
Departament d’Enginyeria Electrònica

Proposal and development of a highly
modular and scalable self-adaptive

hardware architecture with parallel
processing capability.

Thesis submitted in partial fulfillment of the
requirement for the PhD Degree issued by the
Universitat Politècnica de Catalunya, in its
Electronic Engineering Program.

Javier E. Soto Vargas

Director: Juan Manuel Moreno Arostegui

Barcelona, España July , 2014

This document is prepared to be printed double-sided.

To my wife Carol,
for her immense love and unconditional support,

thanks for always being there for me.

To my two little dinosaurs: Gabriela and Daniel,
for the games that we will play,

and for the life that you will teach me to discover.

This thesis is for you, my beautiful family.

Con mucho cariño para mis padres: Evandro ¨ y Nair.
Gracias por el gran ezfuerzo y sacrificio

que le han brindado a todos sus hijos.

Para toda mi famila, a la que siempre tengo presente.
A mis hermanos: Lina, Diana y Raúl,

a mi sobrino Nicolás.
y a la memoria de mi tio Enrique ¨.

Para Amira, Dalila y Sarah.
Gracias por el apoyo y cariño que le han brindado a la familia

durante esta etapa de nuestras vidas, lejos de casa.

Acknowledgements /
Agradecimientos

I consider myself the best friend of my friends,
and I think any of them love me as much

as I love the friend I love less.

Me considero el mejor amigo de mis amigos,
y creo que ninguno de ellos me quiere tanto
como yo quiero al amigo que quiero menos.

Gabriel Garćıa Márquez (1927 – 2014)

First, I would like to thank my thesis supervisor, Professor Juan Manuel Moreno Arostegui,
for their guidance during my studies in the Universitat Politècnica de Catalunya. Thank you
for your professional and appropriate corrections in the preparation of this work. I would also
like to thank the professors Joan Cabestany and Jordi Madrenas for kindly receiving me in the
AHA research group. Thank you all for opening the doors of this university, and give me the
opportunity of professional growth during the development of my doctoral studies.

Quiero agradecer a todos los que me han brindado su apoyo directo e indirecto durante el
desarrollo de mis estudios de doctorado. Escribiendo estas ĺıneas siento deseos de mencionar a
muchas personas que he conocido y con quien he compartido algún momento de mi vida, tanto de
carácter personal como profesional, con aquellos que han sido parte mi formación como persona
y como ingeniero. Con ellos seguramente podremos recordar alguna anécdota o algún momento
especial que se mantenga presente en la memoria, uno de esos que siempre se recuerdan con una
sonrisa. Para todos los que aparecen en estas ĺıneas y los que no, muchas gracias.

Gracias a la Escuela Colombiana de Ingenieŕıa por formarme como Ingeniero y permitirme
ser parte de su comunidad. Gracias a mis compañeros de universidad: Angela, Gustavo, Jaime,
Angel y Andrés, con quienes compart́ı y espero seguir compartiendo, la profesión que ha marcado
el futuro de nuestras vidas. Gracias a mis profesores, algunos de los cuales tengo el privilegio
de tener como compañeros y amigos. Gracias a Henry por su amistad y apoyo en este proceso.
Gracias a Alex y Gina, con quien compart́ı (sufŕı) en paralelo este proceso de formación cient́ıfica
y de crecimiento familiar.

Gracias a mis grandes amigos del colegio, los fetzes: Luis Guillermo, José Alberto, Mauricio,
Gustavo, Carlos, Julio y Luis Alfonso. Con quienes viv́ı las aventuras más emocionantes de mi
vida antes de salir de Colombia. Gracias a todos ellos, a los que que considero grandes amigos,
con los que he compartido muchas fiestas, innumerables carcajadas y alguna copa de aguardiente,
estoy seguro vendrán nuevas aventuras y seguiremos viviendo grandes momentos que serán
inolvidables, ahora en su gran mayoŕıa con familia incluida.

vii

Acknowledgements / Agradecimientos

Gracias a Mauricio (Mao), que me brindó su generosa e incondicional amistad durante estos
casi siete años en Barcelona. Agradezco también a los demás amigos en España: el siempre amable
Rodrigo, los compañeros doctorandos en la UPC, los compañeros de trabajo en Delphi y Wonesys.
Todos ellos, culés o merengues en su mayoŕıa, con quienes compart́ı muchos momentos de carácter
académico, laboral y de ocio, que sin duda recordaré tanto como este periodo en la universidad.
Podŕıa asegurar que con la gran mayoŕıa compart́ı charlas personales, académicas, profesionales
y sobre todo deportivas, incluyendo especulaciones pre y post partidos de liga, felicidad en las
victorias y tristeza en las derrotas, pero siempre con respeto y amabilidad. También he tenido la
oportunidad de compartir con todos ellos claritas, medianas, mojitos, cortados, cafés, biquinis,
bocadillos, combinados, menús, d́ıas de marcha, partidos de fútbol, ping-pong, futboĺın y muchos
otros, pero sobre todo siempre brindándome buenos momentos que nunca olvidaré en mi paso
por Barcelona.

Agradecimientos muy especiales para mi suegra Amira (Aguila 3), mi cuñada Dalila y mi
sobrina Sarah, quienes me han brindado un valioso apoyo durante el tiempo que llevamos en
Barcelona, principalmente estando muy pendientes de la familia, situación que me permit́ıa
trabajar en el desarrollo de este proyecto de tesis. Su cercańıa a pesar de la distancia, nos ayudo
a consolidar una unión familiar que fue y es aún un importante soporte para mı́ y sobretodo
para mı́ familia, y que por lo tanto me ayudó a mantener la esperanza y tranquilidad de que
este trabajo finalmente se lograŕıa. Gracias también a todos los demás miembros de la familia
Sánchez, que siempre nos han acompañado en este proceso.

Quiero agradecer a mi familia en Colombia, a quienes siempre tengo presentes a pesar de
la distancia y del poco contacto que he podido brindarles en este tiempo. Gracias a mi Padre,
luchador incansable y gran formador de mi carácter, al que recuerdo con profundo sentimiento y
al que pido disculpas por no estar junto a él en los momentos más duros. Gracias a mi madre,
el pilar de la familia, que con sus sonrisas y lágrimas ha llenado siempre a su hogar de amor
y alegŕıa. Gracias a cada uno de mis hermanos: Lina, Diana y Raúl, y a mi sobrino Nicolás;
recordarlos y saber que siempre estarán alĺı, me llenó de buena enerǵıa para seguir adelante en
el que fue un largo, intermitente y duro proceso. Gracias a mi t́ıo Enrique por su eterna bondad
y su su sonrisa siempre amigable. Gracias también a quienes rodearon constantemente a mi
madre y hermanos: familiares, amigos, las t́ıas (y t́ıos) Vargas, sobrinos y primos. El solo hecho
de saber que mi madre estaba o estuvo con alguno de ellos cada vez que me contaba algo de
lo que hacia, me tranquilizaba y me hacia olvidar por un momento de lo triste que es no estar
a su lado para compartir tantos momentos importantes que me perd́ı por estar lejos de ellos,
intentando conseguir un t́ıtulo que no me pertenece solo a mı́.

Por último y sin duda, los agradecimientos mas importantes son para mi esposa e hijos:
Gabriela y Daniel. Gracias Carol por compartir conmigo este largo proceso, tu presencia y
compañ́ıa ha sido fundamental en todos los aspectos, agradezco profundamente tu apoyo y pa-
ciencia en el desarrollo de este trabajo. Son ellos por los que era impensable rendirse o dejar
atrás algo que durante mucho tiempo pareció una meta lejana e incierta. También aprovecho
para pedirles disculpas por gastar gran parte de mi tiempo libre, parte de mi atención y concen-
tración en el desarrollo de algoritmos, lineas de código, solución de innumerables inconvenientes
o cualquier otro aspecto relacionado con el doctorado, el cual nunca supe con certeza como
compartir con ustedes. Gracias hijos por recordarme lo divertido que es jugar a cualquier cosa,
desordenar todo sin importar las consecuencias y sobre todo no hacerle caso a la mamá. Gracias
por los grandes e inolvidables momentos que hemos compartido en Barcelona, los dos más impor-
tantes cuando Millonarios y el Real Madrid . . . , mentiras, el nacimiento de nuestros dos pequeños,
a quienes pondré a leer algunas lineas de este trabajo cuando se porten mal y quiera castigarles, y
en el supuesto que esto continuara, tendŕıan que explicarme alguno de los algoritmos propuestos
de la Arquitectura de Hardware Auto-adaptable con Capacidad de Procesamiento en Paralelo

viii

Acknowledgements / Agradecimientos

que propuse en esta tesis doctoral. Este trabajo es para todos ustedes.
Agradezco a la persona que de manera anónima recuperó el morral que conteńıa el portátil

con toda la información referente al trabajo de doctorado mientras inexplicablemente lo descuidé
haciendo un trámite. Gracias a él o ella puedo escribir estas ĺıneas y por lo tanto evitar una
situación que recordaré como una anécdota y una lección más en la vida: “el gran susto del
último d́ıa de tesis”.

Moltes Gràcies Barcelona, Ciutat Comtal.

ix

Abstract

Education is what remains after one has forgotten
what one has learned in school.

La educación es lo que queda después de que uno ha
olvidado lo que se ha aprendido en la escuela.

Albert Einstein (1879 – 1955)

This dissertation describes a novel unconventional self-adaptive hardware architecture with
capacity for parallel processing. For scalability issues, this bioinspired architecture is based on
a regular array of homogeneous cells. The proposed programmable architecture implements
in a distributed way self-adaptive capabilities including self-placement and self-routing which,
due to its intrinsic design, enable the development of systems with runtime reconfiguration,
self-repair and/or fault tolerance capabilities. Additionally, this work defines the configuration
and the functional units of the elementary cell, which implements the self-adaptive and parallel
processing capabilities respectively.

The physical implementation of this architecture is composed of two-layers, interconnected
cells in the first level and interconnected switch and pin matrices in the second level. Several chips
can be interconnected for enlarging the cell array. Any application scheduled to the system has to
be organized in components, where each component is composed by one or more interconnected
cells. The interconnection of cells inside a component is made at cell level (first layer), while the
physical interconnections of components are made in the second layer. Additionally, two layers
are defined as conceptual organization for the implementation of general purpose applications:
the SANE and the SANE assembly. The SANE (Self-Adaptive Networked Entity) is composed
by a group of components. This is the basic self-adaptive computing system. It has the ability
to monitor its local environment and its internal computation process. The SANE ASSEMBLY
(SANE-ASM) is composed by a group of interconnected SANEs.

The processing capabilities of the cell are included in its Functional Unit (FU), which can
be described as a four-core configurable multicomputer. The FU includes twelve programmable
configuration modes , i.e., each cell permits to select from one to four processors working in
parallel, with different size of program and data memories. The cores are grouped or not depending
of the configuration mode, allowing program memory sizes of 64, 128, 192 or 256 instructions.
Similarly, the data memory can be combined in width and length, achieving combinations for
data processing of 8, 16, 24 and 32 bits.

The self-adaptive capabilities of the cell are executed mainly by the Cell Configuration Unit
(CCU). The self-placement algorithm is responsible for finding out the most suitable position in
the cell array to insert the new cell of a component. The self-routing algorithm is executed since
the insertion of the second cell of a component, each time that the self-placement process ends.
This algorithm allows interconnecting the ports of the FU of two cells through the cell ports.
The self-placement and self-routing processes allow for performing complex functionality changes
in real time, these processes endow the system with enhanced functionality, enabling the system

xi

Abstract

to change itself, this allows for the implementation of run-time self-configuration, without the
need for any configuration manager. The absence of a centralized supervision system permits
cells to perform some of the tasks in a distributed way.

The architecture proposed includes two mechanisms of fault tolerance. One of these is the
Dynamic Fault Tolerance Scaling Technique, that has the ability to create and eliminate the
redundant copies of the functional section of a specific application. This is possible due to the
ability of runt-time self-configuration included in the architecture. The other mechanism of fault
tolerance is a dedicated or static Fault Tolerance System. It provides redundant processing
capabilities that are working continuously. When a failure in the execution of a program is
detected, the processors of the cell are stopped and the self-elimination and self-replication
processes start for the cell (or cells) involved in the failure. This cell(s) will be self-discarded for
future self-placement processes.

An FPGA-based prototype and a software tool have been built for demonstration purposes.
The prototype includes all the self-adaptive capabilities described in this document. The pro-
totype has been developed in two chips, each one is a Virtex4 Xilinx FPGA (XC4VLX60).
The physical design includes the cell array together with a component-level routing system.
Additionally a Control Microprocessor (CµP) and other peripherals provide support for the
implementation of general purpose applications in the prototype.

With the purpose of having a complete development system, the software tool SANE Project
Developer (SPD) has been implemented. The SPD is an Integrated Development Environment
(IDE) that allows generating the memory initialization data for the control microprocessor
inside the prototype. The SPD allows the creation and edition of various files that describe the
configuration of a SANE-ASM. The main (or top) file includes special SANE-ASM instructions
(SASM files), which are equivalent to the assembler language for classic processors. The SPD
allows the creation and edition of all related information of the SANE-ASM. In addition, the
SPD automatically builds the final hexadecimal file with the configuration of the SANE-ASM
that will be downloaded in the FPGA-based prototype.

xii

Resumen

No man should escape our universities
without knowing how little he knows.

Ningún hombre debe escapar de nuestras
universidades sin saber lo poco que sabe.

Julius Robert Oppenheimer (1904 – 1967)

Esta tesis doctoral describe una arquitectura de hardware auto-adaptable novedosa y no
convencional con capacidad de procesamiento en paralelo. Por razones de escalabilidad, esta
arquitectura bioinspirada está basada en una matriz regular de células homogéneas. La arqui-
tectura propuesta es programable, e implementa de manera distribuida diversas capacidades
auto-adaptables incluyendo el auto-emplazamiento y auto-enrutamiento, los cuales debido a su
diseño intŕınseco, permiten el desarrollo de sistemas reconfigurables en tiempo de ejecución, aśı
como de sistemas auto-reparables y/o con capacidades de tolerancia a fallos. Adicionalmente
este trabajo define las unidades de configuración y funcional de la célula, las cuales implementan
las capacidades auto-adaptables y de procesamiento en paralelo respectivamente.

La implementación f́ısica de esta arquitectura esta compuesta de dos capas, que incluyen
células interconectadas en el primer nivel y matrices de conmutación y pines en el segundo
nivel. Las células ejecutan la funcionalidad básica del sistema. Diversos chips pueden ser inter-
conectados para aumentar la matriz de células en el sistema. Cualquier aplicación que se quiera
programar en el sistema debe estar organizada en componentes, donde cada componente está
compuesto por una o más células interconectadas. La interconexión de células dentro de un
componente es realizado en el mismo nivel de la matriz de células (primera capa), mientras que
la interconexión de componentes es realizada en la segunda capa. Adicionalmente, se definen
dos capas conceptuales que son usadas con propósitos organizativos en aplicaciones de propósito
general, estas son: el SANE y el SANE-assembly. La entidad auto-adaptable interconectada o
SANE (Self-Adaptive Networked Entity) está compuesta por un grupo de componentes. Este es
el sistema de computación auto-adaptable básico, el cual tiene la habilidad de monitorizar su
entorno local y su proceso de computación interno. El Conjunto de SANEs o SANE ASSEMBLY
(SANE-ASM) esta compuesto por un grupo de SANEs interconectados.

Las capacidades de procesamiento de la célula están incluidas en su unidad funcional o
Functional Unit (FU). Esta puede ser definida como un multicomputador configurable con cuatro
núcleos. La FU tiene doce modos de configuración programables, por lo que cada célula permite
seleccionar entre uno y cuatro procesadores trabajando en paralelo con diversas capacidades en
las memorias de programa y datos. Los núcleos son agrupados o no dependiendo del modo de
configuración, permitiendo que la memoria de programa pueda implementar 64, 128, 192 o 256
instrucciones. De manera similar, la memoria de datos puede ser expandida a lo largo y/o ancho,
permitiendo procesamiento de datos para 8, 16, 24 y 32 bits.

Las capacidades auto-adaptables de la célula son ejecutadas principalmente por la unidad de
configuración de la célula o Cell Configuration Unit (CCU). El algoritmo de auto-emplazamiento

xiii

Resumen

es el encargado de encontrar la posición mas adecuada dentro de la matriz de células para
insertar la nueva célula de un componente. El algoritmo de auto-enrutamiento es ejecutado a
partir de la inserción de la segunda célula de un componente, cada vez que el algoritmo de
auto-emplazamiento termina. Este algoritmo permite interconectar los puertos de las FU de
dos células a través de los puertos de la célula. Los procesos de auto-emplazamiento y auto-
enrutamiento permiten realizar en tiempo real cambios funcionales complejos; estos procesos
dotan al sistema de una mayor funcionalidad, permitiendo que el sistema cambie por si mismo,
lo que permite la implementación de la auto-configuración en tiempo real, sin la necesidad de
ningún gestor de configuración. La ausencia de un sistema de supervisión centralizado permite a
las células realizar algunas de sus funciones de manera distribuida.

La arquitectura propuesta incluye dos mecanismos de tolerancia a fallos. Uno de estos es una
técnica escalonada y dinámica de tolerancia a fallos, que tiene la habilidad de crear y eliminar
copias redundantes de la unidad funcional (o de cómputo) de una aplicación espećıfica. Esto es
posible gracias a la capacidad de auto-configuración en tiempo real incluida en la arquitectura. El
otro mecanismo de tolerancia a fallos es el Sistema de Tolerancia a Fallos dedicado o estático. Este
provee capacidades de procesamiento redundante que están en funcionamiento continuamente.
Cuando un fallo en la ejecución de un programa es detectado, los procesadores de la célula
son detenidos y los procesos de auto-eliminación y auto-replicación se inician para la célula (o
células) implicada en el fallo. Esta(s) célula(s) serán auto-descartadas para futuros procesos de
auto-emplazamiento.

Se desarrolló un prototipo basado en FPGAs y una herramienta de software para comprobar
la funcionalidad del sistema. El prototipo incluye todas las caracteŕısticas de los sistemas auto-
adaptable descritas en este documento. El prototipo ha sido desarrollado en dos chips, cada uno es
una FPGA Virtex4 de Xilinx (XC4VLX60). El diseño f́ısico incluye el arreglo de células junto a un
sistema de enrutamiento a nivel de componentes. Adicionalmente incluye un microprocesador de
control o CµP (Control Microprocessor) y otros periféricos, que dan soporte a la implementación
de aplicaciones de propósito general en el prototipo.

Con el propósito de tener un sistema de desarrollo completo, la herramienta de software
SPD (SANE Project Developer) ha sido desarrollada. El SPD es un ambiente integrado de
desarrollo (Integrated Development Environment o IDE) que permite generar y descargar la
memoria de inicialización de datos para el CµP dentro del prototipo. El SPD permite la creación
y edición de archivos que describen la configuración de un SANE-ASM. El archivo principal
incluye instrucciones especiales para el SANE-ASM (archivos SASM), el cual es equivalente al
lenguaje de ensamblador de un procesador clásico. El SPD permite la creación y edición de toda
la información relacionada con el SANE-ASM, aśı mismo construye de manera automática el
archivo hexadecimal de configuración que será descargado a la FPGA del prototipo.

xiv

Contents

Acknowledgements / Agradecimientos vii

Abstract xi

Resumen xiii

Contents xv

List of Tables xxi

List of Figures xxiii

Listings xxv

1 Introduction 1

1.1 Adaptive and Bioinspired Systems . 1

1.2 Self-Adaptive capabilities in the proposed architecture 2

1.3 Architectures for parallel computing . 2

1.4 Preliminary work . 3

1.4.1 POEtic . 3

1.4.2 PERPLEXUS . 4

1.5 State of the art . 4

1.5.1 Confetti . 4

1.5.2 eDNA . 4

1.5.3 Self-routing reconfigurable fault-tolerant cell array 4

1.5.4 CEDAR . 5

1.5.5 Amorphous . 5

1.5.6 Cell Processors - Sony-Toshiba-IBM team 5

1.5.7 ADRES . 5

1.5.8 MorphoSys . 5

1.5.9 REMARC . 6

1.5.10 XPP (eXtreme Processing Platform) . 6

1.5.11 The SANE Virtual Processor (SVP) . 7

1.5.12 HTHREADS . 7

1.6 Architecture Overview and Contributions . 8

1.6.1 Scalability . 8

1.7 Document Organization . 9

1.8 Conclusions . 9

xv

CONTENTS

2 System Architecture 11

2.1 Conceptual organization . 11

2.2 Overview for the configuration of an application 11

2.2.1 Connection of cells . 12

2.3 Overview of System Architecture . 13

2.4 Chip Architecture . 14

2.5 Global Configuration Unit . 14

2.6 Cluster . 14

2.7 Cell Architecture . 14

2.7.1 Functional Unit (FU) . 17

2.7.2 Cell Configuration Unit (CCU) . 17

2.8 Switch Matrix . 17

2.9 Pin Interconnection Matrix . 18

2.10 Expansion Signals . 18

2.10.1 Global Signals for Self-routing Process . 20

2.11 Internal and External Networks . 20

2.11.1 Communication Interface . 20

2.11.2 Data Transmission . 23

2.11.3 Comparison Process . 23

2.12 Communication Protocol for Internal Network . 24

2.13 Communication Protocol for External Network 26

2.14 Prototype architecture . 27

2.15 Conclusions . 30

3 Functional Unit Architecture 31

3.1 General Description . 31

3.2 FU Ports . 32

3.3 Architecture of Processors . 33

3.3.1 Cores . 33

3.3.2 Processor . 33

3.3.3 Configuration modes . 34

3.4 Data Memory . 36

3.4.1 General Purpose Registers (GPRs) . 36

3.4.2 Configuration and Status Registers (CSRs) 36

3.4.3 Data Memory Map . 37

3.5 Program Memory and Instructions Set . 37

3.6 Output Multiplexing System . 37

3.7 Fault Tolerance System (FTS) . 37

3.7.1 Fault Tolerance Input Ports . 40

3.7.2 Fault Tolerance Modes . 41

3.7.3 Configuration of FTS . 41

3.8 Conclusions . 42

4 Self-Adaptive Processes 43

4.1 Summary . 43

4.2 Previous Considerations . 44

4.3 Initial State, Cell Address and Connection Tables 44

4.4 Creation of Components in a Chip . 45

4.5 Self-Placement Process . 46

xvi

CONTENTS

4.5.1 Self-Placement of the First Cell of a Component 47

4.5.2 Self-Placement of Other Cells of a Component 47

4.6 Self-Routing Process . 49

4.7 Self-Routing at Cell Level . 49

4.7.1 Configuration of source and target cells for cell connections 49

4.7.2 Expansion Process at Cell Level . 50

4.8 Self-Routing at Component Level . 53

4.8.1 Configuration of Source and Target Cells for Components Connections . . 54

4.8.2 Expansion Process at Component Level 54

4.9 Self-Elimination and Self-Replication . 58

4.9.1 Elimination of a Cell inside a Chip . 58

4.10 Self-Configuration by means of Subprocesses . 59

4.10.1 Delete a Component inside a Chip . 59

4.11 Self-Derouting Process . 59

4.11.1 Cell Selection for Derouting Process of a Single Cell 60

4.11.2 Cell Selection for Derouting Process of a Entire Component 60

4.11.3 Release Process . 61

4.12 Conclusions . 63

5 Development and Implementation of Self-adaptive Applications with Parallel
Processing Capabilities. 65

5.1 SANE ASSEMBLY Development System . 65

5.2 Overview for the Configuration of an Application 66

5.3 Description of SASM Instructions . 68

5.3.1 Creation of Components . 68

5.3.2 Connection of Components . 69

5.3.3 Delete Components . 70

5.3.4 Write Functional Unit Program Memories and Configuration Registers . . 71

5.3.5 Restart, Enable and Disable Processors 73

5.3.6 System in “Wait” State for Runtime Self-configuration 74

5.3.7 Runtime Self-configuration by means of Subprocesses 75

5.3.8 Static Fault Tolerance Configuration . 76

5.4 Development of Applications . 78

5.5 Application Example: Dynamic Fault-Tolerance Scaling 81

5.5.1 Dynamic Fault-Tolerance Structure . 81

5.5.2 Description of the application . 82

5.6 Application Example: Static Fault-Tolerance . 84

5.7 Conclusions . 85

6 Publications and Results 87

6.1 Publications . 87

6.1.1 Neurocomputing Journal . 87

6.1.2 Advances in Computational Intelligence - IWANN 2011 88

6.1.3 International Conference - Reconfig’09 . 88

6.1.4 International Conference - DCIS 2008 . 89

6.1.5 International Conference - JCRA 08 . 89

6.1.6 International Conference - ReCoSoC’08 90

6.2 Code Generated . 90

6.2.1 Hardware . 90

xvii

CONTENTS

6.3 Firmware . 92

6.4 Software . 92

6.5 Synthesis Process for Prototype . 94

6.6 Conclusions . 94

7 Conclusions and Future Work 97

7.1 Conclusions . 97

7.1.1 About System Architecture . 98

7.1.2 About the Self-Adaptive Processes . 99

7.1.3 About Integrated Development System . 100

7.2 Future Work . 100

A Instructions Set for Functional Unit Processors 103

A.1 Instructions Format . 103

A.2 Instructions Set . 104

B Data Memory Registers of Functional Unit Processors 115

B.1 Abbreviations . 115

B.2 Input Ports Registers . 116

B.3 Output Ports Registers . 117

B.4 Code Condition Register . 119

B.5 Mode Register . 120

B.6 Family Register . 121

B.7 Output Ports Configuration Register (PORTS) 122

B.8 Subprocess Configuration and Status Register (SUBPCSR) 124

B.9 Fault Tolerance Configuration and Status Register (FTCSR) 125

C Flow Diagrams for Self-adaptive Processes in System 127

C.1 Transmission and Reception in Cell . 127

C.2 Self-Placement Processes in CCU . 128

C.2.1 Flow Diagram for Insertion of First Cell of a Component 128

C.2.2 Flow Diagram for Insertion of Other Cells of a Component 128

C.3 Self-Routing Processes in CCU . 130

C.3.1 Flow Diagram to select the Source and Target cells before the Expansion
Process at Cell Level . 130

C.3.2 Main Flow Diagram in CCU . 131

C.3.3 Expansion Process at Cell Level - Search Phase 133

C.3.4 Expansion Process at Cell Level - Configuration Phase 135

C.3.5 Release Process at Cell Level . 136

C.4 Self-Routing Processes in SMCU . 138

C.4.1 Expansion Process at Component Level - Search Phase 139

C.4.2 Expansion Process at Component Level - Configuration Phase 141

C.4.3 Release Process at Component Level . 143

C.5 Conclusions . 145

D SANE Project Developer (SPD) 147

D.1 Description . 147

D.2 Files Edition . 149

D.2.1 Assembler Files . 150

D.2.2 SANE Assembler Files . 151

xviii

CONTENTS

D.3 Functions . 152
D.3.1 File Menu . 152
D.3.2 Edit Menu . 152
D.3.3 Project Menu . 153
D.3.4 Tool Menu . 154
D.3.5 View Menu . 156
D.3.6 Communication Menu . 156
D.3.7 Help and Admin Menus . 156

D.4 Downloading Project to Prototype . 157
D.4.1 Communication Test . 158
D.4.2 Clear Memory . 158
D.4.3 Write Memory . 158
D.4.4 Read Memory . 159

D.5 Conclusions . 160

E Listings of Example Applications 161
E.1 Listings for Dynamic Fault Tolerance Scaling Application Example 163
E.2 Listings for Static Fault Tolerance Application Example 179
E.3 Conclusions . 184

Glossary 187

References 194

xix

List of Tables

1.1 Flynn’s taxonomy: classification of computer architectures with respect to its
parallelism. 3

2.1 Commands list for Internal Network. 26

2.3 Commands list for External Network. 28

3.1 Configuration modes: active components for processors and memory distribution 35

3.2 Output Multiplexing System operating table. 39

3.3 Multiplexers configuration for Fault Tolerance System in primary cell. 40

3.4 Fault Tolerance Modes (FT modes) . 42

4.1 Description of expansion port signals used by the Expansion Process at Cell Level. 50

4.2 Description of expansion port signals used by the Expansion Process at component
level. 55

4.3 Description of expansion port signals used by the Release Process. 62

5.1 List of SASM or high-level instructions for initial and run-time configuration. . . 67

5.2 Syntax and format for create component instruction. 68

5.3 Syntax and format for connect component instruction 69

5.4 Syntax and format for delete component instruction 70

5.5 Syntax and format for instruction related to writing Function Unit Program
Memories and Configuration Register . 72

5.6 Syntax and format for instructions related to management of processors in the
SASM file. 73

5.7 Syntax and format for instruction regarding configuration of system in “wait” state. 74

5.8 Syntax and format for instruction related with execution of subprocesses. 75

5.9 Syntax and format for instruction related to Static Fault Tolerance mechanism . 76

5.10 Description of components for the example application: Dynamic Fault Tolerance
Scaling. 84

6.1 List of VHDL files for hardware implementation of prototype. 92

6.2 List of C files for firmware section of prototype (Control Microprocessor). 92

6.3 List of C# files developed for implementation of SANE Project Developer. 94

6.4 Results of the synthesis process for the proposed prototype. 95

A.1 Instructions field description . 105

A.2 Nomenclature for processor operations . 105

A.3 Instructions set summary . 106

B.1 Abbreviations for bits of Data Memory registers 115

xxi

LIST OF TABLES

D.1 Relation of files for SANE Project Developer. 150
D.2 Description of fields for XMODEM based protocol. 157
D.3 Example of data flow for Communication Test with prototype. 158
D.4 Example of data flow for Clear Memory in prototype. 158
D.5 Example of data flow for Write Memory in prototype. 159
D.6 Example of data flow for Read Memory from prototype. 160

E.1 Listings for Dynamic Fault Tolerance Scaling application example. 162
E.2 Listings for Static Fault Tolerance application example. 162

xxii

List of Figures

2.1 Conceptual layers of the self-adaptive hardware architecture. 12

2.2 Possible connection between Functional Unit ports of two cells. 12

2.3 System architecture . 13

2.4 Organization of the proposed architecture inside a chip. 15

2.5 System architecture: 3D representation of an array of clusters. 15

2.6 Cluster: 3x3 cell array and switch matrix. 16

2.7 Cell architecture: internal hardware and ports. 16

2.8 Architecture of Switch Matrix. 19

2.9 Architecture of Pin Interconnection Matrix. 19

2.10 Expansion signals between cells1. 21

2.11 Expansion signals between cell and Switch Matrix1. 21

2.12 Expansion signals between Switch Matrices (including Pin Interconnection Matrix)1. 21

2.13 Routing signals implementation. 22

2.14 Internal Network implementation. 22

2.15 Considerations for Internal and External Networks. 23

2.16 Comparison process. 24

2.17 Comumnication protocols. 24

2.18 3D representation of the prototype architecture. 27

2.19 Block diagram of a chip in prototype. 29

2.20 Prototype implementation . 29

3.1 Functional Unit architecture. 32

3.2 Read Enable pulse example. 33

3.3 Construction of processors based on cores. 34

3.4 Data memory map for 8, 16, 24 and 32 bit processors. 38

3.5 Block diagram of Output Multiplexing System. 39

3.6 Fault Tolerance System. 40

3.7 FT modes for processors in Functional Unit. 41

4.1 Address and Connection Tables example for cell AAAA0001. 45

4.2 Example of busy neighbor cells, congestion, distance and affinity 46

4.3 Example of the self-placement algorithm implementation for three components
in an array of two clusters (6x3 cell array). The resources used by self-routing
algorithm are shown only for component AAAA. 48

4.4 Example of Expansion Process at Cell Level. 52

4.5 Example of Expansion Process at component level. 57

4.6 Example of Release Process at Cell and Component Level. 61

5.1 Component interconnection for the dynamic fault tolerance application. 83

xxiii

LIST OF FIGURES

5.2 Sequence of activities. The processes executed by the system are represented by
the text over the arrows. All cells are free in the ”start” state. 83

5.3 Components configuration for Static Fault Tolerance application example. 85

A.1 Instructions format. 104

C.1 Transmission and reception processes in Cell Configuration Unit. 128
C.2 Self-placement algorithm for the insertion of the first cell of a component. 129
C.3 Self-placement algorithm for other cells of a component (from the second). 129
C.4 Configuration of source and target cell for execution of Expansion Process at Cell

Level. 130
C.5 Main flow diagram for Expansion and Release processes in Cell Configuration Unit.132
C.6 Flow diagram for the propagation of Signals in the Search Phase of the Expansion

Process at Cell Level. 133
C.7 Flow diagrams for Expansion Process when propagation input signals is received

in Cell Configuration Unit. 134
C.8 Flow diagram for Configuration Phase of the Expansion Process at Cell Level. . 135
C.9 Flow digram of the start point of Release Process at Cell and Component Level. 136
C.10 Flow digram of Release Process at Cell Level. 137
C.11 Main flow diagram for Expansion and Release processes in Switch Matrix Config-

uration Unit. 138
C.12 Flow diagrams for propagation input signals at component level in Switch Matrix

Configuration Unit. 140
C.13 Flow diagram for the propagation of Signals in the Search Phase of the Expansion

Process at Component Level. 140
C.14 Flow diagram for Configuration Phase of the Expansion Process at Component

Level when the lock in signal comes from a Cell. 141
C.15 Flow diagram for Configuration Phase of the Expansion Process at Component

Level when the lock in signal comes from a Switch Matrix. 142
C.16 Flow digram of Release Process at Component Level when del connection signal

comes from a cell. 143
C.17 Flow digram of Release Process at Component Level when del connection signal

comes from a Switch Matrix. 144

D.1 Screen capture of SANE Project Developer. 148
D.2 Component editor tool. 154
D.3 Cell editor tool. 155
D.4 Tool for addition/activation of SANE assembler files. 155

xxiv

Listings

5.1 Example of a SANE-ASM with Subprocesses for dynamic reconfiguration. 80
5.2 Example of a SANE-ASM with Subprocesses for dynamic reconfiguration. 81
E.1 SASM file for configuration of Dynamic Fault Tolerance Scaling application. . . . 163
E.2 ASM code for Monitor 1 section. 164
E.3 ASM code for Monitor 2 section. 168
E.4 ASM code for Compute sections (original, first and second copy). 169
E.5 SHEX file generated by SANE Project developer after execute Build Project option.170
E.6 SXM file generated by SANE Project developer after execute Build Project option.177
E.7 SASM file for Static Fault Tolerace example application. 179
E.8 ASM code for Working and Redundant Processors in Primary and Redundant Cells.180
E.9 ASM code for delay of binary sequence. 181
E.10 SHEX file generated by SANE Project developer after execute Build Project option.181
E.11 SXM file generated by SANE Project developer after execute Build Project option.184

xxv

LISTINGS

xxvi

Chapter 1

Introduction

Fall Down Seven Times, Get Up Eight.

Cae siete veces, levántate ocho.

Japanese Proverb – Proverbio Japonés

Abstract: This chapter is an introduction to adaptive and parallel processing systems. It

includes mainly a theoretical framework, architecture overview and contributions, preliminary

and related works.

Self-adaptation is defined as the ability of a system to react to its environment in order
to optimize its performance. The AETHER project (Self-Adaptive Embedded Technologies for
Pervasive Computing Architectures) [1] was a notable initiative in the study of novel self-adaptive
computing technologies for future embedded and pervasive applications.

This work started as a contribution of the hardware platform for the AETHER project. After
finalization of this project, I continue with the investigation introducing additional contributions
to the initial platform developed.

One of the purposes of the AETHER project (including this work) is to show that self-adaptive
computing architectures can be a powerful approach to simultaneously addressing the major
problems raised by pervasive computing. In particular, it aims to tackle the issues related to
parallel processing, self-adaptive capabilities and technological scalability, increased complexity
and programmability of future embedded computing architectures by introducing self-adaptive
technologies in computing resources.

1.1 Adaptive and Bioinspired Systems

An adaptive system consists of a set of interacting entities, which form an integrated whole
that is able to respond to environmental changes or changes in the interacting parts. Adaptive
systems are closely tied with the concept of bioinspired systems, that are systems built using
configurable hardware and electronic instruments, that emulates the capabilities of the biological
systems to process information and solve problems.

These features are relevant in research areas such as embedded systems and pervasive com-
puting among others [2]. Some important features like self-organization and self-configuration are
linked to higher computational requirements, where adaptive system architectures are formed as
a promise in the evolution of classical computing systems. Self-adaptive computing architectures
can be a powerful approach to simultaneously address the major problems raised by pervasive
computing.

1

1.2. SELF-ADAPTIVE CAPABILITIES IN THE PROPOSED ARCHITECTURE

In coming years virtually every object will have a processing power, where the processing
resources will require greater flexibility and scalability to meet the various needs of users. Adaptive
computing systems offer the ability to adequate all or part of its architecture with applications
that include changing needs or changing environments.

Adaptable architectures are closely linked to the concept of parallelism and reconfigura-
bility, theoretically allowing greater efficiency for development of general purpose applications.
According to [2] adaptive systems should have the following characteristics of bioinspired sys-
tems: self-configuration, adaptivity, self-distribution, self-organization, self-healing, automatic
parallelization, accounting, self-protection and protection of others.

Self-healing is a special feature of an adaptive system, where hardware failures should be
detected, handled and corrected by the system automatically. A fault tolerance system in an
adaptive system together with other self-adaptive capabilities could provide this functionality.

1.2 Self-Adaptive capabilities in the proposed architecture

Self-configuration is a basic principle that permits a programmable or configurable system to
modify autonomously its functionality at a given time [3]. This modification is usually driven
by an optimization process that tries to match the behavior of the system with the constraints
posed to the application it is intended to solve. The main characteristic to be present in the
actual self-adaptive system is the capability of determining its configuration at a given time in an
autonomous and distributed way by the system members (cells). This implies that the following
properties should be supported at the hardware level by any architecture intended to be used as
an efficient platform for self-adaptive principles: dynamic and distributed self-routing [4] [5] [6],
dynamic and distributed self-placement, scalability and distributed control.

The self-placement and self-routing processes, due to its nature, enable the systems with
runtime reconfiguration, self-repair and/or fault tolerance capabilities. This processes allow for
performing complex functionality changes in real time, beyond the programmed context changes,
currently common in the FPGA domain. The proposed self-placement and self-routing processes
endow the system with enhanced functionality, making it possible for the system to change by
itself, without the need for any configuration manager, as needed in current FPGAs. The absence
of a centralized supervision system allows performing some of the tasks in a distributed way.

1.3 Architectures for parallel computing

Flynn’s taxonomy [7] is probably the most common way to classify computer architectures
with respect to their parallelism, based on the instruction and data flows. These streams are
independent, so there are four possible combinations in parallel computing (see Table 1.1).

The model SISD (Single Instruction Single Data) based on the Von Neumann machine is
the classic computing architecture; it uses a processor that is capable of performing actions
sequentially, making different types of operations (arithmetic, logical, shifts, etc.) between data
memory and processor registers. Although significant improvements have been implemented, like
pipelining, prefetching, RISC architectures, code optimizers and others, it is expected to slow
the pace of improvement, mainly due to physical implementation constraints. On the other hand,
the need to solve new problems has increased, which demands high computational loads, so that
the development of new parallel processing system acquires significant importance.

In a SIMD (Single Instruction Multiple Data) model a single program controls the processors
using multiple data streams to perform operations that can be parallelized in a natural way.
This type of architecture is useful in uniform applications, as in image processing, where it is
necessary to apply the same function to many pixels simultaneously.

2

CHAPTER 1. INTRODUCTION

Name
Instructions Data

Example, application
Flow Flow

SISD 1 1 Classic computing architectures: Von Neumann, Har-
vard, PCs.

SIMD 1 Multiple Vector processors, graphics cards.

MISD Multiple 1 Uncommon, it is used in situations of redundant par-
allelism (Air Navigation)

MIMD Multiple Multiple Multiprocessors, Multicomputer.

Table 1.1: Flynn’s taxonomy: classification of computer architectures with respect to its paral-
lelism.

The model MISD (Multiple Instruction Single Data), where many functional units perform
different operations on the same data, is often used in situations of redundant parallelism , as in
the case of air navigation, but due of its features it has been poorly implemented by industry.

Architecture MIMD (Multiple Instruction Multiple Data) is characterized by a set of pro-
cessors executing different instruction sequences simultaneously on different data sets. This
architecture can be classified in two, depending on the type of memory access, so you can have
MIMD for shared memory (multiprocessor) and MIMD for distributed memory (multicomputer)
[8]. The main advantage of the architecture MIMD over the SIMD architecture is that they have
greater flexibility and applicability. However, the architecture MIMD is harder to configure and
control [9]. The architecture MIMD due to its high degree of parallelism is emerging as the most
suitable for the implementation of bioinspired systems.

1.4 Preliminary work

1.4.1 POEtic

The POEtic project [10] [5] tackled the development of a flexible computational substrate inspired
by the evolutionary, developmental and learning phases in biological systems. The device is
organized as a custom 32-bit RISC microprocessor and a custom FPGA. The internal architecture
developed for the device is scalable, making it possible to construct a physical hardware platform
whose size matches the requirements of the application to be implemented.

This project is based in essentially three biological models [11]: phylogenesis (P), the history of
the evolution of the species, ontogenesis (O), the development of an individual as orchestrated by
his genetic code, and epigenesis (E), the development of an individual through learning processes.

The POEtic architecture is divided in three parts, the environment subsystem, the organic
subsystem and system interface. The environment subsystem of the POEtic tissue has been built
around a custom 32-bit microprocessor with an efficient and flexible system bus and several
custom peripherals. The organic subsystem is composed of two layers, a two-dimensional array of
basic elements, called molecules, and a two-dimensional array of routing units. Each molecule is
connected to its four neighbors in a regular structure. It is composed of a 16-bit LUT and a Flip
Flop (DFF), which has the ability to access the routing layer which is used for communication
between molecules. The second layer implements a dynamic routing algorithm that enables the
creation of data paths between molecules at runtime. The dynamic routing system is designed
to automatically connect the inputs and outputs of the molecules. The system interface allows

3

1.5. STATE OF THE ART

the communication between the environment and the organic subsystem of the tissue.

1.4.2 PERPLEXUS

The Perplexus project [12] [13] aims to develop a scalable hardware platform made of custom
reconfigurable devices endowed with bioinspired capabilities that will enable the simulation
of large-scale complex systems and the study of emergent complex behaviors in a virtually
unbounded wireless network of computing modules.

The Perplexus project defines its platform as a network of ubidules (ubiquitous computing
modules), which are equipped with wireless communication capabilities and important sensory
elements. The project identifies three areas where the modeled structure can provide its function-
ality as a new and powerful simulation tool; these are: neuro-genetic computational modeling,
study of culture diffusion and social robots.

1.5 State of the art

This section describes some projects that include similar features to the one presented here.

1.5.1 Confetti

Among the projects that have proposed architectures for advanced multiprocessor systems it is
worth mentioning Confetti [14] [15], that is based on a scalable array of homogeneous processing
nodes physically arranged as a networking computer mesh. This architecture is a dual-layered
array of FPGAs, with a layer dedicated to processing (ECell) and the other to networking
(ERouting). The basic computation element (ECell) is implemented in an FPGA. The networking
level is implemented in a board specifically designed for this purpose. The principal difference
with the proposed architecture is the scalability. The ECell has a higher processing capacity than
the processing elements (cells) presented in this document. The main limitation of the Confetti
architecture is the physical implementation of a very large number of processing elements. The
architecture presented here can work with hundreds or millions of cells without architectural
modifications. However, the boards used for the prototype don’t permit the implementation of a
large number of cells.

1.5.2 eDNA

The eDNA [16] presents the concept of a bioinspired reconfigurable hardware cell architecture
that supports self-organization and self-healing. In order to validate the algorithms for self-
organization and self-healing, the authors wrote a simulator to provide a fast method to examine
the behavior of the proposed algorithms. All algorithms were based on the idea that they should
run on processing elements (eCells) which used a NoC as communication medium. This approach
provides an interesting starting point for future study and possible implementation of other
self-adaptive capabilities to the system proposed in this work.

1.5.3 Self-routing reconfigurable fault-tolerant cell array

The work presented in [17] represents a self-routing reconfigurable fault-tolerant cell array. The
reconfigurable and fault-tolerant cellular structure is based on a cell array. It comprises functional
cells with spare cells having the same hardware structure. The functional cells can be configured
with arithmetic or logical functions. The interconnection of functional cells can thus accomplish a
complex task, as specified by the user. Compared with this work, our architecture only implements

4

CHAPTER 1. INTRODUCTION

redundancy when needed, due to its dynamic fault tolerance capability. This permits to have
free resources that could be used for other processes inside the system.

1.5.4 CEDAR

The Configurable Embedded Distributed Architecture (CEDAR) [18] implements an adaptive
routing strategy based on ACO (Ant Colony Optimization). Similar to our architecture, the
CEDAR platform consists of an array of homogeneous Processing Elements (PE). Each PE can
be configured as a computing or routing node. The main difference with the SANE architecture
presented here is that each processing element (cell) provides processing and routing capabilities
for the interconnection of neighbors and/or remote cells.

1.5.5 Amorphous

The amorphous computing [19] medium is a system of irregularly placed, asynchronous, locally
interacting computing elements. The system can model this medium as a collection of computa-
tional particles sprinkled irregularly on a surface or mixed throughout a volume. The physical
implementation of this system is quite difficult and therefore prevents from a future physical
realization.

1.5.6 Cell Processors - Sony-Toshiba-IBM team

Other commercial implementations, like the Cell Processors [20] developed by Sony-Toshiba-IBM
team, implement a SIMD architecture processor that consists of a 64-bit Power microprocessor
coupled with multiple processors, a flexible IO interface, and a memory interface controller that
supports multiple operating systems. Despite their capacity, SIMD architectures show limitations
in general-purpose computing. Our self-adaptive system implements a MIMD architecture, whose
processing capacity is configurable between 8, 16 , 24 and 32 bits, and additionally each computing
unit is able to execute small processing threads.

1.5.7 ADRES

The Architecture for Dynamically Reconfigurable Embedded System (ADRES) [21] [22] is an
architecture that tightly couples a VLIW processor and a coarse-grained reconfigurable matrix.

The ADRES core consists of many basic components, e.g., Functional Units (FUs) and
register files (RF). The whole ADRES core has two functional views: the VLIW processor and
the reconfigurable matrix. The reconfigurable matrix is used to accelerate the dataflow-like
kernels in a highly parallel way, whereas the VLIW executes the non-kernel code by exploiting
instruction-level parallelism (ILP). These two functional views share some resources because
their executions will never overlap with each other thanks to the processor/co-processor model.

For the VLIW part, several FUs are allocated and connected together through one multi-port
register file, which is typical for a VLIW architecture. For the reconfigurable matrix, apart from
the FUs and RF shared with the VLIW processor, there are a number of reconfigurable cells
(RC) which basically comprise FUs and RFs too.

1.5.8 MorphoSys

MorphoSys [23] [24] [25] is a reconfigurable processing system targeted at data-parallel and
computation-intensive applications. The MorphoSys architecture comprises five major compo-
nents: the Reconfigurable Cell Array (RC Array), control processor (TinyRISC), Context Memory,
Frame Buffer and a DMA Controller.

5

1.5. STATE OF THE ART

The reconfigurable component of MorphoSys is an array of reconfigurable cells (RCs) or
processing elements. The RC Array has 64 cells in a two-dimensional matrix (8x8). The RC
Array follows the SIMD model of computation. All RCs in the same row/column share same
configuration data (context). However, each RC operates on different data.

The major component of MorphoSys is the Reconfigurable Cell (RC). Each RC incorporates
an ALU-multiplier, a shift unit, input muxes and a register file. In addition, there is a context
register that is used to store the current context and provide control/configuration signals to the
RC components.

The control processor (TinyRISC) is a MIPS-like processor with a 4-stage scalar pipeline. It
has a 32-bit ALU, register file and an on-chip data cache memory. This processor also coordi-
nates system operation and controls its interface with the external world. The Context Memory
stores multiple planes of configuration data (context) for RC Array, thus providing depth of pro-
grammability. The system incorporates a high-speed memory interface consisting of a streaming
buffer (Frame Buffer) and a DMA controller. The Frame Buffer has two sets, which work in
complementary fashion to enable overlap of data transfers with RC Array execution.

1.5.9 REMARC

Reconfigurable Multimedia Array Coprocessor (REMARC) [26] is a reconfigurable coprocessor
that is tightly coupled to a main RISC processor and consists of a global control unit and 64
16-bit programmable logic blocks called nano-processors. REMARC is a SIMD architecture that
is designed to accelerate multimedia applications, such as video compression, decompression, and
image processing.

The base architecture of REMARC uses MIPS-II ISA. Coprocessor 0 is used for memory
management, coprocessor 1 is used for floating point and REMARC operates as coprocessor
2. With REMARC, users can define and configure their own instructions specialized for their
application.

REMARC consist of an 8x8 array of nano-processors and a global configuration unit. Each
nano-processor has a 32-entry instruction RAM, a 16 bit ALU, a 16-entry data RAM, and 13
16-bit data registers. The global control unit controls the nano-processors and the transfer of
data between the main processor and the nano-processors.

1.5.10 XPP (eXtreme Processing Platform)

The eXtreme Processing Platform (XPP) [27], [28] is a new runtime-reconfigurable data processing
architecture. It is based on a hierarchical array of coarse grain, adaptive computing elements
called processing array elements (PAEs), and a packet-oriented communication network.

An XPP device contains one or several processing array clusters (PACs), which includes
rectangular blocks of PAEs. A typical XPP device contains four PACs. Each PAC is attached to
a Configuration Manager (CM) responsible for writing configuration data into the configurable
objects of the PAC. The XPP architecture is also designed for cascading multiple devices in a
multichip setup. The PAE contains back registers, forward registers and an ALU object which
performs the actual computations. PAE objects communicate via a packet-oriented network.

According to the authors, the strength of the XPP technology originates from the combination
of array processing with unique, powerful run-time reconfiguration mechanisms. Parts of the
array can be configured rapidly in parallel while neighboring computing elements are processing
data. Reconfiguration is triggered externally or even by special event signals originating within
the array, enabling self-reconfiguring designs. The architecture is designed to support different
types of parallelism: pipelining, instruction level, data flow, and task level parallelism.

6

CHAPTER 1. INTRODUCTION

The high-level compiler for this architecture is called XPP-VC (XPP Vectorizing C Compiler).
It uses new mapping techniques, combined with efficient vectorization. A temporal partitioning
phase guarantees the compilation of programs with unlimited complexity, provided that only the
supported C subset is used.

1.5.11 The SANE Virtual Processor (SVP)

The SANE Virtual Processor (SVP) [29][30] was defined as a concurrent programming model
developed and used at the University of Amsterdam as a basis for designing and programming
many-core chips. The model is defined by a small number of actions used to create and asyn-
chronously manage the execution of concurrent SVP programs. These actions capture concurrency,
implicit communication and resource management, and using these abstractions they aim to
develop an understanding of self-adaptive computational systems in the AETHER collaborative
European project [1].

The SVP model provides five actions in order to create and manage concurrency. These
actions replace those normally used to construct sequential programs (loops and calls). Three
of these actions are used to parallelize sequential programs (create, sync and break), and the
other two are used for concurrency engineering (squeeze, kill), i.e., the self-adaptive aspects of
the model. The create action defines a family of threads based on a single fragment of code.
The result of the create action is the creation of an ordered set of thread contexts defined by
parameters to the action. These parameters define the code used, the size of the context required
and the number of threads to be created.

A thread creating a subordinate family can detect its termination using an SVP sync action.
This identifies the family by name so that multiple concurrent families can be created and
synchronized from within a single thread. The sync action provides a return code that specifies
how a family was terminated and can provide a return value in the case of a break action.

The break action is provided to allow for the creation of dynamically bounded families of
threads. In such circumstances, a semi-infinite range of index values is specified in the family’s
parameters and any thread in the family may terminate the creation of new contexts using the
break action and return a scalar value (e.g. an index or pointer) back to the creating thread via
the sync action. This construct is the SVP concurrent equivalent of a while loop in a sequential
program.

Any thread that can identify a family and the place where it is executing and can provide the
capability generated on its creation, may send a kill signal to that family and force its termination.
The squeeze and kill signals are similar, but the squeeze maintains the family’s state. This is a
form of preemption of the unit of work that the family represents and it allows the family to be
restarted by re-creating it using the state captured when it was squeezed.

1.5.12 HTHREADS

Hthreads [31] [32] is a unifying programming model for specifying application threads running
within a hybrid CPU/FPGA system. This system provides unique capabilities within the recon-
figurable computing community by enabling concurrent execution of threads specified through a
set of pthreads compatible API library routines to be automatically compiled, synthesized, and
seamlessly executed on a CPU/FPGA hybrid chip.

The thread interface used by hthreads is based around three major tasks: management,
scheduling, and synchronization. For its implementation, they have developed three hardware
based state machines that are executed in true parallel with the others and with the application
itself. This provides coarse-grained parallelism which is needed for high performance.

7

1.6. ARCHITECTURE OVERVIEW AND CONTRIBUTIONS

Although this is a CPU/FPGA hybrid architecture that allows the definition of threads,
in both software and hardware level in the same code. The hthreads model does not provide
the advantages of the microthreads model [29], due to its compatibility with the architecture
presented in this document.

1.6 Architecture Overview and Contributions

This hardware architecture developed within the framework of the AETHER project [1] differs
from other architectures due mainly to the self-adaptive features implemented, that are executed
autonomously and in a distributed way by the system members (cells). Basically, this is a novel
unconventional MIMD hardware architecture [7] with self-adaptive capabilities including self-
placement and self-routing which, due to its intrinsic design, enable the development of systems
with runtime reconfiguration, self-repair and/or fault tolerance capabilities

One of the main features of this architecture is its high degree of parallelism. The major
drawback is the configuration of complex applications, where many processors have to be pro-
grammed and synchronized in order to accomplish a specific task. A new high-level programming
paradigm has to be implemented, with the purpose of obtaining the maximum performance of
the architecture.

The architecture proposed includes two mechanisms of fault tolerance. One of these is the
static Fault Tolerance System [33] [34]. It provides redundant processing capabilities that are
working continuously. When a failure in the execution of a program is detected, the processors of
the cell are stopped and the self-elimination and self-replication processes starts for the cell (or
cells) involved in the failure. This cell(s) will be self-discarded for future self-placement processes.

The other mechanism of fault tolerance is the Dynamic Fault Tolerance Scaling Technique [35],
which permits a given subsystem to modify autonomously its structure in order to achieve fault
detection and fault recovery. It has the ability to create and eliminate the redundant copies of
the functional section of a specific application.

In this document we present a detailed description of the hardware architecture and the
self-adaptive algorithms. An FPGA-based prototype has been built for demonstration purposes.
Also we present the main features of the software tool SANE Project Developer, an integrated
development environment that allows the creation, configuration, compilation, programing and
test of general purpose applications in the FPGA-based prototype. Although this parallel pro-
cessing architecture is appropriate for applications requiring fault tolerance mechanisms, it is
also suitable for the development of any general purpose application that requires a high degree
of parallel processing.

1.6.1 Scalability

The system presented here is widely scalable, theoretically it allows to deploy as many cells as
its addressing system allows. This represents a number of cells in the system close to 232.

In a system with a large number of cells, the cost of this scalability is represented in the
propagation time of a combinational signal in the system (one logic gate per cell), this is reflected
in the operation frequency of the system. This cost in the propagation time across the system is
represented by the addition of the number of rows and columns of the cell array.

The main problem for the implementation of a large amount of cells is the granularity of the
system and the test tools available. The granularity of the prototype and the hardware tools
available only allow for testing the architecture with few cells, but in a near future, with the
evolution of the technology in the manufacturing processes for integrated circuits, the test of a
large cell array can be performed.

8

CHAPTER 1. INTRODUCTION

1.7 Document Organization

This document is organized as follows:

I Chapter 1 is the introduction, which includes some architecture generalities, preliminary and
related works, and a theoretical framework of relevant aspects of the dissertation.

I Chapter 2 presents a detailed description of the system architecture from the hardware point
of view.

I Chapter 3 describes the architecture of the Functional Unit, which provides the processing
capabilities to the system. In addition, annexes A and B presents in detail the instruction set
and the description of data memory registers respectively.

I Chapter 4 details all the self-adaptive processes implemented in the system. Appendix C
presents the flow diagrams for self-adaptive algorithms implemented in system.

I Chapter 5 presents the high-level instructions that permit the implementation of applications
in the system. Additionally, two example applications are shown, which include all function-
alities implemented in the system. Appendix D shows the listings of these examples, and
appendix E presents the software tool developed for implementing applications in the system.

1.8 Conclusions

This chapter describes the general concepts of adaptive and bioinspired systems, as well as the
typical classification of computer architectures with respect to its parallelism. These are basic
concepts for the architecture proposed in this dissertation. Additionally, preliminary works are
presented, which shows the starting point for the evolution of this project. The state of the art
presents other projects with similar contributions to the presented here, at both hardware and
software levels. Some of these projects can be useful as reference for future evolution of this
self-adaptive architecture.

9

Chapter 2

System Architecture

In theory, there is no difference between theory and
practice. But in practice, there is.

En teoŕıa, no hay diferencia entre teoŕıa y práctica.
Pero en la práctica, śı que la hay.

Jan L.A. van de Snepscheut (1953 – 1994)

Abstract: This chapter presents a detailed description of all hardware components that

compose the self-adaptive architecture presented in this dissertation. The system is presented

in a top-down approach, starting for a general overview of the system and later specifying

the subsystems or components involved in the architecture.

2.1 Conceptual organization

The proposed architecture consists of four conceptual layers (Figure 2.1). The bottom layer
is composed of cells that implement the self-adaptive capabilities and provides the computing
capacity of the system. The second one is the component layer, where each component is composed
of interconnected cells. The third one is the Self-Adaptive Networked Entity (SANE) layer, which
consists of a group of interconnected components, and the top layer, the SANE ASSEMBLY
(SANE-ASM) is composed of a group of interconnected SANEs.

The SANE is the basic self-adaptive computing system; it has the ability of
monitoring its local environment and its internal computation process.

2.2 Overview for the configuration of an application

Any application scheduled to the SANE has to be organized in components, where each component
is composed by one or more interconnected cells. The interconnection of cells inside of a component
is made at cell level, while the physical interconnections of components are made in another layer,
at the Switch Matrix (SM) level. The connections between components can be inside a chip or
may span several chips. The interconnection of SANEs is just conceptual, because it takes place
at the same layer of components.

11

2.2. OVERVIEW FOR THE CONFIGURATION OF AN APPLICATION

Figure 2.1: Conceptual layers of the self-adaptive hardware architecture.

Functional1Unit1Input1Port

Cell1Input1Port
FU

CELL

Cell1Output1Port

Functional1Unit1Output1Port

Switch1Matrix1Input1Port
Switch1Matrix1Output1Port

SWITCH1MATRIX

A1 A2 B1

C1 C2 C3

D1

m1s

m2s m3s

m4s

Components:1A,1B,1C,1D

Figure 2.2: Possible connection between Functional Unit ports of two cells.

2.2.1 Connection of cells

Each cell includes a Functional Unit (FU), which provides the processing capabilities to the cell.
The purpose of a connection between two cells is interconnect the output port of the FU of a
cell with the input port of the FU of another cell. The system provides the necessary hardware
for the interconnections of FU ports of two cells as shown in Figure 2.2. This figure presents the
following scenarios:

(1) Connections between two neighbor cells of the same component.
(2) Connections between two not neighbor cells of the same component.
(3) Connections between two cells of different components that belong to the same SM.
(4) Connections between two cells of different components in different SMs.

Note that connections of cells in the same component are made through cell ports, while
connections of cells of different components are made through one or more SMs.

During the initial stages of the architectural development a software tool was developed,
which allowed us to determine through exhaustive simulations the most appropriate number of
cell ports, the number of SM ports and the number of cells per SM [3]. The following sections
details all these features.

12

CHAPTER 2. SYSTEM ARCHITECTURE

CHIP

1

CHIP

CHIP

CHIP

CHIP

CHIP

CHIP

CHIP

CHIP External
Controller

External
Network

(a) Global overview of the system.

1

D Q
CHIP

D Q
CHIP

D Q
CHIP

(b) Circuit to select the winner
chip.

Figure 2.3: System architecture

2.3 Overview of System Architecture

The physical implementation of this architecture is composed of one or more interconnected chips,
each of which includes a two-layers implementation with interconnected cells in the first level
and interconnected Switch Matrices in the second level (components layer). These represents the
first two layer of the conceptual organization. The SANE and SANE-ASM are just conceptual
and are implemented in the same layer of components.

The system architecture is composed of interconnected chips and an External Controller (EC)
as depicted in Figure 2.3a. The ports that interconnect the chips and the EC can be divided in
three groups: data, network and chip selection. The data ports are composed of n buses of 9 bit
each. The number of data buses that interconnect two chips depends of the internal capacity of
the chip as will be explained later in this chapter. The network ports constitutes the External
Network (ENET), which allows the information exchange between chips and EC. The chip
selection ports allows to select the chip with higher priority between several candidates for the
execution of a specific process. Figure 2.3b shows the implementation of the selection process for
chips. The chips that participate in the selection process set to zero its flip flop. After a clock
pulse the flip flop that remains in low level will be the winner and the chip starts the execution
of the scheduled process. If there is not a winner, the feedback line remains in high level and the
process ends.

The EC broadcasts frames through the ENET that contains the necessary information for the
implementation of an application, or configuration data for a specific cell. All chips receive the
information and performs one of two operations: retransmit the information inside the chip, or
evaluate if they are candidates for the execution of a specific process e.g. for the implementation
of a new component. The chip candidates take part of the selection process and the winner chip
executes the process.

13

2.4. CHIP ARCHITECTURE

2.4 Chip Architecture

The chip architecture is depicted in Figure 2.4, which shows the representation of a chip that
includes an array of clusters, Pin Interconnection Matrices (PIMs) and a Global Configuration
Unit (GCU). Figure 2.5 shows a 3D representation of an extensive array of clusters. This two-
layer implementation is composed by interconnected cells at the first level and interconnected
switch and pin matrices in the second level.

Several chips can be interconnected by means of input and output ports of the PIM and the
ENET, which is connected to the GCU. Inside the chip, the GCU is interconnected with the
cell array and PIM by means of an Internal Network (INET). This is used for the information
exchange between cells, PIM and GCU, and is used to support all internal processes in the chip.

The Internal and External networks give support to all self-adaptive processes in execution
time, like self-placement, self-routing and real-time self-configuration processes among others.

2.5 Global Configuration Unit

The Global Configuration Unit (GCU) is in charge of controlling the self-adaptive processes
inside the chip. The GCU is connected with the EC through the ENET and with the internal
components of the chip through the INET. The GCU receives from the EC information related
to self-adaptive processes or configuration data. Depending on the information, the GCU could
translate it and make a broadcast inside the chip, or start a negotiation between chips, e.g. for
defining the destination of a component. After negotiation, the winner chip by means of its GCU
controls the self-adaptive processes inside the chip and sends a confirmation command to the
EC when the process ends.

The participation of the GCU in the self-adaptive processes will be treated subsequently
throughout this document.

2.6 Cluster

Figure 2.6 shows a cluster, that is composed by a 3x3 cell array and a Switch Matrix (SM). Inside
a cluster, each cell is identified by means of a letter as shown (A, B, C, D, E, F, G, H and I).

The cells are interconnected with their four direct neighbors in directions North, East, South,
and West. The SMs are interconnected with their eight direct SMs neighbors or PIMs in direc-
tions North, NorthEast, East, SouthEast, South, SoutWest, West, and NorthWest as shown in
Figure 2.4.

2.7 Cell Architecture

The cell is the basic element of the proposed self-adaptive architecture. Therefore, the cell has
to include the necessary hardware to carry out the basic principles of self-adaptation; dynamic
and distributed self-routing [4] [5] [6], dynamic and distributed self-placement, scalability and
distributed control.

The cell architecture and port distribution are depicted in Figure 2.7. The cell consists of
the Functional Unit (FU), the Cell Configuration Unit (CCU) and multiplexers that allow the
interconnection between FU ports of two cells.

The cell is interconnected with its four direct neighbors by means of local, remote and
expansion ports. The cell has eight local input ports, eight local output ports, twelve remote
input ports and twelve remote output ports equally distributed in the four sides of the cell, each

14

CHAPTER 2. SYSTEM ARCHITECTURE

PIN
Interconnection

Matrix (PIM)

CLUSTER:
3x3 cell array &

switch matrix (SM)

Chip Pins:

{ 9-bits

Matrix Interconnections

{ 9-bits
8-bits

GLOBAL
CONFIGURATION

UNIT (GCU)

Internal
Network

External Network

Cluster array

Figure 2.4: Organization of the proposed architecture inside a chip.

Figure 2.5: System architecture: 3D representation of an array of clusters.

15

2.7. CELL ARCHITECTURE

Figure 2.6: Cluster: 3x3 cell array and switch matrix.

:

Remote_in_N.

:

.:

..

.A

,
T

Local_in_N.
Local_in_E:
Local_in_E.

Remote_in_N,
Remote_in_E:
Remote_in_E.
Remote_in_E,
Remote_in_S:
Remote_in_S.

.,

.T

.d

.k

Local_in_S:
Local_in_S.

Local_in_W:
Local_in_W.

Remote_in_N:

d
k
A
/
8
9

.Local_in_N:

Remote_in_W:
Remote_in_W.
Remote_in_W,

Remote_in_S,

Switch_Matrix_Y.
Switch_Matrix_Y,
Switch_Matrix_YT

Switch_Matrix_Y:

./

.8

.9
,:
,.
,,
,T
,d

RemoteYOutputYPortsY-9Ibitsb

ExpansionYPortsY-.9Ibitsb

Mux_Remote_E:

Mux_FU_INT

Yx8

SimilarYmultiplexerYconfigurationY
forYFunctionalYUnitYinputs:Y

IN:YfffYINTUYFT_IN:YfffYFT_INT

SimilarYmultiplexerYconfigurationYforY
RemoteYOutputYportsY:UY.YandY,YinY

NorthUYEastUYSouthYandYWest

North

East

South

West

Cell Configuration Unit
(CCU)

:

.

,

:

.

:

.

:

.

,

: :

,
T

FU_OUT.
FU_OUT,
FU_OUTT d

.FU_OUT:

:

FU_OUT:

:

.:

..

,
T

Remote_in_N.
Remote_in_N,
Remote_in_S:

FU_OUT.
FU_OUT,
FU_OUTT

.,

.T

Remote_in_S.
Remote_in_S,

Remote_in_W:
Remote_in_W.
Remote_in_W,

d
k
A
/
8
9

.Remote_in_N:

SimilarYmultiplexerY
configurationYforYLocal
YOutputYportsY:YandY.

inYNorthUYEastUY
SouthYandYWest

Functional
Unit (FU)

:

.

,

:

.

:

.

:

.

,

: . , : . : .: . ,

: . , : . : .: . ,

Mux_Local_E.

RemoteYInputYPortsY-9Ibitsb

LocalYOutputYPortsY-9Ibitsb

LocalYInputYPortsY-9Ibitsb

Yx.,

Yx8

IN: OUT:

FaultYtoleranceY
inputYports

IN.

IN,

INT

OUT.

OUTT

OUT,

InternalYNetwork AdditionalYinputsgoutputs

Figure 2.7: Cell architecture: internal hardware and ports.

16

CHAPTER 2. SYSTEM ARCHITECTURE

one being a 9-bit wide bus, 8-bit for data and 1 bit for Read Enable (RE) flag. Additionally, the
cell has four expansion input ports, four expansion output ports, a connection with the INET
and additional input/output ports.

The cell includes additional ports interconnected with the SM: four 9-bits input ports, four
9-bit output ports (FU output ports), one expansion input port and one expansion output port.

The cell includes 28 multiplexers divided in three groups:

I 8 multiplexers connected to the local output ports. These multiplexers allow connecting the
FU output ports with the local output port of the cell. These multiplexers are used exclusively
to connect neighboring cells.

I 12 multiplexers connected to the remote output ports. These multiplexers allow connecting
the remote output port with: (1) the FU output ports and (2) the remote input ports of
the other sides of the cell, e.g., if the remote output port is in east, the multiplexer allows
connecting the remote input ports from north, south and west. The remote port is used for
connecting neighboring or remote cells.

I 8 multiplexers connected to the FU input ports. These multiplexers are used to connect local
and remote cell input ports when the connection between two cells is in the same component
(inputs 1 to 20). They additionally allow connecting FU ports of two different components
using the inputs coming from the SM (inputs 21 to 24).

2.7.1 Functional Unit (FU)

The FU is in charge of executing the processes scheduled to the cell. The FU can be described
as a four-core configurable multicomputer [8]. The FU has four 9-bit input ports and four 9-bit
output ports. There are four additional input ports (ft input ports) used exclusively for the static
Fault Tolerance System (FTS) [33].

The internal architecture of the FU is detailed in chapter 3 and annexes A and B. The FTS
is described in section 3.7.

2.7.2 Cell Configuration Unit (CCU)

Using a distributed working principle, the CCUs of the cells in the array are responsible for
the execution of the required algorithms for the implementation of the system self-adaptive
capabilities, specifically the self-placement and self-routing algorithms. These algorithms are
executed by the CCU using the INET and the expansion ports, and they are explained in detail
in chapter 4.

2.8 Switch Matrix

The Switch Matrix (SM) allows connecting cells from two different components. Figure 2.8 shows
the port distribution and the internal hardware that is included in the SM.

The SM is connected to its eight adjacent neighbors, each through three input ports and
three output ports (9 bits each). It additionally includes one input and one output expansion
port (8 bits each).

The SM is connected to the nine cells (cell A. . . cell I) belonging to the cluster, each one by
means of four input ports and four output ports (9 bits each). The input ports correspond to the
FU output ports of cells, and the output ports correspond to the output of internal multiplexers.
In addition, the SM includes nine input and nine output expansion port (8 bits each) connected
to each cell in the cluster.

17

2.9. PIN INTERCONNECTION MATRIX

The Switch Matrix Configuration Unit (SMCU) participates in the component self-routing
process (section 4.8). In this process, the FU output port of a cell in a given component is
connected to the FU input port of a cell in a different component. The process configures the
multiplexers included in the SM.

The SM includes 60 multiplexers divided in two groups:

I 24 multiplexers connected to the SM output ports. These multiplexers are used as start point
of a connection between two components or when a connection has to cross the SM. These
multiplexers allow connecting the output port with: (1) the FU output port of any cell in
the cluster (inputs 1 to 36), and (2) the input ports of other sides of the SM (inputs 37 to
57), e.g., if the output port is in east, the multiplexer allows connecting the input ports form
north, northeast, southeast, south, southwest, west and northwest.

I 36 multiplexers connected to the FU input ports of cells. These multiplexers are used to direct
the end point of a connection between two components to one of the nine cells belonging to
the cluster. These multiplexers allow connecting the FU input port with: (1) the FU output
port of other cells in the cluster (inputs 25 to 56), e.g., if the output port is in cell A, the
multiplexer allows connecting the output ports form cell B. . . cell I, and (2) the input ports
of any side of the SM (inputs 1 to 24).

2.9 Pin Interconnection Matrix

The Pin Interconnection Matrix (PIM) is used exclusively for the port interconnection between
cells of two components in different chips. Figure 2.9 shows the port distribution and the internal
hardware that is included in the PIM.

The PIM is connected to its three adjacent clusters, each through three input ports and three
output ports (9 bits each). It additionally includes one input and one output expansion port (8
bits each). The PIM is connected to the INET.

The Pin Interconnection Matrix Configuration Unit (PIMCU) configures the multiplexers in
the component self-routing process, to allow for the interconnection of the FU port of a cell with
a pin of the chip. Previously to this configuration, the GCU undertook a negotiation process
with other chips, with the aim of assigning a pin of the chip to connect these components.

The PIM includes 12 multiplexers divided in two groups:

I 9 multiplexers connected to the PIM output ports. These multiplexers are used to connect a
input pin with an output port. This is the start point of a connection between a input pin
and the FU input port of the target cell.

I 3 multiplexers connected to the output pins of the PIM. These multiplexers are used to
connect a input port with an output pin. These multiplexers are the last resource used to
interconnect the FU output port of the source cell with the pin of the chip.

2.10 Expansion Signals

The expansion signals are included in the expansion ports of cells, SMs and PIMs. The expansion
signals are used by self-placement and self-routing processes.

The signals con be divided in three categories as outlined below:

I Cell to Cell: The expansion port between cells includes four 19-bit input ports and four
19-bit output ports per cell, distributed in north, east, south and west. Each input and output

18

CHAPTER 2. SYSTEM ARCHITECTURE

Input Ports (9-bits)

Output Ports (9-bits)

Expansion Ports (8-bits)

Mux Y0 for Cell_A

0
IN_Matrix_North

0
1,2,3
4,5,6

22,23,24
25,26,27,28

 x36

29,30,31,32
OUTS_CELL_B
OUTS_CELL_C
OUTS_CELL_D

IN_Matrix_NorthEast
IN_Matrix_East
IN_Matrix_SouthEast
IN_Matrix_South
IN_Matrix_SouthWest
IN_Matrix_West
IN_Matrix_NorthWest

7,8,9
10,11,12
13,14,15
16,17,18
19,20,21

OUTS_CELL_E
OUTS_CELL_F
OUTS_CELL_G
OUTS_CELL_H
OUTS_CELL_I

33,34,35,36
37,38,39,40
41,42,43,44
45,46,47,48
49,50,51,52
53,54,55,56

Mux Switch Matrix West OUT0

0

IN_Matrix_North

0

37,38,39
40,41,42

55,56,57

5,6,7,8

 x24

9,10,11,12
OUTS_CELL_B
OUTS_CELL_C
OUTS_CELL_D

IN_Matrix_NorthEast
IN_Matrix_East
IN_Matrix_SouthEast
IN_Matrix_South
IN_Matrix_SouthWest
IN_Matrix_NorthWest

43,44,45
46,47,48
49,50,51
52,53,54

OUTS_CELL_E
OUTS_CELL_F
OUTS_CELL_G
OUTS_CELL_H
OUTS_CELL_I

13,14,15,16
17,18,19,20
21,22,23,24
25,26,27,28
29,30,31,32
33,34,35,36

1,2,3,4 OUTS_CELL_A

Similar multiplexer configuration for OUT0,
OUT1 and OUT2 for Switch Matrices at

North, NorthEast, East, SouthEast, South,
SouthWest, West and NorthWest.

Similar multiplexer configuration for signals Y0,
Y1, Y2 and Y3, connected to FU inputs multiplexer

of Cells: A, B, C, D, E, F, G, H and I

0

1

2

0

1

2

0
1

2

0
1

2

012012

0
1

2

0
1

20
1

2

0
1

2

0
1

2

0
1

2

0 1 2 0 1 2

0

1

2

0

1

2

North

NorthEast

East

SouthEast

South

SouthWest

West

NorthWest

Switch Matrix Configuration Unit
(SMCU)

Figure 2.8: Architecture of Switch Matrix.

Input Ports (9-bits)

Output Ports (9-bits)

Expansion Ports (8-bits)

Mux PIN0

0
IN0_Cluster0

selector

0
1
2

8
9

 x3

IN2_Cluster2

IN1_Cluster0
IN2_Cluster0
IN0_Cluster1
IN1_Cluster1
IN2_Cluster1
IN0_Cluster2
IN1_Cluster2

3
4
5
6
7

Mux Pin Interconnection Matrix
Cluster1 OUT2

selector

00

2

 x9

3
PIN1_IN
PIN2_IN

1 PIN0_IN

Similar multiplexer configuration for OUT0,
OUT1 and OUT2 for connections between
Switch and Pin interconnection Matrices in

Cluster_0, Cluster_1 and Cluster_2

Similar multiplexer
configuration for

PIN0, PIN1 and PIN2

0

1

2

0

1

2

0
1

2

0
1

2

0
1

2

0
1

2

0

1

2

0

1

2

Cluster 2

Cluster 1

Cluster 0

Input Pins (9-bits)

Output Pins (9-bits)

Pin Interconnection Matrix
Configuration Unit

(PIMCU)

Internal
Network Additional inputs/outputs

Figure 2.9: Architecture of Pin Interconnection Matrix.

19

2.11. INTERNAL AND EXTERNAL NETWORKS

port includes 11 signals. Figure 2.10 shows the expansion signals between two cells connected
in east and west ports.

I Cell to Switch Matrix: Each SM includes nine 8-bit input ports and nine 8-bit output
ports, for the connection of expansion signals between SM and the cells that belong to the
cluster (cell A. . . cell I). Therefore, each cell includes additionally one 8-bit expansion input
port and one 8-bit expansion output port. Figure 2.11 shows the expansion signals between
cell A and SM inside the cluster.

I Switch Matrix to Switch Matrix (or Pin Interconnection Matrix): Each SM includes
eight 8-bit expansion input ports and eight 8-bit expansion output ports, for the connection
of expansion signals between SMs across clusters. Figure 2.12 shows the expansion signals
between two SMs. The expansion ports between SM and PIMs are the same.

2.10.1 Global Signals for Self-routing Process

Figure 2.13 shows the additional global signals: Routing complete and Enable routing. These
signals are the result of a logic OR function between all members of the system that could start or
stop a routing process, i.e., CCUs and PIMCUs. When one of these CUs wants to start a routing
process, it sets its enable routing out signal, enabling the routing capabilities for all members in
the system. Similarly, when any CU wants to terminate the process, it sets the routing complete
out signal. The self-routing process is detailed in section 4.6.

2.11 Internal and External Networks

The Internal Network (INET) and External Network (ENET) have been designed to provide the
system with the necessary functionality to carry out the self-adaptive capabilities, specifically the
self-placement and self-routing processes. Since several CUs of the system (CCUs, PIMCUs and
GCU) should be able to send and simultaneously receive messages, the interface communication
system is based on an adaptation of the I2C Bus Specification [36].

2.11.1 Communication Interface

The INET and ENET are based on two basic signals: serial clock line (SCL) and serial data line
(SDA). These signals are the result of a logic AND (organized in rows and columns) between
the output signals of all CUs of the system with networking capabilities. When the transmission
(tx) process of a CU is in standby, the signals are at high logic level, thus, if all CU are in
standby, the result on the SDA and SCL lines will be high. The Figure 2.14 shows the hardware
implementation for the CUs involved in the INET.

When a CU needs to send a message, the transmission process starts, so that it has to
set or clear the appropriate output signals. This way, the message will be visible in SDA and
SCL and can be read simultaneously by all CUs of the system, including the transmitter. This
characteristic is important in the execution of the self-adaptive algorithms implemented in the
system. This implies that source cell(s) can get information of other cells without the need to
transmit an answer from the target cell(s).

The transmission process could be started by one or more CUs in the chip (simultaneously),
this depends on the algorithm that is being executed.

The ENET has a similar configuration to that of the INET. The ENET interconnects the
GCUs with the EC.

20

CHAPTER 2. SYSTEM ARCHITECTURE

busy_cell_flag_in_E
calculate_distance_enable_in_E

distance_in_E
border_in_E

propagate_in_E
lock_in_E

neighbor_in_E
remote_port_in_E

local_port_in_E
id_target_port_in_E

del_connection_in_E

*busy_cell_flag
*calculate_distance_enable

*distance
*border

propagate_out_E
lock_out_E

neighbor_out_E
remote_port_out_E

local_port_out_E
*id_target_port_out

del_connection_out_E

6

3

2

6

3

2

busy_cell_flag*
calculate_distance_enable*
distance*
border*
propagate_out_W
lock_out_W
neighbor_out_W
remote_port_out_W
local_port_out_W
id_target_port_out*
del_connection_out_W

busy_cell_flag_in_W
calculate_distance_enable_in_W
distance_in_W
border_in_W
propagate_in_W
lock_in_W
neighbor_in_W
remote_port_in_W
local_port_in_W
id_target_port_in_W
del_connection_in_W

N19-bitNorth

South

North

South

West East

CELLNA CELLNB

Figure 2.10: Expansion signals between cells1.

propagate_in_matrix
lock_in_matrix

id_target_port_in_matrix
mux_id_matrix

del_connection_in_matrix

propagate_out_matrix
lock_out_matrix

*id_target_port_out
*id_source_port_out

del_connection_out_matrix

3
2

3
2

propagate_out_cell_A
lock_out_cell_A
id_target_port_out*
mux_id_cell_A
del_connection_out_cell_A

propagate_in_cell_A
lock_in_cell_A
id_target_port_in_cell_A
id_source_port_in_A
del_connection_in_cell_A

8
CellIB

CellIC

CellID

CellIE

CellIF

CellIG

CellIH

CellII

CellIA
SwitchIMatrix

Figure 2.11: Expansion signals between cell and Switch Matrix1.

propagate_in_E
lock_in_E

id_target_port_in_E
matrix_port_in_E

del_connection_in_E

propagate_out_E
lock_out_E

*id_target_port_out
matrix_port_out_E

del_connection_out_E

3
2

3
2

propagate_out_W
lock_out_W
id_target_port_out*
matrix_port_out_W
del_connection_out_W

propagate_in_W
lock_in_W
id_target_port_in_W
matrix_port_in_W
del_connection_in_W

8-bit

SwitchBMatrixBA SwitchBMatrixBB

Figure 2.12: Expansion signals between Switch Matrices (including Pin Interconnection Matrix)1.

1Signals marked with * are common for all expansion ports.

21

2.11. INTERNAL AND EXTERNAL NETWORKS

CELLHARRAY Routing_complete

enable_routing_in
routing_
complete_in

routing_
complete

_out

enable_
routing

_out

PIM

00

0

0

enable_routing_in
routing_complete_in

enable_
routing_out

routing_
complete_out

enable_routing_in
routing_complete_in

enable_
routing_out

routing_
complete_out

enable_routing_in
routing_complete_in

enable_
routing_out

routing_
complete_out

0

0

enable_routing_in
routing_complete_in

enable_
routing_out

routing_
complete_out

enable_routing_in
routing_complete_in

enable_
routing_out

routing_
complete_out

enable_routing_in
routing_complete_in

enable_
routing_out

routing_
complete_out

0

0

enable_routing_in
routing_complete_in

enable_
routing_out

routing_
complete_out

enable_routing_in
routing_complete_in

enable_
routing_out

routing_
complete_out

enable_routing_in
routing_complete_in

enable_
routing_out

routing_
complete_out

Enable_routing

PINH
INTERCONNECTION

MATRICES

routing_
complete_in

SM

routing_
complete_in

SM
enable_routing_in
routing_
complete_in

routing_
complete

_out

enable_
routing

_out

PIM

SWITCH
MATRICES

Figure 2.13: Routing signals implementation.

scl_in
sda_in

scl_out

sda_out

scl_in
sda_in

scl_out

sda_out

scl_in
sda_in

scl_out

sda_out

1

1

scl_in
sda_in

scl_out

sda_out

scl_in
sda_in

scl_out

sda_out

scl_in
sda_in

scl_out

sda_out

1

1

scl_in
sda_in

scl_out

sda_out

scl_in
sda_in

scl_out

sda_out

scl_in
sda_in

scl_out

sda_out

1

1

scl_in
sda_in

scl_outsda_out

GCU

scl_in
sda_in

scl
out

sda
out

PIM

scl_in
sda_in

scl
out

sda
out

PIM

CELL ARRAY
SDA SCL

Figure 2.14: Internal Network implementation.

22

CHAPTER 2. SYSTEM ARCHITECTURE

Figure 2.15: Considerations for Internal and External Networks.

2.11.2 Data Transmission

A transmission consists of three parts: generation of the start condition (or repeated start condi-
tion), data bits transmission and generation of the stop condition (or repeated start condition).
Figure 2.15 shows necessary considerations for data transmission for INET and ENET, as follows:

I All transactions begin with a start condition and are terminated by a stop condition.
I Start condition: a high to low transition on the SDA line while SCL is high.
I Stop condition: a low to high transition on the SDA line while SCL is high.
I Data validity: The data on the SDA line must be stable during the high period of the clock.

The high or low state of the data line can only change when the clock signal on the SCL line
is low. One clock pulse (SCL) is generated for each data bit transferred.

I The bus stays busy if a repeated start condition is generated instead of a stop condition. In
this respect, the start and repeated start conditions are functionally identical.

2.11.3 Comparison Process

The algorithms of self-placement and self-routing require the implementation of a data comparison
process from one or more cells, to identify the cell with better characteristics for a particular
function with respect to another cell within the array. The physical implementation of the INET
described previously permits this functionality, thus many cells can simultaneously compare the
data while the transmission/reception is being executed. This is possible due to the logic AND
between all sda out signals, so that the lowest value will be imposed in a comparison.

An example of a comparison process is shown in Figure 2.16a. Let us assume that four cells
send the following values: sda out1=0x05, sda out2=0x07, sda out3=0x13 and sda out4=0x4B.
These values will be compared bit to bit, starting with the most significant bit. The dominant
value has to be the smallest one. As result of the logic AND, when one of the cells sends a high
value but on the SDA line it appears a low value, this means that another cell has a better (lower)
comparison value. This cell is self-discarded from the comparison and sets its sda out to high
value for the remaining bits. The cell that terminates the process without being discarded will
be the winner (sda out1 in Figure 2.16a).

If there are two or more cells with the same value for comparison, the winner will be the
leftmost uppermost cell in the array. This selection process takes place outside the INET with
some additional bits, by means of the circuit shown in Figure 2.16b. The cells involved in the
process put a low level in the flip flop, and after a clock pulse, only one of them must continue
in low level. This one will be the ”winner cell” of the comparison process.

23

2.12. COMMUNICATION PROTOCOL FOR INTERNAL NETWORK

1 2 3 4 5 6 7 8SCL

sda_out1 = 0x05

sda_out2 = 0x07

sda_out3 = 0x13

SDA

sda_out4 = 0x4B

Forced value imposed by comparison process.

Original value transmited.

(a) Example of the comparison process.
1

D Q

1 1 1

D Q D Q

D Q D Q D Q

D Q D Q D Q

(b) Implementation of the cell selection process.

Figure 2.16: Comparison process.

Start
condition Header (40 bits) Arguments depends of

the control field value
Stop

condition

Start address
32 bits

control
2 bits

command
6 bits

data
0-2056 bits Stop

Start Header
control = 01 Stop

Start Header
control = 10 Stopack

1 bit

Start Header
control = 11 Stop0byte

Start Header
control = 00

nBytes
8 bits Stop0byte byte1 bytenBytes

Transmission of
1 to 256

data bytes
Transmission without

data bytes

Transmission of
acknowledge bit

Transmission of
comparison byte

(a) Communication protocol for Internal Network.

Start
condition Header (8 bits) Arguments depends of

the control field value
Stop

condition

Start control
1 bit

command
7 bits

data
0-2056 bits Stop

Start Header
contro = 0

nBytes
8 bits Stop0byte byte1 bytenBytes

Transmission of 1 to 256 data bytes

Start Header
control = 1 Stop Transmission without

data bytes

(b) Communication protocol for External Network.

Figure 2.17: Comumnication protocols.

2.12 Communication Protocol for Internal Network

The communication protocol is formed by the grouping of bits that are transmitted and received.
This exchange of information for INET takes place between several CUs inside a chip, specifically
the GCU, the PIMCUs and the CCUs. Figure 2.17a shows a detailed description of this protocol.

All bits belonging to the protocol are delimited by the start and stop conditions previously
exposed. The frame can be divided in two sections: the header and the arguments (or data
bytes). The 40-bit header is always present in a frame. The arguments sent or received later are
dependent on the control bits and the command value. The header fields are described below:

1. address: This 32-bit field is used to identify the cell to which the message is directed. This
field includes the id cell and id component, each 16-bit long. The value 0xFFFFFFFF is
reserved for broadcasting.

2. control bits: The 2-bit control field specifies the number of data bits after the command.
Thus, there may be commands that require or not any additional information, as follows:

I control=00 ⇔ Data bytes: When the command field requires additional information,
the 8-bit nBytes field is used. It indicates the number N of bytes that will be sent. These
bytes may include connection tables, command arguments or information for cells that will
be for program memory and configuration registers.
1 ≤ N ≤ 256, nBytes = N − 1

24

CHAPTER 2. SYSTEM ARCHITECTURE

I control=01 ⇔ No data: No additional data bytes are required.
I control=10 ⇔ Acknowledge bit: The 1-bit ack field is used as an acknowledgment

mechanism, indicating that the address field sent by a source cell matches with the address
of a target cell.

I control=11 ⇔ Comparison byte: The byte0 is the comparison value that is sent simul-
taneously by one or more cells. It is used when required to search the best cell location
with respect to another to perform a given function (see section 2.11.3 for details).

3. command : The 6-bit command field specifies the action that will take place inside the
element(s) to which the frame is addressed. The commands correspond to the execution of
necessary algorithms for implementing the self-routing and self-placement processes. The data
sent or received later are dependent on the control bits and the command value. The list of
commands is showed in Table 2.1. The use of this commands and its functionality is explained
in chapter 4.

Command (INET) TX→RX Description

insert first cell GCU→CCUs Commands used for the
placement of the first cell of a
new component.

scan first cell CCUs→CCUs
end first cell CCU→GCU

insert other cell GCU→CCUs Commands used for the
placement of other cells in a
component (from the second).
Additionally performs the routing
of the connections between cells
of the same component already
placed in the array.

scan new cell connections CCUs→CCUs
request scan affinity value CCU→CCUs
scan affinity value CCUs→CCUs
set target cell sr CCU→CCUs
connect others to new cell sr CCU→CCUs
end other cell CCU→GCU

error routing CCU, PIMCU→GCU Error when there is no routing re-
sources available for a connection.

start components connection GCU→CCUs
Commands used for the
connection of components.

set target cell sr component CCU→CCU
end components connection CCU→GCU, CCUs

configure chip connection CCU→GCU

Additional commands used for
the connection of components in
different chips. These commands
must be executed after the
placement and routing of all
components.

set target cell sr chip GCU→CCU
search pin free mb GCU→PIMCUs
pin free mb PIMCU→GCU
set target port mb GCU→PIMCUs
start cell pin connection GCU→CCUs
cell pin connection conf CCU→GCU
start pin cell connection GCU→PIMCUs
pin cell connection conf PIMCU→GCU
configure chip connection conf GCU→CCUs

write configuration registers GCU→CCU Write the Configuration
Registers and Program Memory
of Functional Unit processors.

write program memory[0,1,2,3] GCU→CCU
write FU memory conf CCU→GCU

restart processors GCU→CCUs
Commands used for controlling
the Functional Unit processors.

disable processors GCU→CCUs
restart and disable processors GCU→CCUs
enable processors GCU→CCUs

Continued on next page

25

2.13. COMMUNICATION PROTOCOL FOR EXTERNAL NETWORK

Command (INET) TX→RX Description

wait GCU→CCUs Commands used for controlling
the Functional Unit processors
including ”wait” or ”standby”
state.

restart processors wait GCU→CCUs
enable processors wait GCU→CCUs

start subprocess[0,1,2,3] CCU→GCU Commands used for execution of
subprocesses, i.e., run-time
self-configuration.

end subprocess[0,1,2,3] GCU→CCUs

delete component connections
chip

CCU, GCU→CCUs
Commands used to delete a
component in the cell array.delete component connections

conf
CCU→GCU

delete component chip GCU→CCUs
delete component conf CCUs→GCU

deroute connection other chip PIMCU→GCU Commands used to deroute
connections of component in
other chips, which are used for
deleting components.

deroute pin cell connection GCU→PIMCU
deroute pin cell connection conf PIMCU→GCU
deroute connection other chip
conf

GCU→PIMCU

replicate cells CCU→GCU
Commands used for
self-elimination and
self-replication processes.

delete cell connections chip GCU, CCU→CCUs
delete cell connections conf CCU→GCU
eliminate cell GCU→CCU
eliminate cell conf CCU→GCU

Note: conf = confirmation

Table 2.1: Commands list for Internal Network.

2.13 Communication Protocol for External Network

The comunication protocol for ENET permits to communicate the GCUs in different chips and
the EC. Figure 2.17b shows a detailed description of this protocol.

All bits belonging to the protocol are delimited by the start and stop conditions previously
exposed. The frame can be divided in two sections: the header and the arguments (or data bytes).
The 8-bit header is always present in a frame. The arguments sent or received later are dependent
on the control bit and the command value. The header fields are described below:

1. control bit : The 1-bit control field specifies the number of data bits after the command. Thus,
there may be commands that require or not any additional information, as follows:

I control=0 ⇔ Data bytes: When the command field requires additional information, the
8-bit nBytes field is used. It indicates the number N of bytes that will be sent. These bytes
may include connection tables, command arguments or information for chips that will be
for program memory and configuration registers.
1 ≤ N ≤ 256, nBytes = N − 1

I control=1 ⇔ No data: No additional data bytes are required.

2. command : The 7-bit command field specifies the action that will take place inside the chip(s).
The commands correspond to the execution of necessary algorithms for implementing the

26

CHAPTER 2. SYSTEM ARCHITECTURE

Figure 2.18: 3D representation of the prototype architecture.

self-routing and self-placement processes. The list of commands is showed in Table 2.3. The
use of these commands and their functionality is explained in chapter 4.

2.14 Prototype architecture

For demonstration purposes, the original architecture previously described has been modified for
the construction of a prototype, due mainly to the physical limitations in the FPGAs used for the
system implementation. The prototype shown in Figure 2.18 has the following characteristics:

I The prototype has been developed in two chips, each one is a Virtex4 Xilinx FPGA (XC4VLX60),
with an utilization rate close to 80% of their capacity.

I Each chip consists of a cluster that was reduced to a 2x2 cell array (this includes the SM),
one PIM, one Control Microprocessor (CµP) and the GCU.

I The Internal and External networks were implemented.

I The system supports up to 32 processors working in parallel.

I The system implements all self-adaptive capabilities described in this document.

I All system components are described in VHDL. The CµP was implemented using the EDK
design tool from Xilinx, which implements the MicroBlaze microprocessor; it is programmed in
C language by means of the Xilinx Platform Studio (XPS) and Xilinx Software Development
Kit.

I The programming and compilation of a entire project in system is manually performed using
the SANE Project Developer (SPD) (See chapter 5 and appendix D).

Figure 2.19 shows the block diagram of a chip in the prototype. This design permits to have
the same code description for both chips, the only difference is in the allocation of pins for each
chip (files *.ucf).

The External Controller (EC) was replaced by the Control Microprocessor (CµP) inside chips.
It should be noted that CµP is implemented in both chips but only one of them must assume the
control for the system configuration (master chip). The CµP of the master chip is responsible

27

2.14. PROTOTYPE ARCHITECTURE

Command (ENET) TX→RX Description

synchronize chips EC→GCUs Initial synchronization between chips

start contest winner chip EC→GCUs Contest for the execution of a process
in a chip.

cell number new component EC→GCUs

Insertion of a component in a chip.
insert first cell EC→GCU
end first cell GCU→EC
insert other cell EC→GCU
end other cell GCU→EC

error routing GCU→EC There are no routing resources avail-
able for the connection of two cells
in a component.

autoset for components connection EC→GCU

Commands used for connection of
components.

start components connection EC→GCU
search cell other chip GCU→GCUs
routing cell target chip GCU→GCUs
end routing cell target chip GCU→GCUs
end components connection GCU→EC
error components connection GCU→EC

set address program memory EC→GCUs
Write the Configuration Registers
and Program Memory of Functional
Unit processors.

write configuration registers EC→GCUs
write program memory[0,1,2,3] EC→GCUs
write FU memory conf GCU→EC

restart processors EC→GCUs
Commands used for controlling the
Functional Unit processors.

disable processors EC→GCUs
restart and disable processors EC→GCUs
enable processors EC→GCUs

wait EC→GCUs Commands used for controlling the
Functional Unit processors
including ”wait” or ”standby” state.

restart processors wait EC→GCUs
enable processors wait EC→GCUs

start subprocess[0,1,2,3] GCU→EC Commands used for execution of
subprocesses, i.e., run-time
self-configuration.

end subprocess[0,1,2,3] EC→GCU

autoset for delete connections EC→GCUs

Commands used to delete a
component in the cell array.

delete component connections chip EC→GCU
deroute connection other chip GCU→GCUs
deroute connection other chip conf GCU→GCUs
delete component connections conf GCU→EC
delete component chip EC→GCUs
delete component conf GCU→EC

replicate cells GCU→EC

Commands used for
self-elimination and
self-replication processes.

delete cell connections chip EC→GCUs
delete cell connections conf GCU→EC
eliminate cell EC→GCUs
eliminate cell conf GCU→EC
cell reinsert EC→GCUs

Note: conf = confirmation

Table 2.3: Commands list for External Network.

28

CHAPTER 2. SYSTEM ARCHITECTURE

SCL2_temp 0
11

CHIP0

SDA2_temp
1

SCL2_in
iSCL2_out

iSCL2_temp

iSDA2_temp

iSCL2_in

CHIP1

SDA2_in
iSDA2_out

iSDA2_in

winning_chip_n_in
1

iwinning_chip_n_in

winning_total_n_in
iwinning_chip_n_out

iwinning_

total_n_in

MCLR_temp
0

iMCLR_temp

MCLR_in

MCLR_total
iMCLR_out iMCLR_total

iMCLR_out

0
1

0
1

0
1

0
1

0
1

0
1

0
1

GCU

iSCL2_out

iSDA2_out

iwinning_chip_n_out

SCL2_out

SDA2_out
winning_
chip_n_out

MCLR_out

cell_00_out0
cell_00_out1

cell_11_out3

0
1

other_signals
_for_test

15 LEDs
16

63

8

RX
TX RSk232

Sim7Test

6

CLUSTER 9

PIN0_out
PIN1_out
PIN2_out

PIN0_in
PIN1_in
PIN2_in

DIPkswitch

SW3

SW4

clk_50MHz

PUC

DCM
clk_25MHz

1
2
3
4
5
6
7
8

Figure 2.19: Block diagram of a chip in prototype.

(a) Prototype picture. (b) Connector layout

Figure 2.20: Prototype implementation

for implementing the main program for the configuration and execution of system functionality,
even during runtime. Because of this, the dip-switch in positions 1 and 2 allows the selection of
the master and slave chip.

The CµP through the GCU in both chips is responsible for controlling the self-placement,
self-routing and the execution of any other self-adaptive processes.

Figure 2.20 shows a picture of the physical implementation of the prototype and the layout
of the connection board.

29

2.15. CONCLUSIONS

The output of cells can be visualized in the leds included in the cards. This output is useful
for the test of applications in the system. The dip-switch in positions 3 to 8 allows to select the
output of cells and other internal process for debugging purposes.

2.15 Conclusions

This chapter describes the hardware components involved in the self-adaptive architecture pre-
sented in this dissertation.

The chapter starts with the definition of the four conceptual layers defined for the architecture.
Afterwards, some details for the configuration of an application are detailed, specifically the
description of a connection between cells, which is critical in the definition of the architecture.

The system is presented in a top-down approach, starting for a general overview of the entire
system, which includes several chips interconnected with an External Controller (EC). Afterwards,
the two layer architecture of the chip is detailed. This is the physical implementation of the
system, and includes a cluster array interconnected with a Global Configuration Unit (GCU)
and Pin Interconnection Matrices (PIMs). The cluster is composed of a 3x3 cell array and a
Switch Matrix (SM). The input and output ports and the internal hardware of each component
is detailed in the corresponding section.

This chapter also describes in detail the communication protocols for Internal Network (INET)
and External Network (ENET). These networks participate actively in the self-adaptive processes
as discussed in the following chapters. The general description of the prototype implemented for
testing the architecture is presented at the end of the chapter.

30

Chapter 3

Functional Unit Architecture

Life would be tragic if it weren’t funny.

La vida seŕıa trágica sino fuera graciosa.

Stephen Hawking (1942)

Abstract: This section shows the functional description of the cell Functional Unit. It

includes description of cores, configuration modes, and details of principal parts of processors

like Data and Program Memories. Appendices A and B provide complementary information

over the functionality of processors, showing details about the Instruction Set and Data

Memory Registers respectively.

3.1 General Description

The Functional Unit (FU) is in charge of executing the processes scheduled to the cell or, from
other point of view, the FU provides the processing capabilities to the cell. The FU can be
described as a four-core configurable multicomputer [8]. The FU has twelve configuration modes
that allows implementing between one to four processors, which can be configured for data
processing of 8, 16, 24 or 32 bits.

The architecture of the FU could be composed of logic gates, LUTs, ALUs or any configurable
digital system, but due to the hardware necessary to carry out the self-adaptive principles, in
order to balance overhead, it has been decided to include a configurable digital element with
greater complexity. The need for a system with general purpose computation capabilities lead
to the design of the FU as a set of configurable processors with Harvard architecture.

Figure 3.1 shows a block diagram of the cell, which includes the FU and the Cell Configuration
Unit (CCU). Additionally, the cell includes multiplexers that allows the interconnections of
FU ports between cells. The CCU and the multiplexers provide support for the self-adaptive
capabilities of cells. The FU has the following main characteristics:

I Four 9-bit input ports.

I Four 9-bit output ports.

I Four cores: each core contains the digital elements necessary for the construction of a processor.

I Output Multiplexing System (OMS): the OMS permits the cores to write data to the output
ports.

31

3.2. FU PORTS

Local
Ports

Remote
Ports

Expansion
Ports

Internal
Network

FUNCTIONAL UNIT

Input
Ports

Output
Ports

CELL CONFIGURATION
UNIT (CCU)

Fault Tolerance
Input Ports

FU

FTCSR

PORTS

CORE1 CORE2 CORE3

Outputs_Multiplexing_System

flags_with_CCU

CORE0

OUT0

OUT1

OUT2

OUT3

IN0

IN1

IN2

IN3

FT_IN0 FT_IN1 FT_IN2 FT_IN3

ft_error_flag
Fault_Tolerance_System

(FTS)

CELL MODE

SUBPCSR

Figure 3.1: Functional Unit architecture.

I Fault Tolerance System (FTS): the FTS enables the system to continue operating properly
in the event of failure of some of its processors. If the FTS detects a hardware failure in a
processor, the cell or cells involved in the failure could be self-replicated in another location
inside the array. Therefore the cell will be self-discarded for future self-placement processes.

I Four 9-bit fault-tolerance input ports used exclusively for FTS when enabled.

I PORTS Register: configures the OMS allowing write operations over FU output ports.

I FTCSR Register: configures the FTS and the OMS.

I MODE Register: sets the configuration mode of cell, i.e., configures how the cores are grouped
to build from one to four processors in FU.

I SUBPCSR Register: interface between FU and CCU for the execution of subprocesses, i.e., it
allows the execution of runtime self-configuration capability of the system.

3.2 FU Ports

The FU input ports can be interconnected with the FU output ports of two cells through the
local and remote cell ports or through the Switch Matrices. This connection is performed by the
self-routing process (Chapter 4).

The 9-bit FU input and output ports are composed of an 1-bit Read Enable (RE) signal and
8-bit of data (including the Fault Tolerance input ports). When a data is written to the register
related to the output port, it is generated a pulse in the ninth bit of the FU port. The RE pulse
is one clock-cycle.

Figure 3.2 shows an example of RE pulse when different data bytes are written in an output
register. The data (ALU) and the enable signal from a core permits to write the output register
associated to the FU output, and additionally permits to generate the RE pulse. When two or
more output port register are written simultaneously, i.e., for 16, 24 or 32-bit processors, the RE
bit in each port of FU has the same behavior.

The RE pulse of an input port is used to detect when a data has been written in the port.
For this purpose, the special instruction BLMOV is used.

32

CHAPTER 3. FUNCTIONAL UNIT ARCHITECTURE

From1COREX

FU1Output1Port
OUTY1_9-bitG

clk

8-bit1data D0 D1 D2 D3 D4

1-bit1enable1-1enX

8-bit1Register1-1OUTY_REG D011111111111111 D1 D2 D3 D4

1-bit1pulse1-1RE

Figure 3.2: Read Enable pulse example.

3.3 Architecture of Processors

Throughout this document, the terms ”cores” and ”processors” are used frequently. The following
sections clarify its difference from the point of view of the architecture presented.

3.3.1 Cores

The core can be described as a set of digital elements that could be used to build a processor
(Figure 3.3). The FU has four cores, and each core includes the next principal components:

I General Purpose Registers (GPRs), 8 bytes, R0 to R7.
I 8-bit ALU.
I Code Condition Register (CCR).
I Program Counter.
I Control Memory.
I Program Memory (64 instructions capacity).

Most of this components have the same characteristics for all cores, except the ALU and
the Program Counter. Each ALU includes specific hardware that supports the execution of
instructions depending of the length of the processing data. The length of the Program Counter
is different for each core: 8-bit for CORE0, 6-bit for CORE1 and CORE3, and 7-bit for CORE2,
this is related to the size of the Program Memory that a core can handle in a specific configuration
mode.

3.3.2 Processor

The processor is composed of the elements of one or more cores. Therefore, the FU can have
between one to four processors. Figure 3.3 shows an example of the construction of three
processors: the first is an 8-bit or 16-bit processor based on two cores, the second and third
are 8-bit processors based in one core each. In this figure, the processor P0 shows the basic
architecture of any processor in the FU. Note that there are bus lines denoted by ’N’, which
indicated that the data processing capability could be for 8, 16, 24 or 32 bits. The following are
some consideration of processors in FU:

I The cores can be grouped in order to build a processor with more capacity. The program
memories are added always in length, whilst the Data Memory can be added in length and/or
width.

I The cores are grouped from left to right. The leftmost includes the most significant byte when
the data processing is for 16, 24 or 32 bits.

I The Program Counter controls the sequence of the program. The processors includes condi-
tional and unconditional instructions to modify this sequence.

33

3.3. ARCHITECTURE OF PROCESSORS

8Lbit0Configuration0
Registers

8Lbit0Input0Port
Registers

8Lbit0Output0Port
Registers

8-bit
ALU0

Program5Counter5fPC0d

Control
Memory50

Program
Memory50

CORE1

N N

N N

8

8666

5-7 8 66

10

bb

Data
Memory

GPRs

CSR ALU

Z C
PCPC

Cout

z

Program
Memory

Control
Memory

N 8

Processor 0 (P3)

N0=0[8A016A024A032]

N N

N N

8

8666

5-7 8 66

10

bb

Data
Memory

GPRs

CSR ALU

Z C
PCPC

Cout

z

Program
Memory

Control
Memory

N 8

Processor 0 (P2)

N0=0[8A016A024A032]

Configuration5and5
Status5Registers5

fCSRd

IN0
IN1
IN2
IN3

OUT0
OUT1
OUT2
OUT3

8Lbit0Code0
Condition0Register

CCR0

General5Purpose5
Registers5fGPR0d

8Lbit0REGISTER0
8Lbit0R1
8Lbit0R2
8Lbit0R3
8Lbit0R4
8Lbit0R5
8Lbit0R6
8Lbit0R7

MODE
FAMILY
PORTS

SUBPCSR
FTCSR

CORE0 CORE2 CORE3

N N

N N

8

8

666

5-7 8 66

10

bb

Data
Memory

GPRs

CSR ALU

Z C
PCPC

Cout

z

Program
Memory

Control
Memory

N 8

Processor 0 (P0)

N0=0[8A016A024A032]

Figure 3.3: Construction of processors based on cores.

I The digital design of FU includes additional hardware that is controlled by the configuration
registers (MODE, PORTS, FTCSR, SUBPCSR) and Control Memory.

The following sections describes the processing capabilities of the FU from a functional point
of view.

3.3.3 Configuration modes

The configuration of the FU consists basically in grouping the digital elements of cores to build
between one to four processors, where the expansion of Data and Program Memory describes
the specific configuration mode. There are twelve different configuration modes, ranging between
one and four processors working in parallel.

When each core implements a processor, i.e., when there are four processors in the FU, all
digital components are active and the processors are identified with the same numeration of
cores (CORE0 to CORE3 implements the processors P0 to P3).

The following considerations should be taken into account for processors that are composed
of two or more cores:

I The core with the lower numeric order assumes the control of the processor, therefore only
the Program Counter, Control Memory and CCR of this core are active for the processor.
The name of the processor is related to this core. In Figure 3.3, the processors P0, P2 and P3
are controlled by CORE0, CORE2 and CORE3 respectively.

I The GPRs can be joined in length or width achieving data processing for 8, 16, 24 or 32 bits.
These registers are mapped in Data Memory.

I The CSRs are mapped to the Data Memory for each processor. Only the CCR is different for
each processor.

I The Program Memory of cores are added, which increases the instructions capacity of the
processor.

34

CHAPTER 3. FUNCTIONAL UNIT ARCHITECTURE

Mode Processors
CORE0 CORE1 CORE2 CORE3

CTR ALU CTR ALU CTR ALU CTR ALU

0 4
4 4 4 4 4 4 4 4

P0 [8x8 - 64] P1 [8x8 - 64] P2 [8x8 - 64] P3 [8x8 - 64]

1 3
4 4 8 8 4 4 4 4

P0 [16x8 - 128] P2 [8x8 - 64] P3 [8x8 - 64]

2 2
4 4 8 8 4 4 8 8

P0 [16x8 - 128] P2 [16x8 - 128]

3 2
4 4 8 8 8 8 4 4

P0 [24x8 - 192] P3 [8x8 - 64]

4 1
4 4 8 8 8 8 8 8

P0 [32x8 - 256]

5 3
4 4 8 4 4 4 4 4

P0 [8x16 - 128] P2 [8x8 - 64] P3 [8x8 - 64]

6 2
4 4 8 4 4 4 8 8

P0 [8x16 - 128] P2 [16x8 - 128]

7 2
4 4 8 4 4 4 8 4

P0 [8x16 - 128] P2 [8x16 - 128]

8 2
4 4 8 4 8 8 4 4

P0 [8x16 - 192] P3 [8x8 - 64]

9 1
4 4 8 4 8 8 8 8

P0 [16x16 - 256]

10 2
4 4 8 4 8 4 4 4

P0 [8x24 - 192] P3 [8x8 - 64]

11 1
4 4 8 4 8 4 8 4

P0 [8x32 - 256]

- CTR denote the control of a processor, it includes the Program Counter, Control Memory and CCR.
When CTR is active for COREX, the name of the processor is defined as PX.

- Nomenclature: P0 [16x8 - 64] = Processor 0 [Data memory includes 16 words of 8 bits each -
Program memory with capacity for 64 instructions].
- Data processing: x8 = 8-bit, x16 = 16-bit, x24 = 24-bit, x32 = 32-bit.

Table 3.1: Configuration modes: active components for processors and memory distribution

I For an 8-bit processor, the ALU is active only for the core that assumes the control.
I For a 16-bit, 24-bit or 32-bit processors, the ALUs are concatenated in 2, 3 or 4 cores respec-

tively.

Table 3.1 shows a relation of the configuration modes with the number and name of processors,
as well as the active components of cores for each processor. This table also shows Data and
Program Memory capacity for each configuration mode. The GPRs in Data Memory can be
combined in width and length, achieving combinations for data processing of 8, 16, 24 and 32 bits.
The mode 8 is the only one that does not use the GPRs of CORE2. The Program Memory can
only be combined in length, making possible to have programs of 64, 128, 192 or 256 instructions.

For example, in the configuration mode 0, there are four active processors (P0 to P3), all of
which have 64 instructions capacity of Program Memory and 8 bytes of GPRs in Data Memory.
In mode 10, two processors are built (P0 and P3). The first (P0) has a Program Memory with
capacity for 192 instructions and eight 24-bit words of GPRs in Data Memory; the second (P3),
64 instructions of Program Memory and 8 bytes of GPRs in Data Memory.

35

3.4. DATA MEMORY

3.4 Data Memory

The Data Memory is 8, 16, 24 or 32 bit and it is composed of 1, 2, 3 or 4 blocks of General-Purpose
Registers (GPRs) and 14 Configuration and Status Registers (CSRs).

Data memory access is performed through three buses, two for reading and one for writing.
This way, a processor could read two registers, perform the desired operation and store the result
in a third register, all in a single clock pulse.

3.4.1 General Purpose Registers (GPRs)

Each core includes eight 8-bit General Purpose Registers (GPRs), which are mapped in Data
Memory according to the configuration mode selected. The grouping of these blocks is included
in the Data Memory map shown later in this section.

3.4.2 Configuration and Status Registers (CSRs)

Appendix B includes a detailed description of the CSRs, which can be configured properly for
any application designed for the system. All CSRs are 8-bit, below is presented a functional
description of these registers.

Output Port Registers (OUT0 . . . OUT3): The 8-bit OUTX register is connected directly
to the 8 less significant bits of FU output port X. The ninth bit of FU corresponds to RE bit as
explained in section 3.2. For a correct write operation of any OUTX register, it is necessary to
be sure that register PORTS is configured properly.

Input Port Registers (IN0 . . . IN3): The 8-bit INX represent the actual data in the 8 less
significant bits of FU input port X, or from other point of view, the data in the output port
register of a cell connected to this port. These are read-only registers. The RE pulse in an input
port is used to detect when data has been written in the port. The special instruction BLMOV
is used for this purpose.

Code Condition Register (CCR): The CCR is composed of three bits: TA (Thread Active),
which indicates if the execution thread has finished or not. The Z and C elements correspond
to the flags that indicate when an operation is zero and when the operation has generated a
carry respectively. The instruction END is the only one able to stop the execution of the thread
(TA ← 0).

Configuration Mode Register (MODE): The 8-bit MODE register is used for the configu-
ration mode of the FU. Section 3.3.3 shows the twelve possible configuration modes for FU. This
is a read only register, therefore a configuration mode can not be modified by a processor.

Famiy Register (FAMILY): The 8-bit FAMILY register was implemented to identify the
family of the execution thread to which it belongs. The functionality of this register is reserved
for future implementations, where a new programing paradigm [29] [30] [32] could be used to
improve the functionality of the architecture.

Ports Configuration Register (PORTS): The 8-bit PORTS register configures the Output
Multiplexing System in FU. This register configures the path between the ALU of a core and
the OUTX register for a write operation over the FU output port.

Subprocesses Configuration and Status Register (SUBPCSR): The 8-bit SUBPCSR
configures the execution of subprocesses. Any component in the system can start the execution
of one to four subprocesses for dynamic reconfiguration in the system.

36

CHAPTER 3. FUNCTIONAL UNIT ARCHITECTURE

Fault-tolerance Configuration and Status Register (FTCSR): The 8-bit FTCSR config-
ures the Fault-tolerance system that permits to detect a hardware failure in desired processors
in the system (See section 3.7 for details).

3.4.3 Data Memory Map

Figure 3.4 shows the memory map for all possible processor in FU. Each memory map has a
table that indicates the mode and the processor associated. For 8-bit processors, the GPRs of
cores are joined lengthwise, which allows to increase the user GPRs in Data Memory.

For 16-bit processors in modes 5, 6, 7 and 8, the GPRs are joined widthwise, whereas for
mode 9 the GPRs are joined lengthwise and widthwise as showed in figure. For 24-bit and 32-bit
processors the GPRs are joined widthwise.

When there are more than one processor in the FU, it is important to note that all processors
can read any INX register, but only one processor can write a specific OUTX register, this
configuration must be performed in the PORTS register. Note that for 16, 24 and 32-bit processors,
the ports IN0 and OUT0 represents the most significant byte for data processing.

3.5 Program Memory and Instructions Set

The FU includes four blocks of Program Memory (one on each core). Each block can store up
to 64 instructions (64x25 bits). The Program Memory is joined depending on the configuration
mode (see Table 3.1) increasing the instructions capacity for a processor.

Each 25-bit word in the Program Memory corresponds to one instruction. This word is
divided in operation code (OPCODE) and the arguments. The OPCODE is 5-bit or 7-bit and
the arguments could use the remaining bits depending on the instructions.

The instruction set is composed of 44 instructions, which includes arithmetic, logic, shift,
branch, conditional branch and special instruction for the execution of microthreads [30].

Appendix A includes a detailed description of the instruction set for any processor in the
FU.

3.6 Output Multiplexing System

Figure 3.5 shows a block diagram of Output Multiplexing System (OMS). The registers PORTS
and FTCSR configure the core that is selected to perform a write operation over a specific OUT
register. Note that any OUT register can be written by only one core.

When the FTS is disabled, the PORTS register allows for configuring the path between the
data bus of a core and the OUT register, and also permits to configure the signal en outX, that
enables the write operation over the register. The enable signals (en outX) are generated by the
core that assumes the control of the processor. These signals are used for loading the output
register and for the generation of the Read Enable (RE) pulse in the FU output ports.

When the FTS is enabled, the register FTCSR has control priority over PORTS register as
shown in Table 3.2. See section 3.7 for details.

3.7 Fault Tolerance System (FTS)

The FTS enables the system to continue operating properly in the event of the failure of some of
its processors. When a failure is detected by the FTS, the FU notifies the problem to the CCU,
which starts the appropriate self-adaptive process for the replication of the damaged cells.

37

3.7. FAULT TOLERANCE SYSTEM (FTS)

IN020h
IN121h
IN222h
IN323h

OUT024h
OUT125h
OUT226h
OUT327h
CCR28h

MODE29h
FAMILY2Ah
PORTS2Bh

SUBPCSR2Ch
FTCSR2Dh

GPR[0|1|2|3]
00h

07h

2Eh

3Fh

IN020h
IN121h
IN222h
IN323h

OUT024h
OUT125h
OUT226h
OUT327h
CCR28h

MODE29h
FAMILY2Ah
PORTS2Bh

SUBPCSR2Ch
FTCSR2Dh

2Eh

3Fh

GPR0
00h

1Fh

GPR1

GPR2

GPR3

IN020h
IN121h
IN222h
IN323h

OUT024h
OUT125h
OUT226h
OUT327h
CCR28h

MODE29h
FAMILY2Ah
PORTS2Bh

SUBPCSR2Ch
FTCSR2Dh

2Eh

3Fh

GPR0|GPR2
00h

0Fh GPR1|GPR3

IN020h
IN121h
IN222h
IN323h

OUT024h
OUT125h
OUT226h
OUT327h
CCR28h

MODE29h
FAMILY2Ah
PORTS2Bh

SUBPCSR2Ch
FTCSR2Dh

2Eh

3Fh

GPR0
00h

17h

GPR1

GPR2

P2
C0MODE

0
1
2
3
4
5
6
7
8
9
10
11

C1 C2 C3
P0 P1 P3

P3

P3P2

P3

P0
P0 P2

P0
P0 P2
P0 P2

P0

P0
P0

P0

P0

P2 P3

P3P0

MODE C0 C1 C2 C3
P2P0 P1 P3

P3

P3P2

P3

P0
P0 P2

P0
P0 P2
P0 P2

P0

P0
P0

P0

P0

P2 P3
0
1
2
3
4
5
6
7
8
9
10
11

P3P0

MODE C0 C1 C2 C3
P2P0 P1 P3

P3

P3P2

P3

P0
P0 P2

P0
P0 P2
P0 P2

P0

P0
P0

P0

P0

P2 P3
0
1
2
3
4
5
6
7
8
9
10
11

P3P0

MODE C0 C1 C2 C3
P2P0 P1 P3

P3

P3P2

P3

P0
P0 P2

P0
P0 P2
P0 P2

P0

P0
P0

P0

P0

P2 P3
0
1
2
3
4
5
6
7
8
9
10
11

P3P0

20h
21h
22h
23h
24h
25h
26h
27h
28h
29h
2Ah
2Bh
2Ch
2Dh

GPR0|GPR2
00h

07h

2Eh

3Fh

IN0 IN1
IN2 IN3

OUT0 OUT1
OUT2 OUT3

CCR
MODE

FAMILY
PORTS

SUBPCSR
FTCSR

GPR1|GPR3

20h
21h
22h
23h
24h
25h
26h
27h
28h
29h
2Ah
2Bh
2Ch
2Dh

GPR2

00h

0Fh

2Eh

3Fh

IN0 IN1
IN2 IN3

OUT0 OUT1
OUT2 OUT3

CCR
MODE

FAMILY
PORTS

SUBPCSR
FTCSR

GPR3

GPR0 GPR1

MODE C0 C1 C2 C3
P2P0 P1 P3

P3

P3P2

P3

P0
P0 P2

P0
P0 P2
P0 P2

P0

P0
P0

P0

P0

P2 P3
0
1
2
3
4
5
6
7
8
9
10
11

P3P0

MODE C0 C1 C2 C3
P2P0 P1 P3

P3

P3P2

P3

P0
P0 P2

P0
P0 P2
P0 P2

P0

P0
P0

P0

P0

P2 P3
0
1
2
3
4
5
6
7
8
9
10
11

P3P0

20h
21h
22h
23h
24h
25h
26h
27h
28h
29h
2Ah
2Bh
2Ch
2Dh

GPR0
00h

07h

2Eh

3Fh

OUT2

CCR
MODE

FAMILY
PORTS

SUBPCSR
FTCSR

GPR2GPR1

OUT1OUT0

IN2IN1IN0 20h
21h
22h
23h
24h
25h
26h
27h
28h
29h
2Ah
2Bh
2Ch
2Dh

GPR0
00h

07h

2Eh

3Fh

OUT2

CCR
MODE

FAMILY
PORTS

SUBPCSR
FTCSR

GPR2GPR1

OUT1OUT0

IN2IN1IN0

OUT3

IN3

GPR3

8-bit-Processors

16-bit-Processors

24-bit-
Processor

32-bit-
Processor

Figure 3.4: Data memory map for 8, 16, 24 and 32 bit processors.

38

CHAPTER 3. FUNCTIONAL UNIT ARCHITECTURE

PORT0

OUT0

OUT0_REG OUT1_REG OUT2_REG OUT3_REG

PORT1 PORT2 PORT3

PORTSERegister
PORT0PORT1PORT2PORT3

01234567

8-bitEdataEfromEALU

1-bitEREEpulseEandE8-bitEdataR

S

Q

en_out0

OUT1

R

S

Q

en_out1

OUT2

R

S

Q

en_out2

OUT3

R

S

Q

en_out3

FTCSR

1 320
Mux3

1 320
Mux2

1 320
Mux1

1 320
Mux0

PORT0

CORE0

en_out0_c0
en_out1_c0
en_out2_c0
en_out3_c0

CORE1

en_out0_c1
en_out1_c1
en_out2_c1
en_out3_c1

CORE2

en_out0_c2
en_out1_c2
en_out2_c2
en_out3_c2

CORE3

en_out0_c3
en_out1_c3
en_out2_c3
en_out3_c3

en_out0_c0

1 320
Mux00

en_out0_c1
en_out0_c2

en_out0_c3

en_out0

PORT0

FTCSR

en_out1_c0

1 320
Mux11

en_out1_c1
en_out1_c2

en_out1_c3

en_out1

PORT1

FTCSR

en_out2_c0

1 320
Mux22

en_out2_c1
en_out2_c2

en_out2_c3

en_out2

PORT2

FTCSR

en_out3_c0

1 320
Mux33

en_out3_c1
en_out3_c2

en_out3_c3

en_out3

PORT3

FTCSR

FALU0 FALU1 FALU2 FALU3

Figure 3.5: Block diagram of Output Multiplexing System.

ft controls en out0 mux0 en out1 mux1 en out2 mux2 en out3 mux3

1 - 1 - 5 1 FALU0 PORT1* PORT2* PORT3*
1 - 1 - 6 1 FALU0 1 FALU1 PORT2* PORT3*
1 - 1 - 7 1 FALU0 1 FALU1 1 FALU2 PORT3*
1 - 1 - 8 1 FALU0 1 FALU1 1 FALU2 1 FALU3

1 - 1 - others PORT0* PORT1* PORT2* PORT3*
0 - X - X PORT0* PORT1* PORT2* PORT3*

ft controls ↔ ft enable - ft redundant cell - ft mode

* The value of en outX y muxX depends of PORTX value.

Table 3.2: Output Multiplexing System operating table.

The FTS consists of a specific hardware that allows the comparison of two identical processors
each time that a instruction is executed, that means each clock cycle. This involves the comparison
of 2, 4, 6 or 8 cores, depending of the configuration mode of the FTS (FT mode).

These processors that will be compared are defined as working and redundant. They must
share the same inputs, but on the other hand, the working processor takes over writing the
output ports, because two outputs can not be routed to the same location. There may be one or
two cells participating in the FTS. These cells are called primary and redundant. The primary
cell is mandatory and includes working processors. This cell may or may not include redundant
processors. The redundant cell is optional and includes only redundant processors.

Figure 3.6 shows the block diagram of FTS, which is only active when FTS is enabled and it
is the primary cell (signals ft enable and not ft redundant cell). Table 3.3 shows the data bus
comparisons available for FTS. Note that FT modes 0 to 4 only perform comparisons with data
bus from the same cell, whilst FT modes 5 to 8 perform comparison between data buses of the
cell with FT input ports, which suppose a connection between the redundant cell and primary
cell.

When the redundant cell is used, the OMS allows to write constantly the data bus of cores
to the FU output ports as described in Figure3.5 and Table 3.2.

39

3.7. FAULT TOLERANCE SYSTEM (FTS)

1 20
Mux0

ft_enable

ft_redundant_cell
ft_en

CORE0 FALU0

FT_internal_reg0

CORE1 FALU1

FT_internal_reg1

CORE2 FALU2

FT_internal_reg2

CORE3 FALU3

FT_internal_reg3

ft_en

FT_internal_reg1

FT_internal_reg2

FT_IN0(7:0)

10
Mux1

FT_internal_reg3

FT_IN1(7:0)

10
Mux2

FT_internal_reg3

FT_IN2(7:0)

CMP0

FT_internal_reg0

ft_en CMP1

FT_internal_reg1

ft_en CMP2

FT_internal_reg2

ft_en CMP3

FT_internal_reg3

ft_en

FT_IN3(7:0)
30 2 4 5
Mux3

1

CMP0 CMP2

CMP2

CMP0 CMP0
CMP1

CMP3

CMP0
CMP1
CMP2

CMP0
CMP1
CMP2

E

D Q

ft_error_flag

ft_en

Figure 3.6: Fault Tolerance System.

FT mode Comparison Mux0 Mux1 Mux2 Mux3

0 F0⇔F1 0 X X 0
1 F0⇔F1 & F2⇔F3 0 X 0 1
2 F2⇔F3 X X 0 2
3 F0⇔F2 1 X X 0
4 F0⇔F2 & F1⇔F3 1 0 X 3
5 F0⇔F0* 2 X X 0
6 F0⇔F0* & F1⇔F1* 2 1 X 3
7 F0⇔F0* & F1⇔F1* & F2⇔F2* 2 1 1 4
8 F0⇔F0* & F1⇔F1* & F2⇔F2* & F3⇔F3* 2 1 1 5

FX denotes a data bus from ALU in COREX (FALUX). ⇔ denotes a comparion between cores. &
denotes a logic AND. * denotes a data bus from the redundant cell (a connection between FUs of
primary and redundant cell is assumed).

Table 3.3: Multiplexers configuration for Fault Tolerance System in primary cell.

3.7.1 Fault Tolerance Input Ports

When the redundant processor is included in the same cell where the working processor is located,
the FT input ports are not used, and the FTS only performs comparison between cores of the
cell. In this case the redundant cell is not used (FT modes 0 to 4).

Otherwise, when the redundant processor is located in the redundant cell, the FTS of the
primary cell must perform a comparison between cores of different cells, in this case the OMS
of the redundant cell must drive the output of the data flow of the core(s) to the output of the
cell (RE is set to logic 1), which in turn should be connected to the FT inputs of the FU of the
primary cell that includes the working processor (FT modes 5 to 8).

When the FTS is enabled in the redundant cell, the register FTCSR has priority over PORTS
register to control the OMS as shown in Table 3.2. For example, in FT mode 5 the data bus of
CORE0 is routed directly to the OUT0 REG (mux0=FALU0 and en out0=1 in Figure 3.5). In
FT mode 8 all cores are routed directly to the respective OUTX register.

The FU includes four FT input ports. These ports must be interconnected by user with the
output ports of the redundant cell when the FTS is enabled. The number of ports depends on
the configuration mode of cell and the FT mode.

40

CHAPTER 3. FUNCTIONAL UNIT ARCHITECTURE

FunctionalSUnitSinSPrimarySCell

FunctionalSUnitSinSRedundantSCell

PX WorkingSProcessorSX

RedundantSProcessorSYPY

DB-CX DataSBusSfromSCoreSX

ComparisonSperformedSbyS
FaultSToleranceSSystemS1FTS6

FT_modeS3S
18Nbit6

FT_modeS4S
116Nbit6

P0
DB-C0,C1,C2,C3

P0
DB-C0,C1,C2,C3

FT_modeS8S132Nbit6

FT_modeS7S18Nbit6 FT_modeS2S18Nbit6

FT_modeS1S18Nbit6

P0
Data Bus

from CORE0

P1
Data Bus

from CORE1

P2
Data Bus

from CORE2

P3
Data Bus

from CORE3

FT_IN7

IN7 OUT7
IN1
IN2
IN3

OUT1
OUT2
OUT3

FT_IN1 FT_IN2 FT_IN3

P0

DB-C0

P2

DB-C2

P0

DB-C0,C1

P2

DB-C2,C3

P0
DB-C0

P0
DB-C0

FT_modeS5S18Nbit6

P0
DB-C0,C1

P0
DB-C0,C1

FT_modeS6S116Nbit6

P0
DB-C0,C1,C2

P0
DB-C0,C1,C2

FT_modeS7S124Nbit6

Figure 3.7: FT modes for processors in Functional Unit.

3.7.2 Fault Tolerance Modes

The FTS could be implemented in any processors available in the system. Figure 3.7 shows the
possible comparisons of processors with the same characteristics, whose result is the creation of
a specific fault tolerance configuration mode (FT mode).

Table 3.4 shows the 9 FT modes available and the comparison performed. This table in-
dicates the cores that are compared in each FT mode, which could be combined with any of
the 12 configuration modes available for the system, obtaining 108 possible combinations. It is
responsibility of the developer to configure an appropriate combination between configuration
mode of cells (always necessary) and FT mode (if FTS is enabled). This table also shows the
suggested cell configuration modes for each FT mode.

As example lets suppose that it is necessary to implement the FTS to four 8-bit processors.
For this purpose you need two cells (cell A and cell B) configured in mode 0, i.e., four 8-bit
processors each. Therefore, the fault tolerance capability could be implemented with FT modes
1 or 8. For option with FT mode 1 you will have in cell A and B two primary processors and two
redundant processors each. For option with FT mode 8 you will have the four primary processors
in cell A and the four redundant processors in cell B.

3.7.3 Configuration of FTS

When a specific application needs to implement a processor with fault tolerance capabilities, the
developer has to set the configuration mode (MODE register) and the FT mode by means of the
Fault Tolerance Configuration and Status Register (FTCSR) (see section B.9 for details).

For configuration of FTS you should keep in mind the following considerations:

1. Enable the FTS for primary and redundant cell (if used). If it is not enabled, the other bits
of FTS are not taken into account. You must set the bit FT enable.

2. Select the FT mode for primary and redundant cell (if used).

3. Indicate if the cell is the redundant cell. The bit FT redundant cell is used for this purpose.
It must be set in the redundant cell for the FT modes 5, 6, 7 and 8 only. If a cell is used as
redundant, the comparators of FTS are disabled for that cell. The data bus of cores is driven
to the output of redundant cell and RE is set to 1. The user must interconnect the output
ports of redundant cell with the FT input ports of primary cell.

41

3.8. CONCLUSIONS

FT mode Core Comparison
Suggested Configurtion Mode

Primary Cell Redundant Cell

0 C0 ⇔ C1 0 N/A

1 C0 ⇔ C1 & C2 ⇔ C3 0 N/A

2 C2 ⇔ C3 0, 1, 5 N/A

3 C0 ⇔ C2 2 N/A

4 C0-C1 ⇔ C2-C3 7 N/A

5 C0 ⇔ C0* 3, 4 3, 4

6 C0-C1 ⇔ C0*-C1* 5, 8, 9 5, 8, 9

7 C0-C1-C2 ⇔ C0*-C1*-C2* 10 10

8 C0-C1-C2-C3 ⇔ C0*-C1*-C2*-C3* 0, 11 0, 11

⇔ denotes a comparion between cores. & denotes a logic AND. * denotes a core in the redundant
cell (a connection between FUs of primary and redundant cell is assumed).

Table 3.4: Fault Tolerance Modes (FT modes)

4. The bit FT error flag in primary cell indicates when the FTS has found an error while
performing a comparison between two processors, this bit stops the execution of the programs
in the cores and alerts the CCU to start the self-elimination and self-replication processes of
damaged cells.

3.8 Conclusions

This chapter describes the hardware architecture of Functional Unit (FU). The FU ports are
composed of four 9-bits input ports, four 9-bit output ports and four 9-bit fault tolerance input
ports. The FU includes an Output Multiplexing System (OMS), that is in charge of configuring
the core that is enabled for write data in the FU output ports. The Fault Tolerance System (FTS)
allows the detection of hardware failures, performing a comparison between two processors. If a
failure is detected, the FU notifies to the CCU and damaged cells are self-replicated in system.

The FU includes four cores. Each core contains the digital elements that are used for construc-
tion of a processor: 8 bytes of General Purpose Registers (GPRs), 8-bit ALU, Code Condition
Register (CCR), Program Counter, Control Memory and Program Memory (64 instructions
capacity).

The processor is constituted by the elements of one or more cores. Therefore the FU can have
between one to four processors working in parallel. There are twelve configuration modes, where
the expansion of Data and Program Memory describes the specific configuration mode. The
GPRs can be joined in length or width achieving data processing for 8, 16, 24 or 32 bits. This
registers are mapped in Data Memory. The Program Memories can be joined or not depending
on the configuration mode, which increases the instructions capacity for a processor allowing
Program Memory sizes of 64, 128, 192 or 256 instructions. The instruction set of processors is
composed of 44 instructions, which includes arithmetic, logic, shift, branch, conditional branch
and special instruction for the execution of microthreads.

42

Chapter 4

Self-Adaptive Processes

If you want to run, run a mile. If you want to
experience a different life, run a marathon.

Si quieres correr, corre una milla. Si quieres
experimentar una vida diferente, corre un maratón.

Emil Zátopek (1922 – 2000)

Abstract: This chapter describes the self-adaptive capabilities included in the architecture,

mainly the self-placement and self-routing, which due to its intrinsic design, enable the

development of systems with runtime self-configuration, self-repair and/or fault tolerance

capabilities. The self-adaptive capabilities are executed in an autonomous and distributed

way by Configuration Units of Cells, Switch and Pin Interconnection Matrices.

4.1 Summary

The following is a summary of the self-adaptive processes that are supported by the architecture
presented in this document, which will be explained in detail along this chapter. Note that most
of the self-adaptive capabilities are based in self-placement and self-routing processes.

1. Self-placement: it is responsible for finding out the most suitable position in the cell array
to insert the new cell of a component. This process is divided in two:

I Self-placement for the first cell of a component.
I Self-placement for other cells of a component.

2. Self-routing: it allows interconnecting the FU ports of two cells. The interconnection of cells
can be at two levels:

I Cell level, through local and remote cell ports.
I Component level, through Switch and Pin Interconnection Matrices.

When a connection between cells must be eliminated, the Self-derouting process permits to
disconnect the FU ports of two cells (at cell and component level), i.e., it releases the routing
resources of a connection.

3. Self-replication: it permits to replicate the cell of a component to an empty cell in the array.
For this purpose, the process includes the execution of the following processes for a specific
cell in the order listed: self-derouting, self-placement and self-routing.

43

4.2. PREVIOUS CONSIDERATIONS

4. Self-elimination: it permits to eliminate and discard a specific cell(s) for future self-placement
process when a hardware failure is detected. Its routing resources continue available and it
can participate in future self-routing processes.

5. Self-configuration: it includes all previous self-adaptive process listed, and could be divided
in two scenarios:

I Self-repair: when the Static Fault Tolerance mechanism is enabled and a hardware failure
is detected, the processes for self-replication and self-elimination of damaged cell(s) are
executed.

I Dynamic reconfiguration: when the execution of subprocesses is enabled for a component.
It has the ability of create and eliminate components, among others. Therefore, the self-
placement and self-routing processes could be executed.

4.2 Previous Considerations

For the understanding of the proposed algorithms, it is important to note that the Control
Microprocessor (CµP) includes the high-level instructions in system, which will be executed
sequentially for the configuration of a SANE-ASM. These high-level instructions will be defined
as SANE Assembler (SASM) instructions.

This is the starting point for the configuration of an application in the system. The SASM
instructions will be detailed in chapter 5. In advance, for the understanding of the following
sections some SASM instructions are introduced:

I create component.
I connect component.
I delete component.
I start subprocess X.
I end subprocess X.
I ft configuration (Fault Tolerance configuration).

The name of each SASM instruction gives an idea of its functionality. The execution of this
instructions may require a negotiation process to establish the chip that has to execute a specific
process. Once the chip is defined, the CµP sends the information to the Global Configuration
Unit (GCU) of the selected chip to execute the desired action. Thereby, the GCU is the start
point for the execution of self-placement and self-routing algorithms inside a chip. When the
processes end, the GCU receives a confirmation command and notifies to the CµP the end of
the process. Thereafter, the CµP may continue with the execution of other SASM instructions.
The communication between Configuration Units (CUs), GCU and CµP is made through the
Internal Network (INET) and the External Network (ENET). The labels “ inet” and “ enet”
will be added to the commands related with these networks along this chapter.

It is important to note, that the algorithms presented in this chapter are being executed by
several CUs at the same time in distributed way. Therefore, each CU includes its proper set of
variables, e.g., the result of the execution of the algorithms is independent for each cell. The
flow diagrams for self-adaptive algorithms in cells and Switch Matrices (SMs) are summarized
in Appendix C and will be introduced along this chapter.

4.3 Initial State, Cell Address and Connection Tables

In the initial state, all cells are free, i.e., they do not belong to any component. The cells belonging
to any component have to be placed and connected for data processing and information exchange.

44

CHAPTER 4. SELF-ADAPTIVE PROCESSES

FU

AAAA0002

BBBB0001

FUFU

AAAA0001

CCCC0001

32-bitggAddress

16-bitggid_component 16-bitggid_cell

A A A A 0 0 0 1

InputsgConnectiongTableg-gCellgAAAA0001

SourcegPort TargetgPort SourcegCellN
IN0OUT01 BBBB0001
IN1OUT12 BBBB0001
IN2OUT23 BBBB0001
IN3OUT34 BBBB0001

FT_IN0OUT05 AAAA0002
FT_IN1OUT16 AAAA0002
FT_IN2OUT27 AAAA0002
FT_IN3OUT38 AAAA0002

OutputsgConnectiongTableg-gCellgAAAA0001

SourcegPort TargetgPort TargetgCellN
IN0OUT01 BBBB0001
IN1OUT1 BBBB0001
IN2OUT2 BBBB0001
IN3OUT3 BBBB0001
IN3OUT0 CCCC0001
IN2OUT1 CCCC0001
IN1OUT2 CCCC0001
IN0OUT3 CCCC0001
XX 00000000

XX 00000000

2
3
4
5
6
7
8
9

20

FU
IN0
IN1
IN2
IN3

OUT0
OUT1
OUT2
OUT3

FT_IN0
FT_IN1
FT_IN2
FT_IN3

FU

Figure 4.1: Address and Connection Tables example for cell AAAA0001.

This is a sequential process where each cell has to be placed and routed in the system. For this
purpose, the cells execute in a distributed way the self-placement and self-routing algorithms.

All cells have a 32-bit unique identifier called address. This field is divided into two 16-bit
words, called id component and id cell . The id component is the component unique identifier,
where the value FFFFh is reserved for broadcasting and the value 0000h to indicate that the cell
is free and does not belong to any component (initial value). Therefore, it is possible to instantiate
up to 65534 different components. The id cell is the cell unique identifier in a component, so
there may be up to 65536 cells in a component and a maximum close to 232 cells in the system.

All cells has two connection tables as detailed below:

I The Input Connection Table store the connections of the eight inputs of FU (including
the fault tolerance input ports). This table includes the fields source port, target port and
source cell, which corresponds to a connection between the FU output port of another cell
with the FU input of the cell.

I The Output Connection Table can store up to 20 connections, which is limited for the
number of port of the cell, i.e., 8 local ports plus 12 remote ports. When the cell includes
connections with other components, the number of connections within the same components
is proportionally reduced. This table includes the fields source port, target port and target
cell, which corresponds to a connection between the FU output port of the cell with the FU
input port of another cell.

Figure 4.1 shows an example of the address and connection tables for the cell AAAA0001 in a
SANE with three components.

4.4 Creation of Components in a Chip

The create component and connect component are basic instructions that permit the system to
create and interconnect new components in the cell array. These SASM instructions require the
execution of two basic self-adaptive processes: self-placement and self-routing. These algorithms
are executed in an autonomous and distributed way by system members (cells, SMs and PIMs).
The Cell Configuration Unit (CCU) includes the algorithms for all self-adaptive processes at
cell level. It includes an interface with the INET that implements the respective communication
protocol (see sections 2.11 and 2.12 for details). The Switch Matrix Configuration Unit (SMCU)
and Pin Interconnection Matrix Configuration Unit (PIMCU) include the algorithms for self-
routing at component level.

45

4.5. SELF-PLACEMENT PROCESS

6

3

6

66

3

3

3

3

3

3

3

3 3 3 3

3 3 3 3

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

0 1

1

1

2 2

22

2

2

3

3

3

3

3

3

4

4

4

4

4

4

4

5 5

5

5

5

5

6

6

6

7

7 8

Distance

10

0

5

5 2

2

4

4

4

6

6

6

6

7

7

8

8

8

9

9

10

10

11

11

11

11

12

13

1316 15 17

17

16

15

22

Congestion Affinity = 2·Distance + Congestion

2

Busy neighbor cells

(a) (b) (c) (d)

2

22

1 1 1 1

1 1 1 1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 00

Figure 4.2: Example of busy neighbor cells, congestion, distance and affinity .

In addition to the communication functionality, the transmission (tx) and mainly the reception
(rx) processes participate actively in the self-routing and self-placement algorithms. It is important
to note that tx and rx processes can be executed simultaneously by one or more cells in the
array, even the rx process can modify the data of the tx process if it is necessary, e.g., for the
comparison byte and the acknowledgment bit. The flow diagram for tx and rx processes is shown
in Section C.1.

4.5 Self-Placement Process

The self-placement algorithm is responsible for finding out the most suitable position in the cell
array to insert the new cell of a component. For the placement of components in the array it
is advisable but not essential to have the cells organized by number of connections with other
cells. Therefore, the cell with more connections is first placed in a convenient place, where there
is a large number of free neighboring cells. The following variables are defined for self-placement
process:

I Busy neighbor cells: This value indicates the number of busy cells around a cell. The cells
in the border of the array includes busy (or not implemented) cells by default.

I Congestion: The routing congestion figure (4.1) is defined as the number of remote output
ports that are busy (or not available) in a cell. The cells in the border of the array include
busy (or not implemented) remote ports by default.

congestion = remote ports used (4.1)

I Distance: The distance between two cells is the sum of the absolute differences of their
coordinates (Manhattan distance).

I Affinity: The figure cost affinity indicates the location appropriateness for the placement of
the new cell of a component with respect to another cell of the same component. The affinity
is defined in (4.2).

affinity = 2 · distance+ congestion (4.2)

Figure 4.2 shows an example of these variables. It assumes the initial configuration, i.e., there
are no routing resources used. These variables are modified dynamically, each time that a cell is
placed or a connection is routed. Note that distance and affinity values are relative to a specific
cell (highlighted).

46

CHAPTER 4. SELF-ADAPTIVE PROCESSES

4.5.1 Self-Placement of the First Cell of a Component

For the placement of the first cell of a component, a particular procedure is used, different from
other cells. In this case, a good candidate position is defined as one where a free cell has low
routing congestion and the largest number of free neighboring cells. The procedure includes the
next steps:

1. The GCU broadcasts by means of the INET a message with the new cell identifier (address)
and its input and output connection tables.

� tx command=insert first cell inet.
� tx address=0xFFFFFFFF.
� tx data = new cell address (4 bytes) + connection tables.

2. Free cells send simultaneously through INET, using a comparison process, the addition result
of the number of busy neighbor cells and congestion value ((a) + (b) in Figure 4.2).

3. The winner cell will be the leftmost uppermost cell with the lowest value. This cell stores the
address and the connection tables. Additionally, it sends a message to the GCU indicating
the end of the ”self-placement of the first cell of a component” process, e.g., the highlighted
cell in Figure 4.2 shows the location of the first cell of a component, when the array is empty.

Section C.2.1 presents a flow diagram of the algorithm implemented by cells for the insertion
process of the first cell of a component.

4.5.2 Self-Placement of Other Cells of a Component

After inserting the component first cell, the remaining cells of the component are placed as close
as possible to the cell with the largest number of connections with the new cell. For this purpose,
the affinity is used. The procedure is as follows:

1. The GCU broadcasts to the cell array a message with the new cell identifier (address) and
its connection tables.

� tx command=insert other cell inet.
� tx address=0xFFFFFFFF.
� tx data = new cell address (4 bytes) + connection tables.

2. The cells belonging to that component send a message by means of the INET indicating
the one’s complement of the number of connections they share with the new cell, starting
a comparison process. The winner cell will be the one which has the largest number of
connections.

3. This cell starts a process, in which the distance with free cells is calculated. Then, it requests
to the free cells to start a comparison process of their affinity .

4. The winner cell will be the leftmost uppermost cell with the lowest affinity value. This cell
stores the address and connection tables, e.g., the cell below the highlighted cell in Figure 4.2
(d) corresponds to the second cell placed in the cell array.

Section C.2.2 presents the flow diagram of the algorithm that performs the self-placement
of the other cells of the component (from the second). Figure 4.3 shows an example with
three components in an array of two clusters (6x3 cells array). This figure shows the execution
sequence of self-placement and self-routing processes for component AAAA. The final location
of component BBBB and CCCC is also shown.

47

4.5. SELF-PLACEMENT PROCESS

C4B2 B1

A1

A2A5

A3

A5A6

A4

A4A3

A1

A2

A6A5

B3

B1

B4

B2

B7

B5

B6

C1

C1

C1

C1

Component AAAA Component BBBB Component CCCC

Placement order:
A3, A4, A6, A5, A2, A1

Placement order:
B4, B5, B3, B1, B2, B7, B6

Placement order:
C4, C1, C2, C3

A3

A3 A4 A3 A4 A6

A2 A4 A6A3 A5

A1

A4 A6A3

A2 A5A4 A6A3

B7 B5 B4 B3

B6

B2 B1

A1

A2 A5A4 A6A3

B7 B5 B4 B3

B6

C3C2C1

1 2

3 4

5 6

7 8

Figure 4.3: Example of the self-placement algorithm implementation for three components in an
array of two clusters (6x3 cell array). The resources used by self-routing algorithm are shown
only for component AAAA.

48

CHAPTER 4. SELF-ADAPTIVE PROCESSES

4.6 Self-Routing Process

The Self-routing allows interconnecting the FU ports of two cells. It can be at cell level, through
the local and remote cell ports, or at component level, through the Switch Matrices (SMs) and
Pin Interconnection Matrices (PIMs).

When a cell or a component must be deleted form the array, the self-routing process must
be executed for disconnecting the FU port of cells previously connected. This process will be
defined as Self-derouting. This process can be at cell level or a component level.

Section C.3 and C.4 presents the flow diagrams of the Self-Routing processes implemented
in CCUs and SMCUs respectively. The following section describes these processes.

4.7 Self-Routing at Cell Level

The self-routing algorithm at cell level is executed since the insertion of the second cell of a
component, each time that the self-placement process ends. The algorithm allows interconnecting
the ports of the functional unit of two cells, in the same component, through the local and remote
cell ports. The local input-output ports are used exclusively to interconnect the FU ports of
two neighbor cells (north, east, south or west). The remote ports are used when the cells to be
connected are not adjacent or when the local ports are already occupied.

This process is divided in two parts. The first consists in locating the source and the target
cell inside the cell array for a specific connection. For this procedure, the INET is used. The
second is an expansion process between the source and target cells. This process is executed each
time that the source and target cells are configured for a new connection. The cell multiplexers
are dynamically configured to interconnect the desired ports. In this process, some bits of the
expansion ports are used (see section 2.10 for details).

4.7.1 Configuration of source and target cells for cell connections

The first cell that starts the self-routing process is the newly inserted cell, which activates its
source cell flag .

1. The source cell goes through its output connections table, and sends messages to cells of the
same component.

2. If the address of a busy cell that receives this message matches with the address of the message,
this cell activates its target cell flag and sets the acknowledge signal to the source cell . Then,
the source cell starts the “Expansion Process at Cell Level” to configure the path.

3. If the source cell does not receive the acknowledge signal, it will continue with its remaining
connections.

4. When the source cell (new inserted cell) ends with its output connections table, it broadcasts
a message including its address, asking for cells in the component able to route their output
connections with this cell. Then, it resets its source cell flag and activates its target cell flag .

Hitherto, the new inserted cell tried to route all its output connections, which depends of
the cells already placed. The output connections that has not been routed, will be made later,
when cells that are inserted later complete the whole process. The algorithm continues with the
routing of the input ports of the new inserted cell.

5. The cells of the component that have at least one output connection to be routed to the
target cell start an elimination process, where the winner is the leftmost uppermost cell.

49

4.7. SELF-ROUTING AT CELL LEVEL

Signal name Description

neighbor out X Used in the Search Phase. These signals are used to find the target cell
in neighboring cells.neighbor in X

propagate out X Used in the Search Phase. These signals are used to find the target cell
in the cell array.propagate in X

lock out X Used in the Configuration Phase. These signals are used in the reverse
process of the Search Phase, to configure the multiplexers in the cells
included in the path.

lock in X

local port out X
Used in both phases, the Search and Configuration. These signals are
used to indicate the local or remote port that will be used in case to
configure the path.

local port in X

remote port out X

remote port in X

id target port out Used in the Search Phase. These signals are used to indicate the
connection target port of the target cell .id target port in X

Table 4.1: Description of expansion port signals used by the Expansion Process at Cell Level.

6. The winner cell activates its source cell flag . This new source cell looks up its output connec-
tions table and starts the “Expansion Process at Cell Level” to configure all connection paths
between source and target cells.

7. When the source cell ends routing all possible connections with the target cell , it broadcasts
a message asking for other cells in the component able to make their output connections with
the target cell .

8. Steps 5., 6. and 7. are repeated until all connections are completed with the target cell . When
the process ends, the last source cell sends a message to the GCU indicating the end of
self-routing and self-placement process for the inserted cell.

Section C.3.1 shows the algorithm used for the selection of source and target cells. When this
cells are selected, the “Expansion Process at Cell Level” can be executed. The total time of the
self-placement and self-routing processes of the new inserted cell depends on some factors, like
the placement order and the component interconnections that includes the number of connections
between cells (inputs and outputs).

4.7.2 Expansion Process at Cell Level

Once the source and target cells of a component are ready, the expansion process starts, config-
uring the cell multiplexers to interconnect the FU ports between those cells. The signals that
participate in this process are explained in Table 4.1.

When a cell has to be connected to another one, the system first checks if the cells are
neighbors. In that case, and if a free local port exists between them, they get connected by means
of the local ports, otherwise the connection is tried with a remote connection resource.

The path configuration is divided in two phases. The first one is the Search Phase at Cell
Level. This starts from the source cell and looks for the target cell in the array. During the
process some information is stored, in a distributed way, in every cell that has been visited. The
phase ends when the target cell has been found. If the first phase exhausted any possibility to
find the target cell without reaching it, then no path exists between the source cell and the

50

CHAPTER 4. SELF-ADAPTIVE PROCESSES

target cell , and there is no reason to continue with the second phase. Then, the source cell sends
an error message to the GCU and the self-routing process ends.

The second phase recovers the information generated by the first one for the path configuration.
This is called the Configuration Phase at Cell Level, it starts from the target cell to the
source cell using the propagation information stored during the first phase of the algorithm.

Sections C.3.2, C.3.3 and C.3.4 presents the flow diagrams related with the expansion process
at cell level.

Search Phase at Cell Level

The Search Phase is started by the source cell . This is an expansion process that propagates
signals in the sides of the cell that have available routing resources, like local and/or remote free
ports. The propagation process includes the configuration of signals for each side (north, east,
south and west) of the cell as follows:

a Configuration of propagation signals:

I This condition is valid only for the source cell : If the side of the cell has any free local
port, then that side sets the neighbor out signal and configures the local port id out signal
in the expansion port.

I For propagation of any cell (including the source cell): If the side of the cell has any free
remote port, then that side sets the propagate out signal and configures the remote port
id out signal in the expansion port.

b The cell assigns to the signal id target port out the value:

I For source cell , the identification number of the Functional Unit target port for the con-
nection with the target cell . This number is read from the output connections table of the
source cell .

I For other cells, the signal id target port in read from the port that receives the propagation
signal.

c After the configuration of the signals previously mentioned, the cell goes to the state lock
cell, where it waits for the activation of any lock in signal.

The propagation previously explained is executed by each cell that reads the propagate
in signal. When a cell receives more than one propagate in signal simultaneously it follows a
priority order (NORTH, EAST, SOUTH and WEST) and it serves only the highest priority signal
received. The cell receiving the propagate in signal stores the side from which the expanding
cell accessed it by means of the origin register. The propagation process explores the entire cell
array until finding the target cell , if possible.

It is important to mention that busy cells also participate in the expansion process since the
remote connections can also cross busy cells. Nevertheless, this process is completely transparent
to the internal cell operation since it is executed using dedicated resources, at the placement and
routing layer.

Configuration Phase at Cell Level

The Configuration Phase starts when the Search Phase finds the target cell . This occurs when
any propagation signal in any side of the target cell is activated, then the target cell proceeds in
priority order as follows:

51

4.7. SELF-ROUTING AT CELL LEVEL

SOURCE

TARGET

SOURCESOURCE

TARGET TARGET

SOURCE

TARGET

SOURCE

TARGET

SOURCE

TARGET

SOURCE

TARGET

SOURCE

TARGET

SOURCE

TARGET

SOURCE

TARGET

SOURCE

TARGET

1 2 3

4 5

6 7 8

9 10 11

ExpansiongProcessg
atgCellgLevel

Stepsg1gtog5:g
SearchgPhase

Stepsg6gtog11:
ConfigurationgPhase

Figure 4.4: Example of Expansion Process at Cell Level.

1. If the target cell detects in any of its sides the activation of a neighbor in signal, it will know
that the source cell is its neighbor and also its position (If not, go to step 2.). At that moment,
the local connection is established. The connection is configured taking into account the
signals id target port in and local port id in. Then the cell activates the signal lock out and
neighbor out in the side where the neighbor in signal was received, and it goes to idle state.

2. If the target cell detects in any of its sides the activation of a propagate in signal, it will
know its position. At that moment, the remote connection is established. The connection is
configured taking into account the signals id target port in and remote port id in. Then the
cell activates the signal lock out in the side where the propagate in signal was received, and
goes to idle state.

The Configuration Phase that was started by the target cell goes backward over the path
previously configured in the Search Phase until it arrives to the source cell . This process configures
the multiplexers of the corresponding cells to fix the path. The cells that participate in this
process are in the state lock cell and perform the following actions when the signal lock in in
the corresponding side is activated:

1. If it is the source cell : the cell configures the local or remote port taking into account the
source port of the Functional Unit included in the connection table and the signal local port
id or remote port id previously configured. The local port is used if the signal neighbor in is
active. The cell activates the signal routing complete (shared by all the cells) in order to reset

52

CHAPTER 4. SELF-ADAPTIVE PROCESSES

all the signals related to the expansion process, and the Expansion Process for a connection
ends.

2. If it is not the source cell: the cell configures the remote port of the side where the lock
in signal was read taking into account the origin register and the remote port id previously
configured. The cell goes to idle state and the signal lock out is activated in the side that
indicates the register origin.

3. The next cell that receives the signal lock in starts the process again from step 1.

Figure 4.4 shows an example of the Search and Configuration Phases of the Expansion Process
at Cell Level. This example assumes that routing resources of all cells are available. Step 1 to 5
represents the Search Phase, that starts from the source cell propagating signals until it finds
the target cell , then the Configuration Phase starts (steps 6 to 11). Note that the propagation of
signals continue in steps 6 and 7, since the Expansion Process is finalized by source cell in step
11. Note that the distance between source cell and target cell is 5, the connection is established
through six routing resources (or multiplexers), five in remote port of cells and one in FU input
of target cell , this resources are represented with the head of the arrows in step 11.

Figure 4.3 shows a sequence that illustrate the execution of self-placement and self-routing
algorithms for the component AAAA (steps 1 to 6). Note that a connection can cross a free cell
(step 5). Equation (4.3) represents the execution time of the expansion process implemented for
the prototype. This time is proportional to the distance between cells and the clock period, T .

TEP = (4 · distance+ 2)T (4.3)

4.8 Self-Routing at Component Level

When the creation of all components in system is completed, the self-routing process at component
level can be executed by means of the SASM instruction connect component. This algorithm
implements the interconnection of cells belonging to different components through SMs (and
PIMs if chip-to-chip connection is necessary).

The process is divided into two parts, the first configures the source and target cells of a
connection between different components, and the second is the “Expansion Process at Compo-
nent Level” that is performed through the SMs, where the Switch Matrix Configuration Unit
(SMCU) and eventually Pin Interconnection Matrix Configuration Unit (PIMCU) are responsible
of the configuration of the multiplexers to connect the desired ports. The interconnection of
components can be done in the same cluster or in different clusters. In the latter case the SM
will be interconnected with one of its eight neighbors and so on, until reaching the target cell of
the connection.

The self-routing process at component level is similar to the self-routing process at cell level
previously described. The process is started and completed by the cells with the difference that
the expansion process is performed in the Switching Matrices, using a similar algorithm that is
used by cells in the expansion process. The main difference is that matrices have eight neighbors,
while cells have only four. This allows interconnecting distant cells using less routing resources
(multiplexers) in comparison with routing hardware resources for cells.

If in the search process of the target cell the acknowledge signal is not received, it may be
because the target cell is in another chip. In this case, the pins through which the connection
between source and target will be made are configured by the GCUs of the corresponding chips,
initiating self-routing processes at the component level in the chips through which the connection
goes through. This process will involve the PIMCU–in addition to the SMCUs– configuring the
multiplexers required to perform the desired connection.

53

4.8. SELF-ROUTING AT COMPONENT LEVEL

4.8.1 Configuration of Source and Target Cells for Components Connections

The procedure is as follows:

1. The GCU of a chip starts the execution of the algorithm sending to the cell array the command
start components connection inet.

2. All cells with at least one pending connection with a cell of other component participate in
the elimination process, where the leftmost uppermost is the winner cell. If there is a winner
cell, it activates its source cell flag (goto step 3). If there is not a winner the GCU receives
the command end components connection inet and the process ends.

3. The source cell looks up its output connections table. If there is a non-routed connection
with a cell belonging to other component, the source cell sends a message to find the target
cell by means of command set target cell sr component inet (goto step 4). If there is no more
connections to route goto step 2.

4. If the target cell of a connection is in the same chip, this cell activates its target cell flag and
sets the acknowledge signal to the source cell . Then, the source cell starts the “Expansion
Process at Component Level” to configure the path with the target cell , the process continues
in step 3. If the source cell does not receive the acknowledge signal, it is possible that the
target cell is located in another chip. Then, the following additional steps must be executed:

a. The chip that contains the source cell is marked as source chip. The source cell sends to
the GCU the command configure chip connection inet for the configuration of a connection
between chips.

b. The GCU broadcasts to chips the command search cell other chip enet with the address
of the target cell and the FU target port of the connection.

c. The chips broadcast internally the information. The chip that contains the target cell is
marked as target chip. The target cell activates its target cell flag . The target chip selects
a free pin of its PIM and sends the information to the source chip.

d. The source chip starts the “Expansion Process at Component Level” between the source
cell and the target pin of the PIM. When the process ends, the source cell sends to the
GCU the confirmation command cell pin connection confirmation inet. The GCU sends to
the target chip the command routing cell target chip enet requesting the routing process.

e. The GCU of the target chip broadcasts internally the command start pin cell connection
inet. The target chip performs an ”Expansion Process at Component Level” between the
source pin of the PIM and the target cell . When the process ends, the PIM sends to the
GCU the confirmation command pin cell connection confirmation inet.

f. The GCU of the target chip broadcasts the confirmation message end routing cell target
chip enet, later the GCUs broadcast internally the command configure chip connection
confirmation inet.

g. The connection between source cell and target cell at component level using PIMs has
been performed, the source cell continues the process from step 3.

4.8.2 Expansion Process at Component Level

The expansion process at component level can be executed for three scenarios:

I Between source cell and target cell when the components belong to the same chip.

54

CHAPTER 4. SELF-ADAPTIVE PROCESSES

Signal name Description

propagate out matrix (cell)

Used in the Search Phase. These signals are used to
find the target cell or target pin in the chip.

propagate in matrix (cell)

propagate out cell X (SM)

propagate in cell X (SM)

propagate out X (SM, PIM)

propagate in X (SM, PIM)

lock out matrix (cell)

Used in the Configuration Phase. These signals are used
in the reverse process of the Search Phase, to configure
the multiplexers in the matrices included in the path.

lock in matrix (cell)

lock out cell X (SM)

lock in cell X (SM)

lock out X (SM, PIM)

lock in X (SM, PIM)

id source port out (cell) Used in the Search Phase. These signals are used to
indicate the FU source port of a connection.id source port in X (SM)

mux id matrix (cell) Used when the Search Phase finds the target . These
signals are used to indicate the multiplexer used by SM
for configures a connection.

mux id cell X (SM)

matrix port out (SM, PIM) Used in both phases, the Search and Configuration.
These signals are used to indicate the matrix port that
will be used for the path configuration.

matrix port in (SM, PIM)

id target port out (cell, SM, PIM) Used in the search phase of the target cell. These
signals are used to indicate the FU target port of the
target cell or the target pin of the PIM.

id target port in matrix (cell)

id target port in X (SM, PIM)

Table 4.2: Description of expansion port signals used by the Expansion Process at component
level.

I Between source cell and target pin when the components belongs to different chips (partial
configuration of a connection).

I Between source pin and target cell when the components belongs to different chips (partial
configuration of a connection).

For the description of the process, the term source may refer to source cell or source pin, whilst
the term target my refer to target cell or target pin. Once the source and target are ready, the
expansion process starts, configuring the multiplexers of SMs (and PIMs) for a connection. The
signals that participate in this process are explained in Table 4.2.

The path configuration is divided in two phases. The first one is the Search Phase at
Component Level. This starts from the source and looks for the target in the chip. During the
process some information is stored, in a distributed way, in every SM or PIM that has been visited.
The phase ends when the target has been found. If the first phase exhausted any possibility to
find the target without reaching it, then no path exists between the source and the target , and
there is no reason to continue with the second phase. Then, the source sends an error message
to the GCU and the self-routing process ends.

The second phase recovers the information generated by the first one for the path configuration.
This is called the Configuration Phase at Component Level, it starts from the target to
the source using the propagation information stored during the first phase of the algorithm.

55

4.8. SELF-ROUTING AT COMPONENT LEVEL

Sections C.3.2, C.4, C.4.1 and C.4.2 present the flow diagrams related with the expansion
process at component level. Note that the source (CCU for presented flow diagrams) is the start
and end point of the process.

Search Phase at Component Level

This is an expansion process that propagates signals in cells and the sides of the SMs or PIMs
that have available routing resources. The Search Phase is started by the source as follows:

a. If the source is a cell: the cell sets its propagation out matrix signal. The cell reads the FU
source port from output connections table and assigns the value to the signal id source port
out. If the target cell is in the chip, the cell reads the FU target port from output connections
table and assigns the value to the signal id target port out. If the target cell is in another
chip, the cell reads the target pin from a previous configured value and assigns it to the signal
id target port out

b. If the source is a PIM: whether the side of the PIM has any free output port, then that side
sets the propagate out signal. The PIM configures the id target port out that contains the
FU target port from the data read in a previous configuration.

c. After the configuration of the signals previously mentioned, the cell or PIM goes to the state
lock component, where it waits for the activation of any lock in signal.

The SM receiving the propagate in cell X signal stores the side from which the expanding
cell accessed it by means of the origin cell register. Thereafter, the propagation process continues
configuring the propagation signals for SMs in each side (north, northeast, east, southeast, south,
southwest, west and northwest) as follows:

d. If the side of the SM has any free port, then that side sets the propagate out signal.

e. The SM assigns to the signal id target port out the value read from the cell, SM or PIM,
depending of the port that receives the propagation signal.

f. After the configuration of the signals previously mentioned, the SM goes to the state lock
components, where it waits for the activation of any lock in signal.

The propagation previously explained (from d.) is executed by each SM that reads the
propagate in signal. When a SM receives more than one propagate in signal simultaneously it
follows a priority order (NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST,
WEST and NORTHWEST) and it serves only the highest priority signal received. The SM
receiving the propagate in signal stores the side from which the expanding SM accessed it by
means of the origin matrix register. The propagation process explores the entire chip until finding
the target , if possible.

Configuration Phase at Component Level

The Configuration Phase starts when the Search Phase finds the target . This occurs when any
propagation signal in any side of the target is activated, then the target proceeds as follows:

I If the target is a cell: when the target cell detects the activation of the signal propagate in
matrix, the connection with the SM is established. The connection is configured taking into
account the signals mux id matrix and id target port in matrix. Then the cell activates the
signal lock out matrix, and it goes to idle state.

56

CHAPTER 4. SELF-ADAPTIVE PROCESSES

SOURCE

TARGET1

SOURCE

TARGET2

SOURCE

TARGET3

SOURCE

TARGET4

SOURCE

TARGET5

SOURCE

TARGET6

SOURCE

TARGET7

SOURCE

TARGET8

SOURCE

TARGET9

SOURCE

TARGET10

Expansion6Process6at
Component6Level.

Steps616to65:
Search6Phase

Steps666to610:
Configuration6Phase

Figure 4.5: Example of Expansion Process at component level.

I If the target is a PIM: when the PIM detects the activation of the signal propagate in X, the
connection with the SM is established. The connection is configured taking into account the
signals matrix port in X and id target port in X. Then the PIM activates the signal lock out
X, and it goes to idle state.

The Configuration Phase that was started by the target goes backward over the path previ-
ously configured in the Search Phase until it arrives to the source. This process configures the
multiplexers of the corresponding SMs to fix the path. The SMs that participate in this process
are in the state lock component and perform the following actions when the signal lock in in the
corresponding side is activated:

I If the source cell is not in the cluster: the SM configures the port of the side where the lock in
signal was read taking into account the origin matrix register and the matrix port previously
configured. The SM goes to idle state and the signal lock out is activated in the side that
indicates the register origin matrix.

The next SM that receives the signal lock in repeats the previous process again until the
source is found, then the process continues as follows:

I If the source is a cell: when the source cell is in the cluster, the SM configures the multiplexer
related with the cell X (Mux Y from cell X) taking into account the origin cell register and the

57

4.9. SELF-ELIMINATION AND SELF-REPLICATION

signals id source port in X and matrix port in X previously configured. The SM activates the
signal lock out cell X and it goes to the idle state. Thereafter, the cell that receives the signal
lock in matrix activates the signal routing complete (shared by all CUs), and the “Expansion
Process at Component Level” ends.

I If the source is a PIM (it includes the source pin): the PIM configures the port taking into
account the signals id source port in X and matrix port in X previously configured. There-
after, the PIM activates the signal routing complete (shared by all CUs), and the “Expansion
Process at Component Level” ends.

Figure 4.5 shows an example of the Search and Configuration Phases of the Expansion Process
at Component Level. This example assumes that routing resources of all SMs are available. Step
1 to 5 represents the Search Phase, that starts from the source cell propagating signals until
finds the target cell , then the Configuration phase starts (steps 6 to 10). Note that the distance
between source cell and target cell is 19, however the connection is established through five routing
resources (or multiplexers), four in SMs and one in target cell , this resources are represented
with the head of the arrows in step 10.

4.9 Self-Elimination and Self-Replication

The Static Fault Tolerance mechanism included in the system may require the execution of
processes for elimination and replication of cells. This mechanism is a combination between the
Fault Tolerance System (FTS) and the SASM instruction ft configuration, which is used for
configuring the cell or cells involved in the process. Note that previous to the elimination of a
cell, all its connections must be derouted as detailed in section 4.11.

When a hardware failure is detected by the FTS, the damaged cell(s) request to the CµP to
execute the processes for self-eliminate and self-replicate the cell (or cells) involved in the failure.
The SASM instruction ft configuration executes the process as detailed in section 5.3.8. The
cell data registers and its processing capacity is lost (probably corrupted). However, the routing
resources and some adaptive capabilities of the cell (included in the CCU) are still working. This
is due to routing resources of cell are independent of processing capabilities of cell, where the
failure was detected. This means that the cell continues participating in the self-placement (as
busy cell) and self-routing processes. This allows the interconnection of two distant cells in a
component using the routing resources of a cell with damage in its FU.

4.9.1 Elimination of a Cell inside a Chip

The elimination of a cell is executed when the GCU sends the command eliminate cell inet. Then,
the cell whose address matches with the address of frame executes the following actions:

1. Deletes the input and output connection tables.
2. Disables FU processors.
3. Deletes FU Program Memories.
4. Sets the cell as busy. Therefore, the cell will not participate in future self-placement process.
5. Sets the address as 0xFFFF0001. This is a special reserved address used for identification of

cells that have been eliminated by the Static Fault Tolerance mechanism.

Subsequently, the cell sends the confirmation command eliminate cell confirmation inet and
the process ends.

58

CHAPTER 4. SELF-ADAPTIVE PROCESSES

4.10 Self-Configuration by means of Subprocesses

Any SANE application can be assumed to be a self-adaptive processing system with the MIMD
architecture advantages, like multiple parallel processing [7]. The runtime self-configuration
capability of the system is present when a SANE application requests the execution of at least
one subprocess.

Any component in the system has the ability to start up to four subprocesses in execution
time. The SASM instructions start subprocess X and end subprocess X are used for this pur-
pose. Each subprocess may includes others SASM instructions like create component, connect
component and delete component among others, i.e., a subprocess could create, interconnect
or delete components between others.

The creation and interconnection of components are capabilities that has been described in
previous sections. The delete component capability will be detailed in the following section. Note
that before deleting a component, all its connections must be derouted as detailed in section 4.11.

4.10.1 Delete a Component inside a Chip

The runtime Self-configuration mechanism included in the system may require to start a process
for deleting components. The deletion of a component is executed when the GCU sends the
command delete component chip inet. Then, the cells whose id component matches with the id
component included in the command execute the following actions:

1. Deletes the input and output connection tables.
2. Disables FU processors.
3. Deletes FU Program Memories.
4. Sets the cell as free. Therefore, the cell can participate in future self-placement process.
5. Sets the address as 0x00000000. This is a special reserved address used for identification of

free cells.

Subsequently, the cells send the confirmation command delete component confirmation inet
and the process ends. Note that when a component is deleted, the cells that belonged to the
component can participate in future self-placement and self-routing processes. The routing
resources of cells that will be deleted in this process are not altered, i.e, if a connection between
two cells crosses a cell that will be deleted, the connection remains configured after cell deletion.

4.11 Self-Derouting Process

The Self-derouting process permits to release all routing resources used to interconnect cells.
This process can be executed for a single cell or a entire component. For cells, the process is
executed taking into account the address of a specific cell (cell X). For components, the process
requires the identification of a component (component X).

The self-derouting algorithm for a single cell is executed by the Static Fault Tolerance
mechanism, before starting the processes for eliminating and replicating cells. The cell that
will be eliminated is the cell X . The algorithm permits to release all routing resources used to
interconnect the cell X , i.e., it permits to disconnect the cell X .

The self-derouting algorithm for a entire component is executed when a component will
be deleted, this is normally used by the runtime self-configuration mechanism by means of
subprocesses in the high-level configuration file. The component that will be deleted is the
component X . The algorithm permits to release all routing resources used to interconnect the
component X , i.e., it allows to disconnect the component X .

59

4.11. SELF-DEROUTING PROCESS

This process is divided in two parts. The first consists in locating the cells that have at least
one connection with the cell X or with the component X . For this procedure, the INET is used.
The second is the Release Process between the interconnected cells, i.e., the source and target of
a connection. This process is executed for each connection with the cell X or the component X .

Unlike the expansion processes at cell or component level, the Release Process has only one
phase, that goes from the target to the source of a connection. When a connection between
components uses PIMs, the source of a connection can be a source cell or a source pin, whilst
the target can be a target cell or a target pin. The Release Process is the same for target cell or
target pin.

Sections C.3.2, C.3.5 and C.4.3 present the flow diagrams related with the release processes
at cell and component level. Note that the CCU in the target cell and CCU in the source cell
(for presented flow diagrams) are the start and end point of the process respectively.

4.11.1 Cell Selection for Derouting Process of a Single Cell

The process is described below:

1. The GCU starts the self-derouting process sending the command delete cell connections chip
inet with the address of cell X as argument.

2. The cells look up their input connections table. The cell X and the cells that have at least
one input connection with the cell X participate in an elimination process, where the leftmost
uppermost cell will be the winner, which will be the target for the Release Process. If there is
not a winner cell, there are no more connections with cell X , the process ends and the GCU
receives the command delete cell connections confirmation inet.

3. The winner cell (target) starts the “Release Process” for disconnecting all its input connections
with the cell X . If the winner is the cell X , this starts the “Release Process” for disconnecting
all its inputs connections with other cells.

4. When the winner cell ends looking up its inputs connections table, this sends the command
delete cell connections chip inet with the address of cell X as argument and the process is
repeated again from step 2.

4.11.2 Cell Selection for Derouting Process of a Entire Component

The process is described below:

1. The GCU starts the self-derouting process sending the command delete components connections
chip inet with the identifier of component X as argument (id component).

2. The cells look up their input connections table. The cells that belongs to the component X ,
and the cells that have at least one input connection with the component X participates in an
elimination process, where the leftmost uppermost cell will be the winner, which will be the
target for the “Release Process”. If there is not a winner cell, there are no more connections
with component X , the process ends and the GCU receives the command delete components
connections confirmation inet.

3. The winner cell (target) starts the “Release Process” for disconnecting all its input connections
with the component X . If the winner cell belongs to the component X , this starts the “Release
Process” for disconnecting all its inputs.

60

CHAPTER 4. SELF-ADAPTIVE PROCESSES

TARGETTARGETTARGET

321

TARGET

4

TARGET

5

TARGET

6

TARGET1 TARGET2 TARGET3

TARGET4 TARGET5 TARGET6

SOURCE SOURCE SOURCE

SOURCESOURCESOURCE

SOURCE SOURCE SOURCE

SOURCESOURCESOURCE

Figure 4.6: Example of Release Process at Cell and Component Level.

4. When the winner cell ends looking its input connections table, this sends the command
delete component connections chip inet with the identifier of component X as argument (id
component) and the process is repeated again from step 2.

4.11.3 Release Process

This process releases the routing resources used for a interconnection between cells, or between a
cell and a PIM. In this process, the multiplexers of cells, SMs and PIMs are dynamically released
to disconnect the desired ports. If the connection is at cell level, the multiplexers of FU inputs,
local and remote cell ports are released. If the connection is at component level, the multiplexers
of FU inputs, SMs and PIMs are released. Figure 4.6 shows an example of the Release Process
at cell and component level.

For this process some bits of the expansion ports are used (see section 2.10 for details). The
signals that participate in this process are explained in Table 4.3.

The Release Process has only one phase, that goes from the target to the source of a connection.
When a connection between components use PIMs, the source of a connection could be a source
cell or a source pin, whilst the target could be a target cell or a target pin. The Release Process is
the same for target cell or target pin, so the following procedures assume the source and target as
cells. Once the FU input port of the target cell is selected, the release process starts, configuring
the multiplexers to their initial state.

61

4.11. SELF-DEROUTING PROCESS

Signal name Description

del connection out X (cell, SM)
Used to indicate the port that must be released. The
signal used is propagated only in one side of the cell or
SM.

del connection out cell X

del connection out matrix

del connection out cell

neighbor out X
Used to indicate that the connection is with a local port.

neighbor in X

local port out X

Used to indicate the local or remote cell port that was
used to configure the path.

local port in X

remote port out X

remote port in X

matrix port out X Used to indicate the SM port that was used to configure
the path.matrix port in X

id source port out Used to indicate to SM the FU input port that was used
to configure the path.id source port in X

Table 4.3: Description of expansion port signals used by the Release Process.

The Release Process starts from the FU input port of the target cell an go backwards to
the origin of a connection, i.e., the FU output port of the source cell . This process reads the
multiplexers configuration and propagate the signal del connection out X in the direction where
the connection was previously established by Expansion Process. The process is described bellow:

1 The target cell reads the configuration of the FU input port multiplexer selected for the Release
Process and performs one of the following actions:

I If the FU input port is connected to a local port, the target cell propagates the signal del
connection out X in the side where the connection was established. It also propagates the
signals neighbor out X and local port out X that permits to the neighboring cell to identify
the local port used for a connection.

I If the FU input port is connected to a remote port, the target cell propagates the signal
del connection out X in the side where the connection was established. It also propagates
the signal remote port out X that permits to the neighboring cell to identify the remote
port used for a connection.

I If the FU input port is connected to SM, the target cell propagates the signal del connection
out matrix. It also propagates the signal id source port out that permits to the matrix to
identify the multiplexer used for a connection.

2 The target cell releases the FU input port multiplexer, and goes to idle state.

3 The process continues at cell level or component level as follows:

a. At cell level: when a cell receives the signal del connection in X proceeds as follows:

i. If the signal neighbor in X is received: it confirms that this cell is the origin of a
connection, the local port multiplexer is released and the process ends.

ii. If the remote port is connected to a FU output port of the cell: it confirms that this
cell is the origin of a connection, the remote port multiplexer is released and the
process ends.

62

CHAPTER 4. SELF-ADAPTIVE PROCESSES

iii. If the remote port is connected to another remote port: the cell propagates the
signal del connection out X in the side where the connection was established. It
also propagates the signal remote port out X that permits to the neighboring cell to
identify the remote port used for a connection. The process continues from a.

b. At component level: when a SM receives the signal del connection in cell X :

i. If the SM multiplexer is connected to a cell: it confirms that this cell is the origin
of a connection. The SM propagates the signal del connection out cell X, the SM
multiplexer is released and the process is finalized by the cell.

ii. If the SM multiplexer is connected to a SM port. The SM propagates the signal del
connection out X in the side where the connection was established. It also propagates
the signal matrix port out X that permits to the neighboring SM to identify the port
used for a connection. The process continues from b.

When the process is completed, the source activates the signal routing complete (shared
by all CUs), and the “Release Process” ends. It is important to mention that busy cells also
participate in the Release Process since the connections can also cross busy cells. Nevertheless,
this process is completely transparent to the internal cell operation since it is executed using
dedicated resources, at the routing layer.

4.12 Conclusions

This chapter describes the self-adaptive processes implemented in the system. The algorithms
presented are te base for the implementation of the high-level instructions in system. These
algorithms are implemented in the Configuration Units of Cells, Switch and Pin interconnection
Matrices.

The self-placement algorithm is responsible for finding out the most suitable position to insert
the new cell of a component. For the placement of the first cell of a component, a particular
procedure is used, different from other cells. In this case, a good candidate position is defined as
one where a free cell has low routing congestion and the largest number of free neighboring cells.
After the insertion of the component first cell, the next cells to be inserted are placed as close as
possible to the cell with the largest number of connections with the new cell.

The self-routing algorithm allows interconnecting the Functional Unit ports of two cells.
This process can be executed at cell or component level. The self-routing process at cell level is
executed since the insertion of the second cell of a component, each time that the self-placement
process ends. The algorithm allows interconnecting the ports of the functional unit of two
cells, in the same component, through the local and remote cell ports. After the insertion of
all components, the self-routing process at component level can be executed. This algorithm
implements the interconnection of two cells belonging to different components through Switch
and Pin Interconnection Matrices.

The self-derouting process permits to release all routing resources used for interconnect cells or
component. This process can be executed for a single cell or a entire component. For this purpose,
the Release Process is implemented. This process releases the routing resources (multiplexers)
used for a interconnection between cells.

The elimination of a single cell and the deletion of a entire component are processes used by
the runtime self-configuration capabilities included in the system: (1) the Static Fault Tolerance
mechanism is able to execute the self-replication and self-elimination of cells, and, (2) the dynamic
reconfiguration by means of subprocess can execute the creation, connection and deletion of
components, among others.

63

Chapter 5

Development and Implementation of
Self-adaptive Applications with
Parallel Processing Capabilities.

Being honest may not get you a lot of friends but
it‘ll always get you the right ones.

Ser honesto puede que no te dé muchos amigos, pero
te dará los amigos adecuados.

John Lennon (1940 – 1980)

Abstract: This chapter presents the main features for the creation of the SANE Assembler

(SASM) configuration file, which is used for configuring any SANE-ASM application that could

be implemented by a user. Consequently, a detailed description of format and syntax of SASM

instructions is presented. Additionally, two application examples with “Dynamic” and “Static”

Fault Tolerance capabilities are presented. This chapter is complemented with the appendixes

D and E, which respectively present the generalities of the software tool implemented for

configuring applications, and the listings of the application examples described in this chapter.

5.1 SANE ASSEMBLY Development System

One of the main inconveniences in the design phase of the architecture was the creation of
applications that permit to test the system. This process consisted in the creation of a SANE
ASSEMBLY (SANE-ASM), that includes a specific number of interconnected components, and
interconnected cells inside each component. This functionality involved, for each cell in the
application, the creation of inputs and outputs connection tables, the configuration of special
registers, and the generation of hexadecimal instructions code for each processor (between 1 and
4 per cell) from programs written in the native assembler language created for the Functional
Unit (FU) (Appendix A). Any modification in the application implies a lot of time rewriting the
data for its configuration. Similar to any commercial general purpose device a software tool is
fundamental for improving the capacity of a designer when developing applications.

The SANE Project Developer (SPD) is an Integrated Development Environment (IDE) that
allows generating the memory initialization data for the Control Microprocessor (CµP) inside
the prototype. The SPD allows the creation and edition of files that describe the configuration

65

5.2. OVERVIEW FOR THE CONFIGURATION OF AN APPLICATION

of a SANE-ASM. This file includes high-level instructions that are defined as SANE Assembler
(SASM) instructions. The file that includes these instructions is called the SASM file.

The SPD allows the insertion and edition of all related information of the SANE-ASM, this
involves the configuration of the following parameters: i) the identification number of cells and
components; ii) the configuration registers; iii) the input and output connection tables; iv) text
descriptions of cells and components; v) text aliases for cells; and vi) creation and edition of
Assembler (ASM) and SASM files. For writing the Program Memories of the processors, ASM
files will be created, this permits to execute the functionality of a processor in the cell.

The SPD supports building of the hexadecimal files (SHEX and SXM) with the configuration
of the SANE-ASM that will be implemented in the FPGA. This process includes the compilation
of the files involved in the process according to the SASM file. The SPD generates a list of errors,
warnings and infos for all files involved in the building process and guides the user to make the
appropriate corrections if required. The SPD also supports the compilation of individual ASM
files.

Appendix D shows a general description of the SANE Project Developer (SPD).

5.2 Overview for the Configuration of an Application

Any application scheduled to the SANE-ASM has to be organized in components, where each
component is composed by one or more interconnected cells. The interconnection of cells inside
of a component is made at cell level, while the physical interconnections of components are made
in another layer, at the Switch Matrix (SM) level. The connections between components can
be inside a chip or may span several chips. The interconnection of SANEs is just conceptual,
because it takes place at the same layer of components.

Once the application has been defined and the components are ready for implementation,
the main configuration file has to be created. This includes a sequence of high-level instructions
and their corresponding data arguments relative to the application. The high-level instructions
are called the SANE Assembler (SASM) instructions and are included in the SASM file (*.SASM
file).

The Control Microprocessor (CµP)1 is responsible for implementing the main configuration file
that includes the SASM instructions for the configuration and execution of system functionality,
even during runtime. This program is stored in a section of memory dedicated to this purpose.
The CµP is able to execute the instructions shown in Table 5.1. Note that each instruction has
assigned a unique identifier or Instruction Code (IC). Additionally, these instructions may or may
not include other words in memory concerning to the execution of the instruction (arguments),
as detailed in following sections.

The CµP executes sequentially the main program starting with the first word stored in
memory, which is interpreted as a instruction. Afterwards, each word read is interpreted according
to the instruction format, i.e, a word in memory could be interpreted as a SASM instruction or
an argument related with an instruction. The instructions format is detailed in Section 5.3. The
CµP includes a pointer that permits to read sequentially each word in memory. The CµP also
includes a stack that stores temporally the value of the pointer when some special instructions
call for it.

The algorithms for the execution of SASM instructions may require that CµP sends through
the External Network (ENET) frames to Global Configuration Units (GCUs), which are responsi-
ble for controlling the self-adaptive processes inside the chips. A specific protocol is used for this
purpose. Then, the chips start a negotiation process to establish the chip that has to start the

1The CµP replaces the External Controller (EC) in prototype.

66

CHAPTER 5. DEVELOPMENT AND IMPLEMENTATION OF SELF-ADAPTIVE APPLICATIONS
WITH PARALLEL PROCESSING CAPABILITIES.

Instructions IC Context

create component 0x00 Create, interconnect or delete components in order
to built dynamically a SANE that best fits the
applications goals.

connect components 0x01
delete component 0x02

write fu memory cr 0x03
Write configuration registers and memories of
processors in the Functional Unit (FU) of the Cell,
in order to configure the configuration registers and
the application of their processors.

write fu memory pm0 0x04
write fu memory pm1 0x05
write fu memory pm2 0x06
write fu memory pm3 0x07

restart processors 0x08
Manipulation of program counters of the FU
processors in order to restart, disable and enable the
processors of the cells.

disable processors 0x09
restart and disable processors 0x0A
enable processors 0x0B

wait 0x0C Manipulation of program counters of FU processors,
and to set the system in wait mode for SANE
requirements like execution of subprocesses or the
Static Fault Tolerance mechanism.

restart processors wait 0x0D
enable processors wait 0x0E

end 0x0F End of SANE-ASM configuration

start subprocess 0 0x10

Denotes the start and end of a subprocess.

end subprocess 0 0x11
start subprocess 1 0x12
end subprocess 1 0x13
start subprocess 2 0x14
end subprocess 2 0x15
start subprocess 3 0x16
end subprocess 3 0x17

ft configuration 0x18 Configuration of original and redundant cells for static
fault tolerance.

IC = Instruction Code
Note = The arguments of the instructions are not shown in this table.

Table 5.1: List of SASM or high-level instructions for initial and run-time configuration.

process to execute the command. This depends of a priority order assigned to the chips, and the
utilization rate inside every chip. The selection process uses the circuit presented in Figure 2.3b.

Remember that ENET allows to interconnect the CµP with the chips by means of its GCU.
Similarly, the Internal Network (INET) connects the Configuration Units (CUs) inside the chips,
it includes the GCU, the Cell Configuration Units (CCUs) and the Pin Interconnection Matrix
Configuration Units (PIMCUs). These networks give support to all self-adaptive process in the
system. The sections 2.12 and 2.13 show details about the protocols implemented for INET and
ENET respectively.

For the execution of the self-adaptive capabilities, the CµP, the GCUs and the CUs inside the
chips implement low-level commands relative to the specific algorithm needed for the execution
of these instructions. These commands are included in frames that go through the ENET and the
INET. The description of SASM instructions in following sections include the terms “ enet” and

“ inet”, which are used to discriminate the network by which the command (or process requested)
is included.

67

5.3. DESCRIPTION OF SASM INSTRUCTIONS

5.3 Description of SASM Instructions

The SASM instructions that CµP is able to execute are shown in Table 5.1. Note that all instruc-
tions in this table have an equivalent instruction for the implementation of the main configuration
file in the SPD. However, the SPD includes an additional instruction called write_FU_memory,
which automatically includes the instructions of the table that are related with writing the FU
memory (write_FU_memory_XXX) for a specific cell.

The following sections present a detailed description of the SASM instructions included in
system. Each section presents one or more instructions depending on the context. Note that
each section presents a table that shows the instruction syntax related with the SPD and the
instruction format that must be included in the corresponding memory section in CµP. The
Built Project option in SPD compiles the main configuration file included in the SASM file
(*.sasm), as well as all ASM files (*.asm) that includes the task scheduled for processors in cells.
The result is the creation of two files. The first is the SHEX file (*.shex), which includes the
instructions format shown in following sections. The other is the SXM file (*.sxm), which is a
representation of the hexadecimal value that will be downloaded to the CµP in prototype using
the Write Memory option in the SPD.

5.3.1 Creation of Components

The SASM instruction create_component is used for the creation of new components in the sys-
tem. Table 5.2 shows its syntax and instruction format. Note that each word of the input/output
connection table is 37-bit width, therefore it is implemented in two memory positions in CµP.
The eight words of the input connection table will be included in memory, whilst the number of
outputs could be between 0 and 20.

SPD Syntax create_component id_component

and arguments

Instruction format create_component_IC, //Start the creation of a component

in CµP memory id_component, //16-bit component identifier

comp_cells_number, //Zero-based num cells in component

num_outputs_cell_1, //Number of outputs cell_1 (0 to 20)

address_cell,1 //32-bit address, first cell in component

0x00, //bits(36:32) connection table for IN0

0x00000000, //bits(31:0) connection table for IN0

··· //similar for IN1...IN3, FT_IN0...FT_IN3

0x00, //bits(36:32) Output connection table #1

0x00000000, //bits(31:0) Output connection table #1

··· //similar for other outputs depending on

··· //num_outputs value (0 to 20 outputs)

num_outputs_cell_2, //Number of outputs cell_2 (0 to 20)

address_cell_2, //32-bit address of second cell

··· //input/output connection tables, cell_2

··· //similar for other cells in component

Table 5.2: Syntax and format for create component instruction.

When the CµP executes the create_component instruction, it follows the next steps:

1. The CµP sends a message to the GCUs (chips) with a command and the value relative to the
number of cells in the component (cell number new component enet + comp cells number).

68

CHAPTER 5. DEVELOPMENT AND IMPLEMENTATION OF SELF-ADAPTIVE APPLICATIONS
WITH PARALLEL PROCESSING CAPABILITIES.

2. Each GCU calculates if the component fits into the chip. The GCU knows the number of busy
cells in the chip and the number of cells of the new component. If the chip has the capacity
to insert the new component, it participates in the selection process.

3. The CµP starts the selection process using the command start contest winner chip enet. This
determines which chip should make the placement of the new component. If there is not a
winner chip, the CµP shows an error message and the process ends (system full).

4. The CµP sends to chips commands that start a specific process for the insertion of a new cell.
Thereafter, the CµP waits for a confirmation command and continues with the next cell, as
follows:

a. First cell: The CµP sends the command and arguments: insert first cell enet + address +
connection tables. The GCU of the winner chip translates the command insert first cell
enet to the insert first cell inet and broadcasts the message inside the chip. The algorithm
“Self-placement of the first cell of a component” is executed (Section 4.5.1). When
the process ends the GCU receives the command end first cell inet, which is translated
and sent to the CµP as end first cell enet. The CµP continues with the next cell.

b. Other cells: The CµP sends the command and arguments: insert other cell enet + address
+ connection tables. The GCU of the winner chip translates the command insert other cell
enet to insert other cell inet and broadcasts the message inside the chip. The algorithms
“Self-placement of other cells of a component” and “Self-routing at cell level” are
executed (Sections 4.5.2 and 4.7). When the process ends the GCU receives the command
end other cell inet, which is translated and sent to the CµP as end other cell enet. The
CµP continues with the next cell.

5. When the self-placement and self-routing processes for all cells of a component have finalized,
the CµP continues with the next SASM instruction.

Each time that a cell is inserted, the GCU of the chip sets to high two flags: components
connection enable and delete components or cells enable. These flags are used for instructions
connect_component, delete_component and ft_configuration to indicate that a chip is able
to connect components, delete components and eliminate cells respectively.

5.3.2 Connection of Components

After creation of all components in a SANE-ASM, the SASM instruction connect_component

must be executed. This instruction permits to interconnect all components, i.e., performs the
interconnection of cells at component level through Switch Matrices (SMs). This command does
not include arguments. Table 5.3 shows their syntax and instruction format.

SPD Syntax connect_component
and arguments

Instruction format connect_component_IC, //Interconnecting cells at component level

in CµP memory

Table 5.3: Syntax and format for connect component instruction

Each time that a cell has been inserted inside a chip using the instruction create_component,
the GCU sets to high the flag components connection enable. This flag indicates to the chip that

69

5.3. DESCRIPTION OF SASM INSTRUCTIONS

it is able to execute the algorithm related with the components connection: “Self-Routing at
Component Level” (Section 4.8)

For the understanding of the following steps, let us assume that in at least two chips in system
have been inserted new components, i.e, these chips have the flag components connection enable
activated.

1. The CµP sends a message to the GCUs (chips) with the command autoset for components
connection enet. Each GCU that has active the flag components connection enable is enabled
to participate in the selection process.

2. The CµP starts the selection process using the command start contest winner chip enet. This
determines which chip will start the algorithm. If there is not a winner chip the process ends,
therefore the CµP executes the next SASM instruction.

3. The CµP sends to chips the command start components connection enet. The winner chip
translates and broadcasts the command inside the chip: start components connection inet. The
winner chip executes the “Self-Routing at Component Level” algorithm (Section 4.8). It
goes through the output connection tables of cells inside the chip and performs all possible
interconnections at component level.

4. When there are no more possible connections at component level for the winner chip, the
flag components connection enable is cleared. This chip will not participate in future selection
process. The GCU receives the command end components connection inet, which is traslated
and sent to CµP using the command end components connection enet. The CµP repeats the
process from step 1. until all connections at component level will be performed. Note that
loop is broken in step 2.

5.3.3 Delete Components

The SASM instruction delete_component is implemented when the deletion of a component is
required. This is useful for runtime self-configuration, where the dynamic creation and deletion
of components could be required by subprocesses. Table 5.4 presents their syntax and instruction
format. This instruction requires the component identifier as argument (id component).

SPD Syntax delete_component id_component
and arguments

Instruction format connect_component_IC, //Start process to delete a component

in CµP memory id_component, //16-bit component identifier

Table 5.4: Syntax and format for delete component instruction

Each time that a cell has been inserted inside a chip using the instruction create_component,
the GCU sets to high the flag delete component or cell enable. This flag indicates to the chip
that it is able to execute the algorithms related with the component deletion: “Self-Derouting
Process” and “Delete a Component inside a Chip” (Sections 4.11 and 4.10.1).

For the understanding of the following steps, lets assume that in at least two chips in system
has been inserted new components, i.e, these chips has the flag delete component or cell enable
activated. When the CµP executes this instruction, it follows the next steps.

1. The CµP sends a message to the GCUs (chips) with the command autoset for delete connections
enet. Each GCU that has active the flag delete component or cell enable is enabled to partici-
pate in the selection process.

70

CHAPTER 5. DEVELOPMENT AND IMPLEMENTATION OF SELF-ADAPTIVE APPLICATIONS
WITH PARALLEL PROCESSING CAPABILITIES.

2. The CµP starts the selection process using the command start contest winner chip enet. This
determines the chip that will execute the algorithm to disconnect the component. If there is
a winner chip, goto next step. If there is not a winner chip goto step 5.

3. The CµP sends to chips the command delete component connections chip enet. The winner
chip translates and broadcasts the command inside the chip: delete component connections
chip inet. The winner chip executes the “Self-Derouting Process” (Section 4.11). It goes
through the input connection tables of cells inside the chip and releases all routing resources
related with the interconnection of a specific component.

4. When all connections of a component have been released for the winner chip the flag delete
component or cell enable is cleared. In this case, The chip will not participate in future se-
lection process. The GCU receives the command delete components connection confirmation
inet, which is translated and sent to CµP using the command delete component connections
confirmation enet. The CµP repeats the process from step 1. until all connections of a com-
ponent are released. Note that loop is broken in step 2.

5. The CµP sends a frame with the information of the component to delete: delete component
chip enet + id component . The GCUs broadcast the frame internally, the chip that includes the
component executes the algorithm “Delete a Component inside a Chip” (Section 4.10.1).
The chips that have at least one component activate the flag delete component or cell enable
for future deletion processes. The appropriate confirmation command is sent to the GCU,
which translates and transmits the command to the CµP and the process ends. Therefore,
the CµP will be able to execute the next SASM instruction.

5.3.4 Write Functional Unit Program Memories and Configuration Registers

The Functional Unit (FU) of each cell includes four cores (CORE0 to CORE3), which can be
configured to build between one to four processors as detailed in section 3.3. Each core includes
a Program Memory that is identified with the same numeric order of the core (PM0, PM1, PM2
and PM3). Therefore, the SASM instructions write_FU_memory_PM0, write_FU_memory_PM1,
write_FU_memory_PM2 and write_FU_memory_PM3 are used for writing the Program Memory of
the correspondent core. Note that depending on the cell configuration mode, the PMX may or
may nor correspond with the processor PX. For example in mode 0, there are four processors
(P0 to P3) with 64 instructions capacity each; it corresponds with the PM of each core (PM0 to
PM3). In mode 4, there is only one processor (P0) with 256 instructions capacity, which requires
the concatenation of the PMs of all cores.

The FU includes some configuration registers (CRs), which could be written similarly to
Program Memories since they are mapped in memory. These registers are: MODE, FAMILY,
PORTS and FTCSR. The SASM instruction write_FU_memory_CR is used for this purpose.
Table 5.5 shows the syntax and instructions format of these instructions, which requires the
address of cell as argument.

It is important to note, that SPD includes an additional instruction called write_FU_memory,
which automatically includes the instructions of the table that are related with writing the FU
memory (write_FU_memory_XXX) for a specific cell. The SPD performs this action by reading
the MODE register and the ASM files associated with the processors of cells. This instruction
permits to reduce the length of the SASM file when multiple write_FU_memory_XXX instructions
must be used.

The execution of these instructions is similar, so it will be explained jointly. However, note
that each instruction is executed independently. The CµP executes these instructions as follows:

71

5.3. DESCRIPTION OF SASM INSTRUCTIONS

SPD Syntax write_FU_memory_CR address
and arguments write_FU_memory_PM0 address

write_FU_memory_PM1 address
write_FU_memory_PM2 address
write_FU_memory_PM3 address

write_FU_memory address1

Instruction format write_FU_memory_CR_IC, //Write Configuration Regsters

in CµP memory address, //32-bit address of cell

0x04, //number of registers to write

0x00, //data for MODE register

0x00, //data for FAMILY register

0x00, //data for PORTS register

0x00, //data for FTCSR register

write_FU_memory_PMX_IC, //Write Program Memory [0,1,2,3]

address, //32-bit address of cell

asm_instructions_number, //Y number of asm instructions (1-64)

0x00000000, //asm instruction 1

0x00000000, //asm instruction 2

··· //

0x00000000, //asm instruction Y

1 Instruction of the SPD that automatically includes other write FU memory XXX instructions for
a specific cell; it depends on the configuration mode and the length of the assembler code(s) for the
processor(s) in the cell.

Table 5.5: Syntax and format for instruction related to writing Function Unit Program Memories
and Configuration Register

1. The CµP sends a message to the GCUs (chips) with the address of the cell to which the data
is directed: set address program memory enet + address.

2. The CµP sends a message to the GCUs (chips) with the data as follows:

I To write PM0: write program memory0 enet + data for PM0.
I To write PM1: write program memory1 enet + data for PM1.
I To write PM2: write program memory2 enet + data for PM2.
I To write PM3: write program memory3 enet + data for PM3.
I To write CRs: write configuration registers enet + data for CRs.

3. The GCU of each chip translates the command from ENET to INET and broadcasts the
information internally as follows:

I To write PM0: write program memory0 inet + address + data for PM0.
I To write PM1: write program memory1 inet + address + data for PM1.
I To write PM2: write program memory2 inet + address + data for PM2.
I To write PM3: write program memory3 inet + address + data for PM3.
I To write CRs: write configuration registers inet + address + data for CRs.

4. The cell whose address matches with the address of the frame performs the write operation
of the data frame to FU program memory or Configuration Registers. This cell sends the
appropriate confirmation command to the GCU, which translates and transmits the command
to the CµP and the process ends. The CµP starts the execution of the next SASM instruction.

72

CHAPTER 5. DEVELOPMENT AND IMPLEMENTATION OF SELF-ADAPTIVE APPLICATIONS
WITH PARALLEL PROCESSING CAPABILITIES.

SPD Syntax restart_processors

and arguments disable_processors

restart_and_disable_processors

enable_processors

Instruction format restart_processors_IC, //Restart all processors

in CµP memory disable_processors_IC, //Disable all processors

restart_and_disable_processors_IC,//Restart & disable all proc...

enable_processors_IC, //Enable all processors

Table 5.6: Syntax and format for instructions related to management of processors in the SASM
file.

5.3.5 Restart, Enable and Disable Processors

The initial state of all processors in system is disabled. The processors of a specific cell are enabled
automatically when any instruction that write the FU memory is executed (write_FU_memory_XXX).
The SASM instructions presented in Table 5.6 permit to restart, disable or enable all processors
in system.

The instruction restart_processors could be used to restart the processors after the con-
figuration of a SANE-ASM. Therefore, all processors restart the execution of their scheduled
process at the same time. The threads start their execution from origin 0x0.

The instruction disable_processors is used to disable the execution of processors in system.
This could be implemented before the execution of other SASM instructions to ensure that
processors do not executes an undesirable action, e.g., if a processor executes a subprocess before
the configuration of the entire SANE-ASM, or, if the user wants to disable processors whilst the
execution of a subprocess.

The instruction restart_and_disable_processors is similar to disable_processors. Ad-
ditionally, this instruction permits to restart the processors in system at the same time that they
are disabled. The threads start their execution from origin 0x0 when they are enabled again.

The instruction enable_processors is used to enable the execution of threads in the FU
processors. The threads start their execution from origin 0x0 or any other, depending on previous
instruction used (restart_and_disable_processors or disable_processors).

The execution of these instructions is similar, therefore it will be explained jointly. However,
note that each instruction is executed independently as presented bellow:

1. The CµP sends a frame to the GCUs with the corresponding command:

I To restart the processors: restart processors enet
I To disable the processors: disable processors enet
I To restart and disable the processors: restart and disable processors enet
I To enable the processors: enable processors enet

2. The GCU of each chip translates the command from ENET to INET and broadcasts the
information internally as follows:

I To restart the processors: restart processors inet
I To disable the processors: disable processors inet
I To restart and disable the processors: restart and disable processors inet
I To enable the processors: enable processors inet

3. The cells perform the appropriate operation for the FU processors. These instructions do not
send any confirmation command, therefore the CµP may continue with the next instruction.

73

5.3. DESCRIPTION OF SASM INSTRUCTIONS

5.3.6 System in “Wait” State for Runtime Self-configuration

Remember that runtime Self-configuration is possible when the Static Fault Tolerance mechanism
or when the execution of subprocesses are included in the SASM file. Therefore, when the system
requires the execution of one of these features, the CµP must be in a special state, where it waits
for an event coming from any cell in the system, which requests the execution of special SASM
instructions: ft_configuration, start_subprocess_X and end_subprocess_X. This special
state is called “wait” state, and it is included in the instructions presented in Table 5.7. Note
that some of the instructions presented include additional functionalities like the option to restart
or enable the processor in system, which were described in the previous section.

SPD Syntax wait

and arguments restart_processors_wait

enable_processors_wait

Instruction format wait_IC, //CMP goto wait state: CMP->wait

in CµP memory restart_processors_wait_IC, //CMP->wait, processors are restarted

enable_processors_wait_IC, //CMP->wait, processors are enabled

Table 5.7: Syntax and format for instruction regarding configuration of system in “wait” state.

The execution of these instructions is similar, therefore it will be explained jointly. However,
note that each instruction is executed independently as follows:

1. The CµP stores the position where the pointer is located (stack ⇐ pointer). Afterwards, the
CµP sends a frame to the GCUs with the corresponding command:

I Only for wait state: wait enet.
I For wait state and restart processors: restart processors wait enet.
I For wait state and enable processors: enable processors wait enet.

2. The CµP goes to wait state. The CµP waits for an event (or request) coming from any cell in
system (this request implies the runtime self-configuration, which could be for the execution of a
subprocess using the instructions start_subprocess_X and end_subprocess_X, or for the ex-
ecution of a process to replicate and eliminate cells using the instruction ft_configuration).

3. The GCU of each chip translates the command form ENET to INET and broadcasts the
information internally as follows:

I Only for wait state: wait inet.
I For wait state and restart processors: restart processors wait inet.
I For wait state and enable processors: enable processors wait inet.

4. The cells in the system sets to high the bit System Wait State, which belongs to the register
SUBPCSR (this register is closely tied with the execution of subprocesses). Each cell performs
the corresponding action as follows:

I Only for wait state: the cells goes to standby state.
I For wait state and restart processors: the cells restart their processors and goes to standby

state.
I For wait state and enable processors: the cells enable their processors and goes to standby

state.

5. The processors continue (or restart) the execution of their scheduled task.

74

CHAPTER 5. DEVELOPMENT AND IMPLEMENTATION OF SELF-ADAPTIVE APPLICATIONS
WITH PARALLEL PROCESSING CAPABILITIES.

Afterwards, any cell in the state standby (current) could make a request for starting any of the
following process: (i) Start a dynamic reconfiguration of the system by means of subprocesses.
(Section 5.3.7) (ii) Start the self-elimination and self-replication of cell(s) when a failure is
detected by the Fault Tolerance System (FTS). (Section 5.3.8).

5.3.7 Runtime Self-configuration by means of Subprocesses

Table 5.5 shows the syntax and instructions format for execution of subprocesses. The instructions
start_subprocess_X and end_subprocess_X permit to group other SASM instructions within
them, which will be executed when any cell in system requests it. This cell must be properly
configured for this purpose. Note that start_subprocess_X instruction requires the component
identifier as argument. It is not permitted to include a subprocess between other subprocess,
neither to include the configuration of a static Fault Tolerance mechanism (ft_configuration
instruction) inside a subprocess.

SPD Syntax start_subprocess_X1 id_component
and arguments ···

end_subprocess_X2

Instruction format start_subprocess_X_IC, //Start subprocess X

in CµP memory id_component, //16-bit id_component for subprocess X

··· //SASM instructions

end_subprocess_X_IC, //end of subprocess X

1 start_subprocess_0, start_subprocess_1, start_subprocess_2 or start_subprocess_3.

2 end_subprocess_0, end_subprocess_1, end_subprocess_2 or end_subprocess_3.

Table 5.8: Syntax and format for instruction related with execution of subprocesses.

In the initial configuration or when the system is not in wait state, the instructions related
with a subprocess are ignored, this condition includes the instructions inside the subprocess.

The runtime self-configuration mechanism by means of subprocesses is closely tied with the
execution of the following instructions: i) wait; ii) restart processors wait; and iii) enable
processors wait. After the execution of any of these instructions, the CµP is in wait state,
which means that it is waiting for a message from a cell to start a subprocess. Remember that
CµP saves the location of the current instruction (stack ⇐ pointer), which corresponds with any
instructions that includes the label (wait).

Some bits of the register SUBPCSR must be configured appropriately for the execution of sub-
processes. Therefore, the CCU of a cell whose processor sets the bit EXECUTE SUBPROCESS
(EXSP) starts the procedure detailed bellow for the execution of a subprocess.

The following procedure is detailed for a subprocess X, where X could be any of the four
instructions available for subprocesses (0, 1, 2 or 3). The process starts when the bit EXSP is
set to high for any processor. The FU notifies to the CCU the activation of this bit, an the CCU
requests to the CµP the execution of a subprocess as follows:

1. The CCU sends a frame with the corresponding information: command start subprocessX
inet + id component .

2. The GCU translates and broadcasts the information through ENET by means of the command
start subprocessX enet.

75

5.3. DESCRIPTION OF SASM INSTRUCTIONS

3. The CµP searches in the code the instruction related with the subprocess requested (start
subprocess X). Note that the argument of the instruction must match with the data received,
which is the identifier of the component (id component).

4. The CµP executes sequentially the SASM instructions inside subprocess X.

5. The subprocess ends when the CµP executes the instruction end_subprocess_X. The CµP
sends a frame with the confirmation of the end of the subprocess X by means of the com-
mand end subprocessX enet and the id component as argument, which is forwarded inside the
chips by the GCU using the command end subprocessX inet. The CCUs whose id component
matches with the data in frame notifies it to the FU, which sets to high the bit ENDS
SUBPROCESS X that indicated the end of the execution of the subprocess X.

6. The CµP recovers the value of the pointer (pointer⇐ stack). The CµP executes the instruction
denoted by pointer that contains a SASM instruction with the label wait and the process
continues normally.

Note that cell processors may continue their scheduled task normally whilst subprocess X
is executed. It is responsibility of the user to include the appropriate validation in the ASM
program of cells, or disable and enable the processors in the subprocess X using the appropriate
SASM instructions.

5.3.8 Static Fault Tolerance Configuration

The Static Fault Tolerance mechanism is a combination between the Fault Tolerance System
(FTS) included in the Functional Unit (FU) of cells and the SASM instruction ft_configuration,
which is used for indicating to CµP the cells involved in the process. Table 5.9 shows the syntax
and instruction format of this instruction, which configures the primary and redundant cells for
the self-elimination and self-replication of damaged cells when a hardware failure is detected. If
the redundant cell is not implemented, the parameter must be set to 0x00.

SPD Syntax ft_configuration addressPrimaryCell,addressRedundantCell

and arguments

Instruction format ft_configuration_IC, //Static Fault Tolerance IC

in CµP memory addressPrimaryCell, //32-bit address of primary cell

addressRedundantCell, //32-bit address of redundant cell if

··· //implemented, 0x00000000 if redundant

··· //cell is not implemented

Table 5.9: Syntax and format for instruction related to Static Fault Tolerance mechanism

In the initial configuration or when the system is not in wait state, the instruction ft

configuration is ignored, the CµP continues with the execution of other SASM instructions.
The primary and redundant cells (configured as arguments) involved in the Static Fault Tolerance
mechanism must be properly configured by means of register FTCSR.

The ft configuration instruction is closely tied with the execution of the following in-
structions: i) wait; ii) restart processors wait; and iii) enable processors wait. After the
execution of any of these instructions, the CµP is in wait state, which means that it is waiting
for a message from a cell to start the elimination and replication of damaged cells. Remember
that CµP saves the location of the current instruction (stack ⇐ pointer), which corresponds with
any instructions that includes the label (wait).

The CCU of a cell where the hardware failure is detected starts the process detailed bellow:

76

CHAPTER 5. DEVELOPMENT AND IMPLEMENTATION OF SELF-ADAPTIVE APPLICATIONS
WITH PARALLEL PROCESSING CAPABILITIES.

1. The processors of primary cell are disabled, i.e., no more instructions will be executed. The
CCU of the primary cell starts the process for replication of cells. This CCU sends to GCU
the command replicate cells inet with the address of the primary cell as argument. This is
forwarded to CµP with the command replicate cells enet.

2. The CµP searches in memory the instruction (ft_configuration) whose first argument
matches with the address included in the message (primary cell).

3. The CµP start a process for eliminating the primary and redundant cells. The elimination
term implies that cells will not participate in future self-placement processes. The procedure
is as follows:

a. The CµP sends a message to the GCUs (chips) with the command autoset for delete
connections enet. Each GCU that has active the flag delete component or cell enable is
enabled to participate in the selection process.

b. The CµP starts the selection process using the command start contest winner chip enet.
This determines the chip that will execute the algorithm to disconnect the primary cell.
If there is a winner chip, goto step c. for disconnecting the primary cell. If there is not a
winner chip goto step e. for eliminating the primary cell.

c. The CµP sends to chips the command delete cell connections chip enet with the address of
the primary cell. The winner chip translates and broadcasts the command inside the chip:
delete cell connections chip inet. The winner chip executes the “Self-derouting Process”
(Section 4.11). It goes through the input connection tables of primary cell inside the chip
and releases all routing resources related with the interconnection of this cell.

d. When all connections with the primary cell have been released for the winner chip the
flag delete component or cell enable is cleared. In this case, the chip will not partici-
pate in future selection process. The GCU receives the command delete cell connections
confirmation inet, which is translated and sent to CµP using the command delete cell
connections confirmation enet. The CµP repeats the process from step a. until all connec-
tions with the primary cell are released. Note that loop is broken in step b.

e. The CµP sends a frame with the information of the primary cell: eliminate cell chip enet
+ address. The GCUs broadcast the frame internally, the cell whose address matches
executes the algorithm “Elimination of a Cell inside a Chip” (Section 4.9.1), which
configures the damaged cell as busy cell and its address will be fixed to 0xFFFF0001 to
avoid future use.

f. The chips that have at least one component activate the flag delete component or cell
enable for future elimination processes. The appropriate confirmation command is sent to
the GCU, which translates and transmits the command to the CµP and the process of
elimination of the primary cell ends.

g. If the address of the redundant cell is different to 0x00, the process of elimination must
be executed again from step a. This time for the Redundant Cell. When elimination of
primary and redundant cells is finalized, the process continues with the insertion of primary
and redundant cells in different location.

4. The CµP starts the process for inserting the primary and redundant cells (replication process).

a. The CµP sets the pointer to zero and starts searching the cells in the configuration
memory. That means finding the instruction create_component that includes the primary
or redundant cells.

77

5.4. DEVELOPMENT OF APPLICATIONS

b. When the configuration data of the primary or redundant cell is found, one of the following
processes is executed, which depends on the features of the component that includes the
cell:

I Self-placement of First Cell of a Component (Section 4.5.1).
I Self-placement of Others Cell of a Component (Section 4.5.2).

c. The previous step is repeated for the remaining cell (primary or redundant). Afterwards,
the process continues with the configuration of program memories of these cells.

5. The CµP starts the process for writing the Configuration Registers or Program Memories of
primary and redundant cells (replication process).

a. The CµP sets the pointer to zero and starts searching all instructions related with writing
the FU memory (write_FU_memory_XXX).

b. The instruction write_FU_memory_XXX is executed if the address of the primary or redun-
dant cells matches with the address configured for the instruction.

c. The process ends when the instruction end is found.

6. The GCU asks to the system to start the process “Self-routing at Component Level” to
route the missing connections in the system (Section 4.8).

7. The CµP recovers the value of the pointer (pointer⇐ stack). The CµP executes the instruction
denoted by pointer that contains a SASM instruction with the label wait and the process
continues normally.

When elimination and replication processes ends, the processors in the system are enabled
again and continue working (start working for replicated cells). It is user responsibility to restart
the software application scheduled to the SANE, or to recover a known starting point.

5.4 Development of Applications

Remember that any SANE application can be assumed to be a self-adaptive processing system
with the MIMD architecture advantages, like multiple parallel processing. The runtime self-
configuration capability of the system is present when a SANE application requests the execution
of at least one subprocess. For this case, Listing 5.1 shows an example of the syntax of the high-
level configuration file (or SASM file)2. Despite this example does not represent the solution of a
problem and only shows the structure of an application with subprocesses, the following features
could be abstracted from the code:

I The SPD permits to simplify the instructions for writing the configuration registers and
program memories of FU. Note that lines 8 to 12 could be simplified using the instruction
write FU memory, which is used along this listing.

I The subprocesses are ignored (or skipped) the first time the code is executed, i.e., the initial
configuration starts from the line 49.

I From line 49 to line 56, the basic configuration of the system is performed. It includes a instruc-
tion to restart and disable the processors, creation of components, writing of configuration
registers and program memories for processors, and the connection of components.

2The special characters semicolon (;) or double-slash (//) are used to include comments in the code.

78

CHAPTER 5. DEVELOPMENT AND IMPLEMENTATION OF SELF-ADAPTIVE APPLICATIONS
WITH PARALLEL PROCESSING CAPABILITIES.

I The execution of threads starts when the instruction of line 57 permits to enable the processors.
In this moment, the CµP remains in wait state. The cell(s) that includes the appropriate
functionality can request to the CµP to start the execution of a subprocess. For this example,
the cells AAAA0001 and BBBB0001 could start subprocesses for the component to which the
cell belongs, i.e., the components AAAA and BBBB respectively. Note that a component can
request the execution up to four subprocesses, which are identified with the id component .

I Note that any cell in component AAAA may execute a dynamic reconfiguration as follows: the
subprocess 0 and subprocess 2 permits to create and delete dynamically the component DDDD.
Similarly, subprocess 1 and subprocess 3 permits to create and delete components EEEE, FFFF
and AABB.

I Any cell in component BBBB may execute the subprocess 0 in line 42 to restart the processors
in system.

I The instruction end denotes the last instruction of the SASM file.

Listing 5.2 presents the structure of a SANE-ASM that includes other case for dynamic
reconfiguration, the Static Fault Tolerance mechanism. This mechanism permits to self-repair
the system when a hardware failure is detected in the Fault Tolerance System (FTS) configured
for the working or the redundant processor, which are located in primary and redundant cells
(cell A primary and cell A redundant) . This listing includes the following features:

I The SPD lets users make definition of variables with the reserved word equ. Lines 4 to 11
show the syntax of these definitions.

I From line 20 to line 30, the basic configuration of the system is performed. It includes
instructions to disable the processors, creation of components, writing of configuration registers,
writing of program memories for processors, connection of components and enable processors.

I The cells denoted as cell A primary and cell A redundant must enable and configure ap-
propriately the FTS.

I The execution of threads starts when the instruction of line 31 permits to restart the processors.
In this moment, the CµP remains in wait state. If a hardware failure occurs in the Working
Processor or Redundant Processor, the primary cell starts the processes for self-elimination
and self-replication of damaged cells. This process is executed by the CµP, which starts the
execution of the elimination and replication of primary and redundant cells. For this example,
the cells AAAA0001 and AAAA0002 (cell_A_primary and cell_A_redundant) are configured
for this processes with the instruction ft configuration.

When an application does not include the instructions that include the self-configuration
capabilities previously explained, the system executes a general purpose application with ca-
pacity for parallel processing. The dynamic reconfiguration is enabled when the SASM file
ends with a instruction that includes the option to put the system in wait state, i.e., when
the program ends with any of the following instructions: wait, restart_processors_wait or
enable_processors_wait.

Many applications were implemented and tested in the prototype using the SPD. However not
all can be presented because of space. The following sections presents two application examples
that include Dynamic and Static Fault Tolerance capabilities.

79

5.4. DEVELOPMENT OF APPLICATIONS

Listing 5.1: Example of a SANE-ASM with Subprocesses for dynamic reconfiguration.

1 ;***

2 ;* Subprocesses are ignored in the initial configuration

3 ;***

4 ;* Subprocesses for component 0xAAAA

5 ;**

6 start_subprocess_0 0xAAAA // Subprocess 0 for component 0xAAAA

7 create_component 0xDDDD

8 write_FU_memory_CR 0xDDDD0001; These instructions

9 write_FU_memory_PM0 0xDDDD0001; are equivalent

10 write_FU_memory_PM1 0xDDDD0001; to the instruction

11 write_FU_memory_PM2 0xDDDD0001; ’write_FU_memory 0xDDDD0001 ’

12 write_FU_memory_PM3 0xDDDD0001; for the SANE Project Developer

13 connect_component

14 end_subprocess_0

15 ;**

16 start_subprocess_1 0xAAAA // Subprocess 1 for component 0xAAAA

17 create_component 0xEEEE

18 create_component 0xFFFF

19 create_component 0xAABB

20 write_FU_memory 0xEEEE0000

21 write_FU_memory 0xEEEE0001

22 write_FU_memory 0xEEEE0002

23 write_FU_memory 0xFFFF0000

24 write_FU_memory 0xFFFF0001

25 write_FU_memory 0xAABB0000

26 write_FU_memory 0xAABB0001

27 connect_component

28 end_subprocess_1

29 ;**

30 start_subprocess_2 0xAAAA // Subprocess 2 for component 0xAAAA

31 delete_component 0xDDDD

32 end_subprocess_2

33 ;**

34 start_subprocess_3 0xAAAA // Subprocess 3 for component 0xAAAA

35 delete_component 0xEEEE

36 delete_component 0xFFFF

37 delete_component 0xAABB

38 end_subprocess_3

39 ;**

40 ;* Subprocesses for component 0xBBBB

41 ;**

42 start_subprocess_0 0xBBBB // Subprocess 0 for component 0xBBBB

43 restart_processors

44 end_subprocess_2

45

46 ;**

47 ;* Start of SANE -ASM configuration

48 ;**

49 restart_and_disable_processors

50 create_component 0xAAAA

51 write_FU_memory 0xAAAA0001

52 create_component 0xBBBB

53 write_FU_memory 0xBBBB0001

54 create_component 0xCCCC

55 write_FU_memory 0xCCCC0001

56 connect_component

57 enable_processors_wait ;CMP waits a request from a Cell

58 ;for the execution of a subprocess

59 end ;End of SASM configuration file

80

CHAPTER 5. DEVELOPMENT AND IMPLEMENTATION OF SELF-ADAPTIVE APPLICATIONS
WITH PARALLEL PROCESSING CAPABILITIES.

Listing 5.2: Example of a SANE-ASM with Subprocesses for dynamic reconfiguration.

1 ;***************

2 ;* Definitions

3 ;***************

4 component_A equ 0xAAAA // Component with four cells

5 cell_A_primary equ 0xAAAA0001

6 cell_A_redundant equ 0xAAAA0002

7 cell_A_function3 equ 0xAAAA0003

8 cell_A_function4 equ 0xAAAA0004

9 component_B equ 0xBBBB // Component with two cells

10 cell_B_function1 equ 0xBBBB0000

11 cell_B_function2 equ 0xBBBB0001

12 ;**

13 ;* Fault Tolerance configuration is ignored in the initial configuration

14 ;* If the redundant cell is not inplemented , the argument 2 must be 0x0

15 ;**

16 ft_configuration cell_A_primary ,cell_A_redundant

17 ;*********************************

18 ;* Start of SANE -ASM configuration

19 ;*********************************

20 disable_processors

21 create_component component_A

22 write_FU_memory cell_A_primary

23 write_FU_memory cell_A_redundant

24 write_FU_memory cell_A_function3

25 write_FU_memory cell_A_function4

26 create_component component_B

27 write_FU_memory cell_B_function1

28 write_FU_memory cell_B_function2

29 connect_component

30 enable_processors

31 restart_processors_wait ;CMP waits a request from a Cell for the

32 ;elimination and replicacion of primary

33 ;and redundat cells

34 end ;End of SASM configuration file

5.5 Application Example: Dynamic Fault-Tolerance Scaling

As previously described, any component in the system has the ability to start up to four subpro-
cesses in execution time. Each subprocess is a group of any number of SASM instructions, e.g.,
a subprocess could create, eliminate or interconnect components between others. The Dynamic
Fault-Tolerance Scaling technique uses this functionality for its purpose.

Lets us say that a component in a specific SANE is used for monitoring another component
that is used for computing purposes (Monitor and Compute sections respectively). The Monitor
could use two subprocesses to create exact copies of the Compute and the remaining two sub-
processes to eliminate it. This way the Monitor section has the ability to create and eliminate
redundant copies of the Compute section when a specific condition in execution time is achieved.
This principle is used for the demonstration application explained in this section.

5.5.1 Dynamic Fault-Tolerance Structure

The SANE developed for any Dynamic Fault-Tolerance application can be divided in four parts,
the Compute, Monitor , Control and Interface sections.

The Compute section executes the functionality scheduled to the SANE. This section is

81

5.5. APPLICATION EXAMPLE: DYNAMIC FAULT-TOLERANCE SCALING

composed of a variable number of cells that implement any general-purpose application.

The Monitor section is composed of a variable number of cells, which has the task of monitoring
the real-time functionality of the Compute section, thus it has the ability to stop the operation of
a SANE if a fault condition is detected. This section requests the execution of four subprocesses
(SP) as follows:

I SP0: Creation of first copy of Compute section.
I SP1: Creation of second copy of Compute section.
I SP2: Kill the first copy of of Compute section.
I SP3: Kill the second copy of of Compute section.

Therefore, the Monitor section has the ability to request the creation/killing of exact copies
of the Compute section (maximum two), depending of the requirements of the SANE. When
there is only the original Compute section, it is not possible to detect a fault. When there are
two Compute sections implemented, the Monitor section has the ability to stop the functionality
of the SANE if the comparison between the original and the copy is different. When there are
two copies of the Compute section implemented, the monitoring system decides the continuity
of the SANE, it depends if at least two of them have the same results, otherwise the Monitor
section ends the SANE functionality.

The Control and Interface sections are included by default in the architecture. The Control
section executes the subprocesses. This functionality is included in all cells, but it is only enabled
in one cell of the Monitor section, which will be responsible to start the subprocesses for creating
or killing the copies of the Compute section. The Interface section corresponds to the resources
available for the interconnection of cells and components. This is configured for the self-placement
and self-routing algorithms.

The first and second copy of the Compute section are not configured (placed and routed) in
the initial configuration, instead it exclusively depends on the runtime application characteristics.
This additional hardware is dynamically created and eliminated by the Monitor section of a SANE.
Even if the self-placement and self-routing processes of the new hardware are not completed,
the processors of the other active SANEs (or active cells) in the system continue working in
parallel without any interruption. This is possible because the self-placement and self-routing
processes are executed in a parallel and distributed way by the configuration units of cells, while
the processors of the cells are executing their scheduled processing work.

5.5.2 Description of the application

This demonstration application is a SANE-based subsystem. It can be described as a dynamic
fault-tolerance scaling technique implemented on the self-adaptive architecture described in this
document. The application should be able to improve autonomously its fault tolerance features
based on its current workload.

As previously mentioned, the organization of a SANE includes four sections: Compute, Moni-
tor , Control and Interface. For this demonstrator application the Compute section is implemented
by a single-cell component, it is a 16-bit pseudo-random number generator, which has been chosen
just to illustrate the principles proposed in the architecture.

The Monitor section is implemented in a two-cell component. Each cell implements the
subsections called Monitor 1 and Monitor 2 . The Monitor 1 determines on-line the power
consumption average produced by the Compute section. The power consumption has been
divided in high, medium and low consumption thresholds; it is calculated with the average of
transitions of the random sequence generated.

82

CHAPTER 5. DEVELOPMENT AND IMPLEMENTATION OF SELF-ADAPTIVE APPLICATIONS
WITH PARALLEL PROCESSING CAPABILITIES.

FU* FU* FU*

FU** FU*

COMPUTE

11AA--00A1

MONITOR_1

00CC-00C0 11CC--00C1

11AA--00A2 22CC--00C2

MONITOR_2

FIRST COPY
(COMPUTE)

SECOND COPY
(COMPUTE)

From-Compute-section,-
first-copy-of-Compute***,-and-
second-copy-of-Compute***.

4***-If-exist)

16-bit-seed,-
for-LFSR

generators

Random
number

generated

Comparison
assessment*-Mode-9

**-Mode-4

Figure 5.1: Component interconnection for the dynamic fault tolerance application.

1

Start
Self-placementIof
Monitor_1Isection.

2

Self-placementIandIself-routing
ofIMonitor_2Isection.

3

Self-placementIofIComputeIsection.
Self-routingIofIcomponents.

4

5

Self-placementIofItheIfirstIcopy
ofIcomputeIsection.
Self-routingIofIcomponents.

Self-placementIofItheIsecond
copyIofIcomputeIsection.
Self-routingIofIcomponents.

DeleteIandIdisconnect
theIsecondIcopy

ofIcomputeIsection.

DeleteIandIdisconnect
theIfirstIcopyIof

computeIsection.

Initial
configuration

dynamic
self-configuration

1

2

3

4

5

Start

Figure 5.2: Sequence of activities. The processes executed by the system are represented by the
text over the arrows. All cells are free in the ”start” state.

The average for high consumption has to be larger than 11 changes. In this case, the Monitor 1
section maintains only the original Compute section. In medium consumption regime, the thresh-
olds are between 6 and 10 changes, the Monitor 1 section maintains the first copy of the Compute
section while the power consumption average is within this thresholds. In low consumption regime,
the threshold is between 1 and 5 changes. Therefore, while the average is in low consumption
the second copy of the Compute section is present in the system.

The Monitor 2 compares the outputs provided by the original Compute section and its copies
(if they exist), and sends the result of these comparisons to Monitor 1 , which depending of the
result of this comparisons takes the decision to stop or not the system.

The Control is implicit in the system, it is constituted by the CCU of the Monitor 1 section.
The Interface section includes the routing resources available for interconnections of cells, which
includes the ports of cells, Switch and Pin Interconnection Matrices.

The first and the second copy of the Compute section are implemented in components

83

5.6. APPLICATION EXAMPLE: STATIC FAULT-TOLERANCE

Address:
(id component

+ id cell)

Cell
Configuration

Mode

Description

00CC 00C0 4 Compute section. Generator of a 16-bit pseudo-
random number sequence

11AA 00A1 9 Monitor 1 section. Calculates the average consump-
tion of the Compute section

11AA 00A2 9 Monitor 2 section. Comparisons of all compute sec-
tions.

11CC 00C1 9 First copy of Compute section.

22CC 00C2 9 Second copy of Compute section.

Table 5.10: Description of components for the example application: Dynamic Fault Tolerance
Scaling.

composed of a single cell. The application for this Compute copies is exactly the same, the
pseudo-random number generation. The components developed for this application and their
interconnections are shown in Figure 5.1 and Table 5.10. The cells in mode 9 have one 16-bit
processor with capacity for 256 instructions in program memory and 16x16 data memory. The
cell in mode 4 has one 8-bit processor with 32-bytes data memory and 256 instructions capacity.

Figure 5.2 shows the processes executed in the SANE, where it is important to note the
dynamic creation and kill processes of copies depending on the changing power consumption of
the Compute section. Steps “start”, 1 and 2 constitute the initial configuration of basic hardware
required for the execution of the application, the Monitor and original Compute section.

Steps 3 to 5 are executed alternately and controlled by the Monitor 1 section, which creates
and kills copies of the Compute section depending on its average power consumption.

In the appendix E, Table E.1 presents a relation of the files created and generated by SPD
regarding this application. Listings presented in section E.1 show these files.

5.6 Application Example: Static Fault-Tolerance

Lets suppose a 8-bit sequence of data that has to be generated by a processor with a capacity for
250 instructions, which has to include a Fault Tolerance System (FTS) to protect the reliability
of the sequence. The sequence has to be generated at a low speed, much lower than the clock
available, so it is necessary to implement a delay in the sequence. This could be implemented in
the processor of another cell with a capacity for 50 instructions.

The problem can be solved in many ways, the figure 5.3 shows a specific solution. This SANE
includes three components (AAAA, BBBB and CCCC). The cell identified as AAAA0001 includes the
primary processor, which generates the sequence, and the cell BBBB0002 includes the redundant
processor that generates the same sequence. These cells are configured in configuration mode 4
and in FT mode 5, that allows the FTS of the primary cell making the comparison of 2 cores
(Core 0 in primary and redundant cells). The cell CCCC0003 contains a processor that performs
the delay. This will be in mode 0, and its FTS will be disabled (only one processor is used, the
other three could be used for future implementations).

When the primary and redundant cells generate one data of the sequence, the OUT0 port
of the primary cell is written, producing the Read Enable (RE) flag. This is conducted to the
cell CCCC0003, which waits this RE pulse from cell AAAA0001 to start the generation of a delay

84

CHAPTER 5. DEVELOPMENT AND IMPLEMENTATION OF SELF-ADAPTIVE APPLICATIONS
WITH PARALLEL PROCESSING CAPABILITIES.

FU

FUFU

AAAAi666hSequenceigenerator
,PRIMARY_

BBBBi6662

CCCCi6663
8ybitisequence

Sequenceigenerator
,REDUNDANT_

Modei4liFT_modei5
Modei6li
FTSiDisabled

Delay
Modei4:ihiprocessorli

256iinstructionsi
capacityiiniprogrami

memoryiandi32ibytes
inidataimemoryi Modei6:i4iprocessorsli

64iinstructionsiini
programimemoryi

andi8ibytesiinidata
memoryieachione

Figure 5.3: Components configuration for Static Fault Tolerance application example.

(this RE is received by means of the special instruction called BLMOV ”Blocked Move”, which
reads the port, saves the data in a memory location and follows with the next instruction when
a RE pulse is produced). The data read is not important for the cell that produces the delay
(CCCC0003). This cell executes the delay algorithm, and then writes any data in its OUT0 port,
which produces a RE pulse that has to be conducted to the inputs of the primary and redundant
cells. When these cells receive the RE pulse they generate the next data of the special sequence,
and so on. While the delay is performed, the primary and redundant processors could calculate
the next data of the sequence in a parallel way.

If the primary or redundant processor have a hardware failure, the cells AAAA0001 and
BBBB0002 are self-eliminated, the address FFFF0001 will be fixed in both cells, and they will not
be used in subsequent self-placement operations. Its routing resources continue available. Next,
the cells AAAA0001 and BBBB0002 start the self-replication process, it involves the self-placement
and self-routing of these cells in another location inside the cell array. Once this process ends,
the sequence starts the generation again.

In the appendix E, Table E.2 presents a relation of the files created and generated by SPD
regarding this application. Listings presented in section E.2 show these files.

5.7 Conclusions

The high-level configuration file for the description of a SANE ASSEMBLY (SANE-ASM) has
been defined as the SANE Assembler (SASM) file. This file is composed of a sequence of SASM
instructions that describes the configuration of the SANE-ASM. The syntax and instruction
format for all SASM instructions has been presented. There are 25 instructions that permits the
execution of the following process:

I Create, delete and interconnect components.
I Write the Functional Unit (FU) memory of cells, including the Configuration registers.
I Restart, disable or enable the processors in system.
I Configuration of system in wait state, which permits the execution of runtime self-configuration

processes in system.
I Execution of one to four subprocess, which provides the system with dynamic reconfiguration

capabilities.
I Configuration of Static Fault Tolerance mechanism, which provides the system with self-healing

capability.
I Instruction to denote the end of the SASM configuration file.

85

5.7. CONCLUSIONS

Two application examples have been presented. The first is the Dynamic Fault Scaling
Technique, which permits to check the dynamic reconfiguration of the system by means of
subprocesses. This application is able to improve autonomously its fault tolerance features based
on its current workload. Therefore, depending on a specific condition in the functional section of
an application, the system dynamically either creates or kills one or two copies of its functional
section. The fault tolerance subsystem compares the redundant copies of the functional section,
if they exist, so as to decide the continuity of the system depending on eventual failures in the
comparison.

The other mechanism of fault tolerance is a dedicated or Static Fault Tolerance mechanism.
It provides redundant processing capabilities that are working continuously. In the application
example, when a failure in the execution of a binary sequence in the Primary or Redundant
processors is detected, the processors in Primary cell are stopped and the self-elimination and
self-replication processes start for the cells involved in the failure. These cells will be self-discarded
for future self-placement processes.

86

Chapter 6

Publications and Results

When you have the running spirit,
you look forward to life.

Cuando se tiene esṕıritu de atleta,
se tiene ilusión por la vida.

Max Popper (1893 – 1976)

Abstract: This chapter presents the publications performed during the elaboration of

this thesis. Additionally, this chapter shows a summary of the files generated for the appli-

cation , which are divided in three sections: hardware, firmware and software. The synthesis

implementation results of the hardware architecture are presented at the final of the chapter.

6.1 Publications

The following is the list of publications organized from latest to oldest.

6.1.1 Neurocomputing Journal

Title: A self-adaptive hardware architecture with fault tolerance capabilities.

Authors: Javier Soto, Juan Manuel Moreno, Joan Cabestany.

Journal: Neurocomputing, Volume 121, 9 December 2013, Pages 25-31. Advances in Arti-
ficial Neural Networks and Machine Learning.

Abstract: This paper describes a Fault Tolerance System (FTS) implemented in a new
self-adaptive hardware architecture. This architecture is based on an array of
cells that implements in a distributed way self-adaptive capabilities. The cell
includes a configurable multiprocessor, so it can have between one and four
processors working in parallel, with a programmable configuration mode that
allows selecting the size of program and data memories. The self-elimination and
self-replication capabilities of cell(s) are performed when the FTS detects a failure
in any of the processors that include it, so that this cell(s) will be self-discarded for
future implementations. Other adaptive capabilities of the system are self-routing,
self-placement and runtime self-configuration. Additionally, it is described as an
example application and a software tool that has been implemented to facilitate
the development of applications to test the system.

DOI: http://dx.doi.org/10.1016/j.neucom.2012.10.038

ISSN: 0925-2312

87

http://dx.doi.org/10.1016/j.neucom.2012.10.038

6.1. PUBLICATIONS

6.1.2 Advances in Computational Intelligence - IWANN 2011

Title Description of a Fault Tolerance System Implemented in a Hardware Ar-
chitecture with Self-adaptive Capabilities

Authors Javier Soto, Juan Manuel Moreno, Joan Cabestany.

Book Title Advances in Computational Intelligence

Book Subtitle 11th International Work-Conference on Artificial Neural Networks confer-
ence, IWANN 2011, Torremolinos-Málaga, Spain, June 8-10, 2011, Proceed-
ings, Part II.

Other Publisher: Springer Berlin Heidelberg, 2011.
Series Volume: 6692, pp 557-564.

Abstract: This paper describes a Fault Tolerance System (FTS) implemented in a
new self-adaptive hardware architecture. This architecture is based on an
array of cells that implements in a distributed way self-adaptive capabilities.
The cell includes a configurable multiprocessor, so it can have between one
and four processors working in parallel, with a programmable configuration
mode that allows selecting the size of program and data memories. The
self-elimination and self-replication capabilities of cell(s) are performed
when the FTS detects a failure in any of the processors that include it, so
that this cell(s) will be self-discarded for future implementations. Other
self-adaptive capabilities of the system are self-routing, self-placement and
runtime self-configuration.

DOI http://dx.doi.org/10.1007/978-3-642-21498-1_70

Print ISBN 978-3-642-21497-4

Online ISBN 978-3-642-21498-1

6.1.3 International Conference - Reconfig’09

Title Implementation of a Dynamic Fault-Tolerance Scaling Technique on a Self-
adaptive Hardware Architecture

Authors Javier Soto, Juan Manuel Moreno, Jordi Madrenas, Joan Cabestany.

Publication International Conference on Reconfigurable Computing and FPGAs, 2009.
ReConFig ’09, Cancun, Quintana Roo, Mexico, December 9-11, 2009. Pages
445-450.

Abstract: The purpose of this paper is to describe a dynamic fault tolerance scaling tech-
nique that is supported by the self-adaptive features of a hardware architecture
developed within the framework of the AETHER project. The architecture is
composed of an array of cells that support dynamic and distributed self-routing
and self-placement of components in the system. The combination of a large
array of cells together with component-level routing ultimately constitutes a
SANE (self-adaptive networked entity). The dynamic fault tolerance scaling
technique proposed in this paper permits a given subsystem to modify au-
tonomously its structure in order to achieve fault detection and fault recovery.
The decision to modify or not its organization is based on the actual power
consumption of the system.

DOI http://dx.doi.org/10.1109/ReConFig.2009.45

Print ISBN 978-1-4244-5293-4

E-ISBN 978-0-7695-3917-1

88

http://dx.doi.org/10.1007/978-3-642-21498-1_70
http://dx.doi.org/10.1109/ReConFig.2009.45

CHAPTER 6. PUBLICATIONS AND RESULTS

6.1.4 International Conference - DCIS 2008

Title Design of a Configurable Multiprocessor for a Self-Adaptive Hardware Archi-
tecture

Authors Javier Soto, Juan Manuel Moreno, Jordi Madrenas, Joan Cabestany.

Publication XXIII Conference on Design of Circuits and Integrated Systems (DCIS 2008).
ISBN: 978-2-84813-124-5.
Grenoble, France. November 12-14, 2008.

Abstract: The purpose of this paper is to describe the design of a configurable multipro-
cessor used as a functional unit of a cell that is able to perform self-placement
and self-routing. An array of such cells ultimately constitutes a SANE (Self-
Adaptive Networked Entity). The Functional Unit includes one to four pro-
cessors working in parallel, with a programmable configuration mode that
allows selecting the size of program and data memories. Data processing can
be done in modes of 8, 16, 24 and 32 bits. The architecture includes special
instructions and specific hardware designed to be compatible with a model of
computation based on microthreads.

6.1.5 International Conference - JCRA 08

Title Diseño de un Multiprocesador Configurable y de la Interfaz de Comunicaciones
para una Arquitectura de Hardware Auto-Adaptable (Design of a Configurable
Multiprocessor and the Communication Interface for a Self- Adaptive Hard-
ware Architecture)

Authors Javier Soto, Juan Manuel Moreno, Jordi Madrenas, Joan Cabestany.

Publication VIII Jornadas de Computación Reconfigurables y aplicaciones (JCRA 08)
(Universidad Rey Juan Carlos – URJC).
ISBN: 978-84-612-5635-8.
Pages 295-304.
Madrid, Spain, September 18-19, 2008.

Abstract: El propósito de este art́ıculo es describir el diseño de un multiprocesador con-
figurable usado como unidad funcional de una célula que es capaz de realizar
procesos de auto-enrutamiento y auto-emplazamiento. La unidad funcional
incluye de uno a cuatro procesadores trabajando en paralelo, cuyo modo de
configuración programable permite seleccionar el tamaño de las memorias de
datos (8, 16, 24 o 32 bits) y programa. Este procesador incluye hardware e
instrucciones espećıficas para ser compatible con un modelo de computación
basado en microthreads. Se describe también el diseño de la interfaz de comu-
nicaciones necesaria para la ejecución de los procesos de auto-emplazamiento
y auto-enrutamiento.

89

6.2. CODE GENERATED

6.1.6 International Conference - ReCoSoC’08

Title Communication Infrastructure for a Self-Adaptive Hardware Architecture

Authors Javier Soto, Juan Manuel Moreno, Jordi Madrenas, Joan Cabestany.

Publication Proceedings of the Reconfigurable Communication-centric Systems-on-Chip
Workshop (ReCoSoC’08), ISBN: 978-84-691-3603-4, pp. 175-180, Barcelona,
Spain, July 9-11, 2008.

Abstract: The purpose of this paper is to describe the design of a communication interface
between a cell array and a global configuration unit to support self-placement
and self-routing capabilities. The interface is based on the I2C bus specification.
The combination of a large array of such cells together with component-level
routing ultimately constitutes a SANE (Self-Adaptive Networked Entity).

6.2 Code Generated

This section presents a relation of the code generated for the implementation of the self-adaptive
architecture presented in this document. This code represents only the final prototype imple-
mented. The system developed includes different types of technologies divided in three scenarios:
hardware, firmware and software, which are detailed in following sections.

6.2.1 Hardware

The hardware section represents the self-adaptive hardware architecture with parallel processing
capabilities presented along this document. This section was developed in two Virtex4 Xilinx
FPGAs (XC4VLX60), each one includes the same configuration and hardware description written
in VHDL code. Some differences has been implemented in the design for differentiating the master
and slave chips in prototype. The FPGA pins configuration is different for these chips, therefore
two projects were built for the implementation of the prototype. Table 6.1 presents a relation
of files, code lines and a brief description of each file generated for prototype. Note that the
hardware definition of the Control Microprocessor (CµP) is not included in the list, since it was
generated with the Xilinx Platform Studio.

It is important to note that these files only represent the final prototype, which is a reduced
approach of the architecture presented in this dissertation. This is due mainly to the physical
limitations in the FPGAs used for the system implementation. It is worth noting the following
consideration: in prototype the cell (without CCU) and the SM have 1558 and 1912 code lines
respectively. A previous version of the prototype without FU and with two clusters (3x3 cell array
each) was implemented for testing of self-routing and self-placement algorithms. For this case the
cell (without CCU) and the SM have 2300 and 11900 code lines respectively. The comparison
of the code lines of a cluster with 2x2 cell array (prototype) and the cluster with 3x3 cell array
is a reference of the hardware complexity for these approaches, and the main reason for the
implementation of the prototype described in section 2.14.

File Name Lines Description

CCU.vhd 1945 Cell Configuration Unit. Implements all self-adaptive algo-
rithms for a cell, mainly for self-placement and self-routing
processes.

cell NE.vhd1 1558 Routing resources for cell North-East.

cell NW.vhd1 1558 Routing resources for cell North-West.

Continued on next page

90

CHAPTER 6. PUBLICATIONS AND RESULTS

File Name Lines Description

cell SE.vhd1 1558 Routing resources for cell South-East.

cell SW.vhd1 1558 Routing resources for cell South-West.

Cluster array.vhd 833 Instantiation of GCU, cells, SM and PIM.

Commands.vhd 207 Library for global definition of special addresses, com-
mands for INET and ENET, and other definitions.

dcm1.vhd 107 Clock divider for obtaining 25 MHz clock.

GCU.vhd 1960 Global Configuration Unit. Interface between CµP and
CUs inside chips. Controls the self-adaptive processes in-
side a chip.

Matrix.vhd2 1912 Switch Matrix. It includes the routing resources of SM and
the SMCU, which implements the self-adaptive processes
inside the SM.

Matrix border.vhd 1172 Pin Interconnection Matrix. It includes the routing re-
sources of PIM and the PIMCU, which implements the
self-adaptive processes inside the PIM.

System chip.vhd 281 Top module. Instantiation of CµP, cluster array and clock
divider (dcm1).

table.vhd 62 Input/output connection tables.

winning column box.vhd 50 Part of the circuit for cell selection process: leftmost up-
permost cell.

Mux15x1.vhd 61 Multiplexer 15x1 for 9-bit data bus. FU inputs.

Mux19x1.vhd 66 Multiplexer 19x1 for 9-bit data bus. Connects the SM port
with the FU inputs in cell.

Mux20x1.vhd 67 Multiplexer 20x1 for 9-bit data bus. SM ports

Mux4x1.vhd 47 Multiplexer 4x1 for 9-bit data bus. Chip ports (PIM
ports).

Mux5x1.vhd 50 Multiplexer 5x1 for 9-bit data bus. Cell local ports.

Mux7x1.vhd 52 Multiplexer 7x1 for 9-bit data bus. PIM ports.

Mux8x1.vhd 52 Multiplexer 8x1 for 9-bit data bus. Cell remote ports.

alu0.vhd 390 ALU for CORE0.

alu1.vhd 391 ALU for CORE1.

alu2.vhd 391 ALU for CORE2.

alu3.vhd 385 ALU for CORE3.

CM.vhd 115 Control Memory. Same for all cores.

DM.vhd 102 General purpose registers. Same for all cores.

DM4.vhd 316 Configuration and status registers mapped in Data Mem-
ory: IN0. . . IN3, OUT0. . . OUT3.

DM5.vhd 385 Configuration and status registers mapped in Data Mem-
ory: MODE FAMILY, PORTS, SUBPCSR and FTCSR.

FTS.vhd 143 Description of Fault Tolerance System.

FU.vhd 1211 Functional Unit top module. Instantiation and logic for
all modules that belongs to the FU.

PC0.vhd 70 Program Counter for CORE0.

PC1.vhd 67 Program Counter for CORE1.

Continued on next page

91

6.3. FIRMWARE

File Name Lines Description

PC2.vhd 70 Program Counter for CORE2.

PC3.vhd 67 Program Counter for CORE3.

PM.vhd 121 Program memory. Same for all cores.

sum com.vhd 45 Full Adder for design of ALUs.

Total 19425 Total number of VHDL code lines for prototype.

1 Cell with routing resources for two sides (1560 lines approximately). For comparative purposes, a
generic cell with routing resources for four sides may have 2300 lines approximately.
2 Switch Matrix with routing resources for two sides and four cells (1900 lines approximately). For

comparative purposes, a SM with routing resources for eight sides and nine cells may have 11900
lines approximately.

Table 6.1: List of VHDL files for hardware implementation of prototype.

6.3 Firmware

The firmware section of the application is represented by the control program implemented in
the Control Microprocessor (CµP), which was implemented in the same FPGAs used for the
hardware prototype. This firmware was implemented using the microprocessor MicroBlaze, which
was generated by Xilinx Platform Studio (XPS). It is programmed in C language by means of
the Xilinx Software Development Kit.

Table 6.2 presents a relation of files, code lines and a brief description of the firmware
developed for the system.

File name Code Lines Description

main.c 1898 Main program implemented in CµP.

print.h 69 Functions for writing data in UART. This information is pre-
sented in the communication tab of SPD.

uart.h 602 Uart configuration and algorithms for coomunication with SPD
by means of XMODEM-based protocol.

commands.h 217 Definitions of commands and generic values.

Total 2786 Total number of code lines implemented for CµP in prototype.

Table 6.2: List of C files for firmware section of prototype (Control Microprocessor).

6.4 Software

The software section of the system represents the SANE Project Developer (SPD), which is
a software tool developed for the creation and edition of projects that can be downloaded to
prototype (See appendix D for details). This software was developed in C Sharp (C#) using the
Microsoft Visual C# 2008.

Table 6.3 presents the files, code lines and a brief description of the classes created for the
implementation of the SPD. Note that the list only presents the code created for the application;
it is not included the code generated by the developed tool, i.e., it is not included the code that
contains the configuration of the forms, which is normally created in the files FormX.Designer.cs.

92

CHAPTER 6. PUBLICATIONS AND RESULTS

File Name Lines Description

AppData/ApplicationData.cs 586 Object for serialization of application data.

AppData/FormAppData.cs 736 Form events management for edition of application
data.

AppData/FormSaneApps.cs 68 Form events management for configuration of default
location of projects.

AppData/SerializableColor.cs 59 Color object with XML serialization.

AppData/SerializableFont.cs 77 Font object with XML serialization.

Compiler/AsmCodeLine.cs 138 Object used for discrimination of instructions, argu-
ments and others when a ASM file is compiled.

Compiler/AsmInstructions.cs 84 Object used for definition of ASM instructions.

Compiler/Compile.cs 1493 Object used for compiling ASM files. Generation of
HEX files.

Compiler/Output.cs 69 Object used for generation of output results for com-
piling and building processes.

Compiler/Build.cs 1717 Object used for building the project. Generation of
SHEX and SXM files.

Compiler/SasmCodeLine.cs 162 Object used for discrimination of instructions, argu-
ments and others when a SASM files is built.

Compiler/SasmInstructions.cs 74 Object used for definition of SASM instructions.

Figure/Figure.cs 1086 Object for generation of a Figure of prototype.

Form/Form1.cs 1213 Management of events for main Form.

Form/Form2.Tree.cs 435 Partial class Form1. Management of events left tree.

Form/Form3.ProjectTab.cs 1850 Partial class Form1. Management of events for
Project Tab.

Form/MenuCommunication.cs 156 Partial class Form1. Management of events for menu
communications.

Form/MenuFile.cs 1488 Partial class Form1. Managements of events for File
menu.

Form/MenuProject.cs 394 Partial class Form1. Management of events for
Project menu.

Form/MenuTools.cs 129 Partial class Form1. Management of events for Tools
menu.

Form/Tab.cs 93 Object for management of Tab pages.

Other/FormAbout.cs 47 Management of About form for credits in SPD.

Project/Cell.cs 165 Object with the parameters of a cell.

Project/CellsArray.cs 1895 Object for management of the cell array.

Project/Project.cs 985 Object for management of the project.

Comm.cs 1372 Partial class Form1. Management of communica-
tions ports and threads.

Common.cs 231 Definition of constant values and static methods
common for the application.

FindAndReplaceForm.cs 475 Management of events and methods for find and
replace action in text editor.

Continued on next page

93

6.5. SYNTHESIS PROCESS FOR PROTOTYPE

File Name Lines Description

FormNewFileTemplate.cs 530 Management of events and methods for creation of
a new file with template wizard.

FormNewProject.cs 140 Management of events and methods for creation of
new projects.

FormRenameCell.cs 48 Management of events for edition of cells.

FormSelFileProgFPGA.cs 137 Management of events for selection of file when
Write process is executed.

Globals.cs 27 Static class with global values for text editor
management.

Program.cs 29 Main program. Start the execution of SPD, call for
main Form - Form1.cs.

SerialPortFixer 207 Solve compatibility problems for communication
ports when used alternately with hyperterminal and
others.

Total 18395 Total number of C# code lines for SANE Project
Developer (SPD). This number does not includes
the code generated automatically for configuration
of Forms.

Note: Automatic files created for configuration of Forms are not included in this table.

Table 6.3: List of C# files developed for implementation of SANE Project Developer.

6.5 Synthesis Process for Prototype

The results of the synthesis process that shows the usage rate for elements of the architecture
are detailed in Table 6.4 (hardware section). The Xilinx Synthesis Technology (XST) was used
for the system implementation in the device selected. This table shows the usage rate for the
FU, a cell, a cluster and a complete chip, this permits to have an idea of the system granularity.
The program memory of the FU and the connection table have been implemented by means of
the RAM blocks available in the FPGA used. After generation of bitstream the total utilization
rate was 80%.

6.6 Conclusions

The publications developed during the elaboration of this thesis project have been presented.
They encompass one article in the Journal Neurocomputing and five international conferences,
two of which are referenced in electronic publications in Springer Berlin Heidelberg and IEEE
Xplore Digital Library.

The code generated for the final prototype includes approximately 40.000 code lines dis-
tributed in hardware, firmware and software, this code has been developed respectively in the
following languages: VHDL, C and C#.

The results of the synthesis processes are presented for the main components of the hardware
architecture, this gives an idea of the granularity of the hardware prototype implemented.

94

CHAPTER 6. PUBLICATIONS AND RESULTS

Part (Description) Slices
Slice Flip

Flops
4 input
LUTs

RAMB16

FPGA: chip resources, for comparison
26624
100%

53248
100%

53248
100%

160
100%

Functional Unit: Four-core configurable
multicomputer

1927
7%

402
1%

3715
6%

4
2%

cell: the routing resources of two sides were
eliminated

3537
13%

992
1%

6771
12%

6
3%

cluster: 2x2 cell array + switch matrix
15920

59%
4086

7%
30315

56%
24
15%

chip: cluster + GCU + µP of control + pin
interconnection matrix

19560
73%

9638
18%

36418
68%

56
35%

Note: the total utilization rate was 80% after generation of bitstream.

Table 6.4: Results of the synthesis process for the proposed prototype.

95

Chapter 7

Conclusions and Future Work

Somewhere, something incredible is waiting
to be known.

En algún sitio algo incréıble espera ser descubierto.

Carl Sagan (1934 – 1996)

Abstract: This chapter presents general conclusions related with the architecture devel-

oped. Additionally, some research lines are suggested as future work in this research area.

7.1 Conclusions

A novel self-adaptive hardware architecture with parallel processing capability has been developed.
Basically, this is an unconventional MIMD hardware architecture with self-adaptive capabilities
including self-placement and self-routing, which due to its intrinsic design, enable the development
of systems with runtime self-configuration, self-repair and/or fault tolerance capabilities.

The self-adaptive capabilities of the architecture are executed autonomously and in a dis-
tributed way by cells. One of the main features of this architecture is its high degree of parallelism.
The major drawback is the configuration of complex applications, where many processors have
to be programmed and synchronized in order to accomplish a specific task. A new high-level
programming paradigm has to be implemented, with the purpose of obtaining the maximum
performance of the architecture.

The architecture presented includes a dedicated or static Fault Tolerance mechanism. It
provides redundant processing capabilities that are working continuously. When a failure in the
execution of a program is detected, the processors of the cell are stopped and the self-elimination
and self-replication processes starts for the cell (or cells) involved in the failure. This cell(s) will
be self-discarded for future self-placement processes.

The runtime self-configuration capability of the system is possible with the execution of
subprocesses, which can be started by any cell in the system. This dynamic reconfiguration
capability permits the implementation of a Dynamic Fault Tolerance Scaling Technique, which
permits a given subsystem to modify autonomously its structure in order to achieve fault detection
and fault recovery. It has the ability to create and eliminate the redundant copies of the functional
section of a specific application.

A software tool and a hardware prototype that checks the functionality of the system have been
developed. The SANE Project Developer (SPD) is an Integrated Development Environment that
permits in a friendly way the management of projects that will be implemented in the hardware

97

7.1. CONCLUSIONS

prototype. The applications developed provides parallel processing capabilities, and may include
Fault Tolerance mechanisms and runtime self-configuration.

7.1.1 About System Architecture

The proposed architecture consists of four conceptual layers:

I First Layer - Cells: the cells implement the self-adaptive capabilities and provide the
computing capacity of the system.

I Second Layer - Components: the components are composed of interconnected cells.

I Third Layer - SANE: The Self-Adaptive Networked Entity (SANE) layer consists of a
group of interconnected components. The SANE is the basic self-adaptive computing system;
it has the ability of monitoring its local environment and its internal computation process.

I Fourth Layer - SANE-ASM: The top layer, the SANE ASSEMBLY (SANE-ASM) is
composed of a group of interconnected SANEs.

The proposed architecture is composed of one or more chips and an External Controller
(EC), which are interconnected by means of an External Network (ENET). Each chip includes a
two-layers implementation with interconnected cells in the first level and interconnected SMs in
the second level. The SANE and SANE-ASM are just conceptual and are implemented in the
same layer of components. The chip includes a cluster array, a Global Configuration Unit (GCU)
and Pin Interconnection Matrices (PIMs). The main features of these components are described
bellow:

I Cluster: The cluster is composed of a 3x3 cell array and a Switch Matrix (SM).

• Cell: The cell is the basic element of the proposed self-adaptive architecture. The cell
consists of the Functional Unit (FU), the Cell Configuration Unit (CCU) and additional
hardware that allows the interconnection between FU ports of two cells.

* Functional Unit: The FU is in charge of executing the processes scheduled to the cell,
i.e, it includes the processing capabilities of the cell. The FU includes four cores. Each
core contains the digital elements that are used for the construction of a processor. The
processor is constituted by the elements of one or more cores. Therefore the FU can have
between one to four processors working in parallel. There are twelve configuration modes,
where the expansion of Data and Program Memory describes the specific configuration
mode. Therefore, the data processing of FU could be configured for 8, 16, 24 or 32 bits
and the Program Memories can be joined or not depending on the configuration mode,
allowing Program Memory sizes of 64, 128, 192 or 256 instructions. The instruction set of
processors is composed of 44 instructions, which includes arithmetic, logic, shift, branch,
conditional branch and special instruction for the execution of microthreads.

* Cell Configuration Unit: the CCUs are responsible for the execution of the required
algorithms for the implementation of the system self-adaptive capabilities, mainly the
self-placement and self-routing algorithms.

• Switch Matrix: The SMs permit to connect cells from two different components. The SM
is connected to its eight adjacent neighbors; it is also connected to the nine cells belonging to
the cluster. The Switch Matrix Configuration Unit (SMCU) participates in the component
self-routing process. In this process, the FU output port of a cell in a given component is
connected to the FU input port of a cell in a different component.

98

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

I Global Configuration Unit: The GCU is in charge of controlling the self-adaptive processes
inside the chip. The GCU is interconnected with the EC through the ENET and with the
internal components of the chip through the INET. The GCU is the interface between the EC
and CUs inside the chip. The GCU receives and translates information related to self-adaptive
processes or configuration data.

I Pin Interconnection Matrix: The PIMs are used exclusively for the port interconnection
between cells of two components in different chips. The PIM is connected to its three adjacent
clusters. The Pin Interconnection Matrix Configuration Unit (PIMCU) participates in the
component self-routing process, to allow for the interconnection of the FU port of a cell with
a pin of the chip. Previously to this configuration, the GCU undertook a negotiation process
with other chips, with the aim of assigning a pin of the chip to connect these components.

The INET, ENET and Configuration Units (CUs) participate actively in all self-adaptive
processes implemented in the architecture.

7.1.2 About the Self-Adaptive Processes

All self-adaptive processes described in this dissertation have been implemented and tested in
the hardware prototype. The algorithms presented are te base for the implementation of the
high-level instructions in the system. These algorithms are executed by the Configuration Units
and are presented bellow:

I The self-placement algorithm: it is responsible for finding out the most suitable position
to insert the new cell of a component. For the placement of the first cell of a component, a
particular procedure is used, different from other cells. In this case, a good candidate position
is defined as one where a free cell has low routing congestion and the largest number of free
neighboring cells. After the insertion of the component first cell, the next cells to be inserted
are placed as close as possible to the cell with the largest number of connections with the new
cell.

I The self-routing algorithm: it permits to connect the Functional Unit ports of two cells.
This process can be executed at cell or component level. The self-routing process at cell
level is executed since the insertion of the second cell of a component, each time that the
self-placement process ends. The algorithm allows interconnecting the ports of the functional
unit of two cells, in the same component, through the local and remote cell ports. After
the insertion of all components, the self-routing process at component level can be executed.
This algorithm implements the interconnection of two cells belonging to different components
through Switch and Pin Interconnection Matrices.

I The self-derouting algorithm: it permits to release all routing resources used to in-
terconnect cells or components. This process can be executed for a single cell or a entire
component. For this purpose, the Release Process is implemented. This process releases the
routing resources (multiplexers) used for an interconnection between cells.

I Self-configuration: The elimination of a single cell and the deletion of a entire component
are processes used by the runtime self-configuration capabilities included in the system: (1) the
Static Fault Tolerance mechanism is able to execute the self-replication and self-elimination of
cells, and, (2) the dynamic reconfiguration by means of subprocess can execute the creation,
connection and deletion of components, among others.

99

7.2. FUTURE WORK

7.1.3 About Integrated Development System

The proposed hardware architecture has been implemented and tested in a hardware prototype
developed in VHDL for two chips (boards with Virtex 4 Xilinx FPGAs). Additionally, an Inte-
grated Development Environment has been developed. This software tool called SANE Project
Developer (SPD) permits the implementation of general purpose applications that include all
capabilities presented along the document.

The hardware and software tools constitute the Integrated Development System, which
permits to create projects that implement the self-adaptive and parallel processing capabilities
presented in this dissertation. The following are some features supported by the system:

I The high-level configuration file for the description of a SANE ASSEMBLY (SANE-ASM)
has been defined as the SANE Assembler (SASM) file.

I The SASM file is composed of a sequence of SASM instructions that describe the configuration
of the SANE-ASM. The syntax and instruction format for all SASM instructions have been
presented. There are 25 instructions that permit the execution of the following processes:

• Create, delete and interconnect components.
• Write the Functional Unit (FU) memory of cells, including the Configuration registers.
• Restart, disable or enable the processors in system.
• Configuration of system in a special state called wait, which permits the execution of runtime

self-configuration processes in system.
• Execution of one to four subprocesses, which provides the system with dynamic reconfigu-

ration capabilities.
• Configuration of Static Fault Tolerance mechanism, which provides the system with self-

healing capability.
• Instruction to denote the end of the SASM configuration file.

Two application examples have been presented. These applications has been selected because
they include all self-adaptive, parallel processing and fault tolerance capabilities developed for
the architecture.

I The first is the Dynamic Fault Tolerance Scaling Technique, which permits to check the
dynamic reconfiguration of the system by means of subprocesses. This application is able to
improve autonomously its fault tolerance features based on its current workload. Therefore,
depending on a specific condition in the functional section of an application, the system
dynamically either creates or kills one or two copies of its functional section. The fault
tolerance subsystem compares the redundant copies of the functional section, if they exist, so
as to decide the continuity of the system depending on eventual failures in the comparison.

I The other mechanism of fault tolerance is a dedicated or Static Fault Tolerance mechanism. It
provides redundant processing capabilities that are working continuously. In the application
example, when a failure in the execution of a binary sequence in the Primary or Redundant
processors is detected, the processors in Primary cell are stopped and the self-elimination
and self-replication processes start for the cells involved in the failure. These cells will be
self-discarded for future self-placement processes.

7.2 Future Work

Some research topics that can be studied in the future are discussed as follows:

100

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

I Integration or development of a new high-level programming paradigm that permits the
development of complex application with the features of the architecture presented in this
dissertation. The purpose of this is obtaining the maximum performance of the architecture.
References [29] [30] [31] [32] present relevant information about this point.

I A software model for self-adaptive architectures has been developed for the AETHER project [30].
The SANE Virtual Processor (SVP) is a thread-based model of concurrent program compo-
sition as a basis for designing and programming many-core chips. The model is based in
microthreads, which are small code fragments that can be run concurrently to gain increased
performance in the proposed self-adaptive hardware architecture. As mentioned previously, the
integration of a new high-level software model like this and the proposed hardware architecture
constitutes an important advance for the development of complex applications.

I Depending of the programming paradigm exposed in the previous items, it must be considered
the implementation of a C compiler, which involves the creation of a back-end for the Functional
Units processors in the cell.

I Implementation of a larger array of elements in both scenarios: chips and cell. If a prototype
with more cells is implemented inside a chip, the architecture and self-adaptive algorithm
should not be modified unless mew capabilities will be implemented. If more than two chips
are included in a prototype, some negotiation processes must be redesigned to achieve the
negotiation between chips, which is mainly used for interconnection of components in different
chips.

I If a larger array of clusters inside a chip is achieved, the interface between chips currently
implemented with Pin Interconnections Matrices must be redefined. Similarly, an external
interface must be defined for chips, with the purpose of implementing general purpose ap-
plications that control external devices, or in general terms that permit to communicate the
system with another digital device.

101

Appendix A

Instructions Set for Functional Unit
Processors

The integrity of men is to be measured by their
conduct, not by their professions.

La integridad del hombre se mide por su
conducta, no por sus profesiones.

Décimo Junio Juvenal (60 – 128)

Abstract: This section shows all relevant information related with the instruction set for

Functional Unit processor(s). The instructions are summarized in a table and described in

alphabetical order for easy reference.

A.1 Instructions Format

Each instruction is a 25-bit word divided into an opcode and operands. The opcode represents
the unique identifier of the instruction. The remaining bits of the instructions represents the
operands that specifies the operation of the instruction. The instruction formats are presented
in Figure A.1, while their fields are summarized in Table A.1.

The FU instruction formats are divided in the next categories:

I Operations with literal and registers: W and F represent data memory registers and
’k’ represents a 8-bit literal or constant value. For processors with data length greater than
8 bits, the other bits of ’k’ must be assumed as 0’s. The destination selector ’d’ is useful to
assign a byte in a specific position of the entire word without modifying the other bytes, e.g.,
a 32-bit constant value could be assigned using four instructions MOVLF.

I Operations with three registers: W and Y represent data source resisters, while F repre-
sents the operation destination register. It is important to note that there is not restriction
in the use of source and destination registers i.e. the source and destination registers could
be the same, any combination is possible.

I Operations with two registers: W and F represent source and destination register respec-
tively. These registers could be the same, therefore the source register could be modified in
the same operation. INP represents a register located between address 0x20 and 0x23, wich
represents different combination of input ports which depends on configuration mode and
processor used.

103

A.2. INSTRUCTIONS SET

Operations with Literal and Registers

Operations with three Registers

Operations with two Register

OPCODE k W F

OPCODE k x x x x Fd d

0561112192024

56712192024 0

OPCODE Y
0561112171824

056111824

x x x x x x
1217

1 0 0 0 P P

W F

W FOPCODE

Fx x x x x xOPCODE

Bit-oriented operations
056111824

x b b b b b
1217

0561112192024

F FOPCODE

x b b b b bWkOPCODE

Conditional/Unconditional branch operations

x x x x x x x x x x x x
01112192024

0561112192024

0561112192024

kOPCODE

YWkOPCODE

FWkOPCODE

Miscelaneous operations
0561824

x x x x x x x x x x x x
17

01824

x x x x x x x x x x x x x x x x x x
17

FOPCODE

OPCODE
056111824 1217

Figure A.1: Instructions format.

I Bit-oriented operations: F represents the register that will be affected in a set or clear
bit operation, i.e., F is the source and destination register at the same time. W represents
the source register used for a conditional branch to address k that depends on a bit value. ’b’
represents a bit field designator which selects the bit affected by the operation. Some of these
operations include conditional operations.

I Operations with conditional and unconditional branches: W and Y represent data
source resisters, these registers will not be affected during comparison operations. F represents
the operation destination register. ’k’ represents the absolute destination address for this
operations.

I Miscellaneous operations: In these operations F represents the destination register.

A.2 Instructions Set

The nomenclature shown in Table A.2 is used in the instruction descriptions throughout this
section. Table A.3 shows the assembler instructions for the FU processors. Thereafter, all in-
structions are organized alphabetically and detailed individually. Each instruction is executed
in one single clock. The oscillator frequency for processors in the prototype is 25 MHz, therefore
each instruction is executed in 40 ns.

104

APPENDIX A. INSTRUCTIONS SET FOR FUNCTIONAL UNIT PROCESSORS

Field Description

OPCODE Operation code (5 or 7 bits)

W 6-bit Source register address (0 ≤ W ≤ 63)

Y 6-bit Source register address (0 ≤ Y ≤ 63)

F 6-bit Destination register address (0 ≤ F ≤ 63)

(W) (Y) (F) Contents of W, Y and F could be 8, 16, 24 or 32 bits width, depending of
configuration mode and processor selected

k 8-bit Inmediate value (operand or literal) or
8-bit Absolute address for branch (denoted as label in assembler code)
(0 ≤ k ≤ 255)

b 5-bit Bit address (0 ≤ b ≤ 31). The two most significant bits could be omitted
depending of the processor data width (8, 16, 24 or 32 file register).

d 2-bit Destination select (0 ≤ d ≤ 3). d=X for 8-bit processors.
d=0: store result in first byte (LSB for 16, 24 or 32 bit processors)
d=1: store result in second byte (MSB for 16 bit processor)
d=2: store result in third byte (MSB for 24 bit processor)
d=3: store result in fourth byte (MSB for 32 bit processor)

P - INP 2-bit Port(s) selection. Port(s) selected depends of the processor data width.
(0 ≤ p ≤ 3)
P=0: move input ports(s) of address 0x20
P=1: move input ports(s) of address 0x21
P=2: move input ports(s) of address 0x22
P=3: move input ports(s) of address 0x23

Table A.1: Instructions field description

Operators Description

() Content of register or memory location shown inside parentheses

← Is loaded with

∧ Boolean AND

∨ Boolean OR

⊕ Boolean exclusive-OR

¬ One’s complement or Boolean NOT

⇒ Then

& Concatenate

+ Add

- Subtract (two’s complement)

<x> Bit x (or set of bits x) of memory location used in operation

<Bx> Byte x of the memory location used in operation (B0 is the least significant
byte)

: Denote a range of bits or bytes

Table A.2: Nomenclature for processor operations

105

A.2. INSTRUCTIONS SET

Mnemonic,
Operands

Description 25-bit Instruction Code
CCR

Afected

LITERAL AND REGISTERS ORIENTED OPERATIONS

ADDLW W,k,F Add Literal and W 00000 kkkkkkkk wwwwww ffffff C,Z

SUBLW W,k,F Subtract Literal and W 00001 kkkkkkkk wwwwww ffffff C,Z

ANDLW W,k,F AND Literal with W 00010 kkkkkkkk wwwwww ffffff Z

IORLW W,k,F Inclusive OR Literal with W 00011 kkkkkkkk wwwwww ffffff Z

XORLW W,k,F Exclusive OR Literal with W 00100 kkkkkkkk wwwwww ffffff Z

MOVLF k,F,d Move Literal to F 00101 kkkkkkkk xxxxdd ffffff -

THREE REGISTERS ORIENTED OPERATIONS

ADDWY W,Y,F Add W and Y 00110 00yyyyyy wwwwww ffffff C,Z

SUBWY W,Y,F Subtract W and Y 00110 01yyyyyy wwwwww ffffff C,Z

ANDWY W,Y,F AND W with Y 00110 10yyyyyy wwwwww ffffff Z

IORWY W,Y,F Inclusive OR W with Y 00110 11yyyyyy wwwwww ffffff Z

XORWY W,Y,F Exclusive OR W with Y 00111 00yyyyyy wwwwww ffffff Z

TWO REGISTER ORIENTED OPERATIONS

MOVW W,F Move W to F 00111 01xxxxxx wwwwww ffffff Z

BLMOV INP,F Blocked Move of INP to F 00111 10xxxxxx 1000pp ffffff Z

COMW W,F One’s complement of W 00111 11xxxxxx wwwwww ffffff Z

NEGW W,F Two’s complement of W 01000 00xxxxxx wwwwww ffffff C,Z

INCW W,F Increment W 01000 01xxxxxx wwwwww ffffff Z

DECW W,F Decrement W 01000 10xxxxxx wwwwww ffffff Z

SWAPW W,F Swap halves in W 01000 11xxxxxx wwwwww ffffff -

RLW W,F Rotate left through Carry 01001 00xxxxxx wwwwww ffffff C,Z

RRW W,F Rotate right through Carry 01001 01xxxxxx wwwwww ffffff C,Z

LSL W,F Logical shift left (Same as ASL) 01001 10xxxxxx wwwwww ffffff C,Z

LSR W,F Logical shift right 01001 11xxxxxx wwwwww ffffff C,Z

ASL W,F Arithmetic shift left (Same as LSL) 01001 10xxxxxx wwwwww ffffff C,Z

ASR W,F Arithmetic shift right 01010 00xxxxxx wwwwww ffffff C,Z

MISCELANEOUS OPERATIONS

CLRF F Clear F 01010 01xxxxxx xxxxxx ffffff Z

CLC Clear carry bit 01010 10xxxxxx xxxxxx xxxxxx C

SEC Set carry bit 01010 11xxxxxx xxxxxx xxxxxx C

END End of execution 01011 00xxxxxx xxxxxx xxxxxx TA

NOP No operation 01011 01xxxxxx xxxxxx xxxxxx -

BIT-ORIENTED (CONDITIONAL) OPERATIONS

BCLR F,b Clear bit b in F 01011 10-bbbbb ffffff ffffff -

BSET F,b Set bit b in F 01011 11-bbbbb ffffff ffffff -

BRCLR W,b,k Branch if bit b in W clear 01100 kkkkkkkk wwwwww -bbbbb -

BRSET W,b,k Branch if bit b in W set 01101 kkkkkkkk wwwwww -bbbbb -

CONDITIONAL AND UNCONDITIONAL BRANCH OPERATIONS

GOTO k Go to address 01110 kkkkkkkk xxxxxx xxxxxx -

BZ k Branch if Z bit set 01111 kkkkkkkk xxxxxx xxxxxx -

BNZ k Branch if Z bit clear 10000 kkkkkkkk xxxxxx xxxxxx -

BC k Branch if Carry bit set 10001 kkkkkkkk xxxxxx xxxxxx -

BNC k Branch if Carry bit clear 10010 kkkkkkkk xxxxxx xxxxxx -

CBEQ W,Y,k Compare and Branch if Equal 10011 kkkkkkkk wwwwww yyyyyy -

CBGE W,Y,k Compare and Branch if greater than 10100 kkkkkkkk wwwwww yyyyyy -

or equal to

CBGT W,Y,k Compare and Branch if greater than 10101 kkkkkkkk wwwwww yyyyyy -

CBNE W,Y,k Compare and Branch if not Equal 10110 kkkkkkkk wwwwww yyyyyy -

DBNZ W,F,k Decrement and Branch if Not Zero 10111 kkkkkkkk wwwwww ffffff -

IBNZ W,F,k Increment and Branch if Not Zero 11000 kkkkkkkk wwwwww ffffff -

Table A.3: Instructions set summary
106

APPENDIX A. INSTRUCTIONS SET FOR FUNCTIONAL UNIT PROCESSORS

ADDLW Add Literal and register W

Syntax: ADDLW W,k,F

Operation: (F) ← (W) + k

Description: The contents of the register W are added to the eight-bit literal ’k’ and the
result is placed in the register F. For modes of 16, 24 and 32 bits, the most
significant bits of ’k’ must be assumed as 0’s.

ADDWY Add registers W and Y

Syntax: ADDWY W,Y,F

Operation: (F) ← (W) + (Y)

Description: The contents of the register W are added to the contents of register Y and the
result is placed in the register F.

ANDLW AND Literal with register W

Syntax: ANDLW W,k,F

Operation: (F) ← (W) ∧ k

Description: Performs the logical AND between the contents of register W and literal ’k’
and places the result in register F. For modes of 16, 24 and 32 bits, the most
significant bits of ’k’ must be assumed as 0’s.

ANDWY AND register W with register Y

Syntax: ANDWY W,Y,F

Operation: (F) ← (W) ∧ (Y)

Description: Performs the logical AND between the contents of register W and register Y
and places the result in register F.

ASL Arithmetic shift left

Syntax: ASL W,F

Operation: 8-bit: C ← (W)<7>, (F) ← (W)<6:0> & 0
16-bit: C ← (W)<15>, (F) ← (W)<14:0> & 0
24-bit: C ← (W)<23>, (F) ← (W)<22:0> & 0
32-bit: C ← (W)<31>, (F) ← (W)<30:0> & 0

Description: The contents of register W are shifted one bit to the left, bit 0 is loaded with a
0, the result in placed in register F. The C bit in the CCR is loaded from the
most significant bit of W. This is mathematically equivalent to multiplication
by two.

ASR Arithmetic shift right

Syntax: ASR W,F

Operation: 8-bit: (F) ← (W)<7> & (W)<7:1>, C ← (W)<0>
16-bit: (F) ← (W)<15> & (W)<15:1>, C ← (W)<0>
24-bit: (F) ← (W)<23> & (W)<23:1>, C ← (W)<0>
32-bit: (F) ← (W)<31> & (W)<31:1>, C ← (W)<0>

Description: The contents of register W are shifted one bit to the right, most significant bit
held constant, the result in placed in register F. The C bit in the CCR is loaded
from bit 0 of W. This operation effectively divides a signed value by 2 without
changing its sign. The carry bit can be used to round the result.

107

A.2. INSTRUCTIONS SET

BC Branch if Carry bit set

Syntax: BC k

Operation: if (C) = 1 ⇒ PC ← k

Description: Tests the state of the C bit in the CCR and causes a branch if C is set. BC can
be used after any instructions that affect the C bit in register CCR.

BCLR Clear bit b in F

Syntax: BCLR F,b

Operation: (F) ← 0

Description: Bit ’b’ in register F is cleared. Bits b<2:0> are used for 8-bit processors. Bits
b<3:0> are used for 16-bit processors. All bits of b are used for 24-bit and
32-bit processors. If the value used in ’b’ is out of appropriate range of values
for 8, 16 and 24 bit processors, the result might not be as expected.

BLMOV Blocked Move of INP to F

Syntax: BLMOV INP,F

Operation: if (RE) = 1 ⇒ (F) ← (0x20 + INP), (PC)++
else ⇒ (PC) ← (PC)

Description: Moves INP to register F when Read Enable pulse(s) is(are) active. INP=[0,1,2,3]
represents any address between 0x20 and 0x23 respectively, each address can
contain one or more input ports, depending on the data processing width. RE
is set during a clock pulse when a processor writes any output port(s) (address
0x24 to 0x27). Examples:
8-bit: for INP=3, (F)←(0x23) when RE pulse at IN3; for INP ∈ [0,1,2,3]
16-bit: for INP=1, (F)←(0x21) when RE pulses at IN2 IN3; for INP ∈ [0,1]
24-bit: for INP=0, (F)←(0x20) when RE pulses at IN0 IN1 IN2; INP ∈ [0]
32-bit: for INP=0, (F)←(0x20) when RE pulses at IN0 IN1 IN2 IN3; INP∈[0]

BNC Branch if Carry bit clear

Syntax: BNC k

Operation: if (C) = 0 ⇒ PC ← k

Description: Tests the state of the C bit in the CCR and causes a branch if C is clear. BC
can be used after any instructions that affects the C bit in register CCR.

BNZ Branch if Z bit clear

Syntax: BNZ k

Operation: if (Z) = 0 ⇒ PC ← k

Description: Tests the state of the Z bit in the CCR and causes a branch if Z is clear. BZ
can be used after any instructions that affects the Z bit in register CCR.

BRCLR Branch if bit b in W clear

Syntax: BRCLR W,b,k

Operation: if (W) = 0 ⇒ PC ← k

Description: Test bit n of register W and branches if the bit is clear. Bits b<2:0> are used
for 8-bit processors. Bits b<3:0> are used for 16-bit processors. All bits of
b are used for 24-bit and 32-bit processors. If the value used in ’b’ is out of
appropriate range of values for 8, 16 and 24 bit processors, the result might not
be as expected.

108

APPENDIX A. INSTRUCTIONS SET FOR FUNCTIONAL UNIT PROCESSORS

BRSET Branch if bit b in W set

Syntax: BRSET W,b,k

Operation: if (W) = 1 ⇒ PC ← k

Description: Test bit n of register W and branches if the bit is set. Bits b<2:0> are used
for 8-bit processors. Bits b<3:0> are used for 16-bit processors. All bits of
b are used for 24-bit and 32-bit processors. If the value used in ’b’ is out of
appropriate range of values for 8, 16 and 24 bit processors, the result might not
be as expected.

BSET Set bit b in F

Syntax: BSET F,b

Operation: (F) ← 1

Description: Bit ’b’ in register F is set. Bits b<2:0> are used for 8-bit processors. Bits
b<3:0> are used for 16-bit processors. All bits of b are used for 24-bit and
32-bit processors. If the value used in ’b’ is out of appropriate range of values
for 8, 16 and 24 bit processors, the result might not be as expected.

BZ Branch if Z bit set

Syntax: BZ k

Operation: if (Z) = 1 ⇒ PC ← k

Description: Tests the state of the Z bit in the CCR and causes a branch if Z is set. BZ can
be used after any instructions that affects the Z bit in register CCR.

CBEQ Compare and branch if equal

Syntax: CBEQ W,Y,k

Operation: if (W) = (Y) ⇒ PC ← k

Description: Compares the contents of register W against the contents of register Y and
causes a branch if the contents are equal.

CBGE Compare and branch if greater than or equal to

Syntax: CBGE W,Y,k

Operation: if (W) ≥ (Y) ⇒ PC ← k

Description: The instruction causes a branch if the contents of register W is greater than or
equal to the contents of register Y. The instruction assumes unsigned values in
the registers.

CBGT Compare and branch if greater than

Syntax: CBGT W,Y,k

Operation: if (W) > (Y) ⇒ PC ← k

Description: The instruction causes a branch if the contents of register W is greater than the
contents of register Y. The instruction suppose unsigned values in the registers.

CBNE Compare and branch if not equal

Syntax: CBNE W,Y,k

Operation: if (W) 6= (Y) ⇒ PC ← k

Description: Compares the contents of register W against the contents of register Y and
causes a branch if the contents are not equal..

109

A.2. INSTRUCTIONS SET

CLC Clear Carry bit

Syntax: CLC

Operation: C ← 0

Description: Clears the C bit in the CCR. CLC may be used to set up the C bit prior to a
shift or rotate instruction that involves the C bit. The C bit can also be used
to pass status information between subroutines.

CLRF Increment W

Syntax: CLRF F

Operation: (F) ← 0

Description: The contents of register F is cleared, the Z bit in CCR is set.

COMW One’s complement of W

Syntax: COMW W,F

Operation: (F) ← ¬(W)

Description: Performs the one’s complement of the contents of register W and places the
result in register F.

DBNZ Decrement and branch if not Zero

Syntax: DBNZ W,F,k

Operation: (F) ← (W) - 1, if (Z) = 0 ⇒ PC ← k

Description: The contents of register W is decremented, the result in placed in register F.
The instruction causes a branch if the result is not 0.

DECW Decrement W

Syntax: DECW W,F

Operation: (F) ← (W) - 1

Description: The contents of register W is decremented, the result in placed in register F.

END End of execution

Syntax: END

Operation: PC ← PC, TA ← 0

Description: Ends the execution of instructions by the processor. Clears the TA bit in the
CCR.

GOTO Go to address

Syntax: GOTO k

Operation: PC ← k

Description: GOTO is an unconditional branch. The 8-bit immediate value is loaded into
PC bits.

IBNZ Increment and branch if not Zero

Syntax: IBNZ W,F,k

Operation: (F) ← (W) + 1, if (Z) = 0 ⇒ PC ← k

Description: The contents of register W is incremented, the result in placed in register F.
The instruction causes a branch if the result is not 0.

110

APPENDIX A. INSTRUCTIONS SET FOR FUNCTIONAL UNIT PROCESSORS

INCW Increment W

Syntax: INCW W,F

Operation: (F) ← (W) + 1

Description: The contents of register W is incremented, the result in placed in register F.

IORLW Inclusive OR Literal with register W

Syntax: IORLW W,k,F

Operation: (F) ← (W) ∨ k

Description: Performs the logical inclusive-OR between the contents of register W and literal
’k’ and places the result in register F. For modes of 16, 24 and 32 bits, the most
significant bits of ’k’ must be assumed as 0’s.

IORWY Inclusive OR register W with register Y

Syntax: IORWY W,Y,F

Operation: (F) ← (W) ∨ (Y)

Description: Performs the logical inclusive-OR between the contents of register W and register
Y and places the result in register F.

LSL Logical shift left

Syntax: LSL W,F

Operation: 8-bit: C ← (W)<7>, (F) ← (W)<6:0> & 0
16-bit: C ← (W)<15>, (F) ← (W)<14:0> & 0
24-bit: C ← (W)<23>, (F) ← (W)<22:0> & 0
32-bit: C ← (W)<31>, (F) ← (W)<30:0> & 0

Description: The contents of register W are shifted one bit to the left, bit 0 is loaded with a
0, the result in placed in register F. The C bit in the CCR is loaded from the
most significant bit of W.

LSR Logical shift right

Syntax: LSR W,F

Operation: 8-bit: (F) ← 0 & (W)<7:1>, C ← (W)<0>
16-bit: (F) ← 0 & (W)<15:1>, C ← (W)<0>
24-bit: (F) ← 0 & (W)<23:1>, C ← (W)<0>
32-bit: (F) ← 0 & (W)<31:1>, C ← (W)<0>

Description: The contents of register W are shifted one bit to the right, most significant bit
is loaded with a 0, the result in placed in register F. The C bit in the CCR is
loaded from the bit 0 of W.

MOVLF Move Literal to F

Syntax: MOVLF k,F,d

Operation: (F)<d> ← k

Description: Moves the literal ’k’ to any byte of register F, depending of destination ’d’.
8-bit: (F)←k for any value of ’d’.
16-bit: for d=1, (F)<B1 >←k, (F)<B0>←(F)<B0>. If d6=[0,1], (F)←(F).
24-bit: for d=2, (F)<B2>←k, (F)<B1:B0>←(F)<B1:B0>. If d6=[0,1,2], F←F.
32-bit: for d=3, (F)<B3>←k, (F)<B2:B0>←(F)<B2:B0>

111

A.2. INSTRUCTIONS SET

MOVW Move W to F

Syntax: MOVW W,F

Operation: (F) ← (W)

Description: Moves the contents of register W to register F.

NEGW Two’s complement of W

Syntax: NEGW W,F

Operation: (F) ← ¬(W) + 1

Description: Performs the two’s complement of the contents of register W and places the
result in register F.

NOP No operation

Syntax: NOP

Operation: None (PC ← PC + 1)

Description: This is an instruction that does nothing except to consume one CPU clock cycle
while the program counter is advanced to the next instruction. No register or
memory contents are affected by this instruction.

RLW Rotate Left through Carry

Syntax: RLW W,F

Operation: 8-bit: C ← (W)<7>, (F) ← (W)<6:0> & C
16-bit: C ← (W)<15>, (F) ← (W)<14:0> & C
24-bit: C ← (W)<23>, (F) ← (W)<22:0> & C
32-bit: C ← (W)<31>, (F) ← (W)<30:0> & C

Description: The contents of register W are rotated one bit to the left through the Carry,
the result in placed in register F.

RRW Rotate Right through Carry

Syntax: RRW W,F

Operation: 8-bit: (F) ← C & (W)<7:1>, C ← (W)<0>
16-bit: (F) ← C & (W)<15:1>, C ← (W)<0>
24-bit: (F) ← C & (W)<23:1>, C ← (W)<0>
32-bit: (F) ← C & (W)<31:1>, C ← (W)<0>

Description: The contents of register W are rotated one bit to the right through the Carry,
the result in placed in register F.

SEC Set Carry bit

Syntax: SEC

Operation: C ← 1

Description: Clears the C bit in the CCR. CLC may be used to set up the C bit prior to a
shift or rotate instruction that involves the C bit. The C bit can also be used
to pass status information between subroutines.

SUBLW Subtract Literal from register W

Syntax: SUBLW W,k,F

Operation: (F) ← (W) - k

Description: Subtracts the contents of literal ’k’ from register W and places the result in
register F (2’s complement method). For modes of 16, 24 and 32 bits, the most
significant bits of ’k’ must be assumed as 0’s.

112

APPENDIX A. INSTRUCTIONS SET FOR FUNCTIONAL UNIT PROCESSORS

SUBWY Subtracts registers W and Y

Syntax: SUBWY W,Y,F

Operation: (F) ← (W) - (Y)

Description: Subtracts the contents of register Y from register W and places the result in
register F (2’s complement method).

SWAPW Swap halves of W

Syntax: SWAPW W,F

Operation: 8-bit: (F)<7:4> ← (W)<3:0>, (F)<3:0> ← (W)<7:4>
16-bit: (F)<15:8> ← (W)<7:0>, (F)<7:0> ← (W)<15:8>
24-bit: (F)<23:12> ← (W)<11:0>, (F)<11:0> ← (W)<23:12>
32-bit: (F)<31:16> ← (W)<15:0>, (F)<15:0> ← (W)<31:16>

Description: Swaps upper and lower halves of the contents of register W, the result in placed
in register F.

XORLW Exclusive OR Literal with register W

Syntax: XORLW W,k,F

Operation: (F) ← (W) ⊕ k

Description: Performs the logical exclusive-OR between the contents of register W and literal
’k’ and places the result in register F. For modes of 16, 24 and 32 bits, the most
significant bits of ’k’ must be assumed as 0’s.

XORWY Exclusive OR register W with register Y

Syntax: XORWY W,Y,F

Operation: (F) ← (W) ⊕ (Y)

Description: Performs the logical exclusive-OR between the contents of register W and
register Y and places the result in register F.

113

Appendix B

Data Memory Registers of
Functional Unit Processors

Don’t walk in front of me; I may not follow.
Don’t walk behind me; I may not lead.
Just walk beside me and be my friend.

No camines delante de mı́, puede que no te siga.
No camines detrás de mı́, puede que no te gúıe.

Camina junto a mı́ y sé mi amigo.

Albert Camus (1913 – 1960)

Abstract: This section presents a detailed description of Data Memory registers of FU

processors for all configuration modes and data sizes. The registers are shown in order

according to their address and separated by pages for easy reference.

B.1 Abbreviations

Table B.1 shows the abbreviations used for description of bit registers throughout this section.

Abbreviations

r = Readable bit w = Writable bit u = Unimplemented bit, read as 0

-n = Value at POR/R 1 = Bit is set 0 = Bit is cleared x = Bit is unknown

R = Readable byte W = Writable byte U = Unimplemented byte, read as 00h

-N=Value at POR/R 00-FFh = 8-bit value X = Byte is unknown

POR/R = Power-On Reset or manual reset with push-button.

Table B.1: Abbreviations for bits of Data Memory registers

115

B.2. INPUT PORTS REGISTERS

B.2 Input Ports Registers

The input ports registers are between addresses 20h and 23h. Its configuration is showed below.
Note that input ports in a specific address depends of the processors data size.

8-bit Processors
Input Ports - IN0, IN1, IN2 and IN3 (ADDRESS 20h, 21h, 22h and 23h)

bit 7 bit 0

INX

r-x r-x r-x r-x r-x r-x r-x r-x

bit 7:0 Value in the input port X (read only registers).
IN0 when address is 20h
IN1 when address is 21h
IN2 when address is 22h
IN3 when address is 23h

16-bit Processors
Input Ports - IN0 IN1, IN2 IN3 (ADDRESS 20h, 21h)

bit 15 bit 8 bit 7 bit 0

INX INY

R-X R-X

bit 15:0 Value in the concatenation of two 8-bits input ports INX INY(read only registers).
IN0 IN1 when address is 20h
IN2 IN3 when address is 21h
Read 0x0000 for address 22h and 23h

24-bit Processors
Input Ports - IN0 IN1 IN2 (ADDRESS 20h)

bit 23 bit 16 bit 15 bit 8 bit 7 bit 0

IN0 IN1 IN2

R-X R-X R-X

bit 23:0 Value in the concatenation of three 8-bits input ports IN0 IN1 IN2 (read only
registers). Read 0x000000 for address 21h, 22h and 23h

32-bit Processors
Input Ports - IN0 IN1 IN2 IN3 (ADDRESS 20h)

bit 31 bit 24 bit 23 bit 16 bit 15 bit 8 bit 7 bit 0

IN0 IN1 IN2 IN3

R-X R-X R-X R-X

bit 31:0 Value of the concatenation of four 8-bits input ports IN0 IN1 IN2 IN3 (read only
registers). Read 0x00000000 for address 21h, 22h and 23h

116

APPENDIX B. DATA MEMORY REGISTERS OF FUNCTIONAL UNIT PROCESSORS

B.3 Output Ports Registers

The output ports registers are between addresses 24h and 27h. Its configuration is shown below.
Note that output ports in a specific address depend on the processors data size.

It is important to note that an output port can be written only by one CORE, which depends
of the value of the PORTS register. Therefore if the PORTS register is not configured properly,
a write operation over an address related with an output port might not affect the port. Any
write operation in an output port generates a one-cycle pulse in the Read Enable (RE) bit of
the corresponding port (RE is the ninth bit of the port.)

8-bit Processors - Output Ports
OUT0, OUT1, OUT2 and OUT3 (ADDRESS 24h, 25h, 26h and 27h)

bit 7 bit 0

OUTX

w-0 w-0 w-0 w-0 w-0 w-0 w-0 w-0

bit 7:0 Value in the output port X (write only register).
OUT0 when address is 24h
OUT1 when address is 25h
OUT2 when address is 26h
OUT3 when address is 27h

16-bit Processors - Output Ports
OUT0 OUT1, OUT2 OUT3 (ADDRESS 24h, 25h)

bit 15 bit 8 bit 7 bit 0

OUTX OUTY

W-00h W-00h

bit 15:0 Value in the concatenation of two 8-bits output ports OUTX OUTY.
OUT0 OUT1 when address is 24h
OUT2 OUT3 when address is 25h
No output is modified for addresses 26h and 27h

24-bit Processors - Output Ports
OUT0 OUT1 OUT2 (ADDRESS 24h)

bit 23 bit 16 bit 15 bit 8 bit 7 bit 0

OUT0 OUT1 OUT2

W-00h W-00h W-00h

bit 23:0 Value in the concatenation of three 8-bits output ports OUT0 OUT1 OUT2 (write
only registers). No output is modified for addresses 25h, 26h and 27h.

117

B.3. OUTPUT PORTS REGISTERS

32-bit Processors - Output Ports
OUT0 OUT1 OUT2 OUT3 (ADDRESS 24h)

bit 31 bit 24 bit 23 bit 16 bit 15 bit 8 bit 7 bit 0

OUT0 OUT1 OUT2 OUT3

W-00h W-00h W-00h W-00h

bit 31:0 Value in the concatenation of four 8-bits output ports OUT0 OUT1 OUT2 OUT3
(write only registers). No output is modified for addresses 25h, 26h and 27h. PORTS
register must be set to E4h.

118

APPENDIX B. DATA MEMORY REGISTERS OF FUNCTIONAL UNIT PROCESSORS

B.4 Code Condition Register

The Code Condition Register (CCR) contains the arithmetic status of the ALU and the status
of the thread executed. The CCR register can be read by any instruction, as with any other
register.

The Z and C elements correspond to the flags that indicate when an operation is zero and
when the operation has a carry respectively. These bits indicate the results of the instruction
just executed. The Carry bit can be modified using the instructions CLC and SEC.

The bit TA (Thread Active) indicates if the execution thread has finished or not. The
instruction END is the only one able to stop the execution of the thread (TA ← 0).

For 16, 24 and 32 bit processors, the most significant bits of CCR (from the bit 8) must be
assumed as unimplemented, a read operation will return 0’s.

Condition Code Register - CCR (ADDRESS 28h)

bit 7 bit 0

- - - - - TA Z C

u-0 u-0 u-0 u-0 u-0 r-0 r-0 r-0

bit 7:3 Unimplemented.

bit 2 TA - Thread Active
1 = Thread is active.
0 = Thread not active. The END instruction is the only that can stop a thread
(TA← 0).

bit 1 Z - Zero bit
1 = The result of a logic or arithmetic operation is zero.
0 = The result of a logic or arithmetic operation is not zero.

bit 0 C - Carry bit
1 = The result of a shift, logic or arithmetic operation generates a carry bit.
0 = No carry.

119

B.5. MODE REGISTER

B.5 Mode Register

The Mode register configures the operation mode of the FU. In other words, it configures
the number of processors in the cell and specifies the configuration of the Data and Program
Memories.

The FU may have 1 to 4 processors. The FU can be configured for data processing of 8, 16,
24 and 32 bits, and the thread capacity can be for 64, 128, 192 or 256 instructions.

This register is loaded for the CµP in prototype when a new cell is inserted. For 16, 24
and 32 bit processors, the most significant bits of MODE (from the bit 8) must be assumed as
unimplemented, a read operation will return 0’s.

Mode Register - MODE (ADDRESS 29h)

bit 7 bit 0

- - - - mode

u-0 u-0 u-0 u-0 r-0 r-0 r-0 r-0

bit 7:4 Unimplemented.

bit 3:0 mode: Specifies the Configuration Mode (CM) of cores in Functional Unit.

0000 = CM 0: four processors [P0: 8x8, 64] [P1: 8x8, 64] [P2: 8x8, 64] [P3: 8x8, 64]

0001 = CM 1: three processors [P0: 16x8, 128] [P2: 8x8, 64] [P3: 8x8, 64]

0010 = CM 2: two processors [P0: 16x8, 128] [P2: 16x8, 128]

0011 = CM 3: two processors [P0: 24x8, 192] [P3: 8x8, 64]

0100 = CM 4: one processors [P0: 32x8, 256]

0101 = CM 5: three processors [P0: 8x16, 128] [P2: 8x8, 64] [P3: 8x8, 64]

0110 = CM 6: two processors [P0: 8x16, 128] [P2: 16x8, 128]

0111 = CM 7: two processors [P0: 8x16, 128] [P2: 8x16, 128]

1000 = CM 8: two processors [P0: 8x16, 192] [P2: 16x8, 64]

1001 = CM 9: one processors [P0: 16x16, 256]

1010 = CM 10: two processors [P0: 8x24, 192] [P3: 8x8, 64]

1011 = CM 11: one processors [P0: 8x32, 256]

others = Configuration mode not implemented

Note: [P0: 16x8, 64] = [Processor 0: General Purpose Registers with 16 words of 8 bits each
mapped in Data Memory, Program Memory with capacity for 64 instructions]

120

APPENDIX B. DATA MEMORY REGISTERS OF FUNCTIONAL UNIT PROCESSORS

B.6 Family Register

The Family register is reserved for future implementations. This register has been reserved for
supporting the implementation of microthreads.

This register is loaded for the CµP in prototype when a new cell is inserted.

Family Register- FAMILY (ADDRESS 2Ah)

bit 7 bit 0

FAMILY

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

bit 7:0 Family ID of thread.

121

B.7. OUTPUT PORTS CONFIGURATION REGISTER (PORTS)

B.7 Output Ports Configuration Register (PORTS)

This register configures the CORE that may perform a write operation over any output port
of the FU i.e. select the ALU of a CORE that writes the result of any operation to the OUTX
register.

For 16, 24 and 32 bit processors, the most significant bits of PORTS (from the bit 8) must
be assumed as unimplemented, a read operation will return 0’s.

The value of some PORTX field could be disabled when the FTS is enabled in the redundant
cell (see FTCSR in section B.9).

This register is loaded for the CµP in prototype when a new cell is inserted.

Output Ports Configuration Register - PORTS (ADDRESS 2Bh)

bit 7 bit 0

PORT3 PORT2 PORT1 PORT0

r-1 r-1 r-1 r-0 r-0 r-1 r-0 r-0

bit 7:6 PORT3: Sets the core that can performs write operations in the OUT3.

00 = OUT3 can be written from CORE0

01 = OUT3 can be written from CORE1

10 = OUT3 can be written from CORE2

11 = OUT3 can be written from CORE3

bit 5:4 PORT2: Sets the core that can performs write operations in the OUT2.

00 = OUT2 can be written from CORE0

01 = OUT2 can be written from CORE1

10 = OUT2 can be written from CORE2

11 = OUT2 can be written from CORE3

bit 3:2 PORT1: Sets the core that can performs write operations in the OUT1.

00 = OUT1 can be written from CORE0

01 = OUT1 can be written from CORE1

10 = OUT1 can be written from CORE2

11 = OUT1 can be written from CORE3

bit 1:0 PORT0: Sets the core that can performs write operations in the OUT0.

00 = OUT0 can be written from CORE0

01 = OUT0 can be written from CORE1

10 = OUT0 can be written from CORE2

11 = OUT0 can be written from CORE3

122

APPENDIX B. DATA MEMORY REGISTERS OF FUNCTIONAL UNIT PROCESSORS

The next are sample values for PORTS register, each value depends of configuration mode,
e.g., if MODE=00h and PORTS=E4h, the processor 0 (P0) can write any value to OUT0, P1 to
OUT1, P2 to OUT2 and P3 to OUT3. In this case, if P0 performs a write operation over OUT1,
OUT2 or OUT3, these registers will not be affected.

MODE PORTS P0 P1 P2 P3

00h E4h OUT0 OUT1 OUT2 OUT3

01h E0h OUT0, OUT1 - OUT2 OUT3

02h A0h OUT0, OUT1 - OUT2, OUT3 -

03h C0h OUT0, OUT1, OUT2 - - OUT3

04h 00h OUT0, OUT1, OUT2, OUT4 - - -

05h E4h OUT0 OUT1 - OUT2 OUT3

06h A4h OUT0 OUT1 - OUT2, OUT3 -

07h E4h OUT0 OUT1 - OUT2 OUT3 -

08h F4h OUT0 OUT1 - - OUT2, OUT3

09h 44h OUT0 OUT1, OUT2 OUT3 - - -

0Ah E4h OUT0 OUT1 OUT2 - - OUT3

0Bh E4h OUT0 OUT1 OUT2 OUT3 - -

- Denotes that the processor is unimplemented.

, Denotes output registers in different addresses.

Denotes concatenation of two or more output registers.

123

B.8. SUBPROCESS CONFIGURATION AND STATUS REGISTER (SUBPCSR)

B.8 Subprocess Configuration and Status Register (SUBPCSR)

This register controls the execution of subprocesses in the system.
For 16, 24 and 32 bit processors, the most significant bits of SUBPCSR (from the bit 8) must

be assumed as unimplemented, a read operation will return 0’s.

Subprocess Configuration and Status Register
SUBPCSR (ADDRESS 2Ch)

bit 7 bit 0

SWS ESP3 ESP2 ESP1 ESP0 SUBPID EXSP

r-0 w/r-0 w/r-0 w/r-0 w/r-0 w/r-0 w/r-0 w/r-0

bit 7 SWS - SYSTEM WAIT STATE: The SYSTEM is in wait state. The GCU of
the master chip could receive subprocess instructions. This bit is controlled by CCU.
1 = SYSTEM in wait state. This bit is set when the CCU receives a frame that
contains a command related to the state wait.
0 = SYSTEM is not in wait state. When a processor sets EXSP bit to high level or
when a cell receives any data from INET, this bit is set to zero automatically.

bit 6 ESP3 - ENDS SUBPROCESS 3: The execution of the subprocess 3 has ended.
The CCU sets this bit, but must be cleared by software.
1 = Creation of subprocess 3 end.
0 = No creation.

bit 5 ESP2 - ENDS SUBPROCESS 2: The execution of the subprocess 2 has ended.
The CCU sets this bit, but must be cleared by software.
1 = Creation of subprocess 2 end. CCU sets this bit. It must be cleared by software.
0 = No creation.

bit 4 ESP1 - ENDS SUBPROCESS 1: The execution of the subprocess 1 has ended.
The CCU sets this bit, but must be cleared by software.
1 = Creation of subprocess 1 end.
0 = No creation.

bit 3 ESP0 - ENDS SUBPROCESS 0: The execution of the subprocess 0 has ended.
The CCU sets this bit, but must be cleared by software.
1 = Creation of subprocess 0 end.
0 = No creation.

bit 2:1 SUBPID - SUBPROCESS ID: ID of the subprocess to execute.
00 = Subprocess 0.
01 = Subprocess 1.
10 = Subprocess 2.
11 = Subprocess 3.

bit 0 EXSP - EXECUTE SUBPROCESS: Executes a subprocess for a specific com-
ponent.
1 = The FU sends a command indicating to execute a subprocess of the component
to which the cell belongs.
0 =No execute.

Note: when using the instruction MOVLF for writing this register, be sure to configure appro-
priately the destination (d=0), otherwise you may modify the register value.

124

APPENDIX B. DATA MEMORY REGISTERS OF FUNCTIONAL UNIT PROCESSORS

B.9 Fault Tolerance Configuration and Status Register (FTCSR)

This register configures the Fault Tolerance System (FTS).

For 16, 24 and 32 bit processors, the most significant bits of FTCSR (from the bit 8) must
be assumed as unimplemented, a read operation will return 0’s.

This register is loaded for the CµP in prototype when a new cell is inserted.

Fault Tolerance Configuration and Status Register
FTCSR (ADDRESS 2Dh)

bit 7 bit 0

FTEF FTE - FTRC ft mode

r-0 r-0 u-0 r-0 r-0 r-0 r-0 r-0

bit 7 FTEF - FAULT TOLERANCE ERROR FLAG: The FT error flag indicates
when the FTS found an error while performing the comparison between two processors.
1 = A FT error was detected, self-elimination and self-replication processes start.
0 = no FT error.

bit 6 FTE - FAULT TOLERANCE ENABLE: Enables or disables the FTS.
1 = FTS enabled.
0 = FTS disabled.

bit 5 Unimplemented.

bit 4 FTRC - FAULT TOLERANCE REDUNDANT CELL: Indicates if the cell
is the redundant cell, this bit should be set in ft modes = 5, 6, 7 and 8. The data
bus of a core is connected to output ports directly i.e. some bits of PORTS register
are disabled, RE is set to ’1’.
1 = Redundant cell. It automatically disables the comparators of FTS for this cell.

FT mode 5: The CORE0 writes permanently the OUT0 (C0⇒OUT0).
PORT0 disabled (P0-D).

FT mode 6: C0⇒OUT0, C1⇒OUT1. [P0,P1]-D.
FT mode 7: C0⇒OUT0, C1⇒OUT1, C2⇒OUT2. [P0,P1,P2]-D.

FT mode 8: C0⇒OUT0, C1⇒OUT1, C2⇒OUT2, C3⇒OUT3. [P0,P1,P2,P3]-D.

0 = Primary cell.

bit 3:0 FT MODE: Specifies the fault tolerance configuration mode.

0000 = FT mode 0: [C0 ⇔ C1]

0001 = FT mode 1: [C0 ⇔ C1] & [C2 ⇔ C3]

0010 = FT mode 2: [C2 ⇔ C3]

0011 = FT mode 3: [C0 ⇔ C2]

0100 = FT mode 4: [C0 ⇔ C2] & [C1 ⇔ C3]

0101 = FT mode 5: [C0 ⇔ C0*]

0110 = FT mode 6: [C0 ⇔ C0*] & [C1 ⇔ C1*]

0111 = FT mode 7: [C0 ⇔ C0*] & [C1 ⇔ C1*] & [C2 ⇔ C2*]

1000 = FT mode 8: [C0 ⇔ C0*] & [C1 ⇔ C1*] & [C2 ⇔ C2*] & [C3 ⇔ C3*]

others = FT configuration mode not implemented

Note: Symbol ⇔ indicates comparison between CORES (C). *Denote a CORE in the redundant
cell. The connections must be implemented by user.

125

Appendix C

Flow Diagrams for Self-adaptive
Processes in System

Sports do not build character. They reveal it.

El deporte no construye el carácter. Lo revela.

Haywood Hale Broun (1918 – 2001)

Abstract: This chapter presents the flow diagrams of self-adaptive algorithms included in

the system. These algorithms are implemented in the Configuration Units of Cell and Switch

Matrix. The flow diagrams presented include the algorithms for self-placement, self-routing

and self-derouting processes.

Along this chapter, the labels “ inet” and “ enet” will be added to differentiate frames that
includes commands related with the Internal Network (INET) and External Network (ENET)
respectively.

C.1 Transmission and Reception in Cell

The transmission and reception processes used for the Cell Configuration Unit (CCU) are shown
in Figure C.1. The CCU implements these algorithms for the communication with the Global
Configuration Unit (GCU) thought INET. The communication protocol and interface communi-
cation are explained in detail in sections 2.11 and 2.12. These processes participate actively in
the self-routing and self-placement algorithms.

The data in frames is divided in four groups. The first group (tx control = 00) sends between
1 and 256 bytes of information, using the nBytes field for specifying the number of bytes. The
second group (tx control = 01) only sends the command, it does not send arguments. The third
group are the commands that use the acknowledge bit (tx control = 10) and the last group
(tx control = 11) use the transmission and reception to perform a comparison process of data
(8-bits).

When the CCU requires the acknowledge bit, the transmission process always sends a logic
‘1’ in the time space of the acknowledge bit, and the reception process performs simultaneously
the read and write of the acknowledge bit. It is important to note that all the cells in the array
participate in this process, but only one can write the acknowledge bit with a logic ‘0’, the cell
which address match with the address field of the frame.

It is possible that several CCUs require the comparison of a special number to take any
action, in this case the CCUs send the control bits (11), the associated command (scan . . .) and

127

C.2. SELF-PLACEMENT PROCESSES IN CCU

Stanby

yes

no

yes
tx_controlh=h00?

no

tx_controlh=h10?

Sendhbytehtx_nByteshand
1htoh256hbyteshofhdata.

tx_controlh=h01,hnoharguments

Thehrxhprocesshsets
thehacknowledgementhbit

Sendhonehbit:hlogichH1H

no

no

tx_controlh=h11?
Sendshonehbyte,hthat
correspondshtohthe
comparisonhbyte.

yes

yes

tx_starth=h1?

Startsha
transmissionhprocess

Sendhstarthcondition.
SendhHeader.

Sendhstophcondition.

Thehbitshtransmitedhcouldhbe
sethtoh1hbyhthehcomparison

processhthathishbeing
simultanouslyhexecuted

inhthehrxhprocess.

(a) TX process.

ReceiveGheaderM

Stanby

yes

no

Data

AcknowledgeGbit

Comparison
byte

yes no

TheGsourceGcellGreads
theGacknowledgeGbitM

,targetGcellF
GeneratesGthe

acknowledgmentGbitM

start
condition
detected?

yes

no

rx_controlG=GPP?
yes

no

no

stop
condition
detected?

no

no

yes

no

ReceivesGandGstoresGdata
dependingGofGtheGcommandM

Data:Gaddress_temp2GconnectionGtable2
FU_program_memories_,P2G12G22G3F2
cofigurationsGregistersGorGotherGdataM

MainlyGforGtheGcommands:
insert_first_cell2Ginsert_otherGcell2

write_program_memory_,P2G12G22G3F
andGwrite_configuration_register

ExecutionGofGthe
ComparisonGProcessM

ForGcommands:
compare_first_cell2

compare_new_cell_connections2
andGcompare_affinity_valueM

address
matches?

rx_controlG=G11?

rx_controlG=G1P?

rx_controlG=G1P?

yes

yes

(b) RX process

Figure C.1: Transmission and reception processes in Cell Configuration Unit.

the comparison byte. The reception process performs the simultaneous comparison of the data.
The winner is the cell that has the lowest comparison value, in case of a tie, the winner will be
the leftmost uppermost cell in the array.

C.2 Self-Placement Processes in CCU

C.2.1 Flow Diagram for Insertion of First Cell of a Component

Figure C.2 shows a detailed description of the algorithm implemented by cells for the insertion
process of the first cell of a component. The process is started by GCU who sends the command
insert first cell inet with the address and connection tables of the new cell as arguments. The
process ends when the GCU receives the command end first cell inet.

C.2.2 Flow Diagram for Insertion of Other Cells of a Component

The process is started by GCU who sends the command insert other cell inet with the address
and connection tables of the new cell as arguments. The flow diagram of the algorithm that
performs the self-placement of the other cells of the component (from the second) is shown in
Figure C.3.

It is important to note, that after the placement process, the self-routing process at cell level
starts. The self-placement and self-routing processes ends when the GCU receives the command
end other cell inet (Figure C.4).

128

APPENDIX C. FLOW DIAGRAMS FOR SELF-ADAPTIVE PROCESSES IN SYSTEM

Read,Command
-cmdp

busy,cell?
yes

no

Stanby

yes

Winning
cell?

Set,as,busy,cell.
Send,confirmation:

tx,command,<=,end_first_cellI
tx_byte-0:3p,<=,address.

yes

Delete,address
and

connection,tables.

Receive
new,data?

yes

no

no

The,SelfAplacement,of,the,first,cell
of,a,component,ends,succesfully.

store,adddress:,rx_byte-0:3p.
Start,a,comparison,process:

tx_control,<=,3comparison,byte3I
tx,command,<=,compare_first_cellI

tx_byte0,<=,congestion,+,busy,neighbor,cells.

Congestion,is,the
number,of,remote,ports

busy,or,not,available

yes

busy,cell?

yes
yes

If,is,not
a,busy,cellI

the,connection
tables,was

stored,by,the
rx,process.

no

no

cmd,=
compare_first

_cell?

cmd,=
insert_first_cell?

cmd,=
end_first_cell

no

no

A,stop,condition,was
received,in,rx_process. broadcast

Figure C.2: Self-placement algorithm for the insertion of the first cell of a component.

ReadxCommand
,cmdB

Stanby

busyxcell?
yes yes

cellxofxsame
component?

calculatexthexnumberxofxconnections
withxthexnewxcell:

new_cell_connections_numberyes

addressx<=
address_temp

no

Calculatexthe
manhatanxdistance
withxothersxcells.yes

no

busyxcell?
no

,StartxaxcomparisonxprocessB.
tx_controlx<=xvcomparisonxbytev.

txxcommandx<=xcompare_affinity_value.
tx_byte0:xaffinity.

Winningxcell?

Setxasxbusyxcell.
SetxasxsourcexcellxforxselfProutingxprocess.

deletexaddressxand
connectionxtable

yes

no

yes

yes

no

Ifxisxnotxaxbusy
cellkxthe

rxxprocess
storesxthe

connectionxtable.

,StartxaxcomparisonxprocessB
tx_controlx<=xvcomparisonxbytev.

txxcommandx<=xcompare_new_cell_connections
tx_byte0x<=xnew_cell_connections_number

,BroadcastxaxmessageB
txxcommandx<=xrequest_compare_affinity_value.

yes

yes

yes

EndsxsuccesfullyxthexSelfPplacementxprocessxforxthexnewxcellxofxaxcomponent.

busyxcell?
no

yes

nono

Winning
cell?

Receive
newxdata?

Checksxthexid_component
fieldxofxthexaddress

cmdx=
insert_other

_cell?

cmdx=
request_compare_

affinity_value?

cmdx=
compare_affinity

_value?

broadcast

broadcast

no

no

no

cmdx=
compare_new_cell_

connections?

Processxtoxconfigurexthexsource
andxtargetxcellskxforxroutingxallxpossible
connectionsxwithxthexnewxinsertedxcell.

Figure C.3: Self-placement algorithm for other cells of a component (from the second).

129

C.3. SELF-ROUTING PROCESSES IN CCU

C.3 Self-Routing Processes in CCU

C.3.1 Flow Diagram to select the Source and Target cells before the Expan-
sion Process at Cell Level

The algorithm presented in Figure C.4 is executed after the insertion of the remaining cells of a
component (from the second). Note that the process starts when the self-placement algorithm
presented in Figure C.3 ends.

When the source cell and target cell are ready to configure a connection, the source cell
starts the “Expansion Process at Cell Level”. For this purpose the flag Starts Cell Propagation
is used.

Read_Command
,cmdp

Stanby

yes

no

no

x_<=_x_P_W

no

Set_as_target_cell

yes

no

yes

no

Reset_as_target_cell

x_<=_Lno

yes

End_of_table?

no

Reset_as_source_cellA_tx_control_<=_DDataDA
tx_command_<=_connect_others_to_new_cell
tx_byte,LAA3p_<=_address_of_new_inserted_cell

yes

yes

If_the_address_matchesT
the_Data_Reception

process_generates_the
acknowledgement_bit

yes

Set_as_target_cell
yes

Reset_as_target_cell

no

yes
Possibles

source_cellsA

Start_the
elimination

process

yes

yes

tx_control_<=_DDataD
tx_command_<=_end_other_cellA
tx_byte,LAA3p_<=_rx_byte,LAA3pA

no

no

The_Self-placement_and
self-routing_processes
of_the_new_inserted_cell

of_a_component_was
completed_succesfully

The_new_inserted_cell
was_set_as_source_cell
for_self-routing_process

Set_as_source_cellA
x_<=_L

x_<=_x_P_W

End_of_table?

yes

no

Reset_as_source_cellA
tx_control_<=_DDataDA

tx_command_<=_connect_others_to__new_cell
tx_byte,LAA3p_<=_address_of_new_inserted_cell

yes

no

tx_control_<=_DAcknowledge_bitDA
tx_command_<=_set_target_cell_srA
tx_address_<=_output_connection,xpReceive

new_data?

cmd_=
set_target
_cell_sr?

source
cell?

cell_of_same
component?

Any_cell_has_at_least
one_connection_not-routed_with

the_new_inserted_cell?

output_connection,xp
is_with_the_new_inserted

cell?

output_connection,xp
belong_to_same

component?

acknowledge
received?

cmd_=
connect_others_to

_new_cell?

cmd_=
end_other

_cell?

no

yes

address_=
rx_address

Leftmost
uppermost

cellA

Winning
cell?

broadcast

broadcast

Process_to_configure_the_source
and_target_cellsT_for_routing_all_possible
connections_with_the_new_inserted_cellA

address_=
rx_byte,LAA3p

yes

no

no

Starts_Cell_Propagation
,Starts_the_Expansion
Process_at_Cell_Levelp

Starts_Cell_Propagation
,Starts_the_Expansion
Process_at_Cell_Levelp

Figure C.4: Configuration of source and target cell for execution of Expansion Process at Cell
Level.

130

APPENDIX C. FLOW DIAGRAMS FOR SELF-ADAPTIVE PROCESSES IN SYSTEM

C.3.2 Main Flow Diagram in CCU

Figure C.5 shows the flow diagram for the Expansion and Release processes in Cell Configuration
Unit (CCU). This is the start point for the execution of any process in system that requires
the propagation of signals using the expansion ports of cells, SMs and PIMs. It includes the
Expansion at Cell or Component level and the Release processes.

The flow diagram remains in standby state until the CCU of a cell in the array starts one of
the following process:

1. Expansion Process at Cell Level (Search Phase): this process is started by the source cell
when the signal start cell propagation is set.

2. Expansion Process at Component Level (Search Phase): this process is started by the source
cell when the signal start component propagation is set.

3. Expansion Process at Component Level (Search Phase): this process is started by the source
cell when the signal start component propagation pin is set.

4. Release Process: this process is started by the target cell when the signal start delete cell
connection is set.

The cells on the array that receive any propagation signals can execute any of the process
denoted with a box in the figure, as follows:

1. Neighbor [NORTH, EAST, SOUTH or WEST]: The process is executed when a neighbor in X
signal is received. These boxes represent the transition between the Search and Configuration
Phases of the Expansion Process at Cell Level when the target cell is reached in a neighbor
cell.

2. Propagate [NORTH, EAST, SOUTH or WEST]: The process is executed when a propagate in
X signal is received. These boxes represent the transition between the Search and Configuration
Phases of the Expansion Process at Cell Level when the target cell is reached.

3. Propagate Matrix: The process is executed when a propagate in matrix signal is received. This
box represents the transition between the Search and Configuration Phases of the Expansion
Process at Component Level when the target cell is reached.

4. Delete [NORTH, EAST, SOUTH or WEST]: The process is executed when a del connection
in X signal is received. These boxes represent a step in the Release Process at Cell Level.

5. Delete Matrix: The process is executed when a del connection in matrix signal is received.
This box represents the end of the Release Process at Component Level.

6. Expansion Process at Cell Level - Configuration Phase [NORTH, EAST, SOUTH or WEST]:
The process is executed when the cell is in lock cell state and a lock in X signal is received.
These boxes represent the Configuration Phase of the Expansion Process at Cell Level.

131

C.3. SELF-ROUTING PROCESSES IN CCU

stateR=
standby?

yes
no

EvaluateRState

startRcell
propagation?

yes

no

ExpansionRProcess
atRCellRLevel

kSearchRPhaseD

Neighbor
NORTH

Propagate
NORTH

startRcomponet
propagation?

yes

no

id_target_port_outR<=RCT_target_port;
id_source_port_outR<=RCT_source_port;

propagate_out_matrixR<=RF;

stateR<=Rlock_component

startRcomponet
propagationRpin?

yes

no

id_target_port_outR<=Rid_target_pin;
id_source_port_outR<=RCT_source_port;

propagate_out_matrixR<=RF;

stateR<=Rlock_component

startRdelete
cellRconnection?

yes

StartRRelease
Process

Delete
NORTH

Delete
EAST

Delete
SOUTH

Delete
WEST

Neighbor
EAST

Neighbor
SOUTH

Neighbor
WEST

Propagate
EAST

Propagate
SOUTH

Propagate
WEST

Propagate
MATRIX

no

stateR=
lock_cell?

yes
no

ExpansionRProcess
atRCellRLevel

kConfigurationRPhaseD
NORTH

stateR=
lock_component?

yes

no

lock_in_matrix=F? stateR<=Rset_routing_complete

stateR=
idle? yes

no

stateR<=Rstandbyrouting_complete_in=F?

yes

yes

no

no

stateR=
set_routing_complete?

yes

no

stateR<=Rstandbyrouting_complete_outR<=RF

SELF_ROUTINGRinRCCU

SetRflagRforRconnectionkxD
inROutputRConnectionRTable

stateR=
set_derouting_complete?

yes

no

stateR<=Rstandbyrouting_complete_outR<=RF

Expansion
Process

Component
Level

ReleaseRProcessI
signalRreceived:

del_connection_in_X

ExpansionRProcessRat
CellRLevelRkSearchRPhaseD

signalRreceived:
neighbor_in_X

ExpansionRProcessRat
CellRLevelRkSearchRPhaseD

signalRreceived:
propagate_in_X

ExpansionRProcess
atRCellRLevel

kConfigurationRPhaseD
EAST

ExpansionRProcess
atRCellRLevel

kConfigurationRPhaseD
SOUTH

ExpansionRProcess
atRCellRLevel

kConfigurationRPhaseD
WEST

signalRreceived:Rlock_in_X

del_connection_
in_matrix=F?

stateR<=Rset_derouting_complete

yes

no

Delete
MATRIX

Figure C.5: Main flow diagram for Expansion and Release processes in Cell Configuration Unit.

132

APPENDIX C. FLOW DIAGRAMS FOR SELF-ADAPTIVE PROCESSES IN SYSTEM

C.3.3 Expansion Process at Cell Level - Search Phase

The search phase is started by the source cell . This is an expansion process that propagates
signals in the sides of the cell that have available routing resources, like local and/or remote free
ports. The propagation process includes the configuration of signals for each side (north, east,
south and west) of the cell as shown in Figure C.6.

West

local2port
N02used?

local_port_out_N2<=20;
neighbor_out_N2<=21;

local_port_out_N2<=20;
neighbor_out_N2<=21;

no

no

yes

yes

local2port
N12used?

source2cell
flag2=21?

yes

South

local2port
N02used?

local_port_out_N2<=20;
neighbor_out_N2<=21;

local_port_out_N2<=20;
neighbor_out_N2<=21;

no

no

yes

yes

local2port
N12used?

East

local2port
N02used?

local_port_out_N2<=20;
neighbor_out_N2<=21;

local_port_out_N2<=20;
neighbor_out_N2<=21;

no

no

yes

yes

local2port
N12used?

North

local2port
N02used?

local_port_out_N2<=20;
neighbor_out_N2<=21;

local_port_out_N2<=20;
neighbor_out_N2<=21;

no

no

yes

yes

local2port
N12used?

West

remote2port
N02used?

remote_port_out_N2<=20;
propagate_out_N2<=21;

remote_port_out_N2<=21;
propagate_out_N2<=21;

no

yes

yes

remote2port
N12used?

no

yes

remote2port
N22used?

no

remote_port_out_N2<=22;
propagate_out_N2<=21;

South

remote2port
N02used?

remote_port_out_N2<=20;
propagate_out_N2<=21;

remote_port_out_N2<=21;
propagate_out_N2<=21;

no

yes

yes

remote2port
N12used?

no

yes

remote2port
N22used?

no

remote_port_out_N2<=22;
propagate_out_N2<=21;

East

remote2port
N02used?

remote_port_out_N2<=20;
propagate_out_N2<=21;

remote_port_out_N2<=21;
propagate_out_N2<=21;

no

yes

yes

remote2port
N12used?

no

yes

remote2port
N22used?

no

remote_port_out_N2<=22;
propagate_out_N2<=21;

North

remote2port
N02used?

remote_port_out_N2<=20;
propagate_out_N2<=21;

remote_port_out_N2<=21;
propagate_out_N2<=21;

no

yes

yes

remote2port
N12used?

no

yes

remote2port
N22used?

no

remote_port_out_N2<=22;
propagate_out_N2<=21;

id_target_port_out2<=2CT_target_portLxv

state2<=2lock_cell

no

Expansion2Process2at2Cell2Level2LSearch2Phasev

Figure C.6: Flow diagram for the propagation of Signals in the Search Phase of the Expansion
Process at Cell Level.

Note that propagation of neighbor out X signal is only available for source cell when local
ports are available. The source cell and the other cells that participate in the Search Phase use
the propagate out X signal when remote ports are available.

When the target cell is a neighbor cell, the Search Phase ends and the Configuration Phase
starts as shown in Figures C.7a and C.7c. Note that these figures show the case for a propagation
signal received from NORTH. Similar functionality must be assumed for EAST, SOUTH and
WEST.

When the target cell is not a neighbor cell, the propagation (C.6) is executed by each cell
that reads the propagate in X signal as shown in Figure C.7c. The priority order for propagation
signals is NORTH, EAST, SOUTH and WEST. The origin register stores the side from which
the propagation signal was received. The propagation process explores the entire cell array until
finding the target cell , if possible. The Configuration Phase starts when the Search Phase finds
the target cell .

133

C.3. SELF-ROUTING PROCESSES IN CCU

SimilarpforpEast,pSouthpandpWest

neighbor_in_N=1pand
target_cell_flag=1?

yes

lock_out_Np<=p1;
neighbor_out_Np<=p1;

local_port_out_Np<=plocal_port_in_N;

Configurepmuxpforpany
FUpinputpdependingpof:

local_port_in_Npand
id_target_port_in_N

statep<=pidle

no

Neighborp-pNORTH

(a) Propagation signal at cell level for a neighbor cell.

propagate_in_matrix=1?

yes

lock_out_matrix-<=-1;

Configure-mux-for-any
FU-input-depending-of:

mux_id_matrix-and
id_target_port_in_matrix

state-<=-idle

target_cell_flag=1?

yes
no

no

Propagate---MATRIX

(b) Propagation signal at component level.

propagate_in_N=1?

yes

lock_out_N"<="1;
remote_port_out_N"<="remote_port_in_N;

Configure"mux"for"any
FU"input"depending"of:
remote_port_in_N"and

id_target_port_in_N

state"<="idle

target_cell_flag=1?

id_target_port_out"<="id_target_port_in_N;
origin"<="RNORTHR;

Expansion"Process
at"Cell"Level

vSearch"Phase(

yes

no

no

Similar"for"East)
South"and"West

Propagate","NORTH

(c) Propagation signal at cell level.

Figure C.7: Flow diagrams for Expansion Process when propagation input signals is received in
Cell Configuration Unit.

134

APPENDIX C. FLOW DIAGRAMS FOR SELF-ADAPTIVE PROCESSES IN SYSTEM

C.3.4 Expansion Process at Cell Level - Configuration Phase

The Configuration Phase at Cell Level starts when the Search Phase finds the target cell (Fig-
ures C.7a and C.7c).

The Configuration Phase that was started by the target cell goes backward over the path
previously configured in the Search Phase until it arrives to the source cell . This process configures
the multiplexers of the corresponding cells to fix the path. The cells that participate in this
process are in the state lock cell and perform the actions described in Figure C.8 when the
signal lock in X in the corresponding side is activated. Similar functionality must be assumed
for EAST, SOUTH and WEST.

lock_in_N=1?

yes

lock_out_Ed<=d1;
remote_port_out_Ed<=dremote_port_in_E;

Configuredmuxdfor
localdportdatdnorthdusign:

CT_source_portdand
local_port_in_N

stated<=dset_routing_complete

source_cell_flag=1?

yes

no

no

SimilardfordEastH
SouthdanddWest

ExpansiondProcessdatdCelldLeveld)ConfigurationdPhase-dbdNORTH

neighbor_in_N=1?

yes

Configuredmuxdfor
remotedportdatdnorthdusign:

CT_source_portdand
remote_port_in_N

no

origin=,East,?

Configuredmuxdfor
remotedportdatdNORTHdusign:

remote_port_in_Edand
remote_port_in_N

stated<=didle

OrigindbdEAST

OrigindbdSOUTH OrigindbdWEST

yes
no

Figure C.8: Flow diagram for Configuration Phase of the Expansion Process at Cell Level.

135

C.3. SELF-ROUTING PROCESSES IN CCU

C.3.5 Release Process at Cell Level

This process releases the routing resources used for a interconnection between cells. The Release
Process goes from the target to the source of a connection.

yes

no

STARTIRELEASEIPROCESS

stateI<=Iidle;

no

SetIfree
Mux_FU_IN2

LocalIPortING

yes

no

LocalIPortIE2

LocalIPortIEG

LocalIPortIS2

LocalIPortISG

LocalIPortIW2

LocalIPortIWG

Mux_FU_IN2IisIconnected
withIlocal_port_N2?

del_connection_out_NI<=IG;
neighbor_out_NI<=IG;

local_port_OUT_NI<=I2;I[2[G]

LocalIPortIN2

Mux_FU_IN2IisIconnected
withIremote_port_N2?

del_connection_out_NI<=IG;
remote_port_OUT_NI<=I2;I[2[G[-]

RemoteIPortIN2

yes

no

RemoteIPortING

RemoteIPortIN-

RemoteIPortIE2

RemoteIPortIEG

RemoteIPortIE-

RemoteIPortIS2

RemoteIPortISG

RemoteIPortIS-

RemoteIPortIW2

RemoteIPortIWG

RemoteIPortIW-

FUITARGETIPORTI,IIN2

FUITARGETIPORTI,IING

FUITARGETIPORTI,IIN-

FUITARGETIPORTI,IIN3

FUITARGETIPORTI,IFT_IN2

FUITARGETIPORTI,IFT_ING

FUITARGETIPORTI,IFT_IN-

FUITARGETIPORTI,IFT_IN3

MatrixIMuxIYG

Mux_FU_IN2IisIconnected
withImatrix_mux_Y2?

del_connection_out_matrixI<=IG;
id_source_port_outI<=I2;I[2[G[-[3]

MatrixIMuxIY2

yes

no
MatrixIMuxIY-

MatrixIMuxIY3

FUItarget_portI=IIN2?

Figure C.9: Flow digram of the start point of Release Process at Cell and Component Level.

136

APPENDIX C. FLOW DIAGRAMS FOR SELF-ADAPTIVE PROCESSES IN SYSTEM

If the connection is at cell level, the multiplexers of FU inputs, local and remote cell ports
are released. In this case, the Release Process starts from the FU input port of the target cell
an go backwards to the FU output port of the source cell . This process reads the multiplexers
configuration and propagate the signal del connection out X in the direction where the connection
was previously established by the self-routing process.

The target cell starts the process presented in Figure C.5 when the flag start delete cell
connection is set. Then, the target cell executes the algorithm presented in Figure C.9. There-
after, each cell that receives the signal del connection in X executes the algorithm presented in
Figure C.10 until it finds the source cell , which goes to the state set derouting complete and the
process ends.

EvaluatebRemotebNORTHb:

EvaluatebRemotebNORTHbL

del_connection_in_N=L?

yes

stateb<=bset_derouting_complete

neighbor_in_N=L?

no
SimilarbforbNFUbNLbandbN:

DeletebIbNORTH

remote_port_in_N=F?

no

yes

remote_port_in_N=L? remote_port_in_N=:?

yes yes yes

no no

stateb<=bERROR

SimilarbforbEastUbSouthbandbWest

no

Mux_Remote_NF
connectedbtoba

remotebportbatbEAST? yes

Setbremote_port_out_E;
del_connection_out_Eb<=bL;

Mux_Remote_NF
connectedbtoba

remotebportbatbSOUTH?

Setbremote_port_out_S;
del_connection_out_Sb<=bL;

Setbfree
Mux_Remote_NF

Mux_Remote_NF
connectedbtoba

remotebportbatbWEST?

Setbremote_port_out_W;
del_connection_out_Wb<=bL;

stateb<=bidle

stateb<=bset_derouting_complete

yes

yes

EvaluatebRemotebNORTHbF

no

no

no

Itbisbthebsourcebcell.
Mux_Remote_NF

wasbconnected
tobabFUbOUTbport

local_port_in_N=F?

Setbfree
Mux_Local_NF

Setbfree
Mux_Local_NL

yes

no

Itbisbthebsourcebcell.
Setbfreebmuxbfor

localbportbat
NORTHbusign:
local_port_in_N

Figure C.10: Flow digram of Release Process at Cell Level.

137

C.4. SELF-ROUTING PROCESSES IN SMCU

C.4 Self-Routing Processes in SMCU

When the Expansion or Release processes are at component level, the propagation of signals
is made between cells and SMs. Note that the process must be started and finalized by cells
(Figure C.5) that propagate signals to the SM that belongs to the cluster, which in turn propagates
signals to the SMs of neighboring clusters until it finds the destination cell of a process.

Figure C.11 shows the flow diagram for the Expansion and Release processes in Switch
Matrix Configuration Unit (SMCU). It includes the Expansion at Cell or Component level and
the Release processes.

stateO=
standby?

yes
no

EvaluateOState
Propagate

CELLOA

Delete
CELLOA

Delete
CELLOB

Delete
CELLOC

Delete
CELLOI

Propagate
CELLOB

Propagate
CELLOC

PropagateOMatrix
NORTH

stateO=
lock_component?

yes

no

ExpansionOProcess
atOComponentOLevel

(ConfigurationOPhasef
CELLOA

stateO=
idle? yes

no

stateO<=Ostandbyrouting_complete_in=.?

yes

no

SELF_ROUTINGOinOSMCU

ReleaseOProcessF
signalOreceived:

del_connection_in_cell_X
orOdell_connection_in_X

ExpansionOProcessOat
ComponentOLevel
(SearchOPhasef
signalsOreceived:

propagate_in_cell_X
orOpropagate_in_X

ExpansionOProcess
atOComponentlOLevel

(ConfigurationOPhasef
CELLOB

ExpansionOProcess
atOComponentlOLevel

(ConfigurationOPhasef
CELLOC

ExpansionOProcess
atOComponentlOLevel

(ConfigurationOPhasef
CELLOI

signalOreceived:Olock_in_cell_X

Propagate
CELLOI

PropagateOMatrix
NORTHEAST

PropagateOMatrix
EAST

PropagateOMatrix
NORTHWEST

DeleteOMatrix
NORTH

DeleteOMatrix
NORTHEAST

DeleteOMatrix
EAST

DeleteOMatrix
NORTHWEST

ExpansionOProcess
atOComponentOLevel

(ConfigurationOPhasef
NORTH

ExpansionOProcess
atOComponentlOLevel

(ConfigurationOPhasef
NORTHEAST

ExpansionOProcess
atOComponentOLevel

(ConfigurationOPhasef
EAST

ExpansionOProcess
atOComponentOLevel

(ConfigurationOPhasef
NORTWEST

signalOreceived:Olock_in_X

Figure C.11: Main flow diagram for Expansion and Release processes in Switch Matrix Configu-
ration Unit.

The SMCU remains in standby state until the CCU of a cell in the array starts one of the
following process:

1. Expansion Process at Component Level: this process is started by the source cell when the
signal start component propagation is set.

2. Expansion Process at Component Level: this process is started by the source cell when the
signal start component propagation pin is set.

138

APPENDIX C. FLOW DIAGRAMS FOR SELF-ADAPTIVE PROCESSES IN SYSTEM

3. Release Process at Component Level: this process is started by the target cell when the signal
start delete cell connection is set.

The SM that receives any propagation signals can execute any of the process denoted with a
box in the figure, as follows:

1. Propagate CELL [A, B, C, D, E, F, G, H or I]: The process is executed when a propagate in
cell X signal is received. These processes correspond with the Search Phase of the Expansion
Process at Component Level.

2. Propagate Matrix [NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST,
WEST or NORTHWEST]: The process is executed when a propagate in X signal is received.
These processes correspond with the Search Phase of the Expansion Process at Component
Level.

3. Delete Cell [A, B, C, D, E, F, G, H or I]: The process is executed when a del connection
in cell X signal is received. These boxes correspond with the Release Process at component
level.

4. Delete Matrix [NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST
or NORTHWEST]: The process is executed when a del connection in X signal is received.
These boxes correspond with the Release Process at component level.

5. Expansion Process at Component Level - Configuration Phase [A, B, C, D, E, F, G, H or I]:
The process is executed when the SM is in lock component state and a lock in cell X signal
is received.

6. Expansion Process at Component Level - Configuration Phase [NORTH, NORTHEAST,
EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST or NORTHWEST]: The process is
executed when the SM is in lock component state and a lock in X signal is received.

C.4.1 Expansion Process at Component Level - Search Phase

The search phase is started by the source cell (Figure C.5) with the signal propagate out matrix.
The source cell goes to the lock component state waiting for the Configuration Phase. The
process continues at component level when the SM reads the signal propagate in cell X as shown
in Figure C.12a, then the SM propagate signals until it finds the target cell . If the target cell is
not in the same cluster, the SM continues the Search Phase when it receives the propagation
signal propagate in X as shown in Figure C.12b. Note that these figures show the case for a
propagation signal received from Cell A and SM at NORTH. Similar functionality must be
assumed for other cells and other sides of SM.

The expansion process propagates signals in the sides of the SM that has available routing
resources. The propagation process includes the configuration of signals for each side (north,
northeast, east, southeast, south, southwest, west and northwest) of the SM and for each cell of
the cluster (Cell A, Cell B, . . . Cell I) as shown in Figure C.13.

The priority order for propagation signals is NORTH, NORTEAST, EAST, SOUTHEAST,
SOUTH, SOUTHWEST, WEST and NORTHWEST. The origin cell and origin matrix register
stores the cell or the side from which the propagation signal was received. The propagation
process explores the entire cell array until finding the target cell , if possible. The Configuration
Phase starts when the Search Phase finds the target cell .

139

C.4. SELF-ROUTING PROCESSES IN SMCU

propagate_in_cell_A=1?

yes

id_target_port_out(<=(id_target_port_in_cell_A;
origin_cell(<=(hCELL(Ah;

Expansion(Process
at(Componet(Level

FSearch(PhaseG

no

Similar(for(Cells(B-(C-(D-(E-(F-(G-(H(and(I

Propagate(-(CELL(A

(a) Propagation signal from a Cell.

propagate_in_N=1?

yes

id_target_port_outC<=Cid_target_port_in_N;
origin_matrixC<=CvNORTHv;

ExpansionCProcess
atCComponetCLevel

fSearchCPhaseA

no

SimilarCforCConnectionCatCNORTEASTWCEASTWCSOUTHEAST
SOUTHWCSOUTHWESTWCWESTCandCNORTHWEST

PropagateCMatrixCNORTH

(b) Propagation signal from a Switch Matrix.

Figure C.12: Flow diagrams for propagation input signals at component level in Switch Matrix
Configuration Unit.

CELLnI

CELLnH

CELLnG

CELLnF

CELLnE

CELLnD

CELLnC

CELLnB

NORTHWEST

WEST

SOUTHWEST

SOUTH

SOUTHEAST

EAST

NORTHEAST

staten<=nlock_component

no

ExpansionnProcessnatnComponentnLeveln)SearchnPhaseM

CELLnA

MuxnA1
used?

mux_id_cell_An<=n1;
propagate_out_cell_An<=ny;

no
yes

MuxnAy
used?

mux_id_cell_An<=ny;
propagate_out_cell_An<=ny;

no
yes

MuxnA2
used?

mux_id_cell_An<=n2;
propagate_out_cell_An<=ny;

no
yes

MuxnA3
used?

mux_id_cell_An<=n3;
propagate_out_cell_An<=ny;

no
yes

NORTH

matrixnport
N1nused?

matrix_port_out_Nn<=n1;
propagate_out_Nn<=ny;

rmatrix_port_out_Nn<=ny;
propagate_out_Nn<=ny;

no

yes

yes

matrixnport
Nynused?

no

yes

matrixnport
N2nused?

no

matrix_port_out_Nn<=n2;
propagate_out_Nn<=ny;

Figure C.13: Flow diagram for the propagation of Signals in the Search Phase of the Expansion
Process at Component Level.

140

APPENDIX C. FLOW DIAGRAMS FOR SELF-ADAPTIVE PROCESSES IN SYSTEM

C.4.2 Expansion Process at Component Level - Configuration Phase

The Configuration Phase at Component Level starts when the Search Phase finds the target cell
(Figure C.5), in the process denoted as Propagate Matrix (Figure C.7b), then the multiplexer of
the appropriate FU input port is configured (FU target port).

The Configuration Phase that was started by the target cell goes backward over the path
previously configured in the Search Phase until it arrives to the source cell . This process configures
the multiplexers of the corresponding SMs to fix the path.

lock_in_cell_A=G?

yes

lock_out_cell_BL<=LG;

no

SimilarLforLCellLBLtoLCellLI

ExpansionLProcessLatLComponentLLevelLMConfigurationLPhaseXL:LCELLLA

origin_cell=(CellLB(?

ConfigureLMux_AXLforLconnection
betweenLCellLALandLBLusign:

id_source_port_in_BLand
mux_id_cell_A;

stateL<=Lidle

OriginL:LCellLB

yes

no

OriginL:LCellLC

OriginL:LCellLD

OriginL:LCellLE

OriginL:LCellLF

OriginL:LCellLG

OriginL:LCellLH

OriginL:LCellLI

OriginLinLCluster

originLisLfromLSMLport?

RegisterLorigin_cell
inLvalueLFxF

isLusedLasLflag

matrix_port_out_NL<=Lmatrix_port_in_N
lock_out_NL<=LG;

origin_matrix=(NORTH(?

ConfigureLMux_AXLforLconnection
betweenLCellLALand

SMLportLatLNORTHLusign:
matrix_port_in_NLand

mux_id_cell_A;

OriginL:LNORTH

yes

no

OriginLisLnotLinLCluster

yes

no

OriginL:LNORTHEAST

OriginL:LEAST

OriginL:LSOUTHEAST

OriginL:LSOUTH

OriginL:LSOUTHWEST

OriginL:LWEST

OriginL:LNORTHWEST

Figure C.14: Flow diagram for Configuration Phase of the Expansion Process at Component
Level when the lock in signal comes from a Cell.

141

C.4. SELF-ROUTING PROCESSES IN SMCU

The process continues as follows:

1. The target cell sets the signal lock out matrix. Therefore, the SM that receives the signal
lock in cell X performs the action described in Figure C.14. Similar functionality must be
assumed for other cells in cluster. If the source cell belongs to the same cluster the process
ends, otherwise the process continues in step 2.

2. The SMs that participate in this process are in the state lock component. The SMs in this state
perform the actions described in Figure C.15 when the signal lock in X in the corresponding
side is activated. Similar functionality must be assumed for other sides of SM. This process
is repeated until it finds the source cell , which ends the process by setting the global signal
routing complete.

lock_in_N=G?

yes

lock_out_cell_AE<=EG;

no

SimilarEforESMEportsENORTHEAST:EEAST:ESOUTHEAST:ESOUTH:ESOUTHWEST:EWEST:ENORTHWEST

origin_cell=UCellEAU?

ConfigureEMux_NFEforEconnection
betweenESMEportEatENORTH

andEcellEAEusign:
id_source_port_in_AEand

matrix_port_in_N;

stateE<=Eidle

OriginE-ECellEA

yes

no

OriginE-ECellEB

OriginE-ECellEC

OriginE-ECellED

OriginE-ECellEE

OriginE-ECellEF

OriginE-ECellEG

OriginE-ECellEH

OriginEinECluster

originEisEfromESMEport?

RegisterEorigin_cell
inEvalueEFxF

isEusedEasEflag

matrix_port_out_NEE<=Ematrix_port_in_NE
lock_out_NEE<=EG;

origin_matrix=
UNORTHEASTU?

ConfigureEMux_NFEforEconnection
betweenESMEportEatENORTHEand
SMEportEatENORTHEASTEusign:

matrix_port_in_NEEand
matrix_port_in_N;

OriginE-ENORTHEAST

yes

no

OriginEisEnotEinECluster

yes

no

OriginE-EEAST

OriginE-ESOUTHEAST

OriginE-ESOUTH

OriginE-ESOUTHWEST

OriginE-EWEST

OriginE-ENORTHWEST

ExpansionEProcessEatEComponentELevelE0ConfigurationEPhasebENORTH

OriginE-ECellEI

Figure C.15: Flow diagram for Configuration Phase of the Expansion Process at Component
Level when the lock in signal comes from a Switch Matrix.

142

APPENDIX C. FLOW DIAGRAMS FOR SELF-ADAPTIVE PROCESSES IN SYSTEM

C.4.3 Release Process at Component Level

This process releases the routing resources used for a interconnection between cells, or between
a cell and a PIM. The Release Process goes from the target to the source of a connection.

If the connection is at component level, the multiplexers of FU inputs and SM ports are
released. In this case, the Release Process starts from the FU input port of the target cell
an go backwards at component level to the FU output port of the source cell . This process
reads the multiplexers configuration and propagate the signals del connection out cell X and
del connection out X in the direction where the connection was previously established by self-
routing process.

del_connection_in_cell_A=1?

yes

no

Delete020CELL0A

Similar0for0Cell0B0to0Cell0I

Mux_A0
connected0to0matrix

port0at0NORTH? yes

Set0matrix_port_out_N;
del_connection_out_N0<=01;

Set0matrix_port_out_NW;
del_connection_out_NW0<=01;

del_connection_out_Cell_B0<=01;

state0<=0idle;
Set0Free0Mux0A0;

yes

yes

Evaluate0Mux0A0

no

no

no

Mux_A0
connected0to0matrix

port0at0NORTHWEST?

no

yes

id_source_port_in_A=0?

FU_IN00is0connected
to0mux_A0?

Mux_A0
connected0to0Cell0B?

del_connection_out_Cell_I0<=01;

yes

no

Mux_A0
connected0to0Cell0I?

All0ports

Cell0B0to0Cell0I

Evaluate0Mux0A1

Evaluate0Mux0A2

Evaluate0Mux0A3

Figure C.16: Flow digram of Release Process at Component Level when del connection signal
comes from a cell.

143

C.4. SELF-ROUTING PROCESSES IN SMCU

The target cell starts the process presented in Figure C.5 when the flag start delete cell
connection is set. Then, the target cell executes the flow diagram presented in Figure C.9.
Thereafter, the SM that receives the signal del connection in cell X executes the algorithm
presented in Figure C.16.

The process continues at component level. The SMs propagate the appropriate del connection
signal. If the source cell does not belong to the cluster, the SM propagates the signal del
connection out X and the process continues in other cluster as shown in Figure C.17.

The process continues until it reaches the source cell , which ends the process setting the
global signal routing complete as shown in Figure C.5 in the box denoted as “Delete Matrix”.

del_connection_in_N=1?

yes

no

Similar;for;NORTHEASTD;EASTD;SOUTHEASTD;SOUTHD;SOUTHWESTD;WESTD;NORTHWEST

yes

state;<=;idle;
Set;Free;Mux_SM_N0;

yes

yes

Evaluate;Mux;NORTH;0

no

no

no

no

yes

matrix_port_in_N=0?

SM;at;NORTH;is
connected;usign;port;N0?

yes

no

All;Cells

From;port;NORTHEAST;to;NORTHWEST

Evaluate;Mux;NORTH;1

Evaluate;Mux;NORTH;2

Mux_N0
connected;to;matrix

port;at;NORTHEAST?

Mux_A0
connected;to;matrix

port;at;NORTHWEST?

Mux_N0
connected;to;Cell;A?

Mux_N0
connected;to;Cell;I?

del_connection_out_Cell_A;<=;1;

Set;matrix_port_out_NE;
del_connection_out_NE;<=;1;

del_connection_out_Cell_I;<=;1;

Set;matrix_port_out_NW;
del_connection_out_NW;<=;1;

Delete;Matrix;NORTH

Figure C.17: Flow digram of Release Process at Component Level when del connection signal
comes from a Switch Matrix.

144

APPENDIX C. FLOW DIAGRAMS FOR SELF-ADAPTIVE PROCESSES IN SYSTEM

C.5 Conclusions

This section presents the flow diagrams of self-adaptive algorithms implemented in the Configu-
ration Units of Cells and Switch Matrices.

The Cell Configuration Unit (CCU) is the start point for the execution of any process in system
that requires the propagation of signals using the expansion ports of cells, SMs and PIMs. The
CCU includes the following algorithms:

I The self-placement algorithm is divided in two. The first is the algorithm for the insertion of
the first cell of a component, and the second is the algorithm for the insertion of other cells
of a component (from the second).

I Since the insertion of the second cell of a component the self-routing at cell level algorithm
is executed. This is implemented with the following process: first, the selection of source
and target cells for the connections to be routed, and later the Expansion Process at Cell
Level, which is divided in Search and Configuration Phases. This process is repeated for all
connections that can be routed for the new inserted cell.

I The flow diagrams for the Release Process at Cell Level are presented. These algorithms
permits to release the routing resources at cell level used for the interconnection of the FU
ports of two cells. These algorithms are used for self-derouting process, before eliminating a
single cell or deleting an entire component.

The Switch Matrix Configuration Unit (SMCU) includes the following algorithms:

I The Expansion Process at Component Level, which is divided in Search and Configuration
Phases. This process is repeated for all connections that can be routed for the components.

I The flow diagrams for the Release Process at Component Level are presented. These algorithms
permit to release the routing resources at component level used for the interconnection of
the FU ports of two cells belonging to different components. These algorithms are used for
self-derouting process, before eliminating a single cell or deleting an entire component.

145

Appendix D

SANE Project Developer (SPD)

You only live once, but if you do it right,
once is enough.

Sólo se vive una vez, pero si lo haces bien,
una vez puede ser suficiente

Mae West (1893 – 1980)

Abstract: This section describes the main features of the software tool SANE Project

Developer (SPD). It presents all functions included in the software. Additionally, it is presented

the basic syntax consideration for most common files that will be edited in SPD. The protocol

for downloading files to prototype is shown at the end of this chapter.

D.1 Description

In the design phase of the architecture, one of the the main inconveniences was the creation of
applications that permit to test the system. This process consisted in the creation of a SANE
ASSEMBLY (SANE-ASM), that includes a specific number of interconnected components, and
interconnected cells inside each component. Additionally, multiple processors had to be manually
programmed and compiled. Any modification in the application implies a lot of time rewriting
the data for its configuration. Similar to any commercial general purpose device a software tool
is fundamental for improving the capacity of a designer when developing applications.

The SANE Project Developer (SPD) is an Integrated Development Environment (IDE)
developed in C Sharp with Microsoft Visual C# 2008. The SPD permits the user –in a friendly
way– the creation and edition of projects that describe any SANE-ASM application designed. The
SPD includes an adaptation of the project ICSharpCode.TextEditor[37], which is a feature-rich
text editor control that provides the SPD with a powerful tool for edition of files in a project1.
The text editor for SPD includes a specific configuration for syntax highlight of files related with
the project, as well as other basic features for an advanced edition of files.

The SPD allows generating and downloading the memory initialization data for the control
microprocessor inside the prototype. The SPD allows the creation of files that describe the
configuration of a SANE-ASM. This files are called SASM files, which includes the high-level (or
SASM) instructions described in Chapter 5. For writing the Program Memories of the processors,

1ICSharpCode.TextEditor is licensed under The MIT License.

147

D.1. DESCRIPTION

1
2

5
3

4

6

7

Figure D.1: Screen capture of SANE Project Developer.

Assembler (ASM) files will be created, this permits to execute the functionality of a processor
in the cell (between 1 and 4 per cell depending of operation mode).

The SPD supports building of the final hexadecimal file with the configuration of the SANE-
ASM that will be implemented in the FPGA. This process includes the compilation of the files
involved in the process according to the SASM file. The SPD generates a list of errors, warnings
and infos for all files involved in the building process and guides the user to make the appropriate
corrections if required. The SPD also supports the compilation of individual ASM files.

Figure D.1 shows a screen capture of the SPD, which shows the SASM file for the Dynamic
Fault Tolerance Application presented in Section 5.5. It is also shown the structure of the solution
in the left tree and the output of the result of building process in the bottom section. Below are
the features of the main form presented in the figure by means of numeric labels:

1 Menu Strip: it includes the following menus: File, Edit, Project, Tools, View, Communica-
tion, Help and Admin (only available for developer). All actions that SPD is able to execute
are included in these menus, which will be detailed later in this chapter.

2 Top Tool Strip: it includes buttons for easy access to most common functions in SPD. All

148

APPENDIX D. SANE PROJECT DEVELOPER (SPD)

this functions are included in the Menu Strip.

3 Left panel: it includes a Tree View object that contains the hierarchical organization of
the project. This tree could be shown in Cell View or Folders View. The figure shows the
tree for a Cell View, which shows the project organized in components and cells. Cell View
includes all files associated with the project, whilst Folders View includes all files in project
folder.

4 Buttons for Left Panel: these buttons permit the configuration the Tree View object
in Left Panel. It includes the option to alternate between Cell View and Folder View,
visualization of full path of files, visualization of tooltip text and option to force a Refresh
over the tree.

5 Main Tab Control: it includes the Tab Pages that could be edited by SPD. These tabs
are divided in three categories:

(a) Project Tab: This tab permits to configure specific options for a project created by
SPD. The configuration of components and cells in a project will be detailed later in
this chapter.

(b) Communication Tab: This tab represents the data that is sent and received from
prototype by means of serial port connections (RS-232). The SPD permits to config-
ure between one and two communication panels. This tab is used for two purposes:
the visualization of data downloaded to prototype using an adaptation of XMODEM
protocol, and the visualization of the execution of a SANE-ASM in the prototype for
debugging purposes (for two chips in prototype).

(c) Text Editor. The tabs that includes any file could be edited using the text editor
adapted for the application. This editor includes a specific configuration for syntax
highlight of files with the following extensions: *.ASM, *.HEX, *.INC, *.SASM and *.SHEX.

6 Output Tab Control: it includes two tab pages:

(a) Console Tab: this tab shows information of all functions that are being executed in
the SPD. This tab s mainly used for debugging purposes.

(b) Output Tab: this tab is updated each time that a ASM file is compiled or the project
is built. This tab shows Warnings, Informations, Errors and the result of the process
executed. It permits to navigate in a friendly way to the file associated with the message,
and presents the appropriate information related with the message.

7 Status Bar: This bar shows the status of some features of SPD as follows:

(a) Status and configuration of communication ports.

(b) Result of a single file compilation, or built of a project.

(c) Progress of a process that spends time, like downloading of data to the prototype and
others.

D.2 Files Edition

Table D.1 shows a description of files that SPD is able to edit. The ASM and SASM files are the
most frequent files that will be edited in a project using the text editor. The SPD is not case
sensitive for reserved words.

149

D.2. FILES EDITION

File
Extension

Description

*.SP SANE Assembly Project. This file is automatic configured for the SPD.
It is advisable does not edit manually this file because the project might be
corrupted.

*.SASM 4 SANE Assembler file. It corresponds to the high-level configuration file,
which includes the SASM instructions.

*.SHEX 4 SANE Hexadecimal File. This file is generated when the project is built.
The file is generated taking into account the active *.sasm file.

*.SXM SANE XMODEM File. This file is generated when the project is built.
The file is generated taking into account the active *.sasm file. It is used for
downloading the project to prototype memory.

*.ASM 4 Assembler file. It corresponds to the code implemented in processors of cells.

*.INC 4 Include file. It corresponds to libraries for *.asm files.

*.HEX 4 Hexadecimal File. This file is generated when an individual *.asm file is
compiled.

*.LOG Communication LOG Files. It corresponds to the communication activities
related with the RS-232 ports.

*.TXT Text Files. It corresponds to plain text for general purpose.

. Any Files. The SPD allows the creation of any editable file in plain text.

4 The files with this extension includes syntax highlight.

Table D.1: Relation of files for SANE Project Developer.

D.2.1 Assembler Files

The Assembler (ASM) files correspond to the code implemented in the processors of cells. De-
pending on configuration mode, it is possible to have between one to four ASM files per cell. The
SPD includes the following features for ASM files:

I Reserved words for instructions:

ADDLW , SUBLW , ANDLW , IORLW , XORLW , MOVLF , ADDWY , SUBWY ,

ANDWY , IORWY , XORWY , MOVW , BLMOV , COMW , NEGW , INCW , DECW ,

SWAPW , RLW , RRW , LSL , LSR , ASL , ASR , CLRF , CLC , SEC , END ,

NOP , BCLR , BSET , BRCLR , BRSET , GOTO , BZ , BNZ , BC , BNC ,

CBEQ , CBGE , CBGT , CBNE , DBNZ , IBNZ.

I Reserved words for directives:

EQU , ORG , MODE_CORE , #INCLUDE

I Numbers format:

• Hexadecimal (default): 0xe9, 0XE9, e9, h’E9’, H’e9’

• Decimal: d’233’, D’233’, .233

• Octal: o’351’, O’351’

• Binary: b’11101001’, B’11101001’

150

APPENDIX D. SANE PROJECT DEVELOPER (SPD)

• ASCII: a’G’, A’k’ (one alphanumeric character, from ASCII 20h to 7Eh).

I Comments and labels: The labels must start with a letter or underscore (a-z,A-Z,_),
later may include any other alphanumeric character. The comments can be included with any
sequence of text after semicolon or double-slash:

label1 ;This is a label

movlf .255,bin8 ,0 ;Example 1 of a comment

cycle_38 //This is another label

BLMOV BL_IN0 ,0x3F // Example 2 of a comment

D.2.2 SANE Assembler Files

The SANE Assembler (SASM) files corresponds to the high-level configuration file for the
implementation of a SANE-ASM in the system. The SPD includes the following features for
SASM files:

I Reserved words for instructions:

CREATE_COMPONENT , CONNECT_COMPONENT , DELETE_COMPONENT ,

WRITE_FU_MEMORY , WRITE_FU_MEMORY_CR , WRITE_FU_MEMORY_PM0 ,

WRITE_FU_MEMORY_PM1 , WRITE_FU_MEMORY_PM2 ,

WRITE_FU_MEMORY_PM3 , RESTART_PROCESSORS ,

DISABLE_PROCESSORS , RESTART_AND_DISABLE_PROCESSORS ,

ENABLE_PROCESSORS , WAIT , RESTART_PROCESSORS_WAIT ,

ENABLE_PROCESSORS_WAIT , END , START_SUBPROCESS_0 ,

END_SUBPROCESS_0 , START_SUBPROCESS_1 , END_SUBPROCESS_1 ,

START_SUBPROCESS_2 , END_SUBPROCESS_2 , START_SUBPROCESS_3 ,

END_SUBPROCESS_3 , FT_CONFIGURATION.

I Reserved words for directives:

EQU

I Numbers format:

• Hexadecimal (default): 0xe9, 0XE9, e9, h’E9’, H’e9’

• Decimal: d’233’, D’233’, .233

• Octal: o’351’, O’351’

• Binary: b’11101001’, B’11101001’

• ASCII: a’G’, A’k’ (one alphanumeric character, form ASCII 20h to 7Eh).

I Comments: The comments can be included with any sequence of text after semicolon or
double-slash:

primary_cell equ 0xAAAA0001 ;cell definition - hexa

redundant_cell equ d’8613’ //cell definition - decimal

comp_A equ 0xAAAA // component definition hexa

ft_configuration primary_cell ,redundant_cell ;Comment style 1

create_component comp_A // Comment style 2

151

D.3. FUNCTIONS

D.3 Functions

The SPD includes all necessary tools for developing and executing applications in the prototype.
Any SANE-ASM application is implemented by means of a Project, which includes all files related
with the application. The main characteristics of the SPD are included in the Main Menu, which
permits the user to execute the corresponding action as shown bellow. In many cases the name
of the option selected denotes the action that will be executed and does not require additional
explanation.

D.3.1 File Menu

It includes tools for management of projects and files. The options included in this menu are
presented bellow:

1. New Project. Starts a template for creation of a new project.
2. Open Project.
3. Close Project.
4. Save Project As...
5. Save File As...
6. Save ‘*.*’. Save current file or tab selected in Main Panel (Ctlr+S).
7. Save All. Save all files (Ctlr+Shift+S).
8. Close ‘*.*’. Close current file or tab selected in Main Panel.
9. Close all except selected tab. Close all files except the selected tab in Main Panel.

10. New File. Start a template wizard for creation of a new file. The new file could be created
with a basic configuration template for files *.asm, *.sasm and *.txt.

11. Open File.
12. Rename File.
13. Delete File.
14. Recent Projects. List of recent projects for quick access.
15. Recent Files. List of recent files for quick access.
16. Exit.

D.3.2 Edit Menu

This menu includes basic and advanced tools for edition of files. The options included in this
menu are presented bellow:

1. Split text area. This options permits visualization of a file in two different segments of code.
2. Cut (Ctlr+X).
3. Copy (Ctlr+C).
4. Paste (Ctlr+V).
5. Delete.
6. Select All (Ctrl+A).
7. Find ... (Ctrl+F).
8. Find and replace ... (Ctrl+H).
9. Find again (F3).

10. Find again reverse (May+F3)
11. Display. This is a sub-menu that permits the following actions over text editor:

I Show line numbers.
I Show end of line markers.
I Highlight current line.

152

APPENDIX D. SANE PROJECT DEVELOPER (SPD)

I Show spaces and tabs.
I Highlight matching brackets when cursor is after.
I Allow cursor past end of line.

12. Bookmark. This is a sub-menu that permits the following action over text editor:
I Toogle bookmark. (Ctrl+F2).
I Goto next bookmark. (F2).
I Go to previous bookmark. (May+F2).
I Clear all bookmark.

13. Uppercase/Lowercase. This is a sub-menu that permits the following actions over text
editor:
I Convert to uppercase. (Ctrl+Shift+U).
I Convert to lowercase. (Ctrl+U).

14. Advanced. This is a sub-menu that permits the following actions over text editor:
I Toggle line comments. (Alt+Q).
I Convert spaces to tabs.
I Convert tabs to spaces.

D.3.3 Project Menu

This menu includes tools for the current project opened as follows:

1. Component Editor (F5). Tool that permits to edit the components configuration in project.
Figure D.2 shows the tool implemented fo this purpose. Note that there are two different
views, one for addition and the other for edition. This tool permits the user configure the
components and cells for a specific project.

2. Cell Editor (F6). Tool that permits to edit the cells configuration in project. Figure D.3
shows the tool implemented for this purpose. This tool permits the user to configure the cells
previously included in the project. Thus, the user is able to edit the Configuration Registers,
Connection Tables and the ASM files associated to each CORE.

3. SASM Configuration Files (F7). Tool that permits to add and select the SASM files to
project. Figure D.4 shows the tool implemented for this purpose. This tool permits to add
and/or activate the SASM file that will be used when “Built Project” tool is executed. Note
that SPD permits to have many different SASM files, but only one can be activated.

4. Compile File (F9). Compile the selected ASM file. This tool generates a *.HEX file with
the same name of the correspondent *.ASM file. This function could be executed previously
to built the project for detecting error or warnings in ASM files. In this case, the software
guides the user to find the source of the correspondent message.

5. Built Project (F10). Bulit the project taking into account the active SASM file. This tool
generate the files *.SASM and *.SXM with the same name of the active *.SASM file. This is the
last function that must be executed before downloading the configuration file (SXM) to CµP
memory in prototype. If there are errors or warnings in this process, the software guides the
user to find the source of the correspondent message.

6. Add copy of source. This tool permits to make a copy of any file to the project folder.

153

D.3. FUNCTIONS

(a) Add mode.

(b) Edit mode.

Figure D.2: Component editor tool.

D.3.4 Tool Menu

This menu includes the following options:

1. Export. This is a sub-menu that permits the user perform the following actions:

I Figure. Exports a figure that represents the architecture implemented in the prototype.
I Screen Capture. Exports a screen capture of the current view of SPD (formats *.png,

*.jpg, *.gif or *.bmp).
I Console. Exports the console as a *.txt file.

2. Clear Console.

3. Options. This is a form that permits the user to configure several option for SPD. This form
includes five tabs as follows:

(a) General: configuration of general options for SPD.
(b) Text Editor: configuration of text editor.
(c) Compiler: configuration for compilation tools.
(d) Tree: configuration of project visualization tree in Left Panel.
(e) Communications: configuration of serial ports (RS-232) connected with prototype.
(f) Figure: configuration of figure that represents the system architecture.

154

APPENDIX D. SANE PROJECT DEVELOPER (SPD)

Figure D.3: Cell editor tool.

Figure D.4: Tool for addition/activation of SANE assembler files.

155

D.3. FUNCTIONS

D.3.5 View Menu

This menu is used for accessing some special Page Tabs object. Note that project and commu-
nication tabs could be closed in the same way of a text editor tab. It includes the following
options:

1. Project Tab. Permits to open the project tab for edition of components, cells and addi-
tion/activation of SASM files.

2. Communication Tab. Permits to open the communication tab for visualization of processes
executed in serial ports.

3. Console Tab. Permits to open the console tab for debugging purposes.

D.3.6 Communication Menu

This menu includes the tools related with the serial port communication, which are used to
send/receive information to FPGAs in prototype. Some of the functions listed bellow are detailed
in section D.4. This menu includes the following options:

1. Open/close Communication Ports. This tool opens or closes the serial ports configured
for communication with FPGAs in prototype. Additionally, this tool starts or stops threads
that permits the correct management and visualization of data in communication panels.

2. Clear Communication Panles.

3. Save copy of communication logs.

4. Communication Test. Execute a communication test between the SPD and the CµP in
the prototype. It permits to check the correct configuration of serial ports for the execution
of other functions over CµP memory.

5. Clear Memory. Execute a process to clear all section of memory in CµP dedicated for the
SASM configuration file.

6. Write Memory. Execute a process to write the SXM file that was previously generated
with the “Built Project” function. This file is written in section of memory dedicated for the
high-level configuration file.

7. Read Memory. Execute a process to read the entire section of memory dedicated for the
high-level configuration file.

8. Cancel FPGA communication process. This function permits to cancel in a safe way
any process that has been started for a communication between the SPD and the CµP.

D.3.7 Help and Admin Menus

The Help menu presents the credits of the SPD (About). Note that this chapter can be used as
a User Manual for the software implemented. The Admin menu is only available for debugging
or developer options. It is activated executing the SPD with the argument: /admin.

156

APPENDIX D. SANE PROJECT DEVELOPER (SPD)

Field Name Description

<CB> Control Byte Define the process that will be executed:
<CB> = 0x01: Communication test.
<CB> = 0x02: Clear Memory.
<CB> = 0x03: Write Memory.
<CB> = 0x04: Read Memory.

<DB> Data Bytes Denote the zero-based number of bytes send or received in
the frame (0x00 to 0xFF represents 1 to 256 bytes)

<AAA1> Address 1 Initial address for write/read operations (2 bytes).

<AAA2> Address 2 Final address for read operations (2 bytes).

<D0 D1···D255> Data Bytes Bytes sent or received in frame. The amount of data bytes
depends on the Data Bytes field.

<CKS> Checksum Two’s complement of the arithmetic sum of the bytes in
frame except the <SOH> and <CRC>. Final carry is discarded.

Table D.2: Description of fields for XMODEM based protocol.

D.4 Downloading Project to Prototype

The SPD and the CµP implements an adaptation of the XMODEM protocol for downloading
projects to prototype. XMODEM, like most file transfer protocols, breaks up the original data into
a series of “packet” or “frames“ that are sent to the receiver, along with additional information
allowing the receiver to determine whether that packet was correctly received. Xmodem is a half-
duplex communication protocol. The following bytes are defined for the protocol implemented:

I <SOH> = 0x01: Start of Heading.
I <EOT> = 0x04: End of Transmission.
I <ACK> = 0x06: Acknowledge.
I <NACK>= 0x15: Negative Acknowledge.
I <CAN> = 0x18: Cancel.

The frames sent or received have the structure presented below. Note that additional fields
are only used when the frame starts with the byte <SOH>. The description of additional fields is
shown in Table D.2.

<SOH> [<CB>] [<DB>] [<AAA1>] [<AAA2>] [<D0 D1 ... D255>] <CKS>

There are four basic functions implemented in SPD, which corresponds to the four values of
the field “Control Byte”. These functions are described in Sections D.4.1 to D.4.4. Note that the
receiver, after receiving a packet, will either acknowledge (ACK) or not acknowledge (NACK) the
packet. If a NACK is received five times, the sender cancel the process sending the correspondent
byte (CAN). These sections present data flow examples including error recovery, which in normal
conditions is not present in frames. The normal data flow is interrupted when an unexpected
event is produced as follows:

1. A <NACK> is sent when there is a checksum error. On any <NACK>, the sender will re-transmit
the last packet.

2. A <CAN< is sent when there is a format error or five <NACK> has been received.

3. When a <CAN> is received, the process is finalized and no more bytes are sent.

157

D.4. DOWNLOADING PROJECT TO PROTOTYPE

D.4.1 Communication Test

This function permits the user to ensure that communication with the prototype is configured
properly. Table D.3 shows the data flow executed for communication test (<CB>=0x01).

SANE Project Developer ↔ Prototype

<SOH><01><CKS> →
← <NACK>1

<SOH><01><CKS> →
← <ACK>

<EOT> →
← <ACK>

1 Framing error on any byte.

Table D.3: Example of data flow for Communication Test with prototype.

D.4.2 Clear Memory

This function permits to clear the entire section of memory dedicated to the configuration file in
the prototype. Table D.4 shows the data flow executed for clear memory (<CB>=0x02).

SANE Project Developer ↔ Prototype

<SOH><02><CKS> →
← <NACK>1

<SOH><02><CKS> →
← <ACK>

<EOT> →
← <ACK>

1 Framing error on any byte.

Table D.4: Example of data flow for Clear Memory in prototype.

D.4.3 Write Memory

This function permits to write a portion of the memory in prototype, which corresponds to the
high-level configuration file (SASM file). The format of the first frame sent by SPD is shown
bellow:

<SOH> <CB=0x03> <DB> <AAA1> <D0 D1 ... D255> <CKS>

Table D.5 shows an example of the data flow executed for write five 32-bit words in memory,
i.e., from address 0x0000 to 0x0004 (<CB>=0x03).

Note that words in prototype memory are 32-bit width. Therefore, the Data Bytes must be a
multiple of 4 in zero-based range, e.g., 0x03, 0x07, 0x0B. This implies that address is incremented
each four data bytes as shown in the example. If the SPD receives NACK five times, the SPD
sends the byte <CAN> and the process ends.

158

APPENDIX D. SANE PROJECT DEVELOPER (SPD)

SANE Project Developer ↔ Prototype

<SOH><03><07><0000><00 01 02 03 04 05 06 07><CKS> →
← <ACK>

<SOH><03><07><0002><08 09 0A 0B 0C 0D 0E 0F><CKS> →
← <NACK>1

<SOH><03><07><0002><08 09 0A 0B 0C 0D 0E 0F><CKS> →
← <ACK>

<SOH><03><03><0004><10 11 12 13><CKS> →
← <ACK>

<EOT> →
← <ACK>

1 Framing error on any byte.

Table D.5: Example of data flow for Write Memory in prototype.

D.4.4 Read Memory

This function permits to read a portion of the memory in prototype, which corresponds to the
high-level configuration file (SASM file). The format of the first frame sent by SPD is shown
bellow:

<SOH> <CB=0x04> <DB> <AAA1> <AAA2> <CKS>

The format of the frame with data bytes sent by CµP is shown bellow:

<SOH> <DB> <AAA1> <D0 D1 ... D255> <CKS>

Table D.6 shows an example of the data flow executed for read five 32-bit words in memory,
i.e., form address 0x0000 to 0x0004 (<CB>=0x04).

Note that words in prototype memory are 32-bit width. Therefore, the Data Bytes must be a
multiple of 4 in zero-based range, e.g., 0x03, 0x07, 0x0B. This implies that address is incremented
each four data bytes as shown in the example. If the SPD receives NACK five times, the SPD
sends the byte <CAN> and the process ends.

The size of the data sent by CµP depends on the Data Bytes argument received the first
time. Only the last Data Bytes field is modified by CµP, when the number of bytes does not
correspond with the remaining bytes that will be sent.

159

D.5. CONCLUSIONS

SANE Project Developer ↔ Prototype

<SOH><04><07><0000><0004><CKS> →
← <ACK>

<ACK> →
← <SOH><07><0000><00 01 02 03 04 05 06 07><CKS>

<NACK>1 →
← <SOH><07><0000><00 01 02 03 04 05 06 07><CKS>

<ACK> →
← <SOH><07><0002><08 09 0A 0B 0C 0D 0E 0F><CKS>

<ACK> →
← <SOH><03><0004><10 11 12 13><CKS>

<ACK> →
← <EOT>

<ACK> →
1 Framing error on any byte.

Table D.6: Example of data flow for Read Memory from prototype.

D.5 Conclusions

The software tool SANE Project Developer (SPD) has been developed as an integrated develop-
ment environment for creation and edition of projects that will be downloaded to prototype. The
SPD permits the creation and edition in a friendly way of all relevant files for the generation of
SANE-ASM based applications. It includes tools for edition of components and cells belonging to
a SANE-ASM. The SPD includes an adaptation of the ICSharpCode.TextEditor, which is a text
editor control with syntax-highlighting and other functionalities, which permits the appropriate
edition of files related with an application project.

The SPD provide tools to compile individual assembler files, or for building a entire SANE-
ASM project, which is closely tied with a SANE Assembler (SASM) file. In case of errors (or
warnings) in the execution of any of these functions, the software provides the appropriate
information for helping the user to solve theses issues.

The SPD provides all necessary tool for configuring a communications system based in
serial ports (RS-232), which is used for interaction with prototype. This system implements
a XMODEM-based protocol that permits the user to perform basic functions over the section
of memory dedicated to the execution of the SANE-ASM application. Therefore, the SPD
together with the Control Microprocessor (CµP) are able to execute the following functions:
Communication Test, Clear Memory, Write Memory and Read Memory. After downloading an
application to prototype, the communication system permits to read the debugging frames in
both cards of prototype, which shows step by step the execution of an application.

160

Appendix E

Listings of Example Applications

Just as iron rusts from disuse,
even so does inaction spoil the intellect.

Aśı como el hierro se oxida por falta de uso,
también la inactividad destruye el intelecto.

Leonardo Da Vinci (1452 – 1519)

Abstract: This chapter presents a set of listings related with application examples devel-

oped for testing the self-adaptive hardware architecture described in this document. These

listings include *.SASM and *.ASM files, which represents the high-level configuration file for

the configuration of an application, and the threads scheduled for processors in cells.

The listings shown in this chapter are related with two projects with example applications:

I The first is a Dynamic Fault Tolerance Scaling application, which demonstrates the correct
execution of runtime self-configuration by means of subprocesses (Section 5.5).

I The second is related with the Static Fault Tolerance mechanism, which demonstrates the
self-repair ability of the system by means of self-elimination and self-replications of damaged
cells when a hardware failure is detected (Section 5.6).

Tables E.1 and E.2 show a relation of listings presented in this section. Each listing is
explained by means comments in code, therefore no additional explanation will be added along
this chapter.

161

References Listing Description

Application description
in Section 5.5.

Listings in Section E.1

E.1 SASM file with high-level configuration of application.

E.2 ASM file with code for Monitor 1 Section.

E.3 ASM file with code for Monitor 2 Section.

E.4 ASM file with code for original copy of Compute Section
(copy0). The code for first copy (copy1) and second copy
(copy2) of Compute Section is the same.

E.5 SHEX file generated after building project. This listing
shows the instructions code implemented in section of
memory of CµP dedicated to SANE-ASM configuration.

E.6 SXM file generated after building project. For visualiza-
tion purposes, the SXM file was generated with eight
32-bit word per line. However, the SPD could be config-
ured to write between 1 to 32 words per line (default
value is 16).

Table E.1: Listings for Dynamic Fault Tolerance Scaling application example.

References Listing Description

Application description
in Section 5.6.

Listings in Section E.2

E.7 SASM file with high-level configuration of application.

E.8 ASM file with code for Working Processor in Primary
cell. The code for Redundant Processor in Redunadnt
Cell is the same. A modification in the sequence must be
performed manually in one of this files to test the Static
Fault Tolerance mechanism as shown in listing.

E.9 ASM file with delay function for visualization of sequence
in leds.

E.10 SHEX file generated after building project. This listing
shows the instructions code implemented in section of
memory of CµP dedicated to SANE-ASM configuration.

E.11 SXM file generated after building project. For visualiza-
tion purposes, the SXM file was generated with eight
32-bit word per line. However, the SPD could be config-
ured to write between 1 to 32 words per line (default
value is 16).

Table E.2: Listings for Static Fault Tolerance application example.

162

APPENDIX E. LISTINGS OF EXAMPLE APPLICATIONS

E.1 Listings for Dynamic Fault Tolerance Scaling Application
Example

Listing E.1: SASM file for configuration of Dynamic Fault Tolerance Scaling application.

1 ; --

2 ;-- SANE assembly file template for Project DFT_APP_TESIS

3 ;-- Created by: SANE Project Developer - v 2.20 - Javier Soto Vargas

4 ;-- Engineer: JSV

5 ;--

6 ;-- Create Date: 22/02/2013 17:12:19

7 ;-- Project Name: DFT_APP_TESIS

8 ;-- Filename: ConfFile_1 .3. sasm

9 ;-- Description : SASM file for Dynamic Fault Tolerace example application .

10 ;--

11 ;-- Revision 0.01 - File created.

12 ;-- Additional Comments:

13 ;--

14 ; --

15 ; ************************************

16 ;Final configuration after execution

17 ; ************************************

18 ;CHIP0 |-----| |-----| CHIP1 |-----| |-----|

19 ; | C00 | | C10 | | C00 | | C10 |

20 ; |-----| |-----| |-----| |-----|

21 ;

22 ; |-----| |-----| |-----| |-----|

23 ; | C01 | | C11 | | C01 | | C11 |

24 ; |-----| |-----| |-----| |-----|

25

26 ; c00_CHIP0: address =0 x00CC00C0 , MODE =0x09 , PORTS =0x44 , FTCSR =0 x00.

27 ; Pseudo -random number generator (PRNG) using a linear

28 ; feedback shift register (LFSR). Compute Section (PRNG_0).

29 ; c01_CHIP0: address =0 x11AA00A1 , MODE =0x09 , PORTS =0x44 , FTCSR =0 x00.

30 ; Monitor_1 : monitor.

31 ; c10_CHIP0: address =0 x11AA00A2 , MODE =0x04 , PORTS =0x00 , FTCSR =0 x00.

32 ; Monitor_2 : comparator .

33 ; c11_CHIP0: address =0 x11CC00C1 , MODE =0x09 , PORTS =0x44 , FTCSR =0 x00.

34 ; First copy of Compute section (PRNG_1).

35 ; This component (1 cell) is dinamically created and deleted.

36 ; c00_CHIP1: address =0 x22CC00C2 , MODE =0x09 , PORTS =0x44 , FTCSR =0 x00.

37 ; Second copy of Compute section (PRNG_2).

38 ; This component (1 cell) is dinamically created and deleted.

39 ;others : empty.

40

41 ; **********************************

42 ; Difinitions

43 ; **********************************

44 comp_compute equ 0x00CC

45 comp_compute_copy_1 equ 0x11CC

46 comp_compute_copy_2 equ 0x22CC

47 comp_monitor equ 0x11AA

48 cell_lfsr equ 0x00CC00C0

49 cell_lfsr_copy_1 equ 0x11CC00C1

50 cell_lfsr_copy_2 equ 0x22CC00C2

51 cell_monitor_1 equ 0x11AA00A1

52 cell_monitor_2 equ 0x11AA00A2

53 ; **********************************

54 ; subprocess 0 for Monitor component

55 ; **********************************

56 start_subprocess_0 comp_monitor

57 create_component comp_compute_copy_1 ;Create Compute section , copy 1

58 write_FU_memory cell_lfsr_copy_1 ;Write FU memories for cell

59 connect_component ;connect component

60 end_subprocess_0

61 ; **********************************

62 ; subprocess 1 for Monitor component

63 ; **********************************

163

E.1. LISTINGS FOR DYNAMIC FAULT TOLERANCE SCALING APPLICATION EXAMPLE

64 start_subprocess_1 comp_monitor

65 create_component comp_compute_copy_2 ;Create Compute section , copy 2

66 write_FU_memory cell_lfsr_copy_2 ;Write FU memories for cell

67 connect_component ;connect component

68 end_subprocess_1

69 ; **********************************

70 ; subprocess 2 for Monitor component

71 ; **********************************

72 start_subprocess_2 comp_monitor

73 delete_component comp_compute_copy_1 ;delete copy 1 of Compute section

74 end_subprocess_2

75 ; **********************************

76 ; subprocess 3 for Monitor component

77 ; **********************************

78 start_subprocess_3 comp_monitor

79 delete_component comp_compute_copy_2 ;delete copy 2 of Compute section

80 end_subprocess_3

81

82 ; ************************

83 ;* Initial Configurtion *

84 ; ************************

85 create_component comp_monitor ;Create Monitor component

86 restart_and_disable_processors

87 write_FU_memory cell_monitor_1 ;write FU program memories for Monitor_1

88 write_FU_memory cell_monitor_2 ;write FU program memories for Monitor_2

89 create_component comp_compute ;Create Compute component

90 write_FU_memory cell_lfsr ;Write FU program memories for cell

91 connect_component ;Connect component

92 enable_processors_wait ;Enable processors and wait for

93 ;an event to start a subprocess .

94 end ;End of SASM configuration file

Listing E.2: ASM code for Monitor 1 section.

1 ; --

2 ;-- Assembler template for Processor Core 0 in Mode 9

3 ;-- Created by: SANE Project Developer - v 2.20 - Javier Soto Vargas

4 ;-- Engineer: Javier Soto

5 ;--

6 ;-- Date Created: 22/02/2013 17:12:03

7 ;-- Project Name: DFT_APP_TESIS

8 ;-- Filename: Monitor_1 .asm

9 ;-- Description : One 16-bit processor (P0) with 16 x16 data memory and 256

10 ;-- instructions . Monitor_1 section , measure the power

11 ;-- consumpsion of PRNGs , and start the creation/killing of

12 ;-- copies of compute sections.

13 ;-- Revision 0.01 - File created.

14 ;-- Additional Comments: Cell address: 0 x11AA00A1. MODE = 0x09

15 ; --

16 #include <pMode9Core0.inc > ; Definition of Configuration and Status

17 ;Registers including inputs and outputs.

18 ;16-bit General purpose Registers

19 ; Definitions for meassuring the compute section.

20 new_data equ 0x0

21 old_data equ 0x1

22 threshold equ 0x2

23 average equ 0x3

24 m1_status equ 0x4

25 cont_changes equ 0x5

26 comparison equ 0x6

27 ;FIFO for average of last eigth values

28 FIFO_0 equ 0x8

29 FIFO_1 equ 0x9

30 FIFO_2 equ 0xA

31 FIFO_3 equ 0xB

32 FIFO_4 equ 0xC

33 FIFO_5 equ 0xD

34 FIFO_6 equ 0xE

35 FIFO_7 equ 0xF

36 ; **

164

APPENDIX E. LISTINGS OF EXAMPLE APPLICATIONS

37 ;* Description of register with status of MONITOR_1: m1_status

38 ; **

39 ;m1_status <0> : 1 -> first copy active , 0-> no active

40 ;m1_status <1> : 1 -> second copy active , 0-> no active

41 ;m1_status <2> : 1 -> creation first copy in progress , 0-> no started

42 ;m1_status <3> : 1 -> creation second copy in progress , 0-> no started

43 ;m1_status <4> : 1 -> killing first copy in progress , 0-> no started

44 ;m1_status <5> : 1 -> killing seconf copy in progress , 0-> no started

45 ; ************************************

46 ; Description of register: comparison

47 ; ************************************

48 ;comparison <0> : 1 -> PRNG_copy_0_original == PRNG_copy1

49 ; 0 -> PRNG_copy_0_original /= PRNG_copy1

50 ;comparison <1> : 1 -> PRNG_copy_1 == PRNG_copy2

51 ; 0 -> PRNG_copy_1 /= PRNG_copy2

52 ; ************************************

53 ; Directives

54 ; ************************************

55 MODE_CORE 0x9 ,0 ;Directive for MODE and CORE

56 ORG 0x0 ;Origin of first instruction

57 ; ************************************

58 ;Start of program - initialization

59 ; ************************************

60 start

61 MOVLF 0x05 ,old_data ,1 ;Seed for LFSR 0x05F3

62 MOVLF 0xF3 ,old_data ,0

63 MOVLF 0x00 ,FIFO_0 ,1 ;Set FIFO registers to 0x000F

64 MOVLF 0x0F ,FIFO_0 ,0 ;initial value for high consumption regime ,

65 MOVW FIFO_0 ,FIFO_1 ;there are not COMPUTE sections copies

66 MOVW FIFO_0 ,FIFO_2

67 MOVW FIFO_0 ,FIFO_3

68 MOVW FIFO_0 ,FIFO_4

69 MOVW FIFO_0 ,FIFO_5

70 MOVW FIFO_0 ,FIFO_6

71 MOVW FIFO_0 ,FIFO_7

72 CLRF threshold ;Set threshold to 0x0000

73 CLRF m1_status ;Set m1_status to 0x0000

74 cycle

75 MOVW old_data ,OUT_01 ;Move old_data to OUT_01 Port two times

76 MOVW old_data ,OUT_01 ;for metaestability issues with two chips.

77 BLMOV IN_01 ,new_data ;Wait pseudo -random data from COMPUTE section

78 BLMOV IN_23 ,comparison ;Wait comparison value from MONITOR_2 section

79 GOTO calculate_average ; Calculate average

80 ret_calc_average

81 MOVW new_data ,old_data ;old_data <= new_data

82 MOVW average ,OUT_23 ;Move average to OUT_23 Port - average in leds

83 review_progress

84 BRCLR m1_status ,2,next1 ;next1 if creation copy_1 is not in progess

85 BRCLR SUBPCSR ,3,nextLast ;nextLast if ends creation of copy_1

86 ;(nextlast if ends execution of subprocess0)

87 BCLR m1_status ,2 ;clear flag creation_first_copy_in_progess

88 BCLR SUBPCSR ,3 ;clear subprocess0 ends flag

89 BSET m1_status ,0 ;set flag copy_1 of COMPUTE section active

90 GOTO nextLast

91 next1

92 BRCLR m1_status ,3,nextLast ;nextLast if create copy_2 is not in progess

93 BRCLR SUBPCSR ,4,nextLast ;nextLast if ends creation of copy_2

94 ;(nextlast if ends execution of subprocess1)

95 BCLR m1_status ,3 ;clear flag creation_second_copy_in_progess

96 BCLR SUBPCSR ,4 ;clear subprocess1 ends flag

97 BSET m1_status ,1 ;set flag copy_2 of COMPUTE section active

98 GOTO nextLast

99 next2

100 BRCLR m1_status ,4,next3 ;next3 if killing copy_1 is not in progess

101 BRCLR SUBPCSR ,5,nextLast ;nextLast if ends killing of copy_1

102 ;(nextlast if ends execution of subprocess2)

103 BCLR m1_status ,4 ;clear flag kill_first_copy_in_progess

104 BCLR SUBPCSR ,5 ;clear subprocess2 ends flag

105 GOTO nextLast

106 next3

165

E.1. LISTINGS FOR DYNAMIC FAULT TOLERANCE SCALING APPLICATION EXAMPLE

107 BRCLR m1_status ,5,nextLast ;nextLast if killing copy_2 is not in progess

108 BRCLR SUBPCSR ,6,nextLast ;nextLast if ends killing of copy_2

109 ;(nextlast if ends execution of subprocess3)

110 BCLR m1_status ,5 ;clear flag kill_second_copy_in_progess

111 BCLR SUBPCSR ,6 ;clear subprocess3 ends flag

112 nextLast

113 BRSET m1_status ,1, second_copy_active ;process when copy_2 is active

114 BRSET m1_status ,0, first_copy_active ;process when copy_1 is active

115 none_copy_active ;process when none copy is active

116 MOVLF 0x0B ,threshold ,0 ;for high consumption regime

117 CBGE average ,threshold ,cycle ;goto cycle if average >= 11

118 MOVLF 0x01 ,threshold ,0 ;for low consumption regime (copy_1)

119 CBGE average ,threshold ,pre_create_first_copy ;jump if average >= 1

120 MOVLF 0xF1 ,OUT_23 ,1 ;set error code 1 (leds)

121 END ;End with error

122 pre_create_first_copy

123 BRCLR SUBPCSR ,7,cycle ;goto cycle if system is not in wait state

124 create_first_copy

125 BSET m1_status ,2 ;set flag creation_first_copy_in_progress

126 BCLR SUBPCSR ,2 ;configure creation of first copy

127 BCLR SUBPCSR ,1 ;subprocess0 , SUBPCSR <2:1 > <= 00

128 BSET SUBPCSR ,0 ;start creation of first copy

129 BCLR SUBPCSR ,0 ;(start execution of subprocess_0)

130 GOTO cycle

131

132 org 0x40 ;Optional , for locating code in PM1

133 ; ************************************

134 ;Process when first copy is active

135 ; ************************************

136 first_copy_active

137 BRSET comparison ,0,$+3 ;jump 3 positions if copy_original == copy_1

138 MOVLF 0xF2 ,OUT_23 ,1 ;set error code 2 (leds)

139 END ;End with error

140 MOVLF 0x0B ,threshold ,0 ;for high consumption regime

141 CBGE average ,threshold ,pre_delete_first_copy ;jump if average >= 11

142 MOVLF 0x06 ,threshold ,0 ;for medium consumption regime

143 CBGE average ,threshold ,cycle ;jump if average >= 6

144 MOVLF 0x01 ,threshold ,0 ;for low consumption regime

145 CBGE average ,threshold ,pre_create_second_copy ;jump if average >= 1

146 MOVLF 0xF3 ,OUT_23 ,1 ;set error code 3 (leds)

147 END ;End with error

148 pre_delete_first_copy

149 BRCLR SUBPCSR ,7,cycle ;goto cycle if system is not in wait state

150 delete_first_copy

151 BCLR m1_status ,0 ;clear flag first_copy_active

152 BSET m1_status ,4 ;set flag kill_first_copy_in_progress

153 BSET SUBPCSR ,2 ;configure subprocess for killing first copy

154 BCLR SUBPCSR ,1 ;subprocess2 , SUBPCSR <2:1 > <= 10

155 BSET SUBPCSR ,0 ;start killing of copy_1

156 BCLR SUBPCSR ,0 ;(start execution of subprocess_2)

157 GOTO cycle

158 pre_create_second_copy

159 BRCLR SUBPCSR ,7,cycle ;goto cycle if system is not in wait state

160 create_second_copy

161 BSET m1_status ,3 ;set flag creation_second_copy_in_progress

162 BCLR SUBPCSR ,2 ;configure subprocess for create second copy

163 BSET SUBPCSR ,1 ;subprocess_1 , SUBPCSR <2:1 > <= 01

164 BSET SUBPCSR ,0 ;start creation of copy_2

165 BCLR SUBPCSR ,0 ;(start execution of subprocess_1)

166 GOTO cycle

167 ; ************************************

168 ;Process when second copy is active

169 ; ************************************

170 second_copy_active

171 BRSET comparison ,1,$+3 ;jump 3 positions if copy_1 == copy_2

172 MOVLF 0xF4 ,OUT_23 ,1 ;set error code 4 (leds)

173 END ;End with error

174 MOVLF 0x06 ,threshold ,0 ;for medium consumption regime

175 CBGE average ,threshold ,pre_delete_second_copy ;jump if average >= 6

176 MOVLF 0x01 ,threshold ,0 ;for low consumption regime

166

APPENDIX E. LISTINGS OF EXAMPLE APPLICATIONS

177 CBGE average ,threshold ,cycle ;jump if average >= 1

178 MOVLF 0xF5 ,OUT_23 ,1 ;set error code 5 (leds)

179 END ;End with error

180 pre_delete_second_copy

181 BRCLR SUBPCSR ,7,cycle ;goto cycle if system is not in wait state

182 delete_second_copy

183 BCLR m1_status ,1 ;clear flag second_copy_active

184 BSET m1_status ,5 ;set flag kill_second_copy_in_progress

185 BSET SUBPCSR ,2 ; configure subprocess for killing second copy

186 BSET SUBPCSR ,1 ;subprocess_3 , SUBPCSR <2:1 > <= 11

187 BSET SUBPCSR ,0 ;start killing of copy_2

188 BCLR SUBPCSR ,0 ;(start execution of subprocess_3)

189 GOTO cycle

190

191 org 0x80

192 ; *********************************

193 ;Calculate average of changes

194 ; *********************************

195 calculate_average

196 CLRF cont_changes ;counter of changes between old_data

197 bit0 ;and new_data

198 XORWY new_data ,old_data ,old_data ; commparison of old_data and new_data

199 BRCLR old_data ,0,$+2 ;Increment counter when a transition

200 INCW cont_changes ,cont_changes ;ocurrs

201 BRCLR old_data ,.1,$+2 ;Same for all bits

202 INCW cont_changes ,cont_changes

203 BRCLR old_data ,.2,$+2

204 INCW cont_changes ,cont_changes

205 BRCLR old_data ,.3,$+2

206 INCW cont_changes ,cont_changes

207 BRCLR old_data ,.4,$+2

208 INCW cont_changes ,cont_changes

209 BRCLR old_data ,.5,$+2

210 INCW cont_changes ,cont_changes

211 BRCLR old_data ,.6,$+2

212 INCW cont_changes ,cont_changes

213 BRCLR old_data ,.7,$+2

214 INCW cont_changes ,cont_changes

215 BRCLR old_data ,.8,$+2

216 INCW cont_changes ,cont_changes

217 BRCLR old_data ,.9,$+2

218 INCW cont_changes ,cont_changes

219 BRCLR old_data ,.10,$+2

220 INCW cont_changes ,cont_changes

221 BRCLR old_data ,.11,$+2

222 INCW cont_changes ,cont_changes

223 BRCLR old_data ,.12,$+2

224 INCW cont_changes ,cont_changes

225 BRCLR old_data ,.13,$+2

226 INCW cont_changes ,cont_changes

227 BRCLR old_data ,.14,$+2

228 INCW cont_changes ,cont_changes

229 BRCLR old_data ,.15,$+2

230 INCW cont_changes ,cont_changes

231 MOVW FIFO_6 ,FIFO_7 ;Shift FIFO registers one position

232 MOVW FIFO_5 ,FIFO_6

233 MOVW FIFO_4 ,FIFO_5

234 MOVW FIFO_3 ,FIFO_4

235 MOVW FIFO_2 ,FIFO_3

236 MOVW FIFO_1 ,FIFO_2

237 MOVW FIFO_0 ,FIFO_1

238 MOVW cont_changes ,FIFO_0 ;Set new value of changes

239 MOVW FIFO_0 ,average ;to FIFO_0 register and

240 ADDWY FIFO_1 ,average ,average ;calculate average

241 ADDWY FIFO_2 ,average ,average

242 ADDWY FIFO_3 ,average ,average

243 ADDWY FIFO_4 ,average ,average

244 ADDWY FIFO_5 ,average ,average

245 ADDWY FIFO_6 ,average ,average

246 ADDWY FIFO_7 ,average ,average

167

E.1. LISTINGS FOR DYNAMIC FAULT TOLERANCE SCALING APPLICATION EXAMPLE

247 LSR average ,average

248 LSR average ,average

249 LSR average ,average

250 GOTO ret_calc_average

Listing E.3: ASM code for Monitor 2 section.

1 ; --

2 ;-- Assembler template for Processor Core 0 in Mode 4

3 ;-- Created by: SANE Project Developer - v 2.20 - Javier Soto Vargas

4 ;-- Engineer: JSV

5 ;--

6 ;-- Date Created: 22/02/2013 17:12:47

7 ;-- Project Name: DFT_APP_TESIS

8 ;-- Filename: Monitor_2.asm

9 ;-- Description : Monitor_2 section: comparison of PRNGs

10 ;--

11 ;-- Revision 0.01 - File created.

12 ;-- Additional Comments: address: 11 AA00A2

13 ;--

14 ; --

15 #include <pMode4Core0.inc >

16

17 ;8-Bit General Purpose Registers

18 data0_L equ 0x0 ;LSB read from original COMPUTE section (copy0)

19 data0_H equ 0x1 ;MSB read from original COMPUTE section (copy0)

20 data1_L equ 0x2 ;LSB read from COMPUTE section (copy1)

21 data1_H equ 0x3 ;MSB read from COMPUTE section (copy1)

22 data2_L equ 0x4 ;LSB read from COMPUTE section (copy2)

23 data2_H equ 0x5 ;MSB read from COMPUTE section (copy2)

24 comparison equ 0x6

25 ;comparison <0> : 1 -> PRNG_copy_0_original == PRNG_copy1

26 ; 0 -> PRNG_copy_0_original /= PRNG_copy1

27 ;comparison <1> : 1 -> PRNG_copy_1 == PRNG_copy2

28 ; 0 -> PRNG_copy_1 /= PRNG_copy2

29 ; **************************************

30 ;* Directives

31 ; **************************************

32 MODE_CORE 0x4 ,0

33 ORG 0x0

34 ; **************************************

35 ;*Start of program

36 ; **************************************

37 start

38 BLMOV IN0 ,data0_L ;Wait for a new pseudo -random number from

39 NOP ;COMPUTE section (original or copy_0).

40 NOP ;Read low byte first.

41 NOP ;Delay due metaestability between chips

42 NOP

43 NOP

44 MOVW IN1 ,data1_L ;Read low byte from COMPUTE section(copy_1)

45 MOVW IN2 ,data2_L ;Read low byte from COMPUTE section(copy_2)

46 BLMOV IN0 ,data0_H ;Read high byte from COMPUTE section

47 NOP ;Delay because metaestability between chips

48 NOP

49 NOP

50 NOP

51 NOP

52 MOVW IN1 ,data1_H ;Read high byte from COMPUTE section(copy_1)

53 MOVW IN2 ,data2_H ;Read high byte from COMPUTE section(copy_2)

54 CLRF comparison ;Clear comparison register

55 compare_1_2

56 CBNE data0_L ,data1_L ,write_port ;Jump if copy_0 /= copy_1 (low bytes)

57 CBNE data0_H ,data1_H ,write_port ;Jump if copy_0 /= copy_1 (high bytes)

58 BSET comparison ,0 ;Set flag copy_0 == copy_1

59 compare_2_3

60 CBNE data1_L ,data2_L ,write_port ;Jump if copy_1 /= copy_2 (low bytes)

61 CBNE data1_H ,data2_H ,write_port ;Jump if copy_1 /= copy_2 (high bytes)

62 BSET comparison ,1 ;Set flag copy_1 == copy_2

63 write_port

168

APPENDIX E. LISTINGS OF EXAMPLE APPLICATIONS

64 MOVW comparison ,OUT0 ;Write comparison register to port OT0

65 GOTO start

Listing E.4: ASM code for Compute sections (original, first and second copy).

1 ; --

2 ;-- Assembler template for Processor Core 0 in Mode 9

3 ;-- Created by: SANE Project Developer - v 2.20 - Javier Soto Vargas

4 ;-- Engineer: JSV

5 ;--

6 ;-- Date Created: 22/02/2013 17:12:55

7 ;-- Project Name: DFT_APP_TESIS

8 ;-- Filename: PRNG0_OriginalCompute .asm

9 ;-- Description : Pseudo -random number generator , 16-bits ,

10 ;-- output port OUT0_OUT01 (original compute section)

11 ;--

12 ;-- Revision 0.01 - File created.

13 ;-- Additional Comments: Mode 9, address: 00 CC00C0 , 16-bit processor

14 ;-- with 16 x16 bits in memory data , 256 instructions

15 ;-- (Linear feedback shift register) PRNG_0 generator

16 ; --

17 #include <pMode9Core0.inc >

18 ; **/

19 ; Polynomial for LFSR 16-bit: x11 + x13 + x14 + x16 + 1

20 ;

21 ; -> x1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 ->

22 ; | | | | |

23 ; | | | XOR <-----

24 ; | | | |

25 ; | | XOR <-

26 ; | | |

27 ; |<-----------------------------------XOR <------

28

29 ;16-Bit General Purpose Registers

30 data equ 0x0 ;pseudo -random data generted

31 seed equ 0x1 ;seed for calculate data

32 cont_taps equ 0x2 ;counter of taps

33 none equ 0x3F ;empty address

34 ; ***

35 ;* Directives

36 ; ***

37 MODE_CORE 0x9 ,0

38 ORG 0x0

39 ; ***

40 ;* Start of program

41 ; ***

42 start

43 BLMOV IN_01 ,seed ;read 16-bit seed from Monitor_1

44 NOP

45 MOVW IN_01 ,seed ;read again for LFSR_2 (metaestability)

46 GOTO next_data ;calculate next data

47 ret_next_data

48 MOVW seed ,OUT_23 ;move seed to output ports OUT2 and OUT3 (leds)

49 MOVW data ,OUT_01 ;move 16-bit pseudo -random data to Monitor_1

50 NOP ;Monitor_2 read low byte.

51 NOP ;Delay implemented to Monitor_2 , which needs time

52 NOP ;to read data from Compute sections:

53 NOP ;PRNG_0 , PRNG_1 (if exist) and PRNG_2 (if_exist)

54 NOP

55 NOP

56 NOP

57 NOP

58 NOP

59 NOP

60 NOP

61 NOP

62 NOP

63 NOP

64 NOP

65 NOP

169

E.1. LISTINGS FOR DYNAMIC FAULT TOLERANCE SCALING APPLICATION EXAMPLE

66 NOP

67 NOP

68 SWAPW data ,OUT_01 ;SWAP and write data to port OUT0 -OUT1 ,

69 GOTO start ; Monitor_2 read high byte.

70 ; ***

71 ;* Calculation of pseudo -random data

72 ; ***

73 org 0x40 ;used for allocate code in Program memory 1 (optional).

74 next_data

75 CLRF cont_taps ;clear taps counter

76 BRCLR seed ,0,jump1 ;evaluate x16

77 INCW cont_taps ,cont_taps ;increment taps counter

78 jump1

79 BRCLR seed ,2,jump2 ;evaluate x14

80 INCW cont_taps ,cont_taps ;increment taps counter

81 jump2

82 BRCLR seed ,3,jump3 ;evaluate x13

83 INCW cont_taps ,cont_taps ;increment taps counter

84 jump3

85 BRCLR seed ,5,jump4 ;evaluate x11

86 INCW cont_taps ,cont_taps ;increment taps counter

87 jump4

88 SEC ;Set carry

89 BRSET cont_taps ,0,$+2 ;Jump 2 positions if cont_taps is odd (XOR =1)

90 CLC ;Clear carry

91 RRW seed ,data ;Rotate right through carry for

92 GOTO ret_next_data ; generation of new pseudo -random data.

Listing E.5: SHEX file generated by SANE Project developer after execute Build Project option.

1 unsigned int memoria [] =

2 {

3 start_subprocess0_IC , //0x10

4 0x11AA , // id_comp

5 create_component_IC , //0x00

6 0x11CC , // id_comp

7 0, //Zero -based num cells in component

8 1, // num of outputs

9 0x11CC00C1 , // address

10 0x00 ,

11 0x11AA00A1 , // Input 0

12 0x09 ,

13 0x11AA00A1 , // Input 1

14 0x00 ,

15 0x00000000 , // Input 2

16 0x00 ,

17 0x00000000 , // Input 3

18 0x00 ,

19 0x00000000 , //FT Input 0

20 0x00 ,

21 0x00000000 , //FT Input 1

22 0x00 ,

23 0x00000000 , //FT Input 2

24 0x00 ,

25 0x00000000 , //FT Input 3

26 0x01 ,

27 0x11AA00A2 , // Output 0

28 write_FU_memory_CR_IC , //0x03

29 0x11CC00C1 , // address

30 4, // register number

31 0x09 , // MODE

32 0x00 , // FAMILY

33 0x44 , // PORTS

34 0x00 , // FTCSR

35 write_FU_memory_PM0_IC ,//0x04

36 0x11CC00C1 , // address

37 26, // register number

38 0x0780801 , //0 BLMOV IN_01 ,seed ,

39 0x0B40000 , //1 NOP ,,

40 0x0740801 , //2 MOVW IN_01 ,seed ,

170

APPENDIX E. LISTINGS OF EXAMPLE APPLICATIONS

41 0x0E40000 , //3 GOTO next_data ,,

42 0x0740065 , //4 MOVW seed ,OUT_23 ,

43 0x0740024 , //5 MOVW data ,OUT_01 ,

44 0x0B40000 , //6 NOP ,,

45 0x0B40000 , //7 NOP ,,

46 0x0B40000 , //8 NOP ,,

47 0x0B40000 , //9 NOP ,,

48 0x0B40000 , //10 NOP ,,

49 0x0B40000 , //11 NOP ,,

50 0x0B40000 , //12 NOP ,,

51 0x0B40000 , //13 NOP ,,

52 0x0B40000 , //14 NOP ,,

53 0x0B40000 , //15 NOP ,,

54 0x0B40000 , //16 NOP ,,

55 0x0B40000 , //17 NOP ,,

56 0x0B40000 , //18 NOP ,,

57 0x0B40000 , //19 NOP ,,

58 0x0B40000 , //20 NOP ,,

59 0x0B40000 , //21 NOP ,,

60 0x0B40000 , //22 NOP ,,

61 0x0B40000 , //23 NOP ,,

62 0x08C0024 , //24 SWAPW data ,OUT_01 ,

63 0x0E00000 , //25 GOTO start ,,

64 write_FU_memory_PM1_IC ,//0x05

65 0x11CC00C1 , // address

66 14, // register number

67 0x0A40002 , //64 CLRF cont_taps ,,

68 0x0C43040 , //65 BRCLR seed ,0, jump1

69 0x0840082 , //66 INCW cont_taps ,cont_taps ,

70 0x0C45042 , //67 BRCLR seed ,2, jump2

71 0x0840082 , //68 INCW cont_taps ,cont_taps ,

72 0x0C47043 , //69 BRCLR seed ,3, jump3

73 0x0840082 , //70 INCW cont_taps ,cont_taps ,

74 0x0C49045 , //71 BRCLR seed ,5, jump4

75 0x0840082 , //72 INCW cont_taps ,cont_taps ,

76 0x0AC0000 , //73 SEC ,,

77 0x0D4C080 , //74 BRSET cont_taps ,0,$+2

78 0x0A80000 , //75 CLC ,,

79 0x0940040 , //76 RRW seed ,data ,

80 0x0E04000 , //77 GOTO ret_next_data ,,

81 connect_component_IC , //0x01

82 end_subprocess0_IC , //0x11

83 start_subprocess1_IC , //0x12

84 0x11AA , // id_comp

85 create_component_IC , //0x00

86 0x22CC , // id_comp

87 0, //Zero -based num cells in component

88 1, // num of outputs

89 0x22CC00C2 , // address

90 0x00 ,

91 0x11AA00A1 , // Input 0

92 0x09 ,

93 0x11AA00A1 , // Input 1

94 0x00 ,

95 0x00000000 , // Input 2

96 0x00 ,

97 0x00000000 , // Input 3

98 0x00 ,

99 0x00000000 , //FT Input 0

100 0x00 ,

101 0x00000000 , //FT Input 1

102 0x00 ,

103 0x00000000 , //FT Input 2

104 0x00 ,

105 0x00000000 , //FT Input 3

106 0x02 ,

107 0x11AA00A2 , // Output 0

108 write_FU_memory_CR_IC , //0x03

109 0x22CC00C2 , // address

110 4, // register number

171

E.1. LISTINGS FOR DYNAMIC FAULT TOLERANCE SCALING APPLICATION EXAMPLE

111 0x09 , // MODE

112 0x00 , // FAMILY

113 0x44 , // PORTS

114 0x00 , // FTCSR

115 write_FU_memory_PM0_IC ,//0x04

116 0x22CC00C2 , // address

117 26, // register number

118 0x0780801 , //0 BLMOV IN_01 ,seed ,

119 0x0B40000 , //1 NOP ,,

120 0x0740801 , //2 MOVW IN_01 ,seed ,

121 0x0E40000 , //3 GOTO next_data ,,

122 0x0740065 , //4 MOVW seed ,OUT_23 ,

123 0x0740024 , //5 MOVW data ,OUT_01 ,

124 0x0B40000 , //6 NOP ,,

125 0x0B40000 , //7 NOP ,,

126 0x0B40000 , //8 NOP ,,

127 0x0B40000 , //9 NOP ,,

128 0x0B40000 , //10 NOP ,,

129 0x0B40000 , //11 NOP ,,

130 0x0B40000 , //12 NOP ,,

131 0x0B40000 , //13 NOP ,,

132 0x0B40000 , //14 NOP ,,

133 0x0B40000 , //15 NOP ,,

134 0x0B40000 , //16 NOP ,,

135 0x0B40000 , //17 NOP ,,

136 0x0B40000 , //18 NOP ,,

137 0x0B40000 , //19 NOP ,,

138 0x0B40000 , //20 NOP ,,

139 0x0B40000 , //21 NOP ,,

140 0x0B40000 , //22 NOP ,,

141 0x0B40000 , //23 NOP ,,

142 0x08C0024 , //24 SWAPW data ,OUT_01 ,

143 0x0E00000 , //25 GOTO start ,,

144 write_FU_memory_PM1_IC ,//0x05

145 0x22CC00C2 , // address

146 14, // register number

147 0x0A40002 , //64 CLRF cont_taps ,,

148 0x0C43040 , //65 BRCLR seed ,0, jump1

149 0x0840082 , //66 INCW cont_taps ,cont_taps ,

150 0x0C45042 , //67 BRCLR seed ,2, jump2

151 0x0840082 , //68 INCW cont_taps ,cont_taps ,

152 0x0C47043 , //69 BRCLR seed ,3, jump3

153 0x0840082 , //70 INCW cont_taps ,cont_taps ,

154 0x0C49045 , //71 BRCLR seed ,5, jump4

155 0x0840082 , //72 INCW cont_taps ,cont_taps ,

156 0x0AC0000 , //73 SEC ,,

157 0x0D4C080 , //74 BRSET cont_taps ,0,$+2

158 0x0A80000 , //75 CLC ,,

159 0x0940040 , //76 RRW seed ,data ,

160 0x0E04000 , //77 GOTO ret_next_data ,,

161 connect_component_IC , //0x01

162 end_subprocess1_IC , //0x13

163 start_subprocess2_IC , //0x14

164 0x11AA , // id_comp

165 delete_component_IC , //0x02

166 0x11CC , // id_comp

167 end_subprocess2_IC , //0x15

168 start_subprocess3_IC , //0x16

169 0x11AA , // id_comp

170 delete_component_IC , //0x02

171 0x22CC , // id_comp

172 end_subprocess3_IC , //0x17

173 create_component_IC , //0x00

174 0x11AA , // id_comp

175 1, //Zero -based num cells in component

176 6, // num of outputs

177 0x11AA00A1 , // address

178 0x00 ,

179 0x00CC00C0 , // Input 0

180 0x09 ,

172

APPENDIX E. LISTINGS OF EXAMPLE APPLICATIONS

181 0x00CC00C0 , // Input 1

182 0x02 ,

183 0x11AA00A2 , // Input 2

184 0x03 ,

185 0x11AA00A2 , // Input 3

186 0x00 ,

187 0x00000000 , //FT Input 0

188 0x00 ,

189 0x00000000 , //FT Input 1

190 0x00 ,

191 0x00000000 , //FT Input 2

192 0x00 ,

193 0x00000000 , //FT Input 3

194 0x00 ,

195 0x00CC00C0 , // Output 0

196 0x09 ,

197 0x00CC00C0 , // Output 1

198 0x00 ,

199 0x11CC00C1 , // Output 2

200 0x09 ,

201 0x11CC00C1 , // Output 3

202 0x00 ,

203 0x22CC00C2 , // Output 4

204 0x09 ,

205 0x22CC00C2 , // Output 5

206 2, // num of outputs

207 0x11AA00A2 , // address

208 0x00 ,

209 0x00CC00C0 , // Input 0

210 0x01 ,

211 0x11CC00C1 , // Input 1

212 0x02 ,

213 0x22CC00C2 , // Input 2

214 0x00 ,

215 0x00000000 , // Input 3

216 0x00 ,

217 0x00000000 , //FT Input 0

218 0x00 ,

219 0x00000000 , //FT Input 1

220 0x00 ,

221 0x00000000 , //FT Input 2

222 0x00 ,

223 0x00000000 , //FT Input 3

224 0x02 ,

225 0x11AA00A1 , // Output 0

226 0x03 ,

227 0x11AA00A1 , // Output 1

228 restart_and_disable_processors_IC ,//0x0A

229 write_FU_memory_CR_IC , //0x03

230 0x11AA00A1 , // address

231 4, // register number

232 0x09 , // MODE

233 0x00 , // FAMILY

234 0x44 , // PORTS

235 0x00 , // FTCSR

236 write_FU_memory_PM0_IC ,//0x04

237 0x11AA00A1 , // address

238 56, // register number

239 0x0505041 , //0 MOVLF 0x05 ,old_data ,1

240 0x05F3001 , //1 MOVLF 0xF3 ,old_data ,0

241 0x0500048 , //2 MOVLF 0x00 ,FIFO_0 ,1

242 0x050F008 , //3 MOVLF 0x0F ,FIFO_0 ,0

243 0x0740209 , //4 MOVW FIFO_0 ,FIFO_1 ,

244 0x074020A , //5 MOVW FIFO_0 ,FIFO_2 ,

245 0x074020B , //6 MOVW FIFO_0 ,FIFO_3 ,

246 0x074020C , //7 MOVW FIFO_0 ,FIFO_4 ,

247 0x074020D , //8 MOVW FIFO_0 ,FIFO_5 ,

248 0x074020E , //9 MOVW FIFO_0 ,FIFO_6 ,

249 0x074020F , //10 MOVW FIFO_0 ,FIFO_7 ,

250 0x0A40002 , //11 CLRF threshold ,,

173

E.1. LISTINGS FOR DYNAMIC FAULT TOLERANCE SCALING APPLICATION EXAMPLE

251 0x0A40004 , //12 CLRF m1_status ,,

252 0x0740064 , //13 MOVW old_data ,OUT_01 ,

253 0x0740064 , //14 MOVW old_data ,OUT_01 ,

254 0x0780800 , //15 BLMOV IN_01 ,new_data ,

255 0x0780846 , //16 BLMOV IN_23 ,comparison ,

256 0x0E80000 , //17 GOTO calculate_average ,,

257 0x0740001 , //18 MOVW new_data ,old_data ,

258 0x07400E5 , //19 MOVW average ,OUT_23 ,

259 0x0C1A102 , //20 BRCLR m1_status ,2, next1

260 0x0C29B03 , //21 BRCLR SUBPCSR ,3, nextLast

261 0x0B82104 , //22 BCLR m1_status ,2,

262 0x0B83B2C , //23 BCLR SUBPCSR ,3,

263 0x0BC0104 , //24 BSET m1_status ,0,

264 0x0E29000 , //25 GOTO nextLast ,,

265 0x0C29103 , //26 BRCLR m1_status ,3, nextLast

266 0x0C29B04 , //27 BRCLR SUBPCSR ,4, nextLast

267 0x0B83104 , //28 BCLR m1_status ,3,

268 0x0B84B2C , //29 BCLR SUBPCSR ,4,

269 0x0BC1104 , //30 BSET m1_status ,1,

270 0x0E29000 , //31 GOTO nextLast ,,

271 0x0C25104 , //32 BRCLR m1_status ,4, next3

272 0x0C29B05 , //33 BRCLR SUBPCSR ,5, nextLast

273 0x0B84104 , //34 BCLR m1_status ,4,

274 0x0B85B2C , //35 BCLR SUBPCSR ,5,

275 0x0E29000 , //36 GOTO nextLast ,,

276 0x0C29105 , //37 BRCLR m1_status ,5, nextLast

277 0x0C29B06 , //38 BRCLR SUBPCSR ,6, nextLast

278 0x0B85104 , //39 BCLR m1_status ,5,

279 0x0B86B2C , //40 BCLR SUBPCSR ,6,

280 0x0D5A101 , //41 BRSET m1_status ,1, second_copy_active

281 0x0D40100 , //42 BRSET m1_status ,0, first_copy_active

282 0x050B002 , //43 MOVLF 0x0B ,threshold ,0

283 0x140D0C2 , //44 CBGE average ,threshold ,cycle

284 0x0501002 , //45 MOVLF 0x01 ,threshold ,0

285 0x14310C2 , //46 CBGE average ,threshold , pre_create_first_copy

286 0x05F1065 , //47 MOVLF 0xF1 ,OUT_23 ,1

287 0x0B00000 , //48 END ,,

288 0x0C0DB07 , //49 BRCLR SUBPCSR ,7, cycle

289 0x0BC2104 , //50 BSET m1_status ,2,

290 0x0B82B2C , //51 BCLR SUBPCSR ,2,

291 0x0B81B2C , //52 BCLR SUBPCSR ,1,

292 0x0BC0B2C , //53 BSET SUBPCSR ,0,

293 0x0B80B2C , //54 BCLR SUBPCSR ,0,

294 0x0E0D000 , //55 GOTO cycle ,,

295 write_FU_memory_PM1_IC ,//0x05

296 0x11AA00A1 , // address

297 43, // register number

298 0x0D43180 , //64 BRSET comparison ,0,$+3

299 0x05F2065 , //65 MOVLF 0xF2 ,OUT_23 ,1

300 0x0B00000 , //66 END ,,

301 0x050B002 , //67 MOVLF 0x0B ,threshold ,0

302 0x144B0C2 , //68 CBGE average ,threshold , pre_delete_first_copy

303 0x0506002 , //69 MOVLF 0x06 ,threshold ,0

304 0x140D0C2 , //70 CBGE average ,threshold ,cycle

305 0x0501002 , //71 MOVLF 0x01 ,threshold ,0

306 0x14530C2 , //72 CBGE average ,threshold , pre_create_second_copy

307 0x05F3065 , //73 MOVLF 0xF3 ,OUT_23 ,1

308 0x0B00000 , //74 END ,,

309 0x0C0DB07 , //75 BRCLR SUBPCSR ,7, cycle

310 0x0B80104 , //76 BCLR m1_status ,0,

311 0x0BC4104 , //77 BSET m1_status ,4,

312 0x0BC2B2C , //78 BSET SUBPCSR ,2,

313 0x0B81B2C , //79 BCLR SUBPCSR ,1,

314 0x0BC0B2C , //80 BSET SUBPCSR ,0,

315 0x0B80B2C , //81 BCLR SUBPCSR ,0,

316 0x0E0D000 , //82 GOTO cycle ,,

317 0x0C0DB07 , //83 BRCLR SUBPCSR ,7, cycle

318 0x0BC3104 , //84 BSET m1_status ,3,

319 0x0B82B2C , //85 BCLR SUBPCSR ,2,

320 0x0BC1B2C , //86 BSET SUBPCSR ,1,

174

APPENDIX E. LISTINGS OF EXAMPLE APPLICATIONS

321 0x0BC0B2C , //87 BSET SUBPCSR ,0,

322 0x0B80B2C , //88 BCLR SUBPCSR ,0,

323 0x0E0D000 , //89 GOTO cycle ,,

324 0x0D5D181 , //90 BRSET comparison ,1,$+3

325 0x05F4065 , //91 MOVLF 0xF4 ,OUT_23 ,1

326 0x0B00000 , //92 END ,,

327 0x0506002 , //93 MOVLF 0x06 ,threshold ,0

328 0x14630C2 , //94 CBGE average ,threshold , pre_delete_second_copy

329 0x0501002 , //95 MOVLF 0x01 ,threshold ,0

330 0x140D0C2 , //96 CBGE average ,threshold ,cycle

331 0x05F5065 , //97 MOVLF 0xF5 ,OUT_23 ,1

332 0x0B00000 , //98 END ,,

333 0x0C0DB07 , //99 BRCLR SUBPCSR ,7, cycle

334 0x0B81104 , // 100 BCLR m1_status ,1,

335 0x0BC5104 , // 101 BSET m1_status ,5,

336 0x0BC2B2C , // 102 BSET SUBPCSR ,2,

337 0x0BC1B2C , // 103 BSET SUBPCSR ,1,

338 0x0BC0B2C , // 104 BSET SUBPCSR ,0,

339 0x0B80B2C , // 105 BCLR SUBPCSR ,0,

340 0x0E0D000 , // 106 GOTO cycle ,,

341 write_FU_memory_PM2_IC ,//0x06

342 0x11AA00A1 , // address

343 54, // register number

344 0x0A40005 , // 128 CLRF cont_changes ,,

345 0x0701001 , // 129 XORWY new_data ,old_data ,old_data

346 0x0C84040 , // 130 BRCLR old_data ,0,$+2

347 0x0840145 , // 131 INCW cont_changes ,cont_changes ,

348 0x0C86041 , // 132 BRCLR old_data ,.1,$+2

349 0x0840145 , // 133 INCW cont_changes ,cont_changes ,

350 0x0C88042 , // 134 BRCLR old_data ,.2,$+2

351 0x0840145 , // 135 INCW cont_changes ,cont_changes ,

352 0x0C8A043 , // 136 BRCLR old_data ,.3,$+2

353 0x0840145 , // 137 INCW cont_changes ,cont_changes ,

354 0x0C8C044 , // 138 BRCLR old_data ,.4,$+2

355 0x0840145 , // 139 INCW cont_changes ,cont_changes ,

356 0x0C8E045 , // 140 BRCLR old_data ,.5,$+2

357 0x0840145 , // 141 INCW cont_changes ,cont_changes ,

358 0x0C90046 , // 142 BRCLR old_data ,.6,$+2

359 0x0840145 , // 143 INCW cont_changes ,cont_changes ,

360 0x0C92047 , // 144 BRCLR old_data ,.7,$+2

361 0x0840145 , // 145 INCW cont_changes ,cont_changes ,

362 0x0C94048 , // 146 BRCLR old_data ,.8,$+2

363 0x0840145 , // 147 INCW cont_changes ,cont_changes ,

364 0x0C96049 , // 148 BRCLR old_data ,.9,$+2

365 0x0840145 , // 149 INCW cont_changes ,cont_changes ,

366 0x0C9804A , // 150 BRCLR old_data ,.10 ,$+2

367 0x0840145 , // 151 INCW cont_changes ,cont_changes ,

368 0x0C9A04B , // 152 BRCLR old_data ,.11 ,$+2

369 0x0840145 , // 153 INCW cont_changes ,cont_changes ,

370 0x0C9C04C , // 154 BRCLR old_data ,.12 ,$+2

371 0x0840145 , // 155 INCW cont_changes ,cont_changes ,

372 0x0C9E04D , // 156 BRCLR old_data ,.13 ,$+2

373 0x0840145 , // 157 INCW cont_changes ,cont_changes ,

374 0x0CA004E , // 158 BRCLR old_data ,.14 ,$+2

375 0x0840145 , // 159 INCW cont_changes ,cont_changes ,

376 0x0CA204F , // 160 BRCLR old_data ,.15 ,$+2

377 0x0840145 , // 161 INCW cont_changes ,cont_changes ,

378 0x074038F , // 162 MOVW FIFO_6 ,FIFO_7 ,

379 0x074034E , // 163 MOVW FIFO_5 ,FIFO_6 ,

380 0x074030D , // 164 MOVW FIFO_4 ,FIFO_5 ,

381 0x07402CC , // 165 MOVW FIFO_3 ,FIFO_4 ,

382 0x074028B , // 166 MOVW FIFO_2 ,FIFO_3 ,

383 0x074024A , // 167 MOVW FIFO_1 ,FIFO_2 ,

384 0x0740209 , // 168 MOVW FIFO_0 ,FIFO_1 ,

385 0x0740148 , // 169 MOVW cont_changes ,FIFO_0 ,

386 0x0740203 , // 170 MOVW FIFO_0 ,average ,

387 0x0603243 , // 171 ADDWY FIFO_1 ,average ,average

388 0x0603283 , // 172 ADDWY FIFO_2 ,average ,average

389 0x06032C3 , // 173 ADDWY FIFO_3 ,average ,average

390 0x0603303 , // 174 ADDWY FIFO_4 ,average ,average

175

E.1. LISTINGS FOR DYNAMIC FAULT TOLERANCE SCALING APPLICATION EXAMPLE

391 0x0603343 , // 175 ADDWY FIFO_5 ,average ,average

392 0x0603383 , // 176 ADDWY FIFO_6 ,average ,average

393 0x06033C3 , // 177 ADDWY FIFO_7 ,average ,average

394 0x09C00C3 , // 178 LSR average ,average ,

395 0x09C00C3 , // 179 LSR average ,average ,

396 0x09C00C3 , // 180 LSR average ,average ,

397 0x0E12000 , // 181 GOTO ret_calc_average ,,

398 write_FU_memory_CR_IC , //0x03

399 0x11AA00A2 , // address

400 4, // register number

401 0x04 , // MODE

402 0x00 , // FAMILY

403 0x00 , // PORTS

404 0x00 , // FTCSR

405 write_FU_memory_PM0_IC ,//0x04

406 0x11AA00A2 , // address

407 25, // register number

408 0x0780800 , //0 BLMOV IN0 ,data0_L ,

409 0x0B40000 , //1 NOP ,,

410 0x0B40000 , //2 NOP ,,

411 0x0B40000 , //3 NOP ,,

412 0x0B40000 , //4 NOP ,,

413 0x0B40000 , //5 NOP ,,

414 0x0740842 , //6 MOVW IN1 ,data1_L ,

415 0x0740884 , //7 MOVW IN2 ,data2_L ,

416 0x0780801 , //8 BLMOV IN0 ,data0_H ,

417 0x0B40000 , //9 NOP ,,

418 0x0B40000 , //10 NOP ,,

419 0x0B40000 , //11 NOP ,,

420 0x0B40000 , //12 NOP ,,

421 0x0B40000 , //13 NOP ,,

422 0x0740843 , //14 MOVW IN1 ,data1_H ,

423 0x0740885 , //15 MOVW IN2 ,data2_H ,

424 0x0A40006 , //16 CLRF comparison ,,

425 0x1617002 , //17 CBNE data0_L ,data1_L , write_port

426 0x1617043 , //18 CBNE data0_H ,data1_H , write_port

427 0x0BC0186 , //19 BSET comparison ,0,

428 0x1617084 , //20 CBNE data1_L ,data2_L , write_port

429 0x16170C5 , //21 CBNE data1_H ,data2_H , write_port

430 0x0BC1186 , //22 BSET comparison ,1,

431 0x07401A4 , //23 MOVW comparison ,OUT0 ,

432 0x0E00000 , //24 GOTO start ,,

433 create_component_IC , //0x00

434 0x00CC , // id_comp

435 0, //Zero -based num cells in component

436 3, // num of outputs

437 0x00CC00C0 , // address

438 0x00 ,

439 0x11AA00A1 , // Input 0

440 0x09 ,

441 0x11AA00A1 , // Input 1

442 0x00 ,

443 0x00000000 , // Input 2

444 0x00 ,

445 0x00000000 , // Input 3

446 0x00 ,

447 0x00000000 , //FT Input 0

448 0x00 ,

449 0x00000000 , //FT Input 1

450 0x00 ,

451 0x00000000 , //FT Input 2

452 0x00 ,

453 0x00000000 , //FT Input 3

454 0x00 ,

455 0x11AA00A1 , // Output 0

456 0x09 ,

457 0x11AA00A1 , // Output 1

458 0x00 ,

459 0x11AA00A2 , // Output 2

460 write_FU_memory_CR_IC , //0x03

176

APPENDIX E. LISTINGS OF EXAMPLE APPLICATIONS

461 0x00CC00C0 , // address

462 4, // register number

463 0x09 , // MODE

464 0x00 , // FAMILY

465 0x44 , // PORTS

466 0x00 , // FTCSR

467 write_FU_memory_PM0_IC ,//0x04

468 0x00CC00C0 , // address

469 26, // register number

470 0x0780801 , //0 BLMOV IN_01 ,seed ,

471 0x0B40000 , //1 NOP ,,

472 0x0740801 , //2 MOVW IN_01 ,seed ,

473 0x0E40000 , //3 GOTO next_data ,,

474 0x0740065 , //4 MOVW seed ,OUT_23 ,

475 0x0740024 , //5 MOVW data ,OUT_01 ,

476 0x0B40000 , //6 NOP ,,

477 0x0B40000 , //7 NOP ,,

478 0x0B40000 , //8 NOP ,,

479 0x0B40000 , //9 NOP ,,

480 0x0B40000 , //10 NOP ,,

481 0x0B40000 , //11 NOP ,,

482 0x0B40000 , //12 NOP ,,

483 0x0B40000 , //13 NOP ,,

484 0x0B40000 , //14 NOP ,,

485 0x0B40000 , //15 NOP ,,

486 0x0B40000 , //16 NOP ,,

487 0x0B40000 , //17 NOP ,,

488 0x0B40000 , //18 NOP ,,

489 0x0B40000 , //19 NOP ,,

490 0x0B40000 , //20 NOP ,,

491 0x0B40000 , //21 NOP ,,

492 0x0B40000 , //22 NOP ,,

493 0x0B40000 , //23 NOP ,,

494 0x08C0024 , //24 SWAPW data ,OUT_01 ,

495 0x0E00000 , //25 GOTO start ,,

496 write_FU_memory_PM1_IC ,//0x05

497 0x00CC00C0 , // address

498 14, // register number

499 0x0A40002 , //64 CLRF cont_taps ,,

500 0x0C43040 , //65 BRCLR seed ,0, jump1

501 0x0840082 , //66 INCW cont_taps ,cont_taps ,

502 0x0C45042 , //67 BRCLR seed ,2, jump2

503 0x0840082 , //68 INCW cont_taps ,cont_taps ,

504 0x0C47043 , //69 BRCLR seed ,3, jump3

505 0x0840082 , //70 INCW cont_taps ,cont_taps ,

506 0x0C49045 , //71 BRCLR seed ,5, jump4

507 0x0840082 , //72 INCW cont_taps ,cont_taps ,

508 0x0AC0000 , //73 SEC ,,

509 0x0D4C080 , //74 BRSET cont_taps ,0,$+2

510 0x0A80000 , //75 CLC ,,

511 0x0940040 , //76 RRW seed ,data ,

512 0x0E04000 , //77 GOTO ret_next_data ,,

513 connect_component_IC , //0x01

514 enable_processors_wait_IC ,//0x0E

515 end_IC //0x0F

516 };

Listing E.6: SXM file generated by SANE Project developer after execute Build Project option.

1 01031 F000000000010000011AA00000000000011CC000000000000000111CC00C10000000097

2 01031 F000811AA00A10000000911AA00A10015

3 01031 F001001CD

4 01031 F001811AA00A20000000311CC00C1000000040000000900000000000000440000000077

5 01031 F00200000000411CC00C10000001A0078080100B400000074080100E400000074006593

6 01031 F00280074002400B4000000B4000000B4000000B4000000B4000000B4000000B4000032

7 01031 F003000B4000000B4000000B4000000B4000000B4000000B4000000B4000000B400000E

8 01031 F003800B4000000B4000000B40000008C002400E000000000000511CC00C10000000E49

9 01031 F004000A4000200C430400084008200C450420084008200C470430084008200C490454C

10 01031 F00480084008200AC000000D4C08000A800000094004000E04000000000010000001122

11 01031 F005000000012000011AA00000000000022CC000000000000000122CC00C20000000022

177

E.1. LISTINGS FOR DYNAMIC FAULT TOLERANCE SCALING APPLICATION EXAMPLE

12 01031 F005811AA00A10000000911AA00A100C5

13 01031 F0060027C

14 01031 F006811AA00A20000000322CC00C2000000040000000900000000000000440000000015

15 01031 F00700000000422CC00C20000001A0078080100B400000074080100E400000074006531

16 01031 F00780074002400B4000000B4000000B4000000B4000000B4000000B4000000B40000E2

17 01031 F008000B4000000B4000000B4000000B4000000B4000000B4000000B4000000B40000BE

18 01031 F008800B4000000B4000000B40000008C002400E000000000000522CC00C20000000EE7

19 01031 F009000A4000200C430400084008200C450420084008200C470430084008200C49045FC

20 01031 F00980084008200AC000000D4C08000A800000094004000E040000000000100000013D0

21 01031 F00A000000014000011AA00000002000011CC0000001500000016000011AA00000002A8

22 01031 F00A8000022CC0000001700000000000011AA000000010000000611AA00A10000000013

23 01031 F00B000CC00C00000000900CC00C00000000211AA00A20000000311AA00A2000000004E

24 01031 F00B80026

25 01031 F00C000CC00C00000000900CC00C00000000011CC00C10000000911CC00C100000000B8

26 01031 F00C822CC00C20000000922CC00C20000000211AA00A20000000000CC00C000000001C1

27 01031 F00D011CC00C10000000222CC00C200BE

28 01031 F00D8000211AA00A100000003A5

29 01031 F00E011AA00A10000000A0000000311AA00A100000004000000090000000000000044E8

30 01031 F00E8000000000000000411AA00A10000003800505041005F3001005000480050F0080D

31 01031 F00F0007402090074020A0074020B0074020C0074020D0074020E0074020F00A40002BA

32 01031 F00F800A400040074006400740064007808000078084600E8000000740001007400E592

33 01031 F010000C1A10200C29B0300B8210400B83B2C00BC010400E2900000C2910300C29B0433

34 01031 F010800B8310400B84B2C00BC110400E2900000C2510400C29B0500B8410400B85B2CC1

35 01031 F011000E2900000C2910500C29B0600B8510400B86B2C00D5A10100D401000050B002F6

36 01031 F01180140D0C200501002014310C2005F106500B0000000C0DB0700BC210400B82B2C64

37 01031 F012000B81B2C00BC0B2C00B80B2C00E0D0000000000511AA00A10000002B00D431801B

38 01031 F0128005F206500B000000050B0020144B0C2005060020140D0C200501002014530C249

39 01031 F0130005F306500B0000000C0DB0700B8010400BC410400BC2B2C00B81B2C00BC0B2CA4

40 01031 F013800B80B2C00E0D00000C0DB0700BC310400B82B2C00BC1B2C00BC0B2C00B80B2C7F

41 01031 F014000E0D00000D5D181005F406500B0000000506002014630C2005010020140D0C2F2

42 01031 F0148005F506500B0000000C0DB0700B8110400BC510400BC2B2C00BC1B2C00BC0B2C48

43 01031 F015000B80B2C00E0D0000000000611AA00A10000003600A400050070100100C84040E4

44 01031 F01580084014500C860410084014500C880420084014500C8A0430084014500C8C044F3

45 01031 F01600084014500C8E0450084014500C900460084014500C920470084014500C94048D8

46 01031 F01680084014500C960490084014500C9804A0084014500C9A04B0084014500C9C04CBF

47 01031 F01700084014500C9E04D0084014500CA004E0084014500CA204F008401450074038FF8

48 01031 F01780074034E0074030D007402CC0074028B0074024A00740209007401480074020364

49 01031 F01800060324300603283006032C3006033030060334300603383006033C3009C00C3E7

50 01031 F0188009C00C3009C00C300E120000000000311AA00A20000000400000004000000002E

51 01031 F019000000000000000000000000411AA00A2000000190078080000B4000000B40000EB

52 01031 F019800B4000000B4000000B4000000740842007408840078080100B4000000B4000082

53 01031 F01A000B4000000B4000000B40000007408430074088500A400060161700201617043CE

54 01031 F01A800BC018601617084016170C500BC1186007401A400E0000000000000000000CCED

55 01031 F01B0000000000000000300CC00C00000000011AA00A10000000911AA00A100000000DD

56 01031 F01B80025

57 01031 F01C00000000000000000000000000000000011AA00A10000000911AA00A1000000005C

58 01031 F01C811AA00A20000000300CC00C00000000400000009000000000000004400000000D8

59 01031 F01D00000000400CC00C00000001A0078080100B400000074080100E4000000740065F4

60 01031 F01D80074002400B4000000B4000000B4000000B4000000B4000000B4000000B4000081

61 01031 F01E000B4000000B4000000B4000000B4000000B4000000B4000000B4000000B400005D

62 01031 F01E800B4000000B4000000B40000008C002400E000000000000500CC00C00000000EAA

63 01031 F01F000A4000200C430400084008200C450420084008200C470430084008200C490459B

64 01031 F01F80084008200AC000000D4C08000A800000094004000E04000000000010000000E74

65 01030302000000000 FE9

178

APPENDIX E. LISTINGS OF EXAMPLE APPLICATIONS

E.2 Listings for Static Fault Tolerance Application Example

Listing E.7: SASM file for Static Fault Tolerace example application.

1 ; --

2 ;-- SANE assembly file template for Project ftMode5_8BitsSequence_3Components

3 ;-- Created by: SANE Project Developer - v 2.20 - Javier Soto Vargas

4 ;-- Engineer: JSV

5 ;--

6 ;-- Date Created: 07/04/2014 6:40:09

7 ;-- Project Name: ftMode5_8BitsSequence_3Components

8 ;-- Filename: Program3.sasm

9 ;-- Description : SASM file for Static Fault Tolerace example application .

10 ;--

11 ;-- Revision 0.01 - File created.

12 ;-- Additional Comments:

13 ;--

14 ; --

15 ; ************************************

16 ;Initial configuration after execution

17 ; ************************************

18 ;CHIP0 |-----| |-----| CHIP1 |-----| |-----|

19 ; | C00 | | C10 | | C00 | | C10 |

20 ; |-----| |-----| |-----| |-----|

21 ;

22 ; |-----| |-----| |-----| |-----|

23 ; | C01 | | C11 | | C01 | | C11 |

24 ; |-----| |-----| |-----| |-----|

25

26 ; c00_CHIP0: address =0 xAAAA0001 , MODE =0x04 , PORTS =0x00 , FTCSR =0 x45.

27 ; Primary_Cell with one 8-bit Working_processor .

28 ; Generator of a 8-bit binary sequence as follows:

29 ; 00000000

30 ; 00000001

31 ; 00000011

32 ; 00000111

33 ; 00001111

34 ; 00011111

35 ; 00111111

36 ; 01111111

37 ; 11111111

38 ; c01_CHIP0: address =0 xBBBB0002 , MODE =0x04 , PORTS =0x00 , FTCSR =0 x55.

39 ; Redundant_Cell with one 8-bit Redundant_processor .

40 ; Same sequence of Working_Processor .

41 ; c10_CHIP0: address =0 xCCCC0003 , MODE =0x00 , PORTS =0x00 , FTCSR =0 x00.

42 ; Delay for Working and Redundant Processors .

43 ;others : Empty in the initial configuration , when the FTS detect the

44 ; failure , thprimary and redundant will be located in this cells.

45 ;note: Normally the Working_processor and the redundant_processor

46 ; must execute the same thread (or sequence for the current example).

47 ; For testing purposes , one of the sequences must be altered to

48 ; check the Fault Tolerance functionallity presented here.

49 ; ************************************

50 ;* Declarations

51 ; ************************************

52 cont_primary equ 0xAAAA0001

53 cont_redundant equ 0xBBBB0002

54 retardo equ 0xCCCC0003

55 ; ************************************

56 ;* Main configuration program

57 ; ************************************

58 ft_configuration cont_primary ,cont_redundant ;original and redundant cells

59 create_component 0xAAAA ;create component with primary cell

60 create_component 0xBBBB ;create component with redundant cell

61 create_component 0xCCCC ;create component with delay process

62 restart_and_disable_processors ;

63 write_FU_memory cont_primary ;write FU memories for primary cell

64 write_FU_memory cont_redundant ;write FU memories for redundant cell

65 write_FU_memory retardo ;write FU memories for delay cell

179

E.2. LISTINGS FOR STATIC FAULT TOLERANCE APPLICATION EXAMPLE

66 connect_component ;Connect components

67 enable_processors_wait ;Start execution and wait for an event.

68 ;When a hardware failure is detected the

69 ; instruction ft_configuration is executed

70 end ;End of SASM configuration file

Listing E.8: ASM code for Working and Redundant Processors in Primary and Redundant Cells.

1 ; --

2 ;-- Assembler template for Processor Core 0 in Mode 4

3 ;-- Created by: SANE Project Developer - v 2.20 - Javier Soto Vargas

4 ;-- Engineer: JSV

5 ;--

6 ;-- Date Created: 07/04/2014 6:45:03

7 ;-- Project Name: ftMode5_8BitsSequence_3Components

8 ;-- Filename: Primary_3bitsBinaryCounter .asm

9 ;-- Description : Primary_Cell with the Working_processor . 8-bits Binary sequence ,

10 ;-- for test Fault Tolerance System in ft_mode =5

11 ;-- Secuence; 0x00 , 0x01 , 0x03 , 0x07 , 0x0F , 0x1F , 0x3F , 0x7F , 0xFF , ...

12 ;-- Revision 0.01 - File created.

13 ;-- Additional Comments: address AAAA0001 - one 8-bit processor. Mode 4.

14 ;--

15 ; --

16 #include <pMode4Core0.inc >

17

18 ;8-Bit General Purpose Registers

19 bin0 equ 0x0 ;Constant definitions for binary sequence

20 bin1 equ 0x1

21 bin2 equ 0x2

22 bin3 equ 0x3

23 bin4 equ 0x4

24 bin5 equ 0x5

25 bin6 equ 0x6

26 bin7 equ 0x7

27 bin8 equ 0x8

28 H3F equ 0x3F

29 BL_IN0 equ 0x0 ;input port definition for BLMOV instruction

30 ; *************************************

31 ;* Directives

32 ; *************************************

33 MODE_CORE 0x4 ,0

34 ORG 0x0

35 ; *************************************

36 ;* Start of programm

37 ; *************************************

38 start

39 movlf 0x00 , bin0 , 0 ;move constants values to binX registers

40 movlf 0x01 , bin1 , 0 ;for sequence generation

41 movlf 0x03 , bin2 , 0

42 movlf 0x07 , bin3 , 0

43 movlf 0x0F , bin4 , 0

44 movlf 0x1F , bin5 , 0

45 movlf 0x3F , bin6 , 0

46 movlf 0x7F , bin7 , 0

47 movlf 0xFF , bin8 , 0

48 cycle

49 movw bin0 , OUT0 ;move binX data to output port

50 blmov BL_IN0 , H3F ;wait for an input data from Working_processor

51 movw bin1 , OUT0 ;Continue with the sequence ...

52 blmov BL_IN0 , H3F

53 movw bin2 , OUT0

54 blmov BL_IN0 , H3F

55 movw bin3 , OUT0

56 blmov BL_IN0 , H3F

57 movw bin4 , OUT0

58 blmov BL_IN0 , H3F

59 movw bin5 , OUT0

60 blmov BL_IN0 , H3F

61 movw bin7 , OUT0 ;THIS LINE INCLUDE THE INDUCED SOFTWARE ERROR

62 ;movw bin6 , OUT0 ;THE CORRECT SEQUENCE MUST INCLUDE THIS LINE

180

APPENDIX E. LISTINGS OF EXAMPLE APPLICATIONS

63 blmov BL_IN0 , H3F

64 movw bin7 , OUT0

65 blmov BL_IN0 , H3F

66 movw bin8 , OUT0

67 blmov BL_IN0 , H3F

68 goto cycle

Listing E.9: ASM code for delay of binary sequence.

1 ; --

2 ;-- Assembler template for Processor Core 0 in Mode 0

3 ;-- Created by: SANE Project Developer - v 2.20 - Javier Soto Vargas

4 ;-- Engineer: JSV

5 ;--

6 ;-- Date Created: 07/04/2014 6:51:35

7 ;-- Project Name: ftMode5_8BitsSequence_3Components

8 ;-- Filename: retardo.asm

9 ;-- Description : Delay for sequence

10 ;--

11 ;-- Revision 0.01 - File created.

12 ;-- Additional Comments:

13 ;--

14 ; --

15 #include <pMode0Core0.inc >

16

17 ;8-Bit General Purpose Registers

18 cont1 equ 0x1

19 cont2 equ 0x2

20 cont3 equ 0x3

21 BL_IN0 equ 0x0

22 ; *************************************

23 ;* Directives

24 ; *************************************

25 MODE_CORE 0x0 ,0 ;mode core directive

26 ORG 0x0 ;origin of first instruction

27 ; *************************************

28 ;* Start of programm

29 ; *************************************

30 start

31 BLMOV BL_IN0 ,0x3F ;Read an indicator from Working_processor

32 delay ;to start the delay process

33 MOVLF .127,cont3 ,0 ;constant cont3 to generate delay

34 del3

35 MOVLF 0,cont2 ,0 ;constant cont2 to generate delay

36 del2

37 MOVLF 0,cont1 ,0 ;constant cont1 to generate delay

38 del1

39 nop

40 DBNZ cont1 ,cont1 ,del1 ;loop using cont1

41 DBNZ cont2 ,cont2 ,del2 ;loop using cont2

42 DBNZ cont3 ,cont3 ,del3 ;loop using cont3

43 MOVLF 0x55 ,OUT0 ,0 ;move any data to OUT0 for comunicate the end

44 GOTO start ;of the process to other cells

Listing E.10: SHEX file generated by SANE Project developer after execute Build Project option.

1 unsigned int memoria [] =

2 {

3 ft_configuration_IC , //0x18

4 0xAAAA0001 , // id_primary

5 0xBBBB0002 , // id_redundant

6 create_component_IC , //0x00

7 0xAAAA , // id_comp

8 0, //Zero -based num cells in component

9 1, // num of outputs

10 0xAAAA0001 , // address

11 0x00 ,

12 0xCCCC0003 , // Input 0

13 0x00 ,

181

E.2. LISTINGS FOR STATIC FAULT TOLERANCE APPLICATION EXAMPLE

14 0x00000000 , // Input 1

15 0x00 ,

16 0x00000000 , // Input 2

17 0x00 ,

18 0x00000000 , // Input 3

19 0x04 ,

20 0xBBBB0002 , //FT Input 0

21 0x00 ,

22 0x00000000 , //FT Input 1

23 0x00 ,

24 0x00000000 , //FT Input 2

25 0x00 ,

26 0x00000000 , //FT Input 3

27 0x00 ,

28 0xCCCC0003 , // Output 0

29 create_component_IC , //0x00

30 0xBBBB , // id_comp

31 0, //Zero -based num cells in component

32 1, // num of outputs

33 0xBBBB0002 , // address

34 0x00 ,

35 0xCCCC0003 , // Input 0

36 0x00 ,

37 0x00000000 , // Input 1

38 0x00 ,

39 0x00000000 , // Input 2

40 0x00 ,

41 0x00000000 , // Input 3

42 0x00 ,

43 0x00000000 , //FT Input 0

44 0x00 ,

45 0x00000000 , //FT Input 1

46 0x00 ,

47 0x00000000 , //FT Input 2

48 0x00 ,

49 0x00000000 , //FT Input 3

50 0x04 ,

51 0xAAAA0001 , // Output 0

52 create_component_IC , //0x00

53 0xCCCC , // id_comp

54 0, //Zero -based num cells in component

55 2, // num of outputs

56 0xCCCC0003 , // address

57 0x00 ,

58 0xAAAA0001 , // Input 0

59 0x00 ,

60 0x00000000 , // Input 1

61 0x00 ,

62 0x00000000 , // Input 2

63 0x00 ,

64 0x00000000 , // Input 3

65 0x00 ,

66 0x00000000 , //FT Input 0

67 0x00 ,

68 0x00000000 , //FT Input 1

69 0x00 ,

70 0x00000000 , //FT Input 2

71 0x00 ,

72 0x00000000 , //FT Input 3

73 0x00 ,

74 0xAAAA0001 , // Output 0

75 0x00 ,

76 0xBBBB0002 , // Output 1

77 restart_and_disable_processors_IC ,//0x0A

78 write_FU_memory_CR_IC , //0x03

79 0xAAAA0001 , // address

80 4, // register number

81 0x04 , // MODE

82 0x00 , // FAMILY

83 0x00 , // PORTS

182

APPENDIX E. LISTINGS OF EXAMPLE APPLICATIONS

84 0x45 , // FTCSR

85 write_FU_memory_PM0_IC ,//0x04

86 0xAAAA0001 , // address

87 28, // register number

88 0x0500000 , //0 movlf 0x00 ,bin0 ,0

89 0x0501001 , //1 movlf 0x01 ,bin1 ,0

90 0x0503002 , //2 movlf 0x03 ,bin2 ,0

91 0x0507003 , //3 movlf 0x07 ,bin3 ,0

92 0x050F004 , //4 movlf 0x0F ,bin4 ,0

93 0x051F005 , //5 movlf 0x1F ,bin5 ,0

94 0x053F006 , //6 movlf 0x3F ,bin6 ,0

95 0x057F007 , //7 movlf 0x7F ,bin7 ,0

96 0x05FF008 , //8 movlf 0xFF ,bin8 ,0

97 0x0740024 , //9 movw bin0 ,OUT0 ,

98 0x078083F , //10 blmov BL_IN0 ,H3F ,

99 0x0740064 , //11 movw bin1 ,OUT0 ,

100 0x078083F , //12 blmov BL_IN0 ,H3F ,

101 0x07400A4 , //13 movw bin2 ,OUT0 ,

102 0x078083F , //14 blmov BL_IN0 ,H3F ,

103 0x07400E4 , //15 movw bin3 ,OUT0 ,

104 0x078083F , //16 blmov BL_IN0 ,H3F ,

105 0x0740124 , //17 movw bin4 ,OUT0 ,

106 0x078083F , //18 blmov BL_IN0 ,H3F ,

107 0x0740164 , //19 movw bin5 ,OUT0 ,

108 0x078083F , //20 blmov BL_IN0 ,H3F ,

109 0x07401E4 , //21 movw bin7 ,OUT0 ,

110 0x078083F , //22 blmov BL_IN0 ,H3F ,

111 0x07401E4 , //23 movw bin7 ,OUT0 ,

112 0x078083F , //24 blmov BL_IN0 ,H3F ,

113 0x0740224 , //25 movw bin8 ,OUT0 ,

114 0x078083F , //26 blmov BL_IN0 ,H3F ,

115 0x0E09000 , //27 goto cycle ,,

116 write_FU_memory_CR_IC , //0x03

117 0xBBBB0002 , // address

118 4, // register number

119 0x04 , // MODE

120 0x00 , // FAMILY

121 0x00 , // PORTS

122 0x55 , // FTCSR

123 write_FU_memory_PM0_IC ,//0x04

124 0xBBBB0002 , // address

125 28, // register number

126 0x0500000 , //0 movlf 0x00 ,bin0 ,0

127 0x0501001 , //1 movlf 0x01 ,bin1 ,0

128 0x0503002 , //2 movlf 0x03 ,bin2 ,0

129 0x0507003 , //3 movlf 0x07 ,bin3 ,0

130 0x050F004 , //4 movlf 0x0F ,bin4 ,0

131 0x051F005 , //5 movlf 0x1F ,bin5 ,0

132 0x053F006 , //6 movlf 0x3F ,bin6 ,0

133 0x057F007 , //7 movlf 0x7F ,bin7 ,0

134 0x05FF008 , //8 movlf 0xFF ,bin8 ,0

135 0x0740024 , //9 movw bin0 ,OUT0 ,

136 0x078083F , //10 blmov BL_IN0 ,H3F ,

137 0x0740064 , //11 movw bin1 ,OUT0 ,

138 0x078083F , //12 blmov BL_IN0 ,H3F ,

139 0x07400A4 , //13 movw bin2 ,OUT0 ,

140 0x078083F , //14 blmov BL_IN0 ,H3F ,

141 0x07400E4 , //15 movw bin3 ,OUT0 ,

142 0x078083F , //16 blmov BL_IN0 ,H3F ,

143 0x0740124 , //17 movw bin4 ,OUT0 ,

144 0x078083F , //18 blmov BL_IN0 ,H3F ,

145 0x0740164 , //19 movw bin5 ,OUT0 ,

146 0x078083F , //20 blmov BL_IN0 ,H3F ,

147 0x07401A4 , //21 movw bin6 ,OUT0 ,

148 0x078083F , //22 blmov BL_IN0 ,H3F ,

149 0x07401E4 , //23 movw bin7 ,OUT0 ,

150 0x078083F , //24 blmov BL_IN0 ,H3F ,

151 0x0740224 , //25 movw bin8 ,OUT0 ,

152 0x078083F , //26 blmov BL_IN0 ,H3F ,

153 0x0E09000 , //27 goto cycle ,,

183

E.3. CONCLUSIONS

154 write_FU_memory_CR_IC , //0x03

155 0xCCCC0003 , // address

156 4, // register number

157 0x00 , // MODE

158 0x00 , // FAMILY

159 0x00 , // PORTS

160 0x00 , // FTCSR

161 write_FU_memory_PM0_IC ,//0x04

162 0xCCCC0003 , // address

163 10, // register number

164 0x078083F , //0 BLMOV BL_IN0 ,0x3F ,

165 0x057F003 , //1 MOVLF .127 , cont3 ,0

166 0x0500002 , //2 MOVLF 0,cont2 ,0

167 0x0500001 , //3 MOVLF 0,cont1 ,0

168 0x0B40000 , //4 nop ,,

169 0x1704041 , //5 DBNZ cont1 ,cont1 ,del1

170 0x1703082 , //6 DBNZ cont2 ,cont2 ,del2

171 0x17020C3 , //7 DBNZ cont3 ,cont3 ,del3

172 0x0555024 , //8 MOVLF 0x55 ,OUT0 ,0

173 0x0E00000 , //9 GOTO start ,,

174 connect_component_IC , //0x01

175 enable_processors_wait_IC ,//0x0E

176 end_IC //0x0F

177 };

Listing E.11: SXM file generated by SANE Project developer after execute Build Project option.

1 01031 F000000000018AAAA0001BBBB0002000000000000AAAA0000000000000001AAAA00014F

2 01031 F000800000000CCCC0003003B

3 01031 F001000000004BBBB00020052

4 01031 F001800000000CCCC0003000000000000BBBB0000000000000001BBBB0002000000003C

5 01031 F0020CCCC00030023

6 01031 F00280004B2

7 01031 F0030AAAA0001000000000000CCCC0000000000000002CCCC000300000000AAAA0001CF

8 01031 F003800A6

9 01031 F004000AAAA000149

10 01031 F004800000000BBBB00020000000A00000003AAAA0001000000040000000400000000B4

11 01031 F0050000000000000004500000004AAAA00010000001C005000000050100100503002A1

12 01031 F0058005070030050F0040051F0050053F0060057F007005FF008007400240078083FF4

13 01031 F0060007400640078083F007400A40078083F007400E40078083F007401240078083FA1

14 01031 F0068007401640078083F007401E40078083F007401E40078083F007402240078083F55

15 01031 F007000E0900000000003BBBB0002000000040000000400000000000000000000005526

16 01031 F007800000004BBBB00020000001C005000000050100100503002005070030050F00494

17 01031 F00800051F0050053F0060057F007005FF008007400240078083F007400640078083F3C

18 01031 F0088007400A40078083F007400E40078083F007401240078083F007401640078083F78

19 01031 F0090007401A40078083F007401E40078083F007402240078083F00E090000000000392

20 01031 F0098CCCC0003000000040000000000000000000000000000000000000004CCCC000308

21 01031 F00A00000000A0078083F0057F003005000020050000100B400000170404101703082BF

22 01031700 A8017020C30055502400E00000000000010000000E0000000F23

E.3 Conclusions

The listings for the Dynamic Fault Tolerance Scaling application and for the Static Fault Tolerance
mechanism has been presented. These applications has been described in section 5.5 and 5.6
respectively.

The listing presented includes SANE Assembler (SASM) and Assembler (ASM) files. The
listings of SASM files presents the syntax and structure of the high-level configuration file, which
represents the sequence of instructions that the Control Microprocessor (CµP) executes for the
configuration of a SANE ASSEMBLY (SANE-ASM). The listings of ASM files represents the
tasks scheduled to cell processors.

The SASM and ASM listings presented in this chapter shows the syntax and structure of their
correspondent languages. These listings has been created and edited using the SANE Project

184

APPENDIX E. LISTINGS OF EXAMPLE APPLICATIONS

Developer (SPD). The listings for SHEX and SXM files has been generated automatically by
SPD after execution of the “Build Project” process.

The SHEX files represents the byte-code of the SASM instructions that CµP read when
execute the configuration of a SANE-ASM. This information is stored in CµP memory and
includes the Instruction Code and their correspondent arguments of SASM instructions.

The SXM files presents the frames that will be downloaded to CµP memory when the option
“Write Memory” is executed in the SPD. The format of this file is an adaptation of the XMODEM
protocol, which includes the same data generated for SHEX files when the project was built.

185

Glossary

A

ASM (Assembler) Assembly language instructions that are executed by processors. This term
can be also associated with the file that includes the ASM instructions, p. 66.

C

CCR (Code Condition Register) Contains the status of bits: Carry, Zero-bit and Thread Ac-
tive, p. 33.

CCU (Cell Configuration Unit) Part of the cell that executes the self-adaptive algorithms and
configure the internal multiplexers, p. xi.

CSR (Configuration and Status Register) Register mapped in Data Memory used for system
configuration, p. 34.

CµP (Control Microprocessor) It is responsible for implementing the main program for the
configuration and execution of system functionality. In the prototype, the CµP is
implemented inside the chip and replaces the External Controller, p. xii.

CU (Configuration Unit) It refers to any configuration unit in a chip, i.e., GCU, CCUs, SMCUs
or PIMCUs, p. 20.

E

EC (External Controller) Connected to the External Network, it controls the execution of all
processes in the system. In the prototype, the External Controller was replaced by
the Control Microprocessor (CµP) inside the chip, p. 13.

ENET (External Network) Network based in the I2C protocol that allows interconnect several
chips, p. 13.

F

FTS (Fault Tolerance System) Enables the system to continue operating properly in the event
of the failure of some of its processors, p. 17.

FU (Functional Unit) Part of the cell with processing capabilities, p. xi.

187

GLOSSARY

G

GCU (Global Configuration Unit) Part of the chip that controls the execution of all self-
adaptive processes, p. 14.

GPR (General Purpose Register) Register mapped in Data Memory used for data processing,
p. 33.

H

HEX (Hexadecimal File) Hexadecimal file with the compilation result of ASM files.

I

INET (Internal Network) Network based in the I2C protocol that allows interconnect several
configuration units inside the chip, p. 14.

M

MIMD (Multiple Instruction Multiple Data) Technique employed to achieve parallelism. Dif-
ferent processors may be executing different instructions on different pieces of data.

MISD (Multiple Instruction Single Data) Many functional units perform different operations
on the same data.

O

OMS (Output Multiplexing System) Configures a path between CORES and output registers.
It allows write operations over FU output ports., p. 31.

P

PIM (Pin Interconnection Matrix) Part of the chip that allows the interconnection between
two chips, p. 14.

PIMCU (Pin Interconnection Matrix Configuration Unit) Part of the pin interconecction ma-
trix that executes the self-adaptive algortihms and configures the internal multiplex-
ers, p. 18.

R

RE (Read Enable) Ninth bit of any FU port. Pulse of one clock-cycle when an FU output port
is written, p. 17.

S

SANE (Self-Adaptive Networked Entity) The SANE is the basic self-adaptive computing sys-
tem; it has the ability of monitoring its local environment and its internal computation
process, p. xi.

SANE-ASM (SANE ASSEMBLY) Composed of a group of interconnected SANEs, p. xi.

188

GLOSSARY

SASM (SANE Assembler) High-level instructions that are executed by the Control Micro-
processor for the implementation of a SANE ASSEMBLY. This term can be also
associated with the file that includes the SASM instructions, p. 44.

SCL (Serial Clock Line) Bus line for Internal and External Netorks, p. 20.

SDA (Serial Data Line) Bus line for Internal and External Netorks, p. 20.

SHEX (SANE Hexadecimal File) Hexadecimal file with the configuration of the SANE-ASM
that will be implemented in the FPGA prototype, p. 66.

SIMD (Single Instruction Multiple Data) Multiple processing elements that perform the same
operation on multiple data points simultaneously.

SISD (Single Instruction Single Data) A single processor executes a single instruction stream,
to operate on data stored in a single memory.

SM (Switch Matrix) Part of the cluster that allows the interconnection of components, p. 11.

SMCU (Switch Matrix Configuration Unit) Part of the Swicth Matrix that executes the self-
adaptive algortihms and configures the internal multiplexers, p. 18.

SPD (SANE Project Developer) Integrated development environment (IDE) used to develop
complete SANE applications, p. xii.

SXM (SANE X-Modem File) Hexadecimal file with the final configuration of the SANE-ASM
that will be downloaded in the FPGA prototype, p. 66.

V

VLIW (Very Long Instruction Word) , p. 5.

189

References

[1] AETHER Consortium AETHER Project Home, Self-Adaptative Embedded Tech-
nologies for Pervasive Computing Architectures. url: http://www.aether-ist.org/
(see pp. 1, 7, 8)

[2] K. Waldschmidt. “Adaptive system architectures” in: Parallel and Distributed Pro-
cessing Symposium, 2004. Proceedings. 18th International. 2004. 147– doi: 10.1109/

IPDPS.2004.1303130 (see pp. 1, 2)

[3] J.A. Casas, J.M. Moreno, J. Madrenas, and J. Cabestany. “A Novel
Hardware Architecture for Self-adaptive Systems” in: Adaptive Hardware and Systems,
2007. AHS 2007. Second NASA/ESA Conference on. 2007. 592–599 doi: 10.1109/AHS.
2007.11 (see pp. 2, 12)

[4] N.J. Macias and L.J.K. Durbeck. “Self-assembling circuits with autonomous
fault handling” in: Evolvable Hardware, 2002. Proceedings. NASA/DoD Conference on.
2002. 46–55 doi: 10.1109/EH.2002.1029864 (see pp. 2, 14)

[5] J.Manuel Moreno, Yann Thoma, and Eduardo Sanchez. “POEtic: A
Prototyping Platform for Bio-inspired Hardware” in: Evolvable Systems: From Biology to
Hardware ed. by J.Manuel Moreno, Jordi Madrenas, and Jordi Cosp.
vol. 3637 Lecture Notes in Computer Science Springer Berlin Heidelberg, 2005. 177–187
doi: 10.1007/11549703_17 (see pp. 2, 3, 14)

[6] J.M. Moreno Arostegui, E. Sanchez, and J. Cabestany. “An in-system
routing strategy for evolvable hardware programmable platforms” in: Evolvable Hardware,
2001. Proceedings. The Third NASA/DoD Workshop on. 2001. 157–166 doi: 10.1109/EH.
2001.937957 (see pp. 2, 14)

[7] M. Flynn. Some Computer Organizations and Their Effectiveness. Computers, IEEE
Transactions on, C-21: 948–960, 1972. doi: 10.1109/TC.1972.5009071 (see pp. 2, 8, 59)

[8] William Stallings. Computer organization and architecture - designing for perfor-
mance. Prentice Hall, 1996. 597–602 (see pp. 3, 17, 31)

[9] Min-You Wu and Wei Shu. “MIMD programs on SIMD architectures” in: Frontiers
of Massively Parallel Computing, 1996. Proceedings Frontiers ’96., Sixth Symposium on
the. 1996. 162–170 doi: 10.1109/FMPC.1996.558073 (see p. 3)

[10] Andy M. Tyrrell, Eduardo Sanchez, Dario Floreano, Gianluca
Tempesti, Daniel Mange, Juan-Manuel Moreno, Jay Rosenberg, and
Alessandro E. P. Villa. “POEtic tissue: an integrated architecture for bio-inspired
hardware” in: Proceedings of the 5th international conference on Evolvable systems: from
biology to hardware. ICES’03 Trondheim, Norway: Springer-Verlag, 2003. 129–140 (see p. 3)

191

http://www.aether-ist.org/
http://dx.doi.org/10.1109/IPDPS.2004.1303130
http://dx.doi.org/10.1109/IPDPS.2004.1303130
http://dx.doi.org/10.1109/AHS.2007.11
http://dx.doi.org/10.1109/AHS.2007.11
http://dx.doi.org/10.1109/EH.2002.1029864
http://dx.doi.org/10.1007/11549703_17
http://dx.doi.org/10.1109/EH.2001.937957
http://dx.doi.org/10.1109/EH.2001.937957
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/FMPC.1996.558073

REFERENCES

[11] Eduardo Sanchez, Daniel Mange, Moshe Sipper, Marco Tomassini,
Andres Perez-Uribe, and André Stauffer. “Phylogeny, ontogeny, and epige-
nesis: Three sources of biological inspiration for softening hardware” in: Evolvable Systems:
From Biology to Hardware ed. by Tetsuya Higuchi, Masaya Iwata, and Weixin
Liu. vol. 1259 Lecture Notes in Computer Science Springer Berlin Heidelberg, 1997. 33–54
doi: 10.1007/3-540-63173-9_37 (see p. 3)

[12] E. Sanchez, A. Perez-Uribe, A. Upegui, Y. Thoma, J.M. Moreno,
Andrzej Napieralski, A. Villa, G. Sassatelli, H. Volken, and E.
Lavarec. “PERPLEXUS: Pervasive Computing Framework for Modeling Complex
Virtually-Unbounded Systems” in: Adaptive Hardware and Systems, 2007. AHS 2007.
Second NASA/ESA Conference on. 2007. 587–591 doi: 10.1109/AHS.2007.84 (see p. 4)

[13] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J.-M. Moreno,
and J. Madrenas. “The Perplexus bio-inspired reconfigurable circuit” in: Adaptive
Hardware and Systems, 2007. AHS 2007. Second NASA/ESA Conference on. 2007. 600–
605 doi: 10.1109/AHS.2007.105 (see p. 4)

[14] P.-A. Mudry, F. Vannel, G. Tempesti, and D. Mange. “CONFETTI: A
reconfigurable hardware platform for prototyping cellular architectures” in: Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International. 2007. 1–8 doi:
10.1109/IPDPS.2007.370376 (see p. 4)

[15] P.-A. Mudry and G. Tempesti. “Self-Scaling Stream Processing: A Bio-Inspired
Approach to Resource Allocation through Dynamic Task Replication” in: Adaptive Hard-
ware and Systems, 2009. AHS 2009. NASA/ESA Conference on. 2009. 353–360 doi:
10.1109/AHS.2009.25 (see p. 4)

[16] M.R. Boesen and J. Madsen. “eDNA: A Bio-Inspired Reconfigurable Hardware
Cell Architecture Supporting Self-organisation and Self-healing” in: Adaptive Hardware
and Systems, 2009. AHS 2009. NASA/ESA Conference on. 2009. 147–154 doi: 10.1109/
AHS.2009.22 (see p. 4)

[17] Xiaoxuan She and Mark Zwolinski. “A novel self-routing reconfigurable fault-
tolerant cell array” in: AHS ’07: Proceedings of the Second NASA/ESA Conference on
Adaptive Hardware and Systems. Washington, DC, USA: IEEE Computer Society, 2007.
725–731 doi: http://dx.doi.org/10.1109/AHS.2007.13 (see p. 4)

[18] C. Azar, S. Chevobbe, Y. Lhuillier, and J-P Diguet. “Dynamic routing
strategy for embedded distributed architectures” in: Electronics, Circuits and Systems
(ICECS), 2011 18th IEEE International Conference on. 2011. 653–656 doi: 10.1109/
ICECS.2011.6122359 (see p. 5)

[19] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George
Homsy, Thomas F. Knight Jr., Radhika Nagpal, Erik Rauch, Ger-
ald Jay Sussman, and Ron Weiss. Amorphous computing. Commun. ACM , 43:
74–82, 2000. doi: http://doi.acm.org/10.1145/332833.332842 (see p. 5)

[20] D.C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry,
D. Cox, P. Harvey, P.M. Harvey, H.P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny,
M. Riley, D.L. Stasiak, M. Suzuoki, O. Takahashi, J. Warnock, S.
Weitzel, D. Wendel, and K. Yazawa. Overview of the architecture, circuit de-
sign, and physical implementation of a first-generation cell processor. Solid-State Circuits,
IEEE Journal of , 41: 179–196, 2006. doi: 10.1109/JSSC.2005.859896 (see p. 5)

192

http://dx.doi.org/10.1007/3-540-63173-9_37
http://dx.doi.org/10.1109/AHS.2007.84
http://dx.doi.org/10.1109/AHS.2007.105
http://dx.doi.org/10.1109/IPDPS.2007.370376
http://dx.doi.org/10.1109/AHS.2009.25
http://dx.doi.org/10.1109/AHS.2009.22
http://dx.doi.org/10.1109/AHS.2009.22
http://dx.doi.org/http://dx.doi.org/10.1109/AHS.2007.13
http://dx.doi.org/10.1109/ICECS.2011.6122359
http://dx.doi.org/10.1109/ICECS.2011.6122359
http://dx.doi.org/http://doi.acm.org/10.1145/332833.332842
http://dx.doi.org/10.1109/JSSC.2005.859896

REFERENCES

[21] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo Man, and
Rudy Lauwereins. “ADRES: An Architecture with Tightly Coupled VLIW Processor
and Coarse-Grained Reconfigurable Matrix” in: Field Programmable Logic and Application
ed. by Peter Cheung and GeorgeA. Constantinides. vol. 2778 Lecture
Notes in Computer Science Springer Berlin Heidelberg, 2003. 61–70 doi: 10.1007/978-
3-540-45234-8_7 (see p. 5)

[22] Bingfeng Mei, S. Vernalde, D. Verkest, and R. Lauwereins. “Design
methodology for a tightly coupled VLIW/reconfigurable matrix architecture: a case study”
in: Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceedings.
vol. 2 2004. 1224–1229 Vol.2 doi: 10.1109/DATE.2004.1269063 (see p. 5)

[23] Ming-Hau Lee, Hartej Singh, Guangming Lu, Nader Bagherzadeh,
FadiJ. Kurdahi, EliseuM.C. Filho, and VladimirCastro Alves. Design
and Implementation of the MorphoSys Reconfigurable Computing Processor. Journal of
VLSI signal processing systems for signal, image and video technology , 24: 147–164, 2000.
doi: 10.1023/A:1008189221436 (see p. 5)

[24] H. Singh, Ming-Hau Lee, Guangming Lu, F.J. Kurdahi, N. Bagherzadeh,
and E.M. Chaves Filho. MorphoSys: an integrated reconfigurable system for data-
parallel and computation-intensive applications. Computers, IEEE Transactions on, 49:
465–481, 2000. doi: 10.1109/12.859540 (see p. 5)

[25] Guangming Lu, H. Singh, Ming-Hau Lee, N. Bagherzadeh, F.J. Kur-
dahi, E.M.C. Filho, and V. Alves. “The MorphoSys dynamically reconfigurable
system-on-chip” in: Evolvable Hardware, 1999. Proceedings of the First NASA/DoD Work-
shop on. 1999. 152–160 doi: 10.1109/EH.1999.785447 (see p. 5)

[26] Takashi Miyamori and Kunle Olukotun. “REMARC: Reconfigurable Multi-
media Array Coprocessor” in: IEICE Transactions on Information and Systems E82-D.
1998. 389–397 (see p. 6)

[27] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M.
Weinhardt. PACT XPP - A Self-Reconfigurable Data Processing Architecture. J.
Supercomput., 26: 167–184, 2003. doi: 10.1023/A:1024499601571 (see p. 6)

[28] João M. P. Cardoso and Markus Weinhardt. “XPP-VC: A C Compiler
with Temporal Partitioning for the PACT-XPP Architecture” in: Proceedings of the Re-
configurable Computing Is Going Mainstream, 12th International Conference on Field-
Programmable Logic and Applications. FPL ’02 London, UK, UK: Springer-Verlag, 2002.
864–874 (see p. 6)

[29] Chris Jesshope SVP and uTC A dynamic model of concurrency and its implementa-
tion as a compiler target . 2006 (see pp. 7, 8, 36, 101)

[30] Thuy Duong Vu and Chris Jesshope. “Formalizing SANE virtual processor
in thread algebra” in: Proceedings of the formal engineering methods 9th international
conference on Formal methods and software engineering. ICFEM’07 Boca Raton, FL, USA:
Springer-Verlag, 2007. 345–365 (see pp. 7, 36, 37, 101)

[31] E. Anderson, J. Agron, W. Peck, J. Stevens, F. Baijot, E. Komp, R.
Sass, and D. Andrews. “Enabling a Uniform Programming Model Across the Soft-
ware/Hardware Boundary” in: Field-Programmable Custom Computing Machines, 2006.
FCCM ’06. 14th Annual IEEE Symposium on. 2006. 89–98 doi: 10.1109/FCCM.2006.40
(see pp. 7, 101)

193

http://dx.doi.org/10.1007/978-3-540-45234-8_7
http://dx.doi.org/10.1007/978-3-540-45234-8_7
http://dx.doi.org/10.1109/DATE.2004.1269063
http://dx.doi.org/10.1023/A:1008189221436
http://dx.doi.org/10.1109/12.859540
http://dx.doi.org/10.1109/EH.1999.785447
http://dx.doi.org/10.1023/A:1024499601571
http://dx.doi.org/10.1109/FCCM.2006.40

REFERENCES

[32] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. An-
drews. “Hthreads: A Computational Model for Reconfigurable Devices” in: Field Pro-
grammable Logic and Applications, 2006. FPL ’06. International Conference on. 2006. 1–4
doi: 10.1109/FPL.2006.311336 (see pp. 7, 36, 101)

[33] Javier Soto, Juan Manuel Moreno, and Joan Cabestany. “Description
of a fault tolerance system implemented in a hardware architecture with self-adaptive
capabilities” in: Proceedings of the 11th international conference on Artificial neural net-
works conference on Advances in computational intelligence - Volume Part II. IWANN’11
Torremolinos-Málaga, Spain: Springer-Verlag, 2011. 557–564 (see pp. 8, 17)

[34] Javier Soto, Juan Manuel Moreno, and Joan Cabestany. A self-adaptive
hardware architecture with fault tolerance capabilities. Neurocomputing , 121: ¡ce:title¿Advances
in Artificial Neural Networks and Machine Learning¡/ce:title¿ ¡ce:subtitle¿Selected papers
from the 2011 International Work Conference on Artificial Neural Networks (IWANN
2011)¡/ce:subtitle¿, 25 –31, 2013. doi: http://dx.doi.org/10.1016/j.neucom.2012.
10.038 (see p. 8)

[35] J. Soto-Vargas, J.M. Moreno, J. Madrenas, and J. Cabestany. “Imple-
mentation of a Dynamic Fault-Tolerance Scaling Technique on a Self-Adaptive Hardware
Architecture” in: International Conference on Reconfigurable Computing and FPGAs, 2009.
ReConFig ’09. 2009. 445–450 doi: 10.1109/ReConFig.2009.45 (see p. 8)

[36] NXP Semiconductors I2C-bus specification and user manual Rev. 4 2012 (see
p. 20)

[37] Qwertie. Software Developer Trapeze Software. Inc. Canada.
ICSharpCode.TextEditor url: http://www.codeproject.com/Articles/30936/Using-
ICSharpCode-TextEditor (see p. 147)

194

http://dx.doi.org/10.1109/FPL.2006.311336
http://dx.doi.org/http://dx.doi.org/10.1016/j.neucom.2012.10.038
http://dx.doi.org/http://dx.doi.org/10.1016/j.neucom.2012.10.038
http://dx.doi.org/10.1109/ReConFig.2009.45
http://www.codeproject.com/Articles/30936/Using-ICSharpCode-TextEditor
http://www.codeproject.com/Articles/30936/Using-ICSharpCode-TextEditor

	Title page
	Dedicatory
	Dedicatoria
	Acknowledgements / Agradecimientos
	Abstract
	Resumen
	Contents
	List of Tables
	List of Figures
	Listings
	1- Introduction
	1.1- Adaptive and Bioinspired Systems
	1.2- Self-Adaptive capabilities in the proposed architecture
	1.3- Architectures for parallel computing
	1.4- Preliminary work
	1.4.1- POEtic
	1.4.2- PERPLEXUS

	1.5- State of the art
	1.5.1- Confetti
	1.5.2- eDNA
	1.5.3- Self-routing reconfigurable fault-tolerant cell array
	1.5.4- CEDAR
	1.5.5- Amorphous
	1.5.6- Cell Processors - Sony-Toshiba-IBM team
	1.5.7- ADRES
	1.5.8- MorphoSys
	1.5.9- REMARC
	1.5.10- XPP (eXtreme Processing Platform)
	1.5.11- The SANE Virtual Processor (SVP)
	1.5.12- HTHREADS

	1.6- Architecture Overview and Contributions
	1.6.1- Scalability

	1.7- Document Organization
	1.8- Conclusions

	2- System Architecture
	2.1- Conceptual organization
	2.2- Overview for the configuration of an application
	2.2.1- Connection of cells

	2.3- Overview of System Architecture
	2.4- Chip Architecture
	2.5- Global Configuration Unit
	2.6- Cluster
	2.7- Cell Architecture
	2.7.1- Functional Unit (FU)
	2.7.2- Cell Configuration Unit (CCU)

	2.8- Switch Matrix
	2.9- Pin Interconnection Matrix
	2.10- Expansion Signals
	2.10.1- Global Signals for Self-routing Process

	2.11- Internal and External Networks
	2.11.1- Communication Interface
	2.11.2- Data Transmission
	2.11.3- Comparison Process

	2.12- Communication Protocol for Internal Network
	2.13- Communication Protocol for External Network
	2.14- Prototype architecture
	2.15- Conclusions

	3- Functional Unit Architecture
	3.1- General Description
	3.2- FU Ports
	3.3- Architecture of Processors
	3.3.1- Cores
	3.3.2- Processor
	3.3.3- Configuration modes

	3.4- Data Memory
	3.4.1- General Purpose Registers (GPRs)
	3.4.2- Configuration and Status Registers (CSRs)
	3.4.3- Data Memory Map

	3.5- Program Memory and Instructions Set
	3.6- Output Multiplexing System
	3.7- Fault Tolerance System (FTS)
	3.7.1- Fault Tolerance Input Ports
	3.7.2- Fault Tolerance Modes
	3.7.3- Configuration of FTS

	3.8- Conclusions

	4- Self-Adaptive Processes
	4.1- Summary
	4.2- Previous Considerations
	4.3- Initial State, Cell Address and Connection Tables
	4.4- Creation of Components in a Chip
	4.5- Self-Placement Process
	4.5.1- Self-Placement of the First Cell of a Component
	4.5.2- Self-Placement of Other Cells of a Component

	4.6- Self-Routing Process
	4.7- Self-Routing at Cell Level
	4.7.1- Configuration of source and target cells for cell connections
	4.7.2- Expansion Process at Cell Level

	4.8- Self-Routing at Component Level
	4.8.1- Configuration of Source and Target Cells for Components Connections
	4.8.2- Expansion Process at Component Level

	4.9- Self-Elimination and Self-Replication
	4.9.1- Elimination of a Cell inside a Chip

	4.10- Self-Configuration by means of Subprocesses
	4.10.1- Delete a Component inside a Chip

	4.11- Self-Derouting Process
	4.11.1- Cell Selection for Derouting Process of a Single Cell
	4.11.2- Cell Selection for Derouting Process of a Entire Component
	4.11.3- Release Process

	4.12- Conclusions

	5- Development and Implementation of Self-adaptive Applications with Parallel Processing Capabilities.
	5.1- SANE ASSEMBLY Development System
	5.2- Overview for the Configuration of an Application
	5.3- Description of SASM Instructions
	5.3.1- Creation of Components
	5.3.2- Connection of Components
	5.3.3- Delete Components
	5.3.4- Write Functional Unit Program Memories and Configuration Registers
	5.3.5- Restart, Enable and Disable Processors
	5.3.6- System in ``Wait'' State for Runtime Self-configuration
	5.3.7- Runtime Self-configuration by means of Subprocesses
	5.3.8- Static Fault Tolerance Configuration

	5.4- Development of Applications
	5.5- Application Example: Dynamic Fault-Tolerance Scaling
	5.5.1- Dynamic Fault-Tolerance Structure
	5.5.2- Description of the application

	5.6- Application Example: Static Fault-Tolerance
	5.7- Conclusions

	6- Publications and Results
	6.1- Publications
	6.1.1- Neurocomputing Journal
	6.1.2- Advances in Computational Intelligence - IWANN 2011
	6.1.3- International Conference - Reconfig'09
	6.1.4- International Conference - DCIS 2008
	6.1.5- International Conference - JCRA 08
	6.1.6- International Conference - ReCoSoC'08

	6.2- Code Generated
	6.2.1- Hardware

	6.3- Firmware
	6.4- Software
	6.5- Synthesis Process for Prototype
	6.6- Conclusions

	7- Conclusions and Future Work
	7.1- Conclusions
	7.1.1- About System Architecture
	7.1.2- About the Self-Adaptive Processes
	7.1.3- About Integrated Development System

	7.2- Future Work

	A- Instructions Set for Functional Unit Processors
	A.1- Instructions Format
	A.2- Instructions Set

	B- Data Memory Registers of Functional Unit Processors
	B.1- Abbreviations
	B.2- Input Ports Registers
	B.3- Output Ports Registers
	B.4- Code Condition Register
	B.5- Mode Register
	B.6- Family Register
	B.7- Output Ports Configuration Register (PORTS)
	B.8- Subprocess Configuration and Status Register (SUBPCSR)
	B.9- Fault Tolerance Configuration and Status Register (FTCSR)

	C- Flow Diagrams for Self-adaptive Processes in System
	C.1- Transmission and Reception in Cell
	C.2- Self-Placement Processes in CCU
	C.2.1- Flow Diagram for Insertion of First Cell of a Component
	C.2.2- Flow Diagram for Insertion of Other Cells of a Component

	C.3- Self-Routing Processes in CCU
	C.3.1- Flow Diagram to select the Source and Target cells before the Expansion Process at Cell Level
	C.3.2- Main Flow Diagram in CCU
	C.3.3- Expansion Process at Cell Level - Search Phase
	C.3.4- Expansion Process at Cell Level - Configuration Phase
	C.3.5- Release Process at Cell Level

	C.4- Self-Routing Processes in SMCU
	C.4.1- Expansion Process at Component Level - Search Phase
	C.4.2- Expansion Process at Component Level - Configuration Phase
	C.4.3- Release Process at Component Level

	C.5- Conclusions

	D- SANE Project Developer (SPD)
	D.1- Description
	D.2- Files Edition
	D.2.1- Assembler Files
	D.2.2- SANE Assembler Files

	D.3- Functions
	D.3.1- File Menu
	D.3.2- Edit Menu
	D.3.3- Project Menu
	D.3.4- Tool Menu
	D.3.5- View Menu
	D.3.6- Communication Menu
	D.3.7- Help and Admin Menus

	D.4- Downloading Project to Prototype
	D.4.1- Communication Test
	D.4.2- Clear Memory
	D.4.3- Write Memory
	D.4.4- Read Memory

	D.5- Conclusions

	E- Listings of Example Applications
	E.1- Listings for Dynamic Fault Tolerance Scaling Application Example
	E.2- Listings for Static Fault Tolerance Application Example
	E.3- Conclusions

	Glossary
	References

