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Abstract

We develope an algorithm for computing the twists of a given curve assuming that its auto-
morphism group is known. And in the particular case in which the curve is non-hyperelliptic
we show how to compute equations of the twists. The algorithm is based on a correspon-
dence that we establish beetwen the set of twists and the set of solutions of a certain Galois
embedding problem. As an application to our algorithm we give a classification with equa-
tions of the twists of all plane quartic curves, that is, the non-hyperelliptic genus 3 curves,
defined over any number field k.

The study of the set of twists of a curve has been proven to be really useful for a bet-
ter understanding of the behaviour of the Generalize Sato-Tate conjecture. We prove the
Sato-Tate conjecture for the twists of the Fermat and Klein quartics and we compute the
Sato-Tate groups and Sato-Tate distributions of them.

Following with the study of the Generalize Sato-Tate conjecture, we show how to compute
the Sato-Tate groups and the Sato-Tate distributions of the Fermat hypersurfaces: Xm

n ∶
xm0 + ... + xmn+1 = 0. We prove the Sato-Tate conjecture for them when they are considerd to
be defined over Q(ζm).
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Introduction

This thesis explores the explicit computation of twists of curves. We develope an algorithm
for computing the twists of a given curve assuming that its automorphism group is known.
And in the particular case in which the curve is non-hyperelliptic we show how to com-
pute equations of the twists. The algorithm is based on a correspondence that we establish
beetwen the set of twists and the set of solutions of a certain Galois embedding problem.
In general is not known how to compute all the solution to a Galois embedding problem.
Through the thesis we give some ideas of how to solve these problems.

The twists of curves of genus ≤ 2 are well-known. While the genus 0 and 1 cases go back
from long ago, see [55], the genus 2 case is due to the work of Cardona and Quer [8], [9]. All
the genus 0, 1 or 2 curves are hyperelliptic, however for genus greater than 2 almost all the
curves are non-hyperelliptic.

As an application to our algorithm we give a classification with equations of the twists
of all plane quartic curves, that is, the non-hyperelliptic genus 3 curves, defined over any
number field k. The first step for computing such twists is providing a classification of the
plane quartic curves defined over a concrete number field k. The starting point for doing
this is Henn classification of plane quartic curves with non-trivial automorphism group over
C.

An example of the importance of the study of the set of twists of a curve is that it has
been proven to be really useful for a better understanding of the behaviour of the Generalize
Sato-Tate conjecture, [16], [18], [21], [22]. We show a proof of the Sato-Tate conjecture for
the twists of the Fermat and Klein quartics as a corollary of a deep result of Johansson, [34],
and we compute the Sato-Tate groups and Sato-Tate distributions of them.

Following with the study of the Generalize Sato-Tate conjecture, in the last chapter of
this thesis we explore such conjecture for the Fermat hypersurfaces Xm

n ∶ xm0 + ... + xmn+1 = 0.
We explicitly show how to compute the Sato-Tate groups and the Sato-Tate distributions of
these Fermat hypersurfaces. We also prove the conjecture over Q for n = 1 and over Q(ζm)
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4 INTRODUCTION

if n ≠ 1.

Content of chapters

In the first chapter of this thesis we describe an algorithm for computing the twists of curves
via a correspondence between the twists and certain solutions to a Galois embedding prob-
lem, section (1.1). In section (1.2) we show how to compute equations for the twists when
the curve is non-hyperelliptic. We give a detailed descripcion of the algorithm in section
(1.3). Finally, for illustrating the algorithm, in section (1.4), we show a complete example
of the computation to the twists and its equations of a genus 10 non-hyperelliptic curve.

In chapter 2 we do the preparations for giving a classification of the twists of all non-
hyperelliptic genus 3 curves defined over a given number field k. In section (2.1) we show a
classification due to Henn of the plane quartic curves with non trivial automorphism group,
up to C−isomorphism. In section (2.2) we modify this classification for getting it up to
k−isomorphism. Finally, in section (2.3) we show, given any plane quartic with nontrivial
automorphism group, how to find its representant in such classification.

After the results in chapter 2 we are ready for computing the twists of all plane quartic
curves. In chapter 3 we give the classification of all such twists. In section (3.1) (resp.
section 3.3) we compute the twists of the Fermat (resp. Klein) quartics, that are the harder
cases, in part due to the fact that are, up to isomorphism, the two plane quartic curves with
a biggest automorphism group. In section (3.2) we compute the twists of the rest of plane
quartic curves. Just mentioning that this classification of the twists of the plane quartic
curves is not totally complete, because we have not been able of computing a single case
for the Klein quartic. The problem is that we have not been able of completely solving the
corresponding galois embedding problem, so there is a single family of solutions/twists that
we could not compute explicitly.

In chapter 4 we apply the former computations for computing new Sato-Tate distribution
among the twists of the Fermat and Klein quartics. In section (4.1) we show a proof of the
generalize Sato-Tate conjecture for these twists. The corresponding Sato-Tate groups and
Sato-Tate distributions are computed in sections (4.2) and (4.3) respectively. Finally, in
section (4.4) we show concrete examples of curves that attains such differente distributions
and that have the corresponding Sato-Tate groups computed.

In chapter 5 we follow with the study of the Generalize Sato-Tate conejcture, but this
time, we focus our study on the Fermat hypersurfaces Xm

n ∶ xm0 + ... + xmn+1 = 0. In (5.1) we
describe the Galois action on its étale cohomology and in (5.2) we explain some properties of
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the Jacobi Sums, both things will be necesary for computing the Sato-Tate groups in (5.3).
In (5.4) we prove the conjecture over Q for n = 1 and over Q(ζm) if n ≠ 1. Finally we show
a complete example in (5.5).

In the first part of the appendix we establish a correspondence between the solutions to
a given Galois inverse problem and rational points in a certain variety that we explicitly
show how to compute via an algorithm. This can useful for trying to solve Galois embedding
problems as the ones that appear in section (1.1) for computing the twists of curves. Our
idea is, once the algorithm will be implemented, try to find the missed solution of the Galois
embedding problem corresponding to the Klein quartic.

Finally, in the last part of the appendix we show tables with all the data computed
through out the thesis: automorphism groups of the families of plane quartic curves in Henn
classification and in the modified one, Dixmier-Ohno invariants of some of the families, the
Sato-Tate distributions and the example curves in chapter 4 and some tables with examples
of chapter 5.

General notations

We now fix some notation and conventions that will be valid in all the chapters. For us Z (res.
Q, R,C) is the ring (resp. field) of integers (resp. of rational numbers, of real numbers, of
complex numbers). And Fq denotes the finite field of q = pr elements where p is a prime num-
ber, Zl the ring of l−adic integers and Ql the field of l−adic numbers, where again l is a prime
number. For a commutative unitary ring A, let Mn(A) (resp. GLn(A), SLn(A), Spn(A))
denotes the ring of n by n matrices with coefficients in A (resp. that are inverible, that has
determinant equal to 1, that are symplectic).

For any field F , we denote by F̄ an algebraic closure of F . And by GF the absolute
Galois group Gal(F̄ /F ). We will recurrently consider the action of GF on several sets, and
this action will be in general denoted by left exponentiation.

By k we will always mean a number field. All field extensions of k that we consider are
contained in a fixed algebraic closure k̄. We write ζn to refer to a primitive n−th root of the
unity in k̄. We denote by Ok the ring of integers of k. By abuse of language, we will refer to
the prime ideals of Ok as prime ideals of k.

When we will work with groups we will usually use the SmallGroup Library-GAP, [24].
Where the group GAP(N,r) will be denote the group of order N that appears in the r−th
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position in such library. Very often we will also use the notation < N,r >. We denote by Cn
(resp. Dn, Sn, An) the cyclic group of n elements (resp. the dihedral one of 2n elements, the
symmetric one of n! and the alternate one of n!/2). And by V4 we denote the direct product
C2 ×C2.

Acknowledgements



Preliminars

Non-hyperelliptic curves

Let C be a projective algebraic, smooth and irreducible genus g curve defined over a number
field k. Let {ω1, ..., ωg} be a basis of the regular differentials Ω1(C) of C. We denote by KC

a canonical divisor of C. The canonical morphism is:

φK ∶ C → Pg, P → (ω1(P ) ∶ ... ∶ ωg(P ))

Definition 0.0.1. A curve C is said to be non-hyperelliptic if the canonical morphism is an
embedding. In this case, the image, φK(C), is called the canonical model and it is a curve of
degree 2g−2. If the canonical morphism is not an embedding, then it is a degree 2 morphism
and the curve is called hyperelliptic.

All genus 1 and 2 curves are hyperelliptic, while for genus greater or equal to 3 there are
as well hyperelliptic ones as non-hyperelliptic ones.

Proposition 0.0.2. Given a non-hyperelliptic curve C defined over a number field k we can
take a canonical model also defined over k.

Proof. Since we can take a canonical divisor KC defined over k, see [37], we can take a basis
of the vector space L(KC) ∶= {f ∈ k̄(C) ∶ div(f) ≥ −KC} ∪ {0} defined over k. And then, the
algebraic relations satisfied by the elements of this base are defined over k.

The automorphism group of C, denoted Aut(C), is the group of isomorphisms from C
to itself defined over k̄.

Remark 0.0.3. Given a canonical model of a non-hyperelliptic curve, we can see the group
Aut(C) as a subgroup of PGLg(k̄), since any element in Aut(C) induces an automorphism in
Pg via the canonical morphism and the automorphisms of Pg are given by projective matrices.
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8 PRELIMINARS

Twists of curves

We reproduce here, for completeness, part of the twisting theory explained in [55]. Let C/k
be a smooth and projective curve.

Definition 0.0.4. A twist of C/k is a smooth curve C ′/k which is isomorphic to C over
k̄. We identify two twists if they are isomorphic over k. The set of twists of C/k, modulo
k−isomorphism, will be denoted by Twistk(C).

Let C ′/k be a twist of C/k. Then, there is an isomorphism φ ∶ C ′ → C defined over k̄.
To measure the failure of φ to be defined over k, we consider the map

ξ ∶ Gk → Aut(C) ξσ = φ ○ σφ−1.

It turns out that ξ is a 1−cocycle, and the cohomology class of ξ in H1(Gk, Aut(C)) is
uniquely determined by the k−isomorphism class of C ′.

Theorem 0.0.5. The map

Twistk(C) → H1(Gk, Aut(C)),

that sends a twist φ ∶ C ′/k → C/k to ξσ = φ ○ σφ−1 is a bijection.

Let us denote by K the minimal field where all the elements in Aut(C) can be defined.
If g ≥ 2, by Hurwitz’s theorem [Hur], the group Aut(C) is finite, and then K/k is a finite
Galois extension. Fix now a twist φ ∶ C ′ → C, and call L/k the minimal field where all the
isomorphisms between C ′ and C can be defined. Clearly, L/k is a finite Galois extension and
K/k is a subextension of L/k. Moreover, L is the splitting field of the cocycle ξσ = φ ○ σφ−1.
That is, L/k is the minimal Galois extension such that ξ(GL) = {1}.

Remark 0.0.6. If Aut(C) is trivial, then Twistk(C) is also trivial.

The previous discussion applies when we interchange C by a smooth quasi-projective
variety X.

Galois embedding problem

Here we define the Galois embedding problem, see for example section 9.4 in [41]. Given
a field k and a finite group G one may pose the following question, the so called Inverse
Galois problem: does exist a Galois extension F /k such that Gal(F /k) ≃ G? The embedding
problem is a generalization of the former one. It asks whether a given Galois extension K/k
can be embedded into another Galois extension F /k in such a way that the restriction map
between the corresponding Galois groups is given.
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Given a Galois extension K/k with Galois group H, an embedding problem is a diagram:

Gk

π
����

G
f
// H // 1

(1)

where π is the natural projection and f is an epimorphism. A solution to such embedding
problem is a morphism Ψ ∶ Gk → G such that next diagram is commutative:

Gk

Ψ

~~
π
����

G
f
// H // 1

(2)

A solution Ψ is called proper if it is surjective.

The Sato-Tate conjecture

We follow [16] to give a brief introduction to the Sato-Tate Conjecture. Let E be an elliptic
curve defined over a number field k. Given a prime p of k of good reduction of E, we denote
by ap the trace of the Frobenius endomorphism. That is, if ρl ∶ Gk → GL2(Ql) is the l−adic
representation associated with the l−torsion of the elliptic curve E, and p does not lie over
l, then det(1 − ρl(Frob−1

p )T ) = Np − apT + T 2, where Frob−1
p is the geometric Frobenius at p.

One can think of ap/Np1/2 as a random variable on the set of primes of good reduction
of E taking values on [−2, 2]. And we call the distribution of this random variable the
Sato-Tate distribution of the elliptic curve E.

Conjecture 0.0.7. (Sato-Tate) For an elliptic curve without CM, the normalized traces
ap/Np1/2 are equidistributed with respect to the measure:

1

2π

√
4 − z2dz,

where dz is the restriction of the Lebesque measure on [−2, 2].

The conjecture was independetly proposed by Sato and Tate in the 60’s. And it is proven
when k is a totally real field (in particular, for k = Q) by Barnet-Lamb, Geraghty, Harris and
Taylor [3]. When the elliptic curve E has complex multiplication the equivalent stamente
was proved longtime ago by Hecke [30].
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Theorem 0.0.8. For an elliptic curve with CM defined over M , if M ⊆ k, then the normal-
ized traces ap/Np1/2 are equidistributed with respect to the measure:

1

π

dz√
4 − z2

,

where dz is the restriction of the Lebesque measure on [−2, 2]. And for an elliptic curve with
CM over M and such that M ⊈ k, it is equidistributed with respect to the measure:

1

2π

dz√
4 − z2

+ 1

2
δ,

where δ is Dirac delta centered in 0.

In [51], Jean-Pierre Serre formulates a generalization of the Sato-Tate conjucture for
motives. We will just focus on the case of varieties. Let X/k be a smooth, projective variety.
Let us call n ∶= dim X, and choose an integer 0 ≤ ω ≤ 2n. Let m denote the dimension of the
ω−th étale cohomology Hω

et(X, Ql) for some prime l. The action of the Galois group Gk on
Hω
et(X, Ql) gives rise to the l−adic representation:

ρω ∶ Gk → Aut(Hω
et(X, Ql)) ⊆ GLm(Ql).

LetG1
k ∶= Kerχl, where χl denotes the l−adic cyclotomic character. LetG1,ω

l be the Zariski
closure of ρω(G1

k). Choose an embedding ι ∶ Q̄l ↪ C. Define G1,ω
l,ι ∶= G1,ω

l ⊗ι C ⊆ GLm(C).
Definition 0.0.9. The Sato-Tate group of X relative to the weight ω is a maximal compact
subgroup of G1,ω

l,ι . It is a compact real Lie group that we denote by ST (X/k,ω).

Since all maximal compact subgroups of a Lie group are conjugate, the Sato-Tate group
is well-defined. Now, for each prime p of good reduction of X and not lying over l, we defined
sp as the conjugacy class of ρω(Frob−1

p ) ⊗ιNp−ω/2 in ST (X/k, ω).
Conjecture 0.0.10. (Generalized Sato-Tate) One has:

i) The conjugacy class of ST (X/k, ω) in GLm(C) does not depend on the choice neither
of the prime l, nor of the embedding ι.

ii) Let (ST (X/k, ω)) denote the set of conjugacy classes of ST (X, ω). For p of good
reduction and not lying over l, the conjugacy classes sp are equidistributed on (ST (X/k, ω))
with respect to the projection on this set of the Haar measure of ST (X/k, ω).

Remark 0.0.11. Proving the generalized Sato-Tate conjecture for a curve is equivalent to
proving it for its jacobian variety. And for an abelian variety A is enought to prove it for
ω = 1, since Hω

et(A,Ql) = ∧ω H1
et(A,Ql), where H1

et(A,Ql) = Vl(A)∗, and then ST(A/k,ω) =
∧ω ST(A/k,1) = ST(A/k).

The generalized Sato-Tate conjecture is just proven in a few cases for some motives/varieties
of weight/dimension 1, 2 and 3: [35], [18], [22], [19] and [21].



Chapter 1

Twists of non-hyperelliptic curves

In this chapter we develop a method for computing the twists of any non-hyperelliptic curve
C defined over a number field k. Firstly, via the well-known correspondence between twists
of a curve and the Galois cohomology set H1(Gk,Aut(C)), we establish a correspondence
between the twists and the solutions to a Galois embedding problem, see (1.3). Then,
we show how to get equations for the twists studying an action on the space of regular
differentials Ω1(C). This step is in which we use that the curve is non-hyperelliptic, because
in that case, the canonical morphism is an isomorphism. Finally, we illustrate the method
computing the twists of the non-hyperelliptic genus 6 curve: x7 − y3z4 − z7 = 0.

1.1 Galois embedding problems

Let C/k be a projective curve. Let us denote by K the minimal field over where all the
automorphisms of C can be defined. And let us define Γ ∶= Aut(C) ⋊ Gal(K/k), where
Gal(K/k) acts naturally on Aut(C), and the multiplication rule is (α,σ)(β, τ) = (α σβ,στ).
Then, there are natural one-to-one correspondences between the following three sets:

Twistk(C) = {C ′/k curve ∣ ∃ k -isomorphism φ∶C ′ → C} /k -isomorphism,

H1(Gk,Aut(C)) = {ξ∶Gk → Aut(C) ∣ ξστ = ξσσξτ} / ∼, (1.1)

H̃om(Gk,Γ) = {Ψ∶Gk → Γ ∣ Ψ epi2 −morphism} / ∼, (1.2)

where ξ ∼ ξ′ are cohomologous if there is ϕ ∈ Aut(C) such that ξ′σ = ϕ ⋅ ξσ ⋅ σϕ−1, and
Ψ ∼ Ψ′ if there is (ϕ,1) ∈ Aut(C) ⋊ Gal(K/k) such that Ψ′

σ = (ϕ,1)Ψσ(ϕ,1)−1. Here, the
meaning of epi2 −morphism is that Ψ is a group homomorphism such that the composition
π ⋅Ψ∶Gk → Γ → Gal(K/k) is surjective where π∶Γ → Gal(K/k) is the natural projection on
the second component of the elements of Γ.

11



12 CHAPTER 1. TWISTS OF NON-HYPERELLIPTIC CURVES

These correspondences send φ to ξσ = φ ⋅ σφ−1, and ξ to Ψσ = (ξσ, σ), where σ denotes the
projection of σ ∈ Gk onto Gal(K/k).

Attached to every twist φ∶C ′ → C we shall consider its splitting field L, which by definition
is the splitting field of the corresponding homomorphism Ψ; one has, Ker(Ψ) = Gal(k̄/L) and
Gal(L/k) ≃ Image(Ψ) ⊆ Γ. Notice that φ is defined over L, also ξσ = 1 for all σ ∈ Gal(k/L),
and L contains K. In fact, the homomorphism Ψ is a solution of the Galois embedding
problem:

Gk

Ψ

zzzz
����

1 // Aut(C) � � // Γ π
// Gal(K/k) // 1

(1.3)

Reciprocally, every solution Ψ of the above embedding problem gives rise to a twist of
C. Notice that in order to keep track of the equivalence classes of twists we must here
consider two solutions Ψ and Ψ′ equivalent only under the restricted conjugations allowed
in the definition of the set H̃om(Gk,Γ).

1.2 Equations of the twists

Let Ω1(C) be the k−vector space of regular differentials of C. Let ω1, ..., ωg be a basis of
Ω1(C), where g is the genus of C. Given a twist φ∶C ′ → C and its splitting field L, we
consider the extension of scalars Ω1

L(C) = Ω1(C)⊗kL which is a k−vector space of dimension
g[L ∶ k]. We can (and do) identify Ω1

L(C) with L < ω1, ..., ωg >= {∑λiωi ∣ λi ∈ L} considered
as k−vector space. For every σ ∈ Gal(L/k), we can consider the twisted action on Ω1

L(C)
defined as follows:

(∑λiωi)σξ ∶= ∑ σλiξ
∗−1
σ (ωi)

for λi ∈ L. Here, ξ∗σ ∈ EndK(Ω1(C)) denotes the pull-back of ξσ = φ ⋅σ φ−1 ∈ AutK(C). One
readly checks that

ρξ ∶Gal(L/k) → GL(Ω1
L(C)), ρξ(σ)(ω) ∶= ωσξ

is a k−linear representation. Indeed, since ξ∗στ = σξ∗τ ⋅ ξ∗σ, we have

ρξ(στ)(∑λiωi) = ∑ στλiξ
∗−1
στ (ωi)

= ∑ στλiξ
∗−1
σ ⋅σ ξ∗−1

τ (ωi)
= ρξ(σ)(∑ τλiξ

∗−1
τ (ωi))

= ρξ(σ)ρξ(τ)(∑λiωi).
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Recall that the function field k(C ′) is the fixed field k(C)Gk

ξ where the action of the

Galois group Gk on k(C) is twisted by ξ according to fσξ ∶= f ⋅ ξσ. From this, we can identify

Ω1(C ′) = Ω1
L(C)Gal(L/k)

ξ (1.4)

For explicit computations, one can use

Ω1(C ′) = ⋂
σ∈Gal(L/k)

Ker(ρξ(σ) − Id).

This can be useful for non-hyperelliptic curves when equations for the twisted curves are
wanted. From equations of the canonical model of the initial curve,

C ∶ {Fh(x1, ..., xg) = 0}

taking a basis {ω′j} of Ω1(C ′) and via identification (1.4) (notice that there is not a canonical
one)

ωi =
g

∑
j=1

ηijω
′

j

we obtain equations for the twist making the substitution

C ′ ∶ {Fh(
g

∑
j=1

η1
jω

′

j, ...,
g

∑
j=1

ηgjω
′

j) = 0} ,

and an isomorphism φ ∶ C ′ → C is given by the projective matrix φ = (ηij)ij.
This method for getting equations of the twists is explicitly used in a paper of Fernández,

González and Lario [13] for computing equations of twists of some non-hyperelliptic genus 3
curves, case for which the canonical model is given by a plane quartic.

1.3 Description of the method

Let C be a non-hyperelliptic genus g curve defined over a number field k. Assume that
Aut(C) is known. We take a basis of Ω1(C), and then we obtain a canonical model C/k
via a canonical embedding C ↪ Pg−1 that we can take also defined over k. Hence, C and C
belong to the same class in Twistk (C) and Twistk (C) = Twistk (C).

In addition the automorphisms group Aut (C) can be viewed in a natural way as a sub-
group of PGLg (k̄). In fact, as a subgroup of PGLg (K). And any isomorphism φ ∶ C′ → C
can be viewed also as a matrix in PGLg (k̄).
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Remark 1.3.1. Two twists φi ∶ Ci → C are equivalent, if and only if there exists a matrix
M ∈ PGLg (k) such that φ1 = φ2○M ; that is, if the columns of φ1, as an element in PGLg (k̄),

are k−linear combination of the columns of φ2, again as an element in PGLg (k̄).

Firstly we will compute the set H̃om (Gk,Γ). From this set we will compute H1 (Gk,Aut (C)).
And finally, we will compute equations for the twists in Twist (C) using (1.4).

Given Ψ ∈ H̃om (Gk,Γ), let L be the splitting field of Ψ. We have Ψ(GK) ≃ Gal(L/K)
and Ψ(Gk) ≃ Gal(L/k). Then Ψ can be seen as a proper solution to the Galois embedding
problem:

Gk

Ψ

xxxx ����
1 // Ψ(GK) // Ψ(Gk) // Gal(K/k) // 1

(1.5)

As it was noticed in section 1.1, we have Gal (L/k) ≃ Image (Ψ) ⊆ Γ and Gal (L/K) ≃
Ψ (GK) ⊆ Aut (C) ⋊ {1}. Hence, for computing H̃om (Gk,Γ) we should compute all the pairs
(G,H) where G ⊆ Γ, H = G ∩ Aut (C) ⋊ {1} and [G ∶H] = ∣Gal (K/k)∣ up to conjugacy by
elements (ϕ,1) ∈ Γ, and then find all proper solutions (and then the corresponding splitting
fields L) to the Galois embedding problems:

Gk

Ψ

zzzz
����

1 // H // G // Gal(K/k) // 1

(1.6)

Every such a solution can be lifted to a solution to the Galois embedding problem (1.3).
Notice that the same field L can appear as the splitting field of more than one solution Ψ
corresponding to a pair (G,H). This is because given an automorphism α of Gal(L/k) that
leaves Gal(K/k) fixed, αΨ is other solution with L as splitting field. Two such solutions are
equivalent if and only if there exists β ∈ Aut(C) such that αΨ = βΨβ−1. So, the number of
non-equivalent solutions with splitting field L and Ψ(Gk) = G is the cardinality of the group
(see [9]):

Aut2 (G) / InnG (Aut (C) ⋊ {1}) , (1.7)

where Aut2 (G) is the group of automorphisms of G such that leave the second coordinate
invariant and Inn (Aut (C) ⋊ {1}) is the group of inner automorphisms of Aut (C)⋊{1} lifted
in the natural way to Aut (G).

The proper solutions to these Galois embedding problems should be computed case-by-
case for each pair (G,H).
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Next proposition, that is a generalization of lemma 9.6 for q = 3 in [10], will be useful for
solving some of the Galois embedding problems that will appear:

Proposition 1.3.2. Let q = pr, where p is a prime number, let k be a number field, and
let ζ be a fixed q-th primitive root of the unity in k̄. We denote K = k(ζ) and we assume
[k(ζ) ∶ k] = pr−1(p − 1). Let us define Gq = Z/qZ ⋊ (Z/qZ)∗ where the action of (Z/qZ)∗ on
Z/qZ is given by the multiplication rule (a, b)(a′, b′) = (a + ba′, bb′). And let us consider the
Galois embedding problem:

Gk

π
����

1 // Z/qZ // Gq
// (Z/qZ)∗ // 1

,

where the horizontal morphisms are the natural ones, and the projection π is given by π(σ) =
(0, b) if σ(ζ) = ζb. Then, the splitting fields to the proper solutions to this Galois embedding
problem are of the form L =K( q

√
m) where m ∈ Ok is an integer in k that is not a p-power.

Moreover, every such field is the splitting field for a solution Ψ to the above Galois embedding
problem.

Proof. Firstly, notice that there exist proper solutions Ψ to the Galois embedding problem.
Given a field L = K( q

√
m) with m not a p-power, we have an isomorphism Gal(L/k) ≃ Gq

compatible with the projection Gq → (Z/qZ)∗ and then a solution to the Galois embedding
problem above is obtained by the natural projection of Gk → Gal(L/k).

Now, let Ψ be any proper solution to the problem, and let us denote by L its splitting
field. Let G be the subgroup of Gq that contains all the elements of the form (0, b). And let
σ ∈ Gk be such that Ψ(σ) = (1,1).

Let α be a primitive element of the extension LG/k that moreover is an algebraic integer.
Then L = K(α) because [K ∶ k] = pr−1(p − 1), [LG ∶ k] = q and LG ∩K = k. Now, define for
i = 0,1, ..., q − 1 the numbers:

ui = α + ζ iσ−1(α) + ζ2iσ−2(α) + ... + ζ(q−1)iσ−(q−1)(α).
Then σ(ui) = ζ iui and for any τ ∈ Gk such that Ψ(τ) = (0, b) we have Ψ(τσj) = (0, b)(j,1) =
(bj,1)(0, b) = Ψ(σbjτ), so τ(ui) = ui . In particular, u0, u

q
1, ..., u

q
q−1 ∈ Ok. If uj ≠ 0 for

some j > 0, then L = K(uj), because LG = k(uj), then m = uqj and L = K( q
√
m). If

u1 = u2 = ... = uq−1 = 0, then u0 = u0 + u1 + ... + uq−1 = qα ∈ Ok, that is a contradiction with α
being a primitive element of the extension LG/k.

Once we have the data (G,H) and a field L, and using the correspondence between (1.1)
and (1.2) we obtain immediately the corresponding cocycle ξ ∈ H1 (Gk,Aut (C)). Next step
is getting equations for the twits associated to this cocycle. For this purpose we use the
method explained in section 1.2.



16 CHAPTER 1. TWISTS OF NON-HYPERELLIPTIC CURVES

Remark 1.3.3. Notice that if all the elements in ξ(Gk) as a matrices in PGLg(K) are of
the form:

⎛
⎜
⎝

A1 0 0
0 ⋱ 0
0 0 Ar

⎞
⎟
⎠
, (1.8)

with ∑r
j=1 size(Aj) = g, then the representation ρξ is reducible and we can take a basis of

Ω1
L(C)Gal(L/k)

ξ such that an isomorphism φ ∶ C ′ → C is also of the form (1.8). In particular,

if ξ(Gk) is made of diagonal matrices, then we can take a basis of Ω1
L(C)Gal(L/k)

ξ such that
φ is a diagonal matrix.

1.4 An example

For illustrating the method we will apply it to the non-hyperelliptic genus 6 curve:

C ∶ x7 − y3z4 − z7 = 0.

Firstly, we have to find a canonical model by the usual procedure: finding a basis of
holomorphic differentials. Let us call X = x/z and Y = y/z. One has:

div(X) = (0 ∶ −1 ∶ 1) + (0 ∶ −ζ3 ∶ 1) + (0 ∶ −ζ2
3 ∶ 1) − 3(0 ∶ 1 ∶ 0) = P1 + P2 + P3 − 3∞,

div(Y ) = Q1 +Q2 +Q3 +Q4 +Q5 +Q6 +Q7 − 7∞,
where Qi = (ζ i7 ∶ 0 ∶ 1). Then, dX is an uniformizer for all points except for the Qi’s, because,
exactly these ones are the ones that have tangent space of the form X − α for some α ∈ k̄,
(d(X − α) = dX). For these ones we have to work with the expression:

dX = −3y2

7x6
dY

So, finally (proposition 4.3, [55]), we get:

div(dX) = 2(Q1 +Q2 +Q3 +Q4 +Q5 +Q6 +Q7) − 4∞.

And, we compute a basis of holomorphic differentials:

ω1 =
XdX

Y
, ω2 =

XdX

Y 2
, ω3 =

dX

Y
, ω4 =

dX

Y 2
, ω5 =

X2dX

Y 2
, ω6 =

X3dX

Y 2
.

Thus, we get a canonical model given by the equations:

C ∶ ω1ω4 = ω2ω3, ω4ω5 = ω2
2, ω4ω6 = ω2ω5, ω3

3ω
4
4 − ω7

2 + ω7
4 = 0.



1.4. AN EXAMPLE 17

The last equation comes of substituting x = ω2/ω4 and y = ω3/ω4 in the original equation.
Using the three first equalities, we can exchange the last one by ω3

3 − ω2
5ω6 + ω3

4 = 0. In fact,
by Noether-Enriques-Petri theorem we know that the ideal associated to a canonical curve
is generated by quadrics if the curve is not trigonal neither has genus 6 or by quadrics and
an element of degree 3 in such cases.

The automorphism group Aut(C) is generated by the automorphisms, (see Swinarski
[58]):

(x ∶ y ∶ z) → (x ∶ ζ3y ∶ z) and (x ∶ y ∶ z) → (ζ7x ∶ y ∶ z).
Then, the automorphism group of the canonical model C, is generated by the matrices in
PGL6 (Q̄):

r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ2
3 0 0 0 0 0
0 ζ3 0 0 0 0
0 0 ζ2

3 0 0 0
0 0 0 ζ3 0 0
0 0 0 0 ζ3 0
0 0 0 0 0 ζ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ζ2
7 0 0 0 0 0
0 ζ2

7 0 0 0 0
0 0 ζ7 0 0 0
0 0 0 ζ7 0 0
0 0 0 0 ζ3

7 0
0 0 0 0 0 ζ4

7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Let k be a number field, we consider C/k and we want to compute its twists over k. Let
K = k(ζ7, ζ3) and assume that [K ∶ k] = 12. Then, we get, using MAGMA [6], the following
possibilities for the pairs (G,H) as in section 1.3:

ID(G) ID(H) gen(H)
1 < 12,5 > < 1,1 > 1
2 < 36,12 > < 3,1 > r
3 < 84,7 > < 7,1 > s
4 < 252,26 > < 21,2 > r, s

In the table above the fourth column shows generators of the group H. And in all the cases
G is the group generated by the elements (g,1) for g in H together with the elements (1, τ1)
and (1, τ2) where τ1 is the element in Gal(K/k) that sends ζ3 to ζ2

3 and ζ7 to ζ7, and τ2 is
the one that sends ζ3 to ζ3 and ζ7 to ζ3

7 .

Now, we have to find the proper solutions to the Galois embedding problems associated
to each of these pairs:

Gk

zzzz
����

1 // H // G // Gal(K/k) // 1

(1.9)
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1. The first case is clear: L =K.

2. For the second one notice that L = k(ζ7)M , where M/k is a solution for the Galois
embedding problem in proposition (1.3.2) with q = 3. Hence, L = k(ζ3, ζ7, 3

√
m), where

m ∈ Ok is not a 3-power.

3. In this case L = k(ζ3), where M/k is a solution for the Galois embedding problem in
proposition(1.3.2) with q = 7. Hence, L = k(ζ3, ζ7, 7

√
n), where n ∈ Ok is not a 7-power.

4. In the last case, L =M1M2, where Mi/k is a solution for the Galois emebedding problem
in proposition(1.3.2) with q = 3,7. Hence, L = k(ζ3, ζ7, 3

√
m, 7

√
n), where m,n ∈ Ok and

m is not a 3-power and m is not a 7-power.

For each of these fields we have to compute how many different twists are defined over
them. For this purpose we use formula (1.7).

1. In the first case Aut2(G) = 1, then L is the splitting field of only one solution.

2. In the second case Aut2(G) = C2 ×C3 and InnG(Aut(C) ⋊ 1) = C3, so the field L is the
splitting fields for two different solutions.

3. In the third case Aut2(G) = C6 × C7 and InnG(Aut(C) ⋊ 1) = C7, so the field L is the
splitting fields for six different solutions.

4. In the last case, Aut2(G) = C2 ×C3 ×C6 ×C7 and InnG(Aut(C) ⋊ 1) = C3 ×C7, so the
field L is the splitting fields for twelve different solutions.

We will compute equations for a solution for each splitting field L and then the others
will be easily computed using symmetries. Then we fix the action:

(r,1) ∶ 3
√
m, 7

√
n→ ζ3

3
√
m, 7

√
n,

(s,1) ∶ 3
√
m, 7

√
n→ 3

√
m, ζ7

7
√
n.

1. Clearly this solution gives us the trivial twist.

2. The correspondence between (1.1) and (1.2) gives us the cocycle given by ξτ1 = 1, ξτ2 = 1
and ξ(r,1) = r. If we take the basis of Ω1

L(C) given by {(a, b, c, i)} ∶= { 3
√
maζb3ζ

c
7ωi} where

a, b ∈ F3, c ∈ F7 and i = 1,2,3,4,5,6 we obtain the action of Gal(L/k) on Ω1
L(C) given

in section 1.2:
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τ1(a, b, c,1) = (a,2b, c,1), τ2(a, b, c,1) = (a, b,3c,1), (r,1)(a, b, c,1) = (a, a + b + 2, c,1)
τ1(a, b, c,2) = (a,2b, c,2), τ2(a, b, c,2) = (a, b,3c,2), (r,1)(a, b, c,2) = (a, a + b + 1, c,2)
τ1(a, b, c,3) = (a,2b, c,3), τ2(a, b, c,3) = (a, b,3c,3), (r,1)(a, b, c,3) = (a, a + b + 2, c,3)
τ1(a, b, c,4) = (a,2b, c,4), τ2(a, b, c,4) = (a, b,3c,4), (r,1)(a, b, c,4) = (a, a + b + 1, c,4)
τ1(a, b, c,5) = (a,2b, c,5), τ2(a, b, c,5) = (a, b,3c,5), (r,1)(a, b, c,5) = (a, a + b + 1, c,5)
τ1(a, b, c,6) = (a,2b, c,6), τ2(a, b, c,6) = (a, b,3c,6), (r,1)(a, b, c,6) = (a, a + b + 1, c,6)

So, we get a basis of Ω1(C′) ≃ Ω1
L(C)

Gal(L/k)
ξ given by:

{ 3
√
mω1,

3
√
m2ω2,

3
√
mω3,

3
√
m2ω4,

3
√
m2ω5,

3
√
m2ω6} .

And then, we get the equations of the twist:

ω1ω4 = ω2ω3, ω4ω5 = ω2
2, ω4ω6 = ω2ω5, mω3

3 − ω2
5ω6 + ω3

4 = 0.

The equations for the other solution Ψ with splitting field L comes from exchanging
m by m2.

3. The correspondence between (1.1) and (1.2) gives us the cocycle given by ξτ1 = 1, ξτ2 = 1
and ξ(s,1) = s. If we take the basis of Ω1

L(C) given by {(a, b, c, i)} ∶= { 7
√
naζb3ζ

c
7ωi} where

a, c ∈ F7, b ∈ F3 and i = 1,2,3,4,5,6 we obtain the action of Gal(L/k) on it given in
section 1.2:

τ1(a, b, c,1) = (a,2b, c,1), τ2(a, b, c,1) = (a, b,3c,1), (s,1)(a, b, c,1) = (a, b, a + c + 2,1)
τ1(a, b, c,2) = (a,2b, c,2), τ2(a, b, c,2) = (a, b,3c,2), (s,1)(a, b, c,2) = (a, b, a + c + 2,2)
τ1(a, b, c,3) = (a,2b, c,3), τ2(a, b, c,3) = (a, b,3c,3), (s,1)(a, b, c,3) = (a, b, a + c + 1,3)
τ1(a, b, c,4) = (a,2b, c,4), τ2(a, b, c,4) = (a, b,3c,4), (s,1)(a, b, c,4) = (a, b, a + c + 1,4)
τ1(a, b, c,5) = (a,2b, c,5), τ2(a, b, c,5) = (a, b,3c,5), (s,1)(a, b, c,5) = (a, b, a + c + 3,5)
τ1(a, b, c,6) = (a,2b, c,6), τ2(a, b, c,6) = (a, b,3c,6), (s,1)(a, b, c,6) = (a, b, a + c + 4,6)

So, we get a basis of Ω1(C′) ≃ Ω1
L(C)

Gal(L/k)
ξ given by:

{ 7
√
n5ω1,

7
√
n5ω2,

7
√
n6ω3,

7
√
n6ω4,

7
√
n4ω5,

7
√
n3ω6} .

And then, we get the equations of the twist:

ω1ω4 = ω2ω3, ω4ω5 = ω2
2, ω4ω6 = ω2ω5, ω3

3 − nω2
5ω6 + ω3

4 = 0.

The equations for the other solutions Ψ’s with splitting field L come from exchanging
n by n2, n3, n4, n5, n6.
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4. In the last case we have the cocycle given by ξτ = 1, ξ(r,1) = r and ξ(s,1) = s. We take

the basis of Ω1
L(C) given by {(a, b, c, d, i)} ∶= { 3

√
ma 7

√
nbζc3ζ

d
7ωi} where a, c ∈ F3, b, d ∈ F7

and i = 1,2,3,4,5,6, and we consider on Ω1
L(C) the action of Gal(L/k) given in section

(1.2).

So, we get a basis of Ω1(C′) ≃ Ω1
L(C)

Gal(L/k)
ξ given by:

{ 3
√
m

7
√
n5ω1,

3
√
m2 7

√
n5ω2,

3
√
m

7
√
n6ω3,

3
√
m2 7

√
n6ω4,

3
√
m2 7

√
n4ω5,

3
√
m2 7

√
n3ω6} .

And then, we get the equations of the twist:

ω1ω4 = ω2ω3, ω4ω5 = ω2
2, ω4ω6 = ω2ω5, mω3

3 − nω2
5ω6 + ω3

4 = 0.

The equations for the other solutions Ψ’s with splitting field L come from exchanging
m and n by m, m2 and n, n2, n3, n4, n5, n6.

We can summarize these results as follows: the twists of the curve C/k are in 1 to 1
correspondence with the curves

ω1ω4 = ω2ω3, ω4ω5 = ω2
2, ω4ω6 = ω2ω5, mω3

3 − nω2
5ω6 + ω3

4 = 0.

where m ∈ Ok is free of 3-powers and n ∈ Ok is free of 7-powers. Or equivanlently, we can
consider the plane models:

nx7 −my3z4 − z7 = 0.

Actually, these twists could be computed by hand from the beginning, but we did not know
if they were the only ones and if they were equivalent or not.



Chapter 2

Non-hyperelliptic genus 3 curves

In this chapter 2 we prepair the goal of chapter 3, which is to compute the twists of the non-
hyperelliptic genus 3 curves defined over a number field k. If the automorphism group of a
curve is trivial, then the set of twists is also trivial. Moreover, notice that if C2 ∈ Twistk(C1),
then Twistk(C1) = Twistk(C2). So, it is enough to compute Twistk(C) for C a representative
for each class of non-hyperelliptic genus 3 curves defined over k up to k̄-isomorphism. Henn’s
classification, see [31], [59], provides a classification of non-hyperelliptic genus 3 curves over
C with non-trivial automorphisms up to C-isomorphism. There are 12 possibilities for the
automorphism group of a non-hyperelliptic genus 3 curve with non-trivial automorphism
group. Henn classification shows 12 different families that parametrize all such possibilities.

Unfortunately, the stratifications provided by these families of the coarse moduli space
of genus 3 curves, M3, is not good enough to represent each geometric point of the mod-
uli space over a non algebrically closed field. In other words, the problem is that given a
non-hypereliptic genus 3 curve defined over a number field k, its representative in Henn’s
classification is not necesarly defined also over k. The aim of this chapter is modify the fami-
lies in Henn’s classification for getting this property, that we will call complete. Concurrently
to the writing of this thesis, R. Lercier, C. Ritzenthaler, F. Rovetta and J. Sijsling have also
obtained families with this property [38]. They use a more systematic approach, and they
introduce the notion of representative family. We also take the notion of “complete” from
this reference because is just what we need for the computation of the twists, but in fact,
except for the case in which the automorphism group is isomorphic to the cyclic group of
order two, what we obtain, as well as them, is representative families for the stratification.

In the last section of this chapter we will explain how to compute, given a non-hyperelliptic
genus 3 curve, a representative in the modified Henn classification. And in the next chapter
we will compute the twists of each of these representatives.

21
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Since the image of the canonical morphism of a non-hyperelliptic genus 3 curve is a degree
2g−2 = 4 curve into P2, it is a plane quartic curve. And, if the non-hyperelliptic genus 3 curve
is defined over k, then we can take a k−isomorphic plane quartic curve defined over k as its
canonical model by proposition (0.0.2). So, from now on, we will speak about non-singular
plane quartic curves instead of smooth non-hyperelliptic genus 3 curves.

2.1 Henn classification

In 1976 Henn gives the next classification up to C− isomorphism of the non-singular plane
quartic curves:

Case Model Aut (C) PM
I x4 + x2F (y, z) +G (y, z) C2 F (y, z) ≠ 0, not below
II x4 + y4 + z4 + ax2y2 + by2z2 + cz2x2 V4 a ≠ ±b ≠ c ≠ ±a
III z3y + x (x − y) (x − ay) (x − by) C3 not below
IV x3z + y3z + x2y2 + axyz2 + bz4 S3 a ≠ b and ab ≠ 0
V x4 + y4 + z4 + ax2y2 + bxyz2 D4 b ≠ 0, ± 2a

√

1−a

VI z3y + x4 + ax2y2 + y4 C6 a ≠ 0

VII x4 + y4 + z4 + ax2y2 GAP (16,13) ±a ≠ 0, 2, 6, 2
√
−3

VIII x4 + y4 + z4 + a (x2y2 + y2z2 + z2x2) S4 a ≠ 0, −1±
√

−7
2

IX x4 + xy3 + yz3 C9 -
X x4 + y4 + xz3 GAP (48,33) -
XI x4 + y4 + z4 GAP (96,64) -
XII x3y + y3z + z3x PSL2 (F7) -

Where PM means parameter restrictions and “not below” means not C−isomorphic to
any model below.

In table (5.1) of the Apendix 3, generators of each of these automorphism groups are
given. Now, we show an example of a plane quartic curve defined over Q such that its
reprensentative in Henn’s classification is not defined over Q: the quartic curve 5x4 + y4 +
z4 + x2y2 = 0 that belongs to the case VII has as representative the curve with parameter
a = 1/

√
5. Moreover, notice that the representative does not have to be unique, in the former

case we can take also a = −1/
√

5.

For getting the modified classification we need to introduce the Weil’s restriction principle
[62] and the Dixmier-Onho invariants.
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Theorem 2.1.1. (Weil’s restriction principle) Let C/F be a curve defined over a number
field F which is an extension F /k, then the curve C/F admits a model C ′ defined over k
if and only if for all σ ∈ Gal(F̃ /k), where F̃ is the Galois clousure of F /k, there exists
an isomorphism φσ ∶ σC → C defined over F̃ and such that for all τ ∈ Gal(F̃ /k) one has
φστ = φσ σφτ .

The idea of the proof, that will be useful in the following, is that if there is an isomorphism
φ ∶ C ′ → C, then we can define φσ = φσφ−1 for all σ ∈ Gal(F̃ /k) and the relation φστ = φσ σφτ
is satisfied for all σ, τ ∈ Gal(F̃ /k). Conversely, if we assume that C and C ′ are canonical
curves, given a familly of isomorphisms φσ such that the relation φστ = φσ σφτ holds, Hilbert’s
90th Problem states that is possible to find an isomorphism φ ∶ C ′ → C such that φσ = φσφ−1

for all σ ∈ Gal(F̃ /k).

Dixmier-Ohno invariants

For elliptic curves the j− invariants allow us to determine when given two elliptic curves
they are isomorphic. For genus two curves the Igusa invariants play this role. And for non-
hyperelliptic genus three curves we have the absolute Dixmier-Ohno invariants. In [25] there
is a survey about the topic.

Theorem 2.1.2. (Dixmier-Ohno) Two plane quartic curves are isomorphic if and only if
they have the same absolute Dixmier-Ohno invariants.

Remark 2.1.3. If a plane quartic curve is defined over a number field k, then its absolute
invariants of Dixmier-Ohno are also defined over k. But, the converse is not true.

Girard, Kohel and Ritzenthaler have implemented an algorithm in SAGE for computing
the absolute Dixmier-Ohno invariants of a plane quartic curve, even if such curve is given
by parameters, [26].

2.2 Modified Henn classification

Since cases IX, X, XI, XII are already defined over Q, we have just to study the cases from
I to VIII. Let F be a number field, and let C/F be a plane quartic curve given by its Henn
model and such that it belongs to the cases I, III, IV, V, VI or VII. Then its automorphisms
group is given by projective matrices (after a suitable permutation of the variables):

⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
0 0 1

⎞
⎟
⎠
.
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Assume that C/F is isomorphic to another curve C ′ defined over a subextension k ⊆ F .
Then, by Weil restriction Principle, for all σ ∈ Gk there exists an isomorphism φσ ∶ σC → C,
that we can see as a projective matrix. Then we have that φ−1

σ Aut(C)φσ = Aut( σC). So, in
particular (check the eigenvalues or the elements in the center of Aut(C)):

φ−1
σ Aφσ = B,

where:

Case A B

I
⎛

⎜

⎝

−1 0 0
0 −1 0
0 0 1

⎞

⎟

⎠

⎛

⎜

⎝

−1 0 0
0 −1 0
0 0 1

⎞

⎟

⎠

III
⎛

⎜

⎝

ζ3 0 0
0 ζ3 0
0 0 1

⎞

⎟

⎠

⎛

⎜

⎝

ζ3 0 0
0 ζ3 0
0 0 1

⎞

⎟

⎠

IV
⎛

⎜

⎝

ζ3 0 0
0 ζ23 0
0 0 1

⎞

⎟

⎠

⎛

⎜

⎝

ζ3 0 0
0 ζ23 0
0 0 1

⎞

⎟

⎠

α

where α = 1,2

V
⎛

⎜

⎝

−1 0 0
0 −1 0
0 0 1

⎞

⎟

⎠

⎛

⎜

⎝

−1 0 0
0 −1 0
0 0 1

⎞

⎟

⎠

VI
⎛

⎜

⎝

−1 0 0
0 1 0
0 0 ζ3

⎞

⎟

⎠

⎛

⎜

⎝

−1 0 0
0 1 0
0 0 ζ3

⎞

⎟

⎠

VII
⎛

⎜

⎝

i 0 0
0 i 0
0 0 1

⎞

⎟

⎠

⎛

⎜

⎝

i 0 0
0 i 0
0 0 1

⎞

⎟

⎠

α

where α = 1,3
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A case by case computation shows that:

φσ =
⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
0 0 1

⎞
⎟
⎠
.

And, in the case VI, moreover we deduce that φσ has to be a diagonal matrix.

Case I

Here, C ∶ z4 +F (x, y)z2 +G(x, y) = 0 is defined over F and we assume that there is a model
C ′ of C defined over a subextension F /k. Since we know that for all σ ∈ Gk:

φσ =
⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
0 0 1

⎞
⎟
⎠
,

we can take the φ in the idea of the proof of the Weil’s restriction principle also in the form,
see remark (1.3.3):

φ =
⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
0 0 1

⎞
⎟
⎠
.

And then, C ′ ∶ z4 + F ′(x, y)z2 + G′(x, y) = 0, so the family for this strata in the Henn
classification was alredy complete.

Case II

After a suitable change of coordinates we can work with the model C ∶ ax4+by4+cz4+x2y2+
y2z2 + z2x2 = 0. Let σ ∈ Gal(F̃ /k) be such that the conjugation by φσ on Aut(C) leaves a
non trivial automorphism fixed. Then we can assume that:

φσ =
⎛
⎜
⎝

α β 0
γ δ 0
0 0 1

⎞
⎟
⎠
∶ σC → C.

Then, it is easy to check that σc = c and σa = a and σb = b or σa = b and σb = a. If φσ only
leaves fixed the trivial automorphism, then it is easy to check again that we can assume:

φσ =
⎛
⎜
⎝

0 α 0
0 0 β
γ 0 0

⎞
⎟
⎠
.
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And then α2 = 1/β2 = γ2 = 1/α2. So, σa = c, σb = a and σc = b. Hence, in any case a, b, c
are the roots of a degree 3 polynomial with coefficients in k. And then we can consider the
model:

C ′ ∶ (x + ay + a2z)4 + (x + by + b2z)4 + (x + cy + c2z)4 + (x + ay + a2z)2(x + by + b2z)2+

+(x + by + b2z)2(x + cy + c2z)2 + (x + cy + c2z)2(x + ay + a2z)2 = 0 (2.1)

given by the isomorphism:

φ =
⎛
⎜
⎝

1 a a2

1 b b2

1 c c2

⎞
⎟
⎠
∶ C ′ → C.

Case III

We have C ∶ z3y + x(x − y)(x − a)(x − b) = 0, and we can take the φ in the idea of the proof
of the Weil’s restriction principle of the form:

φ =
⎛
⎜
⎝

α β 0
γ δ 0
0 0 1

⎞
⎟
⎠
.

And then we get the equation z3(γx + δy) + Q(x, y) = 0 where Q(x, y) is an homogenous
degree 4 polynomial in x and y. Since that equation is defined over k, then δ/γ ∈ k. Hence,
we can do the change of variables x′ = x and y′ = γx + δy and then we get the k−rational
model C ′ ∶ z3y + P (x, y) = 0.

Case IV

We start with the variation of the Henn’s model C ∶ z4 + axyz2 + b(x3 + y3)z + x2y2 = 0. In
this case again:

φσ =
⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
0 0 1

⎞
⎟
⎠
.

Then, we can take:

φ =
⎛
⎜
⎝

α β 0
γ δ 0
0 0 1

⎞
⎟
⎠
.

And then, if we get an equation of C ′ from the equation of C and the isomorphism φ, we
conclude:

(αx + βy)2(γx + δy)2 = x2y2.
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So, after maybe permuting the variables x and y we can assume β = γ = 0 and then δ = ±1/α
and σa = ±a. If we look at the coefficient of degree 1 in z of the equation of C ′, we conclude
α3 = iε, where ε = 0,1,2 or 3. And then σb = iεb. Hence, there exist k−rational numbers m,q
such that b = 4

√
m and a = q√m. After dividing z by 4

√
m we obtain the rational model:

C ′ ∶ z4/m + qxyz2 + (x3 + y3)z + x2y2 = 0.

So the family for this strata in the Henn classification was alredy complete.

Case V

In that case C ∶ x4 + y4 + z4 + ax2y2 + bxyz2. Let

φσ =
⎛
⎜
⎝

α β 0
γ δ 0
0 0 1

⎞
⎟
⎠
.

Then, x4 + y4 + z4 + σax2y2 + σbxyz2 = (αx + βy)4 + (γx + δy)4 + z4 + a(αx + βy)2(γx +
δy)2 + b(αx + βy)(γx + δy)z2. If we look at the coefficient of xyz2 in the left hand side:
σbxyz2 = b(αx + βy)(γx + δy)z2, and then, after maybe permuting the variables x, y we can
assume β = γ = 0. So, α4 = δ4 = 1 and then σa = ±a and σb = iεb, where ε = 0,1,2 or 3.
Hence, there exist k−rational numbers m,q such that: b = 4

√
m and a = q√m. We find the

k−rational model: C ′ ∶ 1/mx4 + y4 + z4 + qx2y2 + xyz2 = 0 and the isomorphism:

φ =
⎛
⎜
⎝

4
√
m3 0 0
0 m 0
0 0 m

⎞
⎟
⎠
∶ C ′ → C.

Case VI

We have the plane quartic C ∶ z3y + x4 + ax2y2 + y4 = 0, and since the automorphism group
in this case is made up of diagonal matrices, we can take

φσ =
⎛
⎜
⎝

α 0 0
0 1 0
0 0 β

⎞
⎟
⎠
.

Then α4 = 1 and σa = ±a. So, there exists a k−rational number m such that a = √
m. And

after dividing x by 4
√
m we obtain the k−rational model:

C ′ ∶ z3y + 1/mx4 + x2y2 + y4 = 0.

Actually, in that case, it was also easy to get this condition just looking at the Dixmier-Ohno
invariants of this model, see table (5.3).
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Caso VII

In this case we have C ∶ x4 + y4 + z4 + ax2y2. Let again

φσ =
⎛
⎜
⎝

α β 0
γ δ 0
0 0 1

⎞
⎟
⎠

be an isomorphism φσ ∶ σC → C. Then,

α4 + γ4 + aα2γ2 = 1

4α3β + 4γ3δ + a(2α2γδ + 2αβγ2) = 0

6α2β2 + 6γ2δ+a(α2δ2 + β2γ2 + 4αβγδ) = σa

4αβ3 + 4γδ3 + a(2β2γδ + 2αβδ2) = 0

β4 + δ4 + aβ2δ2 = 1

If we subtract βδ times the second equation to αγ times the fourth one, we get γδ =
±αβ. If we plug this condition into the second equation we get αβ = 0 or α2 = ±γ2. The
second condition gives to us k−rational values of a, while the first one gives σa = ±a. Then,
C ∶ x4 + y4 + z4 + √

mx2y2 = 0 for some m ∈ k. And we find the k−rational model: C ′ ∶
x4/m + y4 + z4 + x2y2 = 0 via the isomorphism:

φ =
⎛
⎜
⎝

1/ 4
√
m 0 0

0 1 0
0 0 1

⎞
⎟
⎠
∶ C ′ → C.

Case VIII

In this case the previous arguments do not work. We will use here the Dixmier-Ohno
invariants that are computed in table (5.4). If C ∶ x4 + y4 + z4 + a(x2y2 + y2z2 + z2x2) = 0 is
isomorphic to curve defined over k then its Dixmier-Ohno invariants are also defined over k.
We will prove that in this case, necersarly we have a ∈ k. We have the following relations:

q ∶= I9

I12

= (a + 3)(a + 18)
a2 − 9a − 6

∈ k,

q′ ∶= I18

I12

I15

I27

= 5a2 + 12a + 36

(a + 3)2
∈ k.
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If a ∈ k we are done, then lets us assume that a ∉ k and then it is in a quadratic extension
of k. Hence, the two equations above should be one a multiple of the other, both give the
minimal polynomial of a over k. We get q = 1

2 or −5
2 , and then 4 possible values of a. If we

plug these values in the other invariants we do not get k−rational numbers. Then a ∈ k and
the family for this strata in the Henn classification is alredy complete.

We summarize all the previous results in next table. In table (5.2), generators of each of
these automorphism groups are given.

Case Model Aut (C) PM
I x4 + x2F (y, z) +G (y, z) C2 F (y, z) ≠ 0, not below
II see 2.1 V4 a ≠ b ≠ c ≠ a
III z3y + P (x, y) C3 not below
IV x3z + y3z + x2y2 + axyz2 + bz4 S3 a ≠ b and ab ≠ 0
V ax4 + y4 + z4 + bx2y2 + xyz2 D4 b ≠ 0, a ≠ 4b2(2b + 1)2

VI z3y + ax4 + x2y2 + y4 C6 -
VII ax4 + y4 + z4 + x2y2 GAP (16,13) ±a ≠ 1/4, 1/36, 1/ − 12

VIII x4 + y4 + z4 + a (x2y2 + y2z2 + z2x2) S4 a ≠ 0, −1±
√

−7
2

IX x4 + xy3 + yz3 C9 -
X x4 + y4 + xz3 GAP (48,33) -
XI x4 + y4 + z4 GAP (96,64) -
XII x3y + y3z + z3x PSL2 (F7) -

Table 2.2: Modified Henn classification

2.3 A representative in the modified Henn classifica-

tion

Let C/k be a plane quartic curve. Assume that the automorphism group Aut(C) is non-
trivial and known, and given by proyective matrices. We will show how to find a Henn
model CH of C, that is a representative of this curve in the Henn classification, and an
isomorphism from C to it. Then the modified Henn model is easily computed from the
discussion in last section. We will deal with each case separately, but the idea is the same
one in all of them. Let ϕ ∶ C → CH be an isomorphism from the curve C to its Henn model,
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then Aut(CH) = ϕAut(C)ϕ−1. So, the idea will be find a projective matrix ϕ such that the
last equality holds.

Case I

In that case there is only one non-trivial automorphism α ∈ Aut(C). The automorphism α
is similar to the matrix:

⎛
⎜
⎝

−1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
.

Find the eigenvector v1 of the projective matrix α corresponding to the eigenvalue that is
different from the other two and two eigenvectors v2 and v3 corresponding to these two equal
eigenvalues, then

ϕ−1 = (v1 ∣ λ1v2 + λ2v3 ∣ λ3v2 + λ4v3).
Get the equation of CH via this ϕ and the equation of C and adjust the scalars λ1, λ2, λ3

and λ4 for getting CH defined over k.

Case II

Each of the 3 non-trivial automorphisms in Aut(C) diagonalize simultaneously into:

⎛
⎜
⎝

−1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
,

⎛
⎜
⎝

1 0 0
0 −1 0
0 0 1

⎞
⎟
⎠
,

⎛
⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎟
⎠
.

Let vi for i = 1,2,3 the eigenvector corresponding to the eigenvalue −1 for each automorphism.
Then

ϕ−1 = (v1 ∣ λ1v2 ∣ λ2v3).
Now, get the equation of CH via this ϕ and the equation of C; and adjust the scalars λ1 and
λ2 for getting CH defined over k.

Example 2.3.1. Let be

C ∶ 3x4 + 10x2y2 + 5x2z2 − 2xyz2 + 3y4 + 5y2z2 + z4 = 0,

the automorphism group Aut(C) is generated by the matrices:

⎛
⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎟
⎠
,

⎛
⎜
⎝

0 1 0
1 0 0
0 0 1

⎞
⎟
⎠
.
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For the first one we obtain the eigenvector with eigenvalue −1: (0 ∶ 0 ∶ 1), the other two
eigenvalues are equal to 1. For the second one we obtain (1 ∶ −1 ∶ 0) with eigenvalue equal to
−1, the other two eigenvalues are equal to 1. The other non-trivial automorphism is

⎛
⎜
⎝

0 1 0
1 0 0
0 0 −1

⎞
⎟
⎠
.

and we find (1 ∶ 1 ∶ 0) with eigenvalue equal to 1, the other two eigenvalues are equal to −1.
Then the isomorphism ϕ−1 ∶ CH → C is given by:

ϕ−1 =
⎛
⎜
⎝

λ1 λ2 0
−λ1 λ2 0
0 0 1

⎞
⎟
⎠
.

We subtitute in the equation of C for getting an equation of CH :

CH ∶ 16λ4
1x

4 + 16λ4
2y

4 + z4 + 16λ2
1λ

2
2x

2y2 + 8λ2
2y

2z2 + 12λ2
1z

2x2 = 0.

Then λ2
1 = ±1

4 = λ2
2, and hence, a = 1, b = 2 and c = 3 (in case II of Henn classification

multiplying a parameter by −1 gives us the same quartic curve up to isomorphism). Finally,

CH ∶ x4 + y4 + z4 + x2y2 + 2y2z2 + 3z2x2 = 0.

Case III

In that case we proceed as in the case I but considering the automorphism:

⎛
⎜
⎝

1 0 0
0 1 0
0 0 ξ3

⎞
⎟
⎠
.

Cases from IV to VII and from IX to XII

Find a matrix in Aut(C) such that is similar to M (see the table above). Next, find the
eigenvectors corresponding to the different eigenvalues: v1, v2, v3. Then

ϕ−1 = (v1 ∣ λ1v2 ∣ λ2v3).

Finally, get the equation of CH via this ϕ−1 and the equation of C and adjust the scalars λ1

and λ2 for getting CH defined over k.
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Case M

IV
⎛

⎜

⎝

ξ3 0 0
0 ξ23 0
0 0 1

⎞

⎟

⎠

V
⎛

⎜

⎝

i 0 0
0 −i 0
0 0 1

⎞

⎟

⎠

VI
⎛

⎜

⎝

−1 0 0
0 1 0
0 0 ξ3

⎞

⎟

⎠

VII
⎛

⎜

⎝

i 0 0
0 −i 0
0 0 1

⎞

⎟

⎠

IX
⎛

⎜

⎝

ξ3 0 0
0 1 0
0 0 ξ9

⎞

⎟

⎠

X
⎛

⎜

⎝

1 0 0
0 i 0
0 0 ξ3

⎞

⎟

⎠

XI
⎛

⎜

⎝

i 0 0
0 −i 0
0 0 1

⎞

⎟

⎠

XII
⎛

⎜

⎝

ξ47 0 0
0 ξ27 0
0 0 ξ7

⎞

⎟

⎠
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Case VIII

We proceed as in the case II with the subgroup of Aut(C) generated by the matrices:

⎛
⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎟
⎠
,

⎛
⎜
⎝

−1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
.

Finally, given a plane quartic curve C/F such that Aut(C) is known, we can find its Henn
model CH/k with k ⊆ F the minimal field over which a curve isomorphic to C is defined. And
we will be able of computing its twists looking at the results that we obtain in chapter 3,
that is, the computation of the twists of the quartic curves in the modified Henn classification.

In general is not easy at all to compute the automorphism group of a curve. This is
why we assume that it is known. However, in the case of plane quartic curves, we can
compute the automorphism group studying the Weiertrass points. Any automorphism of a
plane quartic curve permutes the Weiertrass points. Once we have computed the Weiertrass
points, that is the inflection points, we have to check which matrices that permute them are
or not automorphisms of the curve. See [46] for an example of this idea for computing the
automorphism of the Klein quartic.
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Chapter 3

Twists of non-hyperelliptic genus 3
curves

In this chapter we compute the twists of each representative in the families of the modified
Henn classification over a number field k. There are some cases in which all the machinery
developed in chapter 1 is not needed. Firstly, we will deal with the case of the twists of
the Fermat quartic, a difficult case for which we need all the tools in chapter 1. Then, we
will compute the twists of cases from I to X. For the cases II, V, VII and VIII we will use
the knowledge about the twists of the Fermat quartic. The other cases will be done just
inspeccioning the form of the equations using remark (1.3.3) and we will use remark (1.3.1)
for checking when they are equivalent. Finally, case XII, the case of the Klein quartic, the
more difficult one, will be done using again the machinery in chapter 1. This case becomes
so hard because the Galois embedding problems that appear are difficult to solve.

3.1 The Fermat quartic

We consider the Fermat quartic CF ∶ x4 + y4 + z4 = 0 defined over a number field k. The
automorphism group Aut (CF ) is isomorphic to < 96,64 > in GAP notation [24], and as
subgroup of PGL3 (k̄) it is generated by the matrices:

s =
⎛
⎜
⎝

0 0 1
1 0 0
0 1 0

⎞
⎟
⎠
, t =

⎛
⎜
⎝

0 −1 0
1 0 0
0 0 1

⎞
⎟
⎠
, u =

⎛
⎜
⎝

i 0 0
0 1 0
0 0 1

⎞
⎟
⎠

Let us firstly suppose that i ∉ k, then K = k (i), Gal (K/k) ≃ Z/2Z and Γ = Aut (CF ) ⋊
Gal (K/k) ≃< 192,956 >. Then, it is easily checked with MAGMA [6], see the code in
table (5.5) in the appendix, that the possible pairs (G,H) in (1.3) are the ones given in
the tables below. We have divided these pairs into three types: diagonal, almost diagonal

35



36 CHAPTER 3. TWISTS OF NON-HYPERELLIPTIC GENUS 3 CURVES

and non-diagonal. The diagonal type corresponds to the cases in which all the elements in
G ⊆ Aut(CF ) ⋊Gal(K/k) have a diagonal matrix as first component. The second type will
be called almost-diagonal and it corresponds to the cases where G is a 2-group not included
in the diagonal cases of the former type. Finally, the third type will cover the pairs (G,H)
of the remaining cases.

In the tables below the fourth and fifth columns serve to reconstruct G and H. The
fourth column contains a list of generators of H, and the fifth column contains a single
matrix h. The meaning is that G is the group which elements are (g,1) for g in H together
with the elements (gh, τ) for g in H and τ the non-trivial automorphism in Gal(K/k). As
an easy way to remember, we can write the non-sense expression G =H ⋊ 1 +Hh ⋊ τ .

Type I: Diagonal twists

ID(G) ID(H) gen(H) h
1 < 2,1 > < 1,1 > 1 1
2 < 2,1 > < 1,1 > 1 t3utu
3 < 4,2 > < 2,1 > t2 1
4 < 4,2 > < 2,1 > t2 u
5 < 4,2 > < 2,1 > t2 t3utu
6 < 8,5 > < 4,2 > t2, u2 1
7 < 8,5 > < 4,2 > t2, u2 u
8 < 8,3 > < 4,1 > t3utu 1
9 < 8,3 > < 4,1 > t3utu u
10 < 8,3 > < 4,1 > t3utu3 1
11 < 8,3 > < 4,1 > t3utu3 u
12 < 16,11 > < 8,2 > t3utu, u2 1
13 < 16,11 > < 8,2 > t3utu, u2 u
14 < 32,34 > < 16,2 > u, t3ut 1

Type II: Almost-diagonal twists

ID(G) ID(H) gen(H) h
1 < 2,1 > < 1,1 > 1 u2t
2 < 4,2 > < 2,1 > t2 u2t
3 < 4,1 > < 2,1 > t2 t
4 < 4,2 > < 2,1 > u2t 1
5 < 4,2 > < 2,1 > u2t t3utu
6 < 8,4 > < 4,1 > t3utu t
7 < 8,1 > < 4,1 > t3utu3 tu
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8 < 8,3 > < 4,2 > t2, u2 u2t
9 < 8,2 > < 4,1 > t 1
10 < 8,5 > < 4,2 > u2t, t2 1
11 < 8,2 > < 4,1 > t3utu3 u2t
12 < 8,3 > < 4,1 > t3utu u2t
13 < 8,5 > < 4,2 > u2t, t2 t3utu
14 < 8,3 > < 4,1 > t t3utu3

15 < 8,2 > < 4,1 > t t3utu
16 < 8,3 > < 4,2 > u2t, t2 u2

17 < 8,3 > < 4,2 > u2t, t2 t3utu3

18 < 8,3 > < 4,1 > t u2

19 < 16,6 > < 8,2 > t3utu, u2 ut
20 < 16,13 > < 8,2 > t3utu, u2 u2t
21 < 16,8 > < 8,1 > u2tu u
22 < 16,7 > < 8,3 > t3utu3, u2t u
23 < 16,8 > < 8,4 > t3utu3, t u
24 < 16,11 > < 8,3 > t, u2 1
25 < 16,13 > < 8,4 > t3utu3, t 1
26 < 16,13 > < 8,2 > t, utu 1
27 < 16,11 > < 8,2 > t, utu u2

28 < 16,11 > < 8,3 > t, u2 utu
29 < 16,7 > < 8,1 > tu2tut tutu2

30 < 16,11 > < 8,3 > t3utu3, u2t 1
31 < 32,43 > < 16,6 > tu2tut, u2 u
32 < 32,11 > < 16,2 > u, t3ut u2t
33 < 32,43 > < 16,13 > t3utu, u2, t u
34 < 32,7 > < 16,6 > tu2tut, u2 1
35 < 32,49 > < 16,13 > utu, u2, t 1
36 < 64,134 > < 32,11 > t, u 1
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Type III: Non-diagonal twists

ID(G) ID(H) gen(H) h
1 < 6,1 > < 3,1 > s u2t
2 < 6,2 > < 3,1 > s 1
3 < 12,4 > < 6,1 > s, u2t 1
4 < 24,12 > < 12,3 > s, u2 u2t
5 < 24,13 > < 12,3 > s, u2 1
6 < 48,48 > < 24,12 > s, t 1
7 < 96,64 > < 48,3 > s, u, t3ut u2t
8 < 96,72 > < 48,3 > s, u, t3ut 1
9 < 192,956 > < 96,64 > s, t, u 1

Galois embedding problems

Proposition 3.1.1 (Diagonal twists). The embedding problems corresponding to the fourteen
pairs (G,H) of diagonal type have a solution. The corresponding splitting fields are L =
k(i, 4

√
a,

4
√
b), where a, b ∈ k∗. The different cases are:

Type I: Diagonal twists

ID(G) ID(H) a, b mod k∗4

1 < 2,1 > < 1,1 > a = b = 1
2 < 2,1 > < 1,1 > a = b = −4
3 < 4,2 > < 2,1 > a = b ∈ k∗2

4 < 4,2 > < 2,1 > a = −4b ∈ k∗2

5 < 4,2 > < 2,1 > a = b ∈ −4k∗2

6 < 8,5 > < 4,2 > a, b, ab ∈ k∗2

7 < 8,5 > < 4,2 > −4a, b, −4ab ∈ k∗2

8 < 8,3 > < 4,1 > a = b ∉ k∗2

9 < 8,3 > < 4,1 > a = −4b ∉ k∗2

10 < 8,3 > < 4,1 > a = b3 ∉ k∗2

11 < 8,3 > < 4,1 > a = −4b3 ∉ k∗2

12 < 16,11 > < 8,2 > a ∉ k2, ab3 ∈ k∗2

13 < 16,11 > < 8,2 > a ∉ k2,−4ab3 ∈ k∗2

14 < 32,34 > < 16,2 > a, b, ab3 ∉ k∗2

Proof. Let us consider any of these pairs and assume first that there is a proper solution Ψ
to the Galois embedding problem (1.6). As it was observed in section 1.1, the existence of
Ψ implies the existence of a one-cocycle ξ such that ξ(σ) = φ ⋅ σφ−1 for σ ∈ Gal(L/k), where
L is the splitting field of the twist of C attached to φ. From the assumption that ξ(σ) are
diagonal matrices for all σ ∈ Gal(L/k), it follows that the ξ-twisted action on Ω1

L (CF ) is
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diagonal and, hence, the corresponding twist of CF admits a canonical embedding into the
projective space P2 whose image is a plane quartic given by ax4 + by4 + z4 = 0, see remark
(1.3.3). Then we conclude the existence of solutions taking L = k(i, 4

√
a,

4
√
b) and analyzing

case by case the proper solutions that give rise to the different fourteen cases. ◻

Remark 3.1.2. Two of these twists, ax4 + by4 + z4 = 0 and a′x4 + b′y4 + z4 = 0 are equivalent
if and only if there exists m ∈ k such that the sets {a, b,1} and {ma′,mb′,m} are congruent
modulo k∗4.

Proposition 3.1.3 (Almost-diagonal twists). The following table gives the obstruction to
the thirty six cases in which (G,H) is of type II. Whenever it is solvable, the corresponding

splitting field is L = k(i,√m, 4
√
a + b√m, 4

√
a − b√m), where a, b, m ∈ k∗. The different cases

are:

Type II: Almost diagonal twists

ID(G) ID(H) m mod k∗2 n1 n2 Obstruction
1 < 2,1 > < 1,1 > −1 1 1
2 < 4,2 > < 2,1 > −1 2 1 a + bi = (c + di)2, c2 + b2 = n2

3 < 4,1 > < 2,1 > −1 2 1 a + bi = (c + di)2, c2 + b2 = −n2

4 < 4,2 > < 2,1 > ≠ 0,−1 1 1 a + b√m = (c + d√m)4

5 < 4,2 > < 2,1 > ≠ 0,−1 1 1 a + b√m = −4(c + d√m)4

6 < 8,4 > < 4,1 > −1 4 1 a = 0,
√

2 ∈ k
7 < 8,1 > < 4,1 > −1 4 1 a2 + b2 = −4n4

8 < 8,3 > < 4,2 > −1 2 2 a + bi = (c + di)2

9 < 8,2 > < 4,1 > ≠ 0,−1 2 1 a + b√m = (c + d√m)2, c2 − d2m =mn2

10 < 8,5 > < 4,2 > ≠ 0,−1 2 1 a + b√m = (c + d√m)2, c2 − d2m = n2

11 < 8,2 > < 4,1 > −1 4 1 a2 + b2 = n4

12 < 8,3 > < 4,1 > −1 4 1 b = 0
13 < 8,5 > < 4,2 > ≠ 0,−1 2 1 a + b√m = −(c + d√m)2, c2 − d2m = n2

14 < 8,3 > < 4,1 > ≠ 0,−1 2 1 a + b√m = −(c + d√m)2, c2 − d2m = −mn2

15 < 8,2 > < 4,1 > ≠ 0,−1 2 1 a + b√m = −(c + d√m)2, c2 − d2m =mn2

16 < 8,3 > < 4,2 > ≠ 0,−1 2 1 a + b√m = (c + d√m)2, c2 − d2m = −n2

17 < 8,3 > < 4,2 > ≠ 0,−1 2 1 a + b√m = −(c + d√m)2, c2 − d2m = −n2

18 < 8,3 > < 4,1 > ≠ 0,−1 2 1 a + b√m = (c + d√m)2, c2 − d2m = −mn2

19 < 16,6 > < 8,2 > −1 4 2 a2 + b2 = −n2

20 < 16,13 > < 8,2 > −1 4 2 a2 + b2 = n2

21 < 16,8 > < 8,1 > ≠ 0,−1 4 1 a = 0 and m = 2 or
√

2 ∈ k
22 < 16,7 > < 8,3 > ≠ 0,−1 4 1 a2 − b2m = −4n4
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23 < 16,8 > < 8,4 > ≠ 0,−1 4 1 a2 − b2m = −4m2n4

24 < 16,11 > < 8,3 > ≠ 0,−1 2 2 a + b√m = (c + d√m)2

25 < 16,13 > < 8,4 > ≠ 0,−1 4 1 a2 − b2m =m2n4

26 < 16,13 > < 8,2 > ≠ 0,−1 4 1 a2 − b2m = l2, l = −2q2(a − l)
27 < 16,11 > < 8,2 > ≠ 0,−1 4 1 a2 − b2m = l2, l = 2q2(a − l)
28 < 16,11 > < 8,3 > ≠ 0,−1 2 2 a + b√m = −(c + d√m)2

29 < 16,7 > < 8,1 > ≠ 0,−1 4 1 a = 0 and m = −2 or
√

2 ∈ k
30 < 16,11 > < 8,3 > ≠ 0,−1 4 1 a2 − b2m = n4

31 < 32,43 > < 16,6 > ≠ 0,−1 4 2 a2 − b2m = −mn2

32 < 32,11 > < 16,2 > −1 4 4
33 < 32,43 > < 16,13 > ≠ 0,−1 4 2 a2 − b2m = −n2

34 < 32,7 > < 16,6 > ≠ 0,−1 4 2 a2 − b2m =mn2

35 < 32,49 > < 16,13 > ≠ 0,−1 4 2 a2 − b2m = n2

36 < 64,134 > < 32,11 > ≠ 0,−1 4 4

here m,n ∈ k∗/k∗2 and the degrees n1 = [M ∶ k(i,√m)] and n2 = [L ∶M] are given in terms

of the intermediate field M = k(i,√m, 4
√
a + b√m).

Proof. Let us consider any of these pairs (G,H) and assume first that there is a solution Ψ
associated to it. Again, the existence of Ψ implies the existence of a one-cocycle ξ such that
ξ(σ) = φ ⋅ σφ−1 for σ ∈ Gal(L/k), where L is the splitting field of the twist of CF attached to
φ. The type II assumption implies that, up to conjugation in Aut(CF ), the first components
of the elements of G are of the form

ξ(σ) =
⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
0 0 1

⎞
⎟
⎠

for all σ ∈ Gal(L/k), and taking into account the ξ-action on Ω1
L(CF ) it also implies that we

can take

φ =
⎛
⎜
⎝

α αβ 0
γ γδ 0
0 0 1

⎞
⎟
⎠

where α, β, δ, γ ∈ L and αγ ≠ 0. Hence, the corresponding twist C ′

F of CF admits a canonical
embedding into the projective space P2 whose image is a plane quartic given by

α4(x + βy)4 + γ4(x + δy)4 + z4 = 0 .
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Since C ′

F is defined over k, this imposes several conditions on α, β, δ, γ. For instance, β and
δ should be conjugate over an extension k(√m) for certain m ∈ k∗. Also α4 and γ4 should
be conjugate over the same extension. By remark (1.3.1) we can (and do) take β = −δ = √

m

and α = 4
√
a + b√m, γ = 4

√
a − b√m with a, b ∈ k. Now, a case-by-case analysis yields the

tables above matching the different subcases with the different pairs (G,H). ◻

Remark 3.1.4. Two of these twists are equivalents if and only if their splitting fields have
the same quadratic subextension k(√m)/k and the columns of the matrix associated to one
isomorphism φ ∶ C ′

F → CF are k−rational linear combination of the columns of the matrix
associated to the other isomorphism φ′ ∶ C ′′

F → CF , see remark (1.3.1). That is, if there exist
c, d ∈ k such that

(a + b
√
m) = (c + d

√
m)4(a′ ± b′

√
m).

Proposition 3.1.5 (Non-diagonal twists). The embedding problems corresponding to the
nine pairs (G,H) of type III have a solution. The corresponding splitting fields are L =
k(i, n

√
a,

n
√
b, n

√
c), where a, b, c are the three roots of a degree three irreducible polynomial

with coefficients in k with
n
√
abc ∈ k. The different cases are:

Type III: Non-diagonal twists

ID(G) ID(H) △ mod k∗2 n
1 < 6,1 > < 3,1 > −1 1
2 < 6,2 > < 3,1 > 1 1
3 < 12,4 > < 6,1 > ≠ ±1 1
4 < 24,12 > < 12,3 > −1 2
5 < 24,13 > < 12,3 > 1 2
6 < 48,48 > < 24,12 > ≠ ±1 2
7 < 96,64 > < 48,3 > −1 4
8 < 96,72 > < 48,3 > 1 4
9 < 192,956 > < 96,64 > ≠ ±1 4

Here, △ denotes the absolute discriminant of the extension k(a, b, c)/k.

Proof. The solutions associated to the first three pairs are well-known, see for example [23].
For the sixth pair, since Gal(L/K) is isomorphic to S4 and Gal(L/k) is isomorphic to S4×Z2,
we conclude that L = kf(i) where kf is the splitting field of an irreducible monic degree 4
polynomial f(x) = x4+a2x2+a1x+a0 ∈ k [x], such that the splitting field of its cubic resolvent
g(x) = x3 + 2a2x2 + (a2

2 − 4a0)x − a2
1 has Galois group isomorphic to S3. Let r0, r1, r2 and r3

be the four roots of f , and let us define

s1 =
1

2
(r0 − r1 + r2 − r3)
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s2 =
1

2
(r0 + r1 − r2 − r3)

s3 =
1

2
(r0 − r1 − r2 + r3).

Then the roots of g(x) = 0 are s2
1, s2

2 and s2
3 and g(x2) = (x2 − s2

1)(x2 − s2
2)(x2 − s2

3) is
also irreducible over k and L = k(s1, s2, s3). Letting a = s2

1, b = s2
2 and c = s2

3 we get

L = k(√a,
√
b,

√
c) and

√
abc ∈ k. Similar arguments yield the solutions for the pairs 4 and 5.

For the ninth pair one considers the Galois extension M over k given by the normal
subgroup ⟨u ⋊ 1, t3ut ⋊ 1,1 ⋊ τ⟩. It has Galois group isomorphic to S3 and its quadratic
subextension is different from k(i). Consider now the Galois extension M1 over M given
by the subgroup ⟨u ⋊ 1⟩. Then Gal(M1/M(i)) ≃ Z4 and Gal(M1/M) ≃ D4. Hence, applying
lemma (1.3.2), M1 =M(i, 4

√
α) with α ∈M . Since M1/k(α) is a normal extension we conclude

Gal(k(α)/k) ≃ Z3. Idem with M2 given by the subgroup ⟨t3ut ⋊ 1⟩, we get M2 = M(i, 4
√
β)

with β ∈M and Gal(k(β)/k) ≃ Z3. Also k(α) ≠ k(β). Since the subgroups that give M1 and
M2 have intersection equal to the identity, we have L =M1M2. Finally, since L/k is a normal
extension and there is no other normal extension over k(β) having Galois group isomorphic
to D4 × Z2, we can take β to be a conjugate of α. Let γ be the third conjugated. If we
inspect the action of Gal(L/k) on 4

√
αβγ we obtain 4

√
αβγ ∈ k, and then the result follows.

The pairs 7 and 8 follow using the same arguments. ◻

Remark 3.1.6. In the first six cases two of these twists are equivalents if and only if they
have the same splitting field. In the cases seventh and ninth, the same field L provides two
different twists, because in that case, see formula (1.7):

AutH (G) /InnG (Aut (CF ) ⋊ {1}) = 2.

And in the eighth one each field L provides four different twists.

Plane quartic equations

Once we know the cocycles and the splitting fields of the twists we can compute equations
for them. Fix a basis (ω1, ω2, ω3) of Ω1

k (CF ) and we proceed as in section 1.2 using the
isomorphism (1.4):

Ω1
k(C ′

F ) ≃ (Ω1
L(CF ))

Gal(L/k)
ξ .

Theorem 3.1.7 (Diagonal twists). A diagonal twist with parameters a, b ∈ k and splitting
field L = k(i, 4

√
a,

4
√
b), is defined by the equation:

ax4 + by4 + z4 = 0.
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Theorem 3.1.8 (Almost diagonal twists). An almost diagonal twist with parameters a, b,m

and splitting field L = k(i, 4
√
a + b√m, 4

√
a − b√m,√m), is defined by the equation:

2ax4 + 8bmx3y + 12max2y2 + 8bm2xy3 + 2am2y4 + z4 = 0.

Theorem 3.1.9 (Non-diagonal twists). A non-diagonal twist with parameters a, b, c, n and
splitting field L = k(i, n

√
a,

n
√
b, n

√
c), is defined by the equation:

∑
j + k + l = 4
j, k, l ≥ 0

(4

j
)(4 − j

k
)S2(n−1)+k+2lx

jykzl = 0

if n = 1 or n = 2, where Sj = aj + bj + cj. If n = 4 this splitting field produces more than one
twist, that are given by the equation:

∑
j + k + l = 4
j, k, l ≥ 0

(4

j
)(4 − j

k
)S1+k+2lx

jykzl = 0,

where for the seventh and ninth cases we have also the twist coming from replacing a, b, c
with a3, b3, c3 and for the eighth also the ones coming from replacing a, b, c with a/b, b/c, c/a
and a‘3/b3, b3/c3, c3/a3.

Proof. For n = 1 we can take the isomorphism φ∶C ′

F → CF :

φ =
⎛
⎜
⎝

1 a a2

1 b b2

1 c c2

⎞
⎟
⎠
,

and we get the equation in the statement of the theorem. For n = 2 we take:

φ =
⎛
⎜
⎝

√
a a

√
a a2

√
a√

b b
√
b b2

√
b√

c c
√
c c2

√
c

⎞
⎟
⎠
.

And for n = 4 we consider the isomorphism:

φ =
⎛
⎜
⎝

4
√
a a 4

√
a a2 4

√
a

4
√
b b

4
√
b b2 4

√
b

4
√
c c 4

√
c c2 4

√
c

⎞
⎟
⎠
,

and the ones coming from replacing a, b, c with the numbers in the statement of the theorem.
The equivalence of twists is a consequence of remark (3.1.6). ◻



44 CHAPTER 3. TWISTS OF NON-HYPERELLIPTIC GENUS 3 CURVES

Remark 3.1.10. If i belongs to the number field k we define k0 = k ∩ R, then [k ∶ k0] = 2
and i ∉ k0. We obtain for k the pairs (H,H) where (G,H) is pair for k0. And any proper
solution to the Galois embedding problem (1.6) for the pair (H,H) is given by Ψ ∣Gk

where
Ψ is a proper solution for the Galois embedding problem (1.6) associated to a pair (G,H) of
k0. Then we obtain once again the statements of theorems (3.1.7), (3.1.8) and (3.1.9).

We can summarize all these results in next theorem.

Theorem 3.1.11. The set of k-isomorphism classes of non-hyperelliptic genus 3 curves
with automorphism group isomorphic to ⟨96,64⟩ is parametrized by the set Pol43(k)/ ∼ where
Pol43(k) is the set of degree 3 separable polynomials with coefficients in k and whose inde-
pendent coefficient belongs to −1 ⋅ k∗4, and where the equivalence is given by: P (T ) ∼ P ′(T )
if and only if they have the same splitting field M and

{a, b, c} ≡ {a′, b′, c′}modM∗4

where a, b, c are the roots of P (T ) and a′, b′, c′ the roots of P ′(T ). A representative plane
quartic corresponding to P (T ) = T 3 −AT 2 +BT −C4 is given by:

∑
i + j + k = 4
i, j, k ≥ 0

(4

i
)(4 − i

j
)S1+j+2kx

iyjzk = 0

where Sj = aj + bj + cj.

Proof. The only non-hyperelliptic genus 3 curve up to C−isomorphism with automorphism
group isomorphic to ⟨96,64⟩ is the Fermat quartic, see section 2.1. Then we only have to
parametrize its twists. Then, it is clear that given such a polynomial P (T ) ∈ Pol43(k) with
roots a, b, c we can attach to it the twist given by the isomorphism:

φ =
⎛
⎜
⎝

4
√
a a 4

√
a a2 4

√
a

4
√
b b

4
√
b b2 4

√
b

4
√
c c 4

√
c c2 4

√
c

⎞
⎟
⎠

that gives the equation in the stament of the theorem.
Now, let us prove that any of the twists of the Fermat quartic can be written in such a

way. For the non-diagonal twists is clear. For the diagonal twists given by an isomorphism
of the form:

φ =
⎛
⎜
⎝

4
√
a 0 0

0
4
√
b 0

0 0 1

⎞
⎟
⎠
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we can suppose that 1 ≠ a ≠ b ≠ 1 after right multiplication by a suitable rational matrix and
then we can take the equivalent twist given by the isomorphism:

φ =
⎛
⎜
⎝

4
√
qa qa 4

√
qa q2a2 4

√
qa

4
√
qb qb 4

√
qb q2b2 4

√
qb

4
√
q q 4

√
q q2 4

√
q

⎞
⎟
⎠

where q = ab. For an almost-diagonal twist:

φ =
⎛
⎜
⎝

4
√
c

√
m 4

√
c 0

4
√
c̄ −√m 4

√
c̄ 0

0 0 1

⎞
⎟
⎠

where c = a + b√m and c̄ = a − b√m, we can assume b ≠ 0 after rigth multiplication, if
necessary, by the rational matrix:

⎛
⎜
⎝

1 m 0
1 1 0
0 0 1

⎞
⎟
⎠

and then we can take the equivalent twist:

φ =
⎛
⎜
⎝

4
√
qc qc 4

√
qc q2c2 4

√
qc

4
√
qc̄ qc̄ 4

√
qc̄ q2c̄2 4

√
qc̄

4
√
q q 4

√
q q2 4

√
q

⎞
⎟
⎠

where q = a2 − b2m, that has the form in the statement of the theorem.

Finally, the equivalence of the different twists is a consequence of remarks (3.1.2), (3.1.4)
and (3.1.6). ◻

Remark 3.1.12. In [7] it is showed that every form of a Fermat equation has to have this
shape, even if it is not given the explicit form of the field of definition L.

3.2 Cases from I to X

Case I

In this case we have Γ ≃ Gal(L/k) ≃ C2, then all the non-trivial twists are quadratics ones
and there is only one twist for each quadratic extension of k. So, for each free square m ∈ k,
we have the twist:

m2x4 +mx2F (y, z) +G(y, z) = 0.
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Case II

Let us consider a curve in the modified Henn classification for the case II defined over a
number field k:

CA,B,C ∶ A(x +Ay +A2z)4 +B(x +By +B2z)4 +C(x +Cy +C2z)4+

(x+Ay+A2z)2(x+By+B2z)2+(x+By+B2z)2(x+Cy+C2z)2+(x+Cy+C2z)2(x+Ay+A2z)2 = 0,

where A,B,C are the three roots of a degree 3 polynomial with coefficients in k. There is a
natural inclusion of the automorphism group of CA,B,C into the automorphism group of the
twist C ′

F of the Fermat curve given by the isomorphism

ϕ =
⎛
⎜
⎝

1 A A2

1 B B2

1 C C2

⎞
⎟
⎠
∶ C ′

F → CF .

Then, we have a natural inclusion of Z1(Gk,Aut(CA,B,C)) in Z1(Gk,Aut(C ′

F )). We know all
the twists of the curve C ′

F : they are given by the isomorphisms ϕ−1○φ, where φ ∶ C ′ → CF is a
twist of the Fermat quartic from section 3.1. Then, we have just to check what of this twists
are also twists of CA,B,C . Moreover, notice that the matrix ϕ−1 defines also an isomorphism
ϕ−1 ∶ CH → CA,B,C where CH ∶ Ax4 + By4 + Cz4 + x2y2 + y2z2 + z2x2 = 0. So we have just
to check what twists of the Fermat quartic define also twists defined over k for the quartic
curve CH .

Diagonal twists. Let us assume that

φ =
⎛
⎜
⎝

α 0 0
0 β 0
0 0 1

⎞
⎟
⎠
,

gives a twists of CA,B,C defined over k. Then m = α2, n = β2 ∈ k and A,B,C ∈ k. And we
obtain the twists:

Am2x4 +Bn2y4 +Cz4 +mnx2y2 + ny2z2 +mz2x2 = 0

where m,n ∈ k are square-free.

Almost-diagonal twists. In this case we have

φ =
⎛
⎜⎜
⎝

4
√
a + b√m √

m 4
√
a + b√m 0

4
√
a − b√m −√m 4

√
a − b√m 0

0 0 1

⎞
⎟⎟
⎠
.
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And we obtain the conditions(up to permutation of A,B,C): C ∈ k and A,B ∈ k(√m) are
conjugate numbers, and a + b√m = (c + d√m)2.

Non-diagonal twists. In this case we have

φ =
⎛
⎜
⎝

n
√
a a n

√
a a2 n

√
a

n
√
b b

n
√
b b2 n

√
b

n
√
c c n

√
c c2 n

√
c

⎞
⎟
⎠
.

And we get the conditions n = 1,2 and Gal(k(A,B,C)/k) ≃ C3 or S3, and a ∈ k(A), b ∈ k(B)
and c ∈ k(C).

The equivalence for these twists is the same one that for the twists of the Fermat quartic.

Case III

In this case Γ = Aut(C) ⋊Gal(K/k) ≃ C3 or S3 depending on ξ3 ∈ k or not. In both cases,
applying Kummer theory or lemma (1.3.2), we get L =K( 3

√
m) for some m ∈ k. Then all the

twists of a quartic curve C ∶ z3y + P (x, y) = 0 in case III are in one to one correspondence
with elements m ∈ k∗/k∗3 and are given by the equations:

C ′ ∶ mz3y + P (x, y) = 0

Case IV

Since the automorphism group in this case is made from matrices of the form

⎛
⎜
⎝

∗ ∗ 0
∗ ∗ 0
0 0 1

⎞
⎟
⎠
,

we can take

φ =
⎛
⎜
⎝

α αβ 0
γ γδ 0
0 0 1

⎞
⎟
⎠
.

Then, αγ(x2 + (β + δ)xy + βδy2) ∈ k [x, y], and so αγ ∈ k and βδ, β + δ ∈ k. Hence there are
two cases: or β, δ ∈ k or β and δ are conjugate over a quadratic extension of k. In the first
case and up to k−isomorphism, we can assume

φ =
⎛
⎜
⎝

s 0 0
0 t 0
0 0 1

⎞
⎟
⎠
.
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And in the second case:

φ =
⎛
⎜
⎝

α α
√
m 0

γ −γ√m 0
0 0 1

⎞
⎟
⎠
.

Hence, the twists are given by the equations:

nx3z + q3n2y3z + q2n2x2y2 + aqnxyz2 + bz4 = 0,

where we get s3 = n ∈ k and st = qm ∈ k. And

2α1(x3z + 3mxy2z) + 2α2m(3x2yz +my3z) + q2(x2 −my2)2 + aq(x2 −my2)z2 + bz4 = 0,

where α = α1 + α2

√
m, γ = α1 − α2

√
m with α1, α2,m ∈ k and satisfying the condition

α2
1 −mα2

2 = q3, where q ∈ k.

Case V

The automorphism group of the curve CA,B ∶ Ax4 + y4 + z4 +Bx2y2 +xyz2 = 0 is contained in
a natural way in the one of the Fermat twist C ′

F ∶ Ax4 + y4 + z4 = 0. We know all the twists
of C ′

F :

⎛
⎜
⎝

1/ 4
√
A 0 0

0 1 0
0 0 1

⎞
⎟
⎠
○ φ

where φ is a twist of the Fermat curve described in the section 3.1. And Z1(Gk,Aut(CA,B))
is a subset of Z1(Gk,Aut(C ′

F )). So we have just to check what twists of C ′

F can be also seen
as twists of CA,B. Clearly, any of the non-diagonal twists can be.

Diagonal twists. The diagonal twists are:

amx4 + q4m3y4 + z4 + q2m2Bx2y2 + qmxyz2 = 0,

where m and q are free of fourth powers in k.

Almost-diagonal twists. The almost-diagonal twists are given by taking:

φ =
⎛
⎜⎜
⎝

4
√
a + b√m √

m 4
√
a + b√m 0

4
√
a − b√m −√m 4

√
a − b√m 0

0 0 1

⎞
⎟⎟
⎠
.

Where there exists a k−rational number q such that a2 − b2m = q4A. Two of these twists are
equivalent if and only if their splitting fields have the same quadratic subextension k(√m)/k
and if

a + b
√
m = (c + d

√
m)4(a′ ± b′

√
m),

for some c, d ∈ k.
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Case VI

Since in this case the automorphism group is made of diagonal matrices, we know that all
the twists are given by matrices, see remark (1.3.3):

φ =
⎛
⎜
⎝

a 0 0
0 1 0
0 0 b

⎞
⎟
⎠
.

Then C ′ ∶ b3z3y +Aa4x4 + a2x2y2 + y4 = 0. Hence a2, b3 ∈ k. So, a = √
m and b = 3

√
n for some

m, n ∈ k. Then, C ′ ∶ nz3y +Am2x4 +mx2y2 + y4 = 0. If we take m square-free and n free of
third powers, then two different twists are not equivalent, see remark (1.3.1).

Case VII

The automorphism group of the curve CA ∶ Ax4 + y4 + z4 + x2y2 = 0 is contained in a natural
way in the one of the Fermat twist C ′

F ∶ Ax4 + y4 + z4 = 0. We know all the twists of C ′

F :

⎛
⎜
⎝

1/ 4
√
A 0 0

0 1 0
0 0 1

⎞
⎟
⎠
○ φ

where φ is a twist of the Fermat curve described in the section 3.1. And Z1(Gk,Aut(CA)) is
a subset of Z1(Gk,Aut(C ′

F )). So we have just to check which twists of C ′

F can also be seen
as twists of CA. Clearly, any of the non-diagonal twists can be.

Diagonal twists. The diagonal twists are:

amx4 + q2my4 + z4 + qmx2y2 = 0,

where m is free of fourth powers and q is free square in k.

Almost-diagonal twists. The almost-diagonal twists are given by taking:

φ =
⎛
⎜⎜
⎝

4
√
a + b√m √

m 4
√
a + b√m 0

4
√
a − b√m −√m 4

√
a − b√m 0

0 0 1

⎞
⎟⎟
⎠
.

Where there exists a k−rational number q such that a2 − b2m = q2A. Two of these twists are
equivalent if and only if they have the same quadratic subextension k(√m)/k and if

a + b
√
m = (c + d

√
m)4(a′ ± b′

√
m),

for some c, d ∈ k.
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Caso VIII

The Henn model for this case is CA ∶ x4 + y4 + z4 +A(x2y2 + y2z2 + z2x2) = 0. And since for
A = 0 we recover the Fermat quartic CF , we can see in a natural way the automorphism
group of CA into the automorphism group of CF . Then, as in case II, we get a natural
inclusion of Z1(Gk,Aut(CA)) into Z1(Gk,Aut(CF )). In that way we see each twist of CA as
a twists of the Fermat quartic. We will just have to check which twists of the Fermat quartic
give also twists of CA defined over k.

Diagonal twists. The diagonal twists are:

a2x4 + b2y4 + z4 +A(abx2y2 + by2z2 + az2x2) = 0

where a, b ∈ k are square-free. And two of these twists are equivalente if and only if, there
exists m ∈ k such that the sets {a, b,1)} and {ma′,mb′,m)} are congruent modulo k∗4.

Almost-diagonal twists. The almost-diagonal twists are given by isomorphisms φ ∶ C ′ → C
defined by:

φ =
⎛
⎜⎜
⎝

√
a + b√m √

m
√
a + b√m 0√

a − b√m −√m
√
a − b√m 0

0 0 1

⎞
⎟⎟
⎠
.

Two of these twists are equivalent if and only if their splitting fields have the same quadratic
subextension k(√m)/k and if

a + b
√
m = (c + d

√
m)4(a′ ± b′

√
m),

for some c, d ∈ k.

Non-diagonal twists. The non-diagonal twists are the ones for the Fermat quartic with
n = 1, 2.

Case IX

In that case, since the automorphism group is made of diagonal matrices, given a twist
φ ∶ C ′ → C, we can assume that φ is given by a diagonal matrix:

φ =
⎛
⎜
⎝

a 0 0
0 1 0
0 0 b

⎞
⎟
⎠
.

Then C ′ ∶ a4x4 + axy3 + b3yz3 = 0. Hence a3, b3/a ∈ k. So, a = 3
√
m and b = 3

√
q 3
√
m for some

m, q ∈ k. Then, C ′ ∶ mx4 + xy3 + qyz3 = 0. If we take m and q free of third powers, then two
different twists are not equivalent.
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Case X

In this case we have only one curve C ∶ x4 + y4 + xz3 = 0. And looking at its automorphism
group we conclude that the twists are given by isomorphisms of the form:

φ =
⎛
⎜
⎝

a 0 ab
0 1 0
c 0 cd

⎞
⎟
⎠
.

And then we get:
a4 + ac3 = A +B = q1 ∈ k
4Ab +B(b + 3d) = q2 ∈ k

6Ab2 +B(3d2 + 3bd) = q3 ∈ k
4Ab3 +B(d3 + 3bd2) = q4 ∈ k

Ab4 +Bbd3 = q5 ∈ k
We can assume q1 ≠ 0 and then q2 = 0. Hence B = q1 −A. Then from the second equation we
get A = − q1(b+3d)

3(b−d) (notice that b ≠ d) and then B = 4q1b
3(b−d) . Substituting in the other equations

we get:

b(2d + b) = − q3

2q1

,

b(b2 + 4bd + d2) = −3q4

4q1

,

b2(2d + b)2 = −3q5

q1

So, in particular, q2
3 = −12q1q5, and d =

b2+
q3
2q1

2b and:

q1b
4 + q3b

2 − q4b −
q2

3

12q1

= 0.

So, given q1, q3, q4 ∈ k we have the twist:

C ′ ∶ q1x
4 + q3x

2z2 + q4xz
3 − q2

3

12q1

z4 + y4 = 0.

And two such twist are equivalent if and only if q′i = q4qi for some q ∈ k for i = 1,3,4 as can
be checked using remark (1.3.1).

3.3 The Klein quartic

In this section we will compute the twists of the Klein quartic:

CK ∶ x3y + y3z + z3x = 0,



52 CHAPTER 3. TWISTS OF NON-HYPERELLIPTIC GENUS 3 CURVES

defined over a number field k. Let us consider the twist:

C ∶ x4 + y4 + z4 + 6(xy3 + yz3 + zx3) − 3(x2y2 + y2z2 + z2x2) + 3xyz(x + y + z) = 0,

given by the isomorphism:

φ0 =
⎛
⎜
⎝

1 1 + ζα ζ2 + ζ6

1 + ζα ζ2 + ζ6 1
ζ2 + ζ6 1 1 + ζα

⎞
⎟
⎠
○
⎛
⎜
⎝

−α 1 2α + 3
2α + 3 −α 1

1 2α + 3 −α

⎞
⎟
⎠
∶ C → CK .

Here α = −1+
√

−7
2 and ζ = ζ7. We have Twistk(CK) = Twistk(C), and C has the advantage

that its automorphism group Aut(C) is defined over k(
√
−7) instead of over k(ζ7). So, we

will compute Twistk(C). We will use the method described in chapter 1. The group Aut(C)
is generated by the projective matrices:

g = 1√
−7

⎛
⎜
⎝

−2 α −1
α −1 1 − α
−1 1 − α −1 − α

⎞
⎟
⎠
, h =

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
, s = 1

7

⎛
⎜
⎝

−3 −6 2
−6 2 −3
2 −3 −6

⎞
⎟
⎠

Let us first assume that
√
−7 ∉ k, and let K = k(

√
−7). Then, the possibilities for the pairs

(G,H) are:

ID(G) ID(H) gen(H) h
1 < 2,1 > < 1,1 > 1 1
2 < 4,2 > < 2,1 > s 1
3 < 6,1 > < 3,1 > h s
4 < 6,2 > < 3,1 > h 1
5 < 14,1 > < 7,1 > g 1
6 < 8,1 > < 4,1 > g2sg3sg2 g2sg5

7 < 8,3 > < 4,1 > g2sg3sg2 1
8 < 12,4 > < 6,1 > h, s 1
9 < 42,1 > < 21,1 > g, h 1
10 < 16,7 > < 8,3 > g2sg3sg2, g2sg5 1
11 < 336,208 > < 168,42 > s, g, h 1

Where the meaning is that G is the group which elements are (g,1) for g in H together
with the elements (gh, τ) for g in H and τ the non-trivial automorphism in Gal(K/k). As
an easy way to remember, we can write the non-sense expression G =H ⋊ 1 +Hh ⋊ τ .
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The case ID(G) =< 2,1 >
In that case L =K = k(

√
−7) and there only a single twist, the trivial twist.

The case ID(G) =< 4,2 >
In that case L = K(√m) = k(

√
−7,

√
m), where m ∉ k2 or −7k2. So, for each quadratic

extension L/K we obtain a single twist with equation:

−49x4−m2y4+31m2z4+210mx2yz−12m2y3z−66m2yz3−63mx2y2+51m2y2z2−126mx2z2 = 0,

and given by the isomorphism:

φ =
⎛
⎜
⎝

2
√
m 0

−3 0
√
m

1 −2
√
m 3

√
m

⎞
⎟
⎠
.

The case ID(G) =< 6,1 >
In that case L = k(a, b, c), where a, b, c are the three roots of degree 3 polynomial with
coefficents in k and such that its splitting field over k has Galois group isomorphic to S3 and
whose discriminant is −7q2 for some q ∈ k. Two twists are equivalent if and only if they have
the same splitting field by formula (1.7). They are given by the isomorphism:

φ =
⎛
⎜
⎝

√
−7 −3a + 2b + c ab − 3bc + 2ca√
−7 a − 3b + 2c 2ab + bc − 3ca√
−7 2a + b − 3c −3ab + 2bc + ca

⎞
⎟
⎠
.

The equation is the one for the case ID(G) =< 12,4 > with ∆ = −7.

The case ID(G) =< 6,2 >
In that case L = K(a, b, c), where a, b, c are the three roots of degree 3 polynomial with
coefficients in k and such that its splitting field has Galois group isomorphic to C3. Two
twists are equivalent if and only if they have the same splitting field by formula (1.7). They
are given by the isomorphism:

φ =
⎛
⎜
⎝

1 −3a + 2b + c ab − 3bc + 2ca
1 a − 3b + 2c 2ab + bc − 3ca
1 2a + b − 3c −3ab + 2bc + ca

⎞
⎟
⎠
.

The equation is the one for the case ID(G) =< 12,4 > with ∆ = 1. In this case, we recover
the the Klein quartic taking a = ζ + ζ6, b = ζ2 + ζ5 and c = ζ4 + ζ3.
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The case ID(G) =< 14,1 >
Let us consider the field L̃ = L(ζ7). Then [L̃ ∶ L] = 3 and L̃ = k(ζ7, 7

√
α) where α ∈ k(ζ7)

by Kummer theory and since Gal(L̃/k) ≃< 42,4 > then α ∉ K. We will prove that we can
assume α ∈ k(ζ7+ζ6

7). Let τ ∈ Gal(L̃/k) of order 6, then 7
√
α+τ 3( 7

√
α) is only fixed by τ 3 but

( 7
√
α+ τ 3( 7

√
α))7 is also fixed by any of the order seven elements (let us call σ one of them),

so if we call β = ( 7
√
α + τ 3( 7

√
α))7, we have L̃ = k(ζ7,

7
√
β) and β ∈ k(ζ7 + ζ6

7). And L is the
only normal subextension of index 3. Let us call β1 = β and β2 and β3 its two conjugates in
L̃. Then 7

√
β1β2β3 ∈ k. And then it is easy to check that the action of τ and σ is given by:

σ( 7
√
β1) = ζ7

7
√
β1, σ( 7

√
β2) = ζ4

7
7
√
β2, σ( 7

√
β3) = ζ2

7
7
√
β3.

τ( 7
√
β1) = 7

√
β2, τ( 7

√
β2) = 7

√
β3, τ( 7

√
β3) = 7

√
β1.

Then we obtain the twist with equation:

7
√
β3

1β2(x + β1y + β2
1z)3(x + β2y + β2

2z) + 7
√
β3

2β3(x + β2y + β2
2z)3(x + β3y + β2

3z)

+ 7
√
β3

3β1(x + β3y + β2
3z)3(x + β1y + β2

1z) = 0.

And the isomorphism is given by:

φ−1
0 ○

⎛
⎜
⎝

7
√
β1 β1

7
√
β1 β2

1
7
√
β1

7
√
β2 β2

7
√
β2 β2

2
7
√
β2

7
√
β3 β3

7
√
β3 β2

3
7
√
β3

⎞
⎟
⎠
∶ C ′ → C.

For each such field L we find to different twists, the one showed before and the one coming
from replacing β1, β2 and β3 with β6

1 , β
6
2 and β6

3 .

The case ID(G) =< 8,1 >
Let φ ∶ C ′ Ð→ C be a twists corresponding to a solution Ψ associated to the pair (G,H) =
(< 8,1 >,< 4,1 >), and let L be the field of definition of the twist, that is the splitting field
of the solution Ψ.

Lemma 3.3.1. In the above conditions, we have k(i,
√

2) = k and L = k( 8
√
−7γ2) for some

γ ∈ k.

Proof. Let us consider k0 = k(i,
√

2) and L0 = L(i,
√

2). Then, by Kummer theory L0 =
k0( 8

√
−7γ2) for some γ ∈ k0. Let us first assume that [L0 ∶ L] = 4, then Gal(L0/k) ≃ C8 × V4
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and it is generated by:

a ∶ i Ð→ i b ∶ i Ð→ −i c ∶ i Ð→ i√
2 Ð→

√
2

√
2 Ð→

√
2

√
2 Ð→ −

√
2

8
√
−7γ2 Ð→ ζ8

8
√
−7γ2 8

√
−7γ2 Ð→ 8

√
−7γ2

1
8
√
−7γ2 Ð→ 8

√
−7γ2

2

where γ1, γ2, γ3 are the other conjugates of γ in k0 and a8 = b2 = c2 and they commute. Since
they commute and have the order especified before we can assume:

a ∶ 8
√
−7γ2

1 Ð→ 8
√
−7γ2

1 b ∶ 8
√
−7γ2

2 Ð→ 8
√
−7γ3

1 c ∶ 8
√
−7γ2

1 Ð→ 8
√
−7γ3

1
8
√
−7γ2

2 Ð→ ζ5
8

8
√
−7γ2

2
8
√
−7γ2

3 Ð→ ζ3
8

8
√
−7γ2

3

Notice that 4
√
−7γγ1 is fixed by the action of a and b, then −7γγ1 = s4 for some s ∈ k(

√
2).

Moreover, γ1 = q8γ7 for some q ∈ k0, then −7q8γ8 = s4 and
√
−7 ∈ k0, which is a contradiction.

Assume now that [L0 ∶ L] = 2. Then Gal(L0/k) ≃ C8 ×C2, and it is generated by:

a ∶ i Ð→ i b ∶ i Ð→ ε1i ε1 ε2 A√
2 Ð→

√
2

√
2 Ð→ ε2

√
2 1 −1 5

8
√
−7γ2 Ð→ ζ8

8
√
−7γ2 8

√
−7γ2 Ð→ 8

√
−7γ2

1 −1 1 7
8
√
−7γ2

1 Ð→ ζA8
8
√
−7γ2

1 −1 −1 3

Cases (ε1, ε2) = (−1,1), (−1,−1) follow as case [L0 ∶ L] = 4. For case (ε1, ε2) = (1,−1) we get

γ1 = q8γ5, so γ1
γ = s4 for some s ∈ k0, but a ∶

8
√

−7γ21
8
√

−7γ2
= s Ð→ −s, which is a contradiction. So,

finally, L0 = L and k0 = k = k(i,
√

2).

Then, we find the isomorphism φ ∶ C ′ Ð→ C given by:

φ =
⎛
⎜⎜
⎝

8
√
−7γ2 0 0

0
√

−7 4
√

−7γ2 8
√

−7γ2

7 0
0 0 1

⎞
⎟⎟
⎠

⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

1+2
√

2+
√

−7

⎞
⎟
⎠

⎛
⎜
⎝

1/2 1/2 0
−i/2 i/2 0

0 0 1

⎞
⎟
⎠
φ−1

2

where

φ2 =
⎛
⎜
⎝

−α 1 2α + 3
2α + 3 −α 1

1 2α + 3 −α

⎞
⎟
⎠
,

will be also useful later. We get the equation:

C ′ ∶ −7γx4 + γ3y4 + z4

64(1 + 2
√

2)2
− 6γ2x2y2 + 8γxyz2

8(1 + 2
√

2)
= 0.

Given such a splitting field L we find two different twists, the one showed before and the
one comming by replacing γ by γ3, see formula (1.7).
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The case ID(G) =< 8,3 >

In this case L = k(
√
−7,

√
a + b√m) where a2−mb2 = −7mq2 with a, b,m, q ∈ k and m square-

free. We call S =
√
a + b√m and A =

√

a−b
√
m

√

−7
√

a+b
√
m

. Then we have the twist given by the

isomorphism:

φ =
⎛
⎜
⎝

3 (5A − 1)S √
m(5A + 1)S

−1 (3A − 3)S √
m(3A + 3)S

−2 6AS 6
√
mAS

⎞
⎟
⎠
.

And we have the equation:

−49x4−252ax2y2+504bmx2yz−252amx2z2+(124a2+980q2m−448qbm)y4+(896q−496b)amy3z+

+24m(22a2 + 9b2m)y2z2 − 16m(31m + 56qa)yz3 + 7m3q(47q + 64b)z4 = 0

Given such a field L we find two different twists, the one showed before and the one coming
from replacing a with 2a, b with q, m with −7m and 2q with and q with 2

7b.

The case ID(G) =< 12,4 >
In that case L = k(a, b, c), where a, b, c are the three roots of degree 3 polynomial with
coefficents in k and such that its splitting field over k has Galois group isomorphic to S3

and whose discriminant ∆ is not of the form −7q2 with q ∈ k. Two twists are equivalent
if and only if they have the same splitting field by formula (1.7). They are given by the
isomorphism:

φ =
⎛
⎜⎜
⎝

√
∆ −3a + 2b + c ab − 3bc + 2ca√
∆ a − 3b + 2c 2ab + bc − 3ca√
∆ 2a + b − 3c −3ab + 2bc + ca

⎞
⎟⎟
⎠
.

And have the equation:

3∆2x4+21(A2−3B)∆x2y2+21(9C−AB)∆x2yz+21(B2−3AC)∆x2z2−147∆xy3+147A∆xy2z−

−147B∆xyz2 + 147C∆xz3 + 49(−A4 + 6A2B − 9B2)y4 + 98(A3B − 9A2C − 3AB2 + 27BC)y3z+

+147(2A4B −A2B2 + 2B3 − 27C2)y2z2 + 98(−3A2BC +AB3 + 27AC2 − 9B2C)yz3+

+49(−9A2C2 + 6AB2C −B4)z4 = 0,

where A = a + b + c, B = ab + bc + ca and C = abc.
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The case ID(G) =< 42,1 >
If ζ7 ∈ L, then we apply proposition (1.3.2) and L = k(ζ7, 7

√
m) for some m ∈ k. And given the

field L there are two different twists: mx3y+y3z+z3x = 0 and m3x3y+y3z+z3x = 0. Otherwise,
let us consider the field L̃ = L(ξ7). Then [L̃ ∶ L] = 3. There is a normal subextension of order
3 over k not contained in k(ξ7), let us call such subextension F0. Then F = F0(ζ7) is a
subextenion of index 7 of L̃. Then by Kummer theory we have L̃ = k(ζ7,

7
√
β) with β ∈ F .

And again, as in the case < 14,1 > we can assume β ∈ F0. And L/k is the only normal
subextension of degree 42 of L̃/k. Let us call β1 = β and β2 and β3 its two conjugates in L̃.
Then 7

√
β1β2β3 ∈ k. And then it is easy to check that Gal(L̃/k) is generated by the elements

σ, τ and ν with:

σ(ζ7) = ζ7, σ( 7
√
β1) = ζ7

7
√
β1, σ( 7

√
β2) = ζ4

7
7
√
β2, σ( 7

√
β3) = ζ2

7
7
√
β3.

τ(ζ7) = ζ7, τ( 7
√
β1) = 7

√
β2, τ( 7

√
β2) = 7

√
β3, τ( 7

√
β3) = 7

√
β1.

ν(ζ7) = ζ3
7 , ν( 7

√
β1) = 7

√
β1, ν( 7

√
β2) = 7

√
β2, ν( 7

√
β3) = 7

√
β3.

Finally, we obtain the twist with equation:

7
√
β3

1β2(x + β1y + β2
1z)3(x + β2y + β2

2z) + 7
√
β3

2β3(x + β2y + β2
2z)3(x + β3y + β2

3z)

+ 7
√
β3

3β1(x + β3y + β2
3z)3(x + β1y + β2

1z) = 0.

And the isomorphism is given by:

φ−1
0 ○

⎛
⎜
⎝

7
√
β1 β1

7
√
β1 β2

1
7
√
β1

7
√
β2 β2

7
√
β2 β2

2
7
√
β2

7
√
β3 β3

7
√
β3 β2

3
7
√
β3

⎞
⎟
⎠
∶ C ′ → C.

Given such a field L we find two different twists, the one showed above and the one
coming from replacing β1, β2 and β3 with β6

1 , β
6
2 and β6

3 .

The case ID(G) =< 16,7 >
Let φ ∶ C ′ Ð→ C be a twist corresponding to the pair (G,H) = (< 16,7 >,< 8,3 >), and let L

be the field of definition of the twist. Then, by lemma (3.3.1), we have: L = k(√m, 8
√
−7γ2)

where γ ∈ k(√m) and k(i,
√

2) ⊆ k(√m). We will check that, in fact, k = k(
√

2), k(i) =
k(√m) and γ ∈ k, then for the splitting field L we will get 4 different twists, the two ones
given in case ID(G) =< 8,1 > and the two ones coming from replacing γ with γ̄. The difference
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between case ID(G) =< 8,1 > and this one is just that in the first one i ∈ k and in the second
one not.

The group Gal(L/k) is generated by:

a ∶ √
m Ð→ √

m b ∶ √
m Ð→ −√m ε1 ε2 A

i Ð→ i i Ð→ ε1i 1 1 7√
2 Ð→

√
2

√
2 Ð→ ε2

√
2 1 −1 3

8
√
−7γ2 Ð→ ζ8

8
√
−7γ2 8

√
−7γ2 Ð→ 8

√
−7γ2

1 −1 1 1
8
√
−7γ2

1 Ð→ ζA8
8
√
−7γ2

1 −1 −1 5

Where we get the conditions on A looking at the relations a8 = b2 = 1 and ab = ba7. Now,
we can discard cases (ε1, ε2) = (1,1), (1,−1), (−1,−1) proceeding as in the proof of lemma

3.3.1. Then
√

2 ∈ k, i /∈ k, and L = k(i 8
√
−7γ2) for some γ ∈ k(i). But since A = 1, we can

take γ ∈ k.

The case ID(G) =< 336,208 >
We have not been able to compute the solutions to the Galois embedding problem corre-
sponding to this pair (G,H). We are waiting for a efficient implementation of the algorithm
in Appendix for computing the twists.

Now, let us suppose that
√
−7 ∈ k, then we obtain in this case the following possibilities

for the pairs (G,H) where G =H because here Gal(K/k) is trivial:

ID(G) gen(G)
1 < 1,1 > 1
2 < 2,1 > s
3 < 3,1 > h
4 < 7,1 > g
5 < 4,1 > g2sg3sg2

6 < 6,1 > h, s
7 < 21,1 > g, h
8 < 8,3 > g2sg3sg2, g2sg5

9 < 168,42 > s, g, h
10 < 12,3 > h, sg2sg5

11 < 24,12 > s, h, g2sg5

The first nine cases appeared also when
√
−7 ∉ k. We have just two new cases: 10 and
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11. For computing the twists in that case we will use the twist:

CS4 ∶ x4 + y4 + z4 + 3α(x2y2 + y2z2 + z2x2) = 0,

where again α = −1+
√

−7
2 and given by the isomorphism:

φ1 =
⎛
⎜
⎝

1 1 + ζα ζ2 + ζ6

1 + ζα ζ2 + ζ6 1
ζ2 + ζ6 1 1 + ζα

⎞
⎟
⎠
∶ CS4 → CK .

The form of this twist in the corresponding to the case VIII in Henn classification. We have
computed the twists for this model in section 3.2. And we obtain L = k(√a,

√
b,

√
c) where

a, b, c are the three roots of a degree 3 polynomial with coefficients in k and such that its
splitting field has Galois group over k isomorphic to C3 or S3 respectively. Two such twists
are equivalent if and only if the have the same splitting field L and are given by the equation:

C ′ ∶ a2(x+ay+a2z)4+ b2(x+ by+ b2z)4+ c2(x+ cy+ c2z)4+3α(ab(x+ay+a2z)2(x+ by+ b2z)2+

+bc(x + by + b2z)2(x + cy + c2z)2 + ca(x + cy + c2z)2(x + ay + a2z)2) = 0.
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Chapter 4

The Sato-Tate conjecture for the
twists of the Fermat and Klein
quartics

In (proposition 16, [34]) the Generalize Sato-Tate conjecture (0.0.10) is proven for abelian
varieties A/k that are isogenous to a product of abelian varieties with complex multiplication
over a finite extension of k. We will show that this is the case for the twists of the Fermat and
the Klein quartics. We also compute the Sato-Tate groups and the Sato-Tate distributions.
Finally, we give example curves for each of the distributions obtained. We follow the ideas
in [2], [18], [22] and [35] for computing the Sato-Tate groups and the Sato-Tate distributions
of the twists computed in chapter 3. In fact, for the distributions, what we compute is the
sequence of moments of the distributions, that by proposition 1 in [35] completly determines
them. Finally, we use the results in chapter 3 for giving example curves of each of the dis-
tributions.

All these results are part of a forthcoming paper in collaboration with F. Fité and A.V.
Sutherland, [21]. In this paper is also showed how to compute the Sato-Tate distributions
studying a Galois representation attached to each twist, without having to use the knowledge
of the Sato-Tate groups. Moreover, graphics of the distributions are showed using a powerful
algorithm for counting the number of points over finite fields of non-hyperelliptic curves due
to A.V. Sutherland, [57].

We denote by C1 ∶ x4 + y4 + z4 = 0 the Fermat quartic and by

C7 ∶ x4 + y4 + z4 + 6(xy3 + yz3 + zx3) − 3(x2y2 + y2z2 + z2x2) + 3xyz(x + y + z) = 0

the twist of the Klein quartic that we used in chapter 3. We consider the elliptic curves

E1 ∶ y2 = x3 + x, E7 ∶ y2 = 4x3 + 21x2 + 28x,

61
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with complex multiplication by M1 = Q(i) and M7 = Q(
√
−7), respectively.

Proposition 4.0.2. One has that the jacobian variety J(Cd) is Q−isogenous to Ed×Ed×Ed
for d = 1 and 7.

See [40] for a proof of the case of d = 1 and [12] for d = 7.

4.1 The Sato-Tate conjecture

We prove that we have the hypothesis in next proposition, and we apply it for proving the
Generalize Sato-Tate conjecture for the twists of the Fermat and the Klein quartics.

Proposition 4.1.1. (Johansson, [34]) Let A be an abelian variety defined over a number
field k, and such that becomes isogenous to a product of abelian varieties with complex mul-
tiplication over a finite extension of k. Then the Generalize Sato-Tate conjecture holds for
A/k.

Corollary 4.1.2. The generalized Sato-Tate conjecture holds for the twists of the Fermat
and Klein quartic.

Proof. Since by proposition (4.0.2), we have J(Cd) ∼Q E3
d and Ed has complex multiplication

by Md, for any twist we have
J(C ′

d) ≃L J(Cd) ∼Q E3
d ,

where L is the field of definition of the twist. Then J(C ′

d) ∼L E3
d with L a finite extension of

k and we can apply proposition (4.1.1).

4.2 The Sato-Tate groups

By theorem (6.10) in [2] the Algebraic Sato-Tate conjecture holds for the twists of the Fermat
and the Klein quartics. That is, there exists an algebraic group ASTk(C ′) ⊆ Sp6 over Q such
that

ASTk(C ′

d)Ql
= G1,ω

l,ι (C ′

d),

where G1,ω
l,ι is defined as in (0.0.9). Moreover, theorem (6.10) in [2] sais that ASTk(C ′

d) is
equal to L(J(C ′

d)) the Lefschetz group of the jacobian variety of C ′

d. The Lefschetz group of
an abelian variety is defined to be:

L(A) = ⋃L(A, τ) = ⋃{γ ∈ Sp2g ∶ γ−1αγ =τ α∀α ∈ End(A) ⊗Q} ,

where the union is over the τ ∈ Gal(L/k). Given a twist C ′ of the Fermat or of the Klein
quartics, we have associated to it a pair (G,H) as in section 1.3 if k ⊊Kd ∶= kMd and (H,H)
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if k = Kd. For the Fermat quartic we have 59 different pairs up to conjugacity and for the
Klein quartic 22 pairs. In the case in which k ⊊Kd, we have the equality G =H ∪Hh ⋅ (1, τ)
where τ in the non-trivial element in Gal(Kd/k).

Let us first consider the monomorphism:

ι ∶ Aut(Cd) ↪ι1 End(Ω1(Cd)) ≃ι2 End(Ω1(E3
d)) ≃ι3 End(Tl(Ed)3) ↪ GSp6(Q),

given by

ι(s1) =

⎛

⎜

⎝

0 0 I2

I2 0 0
0 I2 0

⎞

⎟

⎠

, ι(t1) =
⎛

⎜

⎝

0 −I2 0
I2 0 0
0 0 −I2

⎞

⎟

⎠

, ι(u1) =

⎛

⎜

⎝

−I2 0 0
0 −J2 0
0 0 −J2

⎞

⎟

⎠

and

ι(s7) =

⎛

⎜

⎝

0 I2 0
0 0 I2

I2 0 0

⎞

⎟

⎠

, ι(t7) =
1

7

⎛

⎜

⎝

−3I2 −6I2 2I2

−6I2 2I2 −3I2

2I2 −3I2 −6I2

⎞

⎟

⎠

, ι(u7) =
1

7

⎛

⎜

⎝

−2I2 − 4K2 3I2 −K2 −I2 − 2K2

3I2 −K2 −I2 − 2K2 −2I2 + 3K2

−I2 − 2K2 −2I2 + 3K2 −4I2 −K2

⎞

⎟

⎠

.

Where we define the matrices:

I2 = (1 0
0 1

) , J2 = (0 −1
1 0

) , K2 = (0 −2
1 −1

) .

The embedding ι1 is the natural one given by the canonical model that we have choosen
for the Fermat and the Klein quartic. The isomorphism ι2 is the one given by identifing the
basis associated to the canonical model to {(ωd,0,0), (0, ωd,0), (0,0, ωd)} where ωd is the
invariant differential of the elliptic curve Ed. Finally, ι3 is the natural isomorphism when we
see one of the vector spaces as the dual of the other.

Remark 4.2.1. Notice that the matrices ι(sd), ι(td), ι(ud) are symplectic with respect to
(J2)3. And in fact, they are contained in USp(6).

Lemma 4.2.2. The above monomorphism extends to a monomorphism

ι ∶ Γ = Aut(Cd) ⋊Gal(Kd/k) ↪ USp(6)

in a trivial way if Kd = k, and by defining

ι((1, τ)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
√

2

⎛
⎝
i i

i −i
⎞
⎠

3

in case C = C1,

⎛
⎝
i −i
0 −i

⎞
⎠

3

in case C = C7,

if k ⊊Kd, and where we use the notation B3 = Id3 ⊗B for a matrix B.
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Theorem 4.2.3. Let φ ∶ C ′

d → Cd be a twist of Cd with pair (G,H). Then, the Sato-Tate
group of C ′

d is then given by

STk(C ′

d) ={( cos(2πr) sin(2πr)
− sin(2πr) cos(2πr))

3

∣ r ∈ [0,1]} ⋅ ι(H)

in case Cd = C1, and by

STk(C ′

d) ={(
cos(2πr) − 1

√

7
sin(2πr) 4

√

7
sin(2πr)

− 2
√

7
sin(2πr) cos(2πr) + 1

√

7
sin(2πr))

3

∣ r ∈ [0,1]} ⋅ ι(H)

in case Cd = C7.

Proof. We consider the case k ⊊ Kd, which is the most complex one. By [2], we have that
STk(Ed) is a maximal compact subgroup of AST(Ed) ⊗ C, where ASTk(Ed) = L(Ed,1) ∪
L(Ed, τ), where for σ ∈ Gal(Kd/k) one has

L(Ed, σ) ∶= {γ ∈ Sp2 ∣γ−1αγ = σα for all α ∈ End(Ed) ⊗Q}. (4.1)

This induces a decomposition STk(Ed) = ST(Ed,1) ∪ ST(Ed, τ) that can be explicitly deter-
mined. For the case Cd = C1, we have

L(E1,1)(C) = {A ∈ M2(C)∣AtJ2A = J2, A
−1J2A = J2, det(A) = 1}

= {( c b
−b c

) ∣ c, b ∈ C, c2 + b2 = 1} .

Then, a maximal compact subgroup of L(E1,1)(C) is

ST(E1,1) = {( cos(2πr) sin(2πr)
− sin(2πr) cos(2πr)) ∣ r ∈ [0,1]} .

Analogously,

L(E1, τ)(C) = {A ∈ M2(C)∣AtJ2A = J2, A
−1J2A = −J2, det(A) = 1}

= {(ic ib
ib −ic) ∣ c, b ∈ C, c2 + b2 = 1} .

Then, a maximal compact subgroup of L(E1, τ)(C) is

ST(E1, τ) = ST(E1,1) ⋅
1√
2
(i −i
i −i) .
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Notice that given the twit φ ∶ C ′

d → Cd we have φ∗ ∶ J(C ′

d) → J(Cd) and then L(J(C ′

d), τ) =
φ−1
∗
L(J(Cd), τ)τφ∗. That is conjugated by φ∗ to L(J(Cd), τ)τφ∗φ−1

∗
= L(J(Cd), τ)ι(ξ−1

τ ).
Then, we have

ASTk(C ′

d) = ASTk(E3) ⋅ ι(H).
from which follows

ST(C ′

d) = (ST(E1))3 ⋅ ι(H)

= (ST(E1,1))3 ((
1 0
0 1

)
3

∪ 1√
2
(i i
i −i)

3

) ⋅ ι(Gal(L/Kd))

= (ST(E1,1))3 ⋅ ι(Gal(L/k))
= (ST(E1,1))3 ⋅ ι(H) .

For the case Cd = C7, we have

L(E7,1)(C) = {A ∈ M2(C)∣AtJ2A = J2, A
−1K2A =K2, det(A) = 1}

= {(c − b 4b
−2b c + b) ∣ c, b ∈ C, c2 + 7b2 = 1} .

Thus, a maximal compact subgroup of L(E7,1)(C) is

ST(E7,1) = {(
cos(2πr) − 1

√

7
sin(2πr) 4

√

7
sin(2πr)

− 2
√

7
sin(2πr) cos(2πr) + 1

√

7
sin(2πr)) ∣ r ∈ [0,1]} .

Analogously,

ST(E7, τ) = {A ∈ M2(C)∣AtJ2A = J2, A
−1K2A = −I2 −K2, det(A) = 1}

= {( ic − ib 4ib
ic
2 + 3ib

2 ib − ic) ∣ c, b ∈ C, c2 + 7b2 = 1} .

Thus, a maximal compact subgroup of L(E7, τ)(C) is

ST(E7, τ) = ST(E7,1) ⋅ (
i −i
0 −i) .

Hence, again

ST(C ′

d) = (ST(E7))3 ⋅ ι(H)

= (ST(E7,1))3 ((
1 0
0 1

)
3

∪ (i −i
0 −i)

3

) ⋅ ι(Gal(L/Kd))

= (ST(E7,1))3 ⋅ ι(Gal(L/k))
= (ST(E7,1))3 ⋅ ι(H) .
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Remark 4.2.4. The Sato-Tate group only depends on the pair (G,H) associated to the
twists, and not on the field of definition. Hence, the Sato-Sate distributions depends also
only on the pair (G,H).

4.3 The Sato-Tate distributions

Since we know that the Generalized Sato-Tate conjecture holds for the twists of the Fermat
and Klein quartics and we have computed the Sato-Tate groups we can compute the sequence
of moments of the Sato-Tate distributions computing the sequence of moments of the distri-
bution of the characteristic polynomials of the Sato-Tate groups, because both coincide by
corollary (4.1.2). In [21] is also directly computed the Sato-Tate distribution of these twists
via the study of the representation afforded by the GQ̄−module Hom(Ed,Jac(Cd)).

The moments of a closed subgroup G ⊆ USp(6) are defined by

Mn,i[G] = ∫
g∈G

ai(g)ndµ(g) ,

where ai(g) is the ith coefficient of the characteristic polynomial of g and dµ denotes the
Haar measure of G. If the connected component G0 of G is conjugate to a certain embedding

ι ∶ U(1) = {e2πir∣r ∈ [0,1]} ↪ USp(6)

then

Mn,i[G] = 1

[G∶G0] ∑
g∈G/G0

∫
1

0
ai(hg(r))ndr , (4.2)

where

hg ∶ [0,1] → gG0 , hg(r) ∶= gι(e2πir) .

We have performed numerical integration on the expression (4.2) for each of the groups of
theorem (4.2.3) corresponding to the possibilities for the pairs (G,H). Also notice that, by
[35] the moments of a Sato-Tate distribution take values that are interger numbers, so via
numerical integration we can obtain exact values of the moments.

Finally, we find 48 different distributions for the twists of the Fermat quartic, among
them, only 27 can be realize by twists over Q. For the Klein quartic we find 22 different
distributions, where only 9 can be realize by twists given by equations defined over Q. See
the obstruction for getting equations over Q in sections (3.1) and (3.3). In the Apendix, in
tables (5.6) and (5.8), we show the first terms of the moments sequences obtained for this
distributions.
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4.4 Example curves

In the Apendix, in tables (5.7) and (5.9), we show examples curves for each of the pairs
(G,H) and then example curves of each of the distributions. In (5.7) we show, for the
Fermat quartic, the pairs (G,H) by generators as in section 3 because in that case only
the isomorphism classes of the groups G and H do not completly determine the pair. We
also show the equation of an example twist for each pair defined over a field k, that we take
equal to Q when is possible, and the Sato-Tate distributions of the twist when we consider
it defined over k or k(i). We have enumerated the distributions in (5.6). The field L of
definition of the twist can be computed comparing the example curves with the equations in
theorems (3.1.7), (3.1.8) and (3.1.9).

In (5.9) we show, for the Klein quartic, the isomorphism class of the groups G and H for
each pair, that in this case it is enought for identifying a pair (G,H). We also show example
twists with equations over Q when it is possible that we computed using the classification
of the twists of the Klein quartic in section 3.3. The field L of definition of the twists is
especified in each case.

For the last case of the Klein quartic, the pair (< 336,>,< 168,>), we did not computed
the twists in section 3.3, but even in this case we can provide an example curve using the
results in [29].

Proposition 4.4.1. (Theorem 2.1, [29]) Given an elliptic curve E ∶ y2 = x3 + ax + b defined
over a number field k one has the twists XE(7) of the Klein quartic:

ax4 + 7bx3z + 3x3y2 − 3a2x2z2 − 6bxyz2 − 5abxz3 + 2y3z + 3ay2z2 + 2a2yz3 − 4b2z4 = 0.

Moreover, the minimal field of definition of any isomorphism from the Klein quartic to XE(7)
is the field of definition of the 7th−torsion of the elliptic curve E.

In [45] is proven that the Galois representation corresponding to the 7th−torsion of the
elliptic curve y2 = x3 − 2x + 1 with conductor 40 is surjective, and then we get an example
curve for the pair (< 336,>,< 168,>) using this curve and previous proposition.

Unfortunately, this nice parametrization of the twists XE(7) does not cover all the twists
of the Klein quartic, since the twists of the Klein quartic are in correspondence with projective
Galois representations ρ ∶ Gk → PGL2(F7) (continuous and with cyclotomic determinant,
[14]) and not all of such representations come from the 7−torsion of an elliptic curve.



68CHAPTER 4. THE SATO-TATE CONJECTURE FOR THE TWISTS OF THE FERMATANDKLEIN QUARTICS



Chapter 5

The Sato-Tate conjecture for the
Fermat hypersurfaces

In this chapter we prove the generalize Sato-Tate conjecture for the Fermat hypersurfaces
Xm
n ∶ xm0 + xm1 + . . . + xmn+1 = 0 ⊆ Pn+1 when we consider them defined over the number

field Q(ζm). Moreover, we compute the Sato-Tate groups STQ(Xm
n ). For this purpose

we use a strong result of Delinge about the action of the Frobenius elements in the étale
cohomoly of these varieties, [11], and an interpretation due to Weil of the Jacobi sums as
grossencharakters, [61]. Up to our knowledge, these are the first cases for which the generalize
Sato-Tate conjecture is proven for varieties of dimension greater than 1, that are not abelian
varieties. Finally, as an example, we study the case with n = 1 and m = 6, that is a genus 10
curve.

5.1 Étale cohomology

All the results in this section are well-known and reproduced here for completness. They
can be found in, [7], [11],[27], [28], [60].

Let Xm
n ∶ xm0 + xm1 + . . . + xmn+1 = 0 ⊆ Pn+1 be a Fermat hypersurface of dimension equal to

n. Let us denote A ∶= Pn+1
µm where µm is the set of m−th roots of the unity, then Ã ∶= A⋊Sn+2

is isomorphic in a natural way to the automorphisms group of Xm
n . Let us fix ζm ∶= e2πi/m ∈

µm ⊆ C and let us define the group of characters of A as:

Ǎ ∶= {a = (a0, . . . , an+1) ∈ (Z/mZ)n+2 ∣
n+1

∑
i=0

ai = 0 modm} ,

where (a, (ζr0m , . . . , ζrn+1m )) Ð→ ∏n+1
i=0 ζ

airi
m . Consider the subset:

Amn ∶= {a ∈ Ǎ ∣ ai ≠ 0∀i ∈ {0, . . . , n + 1}} .

69
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Fix k = Fp with p ≡ 1 modm and a prime number l ≡ 1 modm. Let χ be a character of
k× of exact order m. Given a ∈ Amn we define the Jacobi sum:

J(m) (a) = (−1)n ∑
(v1, . . . , vn+1) ∈ (k×)n+1

1 + v1 + . . . + vn+1 = 0

χ (v1)a1 . . . χ (vn+1)an+1 ∈ Q (ζm) ⊆ Ql.

When it is clear from the context we omit the subcript m. We have ∣J(a)∣ = pn/2.

Remark 5.1.1. This Jacobi sum actually is the one defined in [27] as

J (χa1 , . . . , χan+1) .

Notice that the definition that we gave of a Jacobi sum depends on the choice of the character
χ. This ambiguity is clarified with the next alternative definition given in [61]. Since p ≡
1 modm, it is completly split in Q(ζm), so p = p1p2...pφ(m), if we fix a prime, say p1, we take
the only character χp1 such that for every integer x prime to p1 in Q(ζm), χp1(x) is the only
root of the unity in Q(ζm) satisfying:

χp1(x) ≡ x(p−1)/m(mod p1).

So, make a choice of the character χ is equivalent to make a choice of the a prime pi.

Theorem 5.1.2. (Deligne) Let be Vω ∶=Hω
et (Xm

n ,Ql). Then:

dimQl
Vω =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if ω ≠ nandω is odd
1 if ω ≠ nandω is even

∣Amn ∣ = (m−1)n+2−(m−1)
m if ω = nandω is odd

1 + ∣Amn ∣ = 1 + (m−1)n+2+(m−1)
m if ω = nandω is even

Moreover, in the case ω = n one has the descomposition in 1−dimensional vector spaces:

Vn = (⊕a∈Am
n
Va) ⊕ { 0 fornodd

Ql forn even

And the arithmetic Frobenius of a prime p ≡ 1 modm acts on Va as multiplication by
the Jacobi sum J (a). When n is even the action in the 1-dimensional extra vector space is
trivial. If p ≡ tmodm then ρl(Frobp)(Va) = Vta.

Proposition 5.1.3. If σ ∈ Sn+2 is a permutation and a ∈ Amn , then J (σ (a)) = J (a).

Lemma 5.1.4. If a ∈ Am0 , then J (a) = ±1. If m is odd, it is always equal to 1, and if m is
even it is equal to 1 if and only if p ≡ 1 mod 2m or a0 is even.
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Theorem 5.1.5. Assume n ≥ 2 and s, t ≥ 1 with s + t = n. Put

Ars,t ∶= {(b, c) ∈ Ars ×Art ∣ bs+1 + ct+1 = 0} ,

and define the maps

Ars,t Ð→ Arn ∶ (b, c) Ð→ b#c ∶= (b0, . . . bs, c0, . . . ct)
Ars−1 ×Art−1 Ð→ Arn ∶ (b′, c′) Ð→ b′ ∗ c′ ∶= ((b′0, . . . , b′s, c′0, . . . c′t)) .

Then,
i) Let a ∈ Arn and t ∈ (Z/rZ)× be arbitrary elements, and let σ be the automorphism of

Q (ζ) defined by ζ Ð→ ζt. Then J (ta) = σ (J (a)).

ii) It has J (b#c) = χ (−1)bs+1 J (b)J (c).
iii) And J (b′ ∗ c′) = qJ (b′)J (c′).

5.2 Jacobi sums

We fix n ≥ 1, m ≥ 3 and p ≡ 1 modm if m is odd and p ≡ 1 mod 2m if m is even. We say that
a, b ∈ Amn are conjugate if up to permutation aj + bj = m with j ∈ {0,1, ..., n + 1}, and in this
case J(a) and J(b) are complex conjugate numbers. For i ∈ {1,2, ..., k = ⌊m−1

2
⌋}, we define

Ni(a) as the number of aj’s equal to i minus the number of aj’s equal to m − i. We fix the
notation Ji = J(1, i,m − 1 − i), however, sometimes we do an abuse of notation and we will
write Jm−1−i = Ji, and we set J0 =

√
p. It is well-known that J(a) can be writen as a product

of Jacobi sums (up to p factors and a sign ±1) of elements in Am1 , [53], [54]. But next lemma
is a little bit stronger because it proves that actually is enough with consider the Ji that we
have alredy defined.

Lemma 5.2.1. Given a ∈ Amn there exist integers b1, ..., bk ∈ Z such that

J(a) = p
n−b1−...−bk

2 J b11 ⋅ ... ⋅ J bkk .

Proof. Let us first suppose m = 2k + 1 is odd. Then, using the relations ii) and iii) in
theorem 5.1.5 we will need integers b1, ..., bk such that

2b1 + b2 + ... + bk = N1(a) (5.1)

−b1 + b2 = N2(a)
−b2 + b3 = N3(a)

...

−bk−2 + bk−1 = Nk−1(a)
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−bk−1 + 2bk = Nk(a).
Then, we can write

bk−1 = 2bk −Nk(a)
bk−2 = 2bk −Nk(a) −Nk−1(a)

...

b2 = 2bk −Nk−1(a) −Nk−2(a) − ... −N3(a)
b1 = 2bk −Nk−1(a) −Nk−2(a) − ... −N3 −N2(a)

and if we substitute in (5.1):
k

∑
j=1

jNj(a) =mbk,

since ∑k
j=1 jNj(a) = ∑n+1

i=0 ai ≡ 0 modm we get an unique solution with all bi ∈ Z.
If m = 2k + 2 is even, we look for integers b1, ..., bk such that

2b1 + b2 + ... + bk = N1(a) (5.2)

−b1 + b2 = N2(a)
−b2 + b3 = N3(a)

...

−bk−2 + bk−1 = Nk−1(a)
−bk−1 + bk = Nk(a)
bk ≡ Nk+1(a)mod 2

Then, we can write
bk−1 = bk −Nk(a)

bk−2 = bk −Nk(a) −Nk−1(a)
...

b2 = bk −Nk−1(a) −Nk−2(a) − ... −N3(a)
b1 = bk −Nk−1(a) −Nk−2(a) − ... −N3(a) −N2(a)

and if we substitute in (5.2):
k

∑
j=1

jNj(a) = (k + 1)bk,

since ∑k
j=1 jNj(a) + (k + 1)Nk+1(a) = ∑n+1

i=0 ai ≡ 0 mod (2k + 2) we get an unique solution with
all bi ∈ Z and bk ≡ Nk+1(a)mod 2. ◻
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Then, we can write

J(a) = ±p
n−b1−...−bk

2 J b11 ...J
bk
k = ±p

n−b1−...−bk
2 fa(J1, ..., Jk)

where the sing is computed using lemma (5.1.4) and fa ∈ Z [x1, ..., xk] is a monomial where
the bi’s can be computed from the previous linear system.

Lemma 5.2.2. For all i ∈ {1, ..., k} there exists a ∈ Amn such that J(a) = ±pn−1
2 Ji if n is odd

or J(a) = ±pn−2
2 JiJi+1 if i ≠ k or J2

k when n is even.

Proof. If n is odd we use the relation iii) of the theorem 5.1.5 and the lemma 5.1.4 for
a = (1, i,m− 1− i,1,m− 1, ...,1,m− 1). If n is even we use the former argument and then we
only need to prove the case for n = 2. For i ≠ k we take a = (1, i,1,m− i− 2) and for i = k we
take a = (1, k,1, k). ◻

Next lemma is a consequence of the results in [61].

Lemma 5.2.3. The Ji’s, where i ∈ {1,2, ..., k}, are nontrivial grössencharakters.

A grössencharakteres is a character on K in the sense of Hecke, that is a character of the
set of fractional ideals of Q(ζm) that are prime to m,

Ji ∶ IQ(ζm)(m) Ð→ C∗. (5.3)

In [61] is also proven that
Ji(a)OK = aω((1,i,m−1−i))

where
ω(1, i,m − 1 − i) ∶= ∑

t∈(Z/mZ)×
ct(i)σ−1

−t =

= ∑
t∈(Z/mZ)×

({ t

m
} + { it

m
} + {(m − 1 − i)t

m
} − 1)σ−1

−t (5.4)

and where {⋅} denotes the fractional part.
However, formula (5.3) is only an equality of ideals, next lemma (theorem 2.1.14, [5]) will

be useful for explicity evaluating Jacobi sums.

Lemma 5.2.4. One has the next congruence modulo p̄:

Ji(p) ≡ (−1)fχm+ip (−1)((i + 1)f
f

)mod p̄,

where f = p−1
m .
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Theorem 5.2.5. Given d a positive divisor of m and l ∈ {0,1, ..., md − 2}, then we have the
equality:

χp(dd)Jl(p)Jm
d
+l(p)J 2m

d
+l(p)...J (d−1)m

d
+l
(p) = χ

(d−1)(m−d)
2

p (−1)Jdl(p)Jdl+1(p)...Jdl+d−1(p).

Proof. We will first prove using relation (5.4) the equality of ideals:

Jl(p)Jm
d
+l(p)J 2m

d
+l(p)...J (d−1)m

d
+l
(p)OK = Jdl(p)Jdl+1(p)...Jdl+d−1(p)OK .

The exponent in which a prime σ−1−t p appear in the left-hand size is:

{ t

m
} + { lt

m
} + {(m − l − 1)t

m
}+

+{ t

m
} + { lt

m
+ t

d
} + {(m − l − 1)t

m
− t

d
}+

.........

+{ t

m
} + { lt

m
+ (d − 1)t

d
} + {(m − l − 1)t

m
− (d − 1)t

d
} =

d{ t

m
} + {dlt

m
} + d − 1

2
+ {d(m − l − 1)t

m
} + d − 1

2
,

while in the right-hand size:

{ t

m
} + {dlt

m
} + {(m − dl − 1)t

m
}+

+{ t

m
} + {(dl + 1)t

m
} + {(m − dl − 2)t

m
}+

.........

+{ t

m
} + {(dl + d − 1)t

m
} + {(m − dl − d)t

m
} =

d{ t

m
} + d − 1 + {dlt

m
} + {d(m − l − 1)t

m
} ,

since the second term in each row and the third in the one above sum 1. And then both
ideals are equal.

Now we use lemma (5.2.4) for computing the equality in the statement of the theorem.
The left-hand size is congruent modulo p̄ with:

ddf(−1)dfχdm+dl+
m
d

d(d−1)
2

p (−1)((l + 1)f
f

) ...((
d−1
d m + l + 1)f

f
) ≡
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ddf(−1)dfχdm+dl+
m
d

d(d−1)
2

p (−1) 1

(f !)d
((l + 1)f)!

(lf)!
((md + l + 1)f)!
((md + l)f)!

...
(( (d−1)m

d + l + 1)f)!
(( (d−1)m

d + l)f)!
≡

(−1)dfχdm+dl+
m
d

d(d−1)
2

p (−1) ddf

(f !)d
((l + 1)f)!

(lf)!
(p−1
d + (l + 1)f)!
(p−1
d + lf)!

...
( (d−1)(p−1)

d + (l + 1)f)!
( (d−1)(p−1)

d + lf)!
≡

(−1)dfχdm+dl+
m
d

d(d−1)
2

p (−1) ddf

(f !)d
((l + 1)f)!

(lf)!
(−1
d + (l + 1)f)!
(−1
d + lf)! ...

(− (d−1)
d + (l + 1)f)!

(− (d−1)
d + lf)!

≡

(−1)dfχdm+dl+
m
d

d(d−1)
2

p (−1) 1

(f !)d
((dl + d)f)!

(dlf)! ≡

(−1)dfχdm+dl+
m
d

d(d−1)
2

p (−1)((dl + 1)f
f

) ...((dl + d)f
f

) ,

that is just the right-hand size of the equality of the theorem. ◻

Remark 5.2.6. For d = 1 and d = m we just get Jl(p) = Jl(p) for all l = 0, ..., k. For
considering all these relations for the different divisors d is enough with taken d equal to the
different primes that divide m.

Given a grössencharakter J ∶ IQ(ζm)(m) Ð→ C∗ we can see the unitarized character
X ∶= J

∣J ∣ ∶ IQ(ζm)(m) Ð→ U(1) as a random variable from the set of prime ideals of Q(ζm) not

dividing m on the unitary group U(1).

Next lemma gives the distribution of this random variables. It is corollary 1.9 in [16] and
it is a consequence of the Tauberian theorem of Wiener-Ikehara, [48] and of the theorem of
Hecke that states that the L−function of a nontrivial Hecke character if holomorphic and
does not vanish for R(s) ≥ 1, [30].

Lemma 5.2.7. For a nontrivial grossencharacter J , the X(p) ∶= J(p)
∣J(p)∣ are µ−equidistributed

on U(1), where µ is the Haar measure on U(1).

Remark 5.2.8. At most there can be φ(m)/2 independent random variables among the k

characters Xi(p) = Ji(p)
∣Ji(p)∣

for i ∈ {1,2, ..., k}, because ∣(Z/mZ)×∣ = φ(m) and ct(i)+ cm−t(i) = 1

for all i ∈ {1,2, ..., k} and t ∈ (Z/mZ)×. Notice, that in fact, the rank of the matrix C ∶=
{ct(i)}i, t = 1..k, (t,m) = 1 plus 1 is equal to r, the number of independent random variables
among the characters Xi. At the end of the appendix we show these matrix for m = 5, ...,25.

Definition 5.2.9. We say that a natural number m ≥ 3 is maximal if r = φ(m)/2. And
we say that m good if we can choose r of the characters Xi: Xi1 , ...,Xir such that the rows
of the matrix C are integer linear combination of the rows C(i1), ...,C(ir), so we can write
Xi = ΨiX

β1
i1
...Xβr

ir
for some βi ∈ Z and Ψi an order m character.
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Remark 5.2.10. If m is a prime number and is maximal then it is good. And if p is a
prime that is maximal, then 2p is maximal and good by theorem (5.2.5) with d = 2.

Example 5.2.11. Let us take m = 6, then, see table for m = 6 at the end of the appendix,
we have J1OK = J2OK, so r = φ(m)/2 and 6 is a maximal number and a good number. Now
we can apply theorem (5.2.5) with d = 2 and we get: J2(p) = χ(−4)J1(p).

Example 5.2.12. Let us take m = 9, then, see table for m = 9 at the end of the appendix,
we get that there are 3 = φ(9)/2 independent random variables: J1, J2 and J4, and we have
J1OK = J3OK. We apply theorem (5.2.5) with d = 3 and we get: J1(p) = χ(33)J3(p).

Conjecture 5.2.13. Every natural number m ≥ 3 is maximal and good. And all the char-
acters Ψi in definition (5.2.9) have the form χp(Ni) for some Ni ∈ Z.

We checked using magma that until m = 1000 every natural number is maximal.

Some evidences of the conjecture (5.2.13).

1. Every m ≥ 3 is maximal: the cases already proven and the shape of the matrix C =
{ct(i)}, see these matrices at the end of the appendix for m = 5, ...,25. Moreover, we
expect that all the relations among the Ji come from theorem (5.2.5).For each prime
q dividing m we get aproximately m

2q relations (notice that Ji = Jm−i−1) and we would

need k − φ(m)
2 ∼ 1

2(m − φ(m)) = m
2 (1 −∏ q−1

q ) ∼ m
2 ∑ 1

q relations.

2. Every m ≥ 3 is good: if Jni = ∏r
1 J

as
is

it seems natural to figure out that n ∣ as and then

Ji = Ψ∏r
1 J

as/n
is

for some character that could be computed using lemma (5.2.4).

3. The character Ψi in definition (5.2.9) have the form χp(Ni) for some Ni ∈ Z if effectively
all the relations among the Ji come from the ones described in theorem (5.2.5).

4. If m is prime the conjecture agrees with the results in [17].

If m is good we fix next notation. Let us call Is for s ∈ {1, ..., r} to r of the Ji that
are independent and generate the others. Then there will be exist monic monomials hi ∈
Z[x1, ..., xr] such that Ji = hi(I1, ..., Ir). Then, given any a ∈ Amn one has

Ja = fa(J1, ..., Jk) = fa(h1(I1, ..., Ir), ..., hk(I1, ..., Ir)) = ga(I1, ..., Ir).

We define

Bm
n =

⎧⎪⎪⎨⎪⎪⎩

Amn if n is odd

Amn ∪ 0 if n is even

where 0 = (0, ..,0) and put J0 = g0(I1, ..., Iφ(m)/2) = pn/2.
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5.3 Sato-Tate groups

Given a prime l and a number field k over which Xm
n is defined, the Sato-Tate group STk(Xm

n )
is defined ([16], [51]) as a maximal compact subgroup of G1

l ⊗ι C where ι ∶ Ql ↪ C is an
embedding and G1

l is the Zariski clousure of ρl(Gk1), where G1
k is the kernel of the of the

l−adic cyclotomic character in Gk = Gal(k̄/k) and ρl is the Galois representation

ρl ∶ Gk Ð→ Aut(Hn
et(Xm

n ,Ql)) ⊆ GLd(Ql),

where d = dimQl
(Hn

et(Xm
n ,Ql)).

Let p be a prime of k lying over a prime number p. For equidistribution results we can
forget a finite number of primes, so we can assume that p is not ramified. Moreover, the set
of primes in k such that the prime in Q over it lies has inert degree different from 1, has
density zero. Hence, we can assume p is completly splitting. If k = Q(ζm), the a prime p
is completly splitting if and only if p ≡ 1 modm. Therefore, we can use the results in the
last sections for computing the image of the Frobenius element Frobp (the inverse of the
geometric Frobenius) by the representatioln ρl for a prime l ≡ 1 modm.

Proposition 5.3.1. The following Sato-Tate groups are isomorphic:

STQ(Xm
n ) ≃ STQ(Xm

n ).

Proof. By lemma (5.2.2) we have the isomorphism over Q(ζm). Now, applying last part of
theorem (5.1.2) and proposition (11.4) in [7] we get:

STQ(Xm
n ) ≃ STQ(ζm)(Xm

n ) ⋊Gal(Q(ζm)/Q) ≃ STQ(ζm)(Xm
1 ) ⋊Gal(Q(ζm)/Q) ≃ STQ(Xm

n ).

◻

Proposition 5.3.2. If m is good, then the connected component (STQ(Xm
n ))0 is isomorphic

to:
(STQ(Xm

n ))0 ≃ U(1)r.
More precisely, as a subgroup of USpd or Od, it is conjugated to

{diag((ga(θ1, ..., θr))a∈Bm
n
)∣θi ∈ S1} .

.

Proof. By theorem (5.1.2) and lemma (5.2.7), the Zariski clousure of G1
l is

G1,Zar
l = {diag((ga(x1, ..., xr))a∈Bm

n
)∣xi ∈ Q∗

l , xix̄i = 1}
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A maximal compact subgroup of G1,Zar
l ⊗Ql

C is given by

{diag((ga(θ1, ..., θr))a∈Bm
n
)∣θi ∈ S1} .

And lemma 5.2.2 ensure that all the θi appear. ◻

Proposition 5.3.3. If conjecture (5.2.13) holds and all the characters in definition (5.2.9)
come from the relations in theorem (5.2.5), then:

STQ(Xm
n ) ≃ U(1)r ⋊Gal(L/Q)

where L = K( m

√
(−1) (q−1)(m−q)2 qq ∶ q ∣ m and m

q > 2) and K = Q(ζm) if m is odd and K =
Q(ζ2m) if m is even. Moreover r = φ(m)/2. More precisely,

STQ(Xm
n ) ≃ (U(1)r × ∏

q∣m, m
q
>2

Cm
q
) ⋊Gal(K/Q).

Proof. First we will prove that the minimal field L over which STL(Xm
n ) is connected is the

one given in the statement of the proposition. Notice that K ⊂ L by theorem (5.1.2) and
lemma (5.1.4). Then, for STL(Xm

n ) to be connected with K ⊂ L, we need χp(qq) = 1 for all
primes q ∣ m and such that m

q > 2 (see theorem (5.2.5)) and for all primes p that lie over a

prime p that is completely splitting in L. The minimal field extension L/Q(ζm) such that

all the primes p that are completly splitting satisfy qq
p−1
m ≡ 1 modp is that one in which q is

a m/q−th power. Then L is the one specified above and we have:

STK(Xm
n ) ≃ U(1)r × ∏

q∣m, m
q
>2

Cm
q
.

Finally, proposition (11.4) in [7] implies:

STQ(Xm
n ) ≃ STK(Xm

n ) ⋊Gal(K/Q).

◻

Notice that even in the case in which conjecture (5.2.13) does not hold we can compute
the Sato-Tate group of any Fermat hypersurface Xm

n ∶ xm0 + ... + xmn+1 = 0 using the results in
previous sections. For computing the Sato-Tate group STQ(ζm)(Xm

n ) we just have to use the-
orem (5.1.2) of Deligne that describes the action of the arithmetic Frobenius on H1

et(Xm
n ,Ql)

via Jacobi sums. And then apply lemmas (5.1.5) and (5.2.4) and relation (5.4) for computing
all the relation among the Jacobi sums. Finally, for computing STQ(Xm

n ) we can just apply
last part of theorem (5.1.2) that is proposition (11.4) in [7]. In section (5.5) we show an
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example of the computation of the Sato-Tate groups of the Fermat hypersurfaces X6
1 and X6

2 .

Moreover, from the computation of the Sato-Tate groups via the method described above
and when the conjecture holds, see next section, it is easy to compute the Sato-Tate distri-
butions for the Fermat hypersurfaces Xm

n . In section (5.5) we show also an example of how
to compute the Sato-Tate distributions.

5.4 Proof of the conjecture

First at all, notice that the Sato-Tate conjecture for the Fermat hypersurfaces Xm
n with n = 1

follows by proposition (4.1.1) due to Johansson, [34], and the fact that the Jacobian of a
Fermar curve Xm

1 is isogenous to the product of some simple abelian varieties with complex
multiplication, [36], [47], [52].

Theorem 5.4.1. The Generalized Sato-Tate Conjecture holds for the Fermat curves Xm
1 ∶

xm0 + xm1 + xm2 = 0 over Q.

But we can provide another proof, if we consider Xm
1 defined over Q(ζm), that is gener-

alizable for n ≥ 1 when m is a good number, see definition (5.2.9).
Proof. If m is good then the equidistribution part of the conjecture over Q(ζm) holds by the
description of the Sato-Tate group done in previous section and lemma (5.2.7). Moreover we
have that the algebraic Sato-Tate conjecture holds since we have write G1,Zar

l as an algebraic
group, then by the remark in definition 2.4 in [2] we get the independence on the prime l. ◻

Corollary 5.4.2. If m is a good number then the generalize Sato-Tate conejcture holds for
the Fermat hypersurfaces Xm

n /Q(ζm).

5.5 An example

Let us consider first the case with n = 1 and m = 6. Then X6
1 ∶ x6

0 + x6
1 + x6

2 = 0 is a genus 10
curve. We will compute the Sato-Tate group STQ(X6

1) and we will check that in this case
the Munford-Hodge conjecture and the Algebraic Sato-Tate conjecture hold for it.

We have that the dimension dim(H1
et(X6

1 ,Ql)) = 20 and we have that:

A6
1 = {a1 = (1,1,4), a3 = (1,4,1), a5 = (4,1,1),

a7 = (1,2,3), a9 = (1,3,2), a11 = (2,1,3), a13 = (2,3,1), a15 = (3,1,2), a17 = (3,2,1),
a19 = (2,2,2), a20 = (4,4,4),
a8 = (5,4,3), a10 = (5,3,4), a12 = (4,5,3), a14 = (4,3,5), a16 = (3,5,4), a18 = (3,4,5),
a2 = (5,5,2), a4 = (5,2,5), a6 = (2,5,5)}
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Applying theorem 5.1.5, we have: J(a0, a1, a2) = J(σ(a0, a1, a2)) for all σ ∈ S3 and if J1 =
J(1,1,4) and J2 = J(1,2,3), we have J(2,2,2) = χ(−1)J2

2J
−1
1 where χ is a character of F×p of

exact order 6, so χ(−1) = 1 if p ≡ 1 mod 12 and χ(−1) = −1 if p ≡ 7 mod 12. Now, example
(5.2.11) gives us J2 = χ(−4)J1. Then,

STQ(ζ6)(X6
1) = {diag((θ, θ̄)3, (±ζa6 θ,±ζ−a6 θ̄)6,±ζ2a

6 θ,±ζ−2a
6 θ̄) ∣ θ ∈ S1, a ∈ {0,2,4}} ≃

≃ U(1) ×C2 ×C3 ⊆ Sp20(Ql).

This group is symplectic with respect to the matrix J = (J2)10 where J2 = ( 0 1
−1 0

). We

will see that the minimal field L over which the Sato-Tate group is connected is Q(ζ12,
3
√

2).
As in the proof of proposition (5.3.3) and by lemma (5.2.5) we get a = 0 if and only if
χ(4) = χ2(2) = 1, that is, if 2 is a cube modulo p, because χ has exact order 6. And 2 is
a cube modulo p, if and only if p is completly split in Q(ζ3,

3
√

2). If we joint the condition
p ≡ 1 mod 12, for getting χ(−1) = 1, we get that the minimal field L over which STL(X6

1) is
connected is L = Q(ζ12,

3
√

2) = Q(i, ζ3,
3
√

2), hence

STQ(ζ12, 3
√

2)(X6
1) = {diag((θ, θ̄)10) ∣ θ ∈ S1} ≃ U(1) ⊆ Sp20(Ql),

where we have φ(6)/2 = 1 copies of U(1).

For computing the Sato-Tate group over Q, we fix a basis {v1, v2, ..., v20} of H1
et(X6

1 ,Ql)
such that vi ∈ Vai as in theorem 5.1.2 and such that in this basis the Galois representation
ρ ∶ GQ → GL(H1

et(X6
1 ,Ql)) ⊆ Sp20(Ql) is symplectic respect to the matrix J . Then, for

computing STQ(X6
1) is enough to compute the image by ρ of an element τ ∈ Ker(χl) such

that τ(ζ3) ≠ ζ3. By theorem 5.1.2, we have:

ρ(τ) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 η2

η1 0
⋱

0 η20

η19 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

and since it has to be symplectic with respect to the matrix J we have η2i = −η̄2i−1 ∈ U(1)
for all i ∈ {1, ...,10}. So, finally, STQ(X6

1) ≃ U(1) ×C2 ×S3. And for this Sato-Tate group we
have:

det(T ⋅ Id − ρ(Frobp)) =
⎧
⎪⎪
⎨
⎪⎪
⎩

(T 2
− (θ + θ̄)T + 1)3(T 2

− χ(−1)(χ(4)θ + χ̄(4)θ̄)T + 1)6(T 2
− χ(−1)(χ2

(4)θ + χ̄2
(4)θ̄)T + 1) if p ≡ 1 mod 6

(T 2
+ 1)10 if p ≡ 5 mod 6
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Notice that if θ = cos(2πr)+ i sin(2πr) then θ+ θ̄ = 2 cos(2πr) and ζa3 θ+ζ−a3 θ̄ = cos(2πr−a2π
3 )

with a = ±1. Then, by Chebotarev’s density theorem we can compute the n−th moment of
the trace as follows:

Mn(a1) =
−1

12

2

∑
a=0
∫

1

0
[(6 cos(2πr) + 12 cos(2πr + a2π

3
) + 2 cos(2πr − a2π

3
))n

+(6 cos(2πr) − 12 cos(2πr + a2π

3
) − 2 cos(2πr − a2π

3
))n]d r.

We can compute in a similar fashion the moment sequence of the other random variables
ai with i ∈ {1, ...,10}. We only have to expand the above polynomials and integrate the
corresponding terms.

We can compute the Sato-Tate group, following a different approach, as in subsection
(4.2).

Lemma 5.5.1. The jacobian of the Fermat curve X6
1 ∶ x6

0 + x6
1 + x6

2 = 0 is isogenous over Q
to the next product of elliptic curves:

Jac(X6
1) ∼Q E6

1 ×E3
2 ×E3,

where
E1 ∶ y2 = x3 − 1, E2 ∶ y2 = x3 − 4, E3 ∶ y2 = 4x3 + 1.

Those elliptic curves are isomorphic to the first one and all of them have complex multiplica-
tion by Q(

√
−3). In particular, the endomorphism algebra End0(J(X6

1)) ∶= End(J(X6
1))⊗Q ≃

GL3(Q(
√
−3)) and it is defined over Q(ζ12,

3
√

2).

Proof. Let us consider the morphisms:

X6
1 → E1 ∶ (x ∶ y ∶ z) → (−x2z ∶ y3 ∶ z3),

X6
1 → E2 ∶ (x ∶ y ∶ z) → (xyz4 ∶ 2x6 + z6 ∶ x3y3),

X6
1 → E3 ∶ (x ∶ y ∶ z) → (−x2y2z2 ∶ 2x6 + z6 ∶ z6).

Now it is easy to check that the pullback of the regular differential of each of these elliptic
curves by these morphism and the ones coming from permuting the variables x, y, z generate
the full vector space Ω1(X6

1). We can check it for example with magma, [6]:

R<x,y,z>:=ProjectiveSpace(Rationals(),2);

F:=x^6+y^6+z^6;

C:=Curve(R,F);

G:=y^2*z-x^3+z^3;
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E:=Curve(R,G);

phi:=map<C->E|[-x^2*z,y^3,z^3]>;

Omega:=BasisOfHolomorphicDifferentials(E)[1];

W:=Pullback(phi,Omega);

W;

And we have the isomorphisms:

φ2 ∶ E2 → E1 ∶ (x, y) → (x/ 3
√

4, y/2),

φ3 ∶ E3 → E1 ∶ (x, y) → ( 3
√

4x, iy),
and we fix φ1 = id ∶ E1 → E1. ◻

It is easy to check as in (4.2) that the two components of the Lefschetz group of E1 are:

L(E1,1) = {( a b
−b a − b) ∣a2 + b2 − ab = 1, a, b ∈ R} ,

L(E1, τ) = {( ia ib
ib − ia −ia) ∣a2 + b2 − ab = 1, a, b ∈ R} .

If we conjugate by the matrix M= (−ζ
2
3 1

1 −ζ3
), we get:

MSTQ(E1,1)M−1 = {(θ 0
0 θ̄

) ∣ θ ∈ S1} ,MSTQ(E1, τ)M−1 = {(0 −θ̄
θ 0

) ∣ θ ∈ S1} .

Hence, we can take:

STQ(E10
1 ) = {(θ 0

0 θ̄
)

10

, (0 −θ̄
θ 0

)
10

∣ θ ∈ S1} .

We have that J(X6
1) is isogenous over Q to a twists of E10

1 . And by corolary 4.1 in [2] we
have that the Mumford-tate conjecture holds for J(X6

1). Then we are under the hypothesis in
theorem 6.1 in [2] so by remark 6.2 also in [2] we have that the algebraic Sato-Tate conjecture
holds for J(X6

1) with ASTQ(J(X6
1)) = L(J(X6

1)). Then we have:

STQ(J(X6
1)) = STQ(E10

1 )ι(H),

where H = ξ(Gal(Q(i, ζ3,
3
√

2)/Q(ζ3))), here ξσ = φ σφ−1 stands for the cocycle associated to
the twists:

φ = ((φ1)3, (φ2)6, φ3) ∶ E3
1 ×E6

2 ×E3 Ð→ E10
1 ,
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and

ι ∶ Aut(E10
1 ) → End(E10

1 ) → GL10(Q(
√
−3)) → GL(Tl(E10

1 )) = GL10(Tl(E1)) ⊆ Sp20(Ql)
is given by the composition of the natural previous morphisms and where the third one is
defined by:

1→ (1 0
0 1

) ,
√
−3→ (−1 −2

2 1
) .

Then we obtain the same Sato-Tate group previously computed. The advantage of the
first method is that allows us to compute the Sato-Tate groups of all the Fermat hypersurfaces
X6
n. So, for example, for n = 2 we have that the dimension dim(H1

et(X6
2 ,Ql)) = 106 and up

to permutation the jacobi sums that appear are:

J(1,1,1,3) = χ(−4)J2
1 , J(5,5,5,3) = χ̄(−4)J̄2

1

J(1,1,2,2) = χ(−1)χ2(−4)J2
1 J(5,5,4,4) = χ̄(−1)χ̄2(−4)J̄2

1

J(1,1,5,5) = 1

J(1,2,4,5) = χ(−1)
J(2,2,3,5) = χ(−4) J(4,4,3,1) = χ̄(−4)

J(2,2,4,4) = 1

J(2,3,3,4) = χ(−1)
J(1,3,3,5) = 1

J(3,3,3,3) = 1

J(0,0,0,0) = 1

And then, we have:

STQ(ζ6)(X6
2) = {diag((θ, θ̄)4, (±ζa6 θ,±ζ−a6 θ̄)6, (ζa6 , ζ−a6 )12, (±1)36, (1)26) ∣ θ ∈ S1, a ∈ {0,2,4}} ≃

≃ U(1) ×C2 ×C3.

Notice that this time we can see the Sato-Tate group like a subgroup of the orthogonal group
O53(Ql) if we do the change of basis that send the blocks:

diag(θ, θ̄) → ( cos(2πr) sin(2πr)
− sin(2πr) cos(2πr)) ,

where θ = cos(2πr) + i sin(2πr) and

diag(±ζa6 θ,±ζ−a6 θ̄) → ±( cos(2πr + 2π
3 ) sin(2πr + 2π

3 )
− sin(2πr + 2π

3 ) cos(2πr + 2π
3 )) ,

diag(ζa6 , ζ−a6 ) → ( cos(2π
3 ) sin(+2π

3 )
− sin(2π

3 ) cos(2π
3 ) ) .
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Appendix

The method described in chapter 1 for computing the twists of curves is not completely
explicit in the sense that we need to solve a Galois emebdding problem for each fixed curve.
And there is not known method for computing these solutions.

In this apendix we show an approach for computing such solutions. Instead of trying to
solve the Galois embedding problem:

Gk

Ψ

zzzz
����

Γ π
// Gal(K/k) // 1

(5.5)

we can try to solve the Inverse Galois problem Gal(L/k) ≃ G for each subgroup G of Γ such
that [G ∶ G ∩ Ker(π)] =∣ Gal(K/k) ∣ and then check what of these solutions provide also a
solution to (5.5). Neither there exists an algorithm for solving inverse Galois problems, but
this problem has been more considerably studied. Here, we show a correspondence that can
be useful in general for solving these problems. We establish a correspondence between the
solutions to a given Galois inverse problem and the set of rational points of a certain variety
that we show how to built.

Inverse Galois problems

The Inverse Galois problem, first proposed in the 19th century, is still unsolved, (see [33] for
a classical introduction to the subject):

Inverse Galois problem (IGP):“given a finite group G, determine when there exists
a Galois finite extension K/Q such that is Galois group Gal(K/Q) ≃ G”.

The expected answer is: always. E. Noether deeply studied the problem and formulated
it in the following terms:

85
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Noether problem (NP): “Let M = Q(x1, ..., xn) be the field of rational functions in n
indeterminates. The symmetric group Sn acts on M by permuting the indeterminates. Let
G be a transitive subgroup of Sn, and let K =G M be the subfield of G−invariant rational
functions of M . Is K a rational extension of Q? I.e., is K isomorphic to a field of rational
functions over Q?”.

Roughly speaking, the Noether problem ask for the existence of a generic polynomial
given by parameters such that parametrizes all the extensions over Q such that its Galois
group is isomorphic to G. Clearly, if the Noether Problem has an affirmative answer, G can
be realised as a Galois group over Q, and in fact over any Hilbertian field of characteristic
0, such as a number field. However a negative answer does not imply a negative one for the
(IGP). For example, it is known that the (NP) has a negative answer for the cyclic group C8,
while the answer to the (IGP) is affirmative by the Kroneker-Weber theorem. Some groups
for which (IGP) has been studied:

- for abelian groups (Kroneker-Weber),

- symmetric and alternate groups (Hilbert),

- p− groups with p an odd prime (Reichardt, Scholz),

- solvable groups (Shafarevic), however in this case the proof is not constructive,

- four of the Mathieu groups (Matzat & Al.)

- the monster group (Thompsom) and

- some linear groups (Arias-de-Reyna, Belyi, Dieulefait, Malle, Matzat, Shih, Vila,
Wiese...).

The Noether’s strategy is based on invariant theory, she looks for invariants of polyno-
mials whose splitting field has Galois groups isomorphic to the finite group G given. On the
other hand, we will attack the problem via a different perspective. We study the relations
that should satisfy the coefficients of a polynomial for having G as the Galois groups of its
splitting field.

The algorithm

Let G be a finite group, and let n be an integer such that there exists an embedding G↪ Sn,
with the property that the image is a transitive subgroup of Sn. The algorithm will be more
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efficient as we take n smaller as we can. From now on, we will see all the groups G like
transitive subgroups of permutations of some Sn. Let us consider the polynomial:

P (x) = xn − s1x
n−1 + s2x

n−2 + ... + (−1)nsn ∈ L ∶= Q(s1, s2, ..., sn),

and let be x1, ...xn its roots. Let us call L̃ = L (x1, ..., xn), G defines a natural left action on
L̃. Then Gal(L̃/L) ≃ Sn. And since Q is hilbertian, for almost all rational values that we
give to s1, .., sn we get P (x) to be an irreducible polynomial with Galois group of its splitting
field isomorphic to Sn. We look for necesarly and sufficient conditions on the s′is in such a
way that the polynomial P (x) has splitting field with Galois group over Q isomorphisc to
G and not to Sn.

Since L̃ is separable and by the primitive element theorem, there exists f ∈ L̃ such that
L̃ = Q (s1, ..., sn, f). Let Pf(s1, ..., sn, T ) ∈ L[T ] the minimal polynomial of f over the field
L. On the other hand, we have that L̃/GL̃ is a Galois extension, and Gal(L̃/GL̃) ≃ G.

Proposition 5.5.2. Let Q1, ...,Qn,Qn+1 ∈ Q be rational numbers such that Pf(Q1, ..,Qn,Qn+1) =
0, then the splitting field of the polynomial

P (x) = xn −Q1x
n−1 + ... + (−1)nQn,

has Galois group over Q isomorphic to a subgroup of G.

Proof. Since Gal(L̃/GL̃) ≃ G and Q is hilbertian the proposition follows.

Remark 5.5.3. The Galois group is isomorphisc to G if and only if for all maximal subgroups
H < G there is not a rational number Qn+2 such that Pg(Q1, ...,Qn,Qn+1,Qn+2) = 0 where
Pg(s1, .., sn, f, T ) is the minimal polynomial over GL̃ of a primitive element g of the field
extension HL̃/GL̃, because in that case the Galois group will be isomorphic to a subgroup of
H.

Proposition 5.5.4. Given a Galois extension K/Q such that Gal(K/Q) ≃ G, there exists
a polynomial xn − a1xn−1 + ... + (−1)nan, such that the splitting field is K and such that
Pf(a1, .., an, T ) = 0 has a rational solution.

Proof. Let be the composition ι ∶ Gal(K/Q) ∼→ G ↪ Sn. And let us define Gi = {g ∈
Gal(K/Q) ∶ ι(g)(i) = i}. As G is a transitive subgroup of Sn all these groups are conjugated.
Let be α1 ∈ G1K a primitive element of the extension G1K/Q, and let be αi ∈ GiK the
conjugates of α1. Then, the minimal polynomial of α1: xn − a1xn−1 + ... + (−1)nan = 0 has as
splitting field K and Pf(a1, .., an, f(α1, ..., αn)) = 0 with f(α1, ..., αn) ∈ Q.

Corollary 5.5.5. There is a correspondece between Galois field extension K/Q such that
Gal(K/Q) < G and rational solutions to the equation Pf(y1, .., yn, yn+1) = 0.
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The algorithm
Input: G

- Find n such that there exists an embedding G↪ Sn is a transitive way.

- Find a primitive element f . For example f = ∑g∈G
gx2x2

3...x
n−1
n always works.

- Find the minimal polynomial Pf : compute the conjugates of f and then the symmetric
functions on it.

- Find the maximal subgroups of G up to conjugacy.

- Find a primitive element gi for each one.

- Find the minimal polynomials Pgi .

Output: Pf(s1, ..., sn, f) and the Pgi(s1, ..., sn, f, gi).

Example 5.5.6. Let us consider G = ⟨(123)⟩ < S3. Let us take f = x2
1x2+x2

2x3+x2
3x1. Then:

Pf(s1, s2, s3, T ) = T 2 − (s1s2 − 3s3)T + 9s2
3 + s3

2 + s3
1s3 − 6s1s2s3.

Moreover, we can assume s1 = 0 and we get Pf = T 2 + 3s3T + 9s2
3 + s3

2 = 0, that can be rewrite
in the well-known condition: 4(−s2)3 − 27s2

3 = (2T + 3s3)2 is a square in Q.
For exactly having Galois group isomorphic to C3 and not 1 we just have to ask to

P (x) = x3 + s2x − s3 to not split completly in Q, because in this case the only maximal
subgroup is the trivial one and we can take g1 = x1 and we get

Pg1(s1, s2, s3, f, T ) = T 3 − s1T
2 + s2T − s3.

Example 5.5.7. Let us consider G =< (1234), (13) >< S4. Let us take f = x1x3+x2x4. Then:

Pf(s1, s2, s3, s4, T ) = T 3 − s2T
2 + (s1s3 − 4s4)T − (s4s

2
1 − 4s2s4 + s2

3).
Up to conjugacy the only maximal subgroups of G are < (1234) > and < (13), (24) >. Then,
we take g1 = x2

1x2 + x2
2x3 + x2

3x4 + x2
4x1 and g2 = x1x3. And after assume s1 = 0 we get:

Pg1(s1, s2, s3, s4, f, T ) = T 2 + 2s3T + 20s2s4 + fs2
2 − 2s2f

2 + 4fs4 + s3
2 − 2s2

3, and

Pg2(s1, s2, s3, s4, f, T ) = T 2 − fT + s4.

Notice that in this case we can isolate for example the variable s2 from the equation and
then we can also solve the problem (NP) for G = D4. Next polynomial has generic Galois
group isomorphic to D4 and moreover parametrize all the extensions over Q with Galois
group isomorphisc to D4:

x4 + s3x
2 − T

3 − 4s4T − s2
3

T 2 − 4s4

x + s4 = 0.
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The algorithm does not look to be very efficient, so by hand we cannot compute much
more examples. We are waitting for an implementation of the algorithm to trying to solve
the Galois inverse problem for G =< 336,208 > and in that way compute the remaining twists
of the Klein quartic. In fact, this group is isomorphic to PGL2(F7) and some generic poly-
nomials that have it like Galois group are known, see [39]. But not all such extensions are
known.

Even if we have not been still able of implementing the algorithm, it gives rise to the
following interesting questions:

� What about taking different primitive elements?

� If with one f we can isolate one of the variables si, that is, there is a parametrization
of all the extensions with Galois group G, then with any other choice of a primitive
element do we get the same property?

� What kind of varieties do we get with this algorithm? Notice that the set of rational
points is not empty because all non-trivial groups contain a non-trivial cyclic one and
the inverse Galois problem Gal(K/Q) ≃ Cr has solutions for all r.

� Can we recover the group G from the variety defined by Pf(s1, ..., sn, T ) = 0?
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Tables

Case Aut (C) generators in PGL3 (C)

I C2

⎛

⎜

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎟

⎠

II V4

⎛

⎜

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎟

⎠

,
⎛

⎜

⎝

1 0 0
0 −1 0
0 0 1

⎞

⎟

⎠

III C3

⎛

⎜

⎝

1 0 0
0 1 0
0 0 ξ

⎞

⎟

⎠

with ξ2 + ξ = −1

IV S3

⎛

⎜

⎝

0 1 0
1 0 0
0 0 1

⎞

⎟

⎠

,
⎛

⎜

⎝

ξ 0 0
0 ξ2 0
0 0 1

⎞

⎟

⎠

V D4

⎛

⎜

⎝

0 1 0
1 0 0
0 0 1

⎞

⎟

⎠

,
⎛

⎜

⎝

i 0 0
0 −i 0
0 0 1

⎞

⎟

⎠

VI C6

⎛

⎜

⎝

−1 0 0
0 1 0
0 0 ξ

⎞

⎟

⎠

VII GAP (16,13)
⎛

⎜

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎟

⎠

,
⎛

⎜

⎝

i 0 0
0 −i 0
0 0 1

⎞

⎟

⎠

,
⎛

⎜

⎝

0 1 0
1 0 0
0 0 1

⎞

⎟

⎠
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VIII S4

⎛

⎜

⎝

0 0 1
1 0 0
0 1 0

⎞

⎟

⎠

,
⎛

⎜

⎝

0 −1 0
1 0 0
0 0 1

⎞

⎟

⎠

IX C9

⎛

⎜

⎝

ξ 0 0
0 1 0
0 0 ω

⎞

⎟

⎠

with ω3 = ξ

X GAP (48,33)
⎛

⎜
⎜

⎝

iξ2
√

3
3

0 iξ
√

3
3

0 ξ2 0
2
√

3ξ2

3
0 −iξ

√

3
3

⎞

⎟
⎟

⎠

,

⎛

⎜
⎜

⎝

ξ
√

3
3

0 ξ2
√

3
3

0 ξ 0
2
√

3ξ
3

0 −

√

3ξ2

3

⎞

⎟
⎟

⎠

XI GAP (96,64)
⎛

⎜

⎝

0 0 1
1 0 0
0 1 0

⎞

⎟

⎠

,
⎛

⎜

⎝

0 −i 0
1 0 0
0 0 i

⎞

⎟

⎠

XII PSL2 (F7) −1
√

−7

⎛

⎜

⎝

ζ − ζ6 ζ2 − ζ5 ζ4 − ζ3

ζ2 − ζ5 ζ4 − ζ3 ζ − ζ6

ζ4 − ζ3 ζ − ζ6 ζ2 − ζ5

⎞

⎟

⎠

⎛

⎜

⎝

0 1 0
1 0 0
0 1 0

⎞

⎟

⎠

,
⎛

⎜

⎝

ζ4 0 0
0 ζ2 0
0 0 ζ

⎞

⎟

⎠

with ζ7 = 1 and ζ ≠ 1

Table 5.1: Automorphisms Henn classification
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Case Aut (C) generators in PGL3 (C)

I C2

⎛

⎜

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎟

⎠

II V4

⎛

⎜

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎟

⎠

,
⎛

⎜

⎝

1 0 0
0 −1 0
0 0 1

⎞

⎟

⎠

III C3

⎛

⎜

⎝

1 0 0
0 1 0
0 0 ξ

⎞

⎟

⎠

with ξ2 + ξ = −1

IV S3

⎛

⎜

⎝

0 1 0
1 0 0
0 0 1

⎞

⎟

⎠

,
⎛

⎜

⎝

ξ 0 0
0 ξ2 0
0 0 1

⎞

⎟

⎠

V D4

⎛

⎜

⎝

0 1 0
1 0 0
0 0 1

⎞

⎟

⎠

,
⎛

⎜

⎝

i 0 0
0 −i 0
0 0 1

⎞

⎟

⎠

VI C6

⎛

⎜

⎝

−1 0 0
0 1 0
0 0 ξ

⎞

⎟

⎠

VII GAP (16,13)
⎛

⎜

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎟

⎠

,
⎛

⎜

⎝

i 0 0
0 −i 0
0 0 1

⎞

⎟

⎠

,
⎛

⎜

⎝

0 1 0
1 0 0
0 0 1

⎞

⎟

⎠
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VIII S4

⎛

⎜

⎝

0 0 1
1 0 0
0 1 0

⎞

⎟

⎠

,
⎛

⎜

⎝

0 −1 0
1 0 0
0 0 1

⎞

⎟

⎠

IX C9

⎛

⎜

⎝

ξ 0 0
0 1 0
0 0 ω

⎞

⎟

⎠

with ω3 = ξ

X GAP (48,33)
⎛

⎜
⎜

⎝

iξ2
√

3
3

0 iξ
√

3
3

0 ξ2 0
2
√

3ξ2

3
0 −iξ

√

3
3

⎞

⎟
⎟

⎠

,

⎛

⎜
⎜

⎝

ξ
√

3
3

0 ξ2
√

3
3

0 ξ 0
2
√

3ξ
3

0 −

√

3ξ2

3

⎞

⎟
⎟

⎠

XI GAP (96,64)
⎛

⎜

⎝

0 0 1
1 0 0
0 1 0

⎞

⎟

⎠

,
⎛

⎜

⎝

0 −i 0
1 0 0
0 0 i

⎞

⎟

⎠

XII PSL2 (F7) −1
√

−7

⎛

⎜

⎝

ζ − ζ6 ζ2 − ζ5 ζ4 − ζ3

ζ2 − ζ5 ζ4 − ζ3 ζ − ζ6

ζ4 − ζ3 ζ − ζ6 ζ2 − ζ5

⎞

⎟

⎠

⎛

⎜

⎝

0 1 0
1 0 0
0 1 0

⎞

⎟

⎠

,
⎛

⎜

⎝

ζ4 0 0
0 ζ2 0
0 0 ζ

⎞

⎟

⎠

with ζ7 = 1 and ζ ≠ 1

Table 5.2: Automorphisms Modified Henn classification
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Invariant Value
I3 0
I6 0
I9 3(65a4 + 2520a2 + 11664)
I12 (5a4 − 1800a2 − 3888)
I15 0
I18 0
I27 0
J9 0
J12 2535a2(a2 + 12)(5a2 + 108)(5a2 + 252)
J15 2532a2(a2 + 12)(5a2 − 324)(5a2 + 108)
J18 0
I21 0
J21 28(a − 2)4(a + 2)4

Table 5.3: Dixmier-Ohno Invariants. Case VI

Invariant Value
I3 1
I6 a3(a − 6)2(a + 3)(a3 + 9a2 + 36)−2

I9 a2(a + 3)(a + 18)2(a2 + 3a + 18)2(a3 + 9a2 + 36)−3

I12 a2(a + 18)(a2 − 9a − 6)(a2 + 3a + 18)2(a3 + 9a2 + 36)−3

I15 a3(a + 18)3(a2 + 3a + 18)32−1(a3 + 9a2 + 36)−4

I18 2a2(a + 3)(a + 18)(a2 − 9a − 6)(a2 + 3a + 18)2(5a2 + 12a + 36)(a3 + 9a2 + 36)−4

I27 24a3(a + 3)3(a + 18)3(a2 + 3a + 18)3(a3 + 9a2 + 36)−5

J9 24a3(a2 − 9a − 6)3(a2 + 3a + 18)3(a3 + 9a2 + 36)−5

J12 23a4(a + 3)2(a + 18)4(a2 + 3a + 18)4(a3 + 9a2 + 36)−6

J15 23a4(a + 18)2(a2 − 9a − 6)2(a2 + 3a + 18)4(a3 + 9a2 + 36)−6

J18 22a3(a2 − 9a − 6)3(a2 + 3a + 18)3(5a2 + 12a + 36)3(a3 + 9a2 + 36)−7

I21 25a3(a + 18)(a2 − 9a − 6)2(a2 + 3a + 18)3(5a2 + 12a + 36)2(a3 − 9a2 − 18a − 6)(a3 + 9a2 + 36)−7

J21 22(a − 2)14(a + 1)4(a + 2)6(a3 + 9a2 + 36)−9

Table 5.4: Dixmier-Ohno Invariants. Case VIII



TABLES 95

Here, we show the implemented code in MAGMA for computing the pairs (G,H) for the
Fermat quartic. It is easily adaptable for any other curve. Moreover, it computes tha cardi-
nality of expresion (1.7), that is, the number of solutions to the Galois embedding problem
(1.3) corresponding to a pair (G,H) with same splitting field L.

Gamma:=SmallGroup(192,956);

lat:=SubgroupLattice(Gamma);

AutC:=lat[81];

OrderAut2:=function(G,H,AutC)

A:=AutomorphismGroup(G);

D:=[];

f,B:=PermutationRepresentation(A);

for b in B do

if H @ (b@@f) eq H then

D:=Append(D,b);

end if;

end for;

A2:=sub<B|D>;

return Order(A2);

end function;

OrderInner:=function(G,AutC)

D:=[];

for a in AutC do

h:=hom<Gamma->Gamma|x:->axa(̂-1)>;

if G@h eq G then

g:=hom<G->G|x:->axa(̂-1)>;

D:=Append(D,g);

end if;

end for;

A:=AutomorphismGroup(G);

Inn:=sub<A|D>;

return Order(Inn);

end function;

B:=[];

for i in [2..#lat] do

G:=lat[i];

T:=[];



96 APPENDIX

for g in G do

if g in AutC then

T:=Append(T,g);

end if;

end for;

H:=sub<G|T>;

if Index(G,H) eq 2 then

B:=Append(B, <i,IdentifyGroup(G),IdentifyGroup(H),

OrderAut2(G,H,AutC)/OrderInner(G,AutC)>);

end if;

end for;

print "The number of pairs (G,H) is:", #B;

for i:=1 to #B do

print "(iteration,(G,H), times)=", B[i];

end for;

Table 5.5: Magma code for computing the pairs (G,H)
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# ai M1 M2 M3 M4 M5 M6 M7 M8 M9

a1 0 9 0 243 0 7290 0 229635 0

#1 a2 6 54 621 7938 106191 1454355 20212254 283815738 4016375199

a3 0 82 0 23574 0 7727410 0 2680982990 0

a1 0 18 0 486 0 14580 0 459270 0

#2 a2 9 99 1215 15795 212139 2907981 40422321 567624915 8032730715

a3 0 164 0 47148 0 15454820 0 5361965980 0

a1 0 5 0 123 0 3650 0 114835 0

#3 a2 2 26 305 3954 53047 727031 10105678 141906506 2008183463

a3 0 42 0 11798 0 3863850 0 1340493518 0

a1 0 10 0 246 0 7300 0 229670 0

#4 a2 5 51 611 7907 106095 1454061 20211357 283813011 4016366927

a3 0 84 0 23596 0 7727700 0 2680987036 0

a1 0 5 0 123 0 3650 0 114835 0

#5 a2 4 30 319 3994 53169 727395 10106772 141909786 2008193305

a3 0 42 0 11798 0 3863850 0 1340493518 0

a1 0 3 0 81 0 2430 0 76545 0

#6 a2 2 18 207 2646 35397 484785 6737418 94605246 1338791733

a3 0 28 0 7860 0 2575810 0 893661020 0

a1 0 6 0 162 0 4860 0 153090 0

#7 a2 3 33 405 5265 70713 969327 13474107 189208305 2677576905

a3 0 56 0 15720 0 5151620 0 1787322040 0

a1 0 3 0 81 0 2430 0 76545 0

#8 a2 3 21 216 2673 35478 485028 6738147 94607433 1338798294

a3 0 28 0 7860 0 2575810 0 893661020 0

a1 0 3 0 63 0 1830 0 57435 0

#9 a2 3 18 168 2022 26658 363915 5054031 70956810 1004102358

a3 0 22 0 5910 0 1932070 0 670248782 0

a1 0 6 0 126 0 3660 0 114870 0

#10 a2 3 27 309 3963 53073 727101 10105875 141907059 2008185033

a3 0 44 0 11820 0 3864140 0 1340497564 0

a1 0 5 0 99 0 2450 0 68355 0

#11 a2 2 22 221 2546 31367 405547 5422370 74233722 1033431575

a3 0 34 0 7222 0 2086690 0 689426766 0

a1 0 10 0 198 0 4900 0 136710 0

#12 a2 5 43 443 5091 62735 811093 10844741 148467443 2066863151

a3 0 68 0 14444 0 4173380 0 1378853532 0

a1 0 5 0 99 0 2450 0 68355 0

#13 a2 4 26 235 2586 31489 405911 5423464 74237002 1033441417

a3 0 34 0 7222 0 2086690 0 689426766 0

a1 0 3 0 63 0 1830 0 57435 0

#14 a2 2 16 161 2002 26597 363733 5053484 70955170 1004097437

a3 0 22 0 5910 0 1932070 0 670248782 0
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# ai M1 M2 M3 M4 M5 M6 M7 M8 M9

a1 0 3 0 63 0 1830 0 57435 0

#15 a2 2 14 155 1982 26537 363551 5052938 70953530 1004092517

a3 0 22 0 5910 0 1932070 0 670248782 0

a1 0 2 0 42 0 1220 0 38290 0

#16 a2 2 12 112 1348 17772 242610 3369354 47304540 669401572

a3 0 15 0 3941 0 1288050 0 446832533 0

a1 0 4 0 84 0 2440 0 76580 0

#17 a2 2 18 206 2642 35382 484734 6737250 94604706 1338790022

a3 0 30 0 7882 0 2576100 0 893665066 0

a1 0 3 0 51 0 1230 0 34195 0

#18 a2 2 12 113 1278 15697 202809 2711284 37117138 516716573

a3 0 18 0 3622 0 1043490 0 344715406 0

a1 0 6 0 102 0 2460 0 68390 0

#19 a2 3 23 225 2555 31393 405617 5422567 74234275 1033433145

a3 0 36 0 7244 0 2086980 0 689430812 0

a1 0 3 0 51 0 1230 0 34195 0

#20 a2 3 16 126 1318 15818 203173 2712377 37120418 516726414

a3 0 18 0 3622 0 1043490 0 344715406 0

a1 0 3 0 51 0 1230 0 34195 0

#21 a2 2 14 119 1298 15757 202991 2711830 37118778 516721493

a3 0 18 0 3622 0 1043490 0 344715406 0

a1 0 3 0 51 0 1230 0 34195 0

#22 a2 2 14 119 1298 15757 202991 2711830 37118778 516721493

a3 0 18 0 3618 0 1043400 0 344713838 0

a1 0 6 0 102 0 2460 0 68390 0

#23 a2 3 23 225 2555 31393 405617 5422567 74234275 1033433145

a3 0 36 0 7236 0 2086800 0 689427676 0

a1 0 2 0 33 0 920 0 28735 0

#24 a2 2 10 86 1016 13342 181993 2527114 35478682 502051964

a3 0 12 0 2966 0 966180 0 335126414 0

a1 0 4 0 66 0 1840 0 57470 0

#25 a2 2 15 158 1991 26562 363621 5053134 70954083 1004094086

a3 0 24 0 5932 0 1932360 0 670252828 0

a1 0 2 0 33 0 920 0 28735 0

#26 a2 2 11 89 1026 13372 182084 2527387 35479502 502054424

a3 0 12 0 2966 0 966180 0 335126414 0

a1 0 3 0 51 0 1230 0 34195 0

#27 a2 3 16 126 1318 15818 203173 2712377 37120418 516726414

a3 0 18 0 3618 0 1043400 0 344713838 0

a1 0 1 0 21 0 610 0 19145 0

#28 a2 1 6 56 674 8886 121305 1684677 23652270 334700786

a3 0 8 0 1972 0 644030 0 223416284 0

a1 0 2 0 42 0 1220 0 38290 0

#29 a2 1 9 103 1321 17691 242367 3368625 47302353 669395011

a3 0 16 0 3944 0 1288060 0 446832568 0
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# ai M1 M2 M3 M4 M5 M6 M7 M8 M9

a1 0 1 0 21 0 610 0 19145 0

#30 a2 1 7 58 681 8906 121366 1684859 23652817 334702426

a3 0 8 0 1972 0 644030 0 223416284 0

a1 0 3 0 45 0 930 0 22575 0

#31 a2 3 15 105 966 10398 122802 1541550 20202222 273038442

a3 0 16 0 2478 0 599200 0 181948718 0

a1 0 6 0 90 0 1860 0 45150 0

#32 a2 3 21 183 1851 20553 244875 3080913 40397883 546057201

a3 0 32 0 4956 0 1198400 0 363897436 0

a1 0 2 0 27 0 620 0 17115 0

#33 a2 2 9 65 664 7922 101622 1356287 18560486 258363992

a3 0 10 0 1818 0 521800 0 172358158 0

a1 0 4 0 54 0 1240 0 34230 0

#34 a2 2 13 116 1287 15722 202879 2711480 37117691 516718142

a3 0 20 0 3636 0 1043600 0 344716316 0

a1 0 2 0 27 0 620 0 17115 0

#35 a2 2 9 65 664 7922 101622 1356287 18560486 258363992

a3 0 10 0 1822 0 521890 0 172359726 0

a1 0 4 0 54 0 1240 0 34230 0

#36 a2 2 13 116 1287 15722 202879 2711480 37117691 516718142

a3 0 20 0 3644 0 1043780 0 344719452 0

a1 0 3 0 45 0 930 0 22575 0

#37 a2 2 12 95 936 10307 122529 1540730 20199762 273031061

a3 0 16 0 2478 0 599200 0 181948718 0

a1 0 2 0 27 0 620 0 17115 0

#38 a2 2 10 68 674 7952 101713 1356560 18561306 258366452

a3 0 10 0 1818 0 521800 0 172358158 0

a1 0 2 0 27 0 620 0 17115 0

#39 a2 2 10 68 674 7952 101713 1356560 18561306 258366452

a3 0 10 0 1822 0 521890 0 172359726 0

a1 0 1 0 12 0 310 0 9590 0

#40 a2 1 5 33 352 4486 60779 842710 11827232 167353638

a3 0 5 0 997 0 322160 0 111710165 0

a1 0 2 0 24 0 620 0 19180 0

#41 a2 1 6 55 670 8871 121254 1684509 23651730 334699075

a3 0 10 0 1994 0 644320 0 223420330 0

a1 0 2 0 24 0 470 0 11305 0

#42 a2 2 9 56 493 5227 61482 771010 10101798 136521236

a3 0 9 0 1248 0 299700 0 90975598 0

a1 0 4 0 48 0 940 0 22610 0

#43 a2 2 12 95 935 10302 122508 1540653 20199495 273030170

a3 0 18 0 2496 0 599400 0 181951196 0
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# ai M1 M2 M3 M4 M5 M6 M7 M8 M9

a1 0 1 0 15 0 310 0 7525 0

#44 a2 1 5 34 319 3456 40904 513759 6733801 91011994

a3 0 6 0 828 0 199740 0 60649596 0

a1 0 2 0 30 0 620 0 15050 0

#45 a2 1 7 61 617 6851 81625 1026971 13465961 182019067

a3 0 12 0 1656 0 399480 0 121299192 0

a1 0 1 0 15 0 310 0 7525 0

#46 a2 1 5 35 322 3466 40934 513850 6734074 91012814

a3 0 6 0 828 0 199740 0 60649596 0

a1 0 1 0 9 0 160 0 3780 0

#47 a2 1 4 21 171 1761 20548 257160 3367724 45508422

a3 0 4 0 423 0 99970 0 30326037 0

a1 0 2 0 18 0 320 0 7560 0

#48 a2 1 5 34 318 3451 40883 513682 6733534 91011103

a3 0 8 0 846 0 199940 0 60652074 0

Table 5.6: The 48 moment sequences that arise for twists of the Fermat quartic.
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Gen(H) h ID(G) ID(H) k #/k #/k(i)

id id ⟨2,1⟩ ⟨1,1⟩ Q #1 #2

x4
+ y4
+ z4
= 0

id u2
1t1 ⟨2,1⟩ ⟨1,1⟩ Q #1 #2

2x4
− 12x2y2

+ 2y4
+ z4
= 0

id t31u1t1u1 ⟨2,1⟩ ⟨1,1⟩ Q #1 #2

−4x4
+ y4
+ z4
= 0

t21 t1 ⟨4,1⟩ ⟨2,1⟩ Q(
√

−5) #3 #4

−2x4
− 32x3y + 12x2y2

+ 32xy3
− 2y4

+ z4
= 0

t21 t31u1t1u1 ⟨4,2⟩ ⟨2,1⟩ Q #5 #4

9x4
+ 9y4

− 4z4
= 0

t21 u2
1t1 ⟨4,2⟩ ⟨2,1⟩ Q #5 #4

−14x4
− 192x3y + 84x2y2

+ 192xy3
− 14y4

+ z4
= 0

t21 id ⟨4,2⟩ ⟨2,1⟩ Q #5 #4

9x4
+ y4
+ z4
= 0

t21 u1 ⟨4,2⟩ ⟨2,1⟩ Q #5 #4

9x4
− 4y4

+ z4
= 0

u2
1t1 id ⟨4,2⟩ ⟨2,1⟩ Q #5 #4

2x4
+ 36x2y2

+ 18y4
+ z4
= 0

u2
1t1 t31u1t1u1 ⟨4,2⟩ ⟨2,1⟩ Q #5 #4

−8x4
− 144x2y2

− 72y4
+ z4
= 0

s1 id ⟨6,2⟩ ⟨3,1⟩ Q #6 #7

3x4
+ 14(6x2y2

+ 4x3z) − 21(12x2yz + 4xy3
) + 98(6x2y2

+ 12xy2z + y4
)−

−245(4y3z + 12xyz2
) + 4998y2z2

− 9604yz3
+ 7546z4

= 0

s1 u2
1t1 ⟨6,1⟩ ⟨3,1⟩ Q #8 #7

3x4
− 12(6x2y2

+ 4x3z) − 12(12x2yz + 4xy3
) + 72(6x2y2

+ 12xy2z + y4
)+

+120(4y3z + 12xyz2
) − 2304y2z2

− 4032yz3
+ 1824z4

= 0

t21, u
2
1 id ⟨8,5⟩ ⟨4,2⟩ Q #9 #10

9x4
+ 25y4

+ z4
= 0

t31u1t1u1 t1 ⟨8,4⟩ ⟨4,1⟩ Q(
√

−2) #11 #12

−24x3y + 24xy3
+ z4
= 0

t21, u
2
1 u1 ⟨8,5⟩ ⟨4,2⟩ Q #9 #10

9x4
+ 25y4

− 4z4
= 0

t31u1t1u1 u2
1t1 ⟨8,3⟩ ⟨4,1⟩ Q #13 #12

6x4
− 36x2y2

+ 6y4
+ z4
= 0

u2
1t1, t

2
1 t31u1t1u1 ⟨8,5⟩ ⟨4,2⟩ Q #9 #10

−28x4
− 240x3y − 840x2y2

− 1200xy3
− 700y4

+ z4
= 0

t1 u2
1 ⟨8,3⟩ ⟨4,1⟩ Q #9 #10

10x4
+ 800x3y − 300x2y2

− 4000xy3
+ 250y4

+ z4
= 0
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Gen(H) h ID(G) ID(H) k #/k #/k(i)

t1 t31u1t1u
3
1 ⟨8,3⟩ ⟨4,1⟩ Q #9 #10

−10x4
+ 800x3y + 300x2y2

− 4000xy3
− 250y4

+ z4
= 0

t31u1t1u1 u1 ⟨8,3⟩ ⟨4,1⟩ Q #13 #12

3x4
− 4y4

+ z4
= 0

u2
1t1, t

2
1 t31u1t1u

3
1 ⟨8,3⟩ ⟨4,2⟩ Q #14 #10

−22x4
− 160x3y − 1320x2y2

− 1600xy3
− 2200y4

+ z4
= 0

t21, u
2
1 u2

1t1 ⟨8,3⟩ ⟨4,2⟩ Q #14 #10

−2x4
− 32x3y + 12x2y2

+ 32xy3
− 2y4

+ z4
= 0

u2
1t1, t

2
1 id ⟨8,5⟩ ⟨4,2⟩ Q #9 #10

28x4
+ 240x3y + 840x2y2

+ 1200xy3
+ 700y4

+ z4
= 0

t1 t31u1t1u1 ⟨8,2⟩ ⟨4,1⟩ Q #14 #10

−60x4
− 400x3y − 1800x2y2

− 2000xy3
− 1500y4

+ z4
= 0

t31u1t1u
3
1 u1 ⟨8,3⟩ ⟨4,1⟩ Q #9 #10

9x4
+ 3y4

− 4z4
= 0

t31u1t1u
3
1 id ⟨8,3⟩ ⟨4,1⟩ Q #9 #10

9x4
+ 3y4

+ z4
= 0

t31u1t1u
3
1 u2

1t1 ⟨8,2⟩ ⟨4,1⟩ Q #14 #10

14x4
− 192x3y − 84x2y2

+ 192xy3
+ 14y4

+ z4
= 0

u2
1t1, t

2
1 u2

1 ⟨8,3⟩ ⟨4,2⟩ Q #14 #10

22x4
+ 160x3y + 1320x2y2

+ 1600xy3
+ 2200y4

+ z4
= 0

t1 id ⟨8,2⟩ ⟨4,1⟩ Q #14 #10

60x4
+ 400x3y + 1800x2y2

+ 2000xy3
+ 1500y4

+ z4
= 0

t31u1t1u
3
1 t1u1 ⟨8,1⟩ ⟨4,1⟩ Q(

√

6) #15 #10

6x4
− 40x3y − 36x2y2

+ 40xy3
+ 6y4

+ z4
= 0

t31u1t1u1 id ⟨8,3⟩ ⟨4,1⟩ Q #13 #12

3x4
+ y4
+ z4
= 0

s1, u
2
1t1 id ⟨12,4⟩ ⟨6,1⟩ Q #16 #17

3x4
+ 2(6x2y2

+ 4x3z) − 3(12x2yz + 4xy3
) + 2(6x2y2

+ 12xy2z + y4
)−

−5(4y3z + 12xyz2
) + 30y2z2

− 28yz3
+ 10z4

= 0

t31u1t1u1, u
2
1 u1t1 ⟨16,6⟩ ⟨8,2⟩ Q(

√

−5) #18 #19

2x4
− 16x3y − 12x2y2

+ 16xy3
+ 2y4

+ z4
= 0

t31u1t1u1, u
2
1 u1 ⟨16,11⟩ ⟨8,2⟩ Q #20 #19

9x4
+ 5y4

− 4z4
= 0

t31u1t1u1, u
2
1 u2

1t1 ⟨16,13⟩ ⟨8,2⟩ Q #21 #19

6x4
− 32x3y − 36x2y2

+ 32xy3
+ 6y4

+ z4
= 0

t31u1t1u1, u
2
1 id ⟨16,11⟩ ⟨8,2⟩ Q #20 #19

9x4
+ 5y4

+ z4
= 0

u2
1t1u1 u1 ⟨16,8⟩ ⟨8,1⟩ Q #22 #23

16x3y + 32xy3
+ z4
= 0
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Gen(H) h ID(G) ID(H) k #/k #/k(i)

t31u1t1u
3
1, u

2
1t1 u1 ⟨16,7⟩ ⟨8,3⟩ Q #24 #25

4x4
+ 32x3y + 48x2y2

+ 64xy3
+ 16y4

+ z4
= 0

t31u1t1u
3
1, t1 id ⟨16,13⟩ ⟨8,4⟩ Q #26 #25

12x4
+ 72x3y + 216x2y2

+ 216xy3
+ 108y4

+ z4
= 0

t1, u
2
1 u1t1u1 ⟨16,11⟩ ⟨8,3⟩ Q #26 #25

−8x4
− 48x3y − 144x2y2

− 144xy3
− 72y4

+ z4
= 0

t1u
2
1t1u1t1 t1u1t1u

2
1 ⟨16,7⟩ ⟨8,1⟩ Q #27 #23

−16x3y + 32xy3
+ z4
= 0

t1, u1t1u1 u2
1 ⟨16,11⟩ ⟨8,2⟩ Q #20 #19

12x4
+ 64x3y + 144x2y2

+ 128xy3
+ 48y4

+ z4
= 0

t1, u
2
1 id ⟨16,11⟩ ⟨8,3⟩ Q #26 #25

8x4
+ 48x3y + 144x2y2

+ 144xy3
+ 72y4

+ z4
= 0

t31u1t1u
3
1, u

2
1t1 id ⟨16,11⟩ ⟨8,3⟩ Q #26 #25

4x4
+ 24x3y + 72x2y2

+ 72xy3
+ 36y4

+ z4
= 0

t31u1t1u
3
1, t1 u1 ⟨16,8⟩ ⟨8,4⟩ Q #24 #25

10x4
+ 200x3y + 300x2y2

+ 1000xy3
+ 250y4

+ z4
= 0

t1, u1t1u1 id ⟨16,13⟩ ⟨8,2⟩ Q #21 #19

14x4
+ 120x3y + 420x2y2

+ 600xy3
+ 350y4

+ z4
= 0

s1, u
2
1 id ⟨24,13⟩ ⟨12,3⟩ Q #28 #29

14x4
− 84x3y + 98(6x2y2

+ 4x3z) − 245(12x2yz + 4xy3
) + 833(6x2y2

+ 12xy2z + y4
)−

−2401(4y3z + 12xyz2
) + 45276y2z2

− 90552yz3
+ 69629z4

= 0

s1, u
2
1 u2

1t1 ⟨24,12⟩ ⟨12,3⟩ Q #30 #29

−12x4
− 48x3y + 72(6x2y2

+ 4x3z) + 120(12x2yz + 4xy3
) − 384(6x2y2

+ 12xy2z + y4
)−

−1008(4y3z + 12xyz2
) + 10944y2z2

+ 30336yz3
− 6912z4

= 0

u1, t
3
1u1t1 id ⟨32,34⟩ ⟨16,2⟩ Q #31 #32

3x4
+ 5y4

+ z4
= 0

t1u
2
1t1u1t1, u

2
1 id ⟨32,7⟩ ⟨16,6⟩ Q #33 #34

10x4
+ 40x3y + 300x2y2

+ 200xy3
+ 250y4

+ z4
= 0

t31u1t1u1, u
2
1, t1 u1 ⟨32,43⟩ ⟨16,13⟩ Q #35 #36

6x4
+ 48x3y + 72x2y2

+ 96xy3
+ 24y4

+ z4
= 0

u1, u
2
1t1u

3
1t1 u2

1t1 ⟨32,11⟩ ⟨16,2⟩ Q #37 #32

2x4
− 16x3y − 12x2y2

+ 16xy3
+ 2y4

+ z4
= 0

t1u
2
1t1u1t1, u

2
1 u1 ⟨32,43⟩ ⟨16,6⟩ Q #38 #34

10x4
− 80x3y − 300x2y2

+ 400xy3
+ 250y4

+ z4
= 0

u1t1u1, u
2
1, t1 id ⟨32,49⟩ ⟨16,13⟩ Q #39 #36

8x4
+ 56x3y + 336x2y2

+ 392xy3
+ 392y4

+ z4
= 0

s1, t1 id ⟨48,48⟩ ⟨24,12⟩ Q #40 #41

2x4
− 12x3y + 2(6x2y2

+ 4x3z) − 5(12x2yz + 4xy3
) + 5(6x2y2

+ 12xy2z + y4
)−

−7(4y3z + 12xyz2
) + 60y2z2

− 48yz3
+ 17z4

= 0



104 APPENDIX

Gen(H) h ID(G) ID(H) k #/k #/k(i)

t1, u1 id ⟨64,134⟩ ⟨32,11⟩ Q #42 #43

4x4
+ 48x3y + 48x2y2

+ 96xy3
+ 16y4

+ z4
= 0

s1, u1 u2
1t1 ⟨96,64⟩ ⟨48,3⟩ Q #44 #45

−48x3y − 12(6x2y2
+ 4x3z) + 72(12x2yz + 4xy3

) + 120(6x2y2
+ 12xy2z + y4

)−

−384(4y3z + 12xyz2
) − 6048y2z2

+ 7296yz3
+ 7584z4

= 0

s1, u1 id ⟨96,72⟩ ⟨48,3⟩ Q #46 #45

56x3y − 21(6x2y2
+ 4x3z) + 98(12x2yz + 4xy3

) − 245(6x2y2
+ 12xy2z + y4

)+

+833(4y3z + 12xyz2
) − 14406y2z2

+ 30184yz3
− 22638z4

= 0

s1, t1, u1 id ⟨192,956⟩ ⟨96,64⟩ Q #47 #48

8x3y − 3(6x2y2
+ 4x3z) + 2(12x2yz + 4xy3

) − 5(6x2y2
+ 12xy2z + y4

)+

+5(4y3z + 12xyz2
) − 42y2z2

+ 40yz3
− 12z4

= 0

Table 5.7: Generators for the pairs of groups (G,H) and example twists C of the Fermat
quartic in each case. We also show the moment sequences corresponding to C/k and C/k(i).
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# ai M1 M2 M3 M4 M5 M6 M7 M8 M9

a1 0 9 0 243 0 7290 0 229635 0

#1 a2 6 54 621 7938 106191 1454355 20212254 283815738 4016375199

a3 0 82 0 23574 0 7727410 0 2680982990 0

a1 0 18 0 486 0 14580 0 459270 0

#2 a2 9 99 1215 15795 212139 2907981 40422321 567624915 8032730715

a3 0 164 0 47148 0 15454820 0 5361965980 0

a1 0 5 0 123 0 3650 0 114835 0

#3 a2 4 30 319 3994 53169 727395 10106772 141909786 2008193305

a3 0 42 0 11798 0 3863850 0 1340493518 0

a1 0 10 0 246 0 7300 0 229670 0

#4 a2 5 51 611 7907 106095 1454061 20211357 283813011 4016366927

a3 0 84 0 23596 0 7727700 0 2680987036 0

a1 0 3 0 81 0 2430 0 76545 0

#5 a2 3 21 216 2673 35478 485028 6738147 94607433 1338798294

a3 0 28 0 7860 0 2575810 0 893661020 0

a1 0 6 0 162 0 4860 0 153090 0

#6 a2 3 33 405 5265 70713 969327 13474107 189208305 2677576905

a3 0 56 0 15720 0 5151620 0 1787322040 0

a1 0 3 0 81 0 2430 0 76545 0

#7 a2 2 18 207 2646 35397 484785 6737418 94605246 1338791733

a3 0 28 0 7860 0 2575810 0 893661020 0

a1 0 3 0 45 0 1110 0 33285 0

#8 a2 3 15 114 1227 15528 209202 2893449 40570779 573880632

a3 0 16 0 3468 0 1106710 0 383080124 0

a1 0 6 0 90 0 2220 0 66570 0

#9 a2 3 21 201 2373 30813 417675 5784711 81134997 1147741581

a3 0 32 0 6936 0 2213420 0 766160248 0

a1 0 3 0 63 0 1830 0 57435 0

#10 a2 2 14 155 1982 26537 363551 5052938 70953530 1004092517

a3 0 22 0 5910 0 1932070 0 670248782 0

a1 0 6 0 126 0 3660 0 114870 0

#11 a2 3 27 309 3963 53073 727101 10105875 141907059 2008185033

a3 0 44 0 11820 0 3864140 0 1340497564 0

a1 0 3 0 63 0 1830 0 57435 0

#12 a2 3 18 168 2022 26658 363915 5054031 70956810 1004102358

a3 0 22 0 5910 0 1932070 0 670248782 0

a1 0 2 0 42 0 1220 0 38290 0

#13 a2 2 12 112 1348 17772 242610 3369354 47304540 669401572

a3 0 15 0 3941 0 1288050 0 446832533 0

a1 0 4 0 84 0 2440 0 76580 0

#14 a2 2 18 206 2642 35382 484734 6737250 94604706 1338790022

a3 0 30 0 7882 0 2576100 0 893665066 0
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# ai M1 M2 M3 M4 M5 M6 M7 M8 M9

a1 0 1 0 15 0 370 0 11095 0

#15 a2 1 5 38 409 5176 69734 964483 13523593 191293544

a3 0 6 0 1158 0 368910 0 127693398 0

a1 0 2 0 30 0 740 0 22190 0

#16 a2 1 7 67 791 10271 139225 1928237 27044999 382580527

a3 0 12 0 2316 0 737820 0 255386796 0

a1 0 2 0 33 0 920 0 28735 0

#17 a2 2 10 86 1016 13342 181993 2527114 35478682 502051964

a3 0 12 0 2966 0 966180 0 335126414 0

a1 0 4 0 66 0 1840 0 57470 0

#18 a2 2 15 158 1991 26562 363621 5053134 70954083 1004094086

a3 0 24 0 5932 0 1932360 0 670252828 0

a1 0 1 0 6 0 70 0 1540 0

#19 a2 1 3 12 77 746 9117 122243 1697735 23943936

a3 0 3 0 183 0 47040 0 15987279 0

a1 0 2 0 12 0 140 0 3080 0

#20 a2 1 4 19 140 1451 18112 244121 3394376 47884591

a3 0 6 0 366 0 94080 0 31974558 0

a1 0 2 0 42 0 1220 0 38290 0

#21 a2 1 9 103 1321 17691 242367 3368625 47302353 669395011

a3 0 16 0 3944 0 1288060 0 446832568 0

a1 0 2 0 24 0 620 0 19180 0

#22 a2 1 6 55 670 8871 121254 1684509 23651730 334699075

a3 0 10 0 1994 0 644320 0 223420330 0

Table 5.8: The 22 moment sequences that arise for twists of the Klein quartic.
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ID(G) ID(H) k L #/k #/k(
√

−7)

⟨2,1⟩ ⟨1,1⟩ Q Q(
√

−7) #1 #2

x4 + y4 + z4 + 6(xy3 + yz3 + zx3) − 3(x2y2 + y2z2 + z2x2) + 3xyz(x + y + z) = 0

⟨4,2⟩ ⟨2,1⟩ Q Q(
√

−7, i) #3 #4

49x4 − 63x2y2 + 210x2yz − 126x2z2 + y4 + 12y3z − 51y2z2 + 66yz3 − 31z4 = 0

⟨6,1⟩ ⟨3,1⟩ Q see 3.3 with p(x) = x3 + x + 2 #5 #6

768x4 + 144x2y2 − 864x2yz − 48x2z2 + 336xy3 + 336xyz2 − 672xz3−

−9y4 + 108y3z − 318y2z2 − 36yz3 − z4 = 0

⟨6,2⟩ ⟨3,1⟩ Q Q(ζ7) #7 #6

x3y + y3z + z3x = 0

⟨14,1⟩ ⟨7,1⟩ Q see section 3.3 with β1 = ζ7 + ζ
6
7 #8 #9

−x4 − 8x3y + 5x3z + 18x2y2 − 54x2yz + 30x2z2 − 11xy3 + 60xy2z−

−111xyz2 + 38xz3 + 5y4 − 16y3z + 36y2z2 − 25yz3 + 3z4 = 0

⟨8,1⟩ ⟨4,1⟩ Q(
√

2,
√

i) k( 8
√

−7) #10 #11

−7x4 + y4 + 9−4
√

2
3136

z4 − 6x2y2 − 1−2
√

2
7

z2xy = 0

⟨8,3⟩ ⟨4,1⟩ Q Q(
√

−7,
√

2 + 3
√

2,
√

2 − 3
√

2) #12 #11

49x4 + 504x2y2 − 3024x2yz + 1008x2z2 + 232y4 + 2368y3z−

−12000y2z2 + 19072yz3 − 20576z4 = 0

⟨12,4⟩ ⟨6,1⟩ Q see 3.3 with p(x) = x3 − 2x + 1 #13 #14

75x4 + 630x2y2 + 945x2yz + 420x2z2 − 735xy3 + 1470xyz2 + 735xz3−

−1764y4 + 5292y3z − 6321y2z2 − 3528yz3 − 784z4 = 0

⟨42,1⟩ ⟨21,1⟩ Q Q(ζ7, 7
√

2) #15 #16

2x3y + y3z + z3x = 0

⟨16,7⟩ ⟨8,3⟩ Q(
√

2) k(i, 8
√

−7) #17 #18

−7x4 + y4 + 9−4
√

2
3136

z4 − 6x2y2 − 1−2
√

2
7

z2xy = 0

⟨336,208⟩ ⟨168,42⟩ Q see section 4.1 #19 #20

−2x4 + 7x3z + 3x2y2 − 12x2z2 − 6xyz2 + 10xz3 + 2y3z − 6y2z2 + 8yz3 − 4z4 = 0

⟨12,3⟩ ⟨12,3⟩ Q(
√

−7) k(
√

a,
√

b,
√

c) with a, b, c the roots of x3 + x − 2 = 0 #21 #21

7x4 − 84x3y − 28x3z − (6 + 12α)x2y2 + (204 + 72α)x2yz + (114 − 108α)x2z2+

+(32 + 36α)xy3 − (168 + 84α)xy2z − (192 + 132α)xyz2 − (200 − 132α)xz3+

+(46 − 27α)y4 − (88 + 36α)y3z + (346 + 78α)y2z2−

−(264 − 60α)yz3 + (22 − 75α)z4 = 0

⟨24,12⟩ ⟨24,12⟩ Q(
√

−7) k(
√

a,
√

b,
√

c) with a, b, c the roots of x3 − 2x − 1 = 0 #22 #22

56x4 + 168x3y + 448x3z + (96 + 192α)x2y2 + (816 + 288α)x2yz + (1272 + 108α)x2z2+

+(128 + 144α)xy3 + (564 + 876α)xy2z + (1536 + 1056α)xyz2 + (648 − 216α)xz3+

+(185 + 27α)y4 + (704 + 288α)y3z + (1188 + 948α)y2z2+

+(1320 + 960α)yz3 + (836 + 300α)z4 = 0

Table 5.9: Examples twists for the pairs (G,H) of the Klein quartic. We show the field
k over which the equation of the twist is defined and the field L of definition of the twist.
In the last two rows we enumerate the Sato-Tate distribution of the twist over k and over
k(

√
−7).
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m = 5 1 2
1 0 0
2 0 1

m = 6 1
1 0
2 0

m = 7 1 2 3
1 0 0 0
2 0 0 1
3 0 1 0

m = 8 1 3
1 0 0
2 0 1
3 0 0

m = 9 1 2 4
1 0 0 0
2 0 0 1
3 0 0 0
4 0 1 1

m = 10 1 3
1 0 0
2 0 0
3 0 1
4 0 0

m = 11 1 2 3 4 5
1 0 0 0 0 0
2 0 0 0 1 1
3 0 0 1 0 0
4 0 0 0 0 1
5 0 1 0 1 0

m = 12 1 5
1 0 0
2 0 1
3 0 0
4 0 1
5 0 0

m = 13 1 2 3 4 5 6
1 0 0 0 0 0 0
2 0 0 0 0 1 1
3 0 0 0 1 0 0
4 0 0 1 0 0 1
5 0 0 0 0 1 0
6 0 1 0 1 0 1

m = 14 1 3 5
1 0 0 0
2 0 0 1
3 0 0 0
4 0 1 0
5 0 0 1
6 0 0 0

m = 15 1 2 4 7
1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 0 1
5 0 0 0 0
6 0 0 0 1
7 0 1 1 0

m = 16 1 3 5 7
1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 0 1
5 0 1 0 0
6 0 0 1 1
7 0 0 0 0

m = 17 1 2 3 4 5 6 7
1 0 0 0 0 0 0 0
2 0 0 0 0 0 1 1
3 0 0 0 0 1 0 0
4 0 0 0 1 0 0 1
5 0 0 1 0 0 1 0
6 0 0 0 0 1 0 0
7 0 0 0 0 0 0 1
8 0 1 0 1 0 1 0

m = 18 1 5 7
1 0 0 0
2 0 0 1
3 0 1 0
4 0 0 0
5 0 0 1
6 0 0 0
7 0 1 1
8 0 0 0
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m = 19 1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 1 1
3 0 0 0 0 1 1 0 0 0
4 0 0 0 1 0 0 0 1 1
5 0 0 0 0 0 0 1 0 0
6 0 0 1 0 0 1 0 0 1
7 0 0 0 0 1 0 0 1 0
8 0 0 0 0 0 0 1 0 1
9 0 1 0 1 0 1 0 1 0

m = 20 1 3 7 9
1 0 0 0 0
2 0 0 1 1
3 0 0 0 0
4 0 0 0 1
5 0 0 1 0
6 0 1 0 1
7 0 0 0 0
8 0 0 1 1
9 0 0 0 0

m = 21 1 2 4 5 8 10
1 0 0 0 0 0 0
2 0 0 0 0 1 1
3 0 0 0 0 0 0
4 0 0 0 1 0 1
5 0 0 1 0 1 0
6 0 0 0 0 0 1
7 0 0 0 0 1 0
8 0 0 0 1 0 1
9 0 0 0 0 0 0
10 0 1 1 0 1 1

m = 22 1 3 5 7 9
1 0 0 0 0 0
2 0 0 0 0 1
3 0 0 0 1 0
4 0 0 1 0 1
5 0 0 0 0 0
6 0 0 0 1 0
7 0 1 0 0 1
8 0 0 1 0 0
9 0 0 0 1 1
10 0 0 0 0 0
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m = 23 1 2 3 4 5 6 7 8 9 10 11
1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 1 1 1
3 0 0 0 0 0 1 1 0 0 0 0
4 0 0 0 0 1 0 0 0 0 1 1
5 0 0 0 1 0 0 0 1 1 0 0
6 0 0 0 0 0 0 1 0 0 1 1
7 0 0 1 0 0 1 0 0 1 0 0
8 0 0 0 0 0 0 0 1 0 0 1
9 0 0 0 0 1 0 1 0 0 1 0
10 0 0 0 0 0 0 0 0 1 0 1
11 0 1 0 1 0 1 0 1 0 1 0

m = 24 1 5 7 11
1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 1 0 1
5 0 0 0 0
6 0 0 1 1
7 0 0 0 0
8 0 0 0 1
9 0 1 0 0
10 0 0 1 1
11 0 0 0 0

m = 25 1 2 3 4 6 7 8 9 11 12
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 1 1
3 0 0 0 0 0 1 1 0 0 0
4 0 0 0 0 1 0 0 0 1 1
5 0 0 0 0 0 0 0 1 0 0
6 0 0 0 1 0 0 1 0 1 1
7 0 0 0 0 0 1 0 0 0 0
8 0 0 1 0 1 0 0 1 0 1
9 0 0 0 0 0 0 1 0 1 0
10 0 0 0 0 0 1 0 0 0 1
11 0 0 0 0 0 0 0 1 1 0
12 0 1 0 1 1 0 1 0 0 1

Matrix C = {ci(t)}i,t=1,...,k, (t,m)=1 for m = 5, ...,25.
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[23] J.M. Gamboa, J.M. Rúız, Anillos y cuerpos conmutativos, Manual UNED, 2003.

[24] The GAP Group, GAP -Groups, Algorithms, and Programming, Version 4.5.7,
2012. (http://www.gap-system.org)

[25] M. Girard, D.R. Kohel, Classification of Genus 3 Curves in Special Strata of the
Moduli Space, chapter of the book Algorithmic Number Theory, Springer, 2006.

[26] M. Girard, D.R. Kohel, C. Ritzenthaler, Dixmier and Ohno Invariants of
Ternary Quartics, SAGE code, http://sage.math.washington.edu/home/wstein/
www/home/kohel/shr/src/Geometry/CrvG3/dixmier ohno.m, 2004.

[27] E. Z. Goren, Gauss and Jacobi sums, Weil Conjectures, Seminar on Cohomology
Theories of McGill University, 2004.



BIBLIOGRAPHY 113
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