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Abstract

This Ph.D. thesis addresses remote sensing of the atmosphere by means of lidar and S-
band clear-air weather radar, and related data signal processing. Active remote sensing
by means of these instruments o�ers unprecedented capabilities of spatial and tempo-
ral resolutions for vertical atmospheric pro�ling and the retrieval of key optical and
physical atmospheric products in an increasing environmental regulatory framework.

The �rst goal is this Ph.D. concerns the estimation of error bounds in the inversion
of the pro�le of the atmospheric backscatter coe�cient from elastic lidar signals (i.e.,
without wavelength shift in reception when interacting with atmospheric scatterers) by
means of the two-component inversion algorithm (the so-called Klett-Fernald-Sasano's
algorithm). This objective departs from previous works at the Remote Sensing Lab.
(RSLab) of the Universitat Politècnica de Catalunya (UPC) and derives �rst-order
error-propagated bounds (approximate) and total-increment bounds (exact). As dis-
tinctive feature in the state of the art, the error bounds merge into a single body both
systematic (i.e., user-calibration inputs) and random error sources (�nite signal-to-noise
ratio, SNR) yielding an explicit mathematical form.

The second goal, central to this Ph.D., tackles retrieval of the Atmospheric Boundary
Layer Height (ABLH) from elastic lidar and S-band Frequency-Modulated Continuous-
Wave (FMCW) radar observations by using adaptive techniques based on the Extended
Kalman Filter (EKF). The �lter is based on morphological modeling of the Mixing-
Layer-to-Free-Troposphere transition and continuous estimation of the noise covariance
information. In the lidar-EKF realization the proposed technique is shown to outper-
form classic ABLH estimators such as those based on derivative techniques, thresh-
olded decision, or the variance centroid method. The EKF formulation is applied to
both ceilometer and UPC lidar records in high- and low-SNR scenes. The lidar-EKF
approach is re-formulated and successfully extended to S-band radar scenes (Bragg's
scattering) in presence of interferent noise sources (Rayleigh scattering from e.g., insects
and birds). In this context, the FMCW feature enables the range-resolved capability.
EKF-lidar and EKF-radar ABLH estimates are cross-examined from �eld campaign
results.

Finally, the third goal deals with exploitation of the existing UPC lidar station: In a
�rst introductory part, a modi�ed algorithm for enhancing the dynamic range of elastic
lidar channels by �gluing� analog and photon-counting data records is formulated. In
a second part, two case examples (including application of the gluing algorithm) are
presented to illustrate the capabilities of the UPC lidar in networked atmospheric
observation of two recent volcano eruption events as part of the EARLINET (European
Aerosol Research Lidar Network). The latter is part of GALION (Global Atmospheric
Watch Atmospheric Lidar Observation Network)-GEOSS (Global Earth Observation
System of Systems) framework.





Contents

Acknowledgments v

Abstract ix

Contents xi

List of Figures xv

List of Tables xix

List of Symbols xxi

List of Acronyms xxiii

1 Introduction 1

1.1 Atmospheric Remote Sensing through lidar and radar . . . . . . . . . . . . . 1

1.2 The UPC RSLab in the international context . . . . . . . . . . . . . . . . . 3

1.2.1 The RSLab 3+2+1 multi-spectral Elastic/Raman lidar system . . . . 5

1.3 Ph.D. mobility context: The UMass MIcrowave Remote Sensing Laboratory 6

1.3.1 The MIRSL FMCW radar and lidar ceilometer systems . . . . . . . . 8

1.4 Ph.D. motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Main Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Obj. 1: Exploitation and dynamic-range enhancement of the UPC

multi-spectral lidar system . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.2 Obj. 2: Application of adaptive �ltering to ABL estimation and tracking 13

1.5.3 Obj. 3: Error bounds in the retrieval of the atmospheric optical pa-

rameters: Two-component lidar inversion algorithm . . . . . . . . . . 14

1.6 Organization of the Ph.D. thesis . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Lidar and weather-radar atmospheric remote sensing 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Lidar remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Lidar and atmospheric optical particles . . . . . . . . . . . . . . . . . 21



xii CONTENTS

2.2.2 Atmospheric extinction . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Atmospheric backscatter . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 The elastic lidar equation . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 The Raman lidar equation . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.6 Review of the Klett-Fernald-Sasano two component elastic inversion

algorithm review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Radar remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Radar equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Weather-radar and atmospheric radar re�ectivity . . . . . . . . . . . 34

2.3.3 FMCW radar foundations . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 The Atmospheric Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 ABLH detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Total backscatter-coe�cient inversion error bounds 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 KFS two component algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Modi�ed backward KFS form . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Comparison with Klett's one-component algorithm . . . . . . . . . . 46

3.2.3 Forward case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 First-order backscatter coe�cient error bounds . . . . . . . . . . . . . . . . . 47

3.4 Total increment backscatter coe�cient error bounds . . . . . . . . . . . . . . 50

3.4.1 Error source 1: Error due to the backscatter-coe�cient calibration . . 50

3.4.2 Error source 2: Error due to the range-dependent lidar ratio . . . . . 52

3.4.3 Error sources 3-4: Errors due to the measurement noise . . . . . . . . 52

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Error sources 3-4: Errors due to the measurement noise . . . . . . . . 56

3.5.1.1 Noise in all range cells except the calibration cell . . . . . . 56

3.5.1.2 Noise in the calibration cell . . . . . . . . . . . . . . . . . . 57

3.5.1.3 Superposition of error sources 3-4 . . . . . . . . . . . . . . . 58

3.5.2 Errors due to the backscatter-coe�cient calibration . . . . . . . . . . 58

3.5.3 Errors due to the lidar ratio . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Enhanced data-gluing algorithm for mixed analog/photon-counting lidar

signals 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Enhanced data-gluing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Case example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Prospective application: Lidar calibration . . . . . . . . . . . . . . . . . . . 69



CONTENTS xiii

4.4.1 Receiving channel calibration . . . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Calibration method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 ABLH monitoring using a Kalman �lter and backscatter lidar returns 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 ABL adaptive detection method . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 The Extended Kalman Filter approach . . . . . . . . . . . . . . . . . 75

5.2.2 ABL Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.3 Normalization of the range-corrected lidar signal . . . . . . . . . . . . 77

5.2.4 Filter Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.5 Non-linear least-squares approach . . . . . . . . . . . . . . . . . . . . 80

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 High-SNR case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 Low-SNR case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 ABLH estimation using a Kalman �lter and a FMCW radar 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Radar re�ectivity pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 ABLH estimation using an EKF . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Treatment of the observation noise . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 RSLab lidar exploitation cases 103

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Application Case (I): Nabro Volcano eruption, 2011 . . . . . . . . . . . . . . 105

7.2.1 Timeline of the observations . . . . . . . . . . . . . . . . . . . . . . . 107

7.2.2 Stratospheric AOD from lidar data . . . . . . . . . . . . . . . . . . . 107

7.2.3 Stratospheric contribution to total column AOD . . . . . . . . . . . . 110

7.2.4 RSLAB measurements, June 27th, 2011 . . . . . . . . . . . . . . . . . 110

7.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Application case (II): Eyjafjallajökull volcano, 2010 . . . . . . . . . . . . . . 113

7.3.1 Eyjafjallajökull Volcano . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.2 Timeline of the observations . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.3 Volcanic aerosol mask . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.3.1 France and other Mediterranean countries . . . . . . . . . . 118

7.3.3.2 Iberian peninsula . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.4 Distribution of volcanic aerosol over Europe . . . . . . . . . . . . . . 119



xiv CONTENTS

7.3.5 RSLab measurement, May 8th, 2010 . . . . . . . . . . . . . . . . . . . 124

7.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Conclusions 129

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2 Future lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Appendices 133

A List of Publications 133

A.1 Journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2 International Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.3 National Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

References 137



List of Figures

1.1 24-hours cycle showing the zones in the ABL . . . . . . . . . . . . . . . . . . 2

1.2 Oversimpli�ed description of the ABL . . . . . . . . . . . . . . . . . . . . . . 2

1.3 ABL case examples from two di�erent remote sensing instruments, the UMass

FMCW S�band radar and the RSLAB multi-spectral lidar. . . . . . . . . . . 3

1.4 The RSLAB lidar station (Barcelona�Spain) in the EARLINET . . . . . . . 6

1.5 The RSLab multi-spectral lidar system . . . . . . . . . . . . . . . . . . . . . 7

1.6 An S-band, FMCW atmospheric pro�ling radar from MIRSL . . . . . . . . . 8

1.7 Optical-atmospheric parameter inversion example (May, 5th, 2011, Barcelona,

Spain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Block diagram of a basic lidar setup. . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Monostatic pulsed lidar setup geometry. . . . . . . . . . . . . . . . . . . . . 20

2.3 Variation of extinction, α, and backscatter coe�cients, β, with UV, VIS and

NIR wavelength and atmospheric condition. . . . . . . . . . . . . . . . . . . 22

2.4 Elastic/Raman interaction and 3+3 elastic/Raman con�guration. . . . . . . 27

2.5 Monostatic radar setup geometry. . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Principle of operation of a FMCW radar. . . . . . . . . . . . . . . . . . . . . 37

2.7 Block diagram of a FMCW radar setup. . . . . . . . . . . . . . . . . . . . . 38

2.8 Cross-examination of four classic ABL estimation methods (VCM, LGM, GM,

and IPM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Behavior of the forward and backward forms of the KFS-inverted backscatter

coe�cient for several values of the aerosol lidar ratio . . . . . . . . . . . . . 54

3.2 Simulated lidar signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Analysis of noise corrupting all range cells except the calibration cell (error

source 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Analysis of noise at the calibration range (error source 4) . . . . . . . . . . . 57

3.5 Superposition of error sources 3 and 4 . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Analysis of aerosol backscatter-coe�cient calibration error (error source 1) . 59

3.7 Analysis of lidar-ratio errors (error source 2) . . . . . . . . . . . . . . . . . . 60



xvi LIST OF FIGURES

4.1 The enhanced gluing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Comparison among analog, PC, and glued range-corrected signals (Barcelona

UPC, Campus Nord, June, 27th, 2011) . . . . . . . . . . . . . . . . . . . . . 67

4.3 Time series monitoring the evolution of a vertical pro�le of volcanic aerosols

in the stratosphere and Saharan dust layers in the troposphere . . . . . . . . 68

4.4 Glued analog-PC signals from the Fig. 4.3 zoomed-in in the low range (0�4

km) and in the far range, 15�18 km. . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Generalized block diagram of a lidar reception channel combining simultane-

ous analog/photon-counting acquisition. . . . . . . . . . . . . . . . . . . . . 70

4.6 Validation of the backscattered return signal and SNR levels in reception

(1064-nm channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Conceptual block diagram of the Extended Kalman �lter approach. . . . . . 77

5.2 High-SNR case, ABL sunset (Barcelona UPC, Campus Nord, December 16,

2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Low-SNR case ABL sunset case (Barcelona UPC, Campus Nord, December

16, 2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Radar re�ectivity pre-processing case example . . . . . . . . . . . . . . . . . 89

6.2 Radar re�ectivity as a function of range (height AGL) . . . . . . . . . . . . . 90

6.3 Radar re�ectivity pre-processing block diagram . . . . . . . . . . . . . . . . 91

6.4 Spatial and temporal variances of the observation noise . . . . . . . . . . . . 95

6.5 FMCW radar and ceilometer observables to the EKF along with ABLH esti-

mates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6 Comparison between measured and EKF-estimated re�ectivity pro�les in two

di�erent time intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7 Comparison between radar and ceilometer ABLH estimates . . . . . . . . . . 101

7.1 Location of the two applications cases studied, Nabro and Eyjafjallajökull

events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Zonal and temporal distribution of lidar observations from June to October,

2011, Nabro volcanic event . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Back-trajectories for all sites included in the study with exception of the ones

located in the United States, Nabro volcanic event . . . . . . . . . . . . . . . 108

7.4 Scattering ratio pro�les, Nabro volcanic event . . . . . . . . . . . . . . . . . 109

7.5 Global CALIOP AOD retrieval from July 16 to July 31, Eyjafjallajökull vol-

canic event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.6 Time-height plot of the glued range-corrected lidar signal for the 532-nm

channel for the Nabro volcanic event (Barcelona UPC, Campus Nord, June,

27th, 2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



LIST OF FIGURES xvii

7.7 RSLab Optical-atmospheric parameters inversion example for Fig. 7.6a, Nabro

Volcano case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.8 Aerosol mask for the Palaiseau and Granada sites, Eyjafjallajökull volcanic

event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.9 Results for Central Europe cluster, Eyjafjallajökull volcanic event. . . . . . . 120

7.10 Results for Central and Western Mediterranean clusters, Eyjafjallajökull vol-

canic event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.11 IB at 532 nm measured by EARLINET in the volcanic layers over the �ve

clusters, Eyjafjallajökull volcanic event. . . . . . . . . . . . . . . . . . . . . . 124

7.12 Dispersion of the Eyjafjallajökull volcanic aerosol, 16 � 21, April, and 6 � 10,

May, Eyjafjallajökull volcanic event. . . . . . . . . . . . . . . . . . . . . . . . 124

7.13 Dispersion of the Eyjafjallajökull volcanic aerosol, 17 � 20, May, Eyjafjalla-

jökull volcanic event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.14 RSLab Optical-atmospheric parameters inversion example for Eyjafjallajökull

volcanic event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126





List of Tables

1.1 List of contributing EARLINET lidar systems. . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Main speci�cations of the RSLab multi-spectral lidar system. . . . . . . . . . . . . . . 7

2.1 Radar frequency band classi�cation [Mahafza and Elsherbeni , 2004]. . . . . . . . . . . . 32

3.1 KLT-to-KFS transformation relationships. . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Total backscatter-coe�cient error-propagated terms for the KFS backward inversion algo-

rithm in response to error sources 1-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 First-order error bounds for the KFS backward inversion algorithm in response to error

sources 1-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Total-increment error bounds for the KFS backward inversion algorithm in response to error

sources 1-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 EKF and NLSQ parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Classical-method parameters used for for high- and low-SNR case studies (units [V km2]

refer to the range corrected signal, U(R)) . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Initialization parameters for the radar and ceilometer EKFs. . . . . . . . . . . . . . 98

7.1 Lidar systems description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 AOD values calculated from the pro�les shown on Fig. 7.10 (layers) and AERONET colo-

cated measurements of AOD (total column). . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 Geometrical and optical properties of the volcanic layers for each of the clusters . . 121

7.4 Values for geometrical properties and optical properties . . . . . . . . . . . . . . . 127





List of Symbols

Roman Symbols

a Aerosol radius [m]

abs Sub/super-index term for absorption [·]

aer Sub/super-index term for aerosol [·]

AOD Aerosol Optical Depth [·]

AODaero Interpolated values of AOD [·]

Ar Telescope e�ective area [m2]

c Speed of light in vacuum (2.998×108 [m s−1])

D Radar scatterers diameter [m]

D′ Modi�ed lidar log-range-corrected signal

∆R Raw spatial resolution [m]

E Energy pulse [J]

e Partial pressure of water vapour [hPa]

Ein Incident laser power density [Wm−2]

f+b Maximum value of fb[Hz]

f−b Maximum value of fb[Hz]

fbr Radar beat frequency, moving target [Hz]

fb Radar beat frequency, stationary target [Hz]

fd Doppler frequency shift [Hz]

fe Emitter radar frequency [Hz]

fr Received radar frequency [Hz]

G Radar antenna gain [·]

GT Preampli�er gain [V/A]

h Plank's constant (6.625 ×10−34[J s])

C2
n Refractive index structure function parameter

[·]

I Range interval [samples]

i Sample index

n Refractive index [·]

I0 Initial intensity [Wm−2]

j Sample index

K Lidar system constant [Wm3]

Ksca Backscattered power per solid angle unit [W sr−1]

M Multiplication factor [·]

Mie Subindex term for Mie [·]

mol Sub/super-index term for molecular [·]

N Radioelectric refractivity [·]

N(D) Particle size distribution [scatterers/m3]

NRB Normalized Relative Backscatter [·]

Naer, Ng , NR Aerosol, Gas, Nitrogen molecule number con-
centration [m−3]

opt Sub/super-index term for optimal [·]

P Backscattered power [W]

p Atmospheric pressure [hPa]

P0 Emitted laser power [W]

Pr Radar received power [W]

Pr Radar transmitted power [W]

Qabs Absorption e�ciency [·]

Qback Backscatter e�ciency [·]

Qext Extinction e�ciency [·]

Qsca Scattering e�ciency [·]

R Observation range [m]

Ray Subindex term for Rayleigh [·]

Rio Detector intrinsic current responsivity [A/W]

Rv Voltage responsivity [V/W]

R′v Net voltage responsivity [V/W]

Saer Aerosol extinction-to-backscatter ratio (aerosol
lidar ratio) [sr]

sca Sub/super-index term for scattering [·]

Smol Rayleigh ratio (molecular lidar ratio) [sr]

SR Scattering Ratio [·]

Stot Total lidar ratio [sr]



xxii LIST OF TABLES

T Atmospheric transmissivity [·]

t Time delay [s]

tot Subindex term for total [·]

U Range-corrected signal [Wm2]

V a Va Analog voltage signal [V]

Vm Visibility margin [m]

Vpc Photon-counted signal [cps]

Vsca Scattering volume [m3]

Z Radar re�ectivity factor [·]

Ze Equivalent radar re�ectivity factor [·]

Greek Symbols

α Extinction coe�cient [m−1]

β Backscatter coe�cient [m−1sr−1]

σ Cross-section [m2]

∆ν Frequency shift [Hz]

∆R′ E�ective spatial pulse length [m]

η Volume radar re�ectivity [m2m−3]

κ Wavelength shift [m−1]

λ, λ0, λR Wavelength, elastic wavelength, Raman wave-
length [nm]

ν0 Incident frequency [Hz]

νR Frequency shift [Hz]

τ Optical depth [·]

τdead Dead time [s]

τl Pulse duration [s]

ξnet Optical transmissivity [·]

ζ Scaling factor [·]



List of Acronyms

ABL Atmospheric Boundary Layer.

ABLH Atmospheric Boundary Layer Height.

ADC Analog-to-Digital Conversion.

AERONET Aerosol Robotic Network.

APD Avalanche Photo-Diode.

ATSR Advanced Along Track Scanning Radiometer.

ca Cabauw (The Netherlands).

CALIOP Cloud-Aerosol LIdar with Orthogonal Polariza-
tion.

CALIPSO Cloud-Aerosol Lidar and Infrared Path�nder Satel-
lite Observation.

CBL Convective Boundary Layer.

CE Central Europe.

CEAMA Centro Andaluz de Medio Ambiente - Universi-
dad de Granada.

CM Central Mediterranean.

CNR-IMAA Consiglio Nazionale delle Ricerche - Istituto
di Metodologie per l' Analisi Ambientale.

CW Continuous Wave.

DFT Discrete Fourier Transform.

DIAL Di�erential Absorption Lidar.

DREAM Dust REgional Atmospheric Model.

EARLINET European Aerosol Research LIdar Network to
Establish an Aerosol Climatology.

EAT East Africa Time.

EE Eastern Europe.

EKF Extended Kalman Filter.

EM Eastern Mediterranean.

ESA European Space Agency.

EURAD EURopean Air Pollution Dispersion.

ev Evora (Portugal).

EZ Entrainment Zone.

FMCW Frequency Modulated Continuous Wave.

FOV Field-Of-View.

FT Free Troposphere.

GALION GAW Atmospheric Lidar Observation Network.

GAW Global Atmosphere Watch.

GDAS Global Data Assimilation System.

GEOSS Global Earth Observation System of Systems.

GLAS Geoscience Laser Altimeter System.

GM Gradient Method.

gr Granada (Spain).

GSFC Goddard Space Flight Center.

GUI Graphic User Interface.

hh Hamburg (Germany).

HPBW Half Power BandWidth.

HSRL High Spectral Resolution Lidar.

HYSPLIT Hybrid Single Particle Lagrangian Integrated
Trajectory Model.

IB Integrated Backscatter.

IPM In�exion Point Method.

is Ispra (Italy).

ISNRa Inverse Analog Signal-to-Noise-Ratio.

KF Kalman Filter.

KFS Klett-Fernald-Sasano two-component inversion algo-
rithm.

KLT Klett one-component inversion algorithm.

la L'Aquila (Italy).

lc Lecce (Italy).

le Leipzig (Germany).

LGM Logarithmic Gradient Method.

lidar LIght Detection And Ranging.



xxiv List of Acronyms

LOS Line-Of-Sight.

LT Local Time.

ma Maisach (Germany).

MIRSL Microwave Remote Sensing Laboratory.

ML Mixing Layer.

MLO Mauna Loa Observatory.

MPLNET Micro Pulse Lidar Network.

na Naples (Italy).

NASA U.S. National Aeronautics and Space Administra-
tion.

Nd:YAG Neodymium-doped Yttrium Aluminum Garnet.

NDACC Network for the Detection of Atmospheric Com-
position Change.

NEP Noise Equivalent Power.

NIR Near InfraRed.

NLSQ Non-Linear Least-SQuares estimators.

OHP Observatoire de Haute-Provence.

OVF Overlap Factor.

PBL Planetary Boundary Layer.

PC Photon-Counting mode.

pl Palaiseau (France).

PMT Photo-Multiplier Tubes.

po Potenza (Italy).

PR Pulsed Radar.

radar RAdio Detection And Ranging.

RASS Radio Acoustic Sounding System.

RF Radio Frequency.

RSLab Remote Sensing Laboratory.

SCC Single Calculus Chain.

SNR Signal-to-Noise ratio.

sodar SOnic Detection And Ranging.

SPALINET Spanish and Portuguese Aerosol LIdar Net-
work.

THM Threshold Method.

UHF Ultra High Frequency.

UMass University of Massachusetts.

UPC Universitat Politècnica de Catalunya.

UTC Coordinated Universal Time.

UV UltraViolet.

VAAC Toulouse Volcanic Ash Advisory Center.

VHF Very High Frequency.

VIS VISible.

WM Wavelet Method.



Chapter 1

Introduction

This Chapter gives an overview of the UPC RSLab multi-spectral lidar system and UMass

S-band pro�ler radar in the context of atmospheric aerosol remote sensing. Next, it proceeds to

present the motivation, objectives and organization of this Ph.D. thesis.

1.1 Atmospheric Remote Sensing through lidar and radar

Climate change and air quality are governed by emission, transport and transformation of key at-

mospheric components (e.g., aerosols, clouds, greenhouse and trace gases) and their interaction with

solar radiation. Contrary to greenhouse gases, there are still great uncertainties in the estimates of

radiative forcing by short-lived trace gases and aerosol particles.

In this context, �aerosols� can be understood as small particles in suspension in the atmosphere,

which interact directly in the Earth's radiation balance, dispersing and absorbing solar and infrared

radiation and indirectly modifying cloud formation processes, e.g., by increasing the density/size of

water droplets and/or reducing the e�ciency of precipitation. The aerosols which most substantially

a�ect the climate are those generated by mankind (industrial pollution), desert dust outbreaks

and volcanic eruptions. It is thought that aerosol cooling may partially o�set the experienced and

expected global warming that is attributed to increases in the amount of carbon dioxide from human

activity [Bösenberg and Ho� , 2007]. Sustained long-term observations of a comprehensive suite

of atmospheric and, in particular, aerosol-pro�le parameters can be accomplished from multiple

coordinated in-situ and ground-based remote sensing sensors, since aerosols can act as tracers of

these atmospheric transport processes.

Usually aerosols are located in the lowest part of the atmosphere, commonly know as the

Atmospheric Boundary Layer (ABL). According to Stull [1988a], the ABL can be de�ned as that

part of the troposphere that is directly in�uenced by the presence of Earth's surface, and responds to

surface forcings with a time scale of about an hour or less. These forcings include frictional drag,

evaporation and transpiration, heat transfer, pollutant emission, and terrain �ow modi�cation (Fig.

1.1). ABL thickness can vary between hundred of meters to few kilometers.

In the low troposphere, the ABL limit is marked by a transition interface known as the Entrain-

ment Zone (EZ), where two di�erent air masses, the Mixing Layer (ML) and the Free Troposphere
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Figure 1.1: 24-hours cycle showing the zones in the ABL. Source: [Stull , 1988a].

(FT), merge and interact. Fig. 1.2 shows the location of these layers. Measurements in this transi-

tion region provide useful parameters such as the Atmospheric Boundary Layer Height (ABLH) or

the EZ thickness. These parameters are highly valuable inputs to environmental models since they

describe the extension and evolution of the transport of atmospheric constituents [Stull , 1988a].

Radar (Radio Detection and Ranging) remote sensing systems use microwave radiation to interact

with atmosphere constituents and solid targets as �re�ecting targets�. Basically, radar systems

radiate energy into the propagation medium (usually free space) and detects the echo signal from

these �re�ecting targets� [Skolnik , 2001]. The information retrieved can include their shape and

location. Unlike common known radars designed to detect aircrafts or ships, weather radar �re-

�ecting targets� can be de�ned as atmosphere volumes that include the morphology of turbulence

and small scale temperature, pressure and humidity variations [Stull , 1988b]. These variations and

turbulence can cause small refractive index irregularities, which scatter the radar radiated energy

[Sauvageot , 1992a]. Weather radar systems include, among others, wind pro�lers and Frequency

Modulated Continuous Wave (FMCW) radars. A FMCW radar ABL detection example can be

seen in Fig. 1.3a.

U(R)

R FT

EZ

ML

(a)

R

h(R)

R′1 Rbl R′2

2.77a−1

Rbl

R1 R2

βmol + βaer

c = βmol

A

(b)

Figure 1.2: Oversimpli�ed description of the ABL. (a) In the ABL model, U(R) is the range-corrected
lidar signal (noiseless). ML stands for the �Mixing Layer�, EZ for the �Entrainment Zone�, and FT for
the �Free Troposphere�. (b) Idealized ABL erf-curve transition model, h(R), for the total backscatter
coe�cient with characteristic parameters, Rbl, a, A, and c. R1 and R2 are the start- and end-range
limits de�ning the length of the observation vector passed to the �lter. R′1 and R

′
2 are the start-range

and end-range limits of the erf-like ABL transition. Source: Lange et al. [2013].

On the other hand, lidar (Light Detection And Ranging) remote sensing systems [Fiocco and
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Figure 1.3: ABL case examples from two di�erent remote sensing instruments, the RSLAB multi-
spectral lidar and the UMass FMCW S�band atmospheric pro�ling radar. (a) Time-height plot of the
volume radar re�ectivity signal (Boulder CO, August, 20, 2007). (b) Time-height plot of the range-
corrected lidar signal for the 1064 nm channel (Barcelona, December, 16, 2010).

Smullin, 1963] are synonyms of laser radar and represent the nearest counterpart to microwave

radars, with the exception that microwave radiation has now been replaced by laser radiation.

Lidars are currently used on land (�xed-location or transportable) and as sensors mounted in

aircraft and satellites for the observation of the terrestrial atmosphere at local and global scale.

Lidar systems o�er unprecedented capabilities of environmental, meteorological and spectro-

scopic probing (with typical spatial resolutions of meters and temporal ones of minutes), thanks to

the strong interaction between the laser beams and atmospheric molecules and particles. An ABL

detection example for an elastic lidar is depicted in Fig. 1.3b. Besides, the potential interaction

mechanisms at play such as elastic and inelastic (i.e. Raman) scattering, absorption, and �uores-

cence, have extended the applications of these systems to aerosol [Rocadenbosch, 2003b], wind, and

spectroscopic (e.g., DIAL) lidar sensing [Collis and Russell , 1976; Rocadenbosch, 2003c].

In lidar systems, the emission of a short laser pulse is followed by the reception of laser radi-

ation scattered from these atmospheric constituents, such as molecules, aerosols, and clouds. The

interaction of the incident radiation with these constituents changes the laser beam intensity, the

wavelength, or both, depending on the strength of this optical interaction and on the concentration

of the interacting species. Consequently, it is possible to retrieve information about the physical

state of the atmosphere along the exploration beam path.

1.2 The UPC RSLab in the international context

This Ph.D. study is carried out at the Remote Sensing Lab (RSLab) of the Universitat Politècnica

de Catalunya (UPC), Barcelona. To outline the lidar activities of the RSLab in the international

context, it is �rst necessary to present EARLINET.

In the European context, EARLINET (European Aerosol Research Lidar Network to Establish

an Aerosol Climatology), established in 2000, is the �rst coordinated ground-based aerosol lidar

network whose key remit is the provision of a comprehensive, quantitative, and statistically signif-

icant database on the spatial and temporal aerosol distribution on a continental scale [Bösenberg
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and Matthias, 2003]. At present (2013), the network includes 27 stations distributed over Europe

(see Table 1.1, Fig. 1.4a).

The RSLab lidar group of the UPC is part of the EARLINET (Table 1.1, Fig. 2), which is also

one of the leading components of GAW (Global Atmosphere Watch) programme GALION (GAW

Atmospheric Lidar Observation Network) since its inception in the year 2000 [Bösenberg and Ho� ,

2007; Ho� et al., 2008]. The RSLab is also founder of the Spanish and Portuguese Aerosol Lidar

Network (SPALINET) [Sicard et al., 2009b; SPALINET , 2007].

Lidar observations within EARLINET are performed on a regular schedule since May 2000,

allowing for the collection of long-term data sets for climatological studies [Matthias et al., 2004a]. In

addition to coordinated routine measurements, further observations are devoted to the monitoring of

special events such as Saharan dust outbreaks [Ansmann et al., 2003;Mona et al., 2006; Papayannis

et al., 2008], forest �res [Müller et al., 2007] and volcanic eruptions [Pappalardo et al., 2004a, 2013;

Wang et al., 2008; Mattis et al., 2010; Sawamura et al., 2012; Sicard et al., 2012].

Table 1.1: List of contributing EARLINET lidar systems.

Site Country Altitude a.s.l. (m) Lat. (N) Long. (E)

Andenes Norway 380 69.28 16.01
Athens Greece 200 37.96 23.78
Barcelona Spain 115 41.39 2.11
Belsk Poland 180 51.84 20.79
Bucharest-Magurele Romania 93 44.45 26.03
Cabauw the Netherlands 1 51.97 4.93
Cork Ireland 75 51.89 -8.49
Evora Portugal 293 38.57 -7.91
Garmisch-Partenkirchen Germany 730 47.48 11.06
Granada Spain 680 37.16 -3.61
Hamburg Germany 25 53.57 9.97
Ispra Italy 209 45.82 8.63
L'Aquila Italy 683 42.38 13.32
Lecce Italy 30 40.30 18.10
Leipzig Germany 100 51.35 12.44
Linkoping Sweden 80 58.39 15.57
Madrid Spain 669 40.45 -3.73
Maisach Germany 515 48.21 11.26
Minsk Belarus 200 53.92 27.60
Munich Germany 539 48.15 11.57
Naples Italy 118 40.84 14.18
Neuchatel Switzerland 487 47.00 6.96
Palaiseau France 162 48.70 2.20
Payerne Switzerland 456 46.81 6.94
Potenza-Tito Scalo Italy 760 40.60 15.72
So�a Bulgaria 550 42.67 23.33
Thessaloniki Greece 60 40.63 22.95

Data quality has been assured by inter-comparisons at instrument level using the available trans-

portable systems (Fig. 1.4b and Fig. 1.4c) [Matthias et al., 2004b; Freudenthaler et al., 2010;Molero

et al., 2011]. Data quality assurance also includes the inter-comparison of group-speci�c retrieval

algorithms for both backscatter and Raman lidar data ([Böckmann et al., 2004; Pappalardo et al.,

2004b]. Based on well-de�ned common standards, the routinely performed quality-assurance exer-

cises of lidar instruments and algorithms ensure that the data products provided by the individual

stations are homogeneous and continuously of highest possible reliability. E�orts to guarantee and
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improve the quality of data derived from observations in EARLINET are continuous [Freudenthaler

et al., 2010].

All measured pro�les are stored in a standardized data format in a centralized database which al-

lows for easy access to the complete data set for further scienti�c studies. Presently, the EARLINET

database represents the largest collection of ground-based data of the vertical aerosol distribution

on a continental scale [Pappalardo et al., 2007; EARLINET , 2013].

In the global context, the Micro Pulse Lidar Network (MPLNET) [Welton et al., 2001] is a

global network of low-power lidars providing long-term observations of aerosol and cloud properties.

Most MPLNET stations are collocated with AERONET (Aerosol Robotic Network) [Holben et al.,

1998] sites that provide column-integrated properties of aerosols and clouds. Also, the Network

for the Detection of Atmospheric Composition Change (NDACC) is composed of more than 70

remote sensing research stations with observational capabilities which include lidars, spectrometers,

microwave radiometers and ozone and aerosol sondes. Actually, the RSLab also hosts one MPLNET

lidar system, in D3 building, Campus Nord, Barcelona, Spain.

The RSLab has a long-lasting experience in the �eld of lidar (started in 1993) which today ful�lls

part of the GAW programme of observation of atmospheric aerosols. According to Bösenberg and

Ho� [2007], GAW's strategic goal for 2008�2015 is the determination of the spatio-temporal distribu-

tion of properties of atmospheric aerosols related with climate change and air quality in multi-decade

time scales. More speci�cally, GALION is to provide the vertical component of aerosol distribution

by means of advanced-speci�cations lidar systems organized into a network of cooperative networks

as part of the GEOSS (Global Earth Observation System of Systems).

Organizations like U.S. National Aeronautics and Space Administration (NASA) and the Eu-

ropean Space Agency (ESA) develop programs of global climate monitoring based on space- and

satellite-borne lidar such as the Geoscience Laser Altimeter System (GLAS) (cloud and strato-

spheric temperature monitoring) [Werner , 2005; Winker et al., 2006], the Cloud-Aerosol Lidar and

Infrared Path�nder Satellite Observation (CALIPSO) (aerosol and clouds) [CALIPSO , 2014], and

others. Ground-based lidar networks at continental and local scales such as EARLINET, and

SPALINET are major lidar data providers.

1.2.1 The RSLab 3+2+1 multi-spectral Elastic/Raman lidar sys-

tem

The RSLab has currently set-up a 6-channel atmospheric lidar system including 3+2 elastic/Raman

aerosol channels and one water-vapour channel [Kumar et al., 2011] (Fig. 1.5). The lidar system

uses a Q�switched Nd:YAG laser at 1064�, 532� (2nd harmonic) and 355� nm (3th harmonic)

wavelengths. The return signal is collected by a 40-cm aperture telescope. A �ber bundle conveys

the light return from the telescope focal plane to a polychromator, the spectrally selective unit in

reception, designed with a view to minimize optical losses and physical dimensions. The reception

�eld of view, which is limited by the �ber bundle characteristics, is virtually the same for all

wavelengths. The backscattered received optical power is separated into the 355-, 532-, and 1064-

nm elastic wavelengths as well as the 386.7- and 607.4-nm N2 Raman-shifted wavelengths, and the
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Figure 1.4: The RSLAB lidar station (Barcelona�Spain) in the EARLINET. a) Map of the EAR-
LINET stations currently active (July, 2013). (Red dots) multi-spectral Raman lidar stations (EAR-
LINET core stations). (Green dots) Stations with at least one Raman channel. (Violet dots) Stations
with only elastic backscatter channel. (‖⊥) Stations with depolarization-measurement capabilities. (☼)
Stations with an AERONET sun-photometer collocated [Pappalardo et al.]. b) EARLINET � ASOS
lidar inter-comparison campaign held in Madrid (Oct, 18 - Nov 7, 2010), showing the range-corrected
signal inter-comparison among the participant lidar systems for 1064 nm channel (December, 27, 2010)
[(PO: Potenza (Italy), MA: Madrid, GR: Granada, BA: UPC-Barcelona (Spain) and EV: Évora (Por-
tugal)].

407.5-nm water-vapour Raman-shifted wavelength (Table 1.2).

Signal detection is achieved by using an Avalanche Photo-Diode (APD) at 1064 nm and Photo-

Multiplier Tubes (PMTs) at all other wavelengths. A simultaneous analog/photon-counting acquisi-

tion unit is used. All the engineering details can be found in Kumar et al. [2006]. The assessment of

system performance has been presented in terms of range-corrected power returns, Signal-to-Noise

ratio (SNR) and maximum system range, and in Lange et al. [2012a], the measured backscattered

elastic-lidar power returns against the link-budget theoretical ones [Kumar et al., 2012].

1.3 Ph.D. mobility context: The UMass MIcrowave Re-

mote Sensing Laboratory

The Microwave Remote Sensing Laboratory (MIRSL) is the largest research laboratory of the De-

partment of Electrical and Computer Engineering at the University of Massachusetts (UMass),

Amherst. Co-directed by Professors Stephen Frasier and Paul Siqueira, the MIRSL laboratory

includes 16 graduate students, four faculty, and two sta� (September, 2012). The laboratory occu-

pies over 3000 square feet of space in the Knowles Engineering Building and is well out�tted with

modern Radio Frequency (RF) and microwave test equipment.

MIRSL researchers specialize in the conception, design, implementation, and evaluation of novel

microwave and optical remote sensing instruments and methods. These are used to study aspects

of the geophysical environment including the oceans (winds, waves, and currents) [�nce et al.,

2003; Contreras and Frasier , 2008; Frasier et al., 2008], atmosphere (severe storms, atmospheric

boundary layer) [Contreras and Frasier , 2008; Pollard et al., 2000], and land (topography, ice,
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Table 1.2: Main speci�cations of the RSLab multi-spectral lidar system.

Emitter

Laser Model Quantel Brilliant, 1997
Output [nm] Nd:YAG 355/532/1064
Pulse Energy total [J] 0.060/0.160/0.350
Pulse repetition rate [Hz] 20
Pulse length [ns] 3.6
Laser beam diameter [mm] 6

Receiver

Telescope Model Celestron, Classic 8, 1989
Type Schmidt-Cassegrain, primary spherical
Aperture diameter [mm] 203.2
Obscuration diameter [mm] 69.85
Focal length [m] 2.032
Field of View [mrad] 1.48

Optical �ber Type Bundle
Numerical Aperture 0.12
Telescope-laser axes distance [m] 0.18
Collimation system type Double-convex lens
Collimation focal length [mm] 27

Detection channels

Central wavelength [nm] 532.1 607.4 1064 407.5 386.7 354.7
Scattering mechanism Elastic Rot.Raman N2 Elastic Rot.Raman H2O Rot.Raman N2 Elastic
Detector type PMT PMT APD PMT PMT PMT
Daytime capability yes no yes yes yes yes
Spectral Bandwidth, ∆λ [nm] 1 1 1 1 1 1

Detector NEP [fW · Hz−1/2] 0.192 0.296 36.6 0.892 0.0407 0.0444

Channel NEP [fW · Hz−1/2] 7.7 3.0 925 26.2 6.4 7.7

Telescope�Laser

Licel Acqui-
sition device

Control Computer

Polychromator

High power
generator

(a)

Telescope

Optical �ber bundle

Nd:YAG laser

2th armonic generator

3th armonic generator
(b)

(c)

Figure 1.5: The RSLab multi-spectral lidar system (Campus Nord, D3 Building, Barcelona, Spain).
(a) Photograph of the lidar system showing the scanning telescope�laser unit (right) and the con-
trol/acquisition rack unit (left) before integration in the new RSLab automated lidar station (planned
July, 2014).(b) Detail of the scanning telescope-laser unit. (c) Nocturnal operation of the lidar system.

carbon, biomass) [Ahmed et al., 2013]. Over the last twenty years, the MIRSL has developed over

a dozen new instruments and methods [�nce et al., 2003; Pollard et al., 2000; Trabal et al., 2013;

Bioucas-Dias et al., 2012]. In addition to its own graduate students, MIRSL has hosted several
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students from foreign universities (primarily from Germany and Spain) as visiting scholars pursuing

projects for their MS or Diploma degrees. D. Lange has been hosted for a Ph.D. stay from Sept.,

2012 to Jan. 2013.

MIRSL has developed a �eet of novel atmospheric remote sensing systems. These mobile systems

participate in �eld experiments to better understand the dynamics of the lower atmosphere, and

in particular, the atmospheric boundary layer. Some active remote sensing examples are: (i)

meteorological radars operating at microwave frequencies (Fig. 1.6) [Frasier et al., 2008], (ii)

wind pro�lers operating at VHF and UHF frequencies [�nce et al., 2003], (iii) millimeter-wave

cloud radars [Sekelsky and Clothiaux , 2002], and (iv) infrared and optical lidars for aerosol studies

[Anderson et al., 2004]. Passive microwave systems (radiometers) which also measure properties of

the atmosphere such as the water-vapour and cloud liquid water content, have been developed by

MIRSL [Scheve and Swift , 1999].

1.3.1 The MIRSL FMCW radar and lidar ceilometer systems

The MIRSL systems of concern for this Ph.D. are an S�band (2�4 GHz [Mahafza and Elsherbeni ,

2004]) FMCW radar and a Vaisala CL-31 532-nm lidar ceilometer (Fig. 1.6).

A lidar ceilometer is a low-cost simple backscatter lidar originally devoted to cloud height and

extent monitoring. Modern ceilometers such as the Vaisala CL-31 also enable to pro�le the aerosol

structure within the low troposphere [Vaisala, 2014].

Figure 1.6: An S-band, FMCW atmospheric pro�ling radar fromMIRSL. It employs separate antennas
for transmitting and receiving. A Vaisala CL-31 lidar ceilometer is also contained within the white
housing next to the antennas. Source: MIRSL [2014].

A FMCW radar usually uses a frequency-modulated instantaneous frequency to retrieve both

the range and Doppler shift from a moving target (Sect. 2.3.3). In the context of atmospheric

remote sensing and in the S�band the �moving target� is basically Rayleigh scattering from hy-

drometeors and interferent targets (e.g., insects and birds) and Bragg scattering from refractive

index turbulence(Sect. 2.3.2).

Both ceilometer and FMCW radar instruments will be revisited in application Chapter 6.
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1.4 Ph.D. motivation

The following motivation topics have been identi�ed from the state-of-art, and the international

context:

� Need to exploit the UPC multi-spectral Raman lidar system. The importance of aerosol

tropospheric pro�ling in a coordinated basis at continental level (EARLINET) has already

been outlined in Sect. 1.2.

� Atmospheric Boundary Layer Height (ABLH) estimation. There are several methods to

retrieve the ABLH based on remote sensing techniques. These techniques are always based

on the detection of a vertical feature from atmospheric variables, which continuously vary with

range and time, and having a well de�ned transition identi�able as an �edge� or �boundary�.

Height retrieval methods and their accuracy are conditioned to the characteristics of the

sensing instrumentation: lidar, sodar, radar wind pro�lers and RASS among others (see

Seibert et al. [2000] for an extensive review), either solely or combined [Emeis et al., 2008].

Elastic backscatter lidars use the backscattered optical power from the atmospheric aerosols to

pro�le the atmospheric structure and bene�t from being highly sensitive to the concentration

of aerosols, which are used as tracers or proxies of the ABLH.

Concerning weather radars systems, and despite the disturbing presence of birds and insects

in the S�band, they detect variations of the refractive index of the atmosphere, that are

in the same order as the wavelength of the sensor [Stull , 1988b]. The ABL is often more

humid than the FT in certain atmospheric conditions, like fair weather conditions. In these

conditions, centimeter-scale eddies on the interface between the ML and the FT create strong

echo returns. Within the ML there is a little returned energy in spite of the strong turbulence,

because the humidity is low everywhere.

Optimal estimation [Stephens and Engelen, 2001] and adaptive Kalman �ltering (KF) [Ro-

cadenbosch et al., 1999; Marchant et al., 2010] methods o�er the possibility to dynamically

track the ABL with minimum mean square error over time, that is, on a statistics basis,

and by combining past estimates with present ones to improve the estimation. Besides, they

provide �a posteriori� error covariance or inversion error.

Errors due to the measurement noise (a consequence of the �nite and range-dependent SNR

in reception) also have a severe impact on the retrieved extinction and backscatter data

products, not to mention the impact of the backscatter calibration from the user side [Klett ,

1981; Ansmann et al., 1992; Whiteman, 1999; Rocadenbosch and Comerón, 1999; Rocaden-

bosch et al., 2010a; Sicard et al., 2002, 2009a; Comerón et al., 2004; Rocadenbosch et al.,

2012]. These advanced methods, which usually �nd applications in the context of global

space-borne measurements are, however, more complex.

� Error assessment for the opto-atmospheric lidar retrieved data products. Backscatter lidars

provide only range-resolved pro�les of attenuated backscatter signal [Collis and Russell , 1976;

Bösenberg and Ho� , 2007; Reagan et al., 2002]. The lidar equation is inherently undetermined
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as it contains two unknowns (the atmospheric extinction, α, and the backscatter coe�cient,

β) but only a single observable (the optical power returned as a function of time, P (t)).

This under determination is in contrast to other schemes such as elastic-Raman systems,

High Spectral Resolution Lidars (HSRL) [Nishizawa et al., 2008], and variational multi-angle

backscatter-lidar retrievals [Sicard et al., 2002], all of which enable independent inversion of

both aerosol extinction and backscatter coe�cients [Ansmann et al., 1992].

Errors in the assumed lidar ratio may result in larger error-propagated errors [Bösenberg

and Ho� , 2007; Rocadenbosch et al., 2012], especially in situations of a complex layering of

aerosols [Ansmann, 2006]. Kunz [1996] and Kovalev [1993, 2003] have proposed alternative

variants (not the object of this Ph.D. thesis) allowing trustworthy extinction retrievals, where

the far-end calibration is replaced by the optical depth of the sounding path or by a near-end

calibration and a nephelometer measurement. The synergetic combination of a backscatter

lidar with a sun photometer is also extensively used [Reba et al., 2010].

As far as lidar signal processing is concerned and, particularly, for the UPC elastic/Raman

lidar station as a member of the EARLINET community, the following motivation factors have

been identi�ed:

� The need to monitor a wide range of environmental phenomena at local, European or global

scale, such as aerosol intrusion episodes (e.g., Saharan dust events, volcanic eruption, �re

plumes) and CALIPSO satellite overpasses over Barcelona, motivates to exploit the RSLab

lidar system in terms of environmental/aerosol transport data interpretation and improved

signal-processing raw-data.

� Considering ABLH estimation, low SNR scenarios analysis needs to resort to long time aver-

aging and/or range-smoothing techniques, thus deteriorating the temporal/spatial resolution

of the data, respectively.

� Error bounds for the two-component lidar inversion algorithm (retrieval of aerosol extinction

and backscatter coe�cient pro�les) are needed, so that estimated error bounds and, therefore,

the inversion quality can be assessed. Aerosol extinction and backscatter are the key optical

parameters for subsequent unequivocal inversion of micro-physical parameters when at least

3+2 channels are available [Böckmann, 2001].

1.5 Main Objectives

This Ph.D. thesis deals with Lidar and S�band radar pro�ling of the atmosphere: Adaptive

processing for Boundary-Layer monitoring, optical-parameter error estimation, and

application cases. Tentative goals are:

1. Exploitation and dynamic-range enhancement of the UPC multi-spectral lidar system. This

objective comprises system exploitation in the EARLINET context and in support of in-

ternational cal/val satellite missions, as well as a gluing-data method for dynamic range

enhancement elastic lidar signals.
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2. Application of adaptive Kalman Filter (KF) to ABL estimation and tracking using lidar and

FMCW radar data. The Ph.D. is to deal with the atmospheric backscattered signal from

these sensors as inputs to Kalman and Non-Linear least-SQuares estimator (NLSQ), their

initialization, and error-bound estimates. Besides, the ABLH estimates from these methods

will be compared to classic ABLH detection methods.

3. Assessment of the error bounds in the elastic retrieval of opto-atmospheric parameters, namely,

extinction and backscatter coe�cients. This objective is to cover estimates of backscatter er-

ror bounds for the elastic two-component lidar inversion algorithm.

To achieve these goals, the RSLab lidar infrastructures and the lidar data processing and inver-

sion platform Link-Detect (1993 � today) developed from the works guided by Dr. Rocadenbosch

(M.Sc. thesis from Molina [1998],Aixendri [1998],Gilabert [1998], among others) and integrated in

a GUI (Graphical User Interface) platform in Reba [2010] will be used. A case example is shown in

Fig. 1.7. EARLINET and SPALINET lidar networks will provide the European and National con-

sortium framework. Ceilometer and FMCW radar data coming from MIRSL will be also available.

The objectives above are respectively detailed in subsequent Sects. 1.5.1 � 1.5.3.
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Figure 1.7: Optical atmospheric parameters inversion example (May, 5th, 2011, Barcelona, Spain)),
using RSLab lidar data and Link-Detect GUI inversion platform. Klett-Fernald-Sasano method was
used [Klett , 1985]. Measurement shows a Saharan dust intrusion at several heights (up to 4 km)
and inside the ABL. (a) Time-height plot of the analog range-corrected lidar signal for the 1064 nm
channel. (b) Time-averaged range-corrected lidar signal. (c) Aerosol (blue) and molecular (green)
backscatter coe�cients, βaer and βmol, respectively. Error bounds have been computed according to
Obj. 3 (Chapter 3). (d) Aerosol (blue) and molecular (green) extinction coe�cients, αaer and αmol,
respectively. The Saer is 50 sr, and the estimated AOT is 0.10 [Reba et al., 2010].
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1.5.1 Obj. 1: Exploitation and dynamic-range enhancement of the

UPC multi-spectral lidar system

In 2010 the multi-spectral 3+2+1-channel elastic/Raman lidar station started regular operation

within EARLINET. This system permits calibrated multi-spectral range-resolved measurement of

the extinction and backscatter opto-atmospheric parameters in the UV (ultraviolet, channels at 355

and 387 nm), VIS (visible, 532 and 607 nm), and NIR (near-infrared, 1064 nm) as well as measure-

ment of water-vapor content (407 nm). Retrieval of the atmospheric extinction and backscatter

coe�cients in the VIS and UV, which is always semi-quantitative using elastic techniques, becomes

quantitative thanks to the incorporation of the respective Raman channels (i.e., the Raman return

due to the atmospheric nitrogen, the most abundant atmospheric molecular species, is used to

calibrate the associated elastic channel).

System exploitation in EARLINET and in support of international calibration/validation satel-

lite missions.- Since the beginning of EARLINET (2000) routine coordinated operation and the

establishment of inter-centre measurement alerts in coordination with the rest of the EARLINET

stations has allowed monitoring of a wide range of environmental phenomena. Additionally, and

with the objective of extending the EARLINET actions to Spain, the RSLab has led the formation

of the SPALINET.

This Ph.D. objective is transversally oriented and is aimed at exploiting the RSLab lidar mea-

surements in terms of data interpretation and improvement of related signal-processing techniques.

This includes transport and aerosol source analysis, statistics of the ABLH and aerosol layers

aloft, and synergies with sun photometers, among others. The latter is of application to the inter-

comparison of lidar instruments and inversion algorithms level, to the enhancement of the dynamic

signal range by means of data gluing (stratospheric measurements) and, more speci�cally, to Objs.

1.5.2 and 1.5.3.

The scope of lidar measurements in support of this Ph.D. objective comprises:

� Regular coordinated measurements within EARLINET network (3 per week, February 2000

� July 2013).

� CALIPSOmeasurements (June 2006 � July 2013): 2 to 3 measurements every 16 days (diurnal

and nocturnal) in coincidence with overpasses of the CALIPSO satellite.

� SPALINET campaigns: �ad-hoc� measurement campaigns of intercomparison of instruments

at di�erent points of Spain and with in-situ cooperative sensors (Madrid, 2010, Fig. 1.4b y

c, [Molero et al., 2011, 2012]).

� Monitoring of special events/alerts: Saharan dust, volcanic eruptions, and �re plume out-

breaks, measurements of diurnal cycle, cloud height, etc.

� Calibration/validation of RSLab lidar data products, in particular, optical properties of

aerosols, cloud height and vertical distribution. This includes the pre-processing of the lidar

signals (�raw data� to �clean data�) and the inversion and categorization of data (A case

example is shown in Fig. 1.7).
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It must be noted that since July 2013, the entire system is being improved towards an automated

lidar station.

Dynamic-range enhancement: the Gluing method.- Concerning raw data processing in atmo-

spheric lidar remote sensing, the dynamic range of the return power signals can span up to �ve

orders of magnitude. Towards a better exploitation of the RSLab multi-spectral lidar system,

dynamic-range enhancement of the reception channels is proposed. Modern acquisition systems

such as those based on LicelTM transient recorders combine a dual acquisition mode in which the

return signal is recorded simultaneously in both analog (Analog-to-Digital Conversion, ADC ) and

Photon-Counting (PC) modes. Although both data records can be analyzed separately, their com-

bination obtained through data gluing technique gives the advantage of the high linearity of the

ADC for high light-level signals (especially in the near range) and the high sensitivity of the PC

mode for low light-level signals (in the far range) [Licel , 2007b].

1.5.2 Obj. 2: Application of adaptive �ltering to ABL estimation

and tracking

The discrete Kalman �lter [Kalman, 1960] is an adaptive linear estimator inherited from control

system theory that operates recursively using a state-space model formulation [Brown and Hwang ,

1997]. The �lter is based on two models, the state-vector model and the measurement model. The

state-vector model is basically a parametrization of the key ABL parameters of interest and the

measurement model relates the state-vector to the noisy measurements or �observables�.

However poor the �a priori� information or �knowledge� about the atmospheric state-vector

model and its statistics may be this information is assimilated by the �lter in order to improve its

estimation via a recursive process.

When, as is the case of the elastic lidar equation, the measurement model is non linear, a

linearization is made around the state-vector trajectory giving rise to the Extended Kalman Filter

(EKF). At each successive �lter iteration, the state vector, the estimated �a priori� and �a posteriori�

error covariance matrices, and the Kalman gain (�projection gain�) are recursively updated. By this

updating the �lter corrects its projection trajectory and improves its estimation.

First EKF implementations to estimate the optical atmospheric parameters have been done by

Rocadenbosch et al. [1998a] and Rocadenbosch and Comerón [1999]. More recently, Bioucas-Dias

et al. [2004] have applied this method to a calibrated backscatter lidar system. Other relevant

applications of the EKF to the extinction retrieval of aerosol load concentrations are the works of

Warren et al. [2008] and Marchant et al. [2010].

In a recent Ph.D. thesis by Tomás [2011], an EKF was �rst applied to estimate the ABLH. In

this Ph.D. we tackle its �rst extension to lidar ceilometer data (low SNR scenarios) and FMCW

radar data. The lidar case has given rise to a joint publication and a companion publication is

being prepared for the radar case.

The ABL model passed to the �lter and the detection of the ABLH (Fig. 1.2) is always

based on the detection of a vertical feature in some atmospheric variable identi�able as an edge or

boundary. The observed atmospheric variable is the attenuated backscatter signal from aerosols
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and molecules in the lidar case (Mie/Rayleigh scattering) and backscattered signal from refractive

index turbulence (Bragg scattering) in the radar case. Emphasis is given to �lter initialization, a

convenient treatment of the observation noise to update the state-noise covariance matrix, and to

inter-compare EKF and NLSQ estimators. In turn, these two estimators will be cross-examined

with classical methods such as the Gradient Method (GM), the Threshold Method (THM), and the

In�exion Point Method (IPM) in short-term fragments of a diurnal cycle.

1.5.3 Obj. 3: Error bounds in the retrieval of the atmospheric op-

tical parameters: Two-component lidar inversion algorithm

This Ph.D. objective has been developed in cooperation with a companion Ph.D. thesis from Kumar

[2012] and the lidar measurements obtained from Obj. 1 (Sect. 1.5.1). Focus is on the two-

component backscatter-coe�cient inversion algorithm, the so-called Klett-Fernald-Sasano's (KFS)

method [Klett , 1985], which is widely accepted within EARLINET as a mature algorithm.

Because the elastic lidar equation is inherently undetermined for its contains two unknowns (the

total atmospheric extinction and the total backscatter) and a proportionality constant representing

the system constant, KFS method requires two critical inputs from the user side: (i) a boundary

backscatter calibration in a molecular reference range (i.e., a range interval where the aerosol

backscatter coe�cient is negligible in front of the molecular one) and (ii) provision of the range-

dependent aerosol lidar ratio, which is de�ned as the aerosol-extinction-to-backscatter ratio, a most

critical input parameter.

In this Ph.D., operational inversions are carried out for the RSLab lidar station of Barcelona,

as a part of EARLINET using the two-component inversion algorithm and total-increment error

bounds. Two di�erent sets of explicit error bounds are introduced for the optical atmospheric

backscatter coe�cient: �rst-order derivative error bounds (approximate) and total-increment error

bounds (exact ones) for the dominant error sources.

1.6 Organization of the Ph.D. thesis

This Ph.D. thesis is organized as follows:

Chapter 1 focuses on the motivation and main objectives of this Ph.D. and in relation to

the UPC RSLab multi-spectral elastic/Raman lidar system, and to the FMCW weather radar and

ceilometer instruments from UMass MIRSL.

Chapter 2 reviews lidar and radar atmospheric remote sensing foundations and presents the

RSLab data gluing algorithm aimed at dynamic range enhancement of elastic lidar signals.

Chapter 3 derives the total backscatter-coe�cient inversion error bounds for the two-component

lidar inversion algorithm in analytical form in response to error sources outlined in Obj. 3 (Sect.

1.5.3).

Chapter 4 gives a perspective of the data-gluing algorithm in line with Obj. 1 (Sect. 1.5.1).

Chapter 5 presents the solution based on a Kalman �lter to trace the evolution of the ABLH

from elastic-backscatter lidar data, using RSLab's multi-spectral lidar data.
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Chapter 6 shows the Kalman �lter algorithm applied to radar data from the UMass FMCW

weather radar to derive the ABL with time. Emphasis is on both radar data preprocessing and noise

treatment. A UMass lidar ceilometer and a classic ABLH detection method are used as validation

truth.

Chapter 7 considers two application cases concerning the exploitation of the RSLab lidar: One

case concerns to the validation of the RSLab lidar system, and the other, the data�gluing method.

In both cases Volcano eruptive events measured by the RSLab multi-spectral lidar system, in

synergy with the EARLINET and other lidar networks are discussed.

Chapter 8 gives concluding remarks along with future recommendations.





Chapter 2

Lidar and weather-radar atmospheric

remote sensing

This Chapter introduces the basic principles of lidar and radar remote sensing with focus on

elastic lidar and FMCW clear-air weather radar as well as an overview of the concept of the ABL

and related state-of-the art methods for ABLH detection.

2.1 Introduction

Nowadays, remote sensing techniques are a key component of the atmospheric research. Speci�cally,

lidar and radar systems are the backbones when atmospheric and, more speci�cally, tropospheric

pro�ling is needed. In both cases, the interaction of the emitted radiation (from natural or arti�cial

sources) with the atmospheric constituents like aerosols, trace gases and clouds can be used to

determine physical and environmental variables of interest like, temperature and humidity, the

ABL, and to characterize atmospheric processes.

Tropospheric pro�ling is important because the troposphere, which is the lower layer of the

atmosphere, contains approximately 80% of the atmosphere's mass and 99% of its water vapour

and aerosols and, in its lowermost part, the ABL, almost all the human processes take place.

Remote sensing technologies such as lidar, radar wind pro�lers, and Radio Acoustic Sounding

System (RASS) [Seibert et al., 2000; Emeis et al., 2008] provide range-resolved pro�les simultane-

ously for the whole observation range, which greatly improves the temporal resolution of ground

instruments to enable a true monitoring of the ABL compared to radiosounding methods [Sugiyama,

G. and Nasstrom, J. S., 1999].

Considering the lidar remote sensing of the ABL has been carried out by ground-�xed systems

such as backscatter lidars [Endlich et al., 1979], the water-vapor DIAL (Di�erential Absorption

Lidar) [Lammert and Bösenberg , 2006] or, more recently, ceilometers [Emeis et al., 2009] but also

by airborne lidars [Mel� et al., 1985] and scanning lidars in a RHI scan (a vertical section) [Kunkel

et al., 1977; Piironen and Eloranta, 1995].

Within EARLINET, lidar systems have evolved from the basic elastic backscatter lidar to the

more advanced multi-spectral elastic/Raman lidar (3+2 architectures and above). These systems
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play an essential role in �ground truth� calibration/validation in support of space missions such

as CALIPSO [Winker et al., 2006]. Besides, co-operation between terrestrial lidar networks and

satellite-borne lidars requires of quality-assured procedures both at system and algorithm level,

usually working in a Single Calculus Chain (SCC). When multi-spectral lidar data is considered,

aerosol micro-physical properties inversion (size distribution) can also be achieved [Böckmann et al.,

2008].

So far, independent inversion of the opto-atmospheric parameters of interest, namely, aerosol

extinction, aerosol backscatter, and lidar ratio, has been tackled by combining at least one elas-

tic and one inelastic Raman channel [Ansmann et al., 1992], multiple zenith-angle elastic signals

(assumption of a horizontally strati�ed atmosphere), High Spectral Resolution Lidars (HSRL), and

backscatter lidar measurements combined with sun-photometer measurements [Reba et al., 2010].

An analytical formulation has recently been presented to compute the backscatter range-dependent

error bounds for the one- and two-component elastic lidar inversion algorithm [Rocadenbosch et al.,

2010a, 2012].

In the �eld of lidar signal processing the advances made �although su�cient from the operative

point of view of the atmospheric observation stations� have comparatively been more modest than

those achieved in radar. This is mainly because the bridge between the lidar remote sensing and

signal processing disciplines (as inherited from the telecommunications area) is still immature.

Considering the radar, the behavior of refractive index gradients in the ABL has long been of

interest in electromagnetic propagation studies. Since the early 1960s, di�erent type of radars have

been developed in the VHF, UHF, and lower microwave frequency ranges, so they can measure the

backscattered power from refractive index variations in the clear atmosphere and its morphology

[Gossard , 1990].

FMCW clear-air radars were �rst introduced in the late 1960s as a means to study the atmo-

spheric boundary layer and lower troposphere. Since then, several such systems have been developed

[Richter , 1969; Eaton et al., 1995], and virtually all of these radars operate at S�band, near 3 GHz.

This frequency enables maximum azimuthal resolution (narrowest beam width) for a given antenna

size while still retaining sensitivity to clear-air scattering from refractive index �uctuations with

high resolution in height and time [�nce et al., 2003].

2.2 Lidar remote sensing

Despite the lidar principles were introduced in the 1930 decade, when �rst attempts to measure

air density pro�les in the upper atmosphere were made by determining the scattering intensity

from searchlight beams [Wandinger , 2005], �rst atmospheric observations were published by Fiocco

and Smullin [1963] using a ruby laser. In the next few decades, the development of optical and

electronic technologies lead to improve lidar systems, while new instruments and techniques were

designed speci�cally for them.

Basically, a lidar system consists of transmitter and receiver stages (Fig. 2.1). In the transmitter

part, a laser source is used to emit light pulses to the atmosphere along the Line-Of-Sight (LOS)

of the instrument. The short pulse length produced by the laser source (approximately, 20 ns) and
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the spectral bandwidth (1 cm−1) allow for highly-resolved ranging measurements with high SNR

[McCormick and Leavor , 2013]. Laser pulse repetitions can vary from a few to several thousand

shots per second. The time resolution is meaningless, since lidar signals are averaged over time

intervals of a few seconds to minutes.

Figure 2.1: Block diagram of a basic lidar setup. Transmitter part: optical transmitter �antenna�
(laser source), including perhaps an output beam expander to ensure eye-safety considerations. Receiver
part: optical receiver �antenna� (telescope) and the optical detection hardware. The latter includes
spectrally selective equipment (an interference �lter or a polychromator) depending on the type of lidar
con�guration and opto-electronic receiver/s, based on APD or PMT detectors. The optical laser return
signal is recorded and processed in the control & signal processing stage.

Since the atmospheric extinction is the main design requirement, the emitted laser beam wave-

length must lie between the spectral transmission windows of the atmosphere in order not to be

severely attenuated. The most useful transparent spectral bands are the VISible (VIS) (0.4�0.7

µm), the Near InfraRed (NIR) (0.7�1.5 µm), and the windows between 3-5 µm and 9-13 µm. Since

the 1980s, high-power excimer and Nd:YAG (Neodymium-doped: Yttrium Aluminum Garnet) lasers

are widely used as a laser source. While excimer lasers produce UltraViolet (UV) radiation, Nd:YAG

lasers emit in NIR spectral region at 1064 nm. A common setup used along the Nd:YAG lasers is

frequency doubling and tripling with nonlinear crystals to convert the primary 1064 nm radiation to

532- and 355 nm, respectively (this is the selected setup for the RSLab multi-spectral lidar system).

In the receiver part, a telescope is used as an optical antenna. Its Field-Of-View (FOV), de�ned

as the angle through which a detector is sensitive to electromagnetic radiation, can be chosen as

low as a few hundred µrad because laser beams are highly collimated and their divergence is often

further reduced [Wandinger , 2005]. Typically, Cassegrain telescopes are the chosen ones because

their design provides moderate f-numbers (the ratio of the focal length of a lens or a lens system to

the e�ective diameter of its aperture). The FOV is usually determined by a �eld stop in the focal

plane of the receiver optics.

Following Fig. 2.1, laser radiation coming from the laser source is transmitted and scattered

or absorbed by atmospheric constituents, such as clouds, aerosols, or molecules. Photons scattered

back (i.e., the optical echo) to the receiver are collected by the telescope and then directed to a

detector whose signal is analog-to-digitally recorded or counted as a function of altitude or range.

The strength of the return signal is related to the physical and optical properties of the scatterers

[McCormick and Leavor , 2013].

The detector, including a spectrally selective equipment such as an interference �lter (in the
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simplest case), or a polychromator followed by an opto-electronic receiver stage, carry out the

optical analysis of the backscattered photons. A polychromator is an optical system equipped with

dichroic mirrors that separates the multi-wavelength return radiation into optical paths speci�c for

each wavelength. At the end of each optical path, an opto-electronic receiver is placed to carry

out the signal detection. APDs and PMTs are the most common used detectors in opto-electronic

receivers. Both detectors can operate in Geiger mode so photons can be counted individually. The

type of detector chosen depends on the spectral region of interest, its spectral response, quantum

e�ciency, gain, and dark-current characteristics. Thus, PMTs are preferred for wavelengths that

lie between 200 nm and below 0.8 µm (from UV to NIR bands) because of their high gain and

small level of noise [Measures, 1992b]. These achieve very good sensitivities for the detection of

weak light signals, however, PMTs are susceptible to saturation, usually from background sunlight

or from the intense light coming from ranges close to lidar. On the long-wavelength end of the

spectrum (above 800 nm) some materials used in the PMT cease to be e�ective [Wandinger , 2005].
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Figure 2.2: Monostatic pulsed lidar setup geometry using a laser�telescope biaxial arrangement. (a)
Transmitter and receiver parts, with Vsca, the scattering volume (or resolution cell), 2θ, the full-angle
laser divergence (green solid lines), ∆Ω, the telescope solid angle subtended to the scattering volume
(red dashed lines), Ar, the telescope e�ective area, ∆R = R−R′ = c τl/2, the spatial di�erence between
the leading edge and the trailing edge of the laser pulse, τl, and R, the range. (b) Sketch of the Beer-
Bouguer's exponential extinction law. (Light blue volume), the scattering volume, (green fading away
arrow) Incident/absorbed/scattered light intensity before/inside/after the scattering volume (light blue
volume) (Adapted from Comerón et al. [2005]).

Regarding design considerations, lidars may be either monostatic (collocated transmitter and
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receiver, the most common con�guration) or bistatic (separated transmitter and receiver). Fig. 2.2a

shows a monostatic lidar setup geometry. Also operational system conditions are taken in account,

such as environmental conditions, day/night time operation, ground based, mobile or aircraft-

carried, etc., but the most important design considerations have to do with the type of scattering

mechanism from the atmospheric scattering volume back to the instrument (Rayleigh/Mie �elas-

tic� scattering or Raman �inelastic� scattering), in terms of a wavelength-dependent backscatter

coe�cient pro�le, β(λ,R) and extinction coe�cient pro�le, α(λ,R). These two optical parame-

ters respectively model the re�ectivity and energy losses associated with laser beam propagation

through the atmosphere.

Lidar systems classi�cation is not unique. A �rst categorization can be done into elastic and

inelastic systems. In the �rst case, emission and reception wavelengths are the same while in the

second case the reception wavelength is shifted from the emitted one due to Raman scattering or

�uorescence.

2.2.1 Lidar and atmospheric optical particles

Laser pulses interact with molecules and particles in the atmosphere, which results in light scatter-

ing and absorption and leads to the extinction (or attenuation) of the laser beam. Light scattering

exhibits angular-dependent behavior and occurs when a portion of the incoming laser pulse dis-

sipates in all directions in which the scattered light intensity varies with the angle between the

incoming light and the scattered light [Lenoble et al., 2013]. Physical characteristics of the scatter-

ers (i.e., refractive index, cross section, radii distribution) within the scattering volume determine

the scattering intensity in that given angle. On the other hand, light absorption is a result of the

change of the internal energy produced by the gaseous or particulate absorbers and, like scattering,

the intensity of light absorption depends on the presence of that atmospheric absorbers constituted

along the path of the emitted laser pulse (Fig. 2.3) [Collis and Russell , 1976].

In the context of lidar, as long as laser light can be considered as a monochromatic light, its

scattering can be referred in terms of the size of the optical scatterers from molecules and aerosols

which are known as Rayleigh's and Mie's scattering, respectively (for convenience, hereinafter will

be referred simply as Rayleigh and Mie scattering).

Rayleigh scattering is always used as a synonym of molecular scattering in which the size of this

scatterer is much smaller than the laser wavelength (formally, the incident electromagnetic wave

induces an electric dipole moment at the same frequency in the molecule; this dipole emits, according

to the classical electromagnetic theory, at the same wavelength, whereas theMie scattering is related

to scattering by particulates whose size is comparable to the incident wavelength (formally, describes

the scattering of electromagnetic radiation by a sphere; aerosols can be modeled as spheres [Lenoble

et al., 2013]). Note that both Rayleigh and Mie scattering are termed elastic scattering since no

wavelength shift occurs. Also, the Rayleigh scattering coe�cient is proportional to λ−4, known as

the Rayleigh law . For air molecules, Rayleigh scattering is negligible at λ > 3µm, and for λ < 1µm,

air molecules scatters blue light more than red light; that is why the color of the sky is blue. On

the other hand, Mie scattering losses decreases rapidly with increasing wavelength (Mie scattering
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Figure 2.3: Variation of extinction, α, and backscatter coe�cients, β, with UV, VIS and NIR wave-
length and atmospheric condition. Source: Fig. 4.8 in Collis and Russell [1976].

coe�cient w λ−K ; 0 ≤ K ≤ 2 typ.); that is the reason why sunset sky appears red [Andrews, 2004].

2.2.2 Atmospheric extinction

According to the Beer-Bouguer's exponential extinction law, the spectral intensity of a laser pulse

propagating along the range direction (~r) between distances r = 0 and r = R in an inhomogeneous

medium is given by [Beer , 1852; Collis and Russell , 1976]

I (λ,R)

I0
= T (λ,R) = exp

(
−
∫ R

0
α (λ, r) dr

)
, (2.1)

where I0 is the initial intensity at r = 0, I is the intensity [Wm−2] at r = R, λ is the operation

wavelength [m] and α is the total atmospheric extinction coe�cient [m−1] within the transmission

range [0, R]. Eq. 2.1 gives rise to the transmission term (also called atmospheric transmissivity),

T (λ,R) [·]. Fig. 2.2b shows a sketch of the Beer-Bouguer's transmissivity concept.

Strictly speaking, Eq. 2.1 applies only to monochromatic radiation. However, it can also be

applied to narrow wavelength intervals over which the intensity and the extinction vary slowly, as

is the case of laser radiation for scattering (both molecular and aerosol), aerosol absorption, and

ozone absorption, but not for gaseous line absorption [Lenoble et al., 2013].

The total atmospheric extinction coe�cient (α) is the sum of three simultaneous attenuation

mechanisms: molecular absorption, molecular (Rayleigh) scattering, and aerosol (Mie) scattering,

since both molecules and aerosols absorb (radiative energy is transformed into another form of
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energy) and scatter (a part of the incident light changes its direction of propagation) radiation.

That is

α = αmol,sca + αaer,sca + αmol,abs
[
m−1

]
, (2.2)

where the subscripts mol, aer, abs, and sca stand for �molecular� and �aerosol� constituents, and

�absorption� and �scattering� mechanisms, respectively [Rocadenbosch, 2003b].

According to Collis and Russell [1976], the dominant component of the total extinction, α, is

the molecular absorption term, αmol,abs, which varies strongly with the wavelength in the vicinity

of absorption lines of the various atmospheric gases, most frequently in the UV (λ < 300 nm) and

in the IR (λ > 900 nm) regions of the spectrum, where the e�ective range of the lidar can be

severely limited (Fig. 2.3). For this reason, tropospheric pro�ling lidars operate in atmospheric

transmission windows and out of absorption lines.

On the other hand, the molecular (Rayleigh) scattering extinction, αmol,sca can be de�ned as

αmol,sca = αRay = Ng σRay(λ)
[
m−1

]
, (2.3)

where Ng is the number density of gas molecules [molecules/m3] in the atmospheric volume of

interest and σRay(λ) is the Rayleigh's scattering cross-section (m2/molecule).

The next component of the total extinction, α, is the aerosol extinction term, αaer,sca, which

is computed from Mie's scattering models based on homogeneous dielectric spheres with a given

radius distribution. Thus, the volumetric aerosol extinction coe�cient can be written as

αaer,sca(λ) = αMie(λ) =

∫ ∞
0

π a2Qext(x,m)Naer(a) da
[
m−1

]
, (2.4)

where a is the aerosol radius, Qext is the extinction e�ciency (where Qext = Qsca +Qabs with Qsca
and Qabs the scattering and absorption e�ciencies, respectively) [·], x is the particle size parameter

de�ned as x = 2πa/λ[·], m is complex refractive index [·], and Naer(a) is the aerosol number

density per unit radius interval [m−3]. The term πa2Qext(x,m) directly represents the extinction

cross-section [m2] for such a particle of radius a.

The total extinction, α, can also address to a concept that can be used to obtain the lidar

performance under certain atmospheric conditions [Koshmieder , 1924]. When the particle size is

unknown, the visibility margin (Vm) [km] for visually clear air can be de�ned as [Kruse et al., 1963],

Vm(λ) =

[
3.91

αaer(λ)
[
km−1

]][ 0.55

λ
[
µm
]]q [

km
]
; q =

{
0.585V

1/3
M VM ≤ 6 km

1.3 VM > 6 km
, (2.5)

or, particularly, for 0.55 µm (maximum sensitivity of the human eye) and considering non-turbid

atmospheric conditions, that is, free of aerosol particles [Collis and Russell , 1976],

Vm =
3.91

αaer

[
km
]
, λ = 0.55µm . (2.6)
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2.2.3 Atmospheric backscatter

Whereas that total extinction, α, gives information about losses (absorption and scattering) in the

emitted radiation �ux, the total backscatter coe�cient, β, describes how much light is scattered

towards the lidar receiver, and it is the atmospheric parameter that determines the strength of the

lidar signal return. It is de�ned as the volume scattering coe�cient for a scattering angle θ = π

(i.e. towards the telescope) [Wandinger , 2005]. As explained in the previous Section, the total

backscatter coe�cient is de�ned as the a sum of contributions from both molecules, βmol, and

aerosols βaer, as

β = βmol + βaer
[
m−1sr−1

]
, (2.7)

In the atmosphere, light scattering properties of particles are di�cult to be precisely described,

because of their natural variability in shape, composition, and size [Collis and Russell , 1976; Lenoble

et al., 2013]. Nevertheless, the aerosol backscatter coe�cient, βaer can be formulated analogously

to Eq. 2.4 as [Deirmendjian, 1964, 1969]

βaer(λ) = βMie(λ) =

∫ ∞
0

π a2Qback(x,m)Naer(a) da
[
m−1sr−1

]
, (2.8)

where the term Qback(x,m) is the backscatter e�ciency. The rest of the variables have been already

de�ned in Eq. 2.4.

As in Eq. 2.3, the molecular backscatter coe�cient, βmol due to atmospheric gases is described

by Rayleigh scattering theory as

βmol(λ) = βRay(λ) = Ng
dσRay(π, λ)

dΩ

[
m−1sr−1

]
, (2.9)

where dσRay(π, λ)/dΩ (m2sr−1) is the di�erential Rayleigh's scattering cross section per solid angle

unit in the backward direction. It is characterized by a λ−4 wavelength dependency [Andrews, 2004]

and thus, the molecular backscatter, βmol, in Eq. 2.9 above is insigni�cant at NIR wavelengths

[Rocadenbosch, 2003b; Wandinger , 2005].

Concerning aerosols, the ratio that relates aerosol extinction and backscatter coe�cients (Eq.

2.4 and 2.8) is called lidar ratio,

Saer(λ,R) =
αaer(λ,R)

βaer(λ,R)

[
sr
]
. (2.10)

As can be observed from Eq. 2.10 above, the lidar ratio contains fundamental information about

aerosols, in terms of a wavelength-and-range-dependent parameter, as the density and composition

of aerosols typically change from one volume in the atmosphere to another [Pedros et al., 2010;

McCormick and Leavor , 2013].

Concerning molecules, the equivalent variable to lidar ratio is the Rayleigh ratio, Smol, which

is known from classic oscillator theory. That is [Collis and Russell , 1976],

Smol(λ,R) =
αmol(λ,R)

βmol(λ,R)
=

8π

3

[
sr
]
. (2.11)
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Unlike Saer, Smol is not range dependent, since the molecular composition of the atmosphere is

homogeneous throughout regions used for typical lidar retrievals. This is specially true of aerosol

retrievals [McCormick and Leavor , 2013].

2.2.4 The elastic lidar equation

The elastic lidar equation joins extinction and backscatter parameters with the inherent lidar system

parameters (refer to Fig. 2.2).

Considering that the emitted laser pulses have to travel forth and back from the atmosphere,

the range information is determined from the two-way-path time of �ight of the emitted laser pulses

to the scattering target (i.e., aerosols and/or molecules) as

R =
ct

2

[
m
]
, (2.12)

where R is the range (m), t is the time delay (s), and c is the velocity of light (m·s−1).

Regarding the transmitted laser pulse, it is assumed that it has a rectangular temporal shape and

�nite time duration, τl. Assuming that the lidar signal is detected at an instant time t0 (unlimited

reception bandwidth or equivalently, nil detection time) after the leading edge of the laser pulse is

emitted, the backscattered light produced by this leading edge arrives from a distance R = c t/2.

At the same time, the trailing edge of the pulse produces backscattered light that comes from a

distance R′ = c (t− τl)/2. Therefore, the length of the scattering volume from which backscattered

light arrives at any instant time t is

∆R′ = R−R′ = c τl
2
, (2.13)

where ∆R′ is known as the e�ective spatial pulse length [km] [Wandinger , 2005].

In practice, the detection time, τd, is not nil and then the detected lidar signal at each time bin of

the transient recorder (e.g., an analog acquisition card, photon-counter, or mixed unit) corresponds

to the time interval [t, t+ τd] rather than to the instant time t. As a consequence, the length of the

observation volume contributing backscattered light into a given time bin becomes

∆R =
c (τl + τd)

2
≈ c τd

2
, τl � τd . (2.14)

Usually, the duration of the emission laser pulses is comparatively much shorter than the de-

tection time of the signal acquisition unit (τl � τd ) so the e�ective spatial pulse length reduces to

Eq. 2.14 above. If the transient recorder unit operates in analog mode by sampling at a frequency

fs, then the detection period becomes τd = 1/fs [Measures, 1992c].

As explained before, the laser emits a short pulse of time duration τl with a full-angle divergence

2θ so that the laser beam actually illuminates a slightly divergent conical volume of space, Vsca
(light blue volume in Fig. 2.2a), whose length and cross section are ∆R′ and πr2 (r = Rθ),

respectively. The laser operating wavelength is λ0. Under practical approximation [Skolnik , 2001],

the scattering volume can be considered cylindrical in shape (Vsca = πr2∆R′), with R the mean

distance. Also, it is assumed that the power distribution of the laser pulse is uniform over the
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illuminated cross-section area πr2, the incident laser power density [W·m−2] on the illuminated

volume, Vsca, can be written as

Ein(λ0, R) =
P0

π r2
T (λ0, R)

[
W ·m−2

]
. (2.15)

In Eq. 2.15 above, T (λ0, R) is the one-way transmittance de�ned by Eq. 2.1 and Eq. 2.2, λ0 is

the elastic wavelength, and P0 is the emitted laser power per pulse at λ0,

P0 =
E

τl

[
W
]
, (2.16)

where E is the pulse energy (J) and τl is the pulse duration [s]. Neglecting absorption, the one-way

transmittance can expressed as

T (λ0, R) = exp

{
−
∫ R

0

[
αaerλ0 (r) + αmolλ0 (r)

]
dr

}
[·] . (2.17)

The integral term,
∫ R

0 α(r)dr, is referred to as optical depth (τ) [·]. Because the illuminated vol-

ume propagates through the atmosphere, light is scattered isotropically [Kovalev , 2004;McCormick

and Leavor , 2013]. The backscattered power (i.e., in the π direction towards the telescope) per solid

angle unit is

Ksca(λ0, R) = β(λ0, R)Ein(λ0, R)Vsca
[
W sr−1

]
, (2.18)

where β(λ0, R) and Ein have already been de�ned in Eqs. 2.7 and 2.15, respectively.

The backscattered power, P (λ0, R) collected by the telescope is the product of Eq. 2.18, Ksca,

times the subtended solid angle into which photons are scattered, ∆Ω, times the atmospheric

transmittance, T (λ0, R), along the return path towards the telescope (i.e., from the scattering

volume back to the telescope). Besides, the backscattered radiation collected by the telescope must

also include a range-dependent geometrical form factor or overlap factor (OVF), ξ(λ0, R), which

accounts whether the completeness of the laser-illuminated volume can be imaged on the detector

(i.e., falls into the FOV of the telescope) [Measures, 1992c;McCormick and Leavor , 2013]. Formally,

P (λ0, R) = Ksca(λ0, R) ∆ΩT (λ0, R) ξ(λ0, R)
[
W
]
. (2.19)

For a well aligned lidar system the OVF is unity from the range of full overlap (e.g., typically

200-1000 m depending on the system geometry) onwards. The OVF depends on the geometrical

separation between the laser and the telescope axes, and on geometrical and optical parameters

of the system such as the e�ective radius of the telescope aperture, laser aperture radius, FOV,

imaging properties, and laser divergence. See Measures [1992c] for further insight.

Finally, by combining Eqs. 2.15 � 2.18 into Eq. 2.19, the well-known elastic lidar equation

under the single-scattering, no-absorption assumption, follows as

Pλ0(R) =
K

R2

[
βaerλ0 (R) + βmolλ0 (R)

]
exp

{
−2

∫ R

0

[
αaerλ0 (r) + αmolλ0 (r)

]
dr

}
ξ(λ0, R)

[
W
]
, (2.20)
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where the system constant is de�ned as

K =
E c

2
Ar

[
W m3

]
. (2.21)

Eq. 2.20 describes the operational capabilities of the lidar system, containing the laser-telescope

OVF, ξ(λ0, R) [Measures, 1992b], and excluding receiving optics losses such as those associated to

lenses or interference �lters.

It is usual to state the Eq. 2.20 in range-corrected form,

Uλ0(R) = R2 Pλ0(R) = K
[
βaerλ0

(R) + βmolλ0
(R)
]

exp

{
−2

∫ R

0

[
αaerλ0

(r) + αmolλ0
(r)
]
dr

}
ξ(λ0, R)

[
W km2

]
.

(2.22)

2.2.5 The Raman lidar equation

As mentioned in Sect. 2.1, common lidar con�gurations, as is the case of the RSLab multi-spectral

lidar system, include elastic and Raman channels. For the sake of completeness, the Raman lidar

equation is explained next. Di�erence between elastic and Raman interaction is depicted in Fig.

2.4a.
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Figure 2.4: Elastic/Raman interaction and 3+3 elastic/Raman con�guration. (a) Sketch of the
elastic scattering for a single photon (green undulated arrow). (b) Same as (a) for vibrational Raman
scattering. h is the Plank constant, ν0, the incident (and also the scattered in (a)) frequency, and
νR, the Raman frequency. (c) The 3+3 elastic/Raman con�guration. Elastic interaction (emission and
reception wavelength coincide) is depicted in solid arrows. Raman interaction is depicted in dotted lines
and close to the corresponding elastic wavelengths. Up arrows indicate emission, down arrows indicate
reception. (Adapted from Measures [1992a]; Comerón et al. [2005]).

In contrast to elastic scattering, the Raman scattering process involves an internal energy tran-

sition of the molecular species of interest (atoms and molecules in the atmosphere) and introduces

a series of side-band frequencies, ∆ν, around the incident frequency, ν0 [Hz], in which the amount
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of shifting is equivalent to the vibrational-rotational frequencies of the molecules being irradiated.

This frequency shift can be formulated as Inaba [1976]

νR = ν0 ±∆ν [Hz] . (2.23)

The frequencies shifted down (∆ν = +1) are called Stokes lines while those shifted up (∆ν =

−1) are called anti-Stokes lines. A pure rotational band (∆ν = 0) is centered on the incident

frequency. Frequency shifts and normalized cross-sections for typical trace molecules present in the

atmosphere can be found in the same reference cited above.

If λ0 is the laser emission wavelength and κ = 1/λ [m−1] is the wavelength shift associated to the

molecular species of interest producing the Raman scattering then the Raman return wavelength,

λR, can be computed as

λR =
λ0

1− λ0 κ
[m] . (2.24)

Because Raman molecular scattering cross-sections are 3-to-4 orders of magnitude weaker than

elastic ones, thus, leading to vary faint returns, aerosol-monitoring Raman lidars resort to any

abundant atmospheric species such as nitrogen or oxygen to interact with. Besides, Raman lidar

require highly energetic laser pulses, larger telescopes, sensitive detectors (PMTs), longer integration

times, and are usually limited to night-time operation [Rocadenbosch, 2003a; Kumar et al., 2012].

Nitrogen is nearly always the chosen species, since it is the most atmospheric abundant specie

(78 % volume concentration) and with a very well-known Raman cross-section. The setup of a

cooperative N2 Raman channel for atmospheric aerosol lidar sensing is of advantage to calibrate

the elastic channel and hence, to obtain independent retrievals of both extinction and backscatter

atmospheric optical components [Ansmann et al., 1992].

In the case of the RSLab multi-wavelength lidar system emitting at λ0 = 355 (UV), 532 (VIS)

and 1064-nm (NIR) wavelengths the 3+3 elastic/Raman receiving wavelengths are plotted in Fig.

2.4b.

Raman lidar equation can be explained by comparison to the elastic lidar Eq. 2.20, in which

both the optical emission and return path were operating at the same wavelength, λ0. In the

Raman case, the emission path continues to be at λ0 but the return path is at λR, therefore the

two-way path Raman transmittance takes the form,

T0(λ0, R)TR(λR, R); T (λi, R) = exp

{
−
∫ R

0

[
αaerλi

(r) + αmolλi
(r)
]
dr

}
. (2.25)

Eq. 2.25 is in contrast to the two-way path elastic transmittance given by T (λ0, R)2.

The Raman backscatter coe�cient can be computed as

βλR(R) = NR(R)
dσλR(π)

dΩ

[
m−1sr−1

]
, (2.26)

whereNR(R) is the nitrogen molecule number density at λR and dσλR(π)/dΩ is the range-independent

nitrogen Raman backscatter cross-section per solid angle unit. Accordingly, the Raman lidar equa-
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tion can be written as

PλR
(R) =

K

R2

[
NR(R)

dσλR
(π)

dΩ

]
exp

{
−
∫ R

0

[
αaerλ0

(r) + αmolλ0
(r) + αaerλR

(r) + αmolλR
(r)
]
dr

}
ξ(λR, R)

[
W
]
,

(2.27)

where atmospheric absorption e�ects have been neglected. In order to compute Eq. 2.27, NR(R)

and αmolλ0,λR
(r) pro�les are approximated from a US-standard atmosphere model along with temper-

ature/pressure ground-level conditions or from temperature/pressure radiosounding measurements

[Bodhaine et al., 1999].

2.2.6 Review of the Klett-Fernald-Sasano two component elastic

inversion algorithm review

This section is introduced with a view to Chapter 3. The elastic lidar equation (Eq. 2.20) is

inherently under-determined as it contains two unknowns (i.e., the atmospheric extinction, α and

the backscatter coe�cient, β) but only a single observable (the backscattered power Pλ0(R)) be-

cause, as it has been shown, backscatter lidars provide only range-resolved pro�les of attenuated

backscatter signal [Bösenberg and Ho� , 2007]. This under-determination is in contrast to other

schemes such as elastic-Raman systems, HSRL [Nishizawa et al., 2008], and variational multi-angle

backscatter-lidar retrievals [Sicard et al., 2002], all of which enable independent inversion of both

aerosol extinction and backscatter coe�cients [Ansmann et al., 1992].

In 1981, Klett [1981] presented a stable inversion algorithm to invert the elastic single-scattering

lidar equation assuming a one-component atmosphere where there is no separation between aerosol

and molecular components. In 1984, Fernald [1984] presented the two-component version of the

algorithm , which Klett [1985] reformulated in a uni�ed approach. Both Klett's one-component

(KLT) and Fernald's two-component algorithm (also known as Klett-Fernald-Sasano's method,

KFS ) require additional inputs to resolve the under-determination of the lidar equation. They are,

provision of (1) a boundary condition and (2) a range-dependent extinction-to-backscatter ratio.

The boundary condition usually consists on a known or presumed value of the extinction or

backscatter coe�cient at the far-end of the range pro�le. This value is used as an absolute cal-

ibration for retrieving extinction or backscatter coe�cients at lesser ranges. The extinction-to-

backscatter ratio can be expressed as the ratio of total (aerosol plus molecular) components or

aerosol components only. Today, the term lidar ratio is widely accepted to refer to the aerosol-

only extinction-to-backscatter ratio. In what follows, the distinction between �total� lidar ratio

(including molecular component) and the �lidar ratio� (aerosol-component only) will be made when

necessary.

Backscatter-coe�cient retrieval.- Though historically this was not the case, today both one-

and two-component inversion algorithms are usually formulated in backscatter-coe�cient form.

Backscatter coe�cient is always the preferred quantity for retrieval as the aerosol extinction coef-

�cient is estimated by multiplying the pro�le of the aerosol backscatter coe�cient by the assumed

aerosol lidar ratio, Saer, pro�le used as input to the retrieval [Sasano et al., 1985].



30 2. Lidar and weather-radar atmospheric remote sensing

Solution form.- In the two-component KFS the relevant variable to be solved is the total

backscatter coe�cient (Eq. 2.7), given the ideal range-corrected backscatter power (Eq. 2.22

excluding the OVF non-ideal term), the user-input lidar ratio, Saer(R) (Eq. 2.10), the molecular

lidar ratio, Smol (Eq. 2.11) and a backscatter calibration at a reference range R0,

βtot(R0) = βaer(R0) + βmol(R0)
[
m−1sr−1

]
, (2.28)

The mathematical development next follows Sect. IV in Klett [1985], and is further detailed in

Chapt. 4 in Reba [2010].

The �rst step is to reformulate the two-component lidar equation in di�erential form [Klett ,

1981]. Towards this end, Eqs. 2.10 and 2.11 are substituted into the range-corrected power form

of the Eq. 2.22 to yield,

U(R) = R2 P (R) = K βtot(R) exp

{
−2

∫ R

0

[
Saer(r)βaer(r) + Smol βmol(r)

]
dr

}
. (2.29)

where subscript λ0 has been omitted for brevity.

By multiplying both sides of Eq. 2.29 by
[
−2
∫ R

0 Saer(r)βmol(r) dr + 2
∫ R

0 Smol βmol(r) dr

]
(compare with Eq. 20 in Klett [1985]) and introducing Eq. 2.28, Eq. 2.29 can be rewritten as

K βtot(R) exp

[
−2

∫ R

0
Saer(r)βtot(r) dr

]
= U(R) exp

{
−2

∫ R

0

[
Saer(r) − Smol

]
βmol(r) dr

}
.

(2.30)

Eq. 2.30 can be rearranged in a more readable form by taking the logarithm on both sides of

the equation and by de�ning the modi�ed logarithmic range-corrected signal,

D′(R) = ln

[
U(R) exp

{
−2

∫ R

0

[
Saer(r) − Smol

]
βmol(r) dr

}]
. (2.31)

Therefore, Eq. 2.30 reads as,

ln

[
K βtot(R)

]
− 2

∫ R

0
Saer(r)βtot(r) dr = D′(R) . (2.32)

The two-component di�erential lidar equation is obtained in system-independent form, by dif-

ferentiating Eq. 2.32 with respect to R as follows

1

βtot(R)

d βtot(R)

dR
− 2Saer(R)βtot(R) =

dD′(R)

dR
. (2.33)

The solution of Eq. 2.33 has the elementary structure of the Bernoulli or homogeneous Ricatti

equation, which introducing as boundary condition the total backscatter calibration at the reference

range R0, βtot,0 = βtot(R0) (Eq. 2.28), and power boundary condition D′0 = D′(R0) (Eq. 2.31), has
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the well-known solution (compare with Eq. 22 in Klett [1985]),

βtot(R) =
exp
[
D′(r)−D′0

]
1

βtot,0
+ 2

∫ R0

R Saer(r) exp
[
D′(r)−D′0

]
dr

(2.34)

From the previous equations, Eq. 2.34 can be written in expanded form as

βaer(R) =

[
R2 P (R)

]
exp

{
2
∫R0
R

[
Saer(u) − Smol

]
βmol(u) du

}
[
R2

0 P (R0)

]
βaer(R0)+βmol(R0)

+ 2
∫R0
R Saer(u)

[
u2 P (u)

]
exp

{
2
∫R0
u

[
Saer(v) − Smol

]
βmol(v) dv

}
du

−βmol(R)
[
m−1sr−1

]
,

(2.35)

The solution to Bernoulli di�erential equation, Eq.2.35 expresses aerosol, βaer, and molecular

backscatter, βmol, at range R, as a function of the range-corrected lidar return, R2P , the molecular

lidar ratio, Smol, and the aerosol lidar ratio, Saer. This last term is usually assumed as known,

using previous knowledge of the type os aerosol to be measured [Pedros et al., 2010; Wandinger

et al., 2002; Mattis et al., 2004]. The range reference can be taken as an upper molecular-only

region, and the integral evaluated towards the laser [McCormick and Leavor , 2013].

In practice, the molecular backscatter is estimated from local temperature/pressure radio-

sounding measurements or a US-standard atmosphere model given ground-level temperature and

pressure data [Bodhaine et al., 1999].

2.3 Radar remote sensing

Propagation of electromagnetic radiation in the atmosphere is in�uenced by its physical properties.

In the case of most common radar applications, atmospheric e�ects are avoided or minimized as

much as possible. However, in the weather-radar case, those e�ects are maximized for observing

the atmosphere behavior, and the solid targets are treated as noise.

The study of the scattering of electromagnetic waves by turbulent media has been approached

by many authors. Among these, Tatarski'i [1961] has a general account of the theoretical results

that served as a basis for interpreting a variety of experimental studies. This made possible to

de�ne the relationship between the concepts used to describe the phenomena and the measurable

quantities characterizing atmospheric turbulence. See e.g., Ottersten [1969] for a summary.

Classi�cation.- Regarding radar categorization, they can be classi�ed by the type of waveforms

they use, or by their operating frequency.

In the �rst case, radars can be Pulsed (PR) or Continuous Wave (CW) radars. PR transmit

and receive a train of modulated pulses, and range information is extracted from the two-way

time delay between a transmitted and received pulse. On the other hand, CW radars continuously

emit electromagnetic energy, and use separate transmit and receive antennas (or a single Tx/Rx

antenna and a circulator). The transmitted signal is constant in amplitude and frequency and

the echo signal is received and processed permanently. While CW radars without modulation can

accurately measure target radial velocity (due to Doppler shift) and angular position, target range
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information cannot be extracted without utilizing some form of modulation, because lack of pulses

[Mahafza and Elsherbeni , 2004]. This CW disadvantage can be corrected using frequency shifting

methods. Thus, a signal that constantly changes in frequency around a �xed reference is used to

detect stationary targets. When an echo signal is received the frequencies can be examined, and

compared with time in the past that particular frequency was sent out. This principle permits a

range calculation similar to using a train of pulses. This speci�c type of radar is know as Frequency-

Modulated Continuous Wave (FMCW) radar, which use a smoothly varying ramp of frequencies up

and down instead of random frequencies.

Table 2.1: Radar frequency band classi�cation [Mahafza and Elsherbeni , 2004].

Letter designation Frequency range (GHz)

HF (High Frequency) 0.003 � 0.03
VHF (Very High Frequency) 0.03 � 0.3
UHF (Ultra High Frequency) 0.3 � 1.0
L�band 1.0 � 2.0
S�band 2.0 � 4.0
C�band 4.0 � 8.0
X�band 8.0 � 12.5
Ku�band 12.5 � 18.0
K�band 18.0 � 26.5
Ka�band 26.5 � 40.0
MWF > 34.0

Weather radar.- According to operating frequency, radar classi�cation is shown in Table 2.1.

Most weather radar systems use either S�band or C�band [Mahafza and Elsherbeni , 2004].

Historically, while rain precipitation were detected using radars since the early beginning of the

technology (as a serious thread for surveillance systems during the World War II), and the �rst

meteorological observations exploiting radar were made in 1941, it was not until the early 1970s

that Doppler radar provided meteorological research with full e�ciency [Sauvageot , 1992b]. Also

in the early 1970s, VHF and UHF radar systems (Table 2.1) lead to the appearing of the clear air

detection techniques, allowing the observation of the atmosphere permanently, and not only when

rain precipitation was present. Weather-radar systems are remote sensing systems that detect

variations of the refractive index of the atmosphere that are in the same order as the wavelength

of the sensor [Stull , 1988a], which is an advantage to detect the ABLH.

In clear-air radar, refractive index gradients give rise to Bragg scattering [Contreras and Frasier ,

2008], which is the signal component �that is�, the component of interest. On the other hand,

Rayleigh scattering due to hydrometeors and hydrometeors-like scatterers like insects and birds are

considered the noise component in addition to usual thermal noise. To remove the contribution of

such interferent scatterers di�erent techniques have been tackled: Angevine et al. [1993]; Angevine

[1997] have based their method on the elimination of the spatial samples or �outliers� characterized

by a SNR, speed or spectral width exceeding a predetermined standard-deviation threshold (usually

2-3 σ) computed over 1-h measurements. Out-of-threshold signal levels are discarded hence pre-

serving information on the measured turbulence intensity from the radar signal. Merritt [1995] has

proposed a statistical averaging technique in which, in contrast to classic Doppler-radar spectral
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estimators, signals from di�erent objects are identi�ed and separated before the average spectral

estimate is made.

In fair weather conditions, the ABL is often more humid than the FT and centimeter-scale

eddies on the interface between the mixed layer and the free atmosphere create strong returns.

Within the ML there is a little returned energy in spite of the strong turbulence, because the

humidity is low everywhere.

2.3.1 Radar equation

In terms of the radar equation, and according to the antenna con�guration, radar systems can

be classi�ed as monostatic and biestatic radars. The �rst one uses the same antenna for both

transmission and reception stages, while the latter uses one antenna for each stage, and both

antennas are usually located in di�erent places. Although CW and FMCW radars use separate

transmit and receive antennas, they are considered as monostatic, unless the distance between the

antennas is considerable [Mahafza and Elsherbeni , 2004].

The monostatic radar equation (i.e., with collocated emitter and receiver antennas or with a

single emitter/receiver antenna) can be expressed as

Pr =
Pt

4πR2
G

1

4πR2

(
λ2

4π
G

)
σ, (2.36)

where Pr [W] is the received power, Pt [W] is the transmitted power, R [km] is the range along

the radar LOS, G [·] is the antenna gain, λ [m] is the radar wavelength and σ [m2] is the e�ective

radar cross section (RCS) of the observation volume at a range R. The observation volume,

V = ∆R∆S [m3], can be de�ned as the product of the radar spatial resolution, ∆R, times the

antenna �projected-reading area� at the range, R, ∆S = R2 ∆θ∆φ, with ∆θ, ∆φ the angular E�

and H�plane Half Power BandWidth (HPBW) of the antenna pattern. ∆R is derived from the

resolution of the frequency estimator used by the FMCW in the detection process. Fig. 2.5a shows

the radar geometry used to describe the monostatic radar equation.

In Eq. 2.36, the following terms are explained for physical signi�cance: (i) the term
(

Pt
4πR2

)
is the power density [W/m2] incident on the target observation volume at a range, R, assuming

an isotropic antenna; (ii)
(

Pt
4πR2 G

)
is the power density incident at the range, R, including the

antenna gain G; (iii)
(

Pt
4πR2 Gσ

)
is the collected power [W] in the observation volume, V ; (iv)(

Pt
4πR2 G

1
4πR2 σ

)
is the backscattered power density from the observation volume, V and received at

the radar location; and (v)
(
λ2

4π G

)
is the e�ective area [m2] of the antenna in reception according to

the antenna reciprocity theorem assuming an ideal antenna [Balanis, 2005]. Therefore, the product

of terms (iv) and (v) gives the received power Pr [W].
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2.3.2 Weather-radar and atmospheric radar re�ectivity

Because of the limited radar spatial resolution, the observation volume, V can be though as �lled

with a homogeneous distribution of targets (or meteorological scatterers) with randomly distributed

phases [Sauvageot , 1992a], so that σ in Eq. 2.36 above must be replaced with the sum of the RCSs

of all these scatterers inside the observation volume, V . That is,

σ =
∑
V

σi = V

(∑
V σi
V

)
= V η , (2.37)

where (1/V )
∑

V σi [m
2 m−3] is the average RCS of the scatterers per unit volume, and is called

the volume radar re�ectivity, η. In what follows it will be addressed as the �re�ectivity� and will

be computed in decibels (η(dB) = 10 log η).

∆R

Tx/Rx
Antenna

∆φ

∆θ

V = ∆R∆S

(a)

(b)

Figure 2.5: Monostatic radar setup geometry used to derive the radar equation. (a) Transmitter
and receiver parts, V is the scattering volume or resolution cell, ∆θ and ∆φ are the angular E� and
H�plane HPBW of the Tx/Rx antenna pattern respectively, R is the range, and ∆R is the radar spatial
resolution. Green solid lines mark o� the idealized antenna beam pattern (same in transmission and
reception). (b) Sketch showing the Bragg scattering (red dashed arrows) due to turbulences (gray solid
arrows), when incident power density (green solid arrow) interacts with atmosphere inside the scattering
volume (light blue volume).

When clouds and precipitation are considered (σi much smaller than the radar wavelength)

the prevailing scattering mechanism is Rayleigh, which is characterized by a size parameter, x =

D/λ� 1 (D the scatterers' diameter, e.g., a raindrop), and a scattered power proportional to the

reciprocal of the fourth power of the wavelength and to the sixth power of the scatterers' diameter
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[Sauvageot , 1992a],

σi =
π5

λ4
|K|2D6

i . (2.38)

In Eq. 2.38, |K|2 is a factor depending on the dielectric constant of the scattering medium

(K = (ε − 1)/(ε + 2), 0.934�j0.011 for water at 0 °C and λ =10 cm) and subindex i stands for

i-th scatterer. When, as is the case in practice, a particle size distribution is considered, η can be

written as

η =
π5

λ4
|K|2

Dmax∫
Dmin

D6N(D)dD =
π5

λ4
|K|2Z, (2.39)

where N(D) is the particle size distribution (particles per unit volume with diameter betweenD and

D + dD) and Z is the radar re�ectivity factor. However, when the observed scattering volume,V ,

does not satisfy the size-parameter conditions of the Rayleigh approximation (x = D/λ � 1), it

is common to use an equivalent re�ectivity factor, Ze, instead Z, which is equal to the re�ectivity

factor of a population of spherical and liquid particles satisfying the Rayleigh approximation and

producing a signal of the same power [Sauvageot , 1992a],

η =
π5

λ4
|K|2Ze. (2.40)

Insects and birds are Rayleigh-like scatterers at radar wavelengths (x� 1) that will be treated

as �corrupting noise� additive to the radar return signal. The motivation for that is twofold:

First, insects have typical sizes much smaller than the sounding wavelength and a signi�cant

proportion of water, approximately 50 to 70% of the total weight of their bodies, which cause a

signi�cant backscattering cross section easy to be detected.

Second, insects are not good �tracers� of the ABL [Contreras and Frasier , 2008]. In Achtemeier

[1991], a dual-polarized S-band radar was used to evaluate insects as a tracer of the ABL motion.

It was inferred that insects were reorienting themselves in response to air motion, to avoid tem-

peratures less than 10-15°. So insects are not passive tracers, and cannot be used to estimate the

ABLH. Moreover, insects are e�ective tracers of horizontal wind velocities during summer daylight

hours [Angevine, 1997; Kusunoki , 2002]. Birds, which also form part of the second main cause of

radar echoes, have their own velocity of movement (10�20 [ms−1]) and they will be treated like

insects [Sauvageot , 1992a].

In clear-air conditions, Bragg and Rayleigh scattering (the latter mostly due to birds and

insects) are the prevailing scattering mechanisms. Bragg scattering at the radar frequencies of

interest (C-band and S-band mainly) is due to very strong gradients and random �uctuations of

the refractive index associated with discontinuities and/or turbulences of the atmosphere. A sketch

showing Bragg scattering can be found in Fig. 2.5b.

The refractive index n of the atmosphere is a function of the atmospheric pressure, p [hPa],

temperature, T [K], and partial pressure of water vapour, e [hPa], which is formally expressed in
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terms of the radioelectric refractivity or refractivity, N as [Sauvageot , 1992b]

N = (n− 1) · 106 =

(
77.6

T

)(
p+ 4810e

T

) [
·
]
. (2.41)

Atmospheric random �uctuations of the refractive index can be related to the re�ectivity by

means of spectral power-density function of the refractive index in space, φn(k), where k is the

wave-number vector (equivalently, φn is the Fourier transform of the autocorrelation function of

the refractive index). Tatarski'i [1961] showed that the re�ectivity can be related to the random

�uctuations of the refractive index as [Sauvageot , 1992a]

η(k) =
π2

2
k4 φn(k), (2.42)

where k is the wave-number vector in the radar propagation direction, with |k| = 4π/λ. Although

φn(k) is de�ned for the entire space of the wave numbers, only spatial �uctuations whose scale,

following the direction of propagation, is close to λ/2 produce additive phases and are perceived

by the radar (Bragg scattering); however, detection takes place only if there is su�cient spectral

energy on the λ/2 scale, which is selectively observed by the radar [Sauvageot , 1992a].

Under these conditions, η is commonly related to the refractive index structure function param-

eter, C2
n, [�nce et al., 2003; Tatarski'i , 1961] by

η = 0.38 C2
n λ
−1/3 . (2.43)

In terms of frequency, Bragg scattering composes a substantial part of the backscatter for

frequencies below 3 GHz [Riley , 1985; Vaughn, 1985], while Rayleigh scattering tends to dominate

for higher frequencies [Contreras and Frasier , 2008].

2.3.3 FMCW radar foundations

FMCW radars have been used to monitor the atmosphere (the ABL and the FT) since late 1970s

[Richter , 1969; Eaton et al., 1995]. The strength of this type of radars lies in its ability to monitor

the atmospheric refractive-index structure parameter, C2
n, with high resolution in height and time,

by adding Doppler capability [�nce et al., 2003]. In that respect, S�band FMCW radars marked

the beginning of a new research �eld [Gossard , 1990]. Some examples of this type or radars can be

found in Richter [1969]; Strauch et al. [1976]; Eaton et al. [1995].

FMCW radars may be thought as a limiting case of the pulse-compression radars where the

duty cycle of the transmitted waveform approaches 100 %. While pulse-compression radars operate

by emitting a complex, long coded waveform of bandwidth B and duration T (e.g. a chirp signal),

FMCW radars use a simple linear frequency modulation with period T = Tm [�nce et al., 2003].

Fig. 2.6 shows the principle of operation of a FMCW radar considering triangular-wave fre-

quency modulation with period, Tm, and sweep frequency, ∆f , over a carrier frequency, fr(t),

enables to estimate range and radial speed of the target.

Because the improvement factor if compression-gain radars over PRs of equivalent range res-

olution is given by the time-bandwidth product, B T , the so-called compression gain, in FMCW
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radars this gain can be very large, exceeding 60 dB. Not to mention that FMCW radars rely on

the same radar equation as PRs.

f(t) f(t)

|fb| |fb|

t

t

t

t
∆f ∆f

Tm = 1
fm

t = 2R
c

t = 2R
c

f0 f0

fbr
f+b

f−b
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�
�	
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Figure 2.6: Principle of operation of a FMCW radar,using triangular-wave frequency modulation. (a)
Stationary target detection located at a distance R. fe is the instantaneous emission frequency, fr,
is the instantaneous reception frequency, fm is the modulation frequency, f0 is the carrier frequency,
and ∆f is the sweep frequency. (b) Instantaneous beat frequency (absolute values). fb for stationary
target case (a). (c) Moving target detection located at a distance R. The maximum value of the fb,
f+b , is the beat frequency plus the Doppler shift caused by the moving target in the rising edge of the
receiver frequency, f+b = fbr + fd. Likewise, the minimum value of the fbr, f−b , is f

−
b = fbr − fd. Thus,

fbr = (f+b + f−b )/2. (d) Same as (b) for the moving target case of (c).

To illustrate the principles of FMCW range/radial - velocity estimation, two cases can be

considered next: (1) A stationary target at range R, and (2) a moving target at range R with

radial speed, the speed component of the target which acts towards or away the radar (Fig. 2.6c-

d).

Stationary target.- A delay will shift the echo signal from the atmospheric target in time, which

is essentially a delayed, attenuated, and possibly Doppler-shifted replica of the transmitted signal

(green trace in Fig. 2.6a). This results in a frequency di�erence between the actual frequency, fe,

and the delayed echo signal, fr (blue trace in Fig. 2.6b), which is a measure of the distance of the

atmospheric target, namely, the beat frequency, fb, in Fig. 2.6b. For stationary targets, the beat

frequency and the target distance are related through

fb(R) =
∆f

Tm
t =

∆f

Tm

2R

c
=

4 ∆f R fm
c

[
Hz
]
, (2.44)

and therefore, the target distance can be computed as

R =
c fb

4 ∆f fm

[
m
]
. (2.45)

Resolving in range is done through frequency analysis of the sampled waveform, most often

through a Discrete Fourier Transform (DFT).

Moving target.-When the target (or aerosol target) moves, the Doppler shift moves the frequency

of the entire echo signal either up (moving towards the radar) or down (moving away from the radar).

Fig. 2.6c-d shows a target moving towards the radar, where the beat frequency is represented as
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fbr, to distinguish it from the stationary target case. The maximum value of fb, f
+
b , is the beat

frequency plus the Doppler shift, fd, caused by the moving target in the rising edge of the receiver

frequency, and can be computed as f+
b = fbr + fd. Likewise, the minimum value of the fbr, f

−
b ,

can be computed as f−b = fbr − fd. Thus, fbr = (f+
b + f−b )/2, as can be seen in Fig. 2.6c-d. The

range can be estimated by mixing the echoes with a portion of the transmitted signal with the

same frequency (available from the VCO �block� in Fig. 2.7). For moving targets, the mean beat

frequency, fbr, and the target distance, R, are related through

fbr(R) =
f+
b + f−b

2
=

4 ∆f R fm
c

[
Hz
]
. (2.46)

Note that the mean beat frequency, fbr, in Fig. 2.6d corresponds to fb in Fig. 2.6b.

From Eq. 2.44 above, target distance can be computed as

R =
fbr c

4 ∆f fm

[
m
]
. (2.47)

Modulator

Frequency
estimator

VCO

LPF

Power Ampli�er

Low Freq.
Ampli�er

Mixing Stage

Figure 2.7: Block diagram of a FMCW radar setup. Transmitter part: The Modulator converts
digital control words implementing a modulation into an analog control voltage for the next stage, the
Voltage Controlled Oscillator (VCO), that generates the high frequency signal, which is ampli�ed before
the transmitter antenna. Receiver part: receiver antenna, the mixing stage, which down converts the
received high frequency signal to the baseband signal, a low-pass �lter, that blocks unwanted mixed
frequencies. An ampli�er is needed because the echo signals are weak. Finally, the Frequency estimator
converts the analog voltage into a digital signal.

2.4 The Atmospheric Boundary Layer

The ABL (also called Planetary Boundary Layer, PBL) is the lowest part of the troposphere that is

directly in�uenced by the ground and whose changes are shown in less than one hour [Stull , 1988a].

The ABL vertical extent varies from a few tens of meters to several kilometers.

Factors related to the orography, the season, the daytime or the weather act over the ABL

and change its structure both spatially and temporally. Temperature, pressure and density varia-

tions can be clearly seen inside the ABL (lower troposphere), while they are not evident at greater

altitudes (upper troposphere or FT). Processes that cause those variations are related to the thermo-

dynamic equilibrium between the atmosphere and the ground, which warms and cools in response
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to the incoming radiation from the sun during the daytime, and cools during nighttime. They also

depend on altitude and weather [Blaunstein et al., 2010]. So, ABL changes are forced due to these

variations via transport processes [Stull , 1988a]. One of the most important transport processes is

turbulence. From the radar point-of-view, turbulent variations in the refractive index of air (eddies)

are tracers of the ABL behavior [Sauvageot , 1992a].

Considering refractive index of the air, small-scale atmospheric dynamic perturbations produce

local modi�cations to its �eld. In fact, during a turbulent mixing process, �air particles� in a turbu-

lent volume are rapidly displaced from each other and do not immediately mix in a complete and

homogeneous manner; they temporarily preserve their identity: the pressure is equal to that of the

environment but the potential temperature and the speci�c humidity are maintained. The higher

the average initial gradients and the greater the displacement (i.e., the stronger the turbulence) the

more marked are the local variations in these variables at the boundary of the air particles (Fig.

1.3a) [Sauvageot , 1992b].

The ABL is characterized by the presence of aerosols, which are air-borne solid particles from

both natural and anthropogenic origins. Aerosols have an important role in the processes of optical

dispersion and therefore, they have a signi�cant contribution in the Earth radiative budget, in

cloud formation and in climate understanding. From the lidar point-of-view, aerosols inside the

ABL are tracers of its behavior, since ABL usually has a much higher concentration than the FT,

therefore, lidar returns from the ABL are stronger compared with those coming from the FT (Fig.

1.3b) [Stull , 1988a].

2.5 ABLH detection methods

The ABL pro�le typically presents a sharp decrease at some height inside the EZ, henceforth called

the ABL local transition. The buoyancy-driven updrafts tends to narrow this local transition,

while in the case of downdrafts the transition widens [Hägeli et al., 2000]. This simple assumption

is often distorted by several factors such as multi-layer scenarios (transported layers, strati�ed

layers, lateral entrainment or the residual layer), and non-linear e�ects of moisture distribution in

the aerosol concentration. The in�uence of all these e�ects is di�erent depending on which method

of ABL height detection and which type of remote sensing system are chosen. Thus, active research

in terms of inter-comparison is still under way [Pal et al., 2010; Hae�elin et al., 2012; Lange et al.].

Two di�erent approaches to estimate the ABLH from lidar signals can be outlined:

� The geometrical approach uses the fact that the EZ region usually appears in the individual

lidar signal pro�les as a sharp decrease between the two air masses (this is due to the lack

of aerosols and moisture in the free troposphere), all of which causes a strong signature in

the range-corrected backscatter lidar return. Geometrical-based ABL-detection methods rely

on the detection of a meaningful transition, usually by some sort of edge-detection analysis,

by means of a threshold criterion [Mel� et al., 1985; Boers and Eloranta, 1986; Batchvarova

et al., 1999] or gradient detection [Endlich et al., 1979; Sicard et al., 2006] applied to time-

averaged pro�les. When high-SNR and temporal resolution is available from the lidar sensor,
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geometrical methods are able to retrieve the instantaneous ABLH (the term hABL will be

used indistinctly), which is identi�ed as the instantaneous ABL top.

� The statistical approach uses the high variability in the return signal caused by the mixing

processes in the EZ between cells in the EZ and cells in the FT above or in the mixing

layer below. This approach requires the analysis of a set of pro�les to produce a statistically

signi�cant estimate of the mixing-layer depth, taken as the mean ABLH (h̄ABL).

Next, some of the most common methods used to trace the ABLH are revisited. They are

the Threshold Method (THM), derivative methods and the Centroid/Variance Method (VCM). The

THM and the derivative methods are based on the geometrical morphology of the returned backscat-

ter lidar signal, while the last one falls into the statistic analysis class of methods.

Threshold method.- Also known as �critical backscatter� method, the THM is a simple method

useful to detect sharp lidar signal transitions with well known levels, usual in the Convective Bound-

ary Layer (CBL) [Mel� et al., 1985; Batchvarova et al., 1999]. An arbitrary threshold value (set

by trial and error) is applied to the range-corrected pro�le to di�erentiate between a high-level

backscatter region (the ML in Fig. 1.2) and a low-level backscatter region (the FT in Fig. 1.2). The

ABL height is computed as the lowest height whose backscatter value coincides with the threshold.

Some issues of this method are the arbitrary threshold value itself, and the noise-contamination

signal that could induce a biased detection, unless a range-smoothing and/or a pulse averaging

window is applied.

Derivative methods.- Among the derivative methods, the Gradient Method (GM) seeks for the

range position corresponding to the absolute minimum of the �rst derivative,

hbl,GM = min
[
dU(R)

dR

]
, (2.48)

which is the maximum local slope of the lidar pro�le (Fig. 2.8). In Eq. 2.48 above, U(R) is the

range-corrected lidar signal, U(R) = R2 P (R). Since the measured lidar signal is noise-corrupted

and the atmosphere is particularly variable when reaching the ML, the derivative of the signal can

present several small negative peaks. There are several solutions commonly used together to reduce

the noise.

As in the THM, a time-averaging over a set of lidar pro�les can be applied in order to obtain a

less noisy lidar signal. A range-smoothing moving-average window can also be applied to the lidar

pro�le and its derivative to suppress noise peaks, e.g. Wavelet method (WM) in Cohn and Angevine

[2000], which �nds the peak in range-corrected SNR. All of these solutions lead to a reduction of

the temporal and/or spatial resolution.

A further approach to detect the ABLH is to compute the derivative of the logarithm of the

range-corrected lidar signal [Martucci et al., 2003], which is proportional to the aerosol extinction

gradient, and detect the largest negative gradient,

hbl,LGM = min
[
d lnU(R)/dR)

]
. (2.49)

The derivative of the logarithm (Logarithm Gradient Method, (LGM)), enhances the aerosol
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Figure 2.8: Cross-examination of four classic ABL estimation methods (VCM, LGM, GM, and IPM).
The green line represents the measured time-averaged range-corrected lidar pro�le. The blue line
corresponds to the �rst derivative of the range-corrected lidar signal, dU(R)

dR , the red line to the derivative

of the logarithm, d lnU(R)
dR , and the yellow line to the second derivative, d2U(R)

dR2 . The magenta line is
the range-dependent variance of the lidar measurement set. Because all the plots have di�erent scales,
they have been arbitrarily normalized so that they can be plotted on the same scale for visual purposes
(adapted from Lange et al. [2013]).

contrast [Martucci et al., 2003] but also the noise contamination is ampli�ed.

Another usual derivative method is the In�ection Point Method (IPM) [Sicard et al., 2006].

Instead of using the �rst derivative of the range-corrected lidar signal, the IPM computes the

minimum of the second derivative to �nd the in�ection points of the range-corrected lidar pro�le,

hbl,IPM = min
[
d2U(R)

dR2

]
. (2.50)

The time-averaged pro�le of the noise-corrupted lidar pro�le has its best estimator in the IPM

solution as an average height identi�ed with the middle of the EZ [Menut et al., 1999; Sicard et al.,

2006]. Because the IPM method di�erentiates two times the range-corrected corrected lidar signal,

and, as mentioned before, noise corrupts computation of the signal derivatives, a more stringent

smoothing has to be applied to the raw-lidar signal. As a result, the IPM method yields a poorer

resolution than GM and LGM methods.

To illustrate the behavior of these methods, Fig. 2.8 shows a measured range-corrected pro�le

from the RSLab lidar system (green line) along with the computed �rst and second-order derivatives

(blue and yellow line, respectively). The �rst derivative has been computed by averaging 104 lidar

vertical pro�les (PRF = 20 Hz, λ = 1064 nm) in combination with a range-smoothing rectangular

sliding-window over the lidar signal (the spatial window length is 25 samples and the raw data

spatial resolution is 3.75 m/sample). This yields a temporal resolution of ∆tGM ∼6·102 s and

∆RGM ∼100 m in the determination of the ABLH. The �rst derivative of the logarithm of the

ABLH has been computed by using the same smoothing parameters as for the GM. To compute
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the second derivative for the IPM a larger range-smoothing has been used (∆RIPM ' 150 m),

which leads to a slightly worse range resolution. Because � as mentioned � the THM method uses

an threshold value set from the user side, the ABLH can be located anywhere in the transition

range from 1000 m to 1250 m.

The estimated ABLH for each of derivative methods is marked with a dot (GM, red dot; LGM,

yellow dot; IPM, black dot). The GM and LGM give slightly larger values than the IPM method.

To better inter-compare the derivative methods presented, the original signals in Fig. 2.8 have been

normalized in such a way that they can be compared in the same scale.

Variance/Centroid method.- In the EZ, small-scale turbulent motions found between the aerosol-

loaded updrafts and the downdrafts of clean air determine a region of high variability in concentra-

tion, which is re�ected in the lidar signal received. The average ABL �centroid� height is de�ned as

the lowest range position of a local maximum of the variance pro�le [Hooper and Eloranta, 1986],

max(Var(R)); Var(R) =
1

N − 1

N∑
i=1

[
U(R, ti)− U(R)

]2
, (2.51)

where the horizontal top bar indicates time average.

The VCM method is often mislead by shear-induced turbulence in urban environments and

tends to yield overestimates with respect to the IPM. Nevertheless, the VCM is a good method

to sense the residual layer in urban environments, whereas in rural environments this method is

indicated to track the sedimented layer [Menut et al., 1999].

A good performance is found when both VCM and GMmethods are combined into a constrained

detection method [Lammert and Bösenberg , 2006]. Because in Eq. 2.51, the variance must be

computed over the ensemble of temporal realizations for each range cell, a large number of pro�les

is needed to compute a statistically signi�cant variance. This leads to a low temporal resolution

method. In Fig. 2.8, the time resolution of the variance pro�le (green line) is ∆t '4.5·103 s

as compared to ∆t '6·102 s of the derivative methods. Range smoothing and time averaging

are enough to ensure su�cient SNR in the applicability of the classic methods presented so far.

However, these often give biased results and, de�nitely, a reduced resolution [Sicard et al., 2006].

As a common trait, the nearly totality of the methods lack in some degree the requirements

to operate in an unattended, real-time basis to monitor the ABL. Whereas statistical methods like

the VCM cannot follow the fast time resolution of the lidar pro�les to track the time evolution

of the ABL, non-adaptive geometrical methods do not have the capability to assimilate past ABL

estimates to enhance their ABL estimation with time.

The applicability of these methods and in particular, the THM, to the radar case will be further

explored in Chap. 6.

In the state-of-the-art, Angevine et al. [1994] have applied a peak-locating algorithm to estimate

the ABLH from radar wind pro�lers. This method �nds a peak in the range-corrected SNR by inte-

grating 30-s pro�les into 1 h estimates, consequently, degrading the temporal resolution. According

to Cohn and Angevine [2000], results are in good agreement with those obtained by applying the

WM to HRDL backscatter pro�les.



Chapter 3

Total backscatter-coe�cient inversion

error bounds

Total backscatter-coe�cient inversion error bounds for the two-component lidar inversion

algorithm (the so-called Fernald's or Klett-Fernald-Sasano's method) are derived in analytical form

in response to three error sources: (i) the measurement noise, (ii) the user uncertainty in the

backscatter-coe�cient calibration, and (iii) in the aerosol extinction-to-backscatter ratio.

Two di�erent types of error bounds are presented: Approximate error bounds using �rst-order error

propagation and exact error bounds using a total-increment method. Both error bounds are formu-

lated in explicit analytical form, which is of advantage for practical physical sensitivity analysis and

computational implementation. A Monte Carlo approach is used to validate the error bounds at

355-, 532-, and 1064-nm wavelengths.

This paper was published in IEEE Transac. Geosc. Rem. Sensing journal and is made available as an electronic reprint

with te permission of IEEE. The paper can be found at the following URL on the IEEE website: http://ieeexplore.ieee.org/

xpl/articleDetails.jsp?tp=&arnumber=6205622&queryText%3D10.1109%2FTGRS.2012.2194501. Systematic or multiple repro-

duction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under

law.

3.1 Introduction

The boundary condition usually consists on a known or presumed value of the extinction or backscat-

ter coe�cient at the far-end of the range pro�le. This value is used as an absolute calibration for

retrieving extinction or backscatter coe�cients at lesser ranges. Henceforth, it is referred simply

as the calibration. The extinction-to-backscatter ratio may include both molecular and aerosol

e�ects, or it may include aerosol e�ects only. Many authors use the term �lidar ratio� to refer

to the aerosol-only extinction-to-backscatter ratio. The distinction between the �total� lidar ratio

(including molecular e�ects) and the aerosol-only lidar ratio is noted when necessary.

Methods to assess the calibration for Klett's one-component inversion algorithm were proposed

by Klett [1983, 1986] himself and for the two-component algorithm by Sasano and Nakane [1987].

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6205622&queryText%3D10.1109%2FTGRS.2012.2194501
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6205622&queryText%3D10.1109%2FTGRS.2012.2194501
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Several authors have since carried out sensitivity studies concerning uncertainties in the lidar ratio

[Sasano and Nakane, 1984], the impact of assuming a range-independent lidar ratio [Sasano et al.,

1985], uncertainties in the calibration [Bissonnette, 1986; Matsumoto and Takeuchi , 1994], and the

forward/backward stability of these inversion methods as function of the optical depth [Qiu, 1988].

Errors in the assumed lidar ratio may result in larger error-propagated errors [Bösenberg and

Ho� , 2007], especially in situations of a complex layering of aerosols [Ansmann, 2006]. Kunz [1996]

and Kovalev [1993, 2003] have proposed alternative variants (not the object of this Ph.D. thesis)

allowing trustworthy extinction retrievals, where the far-end calibration is replaced by the optical

depth of the sounding path or by a near-end calibration and a nephelometer measurement. The

synergistic combination of a backscatter lidar with a sun photometer is also extensively used [Reba

et al., 2010]. Furthermore, optimal estimation [Stephens and Engelen, 2001] and adaptive �ltering

[Rocadenbosch et al., 1999; Marchant et al., 2010] methods o�er the possibility to incorporate

di�erent relevant information (such as optical thickness or spectral radiance measurements [Huneeus

and Boucher , 2007]) into the lidar inversion problem and to provide inversion-error indicators.

These advanced methods, which usually �nd applications in the context of global space-borne

measurements are, however, more complex.

Despite the fact that from a purely mathematical analysis both the one- and the two-component

algorithms yield equivalent solutions, the two-component algorithm is always the preferred one.

This is because the KFS algorithm enables use of the aerosol-only lidar ratio, a parameter charac-

terizing the microphysical aerosol properties [Böckmann et al., 2008]. In contrast, the KLT requires

a total lidar ratio including molecular e�ects. From a physical point of view, the assumption of a

constant total lidar ratio is not justi�ed under relatively clear atmospheres. However, for optically

thick atmospheres the aerosol component becomes dominant, and the total lidar ratio reduces to

the aerosol lidar ratio, which gave rise to the �rst applications of the one-component algorithm in

the 1980's.

This Chapter concentrates on the two-component backscatter-coe�cient inversion algorithm

and is the �fth in a series [Rocadenbosch and Comerón, 1999; Comerón et al., 2004; Rocadenbosch

et al., 2010a; Sicard et al., 2009a] from the RSLab related to study the behavior and error sen-

sitivity of the one- and two-component algorithms. The work presented here �rst contributes a

comprehensive analytical approach in explicit mathematical form merging into a single body all

the main error sources involved in the KFS inversion of the aerosol backscatter coe�cient. These

include: (1) systematic errors due to uncertainties in the calibration, (2) systematic errors due to a

range-dependent aerosol lidar ratio, and (3) random errors due to �nite SNR in the opto-electronic

receiver of the lidar system at all ranges except that of the calibration, and 4) random errors due

to �nite SNR at the calibration range. The latter two sources of error are considered separately as

it was shown in [Comerón et al., 2004] that source (4) dominates.

Errors in the backscatter-coe�cient calibration (error source 1) and in the assumed lidar ratio

(error source 2) are systematic errors, as they induce biases in the retrieval of the backscatter

coe�cient once they are encountered. These are in contrast to the random errors induced by noise

(error sources 3 and 4). While it is common to treat the random errors as drawn from independent

Gaussian distributions with standard deviations adding in mean-square, the systematic errors must
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be treated separately. These errors in the input parameters to the retrieval are more appropriately

described by a worst-case deviation from their nominal value with the assumption that input errors

may be uniformly distributed between these worst-case limits. A similar approach for the Raman

lidar inversion algorithm is described in [Groÿ et al., 2011].

This Chapter �nds the backscatter-coe�cient error bounds for the KFS algorithm explicitly

in both approximate and exact forms. Two di�erent sets of explicit error bounds are introduced:

�rst-order derivative error bounds (approximate), which are the KFS counterpart of those found

for the KLT algorithm in Rocadenbosch et al. [2010a]) and, total-increment error bounds (exact

ones) for the dominant error sources (1, 2 and 4 above). These characteristics are new to the state

of the art in the lidar community.

This Chapter is organized as follows: In Sect. 3.2 the KFS inversion algorithm is reviewed

and reformulated in both backward and forward form. In Sect. 3.3 �rst-order error bounds are

presented. Following this, in Sect. 3.4 total-increment (i.e., exact) error bounds are obtained for

the dominant error sources. In Sect. 3.5, both �rst-order and total-increment error bounds are

cross-examined and validated using a Monte Carlo method for the random component at 355-,

532-nm , and 1064-nm wavelengths. Finally, concluding remarks are given in Sect. 3.6.

3.2 KFS two component algorithm

3.2.1 Modi�ed backward KFS form

Considering KFS 's inversion algorithm is formulated in backward backscatter-coe�cient form as

Eq. 2.35, the aerosol and the molecular backscatter coe�cients are assimilated into the total

backscatter coe�cient, β (R) = βaer (R) + βmol (R), and errors on the molecular backscatter coef-

�cient are neglected so that

dβaer (R) = dβ (R) . (3.1)

This is justi�ed because the molecular component can be assumed to be very well known (Sect.

2.2.6). Therefore, when calibrating in an atmospheric layer dominated by molecular scattering,

βN = β (RN ) = βaer (RN ) + βmol (RN ) ≈ βmol (RN ) . (3.2)

By introducing the discrete range, Rj = Rmin + (j − 1) ∆R, j = 1..N , with ∆R the spatial

resolution of the lidar data and N the number of range samples (or cells) to be inverted, Eq. 2.35

can be rewritten in discrete form as

βj

(
βN , ~S, ~U

)
=

βN UjFj

(
~S
)

UN + 2βN Hj

(
~S, ~U

) , (3.3)

where Uj , Fj and Hj are shorthand for U (Rj), F (Rj) and H (Rj), which are auxiliary functions

evaluated for each range, and the vector ~S is the range-dependent aerosol lidar ratio, Saer (Rj).
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The auxiliary functions Uj , Fj and Hj are de�ned as

Uj = R2
jP (Rj) , (3.4)

Fj

(
~S
)

= exp
[
2Gj

(
~S
)]
, (3.5)

where

Gj

(
~S
)

=

{ ∑N
i=j wi

(
Saeri − Smoli

)
βmoli j < N

0 j = N
, (3.6)

and

Hj

(
~S, ~U

)
=

N∑
i=j

wiS
aer
i UiFi

(
~S
)
. (3.7)

In Eqs. 3.6-3.7, the wi, i = 1..N denote generic integration weights (e.g., wi = h = 1, i =

1..N − 1;wN = 0 in the case of rectangle integration, which requires N ≥ 2 points). The notation

βj

(
βN , ~S, ~U

)
is a reminder that the total backscatter coe�cient inverted at the range cell, Rj ,

depends upon the total backscatter coe�cient at the far-range calibration range, βN , the user-

input range-dependent aerosol lidar ratio, ~S, and the range-corrected power, ~U . In what follows

superscript �aer� for the aerosol lidar ratio is omitted so that ~S refers to ~Saer, and the �aerosol lidar

ratio� is simply addressed as �the lidar ratio�.

3.2.2 Comparison with Klett's one-component algorithm

When comparing KLT versus KFS equations (Eqs.5-6) in Rocadenbosch et al. [2010a] with Eqs. 3.3, 3.5

and 3.7 above, the KLT-to-KFS correspondence Table 3.1 is obtained. The Uj into UjFj
(
~S
)
rela-

tionship agrees with previous published results (Table1 in [Sicard et al., 2009a]) and the Gj
(
~S, ~U

)
into Hj

(
~S, ~U, ~F

)
is a new relationship completing the transformation.

3.2.3 Forward case

In the forward-integration form of the KFS algorithm (i.e., calibration range located at the near end

of the inversion range) the far-end calibration at R = RN is replaced by the near-end calibration

R = R1, (i.e., βN → β1) in Eq. 3.3, and
∑N

i=j(.) is replaced by −
∑j

i=1(.) in all subsequent formulas.

In so doing, Eq. 3.3 for the forward case becomes

βj

(
β1, ~S, ~U

)
=

β1 UjF
F
j

(
~S
)

U1 + 2β1 HF
j

(
~S, ~U

) , (3.8)

where FFj
(
~S
)

= exp
(

2GFj

)
after Eq. 3.5 and GFj and HF

j are de�ned following Eqs. 3.6- 3.7 above

but replacing
∑N

i=j(.) by −
∑j

i=1(.), as mentioned. This leads to the well-known classic forward

form including a minus sign in front of the factor of 2 in the denominator and in the exponential

arguments of Eq. 2.35. Note also that the minus sign arising from the change of summations
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above is algebraically equivalent to substituting Saer → −Saer and Smol → −Smol into the KFS

backward form of Eq. 3.3. This also accounts for the opposite signs of the backscatter-to-lidar-ratio

derivatives of the forward/backward forms (Sect. 3.4.2).

3.3 First-order backscatter coe�cient error bounds

This Section parallels Sect. 3 of Rocadenbosch et al. [2010a] where the backscatter-coe�cient error

bounds are computed from the superposition of error sources 1-4 (Sect. 3.1) using a �rst-order

derivative approach. Following Eq. 7 in that work, |dβj | =
∣∣∣ ∂βj∂βN

dβN

∣∣∣+
∑N

k=1

∣∣∣ ∂βj∂Sk
dSk

∣∣∣+
∑N−1

k=1

∣∣∣ ∂βj∂Pk
dPk

∣∣∣+
∣∣∣ ∂βj∂PN

dPN

∣∣∣ ; j < N

|dβj | = |dβN | ; j = N
, (3.9)

where dβj is the total backscatter coe�cient error at range, Rj , and dβN , dSk, dPk, and dPN ,

respectively stand for error sources 1-4.

For the case j < N the terms ∂βj
∂βN

, ∂βj
∂Pk

and ∂βj
∂PN

can be computed from Rocadenbosch et al.

[2010a] and the function substitutions indicated in the KLT-to-KFS transformation (Table 3.1).

Yet, this procedure cannot be followed when computing the errors due to the lidar ratio, ∂βj
∂Sk

, as

the KFS auxiliary functions Fj and Hj (Eqs. 3.5, 3.7) also depend on the lidar ratio.

Table 3.1: KLT-to-KFS transformation relationships. Notation: In both algorithms, βj stands for
total (aerosol plus molecular) backscatter coe�cient at the range cell Rj .

KLT KFS

βj

(
βN , ~S, ~U

)
=

βNUj

UN+2βNGj(~S,~U)
βj

(
βN , ~S, ~U

)
=

βN UjFj(~S)
UN+2βN Hj(~S,~U)

~S stands for the total lidar ratio, ~Stot ~S stands for the aerosol lidar ratio,
~Saer

Uj UjFj

(
~S
)

Gj

(
~S, ~U

)
Hj

(
~S, ~U, ~F

)

The case j = N in Eq. 3.9 expresses the assumed error on the backscatter-coe�cient calibration.

Finally, the terms comprising Eq. 3.9 and denoted εj,1−4 are detailed in Table 3.2.

The treatment of systematic and random errors is as follows: The relationship between the

backscatter-coe�cient retrieval error (δεj,1) due to the calibration error (δβN ) shown in Eq. 3.26

is a straightforward modi�cation of Eq. 3.10 where lowercase deltas have been used to denote

systematic errors. The relationship between the retrieval error (σεj,3) due to noise in range cells

1..N-1 (σUk) shown in Eq. 3.31 is obtained from Eq. 3.15 by treating the range-corrected random

noises (dUk) as independent Gaussian random variables with standard deviation σUk . The retrieval

error due to noise in the calibration cell is given by Eq. 3.33 and is derived similarly using the

approximation shown, in Rocadenbosch et al. [2010a]. At this point, note that GN = 0 and FN = 1

(Eqs.( 3.5-3.6) and that, when considering error sources 3 and 4, d (UkFk) = FkdUk, k = 1..N ,

because the only ��uctuating� variable due to noise is the range-corrected power, Uk. At this point
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Table 3.2: Total backscatter-coe�cient error-propagated terms for the KFS backward inversion algo-
rithm in response to error sources 1-4 (see Sect. 3.3). For the case j = N , the total backscatter-coe�cient
error is directly the calibration error. For the KFS forward algorithm consider Sect. 3.2.3 changes.

Concept Equation

Total backscatter-
coe�cient error
(case j < N)
where

|dβj | =
∣∣∣∣ ∂βj∂βN

dβN

∣∣∣∣+ N∑
k=1

∣∣∣∣ ∂βj∂Sk
dSk

∣∣∣∣+N−1∑
k=1

∣∣∣∣ ∂βj∂Pk
dPk

∣∣∣∣+∣∣∣∣ ∂βj∂PN
dPN

∣∣∣∣ ; j < N

(1.10)
1. Error due to
the backscatter-
coe�cient calibra-
tion

εj,1 =
∂βj
∂βN

dβN =

(
βj
βN

)2 UN
UjFj

dβN (3.10)

2. Error due
to the (range-
dependent) lidar
ratio

εj,2 =

N∑
k=1

∂βj
∂Sk

dSk = 2βjdIj,1 −
2β2

j

UjFj
dIj,2 −

4β2
j

UjFj
dIj,3 (3.11)

where
dIj,1 =

N∑
k=j

wkβ
mol
k dSk (3.12)

dIj,2 =
N∑
k=j

wkUkFkdSk (3.13)

dIj,3 =

N∑
k=j

wkSkUkFkdIk,1 (3.14)

3. Error due to
the measurement
noise (range cells
1..N-1)

εj,3 =

N−1∑
k=1

∂βj
∂Pk

dPk =
βj
Uj
dUj −

2β2
j

UjFj

N∑
k=j

wkSkFkdUk (3.15)

4. Error due to
the measurement
noise at the cali-
bration cell (range
cell N)

εj,4 =
∂βj
∂PN

dPN = −
β2
j

βNUjFj
dUN −

2β2
j

UjFj
wNSNdUN (3.16)

Total backscatter-
coe�cient error
(case j = N ,
calibration point)

|dβj | = |dβN | ; j = N
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a few comments are in order:

First, the relative impacts on the retrieval of the backscatter-coe�cient calibration error (δεj,1)

and the standard deviation of the noise at the calibration cell (σεj,4) may be compared by evaluating

their ratio,
δεj,1
σεj,4

≈
∣∣∣∣UNβN

∣∣∣∣ δβNσUN
= SNRNε

βN
r . (3.17)

Here, εβNr = δβN /βN is the relative error in the backscatter-coe�cient calibration, and SNRN
is the SNR at the calibration range, R = RN . Thus it is not necessary to carry out separate

simulations to evaluate the separate impacts of error sources 1 and 4. Although it was shown in

that the relative impacts of these di�erent error sources are related by an equation analogous to

Eq. 3.17, it should not be interpreted that a systematic error can be derived from the random error

or vice versa.

Second, regarding errors due to the measurement noise (σεj,3 and σεj,4), from Eq. 3.31 the

backscatter-coe�cient error on the j-th range cell is inversely proportional both to the SNR at

that cell, SNRj = Uj
/
σUj , and to a �cross-cell SNR� de�ned as SNRj,k = Uj/σUk . A similar

dependence was found in Comerón et al. [2004] and Rocadenbosch et al. [2010a] and earlier by

Knauss [Knauss, 1982], who predicted an inverse SNR sensitivity. Concerning σεj,4 , Eq. 3.33 can

be rewritten as σεj,4 ≈
∣∣∣∣ β2

jUN
βNUjF j

∣∣∣∣ 1
SNRN

[Rocadenbosch et al., 2010a]. It emerges that a �nite SNR

at the calibration range propagates errors to all the range cells.

Regarding error due to a range-dependent lidar ratio (δεj,2), as a �rst approximation we de�ne

a systematic lidar-ratio relative error, p relating the lidar-ratio error to the true range-dependent

atmospheric lidar ratio as Rocadenbosch et al. [2010a]

dS(R) = pS (R)⇔ dSk = pSk. (3.18)

Equivalently, the atmospheric lidar ratio is assumed to lie within S (R) (1± |p|). Error bound

computation uses �rst-order series expansion of Eq. 3.3 around p. Towards this end Eq. 3.3 is

rewritten as a function of lidar-ratio perturbation p as

βj (p) =
βN UjFj (p)

UN + 2βN Hj (p)
, (3.19)

where the incremental auxiliary function Fj (p) is related to Gj (p) via Eq. 3.5, and Gj (p) and

Hj (p) from Eqs. 3.6-3.7 become

Gj (p) =

{
(1 + p) Ij,1 −Kj ; j < N

0 j = N
, (3.20)

where

Ij,1 =

N∑
i=j

wiβ
mol
i Saeri , Kj =

N∑
i=j

wiβ
mol
i Smoli , (3.21)
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and

Hj (p) = (1 + p)
N∑
i=j

wiS
aer
i UiFi (p) . (3.22)

From Eqs. 3.20- 3.21 above Eq. 3.5, Fj (p) takes the form

Fj (p) = exp [2Gj (p)] = Fj (0) exp (2pIj,1) . (3.23)

Finally, the backscatter-coe�cient error is obtained after �rst-order series expansion as

δεj,2 ≈

∣∣∣∣∣
(
∂βj
∂p

∣∣∣∣
p=0

)
p

∣∣∣∣∣ , (3.24)

where superscript �S� denotes �due to the lidar ratio�. Eq. 3.24 is computed by substituting the

proportionality condition of Eq. 3.18 into the general expression of the propagated lidar-ratio error,

εj,2 (Eqs. 3.11- 3.14). The result is summarized in Table 3.3 and yields symmetrical error bounds.

3.4 Total increment backscatter coe�cient error bounds

Total-increment error bounds stand for in�nite order, or equivalently, exact error bounds. The

procedure is conceptually simple for it reduces to compute the total error, βj (x±∆x) − βj (x),

where x is the variable of interest. In what follows, ∆x refers to a generic input error, which

may be large and is therefore not expressed as a di�erential amount, ∆βN (backscatter-coe�cient

calibration error), ∆Sk (lidar-ratio error) or ∆Uk, k = 1..N (range-corrected noise-induced error,

Sect. 3.3).

The �rst-order error propagation approach of Table 3.2 is just a perturbational approach sim-

ply scaling the input errors by partial derivatives to estimate the total backscatter-coe�cient er-

ror. In contrast, under low SNRs and/or when the user's uncertainty of the algorithm inputs

([x−∆x, x+ ∆x]) is comparatively large, �rst-order derivative error bounds fail to correctly esti-

mate the backscatter-coe�cient error. Therefore, total-increment error bounds provide a convenient

way to compute exact upper and lower error bounds (usually with asymmetrical amplitudes around

the true backscatter value) in explicit form.

3.4.1 Error source 1: Error due to the backscatter-coe�cient cali-

bration

From Eq. 3.10 it emerges that the derivative of the inverted backscatter coe�cient with respect to

the backscatter-coe�cient calibration is always positive, ∂βj
∂βN

> 0 , since βj , βN , Uj , UN and Fj are

positive-de�ned magnitudes. As a result, βj (βN ±∆βN ) = βj ± ∆βj (plus and minus signs are

one-to-one maintained) and the total-increment error bounds of Eq. 3.39 result.
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Table 3.3: First-order error bounds for the KFS backward inversion algorithm in response to error
sources 1-4 (see Sect. 3.3). For the case j = N , the backscatter-coe�cient error bound is directly the
calibration error bound. �sys� and �rand� stand for �systematic� and �random� errors, respectively. For
the KFS forward algorithm consider Sect. 3.2.3 changes.

Concept Formula

Total backscatter-
coe�cient error
bounds (case j < N)
where

δsysβj
=
∣∣δεj,1∣∣+

∣∣δεj,2∣∣ , σrandβj
=
(
σ2
εj,3 + σ2

εj,4

)1
2 (3.25)

1. Systematic error
due to the backscatter-
coe�cient calibration

δεj,1 =

∣∣∣∣∣
(
βj
βN

)2 UN
UjFj

∣∣∣∣∣ δβN (3.26)

2. Systematic er-
ror due to the (range-
dependent) lidar ratio

δεj,2 = |p|

∣∣∣∣∣2βjIj,1 − 2β2
j

UjFj
Ij,2 −

4β2
j

UjFj
Ij,3

∣∣∣∣∣ (3.27)

where
Ij,1 =

N∑
k=j

wkβ
mol
k Sk (3.28)

Ij,2 =
N∑
k=j

wkUkFkSk (3.29)

Ij,3 =
N∑
k=j

wkSkUkFkIk,1 (3.30)

3. Random error due
to the measurement
noise (range cells 1..N-
1)

σεj,3 =

(βj
Uj

)2

σ2
Uj +

(
2β2

j

UjFj

)2

σ2
HU,j


1
2

(3.31)

where
σ2
HU,j =

N∑
k=j

(wkSkFk)
2 σ2

Uk
(3.32)

4. Random error due
to the measurement
noise at the calibration
cell (range cell N)

σεj,4=

(∣∣∣∣∣ β2
j

βNUjF j

∣∣∣∣∣+

∣∣∣∣∣ 2β2
j

UjFj
wNSN

∣∣∣∣∣
)
σUN≈

∣∣∣∣∣ β2
j

βNUjF j

∣∣∣∣∣σUN
(3.33)

Total backscatter-
coe�cient error bound
(case j = N , calibra-
tion point)

δsysβj
= δβN (3.34)



52 3. Total backscatter-coe�cient inversion error bounds

3.4.2 Error source 2: Error due to the range-dependent lidar ratio

From Eq. 3.3 the incremented backscatter-coe�cient function can be expressed as

βj

(
~S + ∆~S

)
=

βN UjFj

(
~S + ∆~S

)
UN + 2βN Hj

(
~S + ∆~S, ~U

) ∆~S=p~S−→ βj (p) =
βN UjFj (p)

UN + 2βN Hj

(
p, ~U

) . (3.35)

The lidar-ratio increment ∆~S is related to the lidar ratio ~S via the relative error p so that

∆~S = p~S (Eq. 3.18). As a result, the incremental term
(
~S + ∆~S

)
(equivalently, ~S (1 + p)) becomes

only a function of the scalar relative error p and Eq. 3.35 reduces to Eq. 3.19. Incremental auxiliary

functions Fj (p) and Hj

(
p, ~U

)
can be computed from Eqs. 3.5 and 3.7, respectively.

The sign of the backscatter-coe�cient's derivative with respect to the lidar-ratio relative error,
∂βj
∂p , at each particular range Rj determines whether the upper and lower backscatter-coe�cient

error bounds at each range cell are respectively obtained from βj (p) (i.e., βj
(
~S + ∆~S

)
) and βj (−p)

(i.e., βj
(
~S −∆~S

)
) or with opposite signs. For the backward integration case this derivative is

obtained following a somewhat lengthy but similar development to that of ∂βj
∂p

∣∣∣
p=0

in Eqs. 3.24 and

3.27. Formally,

∂βBj
∂p

= 2βBj (p) IBj,1 −
2βBj (p)2

UjFBj (p)

[
IBj,2 (p) + 2 (1 + p) IBj,3 (p)

]
, j < N, (3.36)

where IBj,1−3 is given by Eqs. 3.28-3.30 in Table 3.3. The result is identical for the forward integration

case (j > 1) with superscripts �F� (forward) instead of �B� (backward). Note that forward integrals

IFj,1−3 must include a minus sign according to Sect. 3.2.3.

Note that a more elegant and physically-rooted way to identify the sign of the backscatter-

coe�cient derivative to the lidar-ratio relative error is to recall that in forward (backward) inte-

gration the inverted backscatter coe�cient at any range increases (decreases) with the lidar ratio

(Fig. 3.1). This property is the basis of the two-point lidar-ratio estimation method in an aerosol

layer aloft using combined forward/backward integration [Ansmann et al., 1992] and detailed in

Rocadenbosch et al. [2010b]). The derivative of the backscatter coe�cient with respect to the lidar

ratio is zero at the calibration point. In summary,

∂βFj
∂p

> 0,
∂βBj
∂p

< 0, ∀p, j,
∂βFj
∂p

∣∣∣∣∣
j=1

= 0,
∂βBj
∂p

∣∣∣∣∣
j=N

= 0, ∀p, (3.37)

which is a condition applying to any range Rj . Therefore, βj
(
~S ±∆~S

)
= βj ±∆βj in the forward

case whereas βj
(
~S ±∆~S

)
= βj ∓∆βj in the backward case (Table 3.4).

3.4.3 Error sources 3-4: Errors due to the measurement noise

As discussed in Sect. 3.1, the impact of measurement noise in the KFS algorithm has been studied

in Sicard et al. [2009a]. In spite of the fact that exact backscatter-coe�cient error bounds satisfying

a constant con�dence level are given analytically, its formulation is in implicit form. This means
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Table 3.4: Total-increment error bounds for the KFS backward inversion algorithm in response to
error sources 1-4 (see Sect. 3.4). Superindexes �u� and �l� stand for �upper� and �lower� error bound,
respectively. εuj,1−4 and εlj,1−4 are positive-de�ned error amplitudes. For the case j = N , the up-
per/lower backscatter-coe�cient error bounds are directly given by those of the calibration error. �sys�
and �rand� stand for �systematic� and �random� errors, respectively. For the KFS forward algorithm
consider Sect. 3.2.3 changes.

Concept Formula

Total backscatter-
coe�cient
error bounds (case
j < N)
where

ε
u/l
sys,j = |εj,1|+ |εj,2| , ε

u/l
rand,j =

(
ε2
j,3 + ε2

j,4

)1
2 (3.38)

1. Systematic
error due to
the backscatter-
coe�cient calibra-
tion

∂βj
∂βN

> 0 ,
(Eq. 3.10)

εuj,1 = βj (βN + ∆βN )−βj (βN ) εlj,1 = −βj (βN −∆βN )+βj (βN )
(3.39)

2. Systematic error
due to the (range-
dependent) lidar ra-
tio

βj (p) =
βN UjFj (p)

UN + 2βN Hj

(
p, ~U

)
βj (p) stands for βj

(
~S + ∆~S

)
, ∆~S = p~S

(3.40)

Case FORWARD
∂βj
∂p > 0, Sect. 3.2

εuj,2 = βj

(
~S + ∆~S

)
− βj

(
~S
)
εlj,2 = −βj

(
~S −∆~S

)
+ βj

(
~S
)

(3.41)
Case BACKWARD
∂βj
∂p < 0, Sect. 3.2

εuj,2 = βj

(
~S −∆~S

)
− βj

(
~S
)
εlj,2 = −βj

(
~S + ∆~S

)
+ βj

(
~S
)

(3.42)
3. Random error
due to the measure-
ment noise (range
cells 1..N-1)

(not available)

Use εu/lj,3 ≈ 3σεj,3 , 3-σ �rst-order error approx. (3.43)

4. Random error
due to the measure-
ment noise at the
calibration cell
(range cell N)
∂βj
∂PN

< 0, (Eq. 3.16)

εuj,4 = βj (UN −∆UN )− βj (UN )

εlj,4 = −βj (UN + ∆UN ) + βj (UN )

(∆UN = 3σUN for 3− σ level)

(3.44)

Total backscatter-
coe�cient error
bound (case j = N ,
calibration point)

ε
u/l
sys,j = ε

u/l
βN

(3.45)
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Figure 3.1: Behavior of the forward and backward forms of the KFS-inverted backscatter coe�cient
for several values of the aerosol lidar ratio. Lidar ratios vary from 20 sr to 80 sr (in steps of 10 sr) in
a simulated backscatter pro�le of an elevated dust layer. Calibration range is at 4 km. For R < Rcal
inversion is via backward integration and the upper (lower) pro�le corresponds to the smallest (largest)
lidar ratio. For R > Rcal, inversion is via forward propagation and the upper (lower) pro�le corresponds
to the largest (smallest) lidar ratio. Simulation wavelength: 355 nm.

that given a con�dence level, two auxiliary integrals and two integral equations [Sicard et al., 2009a]

must be solved for each range of interest. This yields two error bounds, which are later used to

compute the upper and lower backscatter-coe�cient error bounds.

Explicit formulation of total-increment error bounds is hampered by the fact that the mea-

surement noise is usually uncorrelated with range, i.e., each range cell along the inversion range

contributes independent error amounts ∆Uj , j = 1..N −1. This leads to the superposition of N −1

noise sources, that is, to an (N − 1)-dimensional problem impeding any explicit formulation of the

total-increment error bounds in Table 3.4.

However, because of the comparatively larger impact of error source 4 (see NIR grounds in

Sicard et al. [2009a] and results in Sect. 3.5.1.3) the �rst-order error bound, σεj,3 , given by Eq. 3.31,

represents a very good approximation of an already small quantity. A �nal remark is that the

�rst term of the error-propagated backscatter-coe�cient derivative, εj,3 ≈ βj
Uj
dUj (Eq. 3.15) does

represent the total increment βj
(
~U + ∆~U

)
− βj

(
~U
)
if Hj

(−→
S ,
−→
U
)
(Eq. 3.7) is assumed to be

nearly independent of �uctuations in ~U . This is indeed the case, because range-corrected power

�uctuations tend to smooth out with range during forward/backward integration.

Finally, the error due to the measurement noise at the calibration cell is analogous to that of

Sect. 3.5.2, except for the fact that now the derivative of the inverted backscatter coe�cient to the

power at the calibration range is always negative, ∂βj
∂PN

< 0 (Eq. 3.16). The error bounds are given

in (Eq. 3.44), Table 3.4.

3.5 Discussion

First-order error bounds (Table 3.3) and total-increment error bounds (Table 3.4) are validated here

using a multi-wavelength Monte Carlo (MC) approach at 355-, 532-, and 1064-nm wavelengths. In

the MC simulation, for each wavelength, a set of 100 pro�les of the aerosol backscatter coe�cient has
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been inverted given 100 noisy lidar power returns realized from a synthetic backscatter atmospheric

pro�le and a range-dependent SNR pro�le (Fig. 3.2).
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Figure 3.2: Simulated lidar signals. (a) Aerosol backscatter-coe�cient atmospheric pro�les (solid
trace) and related molecular (Rayleigh) levels (dashed). (b) Noisy range-corrected power returns (solid)
and related SNR pro�les for each channel. UV (355 nm, blue), VIS (532 nm, light green), and NIR
(1064 nm, red).

To make the simulation more realistic, the shape of the pro�le of the aerosol backscatter coe�-

cient has been obtained from a 532-nm inversion of a measurement record obtained with the RSLab

lidar (slant path, 54-deg elevation angle). The 355- and 1064-nm aerosol backscatter components

have been extrapolated from the inverted one at 532 nm assuming a λ−1 spectral dependency. The

molecular backscatter component follows a U.S. standard atmosphere model [Bodhaine et al., 1999]

(15°C and 1013.15 hPa ground-level conditions) and a λ−4 spectral dependency. A mean total

extinction, ᾱ ≈ 2× 10−4m−1 at 532 nm, corresponding to a total optical depth, τ ≈ 1.2, over the

slant sounding path, is simulated. In order to study error sources 1-4 in identical simulation con-

ditions, a wavelength-independent lidar ratio, Saer = 50sr is used, and the simulated measurement

noise level is adjusted so as to ensure a SNR of 5 at the maximum range (a relatively modest �gure

in practice), in all three lidar channels. The inversion interval ranges from Rmin = 0.2km to a

maximum range, Rmax = 6km. The calibration range is chosen at Rcal = Rmax = 6km, where the

lidar return is dominated by molecular scattering. The atmospheric boundary layer, characterized

by signi�cant aerosol backscatter, ends at approximately 5 km range.

Lidar system parameters used for the simulation are based on the RSLab multi-spectral lidar

system (Table 1.2)

Backscatter-coe�cient plots are visible-wavelength normalized (VIS-normalized) to aid inter-

comparison at the three wavelengths. Thus, UV and NIR pro�les of the inverted backscatter

coe�cient are scaled by (λ532/λ355)−1 and (λ532/λ1064)−1 factors, respectively. A VIS-normalized

Fig. 3.2a would appear with UV, VIS and NIR traces all coincident (�gure not shown).
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3.5.1 Error sources 3-4: Errors due to the measurement noise

3.5.1.1 Noise in all range cells except the calibration cell

According to the superposition principle the simulation runs with SNR(R) for R 6= Rcal, Fig. 3.2b,

and all other error sources inactive. That is, SNR(Rcal) → ∞ (no noise on the return power at

the calibration cell, error source 4), perfect backscatter-coe�cient calibration (error source 1), and

known atmospheric lidar ratio (error source 2).

Fig. 3.3a plots the envelopes of the family of the MC-inverted pro�les of the aerosol backscatter

coe�cient along with �rst-order error bounds (Eq. 3.31, Table 3.3) computed at 3σ (error bounds

are plotted as vertical bars centered in the input �true� pro�le of the atmospheric backscatter

coe�cient) while Fig. 3.3b compares their error amplitudes. The error amplitudes represent the

di�erence between the upper and lower backscatter-coe�cient error bounds and the true pro�le of

the atmospheric backscatter coe�cient. In Fig. 3.3b, upper and lower MC error bounds superimpose

and appear as a single noisy trace -at each wavelength-. Because of the �rst-order series expan-

sion, �rst-order error bounds are always symmetric. Besides, Fig. 3.3b shows perfect agreement

between both MC and �rst-order error bounds at all wavelengths. This is of advantage in order to

approximate the total-increment error bound εu/lj,3 (not found for this error source) as εu/lj,3 ≈ 3σεj,3

in Table 3.4.
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Figure 3.3: Analysis of noise corrupting all range cells except the calibration cell (error source 3) for
SNR pro�le in Fig. 3.2b. (a) Envelopes of the aerosol backscatter coe�cient from MC inversion (100
realizations) with superimposed �rst-order error bounds (vertical error bars) at 3σ. (b) Amplitude of
the backscatter-coe�cient error bound as a function of range: Comparison between MC error bounds
(noisy traces) and �rst-order error bounds (solid traces). Both (a) and (b) are VIS-normalized. UV
(355 nm, blue), VIS (532 nm, light green), and NIR (1064 nm, red).

Fig. 3.3 shows that errors increase with range in response to a progressively decreasing range-

dependent SNR (Fig. 3.2b) and also increase towards the UV. An explanation for that is that the

σεj,3 term (βj/Uj)σUj = βj/SNRj in Eq. 3.31, Table 3.3 is inversely proportional to the SNR and

directly proportional to the backscatter coe�cient. Towards the UV, σεj,3 increases due to the

higher scattering in this band and a lower SNR (Fig. 3.2b). As mentioned in Sect. 3.4.3, the term

σHU,j (Eq. 3.32) becomes numerically much lower because noise averages out when integrating.
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3.5.1.2 Noise in the calibration cell

Simulation conditions are analogous to those used for the error source 3 above except that now

SNR(Rcal) = SNRN = 5 and SNR(R) → ∞, R 6= Rcal. Fig. 3.4a shows that the e�ects of

the measurement noise at the calibration cell propagate down to all the inversion cells and are

comparatively larger in the NIR. Thus, while in the NIR, errors tend to amplify progressively

backwards with range (up to 1.8 km approximately), in the UV, they reduce backwards with range

(see analogous behavior for error source 1, Sect. 3.5.2). Fig. 3.4b shows fairly good agreement

between �rst-order error bounds (σεj,4 in Table 3.3) and MC error bounds, evidenced by the former

falling in between upper and lower MC error bounds.
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Figure 3.4: Analysis of noise at the calibration range (error source 4) for SNR(Rcal) = 5, SNR(R)→
∞, R 6= Rcal. (a) As in Fig. 3.3a. (b) First-order error-bound amplitudes at 3σ (thick traces),
and asymmetrical MC error-bound amplitudes (thin traces), where solid/dashed traces correspond to
upper/lower MC error bounds, respectively. Total-increment error bounds perfectly match upper and
lower MC error bounds and superimpose with them. Both (a) and (b) are VIS-normalized. UV (355
nm, blue), VIS (532 nm, green), and NIR (1064 nm, red).

In contrast to what happened when studying the error source (Eq. 3.19), MC error bounds are

no longer symmetric. An explanation for that is that noise at the calibration range tends to be

the dominant error source (σεj,4 ≥ σεj,3 over the whole inversion range), hence causing that larger

backscatter-coe�cient errors cease to be Gaussian distributed [Comerón et al., 2004]. By comparing

Fig. 3.4b and Fig. 3.3b, the impact of noise at the calibration range is more prominent towards

the NIR. Thus, in the UV, σεj,4 ≈ σεj,3 (this distinguishing feature was not identi�ed in earlier

work as it was conducted at 1064 nm). A mathematical hint for that comes from the ratio between

these two noise-induced error sources,
σεj,4
σεj,3

≈ βj
βN

1
F j

σUN
σUj

(Eqs. 3.31- 3.33), where -by experiment-

it has been found that
(

2β2
j

UjFj

)2

σ2
HU,j <<

(
βj
Uj

)2
σ2
Uj

in Eq. 3.31. Because of the higher molecular

component in the UV, the ratio βj/βN (recall that β stands for the �total� backscatter coe�cient

and that βN is calibrated in a purely molecular reference range, Sect. 2.2.6) is much smaller in the

UV than in the NIR, thus enabling σεj,3 and σεj,4 to become comparable in the UV. Total-increment

error bounds εu/lj,4 at 3σ (Table 3.4) perfectly match upper and lower MC error bounds in Fig. 3.4a

and superimpose with them.
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3.5.1.3 Superposition of error sources 3-4

First-order error bounds (σεj,3−4) and total-increment error bounds (εu/lj,3−4) are compared with the

implicit integral ones from previously published results (Sect. 3.4.3). All three types of error bounds

are computed at 3σ (p = 99.73% probability that an inverted backscatter-coe�cient realization

falls within the error bounds). To compute �rst-order error bounds 3σεj,3−4 , Table 3.3 is used.

To compute total-increment error bounds, εu/lj,3 , Eq. 3.43 approximation, Table 3.4 is used and,

obviously, the exact Eq. 3.44 with ∆UN = 3σUN is used to compute εu/lj,4 .

Because upper and lower integral error bounds must be solved for each range cell and the

solutions become numerically ill-conditioned for dense atmospheres (τ > 2, approximately), they

have only been computed for a discrete set of six ranges, from 1 to 6 km, equi-spaced 1 km. In

nearly all the simulation runs the upper and lower MC error bounds computed with 100 lidar signal

realizations coincided with the integral error bounds (i.e., the exact theoretical reference). Thus,

the MC error bounds can be considered reliable bounds of the 3-σ inverted backscatter-coe�cient

population and, therefore, equivalent trustworthy extrapolations of the integral �exact� error bounds

over all the range cells.

Multi-wavelength performance of both �rst-order and total-increment error bounds with refer-

ence to the implicit integral error bounds is shown in Fig. 3.5. Fig. 3.5a shows a comparatively

poorer but still fairly good performance of the �rst-order error bounds, which give error bound

amplitudes in between those of the MC error bounds or slightly closer to the MC lower error bound

(the upper MC error bound in the NIR falls below the implicit integral error bound as a consequence

of the natural statistical dispersion in this speci�c simulation run and wavelength). Fig. 3.5b shows

that total-increment error bounds give virtually identical estimates that the implicit-integral error

bounds with the advantage of being formulated in explicit form, being simpler to compute, and

providing range-resolved information. The mean backscatter-relative error between both types of

error bounds is below 1.7% in the UV, 0.6 % in the VIS, and 0.5% in the NIR, this di�erence being

only due to Eq. 3.43 approximation. The spectral behaviour of Fig. 3.5 is analogous to that of

Fig. 3.4b.

3.5.2 Errors due to the backscatter-coe�cient calibration

By virtue of the relationship established in Eq. 3.17, the behaviour of this error source is qualita-

tively similar to that of the noise at the calibration range (error source (4), Fig. 3.4) � hence, analo-

gous plots are retrieved (�gure not shown), which are scaled by a multiplicative factor. For example,

a relative backscatter calibration error of δβN = 0.1βN yields the plot of Fig. 3.4a (SNRN = 5)

scaled by a factor 0.5/3 (the dividing factor 3 is due to the fact that in Fig. 3.4b error envelopes are

plotted at 3σ). Therefore, similar simulation conclusions apply, speci�cally, that the backscatter-

coe�cient calibration error becomes dominant in the NIR. This is best corroborated in Fig. 3.6,

which uses a step-function atmospheric backscatter-coe�cient pro�le with a 1-km falling edge be-

tween 4-5 km simulating the end of the boundary layer, and an error strength, εβNr = 0.1. In the

mixing layer (0.2-4-km range) the error bound amplitudes can be ranked NIR > VIS > UV, as

expected.
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Figure 3.5: Superposition of error sources 3 and 4. Error amplitude plots comparing total-increment
and �rst-order error bounds with implicit integral error bounds. (a) Performance of �rst-order error
bounds: Crosses and circles denote implicit-integral upper and lower error-bound amplitudes at 3σ,
respectively, noisy thin solid/dashed traces denote MC upper/lower error amplitudes, respectively, and
solid thick traces denote �rst-order error-bound amplitudes at 3σ. (b) Performance of total-increment
error bounds: Crosses and circles denote implicit-integral upper and lower error-bound amplitudes
at 3σ, respectively, solid lines denote MC upper and lower error-bound amplitudes. Total-increment
error bounds perfectly match MC error bounds and superimpose with them. (a) and (b) plots are
VIS-normalized. UV (355 nm, blue), VIS (532 nm, light green), and NIR (1064 nm, red).
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Figure 3.6: Analysis of aerosol backscatter-coe�cient calibration error (error source 1). Same de-
scription as in Fig. 3.3a. The family of inverted backscatter-coe�cient pro�les is in response to a step-
function pro�le of the atmospheric aerosol backscatter coe�cient simulating the atmospheric boundary
layer (R ≤ 5km). Calibration errors in the range ±30% over the nominal backscatter Rayleigh level at
the calibration range (Rcal = Rmax = 6km). Plots are VIS-normalized. UV (355 nm, blue), VIS (532
nm, light green), and NIR (1064 nm, red).
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3.5.3 Errors due to the lidar ratio

Simulation conditions for this case assume noiseless power lidar returns (SNR(R)→∞ in all range

cells), perfect backscatter-coe�cient calibration, and lidar-ratio errors de�ned by a relative error

�gure, p. During the tests, Eqs. 3.36 and 3.37 gave always the same signs, as expected.

Fig. 3.7 shows the performance of the total-increment error bounds, which perfectly match

the simulated error deviations. For small-to-moderate errors (p=±30%, �gure not shown) the

total-increment upper and lower error bounds tend to distribute symmetrically around the �true�

atmospheric backscatter coe�cient, that is, which similar upper and lower error amplitudes. This is

no longer the case for large errors (p=±90%). The inverted backscatter-coe�cient error bounds and

their asymmetry increases towards the UV, which reinforces the fact that lidar ratio uncertainties

become more critical towards the UV.
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Figure 3.7: Analysis of lidar-ratio errors (error source 2). (a) Aerosol backscatter-coe�cient envelopes
with superimposed total-increment error bounds (vertical error bars). Error strength, p = ±90%. Con-
stant relative deviation over the nominal lidar ratio. (b) Backscatter-coe�cient error-bound amplitudes
associated with (a). Solid trace denotes upper/lower error-bound amplitudes. Total-increment error
bounds perfectly match error bounds and superimpose with them. Both (a) and (b) are VIS-normalized.
UV (355 nm, blue), VIS (532 nm, light green), and NIR (1064 nm, red).

3.6 Conclusions

Two di�erent types of backscatter-coe�cient inversion error bounds have been formulated: �rst-

order error bounds (Sect. 3.3) and total-increment error bounds (Sect. 3.4). Both have been for-

mulated analytically in explicit form for the two-component KFS lidar inversion algorithm subject

to error sources 1-4. The error bounds have been validated using a MC method.

First-order error bounds are obtained using the classic error-propagation approach. They are

symmetric about the true value with an amplitude lying between those of the upper and lower MC

error bounds. Their amplitudes encompass most of the inverted backscatter pro�les in practical

situations (SNR ≥ 5, lidar-ratio relative error strength, p ≤ 30%, Sect. 3.5). Yet, strictly speaking,

�rst-order error bounds are still approximate. With larger errors (lower SNRs and/or higher un-

certainties), upper and lower MC error bounds become progressively asymmetric, a property that
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�rst-order error bounds cannot re�ect.

It has been shown that when the random error source follows a Gaussian distribution, total-

increment error bounds computed at 3σ coincide with 3-σ statistical con�dence levels and, therefore,

provide the exact result in explicit analytical form. The total-increment error bound associated

with error source 3 was not found explicitly because of the multi-dimensionality of the problem.

However, it is well approximated by the 3-σ �rst-order error bound as εu/lj,3 ≈ 3σεj,3 . Similarly,

when the uncertainty of a systematic error source is assumed to be uniform (the usual case for

error sources 1-2 when no further �a priori� information is available) the total-increment error

bound gives the total error span on the inverted-backscatter pro�les.

As in the KLT algorithm, the e�ect of noise at the calibration cell dominates (particularly

towards the NIR) over the e�ect of the noise from all other range cells. Though fundamentally

di�erent, error sources 1 and 4 yield similar e�ects on the retrieval via Eq. 3.17, thus error sources

2 and 4 are of most concern. Concerning their spectral behavior, uncertainties in the lidar ratio

largely dominate the UV error bounds while the backscatter-coe�cient calibration is the dominant

error source in the NIR. The explicit analytical error bound formulation summarized in Table 3.3

and Table 3.4 is -to the best of our knowledge- new in the state of the art of lidar inversion

algorithms.





Chapter 4

Enhanced data-gluing algorithm for

mixed analog/photon-counting lidar

signals

Because of the large dynamic range of the backscatter lidar signal, data-gluing algorithms

are used to combine simultaneously-acquired analog and photon-counting records into a single dis-

tortionless wide-dynamic-range data record. From this perspective, this Chapter departs from an

overview of Licel's gluing algorithm and presents an enhanced version of it, which automatically

�nds the best spatial �tting range. Two applications of the gluing procedure are presented: First,

a case example based on time series monitoring of the aerosol load from Nabro's volcanic event.

Second, a prospective application to calibrate the signal gain and optical losses of the receiving chain.

The contents presented in this Chapter are a compilation of two proceedings, Lange et al. [2012b]

(Sect. 4.2 and 4.3) and Lange et al. [2012a] (Sect. 4.4).

4.1 Introduction

The data-gluing presented next provides a convenient way to deal with the large dynamic range of

the lidar power return signals, which can span up to �ve orders of magnitude.

The RSLab multi-spectral lidar system is based on Licel transient recorders, which combine si-

multaneous analog and photon-counting acquisition modes. Both modes have advantages, namely,

ADC has a better linearity for high light-level signals occurring especially in the near range, while

PC mode has a better sensitivity for low light-level signals in the far range [Licel , 2007a]. Com-

bination of both modes, each of them in the range where it is advantageous, in a process called

data-gluing, allows to exploit the lidar signal in all its range extension.

Applications that can bene�t from the data-gluing are events that combine aerosols loads in

the whole troposphere and/or the stratosphere. Examples of them are as eruptive events with

a high aerosol load in the upper troposphere and/or the stratosphere, dust events that carry a

large amount of dust both inside the ABL or in the upper troposphere, and �re plumes. Eruptive

events such as Eyjafjallajökull (Iceland) in 2010, Grímsvötn (Iceland), Puyehue (Argentina), Nabro
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(Eritrea) and Mount Lokon (Indonesia) in 2011 have yielded emergency situations with a strong

economical cost due to human evacuation and/or air tra�c interruption. Volcanic aerosols are �rst

injected in the troposphere and often reach the stratosphere where they can reside for several years.

This Chapter is organized as follows: Sect. 4.2 introduces the basic- and the enhanced- data-

gluing algorithm, while Sect. 4.3 shows a case example for the enhanced version. Sect. 4.4 presents

a prospective application, Finally, concluding results are presented in Section 4.5.

4.2 Enhanced data-gluing algorithm

Basic version.- The basic gluing algorithm proposed in Licel [2007a] by Licel, combines the analog-

and PC-recorded signals in a ��xed� �tting range interval [RA, RB], where both analog and dead-

time-corrected PC signals are valid and have a high SNR.

Data-gluing minimizes the error norm between the dead-time-corrected photon-counted (PC)

signal,
−→
Vpc [counts-per-second units, cps], and a scaled and o�set version of the analog voltage

signal,
−→
Va [V], for solving parameters a (scaling) and b (o�set) in the �tting interval, [RA, RB].

Formally, this can be expressed as

min
{
‖−→εI‖2

}
a,b

= min

{∥∥∥−→Vpc − (a−→Va + b
−→
1
)∥∥∥2

}
a,b

I ∈ [RA, RB] . (4.1)

The error vector, −→εI can be de�ned as

−→εI =
−→
Vpc −

(
a
−→
Va + b

−→
1
)
, (4.2)

with
−→
V ′a = a

−→
Va + b

−→
1 , the scaled-and-o�set analog signal.

For a typical mini-PMT the �tting interval corresponds to the range interval where the PC

signal is in the 0.5-to-10-MHz region. In Eq. 4.1 the residual error norm ‖−→εI‖2 is an indicator

of the quality of the �tting. Besides, it has been found by experiment [Lange et al., 2012a] that∥∥∥a−→Va∥∥∥ >> b so that the scaling parameter a is the dominant parameter in the error norm.

Enhanced version.- The enhanced gluing method proposes a �ne-tuning automatic-search algo-

rithm to �nd the best �tting range interval I ensuring minimum residual error norm. Towards this

goal a two-step procedure is followed:

1) First, the central point of the best �tting range interval, Ii, is obtained. To do that, the

modi�ed form of Eq. 4.1 above,

min
{
‖−→εIi‖

2
}
ai,bi

= min

{∥∥∥−→Vpc − (ai−→Va + bi
−→
1
)∥∥∥2

}
ai,bi

in Ii (4.3)

is solved for −→xi = (ai, bi) along successive adjacent �tting range intervals Ii ∈
(
RiA, R

i
B

)
of constant

length (∆RI = 100 m) centered at the range Ri. In practice, Ri is incremented in steps of ∆RI

along the measurement range. This is to say that for each range Ri, a relationship (ai, bi) ←→
‖−→εIi‖ is obtained, meaning that the solution −→xi = (ai, bi) is associated to the error norm �gure,

‖−→εIi(
−→xi)‖. Because

∥∥∥ai−→Va∥∥∥ >> bi, one can biunivocally relate ai ←→ ‖−→εIi‖.
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By experiment, the intercept point, Ropt, yielding the best �tting range interval, Iopt, is found

as the point where the di�erence between the photon-counting signal and the a-scaled analog signal

is a minimum. Formally, this distance (in what follows, the gluing-error distance) is de�ned as

εg(R) = |Vpc(R)− asi Va(R)| , (4.4)

where asi is a smoothed version of the range-dependent parameter ai obtained from Eq. 4.3. Vpc(R)

and asi Va(R) are plotted in the example of Fig. 4.1a. ai and asi as a function of range are plotted

in Fig. 4.1b, and the gluing error distance according to Eq. 4.4 above is represented in Fig. 4.1c.

Each step ladder in ai corresponds to an interval, Ii. From Fig.4.1c, the minimum gluing-error

distance, εg(R), is obtained at Ropt=3.2 km LOS, which corresponds to asopt = a(Ropt)=5.3×1010

cps/V.

2) Once the best �tting interval, Iopt, has been determined from Eq. 4.4 (Fig. 4.1), the end

points of this range interval, RoptA and RoptB (i.e., left and right to the central point, Ropt) are

computed from the photon-counting voltage record, Vpc(R) [cps], and a threshold level 10% above

and below the counts per second at Ropt, Vpc(Ropt), see Fig. 4.1d. After that, the corresponding

RoptA and RoptB are found. The 10% criterion has been determined by experiment and yields a typical

�tting length, RoptB −R
opt
A , of less than 1 km, smaller than the length obtained from the basic gluing

algorithm of Eq. 4.1 (around 7 km), where the �tting interval is prede�ned from the beginning.

Larger �tting ranges lead to situations characterized by a lower SNR and, consequently, a higher

noise level.

Finally, the glued signal is formed as,

Vglued(R) =

{
asopt Va(R) ,

Vpc(R) ,

R ≤ Ropt
R > Ropt

. (4.5)

From Fig. 4.1d it is seen that Ropt falls approximately at 3.2 km, which corresponds to a PC

signal level of 19 Mcps (19 MHz). The �tting range interval, Iopt, ranges from 3.0- to 3.4-km or,

equivalently, 21- to 17-MHz, respectively. Though Licel's gluing range goes from 10 to 0.5 Mcps,

the optimal range interval obtained above also avoids the noisier ranges in the far range. (Fig.

4.1d).

Regarding dead-time correction, the photon-counting unit part of Licel's transient recorder

equipping the RSLab lidar are non-paralyzable. This means that an event (understood as a single

pulse of photo-induced charge of great enough amplitude that arrives at the discriminator) will

not be recorded when the time interval between its occurrence and the occurrence of the last

recorded event is smaller than some given interval, τdead. Following Donovan et al. [1993], τdead
often characterizes the length of time after the occurrence or the detection of an event that the

detection system is dead, so it is often referred to as the dead time.

The dead-time corrected count rate is computed as Whiteman [2003],

Nreal =
Nmeas

1− τdeadNmeas
, (4.6)

where Nmeas [cps] is the observed or measured �raw� count rate, Nreal [cps] is the dead-time
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Figure 4.1: The enhanced gluing algorithm. (a) Relevant signals and indicators of the �tting process.
(Cyan) Dead-time corrected, photon-counting signal, Vpc(R). (Red) Analog signal, Va(R). (Dashed
red) a-scaled analog signal, asi (R)Va(R). (Green) Normalized error norm, 1/

√
N ‖εIi‖, Eq. 4.3. (Blue)

Inverse analog SNR, ISNRa(R). (b) Fitting parameter ai (Eq. 4.3) as a function of range. (Blue ladder)
ai(R). (Green) Smoothed version (400-sample span, or 1500 m), asi (R), used in Eq. 4.4. (c) Gluing
error distance, εg(R) [cps], Eq. 4.4. Algorithm step 1: The central point Ropt, of the best interval, Iopt,
is determined as the minimum of εg(R) (red vertical line). (d) Algorithm step 2: End points of the
best �tting interval, RoptA and RoptB (dotted blue lines), are computed as the ranges associated to ±10%
the count number for Ropt (dotted black line). (Green) Dead-time-corrected photon-counting signal.
(Cyan) Non-dead-time-corrected signal. (Red) aopt-scaled asopt Va(R). (Black) Final glued signal, Eq.
4.5.
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corrected or �true� count rate, and τdead [s] is the dead time.
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Figure 4.2: Comparison among analog, PC, and glued range-corrected signals (Barcelona UPC, Cam-
pus Nord, June, 27th, 2011). (a) 532-nm range-corrected channel measurement for the Nabro volcanic
event shown Fig. 4.3. (b) 355-nm range-corrected channel (same measurement case). (Blue) Analog

raw signal,
−→
Va. (Red) Scaled-and-o�set analog signal,

−→
V ′a = a

−→
Va + b

−→
1 . (Green) Dead-time corrected

photon counting signal. (Black) Glued analog-PC signal. Black trace superimposes the red one in the
near range, and the green one in the far range.

4.3 Case example

A case scene showing volcanic aerosols from Nabro' volcanic event (Eritrea, 2011) in the stratosphere

and, simultaneously, Saharan dust in the troposphere is presented. The scene was captured by the

RSLab multi-spectral lidar over UPC, Campus Nord, Barcelona during the period 27 June - 1 July,

2011.

Saharan dust intrusion episodes are frequent in the Iberian Peninsula [Pérez et al., 2006]and

occur at low-troposphere heights. Because of the high intensity of the lidar returns in the near-

range range, these dust episodes are nicely recorded by the analog channel and poorly recorded by

the PC channel, which saturates due to the large number of counts in the near-range. The opposite

situation occurs when monitoring volcanic eruptions [Guerrero-Rascado et al., 2010; Sawamura

et al., 2012; Pappalardo et al., 2013], that inject volcanic aerosols and ashes up in the stratosphere.

At such heights, the lidar returns are too faint to be properly recorded within the sensitivity of the

analog channel (only a few ADC levels are �moved� and with a very poor SNR).

In Fig. 4.2, 532- and 355-nm lidar measurements are shown. In both cases, the analog signal

is very noisy around 17 km so that Nabro volcanic aerosols cannot be distinguished from noise,

specially for the 355-nm case. This case example is also shown in Sect. 7.2.4. The PC signal fails to

show aerosol layers below about 3 km in both cases. In contrast, the glued signal pro�le in Fig. 4.2

and its time series in Fig. 4.3 and Fig. 4.4 evidences, with a good SNR, both Saharan dust layers

in the 0�4 km subplot (low range) and volcanic aerosols in the 15�18 km subplot (high range), for

the 532-nm case.
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Figure 4.3: Time series monitoring the evolution of a vertical pro�le of volcanic aerosols in the
stratosphere (about 17 km) and Saharan dust layers in the troposphere (below 3.5 km), 532-nm channel,
same case as Fig. 4.2a. (a) Range-corrected pro�le of the glued analog-PC signal. (b) Glued analog-PC
signal time series. 0�4 km and 15�18 km range intervals are zoomed-in in Fig. 4.4.
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Figure 4.4: Glued analog-PC signals from the Fig. 4.3 zoomed-in in the low range (0�4 km) and in
the far range, 15�18 km.
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4.4 Prospective application: Lidar calibration

4.4.1 Receiving channel calibration

Another interpretation of the concept of calibration has to do with relating the measured voltage

levels at the lidar receiver output to the backscattered optical power levels at the telescope input via

the net voltage responsivity. This is of importance to cross-examine the measured optical levels with

the predicted ones arising from energy link-budged studies at the design stage of the tropospheric

lidar system [Kumar et al., 2012]. As a result, a rough estimate of the optical losses of the reception

chain can be obtained.

The method is presented next with two di�erent levels of approximation: At level 1, only a

rough estimate of the net voltage responsivity is obtained. At level 2, a rough estimate of the

optical losses is derived as well. To achieve this second level of approximation, the method assumes

simultaneous analog and photon-counting acquisition by using PMT- and APD-based detectors and

e.g., Licel transient recorders [Licel , 2007b].

4.4.2 Calibration method

Net responsivity calibration.- Calibration of the optical power levels in return can be done in one

or two steps of progressive re�nement. Step 2 being an improvement of Step 1 as it enables to

approximately estimate the optical transmissivity of the receiving chain (Fig. 4.5).

Step 1 (level-1 approximation).- First, a Rayleigh �t is used to determine the scaling factor,

K ′aer, between a purely molecular range-corrected power signal [Collis and Russell , 1976],

R2PRay (R) = βmol (R) exp

[
−2

∫ R

0
αmol (r) dr

]
, (4.7)

and the measured voltage signal,

V (R) = R′v P (R)
[
V
]
, (4.8)

where R′v [V/W] is the net voltage responsivity (i.e., including optical losses) of the reception channel

(Fig. 4.5), and P (R) is the elastic lidar equation (Eq. 2.20) excluding OVF e�ects,

P (R) =
K

R2

[
βaer(R) + βmol(R)

]
exp

{
−2

∫ Rbl

0
αaer(r) dr

}
exp

{
−2

∫ R

0
αmol(r) dr

} [
W
]
. (4.9)

In Eq. 4.7-4.9, αmol and βmol are the atmospheric molecular extinction and backscatter co-

e�cients, respectively, αaer and βaer are the atmospheric aerosol extinction and backscatter coef-

�cients, respectively, R is the range, and K is the lossless instrument constant of the lidar (Eq.

2.21).

When �tting Eq. 4.8 to Eq. 4.7 it can be shown that the Rayleigh's �t is given by the scaling
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Figure 4.5: Generalized block diagram of a lidar reception channel combining simultaneous
analog/photon-counting acquisition. P is the backscattered optical power in reception, ξnet(λ) is the
optical transmissivity of the receiving chain, Rv is the receiver voltage responsivity excluding losses,
and A/D stands for analog-to-digital converter. Both A/D and �photon counter� blocks are included
into the transient recorder unit. Va is the analog voltage signal [V], Vpc is the PC signal in counts-per-
second units (cps), and Rcio = Rio/q [cps/W] with q the electron charge. For an APD-based reception
channel, GT is the preampli�er gain, for a PMT-based channel, GT is directly the input impedance of
the transient recorder (50Ω)

factor,

K ′aer = KR′V T
2
ABL,aer, (4.10)

In Eq. 4.10 above, T 2
ABL,aer = exp(−2

∫ Rbl
0 αaer (r) dr) is the two-way path atmospheric aerosol

transmittance up to the end of the ABL due to the aerosol load (Eq. 2.17) and it has been used

that βaer(R) ' 0 for R > Rbl in Eq. 4.9.

Because the lossless instrument constant, K, and the aerosol transmittance, T 2
ABL,aer, can be

known with relatively low uncertainties, the net responsivity R′v can be estimated from Eq. 4.10

as

R′v = K ′aer
/ (
KT 2

)
, (4.11)

where T 2 is shorthand notation for T 2
ABL,aer. Following Sect. 2.2.4, the aerosol transmittance can

be estimated from a cooperative Raman channel or from the slope method applied to the ABL

of the measured lidar signal [Kunz and de Leeuw , 1993]. In the latter case, the assumption of a

homogeneous mixture of aerosols inside the ML is needed. Once R′v has been estimated it is possible

to convert the measured backscattered voltage levels into optical power levels, hence quantifying the

deviation between the measured ones and the predicted ones via lidar-design link-budget studies.

Given uncertainties, ∆K and ∆T , associated to the lidar system constant and aerosol trans-

missivity, the upper and lower error bounds for the estimated net responsivity become

{
∆R′v

+ = R′v −
K′aer

(K+∆K)(T 2+∆T 2)

∆R′v
− = K′aer

(K−∆K)(T 2−∆T 2)
−R′v

, (4.12)

where superscripts �+� and �-� denote upper and lower bounds.

Step 2 (level-2 approximation).- For the UV and VIS elastic channels of the RSLab lidar, which

provide both analog and PC records of the measured lidar signal, a calibration method to quantify
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the signal gain of the elastic channel (i.e., the product M GT in Fig. 4.5, where M is the detector

multiplication factor, and GT is the preampli�er gain) is carried out as follows:

The analog/PC data-gluing procedure explained in Sect. 4.2 is used to estimate the signal gain

in the range interval where both analog and PC signals are valid.

Departing from Eq. 4.1 and Fig. 4.5, imposing the condition that both analog and PC records

are proportional, the condition
−→
Vpc = a

−→
Va leads to P ′Rcio [cps] = aP ′Rv [cps], or, equivalently,

a = Rcio/Rv. Introducing the de�nition of voltage responsivity, as Rv = RioM GT (dashed box in

Fig. 4.5), the �tting parameter a can be expressed from receiving-chain system parameter as

a ' 1

qM GT

[
cps

V

]
. (4.13)

which yields the signal gain, M GT ' 1/(q a) once a is solved from Eq. 4.13 above.

Because for the NIR channel of the RSLab lidar only analog acquisition is available (APD-based

channel), the analog/PC gluing technique cannot be applied and the signal gain is estimated with

larger uncertainties based only on manufacturer's specs for M , and GT .

Finally, given (i) the signal gain M GT obtained from step 2 above, (ii) the net voltage respon-

sivity, R′v, from step 1, and (iii) the detector intrinsic responsivity, Rio, the optical transmissivity

of the receiving chain can be estimated as (Fig. 4.5),

ξnet(λ) =
R′v

RioM GT
[·] . (4.14)

Though experimentation with the proposed calibration method is still in progress, Fig. 4.6

shows how link-budget design studies are validated assuming ± 5% cumulative loss deviations in

all optical elements in reception.
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Figure 4.6: Validation of the backscattered return signal and SNR levels in reception (1064-nm chan-
nel). (a) Range-corrected voltage level as a function of range. (Red) Theoretical level expected assuming
manufacturer's transmissivities for the receiving optical elements and a homogeneous atmosphere in the
boundary layer (Rbl = 1.5 km). (Dashed green) Theoretical levels assuming cumulative ±5% devia-
tions in all optical elements in reception. (Blue) Measured signal level. (b) Signal-to-noise ratio. Trace
description as in (a).
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4.5 Conclusions

It has been shown that data-gluing algorithms, which combine analog with photon-counting data

records from fast Licel lidar transient recorders, provide an e�ective way to enhance the dynamic

range of the receiving lidar channel. The mixed analog/photo-counting acquisition approach is

particularly suitable for the detection of volcanic aerosols in both the troposphere (near/mid range)

and the stratosphere (far range). To glue both signals, the PC channel must also be dead-time

corrected [Whiteman, 2003; Hamamatsu, 1998].

While existing gluing algorithms solve the �tting coe�cients by matching both analog and PC

data over a prede�ned spatial range depending on which kind of photo-detector is being used [Licel ,

2007a], the enhanced data-gluing algorithm presented automatically �nds the spatial range where

both analog and photon-counting signals are more similar. The method is based on Euclidean

distance minimization over piece-wise range intervals along the whole acquisition spatial range.

A prospective application of the data-gluing calibration method to estimate the signal gain,

M GT , and optical transmissivity, ξnet(λ), of the lidar receiving chain has been proposed. The

method has been formulated in two steps of progressive approximation. The �rst step estimates

the net voltage responsivity (i.e., including optical losses in the receiving chain) and the second

step requires analog/PC data gluing and provides an estimate of the receiving chain optical losses.

This is to serve the purpose of validating link-budget studies.



Chapter 5

ABLH monitoring using a Kalman �lter

and backscatter lidar returns

A solution based on a Kalman �lter to trace the evolution of the ABL sensed by a ground-

based elastic-backscatter tropospheric lidar is presented. An erf-like pro�le is used to model the

mixing layer top and the entrainment zone thickness. The EKF enables to retrieve and track the

ABL parameters based on simpli�ed statistics of the ABL dynamics and of the observation noise

present in the lidar signal. This adaptive feature permits to analyze atmospheric scenes with low

SNRs without the need to resort on long time averages or range-smoothing techniques, as well as

to pave the way for future automated detection solutions. First EKF results based on oversimpli�ed

synthetic and experimental lidar pro�les are presented and compared with classic ABL estimation

quanti�ers for a case study with di�erent SNR scenarios.

The contents presented in this Chapter have been published in IEEE. Trans. Geosc. Rem. Sensing journal and is made

available as an electronic reprint with the permission of IEEE. The full paper ([Lange et al., 2013]) can be found at the following

URL on the IEEE website: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6646215&queryText%3D10.

1109%2FTGRS.2013.2284110. Systematic or multiple reproduction or distribution to multiple locations via electronic or other

means is prohibited and is subject to penalties under law.

5.1 Introduction

A signi�cant advantage of backscatter lidar remote sensing instruments is that they are able to

gather a range-resolved pro�le of the ABL simultaneously for the whole observation range, which

greatly improves the temporal resolution of in-situ sensors and radiosoundings.

The lidar signal shows this relative distribution of aerosols and moisture along the troposphere

in terms of the background-subtracted range-corrected power U(R) = R2P (R), with P (R) the

single scattering return power as Kovalev [2004]

U(R) = K
[
βmol(R) + βaer(R)

]
T 2(R), (5.1)

T 2(R) = e
−2
∫
R

0

[
αaer(u) + αmol(u)

]
du
,

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6646215&queryText%3D10.1109%2FTGRS.2013.2284110
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6646215&queryText%3D10.1109%2FTGRS.2013.2284110
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where R [km] is the range along the lidar LOS (R is related to height z as z = R sin(θ), where θ is

the LOS elevation angle), K [Wkm3] is the system constant, and β(R)mol and βaer(R) [km−1 sr−1]

are the range-dependent molecular and aerosol optical backscatter coe�cients, respectively. βaer
is de�ned as βaer(R) = Naer(R)dσaer(π)

dΩ , that is, the product of the aerosol number concentration,

N(R)aer [km−3], and the average di�erential backscatter cross-section of the aerosol mixture,dσaer(π)
dΩ

[km2 sr−1], which includes the e�ects of aerosol type and moisture. The molecular component,

βmol(R), can be computed from the US standard atmosphere model [Bodhaine et al., 1999] or

radiosoundings.

Finally, T 2(R) represents the two-way path atmospheric transmittance a�ecting the optical

pulse, with αmol and αaer the atmospheric extinction coe�cient due to aerosols and molecules,

respectively.

The transmittance factor can be included into the total backscatter by de�ning the attenuated

total backscatter as

βatten(R) = β(R)T 2(R), (5.2)

where β(R) = βmol(R) +βaer(R). Inside the ML and, particularly, towards the NIR or in relatively

optically dense atmospheres, the aerosol backscatter component dominates, so that βaer(R) >>

βmol(R) and β(R) ≈ βaer(R). This simpli�cation makes the range-corrected lidar signal, U(R),

almost proportional to the aerosol number concentration pro�le, Naer(R). In contrast, in the free

troposphere (FT) the aerosol contents is virtually nil (with the exception of e.g., unstable dust

layers or dust intrusions [Pérez et al., 2006] and hence, β(R) ≈ βmol(R). As a result, in the FT

the lidar signal, U(R), becomes proportional to the pro�le of the molecular number concentration,

Nmol(R) (Fig. 1.2).

In this Chapter, a trade-o� between geometrical and statistical approaches (Sect. 2.5) by using

an adaptive �lter solution based on the EKF is presented, which estimates the time-dependent

ABLH, the approximate EZ thickness, and auxiliary atmospheric backscatter-coe�cient parame-

ters. A preliminary study on the problem has been outlined in Tomás et al. [2010], from the RSLab.

Because the �lter adaptively �ts a model shape function to the lidar-measured data and minimizes

the mean-squared error over time in a statistical sense, it provides convenient estimates. The �lter

thus makes the most from the high temporal resolution of curve-�tting geometrical models and the

physically signi�cant estimates output by statistical methods.

In the concept-design implementation of the �lter presented here multi-layer scenes are not

considered. In contrast, the paper focus on the impact that noise has on the �lter estimates,

particularly, for di�erent SNR scenarios.

This Chapter is organized as follows: Section 5.2 formulates the non-linear adaptive estimator

based on Kalman �lter theory with which ABL parameters can sensibly be estimated. Section 5.3

presents the results of applying the EKF approach to experimental lidar backscatter data under two

di�erent SNR scenarios (high- and low- SNR). Results are also compared with well-known classical

ABL detection methods in the literature. Finally, concluding results are presented in Section 5.4.
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5.2 ABL adaptive detection method

An EKF is applied to adaptively �t an erf-like function modeling the EZ lidar-signal transition

curve to the range-corrected lidar measurements. The erf curve-�tting method [Steyn et al., 1999]

is chosen because it is a robust approach which involves the bulk of the lidar pro�le. Later studies

have been given by Hägeli et al. [2000] and Mok and Rudowicz [2004] mostly on the CBL.

Application of the EKF to the �eld of lidar signal processing to estimate the atmospheric optical

parameters departs from previous works from Rocadenbosch et al. [1998a, 1999]. On the other hand,

Mukherjee et al. [2002] has applied a scalar Kalman �lter to estimate the ABL height from sodar

signals.

5.2.1 The Extended Kalman Filter approach

The discrete Kalman �lter is an adaptive linear estimator inherited from control system theory

that operates recursively using a state-space model formulation. The �lter is based on two models:

(i) The measurement model (Sect. 5.2.4), which relates the atmospheric state-vector unknowns (to

be estimated) to the observation measurements (i.e., the range-corrected lidar backscatter signals),

and (ii) the state-vector model (Sect. 5.2.4), which approximately describes the temporal projection

of the unknowns and its associated statistics (Eq. 5.5). However poor this �a priori� information

about the atmospheric state vector and its statistics may be, this information is of advantage to

the �lter in order to improve its estimates by combining the actual estimation with the statistical

behavior from past estimates. In what follows �a priori� and �a posteriori� stands for �before� and

�after� assimilating the information from the present measurement at discrete time tk.

When, as is the case of Eq. 5.1, the measurement model is non-linear, a linearization is made

around the state-vector trajectory, which is updated at each successive iteration of the �lter once a

new measurement zk is assimilated in what is called the extended Kalman �lter. Likewise, at each

�lter iteration, the state vector, xk, the estimated a priori and a posteriori error-covariance matrices,

P−k and Pk respectively, and the Kalman gain, Kk are recursively updated (see e.g., Brown and

Hwang [1997], and Rocadenbosch et al. [1999]). By the recursive procedure, the �lter corrects its

projection trajectory of the ABL atmospheric variables and improves its estimation of the ABL

parameters via a new atmospheric state-vector x̂k being estimated. By means of this convenient

adaptive behavior, tracking the state-vector components appears as a natural and desirable feature

of the �lter.

For a M -component state vector (M = 4 in the case of the ABL estimation model described

in Sect. 5.2.4), the number of observation samples in the ABL transition (N) must obviously be

N ≥M for data su�ciency. In practice, a much larger number of samples - as it is always the case -

conveys the extra bene�t of enhanced robustness to noise (this is equivalent to an over-determined

system of equations in classic algebra theory).
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5.2.2 ABL Problem formulation

For moderate to clear-air atmospheres and lidar sounding ranges roughly below 3 km (R ≤ 3[km]),

the optical thickness, τ =
∫ R

0 [αaer(u) + αmol(u)]du, can be considered low enough (τ < 1) to

disregard the e�ects of the atmospheric transmissivity term T (R) in Eq. 5.1. Under these condi-

tions usually found in practice, the range-corrected lidar signal, U(R), is proportional to the total

backscatter coe�cient in Eq. 5.1,

U(R) ' Kβ(R), (5.3)

with β(R) = βaer(R) + βmol(R). As a result, U(R) can be considered a surrogate for the total

backscatter coe�cient β(R), which is representative of the average aerosol and molecular concen-

tration of the atmospheric mixture aloft.

In Fig.5.1, the conceptual block diagram of the EKF is shown. Each block is being explained

next.

The range-corrected lidar signal exhibits a transition curve from high concentrations inside

the ABL to lower concentrations (molecular background level) as the height increases. The ABL

transition model proposed here follows a similar formulation to that of Steyn et al. [1999] but for the

total backscatter coe�cient. The erf-like total backscatter-coe�cient model (Fig.5.1) is formulated

in terms of four characteristic parameters, Rbl, a, A, and c as

h(R;Rbl, a, A, c) =
A

2

{
1− erf

[ a√
2

(R−Rbl)
]}

+ c, (5.4)

where Rbl is the range position that marks the instantaneous ABL height, de�ned as the in�ec-

tion point where the function h changes from convex to concave (equivalently, the point where

h has minimum gradient), a is a scaling factor related to the transition thickness, A is the to-

tal backscatter-coe�cient transition amplitude (equivalently, the di�erence between the upper and

lower asymptotical levels of h, or between the ML and FT backscatter-related values), and c is an

o�set term modeling the FT molecular-backscatter level. Equation 5.4 models an idealized convec-

tive boundary-layer pro�le consisting of a single transition structure between the ML and the FT

within the range interval [R1, R2] (Fig. 1.2b).

In Eq. 5.4 above, the key parameters of interest are Rbl and a for they are directly related to

the measurements of the ML depth and to the EZ thickness [Hägeli et al., 2000]. The instantaneous

ML top is identi�ed as the minimum-gradient model parameter, Rbl [Flamant et al., 1997]. For an

erf-based ABL transition its derivative is a Gaussian curve whose full-width half maximum, σbl, is

related to a as a−1 =
√

2σbl (Fig. 1.2). Following Steyn et al. [1999] the 95-to-5% falling transition

thickness is 2.77a−1.

From the physical point of view, the variation of the local-transition scale factor a with time

comes as a function of the variation of the EZ thickness (i.e., a varies as the local transitions caused

by updrafts and downdrafts). The variability of the amplitude of the ML with respect to the

molecular level (A in Eq. 5.19) is caused by the entrainments of aerosol structures as they cross

the lidar beam and is dependent of the normalized backscatter values of these structures, their size,

their advection velocity, and the time resolution of the lidar acquisition.
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h(R;Rbl, a, A, c) = A
2

{
1− erf

[
a√
2
(R−Rbl)

]}
+ c

ẑk = h(x̂−k )→ ẑk = Hkx̂
−
k xk =

[
Rbl,k, ak, Ak, ck

]t
xk+1 = Φkxk + wk

Erf-like transition model

State-vectorMeasurement model

State-vector atmospheric model

Figure 5.1: Conceptual block diagram of the Extended Kalman �lter approach.

In the adaptive approach proposed next, the EKF �lter considers the four characteristic pa-

rameters of the Eq. 5.4 model as time-variant stochastic processes forming the state vector to be

estimated at each time tk,

xk =
[
Rbl,k, ak, Ak, ck

]t
, (5.5)

here given in transposed form (Fig.5.1).

The EKF observation vector, zk, is related to the state vector, xk, via the measurement model,

zk = h(xk) + vk, (5.6)

where h is the ABL transition model of Eq. 5.4 and vk is the observation noise at time tk (including

both lidar instrument noise and modeling errors) with associated noise covariance matrix Rk (Brown

and Hwang [1997]). In Eq. 5.6 above, the observation vector zk (i.e., the lidar measurements at each

time tk) is the measured noise-corrupted version of h(R) in the range interval [R1, R2] (Fig.5.1).

As mentioned in Sect. 5.2.2, under moderate-to-low optical thickness (τ < 1) the range-

corrected lidar signal U(R) is basically proportional to the total backscatter coe�cient.

For better numerical conditioning and physical signi�cance, the observation vector zk presented

to the �lter is a molecular-normalized version of U(R), zk = Un(Rk), as described in Sect. 5.2.3.

This is basically saying that Un(R) ' βmol(R) + βaer(R) in Eq.5.1, which is in accordance to

Fig.1.2 (in [R1, R
′
1] h(R) tends to βmol + βaer, in [R′2, R2] h(R) tends to βmol).

5.2.3 Normalization of the range-corrected lidar signal

The lidar signal of Eq. 5.1 can be written in expanded form as

U(R) =

{
K
[
βmol(R) + βaer(R)

]
e
−2
∫
R

0

[
αaer(u) + αmol(u)

]
du

K ′aerβmol(R)e−2
∫ R

0 αmol(u)du

if R ≤ R0

if R > R0

. (5.7)

where

K ′aer = Ke−2
∫ R0

0 αaer(u)du (5.8)

and R0 is the end of the ABL (equivalently, the starting range of the FT containing only molecules,

R
′
2 in Fig. 1).
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Because the lidar system constant K is undetermined in practice (or known with large errors)

and the lidar signal is corrupted with di�erent background o�sets of natural and instruments origins,

a molecular reference range (e.g., [R
′
2, R2] in Fig. 1.2) in the FT is used to calibrate the lidar signal

[Bösenberg and Ho� , 2007; Lange et al., 2012a].

In a molecular reference range, αmol(R) and βmol(R), the molecular extinction and backscatter

pro�les, respectively, are known from a US-standard atmospheric and ground-level temperature

and pressure conditions from radiosounding data.

Because the ABL transition model of Eq. 5.4 (Fig. 1.2) is formulated in terms of the total

backscatter coe�cient, β(R), a normalization factor for (Eq. 5.7) must be derived.

Assuming a ground-based backscatter lidar and considering as molecular reference range the

region R > R′2 in Fig.1.2, Eq. 5.7 �ts βmol(R) when Eq. 5.7 is multiplied by a scaling factor

ζ =
1

K ′aer
e2
∫
R

0
αmol(u)du (5.9)

.

This yields the sought-after molecular-normalized version of U(R), Un(R). In expanded form

Un(R) =

 [βmol(R) + βaer(R)]e2
∫
R0

R
αaer(u)du R ≤ R0

βmol(R) R > R0

. (5.10)

At this point it is interesting to see that for R < R0 and assuming low optical thickness

(e2
∫R0
R ' 1),

Un(R) '

{
βmol(R) + βaer(R) R ≤ R0

βmol(R) R > R0

, (5.11)

which is in accordance to the model of Eq. 5.4 and Fig. 1.2.

The observation vector, zk, is computed from the measured lidar signals at each time tk as

zk = ζZk(R), (5.12)

where Zk(R) = Uk(R) + vk(R) is the discrete range-corrected measured lidar signal at time tk,

with Uk(R) being the noiseless range-corrected backscatter power of Eq. 5.1, and vk is the additive

range-corrected instrumental noise.

5.2.4 Filter Models

Measurement model.- In the EKF approach, at each successive time tk, the �lter compares the actual

observable zk formed from the measured normalized lidar signal (Eq. 5.12) with a linearized version

of the observation model, Hk. The latter is based on the partial derivatives of the measurement

model function h(R) (Eq. 5.4) evaluated at the �a priori� estimate of the state vector, x̂−k ,

ẑk = h(x̂−k )→ ẑk = Hkx̂
−
k , (5.13)
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where ẑk is the estimated observation vector, in turn, used to update the estimation of the state-

vector x̂k,

x̂k = x̂−k + Kk(zk − ẑk) = x̂−k + Kk(zk −Hkx̂
−
k ) (5.14)

In Eq. 5.14 above Kk is the so-called Kalman �lter gain or �projection� gain. The standard

Kalman �lter recursive loop can be found in e.g., Rocadenbosch et al. [1998a].

The measurement matrix is formulated as

Hk(R; x) =

[
δh(R)

δRbl

δh(R)

δa

δh(R)

δA

δh(R)

δc

]∣∣∣∣∣
x=x̂−k

=

[
H1
k H2

k H3
k H4

k

]
N×4

, (5.15)

where

H1
k(a,Rbl) =

δh(R)

δRbl
=

Aa√
2π

exp
[
−a

2

2
(R−Rbl)2

]
, R ∈ [R′1, R

′
2], (5.16)

H2
k(a,Rbl) =

δh(R)

δa
= − A√

2π
(R−Rbl) exp

[
−a

2

2
(R−Rbl)2

]
, R ∈ [R′1, R

′
2], (5.17)

and

H3
k(A, c) =

δh(R)

δA
=

1

2
− 1

2
erf
[ a√

2
(R−Rbl)

]
, R ∈ [R1, R

′
1) ∪ (R′2, R2], (5.18)

H4
k(A, c) = 1, R ∈ [R1, R

′
1) ∪ (R′2, R2]. (5.19)

Range intervals [R′1, R
′
2] and [R1, R

′
1) ∪ (R′2, R2] respectively de�ne the measurement-model

�tting ranges inside and outside the ABL transition (Fig. 1.2). Variables into brackets [(a,Rbl)

in Eqs.(5.16-5.17) and (A, c) in Eqs.(5.18-5.19)] indicate the estimation variables in each range

interval. Hi
k, i = 1...4 are N × 1 vectors with N being the number of measurement samples in

the measurement vector, zk. R is in continuous form for better clarity though in practice it is

discretized as Ri = Rmin + (i − 1)∆R; i = 1 . . . N , with Rmin the minimum sounding inversion

range and ∆R the raw-data spatial resolution.

The observation noise is modeled by its covariance matrix, Rk, assuming white Gaussian ad-

ditive noise with range-dependent variance σ2
n(R). Because the observations zk are the range-

corrected lidar returns (Eq. 5.12), or equivalently, Eq. 5.1, the noise covariance matrix takes the

form,

Rk =


σ2
n(R1)R4

1 0 . . . 0

0
. . .

...
... σ2

n(RN−1)R4
N−1 0

0 . . . 0 σ2
n(RN )R4

N


N×N

(5.20)

with σ2
n(R) the range-dependent noise estimate from the normalized measurements zk. Noise

variance estimation can be carried out using, for example, piece-wise or parametric signal-to-noise

ratio estimators [Reba et al., 2006, 2007]. The noise model variance follows the well-known model

described in Rocadenbosch et al. [1998a].

State-vector model.- The Kalman �lter state-vector model is described by means of the recursive
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discrete equation

xk+1 = Φkxk + wk , (5.21)

where Φk is the transition matrix (4×4) from time tk to time tk+1, and wk is the state-noise vector

with covariance matrix Qk, which models the statistics of the state vector xk. The vector wk is

a zero-mean white Gaussian noise sequence that can be seen as the �driving� noise animating the

state-vector dynamics. The model is initialized with a user input, x̂−0 , describing the approximate

initial value of the atmospheric state-vector (to be estimated), xk, along with the initial �a priori�

error-covariance matrix P−0 determining the user uncertainty on the initial estimation with respect

to the actual (unknown) atmospheric initial state vector, x0.

The ABL physical variables describing the four state vector components in Eq. 5.5 are slowly

varying with time and nearly constant over relatively large time scales (e.g., minutes to hours).

Following Rocadenbosch et al. [1998a] and Rocadenbosch et al. [1999], a simple model representing

this situation is the random walk [Brown and Hwang , 1997], which is characterized by a 4 × 4

transition matrix Φk = 1 in Eq. 5.21 above. This enables Rbl,k, ak, Ak, and ck to evolve with time

as random-walk independent processes. As a result, the state-vector covariance matrix Qk takes

the diagonal form,

Qk =


σ2
Rbl

0 0 0

0 σ2
a 0 0

0 0 σ2
A 0

0 0 0 σ2
c

 , (5.22)

where principal-diagonal terms are the user-proposed variances for each state-vector component

describing approximate 1σ �uctuations. Though these variances are related to underlying physical

processes (see text following Eq. 5.4), the simulation experiments carried out in Lange et al. [2013]

show that even roughly relatively adjusted values are enough to enable reasonably good �lter

convergence.

5.2.5 Non-linear least-squares approach

The erf-curve parametric �tting problem described in Section 5.2.2 can also be tackled from NLSQ

estimation [Moré, 1978] in which Rbl,k, ak, Ak, and ck are the ABL parameters to be estimated given

a set of lidar measurements, zk. The NLSQ solution is found by minimizing the quadratic norm of

the error function between the actual measurement zk and the ABL model function h(x̂LSQk )

ε(xLSQk ) = zk − h(x̂LSQk ), (5.23)

with respect to the state-vector variables, xk. That is,

min{‖ ε(xLSQk ) ‖
2
}|xk=[Rbl,k,ak,Ak,ck]. (5.24)

Because the NLSQ is applied to each lidar measurement pro�le independently, a new estimation

is carried out at each successive lidar return (non-memory estimation).

In comparison with the EKF adaptive behavior discussed in Sect. 5.2.1, it can be shown that
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for SNR →∞ (i.e., with ideal noiseless measurements, Rk = 0) or under no �a priori� knowledge

of the state-vector statistics (i.e., P−0 → ∞) the Kalman gain reduces to just the inverse of the

observation matrix (Kk = H−1
k , the so-called pseudo-inverse matrix) and hence, the EKF solution

converges to the NLSQ solution. Under these conditions the deterministic NLSQ and the EKF

yield the same solution for xk, which only depends on the measurement observables, zk [Brown and

Hwang , 1997; Rocadenbosch et al., 1998a]. Similarly to the NLSQ, the annealing iterative search

algorithm is also reported in the literature [Steyn et al., 1999].

5.3 Experimental Results

In this section, two di�erent scenarios (high- and low-SNR) have been analyzed in order to cross-

examine EKF and NLSQ estimators against three of the most common classes of methods used to

trace the ABL height. Measurements took place in the RSLab lidar laboratory (Sect. 1.2.1) on

Dec. 16, 2010. The RSLab lidar characteristics are explained in Sect. 1.2.1. The measurements

presented next correspond to NIR and UV elastic channels at 1064-nm and 355-nm wavelengths,

respectively. In spite of the higher spectral scattering towards the UV, the emission energy at 355

nm is much lower than in the NIR (35 mJ and 160 mJ, respectively) UV and NIR channels are

representative of low- and high-SNR cases, respectively [Kumar et al., 2012].

The measurement chosen is an night measurement, 12 min long and 2.5 s temporal resolution.

The lidar sounding LOS has been set along a slant-path (θ=52 deg. elevation), hence allowing a

starting range of full overlap at a lower height (500 m) than with a vertically pointing lidar system.

In turn, this permits to have more measurement samples in the range interval [R1, R
′
1] (Fig. 1.2,

Table 5.1) where the average ML height is to be estimated. The slant arrangement assumes that

the ABL is horizontally invariant along the sounding height, typically, 3-4 km. The slant-path

range resolution is 3.75 m, which corresponds to a vertical resolution of 2.3 m. The EKF retrieved

local ABL parameters to be presented next are given by the evolution of the local ABL top as

hABL(tk) = Rbl,ksinθ+ 115 m (ASL) and the ABL local transition thickness as 2.77a−1
k (R is along

range, h stands for vertical height).

The NLSQ estimator operates in the range interval R = [R1, R2] while the EKF operates in the

inner interval R = [R′1, R
′
2] and in the outer intervals [R1, R

′
1] and [R2, R

′
2] (Eqs. 5.16-5.19). The

ratio between the lengths of the inner and full-range intervals is usually set between 0.6 and 0.8.

The classical methods studied are the THM, derivative method, and VCM (Sect. 2.5). A

comparison between these methods (except THM), can be found in Fig. 2.8.

Range smoothing and time averaging are enough to ensure su�cient SNR (≥10) in the ap-

plicability of the classical methods compared in Fig. 2.8 though, they often give biased results

and a reduced resolution [Sicard et al., 2006; Martucci et al., 2003]. As a common trait, almost

all methods lack in some degree the requirements to operate in an unattended, real-time basis to

monitor the ABL. Whereas statistical methods like the VCM cannot follow the fast time scales of

the lidar pro�les, non-adaptive geometrical methods do not have the capability to assimilate past

ABL estimates to enhance their ABL estimates with time.
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Table 5.1: EKF and NLSQ parameters

Initial ABL state-vector parameters

Parameter Symbol High-SNR Low-SNR

Boundary-layer height Rbl 0.79 km 0.79 km
EZ scaling factor a 5.0 km−1 3.0 km−1

Backscatter-coe�cient transition amplitude A′ = A
βmol

0.5 5.0

Molecular-backscatter background c′ = c
βmol

0.1 1.5

Observation range parameters (both high- and low-SNR)

Parameter Symbol Value

Initial observation range R1 0.58 km
Final observation range R2 1.16 km
Initial erf-like transition R′1 0.64 km
Final erf-like transition R′2 1.10 km
Erf-transition width R′2 −R′1 0.46 km

5.3.1 High-SNR case study

In Fig. 5.2 it can be seen that under high-SNR conditions (typically SNR ≥ 10 at the maximum

sounding range [Kumar et al., 2012]), the classical methods described at the beginning of this sec-

tion, NLSQ and EKF estimators yield almost the same results. This is because long-time averages

and range-smoothing techniques are applied to the range-corrected lidar signal, as explained in

Sect. 5.3 above.

In this speci�c study case, a moving-average smoothing window for the derivative and VCM

(Table 5.2 for smoothing parameters) has been used to avoid excessive false detection. In the THM,

the threshold has been set as the mean value of the averaged-low and averaged-high levels for each

time pro�le in the range intervals [R1, R′1] and [R2, R′2], respectively.

The initial parameters used to track the boundary layer height with the EKF and NLSQmethods

are summarized in Table 5.1. The initial amplitude of the ML and FT has been estimated from

the range-corrected lidar signal as the mean aerosol- plus molecular- backscatter (βaer + βmol) in

[R′1, R1] and the mean molecular-backscatter (βmol) in [R′2, R2], respectively (Fig.1.2).

From Fig. 5.2 and considering only the classical methods, the most accurate method is the GM.

This is because the GM seeks the absolute minimum of the �rst derivative. This minimum can

easily be identi�ed thanks to a strong transition in the range-corrected lidar signal (VML − VFT =

2.5 Vkm2, Table 5.2), and because noise and atmospheric variability is reduced by time averaging

and range-smoothing.

The THM also yields accurate estimation of the ABL height. Several discontinuities and large

gradients between neighbor pro�les can be observed due to noise contamination. The IPM yields

an accurate estimation because the SNR of the signal is high and the residual noise is minimized

by means of time and range averaging. However, some discontinuities can be observed due to

variability of the atmosphere or power drop-outs.

On the other hand, the LGM method (not shown in Fig. 5.2) gives the worst estimation because

noise is ampli�ed when computing the derivative of the logarithm. The VCM needs higher time
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Figure 5.2: High-SNR case, ABL sunset (Barcelona UPC, Campus Nord, December 16, 2010). (a)
Time-height plot of the range-corrected lidar signal for the 1064-nm channel. ABL height retrieval by
the following methods: (red dots) GM, (green dots) LGM, (blue dots) THM, (white dots) IPM, (yellow
dots) VCM, (black crosses) NLSQ estimator, and (magenta dots) EKF estimator. Lower and upper
black lines represent R1 and R2 respectively, and lower and upper white lines represent R′1 and R

′
2. (b)

Detail in the time interval 19:40 to 19:43.

Table 5.2: Classical-method parameters used for for high- and low-SNR case studies (units [V km2]
refer to the range corrected signal, U(R))

Parameter Symbol High-SNR Low-SNR

Initial observation range R1 0.58 km 0.58 km
Final observation range R2 1.16 km 1.06 km
1st derivative temporal smoothing ∆t1st 25 s 50 s
2nd derivative temporal smoothing ∆t2nd 25 s 50 s
VCM temporal smoothing ∆tV CM 190 s 190 s
1st derivative range smoothing ∆R1st 80 m 92 m
2nd derivative range smoothing ∆R2nd 80 m 92 m
VCM range smoothing ∆RV CM 103 m 126 m
THM threshold level THM 2.0 V · km2 1.6 V · km2

VML relative amplitude ML 3.3 V · km2 1.9 V · km2

VFT relative amplitude FT 0.8 V · km2 1.4 V · km2
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and range averages due to noise and shear-induced turbulence, its performance being comparable

to the LGM (this e�ect can also be observed in Fig. 2.8).

It should be noted that because of the temporal window length required to compute the time

averaging, all classical methods except the VCM can estimate the ABL height only up to the end

of the time series minus ∆t1st or ∆t2st , ∆tV CM in the case of VCM.

Regarding the NLSQ and the EKF, estimation runs until the end of the time series because no

time or range smoothing is necessary. Both methods give nearly identical results. There is only a

di�erence at the beginning of the time series because the ABL height parameter Rbl was initialized

with a considerably higher value than the real height just to show the robustness of the method

under wrong parameters.

5.3.2 Low-SNR case study

The low-SNR case illustrate the robustness (SNR w 1 at the maximum sounding range [Kumar

et al., 2012]) of EKF as compared to all other methods presented so far (Fig. 5.3). Even using time

averaging and range smoothing classic methods cannot estimate the ABL height in a proper way

because time-averaging and range-smoothing techniques cannot su�ciently counteract noise.

In Fig. 5.3 the minimum of the �rst derivative of the signal (GM) or the logarithm of the signal

(LGM), in�ection point (IPM), or the local maximum of the variance pro�le (VCM) can hardly be

obtained. Besides, the THM cannot follow the ABL height because there is not a single threshold

level giving acceptable results that can be adjusted by trial and error. This is basically due to two

factors: One is that �rst and second derivatives of the range-corrected lidar signal largely amplify

the noise component. Another is that because of the higher molecular scattering in the UV, there

is less aerosol content and hence, a much lower di�erence between the relative amplitudes of the

ML and FT (Fig. 1.2).
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Figure 5.3: Low-SNR case ABL sunset case (Barcelona UPC, Campus Nord, December 16, 2010). (a)
Time-height plot of the range-corrected lidar signal for the 355-nm channel. ABL height retrieval by
the following methods: (red dots) GM, (green dots) LGM, (blue dots) THM, (white dots) IPM, (yellow
dots) VCM, (black crosses) NLSQ estimator, and (magenta dots) EKF estimator. Lower and upper
black lines represent R1 and R2 respectively, and lower and upper white lines represent R′1 and R

′
2. (b)

Detail in the time interval 19:40 to 19:43.

Despite this fact, the GM and the LGM o�er the best performance among all classical methods.
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The IPM fails in its estimation because noise is highly ampli�ed when computing the second

derivative and, therefore the in�ection point is mistaken jumping between peaks far from the ML

top (e.g., 19:38:00 to 19:39:00 in Fig. 5.3). The VCM performs poorly almost all the time.

Comparing the NLSQ and the EKF, it can be seen that the NLSQ follows the ABL height but

exhibiting a much lower performance than for the high-SNR case. The NLSQ rambles between

time-adjacent pro�les in such a way the ABL height estimates become time discontinuous. On the

other hand, the EKF follows the ABL height fairly consistently in instances where all other methods

evidence limitations. Thus, the EKF exhibits higher temporal and spatial resolution because in

order to obtain consistent time-continuous estimates the GM and the LGM require temporal and

spatial smoothing as evidenced by piece-wise discontinuous estimates in Fig.5.3 (e.g., time intervals,

19:37 to 19:38 in Fig.5.3a or 19:40 to 19:41 in Fig.5.3b). In addition, the GM and the LGM, when

compared to the EKF, overestimate the ABL height with estimates starting to fall in the FT zone

(Fig.5.3b).

5.4 Conclusions

It has been shown that in a scenario with a well-mixed layer, without strati�cations, and under high-

SNR conditions both classical and adaptive methods perform reasonably well without unambiguous

results (Fig. 5.2). On the other hand, under low-SNR scenarios ambiguities arise among these

methods (Fig. 5.3). EKF approach emerges as the most suitable method to track the temporal

evolution of the ABL height. NLSQ yields time-discontinuous ABL estimates that do not take

bene�t from past estimates and that fail to perform a �true� time tracking of the ABL height.

Thus, in low-SNRs, derivative methods such as GM and LGM perform reasonably well only

if the lidar signal is averaged in time and smoothed in range before these methods are applied.

Even in these conditions, the IPM performs poorly because �rst and second derivatives of the

range-corrected lidar signal largely amplify measurement noise. The TM, which shares with the

derivative methods using a geometrical approach also performs poorly because it is very di�cult to

set a physically consistent threshold to estimate the ABL height in the erf-like zone, besides, there

is not a unique solution. In all these methods, if the di�erence between ML and FT average levels

is small (as is usually the case in the UV), or if the lidar signal is too noisy, false peaks lead to

mis-estimation of the ABL height.

The VCM uses a statistical approach that requires a large number of pro�les to compute a

statistically signi�cant variance (Sect. 2.5). In low-SNR conditions the VCM is often misled due to

noise �uctuations or shear-induced turbulence.

The EKF approach presented is based on estimating four time-adaptive coe�cients (Sect. 5.2)

of an oversimpli�ed erf-like curve model representing the ABL transition. Furthermore, the �lter

is able to combine previous estimates in order to improve the actual one, which permits to work

with low-SNR atmospheric scenes without excessively losing the temporal resolution of the lidar

instrument by a long pulse averaging. This issue clearly outperforms the NLSQ estimates. These

capabilities allow the EKF to avoid sudden changes or drop-outs in the estimates of consecutive

pro�les, as it happens with the NLSQ.
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EKF and NLSQ methods perform better than the classical methods so far presented specially

under low-SNR conditions. Under high-SNR conditions both estimators reduce to the same solution,

as it can be shown theoretically that the EKF converges to the NLSQ for SNR→∞ (Sect. 5.2.5).

Simulation tests in Lange et al. [2013] have shown that the ABLH, Rbl, and the transition ampli-

tude, A, are the easiest parameters to estimate (higher sensitivity) while the EZ-scaling parameter,

a, and the molecular-background parameter, c, are the least sensitive ones in Eq.5.4.



Chapter 6

ABLH estimation using a Kalman �lter

and a FMCW radar

An adaptive solution based on the EKF is proposed to estimate the ABLH from FMCW

S-band clear-air radar returns. The EKF estimator departs from previous results in the lidar �eld

presented in Chapter 5), in which the ML � FT transition interface is modeled by means of an

erf-like parametric function and which is now applied to the radar case.

The method has successfully been implemented in clear-air, single-layer, convective boundary layer

conditions. ABLH estimates from the proposed radar-EKF method have been cross-examined with

those from a collocated lidar ceilometer yielding a correlation coe�cient as high as ρ = 0.93 (mean

SNR=18, at the ABLH) and in relation to the classic threshold method.

The contents of this Chapter are part of the paper Lange et al. submitted to IEEE Transac. Geosc. Rem. Sensing.

Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is

subject to penalties under law.

6.1 Introduction

In contrast to lidar remote sensing where aerosols give strong backscatter returns over the whole

ML, clear-air radar re�ectivity returns (refractive turbulence or Bragg's scattering) only shows

strong returns on the ML-FT interface. Besides, they are corrupted by �insect� noise (impulsive

noise associated to insects and birds Rayleigh's scattering), all of which requires a speci�c treatment

of the problem and the measurement noise for the clear-air radar case. The proposed radar-ABLH

estimation method uses: (i) a �rst pre-processing of the re�ectivity returns based on median �ltering

and threshold-limited decision to come up with a clean re�ectivity signal, (ii) a modi�ed EKF with

adaptive range intervals as time tracking estimator, and (iii) ad-hoc modeling of the observation

noise covariance.

There are at least two di�erential elements worth mentioning as compared to Chapter 5 [Lange

et al., 2013], in which the EKF is applied to backscatter lidar returns:
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First is the application of the EKF to the radar case itself. While in the lidar case, and under

similar single-layer convective boundary layer conditions, the ML�FT transition interface was well

modeled by means of an erf-like function, in the radar case, these atmospheric regions as well as the

EZ in between are largely distorted by a huge number of noise peaks due to insect-and-birds echoes

(Fig. 6.1a and Fig. 6.2) [Contreras and Frasier , 2008; Vaughn, 1985]. As a result, traditional

ABLH derivative methods, for which noise peaks are largely ampli�ed by the derivative operator,

are insu�cient to deal with raw radar returns. Second is the elimination of interfering Rayleigh

noise component (birds and insects), which involves a speci�c pre-processing for the radar case and

appropriate modeling of the residual noise as observation-noise to the �lter.

This Chapter is organized as follows: Sect. 6.2 develops the pre-processing steps used to

remove the contribution of �noisy� Rayleigh scatters (insects and birds). Sect. 6.3 expands the

EKF adaptive ABLH detection method to the radar case departing from the RSLAB works in

Chapter. 5 and Lange et al. [2013]. Sect. 6.4 establish the necessary observation noise treatment in

the radar case. Sect. 6.5 illustrates a real-case 1.5-h tracking scene where the radar EKF estimates

are cross-examined with those from a lidar ceilometer as ground truth. Finally, Sect. 6.6 gives

concluding remarks.

6.2 Radar re�ectivity pre-processing

The pre-processing steps explained next are aimed at outputting �clean� time-height pro�les of the

radar re�ectivity (Eq. 2.40 and Eq. 2.43) as the key data product for ABLH estimation (Fig.

6.1). When looking at a pro�le of the measured re�ectivity (Fig. 6.2) it can be though as the

superposition of two components: (i) the signal component or noiseless atmospheric-re�ectivity

pro�le, which is due to Bragg scattering and whose shape is to permit to estimate the ABLH (Sect.

6.3), and (ii) the observation-noise component corrupting the measured re�ectivity pro�le. In turn,

there are two main types of noise contributing to the observation noise: the instrumental noise of

the radar itself and impulsive noise due to insects. The �rst is of thermal origin and arises as a

Gaussian-equivalent noise component superimposed to the re�ectivity pro�le (low-intensity random

noise in Fig. 6.2). The second is a Rayleigh scattering interferent component due to insects that

appears as high-intensity impulsive noise (blue peaks) in Fig. 6.2 and Fig. 6.1a.

The aim of the pre-processing stage is to remove insect's interference in the radar re�ectivity

measurement, so that the ABLH can be estimated from an almost �clean� Bragg scattering atmo-

sphere (Fig. 6.1f). Towards this aim, the pre-processing methodology outlined in Contreras and

Frasier [2008] is analytically formulated and implemented in signal-processing block-diagram form

next.

The pre-processing block diagram is shown in Fig. 6.3 and the successive pre-processing steps

are shown in Fig. 6.1, each panel (a-f) corresponding to one step. In Fig. 6.1a, the time-height

measured re�ectivity image, ηraw,1, is a M × N matrix consisting of M time pro�les of N range

samples each. The spatial resolution, ∆R, is 5 m/sample and the temporal resolution, ∆t, 16

s/sample. Further measurement details are given in Sect. 6.5.

Impulsive noise due to insects can be virtually removed by using a 7×7-sample median �lter
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Figure 6.1: Radar re�ectivity pre-processing case example (Boulder, CO., August 16, 2007, 14:41:36
UTC (08:41:36 LT) to 15:44:43 UTC, time records t100 to t335). (a) Raw re�ectivity image, ηraw,1.
Isolated red dots visible from approximately 200�450 m in height correspond to �insect noise�. Vertical
line around 800 s is dead time where the radar is not measuring (data backup). (b) Median-�ltered
image, ηmed, by using a 7×7-sample �lter applied to (a). (c) Residual error, εrs, computed as image
(a) minus image (b). (d) Black&white mask, ηth, referred to as �insect echo image�, Eq. 6.2. The �gure
represents ηth in inverted black-and-white colour-map form, so that 1 (�insect�) is coded as black and
0 (�no insect�) is coded as white. (e) Bragg scattering image, ηraw,2, composed after masking (a) with
mask (d), Eq. 6.3. Note that insects have been replaced by voids. (f) Clean re�ectivity image, ηclean,
composed by ��lling� these voids in image (e) with the median-�ltered values in (b).
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Figure 6.2: Radar re�ectivity as a function of range (height AGL). Time pro�le, t120=1917 s (14:46:58
UTC) in Fig. 6.1. (Blue) Raw re�ectivity, η120raw,1 (compare with Fig. 6.1a). (Red) Median-�ltered
re�ectivity, η120med (compare with Fig. 6.1b). (Magenta) Residual error, ε120rs (compare with Fig. 6.1c).
(Horizontal dashed black line) 1-dB threshold level. Black dots superimposed to η120raw,1 indicate ranges
where the residual error exceeds the 1-dB threshold of Eq. 6.2 and hence an �insect� or interfering
Rayleigh scatterer is detected. (Dashed green) Clean re�ectivity, η120clean (compare with Fig. 6.1f).
(Thick black) Erf-like model pro�le �tted to the clean re�ectivity, η120raw,1. R1 and R2 indicate initial and
end data-processing ranges of the EKF, respectively, at time t120. R′1 and R

′
2 indicate the approximate

start and end ranges of the erf transition.

applied to the time-height radar re�ectivity raw image, ηraw,1, of Fig. 6.1a (blue trace in Fig.

6.2). Though the optimum window size of the median �lter depends on the density of insects,

by experiment a 7×7-sample window yields the best trade-o� between temporal/spatial resolution

and impulse-noise cancellation [Contreras and Frasier , 2008]. The �lter serves to remove isolated

impulsive echoes that occupy less than half of window size. The resulting median-�ltered image,

ηmed (Fig. 6.1b and red trace in Fig. 6.2), is subtracted from the original one to yield a di�erential

image (Fig. 6.1c and magenta trace in Fig. 6.2),

εrs = ηraw,1 − ηmed. (6.1)

According to Contreras and Frasier [2008], a 1-dB threshold level is applied to the di�eren-

tial image of Eq. 6.1 above. Pixels equal to or above this threshold are identi�ed as �impulsive

noise� (i.e., insect pixel) and hence they are reset to zero. Pixels below are assumed to be �signal

component� (i.e., Bragg scattering) and are retained. Formally,

ηth =

{
1

0

if εrs ≥ 1 dB

if εrs < 1 dB
(6.2)

The 1-dB threshold equals two standard deviations above the average echo power for an averaged

pro�le of 100 samples and assumes a probability of false alarm (i.e., identifying a pixel as containing

an insect when it does not) of less than 2.5% [Contreras and Frasier , 2008].

This �ltered and thresholded image, ηth, is referred to as the �insect-echo� image. Because ηth is

of Boolean type, it is represented as a black-and-white image in Fig. 6.1d (dots in Fig. 6.2). In Fig.

6.1d, ηth is represented by using an inverted black-and-white colour-map, that is, with 1 (�insect�)
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Figure 6.3: Radar re�ectivity pre-processing block diagram. Letters in brackets refer to the di�erent
processing stages in Fig. 6.1 panel.

coded as black and 0 (�no insect�) coded as white. By this means, this black-and-white �gure can

be better interpreted as a black-and-transparent mask that once visually superimposed to the raw

re�ectivity image, ηraw,1 of Fig. 6.1a, it enables to see the raw-re�ectivity part of the image that is

free from insects. Mathematically, when the mask ηth is applied to ηraw,1, the free-of-insects Bragg

scattering image, ηraw,2, is obtained as

ηraw,2 = ηraw,1 ηth. (6.3)

The Bragg scattering image above is noted ηraw,2 because it is still a raw image with insects

replaced by voids (zeroes). In Fig. 6.1e, these voids correspond to the above-1-dB-threshold pixels

identi�ed in Eq. 6.2.

The next step is to replace them with the median-�ltered values of Fig. 6.1b, which are the

interpolated values for the voids using the available data. Thus, the clean re�ectivity signal (Fig.

6.1f) or equivalently, the green trace in Fig. 6.2, which is due only to Bragg scattering, is constructed

as

ηclean = ηraw,2 + ηmed ηth. (6.4)

If Eq. 6.3 is substituted into Eq. 6.4,

ηclean = ηraw,1 ηth + ηmed ηth, (6.5)

ηth can be seen as a binary digital selector (0/1) so that any pixel identi�ed as �insect� (ηth = 1)

is replaced by its corresponding median �ltered one and any other pixel identi�ed as �no-insect�

(ηth = 0) retains the measured re�ectivity, ηraw,1. The outcome of this pre-processing is that

impulsive noise due to insects becomes smoothed out in the clean re�ectivity image and without

loss of the original spatial/temporal resolution of the measured data, ηraw,1, for those pixels not

corrupted with insects (for corrupted pixels the image resolution is approximately degraded by a

factor 7, the median-�lter window size).
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6.3 ABLH estimation using an EKF

After the pre-processing steps carried out in Sect. 6.2, the ABLH is now estimated from the clean

re�ectivity image, ηclean (Fig. 6.1f) using an Extended Kalman Filter. In what follows, ηclean will

be noted η to simplify notation.

The formulation of the EKF is essentially the same as the one proposed in Chapter 5 [Lange

et al., 2013] for the lidar case with the exception that now backscatter lidar return measurements

(the �observables� in Kalman Filter terminology) have been replaced by the radar re�ectivity ones.

Extension of the EKF to the FMCW-radar case is summarized next for completeness in the under-

standing of the present work. Noise modeling, as a key distinguishing feature of its application to

the radar case, is discussed in Sect. 6.4.

The EKF is a recursive adaptive �lter that uses a parameterization of the ABL � the so-called

state vector, xk � to estimate the ABLH and accessory ABL-related parameters at each succeeding

discrete time, tk. Besides, the �lter uses two models: (i) the measurement model and (ii) the

state-vector model.

Measurement model.- Following Steyn et al. [1999], the ML�FT interface is modeled by means

of an erf-like function, which is parameterized as [Lange et al., 2013]

h(R;Rbl, a, A, c) =
A

2

{
1− erf

[
a√
2

(R−Rbl)
]}

+ c, R ∈ [R1, R2] , (6.6)

and where the state vector is de�ned by the column vector,

xk = [Rbl,k, ak, Ak, ck]
T , (6.7)

with subscript k a reminder of discrete time tk. In Eq. 6.7 above, R stands to the range (height),

usually in the form of a N -sample discrete vector, [R1, R2] is the inversion range, Rbl,k stands for

the ABLH at time tk, ak is a scaling factor related to the EZ-transition thickness
(
2.77a−1

)
at

time tk, Ak is the transition amplitude of the radar re�ectivity pro�le (equivalently, the di�erence

between ML and FT re�ectivity values), and ck is an o�set term modeling the FT re�ectivity level

at the end of the inversion range. An example of this erf-like behavior is depicted in Fig. 6.2 (thick

black trace).

Formally, the measurement model can be formulated as

zk = h(xk) + vk, (6.8)

where zk is the observation vector or noisy radar re�ectivity, ηk (dB), h is the ABL transition

model of Eq. 6.6, and vk is the observation noise at time tk. The latter merges into a single body

both measurement noise and modeling errors by means of its associated noise covariance matrix

Rk = E
[
vkv

T
k

]
(see Sect. 6.4).

In the Kalman �lter recursive cycle, the observation model of Eq. 6.8 is linearized around the

�a priori� state-vector estimate, x̂−k (i.e., prior to assimilate the present measurement at time tk),
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in the form of a N × 4-Jacobian or �sensitivity� matrix [Brown and Hwang , 1997],

Hk(R; x) =

[
δh(R)

δRbl
,
δh(R)

δa
,
δh(R)

δA
,
δh(R)

δc

]∣∣∣∣
x=x̂−k

. (6.9)

In Eq. 6.9 each column is the �rst-order derivative of Eq. 6.6 with respect to components 1-4

of the state vector, xk, and each row corresponds to a discrete range Ri, i = 1..N .

Because of the di�erent slopes or sensitivities of the erf function in the range interval [R1, R2],

the �rst two derivatives ( δh(R)
δRbl

and δh(R)
δa ) are computed in the inner range interval, [R′1, R

′
2], where

the idealized erf-transition structure occurs (see Fig. 6.2). The second two derivatives ( δh(R)
δA and

δh(R)
δc ) are computed in the outer range intervals, [R1, R

′
1]
⋃

[R′2, R2], where the erf-model is nearly

constant (�plateau� intervals). Selection of ranges R′1 and R′2 is not critical, the key requirement

being that they must de�ne inner and outer range intervals containing erf-transition and erf-plateau

characteristics, respectively, as described above.

In the present implementation of the EKF, boundaries R′1 and R′2 are allowed to adaptively

change with time. Though this is not a requirement, this is of computational advantage in instances

where the ABLH, Rbl,k, may substantially change from its initialization value during the time frame

under study or when the time frame to be tracked by the EKF is long (e.g., a 3�h time frame of

the diurnal cycle). As example in the present implementation of the EKF, R′1 and R′2 (inner part

of the erf-like model where the function is more abrupt), and R1 and R2 (outer part of the erf-like

model, �plateau� ranges) change adaptively with the estimated ABLH, Rbl,k, but constrained to

constant range interval widths, Wi, i = 0..2, which are preset from the user side (refer to Fig. 6.2),

R′2,k −R′1,k = W0, R′1,k −R1,k = W1, R2,k −R′2,k = W2, ∀k. (6.10)

The recursive procedure to adaptively update the boundary ranges ensures that R′1 and R
′
2 are

always centered around the estimated ABLH, Rbl,k, via the recursive step,

R′1,k+1 = Rbl,k −W0/2, R′2,k+1 = Rbl,k +W0/2. (6.11)

R1 and R2 are updated accordingly by using Eq. 6.10 above.

State-vector model.- This model formulates a random transition model for the state vector from

time tk to time tk+1 of the form,

xk+1 = Φkxk + wk. (6.12)

From Sect. 5.2.4, a Gauss-Markov random model with Φk = I, I the identity matrix, has been

found a simple and convenient model. The state-vector model requires of three �a priori� information

inputs to be provided by the user: (1) An initial guess of the state vector to be estimated, x̂−0 , (2) an

estimate of the atmospheric state-noise covariance matrix, Qk = E
[
wkw

T
k

]
, and (3) an estimate of

the initial �a priori� state-vector error covariance matrix, P−0 = E
[
e−0 e−T0

]
, where e−0 = x0− x̂−0 is

the �a priori� error between the atmospheric state vector, x0 (unknown), and the initial guess, x̂−0 .

The state-noise covariance matrix is aimed at statistically modeling the atmospheric �uctuations

or �nervousness� in the state-vector components, which formally should be formulated in terms of

assumed variances and correlations among them [Rocadenbosch et al., 1998b].
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In the lidar case (Sect. 5.2.4), a diagonal matrix, Qk = diag
[
σ2
Rbl
, σ2

a, σ
2
A, σ

2
c

]
, with standard

deviations proportional to the state-vector initial guess (σRbl , σa, σA, σc) = µQ (Rbl,0, a0, A0, c0) via

a factor µQ has been found to successfully express this concept in pretty simple form and, by

experiment, to be a convenient extension of the lidar model to the radar case presented here. In

short form,

σQ = µQx̂−0 , σQ = (σRbl , σa, σA, σc) . (6.13)

For example, if the ABLH at the �lter start-up time, t0, is initialized with Rbl,0 = 2000 m and

µQ = 0.1, this means, after Eq. 6.13, that 3-σ �uctuations in the ABLH are expected to be of

roughly ±600 m.

Also from Sect. 5.2.4 and by experiment in its extension to the radar case, the �a priori� state-

vector error covariance matrix is also expressed in diagonal form, P−0 = diag
[
σ2
e,Rbl

, σ2
e,a, σ

2
e,A, σ

2
e,c

]
,

where σe,X is the user's �a priori� error on the state-vector components, X = Rbl, a, A, c. Or,

equivalently to Eq. 6.13, it can be formulated,

σP = µP x̂−0 , σP = (σe,Rbl , σe,a, σe,A, σe,c) , (6.14)

where σP denotes σP−0 and µP is the �a priori� state-vector covariance matrix factor.

At each successive iteration of the EKF, a new re�ectivity measurement zk is assimilated and

(i) a new state vector x̂k, (ii) a new �a posteriori� (i.e., after assimilating the current measurement

from time tk) error covariance matrix, Pk, and (iii) a new Kalman gain, Kk (the �projection� gain)

are estimated. With this information, the �lter can correct its projection trajectory and enhance

its current estimation of the state vector parameters, x̂k and, more speci�cally, of the ABLH.

6.4 Treatment of the observation noise

The noise covariance matrix Rk at a time tk is de�ned as the covariance of the observation noise

vector vk. This covariance matrix merges into a single body both measurement noise and modeling

errors, and it is aimed at informing the �lter on the quality of the measurement observables, zk, at

each successive tk. Formally,

Rk = E[vkv
T
k ], (6.15)

where E[ ] is the expectancy operator over the ensemble of noise realizations, and vk is the

N-component noise vector, i.e., associated to height ranges, Ri, i = 1..N .

Under the assumption of clean radar re�ectivity measurements corrupted with white Gaussian

additive noise, Rk takes the form of the diagonal matrix,

Rk = diag[σ2
n(R1), σ2

n(R2), . . . , σ2
n(RN )]

∣∣
t=tk

, where each element along the diagonal is the noise

variance, σ2
n(Ri), i = 1..N . A major di�culty impairing to estimate the noise covariance matrix at

each successive time tk is that only one single noise realization νk = [ν (R1) , ν (R2) , ..., ν (RN )]|t=tk
is available at each measurement, not an ensemble of realizations from which to compute Eq. 6.15.

There is a way out if the ergodicity principle [Barlow , 1989] is assumed to compute the noise

covariance statistics over uniformly spaced range intervals, which is equivalent to replacing the time
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Figure 6.4: Spatial and temporal variances of the observation noise (case example of Fig. 6.1).
N =300 range cells (spatial resolution, 5 m), P =20 range intervals, ∆ =15 samples/interval. 15 mea-
surement records, (time resolution, 16 s). (Grey lines) Instantaneous piece-wise spatial noise variance,
σ2
n(Ip)|t=tk , p = 1..P computed along the 20 range intervals, Ip. There are 15 variance estimates (hor-

izontal lines) per range interval. Each variance estimate is associated to a time realization, tk, of the
re�ectivity, ηclean. (Green thick line) Time-averaged piece-wise spatial variance, σ2

n(Ip). Computed
as the time average of these 15 spatial variance estimates in each range interval, Ip.(Blue thick line)
Range-dependent temporal variance, σ2

n (Ri) = E[vk (Ri) v
T
k (Ri)], i = 1..N . Computed as the time en-

semble of the 15 radar re�ectivity realizations. (Black thick dashed line) Piece-wise temporal variance.
Average of the blue thick line over each range interval, Ip, for visual comparison.

ensemble by the spatial ensemble. The method is based on subdividing the measurement range

Ri, i = 1..N into uniform-length intervals, Ip, p = 1, . . . , P (P=20 in Fig. 6.4), where the variance

is to be estimated at time tk. Therefore, the instantaneous noise covariance matrix estimate is

computed as

R̂k = diag[σ2
n(I1), σ2

n(I2), . . . , σ2
n(IP )]

∣∣
t=tk

, p = 1..P, (6.16)

where σ2
n(Ii) is the piece-wise spatial noise variance computed over the range interval

Ip : [R(p−1)∆+1...Rp∆], ∆ = N
P ; p = 1..P . Reba et al. Reba et al. [2006, 2007] from the RSLab

have successfully applied piece-wise estimation methods to assess the signal-to-noise ratio from

elastic backscatter lidar signals.

The ergodicity principle for stationary random processes assumes that the variance computed

over random samples of a given realization of the process is equal to the variance computed over

the ensemble of realizations. To test the validity of the ergodicity hypothesis applied to the

radar case of Fig. 6.1, Fig. 6.4 compares the time-averaged piece-wise spatial variance of the

noise, σ2
n(Ip) (green thick line), with the range-dependent temporal variance (blue thick line),

σ2
n (Ri) = E[vk (Ri) vTk (Ri)], i = 1..N . While σ2

n(Ip)|tk is computed �on-line� by the EKF,

σ2
n (Ri) = E[vk (Ri) vTk (Ri)] must be computed �o�-line� as it requires to have the whole set

of measurements available.

The fact that both temporal and spatial variances are approximately coincident in Fig. 6.4

except for the �rst interval I1 validates the ergodicity hypothesis previously assumed. The discrep-



96 6. ABLH estimation using a Kalman �lter and a FMCW radar

ancy in interval I1 is due to the emission-reception cross-over function of the radar antennas having

full overlap above 50�100 m in height and to ground clutter e�ects blinding the radar. The reader

will also notice that Fig. 6.4 displays a height range up to 1500 m (in contrast to the usual 500

m in Fig. 6.1) to show the strong returns from �insect� noise above 400 m, where the atmosphere

is expected to be clear. Strong peaks appear around 500 and 700 m in height along with a large

amount of scattered residual peaks from 400 m up.

6.5 Experimental results

The case example presented here and already introduced from Fig. 6.1 was taken on August 16th,

2007, 14:15:01 UTC (08:15:01 LT) to 15:44:43 UTC when the University of Massachusetts deployed

an S-band FMCW radar along with a Vaisala CL-31 lidar ceilometer (910-nm wavelength, 1.2 µJ

energy, 100 ns pulse width, 10 kHz repetition rate) at NOAA's Boulder Atmospheric Observatory

(BAO) in Erie, Colorado. Because inside the ML the aerosol mixture can be considered homo-

geneous, causing strong optical lidar backscatter returns, the ceilometer instrument was taken as

reference ground truth. Table 6.1 shows the initialization parameters used for the EKF in both

systems.

The ceilometer was co-located with the radar to monitor the ABL and cloud cover [Frasier

et al., 2008] with both instruments pointed vertically. The radar was con�gured to operate with

∆Rrawradar =5 m spatial resolution (20 MHz sweep bandwidth over 6.4 ms and 75-Hz sweep rate.

This con�guration provided a Nyquist velocity interval of ± 3.75 m/s and height coverage up to

2.8 km. The temporal resolution was ∆tradarraw =1 s. The ceilometer was operated with ∆Rceilraw =10

m spatial resolution and ∆tceilraw =16 s temporal resolution. Because of the di�erent temporal

resolutions between both instruments, radar measurements have been time averaged in blocks of

16 s (Fig. 6.1a) to yield the same data temporal resolution as that of the ceilometer (the so-called,

�clean data� time resolution, ∆t = ∆tradarclean = ∆tceilclean = 16s). A further advantage of this averaging

has been to increase the SNR and hence to comparatively minimize the impact of synchronous

interferences (weak horizontal lines in Fig. 6.1d) with the emission of radar pulses.

The pre-processing steps described in Sect. 6.2 do not virtually degrade the spatial/temporal

resolutions above as evidenced by the fact that the masking procedure does not seriously blurs

Fig. 6.1f when compared to Fig. 6.1a. This is because the 7×7 median �lter is only applied to

a comparatively small population of random pixels occupied by insects. As a result, clean spatial

and temporal resolutions, ∆Rradar = 5 m and ∆Rceil = 10 m, and ∆t =16 s can respectively be

assumed.

Fig. 6.5 shows radar and ceilometer observables (clean radar re�ectivity and range-corrected

attenuated backscatter lidar returns, respectively) in colour-plot form for the whole observation pe-

riod. The ABLH estimated by the ceilometer EKF and the radar EKF is superimposed. Ceilometer

EKF implementation is described in Lange et al. [2013] and �lter initialization parameters are sum-

marized in Tab. 1. The blue bands and the bottom of the radar and ceilometer plots of Fig. 6.5

are due to the di�erent starting measurement ranges of these instruments.

Radar-EKF observation-range parameters, R1, and R2, and R′1 and R′2 have been initialized
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Figure 6.5: FMCW-radar and ceilometer observables to the EKF along with ABLH estimates. (Boul-
der, CO., August 16, 2007, 14:15:01 UTC (08:15:01 LT) to 15:44:43 UTC). a) (Magenta dots) ABLH
estimated from radar re�ectivity measurements and the radar EKF. (White dots) Comparison with
the classic THM. b) Validation using Vaisala CL-31 lidar ceilometer. (Magenta dots) ABLH from the
ceilometer EKF. Dotted lines in time intervals 1600 to 2000, and 4500 to 4900 s delimit �thermals� (see
discussion).
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Table 6.1: Initialization parameters for the radar and ceilometer EKFs.
(*) This parameter refers to the re�ectivity-pro�le transition amplitude (radar case) and to the
backscatter-coe�cient transition amplitude (ceilometer case).

Parameter Symbol Value
(radar)

Value
(ceilometer)

Observation-range
parameters
Observation start range R1 100 m 76 m
Observation end range R2 300 m 316 m
Erf-transition start range R′1 125 m 116 m
Erf-transition end range R′2 225 m 216 m
State-vector parame-
ters

Initial ABLH Rbl 130 m 136 m
EZ-scaling factor a 2.77×104

km−1
2.77×104
km−1

Re�ectivity pro�le /
backscatter-coe�cient
transition amplitude∗

A 20 dB 25
km−1sr−1

FT re�ectivity /
molecular-backscatter
background

c 10 dB 15
km−1sr−1

Covariance matrix
parameters

State-vector covariance-
matrix factor

µQ 0.1 0.1

A priori -error
covariance-matrix factor

µP 0.3 0.1

from rough visual inspection of the �rst re�ectivity pro�les of Fig. 6.5, which are detailed in Fig.

6.6a-c, along with the guidelines of Sect. 6.3. Thus, R′1 and R′2 are a pair of ranges representative

of the erf-falling transient (red trace in Fig. 6.6c and red-to-blue decay in Fig. 6.5a) resulting in

an interval width, W0 =100 m (Eq. 6.10). Once R′1 and R′2 are set, R1 and R2 de�ne [R1, R
′
1] and

[R′2, R2] �plateau� intervals of approximate widths, W1 =25 m and W2 =75 m, respectively (red

trace in Fig. 6.6c; red and blue shades around the ML-FT transition in Fig. 6.5a). State-vector

parameters have also been initialized from these �rst pro�les.

In Fig. 6.6a, the mean re�ectivity (black thick line) in the ML range [R1, R
′
1] is approximately

30 dB and the mean re�ectivity in the FT range [R′2, R2] is 10 dB, which corresponds to a transition

amplitude of 20 dB as initialization value for parameter A, and a 10-dB initialization �gure for c.

The ABLH is close to 130 m (initialization for Rbl), and the mean EZ thickness (2.77a−1 ≈100 m)

is used to initialize the scaling parameter a.

Factors µQ and µP in Tab. 1 assume 1-σ �uctuations/a-priori uncertainties in the atmospheric

state vector of 10% and 30%, respectively. For example, with the initialization Rbl,0=130 m and

µP=0.3, the user expresses an �a priori� uncertainty at 1-σ of roughly ± 40 m. Similar reasoning

can be applied to EKF-ceilometer parameters.

Performance.- Fig. 6.6b,e shows the instantaneous re�ectivity pro�les or �observables� esti-

mated by the EKF. Notice that, in spite of the distorted shape of the re�ectivity pro�le, the erf-like

estimates �tted to the observables by the �lter (thin lines) stick to Eq. 6.6 model with a cen-
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Figure 6.6: Comparison between measured and EKF-estimated re�ectivity pro�les in two di�erent
time intervals: Initialization (t1 to t40, 14.15:01 to 14:25:29 UTC, 1-628 s) and tracking-interval example
(t240 to t280, 15:19:12 to 15:29:56 UTC, 3851-4495 s in Fig. 6.1 and Fig. 6.5). (a) (Thin color lines)
Pro�les of the measured clean re�ectivity as function of height or EKF �observables�, η(1−40). (Black
thick line) Mean clean re�ectivity pro�le, η(1−40). (b) (Thin color lines) Instantaneous EKF-estimated
re�ectivity pro�les in response to (a). (Green thick line) Mean EKF-estimated re�ectivity pro�le.
(Black thick line) Mean clean re�ectivity pro�le, same as (a). (c) Comparison with the classical THM
(detail for time t28): (Black line) Measured clean re�ectivity pro�le, η28. (Red line) EKF-estimated
re�ectivity. ABLH estimated with two di�erent methods: (magenta dot) EKF, (blue dot) classic THM.
Vertical blue vertical lines indicate, from left to right, adaptive ranges R1, R′1, R

′
2 and R2.(d) − (e)

Same as (a)− (b) for time t240 to t280. (f) Same as (c) for time t250=4013 s (15:21:54 UTC).
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ter point, Rbl, varying with time. The mean EKF-estimated re�ectivity pro�le (green thick line)

reencounters a smooth erf model.

In Fig. 6.6c,f the ABLH estimated from the radar EKF is compared with the well-known

threshold method (THM) with excellent agreement. In the classic THM [Mel� et al., 1985; Boers

and Eloranta, 1986; Batchvarova et al., 1999], the instantaneous ABLH is determined as the height

associated to a user-de�ned threshold re�ectivity of 15 dB, which is approximately the mean value

between the peak-high (30 dB) and peak-low (0 dB) re�ectivity levels in the ML interval and FT

interval of the �rst measured pro�les. As discussed in the literature, the main disadvantage of the

classic THM is the di�culty to assess a consistent threshold because noise spikes would largely

change it from one observable to the other.

Finally, Fig. 6.7 compares the time evolution of the ABLH retrieved by the radar and ceilome-

ter EKFs, again with excellent agreement. To quantify it, Fig. 6.7b plots ABLH estimates in

scatter-plot form. Radar and ceilometer ABLHs exhibit linear correlation with negligible bias and

correlation coe�cient as high as ρ = 0.93 (determination coe�cient, ρ2 = 0.87, Barlow [1989]).

The narrow departure from the ideal linear correlation case (ρ = 1) is mainly attributed to the fact

that both instruments measure di�erent physical quantities as proxies of the ABLH, which results

in a mismatch on the detection of the thermal boundaries, and, to a lesser extent, to their di�erent

temporal and spatial raw resolutions. Thus, following Stull [1988b], while the ceilometer measures

aerosol backscatter lidar returns that typically show diameters of thermals decreasing with height,

the Doppler sodar re�ectivity (and by extension Doppler radar in this work) usually shows constant

or increasing diameters [Taconet and Weill , 1983; Coulter and Martin, 1986]. This is evidenced by

slightly narrower �inverted U-shaped peaks� in Fig. 6.5b (ceilometer) than in Fig. 6.5a (radar), see

dotted time intervals [1600, 2000] s and [4500-4900] s.

As discussed in Lange et al. [2013], in time intervals where the SNR is low (typically, SNR ≈ 5

at the ABLH or SNR ≈ 1 at the maximum range) classic methods cease to correctly estimate the

ABLH. This is the case of the THM in, for example, the time interval 800-1450 s of Fig. 6.5a. If

ABLH-radar estimates for both the EKF and the THM are compared in this time interval by using

similar scatter-plot methodology as in Fig. 6.7, a determination coe�cient as low as ρ2=0.35 and

a regression slope of 0.68 are obtained. For comparison, the mean SNR over the whole time frame

of Fig. 6.5 is SNR = 18, which can be considered a medium-high SNR scene.

6.6 Conclusions

An Extended Kalman �lter has successfully been applied to adaptively estimate and time track the

ABLH from FMCW S-band radar returns under single-layer, convective boundary layer conditions.

Application of the adaptive EKF to the radar case relies on three important aspects: (i) an ad-hoc

processing of the radar re�ectivity signal, (ii) formulation of the Kalman �lter itself, and (iii) a

convenient treatment of noise.

Radar pre-processing of the re�ectivity signal has been formulated in Eqs. 6.1 � 6.5 and Fig.

6.3 block diagram and it is aimed at removing impulsive noise, mainly due to insects. This pre-

processing yields a �clean� Bragg's scattering atmosphere evidencing a well-de�ned ML-FT transi-
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Figure 6.7: Comparison between radar and ceilometer ABLH estimates (see 6.5). a) ABLH estimates
as a function of time: (Solid black) Radar EKF estimates. (Solid grey) Ceilometer EKF estimates. b)
Scatter plot relating the ABLH estimated by the radar EKF (horizontal axis) with the ceilometer one
(�ground truth�, vertical axis). (Black dashed line) Regression line. Labels indicate regression-line and
correlation coe�cients.

tion.

Formulation of the Kalman �lter relies on a parametric erf-like model used to describe the

ML-FT interface (the so-called �observation� model) and on a simple Gauss-Markov transition

model for the state vector (state-vector model). The formulation departs from a previous result

shown in Chapter 5 [Lange et al., 2013] on the application of the adaptive EKF (and in comparison

with non-adaptive morphological classic methods) to the problem of ABLH estimation from aerosol

backscatter lidar returns. Its extension to the radar case, for which the returns are physically due to

refractive index turbulence and not to aerosols, continues to enable application of the erf-like model

but, in contrast to the lidar case, radar returns in the ML and FT �plateau� intervals ([R1, R
′
1] and

[R′2, R2], respectively) become severely distorted in shape (Fig. 6.2). This unwanted departure

from the idealized erf-model, which is considered �modeling noise�, requires careful modeling of

the noise covariance matrix and that this matrix is updated at each successive discrete time, tk.

Because there is only one observable available at each successive discrete time, the noise covariance

matrix cannot be estimated from the time ensemble of measurements but from the noise spatial

statistics along the observation height, instead. This ergodicity assumption has also been validated

by experiment (Fig. 6.4).

State-vector and a-priori error covariance matrices have been modeled as simple diagonal matri-

ces with initial values proportional to the state vector (µ factor in Eqs. 6.13 � 6.14). The relatively

large variability of the ABLH in the time frame under study has been solved by using adaptive

ranges for the EKF observation model (range boundaries [R1, R2] and [R′1, R
′
2]).

Radar-ABLH estimates have been validated from a collocated Vaisala CL-31 ceilometer in both

cases using an EKF (�radar EKF� and �ceilometer EKF� prototype implementations) yielding a

correlation coe�cient, ρ = 0.93, and a regression-line slope of 0.97 with 0.01 bias for the case
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example discussed. Because of the relatively high SNR at the ABLH (mean SNR = 18), ABLH

height estimates from the classic THM also become in good agreement with those obtained from

the EKF. However, in time intervals where the SNR is �low� (SNR ≈ 5 or lower at the ABLH) the

THM ceases to correctly estimate the ABLH, which underlines the advantage of the EKF not only

for its time tracking capability but also for its ability to operate in low-SNR scenarios.



Chapter 7

RSLab lidar exploitation cases

This Chapter presents two application cases of the RSLab multi-spectral lidar system. Both

cases corresponds to two eruptive events measured by RSLab lidar system, in synergy with EAR-

LINET and other lidar networks.

First application case is an eruptive event from Nabro volcano in Eritrea. Eruption started on

June 12th, 2011 generating a layer of sulfur aerosols that persisted in the stratosphere for several

months. The event was monitored simultaneously with ground based lidar stations in the Northern

Hemisphere, and satellite CALIPSO.

Second application case is the eruption of the Eyjafjallajökull volcano in Iceland in April�May 2010.

The event was monitored by the available stations from EARLINET in 2010.

The application cases presented in this chapter are a short compilation of Sawamura et al. [2012]

and Pappalardo et al. [2013] papers with relevant contributions from the author of this Ph.D.

The �rst application case paper was published in Environmental Research Letters and is made available as an electronic

reprint with te permission of IOPScience. The paper can be found at the following URL on the IOPScience website: http:

//iopscience.iop.org/1748-9326/7/3/034013. Second Application case was published in Atmospheric Chemistry and Physics

and is made available as an electronic reprint with te permission of European Geosciences Union (EGU). The paper can be

found at the following URL on the EGU website: http://www.atmos-chem-phys.net/13/4429/2013/acp-13-4429-2013.html.

In both cases, systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited

and is subject to penalties under law.

7.1 Introduction

The injection of SO2 due to volcanic eruptions is the biggest natural source of perturbations in the

stratosphere. SO2 converts to sulfuric acid which will quickly condense, forming �ne sulfate aerosols

in the stratosphere. These aerosols have longer residence times (1-3 years) compared to ash and

tropospheric sulfate aerosols (typically days and weeks respectively), and have an impact on the

climate ([Robock , 2000; Solomon et al., 2011]). Sulfate and ash particles re�ect solar radiation, act

as cloud condensation and ice nuclei, and modify the radiative properties and lifetime of clouds,

and therefore in�uence the precipitation cycle. These volcanic particles can also have an impact

on environmental conditions and can be very dangerous for air tra�c. Due to their extended

http://iopscience.iop.org/1748-9326/7/3/034013
http://iopscience.iop.org/1748-9326/7/3/034013
http://www.atmos-chem-phys.net/13/4429/2013/acp-13-4429-2013.html
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residence time once injected into the stratosphere, these particles can travel large distances. Global

monitoring of the stratosphere is, therefore, of great importance.

Regardless of the source, the optical properties of stratospheric aerosols must be properly quan-

ti�ed. If neglected, the perturbations caused by these particles can represent an error source in

lidar measurements of trace gases in the stratosphere and also in comparative studies of column-

integrated versus ground-based measurements.

The impact of particularly violent volcanic eruptions on the stratospheric aerosol load has

been studied with lidar remote sensing since the early 1970s [Jäger , 2005; Deshler , 2008]. The

most important eruptions during this period were those of El Chichon (Mexico, 1982) and Mt.

Pinatubo (Philippines, 1991). After 1996 there was a ten year period without appreciable volcanic

activity, which ended by the end of 2006 when a series of several eruptions injected particles into

the stratosphere that were recorded with lidar systems worldwide [Mattis et al., 2010; Sawamura

et al., 2012; Trickl et al., 2012]. Although many lidar observations are available for volcanic aerosol

in the stratosphere, only a few are known for tropospheric events before 2010, such as those related

to Etna volcanic eruptions in 2001 and 2002 [Pappalardo et al., 2004a; Villani et al., 2006; Wang

et al., 2008].

First application case is an eruptive event from Nabro volcano (13.37°N,41.70°E) in Eritrea (Fig.

7.1a-b). Eruption started on June 12th, 2011 generating a layer of sulfur aerosols that persisted in

the stratosphere for several months. The event was monitored simultaneously with ground based

lidar stations in the Northern Hemisphere, and satellite CALIPSO. Synergy between global lidar

networks such as MPLNET, EARLINET and NDACC with independent lidar groups and satellite

CALIPSO permitted to track the evolution of the stratospheric aerosol layer in various parts of the

globe. The globally averaged aerosol optical depth, (AOD) due to the stratospheric volcanic aerosol

layers was in the order of 0.018 ± 0.009 at 532 nm, ranging from 0.003 to 0.04. Compared to the

total column AOD from the available collocated AERONET stations, the stratospheric contribution

varied from 2% to 23% at 532 nm.

Second application case is the eruption of the Icelandic volcano Eyjafjallajökull in April�May

2010 (Fig. 7.1a-c). It represents a �natural experiment� to study the impact of volcanic emissions

on a continental scale. For the �rst time, quantitative data about the presence, altitude, and

layering of the volcanic cloud, in conjunction with optical information, are available for most parts

of Europe derived from the observations by EARLINET.

The four-dimensional (4�D) distribution of the Eyjafjallajökull volcanic cloud in the tropo-

sphere over Europe as observed by EARLINET during the entire volcanic event (15 April�26 May

2010) is shown. During the �rst days after the eruption, volcanic particles were detected over Cen-

tral Europe within a wide range of altitudes, from the upper troposphere down to the local ABL.

After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. Dur-

ing the �rst half of May (5�15 May), material emitted by the Eyjafjallajökull volcano was detected

over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations

of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area.

Lidar techniques represent a powerful method for monitoring the dispersion of a volcanic cloud in

the atmosphere because of their pro�ling capability. In particular, lidar techniques provide geomet-



7.2 Application Case (I): Nabro Volcano eruption, 2011 105
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Figure 7.1: Location of the two applications cases studied. (a) World map showing the location of
Nabro and Eyjafjallajökull (April, 30th, 2013), LANDSAT image. (b) Nabro image, showing the volcano
in the middle of the white circle (April, 10th, 2013), CNES-SPOT image. (c) Eyjafjallajökull image,
showing the volcano in the middle of the white circle (April, 25th, 2007), CNES-SPOT image. Source:
Google Earth for the three images, US Dept. of State Geographer, for the (a) and (c), and DigitalGlobe
for (b) and (c).

rical properties (top, bottom, and thickness) for each volcanic layer, optical properties (extinction,

backscatter, and optical depth), aerosol typing and in some cases also microphysical properties if

advanced multi-wavelength Raman lidar systems are used.

In this chapter, synergistic measurements from a volcanic eruption are reported, taken from

multiple lidar networks and satellite CALIPSO. The evolution of the stratospheric aerosols in the

Northern Hemisphere is tracked, focusing in EARLINET stations.

It is already well recognized that lidar remote sensing, is an important tool to help assess the

vertical distribution of aerosol in the atmosphere. Space-borne lidar, like the Cloud-Aerosol LIdar

with Orthogonal Polarization (CALIOP) on-board CALIPSO [Winker et al., 2003], has a narrow

swath and therefore does not provide complete global coverage. To �ll those gaps in terms of

spatial coverage, networks of ground-based lidars such as EARLINET, MPLNET and NDACC are

of extreme value.

The chapter is organized as follows: Sect. 7.2 introduces the �rst application case, Nabro

volcano, Sect. 7.3 considers the second application case, Eyjafjallajökull volcano, and Sect. 7.4

summarizes the results and conclusions obtained in both cases.

7.2 Application Case (I): Nabro Volcano eruption, 2011

Nabro is a stratovolcano located in the Afar Triangle at the border between Northeastern Ethiopia

and Southern Eritrea (Fig. 7.1c). It is a 2,218 m high volcano, the highest in the Afar Triangle,

sitting at the triple junction between the Arabian, Somalian and Nubian tectonic plates along the

East African Rift Zone [Wiart and Oppenheimer , 2005].

Nabro's �rst ever recorded eruption occurred on the night of June 12th, 2011 when it spewed
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copious amounts of ash disrupting the air tra�c in Eastern Africa. According to reports from the

Toulouse Volcanic Ash Advisory Center (VAAC), Nabro started erupting between 0000 to 0200 EAT

(East Africa Time = UTC +3h) with visible plumes rising up to an altitude of 11 km, consisting

mainly of water vapor and sulfur dioxide gas. Preliminary analysis suggests an SO2 release of

approximately 1.5 to 2 Tg in the �rst few days one of the largest volcanic SO2 emissions measured

since Nyamuragira volcano, Congo in 1994 [Carn and Bluth, 2003] and Mt. Pinatubo eruption

in 1991 which injected about 20 Tg of SO2 into the stratosphere. which increased the globally

averaged temperature in the lower stratosphere by approximately 2-3 K, but lowered the globally

averaged surface temperature by about 0.3 K in the following two years [Stenchikov et al., 2002].

The observations described are from CALIPSO, MPLNET, EARLINET, NDACC and from the

Key Laboratory of Atmospheric Composition and Optical Radiation in Hefei, China, spanning from

June 14th until early September, 2011. Regarding the scope of this document, only EARLINET

stations will be considered in depth including, for comparison purposes, limited information from

the others, whenever necessary. Extensive details can be found in Pappalardo et al. [2013].

Lidar stations that observed stratospheric plumes are listed in Table 7.1 and Fig. 7.2 shows

the temporal and zonal distribution of the observations. Santa Cruz de Tenerife, Kanpur, Trinidad

Head, Sede Boker and Goddard Space Flight Center (GSFC) are all MPLNET stations. Universidad

de Granada (Centro Andaluz de Medio Ambiente, CEAMA), Universitat Politècnica de Catalunya

(UPC), Istituto di Metodologie per l' Analisi Ambientale (Consiglio Nazionale delle Ricerche, CNR-

IMAA) are EARLINET stations. Mauna Loa Observatory (MLO) and Observatoire de Haute-

Provence (OHP) are members of NDACC.

Figure 7.2: Zonal and temporal distribution of lidar observations from June to October, 2011. Nabro
marker represents the location and eruption date. Un�lled symbols mean that measurements were
available but no stratospheric signature was observed.
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Table 7.1: Lidar systems description

Location (Lat, Lon) Elevation (a.s.l.) System

Sede Boker, Israel (30.85°N, 34.78°E) 480 m MPL @ 523 nm
Sta. Cruz de Tenerife, Spain (28.47°N, 16.25°W) 52 m MPL @ 523 nm
GSFC, USA (38.99°N, 76.84°W) 50 m MPL @ 527 nm
Trinidad Head, USA (41.05°N, 124.15°W) 107 m MPL @ 527 nm
Kanpur, India (26.52°N, 80.23°E) 150 m MPL @ 532 nm
UPC, Spain (41.39°N, 2.11°E) 115 m Nd:YAG @ 3λ0 + 2λN2

CEAMA, Spain (37.16°N, 3.61°W) 680 m Nd:YAG @ 3λ0 + 2λN2

MLO, Hawaii (19.54°N, 155.58°W) 3,397 m Nd:YAG @ 1064 and 532 nm
IMAA, Italy (40.60°N, 15.73°E) 760 m ND:YAG @ 3λ0 + 2λN2

Hefei, China (31.9°N, 117.2°E) 30 m Nd:YAG @ 532 nm
OHP, France (43.93°N, 5.71°E) 650 m DIAL @ 355 nm
3λ0 are elastic channels at 1064, 532 and 355 nm, and 2λN2

are N2 Raman channels at 387 and 607 nm.

7.2.1 Timeline of the observations

Back-trajectories were run for each lidar observation using the Hybrid Single Particle Lagrangian

Integrated Trajectory Model (HYSPLIT) [Draxler and Rolph, 2003, 2012] to con�rm whether or

not the stratospheric layers observed were due to Nabro's eruption. Forward trajectories were also

run from Nabro's location to assess the airmass transport during the days immediately following

the eruption. All HYSPLIT trajectories were computed using Global Data Assimilation System

(GDAS) meteorological data, vertical velocity model for vertical motion and maximum run time of

300 hours.

In Europe, the �rst layers were reported on June 23rd over Potenza, Italy (CNR-IMAA) at 16

km. A coincident CALIPSO overpass con�rmed the layer presence at 16 km of altitude over Italy

extending all the way to Southern Nigeria. CNR-IMAA continued to observe residual signature

until late August. In Spain, a layer between 16-17 km was �rst observed over Granada (SE Spain)

on June 26th and then in Barcelona (NE Spain) at 17 km. Weak signatures were observed over

Granada until July 11th . Over southern France layers were observed from June 28th to July 2nd

and then again, although with weaker signals, from July 15th until late August. Back-trajectories

from the lidar stations in Europe and Asia are presented on Fig. 7.3.

7.2.2 Stratospheric AOD from lidar data

Many lidar stations participating in this study have Raman lidar capabilities but most of the AOD

values here presented were obtained from elastic measurements. The Klett-Fernald method (Sect.

2.2.6) for the case of stratospheric aerosols is able to provide satisfactory results given an assumed

value for Saer. Mattis et al. [2010] reported Saer values in the range of 30�60 sr at 355 nm and 30-45

sr at 532 nm in the stratosphere due to volcanic aerosols measured between 2008�2009 over central

Europe with a multi-wavelength Raman lidar. In the case of RSLab, the AOD was computed using

the methodology presented in Reba [2010] Ph.D, guided by F. Rocadenbosch.

The mean Saer value of 50 sr at 532 nm was assumed by most groups in this study, including

MLO, RSLab and also in the CALIOP retrievals, with exception to CEAMA group which assumed

values of 45- and 38-sr for 355- and 532-nm, respectively. CNR-IMAA was the only group to
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Figure 7.3: Back-trajectories for all sites included in the study with exception of the ones located in
the United States. The start time and altitudes denoted by each set of red, blue and green lines varies
according to the date/time and altitudes of the �rst stratospheric layers observed by the lidar groups
participating in this study.

measure Saer values utilizing the Raman technique. They measured Saer values of 48- and 55-sr

at 532- and 355-nm, respectively. The Saer values assumed/measured (depending on the inversion

algorithm they use) by each group and the respective AOD values obtained from each pro�le are

summarized in Table 7.2.

Table 7.2: AOD values calculated from the pro�les shown on Fig. 7.10 (layers) and AERONET
colocated measurements of AOD (total column).

Location Saer355 sr AOD355 Saer532 sr AOD532 AODCAL AODAERO

Sede Boker �- � 50 06/14: 0.17 0.012 0.33
Tenerife � � 50 06/29: 0.019 � 0.30
GSFC � � 50 07/15: 0.003 0.007 0.18

� � 07/22: 0.008 � 0.44
Trinidad � � 50 07/17: 0.02 0.010 �
Kanpur � � 50 07/07: 0.015 0.018 �
UPC � � 50 06/27: 0.04 0.012 �
Granada 45 06/26: 0.05 38 06/26: 0.02 0.012 @500: 0.32

� @340: 0.42
MLO � � 50 07/15: 0.01 0.008 0.015

� � 07/21: 0.022 � 0.05
� � 08/31: 0.011 � 0.04

CNR-IMAA 55 ± 18 06/24: 0.04 48 06/24: 0.03 0.010 @500: 0.11
� @340: 0.19

Hefei � � 50 06/22: 0.023 � �
� � 07/20: 0.011 � �
� � 07/22: 0.023 � �
� � 08/12: 0.010 � �

OHP S(z) = 53 ± 6 June 28: 0.04 � � 0.012 0.24
AODJul: 0.013 ± 0.007 � � � 0.20
AODAug: 0.022 ± 0.005 � � � 0.20
AODSep: 0.029 ± 0.006 � � � 0.28

CNR-IMAA used Raman technique, and OHP S(z) is the mean lidar ratio from 10 to 25 km.

Fig. 7.4 shows the scattering ratio pro�les obtained from lidar measurements pertinent to this
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study. The scattering ratio (SR) is de�ned as the ratio between the total backscatter, βtot (due to

molecular and aerosol contributions), and the molecular backscatter, βmol,

SR =
βtot
βmol

, (7.1)

which can be calculated from radiosonde measurements of pressure and temperature, or from stan-

dard atmosphere models. In the absence of aerosols, SR = 1. The aerosol backscatter pro�les for

the MPLNET stations in this study were retrieved from the MPLNET level 1 normalized relative

backscatter (NRB) product. One hour averages of NRB pro�les from nighttime measurements were

used to avoid SNR issues due to the solar background. The aerosol layer is isolated by assuming

an aerosol-free atmosphere under and over the layer and the aerosol backscatter pro�les is then

obtained using an iterative method. The algorithm utilized for the retrievals of aerosol backscatter

pro�les from MPL data in this study was developed independently from the MPLNET retrieval

algorithms. The AOD values obtained from MPLNET data are the product of the integrated

backscatter coe�cient in the aerosol layer with a range-independent Saer = 50 sr.

Figure 7.4: Scattering ratio pro�les from MPLNET. a) EARLINET stations b) NDACC and Hefei
c) and from CALIPSO's closest overpass to the lidar stations. Subplot on c) are the mean pro�les
of available observations from those stations. Number of averaged observations were 13, 11, 7 and 5,
respectively. d) CALIOP SR pro�les from closest overpasses with respect to the ground lidar stations.
Please note that di�erent scales are used in �gures a), b) and in subplot of c).

Fig. 7.5 shows the mean AOD over the entire globe retrieved from CALIOP measurements at

532 nm from July 16th to July 31st . The AOD was retrieved only in the stratosphere between 12

and 20 km which gives an estimate of the contribution of Nabro's volcanic aerosols to the global

AOD. Values approximately between 0.012 and 0.03 were observed over most of Southern Europe

and all over Asia, branching out over the Paci�c and towards the West Coast of the US. Although

most of the sulfate aerosols due to Nabro's eruption were observed East of Nabro's location, Fig.

7.5 shows slightly elevated values of AOD crossing the Atlantic towards the East Coast of the US,

which is consistent with the back-trajectories discussion from the previous section. It should be

noted that CALIOP data was not available from the 7th to the 14th of June.
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Figure 7.5: Global CALIOP AOD retrieval from July 16 to July 31.

7.2.3 Stratospheric contribution to total column AOD

AOD measurements from collocated AERONET stations were available for most lidar stations in

this study. As mentioned in Sect. 2.2.6, retrievals of extinction and backscatter coe�cients from

elastic lidars require an assumption of range-independent lidar ratio. Collocated measurements of

AOD can also be utilized as an additional a priori information for retrievals in the lower troposphere.

When most of the aerosol load is con�ned to the lowest troposphere, which is often the case, the

AOD can be used as a boundary condition to obtain the best estimate of lidar ratio, since AOD is,

by de�nition, the integral of the extinction pro�le. However, in the presence of aerosol layers aloft

AERONET AOD values will not only represent the tropospheric contribution but also that of the

layer.

Most lidar data in this study were obtained at nighttime when no sun photometer measurements

are available. Therefore, to estimate the stratospheric AOD contribution to the total AOD as

measured at the collocated AERONET stations, a linear interpolation was considered between the

last data points from the day before and the �rst data points from the day when the layers were

observed. Only the last/�rst 3 to 5 data points of each day were considered in the interpolation and

we utilized the AOD values at 340 nm and 500 nm to compare with the measurements at 355 nm

and 532 nm, respectively. The interpolated values of AOD are presented in Table 7.2 as AODAERO.

In Santa Cruz de Tenerife the contribution of the stratospheric AOD to the total AOD was about

6%, 2% at GSFC, 12% and 5% in Granada for 355 nm and 532 nm respectively, 22% and 23% at

CNR-IMAA for 355 nm and 532 nm respectively. At OHP for the June 28th case the contribution

was of 17% at 355 nm and for the monthly averages the contributions were of 6%, 11% and 10%

for July, August and September, respectively. At MLO, due to the site's high elevation (around 3

km), the contributions were even larger: 65%, 48% and 26% for July 15th, July 21st and August

31st, respectively.

7.2.4 RSLAB measurements, June 27th, 2011

Volcanic plumes in Barcelona were observed from June, 27th, to July, 11th, 2011 (purple diamonds

en Fig. 7.2). During the whole period, two daily 1-h measurements were carried out, one in the
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morning and another in the afternoon. The RSLab contributed to Sawamura et al. [2012] with all

the available measurements monitoring the volcanic event.

Next, Fig. 7.6 shows two 1-h-long measurements corresponding to 27th, 2011, which was the

date a volcanic layer over Barcelona was �rst detected. Since the dust layer was present in the

near range, and the volcanic plume in the far range, neither the analog nor the photon-counting

signal coming from the PMTs can solely be used to characterize both layers without distortion. As

mentioned in Chapter 4, to solve that, the dynamic of the elastic lidar reception channel is enlarged

by gluing analog and PC raw-data records (See enhanced �gluing� algorithm in Sect. 4.2).

Fig. 7.6a corresponds to late-afternoon measurements (start time at 18:59 UTC), with sunset

time at 19:30 UTC. Fig. 7.6b illustrate the measurement started just after, in the time-frame 20:05

UTC to 21:04 UTC.

Saharan dust intrusions are common during summer time in Barcelona [Sicard et al., 2009c],

and as it happens in some of the measurements show the volcanic layer above 17 km and dust layers

below 4 km. No merging between both type of aerosols were detected. Also, it is possible to detect

forest �re plume traces coming from North America. According to HYSPLIT back-trajectories (not

shown), the thin layer at 3 km in height in Fig. 7.6a-b do comes from North America's middle-east

zone, where forest �re zones were located around July, 17th [Forest Fire North America, 2014].

Regarding to KFS inversion, the RSLab assumed a range-independent lidar ratio, Saer, of 50

sr at 532 nm. The AOD was computed using the methodology presented in Reba [2010], and its

value was 0.12.

Fig. 7.7 shows the extinction (αMie and αRay) and backscatter pro�les (βMie and βRay) for the

range-corrected glued signal shown in Fig. 7.6a.
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Figure 7.6: Time-height plot of the glued range-corrected lidar signal for the 532-nm channel from
the Nabro's volcanic event (Barcelona UPC, Campus Nord, June, 27th, 2011). (a) Time interval from
18:59 to 19:58 UTC. (b) Time interval from 20:05 to 21:04 UTC.

7.2.5 Discussion

The MPL pro�le over Sede Boker (June 14th) was the �rst available pro�le after Nabro's eruption.

It showed the strongest peak in terms of backscatter compared to the other pro�les, as displayed
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Figure 7.7: Optical-atmospheric parameters inversion example for Fig. 7.6a case, using RSLab lidar
data Link-Detect GUI lidar inversion platform. KFS method was used [Klett , 1985]. (a) Time-height
plot of the glued range-corrected lidar signal for the 532-nm channel. (b) Time-averaged range-corrected
lidar signal. The calibration range is 3.7 km (red cross). The range interval (red lines) where the power
calibration is smoothed is ± 100 m around he calibration range. (c) Aerosol (blue trace) and molecular
(green trace) backscatter coe�cients, βaer and βmol, respectively. Error bounds have been computed
according to Sect. 3.4. (d) Aerosol (blue) and molecular (green) extinction coe�cients, αaer and αmol,
respectively. The Saer is 50 sr, and the estimated AOT is 0.12 [Reba et al., 2010].
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in 7.4a and the highest AOD of 0.17, 51% contribution to the total AOD. Given the short time

between Nabro's �rst explosive eruption and the �rst observation at this site, we believe that the

layer could be composed of ash and sulfate aerosols. Due to their size compared to sulfate aerosols,

ash particles are quickly removed from the stratosphere, which might explain the di�erence in

scattering magnitude from this measurement and all the other measurements from June 2011,

which were, most likely, measurements of sulfate aerosols only.

With respect to the source of the layers observed over Santa Cruz de Tenerife on June 21st

between 10 and 13 km, back-trajectories (not shown here) suggested long range transport of smoke

particles from �res that were occurring in North America in that period. However, given the date

and location of observation, one cannot exclude the possibility of contributing ash/sulfate particles

from smaller eruptions that followed the major one on June 12th. The AOD obtained for that

layer was 0.022, a 5% contribution for the total AOD of that day (0.4 at 500 nm). Unfortunately

there were no additional measurements, such as depolarization measurements that could help us

determine whether or not ash particles were present in this case. The back-trajectories for June

29th case as shown in Fig. 7.3 con�rmed Nabro as the source of the layer observed. It should be

noted that the presence of another volcano in that same island (Hierro volcano) was irrelevant in

this case, as it was not displaying activity in that period.

In terms of Saer values, most groups assumed a value of 50 sr at 532 nm. In Sede Boker's case

(June 14th) this assumption may not be truly representative if a mix of ash/sulfate was indeed

present in the stratosphere. Unfortunately there aren't many reports on Saer values measured from

ash particles in the stratosphere due to their relatively short residence time. Pappalardo et al.

[2004a] reported a Saer value of 55 sr at 355 nm in the lower troposphere and Ansmann et al. [2001]

reported Saer values of 50 sr for ash and 40-80 sr for non-ash (�ne mode) at 532 nm also in the

lower troposphere. One cannot assume however, that those same Saer values would apply in the

stratospheric case since both layers are characterized by completely di�erent dynamics and water

vapor content which could greatly in�uence the Saer values in cases when hygroscopic aerosols, e.g.

sulfates, can be found in the mixture.

7.3 Application case (II): Eyjafjallajökull volcano, 2010

7.3.1 Eyjafjallajökull Volcano

Eyjafjallajökull is a stratovolcano completely covered by an ice cap, and is located in Iceland, north

of Skógar and to the west of Mýrdalsjökull (Fig. 7.1b). it has a summit elevation of 1,651 m and

has a crater of 3 to 4 km in diameter. The volcano has erupted relatively frequently since the last

glacial period, most recently in 2010 [Thordarson and Larsen, 2007].

After seismic activity recorded during December 2009, a �rst eruption started on 20 March

2010. After a brief stop, a new phase started on 14 April, when meltwater penetrated to the central

crater beneath the glacier. After a short hiatus in eruptive activity, a new set of craters opened up

in the early morning of 14 April under the volcano's ice-covered central summit caldera. Meltwater

started to emanate from the ice cap around 07:00 UTC on 14 April, and an eruption plume was



114 7. RSLab lidar exploitation cases

observed in the early morning. The Eyjafjallajökull explosive eruptive phase started on 14 April

2010 and lasted until 21 May 2010 [Langmann et al., 2012].

The ash-loaded eruption plume rose to more than 10 km height, de�ected to the east by westerly

winds. The height of the emitted plume was around 8 km until 16 April and decreased to a typical

maximum height of 3�4 km in the following days [Arason et al., 2011]. The plume rose up again

to an altitude of 5�6 km in the period of 4�20 May [Langmann et al., 2012].

Depending on the wind direction, the eruption plume was transported toward di�erent regions

of continental Europe and toward the Atlantic Ocean at di�erent altitudes. Even though this

eruption was only moderate in intensity, it had a strong impact on air tra�c. In order to prevent

possible damages to aircraft engines, the airspace over large parts of Northern Europe was closed

on 15 April when the �rst parts of the eruption plume reached continental Europe. Air tra�c

restrictions and partial closure of European airspace were not uniform during the eruption period

and di�ered from region to region depending on the volcanic ash transport pattern and the (sparse)

information on height and density of volcanic aerosol at the time.

A study presenting pro�ling observations for the whole volcanic event on a continental scale

has not been published yet. The main objectives of this work is to summarize the spatial and

temporal evolution of the volcanic cloud during the entire volcanic event (April, 15th to May, 26th),

as observed by EARLINET coordinated ground-based lidar network.

7.3.2 Timeline of the observations

Volcanic particle layers have been identi�ed for all the EARLINET stations using a speci�c back-

trajectory-models lidar observations integrated methodology for a volcanic aerosol masking Mona

et al. [2012].

For the occurrence of special atmospheric events an alerting system has been implemented in

EARLINET. In the case of the volcanic eruption of Eyjafjallajökull, an alert was sent to the whole

network on 15 April 2010.

The �rst characterization of the volcanic ash cloud was provided by Ansmann et al. [2010]

relying on EARLINET lidar observations at Leipzig and Munich, Germany. EARLINET performed

almost continuous measurements from 15 April 2010 in order to follow the evolution of the volcanic

cloud over Europe. During the event (15 April�26 May 2010), the volcanic cloud was transported

to di�erent regions of Europe at di�erent altitudes and times and with a large variety in load.

Volcanic particles were �rst observed in the UK, Ireland, the Netherlands, Germany, and France

from very low altitudes up to the upper troposphere [Ansmann et al., 2011; Pappalardo et al.,

2010a; Schumann et al., 2011; Hervo et al., 2012; Matthias et al., 2012]. The volcanic cloud was

then observed over Switzerland, Poland, and Norway [Pietruczuk et al., 2010; Schumann et al.,

2011]. The cloud reached Italy and Greece after 19 April [Mona et al., 2012; Papayannis et al.,

2012]. In May 2010, the volcanic cloud was transported over the Iberian Peninsula ([Sicard et al.,

2012; Navas-Guzmán et al., 2013] and then moved towards the East, reaching Italy, Greece, and

Turkey [Mona et al., 2012; Perrone et al., 2012; Papayannis et al., 2012]. A series of publications

covered the in-depth characterization of the ash cloud over di�erent parts of Europe, combining
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measurements of lidars, sun photometers, and in situ probes. Schumann et al. [2011] reported

on measurements on board the German research aircraft Falcon that covered several �ights over

Central Europe, Iceland, and the North Sea. Groÿ et al. [2012] demonstrated the potential of

lidar-derived intensive aerosol properties to distinguish volcanic aerosol from other types.

On 15 April the eruption plume reached continental Europe, causing closure of the airspace

over large parts of Northern Europe. Almost all EARLINET stations promptly started continuous

measurements, whenever weather conditions allowed it.

Despite the fact that EARLINET stations are not truly operational, the lidar systems were

run almost continuously, weather permitting, coordinated by daily alerts. More than 5000 h of

measurements were performed day and night during the period 15 April�26 May 2010. A page

with the time plots of the lidar range-corrected signals was made available on the EARLINET

website in order to provide near-real-time qualitative information about the presence and altitudes

of the volcanic cloud over Europe.

A �rst volcanic layer was observed at an altitude from 3 to 6 km over Hamburg in the early

morning of 16 April. On the morning of 16 April, the major ash plume reached Central Europe

(Germany and France) at 5�6 km a.s.l. and Belarus at ca. 4 km a.s.l. The volcanic cloud crossed

Central and Eastern Europe on 16 and 17 April. Most EARLINET stations discovered a distinct

feature at that time. The layer appeared �rst at 5�8 km a.s.l. and then decreased with time.

Finally, volcanic aerosol was mixed into the ABL. After 17 April the volcanic plume was dispersed

towards Western and Eastern Europe.

The transport to the south was almost completely blocked by the Alps until 19 April when a

redistribution of aged volcanic aerosol from west to east and from north to south occurred. On

20 April Italian EARLINET stations observed a clear signature of the plume for the �rst time.

Afterwards, the plume was further dispersed across Europe and reached Greece on 21 April.

The volcanic plume persisted over Central Europe for the whole period of 15�26 April, even

though with di�erent aerosol load. Only small amounts of material were emitted by Eyjafjalla-

jökull between 19 April and 3 May. However, new signi�cant eruptions occurred from 4�9 May and

14�19 May. The �rst of these phases mainly in�uenced Western Europe, from Great Britain to

the Iberian Peninsula. EARLINET stations in Spain and Portugal reported the arrival of the �rst

volcanic layers on 5 May [Sicard et al., 2012; Navas-Guzmán et al., 2013]. On 16 May, a distinct ash

plume traveled over Great Britain toward Central Europe again and reached the Central European

EARLINET stations in the Netherlands and Germany in the night of 16�17 May [Schumann et al.,

2011]. Volcanic layers were observed in Central Europe and in the Central and Eastern Mediter-

ranean area on 18�22 May. Last observations of the event were recorded over Central Europe by

25 May.

7.3.3 Volcanic aerosol mask

A volcanic aerosol mask has been generated based on all EARLINET observations, using only

aerosol backscatter coe�cients at one wavelength, so that daytime measurements could be included

in the study and potential observational limitations of some stations were eliminated. For each
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station, the aerosol backscatter coe�cient at the longest available wavelength (355, 532 or 1064

nm) range was used for the layering, thereby taking advantage of the better sensitivity to the

aerosol structure at longer wavelengths. For aerosol typing, backtrajectory analyses together with

the multi-wavelength Raman lidar measurements performed within the network during this event.

The mask was generated with a temporal resolution of 1 h. The volcanic mask is provided

with the best possible e�ective vertical resolution, as determined individually by each group within

EARLINET, typically between 60 and 180 m. Only backscatter data with a relative statistical

error lower than 50% are considered in order to gain a reliable aerosol mask. The aerosol mask

methodology is described in detail by Mona et al. [2012]. The most relevant points are therefore

only summarized here in brief.

The �rst step is the layer identi�cation through the �rst derivative of the particle backscatter

pro�les. Tests performed on several EARLINET station data identi�ed 30% as a reasonable sta-

tistical error limit for the application of the derivative method. At altitudes where the derivative

method is not applicable, because the SNR is too low, layers are identi�ed as those regions where the

scattering ratio (i.e. the total-to-molecular backscatter ratio) is higher than a pre-de�ned threshold

chosen as the value for typical aerosol background conditions plus 15%.

The second step in the procedure is to perform a rigorous cloud screening on the data and to

assign an aerosol type to each identi�ed layer. Cloud screening is performed manually by each station

(low clouds) and in a centralized way (cirrus clouds). In particular, cirrus clouds are identi�ed on

the basis of cirrus high particle depolarization ratio, neutral wavelength dependence and temporal

evolution. Backward trajectory analyses and model outputs are used to investigate the origin and

nature of the identi�ed aerosol layers. In particular, ten-day HYSPLIT backtrajectory analysis is

used, because the arrival altitudes and times could be chosen in a �exible way, which makes it very

useful for a study on aerosol typing based on lidar data with high vertical and temporal resolution.

Once the particle path is identi�ed through backtrajectory analysis, the type of the aerosol is

investigated using model output and the support of the multi-wavelength Raman lidar measure-

ments performed within the network. The Eyjafjallajökull volcanic activity and emission heights

are also taken into account by using the reports provided by the Iceland Meteorological O�ce,

VAAC, and dedicated studies Langmann et al. [2012].

Within EARLINET, it has been shown that a careful analysis based on lidar observations, air-

mass backtrajectories and modeling tools allows for a detailed classi�cation of the observed aerosols

[Mona et al., 2006; Pappalardo et al., 2010b]. The methodology described above has been manually

applied to all the layers identi�ed. In most of the cases reported in this paper, the origin and

type of the observed particles are clearly de�ned through the backtrajectories-models combined

approach. Particular attention was needed in cases of transition between di�erent atmospheric

conditions because of the high instability of the backtrajectory analysis in the transient regimes.

For these cases, advanced lidar observational capability and climatological analysis available at

the observational site could permit the aerosol typing. An example of the aerosol typing for this

condition is reported in detail in Mona et al. [2012]. Situations not clearly identi�ed with this kind

of approach still remain and are reported as �unknown� aerosol in the masking.

Many types of aerosol may have been present over Europe during the whole eruptive period.
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Speci�c models and satellite observations are used in order to check the occurrences of other speci�c

aerosol-related events along the identi�ed aerosol paths. The potential presence of Saharan dust

for instance is checked using the Dust REgional Atmospheric Model (DREAM) forecasts in terms

of maps of the dust loading and dust concentration pro�les at each EARLINET site, both available

every six hours [BSC-DREAM , 2014]. The results of the ATSRWorld Fire Atlas (Advanced Along

Track Scanning Radiometer) [ATSRWorld , 2014] are used for identifying the presence of forest

�re episodes. Cases with backtrajectories that are locally con�ned and without the presence of

any speci�c source resulted in aerosol being classi�ed as continental. For all the other cases with

uncertain situations, aerosol is classi�ed as �unknown�. All possible mixes among these types of

aerosol are also taken into account.

As far as volcanic aerosol is concerned, it should be noted that aerosol layers identi�ed through

this approach could consist of di�erent ash and sulfate mixing ratios for di�erent sites. Moreover,

the observed particles of volcanic origin may be a�ected by modi�cation processes and mixing

with other air masses during transport. Aerosol layers, for which other aerosol sources besides the

Eyjafjallajökull volcano can be identi�ed, are classi�ed as mixed aerosols.

The particle layer identi�cation and typing is performed for each station on individual backscat-

ter pro�les. A consistency check is carried out on the temporal evolution of the resulting layering

for each station. A further check is performed by taking advantage of the geographical distribution

of EARLINET stations. In particular, stations located at relatively short distances (below 500 km)

from each other can be considered representative for a speci�c region, giving us the opportunity to

also study local phenomena. When a doubtful atmospheric scenario is observed in a speci�c region,

multi-spectral Raman lidar data from at least one close station, including lidar ratio, Ångström

exponent, and particle linear depolarization ratio, are used as additional information supporting

aerosol typing.

In this Section, two of the four examples in Pappalardo et al. [2013] will be shown. The �rst one

corresponds to the co-presence of dust and volcanic aerosol over France and other Mediterranean

countries during the �rst phase of the eruption; and the second case example corresponds to the

almost direct transport over the Iberian Peninsula at the beginning of May. The other two case

examples [Pappalardo et al., 2013] show the transport towards Central Europe at the end of May

and the almost direct transport towards Central Europe during the �rst phase of the eruption.

For each example, the aerosol mask is reported providing in particular the following information

(Fig. 7.8):

� Minimum and maximum altitudes covered in measurements. These can vary for each site

depending on the corresponding lidar instrument performances and atmospheric conditions.

� ABL height, as derived directly by the lidar signals [Steyn et al., 1999].

� Volcanic aerosol layers are reported in shades of grey. Di�erent shades of grey refer to

di�erent aerosol backscatter values (βλ), in m−1sr−1. Black:
(
β532 > 1 × 10−6

)
; grey:(

1 × 10−7 < β532 < 1 × 10−6
)
; light grey:

(
β532 < 1 × 10−7

)
. Black:

(
β1064 > 5 × 10−7

)
;

grey:
(
5× 10−8 < β1064 < 1× 10−7

)
; light grey:

(
β1064 < 1× 10−8

)
. No distinction between

ash particles and smaller non-ash particles (mainly sulfate aerosol) of volcanic origin is made.
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The grey layers contain both of these components of aerosol, originating from the volcanic

eruption and then eventually being subject to modi�cations that occur during the transport

across the European continent.

� Aerosol types: aerosol in the ABL (mainly local) is reported in yellow; continental aerosol in

dark yellow, forest �res in light green; desert dust in orange; cloud/cirrus in cyan; volcanic

mixing cases are shown in magenta. If the identi�cation of the origin of particles in a layer

was not possible, the corresponding aerosol was classi�ed as unknown (purple).

Figure 7.8: Aerosol mask for the Palaiseau and Granada sites. (a) Palaiseau, April, 23�24th, 2010.
(b) Granada, May, 5�7th, 2010.

7.3.3.1 France and other Mediterranean countries

Fig. 7.8a shows the aerosol mask for Palaiseau, France, for the period 23�24 April 2010. This

is a very interesting period of the eruption event, where Saharan dust above 4 km and a layer of

volcanic particles beneath it was observed. Aerosol typing in situations with di�erent long-range

transported aerosols is really challenging. In such cases advanced lidar observational capability and

climatological analysis available at EARLINET sites could permit the aerosol typing. In particular,

intensive properties and their temporal evolution are used here for discriminating di�erent aerosol

types such as dust and volcanic particles. A detailed example of aerosol typing for mixing situations

is described in Mona et al. [2012].

Intrusion into the ABL was observed on 23 April starting at 11:00 UTC when the top altitude

of the ABL rose while volcanic particles entered into the ABL. A mixed aerosol layer consisting of

volcanic particles and Saharan dust was then observed on the evening of 23 April when the Saharan

dust layer started to decrease in altitude, merging with the volcanic aerosol layer.

7.3.3.2 Iberian peninsula

During most of the volcanic eruption period, the Iberian Peninsula was not a�ected by the presence

of the volcanic cloud. The only exception was a ten-day period in May during which the wind
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transported volcanic particles directly toward Spain and Portugal. Fig. 7.8b shows the volcanic

aerosol mask over Granada, Spain, for the period 5�7 May 2010. This example shows a situation

where volcanic particles were observed almost over the entire altitude range covered by the lidar

instrument and intrusion into the ABL was also observed. Mixing of volcanic particles with local

and dust particles was observed for the whole period up to an altitude of ca. 3 km. Above 3 km,

the particle linear depolarization ratio was measured to be around 7%. The values of 4�5 % for

the lower layer suggest the mixing of volcanic particles with other particles [Sicard et al., 2012;

Navas-Guzmán et al., 2013].

7.3.4 Distribution of volcanic aerosol over Europe

The methodology described in Sect. 7.3.3 was applied to all EARLINET data provided individually

by each station with the required 1 h temporal averaging. In this way, information about the aerosol

layering and types within the whole network was gathered. Geometrical properties of the volcanic

cloud over Europe are presented with high resolution (typically 60�180 m) in terms of the base

and top of the volcanic layer. Once the top and the base of a layer are identi�ed, the center of

mass of the aerosol layer can be also estimated from lidar pro�les. The center of mass gives us

information about the altitude where the most relevant part of the aerosol load is located. In

absence of wind, the temporal evolution of the center of mass of the aerosol layer could give insight

about the dynamics of the whole layer.

Assuming the micro-physical properties to be homogeneous within an aerosol layer, the center

of mass can be estimated as the mean altitude of the identi�ed layer weighted by the altitude-

dependent aerosol backscatter coe�cient [Mona et al., 2006]. Due to the large number of performed

measurements the arrival of volcanic cloud over Europe could be timed very accurately. Information

about cases of mixing with other aerosol types and intrusions into the local ABL was gathered.

Results are grouped into clusters representing �ve geographical regions: Central Europe � CE

(Fig. 7.9), Central Mediterranean � CM (Fig. 7.10a), Western Mediterranean � WM (Fig. 7.10b),

Eastern Mediterranean � EM, and Eastern Europe � EE. Following, Central Europe, Central

Mediterranean and Western Mediterranean clusters will be explained. Detailed information can

be found in Pappalardo et al. [2013]. For each cluster, the temporal evolution of the volcanic layer

is reported for each station for which a long record of data is available. Stations are listed in order

of decreasing latitude, i.e. from North (top) to South (bottom) for each cluster. Further data from

other stations (Andoya, Cork, Garmisch-Partenkirchen, Neuchatel, Payerne, So�a, Barcelona, and

Madrid) are not shown in the �gures.

Starting from 15 April, 00:00 UTC, the following quantities are provided hourly:

� Center of mass of the identi�ed volcanic layer (multiple layers are regarded as a unique

extended layer).

� Base and top of the identi�ed volcanic layer. These quantities are shown as black dots, blue

lines, and cyan lines, respectively.

� Scenarios where a layer with volcanic aerosol mixed with another kind of aerosol are noted
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Figure 7.9: Results for Central Europe cluster: Hamburg (hh), Cabauw (ca), Leipzig (le), Palaiseau
(pl) and Maisach (ms). The following quantities are reported hourly: center of mass of the identi�ed
volcanic layer (black dots), base and top of the identi�ed volcanic layer (blue and cyan lines, respec-
tively). Mixing with dust and continental aerosol is highlighted by orange and dark yellow symbols,
respectively. Mixing with local aerosol above the ABL is reported in green. The intrusion in the ABL
and, therefore, the mixing with local aerosol is indicated by a magenta cross located at the top of the
ABL as obtained from lidar observations. Red line on the abscissa axes indicates no measurements.

as well. For these cases the center of mass of the mixed layer is indicated.

� Mixes with dust and continental aerosol are highlighted by orange and dark yellow symbols,

respectively.

� Mixing with local aerosol above the ABL is reported in green.

� The intrusion into the ABL and the subsequent mixing with local aerosol is indicated by

magenta crosses located at the top of the ABL.

All cirrus clouds have been removed following the methodology described above, even though

the presence of volcanic particles within the cirrus clouds cannot be ruled out and probably occurred

regularly in the time period concerned. However, this aspect is outside the scope of the current

publication and a devoted study related to cloud properties during the volcanic event would be

required to address this issue.

Finally, a red line is shown on the abscissa axes of the �gures for hours when no measurements

were performed. This situation typically arose during adverse weather conditions, but sometimes

also because of technical problems. It should be noted that the network is not designed to be

fully operational around the clock and that intensive measurement series lasting for more than one

month imply a considerable e�ort for most of the stations.

Geometrical and optical properties of the volcanic layers are reported for each cluster in Table

7.3. Speci�cally, median values and minimum/maximum range values of base, top, center of mass,

aerosol backscatter coe�cient, and integrated backscatter, IB =
∫ Zu
Zl

βaer(u)dr (where Zl and Zu
are the lower and upper limits of the observed layer, respectively) at 532 nm are provided together

with the maximum aerosol backscatter coe�cient value (peak value) with corresponding altitude,

location, and time. The aerosol backscatter coe�cient at 532 nm has been chosen because it is

available in each cluster.
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Figure 7.10: Results for Central and Western Mediterranean clusters. (a) Same as Fig. 7.9 for Central
Mediterranean cluster: Ispra (is), L'Aquila (la), Naples (na), Potenza (po) and Lecce (lc). (b) Same as
Fig. 7.9 for Western Mediterranean cluster: Evora (ev) and Granada (gr).

Cluster Base [km] Top [km] CoM [km] IB[10−3sr−1] β PA Maxβ Max T [UTC]

Central Europe 1.7 6.5 3.3 1.0315 3.6 ± 2.6 2.8 26.6×10-6 16 April 2010 �

0.2�11.7 1.6�14.5 1.0�13.0 0.016�26 0.8�99.9 05:00 (hh)

Central 2.0 5.2 3.1 1.18 5.8 ± 3.9 3.1 6.7 × 10-6 20 April 2010 �

Mediterranean 0.5�13.8 2.1�16.2 1.4�14.5 0.009�9.2 0.4�19.2 08:00 (is)

Western 2.5 6.2 4.1 0.6865 2.1 ± 1.2 3 17.9×10-6 13 May 2010 �

Mediterranean 1.1�7.4 1.7�18.1 1.5�7.9 0.003�6 0.2�42.2 06:00 (gr)

Eastern 1.8 5.0 2.7 1.988 7.1 ± 5.3 1.3 5.02×10-6 22 April 2010 �

Mediterranean 1.0�6.4 1.7�12.2 1.5�7.7 0.02�10 0.6�23.4 17:00 (th)

Eastern Europe 3.5 5.7 4.5 0.48 1.8 ± 0.5 2.3 1.35×10-6 17 April 2010 �

1.2�8.2 2.9�13.4 2.8�8.2 0.3�2 0.8�3.4 14:00 (mi)

Table 7.3: Geometrical and optical properties of the volcanic layers for each of the clusters: median
value and minimum-maximum range value of base, top, center of mass (CoM), IB [10−3sr−1] and β
[10−7m−1sr−1] at 532 nm are reported together with the maximum backscatter value (peak value
[m−1sr−1]) with corresponding altitude (PA) [km], location, and time.
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Central Europe cluster.- During the �rst period (15�26 April) all stations within the CE (Ham-

burg, Cabauw, Leipzig, Palaiseau, and Maisach) observed volcanic particles (Fig. 7.9). Clouds

were also very frequently observed. Low clouds over Cabauw often did not permit lidar data inver-

sion. In the successive periods substantial cloud cover and rain limited the possibility to perform

measurements, hence data had to be taken more sporadically. The center of mass of the volcanic

layer was typically around 3�3.5 km for all stations apart from Maisach where it remained at about

2.5 km. Intrusion into the ABL was a common feature for almost all observations. In the case of

Maisach the volcanic layer came into contact with the boundary layer during the afternoon of 17

April. The process of mixing of the ash with locally produced aerosol was investigated with a very

high temporal resolution of one hour [Groÿ et al., 2011].

Typical volcanic layers were observed between 1.7 and 6.5 km height. Measured aerosol backscat-

ter coe�cients at 532 nm ranged from the minimum of 0.8×10−7 m−−1sr−1 to the maximum values

of 26.6× 10−6 m−1sr−1 observed at an altitude of 2.8 km over Hamburg at 05:00 UTC on 16 April.

The latter value represented the largest aerosol backscatter coe�cient measured by EARLINET

over Europe for the whole event. Extensive and intensive optical properties observed by the multi-

spectral Raman lidar systems available in this region, together with sun photometer observations,

allowed for the discrimination between sulfate particles and ash in the most intense volcanic layers

[Ansmann et al., 2011].

Central Mediterranean cluster.- Ispra, L'Aquila, Naples, Potenza, and Lecce (see Fig. 7.10a)

observed the volcanic cloud later in comparison to the Central Europe cluster. All the Italian

stations observed the volcanic cloud in the period 19�22 April 2010 with the center of mass of the

volcanic layer at lower altitudes (at about 2.8 km) compared to the Central Europe cluster. During

6�10 May and 12�15 May, when there was air mass transport from the west, the volcanic cloud was

observed only over the southern stations (Naples, Potenza, and Lecce). In the period 18�19 May,

the volcanic cloud was observed also in Northern Italy, over Ispra, in agreement with observations

in the Central Europe cluster and over Maisach in particular.

An apparent descending layer between 10 and 5 km a.s.l. was observed over Potenza from

21 April, 02:00 UTC to 11:00 UTC (146 to 155 h since 15 April, 00:00 UTC). In the Central

Mediterranean cluster, intrusion into the ABL was also observed very often. Mixing with Saharan

dust also occurred during May for all southern stations.

The values of the aerosol backscatter coe�cient were much lower compared to those measured

over Central Europe. Here typical backscatter coe�cient values at 532 nm were around 5.8× 10−7

m−1sr−1 with a maximum of 6.7 × 10−6 m−1sr−1 observed over Ispra on 20 April, 08:00 UTC.

Extensive and intensive optical properties measured in this cluster revealed the presence of mainly

sulfate aerosols with the presence in few cases of some aged diluted ash [Mona et al., 2012; Perrone

et al., 2012].

Iberian Peninsula.- Was a�ected by the volcanic cloud only for few days in May when the wind

transported the plume from Iceland towards the southwest. The weather was quite unstable, char-

acterized by the presence of clouds and rain over the peninsula. Only few sporadic measurements

were possible over Barcelona and Madrid and are therefore not reported here. More measurements

were possible for more western stations: Evora and Granada. The results are shown in Fig. 7.10b.
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First observations of the volcanic cloud were made on 5 May, 10:00 UTC (490 h since 15 April,

00:00 UTC) over Granada. The typical altitude for the center of mass of the volcanic layer was

about 4.1 km. Similar patterns in the center of mass behavior were observed at both stations on 6

May. There was, however, a time delay of about 8 h between Granada (535 to 544 h since 15 April,

00:00 UTC) and Evora (527 to 537 h since 15 April, 00:00 UTC). Data from Evora furthermore

showed the center of mass to be approximately 300 m higher than over Granada.

Typical aerosol backscatter coe�cient values at 532 nm were found to be for this cluster around

2.1 × 10−7 m−1sr−1 with the maximum of 19.7 × 10−6 m−1sr−1 observed over Granada at 06:00

UTC on 13 May. Multi-wavelength Raman lidar data from Granada were also used to retrieve

microphysical properties during the night from 7 to 8 May. Particle e�ective radius ranged from

0.30 ± 0.11 to 0.55 ± 0.13 µm in the volcanic plume along this night. This study indicated that

the volcanic plume over this station was mainly composed by sulfate and sulphuric acid droplets

[Navas-Guzmán et al., 2013].

Fig. 7.11 provides an overview of the volcanic aerosol content as observed by EARLINET.

IB at 532 nm is reported because the dataset of this optical property is the most abundant. For

each cluster the mean IB evaluated inside the volcanic aerosol layer identi�ed and discussed above

and averaged inside the cluster is reported for each hour of observation. As a reference, the IB as

measured at a representative site inside each cluster is reported too. Three main periods (15�26

April, 5�13 May and 17�20 May) are observed by the network and are characterized by: di�erent

vertical distributions (discussed above), di�erent amounts of volcanic particles, speci�c horizontal

path, and di�erent modi�cation and dispersion processes over Europe. During the �rst phase (15�26

April), the volcanic cloud moved from the CE cluster down to the CM and then to EM. An almost

constant IB at 532 nm over the clusters (around 0.007 sr−1) was observed in the �rst hours of the

volcanic cloud observation. A sudden decrease in the IB values was found for all the 3 interested

clusters down to 0.002 sr−1 for CE and 0.001 sr−1 for CM and EM. For the sake of completeness,

it is important to remember here that just a few hourly data of high IB at 532 nm are measured

over Hamburg in the early 16 April (see Table 7.3) which are out of the Fig. 7.11 scale. On the

contrary, small IB values are observed over EE and there are no observations of the volcanic cloud

over the WM.

During the second period, the volcanic aerosol content was instead around 0.005 sr−1 over the

WM and was considerably reduced in intensity during the transport over Europe toward CE, CM,

EM and EE. The third interesting phase (17�20 May) was characterized by moderately high IB

values (around 0.003 sr−1) on CE, CM and EM clusters. In this case, the IB over southern regions

was occasionally higher than CE ones, probably because of aging processes of the particles.

All these results are in fair agreement with the volcanic cloud dispersion as forecast by EURAD

(EURopean Air Pollution Dispersion) [EURAD , 2014] model: a complex dispersion of the volcanic

cloud over a large part of Europe for the �rst days after 15 April (Fig. 7.12a), the transport from

Iceland to the Iberian peninsula and afterwards in the west-east direction for the �rst days of May

(Fig. 7.12b) and �nally a well-de�ned transport along the north-west to south-east for the last

part of the event (Fig. 7.13). Overlaying the EURAD forecast with maximum in IB as observed

by EARLINET stations (Figs. 7.12 � 7.13) allows for a better appreciation of the fair agreement
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Figure 7.11: IB at 532 nm measured by EARLINET in the volcanic layers over the 5 clusters: Central
Europe (CE), Eastern Europe (EE), Central Mediterranean (CM), Eastern Mediterranean (EM), and
Western Mediterranean (WM). Mean values observed over the cluster are reported as black squares.
Values measured at representative site for each cluster are reported as red dots: Hamburg, Belsk,
Naples, Thessaloniki and Evora stations were selected as representative because of their large number
of backscatter measurements at 532 nm.

between model and observations. The illustration is based on the EURAD forecast provided on the

website daily during the event.

Figure 7.12: Dispersion of the Eyjafjallajökull (red star) volcanic aerosol plume (the approximate
location of the plume). (a) 3�5 km height range for 12:00 UT on 16 April (dark brown), 17 April (light
brown), 18 April (red), 19 April (orange), and 21 April 2010 (yellow). (b) 3�5 km height range for 12:00
UT on 6 May (dark brown), 7 May (light brown), 8 May (dark red), 9 May (light red), and 10 May
2010 (yellow). The maximum IB at 532 nm measured by each station is reported in black. The exact
time location of the maximum IB is reported in the legend.

7.3.5 RSLab measurement, May 8th, 2010

The RSLab conducted measurements during the volcanic alert whenever the atmospheric conditions

allowed to do (no low clouds, no rain). The atmospheric conditions in the Iberian peninsula were

much better for EARLINET Granada's lidar station, which caused that not enough Barcelona

records were included in Pappalardo et al. [2013].
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Figure 7.13: Map of Europe showing the dispersion of the Eyjafjallajökull (red star) volcanic aerosol
plume during the 17�20 May 2010 period. The approximate location of the plume in the 3�5 km height
range is given for 12:00 UT on 17 May (dark brown), 18 May (light brown), 19 May (red), and 20 May
2010 (yellow). The maximum IB at 532 nm measured by each station is reported in black. The exact
time location of the maximum IB is reported in the legend.

It must be noted that the measurements were taken using the RSLab 2+1 lidar system [Sicard

et al., 2010], because the actual 3+3 multi-spectral lidar system had just been deployed. However,

from the KFS inversion algorithm point of view, there is no di�erence between the range-corrected

lidar signals from either lidar system. Unlike Nabro's case, only the analog signal was needed since

the volcanic layer fell in the near range.

Fig. 7.14 is a 1-h measurement example showing the volcanic layer intrusion into the ABL for

the 8th of May, 2010, starting at 15:32 UTC.

According to HYSPLIT back-trajectories (not shown), layer between 2 to 3 km corresponds to

the volcanic plume coming from Eyjafjallajökull volcano. Regarding to KFS inversion, the RSLab

assumed a range-independent lidar ratio, Saer, of 50 sr at 532-nm channel. The AOD value was

0.10 and it was computed using the methodology presented in Reba [2010].

7.3.6 Discussion

First of all we can conclude that the EARLINET network, even if not operative, covered the

volcanic cloud dispersion in each identi�ed phase, providing a detailed 4-D analysis of the event.

In general there is good agreement in terms of timing of peak observations and in terms of aerosol

amount: larger IB values are observed at stations interested for the �rst by the plume transport,

afterwards a decrease in IB is observed moving far from the source. Di�erences are found in some

cases in particular for stations located at the boundary of the dispersion plume. More details about

the Eyjafjallajökull 2010 EARLINET relational database can be found in the data user manual

available on the EARLINET website.

Quantitative optical data, speci�cally aerosol backscatter and extinction coe�cient pro�les and

particle linear depolarization ratio at di�erent wavelengths, are also available in the EARLINET

database, in the volcanic category. From these data, it is possible to derive lidar ratio and Ångström

exponent data.
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Figure 7.14: Optical-atmospheric parameters inversion example for Eyjafjallajökull volcanic event
(Barcelona UPC, Campus Nord, May, 8th, 2010) by using RSLab Link-Detect GUI lidar inversion
platform. KFS method was used [Klett , 1985]. (a) Time-height plot of the analog range-corrected lidar
signal for the 532-nm channel. (b) Time-averaged range-corrected lidar signal. The calibration range is
3.7 km (red cross).The range interval (red lines) where the power calibrations is smoothed is ± 100 m.
(c) Aerosol (blue trace) and molecular (green trace) backscatter coe�cients, βaer and βmol, respectively.
Error bounds have been computed according to Sect. 3.4. (d) Aerosol (blue) and molecular (green)
extinction coe�cients, αaer and αmol, respectively. The Saer is 50 sr, and the estimated AOT is 0.10
[Reba et al., 2010].
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Table 7.4 summarizes the values for geometrical and optical properties (aerosol optical depth,

lidar ratio, linear particle depolarization ratio, and Ångström exponent) observed from speci�c

EARLINET multi-wavelength Raman lidar stations in speci�c periods of the event.

Date and hour UTC Location Height [km] AOD532 S355[sr] S532[sr] δ355 δ532 355/532

16-04-10, 14:15�15:30 Leipzig 2.6�4.3 0.35 60 ± 5 60 ± 5 0.33 ± 0.03 0.03 ± 0.40

17-04-10, 01:40�02:30 Munich 2.6�3.5 50�60 55 ± 5 0.35 ± 0.02 0.37 ± 0.02 -0.11 ± 0.18

20-04-10, 21:00�23:05 Potenza 2.0�3.0 42 ± 2 50 ± 3 0.15 ± 0.03 1.4 ± 0.2

07-05-10, 00:30�01:30 Evora 2.7�3.7 0.07 39 ± 10 32 ± 4 0.68 ± 0.63

08-05-10, 03:30�04:30 Granada 2.6�2.9 47 ± 7 48 ± 16 0.066 ± 0.005 0.79 ±
0.54

13-05-10, 20:16�21:01 Potenza 1.5�2.3 60 ± 11 78 ± 12 0.16 ± 0.07 1.1 ± 0.4

17-05-10, 20:15�20:45 Cabauw 2.7�6 0.53 42 ± 1 44 ± 24 0.30 ± 0.03 0.1 ± 1.1

19-05-10, 20:30�21:30 Athens 3.0�4.8 0.05 67 ± 13 89 ± 3 0.57 ± 0.26

Table 7.4: Values for geometrical properties and optical properties (aerosol optical depth (AOD),
lidar ratio (S ), linear particle depolarization ratio (δ), and Ångström exponent) observed from speci�c
EARLINET multi-wavelength Raman lidar stations in speci�c periods of the Eyjafjallajökull eruption
(April�May 2010). The table reports also the retrieved volcanic aerosol type.

7.4 Conclusion

Ground-based lidar networks are specially valuable during large scale events like long range trans-

port of dust and smoke or major volcanic eruptions, e.g. volcano Eyjafjallajökull, Iceland in 2010

[Pappalardo et al., 2013; Sicard et al., 2012] for they can reliably vertically resolve the aerosol layers

within the atmosphere. Multi-wavelength Raman lidar retrievals for example, can help track the

evolution of the aerosol properties as they age while transported [Mattis et al., 2010; Noh et al.,

2011; Alados-Arboledas et al., 2011]. And in volcanic events, lidars have also demonstrated to be a

good validation and/or input tool for transport models and retrievals of SO2 again thanks to lidars'

vertical resolving capabilities [Carn et al., 2007]. In an e�ort to facilitate knowledge and data ex-

change between lidar groups, the GALION was formed envisioning the cooperation among existing

lidar networks and also independent research institutes that carry lidar measurements across the

globe.

First application case.- In this study, although not formally in the framework of GALION, it

was shown how the synergy proposed by it would aid the scienti�c community to rapidly assess the

outcome of future (and possibly more explosive) volcanic eruptions.

The AOD values obtained from lidar data at 532 nm in this study (excluding Sede Boker)

ranged from 0.003 to 0.04, with an average of 0.018 ± 0.009 with Saer ranging from 38 to 50 sr. At

355 nm (CNR-IMAA, OHP and Granada) AOD ranged from 0.04 to 0.05. CALIOP global retrieval

obtained a maximum AOD of 0.03 at 532 nm mostly over Eastern Europe and Asia. As previously

mentioned, the AOD calculation from most of our lidar data (with exception of CNR�IMAA group)

relies on a reasonable estimation for the Saer value. 50 sr is likely to be close to the upper limit of

acceptable values of Saer for sulfate aerosols in the stratosphere, which would then result in even

lower AOD values. In either case, it is unlikely that the aerosol generated after Nabro's eruption

would have a signi�cant long-term e�ect on the radiative balance of the atmosphere like Pinatubo

did.

Second application case.- EARLINET made a very substantial e�ort to monitor the Eyjafjal-

lajökull eruption event in April�May 2010 by performing almost continuous lidar measurements
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during the entire period. The coordinated observations by EARLINET and a methodology that

was speci�cally designed ad hoc for this event provided a detailed description of the 4�D distribu-

tion of the volcanic cloud over Europe for the whole event. Geometrical properties of the volcanic

cloud over Europe were provided with high vertical resolution (typically 60�180 m) in terms of

base, top, and center of mass of the volcanic layer.

Mixing of volcanic particles with other kind of aerosol (dust, continental and local) was identi-

�ed. Mixing with Saharan dust was observed mainly during May for all southern stations.

The results about the 4�D distribution of the volcanic cloud are reported in a speci�c relational

database available on request through the EARLINET website.

Quantitative optical data, speci�cally aerosol backscatter and extinction coe�cient pro�les,

linear depolarization ratio at di�erent wavelengths, and derived lidar ratio and Ångström exponent

pro�les, are available through the EARLINET database in the volcanic category.



Chapter 8

Conclusions

This Chapter gives concluding remarks and future research lines mainly derived from Chaps.

2�7 of this Ph.D thesis.

8.1 Conclusions

On backscatter-coe�cient inversion error bounds.- Considering the two-component KFS lidar in-

version algorithm for elastic lidar signals (i.e., without wavelength shift in reception) two di�erent

types of error bounds have been formulated in Chapter 3: �rst-order error bounds (Sect. 3.3)

and total-increment error bounds (Sect. 3.4). Major achievements are that (i) their mathematical

formulation is in explicit analytical form (Tabs. 3.3-3.4) and (ii) error sources 1-4, namely, the

systematic error due to the backscatter-coe�cient calibration (error source 1), the systematic error

due to the range-dependent lidar ratio (error source 2), and random errors due to the measure-

ment noise at the calibration cell (error source 4) and at all-other range cells (error source 3) are

considered.

First-order error bounds have been obtained by using classic error-propagation techniques and

hence, they yield symmetric approximate bounds around the true backscatter-coe�cient pro�le.

Error bound amplitudes encompass most of Monte-Carlo's (MC) inverted population of backscatter

pro�les in many practical situations (SNR≥5, lidar-ratio relative error strength, p<30% , Sect. 3.5).

Total-increment error bounds (exact) at 3-σ yield exact results coincident with MC envelopes

for error sources 1, 2, and 4. Exact error bounds have not been found for error source 3 because of

the multi-dimensionality of the problem.

Though conceptually di�erent, error sources 1 and 4 cause similar e�ects on the inversion of the

backscatter coe�cient via Eq. 3.10, and thus, error sources 2 and 4 are the ones of most concern.

This Ph.D. contribution assimilates a long-time e�ort encompassing works from two others Ph.D.s,

Reba [2010]; Kumar [2012] in Rocadenbosch et al. [2012].

On ABLH retrieval using an Extended Kalman Filter (EKF).- Two di�erent remote sensing ap-

plications of the EKF retrieval of the ABLH have been presented in Chap. 5 (lidar case, Lange et al.

[2013]) and Chap. 6 (clear-air S-band radar case, peer-review journal publication in preparation).
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In the EKF application to ABLH estimation from backscattered lidar returns, it has been shown

that in atmospheric scenes with a well-mixed mixing layer, with no strati�cations (single layer),

and under high-SNR conditions (typically, SNR≥10 at the end of the ML) both classic ABLH-

detection methods (GM, LGM, IPM, THM, VCM) perform acceptably well yielding unambiguous

results (Fig. 5.2). The key advantage of the EKF arises under low-SNR conditions where the �lter

clearly outperforms classic ABLH-estimation methods. This is due to its capability to yield time-

continuous ABLH estimates, with no outliers or drop-outs in its estimates and without degrading

the temporal and spatial resolution of the lidar instrument. Besides, this time-continuous feature

of the �lter is a consequence of the way it combines past estimates with present ones in order to

match the lidar observables with the projected ones under a mean-square-error criterion over time,

and the way the �lter assimilates �a priori� error-uncertainty, model, and noise information via

covariance matrices. In this present implementation of the �lter an erf-like function has been used

to model the single-layer ML-FT transition departing from the work of Tomás [2011]. Therefore,

this predictive behavior is optimal to follow the convective boundary layer and residual layer along

the atmospheric diurnal cycle.

When the EKF is compared with classical ABLH-estimation methods, derivative methods (GM,

LGM) perform well only if the lidar-signal raw data is time averaged and range smoothed long

enough to su�ciently boost the SNR prior to application of these derivative methods. Neverthe-

less, this is in exchange of deteriorating the time and spatial resolution of the ABLH estimates.

Under these circumstances, the IPM performs poorly than the GM and the LGM because taking

�rst- and second-order derivatives on the range-corrected lidar signal observable largely ampli�es

measurement noise. On the other hand, the THM (non-derivative method) is hampered by the

di�culty to set a constant (i.e., non-adaptive) and physically consistent threshold to estimate the

ABLH over time.

The results above have been derived from practical measurements carried out with the RSLab

lidar (see discussion case in Sect. 5.3 5.3).

In the EKF application to ABLH estimation from clear-air S-band radar returns in CBL con-

ditions, its formulation departs from that of the lidar case but warrants some comments: First,

because the atmospheric returns of interest are due to refractive-index turbulence (Bragg's scatter-

ing) and not to atmospheric aerosols and molecules as in the lidar case, Rayleigh's scattering from

insects and birds becomes a major interferent noise source in this band of frequencies. Second, the

fast ML-FT transition characteristic of the EZ continues to enable application of the erf-like model

but, in contrast to the lidar case, radar returns in the ML and FT �plateau� intervals ([R1, R
′
1] and

[R′2, R2], respectively) become severely distorted in shape (Fig. 6.2), which is the most prominent

modeling error. Third, there was a much faster variability of the ABLH in the atmospheric scenes

studied, which imposes a further tracking di�culty to the �lter.

The present radar-EKF implementation has solved these di�culties as follows: (i) �Insect� noise

has virtually been canceled out by pre-processing the raw-radar re�ectivity signal following Fig. 6.3

block diagram (see example in Fig. 6.1). (ii) The unwanted departure from the idealized erf-like

mode has been solved by treating it as �modeling� noise and by assimilating it in the Kalman �lter

loop via the noise-covariance matrix, which has been estimated at each successive time tk. (iii)
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Adaptive range boundaries, [R1, R2] and [R′1, R
′
2], have been used to better inform the �lter about

the ML and FT intervals.

Radar-ABLH estimates have been validated against a Vaisala CL-31 lidar ceilometer (910-nm

wavelength) at NOAA's Boulder Atmospheric Observatory (BAO), Erie, Colorado as part of the

3-month stay of the candidate at the Dept. of Electrical and Computer Engineering of the Univer-

sity of Massachusetts (UMass) during this Ph.D. The correlation coe�cient obtained between both

instruments is ρ=0.93.

On RSLab lidar exploitation (elastic-wavelength channels).- A new �gluing� algorithm has been

presented in Chap. 4 to enhance the dynamic range elastic-wavelength channels (mainly, 355- and

532-nm wavelengths) providing simultaneous photon-counting (PC) and analog acquisition of the

lidar returns. In simple words, the gluing algorithm �ts the analog record to the dead-time-corrected

PC record in a range interval where both acquisition channels operate linearly. While in Licel's

gluing algorithm the range interval depends on which kind of photo-detector is being used, the

enhanced data-gluing algorithm presented in this Ph.D. automatically determines the spatial range

where both analog and photon-counting signals are more similar to glue them by using a combined

�tting-error-norm and SNR criterion. Besides, formulation of both Licel's (classic algorithm) and

�new� gluing algorithm has been presented in least-squares (LSQ) signal-processing form (Fig. 4.1).

Concerning exploitation of the RSLab lidar for atmospheric observation, two application cases

have been discussed in Chap. 7:

As mentioned, it has been shown how ground-based lidar networks become specially valuable

during large-scale events of dust and smoke transport as in the eruptions of Eyjafjallajökull volcano

(Iceland 2010) [Pappalardo et al., 2013] and Nabro volcano (Ethiopia, 2011) [Sawamura et al., 2012]

in order to identify the aerosol layers within the troposphere, track the evolution of aerosol properties

and as inputs for transport models and retrievals of SO2.

In the �rst application case (Sect. 7.2), the AOD values obtained from lidar data at 532 nm

(excluding Sede Boker) ranged from 0.003 to 0.04, with an average of 0.018 ± 0.009 with Saer

ranging from 38 to 50 sr. Because in the AOD calculation all involved research groups (except

CNR-IMAA) used an estimated lidar ratio value of 50 sr (likely to be close to the upper limit

of acceptable values for sulfate aerosols in the stratosphere) the AOD values given may even be

slightly overestimated.

In the second application case (Sect. 7.3) EARLINET lidar network has been shown an example

of coordinated continuous measurements to continuously monitor Eyjafjallajökull eruption event

(April-May 2010). The results of the 4-D (space-time) distribution of the volcanic cloud (geometrical

properties o the volcanic cloud cover, mixture composition of the volcanic particles with other

kinds of aerosols, quantitative optical extinction and backscatter coe�cients, depolarization ratio,

lidar ratio, spectral dependency) are reported in a speci�c relational database available on request

through the EARLINET website, EARLINET [2013].

All in all, atmospheric remote sensing by means of lidar, clear-air radar, and cooperative sen-

sors (e.g., radiometers, sun-photometers, and in-situ sensors), specially when operated in network

multi-spectral fashion and in combination with appropriate signal processing tools and transport
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models holds promise of successful monitoring of our planet. GALION (Global Atmospheric Watch

Aerosol Lidar Observation Network)-GEOSS (Global Earth Observation System of Systems) are

key initiatives towards this aim.

8.2 Future lines

(1) It has been shown that the EKF can be applied to di�erent types of active remote sensing

systems (lidar/ceilometer, clear-air S-band radar) with excellent results. Thus, both the lidar-EKF

and the radar-EKF estimate the ABLH in good agreement with well-known classic methods, and

clearly outperform them when the SNR is low or when interferent noise (�insect� noise in the radar

case) is present. This is done without virtually degrading the temporal or spatial resolution. Within

this framework, three future research lines arise:

� Improve the present realization of the EKF towards the identi�cation of multiple layers in

the ABL (e.g., dust layers, �re plumes), intruding clouds, and towards the identi�cation of

the stable, convective, and residual boundary layers.

� Regarding the radar re�ectivity and, as proposed by one of the reviewers of this PhD, it is

recommended to also test a di�erent model for the ABL radar-re�ectivity pro�le (instead

of the erf-like pro�le used in Chap. 6, which might yield even better results. Speci�cally,

removing the assumption that the radar re�ectivity is uniform throughout the mixing layer.

Hints to such a pro�le shape are given in Fairall [1987].

� Concerning the lidar (and the collocated EU-project NEPTUNE within the RSLab), it is rec-

ommended to extent the application of the EKF-ABLH estimation to the Doppler lidar case,

from which wind velocity and direction in the ABL can be used as measurement observables

to the �lter.

� Test the ABLH-EKF estimation approach in atmospheric instruments other than lidars and

radars.

(2) The fact that analytical error bounds in explicit mathematical form (joint research work)

have been derived for the optical atmospheric backscatter coe�cient warrants a similar e�ort to be

developed for the extinction error bounds.

(3) Last but not least, it is recommended to better exploit the synergy between remote sensing

instruments (e.g., lidar-radar, lidar-radiometer, radar-radiometer) in the same way that lidar, sun-

photometer, and radiosonde data is systematically analyzed in nearly all EARLINET stations.
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