the two-stage prediction method that establishes a methodology

to reduce the errors arising from the imprecision of the parameters was de-

veloped. This strategy relies on calibration techniques to �nd the set of

parameters that best describes the �re behavior at a certain instant, using

the knowledge of the spread of �re in a previous time interval.

The two-stage prediction method has some restrictions because of its

original implementation and its working hypothesis. The latter states that

the conditions should remain quite stable throughout the interval in which

the calibration is performed, as well as the prediction interval. Therefore,

this assumption restricts the possible �re scenarios where this methodology
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could provide successful predictions.

The main reason why this method is not sensitive to sudden changes

is because of the use of a single value of each parameter to de�ne the �re

behavior over a whole interval. This is an advantage because it allows for a

reduced set of parameters to calibrate, but it supposes a hard restriction in

many scenarios. A similar situation occurs with the spatial distribution of

the parameters. A single value of each parameter is calibrated for the whole

terrain. This does not suppose a problem in small and 
at terrains, but

when we deal with real �res that take place in complex and rough surfaces,

considering a unique value of certain parameters does not �t with the real

behavior of such parameters.

1.2 Objectives

Taking the ideas previously exposed as a reference, our speci�c objectives

are:

� Introducing complementary models to tackle the restrictions of the two-

stage prediction method and extend the methodology in order to be ap-

plicable to real and complex forest �res with changing conditions. That

means that these complementary models should solve the problems re-

lated to the temporal and spatial uniformity that the methodology

presents.

� Once the models have been selected, they must be coupled in an e�-

cient way in the two-stage prediction system. It is necessary to study

the input and output parameters that take part in every model and

implement interconnection modules that allow for communication be-

tween the system and these new models.

� It is also necessary to analyze the computational requirements of each

model and to study how to introduce them without compromising the

system's response time or ability to give a prediction in an acceptable
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time. To ensure an adequate response time, we must also de�ne the

requirements to incorporate real-time data in an operational system.

� Therefore, we want to develop a complete framework that allows for

a fast response, using the available resources e�ciently. We rely on

HPC systems and parallel programming paradigms to guarantee these

requirements.

� Finally, all these improvements must be validated using di�erent �re

scenarios and conditions.

Summarizing all these objectives, we want to provide a simulation and

prediction system that aids in taking decisions during a real-time emergency.

Obviously, this is an ambitious target, so we establish a methodology, pre-

diction strategies, and a parallel framework. We have validated this work

starting with prescribed �res, synthetic �res, and moving up to real scenar-

ios. The reference �res are used to compare our simulations, analyze the

error, and implement strategies to minimize this error.

Prescribed �res (see Fig. 1.5) are real �res evolved in a reduced and

uniform terrain, where the conditions are monitored, and it is possible to

study the spreading of the �re in detail. These �res are useful for validating

�re spread models, studying vegetation features, and, in our case, comparing

our strategies with these small study cases.

When we want to study bigger �res, with non-uniform terrains and con-

ditions, and we do not have a real �re at our disposal, we can experiment

with synthetic �res such as the one shown in Fig. 1.6. These �res are evolved

using a �re spread simulator, and the features of the terrain and the condi-

tions may be real or generated depending on our needs. This kind of �res are

helpful when we want to reproduce certain terrain properties or conditions

and study the �re behavior in those cases.

Finally, real �res (see Fig. 1.7) are the key scenarios where we want to

provide our knowledge. In these simulations, we use the real perimeters of

the �re provided by the �re analysts or the corresponding authorities.

These reference �res are compared to the simulations provided by our

prediction strategies. The basis from which we start is the two-stage pre-
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Figure 1.5: Prescribed burning

Figure 1.6: A reference fire evolved using a simulator

diction method, which will be explained more deeply in the next section.

Briefly, this method performs a calibration stage that tries to tune the input

parameters to be closer to the real fire behavior. It requires a previous real

fire front to adjust the parameters and then provide a simulation.

We have focused our efforts on improving the predictions of the two-

stage method and coupling complementary models with our system in order

to increase the accuracy of the input parameters. How to improve the most

sensitive parameters behavior has been studied, both from a spatial point of
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Figure 1.7: An example of a real fire scenario

view as well as temporally.

It is well known that when studying large forest fires that burn for long

intervals, meteorological conditions significantly affect fire behavior. These

conditions cannot be considered uniform along the terrain and constant over

time due to the high complexity involved in big fires. Up to now, considering

these variables uniform and constant was possible because the homogeneity

present in prescribed fires. When we deal with large scale fires, this assump-

tion becomes a hard restriction, and new strategies must be applied.

The first restriction is related to the spatial distribution of certain param-

eters. We highlight the case of wind components due to their high significance

in fire propagation. In this case, assuming a single wind direction and speed

for the whole terrain is not a realistic situation. Wind suffers changes because

of terrain irregularities that must be taken into account when we model a

fire over a complex surface.

The second restriction is directly related to the temporal evolution of

the variables over time. The most relevant cases are the weather variables.

When we study the evolution of a fire during long intervals, considering the

first value of each parameter as a constant for the whole interval generates

considerable prediction errors due to the large variability present in these
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types of parameters.

Therefore, we propose adding a spatial wind �eld modeler to simulate the

e�ect of wind - one of the most in
uential parameters - over a certain terrain.

Additionally, we suggest increasing the number of meteorological variables

samples over time, using the information provided by a meteorological fore-

cast model.

Finally, this work proposes a comprehensive methodology to simulate and

predict forest �res, beginning with the data acquisition and processing, the

models and simulators used, the prediction schemes proposed, and lastly, the

output analysis. This methodology also establishes a parallel solving scheme,

using programming paradigms such as MPI or OpenMP, in order to speed

up the response of the system.

1.3 Organization

This work is organized as follows:

Chapter 1 introduces the research topic, the motivation of this work and

the main goals that will be tackled.

Chapter 2 is intended to analyze the background of this work. In our

case, the most relevant research work in this �eld is presented, analyzing

the existing �re spread models and the simulators and tools used by the

researchers and �re analysts. At the end, we present the previous work done

in our research group that has culminated in this thesis.

Chapter 3 explains the complementary models, how to integrate them

in the two-stage prediction method, the computational requirements and

depicts the parallel system proposed, its inputs and outputs, and the pro-

gramming paradigms used.

Chapter 4 presents the methodology that we propose to treat this issue.

The data acquisition and processing, the topographic characterization of a

region and the modules of the system are detailed.

Chapter 5 shows the experimental work that validates our proposal. It is

organized chronologically, from the earlier experiments using small synthetic

�res to the latest experiments using real �res.
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Finally, Chapter 6 points out the conclusions extracted from this work

and the open lines that must be discussed and kept in mind in the future.



Chapter 2

Forest �re spread prediction

2.1 Models, simulators and frameworks

Forest �res and other natural hazards are phenomena widely studied by the

scienti�c community due to the huge environmental, economic and social

impact that they produce every year around the world.

In the case of forest �res, many preventive actions can be applied to

reduce the forest �re risk, but unfortunately, they do not completely remove

the multiple factors unleashed by a �re. Because of this, our e�ort is focused

on mitigating the consequences when the �re is detected.

To study forest �res, many �re spread models based on physical laws and

empiric observations have been developed in order to predict the behavior of

forest �res [6] as closely as possible. Fire models can be divided into three

categories:

� Physical models: Theoretical models based on physical laws of heat

transference and 
uid mechanics. They are represented by mathemat-

ical equations [7][8][9].

� Empiric models: This kind of model is based on experimentation and

probability factors. It is tightly linked to the zone where the data has

been collected, so it is hardly portable [10].

13
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� Semi-physic models: It comes from mixing both ideas, a hybrid model

based on physical laws and introducing empirical observations [11][12].

Figure 2.1: Semi-physical model process creation.

2.1.1 Fire spread models

Besides the nature of their equations, �re models can be classi�ed by the �re

type that we want to study. There are four main types of �res, and each one

has di�erent behavior. Therefore, the physical systems and equations vary

from one to another. In Pastor et al. work [13], an extensive list of forest �re

models is analyzed and classi�ed according to their typology. Basically, we

can �nd four types: surface �res, crown �res, spotting �res and ground �res.

Surface �re models focus their study on the �res that burn the vegetation

near the surface, such as small trees, brush, or herbaceous plants. Crown

�re models are somewhat complementary to surface �re models and study

how the �re spreads over the canopy of trees in a forest. Spotting �re models

provide the equations to analyze those new �res caused by incandescent pieces

of the main �re transported out of the main �re perimeter. Finally, ground
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�re models concentrate their attention on those physical processes that occur

in the substrate of the soil when a �re takes place. Usually, �re prediction

tools use a combination of a surface �re model, a crown �re model, and a

spotting �re model inside the simulation core.

The �rst attempt to model surface �re was done by Fons [14], who pro-

posed the �rst theoretical �re spread model. McArthur [10] developed an

experimental work that de�ned grassland �re behavior tables. These tables

have helped to calculate �re risk indexes in herbaceous terrains, predict the

rate of spread in these terrains, and implement a public alarm system in Aus-

tralia. Anderson [15] proposed a semi-physical model that described the heat

transfer processes in a �re analytically, using experimental data. This model

has the limitation that it assumes a scenario without wind and analyzes how

certain parameters (fuel variables, terrain features and some atmospheric

variables) in
uence the �re spread rate. The most common shape for ap-

proximating how a �re spreads is the ellipse. Van Wagner [16] proposed an

analytical model based on the mathematical equation that de�nes the ellipse

(see Fig.2.2). The size of the ellipse (a and b segments) depends on the rates

of spread of the head, the 
anks and the rear. These rates will be determined

by the wind components and other �re behavior parameters, and the area of

the ellipse is a function of time, so it will increase at every step, maintaining

the elliptical properties.

Later, Rothermel [17] presented the most widely used �re spread model,

based on a mathematical basis and empiric observations. This model will

be explained in detail in subsequent sections. Rothermel also de�nes 11

fuel models and their parameters required as input to the model. Albini

later re�ned these fuel models and added two more. These 13 standard fuel

models were described by Anderson [18] and advice about how to select a

model was given. Anderson et al. [11] proposed an alternative mathematical

model for grasslands based on Huygen's principle that was intended to predict

�re perimeters. Huygen's principle is also used in Rothermel's model and is

depicted in Figure 2.3. Considering an initial �re front t0, the future �re front

t1 will be equal to the curve that envelops the elliptic spreads, resulting in the

application of the �re spread model at di�erent points of the initial perimeter.
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Figure 2.2: Elliptical �re spread scheme.

Other later models tried to improve �re spread modeling by including more

complex physical interactions and pro�ting from the continuous improvement

in computational resources [7][19][20].

Figure 2.3: Huygen's principle.
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There are several models that study how crown �res behave. Some of

them analyze the initial conditions and the factors required for a crown �re

[21] and how a surface �re can become a crown �re. Other models [22][23]

propose equations characterizing the spread of these �res. Later works pre-

sented models that include both initiation and spread models [24][25]. In all

of these cases, it is important to note that each model is intended to study a

speci�c zone. Therefore, the models have intrinsic errors due to the di�culty

of extrapolating them to other scenarios.

In the case of spotting �res, the most relevant and proli�c author was

Albini [26][27][28]. According to him, the most important factor to know is

the maximum spot �re distance. If we can accurately predict this value, it

will be easier to place emergency services and �re�ghters correctly.

Rothermel's model

Rothermel's �re spread model [17] is one of the most widely used models for

the study, modeling and prediction of forest �res. It can be considered a

semi-physical model because it is based on mathematical equations that rep-

resent physical processes and relies on certain factors that have been inferred

experimentally. This is a surface �re model that de�nes the equations that

calculate the rate of spread and the intensity of a single point of the �re. The

underlying physical principle is the conservation of energy applied to a unit

volume of fuel ahead of a spreading �re in a homogeneous fuel bed. Equation

(2.1) represents the rate of spread in Rothermel's model, and it is the ratio

between the heat generated by a unit volume of fuel and the heat required

to bring a unit volume of fuel to ignition temperature. A unit volume of

fuel (also seen in the literature as fuel unit, unit fuel cell, or unit cell) is the

minimum unit of fuel used in these models instead of the particle.

R =
heat source

heat sink
=
Irξ (1 + �w + �s)

ρbεQij

(ft/min) (2.1)

where:

Ir = Reaction intensity

ξ = Propagating 
ux ratio



18 CHAPTER 2. FOREST FIRE SPREAD PREDICTION

�w = Wind coe�cient

�s = Slope factor

ρb = Fuelbed bulk density

ε = E�ective heating number

Qij = Heat of preignition

The reaction intensity is the energy released per fuel unit while a �re

is burning. It depends on fuel characteristics such as particle size, bulk

density, heat content, moisture of the fuel and chemical composition. These

parameters will in
uence how the �re spreads, i.e. when the moisture of the

fuel is high, the �re spreads slower than in the opposite case, and when the

heat content or the density is high, the reaction intensity grows.

The propagating 
ux ratio de�nes how much of the reaction intensity

is forwarded to the atmosphere and how much the rate of spread value is

directly a�ected.

Wind coe�cient and slope factor are empiric values that represent the

added e�ect of wind and slope over the rate of spread.

The factor corresponding to fuelbed bulk density is di�erent for every

vegetation type (or fuel model). This parameter determines the amount of

fuel mass that a given fuel unit contains.

The e�ective heating number is a value from 0 to 1, which represents the

percentage of fuel load that needs to be heated to ignition for each vegetation

type. When we deal with vegetation which is predominantly grass, this value

is close to 1, because it needs to be heated to ignition completely. However,

trees or big branches have a lesser e�ective heating number, because only a

portion of their mass must be heated to ignition.

The last element of the equation corresponds with the heat of pre-ignition.

It is the energy required per fuel unit for ignition and depends on the ignition

temperature, the moisture and the load of the fuel type.

2.1.2 Fire simulators and tools

Many simulators have been developed using a combination of a surface, crown

and spot models as underlying �re models. We can �nd simulators and tools
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such as BEHAVE, FireLib, BehavePlus, FlamMap, FSPro, FSIM, FMAPlus,

NEXUS, FireStation, or Farsite. Most of them belong to the big family of

Rothermel's model-based tools. Out of all of these applications, Farsite is

the most used �re growth simulator. Some of them have di�erent purposes,

complementary or di�erent to Farsite. Let us analyze some features of these

tools:

BEHAVE [29] is the simulator on which the rest of �re growth simulators

hang. It relies on Rothermel's surface model, Van Wagner's initiation crown

model, Rothermel's spread crown model and Albini's spotting �re model.

The other tools use the same models but they are di�erent in how they treat

space and time. Behave, and its successor BehavePlus [30], assume that

initial conditions remain stable and uniform both in space and time.

FireLib [31] is a simple �re library for predicting the spread rate and the

intensity of �res, directly derived from BEHAVE. It uses a cellular automa-

tion technique to simulate the spread. The most common types of simulators,

depending on the way they calculate the spread, are those based on cellular

automation and those that use an elliptical wave propagation [32]. The �rst

ones are based on cell maps representing the landscape, and every cell has a

parameter set and a state. When an ignition is placed, the state transition

will be determined by a set of common rules that will a�ect the ignition cells

and their neighbors. In elliptical wave propagation simulators the landscape

is seen as a continuous surface (although its real representation is discrete).

The calculation of the next perimeter is done by choosing certain points of the

initial perimeter, applying the spread equations at every point and building

the envelope curve (Huygen's principle).

FlamMap [33] has many similarities to Farsite, but eliminates the tempo-

ral evolution. FlamMap is intended to study �re behavior under landscape

features (terrain and fuels) at a certain instant. For this reason, it is inter-

esting to understand the �re behavior and changing fuel parameters. All the

�re spread equations are applied independently to each cell on the landscape,

and the simulator o�ers a wide output information (�re line intensity, 
ame

length, rate of spread, minimum travel time paths, etc.).

FSPro [34] follows a statistical approach and builds burning probability
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maps for a given time period. It uses historical information about weather

and �res. It evaluates several weather scenarios to determine the �re risk

for each cell of the terrain. Unlike other �re tools, FSPro is not oriented to

desktop computers, but it requires more computational power to evaluate all

the scenarios and perform the statistical analysis.

FSIM [35] is a tool to determine the burn probability over large areas

(millions of hectares). It includes a �re growth model, a weather generation

module and �re occurrence and suppression systems. It can simulate the �re

growth for large periods (in the order of years) to generate burn probabili-

ties that can help in mid- and long-term �re-�ghting planning or ecological

research.

FMAPlus [36] or Fuels Management Analyst Plus (FMA+) is not a �re

spread simulator, but a set of tools designed to store and estimate some

terrain features such as surface and canopy fuel loading.

Another �re analyst tool is NEXUS [37], a system that couples a surface

with a crown model to assess the potential for crown �res at the stand level

and allows for the visualization of surface and crown model interactions.

FireStation [38] is a simulator based on the cellular automation technique

that also includes the �re growth models of the BEHAVE system. One of

the major contributions of this simulator is the fact that it includes a wind

�eld modeler. This task is relayed in two wind models, NUATMOS and

CANYON, and wind data coming from weather stations near the hazard

focus.

Farsite [39] is a �re behavior and �re growth simulator that incorporates

both spatial and temporal information on topography, fuels and weather.

Unlike BehavePlus, it includes temporal variation in �re conditions. Farsite

is an elliptical wave propagation simulator and avoids a typical problem of cell

based simulators of reproducing the �re shape in heterogeneous conditions,

due to their reduced number of propagation paths.
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2.2 Forest Fire simulation

In this section, we will describe the input and output data that take part in

the forest �re simulation process and some prediction methods that try to

reduce the prediction errors. The classical prediction will be described and

compared with the two-stage prediction method. We will also show some

approaches that follow the two-stage methodology and have been the basis

of this work.

2.2.1 Input and output data

Although it is the main step, �re simulation is the last phase of the process.

Once we have collected all the information about the �re, the simulation can

take place. All the input data has to be adapted to the �re simulator. The

static and dynamic data come from several sources, with speci�c formats

and di�erent resolutions. These heterogeneous data must be uni�ed and

standardized to be useful for the �re simulation system.

Most �re behavior simulators require GIS input layers to provide �re

spread forecast as reliably as possible. Although the sensitivity of the model

to the input data clearly depends on the nature of each required parameter

([40]), the precision and quality of all of them are not dismissible. In general,

the data needed to perform the predictions can be divided into two main

groups: static and dynamic data. The static input data is the one that

remains constant throughout the whole prediction interval and the dynamic

data experiment changes during the �re spread simulation.

2.2.2 Static input data

As has been commented above, static data do not vary during the simulation,

so they can be collected and processed once and are then available for all

the forest �res that take place in the same topographic area. In particular,

those features that can be considered �xed in a given area are: topographic

information and vegetation maps.
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Topographic information

The three input layers required to properly describe the forest topographic

area where the fire occurs are the so-called elevation, aspect and slope maps.

The elevation or DEM (Digital Elevation Map) is a simple, regularly spaced

grid of elevation points which provides a discretization of a continuous sur-

face, taking into account measurements at certain points of the terrain (see

Fig. 2.4). The maximum resolution of the imaging resources defines how

many measurements we can achieve in a certain area.

Figure 2.4: Elevation sampling process

Slope and aspect can be calculated using the elevation ([41][42]) and ap-

plying certain equations. In DEM files based on regular square cells, slope

and aspect of each cell is determined by the altitude of some specific neigh-

bors, depending on the method chosen (see Figure 2.5). These parameters

determine the roughness of the terrain and have a direct influence on fire

spreading.

Vegetation maps

The vegetation map, also known as the fuel map, shows the vegetation diver-

sity of the area. Each vegetation or fuel type has its own parameters such as

moisture content, flammability, fuelbed load and density, heat content, etc.

These kinds of maps consider a limited group of standard fuels that represent

the great diversity of possible fuels and parameters.

In fire spread prediction, every one of the standard fuels present on a

map has a list of parameters about the content moisture of that fuel. Fuel

moistures are those parameters that define the content of water of live and
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Figure 2.5: Slope and aspect calculation equations

dead fuel. The concept of live fuel is related to the live vegetation of the area

(trees, bushes, grass, etc.). Dead fuel is the vegetation that remains lying in

the litter of the forest 
oor. These moistures have a direct impact on the �re

spread rate.

There is another kind of map concerning vegetation called the canopy

cover map. This map shows the percentage of tree crowns present in each

terrain division. This information will a�ect the �re typology, since it does

not spread in the same way as a surface �re or a crown �re.

2.2.3 Dynamic input data

Dynamic data is probably the most in
uencing input and its accuracy is

essential in producing a good prediction. We de�ne two main groups: GIS

�re perimeters and meteorological data.

GIS �re perimeters

The �rst group are those images that allow us to �t the forest �re simulator

with an initial �re perimeter and, furthermore, to observe the evolution of

the �re and to compare our predictions with the real �re behavior. These

perimeters are really di�cult to obtain and their precision depends on satel-

lite image quality, which will be a�ected by �re and weather conditions. It is

worth mentioning that the image resolution also has a great impact on the
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results.

In time terms, �re perimeters are possibly the hardest data to obtain.

In our experience, the maximum �re perimeter frequency is up to two per

day. This value corresponds to the number of satellite images that we can

achieve of a certain region. But, in some cases, these images are not clear

and certain factors (clouds, smoke, etc.) make it impossible to interpret the

�re perimeter. Therefore, it is di�cult to ensure when a perimeter will be

ready, and sometimes it is not possible to compare our predictions with the

real �re behavior.

Meteorological variables

The meteorological variables are a key factor in a real-time forest �re spread

forecast. These parameters have a direct impact on �re spread direction and

intensity. We only take a representative subset of these variables, those which

have more relevance in these kinds of hazards.

Temperature and humidity have an in
uence on �re intensity, but the

most important variable is wind. Wind direction usually determines the

direction of maximum spread in a forest �re. It also depends on vegetation

and terrain features (�re spreads more over an upslope than a downslope),

but if wind speed is high, �re tends to spread in the same direction.

Fortunately, weather variables are easier to obtain than �re perimeters.

In this case, meteorological services usually perform short-term and mid-

term daily predictions. Obtaining this data is almost immediate, but it must

be processed, and passed many times through a complementary model to

increase the resolution. In addition, we are interested in the latest prediction,

because the accuracy of these models depends on the time-window selected.

Therefore, we look for a trade-o� between data accuracy (newest predictions)

and data processing time.

Output data

Each �re simulator provides its own information about the �re spread. The

rate of spread, the time of arrival of �re, the intensity, the perimeters in
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vector �les and other �re parameters are delivered by the simulators and

give detailed information about the forest �re.

2.3 Forest Fire prediction

Below, we brie
y present the classical way of predicting forest �res (and other

phenomena). We also describe the two-stage prediction methodology and the

di�erent approaches that have been developed.

2.3.1 Classical prediction

The classical way of predicting forest �res relies on a single execution of

the �re simulator and is depicted in Fig. 2.6. In this prediction scheme,

the input parameters that de�ne the �re evolution in an initial instant are

collected, along with the ignition point or perimeter, as well as simulation

parameters, such as the time to be simulated and other parameters speci�c

to each simulator.

Figure 2.6: Classical prediction scheme.

Once we have de�ned the environmental and simulation features, we carry

out the simulation, and the system returns a prediction for the next time

instant. The output will depend on the simulator chosen and it can give

back a time-to-arrival map with the instant time when the �re burns a cell,

a shape �le with the output perimeter, a �le indicating the rate of spread at
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every perimeter point, the maximum spread direction and any information

related to the future �re behavior.

2.3.2 Uncertainty and imprecision of input parameters

The major problems of classical prediction method are probably the un-

certainty and imprecision that the input parameters of a complex physical

system as a forest �re, or any natural hazard, present. This imprecision gen-

erates errors in the input parameters that are generated and propagated from

the data sources to the �re simulator. The data sources and the common

issues that generate this error are shown in Fig. 2.7.

Given this situation, we can address the problem from two opposing po-

sitions. We can assume this intrinsic error that generates this uncertainty

and suppose that it will not in
uence prediction errors too much, or we can

face the problem and develop strategies to reduce this lack of knowledge or

minimize the error due to the uncertainty of the parameters.

Figure 2.7: Error sources in forest �re input parameters.

In our research group, a prediction method was developed that attempts
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to deal with this problem using parameter calibration techniques, which allow

for the minimization of errors under certain conditions. Besides reducing the

uncertainty, this method also slightly minimizes the �re model error itself.

2.3.3 Two-stage prediction method

Two-stage prediction method is so named because of the inclusion of a new

stage called the calibration stage before performing the prediction. Following

the scheme shown in Fig. 2.8, we are going to explain this methodology step

by step.

Figure 2.8: Two-stage prediction scheme.

A �rst interval (t0 � t1) is required to train the method. In this process

(step 1 in the �gure), several single predictions are carried out and the result

is compared with the real �re behavior at the time instant t1 (RFt1). This

provides valuable knowledge about the �re to the system.

Once we have the comparison between the real perimeter and the training

set, the parameters are sent to the calibration module (step 2 in the �gure).

This module applies optimization techniques to achieve an improved set of

parameters. This is an iterative process that tries to minimize the error

produced by the input parameters. The process will end when the error

reaches an acceptable value or after a �xed number of iterations, when we
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obtain the parameters that best reproduce the recent behavior of the �re

(step 3 in the �gure).

This optimized parameter set along with the real perimeter at t1 will

serve as input to the �re simulator to perform the prediction for the next

time instant t2. Under certain restrictions, these parameters should produce

a better prediction than the non-optimized ones (step 4). These restrictions

are summarized in the working hypothesis of this method, which states that

the conditions under which the �re evolves do not vary drastically between

calibration and prediction stages. Without the assurance of this assumption,

we could not ensure the success of this methodology.

Evolutionary method

The �rst approach of the two-stage was using an evolutionary method based

on a genetic algorithm. Genetic Algorithms [43] allows for multiple-problem

resolution using the idea of how species evolve in the natural world. The

two main ideas are natural selection and sexual reproduction, with the �rst

being the basis of survival and o�spring of individuals, and the second the

fact that allows for the combination of the individuals that survive in the

population. Therefore, selection ensures that the individuals best adapted to

the environment will survive. In addition, these individuals will combine their

genetic features to generate new individuals that will cause the population

to evolve generation after generation. In this process, some individuals can

mutate some genes so that the resulting individuals are not exactly the result

of crossing their predecessors.

Transferring this concept to the computational world, a population can

be seen as a set of possible solutions to a problem. Each solution, in genetic

jargon, is an individual. To evaluate these individuals, an error or �tness

function is necessary that calculates the goodness of an individual. Once we

have ranked all the individuals or solutions, we can perform a series of genetic

operations to generate a new optimized population. First, some of the best

individuals (a percentage or a �xed number) are selected, and they remain

unchanged for the next generation (elitism). Then, a subset of the population
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is combined in pairs to generate new individuals (crossover). And, finally, a

percentage of the population (usually low) modify their genetic features or

genes to introduce more heterogeneity in the population (mutation).

But how is this idea applied to forest fire parameters calibration? The

calibration method implemented was called the evolutionary method and

based on a genetic algorithm [44] where we start with a random population

where every individual is a set of parameters that describes the status of

the fire at a certain instant. These individuals are introduced into the fire

simulator with the initial fire front (RFt0), and a predicted fire front is

obtained for every individual for the next time instant t1 (see Fig. 2.9).

Figure 2.9: Two-stage prediction scheme based on Genetic Algorithm.

These fronts are compared with the real one at t1 (RFt1) and the differ-

ence or error of each individual (EC module, Error Calculation) is calculated.

The population is ordered according to this error and the genetic operations

(elitism, crossover, and mutation) are applied to generate a new population.

The process is repeated for a fixed number of iterations (generations),

at which point the individual with the best parameter set is selected and is

responsible for performing the prediction for the instant t2.

The most important parameters of the algorithm are the number of indi-

viduals, the number of generations, the elitism rate, the crossover rate and

the mutation rate. It is easy to implement and it is a powerful parame-
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ter optimization technique that usually does not require a large number of

generations to reach a good solution. Despite this, it may happen that the

algorithm does not converge and never ensures an optimal solution, so we

must properly con�gure the parameters to obtain the expected results.

Guided evolutionary method

To improve the response of the method to the changes in meteorological

conditions, some techniques to add knowledge to the system are developed.

The objective is to identify these changes in advance and to not always be a

step behind the �re.

The idea is simple but useful. Rothermel's model calculates spread direc-

tion depending on wind components and slope. This method [45] intends to

go the opposite way and proposes achieving the wind components that best

�t the actual �re behavior from the slope and the spread direction observed.

This relationship is obtained using a knowledge database where every en-

try has a slope, spread speed, spread direction, vegetation model, and its

corresponding wind components (direction and speed).

This added knowledge about wind will be applied to those individuals

that take part in the mutation process, delimiting the variation range of

wind speed and direction genes. To reduce the wind range (direction 0-360

degrees and speed 0-30 mph), the value found is placed in the center of the

range of variation and a con�dence interval for each component is de�ned.

Thus, individuals chosen to mutate will do so in a reduced range.

Using this method, the system usually converges faster and we improve

the prediction quality in most cases. In addition, the data-driven evolution-

ary method performs better under changing meteorological conditions. It is

noteworthy that the prediction quality depends on the completeness of the

knowledge database.

Statistic method

The statistic or probabilistic method [46] pursues the same objective of the

previous methods, but di�ers a lot in how it reaches the target of calibrat-
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ing the parameters. To better understand the method, we will support the

explanation in Fig. 2.10.

Figure 2.10: Two-stage prediction scheme based on Statistical method.

The �rst consideration is that it does not start from a limited number

of parameter sets, but it performs a combinatorial explosion from which we

obtain all the possible parameter combinations. To achieve this goal, de�ning

a minimum and maximum bound for all the parameters is mandatory, based

on the observation and study of each parameter. Therefore, the population

is much greater than in the evolutionary approach, because we cover all the

possible combinations and eliminate the possibility of having poor initial

populations at the cost of exploring the entire search space.

All the predicted �re fronts are introduced in the Statistics Integration

module (SI). This module generates a map where the number of times that

a cell is burned is accumulated, sweeping the predicted maps. All the cell

values of the accumulated map are divided by the total number of scenarios,

which will produce a burning probability map with values within the range

[0-1] (see example in Fig. 2.11).

Once the probability map is built, it begins the search for the factor kign

that corresponds to the probability that best describes the real �re behavior

at t1 (see example in Fig. 2.12). For this reason, this step receives the real
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Figure 2.11: Probability map for four scenarios.

front at that time (RFt1) that is used to compare with the maps correspond-

ing to each probability value.

Figure 2.12: Kign factor search process.
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The probability value that best matches the real �re is then assigned

to the factor kign (Kt2 in Fig. 2.10) and the system will be able to give a

prediction for the time instant t2. At this moment, the search for the factor

for the subsequent time t3 (Kt3) can be initiated. In this way, the predictions

will overlap.

The main bene�t of this method is also its main weakness. As has been

commented, combining all the parameters themselves means that we cover all

the potential solutions. In contrast, this method requires a huge computing

power to simulate all the possible scenarios. Nevertheless, and in comparison

with the evolutionary method, the statistic method adapts better and faster

to sudden changes in meteorological conditions. Obviously, this method is

highly parallelizable and the workload can be distributed among the available

resources.

Hybrid statistic-evolutionary method (SAPIFE3)

After seeing the strengths and weaknesses of the previous strategies, a new

hybrid method is developed that combines some bene�ts of both and reduces

their main problems. The method is called SAPIFE3 [47] (Adaptive System

for Forest Fire Prediction based on Statistical-Evolutionary Strategies, trans-

lated from Spanish). The main idea is using the genetic algorithm not only to

generate a single solution (or individual), but also a set of possible scenarios

that will be processed by the statistic method (Fig. 2.13). This signi�cantly

reduces the computational requirements of the statistic algorithm due to the

reduction of the search space. This could violate the nature of the statistic

method based on the exhaustive search, but it has been demonstrated that

using a reduced (but optimized) set of parameters does not adversely a�ect

the method and signi�cantly improves the prediction times.

It was necessary to modify the genetic algorithm in order to implement

this method. Instead of returning the best individual, it will deliver a pop-

ulation as input to the statistic modules of the system. These modules no

longer perform a combinatorial explosion covering all the parameters con�g-

urations but only focus the e�ort on the reduced population optimized by
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Figure 2.13: Two-stage prediction scheme based on hybrid statistical-
evolutionary method.

the genetic algorithm.

The statistic part builds the probability map, searches for the kign factor

and returns the predicted map for the next time instant, using the same

methodology previously described.

The bene�ts of this method are the result of coupling the two previous

methods and taking advantage of the fast and e�cient parameter optimiza-

tion that the evolutionary method o�ers along with the better adaptation

to changes in weather conditions of the statistic method. The results of this

work show that when weather conditions remain quite stable, the errors are

close to those that are achieved by the simple evolutionary method. When

a change in conditions between stages occurs, the evolutionary method gen-

erates high prediction errors compared with the statistic, and the hybrid

method behaves similarly to the statistic. In addition, it meets its objective

in a much shorter time. These results are based on an experiment where

a synthetic �re is simulated. The weather conditions are �xed during the

calibration stage from 0 to 8 minutes (wind of 5 mph and 180 degrees) and

changed at this moment to 10 mph and 270 degrees. As has been commented,

SAPIFE3 performs similarly to the evolutionary method during the �rst 8

minutes. When conditions change the evolutionary method increases in er-
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ror while the statistical and the hybrid cushion the error and achieve better

predictions.

SAPIFE3rt method

The SAPIFE3 method was improved and renamed SAPIFE3rt (real time).

The objective of this change was using real data sources (meteorological

stations, sensors, etc.) in order to detect sudden changes in the environment

and to act accordingly.

To achieve this goal, a new module is added which is responsible for ac-

quiring data, detecting changes in conditions and replacing a certain number

of individuals that take part in the genetic algorithm. This work establishes

a methodology for dealing with injected data and suggests the creation of

an injection policy, because injecting all the real data is not always recom-

mended. Therefore, the pending work is de�ning a policy of how and when

to inject real-data during a simulation. It is also important to de�ne when a

change is abrupt enough because �rst experiments hypothesize that, in those

cases, it is highly recommended.

2.4 Evaluation of quality prediction

In order to compare our predictions with real �re behavior, we must use

metrics to determine the quality of our simulations and be able to rank

them. Several metrics exist to compare real and predicted values [48] and

each one weighs the factors involved di�erently. The notation used in this

kind of error functions is depicted in Fig. 2.14.

The cells around the map that have not been burnt by either the real �re

or the predicted map are considered Correct Negatives (CN). Those cells that

have been burnt in both maps are called Hits. The ones that are only present

in the real �re and the predicted �re does not consider that will be burnt are

the Misses. Finally, in the opposite case, the cells that the simulator predicts

will be burnt and the real �re does not actually reach are called False Alarms

(FA). Besides these factors, some equations take into account the real map
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Figure 2.14: Factors that take part in error comparison equations.

(Real), the simulated or predicted map (Sim), the ignition map (Ini) or the

total number of cells of the terrain (Total). This notation may vary but the

meaning remains the same. For better ease of understanding and to simplify

the equations, the initial �re is considered a point and can be removed from

the equations.

In our research work we have been using the symmetric di�erence between

maps. The values given by this error function are positive, but not in a

closed interval, with the best value being 0 without an upper limit. We use

the concept of union ([) and intersection (\) as factors in the equation but,

as can be seen in Eq. 2.2, they can be translated to the notation presented

previously.

Error =
[ � \
Real

=
(Hits+Misses+ FA)� (Hits)

Real

=
Misses+ FA

Real

(2.2)

In fact, both real and simulated maps can also be transformed as a com-

bination of the Hits, Misses, and FA factors, and the equation could be

reformulated replacing the following elements:
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Real = Hits+Misses

Sim = Hits+ FA
(2.3)

This metric equally penalizes the misses and the false alarms. Another

metric that was used to rank individuals was the critical source index (CSI),

which gives us the rate of hits achieved from 0 to 1, with 1 being the perfect

match between maps. It also weighs misses and false alarms in the same way.

Fitness =
\
[

=
Hits

Hits+Misses+ FA
(2.4)

The fact of equally penalizing both factors is not desirable in our research

�eld. It is much more important to minimize the misses than to reduce the

false alarms. The consequences of misses can cause severe damage, both to

the environment and in human lives, while the false positives may represent

an extra e�ort in �re-�ghting resources.

The main problem of these metrics using our methodology is focused on

the calibration stage. In this part of the methodology, we evaluate several

scenarios, rank them using the error function, and then select the best pa-

rameter set after the calibration process to perform the prediction. In many

real �re cases, the individuals that almost do not spread give back the best

error values. Analyzing the shape of the other individuals, we saw that po-

tential good predictions were discarded from the calibration process due to

the high penalty generated by the false alarms. In order to solve this unde-

sired e�ect, we changed the �rst equation in order to minimize the e�ect of

false alarms. The new error function is depicted in Eq. 2.5.

Error =
∪−∩
Real

+ ∪−∩
Sim

2
=

Misses+FA
Real

+ Misses+FA
Sim

2
(2.5)

The latest equation has shown better behavior in the calibration stage
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than the other metrics. The individuals that overestimate have a better

error than those individuals that underestimate, when the area is equal by

excess and by defect.

2.5 Working hypothesis limitations

As will be widely analyzed in the next chapter, the working hypothesis of the

two-stage prediction method supposes a hard restriction in many scenarios.

It relies on the fact that the weather conditions will not su�er a noticeable

change between the calibration and the prediction stage. Sometimes this as-

sumption is hardly achievable. It is especially evident in large �res, when the

terrain is rough and weather conditions undergo continuous changes during

the simulation. Under these parameters, the two-stage method previously

delivered poor predictions due to the high dynamism of such scenarios.



Chapter 3

Coupling complementary

models

When we deal with real complex �res new challenges and problems must be

taken into account to adapt the �re prediction system to this new situation.

In these scenarios the uncertainty about the input parameters grows expo-

nentially and the reaction must be fast and e�cient in order to minimize the

e�ects of such hazards.

Therefore, the information about the environmental conditions must be

as accurate and reliable as possible, describing the particular conditions that

a�ect the �re spreading at any point of the region under study. Usually,

the available data about the conditions concerns certain points where the

weather variables have been measured or describes an atmospheric value

that is global to the whole area. Directly injecting these values produces

a lack of reliability because we assume a global and uniform behavior in a

heterogeneous terrain. Additionally, we also assume a continuous behavior

of these parameters over time, which is uncommon in real scenarios. The

temporal evolution of the input parameters changes dynamically depending

on the time of day, the season or the speci�c features of the region.

To build an e�ective �re prediction system, we should take these consid-

erations into account and provide a complete knowledge of the environment

where the �re is taking place. Most of this information cannot be known

39
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Type Real �re Prescribed �re
Area Hundreds of m2 Hundreds of ha.
Duration minutes/hours hours/days
Conditions controlled not controlled

Table 3.1: Prescribed �res vs. real �res.

in advance or its resolution is not high enough to consider the topography

irregularities. These issues can be faced using complementary models that

can calculate or predict the behavior of the weather variables. These models

can be divided into diagnostic and prognostic models. Diagnostic models can

develop the global behavior of a parameter and deliver its behavior in detail,

which is not time dependent. Prognostic models predict the behavior of one

or more parameters using mathematical equations that de�ne the dynamics

that drive their evolution under certain initial conditions.

3.1 Complementary models

Some parameters present a spatial and temporal distribution that make the

calibration process more di�cult, since only an average value for the parame-

ter along map and time can be selected. This assumption can be made when

we deal with prescribed �res where the size, the duration, and the conditions

are bound and known but in real �res this restriction is too hard because the

background changes drastically (see Tab. 3.1).

The original Two-Stage prediction scheme su�ers from two main handi-

caps. This scheme considers a uniform distribution of the parameters along

the whole terrain and it does not consider prognostic models to enable dy-

namic parameters changes over time. Both restrictions have a direct impact

on the quality of the prediction results. Thus, the original scheme was mod-

i�ed to be a multi-model prediction framework, where di�erent complemen-

tary models were easy to couple in order to reduce that negative impact.

Therefore, we focus on the meteorological conditions and, in particular, on

the wind components, since these are the parameters that most a�ect �re

spread.
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In order to equip the two-stage prediction scheme with the capacity to

react to sudden changes in environmental conditions, it becomes mandatory

to �t environmental data coming from prognostic models, such as weather

forecasting models, into the prediction scheme. Both prognostic models and

wind �eld models are computationally expensive. So, any approach to cou-

pling those models into a system (Two-Stage prediction scheme in our case)

will need to carefully analyze the implications of the total execution time and

resources needed, because when dealing with natural hazards such as forest

�re, any �re spread prediction must be delivered faster than real-time �re

evolution in order to be useful.

3.1.1 Wind �eld model

When complex terrains are considered, new features arise that must be taken

into account from a prediction accuracy point of view. Local terrain features

such as drainages, ridges and other topographical characteristics generate


ow e�ects that can only be captured in high resolution models. The me-

teorological wind is modi�ed by the topography, resulting in rapid changes

in �re intensity on a small scale that can have signi�cant in
uence on �re

growth on a larger scale. Therefore, a single value for the wind representing

the wind on each cell of the terrain is a very restrictive simpli�cation. It is

necessary to evaluate or estimate the wind on each cell of the terrain. The

bene�ts of using wind �elds in forest �re spread prediction have been dis-

cussed in many other works [38][49], and it has been tested in many scenarios

with signi�cant results. Therefore, to tackle this problem, a wind �eld model

must be introduced to obtain the e�ective wind at the required level of detail.

The wind can be measured by meteorological stations, but the value mea-

sured in one meteorological station is a measurement at a single point, while

at other points of the terrain, the value (speed and direction) of the wind

can be di�erent due to the orography of the terrain. The hills, mountains,

valleys and canyons of the terrain modify the meteorological wind, creating

a wind �eld with di�erent values at each point of the terrain.

Moreover, the wind is one of the input parameters that most a�ects the
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�re propagation. So, it is necessary to introduce a diagnostic model that

calculates the wind speed and direction at any point of the terrain, given a

meteorological wind. In Figure 3.1, there is a scheme of a homogeneous wind

map on the left and the corresponding wind �eld map generated by a wind

�eld modeler is on the right. The selected wind �eld model is WindNinja,

because it has a direct connection to FARSITE. It does not deliver a predic-

tion of the wind behavior over time but WindNinja performs a surface wind

diagnosis at a certain time instant.

Figure 3.1: Scheme of a homogeneous wind map (left) and a wind �eld map
given atmospheric wind components (right)

3.1.2 Meteorological model

The parameters calibrated by the 2st-BASIC scheme were considered con-

stant during both time intervals and a single value for each parameter was

used for the calibrating process and for the prediction stage. This methodol-

ogy �ts the DDDAS paradigm [50] since the prediction is dynamically driven

by the system evolution.

However, there are several parameters that are not constant over time

and they may vary dynamically. In the case of forest �res, a typical example

is wind. In some cases, when the time interval is short, an average value

for the wind can be a feasible value but, when the time interval is longer, in

most cases a single value cannot represent the variability of the wind. We

can estimate wind behavior by applying a complementary model.
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We are going a step further in considering the dynamic behavior of such

dynamic parameters. We propose an extension of the existing prediction

scheme that takes into account the dynamically changing parameters by cou-

pling a weather prediction system with a DDDAS Forest Fire Propagation

Prediction system.

An additional advantage of the introduction of the wind parameters at

the calibration stage instead of calibrating them as another gene is that

the search space for the calibration techniques is signi�cantly reduced and,

therefore, the other parameters considered can reach better values, and this

fact allows for smaller calibration errors in less time.

In the prediction stage, it is not possible to introduce the exact dynamic

values of the weather parameters beforehand. To overcome this limitation

a numerical weather prediction (NWP) model can be used to predict the

dynamic behavior coupling the previously described forest �re spread pre-

diction system with an NWP. In this case, the quality of the forest �re

propagation prediction signi�cantly depends on the quality of the weather

parameters prediction obtained from the NWP. A similar idea has recently

been proposed in [51][52][53]. These works show the bene�ts of considering

the in
uence of the heat 
ux generated by the �re itself into the surface wind

of the meteorological model. However, those approaches are focused on in-

terfacing intra-models for executing a single �re simulation evolution. In our

work, as has been stated, we do not rely on a single simulation, but on the

execution of thousands of them. The way we propose to couple both models

is a pipeline in which the values obtained at each NWP step are fed into the

corresponding �re simulation step.

One of the most extended NWP models is the Weather Research and

Forecasting (WRF) [54]. It is a mesoscale weather prediction system that

is used for several meteorological applications worldwide. It can work with

real data or can re
ect ideal conditions, depending on the purpose of the

simulation (weather research, forecasting, etc.), and provides a resolution

that ranges from meters to kilometers. The WRF model was designed to be

a parallelizable and extensible software. Most meteorological services rely on

WRF as one of the main weather models to perform their simulations and
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predictions.

3.2 Two-Stage prediction schemes coupling

complementary models

In this section, we want to introduce the prediction schemes resulting from

the addition of the wind �eld modeler and the data coming from an NWP

model. The impact of including these models in the two-stage prediction

system is also analyzed, as well as the bene�ts that they introduce.

3.2.1 Coupling Wind �eld Model to the two-stage method

(2ST-WF)

The original two-stage prediction scheme was designed to only accept envi-

ronmental input data at a low resolution. In particular, wind components

were considered at a mesoscale resolution, that is, a single wind direction and

wind speed for the whole terrain was used. In order to overcome this con-

straint, a wind �eld modeler (WindNinja) has been included in the two-stage

prediction scheme enabling the system to deliver spread predictions, which

re
ect the in
uence of the terrain at a high resolution level. WindNinja is

able to generate these wind �elds, but, depending on the terrain size, it has

a high computational cost.

In this scheme, each worker process receives the parameters representing

one particular scenario, and it is then necessary to run the WindNinja wind

modeler followed by the Farsite �re propagation simulator. This pipelined

worker scheme is depicted in Figure 3.2.

It can be observed that this strategy implies that each individual of the

GA population, which represents a possible �re scenario, has to execute an

instance of WindNinja and one of the �re spread simulator. This approach

represents hundreds of simulations for every prediction interval. For example,

if the population size of the GA is set to 50 individuals and the GA is

evolved 5 generations, the number of total simulated scenarios will be 250.
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Figure 3.2: 2ST-WF prediction scheme

Therefore, the number of times that WindNinja should be executed will

also be 250. This approach is more realistic, but the computational time

required by WindNinja is quite long. The execution time of the WindNinja

modeler depends on the map size and topography, but it usually takes some

minutes on a single core. If there are not enough computational resources,

the provided prediction may be achieved too late.

3.2.2 Coupling Meteorological Model to the two-stage

method (2ST-MM)

It is well known that wind can change suddenly in speed and direction.

During the calibration stage, it is feasible to receive information from mete-

orological stations frequently (every 30 minutes or even more frequently). In

this case, the wind speed and direction do not need to be calibrated since

they are received from direct measurements. However, during the predic-

tion stage, such values are not available beforehand. So, it is necessary to

introduce a meteorological model that can provide the expected values for

the meteorological wind speed and direction. These values can be used dur-

ing the prediction stage [55]. We assume that meteorological predictions are

available from a meteorological service, so it is not necessary to compute the

meteorological forecast on the fire spread prediction platform. It implies that
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the computational cost of the 2ST-BASIC forest �re propagation prediction

(see Fig. 3.3) does not increase.

Figure 3.3: 2ST-MM prediction scheme

It can be stated that including wind dynamic behavior in the two-stage

prediction process must improve �re spread prediction quality when dealing

with large-scale forest �res. Such wind dynamic behavior must be considered

in both stages, calibration and prediction.

In the calibration stage, the data concerning the time interval ti - ti+1 is

available. So, in this stage, the simulations executed to reproduce the be-

havior during the interval ti - ti+1, can be fed the real measured values of

the wind parameters during that interval. It implies that the simulation of

the forest �re propagation does not consider constant values for the wind pa-

rameters, but the measured value for each time subinterval is injected in the

simulator. So, these wind parameters are not introduced in the individuals

of the GA and are not calibrated. The other parameters concerning moisture

contents and vegetation features are calibrated in the calibration stage.

In the prediction stage, the best individuals coming from the calibration

stage are used to deliver a prediction for the time instant ti+2. All the pa-

rameters of the individual remain the same except the forecasted parameters

given by the meteorological service. These parameters will be replaced by
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the old ones, used in the calibration stage.

3.2.3 Coupling Wind �eld Model and Meteorological

model to 2ST-BASIC (2ST-WF-MM)

In order to join the improvements of the previous prediction strategies in

a single approach, we also propose a hybrid scheme, which is a trade-o�

between the accuracy obtained in the prediction results and the time spent

to reach them. In the scheme described in 2ST-MM, the system can be �t

with weather data provided from real observations during the calibration

stage and, at the prediction stage, the injected data comes from a weather

forecast model. In this hybrid scheme, we interpose the wind �eld model just

before injecting the wind components to the prediction system. Therefore,

for each observed wind speed and wind direction and for each predicted wind

component, one wind �eld simulation will be run. In the calibration stage,

that means that the number of wind �eld evaluations is drastically reduced

because each individual of the population will use the same wind �elds. This

e�ect compensates the slight increase in computational time introduced at

the prediction stage due to the evaluation of the wind �elds in this case. For

example, if the meteorological model gives one prediction per hour and the

prediction interval is 12 hours, it will be necessary to generate only 12 wind

�elds.

3.3 Computational requirements of the pro-

posed schemes

The two-stage prediction methodology is by itself a platform with a high

computational cost. Evaluating hundreds or thousands of scenarios in order

to �nd the one that best matches the current �re behavior supposes a chal-

lenge that current personal computers cannot solve in an acceptable time. the

use of High Performance Computing resources becomes mandatory to deliver

our predictions. Furthermore, adding new models to the system introduces
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Figure 3.4: 2ST-WF-MM prediction scheme

a computational overhead that must be tackled. In our case, the calculation

of the wind �eld becomes a bottleneck as the size of the terrain increases. As

has been commented, the computation of the meteorological model is done

by external services, so it does not signi�cantly increase the computational

cost. However, this detailed information about the weather conditions may

increase the �re simulation time. Therefore, we propose a hybrid parallel

framework that takes advantage of parallel programming paradigms as MPI

and OpenMP and eases the process of reproducing and simulating a �re

scenario.

3.4 Hybrid MPI-OpenMP FFSS prediction

framework

The FFSS (Forest Fire Simulation System) is a multi-model forest �re simu-

lation and prediction system, which is highly parallelizable due to its design

pattern (a Master-Worker) and the parallel programming paradigms used

(MPI and OpenMP). This framework (see Fig. 3.5) is intended to be a

simulator-independent system that considers the �re simulator a black box.
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That means that not all of the operations that the system performs depend

on the simulator chosen. There are certain constraints and considerations

that must be taken into account. The simulator chosen should be based on

Rothermel's �re spread model to be fully supported by the system. The sim-

ulator must also deliver output maps with the values representing the time of

arrival of the �re. These maps are necessary to compare the output with the

real �re behavior. Finally, some internal functions must be extended or over-

loaded to consider the peculiarities of each simulator. Usually, the simulation

parameters or the input parameters are not exactly the same from one sim-

ulator to another. This forces us to extend, modify or overload the binding

functions that enable the proper data swapping between the �re simulator

and the rest of the system.

The FFSS framework relies the simulation settings on a single �le. This

text �le contains the paths of the �les and the folders where the input and

output �les must be found or created, the global parameters of the simulation

and the speci�c parameters of every simulator or module of the framework.

Figure 3.5: Master-Worker scheme of the FFSS system

The multi-model schemes described in the previous section rely on Ge-

netic Algorithms for the calibration stage. The GA �ts very well in the

Master/Worker programming paradigm. In this case, the Master process
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generates the initial random population. Then, it distributes the individu-

als to the Worker processes that can be executed independently in di�erent

cores.

This scheme was �rst implemented using MPI where the master process

sends a set of scenarios to all the workers using MPI blocking directives. Each

worker process was mapped into an MPI process, which executes WindNinja

(wind �eld evaluation) in a pipeline fashion, Farsite (�re spread simulator)

and the symmetric di�erence between the real and simulated burnt area (er-

ror evaluation). Finally, each worker returns the error obtained to the master

process that ranks the individuals and applies the genetic operators to gen-

erate the next population. This process is repeated for a �xed number of

iterations. In this case, each core in the underlying platform executes one

worker process, so the maximum number of worker processes is limited to

the number of available cores in the platform. Therefore, if there are enough

available cores, the execution time for each iteration is limited by the execu-

tion time of the scenario whose simulation lasts longer. The quality of the

calibration depends on the available elapsed time to provide the propagation

prediction and the number of individuals on each iteration, but it must be

considered that, in these emergency situations, response time is a critical is-

sue [56]. For the previous studies [45], it was stated that 5 iterations usually

provide a successful calibration.

However, to cope with those strict real-time constraints, a hybrid MPI-

OpenMP scheme was proposed to reduce GA's iteration time. This hybrid

approach includes a second-level parallelization on the worker processes by

using OpenMP within both the wind �eld model (WindNinja) and the �re

spread simulator (Farsite). WindNinja was originally implemented using

OpenMP, so it is capable of bene�ting from multi-core processors. It is

worth mentioning that WindNinja is a very time-consuming element of this

scheme, so an approach to be analyzed will be the possibility of dividing

the working domain of WindNinja into subdomains, which will be run on

GPU architectures. However, Farsite was not a parallel simulator. Artes et

al. describe a parallel version of Farsite in [57], which exploits the potential

internal loop parallelisms to bene�t from multi-core platforms.
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3.4.1 FFSS framework initialization �le

The FFSS initialization �le de�nes the whole background where the simula-

tion will run. It is divided into four sections:

� Section 1: Global simulation parameters

� Section 2: Calibration technique parameters

� Section 3: Fire simulation parameters

� Section 4: Wind model parameters

Global simulation parameters

This set of parameters de�nes the main features of the simulation. In this

part, the path of the initial population to enhance the calibration, the num-

ber of individuals, the calibration technique used, the output traces of the

framework, the models that will be enabled during the simulation, and some

parameters about the computational resources that will be available (number

of cores per MPI thread, threads used by the �re simulator, etc.) must all be

depicted. It is also necessary to determine the ranges in which the parame-

ters involved in the calibration stage will vary. For now, only a calibration

technique based on a Genetic Algorithm is included, but it is possible to

attach new techniques without disturbing the rest of the system.

Calibration technique parameters

Here, the speci�c values for the chosen calibration technique will be de�ned.

As has been commented above, we include a genetic algorithm as the single

calibration technique available for now. In this case, the main parameters

concerning this technique are the number of generations, the number of in-

dividuals that will pass to the next generation by elitism and the crossover

and mutation rates. It is also possible to de�ne your own crossover pattern

if the standard crossover does not meet your expectations, and, in this case,

the chosen method must be stated.
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Fire simulation parameters

This is the widest section since it involves the majority of the inputs of the

system, and most of the parameters required to simulate a �re. A �rst group

consists of the de�nition of the paths of the input and output, and the names

of the �les that will be used or created during the simulation. The landscape,

wind, weather, ignition and shape output �les are examples of this group.

In a second group, we can �nd those parameters that de�ne certain ac-

tions that the �re simulator can perform, as well as some speci�c behavior

parameters. In this case, we can de�ne the internal time step and the reso-

lution of the simulator, the output �les to be created (raster, shape, and/or

vector) and the maximum time of a single execution, among others.

The last group is related to the duration and times to be simulated, both

in the calibration and in the prediction stages. Here, the initial and the �nal

dates (month, day and hour) for each stage are established, and we provide

the comparison perimeters of each stage.

Wind model parameters

This brief section contains the wind �eld simulator parameters such as the

elevation or landscape �le, resolution, wind height capture and the wind

initialization method, among others. The wind simulator adds a considerable

overhead to the system, so these parameters should be carefully modi�ed

depending on our requirements and available resources.

3.5 FFSS framework input and output �les

In this section, the main input and output �les will be detailed. The system

as it is currently composed will be taken as a reference, with Farsite as the

�re simulator, a genetic algorithm as the calibration method, WindNinja as

the wind �eld simulator and the dynamic injection of meteorological data

provided by an external meteorological service.
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3.5.1 Input �les

Using the categorization depicted in section 3.4.1, the input �les correspond-

ing to the global simulation parameters are the initial population, the range

�le and the fuels used �le.

The initial population contains the parameters set for every individual

that will be evaluated in the calibration stage. These populations must be

generated using the information contained in the range �le. This �le speci-

�es the maximum and minimum values that de�ne the variation interval of

each parameter. It is also essential to generate new valid values to mutate a

parameter when the GA is executed. Finally, the fuels used �le de�nes the

di�erent fuel models involved in the �re simulation. It is an auto-generated

�le that can be used to adjust the spread factor of each vegetation. Op-

tionally, a �le where the core a�nity is speci�ed can be introduced, to force

speci�c mapping between workers and cores or nodes.

In �re simulation parameters group, the �les that should be de�ned are

the terrain �les, the base settings �les, the ignition �le, the calibration

perimeter �le and the prediction perimeter �le. In our case, the terrain

�les are included in a single .lcp (Farsite landscape �le) that contains the

features of the area (elevation, slope, aspect, fuel and canopy cover). The

base settings �les are auxiliary �les used to insert the information of each in-

dividual in the �les supported by the simulator. They contain tags that will

be replaced by the proper values. The ignition �le de�nes the point or the

perimeter from which the �re will spread. When each individual is executed,

it must be compared with the real �re perimeter at a certain instant, and its

path must be indicated. Likewise, if we want to evaluate our prediction, the

real perimeter should be stated.

As wind model input �les, the same landscape �le used to simulate the

�re can be used or specifying the elevation �le.

3.5.2 Output �les

The framework delivers much information about the simulation process. Be-

sides the intermediate �les that correspond to each individual execution for
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every generation, the system provides some global information. It generates

a trace �le that annotates the time of each generation and the global time. It

also generates a �le per generation that shows the calibration error for each

individual. It also gives the prediction errors of n individuals, as speci�ed in

the con�guration �le. If we include the gnuplot library, the system is capable

of generating some graphics related to time or quality. The framework also

stores the shapes of the best individuals, both in calibration and prediction.

3.6 MPI execution scheme of FFSS frame-

work

As has been commented in the introductory part of this chapter, the MPI

scheme of the FFSS framework is based on a Master-Worker pattern. The

master process generates the individuals and distributes them among the

available workers. Fig. 3.6 shows schematically a scenario where there are

as many workers as individuals, so the generation time will be determined

by the slower individual.

Figure 3.6: Master-Worker generation time

In this case, the master process delivers all the individuals and waits for

the response of each of them to generate a new population. If these conditions

cannot be supplied, and the number of workers is lesser than the individuals

to evaluate, the master process sends individuals to the workers on demand.

One of the problems of both alternatives is the possible load imbalance

between workers. An example of this issue can be observed in Fig. 3.7. From
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this �gure, we see that longer individuals cause many workers to spend too

much time waiting. This is an undesired situation (poor e�ciency), because

HPC resource time must be exploited as much as possible.

Figure 3.7: Workers load in a scenario with one individual per worker

In the basic implementation of the framework, there was not any policy

for choosing which individual would be sent next. The latest works in this

group have developed a methodology to classify the individuals according to

their estimated execution time. Based on this knowledge, it is possible to

de�ne a policy to favor a good load balancing. This methodology is based on

executing thousands of executions, de�ning a time classi�cation, and, using

decision trees, being able to predict the class of a certain individual.

3.7 OpenMP parallelism in FFSS framework

Another option to reduce the load imbalance is to reduce the execution time

of each individual. In keeping with this idea, we pro�t, when possible, from

the multi-core and many-core architectures to speed up the execution of the

worker processes (see Fig. 3.8).
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Figure 3.8: Worker reduction example scheme

As has been commented at the beginning of this chapter, the worker

executes at least one instance of the �re simulator and, depending on the

prediction scheme selected, a wind �eld calculation. Therefore, by properly

allocating the available cores among the workers, the individual time and,

consequently, the generation time and the global execution time, can be

reduced.

Returning to the above idea of classifying the individuals according to

their execution time, a policy to assign resources dynamically is being imple-

mented and tested. Those individuals that fall in slower classes will receive

more resources (cores) than faster individuals. By performing a study of the

expected time reduction per class depending on the number of cores provided,

we will be able to guarantee a signi�cant reduction in execution time.

In Figures 3.9 and 3.10 two histograms are shown with 12,000 Farsite

instances stacked by their execution time. In the �rst case, each instance is

executed in a single core. In the second, 4 cores per Farsite instance have

been allocated.

They show a clear tendency to compress the histogram to the left, which

means that the longest executions have notably reduced their time. The

shortest individuals do not have a signi�cant reduction, so, to be e�cient,

the system should identify the di�erent classes and distribute the resources

accordingly.
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Figure 3.9: Histogram showing 12,000 Farsite executions stacked by execu-
tion time (1 core)

Figure 3.10: Histogram showing 12,000 Farsite executions stacked by execu-
tion time (4 core)

3.8 Wind �eld acceleration

The calculation of the wind �eld is, in many cases, one of the most time

demanding models in our parallel system. The schemes that include this

model (2ST-WF and 2ST-WF-MM) perform the wind �eld execution dif-

ferently. The 2ST-WF scheme needs to compute a wind �eld simulation

for each individual in the GA and for each generation. The 2ST-WF-MM

scheme analyzes the weather predictions provided by the weather forecasting

service and executes a wind �eld simulation for each wind prediction. The
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�rst scheme implies the execution of hundreds of instances of the wind �eld

simulator, and they must be performed while the GA is being carried out.

Instead, the second scheme usually requires tens of executions, and they can

be performed just when we get the weather forecasting corresponding to the

desired time interval. WindNinja, the wind �eld simulator used in this work,

requires a certain execution time that basically depends on the map size.

This simulator includes OpenMP directives to parallelize some parts of its

code due to its high memory requirements. In a typical computing node, it

lasts too long (around an hour for a 1500x1500 cell map with 30m resolution)

and requires a high amount of main memory (12GB for the last example).

These restrictions mean that the prediction schemes previously seen require

an una�ordable time, especially the 2ST-WF scheme.

The �rst approach to tackling this problem is based on the partitioning

of the map to reduce the size of the terrain that will be introduced to Wind-

Ninja. This idea is depicted in Fig. 3.11. The master process divides the

map and distributes each part to the workers, which compute the wind �elds

and give the results back to the master. Then, the master recomposes the

global wind �eld using the speci�c wind �elds corresponding to each part.

Although it is a simple concept, partitioning the map introduces new issues

that must be taken into account to maintain the quality of the partitioned

wind �elds.

Figure 3.11: Wind �eld partitioning scheme
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WindNinja is based on mass conservation equations and delimited bound-

ary conditions. The results close to the borders of the map are not reliable

because the system needs some cells to stabilize the values. Therefore, when

we divide the map, we indirectly introduce new boundary errors to the �nal

wind �eld. These boundary e�ects can be seen in Fig. 3.12, where three

vertical parts have been evaluated using WindNinja, and the results have

been merged in a single map.

Figure 3.12: Boundary e�ects produced by map partitioning

To avoid these e�ects, it is necessary to introduce a certain overlap be-

tween parts, discarding those unstable values that appear near the borders

of each division. Applying a certain overlapping rate, we can minimize the

boundary e�ects (see Fig. 3.13).

Using this technique, we can signi�cantly reduce the execution time, and

the speed up is improved when we increase the number of parts, as can be

seen in Fig. 3.14. The RMSE (Root Mean Square Error) error that shows

the di�erence (in this case the wind speed) between the global map and the

partitioned map in average is also depicted. The graphic shows that the error

grows as the number of parts is increased.

Therefore, it is important to �nd a trade-o� between the number of parts

and the RMSE error, to reduce the execution time without compromising

the quality of the partitioned wind �eld. It has been tested that using the

resulting wind �eld coming from the partitioning technique does not signi�-
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Figure 3.13: Boundary e�ects reduction using a 14% overlap

Figure 3.14: Speed up and RMSE error for each number of parts

cantly a�ect the accuracy of the forest �re spread prediction, compared with

the system behavior using the non-partitioned wind �eld.



Chapter 4

An operational framework to

predict forest �re behavior

using complementary models

In this chapter, we want to introduce our methodology to predict and repro-

duce forest �res and dissect each one of its modules. The centerpiece is the

�re simulator, which, in our case, is Farsite, previously analyzed in Chapter

2. The simulator is fed by a set of parameters that must be acquired and

processed to be compatible with the expected simulator inputs.

Another module of the methodology is responsible for calibrating the in-

put parameters based on the two-stage prediction technique that has been

widely analyzed previously. This module includes a Genetic Algorithm that

performs the evolutionary operations required to tune the parameters gener-

ation after generation.

We rely on some prediction schemes that gather and inject the informa-

tion coming from complementary models in the system, in order to increase

the knowledge that we have about the �re environment. Every scheme uses

or discards the information from these models depending on our needs. It is

not always bene�cial to inject information, because, in some cases, data may

be corrupt, come from unreliable data sources, or be acquired from too far

from the seat of the �re. In those cases, it could be preferable to calibrate

61
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these parameters instead of injecting the data provided by the complemen-

tary models. Therefore, the decision must be taken by the expertise sta�

depending on the information quality.

Finally, the system collects all the output data about the simulation and

provides some useful information about time and quality factors. Fig. 4.1

shows the structure of the system, and the di�erent modules that correspond

to each of the methodology parts can be seen.

Figure 4.1: Scheme of the operational framework

As has been stated in the previous chapter, parameters can be classi�ed

according to their behavior in static and dynamic parameters. According to

this feature (static or dynamic), the ways of gathering and processing the in-

formation to obtain the corresponding GIS input �les are quite di�erent. In

the case of static data, the pre-processing and organization of the required

layers in the proper format could be done prior to the hazard occurrence.

There are certain constraints related to the terrain dimension that should be

considered accurately, but the process of homogenizing the precision, projec-

tion and datum could be done o�-line, and this data could be characterized

and ready to be used when a crisis occurs.

If the static data of a region is available before a �re occurrence, the



4.1. TOPOGRAPHIC AREA CHARACTERIZATION 63

e�ort must be focused on those parameters that vary dynamically during the

simulation or that depend on the �re scenario studied. In this case, it is

necessary to collect them in real-time, thanks to the di�erent data sources

and services that can provide this information. Obviously, this case is the

most critical since we depend on third-party frequency of data arrival and

data format. Therefore, the conversions and the injection must be done in

an on-line mode while the simulation is being carried out.

In the following sections, the relevant aspects and acquisition processes

for both static and dynamic input data shall be stated.

4.1 Topographic Area Characterization

This section is intended to describe the steps needed to perform a forest �re

simulation in a real-time scenario from scratch. That means that the system

must respond quickly in order to be an e�ective decision support system, and

it is fully self-su�cient if we provide it with all the data described in this

section. All required input, their sources and the handling process will be

de�ned.

Performing a whole topographic characterization of a region requires time

that cannot be assumed in a real-time emergency. It makes no sense to

characterize areas of little or no interest because resources are limited and

must be focused on providing e�cient service when a real hazard occurs. For

these reasons, it is highly recommended to establish a sensible criterion when

selecting areas of special interest.

When we deal with large topographic areas, it is necessary to reduce

the complexity of the problem by dividing the area into partitions. These

partitions should cover the region under study and must have a computa-

tionally treatable size. There is not a �xed or recommended partition size,

so the decision may be based on political arguments or the availability of

computational resources. In addition, some common sense factors should be

considered. The area should be big enough to be able to simulate a large

�re, critical zones must have overlapping partitions and non-burnable areas

can be discarded. In our research group, we have focused our study on the
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European region. Using exposure hazard risk maps (see Fig. 4.2), historical

�re occurrences, and forest �res risk trends across Europe, we can decide

which areas must be fully characterized.

Figure 4.2: Average forest �re meteorological danger and future estimated
trend in Europe

In Figure 4.2, the average forest �re meteorological danger is depicted,

as well as the predicted behavior of this danger for the next years. This

risk is measured using the Seasonal Severity Rating (SSR), which allows us

to compare the di�erences in �re danger in a region over time. As we can

observe, the southern countries are historically the most a�ected by forest

�res. But the Mediterranean region is a huge area that must be considered

separately for forest �re management purposes. Thus, what is the best map

partitioning scheme for large topographic areas like this? We try to imitate

the EFFIS manners in order to cope with European standards. Therefore,

the characterization methodology subsequently described relies on EFFIS

aspects to determine the Map Partitioning Scheme and the GIS Input Files

Generation, which are the two basic steps of the proposed topographic area

characterization methodology.

4.1.1 Map Partitioning Scheme

As mentioned above, we trust European standards to de�ne our Map Parti-

tioning Scheme. EFFIS rises as the standard European system for central-
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izing all forest �re related data. Therefore, since EFFIS uses NUTS levels

as information domains, we have selected the NUTS 3 divisions as starting

domains to deploy the proposed characterization methodology. Figure 4.3

shows the European NUT3 division.

Figure 4.3: NUTS 3 Europe division, with burnt area information in 2011

NUTS 3 regions are described as small regions such as provinces with

sizes varying from 10 to 100 thousands square kilometers. Obviously, NUTS

3 division generates regions that are too big when talking about forest �re

spread simulations. For that reason, we introduce the concept of fine grain

tile (fgtile). An fgtile is a topographic area obtained by downscaling NUT3

domains to square, equal-size portions with a maximum dimension of around

three thousand square kilometers (50km x 50km). Afterwards, for each fgtile,

one can gather the static data needed for forest �re simulation purposes, co-

register to the same resolution, projection, extension and datum and store

it in a standard repository database. However, in order to be e�cient when

gathering the data of all de�ned fgtiles, we propose a non-uniform fgtile

distribution across a certain NUT3 region. For that reason, we rely on forest

�re occurrence maps to determine the areas with a higher rate of occurrences
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as the so-called Areas of Interest (AI) where the fgtiles will have higher

density. This fact allows for the selection of the fgtile which best �ts with

the �re occurrence under simulation.

Therefore, the proposed methodology can be described as follows:

� Step 1: Selecting NUT3 region.

� Step 2: Analyzing NUT3 occurrence forest �re map.

� Step 3: Determining the Areas of Interest (AI) according to their rate

of �re occurrence.

� Step 4: Creating and distributing the fgtiles within the NUT3 region,

increasing the density on the AI obtained in Step 3.

� Step 5: Generating co-registered GIS �les for all fgtiles, and aggregating

them to the database (reported in the next section).

4.1.2 Generating GIS Input Files: Static data

First, it is necessary to acquire the static data that de�nes the terrain fea-

tures. As commented in Section 4.1, this input can be built before the hazard

occurs.

Elevation map

The elevation map is generated using satellite images from ASTER, which

is a system embedded in NASA Terra satellite. ASTER ([58]) is capable of

capturing detailed images of Earth for di�erent purposes (surface tempera-

ture, re
ectance and elevation). This system can take images at a resolution

from 15 to 90 meters. In 2009, the Global Digital Elevation Map (GDEM)

was released which makes it possible to acquire the elevation map of any

zone of the Earth - it covers 99% of the Earth. It is composed of 23,000

tiles, and more than 1.3 million images from ASTER were necessary to build

it. GDEM has a resolution of 30 meters, and this is the resolution that we
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usually work with to study forest �re scenarios. The output of this system

is a set of GeoTIFF images.

The Farsite �re simulator uses ESRI ASCII raster �les to generate the

encapsulated landscape �le. This format has two sections, the header and

the data. The format is detailed in Figure 4.4.

Figure 4.4: ESRI ASCII �le format

Slope and aspect maps

Besides the elevation �le, it is necessary to provide the slope and aspect

�les. This information can be obtained from the elevation �le, but Farsite

cannot extract it. Many GIS tools (QGIS, Miramon, ArcGIS, etc) allow

us to perform most of the transformations and conversions needed, and we

can achieve the slope and the aspect from a certain elevation map. They

use methods based on calculating the slope and the aspect values of a cell,

depending on the elevation values of its neighbors (4 or 8). An elevation,

slope and aspect map can be seen in Figure 4.5.

The easiest way to calculate slope and aspect is to use the gradient. It

can be de�ned with two components as can be seen in the equation (4.1).

~g =

(
∂z

∂x
,
∂z

∂y

)
= (b, c) (4.1)

Using this de�nition, the slope will be obtained by applying the equation

depicted in Figure 4.5 from Section 4.1.2, where b and c are the components

of the gradient.
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Figure 4.5: Elevation map (left), slope map (center) and aspect map (right).

Vegetation map

The vegetation map (or fuel map) is a raster �le that describes the predomi-

nant vegetation in each cell. This information is provided by the Corine Land

Cover project [59] of the European Environment Agency. This project stud-

ies the land use (not only vegetation) of European countries and generates

maps that distinguish 44 classes divided into three levels. The most gen-

eral level has four groups: arti�cial surfaces, agricultural areas, forests and

semi-natural areas and wetlands. We do not use this map directly, because

the Farsite �re simulator does not understand this categorization. Farsite

only admits the 13 models de�ned by Rothermel and Albini [18] and those

custom models previously de�ned by the user. In this work, we have used

the Corine Land Cover for the Rothermel & Albini conversion done by the

Joint Research Centre. This institution is under European Comission con-

trol and, among many other activities, it also studies forest �re e�ects and

management and generates detailed annual reports of �res in Europe. These

vegetation maps in
uence the way the �re spreads and give us more infor-

mation about the terrain under study. Figure 4.6 shows a vegetation map

where each color corresponds to a vegetation type.

Fuel moistures

Estimating fuel moisture values is not an easy task, and the most accurate

way to perform this task is to directly take measurements over the whole area
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Figure 4.6: Fuel map

being studied. This is extremely demanding in terms of economical costs and

time required. Other approaches try to achieve them using remote sensing

and satellite imagery ([60] [61]). These works only study live fuel moisture

contents because they are much more variable. Dead fuel moisture content

is usually closely related to meteorological conditions.

Canopy cover map

The canopy cover map used in this work is a homogeneous map with a sin-

gle value representing the tree crown coverage. There are techniques that

estimate canopy cover from satellite images, but we do not have enough in-

formation in relation to the studied area. The lack of reliability about this

parameter is minimized by the calibration techniques that tune the parame-

ters to reduce the uncertainty.
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4.2 Dynamic data acquisition and processing

4.2.1 Fire perimeters

At the European level, we obtain perimeters from Terra and Aqua satellites,

which have an instrument aboard called MODIS (or Moderate Resolution

Imaging Spectroradiometer) that takes images at a resolution from 250m to

1Km. Terra and Aqua pass through a particular area twice a day. The images

provided by these satellites can be altered by clouds or the smoke produced

by the �re. These factors may make the task of interpreting the perimeter

di�cult. This is not an automatic process; it is performed by expertise sta�

that try to de�ne the perimeter with maximum precision, based on their

knowledge and experience. In Figure 4.7, an example of images from MODIS

at di�erent time steps can be seen, as well as the corresponding perimeters

processed by expertise sta�. For this task, we rely on experts from the

Joint Research Centre (JRC), an institution under control of the European

Commission that studies forest �res in Europe - among other topics -, and

develops and updates the European Forest Fire Information System ([62]).

Their research in this �eld covers the following topics:

{ Fire Danger Rating

{ Active �re detection from remote sensing

{ Rapid damage assessment from remote sensing (medium spatial reso-

lution imagery)

{ Detailed �re damage assessment from remote sensing (high-spatial res-

olution imagery)

{ European Fire Database and �re statistics

{ Post-�re soil erosion

{ Long-term forest �re risk

{ Analysis of post-�re severity from remote sensing
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{ Analysis of post-�re vegetation recovery from remote sensing

Figure 4.7: Images from MODIS instrument (top) and perimeters de�ned by
JRC expertise sta� (bottom).

In some cases, when we deal with �res that take place in Catalonia, we

rely on data provided by the local government, the emergency management

sta� and its forest agents. They provide perimeters coming from routes on

foot with GPS and aerial images.

4.2.2 Meteorological variables

Meteorological services such as the European Centre for Medium-Range

Weather Forecasts (ECMWF) or the Meteorological Service of Catalonia

(SMC [63] ) provide predictions of weather parameters, but the resolution

is low (normally about 4 Km). In some cases, they use additional models

to downscale these values. Both services, the European Centre and our lo-

cal service, use the Weather Research and Forecast model (WRF) ([54]) to

generate their predictions. The output of this model can be introduced in

another model such as Calmet ([64]), which is capable of producing high

resolution output (about 400m).
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The terrain features in
uence wind behavior, so, sometimes, when topog-

raphy is rough and abrupt, a 400m resolution may be inadequate. In these

cases, we can add another diagnostic model only for wind components in

order to reach higher �nal resolutions.

The meteorological services carry out the execution of weather forecast

models (WRF and Calmet) every day for many purposes. We pro�t from

their output and adapt it to our system. In addition, if the scenario requires

more accurate wind input, we carry out the WindNinja executions to improve

the resolution.

4.3 Fire simulation kernel

The �re simulation kernel is the core of the system and is composed of the �re

simulator and various submodules responsible for building the data structures

required to launch the simulation and con�guring the execution parameters.

The �re simulator has been widely discussed in previous chapters.

The integration submodules receive the data coming from other modules

of the FFSS prediction framework, mainly from the module that implements

the di�erent prediction schemes and the calibration process. This module will

be shown in the next section. The GA individual settings must be converted

to the weather, wind, fuel moistures and fuel adjustment �les. Depending

on the prediction scheme chosen, these �les will also receive information

coming from the dynamic data sources instead of the calibration process. In

addition, the static data will be packed in a landscape �le, which collects all

the topographic features.

The execution parameters are common to all the individuals, and they are

extracted from the data initialization �le. These settings only change from

the calibration stage to the prediction stage, where the ignition perimeter,

the duration and other simulation parameters are di�erent.
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4.4 Prediction schemes and Complementary

Models

This part of the framework has been widely explained in previous chapters,

and we will only detail the speci�c features that are required to include

the schemes and the models in an operational framework. The prediction

schemes and the complementary models allow the system to perform more

accurate predictions, injecting real knowledge and high resolution data.

In fact, there are only two modules that do the required actions to perform

the calibration stage using a certain prediction scheme. The main module is

the calibration kernel module. It contains the calibration algorithm respon-

sible for tuning the parameters and delivers the individual that will take part

in the prediction stage.

The second (and last) module is the calibration setup module. It is re-

sponsible for reading the settings of the initialization �le and collecting the

input parameters and �les that will feed the calibration process. Depend-

ing on the scheme selected, it will build the required �les using information

coming from the individual parameters, or produced by the complementary

models.

Besides this task, when the scheme selected requires the generation of

the wind �elds for every individual, it will provide the executable path of

the wind �eld simulator to the �re simulation kernel. If the selected scheme

requires the generation of a set of wind �elds corresponding to the forecasted

weather conditions, the module will schedule the execution of these wind

�elds in the platform. When the module receives the generated wind �elds,

it will give the control to the calibration module.
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Chapter 5

Experimental Results

This chapter is intended to show the experimental results that we have been

performing throughout the evolution of this work. One of the main goals

was testing the bene�ts of including complementary models in the original

two-stage prediction method. In addition, we wanted to build an operational

framework that would allow us to reproduce real forest �re scenarios, taking

into account the speci�c features of this kind of �re. To be able to simulate

and predict real �res, it was �rst necessary to test the framework with simpler

cases that validated our prediction strategies.

The calibration method was a Genetic Algorithm (hereinafter, GA), al-

though the number of genes involved and the number of generations and

individuals have been increased as the complexity of the problem has grown.

From now on, we will call the prediction scheme implementing the two-stage

prediction method 2ST-BASIC, and 2ST-WF will be the scheme that in-

cludes the wind �eld model with the 2ST-BASIC. Likewise, the 2ST-MM

includes dynamic weather data injection from weather stations and weather

forecasting models and, �nally, the 2ST-WF-MM is the complete scheme that

encompasses both models.

The initial experiments were focused on analyzing the potential bene�ts

of including a wind �eld modeler in the original system. These tests were

developed using a �re evolved with the simulator in a synthetic terrain as

comparison, with weather conditions adapted to our requirements. In par-

75
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allel, using the same synthetic terrain, we carried out a set of experiments

to check the system behavior when weather data was introduced during the

simulation. In this case, the conditions with which the reference �re was

created were dismissed, and we compared the results of the 2ST-BASIC with

the ones introducing weather data (2ST-MM), resulting from introducing

distortions to the real conditions.

After this, we performed a set of experiments replacing the synthetic ter-

rains with real terrains. The objective was to use complex and rough terrains

to better see the wind behavior over these terrains and to compare the in-

troduction of wind �elds in the �re simulator with the global homogeneous

wind case. We continued using synthetic �res and the conditions that may be

generated by us or come from stations near the terrain studied to introduce

more realistic conditions. In the same experiments, besides testing the be-

havior of the 2ST-WF scheme compared with the 2ST-BASIC, we completed

the experiments performing the 2ST-MM and 2ST-WF-MM cases. Thereby,

we tested all the schemes in terms of quality.

This work has been mainly focused on evaluating and improving the qual-

ity of our predictions, but we show some experiments oriented towards show-

ing the impact of the inclusion of complementary models in the original

system. This is a key problem that is being tackled in our research group,

but it is not the main objective of the present work.

Finally, we present our �rst results experimenting with real forest �res.

These scenarios have great complexity due to the high uncertainty in the

input parameters. Despite this, the results show that we can achieve good

predictions, and new research lines can be opened to solve the new problems

that appear in this kind of �res.

5.1 Experiments using synthetic �res

5.1.1 Early experimentation

The initial experimentation was aimed at trying out the inclusion of a wind

�eld model in the two-stage prediction scheme. In that moment, the simula-
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tor used was Firelib, a much simpler fire simulator than Farsite.

These first tests correspond with an early experimentation to compare the

2ST-BASIC with the 2ST-WF under certain conditions. The main restric-

tion was not having the wind simulator kernel uncoupled from the graphical

interface. This made us reduce the number of individuals in the calibration

stage, because the wind field calculations must be done between generations.

As it is impossible to automate the process, the solution was to reduce the

number of possible solutions to evaluate. Obviously, this restriction produced

a negative impact on the GA. The populations tended to homogenize gen-

eration after generation, and thus increased the probability to fall to a local

minimum.

The GA settings chosen for these experiments were an elitism of two

individuals, a crossover rate of 20% (0.2) and a mutation rate of 1%. A

population of 10 individuals has been generated that will evolve over 5 gen-

erations. The error of the best individual of this population in the calibration

and prediction stages has been calculated. To calculate the errors, it is nec-

essary to compare it with a reference fire. In this case, we built a synthetic

fire (based on ideal values of wind) over a synthetic terrain with uniform

vegetation consisting of shrubs (fuel model 7).

Figure 5.1: Synthetic reference fire

This terrain can be divided into four parts. The first and last part are

flat areas with no slope. The second and third are opposite, with an upslope
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and a downslope of 50%. The initial ignition perimeter was located in the

middle of the first part.

The wind conditions of the reference fire and the corresponding perime-

ters are depicted in Fig. 5.2. Five intervals (0-6h, 6-12h, 12-18h, 18-24h, and

24-30h) had been defined. The wind was set uniform (7mph and 315 degrees)

during the three first intervals. At 18 hours, a sudden change in wind con-

ditions (15mph and 270 degrees) was introduced that was maintained until

the simulation ended.

Figure 5.2: Synthetic fire conditions

The propagation results provided by each strategy have been compared

using the error function stated in Equation 5.1, which evaluates the sym-

metric difference between cell maps (simulated map and real map). Each

element of the equation is expressed in a number of cells. If the number of

cells of the initial fire is considered negligible, the error is the number of cells

that belong to the union of the maps minus the cells of the intersection, both

of them divided by the number of cells of the real fire. This value is not

within the interval 0-1, but the error can be greater than 1.

Error =
(Cells(∪)− Cells(ini))− (Cells(∩)− Cells(ini))

Cells(Real)− Cells(ini)
(5.1)
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The objective was to find the best calibrated individual at 6, 12, 18,

and 24 hours and to provide a prediction using these individuals for 12, 18,

24, and 30. Each calibrated individual at a certain time instant provided the

prediction for the next interval. The last calibrated individual (corresponding

to calibration stage from 18 to 24 hours) was used to produce the prediction

at 30 hours and was also used to supply a prediction at 36 hours.

The calibration errors for each interval are shown in Fig. 5.3

Figure 5.3: Calibration stage errors

As a rule, calibration errors were significantly less using the 2ST-WF

scheme and, despite an interval with a considerable error (probably a local

minimum), the errors were under 10%. In the 2ST-BASIC case, these errors

were quite a bit higher, with the best around 30%.

Focusing on the prediction stage (see Fig. 5.4), although in the first inter-

val the 2ST-BASIC was slightly better, in the following intervals, 2ST-WF

achieved better predictions. The behavior of the schemes was also notewor-

thy when the wind conditions suffered a sudden change (at 18 hours). In this

particular case, we observed that two-stage methods could not adapt well to

this change, reaching high errors. Despite this, 2ST-WF was more capable

of smoothing the error when compared with 2ST-BASIC. In the next inter-

vals, the conditions remain stable, and both methods decrease in error, from
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216% to 35.5% for the 2ST-BASIC, and, in the case of 2ST-WF, from 70%

to 11.1%. In addition, both methods delivered good predictions at 36 hours

(using the calibrated individual from 18 to 24 hours) due to the stability of

the wind.

Figure 5.4: Prediction stage errors

From this experiment, we could draw some conclusions. As we expected,

the population was too small, and, in future experiments, we must increase

the number of individuals. The mutation rate was not enough to avoid

population homogeneity. Therefore, our main goal was to uncouple the wind

field modeler kernel from its graphical interface in order to be able to perform

larger batch experiments.

5.1.2 Dynamic injection of meteorological data

In parallel to the work commented in the last paragraph, there were other

lines on which we focused our efforts. First, we opted to change the fire

simulator used until that moment (Firelib) for a more comprehensive, widely

used and validated simulator such as Farsite. Using this new simulator, we

carried out an experimental study to analyze the prediction quality when we

added a weather forecast system to the 2ST-BASIC system.
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In that case, we used a population size of 50 individuals, and the number

of iterations was set to 10. In order to avoid random e�ects, each experiment

has been repeated ten times, and the results shown below are the mean value

of the corresponding ten results. As an experiment �re to test our proposal,

we used the same synthetic terrain, fuel model and ignition point as in the

early experimentation. The wind of the experiment �re varied from 3 to

15 mph in both experiment �res used as benchmarks. The ignition point

was placed in the �rst region, and, due to wind conditions, �re propagated

towards the second region.

The �re propagated over 8 hours, and wind direction and wind speed

were changed every 30 minutes. The calibration stage considered the time

interval from hour 0 to 4, and the prediction stage predicted the �re behavior

from hour 4 to 8. In particular, we were interested in showing the bene�ts of

predicting very dynamic parameters such as wind speed and wind direction

when the working hypothesis for the two-stage prediction method was not

accomplished. For this purpose, each of the two reference �res fell into one

of these categories:

� Scenarios with homogeneous conditions: in this set of scenarios we

introduced a slight variability in wind parameters from the calibration

stage to the prediction stage in such a way that the working hypothesis

was accomplished;

� Scenarios with heterogeneous conditions: in this set of scenarios, sud-

den changes were introduced both in wind speed and wind direction

during the prediction stage, and, therefore, the working hypothesis was

broken.

In both cases, we carried out three di�erent kinds of experiments. The

�rst kind of experiment was the 2ST-BASIC experiment (Experiment 1). In

this scheme, the wind conditions, moisture values and fuel conditions were

introduced as genes in the individuals of the GA population. Therefore, the

wind speed and wind direction were calibrated by the GA as for the other

parameters. During the time interval ti - ti+1, the values of the parameters
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were considered constant. The calibrated values provided by the GA for all

the parameters were then used as input parameters for the prediction stage

during the time interval ti - ti+1.

In the second kind of experiments (Real data assimilation { Experiment

2), the wind conditions were not calibrated, but their measured values were

assimilated dynamically at each subinterval (1 hour) in the simulations of

the calibration stage. We considered that wind speed and direction were

measured every 60 minutes instead of the 30 minute real wind evolution. In

real wild�re cases, the wind data frequency depends on the meteorological

data sources of the studied zone. These measured values were not the same

as the ones that were used to generate the experiment �re, but these values

had some measurement error. So the parameters that were calibrated by

the GA were the moisture parameters and fuel conditions. In the prediction

stage, the calibrated moisture and fuel parameters and the last measurement

of the wind parameters were used. So, the prediction was based on a single

measured value for the wind conditions.

The third kind of experiment was the model coupling experiment (Ex-

periment 3). In this case, the calibration stage behaved like in Experiment

2. The wind conditions are assimilated dynamically, and the moisture and

fuel parameters are calibrated. However, for the prediction stage the wind

conditions were provided by an NWP model such as WRF. This experiment

corresponds to the 2ST-MM prediction scheme. The synthetic �re of the

experiment considered that the wind conditions changed every 30 minutes.

For testing our approach, we assumed that the NWP model provided values

that have a small deviation from the ones of the �re used as a benchmark.

So, we were not injecting the "real" value of the wind conditions, but we were

injecting certain perturbation on these values. The range of the perturbation

was generated considering the statistical behavior of weather predictions.

Table 5.1 summarizes how each one of the three kinds of experiments

managed the most sensitive input parameters such as wind speed and wind

direction and the four moisture components: moisture content of dead fuel

at 1 hour (M1), moisture content of dead fuel at 10 hours (M10), moisture

content of dead fuel at 100 hours (M100) and moisture content of live fuel
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Prediction
scheme

Inputs Calibration
Stage

Prediction
Stage

Experiment 1:
2ST-BASIC

Wind Random Values Calibrated
values

Fuel Moisture Random Values Calibrated
Values

Experiment 2:
Real Data
Assimilation

Wind Real Data
Sampling

Real Unique
Value

Fuel Moisture Random Values Calibrated
Values

Experiment 3:
Models
Coupling

Wind Real Data
Sampling

Forecasted
Values

Fuel Moisture Random Values Calibrated
Values

Table 5.1: Settings of wind, moisture and fuel characteristics input parame-
ters for each experiment.

(Mherb).

Figure 5.5 shows the time evolution of wind speed and wind direction

considered in the experiment synthetic �re and in the three experiments

for the homogeneous scenarios. Figure 5.6 shows the time evolution of wind

speed and wind direction considered in the experiments for the heterogeneous

scenarios. It is important to note which scenarios are homogeneous which

ones are heterogeneous in this work. In homogeneous scenarios, the average of

the values in the calibration stage is similar to the average in the prediction

stage. Although the values of wind components of the experiment �re in

Figure 5.5 are very irregular, the average of these values at every stage is

almost the same. In heterogeneous scenarios (see Figure 5.6), the di�erence

in the average of these values between stages is greater than in homogeneous

conditions.

The quality of each approach was measured by an error function. The

error function considered is the symmetric di�erence between the real burned

area and the predicted burned area. Optimally, the real and the predicted
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burned area coincide and the symmetric di�erence is 0. The following subsec-

tions show the experimental results for the homogeneous and heterogeneous

condition scenarios.

Figure 5.5: Wind speed and direction considered for the di�erent experiments
in the scenario with homogeneous conditions

Figure 5.6: Wind speed and direction considered for the di�erent experiments
in the scenario with heterogeneous conditions

Homogeneous conditions

The experiment settings correspond to a wind speed and wind direction sam-

plings with low variability between the calibration and the prediction stage.

The average of wind speed values in the calibration stage was 8 mph and 9.25

in the prediction stage. In the case of wind direction, the average was 258.3

degrees in the calibration stage and 255.6 in the prediction stage. As we can

observe, the conditions were almost the same on average. Under these favor-

able conditions, the 2ST-BASIC prediction method worked the best. Figure
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5.7 represents the mean errors obtained in the three described experiments

for the calibration and prediction stages.

Figure 5.7: Calibration and prediction mean errors for the experiments under
homogeneous conditions

It can be observed in Figure 5.7 that the calibration and prediction errors

were quite similar in the three experiments. This was the expected behav-

ior since the wind conditions were quite stable during the whole calibration

and prediction stages, and, then, a single value could represent the wind

behavior quite successfully. However, even in the favorable case, the results

showed a tendency to reduce the error when the weather prediction model

was introduced and the wind values for the prediction stage were considered.

Heterogeneous conditions

In this case, wind conditions (speed and direction) were not constant, but

they presented a higher degree of variability between stages. The average

of wind speed values in the calibration stage was 6.1mph and 11.5 in the

prediction stage. This average, in the case of wind direction, was 225.4

degrees in the calibration stage and 305 degrees in the prediction stage. It

means that the wind conditions were signi�cantly di�erent in the calibration
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and prediction intervals. Figure 5.8 presents the mean error values for the

three considered experiments in the calibration and prediction stages.

Figure 5.8: Calibration and prediction mean errors for the experiments under
heterogeneous conditions

It can be observed that the calibration error was quite similar in the three

experiments, because the wind conditions were more or less stable during that

interval. However, since there was a sudden change in the wind conditions

during the prediction interval, the prediction error was signi�cantly di�er-

ent. Experiment 3, where the wind conditions during the prediction stage

were injected from the predictions of a NWP model, reduced the error signif-

icantly. Experiment 2, that considered the wind conditions at time ti+1 for

the whole interval ti - ti+1, produced the worst prediction results since the

wind conditions considered were not representative for the time prediction

interval.
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5.2 Experiments using synthetic �res over real

terrains

5.2.1 Coupling the wind �eld model in the 2ST schemes

The proposed enhanced alternatives for the basic two-stage prediction scheme

are oriented to overcome two weak points: the uniform distribution of the

parameters throughout the terrain and the incapacity of reacting to sudden

changes in environmental conditions. Therefore, in order to validate the im-

provements introduced in the two-stage basic methodology to overcome those

de�ciencies, we have set up an experiment which reproduces the problems

we wanted to solve.

The terrain where the experimental study is performed is called "Cap de

Creus", which is located in Catalonia (north-east of Spain). This zone has

been selected for its irregularity in terms of slope variations and also because

it is an area of interest due to the number of times it has been a�ected by

forest �res over the last decade. Although we use the real values of elevation,

slope and aspect of this terrain, there is a lack of information about fuels

(vegetation types) and canopy cover. For this reason, we use a homogeneous

fuel (number 7 in Rothermel & Albini classi�cation) and a �xed percentage

of canopy cover (25%).

In order to evaluate the quality of the enhanced methodology when deal-

ing with sudden changes in certain meteorological variables, we create a ref-

erence �re with certain meteorological conditions. In particular, wind speed

and wind direction present strong variations from the calibration stage to

the prediction stage. The whole �re lasts 18 hours, and the components of

the wind (wind speed and wind direction) vary every 30 minutes, as can be

observed in Figure 5.9.

Taking into account that the typical time-step of coarse scale weather

forecast models ranges from 3 to 6 hours, the time window selected for the

calibration stage and the prediction stage was 6 hours each. Therefore, over

the 18 hours, we are able to repeat the whole prediction scheme twice. That

is, the �rst calibration stage goes from hour 0 to hour 6 and, the correspond-
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ing prediction stage goes from hour 6 to hour 12. Then, the second execution

of the whole prediction method implies that the calibration stage goes from

hour 6 to hour 12 and, the prediction window goes from hour 12 to hour 18.

Figure 5.9: Wind speed and direction trend corresponding to reference �re

Since the calibration strategy applied in this case is GA, which consists

of a stochastic optimization strategy, every kind of experiment was repeated

ten times with ten di�erent populations of 25 individuals. Thus, the results

reported in this section are the mean values of those 10 experiments. The

predicted data injected in the case of using a meteorological model is obtained

by simulating the behavior of that model introducing a perturbation error at

the reference �re data and injecting that perturbed data to the �re prediction

system. In the experiments described below, the error in the case of wind

speed is about 2.5 mph on average, and, for the wind direction, the error has

been set to values greater than 20 degrees. It is noteworthy that it is not

a constant error, and, in some phases, the error is greater; while, in other

phases, observations and predictions are closer to reference �re conditions.

In the following sections, we analyze each iteration of the whole prediction

scheme separately, in order to better understand the results obtained when

applying each one of the four above-mentioned enhanced prediction schemes

compared with the basic two-stage strategy.
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Calibration from 0 to 6 hours and prediction from 6 to 12 hours

The results obtained for the calibration and prediction stages are shown in

Figure 5.10. As can be observed, the 2ST-BASIC and 2ST-WF approaches

are the schemes that, although they provide a good calibration error, the

prediction error is quite high. This e�ect is not observed when applying

either the 2ST-MM or the 2ST-WF-MM schemes. The reason for that is

that wind su�ers sudden changes from the calibration stage to the prediction

stage (see Figure 5.9). The 2ST-BASIC and the 2ST-WF rely on the wind

values provided by the calibration stage, so they are not able to react to those

changes. However, 2ST-MM and 2ST-WF-MM use forecasted wind data at

the prediction stage; therefore, these strategies are able to cope with those

wind changes.

Figure 5.10: Calibration and prediction errors from 0 to 6 hours in calibration
and 6 to 12 hours in prediction stage

To analyze the in
uence of coupling a wind �eld model with the prediction

scheme, we might analyze the results provided by 2ST-BASIC and 2ST- -MM

compared with 2ST-WF and 2ST-WF-MM. As can be observed, prediction

errors including a wind �eld model are clearly better than not considering

the in
uence of the terrain features in the wind components. The relevance

of this e�ect can be better observed in Figure 5.11. This �gure depicts the
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prediction results for all prediction schemes. In particular, each frame shows

four �re perimeters. Three of them are the same for all frames: the perime-

ter at hour 0, the spread �re front at hour 6 and the real �re spread at time

hour 12. The fourth perimeter is the predicted perimeter provided by each

scheme at hour 12. Analyzing the images in detail, we can see that, when

the wind �eld model is included, the �re front obtained better �ts the under-

lying topography because wind speed and wind direction are not considered

homogeneous values but vary according to the terrain heterogeneity.

Figure 5.11: a.2ST-BASIC vs Real / b.2ST-BASIC-WF vs Real / c.2ST-
BASIC-MM vs Real / d.2ST-BASIC-WF-MM vs Real

Finally, when considering the scheme where both prognostic and diag-

nostic models are coupled with the forest �re spread model, the prediction

spread errors on average denote a great reduction.
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Calibration from 6 to 12 hours and prediction from 12 to 18 hours

In this section, we analyze the results obtained after �nishing the second

iteration of the whole prediction process for the four schemes studied. In

general, the results in terms of quality improvements denote a similar trend

to the ones reported in the previous section. In particular, in this calibration-

prediction step, meteorological conditions also su�er notable changes from

one stage to another; however, those changes are not as abrupt as in the pre-

vious experiment. In particular, wind speed has been set to have a downward

trend. Under these conditions, the 2ST-WF-MM approach is the best both

at the calibration stage and at the prediction stage in terms of error delivered

error. Despite this, this softer change in conditions allows 2ST-BASIC and

2ST-WF strategies to reduce their prediction errors signi�cantly.

Figure 5.12: Calibration and prediction errors from 6 to 12 hours in the
calibration stage and 12 to 18 hours in the prediction stage

5.2.2 Quality and time analysis of 2ST schemes

In this experimentation, we have chosen an area in Catalonia (north-east

Spain) where a big �re occurred in 2012. This �re started on July 22 and

burned about 13,000 ha., causing 2 deaths. This location (La Jonquera) is

in the north of Catalonia, and we have used a map of 33Km x 48Km.

This map has been obtained from ASTER, a NASA satellite that takes
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high-resolution images of the earth (up to 30m). These images have been

processed, and we have extracted raster �les with the information needed to

perform our simulations (elevation, aspect and slope). We have also used the

vegetation information provided by the Corine Land Cover project.

Figure 5.13 shows the occurrences of �res bigger than 30 hectares in

the period between 1980 and 2012 in Catalonia. As can be observed, one

of the most recurrent areas corresponds to the north-east region, where La

Jonquera is located. This area is zoomed on the right of the image, and the

colors indicate how many times a cell (100m per 100m) has been burnt since

1980.

Figure 5.13: Fire occurrences in Catalonia (a) and Cap de Creus (b) during
the period 1975-2010

In order to evaluate all proposed schemes, we created a reference �re

that lasts 24 hours. The components of the wind (speed and direction)

vary every 30 minutes and have been provided by the meteorological station

of La Jonquera, which is located very close to where the �re took place.

These values can be observed in Fig. 5.14 and Fig. 5.15. The resulting �re

evolution is stored and used as a real �re evolution, and the input settings

that were used to generate this propagation are dismissed. In this test case,

the meteorological data, in particular the wind forecast, has been generated

in a synthetically, introducing perturbations into the real wind behavior.

Wind speed varies 4.49 mph on average, and, in some cases, the di�erence is

up to 10 mph. Wind direction varies 21 degrees on average, and the highest
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di�erence reaches almost 90 degrees. This synthetic forecasted wind was the

one used in the 2ST-MM and 2ST-WF-MM prediction schemes as the data

to be dynamically injected during the prediction stage.

Figure 5.14: Real and forecasted wind speed evolution

Figure 5.15: Real and forecasted wind direction evolution

As can be seen in Figure 5.16, the real �re propagation obtained for the

�re analyst once the incident ends (yellow shape) and the reference �re that
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we have obtained using the synthetic forecast wind (the external red line) are

very similar. It must be taken into account that the reference �re propagation

has been obtained without considering mitigation actions that, obviously,

were done and had a direct impact on the perimeter's shape. In other words,

the reference �re is a free burning �re, which allows the prediction framework

to forecast the potential danger of the �re.

Figure 5.16: Real observed �re spread versus reference �re perimeter

The time window selected for the calibration and prediction stages was

chosen taking into account the time period needed to gather useful infor-

mation from weather forecast services and satellite sensor systems. In the

former case, the typical time-step of coarse scale weather forecast models

ranges from 3 to 6 hours, which determines the frequency of delivered data.

In the latter case, we should consider the time interval required for receiving

�re front images that could be properly used in that multi-model prediction

framework. To obtain such perimeter information, we rely on sensor systems,

which are on board both the NASA Terra and Aqua satellites. It is necessary

for each satellite to complete 3 orbits (approximately 3 hours) to cover the
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whole European area, so it could be possible to obtain �re perimeters every

3-6 hours [65].

Since the calibration strategy implements a GA, we perform the experi-

ment for di�erent population sizes such as 25, 50 and 100 individuals in order

to analyze the in
uence of this parameter on the results in terms of qual-

ity, execution time and e�ciency. The GA has been iterated 5 times and,

for each initial population size, we have performed 5 di�erent experiments

with di�erent initial populations. Thus, the results reported in the following

sections are the mean values of those 5 experiments.

Parallel systems

Two di�erent execution platforms have been used to perform the experiments

reported in the following sections:

1. An IBM x3550 cluster with 32 compute nodes, where each node counts

on 2x Dual-Core Intel Xeon CPU 5160, 3.00GHz, and 12GB Fully

Bu�ered DIMM 667 MHz's. That means a total number of 128 cores

and 384GB of main memory.

2. Two Dell nodes, where each node has 4 sockets with an AMD Opteron

6376, 2.30GHz processor with 16 cores each. So, every node has 64

cores and 128GB of main memory. That also means a total number of

128 cores.

These systems have been selected because they are small-medium size

clusters that can be available to regional emergency services in real operation.

In most cases, such services do not have Exascale systems with a large number

of nodes available.

Throughout the rest of this work, we will refer to each one of the above-

described platforms as IBM and DELL clusters.

Quality analysis

The schemes incorporate a GA that iteratively improves the quality of the

calibration. So, it is necessary to analyze the convergence of the GA and
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the influence of other parameters such as the population size in the quality

delivered of every multi-model scheme. Fig. 5.17 summarizes the evolution

of the error at each generation for all four schemes. It can be observed that

the schemes that incorporate the meteorological model (2ST-MM and 2ST-

WF-MM) do not require a significant number of generations to achieve an

almost stable calibration error. The main reason for this behavior is that,

in these cases, the wind is not a parameter to be calibrated, but is rather

a measured or forecasted parameter. Therefore, the calibration process is

easier since the wind speed and direction are very relevant parameters that

must be calibrated carefully. In these cases, the population size does not

appear to be a relevant factor since the errors are very similar.

Figure 5.17: Calibration error evolution for 2ST-BASIC (a), 2ST-WF (b),
2ST-MM (c) and 2ST-WF-MM (d) using initial populations of 25, 50 and
100 individuals

The schemes that do not incorporate meteorological models (2ST-BASIC

and 2ST-WF) must calibrate the meteorological wind value and, therefore,

the calibration process requires more iterations. In these schemes, the pop-



5.2. EXPERIMENTS USING SYNTHETIC FIRES OVER REAL TERRAINS97

ulation size is a relevant factor since larger populations provide better cal-

ibration results. It is also noteworthy to observe that the schemes that in-

corporate the wind �eld model (2ST-WF and 2ST-WF-MM)) provide better

results than those that use a general value for the whole terrain. This means

that the wind �eld model is an added value to the prediction process.

The calibration process is very signi�cant, but, ultimately, the most rel-

evant result is the prediction error. Fig. 5.18 shows the errors obtained at

the end of the calibration process and the corresponding prediction errors.

The same information is depicted in Figure 5.19 where a visualization of

the delivered predicted �re front evolution for each multi-model scheme is

plotted. As we can observe, the multi-model scheme that provides the best

results in both the calibration stage as well as in the prediction stage is the

2ST-WF-MM, as expected. Let's analyze the results scheme by scheme in

more detail.

Figure 5.18: Calibration and Prediction errors for all multi-model predictions
schemes using initial populations of 25, 50 and 100 individuals

2ST-BASIC is the scheme that delivers the worst results both in predic-

tion and calibration errors. This scheme needs to perform all the iterations of

the GA to reduce the prediction results, but, even iterating until the preset
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Figure 5.19: Best predicted fire front for each scheme: a) 2ST-BASIC b)
2ST-WF c) 2ST-MM d) 2ST-WF-MM

number of generations, it is not able to adapt to changes in the meteorolog-

ical conditions such as wind parameters. The initial population size could

slightly reduce this penalty, but, in general terms, this effect is independent

of the number of the GA’ s individuals.

When observing the results provided by the 2ST-WF, we detected a qual-

ity improvement in the calibration stage. This enhancement is due not only

to the inclusion of the wind field evaluation for each particular individual,

but also to the ability to calibrate the general wind components. This ability

enables the system to better adjust the wind parameters to reproduce more

precisely the recent past behavior of the fire. However, this enhancement is

not extrapolated to the prediction stage. As we can observe, the prediction

error drastically increases despite having a good calibration error. The main

reason for this is that wind values do not quite remain constant from the

calibration stage to the prediction stage. Thus, the 2ST-WF scheme is not

able to adapt to meteorological changes if those changes happens during the

prediction interval.

To overcome this drawback, a meteorological model was coupled with the

multi-model system. The advantages of including such a model are reflected

in the prediction errors obtained for 2ST-MM and 2ST-WF-MM. Using fore-

casted data in the prediction stage helps the system to dynamically adapt to
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changes in environmental variables. However, 2ST-MM delivers worse results

than 2ST-WF-MM. The reason for this di�erence is the ability of 2ST-WF-

MM to provide high-resolution wind 
ow that better reproduces the wind

variations at a �eld level. So, if the wind speed varies because of a moun-

tain or a valley the 2ST-WF-MM multi-model scheme captures these e�ects.

Those results remain quite similar for all initial population sizes, so, a last

conclusion in this point could be that a population size of 25 individuals is

enough to obtain reasonable prediction results. However, these conclusions

must be contrasted with the execution time and e�ciency results reported

in the next section.

Execution Time

Prediction quality is a very important issue, but execution time is just as

critical as accuracy. So, it is necessary to study the execution time of each

scheme and the e�ciency reached. As an initial experimental platform, we

use the IBM cluster running the MPI prediction scheme. The execution time

of each scheme for di�erent population sizes (25, 50 and 100 individuals) has

been evaluated, and the results are shown in Table 5.2. As can be observed,

the execution time of 2ST-WF is by far the most time-consuming multi-

model scheme. The need to execute a wind �eld model for each individual

at each iteration results in an increment of time. Fig. 5.20 summarizes the

execution time of all schemes.

The execution time depends on the number of workers, the number of

nodes on the system, the architectural features of each node and, more specif-

ically, on the multi-model scheme selected and the particular scenario repre-

sented. We use 128 cores to perform our test. Since our populations are 100

individuals at most, there are enough cores to execute one worker per core,

but the internal architecture of each node has a crucial e�ect. Each node has

2 dual-core processors and 12GB of memory.

Comparing the execution time obtained by the di�erent schemes, it can

be observed that 2ST-MM and 2ST-WF-MM are the fastest schemes. In

the other two schemes, the calibration and prediction processes take longer.
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Population size 25 50 100
2ST-BASIC 1169s 2952s 2240s
2ST-WF 2022s 3734s 6892s
2ST-MM 663s 796s 936s
2ST-MM-WF 1027s 1101s 1103s

Table 5.2: Execution time of every scheme and population size.

Figure 5.20: Execution time of 2ST-BASIC, 2ST-WF, 2ST-MM, 2ST-WF-
MM for all population sizes

This is due to the fact that the individuals can contain wind values that

are very di�erent from the real values and take longer to be simulated. Such

longer individuals do not appear in the schemes using dynamic wind injection

(2ST-MM and 2ST-WF-MM).

The 2ST-MM scheme assumes that the measurements of the meteoro-

logical stations and the forecasted data provided by meteorological models

are available before the prediction stage is launched. So this scheme does

not introduce any additional computational cost. The complete multi-model

2ST-MM-WF scheme does not require the calibration of the wind parameters

since they are measured or forecasted, and the calibration then requires less

iterations. So the computational cost of introducing the wind �eld modeler

does not suppose a signi�cant time increase. The only overhead introduced is

the one incurred when the �re simulator reads the set of precalculated wind

�elds which are necessary to carry out the simulation.
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Population size Cores/individual Calibration Time
IBM Cluster 1 471s
IBM Cluster 4 348s
Dell Cluster 4 363s

Table 5.3: Calibration time of the 2ST-WF-MM scheme and 25 individuals
on di�erent platforms.

Larger populations (100 and 50 individuals) need fewer generations to

converge to a reasonable error in 2ST-BASIC and 2ST-WF schemes, but

the execution time of each generation is larger. We can conclude that 25

individuals are enough to achieve good prediction errors in a reasonable time.

2ST-MM and 2ST-WF-MM are schemes that converge very fast, so a few

generations are enough to reach a good prediction error. In these schemes,

using larger populations does not signi�cantly increase execution time, but

the bene�ts of using more resources are poor.

Taking this into account, we have focused on 2ST-WF-MM scheme and

the 25 individual population. Since our test systems have 128 cores each, it

is possible to use four cores per individual in the calibration stage by apply-

ing the hybrid MPI-OpenMP implementation of the calibration stage. The

calibration time (average of �ve executions) using four cores per individual

in both systems can be seen in Table 5.3.

When using four cores to simulate each individual, WindNinja and Farsite

can take advantage of such resources and reduce their execution time. So the

overall calibration time is reduced 26% using four cores in the IBM cluster.

The execution time obtained in the Dell Cluster is similar to the IBM one.

Although the Dell Cluster has more modern and powerful processors, they

have to share memory bandwidth among many individuals, and, in this kind

of application, memory is a signi�cant resource. However, the IBM cluster

has 32 isolated nodes with 12GB of memory that are only shared among four

cores (1 individual).

When the calibration stage has been carried out, the prediction taking

the best individual from the calibration stage must be run. In this case,

this prediction only implies the execution of one simulation. In 2ST-WF-
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Prediction time Serial time 2 cores 4 cores 8 cores 16 cores
IBM Cluster 607.53s 455.19s 451.23s - -
Dell Cluster 641.05s 492.37s 400.71s 366.49s 340.21s

Table 5.4: Prediction time using OpenMP in IBM and Dell clusters.

Total execution time IBM Cluster Dell Cluster
Best Calibration case 4 cores/individual 4 cores/individual
Best Prediction case 4 cores/individual 16 cores/individual
Calibration time 348.39s 363.15s
Prediction time 451.23s 340.21s
Total time 799,62s 703,52s

Table 5.5: Total time using OpenMP in IBM and Dell clusters.

MM, we have seen that the prediction stage lasts longer than the calibration

stage. The execution of the best scenario is about 600s in all cases. In the

prediction stage, the initial perimeter is the real perimeter at 12 hours, so the

complexity of the simulation is greater than in the calibration stage (ignition

is a single point). In this stage, we have executed these simulations in the

IBM cluster with 1, 2 and 4 cores and in the Dell Cluster using 1, 2, 4, 8 and

16 cores. Prediction times are shown in Table 5.4.

It can be observed that the prediction stage time is reduced when using

more cores in the DELL system. So a promising approach is to consider

the best con�guration for each stage. That is, on the one hand, in the cal-

ibration stage to exploit the hybrid two-level parallelization scheme using

an MPI Master/Worker GA with a 25 individual population and four cores

per individual, applying OpenMP. And, on the other hand, in the predic-

tion stage, to exploit to the maximum the OpenMP parallelism using four

cores in the case of the IBM cluster or 16 cores in the DELL cluster. The

execution times obtained when applying such multi-level parallelism schemes

are summarized in Table 5.5. As can be observed, the time incurred in the

whole prediction scheme bene�ts from this combined approach, which en-

ables the regional emergency services to have the possibility to be able to

obtain reliable predictions, keeping the time bound.
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5.3 Experiments using real �res

The last experimentation has been oriented to test the forest �re prediction

system (FFSS) and the di�erent prediction schemes in real �re scenarios. One

of the most important issues in these cases is the great uncertainty on the

input parameters. Another factor to be taken into account is human inter-

vention, which will modify the perimeter's shape. The human �ght against

the �re is not considered by the �re spread simulators, so our prediction

errors should be greater than in prescribed and synthetic �res.

Since the 2ST-WF requires an execution time too large to be useful in

real scenarios, we have compared the other three schemes in terms of quality.

We are applying techniques to reduce the execution time of the wind �eld

modeler and to reduce the time of the calibration stage in the 2ST-WF

scheme.

For the three remaining schemes (2ST-BASIC, 2ST-MM, and 2ST-WF-

MM), we have generated �ve random populations that have been evaluated

for each scheme and �re scenario. The calibration technique, as in the rest of

the experimentation, is a Genetic Algorithm. We have increased the number

of generations to 20, because these tests were the �rst using real �res. The

number of individuals of every population was 50, as in the previous exper-

iments. The GA maintains by elitism the two best individuals to the next

generation, the crossover rate is 80%, and the mutation rate has been set at

10%.

In these real cases, the error equation is the modi�ed symmetric di�erence

between maps, which has been shown in Section 2.4. It is depicted again in

Eq. 5.2, adding the initial �re factor that has been neglected in that section

to simplify it.

Error =

(∪−Ini)−(∩−Ini)
Real−Ini + (∪−Ini)−(∩−Ini)

Sim−Ini

2
(5.2)
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5.3.1 Top fires - Case 7: Arkadia, Greece

This fire occurrence was located in Arkadia, one of the seven prefectures

of the Peloponnese peninsula in Greece. The forest fire occurred in 2011

and began on the 26th of August. The burnt area was 1,761 ha. In Fig.

5.21, the first three perimeters that have been used are depicted as ignition,

calibration, and prediction perimeters, respectively.

Figure 5.21: Fire perimeters corresponding to Arkadia fire

We have compared the 2ST-BASIC with the 2ST-MM and the 2ST-WF-

MM prediction schemes, and the average errors of the population evaluated

are shown in Fig. 5.22.

The calibration errors show that the 2ST-BASIC scheme achieves the best

error. Neither 2ST-MM nor 2ST-WF-MM can reach the error of the basic

scheme, and they performed similarly. It is noteworthy that the interval

between the first and second perimeters is around two hours, and there is

only a single weather sample in this interval. This lack of knowledge has a

direct impact on the quality of the calibration.

Fig. 5.23 shows an example of the best calibrated perimeter for each

scheme. All three methods under-predict the fire behavior, and there are
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Figure 5.22: Calibration and prediction errors for every prediction scheme

some possible causes for this fact. The measured wind could be less than the

reality, and the schemes could not tune the other parameters to minimize this

e�ect. With the last explanation as a possibility, we think that the problem

comes from the fuel models used. It is possible that the fuel model conversion

from the European cover uses to the standard �re models resulted in low-

propagation types. The main reason to support this idea was the behavior

of the 2ST-BASIC scheme. Although not sensitive to sudden changes, this

method usually �nds calibrated winds that make the �re spreading quite

close to the real �re, although the �nal shape can di�er due to its uniform

conditions.

This situation changes when we analyze the prediction stage that lasts

around 23 hours. In this case, the best prediction errors are the ones given

by the 2ST-MM and 2ST-WF-MM schemes. The dynamic injection of data

seems to be positive to the system and to provide good prediction shapes,

as we can see in Fig. 5.24. Although in numerical values the 2ST-MM is

the best scheme, the 2ST-WF-MM gives back better perimeters and better

covers the real burnt area.

The 2ST-BASIC scheme uses the tuned weather values obtained in the

calibration stage, which present a high wind speed value. This causes it to

excessively over-predict the real �re behavior.
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Figure 5.23: Calibration stage perimeters for each prediction scheme

5.3.2 Top �res - Case 3: Douro, Portugal

The �re that has been studied in this section was located in Douro, a region

that belongs to Portugal. This �re burnt 3,678 ha. and took place on August

28th, 2013. Fig. 5.25 shows the �rst three perimeters that have been used

as ignition, calibration, and prediction perimeters.

In this scenario, the calibration and the prediction stage each last around

a complete day. This results in more weather samples for every stage that

will bene�t the results of the schemes with dynamic weather data injection.

Fig. 5.26 shows the calibration and prediction errors for each scheme in this

scenario.

The three schemes reach quite good calibration errors, with as the 2ST-

BASIC the best by far. The perimeter's shape re
ects this situation (see

Fig. 5.27), and we can see that the basic scheme almost exactly reproduces
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Figure 5.24: Prediction stage perimeters for each prediction scheme

the �rst perimeter. The other schemes give back shapes with a slight over-

prediction, but we must take into account that the system does not consider

human action against the �re.

In the prediction stage, the 2ST-MM and the 2ST-WF-MM perform sim-

ilarly and achieve better errors than the 2ST-BASIC. Despite this, both

schemes under-predict the real �re behavior (Fig. 5.28). Again, it seems

that the vegetation types modeled for this terrain do not correspond with

the real ones, and the calibrated fuel moistures are unable to reverse this

mistake.

Despite this fact, the predicted perimeters in these schemes show that

the growth trend is quite close to the real �re behavior, and a more accurate

vegetation modeling may return better predictions.

Something common in the experiments presented in this section is the fact

that the inclusion of wind �elds does not provide a high reduction in errors
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Figure 5.25: Fire perimeters corresponding to Douro fire

Figure 5.26: Calibration and prediction errors for each prediction scheme

or a great difference in perimeters. We must take into account that the data

obtained from this fire case has a common resolution of 100m, instead of

30m, which is the resolution that we usually work with. In addition, the

mean wind speed values are low, around 5 to 8 mph, and there are no high

wind gusts.
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Figure 5.27: Calibration stage perimeters for each prediction scheme

5.3.3 Top �res - Case 1: Dao-Lafoes, Portugal

The last �re analyzed also occurred in Portugal, three days after the Douro

�re. In this case, it took place in the region of Dao-Lafoes and burnt 2,994

ha. In Fig. 5.29, the �rst three perimeters that have been used are depicted

as ignition, calibration and prediction perimeters, respectively.

Fig. 5.30 shows the calibration and prediction errors in the Dao-Lafoes

�re, using the three schemes as in the rest of the real cases. As in the other

�re cases, the 2ST-BASIC is the best scheme in the calibration stage. It

achieves an extraordinary calibration error, while the schemes with dynamic

data injection provide high calibration errors.

Besides, glancing at the perimeter shapes (Fig. 5.31), we extract that the

injected weather predictions are wrong. At least, the wind direction seems to

have a considerable deviation from the one that guided the real �re. Because
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Figure 5.28: Prediction stage perimeters for each prediction scheme

of this, the 2ST-BASIC achieves a very good perimeter while the 2ST-MM

and 2ST-WF-MM return bad perimeters.

This situation does not get better in the prediction stage. The prediction

errors remain high in those schemes, but where this issue can be better seen

is in comparing the real and predicted �re perimeters (see Fig. 5.32). 2ST-

MM AND 2ST-WF-MM give back perimeters that do not �t at all, with the

real perimeter. However, the 2ST-BASIC provides quite a good prediction.

In this case, the meteorological conditions do not su�er from great changes

in conditions, but only have slight changes. This favors the 2ST-BASIC that

is able to perform well although it is not sensitive to changes between stages.
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Figure 5.29: Fire perimeters corresponding to Dao-Lafoes fire

Figure 5.30: Calibration and prediction errors for each prediction scheme
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Figure 5.31: Calibration stage perimeters for each prediction scheme
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Figure 5.32: Prediction stage perimeters for each prediction scheme
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Chapter 6

Conclusions and Open Lines

This research work has been focused on improving the prediction of real for-

est �res using computer simulation and pro�ting from our knowledge of HPC

resources and programming paradigms. Dealing with this kind of �re intro-

duces several new issues that must be tackled to maintain a good response.

We started validating our methodology and new proposals using synthetic

�res and conditions and introducing step-by-step single features of real �res

to study the impact on the spreading individually. Gradually, we have been

simulating with more realistic scenarios up to preforming experiments with

completely real �res.

To maintain the quality in real environments, we coupled complemen-

tary models to produce more realistic simulations. Two models have been

analyzed in this work: a wind �eld modeler to study the wind e�ect over

complex terrain and its consequences in the �re propagation, and a meteo-

rological model to dynamically inject real weather data while the simulation

is being carried out. The use of these models produces signi�cant bene�ts in

the prediction quality of our simulations.

But the inclusion of these models is not free, and the computational im-

pact of these new features has been studied, and we have proposed solutions.

It is also important to see what the data requirements of this natural haz-

ard are and to propose a methodology to reduce the time and complexity of

acquiring and processing the data required to simulate �res.
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In the following section, we depict the main contributions of this research.

6.1 Contributions

The two-stage prediction method provides us with an improvement in several

�re scenarios, but it su�ers from two main handicaps. It does not consider

the parameter heterogeneity throughout the terrain or their evolution over

time. We have included a wind �eld modeler to avoid the spatial problem,

and we have tested the dynamic injection of data coming from a meteoro-

logical model. This information gives us a more complete knowledge of the

environment and allows us to provide more accurate predictions. These im-

provements have been included in a hybrid MPI-OpenMP framework that

takes advantage of the HPC resources, in order to be able to evaluate a great

amount of simulations in an acceptable time. In addition, we have de�ned a

methodology to reproduce and predict real forest �re scenarios, characteriz-

ing large areas with high �re risk.

The basic principles that guided this research, the preliminary results of

the inclusion of wind �eld data and the �rst results evaluating the injection

of dynamic weather data in the two-stage prediction system can be seen in

the following works:

� Carlos Brun, Tom�as Margalef: Modelos de viento aplicados a la mejora

en la predicci�on de incendios forestales, Master Thesis, Computer Ar-

chitecture and Operating Systems Department, Universitat Aut�onoma

de Barcelona

� Carlos Brun, Tom�as Margalef, Ana Cort�es: Acoplando modelos com-

plementarios para la mejora de un sistema de predicci�on de incendios

forestales, Jornadas Sarteco, JP2012.

Later, we performed a deeper analysis of the e�ect of the injection of

wind dynamics into the system. We tested the in
uence of including wind

data using a synthetic �re evolved in an ideal terrain and comparing our

predictions under homogeneous and heterogeneous conditions. The objective
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was to study how the system behaved when the weather conditions remain

quite stable and to compare this with its behavior when there are sudden

changes in some meteorological variables. The results of this work were

published in:

� Carlos Brun, Tom�as Art�es, Tom�as Margalef, Ana Cort�es: Coupling

wind dynamics into a DDDAS forest �re propagation prediction system.

Procedia Computer Science 9(0) (2012) 1110 { 1118 Proceedings of

the International Conference on Computational Science, ICCS 2012

(CORE A)

Based on previous work, we coupled the wind �eld simulator kernel with

the prediction system, and we were able to compare the four prediction

schemes. To evaluate the performance of all the schemes, we introduce a

synthetic �re evolved over a real complex map. The features of this terrain

favor the evaluation of the wind �eld modeler and allow us to study the �re

spreading under more realistic conditions. The resulting publication of this

work was:

� Carlos Brun, Tom�as Margalef, Ana Cort�es: Coupling Diagnostic and

Prognostic Models to a Dynamic Data Driven Forest Fire Spread Pre-

diction System. Procedia Computer Science 18 (2013): 1851-1860.

ICCS 2013 (CORE A)

In addition, we carried out parallel studies analyzing the computational

impact of coupling complementary models. We also used the same synthetic

�re evolved over a real terrain, and we studied the execution times of the

di�erent schemes using di�erent calibration settings. This last work was

extended using another synthetic reference �re, and we used the static data

(terrain, vegetation, and conditions) of a big forest �re that occurred in

Catalonia (Spain). The comparison of the schemes including combinations

of both models can be seen in the following works:

� Carlos Brun, Tom�as Margalef, Ana Cort�es: Exploiting multi-core plat-

forms for multi-model forest �re spread prediction. CMMSE(2013)

p.308-319
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� Carlos Brun, Tom�as Margalef, Ana Cort�es, Anna Sikora: Enhancing

multi-model forest �re spread prediction by exploiting multi-core par-

allelism. The Journal of Supercomputing, 1-12 (2014). (Impact factor:

0.917)

In the last phase of this research, we have formalized our methodology to

predict real forest �res, we have de�ned the data sources, the data conver-

sion and adaptation processes and the e�ective coupling of all the submod-

ules that integrate the prediction framework. In addition, we carried out a

complete rede�nition of the framework to take advantage of the multi-core

parallelism of the new computer architectures using the OpenMP program-

ming paradigm, in conjunction with the Master-Worker MPI scheme. A brief

summary of this work has been submitted, and we are waiting for response:

� Carlos Brun, Tom�as Art�es, Andr�es Cencerrado, Ana Cort�es, Tom�as

Margalef: A GIS-centered methodology for the characterization of large

topographic areas for forest �re spread prediction. International Jour-

nal of Geographical Information Science. Submitted. (Impact factor:

1.613)

First attempts to accelerate the wind �eld calculation have resulted in

an additional research line, where it has been deeply studied a strategy to

speed up these simulations. Some publications have been presented about

this issue:

� Gemma Sanjuan, Carlos Brun, Tom�as Margalef, Ana Cort�es: Par-

alelizaci�on del c�alculo del campo de vientos para predicci�on de la propa-

gaci�on de incendios forestales. XXIII Jornadas de Paralelismo 2013

� Gemma Sanjuan, Carlos Brun, Tom�as Margalef, Ana Cort�es: Wind

�eld uncertainty in forest �re propagation prediction. International

Conference on Computational Science 2014. (ACCEPTED)

� Gemma Sanjuan, Carlos Brun, Tom�as Margalef, Ana Cort�es: E�ect of

wind �eld parallelization on forest �re spread prediction. 14th Interna-

tional Conference on Computational Science and Applications (ICCSA-

2014). (ACCEPTED)



6.2. OPEN LINES AND IMPROVEMENTS 119

� Gemma Sanjuan, Carlos Brun, Tom�as Margalef, Ana Cort�es: Map

Partitioning to accelerate wind Field calculation for Forest Fire Prop-

agation Prediction. International Conference on Forest Fire Research

2014. (ACCEPTED)

� Gemma Sanjuan, Carlos Brun, Tom�as Margalef, Ana Cort�es: Deter-

mining map partitioning to accelerate wind �eld calculation. Inter-

national Conference on High Performance Computing & Simulation.

(ACCEPTED)

6.2 Open Lines and Improvements

At this time, we are performing several experiments to check how our frame-

work behaves using real forest �re scenarios. The �rst results have been

shown in this work, but we want to continue with this experimentation, an-

alyze more cases and decide the next steps in our research.

We are experiencing common problems in real �res, and one of the factors

that we think must be revised is the information about the vegetation or fuel

models. Up to now, the process was to acquire the land cover uses of the

studied terrain and to convert them to the 13 standard fuel models. These

models were designed by classifying and characterizing the predominant veg-

etation types of the United States. What we do is establish a relationship

between a land cover use and the closest standard model. Obviously, this

generalization produces a loss of information. One of the possible solutions

that we are evaluating is to increase the number of genes of the GA and to

include an extra parameter per fuel model present in the terrain. These new

parameters will be used as adjustment factors to try to modify the standard

fuel models and get a more realistic �re spreading.

Another option is to do a deeper analysis of the vegetation features in

our area of interest, try to characterize them and, �nally, create new custom

models adapted to our needs. The drawback of this option is that we need

expertise knowledge of this �eld, and it may require a huge e�ort to achieve

this goal.
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As we can see, dealing with real �res adds new issues that must be tackled.

The complexity of these scenarios increases the error of our predictions, and

new improvements must be studied. Real �re perimeters are in
uenced by

human interaction, and �re spread models do not take this variable into

account. Inserting a module to generate �re barriers where is the �re is being

attacked into our system will be very interesting to deliver better predicted

perimeters.

In addition, our schemes are based on the complementary models' need

for accurate weather data to give back good predictions. Therefore, when

the knowledge of the environment is poor, the injection of real weather data

produces wrong predictions. In this case, we propose a hybrid prediction

scheme using individuals fully generated by the GA and individuals with

predicted weather data. The idea is to increase and guide the search space of

the schemes that inject the meteorological data. Now, these schemes acquire

the real data and replace these parameters in the individuals of the whole

population. The objective is to replace only a portion of the population, and

the rest will evolve without any restrictions. In addition, it will be interesting

to implement an algorithm that does not inject the meteorological data with

the exact value that we receive, but rather uses this value as the center of a

con�dence interval. Therefore, the meteorological data will not be injected

exactly as it comes, but we will introduce disturbances within a range, to

take into account the possible measurement errors of this data.
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