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Abstract

Transactional Memory (TM) provides software developers the oppor-

tunity to write concurrent programs more easily compared to any pre-

vious programming paradigms and promisses to give a performance

comparable to lock-based synchronizations.

Current Software TM (STM) implementations have performance over-

heads that can be reduced by introducing new abstractions in Trans-

actional Memory programming model.

In this thesis we present four new techniques for improving the per-

formance of Software TM: (i) Abstract Nested Transactions (ANT),

(ii) TagTM, (iii) profile-guided transaction coalescing, and (iv) dy-

namic transaction coalescing. ANT improves performance of trans-

actional applications without breaking the semantics of the transac-

tional paradigm, TagTM speeds up accesses to transactional meta-

data, profile-guided transaction coalescing lowers transactional over-

heads at compile time, and dynamic transaction coalescing lowers

transactional overheads at runtime.

Our analysis shows that Abstract Nested Transactions, TagTM, profile-

guided transaction coalescing, and dynamic transaction coalescing im-

prove the performance of the original programs that use Software

Transactional Memory.
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Chapter 1

Introduction

1.1 Introduction to Transactional Memory

The multi-core era has already arrived. Currently, most of the new desktop or

laptop computers have two or more cores. Intel and AMD are promising that in

coming years we will have 32, 64 or more cores integrated in to a single chip. The

new game consoles like XBOX ONE from Microsoft and PlayStation 4 from Sony

have multi core CPUs (8 CPU cores with multi-core GPU). Still, the developers

of new applications have hard time writing concurrent programs that utilize all

of the available CPU cores. The reason for this is that the programmers are

still using locks as their main building blocks for writing concurrent programs.

The use of locks introduces problems like: dead lock and live lock, that are hard

to detect, debug and reproduce. The transactional memory raises the level of

abstraction for the programmers and elegantly eliminates the problems stated

above.

The transactional memory (TM) technology borrows proven concurrency-

control concepts from work done over the decades in the database field, and

try to apply them in everyday programming languages (C, C++, Java, C#).

Transactional Memory (TM) systems can be subdivided into three flavors:

Hardware TM (HTM), Software TM (STM) and Hybrid TM (HyTM) (the mix

of hardware and software transactional memory).

1



1.1 Introduction to Transactional Memory

1.1.1 Transactions in databases

In the context of databases, a single logical operation on the data is called a trans-

action. A set of properties that database transactions guarantee are: atomicity,

consistency, isolation, and durability (ACID).

An example of a transaction is a transfer of funds from one account to another,

even though it might consist of multiple individual operations, such as debiting

one account and crediting another.

Atomicity

Atomicity refers to the ability of the database to guarantee that either all of

the tasks of a transaction are performed or none of them are. For example,

the transfer of funds can be completed or it can fail for a multitude of reasons,

but atomicity guarantees that one account will not be debited if the other is

not credited. Atomicity states that database modifications must follow an “all

or nothing” rule. Each transaction is said to be “atomic.” If one part of the

transaction fails, the entire transaction fails. It is critical that the database

management system maintains the atomic nature of transactions in spite of any

operating system or hardware failure.

Consistency

Consistency property ensures that the database remains in a valid state before

the start of the transaction and after the transaction is over, whether successful

or not.

Consistency states that only valid data will be written to the database. If, for

some reason, a transaction is executed that violates the database’s consistency

rules, the entire transaction will be rolled back and the database will be restored to

a state consistent with those rules. On the other hand, if a transaction successfully

executes, it will take the database from one state that is consistent with the rules

to another state that is also consistent with the rules

2



1.1 Introduction to Transactional Memory

Isolation

Isolation refers to the constraint that prevent other operations to access or see

the data in the intermediate state during transaction. This constraint is required

to maintain the consistency between transactions in a DBMS system.

Durability

Durability refers to the guarantee that once the user has been notified of success,

the transaction will persist, and not be undone. This means it will survive system

failure, and that the database system has checked the integrity constraints and

won’t need to abort the transaction. Many databases implement durability by

writing all transactions into a log that can be played back to recreate the system

state right before the failure. A transaction can only be deemed after it is safely

stored in the log.

1.1.2 Transactional memory

In computer science, transactional memory (TM) is a concurrency control mecha-

nism analogous to database transactions for controlling access to shared memory

in concurrent computing. It functions as an alternative to lock-based synchro-

nization. A transaction in this context is a piece of code that executes a series of

reads and writes to a shared memory. These reads and writes logically occur at

a single instant in time (atomicity); intermediate states are not visible to other

(successful) transactions (isolation). The idea of providing hardware support for

transactions originated in paper by Tom Knight [Knight (1986)]. The idea was

popularized by Maurice Herlihy and J. Eliot B. Moss [Herlihy & Moss (1993)]

for hardware TM. In 1995 Nir Shavit and Dan Touitou extended this idea to

software-only transactional memory (STM) [Shavit & Touitou (1995)].

Transactions in TM do not try to provide all ACID properties of database

transactions. From the programming point of view only atomicity and isolation

properties are required because TM as a concept tries to eliminate explicit use

of locks (TM systems can use locks in their implementations but those locks are

not exposed to the programmers).

3



1.1 Introduction to Transactional Memory

// lock version // transactional version

while(1){ atomic{

lock(counter.lock); if(!(counter.value > 0)) retry;

if(counter.value > 0) break; --counter.value;

unlock(counter.lock); }

}

// we are holding the lock

--counter.value;

unlock(counter.lock);

Figure 1.1: Decrementing a counter

Consistency property (as it is defined in databases) does not exist in TM, but

most of TM systems provide a ‘retry’ operation that automatically restarts the

transaction. The retry operation can be used to implement consistency rules that

are specified in the program.

The example in Figure 1.1 shows how the consistency rules are programmed

by using locks and by using transactions with retry operation. For example,

assume that we want to decrement a shared counter only if it is greater than zero

(consistency rule). In the version of the program that uses locks we have have to

take special care (to release the lock) in order not to create a deadlock. We can

see that the transactional version is much simpler and it does not suffer from the

deadlock problem because the TM system guaranties correct execution.

Durability is not provided in TM because the programs which use TM are not

durable by definition.

Version control

Depending on the moment when we update the shared memory locations we can

identify two types of version control:

• Eager versioning : a write access within a transaction immediately writes

to memory the new data version. The old version is buffered in an undo

log.

4



1.1 Introduction to Transactional Memory

• Lazy versioning : stores all new data versions in a write buffer until the

transaction completes.

Conflict detection

Depending on the moment when we detect conflicts between transactions we can

identify two types of version control:

• Eager conflict detection: TM detects a conflict when a transaction tries to

access a memory reference.

• Lazy conflict detection: TM detects conflicts when the first of two or more

conflicting transactions commits.

Read and Write set

During the execution of a transaction, the transaction speculatively reads and

writes shared memory locations. In order to keep the track of read and write

accesses to shared memory location, each transaction keeps the access information

in its read and write sets. We define read and write set of a transaction in the

following way:

• Read set is the set of shared memory locations that are read speculatively

during the execution of the transaction.

• Write set is the set of shared memory locations that are written specula-

tively during the execution of the transaction.

Read and write set can overlap or they can be disjunctive. At the commit

time, the transaction validates its read and write set and commits its write set

(the transaction updates the shared memory locations with the speculative values

from the write set).

5



1.1 Introduction to Transactional Memory

Conceptual advantages and disadvantages of TM

TM greatly simplifies conceptual understanding of multithreaded programs and

helps make programs more maintainable by working in harmony with existing

high-level abstractions such as objects and modules. Lock-based programming

has a number of well-known problems that frequently arise in practice:

• Locks require thinking about overlapping operations and partial operations

in distantly separated and seemingly unrelated sections of code, a task which

is very difficult and error-prone for programmers.

• The fine grained locking require programmers to adopt a locking policy

to prevent deadlock, livelock, and other failures to make progress. Such

policies are often informally enforced and fallible, and when these issues

arise they are difficult to reproduce and debug.

• Locks can lead to priority inversion, a phenomenon where a high-priority

thread is forced to wait on a low-priority thread holding exclusive access to

a resource that it needs.

In contrast, the concept of a memory transaction is much simpler, because

each transaction can be viewed in isolation as a single-threaded computation.

Deadlock and livelock are either prevented entirely or handled by an external

transaction manager. Priority inversion can still be an issue, but high-priority

transactions can abort conflicting lower-priority transactions that have not al-

ready committed.

On the other hand, the need to abort failed transactions also places limitations

on the behavior of transactions: they cannot perform any operation that cannot

be undone, including most I/O.

1.1.3 Nested Transactions

Figure 1.2 shows an example of two functions f() and g() where each function

contains one transaction. The function g() executes transaction that contains

the call to function f(). Because function f() is marked as inline, the compiler

inlines the body of function f() in the function g(). After inlining, the function

6



1.1 Introduction to Transactional Memory

Figure 1.2: Nested transactions

g() contains two transactions (outer and inner). TM system define 3 modes how

these two transactions execute with respect to other transactions in the system:

(i) flat nesting, (ii) closed nesting, and (iii) open nesting.

Flat nesting mode executes outer transaction as one big transaction. Flat

nesting ignores the presence of the nested atomic block but executes the body

of nested transaction as part of the outer transaction. If a conflict happens on

a or b, the outer transaction is restarted. When the outer transaction finishes

executing, the speculative values of a and b are committed to the memory.

Closed nesting mode executes outer transaction as one big transaction. If

a conflict happens on a, the inner transaction is restarted; and if the conflict

happens on b, the outer transaction is restarted. When the outer transaction

finishes executing, the speculative values of a and b are committed to the memory.

Open nesting mode executes outer transaction as two separate transactions.

If a conflict happens on a inner transaction is restarted and if conflict happens on b

the outer transaction is restarted. When the inner transaction finishes executing,

the speculative value of a is committed to the memory (even though the outer

7



1.1 Introduction to Transactional Memory

transaction did not finish). When the outer transaction finishes executing, the

speculative value of b is committed to the memory.

1.1.4 Software Transactional Memory (STM)

Unlike the locking techniques used in most modern multithreaded applications,

a thread speculatively access the shared memory without regard for what other

threads might be doing, recording every read and write that it is performing in a

log. Instead of placing the burden on the writer thread to make sure it does not

adversely affect other operations in progress, it is placed on the reader thread,

who after completing an entire transaction verifies that other threads have not

concurrently made changes to memory that it accessed in the past. This final

operation, in which the changes of a transaction are validated and, if validation

is successful, made permanent, is called commit. A transaction may also abort

at any time, causing all of its prior changes to be rolled back and undone. If

a transaction cannot be committed due to conflicting changes, it is typically

aborted and re-executed from the beginning until it succeeds.

However, in practice STM systems also experience a performance hit relative

to fine-grained lock-based systems on small numbers of processors (1 to 4 depend-

ing on the application). This is primarily due to the overhead associated with

maintaining the log and the time spent committing transactions.

1.1.5 Hardware Transactional Memory (HTM)

In HTM systems, the hardware ensures correct transaction execution. HTM –

compared with STM – does not experience the performance penalties. Hardware

implements all necessary transactional mechanisms in caches [Hammond et al.

(2004a), Ananian et al. (2005)] or memory directory [Moore et al. (2006b)].

Currently proposed HTM systems fall into three regions of the design space:

• LL: lazy conflict detection, lazy version management [Hammond et al.

(2004a)]

• EL: eager conflict detection, lazy version management [Ananian et al. (2005)]

8



1.2 STAMP Benchmark Suite

• EE: eager conflict detection, eager version management [Moore et al. (2006b)]

In the paper [Bobba et al. (2007)], the authors show that lazy/lazy TM per-

form better than eager/eager TMs in general case.

The downsides of HTM is that none of the CPU manufactures (Intel, AMD,

IBM) are planing to implement full HTM in their CPUs, because of its complexity.

Sun Microsystems planed to release the Rock CPU that provide limited support

for executing small transactions in hardware [Moir et al. (2008)] but in the end the

project was canceled. Intel released Haswell CPU with best effort HTM system

[Yoo et al. (2013)] that executes transaction as long as the transactional data fit

in L1 cache. When the transactional data overflows the cache, the transaction

use software fallback mechanism.

1.1.6 Hybrid Transactional Memory

Hybrid transactional memory promises best of the two worlds. Small transitions

can be executed in hardware and larger ones in software. Most transactions have

small size [Ananian et al. (2005)] and HTM system can execute them in hardware

which as a consequence gives us the maximum performance for the majority of

the transactions. The transactions that exceed hardware resources will fall back

to software mode.

University of Rochester proposed an extension to the MESI protocol [Shrira-

man et al. (2006)] that provides acceleration of STM. In 2006. Intel proposed

adding few additional bits to the cache lines of the CPU in order to follow the

validity of the memory locations that are referenced by STM [Saha et al. (2006a)].

Sun Microsystems [Moir et al. (2008)] proposed a hybrid TM approach in which

transactions execute in hardware and if they overflow, they are rolled back and

restarted in software.

1.2 STAMP Benchmark Suite

STAMP benchmark suite [Minh et al. (2008)] is de facto standard in TM com-

munity for the evaluation of TM systems, thus, we use it for the evaluation

of hardware and software techniques presented in this thesis [Chapters 3, 4,

9



1.2 STAMP Benchmark Suite

Application Domain Description

bayes machine learning Learns structure of a Bayesian network

genome bioinformatics Performs gene sequencing

intruder security Detects network intrusions

kmeans data mining Implements K-means clustering

labyrinth engineering Routes paths in maze

ssca2 scientific Creates efficient graph representation

vacation online transaction processing Emulates travel reservation system

yada scientific Refines a Delaunay mesh

Table 1.1: STAMP benchmark suite applications

and 5]. STAMP consist of eight different benchmarks (Table 1.1) that cover

a wide range of transactional execution cases (e.g., small/large transactions,

small/large conflict rate). The benchmarks are: bayes, genome, intruder,

kmeans, labyrinth, ssca2, vacation, yada.

Bayes application implements algorithm for learning the structure of Bayesian

networks from observed data. The Bayesian network itself is represented as a

directed acyclic graph, with a node for each variable and an edge for each con-

ditional between variables. Initially, the network hash no dependencies among

variables, and the algorithm incrementally learns dependencies by analysing the

observed data. On each iteration, each thread is given a variable to analyze,

and as more dependencies are added to the network, connected subgraphs of

dependent variables are formed.

A transaction is used to protect the calculation and addition of a new de-

pendency, as the result depends on the extent of the subgraph that contains the

variable being analyzed. Using transaction is much simpler than a lock-base ap-

proach as using locks would require manually orchestrating a two-phase locking

scheme with deadlock detection and recovery to allow concurrent modification

of the graph. Calculations of new dependencies take up most of the execution

time, causing bayes to spend almost all its execution time in long transactions

that have large a read and write set. Overall, this benchmark has high amount

of contention as the subgraph changes frequently.
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Genome application takes large number of DNA segments and tries to match

them to reconstruct the original source genome. The application operates in two

phases. In the first phase, genome uses hash set to remove the duplicate DNA

segments, and in the second phase, tries to remove a segment from a global pool

of unmatched segments and add it to its partition of currently matched segments.

Transaction are used in each phase of the benchmark. Additions to the set of

unique segments are enclosed by transactions to allow concurrent accesses, and

accesses to the global pool of unmatched segments are also enclosed by transac-

tions since threads may try to remove the same segment. Overall, the transaction

in genome are of moderate length and have moderate read write set size. Ad-

ditionally, almost all of the execution time is transactional, and there is little

contention.

Intruder application uses signature-based network intrusion detection system

to scan network packets for matches against a known set of intrusion signatures.

Network packets are processed in parallel and go through three phases: capture,

reassembly, and detection. The main data structure in the capture phase in sim-

ple FIFO queue, and the reassembly phase uses a self-balancing tree that contains

lists of packets that belong to the same session and uses coarse-grain synchroniza-

tion. The capture and reassembly phase are each enclosed by transactions. So,

the code for each phase is equivalent to the lock version and has short transactions

with moderate levels of contention.

Kmeans application implements K-means algorithm that groups objects in

and N-dimensional space into K clusters. The algorithm is commonly used to

partition data items into related subsets. The application uses transactions to

protect the update of the cluster center that occurs during each iteration. The

amount of contention among threads depends on the value of K, with larger

values resulting in less frequent conflicts as it is less likely that two threads are

concurrently operation on the same cluster center. When updating the cluster

centers, the size of transaction is proportional to the dimensionality of the space.

Thus, the size of the transactions are relatively small.

Labyrinth application uses three-dimensional uniform grid that represents

maze. The application uses threads, where each thread grabs a start and end

point and tries to connect it with adjacent maze grid points. The calculation of
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the path is executed in a single transaction. A conflict occurs when two threads

pick paths that overlap. Almost all of the application execution time is taken

by the patch calculation, and this operation reads and writes an amount of data

proportional to the number of total maze grid points, thus, labyrinth has very

long transactional with very large read and write sets. Almost all the code is

executed transactionally, and the amount of contention is very high.

Vacation application implements a travel reservation system powered by an

in-memory database. Several client threads interact with the database through

transactional requests. The performance is measured as the number of served

client requests per second. The paper [Zyulkyarov et al. (2010a)] shows that the

performance bottleneck in vacation is the red-black tree that is used as database

storage, and they suggest replacing it with a hash table. We follow the same

approach. Moreover, we identified another performance bottleneck: a function

for generating random numbers was on the critical path limiting the throughput.

We moved the generation of random numbers to the initialization part of the

benchmark, where we populate per thread arrays with random numbers. We

replaced the original random number function with an array indexing function

that reads the random numbers from the arrays. In this way, we improved the

throughput of the original benchmark without modifying its semantics.

Ssca2 [Bader & Madduri (2005)] application is a synthetic benchmark that

operates on a large, directed, weighted multi-graph. The main loop of ssca2

traverses all the edges of the graph. The graph can be traversed in any order

and the final execution of the benchmark is the same. Thus, transactions in the

main loop execute in arbitrary order. We modified the main loop and instead of

executing the transactions immediately, we buffer the values of the variables used

in the transactions. When the buffer gets full, we execute all the transactions in

a tight loop.

Yada application implements Ruppert’s algorithm for Delaunay mesh refine-

ment [Ruppert (1995)]. Yada uses graph data-structure to store all mesh trian-

gles. In each iteration of the algorithm, one triangle is removed from the work

queue, its retriangualtion is performed on the mesh, and any new triangles that

result from the retriangualation are added to the work queue. Accesses to the
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work queue are enclosed by transaction and almost all execution time is spend

calculation the retriangualtion.

1.3 Problem Statement

This thesis addresses several issues present in STM systems. These can be cat-

egorised under three heads: unintended transaction aborts, transactional meta-

data accesses, and transaction starting and committing overheads.

1.3.1 Unintended Transaction Aborts

STM implementations use conflict detection based on the memory location that a

transaction accesses. When two transactions update or write and read the same

memory location, STM system detects the conflict and aborts one of the two

transactions. For example, if two transactions insert items into the same hash-

table under different keys witch happen to hash to the same bucket, the insertions

update the same memory locations. This creates conflict between transactions be-

cause the implementation of the hash table updates the same memory locations

even though the higher-level operations they are performing are commutative.

Even though the transactions that update the hash table do not have conflict

at semantic level (because the final content of the hash table is always and in

independent of the order of the transaction commit order), they experience un-

intended transactional aborts because they update the same memory location.

1.3.2 Transactional Meta-data Accesses

For every transaction in a program, the STM system keeps additional meta-data

that is used for storing information about currently executing transactions. This

meta-data is accessed and updated during every transactional operation (e.g,

transaction read, write, commit). Most of the transactional overheads appear

due to meta-data accesses and it is critical to reduce these overheads in order to

make STM applications competitive with lock based application.

13
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1.3.3 Transaction starting and committing overheads

For most of the transactions executing in a program, STM system usually ini-

tializes transactional meta-data before the execution of a transaction and has to

commit the data and meta-data at the end of a transaction. In the case of short

transactions, the initialization and commit overheads can dominate the trans-

action execution time. If transactions are numerous and small, STM overheads

accumulate rapidly.

1.4 Previous Techniques for Improving the Per-

formance of STMs

The paper [Chung et al. (2008)] uses STM to provide thread-safe dynamic binary

translation. They translate all the code transactionally and create transactions

at the basic block level. They reduce the overhead of transactional execution by

merging consecutive basic blocks into a large transaction.

To address the overhead of STM, researchers have proposed hybrid TM sys-

tems that provide some hardware support for conflict detection in STM code

[Minh et al. (2007a); Saha et al. (2006b); Shriraman et al. (2007)]. For example,

the paper [Saha et al. (2006b)] introduces hardware accelerated software transac-

tional memory (HASTM) as ISA extensions and novel hardware mechanisms that

improve STM performance by using additional bits per cache line. In addition,

minor hardware changes can improve performance of transactional applications

significantly.

The paper [Wang et al. (2012)] describes a BlueGene/Q machine with best

effort HTM. BlueGene/Q maintains speculative states in the L2 cache and uses

software register checkpointing with the setjmp() function. Even though Blue-

Gene/Q has support for best effort hardware TM, this HTM implementation has

issues with small transactions. The authors of the paper admit that the software

register checkpointing has significant overhead for small transactions.

Many optimizations have been proposed for compilers and runtime systems to

reduce the overheads of STM read and write operations [Afek et al. (2011); Drago-

jevic et al. (2009); Wang et al. (2007); Wu et al. (2009)]. The paper [Wang et al.
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(2007)] provides compiler optimizations for eliminating unnecessary read/write

barriers (read after write barrier, barriers on local variables, etc.) and regis-

ter checkpointing. The paper [Afek et al. (2011)] proposes static analysis and

code motion to decrease the number of memory accesses. For eliminating re-

dundant barriers and checkpointing, the paper [Wu et al. (2009)] uses compiler

optimizations on statistics collected at runtime. The paper [Dragojevic et al.

(2009)] presents runtime and compiler optimizations to identify transaction-local

stack and heap allocation, and an API for annotating thread-local and read-only

memory regions.

The paper [Adl-Tabatabai et al. (2006a)] uses compiler and runtime optimiza-

tions for transactional memory language constructs. They use a JIT compiler to

reduce the overheads of STM.

Yoo et al. [Yoo et al. (2013)] evaluate the performance of Intel Transaction

Synchronization Extensions (TSX) that implement best effort hardware transac-

tional memory. To quantify the transactional overheads, the authors analyze the

performance benefits of static and dynamic transaction coalescing1 and show that

transaction coalescing improves performance. However, their implementation of

transaction coalescing lacks the profiling mechanism that identifies the optimal

transaction granularity at run-time. Their dynamic coalescing combines multiple

dynamic instances of the same transactional region.

1.5 Thesis Contributions and Organization

This thesis provides an extensive study of optimization techniques for improving

the performance of software transactional memory systems. The main contribu-

tion of this thesis are:

• Four new techniques for improving the performance of STM systems: (i)

Abstract Nested Transactions (ANT), (ii) TagTM, (iii) Profile-Guided Trans-

action Coalescing, and (iv) Dynamic Transaction Coalescing (DTC).

• We explain, in detail the hardware and software implementation of our

techniques.

1Transaction coalescing is called coarsening in Intel’s terminology.
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• We show that our techniques improve the performance of STM systems.

The rest of the thesis is organized as follows: Chapter 2 explains Abstract

Nested Transaction, a runtime technique that reduces the overheads of repeated

restarts of transactions; Chapter 3 explains TagTM, a hardware and software

technique that reduces the overheads of transactional read, commit, and validate

operations; Chapter 4 explains Profile-Guided Transaction Coalescing, a profile-

guided compile-time technique that reduces transactional overheads by coalescing

transactions; Chapter 5 explains Dynamic Transaction Coalescing, a compile-

time and run-time profiling technique that dynamically adjusts the transaction

granularity to improve the transactional throughput; Chapter 6 concludes the

thesis; and Chapter 7 lists the publications during my PhD.
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Chapter 2

Abstract Nested Transactions

The content of this chapter was presented in the paper “Abstract Nested Trans-

actions” at TRANSACT’07 (The Second ACM SIGPLAN Workshop on Trans-

actional Computing).

2.1 Introduction to Abstract nested transactions

TM implementations typically use conflict detection based on the memory loca-

tions that a transaction accesses. This can cause transactions to be re-executed

because of benign conflicts, for example if two transactions insert items into the

same hashtable under different keys which happen to hash to the same bucket:

the insertions update the same memory locations, even though the higher-level

operations they are performing are commutative.

In this chapter we introduce abstract nested transactions (ANTs) as a way of

improving the scalability of atomic blocks that experience benign conflict. The

main idea is that ANTs should contain operations that are likely to be the victims

of benign conflicts. The run-time system then performs extra book-keeping so

that, if an ANT does experience a conflict, the ANT can be re-executed without

needing to re-run the larger transaction that contains it. Unlike closed nested

transactions (CNTs) this re-execution can happen after the ANT has finished

running – in our implementation we only re-execute ANTs at the point that we

try to commit a top-level atomic block.
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Moving code into or out of an ANT is semantics preserving : ANTs affect

only the program’s performance, not its possible results. This opens the door for

future research in automatic ways to place ANTs in programs in order to deal

with contention ‘hot spots’ that they experience.

2.2 Motivation for Abstract nested transactions

Atomic blocks provide a promising simplification to the problem of writing con-

current programs. A code block is marked atomic and the compiler and run-time

system are responsible for ensuring atomicity during its execution. The program-

mer no longer needs to worry about manual locking, low-level race conditions or

deadlocks.

Atomic blocks are typically implemented over transactional memory which

provides the abstraction of memory read and write operations which can be

grouped together to form a transaction and then committed to the memory as a

single atomic step. The book [Larus & Rajwar (2007)] summarizes many of the

hardware, software, and hybrid implementation techniques being explored.

In this chapter we highlight a number of ways that the performance of pro-

grams can degrade when based on TM. This happens due to benign conflicts

(Section 2.3) that can occur between transactions. In each of these cases the TM

implementation can force one or more transactions to abort because it detects a

conflict which does not affect the application logic.

Figure 2.1 (a) shows a running example that we will use. We use a ‘g_’

prefix on variable names to indicate that they are shared between threads. Other

variables are threadprivate. The example involves two transactions, Tx-1 and

Tx-2, which call ‘performWork‘ on different objects. The function increments a

count of the number of times that it has been called and then performs some

work on the object that it has been passed. The updates to the shared counter

will cause Tx-1 and Tx-2 to conflict with one another, leading to the re-execution

of a whole atomic block even if the bulk of performWork is non-conflicting.

We introduce a taxonomy for different variants of this problem in Section 2.3.

As we discuss with the taxonomy, there are several ways that programmers can try

to avoid problems from benign conflicts. In some cases it is possible to restructure
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atomic { // Tx-1 atomic { // Tx-2

performWork(g_o1); performWork(g_o2);

} }

void performWork(Object o) {

g_invocation_count ++;

// Work on ’o’

work(o);

}

(a) An ordinary implementation of performWork introduces conflicts via the

global invocation counter.

void performWork(Object o) {

ant {

g_invocation_count ++;

}

// Work on ’o’

work(o);

}

(b) Rewriting performWork to use an ANT causes the higher-level update

operation to be logged, rather than the low level reads and writes it performs.

Figure 2.1: A benign conflict between Tx-1 and Tx-2.
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Figure 2.2: Execution time of an atomic section with ANT (top) and same atomic

section without ANT (bottom).

code, to use open nested transactions [Ni et al. (2007)], or to use TM-specific

optimization interfaces to avoid benign conflicts. All of these approaches have

their problems: manually restructuring code can harm the composability benefits

of atomic blocks, open nested transactions provide a powerful general purpose

abstraction but one which relies on programmer care for correct usage, and TM-

specific optimization interfaces are hard to use correctly.

In this chapter we introduce a new approach to avoid reexecuting whole

atomic blocks that contain benign conflict. The idea, which we call abstract

nested transactions (ANTs), is to identify operations that are likely to be the

‘victims’ of benign conflicts. This lets the TM implementation keep a separate

log of the operations being performed by ANTs and, in the event of a low-level

conflict, just re-execute the ANTs rather than re-executing the larger transaction

containing them. Figure 2.1 (b) shows our example using an ANT to increment

the counter.

Figure 2.2 shows why this can be faster: assuming that the ANT forms a small

part of the overall execution time of an atomic block, it reduces the amount of

work on a conflict.

We discuss the syntax and semantics of ANTs in Section 2.4. A fundamental

design principle we took is that they are semantically transparent : marking a

block of code as an ANT does not affect the possible results of a program. Our

motivation in doing this is that it makes ANTs easier to use and, although we
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show them being used manually in this chapter, in future work they could be

placed automatically based on run-time feedback.

This principle guides many aspects of the design and implementation of ANTs:

what happens if an ANT conflicts with a transaction that encloses it? What

happens if an ANT raises an exception or tries to block using retry [Harris

et al. (2005b)]? What happens if an ANT behaves one way on its first execution

and then behaves differently if it is re-executed? We discuss these questions in

Section 2.4.

We have prototyped our implementation of ANTs using STM Haskell [Harris

et al. (2005b)]. In Section 2.5 - 2.6 we describe the details of this implementation

and evaluate the performance impact of using ANTs.

In this chapter we make the following contributions:

• An initial taxonomy of benign conflicts that can occur between atomic

blocks.

• The idea of abstract nested transactions as a way of making the performance

of atomic blocks more robust to the presence of benign conflict.

• An implementation of ANTs in which they are semantically transparent,

being able to be placed around any transactional code and affecting only

its performance.

• Specific to our Haskell-based prototype, we describe a new mechanism for

comparing possibly-non-terminating computations using lazy evaluation.

Throughout the chapter we assume an implementation over an STM using

lazy conflict detection [Moore et al. (2006a)] that is, detecting conflicts at commit-

time in short-running transactions, and periodically in long-running transactions

and lazy versioning [Moore et al. (2006a)] that is, recording tentative updates

privately for each transaction, and writing them to the heap upon successful

commit.

The reminder of this chapter is organized as follows: in Section 2.3 we define

benign conflicts; in Section 2.4 we explain the key ideas behind abstract nested

transactions; in Section 2.5 we explain the prototype implementation of ATN; in

Section 2.6 we show the experimental results; finally, we conclude in Section 2.7;
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atomic { // Tx-1 atomic { // Tx-2

workOn(g_o1); workOn(g_o2);

} }

void workOn(Object o) {

g_temp = o;

// Work on ’g_temp’

work(g_temp);

}

Figure 2.3: Shared temporary variables. Transactions Tx-1 and Tx-2 will conflict

because they both write to g temp, even though neither depends on the values

written by the other.

2.3 Benign conflicts

In this section we identify a number of different kinds of benign conflict that

can cause a transaction to abort because of the low-level at which conflicts are

typically detected in TM implementations. This is an intentionally imprecise

definition; as we illustrate, whether or not a given conflict is benign depends on the

context in which the transaction experiencing it occurs. However, distinguishing

different kinds of benign conflict helps us identify the cases where ANTs are useful

and the cases where they are not.

We focus solely on serializable atomic blocks. As the database community

has explored, weaker isolation levels can reduce conflicts [Berenson et al. (1995)].

However weaker isolation also means that it is no longer possible to reason about

atomic blocks as executing in isolation from one another; it is unclear whether

this would be acceptable as part of a mainstream programming model.

2.3.1 Shared temporary variables

The first kind of benign conflict occurs when global variables are used for trans-

action local storage. Figure 2.3 shows an example: each transaction starts by

writing to g_temp and then using it for its own temporary storage. We have seen
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atomic { // Tx-1 atomic { // Tx-2

g_obj.x++; g_obj.y++;

// Private work // Private work

} }

Figure 2.4: False sharing. Transactions Tx-1 and Tx-2 will conflict using the

Bartok-STM implementation which detects conflicts on a per-object basis.

this in practice when using the xlisp interpreter on Bartok-STM [Harris et al.

(2006)] and also in the red-black tree implementation that Fraser used in his PhD

work [Fraser & Harris (2004)] in which transactions working near the leaves of

the tree will write and then read values in a sentinel node [Cormen (2001)] whose

contents do not need to be retained between operations on the tree.

Fraser provides a mechanism for disabling conflict detection on such data

[Fraser & Harris (2004)]; if this is mis-used then transactions may no longer be

serializable.

Haskell-STM identifies the special case of transactionally silent stores in which

a transaction makes a series of updates to a shared field, but the value at the

end of the transaction is the same as at the start: the overall access can then be

treated as a read rather than a write. This can increase scalability in some cases.

However, not all shared temporaries are used in this way.

2.3.2 False sharing

False sharing occurs when the granularity at which TM detects conflicts is coarser

than the granularity at which atomic blocks access data.

Figure 2.4 illustrates this with an example of a pair of transactions that conflict

when run over the Bartok-STM implementation [Harris et al. (2006)]: the two

transactions conflict because they both write to fields in the same object. False

sharing can also occur in HTMs - for example if conflicts are detected on a per

cache-line basis and two transactions update different words on the same cache-

line. The paper [Zilles & Rajwar (2007)] analyze the problem of false sharing

in TM implementations that use tagless ownership tables, showing that it may

happen more frequently than intuition suggests.
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atomic { // Tx-1 atomic { // Tx-2

o1 = remove(g_ht, 39); o2 = remove(g_ht, 49);

// Work on ’o1’ // Work on ’o2’

insert(g_ht, 39, o1); insert(g_ht, 49, o2);

} }

Figure 2.5: Using commutative operations with low-level conflicts. Transactions

Tx-1 and TX-2 work on objects that they look up from hashtable g ht under

different keys. The hashtable operations may introduce conflicts if the keys hash

to the same bucket in the table.

In software, false sharing can be avoided by splitting objects into portions

that are likely to be accessed separately - the ability to do this is one motivation

for detecting conflicts at an object-granularity because it allows the programmer

to control conflicts when deciding which fields to place in the same object.

2.3.3 Tx using commutative operations with low-level con-

flicts

A further source of benign conflicts occurs when transactions use commutative

operations that introduce low-level conflicts. When we say that operations A

and B on a shared object are commutative, we mean that there is no difference,

in executing A-before-B or B-before-A in terms of the operations’ results or the

subsequent behavior of the shared object. One example is the shared counter

from Figure 1(a): the increment operations are commutative, but the read and

writes that they perform are not.

Another example of this kind of benign conflict is lazy initialization: a data

item may have its value computed on demand by the first transaction to access

it. In many cases the computation can safely be performed more than once ,

although in other cases this is not true, e.g. in implementations of the singleton

design pattern, where a common shared object is being instantiated.

Figure 2.5 shows a more complicated example: two transactions access a

shared hashtable (g ht) and perform operations on different keys. These are
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likely to conflict in the memory locations that they access if the keys happen to

hash to the same bucket in the table.

Ni et al. use an example like this to motivate the use of open-nested transac-

tions (ONTs) [Ni et al. (2007)]. Using ONTs it is possible to prevent Tx-1 and

Tx-2 from conflicting by (i) running the remove and insert operations in ONTs

so that they are performed directly to the hashtable when they are invoked inside

transactions, (ii) defining compensating operations to roll-back any tentative

operations that are made by transactions that subsequently abort, (iii) using

abstract-locks to prevent concurrent transactions performing non-commutative

operations on the hashtable - for example insertions under the same key.

Versioned boxes [Cachopo & Rito-Silva (2006)] provide mechanisms for dealing

with some kinds of low-level conflict between commutative operations: delayed

computations that execute at commit time, and restartable transactions that

perform read-only operations that can be re-executed at commit time to check

for benign conflicts. ONTs provide a more general-purpose mechanism to tackle

many problems, including this one, but they rely on programmer care in defining

the compensating actions and abstract locking discipline in order to ensure that

atomic blocks using them remain serializable.

2.3.4 Defining commutative operations with low-level con-

flicts

A further source of benign conflicts occurs within the definition of commutative

operations. Figure 2.6 shows an example: two transactions access a sorted linked

list of integers, with Tx-1 searching the list for item 1000 and Tx-2 inserting item

10. If we assume that the list contains many elements then Tx-1 will build up a

large read-set and conflict with Tx-2 and any other transactions making updates

to the list in the range 1..1000.

ONTs do not provide an obvious solution to this problem: the atomic blocks

consist of a single operation on a list, which must be performed atomically whether

it is in an ordinary transaction, or in an open one. However, many STM imple-

mentations have included ‘back doors’ by which expert programmers can remove

accesses from a transaction’s read-set that they believe are unnecessary [Herlihy
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atomic { // Tx-1 atomic { // Tx-2

f = listFind(g_l, 1000); listInsert(g_l, 10);

} }

List listFind(List l, int key) {

while (l.Next.Key <= key) {

l = l.Next;

}

return l;

}

bool listContains(List l, int key) {

l = listFind(l, key);

return (l.Key == key);

}

void listInsert(List l, int key) {

l = listFind(l, key);

if (l.Key != key) {

l.Next = new List(key, l.Next);

}

}

Figure 2.6: Defining commutative operations with lowlevel conflicts. Transactions

Tx-1 and Tx-2 will conflict in their accesses to the shared list g l holding sorted

integers: Tx-1 will traverse the list up to the node holding 1000, and Tx-2 will

conflict with these reads when it inserts a node holding 10.
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while (true) { while (true) {

atomic { // Tx-1 atomic { // Tx-2

t = getAny(g_in); t = getAny(g_in);

if (t == null) break; if (t == null) break;

// Work on t // Work on t

put(g_out, t); put(g_out, t);

} }

} }

Figure 2.7: Making arbitrary choices deterministically. Transactions Tx-1 and

Tx-2 both take work items from an input input pool (g in), work on them, and

place the results in an output pool (g out). A deterministic implementation of

getAny will lead them both to pick the same item.

et al. (2003)]. In this case listFind could be rewritten to retain only its accesses

to nodes in the vicinity of the key: earlier nodes would be removed from the

read-set and concurrent updates to these nodes would not be treated as conflicts.

Using these operations correctly requires great care from the programmer. For

example, using them here leads to similar search and insert functions to the non-

blocking linked list algorithms by Harris [Harris (2001)] and Michael [Michael

(2002)]. Furthermore, adding an additional operation to a data structure can

make the implementation of existing operations incorrect. For example, if we

added listDeleteFrom implemented by cutting off the tail of a list at a specified

element, then it would no longer be correct to remove elements from the read-set

during a call to listContains.

2.3.5 Making arbitrary choices deterministically

A final example of benign conflict is caused by making arbitrary choices deter-

ministically. Figure 2.7 shows an example. Two threads repeatedly take items

from a pool of input items g_in, work on them, and place them into an output

pool g_out. All of the items must be processed, but it does not matter what

order this happens in.
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If we assume that the input pool is implemented by a shared queue then the

two threads’ transactions will conflict because they will deterministically select

the first item from the queue even though, in this context, any item is acceptable.

ONTs can be used in this case: each thread executes getAny in an ONT and

uses a compensating action to replace the item. There is one subtlety to beware

of in this example - a transaction observing the queue to be empty can only be

allowed to commit once there is no possibility of a concurrent call to getAny being

compensated.

2.3.6 Discussion

In this section we have introduced a number of ways in which programs can ex-

perience benign conflicts. There is a wide range of existing techniques addressing

parts of this problem space:

• Converting shared temporaries into transactionally-silent stores reduces con-

flicts using some STM implementations (Section 2.3.1) and restructuring

how data is partitioned between objects can reduce false sharing (Sec-

tion 2.3.2).

• Open nested transactions can be used to avoid serializing commutative op-

erations (Section 2.3.3) and avoid making arbitrary choices deterministically

(Section 2.3.5).

• Manual optimization interfaces can be used to trim unnecessary reads from

transactions read-sets (Section 2.3.4).

Common to all of these is the use of manual techniques that introduce a

risk of changing the behavior of the atomic blocks as well as their performance:

if they are mis-used then ONTs and read-set reduction interfaces can lead to

nonserializable executions of atomic blocks.

Our goal is to explore how far we can go with techniques without that risk.

The ‘abstract nested transactions’ in this chapter are the first step in that direc-

tion. In particular, we aim to tackle the problems of false conflicts (Section 2.3.2)
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and atomic blocks using commutative operations with low-level conflicts (Sec-

tion 2.3.3).

Why do we not tackle the other problems? Essentially because we believe they

are best tackled elsewhere. First, it is likely that shared temporary variables can

be identified automatically by modifications to the TM implementation. Second,

we believe that scalable implementations of data structures involving arbitrary

choices can be built over atomic blocks and ANTs using randomization techniques

similar to those in Scherer’s exchanger [Scherer III (2006)] – in effect, making the

operations non-deterministic where possible. Third, we believe that some cases

of read-set reduction are possible by compile-time analyses. Whether or not these

techniques are effective is the subject of future work.

2.4 Abstract nested transactions

The key idea with ANTs is to identify operations like false sharing (Section 2.3.2)

and commutative operations (Section 2.3.3), which are likely to be the victims of

benign conflicts when executed over TM. For example, the hashtable operations

in Figure 2.5 could be executed inside ANTs, as could the accesses to g_obj.x

and g_obj.y in Figure 2.6.

We chose the name ANTs because the programmer can think of them as being

handled at a different level of abstraction from the ordinary reads and writes that

a transaction performs. For example, an atomic block that inserts data into a

hashtable within an ANT will only be forced to re-execute if a concurrent transac-

tion inserts a conflicting item into the table, rather than (with a typical hashtable

implementation) if a concurrent transaction inserts a value that happens to hash

to the same bucket.

We detect benign conflicts without programmer annotations about which op-

erations conflict with one another. Instead, we perform extra book-keeping at

run-time which lets us (i) identify benign conflicts involving ANTs, (ii) recover

from benign conflicts by just re-executing the ANTs, rather than re-executing the

atomic block that contains them.

The main difficulty, of course, is ensuring that it is correct to just re-execute

the ANTs. We discuss the mechanisms we use to do this in Section 2.5 after
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first discussing the syntax (Section 2.4.1) and semantics (Section 2.4.2) of ANTs,

and programmer guidelines for how to use them to improve performance (Sec-

tion 2.4.3).

2.4.1 Syntax

The exact way that ANTs are exposed to programmers will depend on the lan-

guage. In the example in Figure 2.1 (b) we suggested using ant blocks. We

will use this concise form for examples in the remainder of the chapter, both

as stand-alone ANT blocks (ant{X}) and as ANT blocks that return a result

(Y = ant{X}).

In practice, in a language like C# or Java, it would be more natural to express

ANTs using an attribute on individual method signatures, or on a class in which

case all methods on the class would execute in ANTs. That would be consistent

with the expectation that all operations on a given shared object would be per-

formed through ANTs. Of course, many other possibilities can be imagined, such

as creating an ANT-wrapper around an existing object, or designating an object

as ANT-wrapped at the point that it is instantiated.

2.4.2 Semantics

ANTs are semantically transparent. In our pseudo-code, running ant{X} is al-

ways equivalent to X, no matter what operations are performed in X and what

context the ANT occurs in. The same is true for ANTs returning a result.

This is an important decision: it means that the addition or removal of ANTs

is based purely on performance considerations, making it easier to use feedback-

directed tools to identify contention. We did consider whether we could use a

different implementation of closed nested transactions (CNTs) instead of intro-

ducing new notation for ANTs. However, most languages that expose CNTs via

nested atomic blocks choose to allow exceptions raised inside a CNT to roll-back

the nested transaction. This means it is not possible to add or remove CNTs

without considering semantic changes to the program.

Another important consequence of our design decision is that an atomic block

containing ANTs can always be executed in fallback-mode in which the ANTs are
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executed without any special run-time support. We use this idea to simplify our

prototype implementation.

2.4.3 Performance

Our implementation of ANTs is based on re-executing ANTs that experience

conflicts without needing to re-execute the whole atomic block that contains

them.

For instance, using the hashtable example from Figure 2.5, if the two keys hash

to the same bucket then the second transaction to commit can experience conflicts

from the first. However, if the remove and insert operations are implemented

using ANTs then the second transaction will abort its initial execution of remove

and insert and re-execute just these operations rather than needing to reexecute

the entire atomic block. If the re-execution succeeds without conflict, if the result

returned by remove is the same upon re-execution, and if this result is the only

way that the ANTs interacted with the outer block, then the atomic block and

the re-executed ANTs can be committed. Otherwise, the outer transaction is

reececuted with flat nesting.

The programmer should use the following rules in order to achieve good per-

formance:

• A given piece of data should be consistently accessed inside ANTs, or con-

sistently accessed outside ANTs. Consider the following example:

atomic {

ant { g_temp = remove(g_ht, 39); }

// Work on ’g_temp’

work(g_temp);

}

In this example, the ANT interacts with the rest of the atomic block

through g_temp. We detect that ANT is not commutative with the outer

transaction, and we restart the outer transaction and execute it in flatten

mode (by flattening ANT in outer transaction).
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• ANTs should constitute a small portion of the execution time of the atomic

block that contains them. Otherwise, there is no practical gain by re-

executing just the ANTs.

• The programmer should mark the commutative sections of the code with

ANT transactions.

2.5 Prototype implementation

We have implemented support for ANTs in the run time system (RTS) of the

Glasgow Haskell Compiler (GHC). Aside from the subtlety discussed in Sec-

tion 2.5.3 about detecting equality between Haskell values, the implementation

should be applicable to other languages using similar STM algorithms. Although

STM-Haskell does not expose nested atomic blocks to the programmer, our im-

plementation of ANTs does support closed nested transactions which are used

internally by the GHC RTS in its implementation of exception handling and the

orElse and retry constructs for composable blocking [Harris et al. (2005b)].

GHC’s existing support for STM uses lazy conflict detection and lazy ver-

sioning using transaction logs that keep track of shared memory accesses. Each

transaction’s log is a list of log entries containing the following fields: the memory

address being accessed, the old value that the transaction expects to be stored

there and the new value that it wants to write there. Every read or write to a

shared memory location is performed first by scanning through the transaction

log and, if the location is not found in the log, the memory access is performed

and a new log entry is created in the log.

2.5.1 Changes when executing an atomic block

While executing an atomic block we differentiate between memory accesses made

from within ANTs and those made from the enclosing transaction. To achieve

this, the transaction log keeps entries in two separate lists: one list records the

accesses in the ANTs, and the other list records all the normal transactional

accesses.
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(a) A transaction starts with an empty transaction log.

(b) The transaction writes address a1.

(c) The first ANT finishes, having made updates to address ant a2 and returned

result r2.

(d) The second ANT finishes.

Figure 2.8: Transaction execution with ANTs enabled.
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The structure of the transaction log (TLog) can be seen on the Figure 2.8 (a).

The TLog has four fields. TLogEntries holds the normal transactional accesses.

ANTLogEntries holds the accesses made within ANTs. ANTActionEntries records

the high-level operations being performed by ANTs. Each is represented by a pair

of pointers. The first points to the block of code (closure) that executes the ANT.

The second points to the result that was returned by the closure when the ANT

was first executed. ANTFlag is used to implement fallbackmode: if the flag is set

to True, then ANTs are enabled and logging is done using the ANTLogEntries

list. If the flag is set to False, then ANTs are disabled and all logging is done to

the TLogEntries list.

We will show, on a small example, how these logs are used. The following

example is written in Java-like pseudocode:

1. atomic {

2. a1 = <LARGE COMPUTATION>;

3. r2 = ant { <SMALL COMPUTATION>; }

4. <LARGE COMPUTATION>;

5. r3 = ant { <SMALL COMPUTATION>; }

6. <LARGE COMPUTATION>;

7. }

In Figure 2.8, we can see the structure of the TLog at different stages during

the execution of the atomic block. The atomic block starts a transaction by cre-

ating an empty TLog (after executing line 1). TLogEntries, ANTLogEntries and

ANTActionEntries are empty in the beginning (Figure 2.8 (a)). Line 2 modifies

variable a1 with a tentative change to the TLogEntries (Figure 2.8 (b)). In line

3, the ANT uses the ANTLogEntries for its tentative update: the ANT modifies

variable a2 and the change is logged in the ANTLogEntries. After the execution

of the ANT, the pointer to the ANT’s code and its result are saved in the AN-

TActionEntries (Figure 2.8 (c)). Line 4 reverts to using TLogEntries for logging.

In the example case, no access to the other transaction variables occured. The

ANT in the line 5 changes the variable a3 and uses the same the ANTLogEntries

slot that was used by the ANT in line 3. The return value and the closure are

once again saved in ANTActionEntries.
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2.5.2 Changes when committing an atomic block

Ordinarily, at the end of an atomic block, the GHC RTS implementation of STM

validates the transaction log and commits the updates to memory. The following

algorithm explains how we modify the commit phase of a transaction:

start:

case validate(TLog):

OK : commit TLog

ANTLogEntries and TLogEntries intersect:

set ANTFlag = False

restart transaction

ANTLogEntries invalid, TLogEntries valid:

re-execute ANTActionEntries

goto start

TLogEntries invalid:

restart transaction

This algorithm starts by validating the entire TLog, comprising the entries in

TLogEntries and ANTLogEntries. There are four cases to consider:

1. TLogEntries and ANTLogEntries are all valid. This means that there have

been no conflicts at all: not with the ANTs or with the remainder of the

atomic block. In this case we commit all the log entries to memory.

2. TLogEntries and ANTLogEntries intersect. This occurs when a program

uses the same transactional variable in the ANT and outside of it. The

whole atomic block has to be re-executed with the ANTFlag set to False,

disabling ANT usage. There is no scalability gained from the ANTs, but

the semantics of the atomic section are preserved.

Figure 2.9 shows what happens in our example. The transaction is restarted

(Figure 2.9 (a)) and builds up a single log during its re-execution (Fig-

ure 2.9 (b)).

3. ANTLogEntries are invalid and TLogEntries are valid. This shows that

there has been a conflicting memory access on one or more of the ANTs.
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(a) Transaction re-executes

(b) Re-executed transaction finishes

Figure 2.9: Transaction re-execution with ANTs disabled (ANTFlag set to False).
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Figure 2.10: Transaction about to re-execute ANTs.

This is the case when we can re-execute all the closures that are in the

ANTActionEntries. After re-execution of every closure, the new return

values from the closures are compared with the return values of the previous

execution. If all the values are the same (implementation of equality is

explained in Section 2.5.3), we know that any computation in the atomic

block that depends on the those values will be unaffected by the re-execution

of the closures. If any of the return values has changed then the atomic block

has to be re-executed.

Figure 2.10 shows what happens in our example. The ANTLogEntries

structure is emptied and each ANT from the ANTActionEntries is re-

executed in turn. After successful re-execution of these closures the TLog

will once again look as shown on Figure 2.8 (d).

4. TLogEntries are invalid. In this case there has been a conflict with the

main transaction: we must re-execute the whole atomic block.

2.5.3 Implementing equality in RTS

There is a subtle problem in how we implement the equality test between different

executions of an ANT. There are two factors to consider. First, for safety, we

must err on the side of caution: two results can be claimed distinct when in fact
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they are equivalent. Second, our design principle that ANTs are semantically

transparent means that the implementation of the equality test must not change

the semantics of the atomic block. This means that we cannot generally use

programmer-supplied equality tests unless we wish to trust these to be correct:

in C# or Java terminology we would use ‘==’ rather than ‘.Equals’.

However, working in Haskell raises another problem: the language uses lazy

evaluation and so the result from an ANT may be returned as an un-evaluated

closure rather than as a result which can be compared. We cannot simply evaluate

the closure in case it is a non-terminating computation that is not needed by the

program.

In practice we have not seen closures occurring in this way and so our proto-

type conservatively uses (i) pointer equality between objects with identity (e.g.

mutable variables whose addresses can be compared), (ii) a shallow comparison

function between objects without identity (e.g. boxed integer values). However,

in a full implementation we could perform equality tests between a first result R1

and a second result R2 as follows:

• If R1 and R2 are both objects with identity then use pointer equality.

• If R1 and R2 are both objects without identity then recursively compare

their constructor tags and fields.

• If R1 has been evaluated but R2 has not, then evaluate R2 and repeat the

comparison. This deals with the case where the atomic block has forced

R1 to be evaluated and may therefore depend on its result. If R2 does not

complete evaluation promptly then abandon it and reexecute the atomic

block in fallback-mode.

• If R1 has not been evaluated then R1 and R2 can be treated as equal. The

key insight is that if R1 was not evaluated then the atomic block cannot

depend on the (still-unknown) value it may yield.

However, there is one further caveat in this case: the atomic block may itself

return R1 or store it into shared memory when it commits. In this case we

must replace R1 with R2 so that, if it is ever evaluated, the commit-time
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result R2 is obtained. This can be done in the GHC RTS by atomically

overwriting R1 with an indirection to R2. The paper [Harris et al. (2005a)]

provides an introduction to the management of closures, indirections, and

so on in the RTS.

• In other cases treat R1 and R2 as distinct.

2.6 Results

To explore the performance of ANTs we used a test program with the following

structure:

atomic {

v = ant { <SMALL COMPUTATION>; } // A1

<LARGE COMPUTATION>; // L1

ant { <SMALL COMPUTATION>; } // A2

}

Our test lets us vary the amount of time spent inside the ANTs by varying

the amount of work performed in the large computation L1. As we discussed in

Section 2.4.3, ANTs should be used for small parts of the transaction that are

likely to conflict with other transactions and so we need to quantify what this

means.

In our test program the ANT A1 removes an item from a shared linked list

of key-value pairs and A2 returns an item to the head of the list. Each thread

works on disjoint keys: concurrent invocations will always conflict in their reads

and writes to the list, but the operations themselves are commutative. For the

<LARGE COMPUTATION>, we uses a simple function performing a private loop of

fixed duration. We vary the number of threads operating on the list and the ratio

of the large computation’s execution time to the ANTs’.

Our test machine ran Windows Server 2003, with 2 quadcore Intel Xeon CPUs

(in total 8 cores) and 4GB of RAM. All the tests were compiled with optimizations

and ran with GHC’s heap configured to 512MB of heap so that garbage collection

did not play any role in the execution times.
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(a) 4 threads

(b) 8 threads

Figure 2.11: The execution time of the program plotted while varying the relative

workload using a list of 32 elements. A low relative workload means that most

of the test program is spent inside ANTs. A high relative workload means that

most of the test program is spent outside ANTs.
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Figure 2.11 shows the execution time of the test program with 4-thread and

8-thread runs as the size of the large computation is varied. The graph com-

pares the performance of the test using ANTs (‘AN Transaction’) against the

performance with ANTs disabled (‘Regular Transaction’). The x axis shows the

‘relative workload’ which is the fraction of execution time spent outside ANTs.

As we discussed in Section 2.4.3 we would expect this to be high in the in-

tended uses of ANTs. The implementation using ANTs out-performs the existing

implementation when nested transactions account for 69% or more of the execu-

tion time. The reason for this is that the re-execution time of regular transaction

is larger than re-execution time of the transaction with ANTs; the regular trans-

action has to re-execute the whole atomic section, and on the other hand, the

transaction with ANTs has to re-execute just ANTs. Of course, by making the

size of the ANTs increasingly small, the performance difference could be made

arbitrarily good. However, the important result is to understand the kind of

range below which ANTs are ineffective.

Conversely, when most time is spent in non-transactional code, we can see

that the use of ANTs slow down the program (for small atomic sections, the

slowdown can be around 2x). This is because most of the execution time of the

transaction is spent in stmCommitTransaction() and our prototype effectively

introduces two passes over the log entries; one to distinguish the four cases in

Section 2.5.2 and another to actually commit the changes to memory.

In Figure 2.12 we compare the performance of our test program using ANTs

with the same test program using ONTs in the case where around 8% of time

is spent inside the ANTs. Both ANTs and ONTs improve scalability compared

with executing all the operations in a single transaction. One would expect ONTs

to out-perform ANTs in this workload: no compensating actions are run and so

the work performed by ONTs is strictly less than ANTs.

2.7 Summary

This chapter has introduced the idea of abstract nested transactions (ANTs)

for identifying sections of an atomic block that are likely to be the victims of

benign conflicts. By re-executing ANTs we can avoid re-executing the whole
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Figure 2.12: Execution times of regular transactions, ANTs and ONTs.

atomic block that contains them. Unlike other techniques for improving the

scalability of atomic blocks ANTs are semantically transparent and can be used

as a performance tuning technique without risk of changing the semantics or

serializability of the code in which they are used.

This is not to say that they provide a replacement for other abstractions such

as low-level unsafe optimization interfaces or open nested transactions. How-

ever, the unique features of ANTs open the possibility for completely automatic

feedback-directed optimization of transactional programs to try to identify con-

tention hot-spots.

We started working on ANT believing that it could be widely used in STM

systems but we were not able to find a lot of use cases of ANT in real world TM

applications. Simple explanation why ANT does not work in practise is that ANT

tries to minimize transaction re-execution time after the conflict happened. In

other words, ANT helps when the TM system experiences a lot of aborts. So, if

TM system experiences a lot of aborts then we can assume that system/program
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performs badly. In this case, the best way to improve the performance of the

program is is to rewrite it in in order to minimize the possible aborts. So we

believe that ATN is an evolutionary dead end.
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Chapter 3

TagTM

The content of this chapter was presented in the paper “TagTM - accelerating

STMs with hardware tags for fast meta-data access” at DATE 2012 (Design,

Automation and Test in Europe).

3.1 Introduction to TagTM

In this chapter we introduce TagTM, a Software Transactional Memory (STM)

system augmented with a new hardware mechanism called GTags. In this chapter

we introduce GTags as a new hardware cache coherent tags that are used for fast

meta-data access. TagTM uses GTags to reduce the cost associated with accesses

to the transactional data and corresponding metadata. For the evaluation of

TagTM, we use the STAMP TM benchmark suite. In the average case TagTM

provides a speedup of 7-15% (across all STAMP applications), and in the best case

shows up to 52% speedup of committed transaction execution time (for SSCA2

application).

The main contributions of this chapter are:

• We propose a hardware extension (GTags) that stores transactional meta-

data.

• We show how GTags allow (i) accessing both the data and its metadata

with a single memory operation instead of two and (ii) fetching both the
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New ISA instructions Description

ldt r1 ← T[r2] Load tag

stt T[r1] ← r2 Store tag

cast T[r1] ← r2 if T[r1] == r3 Compare tag and store tag

ldtv r2 ← T[r1], r3 ← M[r1] Load tag and value

sttv T[r1] ← r2, M[r1] ← r3 Store tag and value

castv T[r1] ← r2, M[r1] ← r3 if T[r1] == r4 Compare tag and store tag and value

Table 3.1: GTags manipulation instructions

data and the metadata together thus eliminating the cache misses due to

poor spatial locality.

• We show how GTags improve the performance of STM systems.

The rest of this chapter is organized as follows: We describe our extensions

which we call Global Tags (GTags) in Section 3.2. GTags extend the computers’

memory hierarchy with coherent metadata tags and a set of instructions to op-

erate them. In Section 3.3 we introduce TagTM, an extension of STM library

with GTags. We use GTags for accelerating the maintenance of the transactional

metadata. In Section 3.4 we present an evaluation of TagTM, in Section 3.5 we

discuss the related work, and in Section 3.6 we conclude.

3.2 Global Tags (GTags)

In this section we introduce global tags (GTags), a mechanism for annotating

transactional data at cache line granularity across the different levels of the mem-

ory hierarchy. In our design GTags extend every cache line with 64-bit tags. These

tags are associated with the data in the cache lines and kept always coherent.

When a cache line is invalidated, its tag is also invalidated and vice versa.

GTags are accessed and modified with the special tag manipulation instruc-

tions which are shown in Table 3.1. Furthermore, all instructions in the table are

executed atomically. All the instructions that operate on the addresses that fall

in the same cache line share the same tag.

46



3.3 TagTM

Extending memory hierarchy with GTags requires small architectural changes

which affect the CPU caches and the memory controller. In our particular case,

we store GTags at the data part of the cache lines. Such a design decision allows

reading and writing the GTags with simple load/store like instructions and does

not require any changes to the otherwise complicated cache lookup logic.

In the main memory, we store the tags separately from the data in special

GTag-pages. The GTag-pages are allocated by operating system. This allocation

enables easy mapping of the physical address to the corresponding tag. The

memory controller does a simple shift operation and adds an offset to calculate

the physical address of the corresponding tag. In our simulations, we model a

memory controller which can automatically fetch and store both the data and

the tag from their corresponding pages (Figure 3.1). With such functionality, the

tags are preserved when the cache lines and the tags are evicted from the cache.

3.3 TagTM

In this section we introduce TagTM, a modified version of TinySTM. The goal

of this section is to demonstrate how to use GTags to improve the performance

of an STM library. In Section 3.3.1 we explain how TinySTM works and in

Section 3.3.2 we describe the bottlenecks of the implementation of TinySTM and

later we show how to extend transactional operations with GTags.

3.3.1 TinySTM

Felber et al. proposed TinySTM [Felber et al. (2007)], a lightweight and efficient

word-based STM system. TinySTM implements timestamp-based versioning al-

gorithm. It utilizes a shared array of locks (SAL) to manage concurrent accesses

to memory. Each lock covers a portion of the address space. The least signifi-

cant bit of the lock indicates if the lock is owned, and the remaining bits of the

lock store the version number that corresponds to the commit timestamp of the

transaction that last updated the memory location covered by the lock.1

1For the full implementation, please refer to the original paper.

47



3.3 TagTM

Cache lines GTags

Memory

Write back

 Write back

Program pages

Tag pages

Cache

Figure 3.1: Cache line eviction

3.3.2 Bottlenecks in TinySTM

Figure 3.2 shows the breakdown of transactional overheads for STAMP applica-

tions using TinySTM executing with one thread. The slowdown is divided in 4

parts: tx read, tx validate, tx commit, and other(tx write and tx start). It

is important to note that all these overheads do not exist in non-transactional

execution. tx read is a dominant overhead for Genome, K-means, Vacation,

and Yada. The total transactional overhead can be up to 69.82% (in the case

of Vacation-high) compared to the non-transactional execution time. tx commit

is a dominant overhead for Intruder and SSCA2. In SSCA2, tx commit and

tx validate adds up to 200.4% and 98.59% transactional overhead compared to

the non-transactional execution time.

3.3.3 Using GTags in TinySTM

In Section 3.3.2 we show that the performance-critical operations in TinySTM

are tx read, tx commit, and tx validate. All these operations can benefit from

the use of GTags. GTags and timestamp-based versioning STMs are a natural

fit because the SAL can be stored in the tags, next to the actual data. Because

of the tight coupling of the tags and the data in the cache lines, the lock access

will force the inclusion of the memory location to the cache. This acts as “free”
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Figure 3.2: STM overheads running one CPU.

prefetching of the corresponding memory location that will be used in the trans-

action. This improves the performance of tx read operation that is on the critical

path of the transactional execution (tx read always reads the lock from the SAL

to get the version number). With GTags, the combined write-back of the tag

and the new memory value saves one write to the memory per write-set entry.

As we demonstrate later, this can provide big improvements of the tx commit

operation in large transactions. tx validate also benefits from GTags by having

better cache locality. In the following sections we explain in detail how to extend

TinySTM with GTags.

3.3.4 Improving the tx read operation

In typical lazy versioning TM systems, an unmodified tx read operation consists

of three phases: (i) the query of the write-set phase, (ii) the address and version

read phase, and (iii) the read-set update phase. In Figure 3.3, we can see the

pseudo code for the tx read operation while the address and version read phase

of tx read is represented explicitly in the code, and graphically. The compiler

cannot remove redundant memory read operations, because the exact ordering of
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tx_read(addr) {

  <write_set_query>

read_value_start:

  version0 = load_lock(&addr);

  value = *addr;

  version1 = load_lock(&addr);

  if (version0 != version1) { goto read_value_start;}

  <read_set_update>

  return value; }

Cache lines

(1)

(3)

version0

value

CPU
Cache

Registers
version1

(1)

(2)

(3)

Figure 3.3: Tx read in lazy versioning STM.

tx_read(addr) {

  <write_set_query>

  load_tag_and_value(addr, &version, &value);

  <read_set_update>

  return value; }

Cache lines GTags

value

CPU

Registers

(1)

(1)

Cache

version

(1)

Figure 3.4: Tx read in TagTM.
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the read instructions is necessary for the correct execution of tx read.

To improve the performance of the tx read operation, we use GTags’ load tag

and value instruction (Table 3.1) to combine the read of the memory address and

the read of the corresponding lock. This improves the performance of tx read

by reducing the number of cache accesses in the address and version read phase,

which reduces the number of cycles spent waiting for the memory subsytem. The

use of GTags in tx read is presented in Figure 3.4 where the single load tag and

value instruction is executed to load the address value and version, instead of

3 separate instructions. This simplifies the tx read operation and improves its

performance. Because tx read operation is on the critical path in STMs [Zyulk-

yarov et al. (2010b)], this has positive impact to the application’s performance.

In Section 3.4, we show the reduction in the number of executed cycles for the

second phase of tx read.

3.3.5 Improving the tx commit operation

In typical lazy versioning TM systems, unmodified tx commit consists of three

phases: (i) the lock acquisition phase, (ii) the validation phase, and (iii) the

write-back1 phase (Figure 3.5). The write-back phase of tx commit is represented

explicitly in the code, and graphically.

To improve the performance of tx commit operation, we use GTags’ store

tag and value instruction to combine the write to the memory address and the

write to the corresponding lock. This improves the performance of the write-

back phase by reducing the number of executed instructions, and the number of

updated cache lines, and by releasing the lock earlier and thus publishing the

results sooner.

The use of GTags in tx commit is presented in Figure 3.6. The code for the

lock acquisition phase and for the validation phase is the same in both versions

of the code. The difference exists in the write-back phase. In this phase, the

original tx commit operation without GTags has to execute two memory writes

per write-set entry, one for the memory update and other for the lock release

1The write-back phase includes the release of the acquired locks from the lock acquisition

phase.

51



3.3 TagTM

Cache lines

value

CPU

Registers

Cache

version

(1)

(2)

(1)

(2)

tx_commit() {

  try_acquire_locks();

  tx_validate();

  for (ws_entry in write_set) {

    *ws_entry.addr = ws_entry.value;  // update memory

    *ws_entry.lock_addr = new_version;  // lock release }}

Figure 3.5: Tx commit in lazy versioning STM.

Cache lines GTags

value

CPU

Registers

Cache

version

(1)

(1)

(1)

tx_commit() {

  try_acquire_tags();

  tx_validate();

  for (ws_entry in write_set) {

    // update memory and release lock

    store_tag_and_value(ws_entry.addr, new_version, ws_entry.value); }}

Figure 3.6: Tx commit in TagTM.
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operation1. tx commit with GTags can execute just one store tag and value in-

struction that will update the memory reference and will release the lock. Because

the tx commit operation is on the critical path in STMs, this has positive impact

to the application’s performance. In Section 3.4, we show the reduction in the

number of cycles for the write-back phase.

3.3.6 Modifying remaining transactional operations

The implementation of tx validate, tx write, and tx abort operations is the

same in TinySTM and in TagTM, with one small difference. In original TinySTM,

these operations access the locks from the SAL, and in TagTM, these operations

access the locks stored in the cache line tags. GTags improve the performance of

tx validate operation indirectly, by having better cache locality than original

TinySTM. In Section 3.4, we show the reduction in a number of executed cycles

the for the validation phase.

3.4 Evaluation

For the evaluation we use the M5 full system simulator [Binkert et al. (2006)].

The bus-based coherency protocol is replaced with directory-based MESI cache

coherence protocol. We use in order DECAlpha CPU cores extended with the

new instructions for tag manipulation. We extend the cache lines to store tags

and extend the cache coherence protocol to make data and tags cache coherent.

The configuration parameters used for the simulation are shown on Table 3.2.

Minh et al. created STAMP [Cao Minh et al. (2008)], a state-of-the-art bench-

mark suite for evaluating TM systems. We use STAMP to compare the unmod-

ified TinySTM against TagTM. We use the recommended input parameters for

the application in STAMP for simulation run [Cao Minh et al. (2008)].

1The release also updates the version number.
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Feature Description

Processors 1 to 32 DECAlpha cores, in-order, single-issue

L1 Cache 64KB, private, 4-way assoc., 64B line, 2-cycle access

Coherence protocol MESI protocol

L2 cache 8MB, shared, 32-way assoc., 64B line, 16-cycle access

Memory 300-cycle off chip access

GTags Every cache line is extended with 64-bit tag.

Table 3.2: The simulation parameters.

3.4.1 Transactional operations performance improvements

Figures 3.7, 3.8, and 3.9 show the time spent in the memory hierarchy for the

address and version read, the write-back, and the validation phases in STAMP

benchmarks respectively. The X axis of the graph shows the benchmarks with

TinySTM and TagTM, interleaved. The Y axis depicts the time that is normal-

ized to TinySTM. The cycles spent for memory accesses are broken down in three

parts for L1, L2, and main memory accesses.

Figure 3.7 suggests that GTags reduce the number of memory accesses in

the “address and version read” phase of tx read operation because of the im-

proved spatial locality of data and tags. Vacation and Bayes benchmarks show

the biggest time reduction (up to 41.93% for Vacation-low) because GTags suc-

cessfully eliminate the accesses to main memory. The other applications show a

modest improvement of execution time, which is attributed to the reduction in

the number of accesses to the L2 cache.

Figure 3.8 suggests that GTags reduce the number of memory accesses in the

write-back phase of tx commit operation because of the improved spacial locality

of the data and tags. Almost all the benchmarks show reduction in accesses to

main memory and to L2 caches. This presents a large performance improvement

of 58.96% (geometric mean of all the applications) for the write-back phase. For

GTags, there is slight increase in the time spent for the accesses of L1 cache

because in the simulation we add one cycle latency to the L1 hit latency when

GTags access data and meta-data with same instruction.
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Figure 3.7: tx read - Time spent in the memory hierarchy. Time is normalized

to TinySTM.

Figure 3.9 suggests that GTags reduce the number of memory accesses in the

“validation” phase of tx commit operation because the number of accesses to

main memory is greatly reduced. The validation routine has to traverse all the

locks that are stored in the transaction’s read-set during short time interval which

will populate the caches with the locks from the SAL. This will kick out some

of the transactional data from the caches to the main memory. TagTM does

not exhibit this problem because the locks stored in the tags do not compete

with transactional data for the caches, therefore GTags effectively increase the

associativity of the caches for transactional applications. The performance benefit

of GTags for the validation is 26.76% for the applications with small and medium

read-sets (geometric mean for Kmeans-high, Kmeans-low, Vadation-high, and

Vacation-low). The benefit is bigger for the applications with medium and large

read-sets and is 85.55% (geometric mean for the rest of the STAMP applications).

3.4.2 Transaction execution performance improvements

Figure 3.10 shows the speedup of TagTM over TinySTM. The X axis shows

STAMP applications running from 1 up to 32 threads. The Y axis shows the

speedup gain provided by GTags. The right most columns on the graph repre-
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Figure 3.8: write back - Time spent in the memory hierarchy. Time is normal-

ized to TinySTM.

sent geometric mean of the speedup of the applications. Three applications from

STAMP (Kmenans, Vacation, and SSCA2) show similar behaviour when running

on different number of CPUs. All of them have more or less constant performance

improvement while the number of CPUs change (except Kmeans on 32 CPUs).

SSCA2 shows the best speedup (of 52%). This improvement comes from the

fact that SSCA2 has the biggest transactional overhead of 503.52% (Figure 3.2).

Kmeans (low and high) and Vacation (low and high) have similar transactional

overheads and exhibit the similar speedup with GTags of about 13.28% (geo-

metric mean). Intruder has a performance gain of about 17.2% while running

from 1 to 8 threads, and has a performance loss for 16 and 32 threads. The rest

of transactional applications (Genome, Bayes, Yada, and Labyrinth) have small

transactional overhead, and show that the benefit of GTags can be positive (for

Bayes and Yada) or negative (for Labyrinth). The performance benefit happens

when the (transactional) data and the lock are accessed in transaction. In the

applications with small transaction overhead, the performance loss happens when

the non-transactional data pays the price of fetching tags that will not be used.

This is the one of the reasons why Labyrinth experiences performance degrada-

tion. Overall, we have an average speedup of 13.05% in committed transaction
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Figure 3.9: validate - Time spent in the memory hierarchy. Time is normalized

to TinySTM.

Cache type Regular L1 L1 extended with GTags

Size 64KB 64KB + 8KB for GTags

Cache line size 64 bytes 64 bytes + 8 bytes for GTags

Other 4-way, 1 bank, 45nm 4-way, 1 bank, 45nm

Total area (mm2) 0.841 0.892 (6.05% increase)

Table 3.3: Cache parameters calculated with CACTI 5.3.

execution time while running on 1-32 cores.

3.4.3 GTags - L1 cache overhead

We use CACTI 5.3 [Shivakumar & Jouppi (2001)] to evaluate the increase in

L1 cache area caused by adding GTags to the data part of the cache lines (see

Table 3.3). GTags increase the L1 cache area by 6.05%. This is a small over-

head compared to the total cache size, because GTags utilize the already existing

lookup logic.
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Figure 3.10: Percentage speedup of TagTM over TinySTM

3.5 Related Work

Saha et al. proposed HaSTM [Saha et al. (2006c)] for improving the performance

of STM systems by using additional bits per cache line. Every 16 bytes of an L1

cache line is protected with 1 bit. HaSTM uses these bits to eliminate redundant

logging and to eliminate validation overhead altogether for transactions whose

transaction records fit in the cache. In the case of GTags, the tags speed-up the

logging by reducing the time necessary to accesses to global version table.

Ming el al. proposed SigTM [Minh et al. (2007b)] that uses hardware signa-

tures to track the read-set and write-set for pending transactions and to perform

conflict detection between concurrent threads. All other transactional function-

ality, including data versioning, is implemented in software. However, the biggest

performance benefit of SigTM is the elimination of read-set logging. GTagTM

do not have the problem of false aborts because the version information stored

in tags is exact.

Hammond et al. introduced Transactional Memory Coherence and Consis-

tency (TCC) [Hammond et al. (2004b)] to execute transactions in hardware.

Their system changes the coherence hardware and require that all the code ex-

ecutes simple transactions. On the other hand, GTags requires no changes to
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existing coherence protocols and can be used to speedup existing software TM

systems.

Harris et al. proposed Dynamic Filtering (DF) [Harris et al. (2010)], a multi-

purpose architecture support for language runtime systems, to speedup software

TM systems and to reduce the overheads in language base security systems. DF

reduces the metadata accesses in eager STM systems by reducing unnecessary

transactional logging. GTags reduce the metadata accesses by reducing the over-

heads associated with accesses to cache-line locks/timestamps.

Adl-Tabatabai et al. designed compiler and runtime support for software

TM [Adl-Tabatabai et al. (2006b)] which is able to reduce the overheads of STM.

Their implementation should benefit from the uses of GTags because, atomic

GTags’ instructions can enable some further optimizations that would reduce the

STM overheads even more.

Baugh et al. [Baugh et al. (2008)] used fine-grained protection mechanism

to isolate transactional data in an implementation of TM with strong atomicity,

and to separate hardware-managed and software-managed transactional data in

hybrid systems. This approach could be used to extend use of GTags for hardware

HTM systems.

Several other proposals add hardware for fast meta-data acesses and applica-

tion monitoring. Zeldovich et al. [Zeldovich et al. (2008)] implementad Loki, a

tagged memory architecture, to enforce appilcation security policies in hardware.

Venkataramani et al. [Venkataramani et al. (2007)] propose hardware support for

memory access monitoring tasks. Chen et al. [Chen et al. (2008)] use hardware

extensions to accelerate metadata accesses.

3.6 Summary

In this chapter we introduced TagTM, a software TM system augmented with

new hardware mechanism that we call GTags. GTags are new hardware cache

coherent tags used for fast meta-data access. TagTM use GTags to reduce the cost

associated with accesses to the transactional data and corresponding metadata.

For the evaluation of TagTM, we used STAMP benchmark suite. In the average

case TagTM provide the speedup of 7-15% (across all STAMP applications), and
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in the best case shows up to 52% speedup of committed transaction execution

time (for SSCA2).
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Chapter 4

Profile-Guided Transaction

Coalescing

The content of this chapter was presented in the paper “Profile-guided transaction

coalescing – lowering transactional overheads by merging transactions” at TACO

2014 (ACM Transactions on Architecture and Code Optimization).

4.1 Introduction to Profile-Guided Transaction

Coalescing

Previous studies in Software Transactional Memory mostly focused on reducing

the overhead of transactional read and write operations. In this chapter we in-

troduce transaction coalescing, a profile-guided compiler optimization technique

that attempts to reduce the overheads of starting and committing a transac-

tion by merging two or more small transactions. We develop a profiling tool

and a transaction coalescing heuristic to identify candidate transactions suitable

for coalescing. We implement a compiler extension to automatically merge the

candidate transactions at compile-time. We evaluate the effectiveness of our tech-

nique using the hash table micro-benchmark and the STAMP benchmark suite.

Transaction coalescing improves the performance of the hash table significantly

and the performance of Vacation and SSCA2 benchmarks by 19.4% and 36.4%

respectively, when running with 12 threads.
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4.2 Motivation for Profile-Guided Transaction

Coalescing

Most of the current TM systems are implemented in software as a library or as a

compiler extension. In order to support concurrent execution of transactions, a

software TM (STM) system manages transactional metadata during transactional

execution. This creates overheads related to transaction initialization, versioning,

read/write instrumentation, etc. At the beginning of each transaction, the STM

system initializes transactional metadata (read and write sets) and creates a

checkpoint of the current thread state (the register file and local variables). If

the transaction aborts, due to a conflict with another transaction, the checkpoint

is used to restore the state from the beginning of the transaction. Otherwise,

it commits changed shared data and associated metadata. If transactions in an

application are numerous and small, STM overheads accumulate rapidly. The

overheads degrade performance since most of the execution time is spent on

creating and committing transactions - in extreme cases even more than 70%

[Chung et al. (2008)].

Until now researchers have been trying to decrease STM overheads by applying

various compiler and runtime optimizations on read and write barriers [Afek

et al. (2011); Dragojevic et al. (2009); Wang et al. (2007); Wu et al. (2009)], or

by accelerating some STM functionalities in hardware [Minh et al. (2007a); Saha

et al. (2006b); Shriraman et al. (2007); Stipic et al. (2012)]. In our work, we

follow a different approach and focus on reducing the overheads of starting and

committing transactions.

This chapter makes the following contributions:

• We introduce transaction coalescing (TC), a profile-guided compiler tech-

nique that lowers the overheads of starting and committing transactions.

TC merges two or more consecutive transactions into a large transaction

that has less transactional overhead compared to the original unmerged

transactions (we use ‘merging’ and ‘coalescing’ interchangeably). To the

best of our knowledge, this is the first profile-guided compiler optimization

technique for STM systems.
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• We develop a profiling tool for collecting and analysing characteristics of a

transactional application.

• We design a transaction coalescing heuristic that identifies candidate trans-

actions suitable for merging.

• We implement TC as a profile-guided compiler optimization that uses profile

information and the transaction coalescing heuristic to merge the candidate

transactions.

We evaluate our proposal using the STAMP [Minh et al. (2008)], red-black

tree, and hash table benchmarks where we show profiling information for all the

benchmarks. Using the profile-guided optimization we identify the benchmarks

that benefit from TC, and for these benchmarks we show full statistics and per-

formance improvement gained by applying TC. TC improves the performance of

hash table significantly and the performance of Vacation and SSCA2 benchmarks

by 19.4% and 36.4% respectively, when running with 12 threads.

The reminder of this chapter is organized as follows: in Section 4.3 we present

transactional overheads as motivation of our work; in Section 4.4 we introduce

transaction coalescing, a novel profile-guided compiler technique; in Section 4.5

we present our profiling tool, transaction coalescing heuristic, and explain how

a compiler uses the heuristic for transaction coalescing; in Section 5.5 we show

experimental results; finally, we conclude in Section 4.7.

4.3 Transactional overheads

A programmer writes a TM application by identifying sections of code for atomic

execution isolated from other threads, and puts the code in tm_atomic blocks,

i.e. transactions. The compiler and a runtime system ensure atomicity and

isolation of transactions. At the beginning of a transaction, the compiler inserts

a TX_START() function call. TX_START() initializes the transactional metadata

and creates the snapshot of the register file and local variables. The compiler

instruments all read and write operations that access shared memory locations.

The functions TX_READ() and TX_WRITE() keep track of all speculative reads
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Figure 4.1: Calculating account balance.

and writes. At the end of the transaction, the compiler inserts a TX_COMMIT()

function call to make speculative writes globally visible.

In order to determine the overheads of TX_START() and TX_COMMIT() func-

tions in TinySTM 1.0.3 [Felber et al. (2007)], we implement a very simple interest

rate calculation benchmark1 (Figure 4.1.a) where each thread calculates account

balance for several accounts within a transaction denoted with tm_atomic. Fig-

ure 4.1.b shows the same code after transactional instrumentation. To measure

the throughput, we use the environment described in Section 5.5, and we vary

the NUM_ACCOUNTS parameter from 1 to 256 and the number of threads from 1 to

12 (Figure 4.2). We observe the following:

• As the NUM_ACCOUNTS parameter increases, the throughput increases as well.

This happens because the total time spent in TX_START() and TX_COMMIT()

decreases compared to the time spent inside the transaction.

• Increasing the transaction size is beneficial up to some limit. In our example,

the throughput is very simmilar for NUM_ACCOUNTS = 64 and NUM_ACCOUNTS = 256.

The further increase of the NUM_ACCOUNTS parameter gives negligible perfor-

mance improvements because the time spent in TX_START() and TX_COMMIT()

is small w.r.t. the transaction size.

• The biggest jump in the throughput is for the small values of NUM_ACCOUNTS

parameter (e.g., NUM_ACCOUNTS = 16). This shows that reducing the TX_START()

1The benchmark resembles the main loop in transaction processing applications.
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Figure 4.2: Throughput for the code from Figure 4.1. ‘NUM ACCOUNTS’ rep-

resents the number of balance calculations in a transaction. ‘#ops/sec’ represent

the number of balance calculations per second.

and TX_COMMIT() overheads has a big performance improvement for small

transactions.

• For small transactions (NUM_ACCOUNTS <= 16), the throughput is limited

when transactions execute on different physical sockets1 (even though the

threads operate on independent data). The throughput is limited be-

cause STM serializes transactions at commit time by updating the shared

global “commit counter”, and small transactions finish before the “com-

mit counter” gets in the exclusive state in CPU’s private L1 cache. For

larger transactions (NUM_ACCOUNTS > 16), the transactions execution time

is larger than time required to get the “commit counter” in exclusive state

(the transaction execution is overlapped with internal STM synchroniza-

tion.)

From this simple example, we conclude that increasing the size of transactions

up to some limit reduces TX_START() and TX_COMMIT() overheads. The new

insight is that we have to pay the price of transaction initialization just once

1The throughput is limited to 6 cores because we use two socket machine where each socket

has 6 cores on chip
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Figure 4.3: Execution time in cycles for the code from Figure 4.1 when running

with 1 thread.

if we join two or more transactions. So, we remove some of the cost of the

transaction initialization.

In order to quantify the transactional overheads of TX_START() and TX_COMMIT(),

we execute the interest rate calculation benchmark with 1 running thread. Fig-

ure 4.3 shows that TX_START() and TX_COMMIT() consume the largest part of a

transaction when NUM_ACCOUNTS = 1 (334 out of 432 cycles, which is 77.3%1).

Increasing the NUM_ACCOUNTS decreases the percentage of the transactional over-

heads compared to the whole transaction execution. Therefore, we conclude that

increasing the number of read and write operations (in a transaction) amortizes

the overheads of TX_START() and TX_COMMIT.

4.4 Transaction coalescing

In this chapter we introduce transaction coalescing (TC), a compiler technique

that merges small transactions with large transactional overhead into a large

transaction with lower transactional overhead. TC merges two or more consecu-

tive transactions or transactions separated by non-transactional code.

1The transactional overhead depends on the specifics of the STM implementation.
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In Section 4.3 we showed that for small transactions increasing the number

of operations per transaction reduces the transactional overhead of TX_START()

and TX_COMMIT(). In this section, we provide a few use cases for applying TC

and reducing the transactional overhead: (i) transactions are consecutive, (ii) a

compiler applies traditional compiler optimizations (loop unrolling and function

inlining), and (iii) transactions are separated by non-transactional code.

Figure 4.4.a shows an example of incrementing two counters in two transac-

tions. The compiler transforms the tm_atomic blocks and instruments the code

inside. TC merges two consecutive transactions by removing TX_COMMIT() from

the first transaction and TX_START() from the second transaction. This reduces

the overall overhead associated with the transactional execution.

Figure 4.4.b illustrates an example where the compiler uses TC after loop

unrolling. The for loop atomically increments each element of the array, and

each iteration of the loop pays the overhead for TX_START() and TX_COMMIT().

After the loop unrolling, two consecutive increments can be coalesced in one large

transaction with lower transactional overhead.

Figure 4.4.c demonstrates how TC can be combined with function inlining.

The figure shows two transactions in two separate functions (increment() and

decrement()). After inlining these functions, two transactions become consec-

utive, and TC can be applied. TC optimization pass depends on unrolling and

inlining similarly as e.g. modulo scheduling (aka. software pipelining) depends

on loop unrolling (modulo scheduling requires loop unrolling pass)

Up to now, we have considered the ideal cases when transactions are consec-

utive. However, a more likely case is that a piece of code separates transactions.

For example, Figure 4.4.d shows typical operations with a shared list: the func-

tion work_with_list() atomically pops an element from the list, processes the

element outside of tm_atomic blocks, and atomically pushes the processed ele-

ment to the list. The compiler inlines the functions get_elem() and put_elem()

and now TC creates one transaction with pop(), push(), and a transactional ver-

sion of process(). The instrumentation of the process() function introduces

an additional overhead. Therefore, to find transactions for merging, we need to

analyze both the code within transactions (because of the benefit of TC) and the

code between transactions (because of the disadvantages of TC).
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  tm_atomic {

    counter1++;

  }

  tm_atomic {

    counter2++;  

  }

  TX_START();

  tmp1 = TX_READ(counter1);

  tmp1++;

  TX_WRITE(counter1, tmp1);

  TX_COMMIT();

  TX_START();

  tmp2 = TX_READ(counter2);

  tmp2++;

  TX_WRITE(counter2, tmp2);

  TX_COMMIT();

  TX_START();

  tmp1 = TX_READ(counter1);

  tmp1++;

  TX_WRITE(counter1, tmp1);

  // no TX_COMMIT();

  // no TX_START();

  tmp2 = TX_READ(counter2);

  tmp2++;

  TX_WRITE(counter2, tmp2);

  TX_COMMIT();

Figure 4.4: Compiler transformations: instrumentation and TC (a), optimiza-

tions and TC (b),(c),(d). In all examples the compiler inserts TX START(),

TX COMMIT(), TX READ(), TX WRITE() calls like in (a); however we do not show

them in (b), (c), (d) for clarity of code.
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4.5 Applying TC

In this section, we introduce our profiling tool, transaction coalescing heuristic,

and compiler pass. The tool generates profile information, the heuristic uses the

profile information to find candidate transactions, and the compiler pass merges

the candidate transactions.

4.5.1 Profiling tool

We developed a profiling tool for finding transactions that benefit from TC.

The tool executes an unmodified program, and gathers statistics from a single-

threaded execution. The tool outputs the following information:

• Transaction execution information. For every transaction, the tool col-

lects: (i) the number of cycles executed in the transaction, (ii) the percent-

age of the total execution time spent in the transaction, and (iii) the sizes

of read and write sets. The tool uses the transaction coalescing heuristic to

identify small and frequently executed transactions that are candidates for

TC.

• Transaction transition information. For every pair of transactions the

tool calculates a transaction transition matrix and a transaction distance

matrix. The transaction transition matrix counts the number of transitions1

between transactions, and the transaction distance matrix calculates the

average number of cycles executed between transactions. The tool uses the

transaction coalescing heuristic to find transactions that are close to each

other during the execution.

To use the profiling tool, we compile and run STAMP benchmarks (using the

input parameters from Table 4.1) and two micro-benchmarks (hash table and red-

black tree). We show the transaction execution information in Table 4.2 and the

transaction transition information in Table 4.3 and Table 4.4. Although some

1Each transaction has a unique static transaction ID. The transition is a pair of unique

static transactions IDs where the first ID represents the ID of the committed transaction and

the second ID represents the ID of the next committed transaction executed by the same thread.
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benchmark input arguments

Bayes -v32 -r4096 -n10 -p40 -i2 -e8 -s1

Genome -g16384 -s64 -n16777216

Intruder -a10 -l128 -n262144 -s1

Kmeans -m40 -n40 -t0.00001 -i rnd-n65536-d32-c16

Labyrinth -i rnd-x128-y128-z5-n128.txt

SSCA2 -s20 -i1.0 -u1.0 -l3 -p3

Vacation -n4 -q60 -u90 -r1048576 -t4194304

Yada -a15 -i ttimeu1000000.2

Table 4.1: STAMP benchmark input parameters.

benchmarks have more than 3 transactions, we present only the transactions

that occupy most of the benchmark execution time, because the reset of the

transactions execute less than 5% of the execution time and are not candidates

for coalescing.

4.5.2 Transaction Coalescing Heuristic

The transaction coalescing heuristic uses profile generated statistics to identify

candidate transactions suitable for merging. The heuristic looks for transactions

that are small, frequent and close to each other, by using the following rules:

• A small transaction is a transaction that executes in less than 3,000 cycles

on average1 and has less than 16 and 4 elements in read and write sets2,

respectively.

• A frequently executed transaction is a transaction that consumes at least

10% of the execution time of the program.

• Close transactions are a pair of transactions that have the transition prob-

ability higher than 80% and have less than 1,000 cycles between each other

on average3.

1We choose 3,000 cycles as the upper limit because in this case TX START() and

TX COMMIT() create overhead of more than 10% of transaction execution time (Section 4.3

shows that the overhead is about 300 cycles).
2 These sizes of read and write sets work well in practice.
3 The upper limit of 1,000 cycles between transactions is determined empirically.
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tx1 tx2 tx3 tx1 tx2 tx3

benchmark Bayes Labyrinth

length (cycles) 908,161,356 536,427,523 406,716,287 110,363,661 262,308 2,735

execution time 46.31% 27.36% 20.74% 99.74% 0.24% <0.1%

read set size 11509169.82 6465018.77 5057245.93 2751731.61 7.96 2.00

write set size 2344162.23 1309395.11 1025313.10 335355.95 0.99 4.00

benchmark Genome Rb tree

length (cycles) 20,789 14,640 960 980 2,016 2,153

execution time 65.42% 33.88% <0.1% 90.11% 1.6% 0.68%

read set size 186.01 137.10 3.83 29.82 31.75 38.86

write set size 12.07 4.00 3.78 0.00 7.00 9.00

benchmark Hash table SSCA2

length (cycles) 333 664 921 1,511 14,836,229 6,386

execution time 78.53% 1.12% 0.86% 59.31% <0.1% <0.1%

read set size 2.50 3.00 4.00 5.00 1.00 1.00

write set size 0.00 1.66 4.00 2.00 1.00 1.00

benchmark Intruder Vacation

length (cycles) 14,933 662 579 1,742 6,595 1,897

execution time 81.23% 3.6% 3.15% 71.01% 15.0% 4.27%

read set size 163.84 6.00 4.13 9.21 84.90 9.00

write set size 13.85 1.00 1.13 1.00 6.99 1.00

benchmark Kmeans Yada

length (cycles) 6,199 465 937 379,700 1,633 1,224

execution time 47.46% 1.19% <0.1% 98.66% 0.58% 0.32%

read set size 130.00 1.00 1.00 7264.59 14.98 11.70

write set size 33.00 1.00 1.00 1468.79 2.20 1.54

Table 4.2: Transaction execution information. The length is the average number

of cycles spent in a transaction. The execution time of a transaction is the average

percentage of total execution time spent in the benchmark. The read/write set

size is the average size of the read/write sets of a transaction. Gray cells show

small transactions, dark gray show frequent transactions, light gray cells show

transactions with small read and write sets, and circled cells show candidate

transactions for TC.
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Ht. tx1 tx2 tx3

tx1 98.76% 0.85% 0.38%

tx2 92.97% - 7.03%

tx3 100% - -

Vac. tx1 tx2 tx3

tx1 89.98% 5.02% 4.99%

tx2 89.98% 5.18% 4.83%

tx3 90.53% 4.81% 4.66%

SSCA2 tx1 tx2 tx3

tx1 99.99% - <0.01%

tx2 - - -

tx3 <0.01% - 99.99%

Table 4.3: Transaction transition matrix: the probability of transitions between

transactions. For candidate transactions ‘tx1’ from Table 4.2, the dominant tran-

sition is to the transactions ‘tx1’ (circled cells).

Ht. tx1 tx2 tx3

tx1 81 97 90

tx2 110 - 112

tx3 109 - -

Vac. tx1 tx2 tx3

tx1 219 222 230

tx2 214 220 231

tx3 178 177 189

SSCA2 tx1 tx2 tx3

tx1 886 - 1.9G

tx2 - - -

tx3 138K - 74

Table 4.4: Transaction distance matrix: the average number of cycles between

transactions. Circled cells confirm candidate transactions suitable for TC.

The information from Table 4.2 is crucial to find small and frequently executed

transactions that are candidates for TC. The heuristic identifies that hash table,

Vacation, and SSCA2 have candidate transactions suitable for TC (circled cells

in the table). For example, the transaction ‘tx1’ of Vacation executes in 1,742

cycles and consumes 71.01% of the total execution time. However, transactions

not suitable for TC are either (i) large transactions (e.g., ‘tx1’ in Bayes), or (ii)

infrequently executed transactions (e.g., ‘tx2’ in Intruder).

Table 4.3 shows the transaction transition matrix for the three benchmarks

(hash table, Vacation, and SSCA2) where TC can be applied. For all these

benchmarks, the dominant transition is from ‘tx1’ to ‘tx1’ with more than 80%

transition probability. Thus, ‘tx1’ becomes a stronger candidate for TC and the

heuristic has to ensure that multiple invocations of ‘tx1’ are close to each other.

The heuristic uses the transaction distance matrix (Table 4.4) to get the distance

in cycles between the invocations of ‘tx1’. Finally, the heuristic confirms that in

all the cases, inter-transaction distance is fewer than 1,000 cycles (circled cells),

thus the transactions are close.

Based on the heuristic, the compiler applies TC on ’tx1’ of hash table, Va-

cation, and SSCA2. This implies that repetitive invocations of ‘tx1’ should be

coalesced. Therefore, the compiler unrolls the loop where ‘tx1’ is located and
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Figure 4.5: The workflow of transaction coalescing. A user compiles source files

with the profiler and runs the application to get a profile file. The user then

compiles the source files again when TC coalesces transactions according to the

profile file.

applies TC on multiple instances of ‘tx1’.

4.5.3 Compiler Pass

We implement TC as a profile-guided optimization pass using Berkeley’s C In-

termediate Language (CIL) tool [Necula et al. (2002)]. CIL is a compiler fron-

tend that transforms C language constructs to CIL’s abstract syntax tree (AST)

and uses GCC [http://gcc.gnu.org] as a backend compiler. We implement the

transaction coalescing algorithm in CIL where the algorithm merges transactions

identified by the transaction coalescing heuristic.

In Figure 4.5 we show the workflow of our implementation. The user compiles

an application with profiling enabled and runs the application1 to generate the

profile information. The second time the user compiles the application, the TC

compiler applies the transaction coalescing heuristic on the profile information to

identify candidate transactions. TC is dependent on loop unrolling and function

inlining, which gives the compiler opportunity to coalesce the candidate trans-

actions using the transaction coalescing algorithm. In our implementation, the

compiling and running steps are totally automatized.

Transaction coalescing algorithm merges two transactions at the AST

level (Figure 4.6) into one large transaction2.

The algorithm executes in three steps:

1 Because transaction coalescing is a profile-guided optimization technique, the user has to

provide a representative input set for the sample run.
2 The algorithm can be used recursively to merge more than two transactions.
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def f():

  <code1>

  TX1{<code2>}

  <code3>

  if ():

    TX2{<code4>}

  else:

    <code5>

  <code6>

def f():

  <code1>

  TX_coalesced{

    <code2>

    <code3>

    if ():

      <code4>

    else:

      <code5>

  }

  <code6>

TX1

f()

<code1> <code3> if

<code4>

<code5><code2> TX2

<code3> if

<code4>

<code2>

<code6>

TX_coalesced

TX1

<code1>

<code3> if

<code4>

<code5><code2> TX2

<code3> if

<code4>

<code2>

<code6>

TX_coalesced<code1>

<code3> if

<code5>

<code3> if

<code4>

<code2>

<code6>

def f():

  <code1>

  TX_coalesced{

    TX1{<code2>}

    <code3>

    if ():

      TX2{<code4>}

    else:

      <code5>

  }

  <code6>

(b) Transactions coalesced

(a) Transactions identified

(c) Transactions flattened

f()

f()

Figure 4.6: Transaction coalescing algorithm for merging transactions at the

abstract syntax tree (AST) level. The AST on the right is equivalent to the

source code on the left.
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1. The algorithm identifies transactions (TX1 and TX2) selected for merging

(Figure 4.6.a).

2. The algorithm finds the first common parent node (f()) of the transactions

in the AST, identifies parent’s children nodes (TX1 and if) that contain

selected transactions, and creates a new transaction node (TX_coalesced)

including these nodes and all their sibling nodes in between (TX1, <code3>,

and if) (Figure 4.6.b).

3. The algorithm removes the original transaction nodes (TX1 and TX2) from

the AST (Figure 4.6.c).

4.5.4 Transaction Coalescing - Correctness

The transaction coalescing algorithm preserves atomicity and isolation of trans-

actions. In other words, in the case of race free programs, the coalescing preserves

the correctness of a program and it is safe to merge two adjacent transactions1 or

to include non-transactional code in a transaction. When non-transactional code

becomes part of a larger transaction, the transaction coalescing algorithm uses

the compiler to instrument the accesses to shared data. We would like to empha-

sise that the compiler will not instrument the accesses to thread-local variables.

To illustrate this, we use the following example:

__thread int thread_local;

int global;

void f() {

__transaction_atomic { /* coalesced tranaction */

__transaction_atomic{ ++global;} /* tx1 */

++thread_local;

__transaction_atomic{ ++global;} /* tx2 */

}

}

1 The TC algorithm is analogous to the lock coalescing algorithm [Diniz & Rinard (1997)].
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The example shows the function f() that has one coalesced transaction. The

coalesced transaction includes two smaller transactions (tx1 and tx2) and non-

transactional code (++thread_local). The following code shows the disassembly

of the function f():

gcc 4.7 -O2 -fgnu-tm:

f():

1 movq %rbx, -16(%rsp)

2 movq %rbp, -8(%rsp)

3 movl $41, %edi

4 subq $24, %rsp

5 xorl %eax, %eax

6 call _ITM_beginTransaction

7 movq %fs:0, %rbx /****************************/

8 movl $global, %edi /* ’global’ is instrumented */

9 call _ITM_RfWU4 /* with _ITM functions. */

10 movl %eax, %ebp /* ’thread_local’ is not */

11 addq $thread_local@tpoff, %rbx /* instrumented and is */

12 movq %rbx, %rdi /* accessed directly */

13 call _ITM_RfWU4 /* with add instruction. */

14 leal 1(%rax), %esi /****************************/

15 movq %rbx, %rdi

16 call _ITM_WaWU4

17 leal 2(%rbp), %esi

18 movl $global, %edi

19 call _ITM_WaWU4

20 call _ITM_commitTransaction

21 movq 8(%rsp), %rbx

22 movq 16(%rsp), %rbp

23 addq $24, %rsp

24 ret

The TC algorithm relies on the ability of the compiler to instrument only

accesses to shared variables (global) but not accesses to thread-local variables
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(thread_local, line 11). If a transaction aborts, the transaction restores vari-

ables as they were at the beginning of the transaction, which preserves the se-

mantics of the original program.

GCC provides proper instrumentation of thread-local variables in the follow-

ing way: Before the start of a transaction the current values of the thread-local

variables that are accessed inside of a transaction are pushed on the stack. During

the transaction execution, the accesses to thread-local variables are not instru-

mented. Just in the case of the abort, the values of thread-local variables are

restored from the stack.

4.5.5 Executing non-undoable code

It is possible that the transaction coalescing algorithm creates a coalesced trans-

action that includes non-undoable operations (e.g. asm, volatile, printf()).

In that case, the compiler detects the non-undoable code and executes the trans-

action guaranteeing that it will commit without any abort. A more elaborate

explanation follows.

Sometimes, the memory accesses (in the non transactional code) are aliased to

MMIO space. The common programming practice is to access MMIO addresses

with ACCESS_ONCE() macro defined as:

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))}

GCC treats all accesses to volatile variables, all system calls, and all non-

transactified function calls as non-undoable code. At compile time, GCC has the

access to all transactional code in the program. If any code path in the transaction

tries to execute non-undoable code, the compiler inserts the code that acquires

a shared global lock. The first transaction that acquires the shared global lock

validates itself. The validation can succeed or fail:

1. If the validation succeeds, the transaction commits its speculative changes

and continues executing while holding the shared global lock. When the

transaction ends it releases the shared global lock.
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2. If the validation fails, the transaction rollbacks and restarts without releas-

ing the global shared lock. Now, the transaction runs from the beginning

to the end while holding the shared global lock. When the transaction ends

it releases the shared global lock.

In both cases the execution of non-undoable code is protected with the shared

global lock, which ensures correct execution of non-undoable transactions (no

transaction can abort the transaction holding the shared global lock). Other

transaction that tries to execute non-undoable code will be blocked on the acqui-

sition of the shared global lock.

If the program is not race free, including non-transactional code in a trans-

action can introduce deviation of the program execution in the presence of roll-

backs1. The compiler has to ensure that non-transactional code included in the

transactions can not be accessed by other threads concurrently. In our imple-

mentation, TC is an unsafe optimization and a programmer should enable TC

explicitly only if he/she knows that the program is race free.

In Section 5.5 we evaluate the performance improvements of TC on the bench-

marks selected for transaction coalescing.

4.6 Evaluation

We perform experiments on a Sun Fire x4140 system equipped with two Six-Core

AMD Opteron 2427 (12 cores in total), 32GiB RAM, running Linux 2.6.32-5. We

compile the applications with GCC 4.7 with Transactional Memory support and

link with TinySTM[Felber et al. (2008)] 1.0.3. We implement the TC compiler

pass in CIL 1.5 and use GCC as a backend. In this section we explain the

implementation of the applications we selected in Section 4.5, i.e. hash table,

Vacation, and SSCA2, and we evaluate their performance.

1STAMP benchmarks suite is race free because all the shared variables are accessed only

inside of transactions and TC can be applied safely.
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4.6.1 Benchmarks

Hash table executes repetitively the transactional lookup(), add(), or remove()

functions. Each function operates on shared data stored in the hash table. We

control the number of updates (add() and remove()) relative to the total number

of operations (lookup(), add(), and remove()) with the update rate parameter.

We include a function work() between the invocations of remove() and add()

to show how non-transactional code instrumentation influences TC. work() exe-

cutes a simple mathematical function (f(x) = 13∗xmody) work loop count (wlc)

times.

Applying TC on the benchmarks: In Section 4.5.2, the compiler identified

‘tx1’ of hash table, Vacation, and SSCA2 as candidate transactions for TC. To

merge ‘tx1’ with itself, TC unrolls the loop where ‘tx1’ is located and merges two

(or more) instances of ‘tx1’ into one transaction1.

The number of coalesced transactions in the TC compiler pass is controlled

by the aggressive flag, i.e. when aggressive = n the compiler pass merges n

transactions. If it is not possible to merge n transactions, the compiler finds a

loop that contains transactions and unrolls it n times. After loop unrolling, the

compiler merges transactions. If the compiler does not find the loop that contains

transactions suitable for merging, the compiler bails out. In our implementation

we use aggressive = 2 as a default parameter but in the benchmarks we vary

the aggressive factor between 2 and 16. In ‘aggressive 2/4/8/16’ the loop is

unrolled more times to merge 2, 4, 8 and 16 instances of ‘tx1’ respectively into

one transaction.

4.6.2 Results

All of the benchmarks (hash table, SSCA2, Vacation) initialize their input set

using the random() function for which we provide the initial seed value. Hash

table uses random() to generate the sequence of hash table update/lookup op-

erations (insert 10, delete 3, delete 9, lookup 17, insert 11,...), SSCA2 uses

random() to generate graph structure, and Vacation uses random() to populate

1TC would fail in case of Vacation and SSCA2 if the compiler does not unroll loop and does

not inline functions with transactions.
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Figure 4.7: Hash table with 1%, 5% and 20% update rate (ur), and 0, 100, and

1.000 as work loop count (wlc).
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the in-memory database and to generate the sequence of accesses to the database

(make car reservation 3, delete customer 7, delete flight reservation 15,...). For

every run of the benchmarks we initialize the seed to a different value. By chang-

ing the seed values, the benchmarks generate one input set for profiling and a

different input set for measurement phase (which is necessary for obtaining correct

results).

Figure 4.7 shows the performance of the hash table for various update rates

(1%, 5%, and 20%), and work loop counts (0, 100, and 1,000). We measure the

performance as the number of million operations (lookup(), add(), or remove())

per second. TC improves the performance for all the variations of the input pa-

rameters. When transaction coalescing is too aggressive, the performance starts

suffering, e.g. ‘aggressive 16’ performs worse than ‘aggressive 8’ in Figure 4.7.g.

However, ‘aggressive 2’ (the default aggressive factor) performs from 10.7% (Fig-

ure 4.7.a) to 158.5%1 (Figure 4.7.h) better than ‘original’, when running with

12 threads. When the update rate is 20% (Figures 4.7.g.h.i) and the aggressive

factor is 16, the number of aborts goes up to 90%. For this particular benchmark,

the high abort rate has small impact to scalability, but this can not be stated in

general2.

Figure 4.8 shows ‘original’, ‘improved’, and ‘aggressive’ versions of Vacation

benchmark. ‘improved’ is based on ‘original’ where red-black tree is substituted

with hash-table and where random-number generation is moved to the initializa-

tion part of the benchmark (explained in Section 4.6.1). These changes improved

the performance of ‘original’ significantly. We apply TC (‘aggressive n’) on the

improved baseline (‘improved’) to show the benefit of using TC.

Figure 4.8 shows graphs for different input values of queries per transaction

(qpt). The size of transactions scale linearly with qpt. When qpt is low (Fig-

ure 4.8.a), TC always improves the performance. In Figure 4.8.b we show the

performance for the default input value of qpt for the benchmark. ‘aggressive 2’

1The improvement of 158.5% is mostly due to bad scalability of the hash table with 20%

update rate.
2 The high abort rate is caused by transactions that repeatedly abort immediately at the

beginning of a transaction. Effectively, the aborting transactions spins on the conflicting ad-

dress.
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Figure 4.8: Vacation: Throughput and abort rate for different numbers of queries

per transaction (qpt).

(the default aggressive factor) performs 19.4% better than ‘improved’, when run-

ning with 12 threads. The best case, ‘aggressive 4’, performs 21.2% better than

‘improved’, when running with 12 threads. However, when qpt is 3 ‘aggressive

8-16’ perform worse than ‘improved’ (Figure 4.8.c) due to the high abort rate

(Figure 4.8.f). The increased number of aborts negates the benefits of TC.

Figure 4.9 shows ‘original’, ‘improved’, and ‘aggressive’ versions of SSCA2

benchmark. ‘improved’ is based on ‘original’ where we modify the main loop and

instead of executing the transactions immediately, we buffer the values of the

variables used in the transactions (explained in Section 4.6.1). These changes

improved the performance of ‘original’ slightly. We apply TC (‘aggressive n’) on

the improved baseline (‘improved’) to show the benefit of using TC. The figure

shows the performance of the parallel section of SSCA2 where ‘aggressive 2-16’

have better scalability than ‘improved’. ‘aggressive 2’ (the default aggressive

factor) and ‘aggressive 16’ (the best case) perform better than ‘improved’ by

36.4% and 47.4%, respectively, when running with 12 threads.

The default aggressive parameter (‘aggressive 2’) improves the performance of
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Figure 4.9: SSCA2: Throughput (left) and abort rate (right)

hash table, Vacation, and SSCA2 with negligible increase of the abort rate. The

higher values of the aggressive parameter increase the abort rate considerably

(Figure 4.7, Figure 4.8, Figure 4.9) and can decrease performance (‘aggressive 16’

for Vacation, Figure 4.8).

4.7 Summary

In this chapter we showed that transaction coalescing can reduce transactional

overheads. We introduced a profiling tool and a transaction coalescing heuristic

for collecting and analysing transactional information. We developed a profile-

guided compiler pass that identifies and coalesces transactions, where the over-

heads of transactional start and commit are less than in the original transactions.

We evaluated transaction coalescing using the STAMP applications and micro-

benchmarks. For the default value of the aggressive factor, transaction coalescing

improves the performance by 10.7-158.5% in hash table, by 19.4% in Vacation

and by 36.4% in SSCA2, when running with 12 threads. We showed that even

better performance improvement can be achieved with larger aggressive factors.

The improvement can go up to 21.2% in Vacation (for the aggressive factor equals

4) and up to 47.4% in SSCA2 (for the aggressive factor equals 16), when running

with 12 threads.
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Chapter 5

Dynamic Transaction Coalescing

The content of this chapter was presented in the paper “Dynamic Transaction

Coalescing” at CF’14 (ACM International Conference on Computing Frontiers

2014).

5.1 Introduction to Dynamic Transactional

Memory

In Chapter 4, we identified that STMs have high overheads related to starting

and committing transactions that may degrade the application performance. To

amortize these overheads, we proposed transaction coalescing techniques that

coalesce two or more small transactions into one large transaction. However,

TC either coalesce transactions statically at compile time, or lack on-line pro-

filing mechanisms that allow coalescing transactions dynamically. Thus, such

approaches lead to sub-optimal execution or they may even degrade the perfor-

mance.

In this chapter, we introduce Dynamic Transaction Coalescing (DTC), a

compile-time and run-time technique that improves transactional throughput.

DTC reduces the overheads of starting and committing a transaction. At compile-

time, DTC generates several code paths with a different number of coalesced

transactions. At runtime, DTC implements low overhead online profiling and

dynamically selects the corresponding code path that maximizes throughput.
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Compared to coalescing transactions statically, DTC provides two main improve-

ments. First, DTC implements online profiling which removes the dependency

on a pre-compilation profiling step. Second, DTC dynamically selects the best

transaction granularity to maximize the transaction throughput taking into con-

sideration the abort rate. We evaluate DTC using common TM benchmarks and

micro-benchmarks. Our findings show that: (i) DTC performs like static trans-

action coalescing in the common case, (ii) DTC does not suffer from performance

degradation, and (iii) DTC outperforms static transaction coalescing when an

application has phased behavior1.

5.2 Motivation for Dynamic Transaction Coa-

lescing

Dynamic Transaction Coalescing (DTC) is a compile-time and run-time tech-

nique that improves the application performance. At compile-time, DTC gener-

ates several code paths with a different number of coalesced transactions. At run-

time, DTC implements low overhead online profiling and dynamically selects the

corresponding code path that maximizes throughput. In this way, DTC improves

the transaction throughput of the loops executing transactions. To evaluate the

effectiveness of DTC, we used various benchmarks (CLOMP-TM, SSCA2, Vaca-

tion) that are widely used in TM research, and micro-benchmarks (hash-table

and red-black tree). Our findings show that DTC improves the performance of

SSCA2, Vacation, CLOMP-TM, and hash-table by 44.4%, 45.8%, 66.9%, and

62.9% respectively when running with 12 threads. Also, we show that the DTC’s

online profiling mechanism has low overhead (11% in the worst case).

The main contributions of this chapter are:

• We show that statically coalescing transactions performs sub-optimally –

1We say that an application has phased behaviour when the runtime parameters of the

application change during the execution of the application (e.g., number of threads change,

transaction throughput change, transitioning from the initialization of the application to the

main loop of the application).
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even degrading the performance – when the running conditions of the pro-

gram change (e.g. thread count, abort rate).

• We introduce Dynamic Transaction Coalescing (DTC), a compile-time and

run-time technique that improves transactional throughput of the loops

executing transactions.

• We show that DTC dynamically selects the best transaction granularity

(to maximize transactional throughput) and adapts it accordingly to the

program behavior.

The remainder of this chapter is organized as follows: in Section 5.3 we mo-

tivate our work; in Section 5.4 we explain the design and implementation of the

dynamic transaction coalescing technique; in Section 5.5 and Section 5.6 we show

experimental results; finally, we conclude in Section 5.7.

5.3 Background

Prior works in TM has shown that starting and committing transactions can incur

high overheads [Chung et al. (2008); Stipic et al. (2014); Wang et al. (2012);

Yoo et al. (2013)]. These overheads may account for even more than 70% of

the total execution time in extreme cases [Chung et al. (2008)]. In response,

researchers proposed mechanisms to coalesce transactions in order to minimize

the associated overheads of starting and committing transactions. In this section

we demonstrate the short-comings of Stat-TC (from Chapter 4) and we motivate

our work on DTC.

Figure 5.1 shows the hash-table benchmark with statically coalesced trans-

actions. The main loop of the benchmark has one transaction that repetitively

executes either the lookup() or the update() function based on a probability.

Assuming that the profiling step indicated as optimal a TC factor of 2, Stat-TC

unrolls the loop once and removes the unnecessary extra calls to TX_START() and

TX_COMMIT() functions, generating a single coalesced transaction. Hence, the re-

sulting code has lower transactional overhead than the two original transactions.
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Figure 5.1: Hash-table main loop: (a) For-loop with one transaction in

the loop body; (b) For-loop unrolled with the unroll factor 2. The body of the

unrolled loop contains the coalesced transaction, which contain the two initial

transactions.

Stat-TC generates profiling information based on single-threaded execution

and uses this information to coalesce transactions at compile time. Such a static

approach ignores the behavioral changes of the application as, for example, the

number of threads changes. Thus, coalescing transactions statically may result

in sub-optimal execution and even performance degradation.

To better understand the limitations of coalescing transactions statically, we

use the hash-table benchmark (Figure 5.1.a) executing the update() function

with a 50% probability. We first run the ‘original’ benchmark where the main

loop executes only one transaction. Then, we instruct the compiler to unroll

the loop and to coalesce transactions for various TC factors generating different

executables with TC factors equal to 2, 4, 8 and 16.

Figure 5.2a shows the speedup for the hash-table benchmark. We observe

that the best TC factor changes with the number of threads. More specifically,

when the number of threads is small (1 or 2) the best TC factor is 16, when the

number of threads is modest (3-6) the best TC factor is 8, and when the number

of threads is large (more than 7) the most suitable TC factor is 4. Moreover, the

results show that Stat-TC can increase the performance when the TC factor is
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Figure 5.2: Hash-table speedup and aborts with update rate 50%. Hash-

table has 1024 entries with 2048 possible key values.

small (2 or 4) but may also degrade performance when the TC factor is large (16)

due to high abort rates as we explain next.

Transaction Coalescing increases the length of the transaction, which in turn

may increase the abort rate and decrease overall performance. Figure 5.2b shows

the abort rate for the hash-table benchmark. For TC factor 2 and 4, the abort

rate stays below 25% even when the number of threads increases up to 12. For

TC factors 8 and 16 the number of aborts increase rapidly (by more than 50%

when the thread number is higher than 8). Based on these results, we conclude

that higher TC factors are likely to increase the abort rate. It is also difficult to

predict the speedup from the abort rate and vice versa.

Summarizing, this simple example shows that there cannot be a single TC

factor performing best for all thread counts. Thus, the approach of Stat-TC to

statically generate code with fixed TC factors performs sub-optimally when the

number of threads changes. Also, aggressively coalescing transactions based on

profiling the single-threaded application may degrade the performance due to

an increased abort rate. Since Stat-TC lacks a dynamic feedback mechanism,

it cannot adapt to changing abort rates caused by a large number of running

threads. In the following section we introduce DTC, a technique that dynamically

adjusts the transaction coalesce factor in the presence of changing conditions of

the application.
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5.4 Dynamic Transaction Coalescing

In this chapter we introduce Dynamic transaction coalescing (DTC), a compile-

time and run-time technique that improves transactional throughput of the loops

executing transactions. At compile-time, DTC unrolls the loops containing the

transaction and applies the transaction coalescing algorithm on the transactions

contained in the loop body. Instead of generating only one unrolled loop instance,

DTC generates several loop instances where each instance is unrolled with a dif-

ferent unroll factor. Consequently, each loop instance contains one coalesced

transaction with a different ‘TC factor’. At run-time, DTC profiles the appli-

cation and dynamically selects which loop instance to execute. This way, DTC

dynamically selects and executes coalesced transactions with the most appropri-

ate TC factor.

Our implementation of DTC has three main components: (i) loop replacement

and unrolling, (ii) transaction coalescing algorithm, and (iii) run-time transaction

profiling. These components are related in the following way:

• Loop replacement and Unrolling (LU): At compile-time, LU replaces

the loops that contain transactions with multiple loop instances where each

loop instance is unrolled with a different unroll factor.

• Transaction Coalescing Algorithm (TCA): At compile-time, TCA co-

alesces transactions in each loop instance generated by the LU step. As a

result, each loop instance contains one coalesced transaction that has its

transaction coalesce factor equal to the loop unroll factor.

• Run-time Transaction Profiling (RTP): At compile-time, RTP inserts

additional code that profiles transactions. At run-time, the profiling code

measures transactional throughput and dynamically selects the TC factor

in order to maximize the throughput.

In the remaining of this section, we explain in more detail the LU, TCA, and

RTP components of DTC and how they interact with each other.
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Figure 5.3: While loop with transaction - Creating coalesced transac-

tions. Example of a while loop (a) with one transaction in the loop body. The

compiler transforms the loop applying loop replacement and unrolling giving an

expanded loop (b). The expanded loop contains several code paths (default, case

2, 4, 8, 16) containing while loop bodies unrolled with a different loop unroll factor

(white rectangles). Next, the compiler transforms the expanded loop, applying

the transaction coalescing algorithm on the code in each ‘case block’, giving sev-

eral coalesced transactions (gray rectangles (d)). In the end, the compiler inserts

profiling code (c) at top of the while loop.
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5.4.1 Loop Replacement and Unrolling (LU)

At compile-time, LU replaces the loops containing transactions with multiple

loop instances where each loop instance is unrolled with a different unroll factor.

To better understand LU’s code transformations, we use a simple while loop1

example (Figure 5.3.a). The loop body contains one transaction surrounded with

<pre> and <post> code that is not a part of the transaction. LU transforms the

while loop into a switch statement (Figure 5.3.b) which contains several unrolled

instances of the loop. Each case 2, 4, 8, 16 has the loop body unrolled with

unroll factors 2, 4, 8, 16, respectively, while the default case statement contains

the original (non-unrolled) version of the loop body.

The resulting code has two main characteristics: (i) the case statements con-

tain unrolled loop bodies that are suitable for transaction coalescing and (ii) the

code can dynamically select which case statement to execute by changing the

value of the unroll_factor variable.

5.4.2 Transaction Coalescing Algorithm (TCA)

The compiler takes the transformed while loop from the LU step (Figure 5.3.b)

and applies the Transaction Coalescing Algorithm (TCA) [Stipic et al. (2014)] on

each case block (the code between case statement and the following break state-

ment). TCA coalesces transactions into one larger transaction in the following

way. TCA takes the Abstract Syntax Tree (AST) of each case block, finds the

transactions nodes, finds the common parent node of all transactions, encloses

the parent node in a transaction, and removes original transaction nodes from

the AST. By design, each case statement consists of an unrolled loop body that

contains a single coalesced transaction, where each loop unroll factor is equal to

the TC factor of the corresponding coalesced transaction. The resulting code

(Figure 5.3.d) contains several coalesced transactions where each transaction has

a different TC factor. If the loop body contains two or more transactions, TCA

coalesces all the transactions by finding the common parent node of all transac-

tions.

1Every for-loop, while-loop, and do-while-loop can be transformed into an equivalent while-

loop.
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Figure 5.4: Time period consists of time intervals where every time interval

lasts for 256 transaction commits. The sampling phase has 3 time intervals and

the running phase has 97 time intervals. This example shows a sampling phase

that uses unroll factors of 4, 8, and 2. In this example, the time interval with

unroll factor 8 was measured to be the fastest, therefore, the unroll factor 8 is

used for all the time intervals in the running phase.

It is important to stress that TCA correctly coalesces smaller transactions

into one larger transaction1. Despite the existence of the goto statements, the

compiler handles the coalesced transaction correctly because it inserts additional

code that commits the transaction on every code path that escapes out of the

coalesced transaction.

5.4.3 Run-time Transaction Profiling (RTP)

At the beginning of the transformed loop, RTP inserts the <profiling_code>

(Figure 5.3.c) that calls the profile() function. This function measures the

transactional throughput of the loop for various TC factors, and selects which

coalesced transaction to execute by updating the unroll_factor variable. Since

all threads read the unroll_factor, all of them execute the same code path with

the same TC factor. In order to reduce the profiling overhead, we only select one

thread to be the profiling thread (thread_id == profile_thread_id).

To explain better the implementation of the profile() function, we introduce

the following terms:

• Time interval is the time it takes to commit 256 initial transactions. The

unroll_factor variable remains constant during the time interval.

1For the implementation and the correctness of TCA, please refer to [Stipic et al. (2014)].
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• Time period consists of 100 consecutive time intervals (Figure 5.4).

• Profiling phase consists of the first 3 time intervals of a time period.

• Running phase consists of the remaining 97 time intervals of a time pe-

riod. All 97 time intervals in the running phase use the same unroll_factor

value.

The profile() function periodically estimates the transactional throughput

by measuring the duration of the time intervals in the sampling phase. For

each time interval of the profiling phase, profile() sets a different unroll factor

(current unroll factor, next larger unroll factor, next smaller unroll factor), and

selects the best unroll factor for the next running phase. Since the number of

committed transactions is fixed, the throughput is inversely proportional to the

interval length. So, the best unroll factor has the shortest time interval.

Our profiling approach introduces two sources of overhead: (i) instrumenta-

tion overhead and (ii) phase check overhead. The instrumentation overhead exists

because the transformed code is larger than the original code but this overhead is

negligible (less than 0.1%). The phase check overhead exists because after every

time period (100 time intervals) the profile() function changes the unroll factor

to check if there is a better one available. So, even if the benchmark executes

with the best unroll factor, the profiling executes for two time intervals with “non

optimal” unroll factors during the sampling phase. Changing the unroll factor in

the sampling phase creates interference in the program execution since it affects

the execution of all the threads running the program. To minimize the interfer-

ence, we empirically selected profile parameters values (256 commits, 100 time

intervals, and 3 profiling intervals) in order to provide a good balance between

performance and interference.

5.4.4 Discussion

In this chapter we propose DTC as the combination of compile-time and run-

time techniques where we generate alternative code paths at compile-time and

we select the code paths to execute at run-time. We follow this approach because

we target the C/C++ programming environments that do not support run-time
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Benchmark Input arguments

Hash-table fixed update rates 1%, 20%, 50%

Red-black tree fixed update rates 1%, 20%, 50%

Hash-table + phases 4 phases with update rates 1%, 20%, 50%, 100%

Red-black tree + phases 4 phases with update rates 1%, 20%, 50%, 100%

Vacation qpt=1,2,3 -n1,2,3 -q90 -u98 -r1048576 -t4194304

SSCA2 -s20 -i1.0 -u1.0 -l3 -p3

CLOMP-TM; No conflicts -1 1 x1 d6144 128 Stride1 3 1 0 6 1000

CLOMP-TM; Rare conflicts -1 1 x4 d6144 128 Adjacent 3 1 0 6 1000

CLOMP-TM; High conflicts -1 1 64 100 128 firstParts 3 1 0 6 1000

Table 5.1: Benchmark input parameters.

code generation. Thus we need to generate the different code paths at compile-

time. However, implementing DTC for other programming environments that

support run-time code generation, e.g. JVM and .Net, may allow the use of just-

in-time (JIT) compilation for generating the alternative code paths. This is a

potential direction for future work.

5.5 Evaluation Methodology

We perform the experiments on a Sun Fire x4140 system equipped with two Six-

Core AMD Opteron 2427 (12 cores in total), with 32GiB RAM, and running Linux

2.6.32-5. We compile the applications with GCC 4.7 which includes Transactional

Memory support and link them with TinySTM [Felber et al. (2008)] 1.0.3. We

manually implement the DTC compiler pass and use GCC as a backend.

5.5.1 Benchmarks

We evaluate the effectiveness of DTC using 2 micro-benchmarks (hash-table and

red-black tree) and 3 well-known benchmarks that are used in TM research (Va-

cation [Minh et al. (2008)], SSCA2 [Bader & Madduri (2005)], and CLOMP-

TM [Schindewolf et al. (2012)]). We select these benchmarks because they cover

different application domains: (i) hash-table and red-black tree are used ubiqui-

tously in programs, (ii) Vacation mimics a travel reservation application powered

by an in-memory database, (iii) SSCA2 mimics applications operating over large
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directed, weighted, multi-graphs (e.g. social network graphs and page-rank), and

(iv) CLOMP-TM mimics large scale multi-physics applications used in high per-

formance computing. Finally, we use the input parameters specified on each of

the benchmark documentation (Table 5.1).

All of the benchmarks have a similar program structure which consist of an

initialization section, an execution section, and a finalization section. The initial-

ization sets up the data structures necessary for program execution, the execution

section contains the parallel region that runs the transactions in benchmarks’

main loop, and finalization section checks the results consistency. All transac-

tions run in the benchmarks’ main loop. Next we briefly describe the benchmarks

used in this chapter1.

Hash-table and red-black tree execute repetitively the transactional

lookup(), add(), or remove() functions. Each function operates on shared data

stored in the hash-table or the red-black tree. We control the number of updates

(add() and remove()) relative to the total number of operations (lookup(),

add(), and remove()) with the update rate parameter.

The CLOMP-TM [Schindewolf et al. (2012)] benchmark generates memory

accesses that emulate the synchronization characteristics of HPC applications.

An unstructured mesh is divided into partitions, where each partition is subdi-

vided into zones. Threads concurrently modify these zones to update the mesh.

Specifically, each zone is pre-wired to deposit a value to a set of other zones,

called scatter zones, which involves (i) reading the coordinate of a scatter zone,

(ii) doing some computation, and (iii) depositing the new value back to the scat-

ter zone. Since threads may be updating the same zone, value deposits need to be

synchronized. Conflict probability can be adjusted by controlling how the zones

are wired, and by changing the number of scatters per zone; the amount of work

done in a critical section can also be adjusted. For our evaluation we use the

“Large TM” part of CLOMP-TM , that uses transactions to synchronize critical

sections.

1For the description of Vacation and SSCA2 please refer to Section 1.2.
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5.5.2 Metrics

Our results show the performance of applying DTC on the benchmarks’ main

loop. For all benchmarks we present two plots, one for the speedup and one

for the abort rate. We normalize the speedup results to the benchmark running

with one thread. In the speedup plots, we also show the dominant TC factor

that DTC chooses for that benchmark run (a number next to the small circle

in the figures). In the abort rate plots, the abort rate of transactions is plotted

in terms of percentage of total executed transactions. Finally, we compare DTC

with Stat-TC, and we show the results for different TC factors (2, 4, 8, and 16).

We do not plot results for TC factors larger than 16 because they do not provide

any performance improvements.

5.6 Results

In this section we show how DTC affects the performance of each benchmark, we

compare DTC with the performance of Stat-TC, and we also analyze the perfor-

mance of both mechanisms in the presence of phased execution in the benchmarks.

5.6.1 Hash-table

The hash-table benchmark with 1% update rate (Figure 5.5.a) contains short

transactions and exhibits a negligible abort rate. Such characteristics make the

benchmark well suited for transaction coalescing techniques. The results show

that DTC improves the application performance by 62.9% over the original ver-

sion when running with 12 threads. Compared to Stat-TC, DTC performs slightly

worse (7.7%) although DTC chooses correctly the dominant TC factor. This

performance difference is due to: (i) the profiling overheads of DTC, and (ii)

the suitability of the benchmark to static transaction coalescing since it exhibits

well-expected behavior without any phases or abort rate changes. Still, we ob-

serve that DTC improves significantly the application performance and performs

close to Stat-TC even for the case that dynamically coalescing transactions is not

necessary.
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(a) Hash-table; ur = 1%
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(b) Hash-table; ur = 20%
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(c) Hash-table; ur = 50%

Figure 5.5: Hash-table: Throughput and abort rate for different numbers of

update rate.

Figures 5.5.b and 5.5.c show the results for the hash-table with update rates

of 20% and 50%. We see that DTC consistently improves the application per-

formance for all thread counts and always follows the best case of Stat-TC. We

make the following important observations. First, in Stat-TC there is no single

best TC factor that performs best for all thread counts. For example, Figure 5.5.c

shows that the best TC factor is 16 for up to 3 threads, 8 for up to 8 threads,

and 4 for up to 12 threads. Second, aggressively increasing the TC factor may

degrade the application performance significantly. For the case of 50% update

rate and with thread count larger than 8, Stat-TC with TC factor 16 performs

worse than the original benchmark because of the high abort rate that reaches

more than 80%. Unlike Stat-TC, DTC dynamically identifies the best TC factor

taking the abort rate into consideration. Due to profiling overheads, DTC does

not attain the best performance but is just 5.2% slower than the best TC factor

for all thread counts.
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(b) Red-black tree; ur = 20%
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(c) Red-black tree; ur = 50%

Figure 5.6: Red-black tree: Throughput and abort rate for different numbers

of update rate.

5.6.2 Red-black tree

Figures 5.6.a, 5.6.b and 5.6.c show the results for the red-black tree benchmark

with update rates 1%, 20% and 50% respectively. For update rates other than

1%, we observe that the benchmark is unsuitable for static transaction coalesc-

ing since the performance only degrades. For example, running the benchmark

under Stat-TC with more than 4 threads and TC factors of 4 and more degrades

performance significantly. This drastic performance degradation is due to the

extremely high abort rate that reaches up to 99.9%. On the other hand, DTC

does not degrade transaction throughput and follows the performance of the orig-

inal version, having only 6.6% performance loss due to the profiling overhead (12

threads, update rate 50%). Hence, DTC does not suffer from Stat-TC’s perfor-

mance degradation when coalescing is not useful.
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(b) Vacation; qpt = 2
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(c) Vacation; qpt = 3

Figure 5.7: Vacation: Throughput and abort rate for different numbers of

queries per transaction (qpt).

5.6.3 Vacation & SSCA2

Vacation (Figures 5.7.a1, 5.7.b and 5.7.c) and SSCA2 (Figure 5.8) exhibit low

abort rate (less than 1%) and demonstrate that coalescing techniques can im-

prove performance. For Vacation with 12 threads and qpt=1, DTC and Stat-TC

perform similarly well and improve the performance of the original benchmark by

15.3% and 16.4%. For SSCA2 with 12 threads, DTC and Stat-TC improve the

performance of the original benchmark by 44.4% and 45.8%. Again, we conclude

that DTC significantly improves performance of the applications, and closely fol-

lows the performance of Stat-TC in case there is no need for dynamically changing

the TC factor, and meanwhile the profiling overhead remains low.

1 Figure 5.7.a shows maximum abort rate of 0.12% which is higher than the abort rate

of 3% in Figure 4.8. This difference exist because in the Chapter 4. we use automated CIL

tool to transforms the code containing transactions and resulting transactions become overin-

strumented. In the Chapter 5. we manually transform the code containing transctions and

we are able to create new transactions with smaller overhead compared to the CIL tool. The

overinstumented transaction case higher abort rate in the case of Vacation.
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Figure 5.8: SSCA2.

5.6.4 CLOMP-TM

Figure 5.9 shows the performance of the CLOMP-TM benchmark. TC factor 8

and 16 perform the best when the conflicts are rare (Figure 5.9.a and Figure5.9).

DTC selects TC factors 4 and 8 for the execution but the best performing TC

factors are 8 and 16. DTC is not able to ‘find’ the best TC factor due to profil-

ing interference. Still, DTC does not suffer from TC’s performance degradation

(Figure 5.9.c with TC factor 16) and DTC performs just 11% worse than the best

TC factor, while still being substantially better than the original version.

5.6.5 Phased execution

Up to this point, we analyzed the performance of DTC and we compared it to that

of Stat-TC. However, we performed our evaluation on various benchmarks that

do not have phased execution. In other words, the running conditions (thread

count) or the program behavior (e.g. abort rate) did not change dynamically

during the execution. In order to compare the performance of DTC and Stat-TC

in changing conditions, we modify the hash-table and red-black tree benchmarks

and introduce phased execution. We introduced four phases in the benchmark

execution where each phase has the same duration (in seconds) and executes with

different update rate parameters (ur = 1%, 20%, 50%, 100%).
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Figure 5.9: CLOMP-TM

Figure 5.10.a shows the speedup1 and the abort rate for the hash-table bench-

mark with phases. We observe that DTC improves the performance by 64.7%

for the hash-table benchmark, outperforming Stat-TC by 8.3%. The reason is

that there is no single TC factor that performs best for all execution phases.

Thus, Stat-TC executes various phases with sub-optimal TC factor. In contrast,

DTC dynamically adapts to the program execution and selects the best TC factor

improving application performance.

Figure 5.10.b shows the results for the red-black tree benchmark with phased

execution. We observe that DTC performs equally or slightly better than the

original version. DTC’s profiling mechanism does not identify any potential ben-

efits through coalescing, and executes most of the time without any coalesced

transactions (TC factor 0).

1We do not plot the dominant TC factor for DTC because it changes during the program

execution.
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(a) Hash-table with phased execution
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(b) Red-black tree with phased execution

Figure 5.10: Hash-table and red-black tree with phased execution. Each

phase last for a quarter of the total execution time and each phase has update

rate (ur) of 1%, 20%, 50%, and 100%.

5.6.6 Overview

We make the following observations to summarize this section:

• DTC is able to considerably increase the application performance over the

original version (e.g. hash-table, Vacation, and SSCA2).

• DTC follows closely the performance of Stat-TC with the best TC factor for

those applications that do not exhibit high abort rates. The performance

gap is due to the profiling mechanism, but still remains lower than 11% in

the worst case.
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5.7 Summary

• DTC outperforms both the original version and Stat-TC with the best TC

factor when programs exhibit phased execution (e.g., hash-table and red-

black tree with phases).

• DTC does not introduce performance degradation (except for the profiling

overhead) when transactional coalescing is not beneficial, while Stat-TC

may harm the performance (e.g., red-black tree).

5.7 Summary

In this chapter we introduced dynamic transaction coalescing (DTC), a compile-

time and run-time technique that improves transactional throughput of the loops

executing transactions. We explained how DTC transforms the loops and how

DTC generates coalesced transactions of different sizes. Also, we explained the

implementation of DTC’s online profiling and showed how profiling helps to find

the best transaction granularity that increases the throughput. We evaluated

DTC using 3 benchmarks(SSCA2, Vacation, and CLOMP-TM) and 2 micro-

benchmarks (hash-table and red-black tree).

We show that DTC improves the performance of SSCA2, Vacation, CLOMP-

TM, and hash-table by 44.4%, 45.8%, 66.9%, and 62.9% respectively (running

with 12 threads and having a high conflict rate). We also show that DTC performs

close to the statically selected best transaction coalesce factor, and that DTC’s

online profiling has small performance overhead. The overhead is 6.6% in hash-

table and red-black tree; 11% in CLOMP-TM; and less than 1% in SSCA2 and

Vacation. Finally, we show that DTC performs better than Stat-TC when phases

are present improving the performance of hash-table and red-black by 8.2% and

1.1% with respect to Stat-TC with the best TC factor.
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Chapter 6

Conclusions

6.1 Thesis Contributions

In this thesis we presented four new techniques for improving the performance of

software transactional memory systems: (i) Abstract Nested Transactions (ANT),

(ii) TagTM, (iii) profile-guided transaction coalescing, and (iv) dynamic transac-

tion coalescing.

In Chapter 2, we introduced the idea of abstract nested transactions (ANTs)

for identifying sections of an atomic block that are likely to be the victims of

benign conflicts. By re-executing ANTs we can avoid re-executing the whole

atomic block that contains them. Unlike other techniques for improving the

scalability of atomic blocks ANTs are semantically transparent and can be used

as a performance tuning technique without risk of changing the semantics or

serializability of the code in which they are used.

In Chapter 3, we introduced TagTM, a software TM system augmented with

new hardware mechanism that we call GTags. GTags are new hardware cache

coherent tags used for fast meta-data access. TagTM use GTags to reduce the cost

associated with accesses to the transactional data and corresponding metadata.

For the evaluation of TagTM, we used STAMP benchmark suite. In the average

case TagTM provide the speedup of 7-15% (across all STAMP applications), and

in the best case shows up to 52% speedup of committed transaction execution

time (for SSCA2).
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6.1 Thesis Contributions

In Chapter 4, we showed that transaction coalescing can reduce transactional

overheads. We introduced a profiling tool and a transaction coalescing heuristic

for collecting and analysing transactional information. We developed a profile-

guided compiler pass that identifies and coalesces transactions, where the over-

heads of transactional start and commit are less than in the original transactions.

We evaluated transaction coalescing using the STAMP applications and micro-

benchmarks. For the default value of the aggressive factor, transaction coalescing

improves the performance by 10.7-158.5% in hash table, by 19.4% in Vacation

and by 36.4% in SSCA2, when running with 12 threads. We showed that even

better performance improvement can be achieved with larger aggressive factors.

The improvement can go up to 21.2% in Vacation (for the aggressive factor equals

4) and up to 47.4% in SSCA2 (for the aggressive factor equals 16), when running

with 12 threads.

In Chapter 5, we introduced dynamic transaction coalescing (DTC), a compile-

time and run-time technique that improves transactional throughput of the loops

executing transactions. We explained how DTC transforms the loops and how

DTC generates coalesced transactions of different sizes. Also, we explained the

implementation of DTC’s online profiling and showed how profiling helps to find

the best transaction granularity that increases the throughput. We evaluated

DTC using 3 benchmarks(SSCA2, Vacation, and CLOMP-TM) and 2 micro-

benchmarks (hash-table and red-black tree). We show that DTC improves the

performance of SSCA2, Vacation, CLOMP-TM, and hash-table by 44.4%, 45.8%,

66.9%, and 62.9% respectively (running with 12 threads and having a high con-

flict rate). We also show that DTC performs close to the statically selected best

transaction coalesce factor, and that DTC’s online profiling has small perfor-

mance overhead. The overhead is 6.6% in hash-table and red-black tree; 11%

in CLOMP-TM; and less than 1% in SSCA2 and Vacation. Finally, we show

that DTC performs better than static TC when phases are present improving the

performance of hash-table and red-black by 8.2% and 1.1% with respect to static

TC with the best TC factor.
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6.2 Future Work

6.2 Future Work

We showed that TagTM and transaction coalescing improve the performance of

TM systems. TagTM showed that by putting the metadata in the cache line can

speedup the performance of STM systems. We believe that it would be possible

to extend the hardware prefetching to prefetch the metadata during transaction

execution. We believe that TC and DTC could be used even in the hardware TM

systems to lower the overheads of hardware snapshotting. Unfortunately, Intel

did not release the implementation details of of their HTM implementation, so we

are not able to predict the potential impact of transaction coalescing techniques

in HTM systems.

We believe that TM will find its uses in system libraries and in the OS im-

plementations. So it would be worth investigating real life uses of hardware TM

implementations in Linux kernel to speedup the synchronisation of shared data-

structures used in the OS. And finally, We believe that TM is here to stay.
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