—

JPL UNIVERSITAT
U POMPEU FABRA

=\

Study of the theoretical bounds and

practical limits of time synchronization

protocols using an Ethernet FPGA
platform

Carles Nicolau Jené

Tesi Doctoral UPF / 2010

Dirigida per
Dra. Dolors Sala i Batlle

Departament de Tecnologies de la Informaci6 i les Comunicacions

Make everything as simple as possible, but not simpler.
Albert Einstein

ACKNOWLEDGEMENTS

I express my gratitude to my thesis advisor, Prof. Dolors Sala, for giving me the
opportunity to be part of her networking research group and for joining different
projects and research events along these years.

This work would also not exist without the financial support of the Department
of Information and Communication Technologies of Universitat Pompeu Fabra.
Thanks.

My gratitude to Prof. Enrique Canté for his help on the daily problems with
the FPGAs, and to all the tribunal for accepting the attendance to this thesis
defense: Dr. Carlos Macian, Prof. Enrique Canto, Prof. José Luis Marzo, Prof.
Josep M?. Fuertes and Prof. Boris Bellalta.

I am grateful to my research group colleagues for their time dedicated on me:
Eduard, Khan, Javier, Ali and Darko.

I will be lifetime indebted to my parents for their love and faith on me, for listening
to, for advising and for supporting me day after day along the years. I also wish
to thank my brother, for his optimism and everlasting self-worth injections on
me. Thanks.

Lastly, I want to dedicate this Thesis to my Dear Onecs. Bes t6oeid m068u u
BEpLI B MEHs, 51 HE CMOT' ObLI 3aKOHUUT MOCJIETHIOI YaCTL 9TOTO IJIUHHOTO U
rpyaaoro nytu. Cnacubo tebe. {1 Teba ouenn mr06IIO.

iii

Abstract

The goal of synchronization is to align/synchronize the time and frequency scales
of all nodes within a network. In industrial applications, synchronization enables
simultaneous triggering of distributed events and synchronous data acquisition
at different nodes. For wide distributed systems, such as Internet, clock synchro-
nization is advantageous for maintaining end-to-end Quality of Service (QoS).

Ethernet is the technology of choice for the future networks. Its low cost,
the ever increasing data rates and low complexity and maintenance are key en-
ablers for adopting it at all geographical scales and applications, ranging from
the Network Provider to the industrial level. However, low cost and simplicity
that characterizes the legacy Ethernet are only part of its attraction. The chal-
lenge is that it was initially conceived as a ’best-effort” and asynchronous oriented
technology, limitations that difficult its adoption to handle, for example, time-
sensitive applications in the industrial field, or carrier-class transport of services,
from the Network Provider perspective. To better support new applications with
tight synchronization requirements, standardization bodies and equipment man-
ufacturers are making considerable efforts to extend its functionalities and release
solutions to meet the synchronization requirements of new applications.

High accuracy time synchronization is a key enabler for offering such carrier-
class QoS and handling distributed applications with stringent synchronization
needs. Today’s Ethernet-based approaches that deliver time synchronization rely
on timestamped packets that distribute to the network. The acts of timestamping
and sending the packet are crucial for achieving high accuracy synchronization,
as they are exposed to a number of delay variabilities from the source to the
destination node that impair the synchronization accuracy between nodes.

As the timestamping is a key component for actual synchronization proto-
cols, the main goal in this work is to evaluate the impact of these sources of
inaccuracies of Ethernet layers on the synchronization accuracy between nodes.
The followed evaluation method is based on a real prototype utilizing low-cost
platform Field Programmable Gate Arrays (FPGAs). The inherent complexity
of these devices poses an additional challenge to the evaluation process, especially
if the addressed synchronization accuracies are at the level of few nanoseconds.
Therefore, this work also discusses and proposes methods to overcome platform-
dependent limitations.

Additionally, this work proposes a different perspective for Ethernet technol-
ogy which consists on envisioning the legacy Ethernet with a time synchroniza-
tion functionality. We believe that such a new capability would allow Ethernet
to better handle time sensitive applications and to be independent/compatible
from/with the higher layers while keeping its initial philosophy: low-cost, sim-
plicity and asynchronous technology.

vi

Resum

L’objectiu de la sincronitzaci6 és alinear/sincronitzar les escales de temps de tots
els nodes d’una xarxa. En aplicacions industrials, la sincronitzacié permet l'inici
simultani d’esdeveniments distribuits o 'adquisicié de dades de forma sincrona
als diferents nodes. En grans sistemes distribuits, com per exemple I’Internet,
la sincronitzaci6 és beneficiosa per mantenir Qualitat de Servei (QdS) entre dos
nodes distants entre si.

Ethernet és la tecnologia d’el-leccié per les xarxes del futur. El seu baix cost,
les continues actualitzacions de velocitat i la baixa complexitat i manteniment
son els activadors per adoptar-la a tots els nivells geografics i aplicacions, des de
Proveidors de Xarxa en xarxes metropolitanes, fins a aplicacions industrials en
xarxes locals. No obstant, el baix cost i simplicitat que caracteritzen a Ethernet
constitueixen només una part del seu interés. El problema és que aquesta va ser
originalment concebuda com una tecnologia de serveis minims i asincrona, dues
limitacions que dificulten la seva adopcié en aplicacions amb fortes restriccions
de temps, tant en el camp industrial com en el transport de serveis de qualitat
d’operadora. Per tal de suportar noves aplicacions amb fortes restriccions de
temps, diversos organismes d’estandarditzaci6é i fabricants d’equipament estan
treballant activament per extendre les seves funcionalitats i llangar solucions per
tal de complir amb nous requeriments de sincronitzacio.

La sincronitzacié de temps d’alta exactitud és clau per oferir serveis d’alt QdS
i suportar aplicacions distribuides que necessitin fortes restriccions de temps.
Les solucions d’avui dia basades en Ethernet que entreguen sincronitzacié de
temps es basen en distribuir paquets amb una marca de temps a la xarxa. Les
accions d’inserir la marca de temps i enviar el paquet sén decisives per aconseguir
sincronitzacié d’alta exactitud ja que estan exposades a un nombre de variabilitats
de retard des de I'origen fins el desti que empitjoren ’exactitud de la sincronitzacid
entre nodes.

Degut a que ’acci6 d’inserir la marca de temps és un component clau pels
protocols de sincronitzacié actuals, ’objectiu principal en aquesta Tesi és aval-
uar I'impacte d’aquestes fonts d’inexactitud de les capes d’Ethernet en la sin-
cronitzacié entre nodes. El métode d’avaluacié estd basat en un prototipus real
utilitzant plataformes basades en matrius de portes logiques programables per
camp (de langlés, Field Programmable Gate Arrays (FPGA)) de baix cost. La
inherent complexitat d’aquests dispositius suposa un repte addicional al procés
d’avaluacio, especialment si s’adrecen exactituds de sincronitzacié de nivells de
pocs nanosegons. Aleshores, aquesta Tesi també debat i proposa métodes per
veéncer les limitacions dependents de la plataforma.

A més, aquesta Tesi proposa una perspectiva diferent per a la tecnologia Eth-
ernet, la qual consisteix en extendre ’Ethernet inicial amb una funcionalitat de
sincronitzacié. Creiem que una funcionalitat com aquesta permetria a Ethernet
suportar aplicacions amb fortes restriccions de temps amb independéncia de, i
compatibilitat amb capes més altes tot mantenint la seva filosofia inicial: baix
cost, simplicitat i tecnologia asincrona.

vii

Publications derived from this work
The results obtained from this Thesis derived on the following publications:

= C. Nicolau, A Zero-Nanosecond Time Synchronization Platform for Gigabit
Ethernet Links. In Proceedings of the 6th International Conference on
Testbeds and Research Infrastructures for the Development of Networks &
Communities (TridentCom), Berlin, Germany, May 2010.

= C. Nicolau, D. Sala, E. Canté, Clock Duplicity for High-Precision Times-
tamping in Gigabit Ethernet. In Proceedings of the 19th International
Conference on Field Programmable Logic and Applications (FPL), Prague,
Czech Republic, August-September 2009.

= C. Nicolau, D. Sala, Flat-Soft Synchronization for Gigabit Ethernet. In
Proceedings of the 28th International Conference on Computer Commu-
nications, IEEE Infocom 2009 Student Workshop, Rio de Janeiro, Brazil,
April 2009.

CONTENTS

Contents ix
List of Figures xii
List of Tables xiv
1 Introduction 1
1.1 The Need for Synchronization in Ethernet 1
1.2 Synchronization Provisioning for IEEE 802.3 Ethernet 2
1.3 Technical Approach 7
1.4 Summary of Contributions 7
1.5 Outline of the Thesis, 9

2 Timing and Synchronization in Networks 11
2.1 What is Synchronization? 0oL 11
2.1.1 Different Meanings, Different Abstractions 11

2.1.2 What Is A Clock? 12

2.1.3 Why Do We Need Synchronization? 12

2.1.4 Time, Phase and Frequency Synchronization 13

2.1.5 Timing Between Signals and Systems 14

2.2 Synchronization in Networks 15
2.2.1 Synchronous and Asynchronous Networks 15

2.2.2 Actual Synchronization in IEEE 802.3 16

2.2.3 Time Synchronization Protocols 17

2.2.4 Delay, Jitter and Timestamping 18

2.2.5 Synchronization Algorithms 18

2.3 High-Performance Computing Platforms 20
2.3.1 Platform Technologies 20

2.3.2 FPGA-based Embedded Platforms 21

2.3.3 Hardware/Software Co-design 23

2.3.4 The Cost of Hardware Design 23

3 State of the Art of Synchronization in Ethernet-based Networks 27
3.1 Imtroduction 27
3.2 Protocols 28
3.2.1 Pure Hardware Approaches 28

ix

X CONTENTS

3.2.2 Pure Software Approacheso, 32
3.2.3 Hybrid Hardware/Software Approaches 34
3.2.4 Specific Needs, Specific Applications 39
3.3 Timestamping in Ethernet-based Networks 42
3.3.1 Error Sources 42
3.3.2 Methods for Timestamp Accuracy Measurement and Error
Prevention L. 43
3.4 Conclusions 46
4 Design of an Evaluation Platform 49
4.1 Delay Components in Timing Message Delivery 49
4.2 Goals and Approach Lo 51
4.3 Layer 2 Network Model 52
4.3.1 The Control Plane 52
4.3.2 Point to Point Layer 2 Architecture 53
4.3.3 Synchronization Mechanism 54
4.3.4 Protocol Data Units 55
4.3.5 Operation of the prototype 57
44 Conclusions 58

5 Time Synchronization Implementation for Gigabit Ethernet 61

5.1 Objectives and Requirements 61
5.2 A Low-Cost Platform FPGA 62
5.2.1 Platform Overview 62
5.2.2 FPGA Overview 63
5.2.3 Limitations and Challenges 63
5.3 Hardware Design 0o 64
5.3.1 Architectural Adaptations 65
5.3.2 Synchronization Platform 66
5.3.3 Message Handling 69
5.3.4 Platform Functionality 71
5.4 Timestamping Unito oL 72
5.4.1 Requirements and Functionalities 72
5.4.2 Distributed Timestamping 74
5.4.3 'TSU Architecture Description 76
5.4.4 Hardware Design Challenges 82
5.4.5 Usedresources 84
5.5 Software Design 85
5.5.1 Requirementso L 85
5.5.2 TSUdrivers 86
5.5.3 Basic Application Interface 88
5.5.4 Application Functionality 90
5.5.5 Memory Allocation 97
5.6 Conclusions o 97

6 Evaluation 99

CONTENTS

6.1 Criterias, Methods and Goals
6.2 Evaluation Setup Description
6.2.1 Hardware System L oL
6.2.2 Software System Lo
6.3 Synchronization Evaluation Components
6.3.1 Clock Frequency and Drift
6.3.2 Timestamping Reliability
6.3.3 Internode Jitter Lo
6.3.4 Phase and Time Synchronization Accuracy
6.3.5 Clock Duplicity oL
6.4 Summary of the Results
6.4.1 Proposed Methods
6.4.2 Synchronization Components

7 Conclusions
7.1 Lessons Learned
7.2 Future Directions

Bibliography

xi

99
100
100
101
102
102
104
105
108
115
117
117
118

119
120
123

125

LisT OF FIGURES

2.1
2.2

2.3
24
2.5

2.6

3.1
3.2

3.3

3.4
3.5

3.6

4.1
4.2
4.3
44
4.5

5.1
5.2

5.3
5.4

Physical quantities to represent synchronization. 14
Synchronous and Asynchronous relationship between two digital sig-

nals, systems or networks. oL 15
Actual synchronization functionalities in the OSI model. 16
Clock synchronization algorithm scheme.. 19

Generic FPGA internal architecture. Programmable hardware (cus-
tom block) is described with HDL languages. The application software
executed by the CPU can be described using standard programming

languages, such as C.. Lo oo 22
Generic FPGA design flow. o oo, 24
Synchronous Ethernet cards architecture. 29
EPON operation (a)). EPON ranging mechanism for RTT calculation

(b)). Multipoint control protocols data units (MPCPDU) (c)) 31
Synchronization procedure (a)). PTP header format (b)). PTP node

architecture (¢)).o 35
Audio-Video Bridged network.o L. 39
Synchronization classification according to synchronization the accu-

racy, geographical dispersion and cost. 41
Delay in a timestamp reading (a)). Clock and timestamping errors

(b)). Clock reading errors (¢)). o oo 43
Delay and delay uncertainty components of a time message delivery. . 50
Proposed time synchronization extension in the Ethernet architecture. 53
Synchronization message exchange pattern. o4
Ethernet MAC control frame transporting synchronization information. 56
Timeline of synchronization messages exchange pattern. 58
Block diagram of the ML403 evaluation board. 62

Proposed time synchronization extension in the Ethernet architecture
(a)). Reallocation of the synchronization functionality considering the
MAC inaccessibility (b)). Mapping of the synchronization functional-

ity into the physical components of the platform FPGA (c)). 65
Embedded platform architecture and TSU allocation. 67
Pause control frame (a)). Synchronization protocol data unit (syncPDU)

(D)) o 70

xii

LIST OF FIGURES xiii

9.5
5.6

5.7
5.8

5.9
5.10

5.11

5.12
5.13
5.14
5.15
5.16

5.17

5.18

5.19
5.20

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9
6.10

6.11
6.12

6.13

7.1

Steps involved in sending (a)) and receiving (b)) a syncPDU. 71
syncPDU journey with no inter-layer delay (a)). Platform’s syncPDU
journey, with additional delay to regenerate the syncPDU reply (b)). 74

Distributed timestamping architecture. 75
PAUSE frame transmission waveform across MAC interface (adopted

from [Xilinx, Inc. (2007b)]). Lo 76
Internal architecture of the Timestamp Unit. 78
SyncPDU frame reception waveform across PHY interface (adopted

from [Xilinx, Inc. (2007b)]).o Lo 79
TSU without timestamping reliability mechanism (a)). TSU with

timestamping reliability mechanism, with flancter-flags. (b)) 83
Flancter-flag circuit. o o 83
Software layered architecture. L. 85
Basic application interface (BAI). 89
Message exchange pattern. oL 92
TMRI1 event handling (Master). GATE message transmission (at in-

tervals of T7garg), and syncPDU arrival. L. 93
TMR2 event handling (Master). GATE,,,. message transmission (at

intervals of Tresync), and IPPS events. 94
TMR3 event handling (Master). Start of the discovery process (at

intervals of Tgise). « v v v v e e 95
TMRI1 event handling (Slave). 96
TMR2 event handling (Slave). Subroutine for storing 1PPS events . . 96
Synchronization platform setup. 101
Relative clock drift, expressed in TSU clock cycles (a)) and in ms (b)). 103
Platform setup for testing the timestamping reliability. 105
Effect on timestamping reliability with and without flancter-flags. . . 105
MAC latency measurement setup. L 106
Platform setup for PHY latency and jitter measurement. 107
Platform setup for RTD evaluation. 109
RTD calculation. RTD with no internal processing compensation

(a,b)). Internal processing time (RTD error) (c,d)). RTD with in-
ternal processing compensation (e,f)).o Lo 110
Setup used for the evaluation of time synchronization. 111
Evaluation of the synchronization accuracy (24 hour experiments). a,
d, g) Running clock offset (in ~36 s. window). b, e, h) Clock offset
series after the re-synchronization. ¢, f, i) Distribution of plots b, e,

h, for a each load scenario. oL 112
Setup the evaluation of time and phase accuracy. 114
Phase error of the synchronized timing signal (right). Re-synchronization
variability (left). Lo 115
Distribution of the register transfer delays: PPC to TSU (a)) and TSU

to PPC (b)), 117

Theoretical synchronization accuracy in a bridged Ethernet scenario. . 123

LisT OF TABLES

3.1

5.1
5.2
5.3
5.4
5.5
5.6

5.7
5.8

6.1
6.2

6.3

6.4

6.5

6.6

Timing requirements of the main wireless technologies. 40

Summary of the hard-IP blocks and programmable resources of the

Virtex-4 (XC4VFX12-FF668)..o o .. 64
Summary of the programmable resources utilized for TSU implemen-
tation and percentage of the overall amount. 69
Description of the distributed timestamps (logical variables) collected
during a syncPDU transmission and reception. 75
Data register definition within TSU’s register block. 81
Control register definition within TSU’s register block. 81
Summary of the programmable resource utilization of the TSU (ex-
pressed as used amount and percentage). 85
Low-level C drivers for read/write access from/to the TSU. 88
Association of the software interruption handlers with BAI’s hardware
blocks. 90
Absolute error at different error rates and intervals. 100
Number of clock cycles spanned by one_pps event registers at every
second, and percentage over oneday. 102
Accumulated clock offset at the rate of 10 ppm. 104

Latency and jitter measurements of the Xilinx MAC core (expressed
in number of TSU clock cycles, nanoseconds and percentage over 200k
SAMPlEs). e e 107
Round trip delay (RTD) and jitter (RTJ) measurements of 88E1111
Marvell’s PHY (expressed in number of TSU clock cycles, nanoseconds
and percentage over 200k samples).o o L L. 108
Number of TSU clock cycles to perform the transfer from CPU’s
counter to TSU’s counter, and vice versa (percentage over 100k samples).116

Xiv

§ 1. INTRODUCTION

1.1 The Need for Synchronization in Ethernet

In the context of packet-based computer networks, synchronization is becoming a
critical factor since the advent of the World Wide Web. Whereas in the early days
it was only the exchange of "best-effort’ data, it now encompasses time-sensitive
data, such as high-quality voice and video communication and a myriad of ser-
vices that need exact knowledge of global time to render consistent results. Tra-
ditionally, time-sensitive data was transported by digital networks, such as Syn-
chronous Digital Hierarchy (SDH) and Plesiochronous Digital Hierarchy (PDH).
Digital networks are costly infrastructures in which the data transportation relies
on providing precise and controlled timing to the overall equipment. The princi-
ple of digital networks consists on providing a high-stable timing signal coming
from an expensive clock (e.g., a Primary Reference Clock (PRC)) to the physical
layer of each node of network, thus making the network fully synchronous. Nowa-
days, access transport networks are evolving from dedicated-service, narrowband
and highly bit-optimized PDH/SDH-based networks to multiservice, wideband
and over-provisioned packet-based networks. This turn has been driven by an
increasing demand of new broadband services, such as carrier-class voice, video
over IP, IPTV, new applications, such as mobile wireless broadband services,
and packet-switched concepts. All these applications demand synchronization
accuracies that range from sub-microsecond down to nanosecond levels.

For high-capacity low-cost services to be commercially viable, telecommuni-
cation operators must decrease their per-bit production costs. Indeed, the tech-
nology that is on the spotlight since many years is Ethernet. It is becoming the
technology of choice at local, metropolitan and wide area networks (WAN), as it
offers simplicity, high data rates, plug’n’play network connection and more band-
width at a lower cost than traditional WAN services. Ethernet was designed as
a two-layer technology. In the Layer 2, or the data link layer, there was spec-
ified how the data is organized and sent over the network. In the Layer 1, or
the physical layer, there was described the network medium and the signalling
specifications. Currently, it operates from 1Mbps to 100Gbps, in different Layer 1
technologies (optical and electrical), and over large distances and different topolo-
gies (point-to-point and shared). The line capacity upgrades of Ethernet over the
past years aimed at accommodating the increasing bandwidth needs many times.
Modifications on the capacity do not involve any protocol functionality exten-

2 CHAPTER 1. INTRODUCTION

sion, but on over-provisioning the architecture to be able to provide quality of
service! (QoS).

The work in this Thesis commits the adoption of Ethernet to Provider Net-
works and industrial field through a small extension of the existing architecture.
The introduction of provider capabilities was initiated with the Ethernet in the
First Mile (EFM) specification [IEEE Std. 802.3 (1998)] covering all type of
broadband residential deployments (copper, point-to-point fiber and passive op-
tical networks (EPONs)), together with the management capabilities. As far
as the synchronization is concerned, EPON specification introduced a time syn-
chronization capability based on timestamping for the purpose of coordinating
the slotted access of point-to-multipoint networks. The synchronization capabil-
ities in EPON were entirely defined at Layer 2. As far as the industrial field is
concerned, Ethernet has attracted interest only recently. Actually, a number of
vendors are offering industrial communication products based on Ethernet and
TCP/IP as a means to interconnect field devices to the first level of automa-
tion. Others restrict their offer to communication between automation devices
such as programmable logic controllers and provide integration means to existing
fieldbuses [Decotignie (2005)]. In the area of industrial communications, synchro-
nization is also delivered by means of timestamps within specific messages.

Kopetz was the first author who pointed that the synchronization accuracy
among networked nodes using timestamping techniques is mainly affected by
the sum of time variabilities during the insertion of the time information in the
message, the transmission and propagation of the time message, and during the
reception at the receiver side [Kopetz & Ochsenreiter (1987)]. Proper tuning of
these main parameters will lead to a better synchronization. In order to know
which are the synchronization limitations of Ethernet in shared topologies, the
EPON timestamp and synchronization functionality should be refined in terms
of jitter and resolution. Thus, this Thesis aims at characterizing accurately a
Layer 2 synchronization mechanism for native Ethernet. A proper optimization
would allow Ethernet to better support time sensitive applications with optimal
QoS. Our objective is to improve Ethernet capabilities within an acceptable range
while respecting its architecture simplicity principle.

1.2 Synchronization Provisioning for IEEE 802.3 Ethernet

Ethernet-based networks are asynchronous networks, i.e., they do not share a
common timing signal as in e.g., SDH, but each node’s physical layer is provided
with a low-cost timing source for pacing the transmission and reception of the
information. This principle decreases Ethernet’s cost dramatically and allows
to embrace a wide set of technologies built on top of it. The timing source is
generally a low-cost quartz crystal oscillator from which a square clock signal
is obtained and used to pace other circuitry within the node. Ethernet’s Layer
1 are provided with hardware synchronization blocks that reconcile/synchronize

'In this Thesis term quality of service (QoS) refers to achieved service quality rather than
the resource reservation control mechanisms.

1.2. SYNCHRONIZATION PROVISIONING FOR IEEE 802.3 ETHERNET 3

the local timing from the neighbor node, thus creating a network of free-running
nodes capable to communicate at any time and relegating services running on
upper layers from synchronization.

Accordingly, synchronization transfer methods in Ethernet networks rely on
synchronization protocols that distribute the timing using time marks (times-
tamps) inside the messages. Synchronization protocols define the message se-
mantics, the rules for exchanging messages and the state information to be kept
by the node. In a synchronization network there is usually a main node, com-
monly known as best clock, to which all the other nodes of the network syn-
chronize to. Although there are different communication schemes (i.e., unicast,
multicast or broadcast), the essence of synchronization protocols is similar: there
is a periodic exchange of time messages from which the propagation delays are
inferred and used to improve the synchronization. The nodes that need to be
synchronized adjust their respective clocks accounting for the propagation delay.
The more accurate, precise and deterministic the delay is, the more accurate the
synchronization between nodes will be. It is precisely on the calculation of this
parameter where synchronization fails; to calculate the delay, a node utilizes the
remote timestamps which arrive indeterministically due to jitter sources present
along the path of the message and within the same node.

To provide synchronization capabilities to Ethernet, several approaches have
been proposed. Two distinguishable aspects exist between them: whether they
provide synchronization in the form of frequency or time/phase, and whether
they use dedicated hardware to carry out critical functions or not. The combi-
nation of choice depends on the synchronization needs of the application. For
instance, backhaul cellular technologies require precise frequency and phase syn-
chronization to the level of few parts-per-billion (ppb) and microseconds (us)
to efficiently share the radio access; time division multiplexed (TDM) networks
have also the strong requirement of few ppb’s frequency synchronization across
the entire network, as accurate multiplexing and demultiplexing of data depends
on that capability; a distributed measurement network running at ten gigabit
speed requires time synchronization accuracies below few tenths of nanoseconds
(ns) to distributedly log the interarrival times of the packets.

A technology that is gaining momentum among Tier 1 telecommunication op-
erators to distribute frequency through Ethernet is Synchronous Ethernet (SyncE)
[ITU-T G.8262 (2007)]. SyncE distributes frequency directly to the Ethernet
physical layer. SyncE transceivers are provided with PLL-based mechanisms that
pass timing from node to node in the same way timing is transported in, e.g., SDH.
In IEEE 802.3 Ethernet networks, frequency synchronization is not mandatory as
they do not need timing synchronization to work and, most important, they have
been optimized for cost efficiency. Considering these requirements, other tech-
nologies built over Ethernet, such as the Network Time Protocol (NTP) [Mills
(1992b)], or the more recent Precision Time Protocol (PTP)/IEEE Std. 1588
[IEEE Std. 1588 (2008)] are being developed and enhanced for high-quality time
distribution.

Key to understanding synchronization in Ethernet networks is that each node
suffers from an unsurmountable physical limitation: the local oscillator’s fre-

4 CHAPTER 1. INTRODUCTION

quency drifts at a nominal rate of £50us/s (100 ppm), thus making nodes to
drift apart few seconds per day from the ideal rate. Moreover, the drift rate can
change due to temperature variations or aging, thus further impairing the syn-
chronization. Oscillators’ drift is the cornerstone problem of all synchronization
mechanisms that drive synchronization protocols to re-synchronize periodically
using messages. It is precisely in the process of the time message exchange where
the synchronization accuracy between nodes is more impaired because the mes-
sages suffer from two error sources: fized propagation delay and propagation delay
variability (or jitter). Synchronization protocols face the complex task of estimat-
ing and cancelling the fixed propagation delay piggybacked on each timestamp.
In the case of symmetric paths, the propagation delay can be inferred optimally
(from the round trip delay (RTD)). On the other hand, jitter cannot be elim-
inated, but it has to be accommodated by the applications running at upper
layers. The jitter is critical in synchronization and it raises from different sources
in the path of the message:

= Internode jitter. Corresponds to the time variability of an inbound/out-
bound synchronization message to cross the layered-stack. In IP-based
synchronization schemes like PTP and NTP, this time penalty stems from
the priority-based behavior of the operating system which queues the time
message for a variable amount of time before sending. The most accurate
solution to eliminate the gross part of the internode jitter is to generate
and introduce the timestamp after the message has been queued. To carry
out this approach, it is necessary to use specialized hardware capable to
recognize the time packet while it is being sent/received. A common prac-
tice in Ethernet architecture consists on triggering the timestamp between
the Media Access Controller (MAC) and the Ethernet transceiver (PHY).
The paradigm of generating and inserting the time in a message by means
of dedicated hardware is known as hardware timestamping. Software times-
tamping alludes to the same concept except that the timestamping process
run on top of the jittery schedulling tasks of the operating system. Both
timestamping paradigms establish the division line of performance and cost
among the time synchronization protocols. Software-based protocols can be
implemented in low-cost commodity hardware at expenses of poor synchro-
nization accuracy, while hardware-based synchronization protocols leverage
specialized hardware to generate timestamps with very low jitter. The use
of hardware reports improvements of three or four orders of magnitude on
the synchronization accuracy in many implementations.

= Network jitter. Corresponds to the time variability of a synchronization
message go across the layered-stack of the intermediate elements from a
source node to a destination node. The network jitter is aggravated by the
residence time variability that the packets experiment in the internal queues
of the network elements (NE) like switches and routers. As switches are
store-and-forward devices, the packets received on one port are stored tem-
porarily while the device figures out which forwarding port(s) to send them

1.2. SYNCHRONIZATION PROVISIONING FOR IEEE 802.3 ETHERNET 5

to. The time the packet is delayed is called the residence time. In scenarios
with dense and variable network traffic, the residence time is variable and
unpredictable. Moreover, topologies with several NEs suffer from the jitter
introduced by each element, thus further aggravating the end-to-end syn-
chronization. Although switch and router technologies and architectures
have greatly improved over the years, packet delay variability (PDV) is still
the more relevant limiting point to achieve accurate synchronization. Syn-
chronization protocols, like PTP, tackle this problem in two ways. First, by
defining profiles, i.e., specific network topologies with a maximum number
of NEs to accommodate a permissible level of jitter. And second, by lever-
aging hardware assistance. To achieve ns-level synchronization, hardware
assistance is a must. Hardware-assisted switches subtract, in the same NE,
the time that a message is retained in the queue and modify the time infor-
mation when the message is being transmitted. This technique is not widely
available yet in commercial off-the-shelf products because there can be di-
minishing returns where more is not always better nor necessary. In the
context of PTP these switches are called boundary and transparent clocks.

The actual technological trend in communication nodes points toward an in-
crease in the use of specific hardware for the support of communication tasks.
Although pure software systems have greatly increased their performance, hard-
ware domains still achieve orders of magnitude better results. Known truth is
that software systems feature more flexibility and short time-to-market than hard-
ware systems, but the actual rapid evolution and creation of new standards and
protocols has pointed hardware manufacturers towards more flexible and pro-
grammable hardware platforms to their products. This fact, taken in conjuction
with the integrated circuit (IC) technological evolution (chip size reduction, power
reduction and speed increase) and the integration of multiple systems in a single
chip (SoC), is facilitating the integration of new functions into the hardware do-
main. A technology that is gaining force in the market is Field Programmable
Gate Array (FPGA). FPGAs are programmable devices that have been developed
as a form of intermediate approach: hardware design on a high-performance plat-
form, optimal resources and programmability as the devices/systems within can
be reprogrammed. In broad stokes, state-of-the-art FPGAs integrate thousands
of programmable devices, hundreds of third part Intellectual Property (IP) blocks
and microprocessor cores into one single part.

Over the last decades, the world of computing platforms has been progressing
towards very complex systems for the sake of better efficiency. Actually, com-
puting platforms are provisioned with extra resources capable to communicate
at dizzying speeds. Architecture complexity has lead to the need to consider
platforms as “black boxes” in order to simplify the design process. On the one
hand, abstractions simplify the programmability as the designer 'only’ needs to
foucs on the application functionality. On the other hand, the fact of considering
systems as black boxes lead to omit the hardware’s behavior. Computation relies
on hardware, and hence it cannot be ignored. Hardware systems are an integral
part of the design, and thus the software must be designed to operate with it

6 CHAPTER 1. INTRODUCTION

accordingly. High-level programming languages and traditional programming is
time-agnostic and provide functionality through ordering. Computer systems are
provided with operating systems, with a rich suite of services that lack of a no-
tion of time. To put an example, higher-level modern programming languages do
not support the use of periodic interruptions in their semantics or counting the
number of microprocessor clock cycles of a piece of code in a critical inner loop.
Physical systems are intrinsically concurrent and temporal. Actions and reactions
happen simultaneously and over time, consequently time plays an essential part
in the system’s behavior.

Embedded systems are on the other side of computing platforms. They
are small computers that adhere to the world of embedded computing, char-
acterized for having a limitation in the number of hardware resources and a
direct interaction with them. In the embedded system world, time matters, and
thus embedded-system applications are designed with low-level programming lan-
guages, more capable to provide notion of time and direct mapping to the hard-
ware resources. For these reasons, embedded programming challenges to manage
common hardware resources efficiently, reliably and, most important, in a pre-
dictable amount of time. In this view, the evaluation of synchronization protocols
in embedded platforms entails an added problem that is predictability, or the lack
of deterministic response and execution times in the interaction between software
and hardware. Although FPGAs with processor cores provide an alternative ar-
chitectural division between hardware and software, when time synchronization
is needed at the level of ns, their interaction becomes more stringent. The soft-
ware part, the “intelligent” side, hosts protocol management functions and rather
complex arithmetic operations, while hardware is consigned to repetitive, non-
complex but time-restrictive tasks. Hardware is put at the service of executing
the requests of the software.

To summarize, the level of synchronization in Ethernet-based packet networks
depends on the amount of jitter that exists between nodes. Jitter becomes more
gross as more high in the protocol stack the timestamps are obtained. In IP-based
networks the major part of the internode jitter is introduced by the stochastic
behavior of the operating system. In pure Layer 2 Ethernet-based networks,
the jitter sources arise from the time variabilities committed by the hardware
mechanisms in the MAC and the PHY of the end nodes to transmit, propagate
and receive the messages. This work focuses on accurately and precisely deriving
the jitter at and below the MAC.

To tackle the problems stated above, this Thesis introduces a time syn-
chronization functionality at Layer 2 for IEEE 802.3 Ethernet based on a re-
adaptation of the EPON synchronization protocol. The synchronization func-
tionality resides at the control path of the MAC, while the protocol is part of the
MAC control sublayer. The protocol defines a set of control headers for deliver-
ing the synchronization and a message exchange pattern. The proposed model
is implemented and evaluated in a low-cost FPGA-based embedded platform.
The core of the time functionality falls in the hardware part, in the form of a
timestamping block that permits to timestamp on-the-fly the time messages. The
timestamping block characterizes for having a high-resolution time counter that

1.3. TECHNICAL APPROACH 7

permits to timestamp very precisely the time messages. The timestamping block
also records the time of flight of the time messages for deriving the jitter of the
MAC and the PHY.

1.3 Technical Approach

This Thesis aims at evaluating what is the potential of Ethernet as a technology
for delivering high-precision time synchronization. To that end, this work follows
a methodology based on analysis, design and implementation:

= Analysis € study. First, the existing technologies for delivering synchro-
nization in Ethernet networks need to be explored and carefully studied to
know their shortcomings and limitations. At the same time, a study of the
actual synchronization needs of specific applications and services will give
a set of specifications for the design phase.

= Design. This phase comes up with a new model for IEEE 802.3 Ethernet
to provide a time synchronization service. The design extension is fully
prospected at Layer 2 and re-adopts the synchronization mechanism intro-
duced in EPON.

= Implementation and Evaluation. Ethernet functions are defined in the hard-
ware domain, thus our conceptual design will be implemented in a hardware
platform, a low-cost generic platform FPGA. As hardware design is an in-
herently complex task due to the number of physical limitations incurred
in the design process, some parameters are very difficult to verify correctly.
This Thesis will introduce a set of methods that will allow a correct verifi-
cation of the proposed synchronization functions with independence of the
platform limitations. Hence, this work will emphasize the implementation
and evaluation aspects of the proposed mechanism.

1.4 Summary of Contributions

The contributions of this Thesis are:

= An architectural extension proposal for IEEE 802.3 Gigabit Ethernet con-
sisting on the introduction of a time synchronization functionality at Layer
2 (see Chapter 4). The synchronization function re-adopts the ranging pro-
cedure of the Ethernet Passive Optical Network (EPON) synchronization
protocol. The function is fully prospected in the control plane of the MAC
and introduces new control messages.

= An optimal implementation of the time synchronization mechanism on a
low-cost platform FPGA (see Chapter 5). The core of the mechanism is a
hardware timestamping unit (TSU) that allows to timestamp on-the-fly the
ingress/egress control frames. The TSU contains a high-speed time counter

8 CHAPTER 1. INTRODUCTION

that allows to timestamp the frames and synchronize with the maximum
allowed precision given by the platform, 3.33 ns.

The implementation of the synchronization function on a generic platform,
the use of a high-resolution counter and the oscillator clock drift entail sev-
eral challenging problems. The first one and most critical is that the clock
frequency of the counter is asynchronous to the rest of the clock signals
within the TSU. This can lead to unpredictable errors [J. Stephenson (Al-
tera, Corp.) (2009)] in the captured timestamps that can totally invalidate
the evaluation results (see Section 6.3.2). Second, the propagation time
derived in the ranging procedure is not accurate, as it suffers from the pro-
cessing delays within the node (see Sections 5.5.4 and 6.3.4). Third, the
accumulated clock offset due to the clock drift when targeting synchroniza-
tion accuracies at the level of nanoseconds impairs seriously the synchro-
nization accuracy, therefore the real offset cannot be correctly verified (see
Section 6.3.1).

The need to address these three limitations have lead to the following rele-
vant contributions:

= A hardware mechanism based on a digital circuit called flancter that totally
prevents from timestamping errors in presence of multiple asynchronous
clock sources (see Section 5.4.4). Our flancter-flag blocks accommodate
the counter frequency of the TSU with the transmission and reception fre-
quencies of the MAC and PHY interfaces. This block can be re-used in
other designs with disparity of frequencies.

= A method to calculate with high accuracy the propagation time in the
ranging process, and thus to synchronize optimally. The method consists
on capturing several distributed timestamps along the MAC layer during
the synchronization message journey and re-use them to subtract the node
processing delays. To be able to obtain these timestamps, the TSU archi-
tecture has carefully been designed (see Sections 5.4.2 and 5.4.3).

= Two methods to evaluate the time synchronization accuracy with indepen-
dence from the oscillator drift. The first one is based on the capture and
comparison of the distributed timestamps between two nodes. The second
one is based on the comparison of the instantaneous time of two remote
nodes using programmable interval timers (PIT) (see Section 6.3.4).

The combination of the synchronization protocol, the hardware timestamping
and a careful analysis of the platform architecture has rendered synchroniza-
tion accuracies of zero nanoseconds in a point-to-point configuration (see Sec-
tion 6.3.4).

1.5. OUTLINE OF THE THESIS 9

1.5 Outline of the Thesis

After introducing the problem and the objectives in this chapter, the remainder
of the thesis is organized in six chapters as follows:

Chapter 2 provides a summary of terms and concepts most used and relevant
to this Thesis.

Chapter 3 reviews the state of the art work most related to this Thesis and
summarizes the actual needs for synchronization of end-users and applications.
It also reviews the problems that timestamping mechanisms usually suffer from.

Chapter 4 presents the first contribution of this Thesis, which is a time syn-
chronization model for Gigabit Ethernet. It describes the followed conceptual
approach while leaving aside implementation details.

In Chapter 5, we cover an important part of this Thesis which is the imple-
mentation of our conceptual model in a platform FPGA. Here, we present almost
the rest of the contributions and explain in detail the main design components of
our synchronization platform: the main hardware subblocks of our timestamp-
ing unit, the concept of distributed timestamping to re-synchronize and calculate
the RTDs optimally and the flancter-flag blocks to prevent from timestamping
errors.

Chapter 6 presents the experimental results for characterizing the timestamp-
ing mechanism, the internode jitter and the synchronization accuracy achieved in
a point-to-point configuration. The last contribution of this Thesis is presented
here: a method to evaluate the synchronization accuracy at nanosecond level with
independence of the clock drift.

In Chapter 7, we draw conclusions and identify directions for future work.

§ 2. TIMING AND SYNCHRONIZATION IN NETWORKS

This chapter presents most relevant terms and concepts used in this thesis. Espe-
cially it aims at differentiating the different ways that the term synchronization
can be understood, along with its metrics and the methods to disseminate syn-
chronization in a network of geographically dispersed nodes. Last, this chapter
gives a tradeoff of actual computing platforms and why this thesis uses a platform
FPGA as a validation tool.

2.1 What is Synchronization?

Synchronization is the act or result of synchronizing, namely, to represent or
arrange events to indicate coincidence or coexistence [Merriam-Webster, Inc.
(2010)]. In the context of networks, synchronization can be understood as the
process that deals with the distribution of time and frequency across all the nodes
of the network [Bregni (2002)]. Thus, the goal of a synchronization process is to
align (i.e. synchronize) the time and frequency scales of all clocks of a network
by using the communication capacity of their interconnecting links.

2.1.1 Different Meanings, Different Abstractions

The term synchronization has different meanings and challenges depending on
the area of work, the level of abstraction and the context. For a software spe-
cialist, synchronization deals with the consistency between two files, i.e. which
of the two files were lastly modified. For an expert on digital communications,
the term is familiar on the acquisition and tracking of a clock in a receiver, with
reference to the periodic timing information contained in the received signal. And
for a digital circuit designer, synchronization deals with the circuit mechanisms
to ensure reliable data passing among different groups of logic paced at different
clock frequencies. Regardless of the abstraction level and area of expertisement
is referring to, synchronization in digital systems is crucial as it ensures correct
information flow and that operations follow in the correct order to obey a prece-
dence and timing to obey deadlines. Each level of abstraction relies on the features
of the abstraction level below and hides unnecessary details to the level above.
Whichever is the abstraction criterion in describing hardware and software sys-
tems, the entities (networks, nodes, systems, blocks) are mutually correlated at
any level, and the correct interoperation relies on a correct temporal coordination
[Messerschmitt (1990)].

11

12 CHAPTER 2. TIMING AND SYNCHRONIZATION IN NETWORKS

2.1.2 What Is A Clock?

The term clock has also different meanings depending on the level of abstrac-
tion and the context too. In the world of electronics, a clock is a digital signal
consisting on periodic pulses. The pulses are generated by an oscillator, which
relies on the performance of a resonator as a stabilizing element. Digital sys-
tems are entities that at register level exchange binary information at periodic
intervals paced by the clock signal. As telecommunications equipment rely on
smaller digital subsystems, their synchronization performance is at expenses of
the subsystems below. Furthermore, in order to have an optimal coordination
and a reliable information transfer among digital subsystems, the equipment has
to share the same clock signal. In the real world there are no two or more clock
signals that oscillate at the same frequency, as the resonator output frequency is
affected by manufacturing deficiencies and environmental conditions (humidity,
temperature, aging).

In personal computers, the clock is known as system clock and it is rendered
to the user in the format of year, day, hour:minute:second [ISO 8601:2004
(2004)]. The formatting task is accomplished by a high-priority routine within the
operating system after reading one of the several existing timing sources, either
within the motherboard or the microprocessor, i.e., from the Real Time Clock
(RTC) or the Timestamp Counter (TSC). Both counters are hardware registers
that sum up ticks at a multiple' of the on-board resonator’s frequency to keep
track of real time.

In the context of synchronization of networks, every node of a network that
has to synchronize to a reference node is a clock. The reference nodes have a
better quality in terms of frequency stability, as they are generally locked to a
high stable frequency signal coming from an atomic resonator. Atomic clocks are
a kind of devices based on an atomic material and deliver a high stable frequency
signal, generally in the flavours of 1, 5, and 10 MHz. Reference clocks in networks
are dedicated high-performance computers that are locked to an atomic resonator
in order to offer a high stable time to those client nodes with less stability.

2.1.3 Why Do We Need Synchronization?

The need for synchronization is global, in daily life, in electronic systems and in
networks. Networks are built of electronic devices that are paced by drifty clocks
that run at different frequencies. Consider for example the disparity of frequencies
of the components in an electronic system. A processor of a personal computer
may operate at 3 gigahertz and the data information travelling through the busses
of a printed circuit board may run at hundreds of megahertz. In this case, the
provision of synchronization mechanisms to adapt the information transfer speeds
between the CPU and the bus is a must, otherwise the information would be
lost. All the electronic digital systems are subjected to this ultimate level, thus

11t is common to fold the resonator’s frequency by specialized frequency synthesis circuits
inside the digital chips as actual quartz resonators can only resonate in the range of tens of
kilohertz to tens of megahertz.

2.1. WHAT IS SYNCHRONIZATION? 13

different re-synchronization mechanisms are provided along the information path,
i.e., from the physical to the user level.

The lack or loss of synchronization has a different effect depending on where
it takes place. For example, a loss of synchronization in the transfer of infor-
mation from one register to another may raise to a misinterpretation of one or
more bits. The type and mechanisms to provide synchronization depend on the
synchronization abstraction level, while the specific requirements depend on the
application needs. Consider another example, a voice communication over IP
network (VoIP). The time delays and variabilities (jitter) are splitted along the
path from the source to the destination nodes. Every node contains electronic
circuitry that run at a different frequency and low-level synchronization mecha-
nisms that add latency and jitter on the time needed for the packet to reach the
destination. Besides, the intermediate elements (i.e., the switches and routers)
store the packets for a variable amount of time that depends on the traffic load
in the other ports. As in the case of VoIP, the packets need to be delivered to
the user within a specific time interval to be sequentially and orderly processed
on-time in the destination node for proper playout. However, if one or several
packets containing the encoded voice data of the user is excessively delayed, the
destination node will notice gaps of time with no voice.

All the waiting time counts, either coming from the latency and jitter added
by digital circuits or the intermediate software processes that handle the packet
before delivering it to the user. The crux of the matter is what are the syn-
chronization requirements at a specific level of abstraction, and if that level can
accommodate the delay and jitter introduced by lower layers.

2.1.4 Time, Phase and Frequency Synchronization

Synchronization is a generic concept that depicts the act of aligning the timing
references of two or more entities. The timing references can be treated in different
physical quantities, i.e. either in frequency, phase and time. Figure 2.1 shows an
elementary view of two signals, A and B, being synchronized (subplots a, b, c)
and unsynchronized (subplots d, e, f). Columns show the type of synchronization,
i.e., frequency, phase and time:

e Frequency synchronization: As shown in Figs. 2.1a and 2.1d, frequency syn-
chronization consists on matching the frequencies (f, = f;) of both signals,
regardless of the phase difference (A¢ # 0) between them. Conversely, the
two signals are unsynchronized if the frequencies differ (f, # fp). In the
context of networks, the term frequency synchronization is also know as
syntonization.

e Phase synchronization: As shown in Figs. 2.1b and 2.1e, phase synchro-
nization implies that the rising edges of the reference signal occur at the
same instant (f, = fp, A¢ = 0). Phase synchronization is more restrictive
than frequency synchronization as it requires frequency and phase match-
ing at the same time. In the context of networks, this term might include

14 CHAPTER 2. TIMING AND SYNCHRONIZATION IN NETWORKS

the notion of frame timing, i.e., the point in time when the time slot of an
outgoing frame has to be generated.

e Time synchronization: As shown in Figs. 2.1c and 2.1f, in the context of
networks, time synchronization refers to the alignment the timescales of two
geographically dispersed real-time clocks. Two nodes are time-synchronized
if their timescales match (C4 = Cp). Notice from the figure that time
synchronization is one way of achieving phase synchronization.

Frequency Phase Time
synchronization synchronization synchronization
" Ap#0 AY=0 A$=0
g Ay =T, A RO Car 79 0 9170
z
¢ L |11 I
S B - B C
g T=Uf, t t Bl 789 790 791 792 [
=
- L |11
t t

a) f=f,Ap%0 b) f=f,a¢=0 C) C,=C,Ap=0
2 A$#0 Ap=0
%\ A T, =Uf, A e CA 789 790 7;|’_<7972
e L HEN Wl
i
=]
g B TFUL, ¢ B t Cop 78 730 00 701 ¢
ol Wi
A
=
=]
2 t

d) f,<f,ap20 €) f=f,Ap=0) c=C,a020

Figure 2.1: Physical quantities to represent synchronization.

2.1.5 Timing Between Signals and Systems

By definition, two digital signals or systems or networks are synchronous to each
other if they share the same clock signal for transmitting and receiving the in-
formation. Synchronization of data passing between two nodes/networks is only
necessary if the timing of the systems is different. If both systems work with the
same clock, then they are synchronous and changes in the data from one system
are always made at the same time in its clock cycle. The receiving system knows
when the data is stable relative to its own clock and can sample it at that time,
thus no synchronization is necessary. Figure 2.2 is inherited from [Messerschmitt
(1990)] and illustrates a taxonomy of the timing relationship between two dig-
ital signals or systems. Mesochronous relationship is given to the systems that

2.2. SYNCHRONIZATION IN NETWORKS 15

do not share the same clock signal but they are tightly coupled, e.g., with the
help of a phase locked loop (PLL), with small phase difference. Two systems are
plesiochronous when both clock frequencies may be nominally the same, but the
phase difference can drift over a period of time in an unbounded manner. Syn-
chronization of two plesiochronous systems can be achieved by predicting when
conflicts might occur, and avoiding data transfers when the two clocks conflict.
If the time frame of one system is completely unknown to the other, there is
no way that a conflict can be avoided and it is essential that data transfers are
synchronized every time. In such a case the path is heterochronous.

Synchronous

Anisochronous Mesochronous
Digital

; Asynchronous —» i
signals/systems \ A/ Plesiochronous

Isochronous Heterochronous

Figure 2.2: Synchronous and Asynchronous relationship between two digital sig-
nals, systems or networks.

2.2 Synchronization in Networks

2.2.1 Synchronous and Asynchronous Networks

Ethernet is well-known to be an “asynchronous technology”. Each node of an
Ethernet network has a free-run clock for sending and receiving information. As
each Ethernet node runs at a different speed, synchronization mechanisms at the
receiver node are required to adapt the sender datarate to its local clock. This
first stage synchronization is entirely performed in the physical layer by hardware
mechanisms. In Ethernet technology, the Ethernet transceiver (PHY) carries
out this task [IEEE Std. 802.3 (2005)]. Once the information is synchronized
and within the node, other types of synchronization are performed. For the
specific case of Ethernet, each frame contains a special and fixed header (i.e., the
preamble) to differentiate the frames.

Asynchronous networks are a type of networks with independent timed pro-
cessors and hardware mechanisms to adapt the different datarates. This free-
running characteristic is what differentiates asynchronous and synchronous net-
works. Asynchronous networks are architecturally simpler compared to syn-
chronous counterparts, but the overhead of establishing the local synchronization
is significant. On the other hand, in synchronous networks, all clocks are com-
pletely bound together through hardware mechanisms and equipment geograph-
ically dispersed. Many Network Operators are actually replacing synchronous
technologies, such as SDH, to reduce cost in equipment technology, network setup
and maintenance. Digital networks, such as SDH, where initially deployed in
the 70s for the transmission of voice in digital telephone networks. Nowadays,
with the advent of Internet and cellular mobile technologies, data traffic points

16 CHAPTER 2. TIMING AND SYNCHRONIZATION IN NETWORKS

towards an ever increasing bandwidth demand, a parameter that traditionally
synchronous technologies or circuit-switched networks cannot accommodate.

2.2.2 Actual Synchronization in IEEE 802.3

According to the definitions stated in Section 2.1.5, native Ethernet is a hete-
rochronous technology, i.e., Each node of an Ethernet network has a free-running
clock that paces the transmission of the data to the media. Ethernet was de-
fined as a two-layer technology that addressed, in the Layer 2, how the data
was organized and sent over the network medium, and in the Layer 1, how were
the signalling and synchronization mechanisms. The actual synchronization pro-
visioning in Ethernet is performed in the physical layer (PHY) to recover the
analog signals from the cable to the digital data delivered to the MAC (L2).
In the context of networks, an “asynchronous technology” is a technology that

OSI layer Layer Abstraction Synchronization Type Synchronization Unit of information (level)
multimedia
Application synchronization

Application layer

user synchronization perception
L7 -— 5 Y/ percep!

Intermediate Layers

link 31 0

MAC-Media Access Control synchronization digital
MAC (L2) Lo 0x00000000 Jgeal

GMII e
N . packet 7 packet n+/
frame synchronization

P
// PMA : - 101)01100010...110101{071100110...10011..
e PCS carrier & symbol synchronization
PHY (L1) < ..0110001010100101011011110101..
PMD

DI

N
S M

Figure 2.3: Actual synchronization functionalities in the OSI model.

do not share with other nodes a common timing from a high quality frequency
standard source, but it uses a free-running crystal oscillator (XO) on-board to
communicate with its adjacent node. In the case of Ethernet, this task is carried
out by the PHY. During the link setup between two nodes, the autonegotiation
function of the PHY decides which node acts as a master and which one as a
slave. Hereafter, the master generates the transmit clock locally from the XO
and the slave recovers the master clock from the received data and uses this re-
covered clock to receive data properly. After each packet transmission, the MAC
enters in the interframe gap period (IGP), where the underlying PHY injects idle
control codes to keep synchronized with the adjacent node until the next packet
transmission. Without this Layer 1 (carrier, symbol and frame) synchronization
it would not be possible for the PHY of the receiving node to receive incoming
packets. This fact poses several pros and cons. On the one hand, the systems and
the overall network is simpler and much cheaper than other technologies, such

2.2. SYNCHRONIZATION IN NETWORKS 17

as SONET/SDH or PDH. On the other hand, the overhead of establishing local
synchronization is be significant for certain applications in terms of latency and
jitter. Figure 2.3 illustrates different representations and synchronization tech-
niques in the path of a message through the layered stack of an Ethernet node.
The information in the medium is transported by means of analog pulses that are
degraded by different sources of noise along the path. The PHY transceiver on
Ethernet boards have the task to convert the incoming information from analog
to binary format (carrier & symbol synchronization). This conversion is per-
formed in the PCS sublayer, which contains complex hardware mechanisms such
as noise filters, carrier recovery circuits, de-scramblers, decoders and so on. All
Ethernet frames have a fixed header at the beginning of the frames that is used by
the PHY to partition the string of decoded bits into frames (frame synchroniza-
tion). The splitting of each frame into bytes is performed in the PMA sublayer
and then it is passed to the MAC. Thus, time synchronization at Layer 2 (link
synchronization) can be represented as a string readable format coming from a
digital counter. Synchronization within the MAC is represented in multiples of
byte (8, 16, 32 bits, and so on). It must be noted that frame synchronization
does not result in link synchronization, but it is a method to obtain the frames
from a bitstream of logical ’0’ and ’1’. To provide time synchronization at Layer
2, there must be hard hardwared mechanisms within the MAC to update the
digital counter and note the ingress and egress times of a frame.

2.2.3 Time Synchronization Protocols

A protocol specifies a collection of rules that describe message formats and the
patterns for exchanging those messages. The same applies to time synchroniza-
tion protocols which aim at aligning the timescales of geographically dispersed
real-time clocks. They distribute time as a machine-readable string in specific
messages and exchange them between nodes. Remote nodes collect the time in-
side the packets to find an agreement of global time. The strings with the time
information come, either from a digital counter located in the hardware resources
of the node, or from a software variable as a wasy to represent real time by means
of a “synthetic” counter.

[Anceaume & Puaut (1997)] classify clock synchronization protocols in three
major components. The first one is the re-synchronization detection component,
which triggers the periodic indication for two nodes to synchronize their real-
time clocks. The second one is the remote clock estimation component, which
estimates the values of remote clocks in presence of error sources such as delay
and jitter. And third, the clock correction component which corrects the local
clock according to the result of the second component. The correction of the local
clock can either be applied by brute force (state correction) or progressively (rate
correction).

Part of the work of this Thesis can be better understood and classified ac-
cording to those components and definitions. First, we define a set of messages
to time synchronize at Layer 2 and a synchronization exchange pattern. We also
set a series of periodic time-triggered events to start different processes, such as

18 CHAPTER 2. TIMING AND SYNCHRONIZATION IN NETWORKS

remote clock observation, remote re-synchronization (i.e., remote clock state cor-
rection) and propagation delay calculation. And third, we estimate the remote
clock values.

2.2.4 Delay, Jitter and Timestamping

As opposite to traditional digital networks (e.g., SDH/SONET or PDH), asyn-
chronous networks or packet-based networks do not physically carry a common
and dedicated frequency signal over the physical transceivers, but they trans-
port time marks, or timestamps, embedded in specific time messages. The use
of messages entails two additional problems that degrade the synchronization of
a network. The first is the internode jitter or the jitter inside the node that
is measured as the time variability of the synchronization message to cross the
layered-stack. This error is mostly due to the scheduling of the operating system
and internal message queues in retrieving/inserting the timestamp from/to the
message. The most effective solution to the inter-node jitter is to timestamp
at the lowest accessible level of the stack in order to bypass intermediate hard-
ware. A common practice for Ethernet architecture is to trigger the ingress/egress
timestamps between the MAC and the Media Independent Interface (MII). This
practice is known as hardware timestamping. Although a gross amount of jitter
is removed from the timestamps, they still accommodate the jitter and delay in-
troduced by the physical layer. In Section 6.3.3, we will evaluate the delay and
jitter introduced by the MAC and the PHY of a real platform.

The second problem is the network jitter or the node-to-node time variability
of the synchronization message. This problem is due to the intermediate elements
(e.g. switches) between two nodes. The solution to this problem is to use smart
and well engineered synchronization protocols to infer the real delay in the net-
work even under non-ideal load conditions and network heterogeneity, e.g., the
well-know Network Time Protocol [Mills (2006b)] (see Section 3.2.2). Software-
based synchronization protocols are algorithmically complex and not feasible to
be implemented in hardware.

2.2.5 Synchronization Algorithms

As mentioned before, synchronization can be understood differently depending on
its level of abstraction. In a similar way, synchronization algorithms have different
meanings and approaches depending on the level of abstraction and whether they
are designed to correct the frequency or the phase/time of a clock.

A synchronization algorithm as a whole can be understood as an “intelligent”
entity that is capable of cancelling the error that might exist between an input
and its reference, being the inputs either frequency or phase/time. In the case
of time synchronization, they are also known as clock synchronization algorithms
(CSA)2. As stated in Subsection 2.2.3, one of the critical blocks of time syn-
chronization protocols is the remote clock estimation component (RCEC), which

2Clock synchronization is understood as the act of synchronizing the nodes of a network in
frequency and in time/phase [Mills (2006a)].

2.2. SYNCHRONIZATION IN NETWORKS 19

) remote clock Local Clock
High-stable source Remote clock observations system clock
(e.g., atomic clock)
31 0 A 31 0
AL noisy lm.mb freq
O counter network counter "
clk (1) { network) elic, (O™ | jocal
T oscillator
counter] (e.g., crystal osc.)
12345678910 Phase Frequency
) corrections corrections
olk,, (0 g
A Clock
dL Synchronization
d‘] Algorithm
A
H RCEC
t

!

Figure 2.4: Clock synchronization algorithm scheme.

provides “intelligence” to the receiving system to infer the real delay of a message
to go across the noisy network. Specifically, the task of CSAs is to estimate and
compensate for the clock values between the remote clock and the local clock.
Figure 2.4 gives an overview of the main blocks of a synchronization scheme. The
remote clock provides high-stable time samples to the local clock. The RCEC
applies the correction to the local clock according to the result of (more or less
complex) computations from the timestamps. The counter can be, either modi-
fied abruptly (state correction), or smoothly (frequency correction). The former
is computationally less complex, as the instantaneous value of the local counter
has to be replaced by the remote timestamp. However, there are other potential
problems on this type of clock correction related to e.g., the timescale similar-
ity of the two clocks and timestamp errors when overwritting the local counter.
Thus, usign a clock state correction approach, it is necessary to provide a reli-
able hardware infrastructure in order to prevent from timestamp errors. When
the synchronization is performed in frequency mode, the modified variable is the
clock signal (clk;,) that comes from a frequency synthesizer circuit (freq. synth)
within the node. To do that, it is necessary to have control of the frequency
synthesizer, and to be able to infer from the timestamps the error term to correct
[Aweya et al. (2006)], [Aweya et al. (2007)].

State correction is the method chosen in this Thesis to re-synchronize, as it
the best choice to evaluate some synchronization components (see Chapter 6).
In Section 5.4.3, we present a hardware block that we use to re-synchronize two
contiguous nodes and to carry out the synchronization performance evaluation.

20 CHAPTER 2. TIMING AND SYNCHRONIZATION IN NETWORKS

2.3 High-Performance Computing Platforms

In the last years, there has been a progressive increase in bandwidth demand per
user worldwide, a trend that has pointed equipment manufacturers towards an
increase of performance to accommodate more data in less time. At the same
time, this has lead equipment to be provided with high-speed resources, such as
communication interfaces, microprocessors, busses and memories. To accommo-
date the speed upgrades, equipment manufacturers are introducing architectural
approaches to further increase the speed to process data. In one word, the trend
is to parallelize the operations to obtain more efficiency.

2.3.1 Platform Technologies

Simplicity, high-performance, time-efficiency and flexibility are ever-desirable fea-
tures that cannot co-exist at the same level. For this reason three different tech-
nologies have arised over the last years. Each one fits in a particular niche of
application with different needs: general purpose processors (GPPs), Field Pro-
grammable Gate Arrays (FPGAs) and Application Specific Integrated Circuits
(ASICs).

GPPs is the most used technology to those applications where time-efficiency
and performance is not of a matter. They are relatively easy to program and
there is a big community of experts that master the software skills for their pro-
gramming. However, GPPs present a clear bottleneck in terms of performance:
the computational tasks are carried out by a single entity, the microprocessor
(uP), which in heavy workload scenarios lead to a loose of performance. This
problem has given rise to move from centralized to distributed pP-based archi-
tectures in an attemp to become “more concurrent” for the sake of performance.
Concurrency always comes at expenses of parallelism or redundancy of resources.
Actually, parallelism exists in many different flavours in GPPs, such as multipro-
cessor systems, multicore systems, multithreading, grid and cluster computing,
and so on. The rationale of these alternatives consists on folding up several times
the pP entity in order to increase the computational time-efficiency by sharing
parallel tasks. Despite these approaches have pointed to a performance improve-
ment relative to single uP architectures, there is still a gap between the yP-based
architectures and other technologies with more presence of specialized hardware.

ASICs and GPPs represent the two extremes in the flexibility - performance
- cost trade-off. ASICs are custom chips designed for a specific set of very repet-
itive and time-demanding tasks with limited functional variability. ASICs, and
custom hardware systems in general, exploit task parallelization in thousands of
isolated circuits within a chip. Each circuit performs a specific and invariable
task. Functional variability in the hardware domain implies a huge increase in
circuit resource provisioning and utilization. Accordingly, these circuits are not
suitable for the realization of prototyping functions since the chip has to be sub-
stituted. Another added drawback is in the design development which requires
knowledge in different disciplines, such as logic design, analog electronics and chip
layout design, thus making it inaccessible to small teams. Prior to the submission

2.3. HIGH-PERFORMANCE COMPUTING PLATFORMS 21

the fabrication of the chip, an intense verification process of its functionality must
be carried out as their updates are extremely expensive and, once the fabrication
process has started, it is impossible to correct last minute bugs. As a way of
illustration, the total cost of an ASIC can be easily a million dollars accounting
for engineering costs and chip production [ETH - Microelectronics Design center
(2010)]. ASIC designs are then only suitable for fixed functions that can be used
in millions of identical chips, so that the investment will pay off.

FPGAs are in the middle way of the trade-off exposed at the beginning of this
section. State-of-the-art FPGAs pose high degree of flexibility (or programma-
bility), hardware performance and a cost comparable to computer-based systems.
FPGAs are provided with a software plane that provides controlability and "in-
telligence” to a bunch of programmable hardware resources. In this sense, the
hardware can be user-customized to a specific application requirements to per-
form time-demanding tasks which, at the same time, can interact with the soft-
ware. In FPGA-based systems, the logic is directly designed using hardware
description languages like VHDL or Verilog, which are intrinsically adapted to
carry out parallel processing and pipelining. While designing with HDL requires
expertisement in digital logic synthesis, the software part is programmed with
standard programming tools, such as C/C++ flavours. Conversely to ASICs,
today’s FPGAs are supported by vendor specific tools that facilitate its overall
design process. Traditionally FPGAs have been committed to early stages of
product release but nowadays they are more present in deployed infrastructures,
offering thus the possibility for in-situ hardware updates.

For the reasons explained above, the FPGA technology has been chosen to
prototype in this Thesis.

2.3.2 FPGA-based Embedded Platforms

FPGAs are programmable logic devices that can be re-programmed to implement
any function within the device resources. The internal architecture of an FPGA
consists of an array of logically uncommitted elements that can be interconnected
to carry out a specific application [Brown & Rose (1996)]. The three basic internal
resources that use to characterize FPGA architectures are: a) combinational logic
blocks (CLBs) or logic elements (LEs), b) interconnection (between the CLBs),
and ¢) I/O or I/O blocks (IOBs). The combination of LEs and interconnect
is known as FPGA fabric, which is shown in the right side of the Figure 2.5.
The CLB can perform the combinational functions of several logic gates and/or
the sequential functions of memory circuits. A CLB is further subdivided in
slices, which in turn, contain function generators (Look-Up Tables (LUTs)), flip-
flops, combinational logic, multiplexers and carry logic. Provided that an FPGA
contain thousands of CLBs (depending on the FPGA model), a large amount of
combinational and sequential logic functions can be embodied in the fabric. The
IOBs contain programmable logic to be inputs or outputs. They are intended to
interface to the external pins of the FPGA and they allow several I/0O signalling
standards to be interfaced depending on the setup. The interconnections are

22 CHAPTER 2. TIMING AND SYNCHRONIZATION IN NETWORKS

#include "my_core funcs.h"

w| [vo| o] [vwo] [w] [vo] [vo m m
block block block block block block block block block

1/0

T
7o . \WK

/o

g
=
z
12
g

int configure (void) ;
int irq_sw_handler (void) ;

int main(void) {
configure (void) ;

g
2
8
7

while (!exit command) ;
return (0) ;

£
5
8
=

3

£
3
2
=

library IEEE;

/o use IEEE.STD LOGIC_1164.ALL;
block| MEM CUSTOM . o
entity my hw_blk is
BLOCK port(clk : in std_logic;
10 zst & in std_logic;
A N
block]& end my_hw_blk;
ol
architecture Behavior of
10 I‘M“ \W — ™ my_hw_blk is
block il I uinl end Behavior;
T

/0 1/0 1/0 /0 1/0 1/0 1/0
block’ block block| |block block| [block block

M.

Y

Figure 2.5: Generic FPGA internal architecture. Programmable hardware (cus-
tom block) is described with HDL languages. The application software executed
by the CPU can be described using standard programming languages, such as C.

predefined tracks logically divided into channels that link all the configurable
logic.

Early FPGAs were used as a glue to connect various elements within a sys-
tem. Nowadays, and thanks to the technology improvement, FPGA devices have
provided such increase in capability that they have been moving from the edge
to the center of the design and they can be considered as a fundamental compu-
tational element. Today’s FPGAs are platforms that integrate a wide variety of
hard and soft intellectual property (IP) cores on a single device whose hardware
and firmware can be upgraded at any time. Hard IP cores are a dedicated part
of the integrated circuit, whereas soft IP cores are implemented utilizing general-
purpose FPGA logic cells. The shaded circle in Figure 2.5 denotes a group of
hard IP cores (GPIO, CPU and mem) and a soft IP core (custom block) hooked
on a bus for communicating themselves.

FPGA’s reconfigurable logic is particularly suitable for parallel algorithms
implementation. However, sequential algorithms, especially those that don’t de-
mand huge processing power, are easier to implement as a program for a CPU.
The CPU core controls the functionality of the hardware part and does more
complex calculations, while the hardware parts are responsible of more intensive
operations.

A FPGA-based platform is a predesigned architecture that designers can use

2.3. HIGH-PERFORMANCE COMPUTING PLATFORMS 23

to build systems for a given range of applications. The programmability of the ar-
chitecture reduces system development time yet enables a single Platform FPGA
to be targeted at multiple applications. This programmability also enables de-
signers to optimize systems throughout the development cycle and offers co-design
flexibility for trading-off hardware and software design implementations.

2.3.3 Hardware/Software Co-design

Hardware/Software (HW /SW) Co-design refers to the simultaneous considera-
tion of hardware and software within the design process of certain applications.
HW /SW partitioning maps a design onto the target architecture that includes a
CPU and several IP blocks. A decade ago HW/SW Codesign was a discipline
that intended to explore the design space of an application to create a suitable
platform. Actually HW/SW partitioning is moving towards a pactical design
task thanks to reconfigurable computing. FPGA’s internal architecture is what
HW /SW partitioning targets, i.e., reconfigurable logic to create custom hardware
blocks specialized to repetitive and time-demanding tasks, and embedded CPU’s
to allocate standard applications. Making the best use of FPGA-based platform
implies to map the application needs into the specific blocks of the internal ar-
chitecture, either to the CPU or to the programmable hardware. This entails a
problem that has been lasting for long time, which is the communication unef-
fectiveness between the programmable substrate and the CPU. There are several
sources of delay, such as the bus arbitration delays, physical communication de-
lays and re-synchronization delays that can totally make useless the processing
and speed gain of the hardware logic.

Modern design requires a designer to have a unified view of software and
hardware, seeing them not as completely different domains, but rather as two
implementation options along a continuum of options varying in their design
metrics (hardware cost, performance, power, flexibility, etc.). In the context of
time synchronization the interaction of the software to the hardware is critical.
For example, it is of no use having specialized high-resolution hardware to times-
tamp frames if then the time information is unduly delayed and overriden by
software latencies. Or, also, it is of no use for a time synchronization protocol to
timestamp in a non-predictable fashion and timestamp events unaccurately.

All these factors of real platforms must be taken into account in the evalua-
tion of designs and, especially, they cannot be obviated in an evaluation using a
platform FPGA.

2.3.4 The Cost of Hardware Design

Contrarily to pure simulation systems, where the testing of the fundamental
characteristics of a design does not depend on the platform architecture and
technology, in the world of hardware design, the platform characteristics plays a
fundamental role to verify the functionality of a design. Designing with hardware
implies to interact with real physical devices subjected to uncontrollable and
unknown sources of error that difficult the overall design process.

24 CHAPTER 2. TIMING AND SYNCHRONIZATION IN NETWORKS

The methodology for designing with FPGA slightly changes from manufactur-
ers; Figure 2.6 shows a generic FPGA design flow. In the first stage, the system
functionality of the hardware is described with a hardware description language
(HDL) (e.g., VHDL or Verilog), which does not consider architectural properties
nor any physical restriction. In the synthesis phase, the circuit behavior described
by the HDL code is turned into netlists of logic gates. So far, the design is purely
conceptual and its functionality is verified through Behavioral simulation. The
translation stage opens the pool of the physical design processes, and merges the
netlists from the synthesis phase. The mapping stage ensures that the merged
netlists fit into the available logic resources, dependent of the FPGA model. The
last two phases are the placement and routing, which determine the positions
of the logic, the I/O Blocks and the overall connectivity along the chip. The
results of each phase must be individually verified for good functionality confor-
mity through simulations at different levels. Each phase in the design process
adds more complexity to the system by adding more physical restrictions. This
is especially noticeable when crossing the physical design phase border, where
the design process becomes completely different. The design flow is left at ex-
penses of the physical design tools, which are basically complex computational
processes that translate an implementation-agnostic description to a real system
with limited resources and propagation delays.

Behavioral

simulation
Design synthesis
Physical Design
Implementation | Verification
¥ |
l Translation Functional
simulation
: ,| Post-map
Mappin > .
Ij)w simulation
Timing
Analysis

bdick- Timing
mn%notaﬂ 1 | simulation

A4

4

Device »| In-circuit
Programming verification

Figure 2.6: Generic FPGA design flow.

In order to have a successful physical implementation, the physical constraints
must be provided before the synthesis stage. Physical constraints specify the fun-
damental timing properties of the physical design, e.g., clock frequencies of clock

2.3. HIGH-PERFORMANCE COMPUTING PLATFORMS 25

signals, cross domain crossings, etc. If the physical constrains are too relaxed, the
physical design process will be likely coped at expenses of a modest performance.
On the other hand, if the physical delay constraints are too constrained, in the
best case, the time needed for the tools to end up the physical design phases will
grow exponentially. In the worst case, the physical process will preempt reporting
errors like lack of chip space or bad timing.

The FPGA design tools basically report three fundamental design parameters
after the Place & Route: the maximum frequency (speed) at which the internal
devices can properly work, the number of used programmable devices and the
overall chip power consumption. Designs tightly constrained® in terms of those
three parameters are likely susceptible to misfuction or, if not, to show a much
lower performance than the targeted at the initial phases of the design. For
those hard constrained designs, it is necessary to use the Place & Route tools
to fix the critical errors manually. As it will be seen in Chapter 5, some of the
requirements to implement our platform will force us to manually fix the critical
routing problems. On this cumbersome task, there is an added difficulty: the
design tools are prone to errors that mislead the real final result report, especially
on hard constrained designs. A reported frequency within the FPGA might be
different from the real one, or the reported number of used slices might exceed
the real available resources of the FPGA.

In order to evaluate a specific functionality in a network of FPGA-based
nodes (like in the case of the system evaluated in this Thesis), it is necessary
to mirror the hardware part and build the software design part according to
the functionality of each particular node. The reason is that the FPGA design
tools produce a different result after each run. The development tools rely on
complex algorithms that might be affected, e.g., by a change of input parameters,
or simply, by a change of the computer at which the tools are running. Thus, of
utmost importance is, after the routed design functionality is correctly verified, to
duplicate the hardware part and work independently with the software program.

In summary, in the world of FPGA design, there is a long gap in performance
(speed, used programmable resources and power consumption) from the initial
specifications to the final implemented design. To take advantage of the many
benefits FPGAs provide, the designer needs to be versed in a wide range of skills
from systems, hardware and software perspectives. Few technologies require as
broad an experience base. Designing with FPGAs means aforced steep learn-
ing curve, complex design entry, multiple tool options and a myriad of design
decisions.

3Designs demanding, e.g., low power consumption, high internal frequencies and small pro-
grammable area used.

§ 3. STATE OF THE ART OF SYNCHRONIZATION IN ETHERNET-BASED
NETWORKS

This chapter reviews the actual work most related to the contributions presented
in this Thesis. It is divided into two main blocks: synchronization protocols,
with emphasis on time synchronization protocols, and its essential component:
timestamping. In the former, we cover the most prominent works by classifying
them following a common criteria. In the later, we review the existing timestamp
methods.

3.1 Introduction

As explained in Chapter 1, a crucial aspect for achieving accurate synchroniza-
tion between two nodes is in the timestamping process, i.e., in the jitter and
delay introduced by the chain of mechanisms that retrieve a timestamp, insert
it in the packet and send it to the network. The higher the number of elements
in the chain for obtaining a timestamp, the higher will be the delay and jitter.
Therefore, to get rid of gross inaccuracies, it seems obvious to allocate the times-
tamping function at the lowest level as possible. Indeed, today’s synchronization
approaches partition applications and distribute independent modules strategi-
cally within the architecture in order to have a deterministic behavior. This is the
case of timestamping blocks. They are hardware mechanisms, which inherently
characterize for having a low-level of jitter and latency.

Besides the delay and jitter of the timestamp reading, there are also other
sources of uncertainties, such as the variability for inserting the timestamp in
the message, transmitting it and, in the reception node, for receiving it. The
journey of a message follows a path that consist on a series of digital mechanisms
that store, process and forward the message, and add delay and variability. At
the same time, the variability introduced by the digital circuitry of these blocks
stems from the skew of the electrical clock signal within the chip or board module.
Although the variability is seen as a whole from the user perspective, it can be
dissected at different conceptual levels to observe the uncertainty added by each
logic device.

In the next sections, we will review up-to-date methods and tools to evaluate
the timestamp accuracy at different levels within the layered stack. Before that, a
classification of the synchronization schemes, protocols and applications are pre-
sented. Special emphasis is given to study the synchronization solutions applied

27

CHAPTER 3. STATE OF THE ART OF SYNCHRONIZATION IN
28 ETHERNET-BASED NETWORKS

to Ethernet. We will also discuss different tradeoffs and scenarios of choice using
Ethernet among the available synchronization technologies.

3.2 Protocols

Currently, three standardization bodies cope the actual progress on synchroniza-
tion protocols for packet-based networks: the Institute of Electrical and Electron-
ics Engineers (IEEE), the International Telecommunication Union (ITU) and the
Internet Engineering Task Force (IETF). Each body addresses synchronization
requirements, targets and scope for specific applications. Next, the solutions
provided by each of these bodies will follow.

3.2.1 Pure Hardware Approaches

In this work, we understand pure hardware approaches as those methods and
mechanisms that deliver synchronization, either in frequency or in phase/time
flavours, using methods that basically rely on specialized hardware. These meth-
ods are described next following the classification presented in the previous sec-
tion.

Synchronous Ethernet

Many existing networks have a strong requirement of frequency synchronization
across the entire network, as accurate multiplexing and demultiplexing of data
depends on that capability, e.g., TDM networks. Transport of frequency has
traditionally been performed for years using well-known principles, engineering
rules and experience. This knowledge is being applied to Ethernet-based packet
networks to replace legacy equipment. A technology that is gaining momen-
tum for distributing frequency over Ethernet is Synchronous Ethernet (syncE).
The principle of syncE is similar to SDH, i.e., to create a chain of clocks over
Ethernet traceable to an external high stable frequency source (PRC/PRS) (see
Figure 3.1). The first clock of the chain receives the PRC/PRS signal and prop-
agates it down to the chain. To that end, each Ethernet physical layer of the
chain contains a clock recovery mechanism (e.g., PLL) that recovers the clock
from the parent node. SyncE capable devices are multiport specific cards pro-
vided with high stable backup oscillators for high precision clock recovery. The
stability of the oscillators in syncE is +4.6 ppm and is specified in G.781 ITU-T’s
recommendation [ITU-T G.781 (1999)]. Up to date, syncE has been described
by experts within the ITU-T Study Group 15 [ITU-T Q13/15 SG (2008)], the
responsible group for studying timing and synchronization, and it is going to be
specified within ITU-Ts G.Pacmod and G.Pacloc groups. SyncE has inherited
other properties described in ITU-T recommendations, such as G.8261 [ITU-T
G.8261 (2008)], G.8262 [ITU-T G.8262 (2007)], G.8264 [ITU-T G.8264 (2007)],
G.781 [ITU-T G.781 (1999)] and so on. These standards specify different re-
quirements such as the jitter and wander tolerances, supported frequencies, clock
specifications, clock selection and quality levels, error responses, noise transfer

3.2. PROTOCOLS 29

Excternal External
reference reference
from SSU/RITS to/from SSU/BITS
12 2 2
Synchronous Ethernet Synchronous Ethernet
N line card line card
\EEC LY b EEC
(ITU‘G;8262) 14 (TU G.8262)
“““ IS, /
N E _bbe=tdl g !
= Etherngf Fthernet E N
local osc iz MAC PHY! PHY MAC | o
+4.6 ppm i i;h 1 I] 1 i;n ! 14.6 ppm

| £ T H &

E [i k|1

i i 1 1

1 i ' i

! g \ i

i 2 SyncE i SyncE

wan timing 7 a < timing [
T~ deviee O\ . j'--dev-iae---"
transmit recovered
clock clock
Master NE Slave NE

Figure 3.1: Synchronous Ethernet cards architecture.

limits, holdover performance, deployment scenarios, interworking requirements,
etc. Furthermore, syncE is sponsored by several main Tier 1 telecommunication
operators and semiconductor manufacturers, a fact that points it as the candidate
technology for carrier-grade frequency delivering over Ethernet.

SyncE is a solution to deliver synchronization over the Ethernet media types
defined in IEEE 802.3 [IEEE Std. 802.3 (2005)]. Theoretically, it is a low-cost
solution to distribute frequency compared to traditional TDM-based equipment
that provides packet delay variation independency and integrability with existent
SONET/SDH networks. Although its potential, SyncE is still in its development
phase and actual deployments are propietary networks. Corporate users of legacy
data connections are reluctant to the substitution of their equipment with Eth-
ernet alternatives due to possible sevice interruptions of initial trial periods and
the costs incurred during the first deployments. Actually, the downside of syncE
is its high cost. Up-to-date there are few syncE silicon alternatives (e.g., [Zarlink
Semiconductor Inc. (2010)], [Maxim Integrated Products Inc. (2010)]), a fact that
increases its cost dramatically compared to traditional solutions. Besides, there is
yet no single formal document that standardizes it, but it is described by several
ITU-T specifications.

The work in this Thesis deviates from syncE principles for two main reasons.
First, syncE is an approach for frequency distribution over Ethernet nodes for
replacing TDM dedicated links. Secondly, syncE redefines the Ethernet’s physical
layer (see Figure 3.1), a fact that will lead to increase the cost of native Ethernet
cards. For a comprehensive tutorial of syncE the interested reader is referred to
[Cisco Systems, Inc. (2010)].

Ethernet Passive Optical Networks

The first attempts to shift the legacy Ethernet to wider areas started in the
Ethernet in the First Mile Alliance (EFMA) in 2001. EFMA! proposed the
standardization of IEEE802.3ah, Ethernet in the First Mile (EFM), a collection

! Actually EFMA is integrated in Metro Ethernet Forum [Metro Ethernet Forum (2010)].

CHAPTER 3. STATE OF THE ART OF SYNCHRONIZATION IN
30 ETHERNET-BASED NETWORKS

of standards that mainly describe a new standard for copper and fiber based
PHY interfaces, as well as functions for management and monitoring of links
on PHY layer. IEEE802.3ah is now integrated into IEEE802.3 [IEEE Std. 802.3
(2005)]. In a first mile environment, the Ethernet PHY interfaces require different
characteristics (frequency spectrum, number of wires, cable length) to bear harsh
environmental conditions like temperature range and humidity.

Together with new PHY interfaces, EFM also standardized the Ethernet Pas-
sive Optical Network (EPON) to cover the entire broadband access technologies
under the same management architecture. EPON is a full duplex single fiber net-
work with point-to-multipoint (PtMP) topology, in which passive optical splitters
are used to enable a single optical fiber to serve multiple premises. An EPON
architecture consists of an optical line terminal (OLT) and a number of optical
network units (ONUs) near end users.

In an EPON, downstream communication is broadcast to each premise sharing
a single fiber, while the upstream communication is a shared media that follows
the multipoint control protocol (MPCP [IEEE Std. 802.3 (2005)]). MPCP is
implemented in the MAC control layer and coordinates the medium access of
the ONUs based on the time division multiple access (TDMA) principle. The
control functionality of MPCP works continuously in two alternating phases,
the discovering and the reporting phases (see Figure 3.2a). At start-up and
periodically, MPCP starts discovering new users (ONUs) that want to join the
network. Each ONU is in a different physical distance to the OLT and needs to
anticipate or delay its time to access the network. In order to provide optimal
network performance, the OLT measures the physical distance to each ONU using
a ranging mechanism. As shown in Figure 3.2b, the OLT sends its local time (¢o)
the ONU. When the ONU receives the message, it sets its local time according to
the value in the timestamp field. When the OLT receives messages from ONUs, it
uses the received timestamp value to calculate or verify a round trip time (RTT)
in the timestamp field. The RTT is equal to the difference between the timer
value (t2) and the value in the timestamp field (¢1). The OLTs MAC control
client uses this RTT for the ranging process, and to notify later the slot time to
each ONU. The RTT is continuously updated in the OLT and in the ONUs to
detect timestamp drift error, i.e., when the differences between OLT’s and ONU’s
clocks exceeds some predefined threshold.

Timing is needed for MPCP as it is an slotted protocol. ONUs continu-
ously report their current filling level of their transmission queues to the OLT,
which signals each ONU the start time and duration of its next time slot. Either
during the register process or during the bandwidth allocation, timestamps are
mapped into a specific field of multipoint control protocols data units (MPCPDU)
(see Figure 3.2c). MPCPDU are basic IEEE 802.3 that are always encoded as
Control frames (Type field) and have another field (Opcode) to identify the spe-
cific MPCPDU being encapsulated. The timestamps are obtained from a 32-bit
counter located in the MAC that increment every 16 ns (62.5 MHz). In [Sym-
metricom (2010)], there is a brief tutorial of PON architectures for the interested
reader, and in [Kramer & Pesavento (2002)] there is a description about EPON’s
working details.

3.2. PROTOCOLS 31

7,, = downstream propagation delay
TL = upstrcam propagation dclay
I‘W = wait time »at ONU =/ -1,

T, =response time at OLT =7, - £

LSB MSB
RIT=Ty+ T =T - T =(t,-1)- (¢ - t)=1,- 1, b0 b7 QOctets
. . Destination Address 6
OLT local time = OLT local time= ¢,
Tx Source Address 6
OLT
; Type =88-08 2
% “, time ype
<, 7
S, &Q“ Opcode 2
Reporting) oF
& Gating \\, § Timestamp 4
ONU N O
? Data/Reserved/Pad 40
time
a) b) Tl)/' Ty Ty C) FCS 4

Set ONU local time = 7, ONU local time= 7,

Figure 3.2: EPON operation (a)). EPON ranging mechanism for RTT calculation
(b)). Multipoint control protocols data units (MPCPDU) (c))

In this Thesis we follow the principle of calculating the propagation delay of
the Ethernet layers with the ranging mechanism of EPON (see Section 4.3.3).

General Positioning System

One of the most popular methods to synchronize with high accuracy is by using
the dissemination time service of Global Positioning System (GPS) [U.S. Naval
Observatory (1999)]. GPS system is an earth-orbiting-satellite based navigation
system consisting of 24 satellites that provides users worldwide with twenty-four
hour a day precise position in three dimensions and precise time traceable to
global time standards. Each satellite, or space vehicle (SV), contains a pool of
atomic clocks with which computes a GPS-Time, a continuous measurement, of
time from an epoch started at January 6, 1980 at midnight (0 hours 0 minutes
0 seconds) of Universal Time Coordinated (UTC). SVs communicate themselves
and find a common GPS-Time to broadcast to the Earth at nominal intervals of
1.5 s in a message that also contains its spatial and temporal coordinates. GPS
receivers on Earth calculate from (at least) four satellites its three-dimensional
spatial position and the time with reference to the UTC. Through the Standard
Positioning Service (SPS) offered by GPS, the information is intentionally de-
graded taking into account the delay of the GPS carrier signals as they pass
through the ionosphere, which varies in density and thickness from 50 to 500
kilometers due to solar pressure. Once the GPS receiver processes the informa-
tion and reduce the noise, it delivers two types of information that can be used
as a reference to synchronize. The first is a set of subframes containing several
parameters such as the SV clock correction parameters, the GPS week number,
SV health, and so on. This information is used in many navigation systems to
show the three-dimensional position and the UTC time. The second type of
information, and more important for real-time applications, is the 1PPS signal
which is an electrical signal steered by the GPS receiver as a means to provide

CHAPTER 3. STATE OF THE ART OF SYNCHRONIZATION IN
32 ETHERNET-BASED NETWORKS

a frequency standard similar to atomic clocks. When the GPS receiver is stable
(i.e., locked to, at least, four satellites), the 1PPS signal is equivalent to a refer-
ence signal of an atomic standard, and thus it can be used to control real-time
applications. Although GPS receivers are relatively inexpensive when compared
to conventional atomic clocks, their usability is far from that of an atomic stan-
dard. Atomic standards are plug’n’play equipments that do not depend on the
satellites conditions, but they deliver a very high stable frequency signal from the
moment they are powered on [Lombardi et al. (2007)].

Coupling to user computer equipment can be simplified by the use of GPS
receivers that operate as plug-in cards that fit within personal computers [Hough
(1991)]. With careful measurement of the latency time and repeatability required
to read and transfer the GPS receiver time measurements on the PC bus, remote
PC applications can be synchronized. This is precisely one of the main hurdles
of computer-based architectures, i.e., the latency of the busses is usually too high
and variable, and totally smudge the stability of the GPS signal. The latency
and variability of the buses can only be eliminated with specialized equipment
and high-end network cards, such as [Endace (2009)] (see Section 3.2.3).

In this Thesis, we design a hardware module that leverages the 1PPS signal
delivered by a GPS receiver very accurately (see Section 6.2.1). This signal is
used as a time reference to evaluate precisely the synchronization.

3.2.2 Pure Software Approaches

Since early Internet ages, time or time of day synchronization (ToD) has been
traditionally addressed using software approaches. The IETF has standardized
time services since the release of Internet Control Message Protocol (ICMP) [Pos-
tel (1981)] or the Time protocol [Postel & Harrenstien (1983)]. IETF has actually
two opened work directions. The first one is the working group for coordinating
the Network Time Protocol (NTPv4) [Mills (1992b)] and extensions. The second
line concerns on next generation timing over native IP MPLS-enabled IP Packet
Switched Networks (PSNs). The working group responsible for coordinating this
task is called The Timing over IP Connections and Transfer Of Clock (TICTOC)
[IETF-TICTOC (2010)]. Up to date, its task is to collect requirements for vari-
ous applications (such as Cellular backhauling, Circuit Emulation Services (CES),
Instrumentation and Measurement, and so on) using NTPv4 and IEEE1588v2.
NTP has become the de facto standard for ToD dissemination over the internet.
Next, a breadth description of the NTP protocol is presented.

The Network Time Protocol

NTP was originally designed by David L. Mills at the University of Delaware in
the middle 80s and is actually maintained and enhanced by a group of researchers
[NTP (2010)]. NTP usually render a synchronization accuracy of hundreds of
milliseconds over the Internet, enough for more relaxed distributed applications
[Liskov (1993)]. The operational details of the last NTP version (NTPv4) are
specified in the reference design [Mills (2006b)].

3.2. PROTOCOLS 33

A node running NTP service works by repeatedly making time observations
to a number of remote clocks. It adjusts the value of the system clock periodically
in order to bring its value closer to the correct time. The protocol specifies the
format of packets sent over the network, and the manner in which a computer
conforming to the protocol must respond to the received packets. The specifica-
tion includes suggested clock synchronization algorithms for managing the value
of the local clock and a framework for other users to use particular clock adjust-
ment algorithms. [Troxel (1994)], [Ridoux & Veitch (2009)], [Marzullo & Owicki
(1983)] are some examples of clock synchronization approaches that utilize the
NTP flow. NTP also categorizes machines into a hierarchy of time references.
Primary machines are synchronized directly to time sources outside of the net-
work, such as radio [Microsistemes Timing & Synchronization Solutions (2010)]
or atomic standards. Secondary machines synchronize to the primary servers and
others in a specifically configured subnet. The subnet is configured dynamically
by a spanning tree algorithm using hierarchical levels and minimum path delay.

The main hurdle that NTP has to go through is the delay and the time
variability of the intermediate network elements. Using NTP, the accuracy and
stability of clocks on the Internet is generally in the tens of millisecond range
[Mills (1991)], [Mills (1995)]. However, to reach this level of accuracy, NTP
must be tuned correctly and allowed to stabilize for one or two weeks. Another
drawback that an NTP client faces, and software approaches in general, is the
time undeterminism caused by the operating system in reading the local time.
To optimize these accesses, the author of NTP has proposed several changes to
the operating system’s kernel that basically consist on assigning high priority
execution to NTP services [Mills (1994)].

Other Clock Synchronization Approaches

As seen in Section 2.2.5, clock synchronization algorithms are computational
processes that synchronize the physical clocks of distributed computer networks.
Many algorithms have been designed for maintaining synchronization of physical
clocks over the years and it is not feasible to review them all here. However,
all the approaches have common basic features: 1) a connectionless messaging
protocol; 2) a mechanism for exchanging clock information among clients and/or
servers; 3) algorithms for mitigating the effects of nondeterminism in message de-
livery and processing, and for updating local clock based on information received
from a server. They differ in some aspects: 1) whether the time information is
obtained from a software routine or specialized hardware; 2) whether the network
is kept internally consistent or synchronized to an external stardard time source.
There is extensive literature describing variations on these methods. Most of
them describe statistical and heuristic methods for e.g., better outlier rejection,
reduction of the effects of time variability, resiliency in case of remote crashes or
falseticking, and so on. [Anceaume & Puaut (1997)], [Anceaume & Puaut (1998)],
[Ramanathan et al. (1990)] and [Schneider (1987)] are some fairly comprehensive
surveys that analyse and compare them.

CHAPTER 3. STATE OF THE ART OF SYNCHRONIZATION IN
34 ETHERNET-BASED NETWORKS

3.2.3 Hybrid Hardware/Software Approaches

The x-factor of time synchronization hybrid approaches relative to the pure soft-
ware solutions is their capability to isolate the jitter introduced by the operating
system when dealing with synchronization client requests. A synchronization
client is a pure software process that executes a specific message interchange and
an algorithm to adjust the local time of the client node. The synchronization
client retrieves the timestamp, packetizes it and send it to the destination nodes.
The action of timestamping is crucial as it is subjected to a time variability that
depends on the computational load of the processor’s node. In strong load com-
putational scenarios, the time sample suffers from a waiting time that lasts from
the time of the sample obtention to the time the sample sending. This problem
that has been tackled in different flavours by [Kopetz & Ochsenreiter (1987)],
[Holler et al. (2002)] and [Micheel et al. (2001)]. The principle of these solutions
consist on capturing the time sample when the message is being sent. To carry
out this approach, it is necessary the use of dedicated hardware of recognize spe-
cific headers of a synchronization message to generate the timestamp. As seen in
Chapter 2, the concept of generating a timestamp by means of hardware is called
hardware timestamping. IEEE 1588, or the Precision Time Protocol (PTP), was
initially designed with this perspective in mind. As the core work of this thesis in
some ways builds on features of the Precision Time Protocol (PTP), some parts
of it would be difficult to understand without a general understanding of the
workings of PTP. A summary of PTP follows, with emphasis on those aspects
relevant to the current discussion.

The Precision Time Protocol

The Precision Time Protocol (PTP), or IEEE 1588, as defined in the IEEE 1588-
2002 [IEEE Std. 1588 (2002)] and 1588-2008 standards [IEEE Std. 1588 (2008)],
is officially entitled the Standard for Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems. It was originally created by
John Eidson in Agilent Technologies, Inc. two decades ago with the purpose of
synchronizing the physical clocks of networked measurement and control systems
in small Ethernet LANs. Similar to NTP protocol, the time distribution method
of PTP relies on carrying timing information inside UDP packets. The nodes of
a PTP network infer correct reference time using metrics of remote time offset
and round trip delay.

The PTP synchronization operation is performed in two phases (see Fig-
ure 3.3a). In the first phase the slave correct his time difference with the offset
measurement and at the end of it the slave clock is synchronized in frequency with
he Master Clock (MC). In this phase the master multicast Sync type messages
at cyclically defined intervals (typically every 2 seconds). However, since there is
an internode jitter the time information in the Sync message is not precise. The
precise time is sent afterwards inside a Follow _up type message. Upon reception
of the Follow _up message, the slave calculates the correction value, i.e. the offset,
and adjusts its time accordingly, thus synchronizing also in frequency.

3.2. PROTOCOLS 35

Master Clock Slave Clock
Master Clock ILEL 1588 switch ~ Slave Clock

\ [§ O=Offset [Preamble [SFD[Sro [Dst [L/T | Data | CRC |

~Syne l D = Delay N T e &)
Lolioy, 1, [oron] [IPTI[UDP H] PTP message | PTP L7
N : UDP T4
T qu t P L3
De\'&‘j/(e‘\ _ _1_ 4 b) imestamp poin AT %)

= D

D+0=1,-1, PIY L1

Deyy,
W reg -
W‘- D-0 =11,
D =((ty-), -2

O =((-t)-t,-t) 2 C)

[0 Time stamping Unit +---» Switching Function

a)

Figure 3.3: Synchronization procedure (a)). PTP header format (b)). PTP node
architecture (c)).

The second phase of the synchronization process aims at calculating the
network delay time between slave and master. The slave starts sending a De-
lay _request type message to the master and determines the exact transmission
time of the message. The master creates a timestamp when it receives the packet
and sends the reception time back to the slave in a Delay resp message. At this
point the slave can derive the network delay (D).

The PTP standard defines network messages, internal datasets and events,
specifications for Ethernet-based implementations and implementation sugges-
tions. It does not include any reference implementation for adjusting a clock, but
it provides a set of rules for allowing devices from different manufacturers and
different implementations to interoperate. Its submicrosecond accuracy target is
consolidating it as a the facto standard for time/phase distribution especially over
networked distributed measurement and control systems, industrial automation
and test and measurement, environments and LANs supporting multicast com-
munications.

The key points that makes PTP rendering the sub-microsecond time/phase
synchronization accuracy are:

= Internode jitter assistance. In Ethernet architecture, PTP tackles this prob-
lem by allocating a specialized hardware unit closer to the Media Indepen-
dent Interface (MII) (see Figure 3.3). PTP packets contain a protocol-
specific header which makes the unit to generate timestamps for both the
ingress and egress packets. The protocol suggests the use of hardware-
assisted timestamping for best synchronization accuracies. However, an im-
plementation compliant might also disregard this requirement at expenses
of less accuracy, which in some cases equals NTP’s performance.

= Network jitter assistance. The network jitter arises from the time needed
by the intermediate elements to store and forward the packets. In store-
and-forward switches this time score penalty might be around hundreds of
microseconds. PTP overcomes this problem leveraging specialized devices
capable to compensate the residence time that a synchronization message
would experience in the queue of a switch (see Figure 3.3c). In the context

CHAPTER 3. STATE OF THE ART OF SYNCHRONIZATION IN
36 ETHERNET-BASED NETWORKS

of the PTP protocol these devices are called Boundary clocks. The clock is
regenerated at the node in a multistage master slave relationship.

Despite addressing internode and network jitter, PTP has several limitations
that can affect the synchronization accuracy:

= Number of synchronization messages. The node acting as a master broad-
casts periodically to slave clocks two messages (Sync and Follow up, see
Figure 3.3a) to communicate its local time. The use of two messages owes to
the fact that the timestamping logic cannot provide in time the egress times-
tamp. In microprocessor-based architectures, the timestamps are obtained
from a high-speed counter within the microprocessor. As the timestamp
logic has to go across bus arbitration delays and jitter, the timestamps of
egress packets cannot be inserted in the current packet, but they need a
second packet to be transmitted. This limitation degrades the accuracy
between nodes as the time conveyed in the first message is an estimation,
and hence the node has to wait for a second packet (with the more precise
timestamp). The time from the first to the second timestamp can be up
to 2 seconds. As the clock oscillators in common nodes have generally a
nominal frequency drift of 50 ppm, the waiting time might lead to offset
errors of ~100 us.

= Network delay assymetry. The fact that PTP was originally designed for
data acquisition in small LANs leads to assume the transmission delays
are near constant and symmetric. Such assumption is not true in many
other packet-based networks and determines the error committed on the
offset and roundtrip calculations. E.g. the Internet is the extreme case
where assymetries lead to poor synchronization accuracies. The wider the
network is, the greater the impact of assymetries on the synchronization
accuracies is. PTP is provisioned with a Spanning Tree based protocol that
minimizes this problem by constructing a symmetric network topology so
that the propagation times can be considered equally. In the context of
PTP, the algorithm is known as Best Master Clock Algorithm (BMCA).
Besides the topology construction, BMCA is committed to elect the node
with the best clock quality in order to set it as the root of the PTP network,
and the node by which other clocks synchronize to.

= Interactivity with software. PTP is a synchronization protocol specifically
designed to split functionalities on a hardware part and software part. The
role of the hardware is to accept instructions from the software, and move
bits around accordingly. The whole “intelligence” resides in the control soft-
ware, which realizes more complex computational operations. The down-
side of this paradigm is on the response delay time in the software-hardware
communication. This delay time becomes more critical when the targeted
accuracy is at the level of ns. In many cases the software stack can take up
to hundreds of us to react.

3.2. PROTOCOLS 37

The work of IEEE has recently been closed with the standardization of the
second version of IEEE 1588, unofficially known as IEEE1588v2 [IEEE Std. 1588
(2008)]. This new release has filled a gap for being used in the area of telecommu-
nications, more concretely in backhaul wireless synchronization. Many existing
mobile wireless technologies have a strong requirement on time synchronization
(see Section 3.2.4). Distinctive characteristics in this last release are:

= Layer 2 option. The last revision of the PTP standard considers a new nor-
mative for transporting PTP over IEEE 802.3 Ethernet (Annex F of [[EEE
Std. 1588 (2008)]), a feature that is more akin to the work in this Thesis.
This new specification benefits from avoiding Layer 3 services to transport
timing, and thus the use of long UDP packets (due to additional information
overhead produced by IP or UDP protocol (see Figure 3.3b)). The use of
shorter messages (64 bytes) offers the possibility to built PTP with scarced
hardware and software resources, and thus an IEEE 1588 approach suscep-
tible to be integrated in a single Ethernet chip. To the time of the edition of
this document, we found one work implementing this new IEEE 1588 Layer
2 specification [Kutschera et al. (2009)]. The authors target synchroniza-
tion accuracies of tenths of nanoseconds between contiguous nodes. Their
implementation is based on a proprietary core [Oregano Systems - Design &
Consulting Ltd. (2009)] that contains a dedicated MAC with PTP-message
filtering, a clock unit (inherited from [Holler et al. (2002)]) and a general
purpose 8-bit mc8051 microcontroller that runs the PTP protocol stack.

= Transparent Clocks. In the context of PTP, boundary clocks are specialized
switches capable of signalling the internetwork residence time of the pack-
ets. On the other hand, transparent clocks represent one step further in the
sense that they cancel the residence time in the switch. The use of Trans-
parent clocks allows that the networks elements in the PTP network do not
have to support a full master-slave configuration, and thus diminishing the
complexity and the cost [Nylund & Holmeide (2005)].

= Message size. The size of the synchronization messages is reduced in order
to reduce the transmission delay of the packet (see Figure 3.3b).

There is a large bibliography of PTP in the Internet. For the readers inter-
ested about the PTP protocol working details, they are referred to the standard
webpage [National Institute of Standards and Technology (NIST) (2010)] and
to the author’s book [Eidson (2006)]. The work in this Thesis leverages PTP’s
paradigm, i.e., hardware-assistance for precise timestamping of packets as the
cornerstone for achieving high accuracy synchronization.

Standard for Audio Video Bridging Transport (802.1as)

Another active area of work in which IEEE 1588 is being integrated is for the audio
and video bridging (AVB) transport in residential Ethernet environments. In the
last years, the market of home multimedia networks has been growing. Consumers

CHAPTER 3. STATE OF THE ART OF SYNCHRONIZATION IN
38 ETHERNET-BASED NETWORKS

want to access multimedia content and resources stored anywhere in the house
using their computers and entertainment devices. This growing need, together
with the potential of Ethernet, has lead to provide Ethernet the capability to
distribute high quality digital audio and video reliably [Teener et al. (March
2005)]. This new application is in standardization process and is coordinated by
the 802.1as Working Group (WG). The IEEE 802.1 WG is chartered to concern
itself with and develop standards and recommended practices in several areas
such as security, interworking, audio/video bridging, and so on. Regarding to
the audio/video bridging applications, three PARs are responsible for developing
stardards: 802.1as [802.1as WG (2010)], for timing and synchronization; IEEE
802.1Qat, for a stream reservation protocol; and 802.1Qav, for forwarding and
queuing enhancements for time-sensitive streams.

Once standardized, 802.1as will be officially titled as the "Standard for Lo-
cal and Metropolitan Area Networks - Timing and Synchronization for Time-
Sensitive Applications in Bridged Local Area Networks". It provides the pro-
tocol and the procedures for audio and video applications across bridged LANs
(with fixed and symmetrical transmission delays) by re-adopting a big part of
the synchronization functionality of the last IEEE 1588 release. This includes
the maintenance of synchronized time in the context of IEEE Stds 802.1D and
802.1Q networks during normal operation, addition, removal, and failure or re-
configuration of network components. The proposed standard could be applied
to all 802 networks composed of full duplex Ethernet links.

The definition of this specification arised because the existing time synchro-
nization standards, PTP and NTP, operate at layer 3 and impose too much oper-
ational complexity and implementation costs on the development of audio-video
equipment. Concretely, this specification defines how to synchronize a common
time base across an entire AVB network in a residential Ethernet network, limit-
ing networks with no more than seven bridges (see Figure 3.4). The common time
base is in the form of a Real Time Clock (RTC), a large counter which consists of
a 32-bit nanoseconds field and a 48-bit seconds field. For Fast-Ethernet networks
the clock resolution is 40 ns, while in Gigabit Ethernet networks is 8 ns. A single
device on the network is designated as the clock master by automatic resolution
using the PTP’s Best Master Clock Algorithm (BMCA) while all other devices
resolve to be slaves. Using the 802.1as, all slave devices will regularly update their
own RTC to match that of the network clock master. As seen in the Figure 3.4,
AVB networks are fully compatible with IEEE 802.3 legacy traffic (legacy traffic)
but priority is given to AV traffic (AV traffic).

Although the 802.1as is majorly based on IEEE 1588, their specifications
have some differences. The first is on the network topology construction and the
master clock selection within the AVB network. Each protocol elects a reference
clock based on different datasets of the protocol headers. PTP gives priority to
the quality of the clock (e.g., stratum number, clock identifier, and PTP variance
(related to Allan variance)), while in AVB falls on the user choice according to
a preference levels. More differences are on the frame formats and data types,
and on the frequency and phase compensation algorithm. However, the major
difference is on the message semantics. On one hand, AVB uses a two-way message

3.2. PROTOCOLS 39

AVB video
server

IEEE 802.3 MAC

AVB video
] T =

server =— \ 7 hops
= AVB bridge 2 ! ==

AVBTV

AVB bridge 7

|

i

AVBbridge3 AVBbridge4 AVBbridge5S AVB bridge 6

7 hops __ 7hops
AVB bridge 1 AVB bridge 8

AVB video AVBTV
server

Figure 3.4: Audio-Video Bridged network.

scheme, while PTP uses more frequent one-way messaging. The last difference is
that the timestamps of AVB messages always refer to the time of two messages
ago, while the timestamps in PTP refer to the current time of the originator.

3.2.4 Specific Needs, Specific Applications

In the previous sections, we have reviewed most prominent State-of-the-Art to
deliver synchronization. In absolute terms, a synchronization network deployment
is not better than other, but its suitability depends on the synchronization needs
of the end application. In the context of networks, the complexity and diversity of
the scenarios involved leads to consider several parameters at the time of chosing
a particular or a combination of technologies for delivering synchronization. Next,
we summarize a series of fundamental requirements and tradeoffs.

Fields of Application

An important parameter to be considered for actual applications is the type of
synchronization needed, i.e., either in frequency and time/phase. For example,
packet switching was originally introduced to handle asynchronous data, but the
ongoing evolution of packet network drives the new requirements in the form
of frequency, phase and time distribution. In the case of packet networks, two
main aspects summarize the need for synchronization: 1) The support of new
services and interworking with legacy TDM networks, and 2) Support of the
end-application operations, e.g., cellular mobile wireless base stations. In the first
case, the equipment deployed at the edges of packet networks generally drives the
synchronization requirements. Such requirements include: 1) proper recovery of
the long-term accuracy of the original timing reference, and 2) controlling phase
noise within the limits given by actual standards (e.g., ITU-T G.8261 [ITU-T
G.8261 (2008)] and ITU-T G.823 [ITU-T G.823 (2000)]).

Typical today’s end-application that require tight time/phase and frequency

CHAPTER 3. STATE OF THE ART OF SYNCHRONIZATION IN
40 ETHERNET-BASED NETWORKS

synchronization are broadband mobile wireless applications, including last mile
broadband, hotspots, cellular backhaul and full mobile high speed broadband
access. According to [Infonetics Research (2009)], backhaul investments experi-
enced a jump by 19% in 2008 and forecast a jump by 24% in 2009. The increas-
ing demand for innovative data services and T1/E1 high costs to support the
growth in traffic, lead telecom operators to consider other solutions for frequency
and time/phase distribution to the wireless base stations. For the sake of the
discussion, a high frequency stability is required by CDMA, GSM and TDMA
specifications to avoid that centre frequencies of on-air channels drift, resulting in
co-channel interference and in problems at hand-off. Moreover, time stability is
required by CDMA specifications to keep pilot sequences in all cells within strict
time alignment to assure uninterrupted handoffs when the user transits from one
cell to another. New services such as 3GPP Long Term Evolution (LTE) will
require even more stringent frequency and time stability. Table 3.1 is reproduced
from [Cisco Systems, Inc. (2010)] and gives a summary of the timing requirements
of the main wireless technologies.

Table 3.1: Timing requirements of the main wireless technologies.

Synchronization Application Targeted Quality
‘ Type ‘

Frequency TDM support (e.g., Circuit PRC traceability, i.e., reference signal
Emulation over Packet (CEoP) or from Stratum 1 [ITU-T G.810 (1996)]
Circuit Emulation Service (CES)
Long Term Evolution (LTE) better than +5x10~% (+0.05 ppm).
base stations [3GPP2 (2010)] +10x107® (4+0.1 ppm) for

frequency division duplex (FDD).

IEEE 802.16 (WiMAX) Unsynchronized Orthogonal Frequency:

Division Multiple Access (OFDMA):
better than £2x10~% (2 ppm).

Digital Video Broadcasting down to a few parts per billion (ppb).
Terrestrial / Handheld (DVB-T/H)
Time 3GPP2 Code Division Multiple 3 ps < time alignment error < 10 us

—phase (relative time) | Access (CDMA)
—ToD (absolute time)

Universal Multiple Telecommunications Inter-cell synchronization accuracy better
Service (UMTS) Time Division Duplex than 42.5us between base stations.
(TDD) +1.25us from common source.

DVB-T/H single frequency network (SFN) | All transmitters within a single-frequency
network must broadcast an identical signal
to within 1 ps accuracy.

802.16D/e TDD better than 5 us.

IP service-level agreement (SLA), Metro Ethernet Forum Service Operation And
performance measurement, correlation Management (SOAM) for one-way delay measurement
of logs |[Metro Ethernet Forum (2010)], [Clouston et al. (1998)]

and [ITU-T Y.1731 (2006)].

The short-term goal is to improve precision
to <1 ms. Target is at few orders
of magnitude below average delay, i.e., 10 to 100 us.

For correlation, the finer the timestamping,
the faster the correlation.

Another area of application for Ethernet is in the industrial field. In contrast
to the Ethernet of corporate LANSs, industrial Ethernet has to meet require-
ments such as time synchronization and real-time operation. Nowadays, there
are a myriad of different real-time Ethernet solutions supporting different QoS
requirements. In [Decotignie (2005)], there is a classification of actual and current
solutions according to their degree of similarity with legacy Ethernet.

3.2. PROTOCOLS 41

Accuracy, Geographical Dispersion and Cost Budget

The synchronization tightness and geographical dispersion are two key variables
for choosing a synchronization approach, whether being pure synchronization
hardware mechanisms, hybrid or pure software solutions. Figure 3.5 classifies
synchronization mechanisms depending on the synchronization accuracy, the ge-
ographical dispersion of the distributed system and cost. Pure hardware mech-
anisms are more feasible to be adopted in those applications that require short-
distance communications and high accuracy. Conversely, pure software approaches
such as NTP and PTP (without hardware assistance) fit better on applications
requiring communication distances ranging from hundreds of meters to kilometric
distances. The cost plays an important role in this classification. The closer the
distances are, the cheaper are the solutions based on hardware mechanisms, e.g.,
on PLL. On the other hand, pure hardware solutions devoted to synchronize long
distance applications become more expensive, as in the case of SDH networks or
syncE.

Synchronization

acccuracy Oth ,
| er CSA's o

| NTP (Internet)

| ms_| L NTP (LAN)

less cost

PTP vl (SW)

I us—+ PTP vl (HW/sup.)
PTP v2
. GPS —
IFEI SDH / SyncE
1ns | —
i { { Distance
10 m 100 m 1 km

—————» more cost

Figure 3.5: Synchronization classification according to synchronization the accu-
racy, geographical dispersion and cost.

Existing Infrastructure

Another key factor to consider when chosing a particular technology to deliver
synchronization is the coexistence with other technologies. This is particularly
noticeable in the field of telecommunications. The actual trend of telecommunica-
tion operators is to gradually replace circuit-based infrastructure to packet-based
technologies, with more bandwidth capabilities and less cost-per-bit. The net-
work transition from legacy TDM to packet technologies started many years ago
and is gradually migrating to the access networks. Some parts of the network

CHAPTER 3. STATE OF THE ART OF SYNCHRONIZATION IN
42 ETHERNET-BASED NETWORKS

will continue to use TDM elements for some more years until they reach their
end-of-life. Today’s networks are a hybrid mix of circuit and packet technologies,
particularly in the access and metro. Therefore, timing and synchronization tech-
nologies will also evolve progressively in order to accommodate this heterogene-
ity. The telecommunication standardization bodies (ITU-T, IEEE and IETF) are
carrying out a cooperative work so as to complement among technologies and syn-
chronization requirements. In [Garner (2007)], there is an interesting summary
of the actual timing techniques and synchronization aspects for packet networks
(specified in [ITU-T G.8261 (2008)]).

3.3 Timestamping in Ethernet-based Networks

In Ethernet-based networks, timestamps are affected by the packet delay vari-
abilities introduced by the intermediate elements of the network and the jitter
of the digital logic mechanisms of the ingres/egress paths within the nodes. Un-
like ATM, the timestamps used in Ethernet are consumed above the Layer 2 by
applications. This section explains the problems of variability and delay of the
timestamping processes in Ethernet technology, and actual works that help to
measure and soothe them.

3.3.1 Error Sources

Timestamping mechanisms are exposed to three main problems: 1) the latency
and jitter to read the clock, 2) the clock drift and 3) clock reading errors. As
shown in Figure 3.6a, the time snapshot from a time source (i.e., a counter) is
not done instantaneously, at ¢1, but it takes an additional delay (At) that sums
up to the instantaneous value. Thus the time is obtained at ¢5. This limitation
becomes an important problem when the interval of a measurement requires high
precision or the network interfaces speeds increase. For example, at 10 Gbps, a
minimum-length frame may arrive every ~61 ns, which means that in order to
log the arrival of a minimum-length frame, the latency to read the counter should
be well below this value. This requirement might be very challenging for most of
the actual PC-based architectures. As they do not have hardware support, the
latencies for reading the counter might be in the range of few microseconds.
Second, the clock drift is illustrated in Figure 3.6b. It shows the time evolution
of two counters, an ideal counter, C;, with no drift, and a real counter, C,., with
a variable drift. As explained before, the counters of PC-based architectures are
paced by cheap quartz oscillators that inevitably drift from absolute time and
from one another due to their intrinsic frequency error. Therefore, timestamps
are also affected by clock drift component. In this example we wish to read C,
at true time ¢. Due to the latency in reading the counter (At), we will obtain
a timestamp with a counter value given by C,.(¢/). Then, at true time ¢/ the
timestamping error from the clock drift can be expressed as e(t/) = C,.(t/) — t1.
The third potential error is shown in Figure 3.6¢c. The counter C' is a digital
ensemble that sums up ticks at the speed of f; and period T} = f—ll R is the

3.3. TIMESTAMPING IN ETHERNET-BASED NETWORKS 43

register that stores C’s instantaneous values upon a request on the control input
store. In order to correctly transfer the value from C to R, the period of store’s
control input, 75, must be equal to 77. In other words, the rising edges of store’s
control input and f; must be synchronized, otherwise the transferred bits are
not stable in the destination register (R). In digital logic design, this problem is
known as metastability and it is a primary concern, and in some cases a difficult
challenge to solve, when designing digital systems with several clock speeds.

Counter time, C(1,

A
ideal counter, Ci
Ct)-t I real counter, C,
At C)
C)—t
a) b) i ! VTI’ue time, (C)

At

Figure 3.6: Delay in a timestamp reading (a)). Clock and timestamping errors
(b)). Clock reading errors (c)).

Next, we review the methods and tools aiming at solve and minimize some of
the three errors explained above.

3.3.2 Methods for Timestamp Accuracy Measurement and
Error Prevention

Timestamping accuracy stands for the degree of conformity of a measured or
calculated value to its definition, while precision, or resolution, refers to the degree
by which the time is resolved. The timestamp accuracy is influenced primarily by
two error sources: how often and how accurate a counter is updated and how fast
is possible to access to this counter. There are several methods to evaluate the
timestamp accuracy, most of them can be well classified whether they leverage
any kind of specialized hardware or commodity hardware with software tools.

Hardware methods consist on a combination of specialized hardware and soft-
ware tools for analyzing the accuracy of the timestamp mechanisms. Hardware
benefits from the inherent stability to obtain precise timestamps which can be
processed later. On the other hand, software methods make use of standard
PCs with packet capture software tools and statistical methods to analyze the
timestamps.

Software Methods

The burden to read the clock, as well as the resolution with which it can be
read, started to be studied many years ago by Mills in [Mills (1992a)]. The main
optimisations proposed by the author consisted on lowering the system noise by
placing the timestamping operation in the (low-level) driver code of the network

CHAPTER 3. STATE OF THE ART OF SYNCHRONIZATION IN
44 ETHERNET-BASED NETWORKS

interface. Following this approach and re-nicing the priorities of the OS, the
timestamp requests take priority over other processes. In [Mills (1994)], there is
a detailed implementation of this approach for NTP protocol with Linux OS.

In [Dietz et al. (1995)], the author investigates techniques for detecting in-
stabilities (e.g., clock drift or uneven ticking) and estimating the timestamping
accuracy without a precision time source. The author describes the sources of
instabilities of Sun and DEC workstations at three levels: hardware, kernel, and
network time service. To make use of unstable clocks in measurements, the au-
thor leverages the high stability of the oscillator over short interval periods of one
hour, and use statistical methods to draw a ”synthetic” clock.

[Paxson (1998)] discusses the problem of comparing pairs of timestamps be-
tween unsynchronized clocks of a wide-area network and how to calibrate them. If
timestamp comparisons can be compared reliably, i.e., without coarse differences,
one-way transit time measurements can be used to infer fundamental network
properties such as delay, bottleneck, link speed, available bandwidth, and so on.
The author proposes an algorithm for detecting when two clocks are not adjusted
or have skewed for an interval of time, and the procedures to “clean” them.

[Pasztor & Veitch (2002)] introduced a new trend for synchronization based
on the use of the Time Stamp Counter (TSC) register found in modern micropro-
cessors, which gives a high resolution time source, for example 1 nanosecond for a
1 gigahertz processor. The authors propose a high accurate monitor solution for
active network measurement. The key of these solutions is to consider the rate
fluctuations of the TSC register over different measurement intervals. Leveraging
the behavior of the TSC in different observation windows, the solution exploits a
network of NTP servers and create a synchronized software clock with a stability
of 0.1 ppm.

More recent works are found in [Wac et al. (2007)] and [Nguyen (2007)].
In the first one, it is evaluated the impact on timestamp accuracy of two soft-
ware application tools developed with C# and Java. To obtain realistic end-to-
end performance measurements, they emulate application-level streaming traffic
through data with fixed inter packet times. The experiment was carried out in
a distributed passive measurement infrastructure based on DAG 3.5E cards for
reference link-level measurement. The authors found worse performance on Java
application due to its interaction with the operating system (OS), and the sys-
tem clock resolution under the Windows OS influencing application timestamps
accuracy.

In the second work, it is used a test setup based on the packet capturing
software Tcpdump [Tepdump (2010)] and Smartbits packet generator [Spirent
Communications (2010)] to measure the timestamping accuracy of motherboard’s
clock and several PCI-based Network Interface Cards (NIC) cards. The work of-
fers a quantitative analysis between several parameters, such as the interrupt rate
per second employed by the interrupt moderation mechanism, the time-stamping
accuracy of the generator, CPU usage and packet loss rate. Among the many dif-
ferent configuration scenarios, the author found a worst case timestamping error
of 1 ms.

3.3. TIMESTAMPING IN ETHERNET-BASED NETWORKS 45

Hardware Methods

One of the most prominent and recent works addressing the problems of times-
tamping was tackled by [Donnelly (2002)]. In his dissertation, he gives a detailed
description design requirements for high-precision data packet capturing, covering
related aspects such as timestamping, clock synchronization and node architec-
ture analysis, for different technologies, like SONET and Ethernet. With regards
to timestamping, it discusses different aspects such as resolution, format, reliabil-
ity, accuracy and repeatibility. In his work, it also widely describes and analyzes
the architecture and performance of a specialized NICs called DAG cards. DAGs
leverage re-programmable hardware and embedded processors to provide globally
synchronized time and high-precision and reliable timestamping of all the packet
arrivals on high-speed network links with sub-hundred nanosecond resolution.
DAGs were initially designed by the author’s research group, in the University of
Waikato [WAND - Network Research Group (2010)], to provide hardware-based
measurements for ATM technology. Nowadays, DAG cards are founded by En-
dace [Endace (2009)] to support a wider variety of technologies (such as SONET
and Ethernet) and speeds. DAGs are a well-known hardware tool in the network
measurement community as they characterize for reporting interarrival packet
times with no packet losses.

In [Arlos & Fiedler (2005)], the same author gives a comparative of the perfor-
mance in terms of packet inter-arrival times and data loss of the popular Tcpdump
[Tepdump (2010)] and Windump (now WinPcap [WinPcap (2010)]) free software
tools for packet capturing running on off-the-shelf PCs. They use a DAG card as
a reference to timestamp the packets with a precision of 100 ns and to observe
the packet losses of the software tools. Under lightly loaded links, the authors
noticed that both software tools displayed packets with faulty timestamps and
large tails in the inter-arrival times. Besides, they found the software was not
able to indicate some packet losses. Based on their measurements, they conclude
the both software tools cannot be used for time sensitive analysis or modelling.

In [Arlos & Fiedler (2007)], it is presented a method to estimate the times-
tamp accuracy obtained from measurement hardware and software. The method
consists on using the link layer to generate equally sized PDUs, sent them back-
to-back at the physical layer and observe the interarrival times using DAG cards.
From the interarrival times, they found that the worst-case timestamp accuracy
can be bounded within the limits of the maximum resolution of the measurement
system.

[Nicolau et al. (2009)] proposes a method to timestamp with high precision
and determinism non-standard IEEE802.3 control frames. The method consists
on “duplicating” the TSC register of the uP and allocate it next to the digital
logic that timestamps the packets. With this method the latencies and variabil-
ities of the buses, arbitration and re-synchronization logic are bypassed. This
technique, however, poses two problems. The first one is on the offset between
both counters when a transfer of the counter’s content is required. This offset
can be variable if the bus protocol is not deterministic. The author measures
statistically the transfer time by measuring repeteadly the execution times of the

CHAPTER 3. STATE OF THE ART OF SYNCHRONIZATION IN
46 ETHERNET-BASED NETWORKS

low-level instructions and the two counters accounting for the average delays (see
Section 6.3.5). The second problem is that the speeds with which the two coun-
ters sum up the ticks are different. This problem can be addressed by creating
a symmetric clock signal tree in order to control the propagation delay through
the digital logic cloud.

[Zhou et al. (2010)] proposes a method called HATS to evaluate the impact
of the timestamp precision on network measurements based on the NetFPGA
platform [NetFPGA (2009)]. The authors implement a timestamping hardware
mechanism that timestamps packets with 48 bits and 8 ns resolution. The pur-
pose of the authors is to evaluate using advanced statistical methods the mean
of the timestamp dispersion at three levels: at the application level, using IPerf
packet capture tool [IPerf (2010)], at the kernel level, using Tcpdump, and in
hardware, using their own hardware block HATS. As far as the timestamping re-
liability is concerned, the authors overlook or do not mention how they snapshot
the time to obtain timestamps free of capture errors.

3.4 Conclusions

The bodies which carry the most weight of the synchronization evolution are
several Tier 1 mobile operators, standardization bodies and equipment manufac-
turers. There is a consensus among them that the preferred solution for frequency
delivery using Ethernet, as specified in ITU-T Recommendations, is syncE [ITU-
T G.8262 (2007)]. For delivering both phase and time, the preferred solution is
IEEE 1588 [IEEE Std. 1588 (2002)]. While syncE approach is still in its early
stages, IEEE 1588 has been consolidated as the standard par excellence in in-
dustrial environments and, since the release of the new version [IEEE Std. 1588
(2008)], in the telecommunications sector too. IEEE 1588 specifies a particular
exchange of UDP messages between a node acting as a master and several nodes
acting as a slave. The master inserts its localtime in a message, i.e., a timestamp,
and sends the messages to the other nodes. The slaves infer the propagation delay
of the messages from the series of timestamps, and use it to synchronize to the
master with better accuracy.

The key of the IEEE 1588 excellence is because it specifies that the times-
tamps must be generated when the messages are being sent /received at the lowest
layers. This way the time information is not influenced by the operating system
delays (scheduling behavior) or the elements of the node architecture (busses,
intermediate memories, etc). This requirement can only be meet with the help
of specialized hardware. IEEE 1588 leverages this property to all the nodes of a
network running the protocol, including specialized routers too.

The protocols that deliver synchronization over Ethernet use the timestamps
as the fundamental units to synchronize accurately. The accuracy of the syn-
chronization majorly depends on the reliability of the timestamps. The pro-
tocols based on Ethernet maintain the “asynchronicity”, namely as opposite to
synchronous networks, every node contains its own clock to send/receive the in-
formation and to generate the timestamps. Moreover, every node has multiple

3.4. CONCLUSIONS 47

and different clock signals to control the internal circuitry. The timestamping
circuitry is also asynchronous to other parts within the node, a fact that can lead
to obtain erroneous timestamps. We have found platforms based on specialized
hardware and software tools that measure the accuracy of the timestamps and
the latency to read a counter. Although the need for timestamping reliability
is a well-known problem [Arlos & Fiedler (2005)], we have not found literature
proposing specific solutions to avoid faulty timestamps.

In the field of synchronization, the techniques for delivering synchroniza-
tion are specified in standards, which formally describe a series of recommen-
dations and requirements for a solution to be standard compliant. Standards
specify which requirements and properties are needed to establish the perfor-
mance threshold. They keep out implementation decisions, and thus different
implementations of a same standard might show different performance degrees.
Therefore, in the area of synchronization, there is a wide range of technologies
and synchronization techniques that should be seen as complementary for meet-
ing different time and frequency needs in specific deployments [ITU-T G.8264
(2007)]. Therefore, the interoperability is a must.

§ 4. DESIGN OF AN EVALUATION PLATFORM

This chapter is devoted to state the problems that this Thesis addresses and
the followed conceptual approach to cope with them. It also presents the first
contribution of the Thesis.

4.1 Delay Components in Timing Message Delivery

The main tasks of time synchronization in a distributed network are to provide a
common timescale for all the network nodes and the right temporal coordination
among all nodes engaged in a collaborative and distributed interaction with the
physical environment. Timing mismatch arises from different initial setup times
of nodes and time variations introduced by local oscillators running at different
frequencies. These sources of error cause the local time of different nodes to drift
apart over a time interval.

For the sake of argument, consider two dispersed clocks with different local
time that need to be synchronized one to the other. One of the nodes sends its
local time to the other node. In the hypothetical case of no delay in the message
delivery, the receiving node would immediately know the difference of its time
to the sender’s time. Unfortunately, in real networks, various delays affect the
message delivery, making time synchronization much more difficult than this.

Synchronization protocols aim at estimating the delay of one node to the
other through a series of timing transmissions that follow a specific message
exchange pattern. Due to the stringent temporal constraints, part of the protocol
functions, such as the timestamping, has to be supported at hardware layers
to reduce delay uncertainties. Since the first introduction in the early 80s by
Kopetz [Kopetz & Ochsenreiter (1987)] and later by Schmid [Schmid et al. (1999)],
hardware timestamping has become a requirement for achieving high-precision
synchronization.

At hardware level, the latency and jitter introduced by logic devices is at
few orders of magnitude less compared with those uncertainties introduced by
software at upper layers. Existing time synchronization protocols accommodate
the latency and jitter introduced by intermediate layers, thus the accuracy of
synchronization is tied to those limits. For example, in the case of Ethernet, the
latency and jitter introduced by the digital logic of the MAC and the PHY layers
would account for pure Layer 2 time synchronization mechanisms.

To understand the Layer 2 model perspective addressed in this Thesis, con-
sider the message delay components in Figure 4.1:

49

50 CHAPTER 4. DESIGN OF AN EVALUATION PLATFORM

Receiver
MAC (L2)
B, nee Bt smd Sy, rov it row ‘T
é‘ & rey. <
e Esnd reve Srev
----------------------- GMII
PHY (L1 PHY (L1
@ 1 o, snce €, sma o, o p, rcvi @)
‘ S, ¢ ‘
-¢ < ¢ »

Figure 4.1: Delay and delay uncertainty components of a time message delivery.

= The time-to-send, or the time for the MAC to build the message, dar,snd,
and send it to the PHY layer, dp ¢nq. The time-to-send is non-deterministic
and can vary within the interval of few nanoseconds, depending on the
variability of the digital logic within the MAC, s snq. The complex analog
and digital logic mechanisms inside the PHY also sum up variability to this
message delay component, €p gnq-

= The propagation time, or the time to transmit a message from the sender to
the receiver through the cable, §,. In the case of Ethernet technologies using
twisted pair cabling, the propagation delay is a function of the dielectric
materials of the cable and its length. The propagation time variability,
€p, is almost negligible when compared to inter-layer components. For a
Category 5 (CAT-5) Ethernet cable, the propagation delay is ~5 ns/m,
while its variability is ~0.2 ns/m. For a fiber, the propagation delay is ~3
ns/m, while its variability can be at subpicosecond level.

= The time-to-receive, or the time needed by the PHY layer of the receiver to
process a receiving packet and transmit it to the MAC layer, dprcp. And
second, the time needed by the MAC to annotate the time of arrival of the
message, Oarrcv- As in the transmission case, in the reception, the PHY
circuitry, €prev, and the reception logic of the MAC, €/ ey increment the
jitter budget.

The whole latency of a message timing delivery for a Layer 2 architecture is

given by the sum of the latencies added by each layer during the transmission
and the reception, i.e.,

5t0t = Z 5snd + 6rcv = (SIVI,snd + 5P,snd + 5P,7‘cv + (SM,snd (41)
The uncertainty of a message delivery in a Layer 2 architecture is given by the

sum of the individual uncertainties added by each layer during the transmission
and the reception, i.e.,

Etot = E Esnd t Erco = EM,snd + EP,snd + EP,rcv + EM,snd (42)

4.2. GOALS AND APPROACH 51

Consider again the Figure 4.1. In order to synchronize the receiver node to
the sender node, i.e., Tsng = Trev, it is needed to know and cancel the delay (;0t)
introduced by the MAC and the PHY layers of the sender (SND), the receiver
(RCV) and the cable. Theoretically, the synchronization accuracy achievable
should be within the limits of the variability of the layers (e:0¢)-

4.2 Goals and Approach

According to the problem stated in the previous section, the main goal of this
Thesis is to validate in a real point-to-point configuration that the level of synchro-
nization achievable at MAC level is limited by the sum of variabilities introduced
by each Ethernet layer of a timing message delivery, i.e.,

— Etot < Tsnd - Trcv < +Etot (43)

To prove the Equation 4.3, we need a synchronization mechanism capable of
obtaining the latency introduced by the intermediate layers of the sender and the
receiver (d4¢) and communicating it to the partner link.

We will validate the Equation 4.3 in a real platform using 1000 Base-T Eth-
ernet technology. Regarding to the synchronization mechanism, we use the time
exchange pattern already defined in Ethernet standard [IEEE Std. 802.3 (2005)]
for EPON topologies. EPON synchronization scheme is based on a ranging mech-
anism principle which performs a Round Trip Delay (RTD) calculation to infer
the propagation time of a link (2 X ;) and communicates it to the receiving
node.

Ethernet is a technology specified to be implemented in hardware. Because of
that, in this work we also rely on hardware tools to verify Equation 4.3. We choose
standard FPGAs provided with Gigabit Ethernet connectivity to implement our
design. The inherent complexity of FPGAs poses additional challenges when the
time comes to translate a conceptual statement to the real platform. On top of
that, the fact of addressing accuracies at the level of few nanoseconds strongly
difficults the evaluation process and the veracity of the results. Thus, this Thesis
also emphasizes the challenges incurred during the implementation phase and
derives methods to evaluate the synchronization accuracy at nanosecond level in
FPGA prototyping.

52 CHAPTER 4. DESIGN OF AN EVALUATION PLATFORM

4.3 Layer 2 Network Model

Metro Ethernet Forum [Metro Ethernet Forum (2010)] stated that nowadays more
than 90% of all data traffic starts and finish its journey from and in an Ethernet
network. Although most of the internal networks of the Service Providers/En-
terprises can connect disparate LANs through Ethernet, such an approach has
several drawbacks, like non-guaranteed QoS, slow failure-recovery time, limited
Virtual LAN (VLAN) tag space and single Spanning Tree based uneven load
distribution with possible bottlenecks [Myers et al. (2004)]. IEEE task groups
and a big number of researchers are working to overcome these drawbacks in best
possible ways [Chiruvolu et al. (2004)], and many of them have provided realistic
solutions [Kim et al. (2008)], [Kim & Rexford (2007)]. Since many years there is
an interest to provide Ethernet with more capabilities in an intend to port it to
wider geographical areas. One example is on the operation, administration and
maintenance (OAM). The requirements for OAM functions focus on monitoring
parameters such as connectivity, delay, delay variation (jitter) and status moni-
toring. Accurate synchronization is essential to provide those OAM parameters.
One approach to provide synchronization might be with the use of a GPS at each
Ethernet node. However, this solution is impractical and expensive. Another
problem in wide area networks is that the roundtrip measurement is not accurate
because the reverse direction might not take the same path.

Ag far as the local environments is concerned, pure Layer 2 implementations
of the prominent PTP protocol have been requested in several areas, especially in
the industrial field. A pure Layer 2 model would enable easier silicon-based solu-
tions and more efficient switch technology. Time synchronization at Layer 2 has
only to accommodate the jitter introduced by Ethernet layers, which is much less
compared to other approaches based on upper layers, e.g., IP-based solutions.
Despite of the advantages of a pure Layer 2 approach to deliver synchroniza-
tion, there is a clear direction towards IP-networking. IP networks are easier to
manage and do not suffer from well-known scalability problems of pure Layer 2
networks. For a Layer 2 paradigm to be fully reliable, these other functions must
be addressed too.

This Thesis explores a Layer 2 network model to provide synchronization in
an attempt to evaluate the synchronization accuracy achievable in Ethernet with
independence of all these other limitations explained.

4.3.1 The Control Plane

The control plane can be understood as a set of architectures and protocols that
enable a network to operate in a dynamic, self-organizing mode. The control
plane concept pursues to provide controllability, observability and measurability.
From the perspective of an infrastructure operator or provider, the separation
of control plane functions from forwarding functions is not a new idea, but it is
the traditional perspective of traditional networks such as SDH or ATM [Sex-
ton & Reid (1997)]. A network operator needs to have a complete view of the
built configuration of its infrastucture to take decisions about resource usage.

4.3. LAYER 2 NETWORK MODEL 53

A control plane separated from the forwarding path is easier to centralise, both
conceptually and physically. In the context of distributed systems, centralizing
functionalities offers several advantatges such as resource assignment and recon-
figuration, infrastructure cost minimisation, protection against attacks and, most
important, better and new service offerings [Reina (2010)].

The control plane paradigm in the legacy Ethernet started in the amend-
ment 802.3z [IEEE Std. 802.3 (1998)] with the introduction of a Flow-control
functionality. The Flow-control was specifically designed to prevent switches (or
end stations) from discarding incoming frames due to buffer overflow in short-
term transient overload conditions. When a receiving node detects an overflow
is coming it sends a PAUSE message to the transmitter to request a stop in the
transmission. The PAUSE function is defined in a separate interface in standard
Ethernet implementations to differentiate the data path from the control path.

The work in EFM under the standard IEEE 802.3ah further developed the
concept of the control plane with EPON networks [Kramer & Pesavento (2002)].
Trying to meet the requirements of residential and business access networks, this
standard focuses on different PHY specifications to the actual 802.3 specifications
with minimal modifications in the MAC.

As seen in Figure 4.2, we want to follow the control plane concept and allocate
a time synchronization functionality in the legacy Ethernet for the purpose of
bounding the jitter introduced by Ethernet layers. The time synchronization
functionality (time sync) and time synchronization client (time sync client) are
both allocated in the MAC control and the MAC control sublayer, respectively.
The first block performs hardware operations, such as timestamping, while the
second block controls the protocol operation. With this approach, we follow the
Ethernet philosophy which is to keep its asynchronous nature by not modifying
the Layer 1.

/ M=Cleenuel Vtime syne chent
/iMac
i data path
\ [encapsutain]
GMII mm e -
PHY
L1 | signalling | | L1 sync |

Figure 4.2: Proposed time synchronization extension in the Ethernet architecture.

4.3.2 Point to Point Layer 2 Architecture

In this Thesis, we use a point-to-point (PtP) topology to verify that the realistic
synchronization accuracy between two nodes can be bounded within the jitter
limits introduced by Ethernet layers in the path from a sender to a receiver. A

54 CHAPTER 4. DESIGN OF AN EVALUATION PLATFORM

PtP topology is the optimal scenario as it is not influenced by other intermedi-
ate underterminism sources, such as the bridges in a bridged Ethernet scenario.
The jitter measurement obtained in a PtP topology could be extrapolated to a
multihop scenario with n nodes if the residence time of the frames within the
bridges could be perfectly subtracted. Although not addressed in this Thesis, we
provide means to compensate the residence time in a supposed bridged scenario
for future extensions (see Section 4.3.4).

4.3.3 Synchronization Mechanism

Synchronization mechanisms in packet networks have one major objective, which
is to set the same time in different nodes. To that end, protocols define different
strategies for exchanging messages between nodes that contain the local time of
each node. From the remote timestamps, they infer the journey delay of the
packets following different computations. When a receiving node is aware of the
delay of an incoming packet, it can use it to compensate the journey time of the
packet and synchronize more accurately. As explained in Section 4.1, theoreti-
cally, if the sum of the latencies can be optimally cancelled, the synchronization
error is confined within the jitter introduced by the intermediate elements in the
message path.

MASTER

-5 ! (\GATEdm{tl}
prop

T = +€
prop prop

~Qt' =t +1
1 "1 “prop
_ { 2

proc

T 1'0(:7 1’0(3<*>8
] REGISTER REQ{#,}"™ "

— 4!
=T e
t,-1.-T t3 _

_ _3 1 proc
prop 2

>

<

< <
T,=T
REPORT {7} |t =ttt

<
REGISTER{¢__}
prop
\ t
prop
> Q t5:t4_tprop
MS SLV
< <
e
v ¥

Figure 4.3: Synchronization message exchange pattern.

4.3. LAYER 2 NETWORK MODEL 35

Figure 4.3 shows the EPON ranging mechanism for propagation delay calcu-
lation [IEEE Std. 802.3 (2005)]. This message exchange pattern characterizes
for its simplicity and suitability to be implemented in hardware, and in point-to-
point configurations. In this scheme, the node on the left is acting as a master
and the one on the right as a slave. The master node performs two basic func-
tions: 1) coordinates the sending of synchronization messages, and 2) calculates
and inform to its link partner about the propagation time of synchronization
messages.

The master node starts sending a message with its local time (¢1). The slave
uses the timestamp within the message to replace its own local time abruptly. At
this point, the offset between the master and the slave is given by the propagation
time of the message to go across the stack of the master and the sender, i.e.,
Tprop- Note that 7,.., corresponds to the fixed and variable propagation time
of Equations 4.1 and 4.2, respectively. After a short interval of time given by
Tproc = Oproc + epmcl, the slave replies with a message containing its local time
(t2). When the master receives the reply from the slave, it notes its time of
arrival (t3) and starts the calculation of the one-way propagation time following
the Equation 4.4.

ta — t1 + Tproc
tprop = 31% (4.4)

The use of Equation 4.4 is valid under two considerations. The first is that the
processing time must be far smaller than the propagation time through the stack,
i.e., Tproe << 5. In those cases where this condition is not meet, the calcu-
lated propagation times will not be precise enough, and thus the synchronization
accuracy will be impaired. The second consideration relates to the symmetry
of the transmission and reception paths of Ethernet layers. The reception logic
within the PHY layer usually takes more time to convert the bitstream into bytes
than the transmission logic [Miiller et al. (2004)]. This situation is more dra-
matic in those configurations of different Ethernet vendors and implementations.
However, in the cases with the same Ethernet vendor, the link can be considered
symmetric.

Once the master has calculated the delay compensation, it sends it to the slave
node in another message (REGISTER{¢p0p}). The slave will use it to cancel the
propagation time in the next message (GATE{?4}) to synchronize accurately to
the master node (Tps=Tsrv)-

4.3.4 Protocol Data Units

Protocol Data Unit (PDU) is the term used to describe data as it moves from
one layer of the OSI model to another. There are also two kinds of PDUs: data
and control PDUs. While the former contain data for the upper immediate layer,
control PDUs are in charge of the whole protocol behavior of functions such as

L rproc corresponds to the latency and jitter for the slave to process the incoming message
and generate a reply message.

56 CHAPTER 4. DESIGN OF AN EVALUATION PLATFORM

establishment or service break, flow control, error control, and so on. They do not
contain information from upper layers, thus they are fully processed at the layer
for which the function is managed. As explained before, Ethernet defines a con-
trol flow functionality within the Layer 2 that employs specific control messages.
The case of the multipoint control protocol (MPCP) specification of the actual
Ethernet standard [IEEE Std. 802.3 (2005)] defines a Multipoint MAC Control
sublayer as an extension of the MAC Control sublayer of the original Ethernet.
The standard specifies a generalized architecture and protocol functions for MAC
Control. It is specified such that it can support new functions to be implemented
and added to the standard.

The idea in this Thesis is to use the MAC Control protocol to carry out
synchronization functions. In turn, synchronization functions within the MAC
are triggered depending on the value specified in a concrete field of the Control
PDUs. Recall from Figure 4.3; This message exchange pattern is extracted from
the MPCP specification for point-to-multipoint (PtMP) topologies. Each message
performs one specific function that is processed within the MAC Control sublayer
and it is not passed to the upper levels. In Figure 4.4, it is shown the generic
structure and encoding of MPCP PDUs that we will use in this Thesis. From the
control frames defined in native Ethernet, they differ from the Timestamp and
Compensation fields.

LSB MSB
b0 b7 #Octets Message type
Destination Address 6
Source Address 6
Type = 0x8808 2 R
e GATE
Opcode 2 REPORT
i REGISTER REQ
imestamp 4\ REGISTER
Compensation 4
Data/Zero Pad 36
FCS 4

Figure 4.4: Ethernet MAC control frame transporting synchronization informa-
tion.

They are 64 byte fixed-length frames organized in eight fields with different
functionalities:

e Adresses identification: two 6-byte fields for identifying the destination
(DA) and source (SA) addresses.

e Control identification: one 2-byte Type field containing the fixed value
of 028808 for distinguish them among data frames.

4.3. LAYER 2 NETWORK MODEL 57

e Control function identification: one 2-byte opcode field for defining
and adding new control functions. The MPCP specification defines several
control opcodes for carrying out different P2MP functions. We, instead,
will re-use a set of opcodes for our evaluation purposes.

— GATE;;s.. Requests that the recipient must synchronize its localtime
with the timestamp within the syncPDU, and acknowledge the update.

— REGISTER _REQ. Notifies the recipient that the remote node is
synchronized.

— REGISTER. Notifies the recipient the propagation time of a syncPDU.
— GATE. Notifies the recipient to report the localtime.
— REPORT. Notifies the recipient the localtime of the remote node.

e Local time transportation: one 4-byte Timestamp field conveying the
content of the local time at the time of transmission of the MPCPDUs.

e Compensation time transportation: one 4-byte field conveying the
accumulated residence time of the syncPDU after crossing n bridges.

e Data/Reserved/Pad: a 36-byte long field used for the payload of the
MPCPDUs. When not used they are filled with zeros on transmission, and
ignored on reception.

e Frame check sequence: one 4-byte field for frame check sequence (FCS)
generated by the underlying MAC after the Control sublayer has sent the
Control PDU.

In the next section, we describe the operation mode of the synchronization
mechanism as well as the main variables that govern its behavior.

4.3.5 Operation of the prototype

The synchronization mechanism operation principle has been inherited from the
standard [IEEE Std. 802.3 (2005)] and adapted for prototyping. As shown in
Figure 4.5, it consists of two recursive phases, the discovery and normal oper-
ation phases. In the former, the propagation delay calculation is initiated by
the master with the use of a GATE ;. message and notified by the slave with a
REGISTER _REQ message. In the same discovery phase, the master calculates
the propagation time and communicates it to the slave in a REGISTER message.
Just after the notification of the propagation time, the master enters into the
normal operation mode to perform two tasks. The first task is to periodically ask
the localtime of the slave using GATE messages. The slave recognizes the normal
operation mode when receiving a GATE message after the discovery phase. It has
an internal state variable (op mode) that uses to set the operation mode. The
periodicity of the GATE message transmission is given by 7¢ a7 parameter. The
second task of the master within the normal operation phase is to re-synchronize
slave’s localtime using GATEy;,. messages at a periodic interval of Tsypc. As it

58 CHAPTER 4. DESIGN OF AN EVALUATION PLATFORM

will be seen in the next chapters, the periodicity of the re-synchronizations will
determine the amount of accumulated offset between the master and the slave.
In practice, the choice of 75y, is given by the synchronization requirements of
the application, e.g., the amount of permitted clock offset between two clocks.
Finally, the master completes an operation cycle when transitions back to the
discovery phase after an interval of time of 74;sc.

L ‘rdlSC |

T T
GATE sync
Master e—
v A A ____>t
. I & o '
o\ 8 g g o 5 o o\ &
. @ o & @ £ PARR £ > 7. @
[=\\<))) S \A e\ =\ o
N A 2 2
E z
Slave
A A A -
vw_/ ~— !
discovery normal operation discovery

Figure 4.5: Timeline of synchronization messages exchange pattern.

4.4 Conclusions

Leaving aside the problems of Ethernet scalability [Myers et al. (2004)], an "all
Ethernet” network architecture could be very efficient to deliver synchroniza-
tion. Actual protocols that run at higher levels have to accommodate the jitter
introduced by the lower layers. However, a pure Layer 2 solution only has to
accommodate the jitter of its two layers. Ethernet is defined to be implemented
in hardware, and hardware characterizes for its low level of jitter. Theoretically,
the synchronization accuracy achievable should be bounded within the limits of
the jitter introduced by the Layers 2 and 1. In a point-to-point scenario, the
synchronization accuracy should be given by the jitter of the Ethernet layers of
the sender and the receiver. This is precisely what this Thesis addresses, to verify
in a real platform that the synchronization accuracy in an “all Ethernet” network
could be very optimal.

To verify our goal we have introduced a synchronization prototype mechanism
that calculates the fixed delay components, i.e. the latency, from the sender to
the receiver. If the receiving node can perfectly know the latency of an incoming
synchronization message, it will be able to synchronize optimally to the sender.
Therefore, once the link partners are synchronized, the jitter can be neatly mea-
sured.

There is already a definition in the Ethernet standard to provide synchroniza-
tion in point-to-multipoint topologies [IEEE Std. 802.3 (1998)], such as Ethernet
Passive Optical Network (EPON). EPON synchronization mechanism character-
izes for its message exchange simplicity and for its suitability to be implemented
in hardware. Besides, EPON functionalities are entirely defined in the control

4.4. CONCLUSIONS 59

layer, which in the case of synchronization offers a better service as it is separated
from the forwarding path. In an attemp to maintain the initial architecture of
Ethernet, we have embedded the EPON concept in an evaluation platform.

§ 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR (GIGABIT
ETHERNET

This chapter presents the core part of this Thesis which is the implementation
of the design presented in Chapter 4 using a standard FPGA provided with Eth-
ernet connectivity. Commercial platforms have different features that oftentimes
pose additional challenges when comes to implement a conceptual design. This
chapter explains the architectural changes to overcome all these limitations, and
describes in detail the hardware implementation of the key components of the
synchronization platform.

5.1 Objectives and Requirements

The major objective in the development of this platform is to provide a low-
cost, programmable and flexible framework for testing Ethernet upgrades. By
definition, Layer 2 is largely defined at hardware level, a fact that lead us to con-
sider hardware tools for function definition. FPGA-based embedded platforms
are the best tools for this purpose as they contain multiple hardcored Intellectual
Property (IP) blocks for specific hardware tasks in many different areas, such as
communications, image processing, etc. Besides the IP blocks, they include a pro-
grammable region where specific and custom hardware tasks can be implemented.
To implement our conceptual model presented in Chapter 4, we develop a hard-
ware block capable of carrying out hardware timestamping of synchronization
messages and internal platform events.
Our design characterizes for the following high-level design principles:

= Simplicity. When designing with hardware, less is more. The less com-
plexity in terms of used programmbable resources a design is, the better
the overall functionality will be. Therefore, a primary requirement in the
design of our block is simplicity.

= Upgradeability. Hardware design characterizes to be unflexible when it
comes to add new functions. Another requirement for our block is to de-
sign it in such a way that improved and new functionalities can be easily
integrated with minor impact on the development time.

= Re-usability. Implementations differ from the conceptual design due to the
disparity of technologies. This mismatch is especially noticeable in designs
with platform FPGAs. Hardware is described using HDL languages, and a

61

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
62 GIGABIT ETHERNET

unique characteristic of FPGAs compared to other technologies, e.g. ASICs,
is the flexibility of the code. Re-usability in the HDL code helps to port the
hardware description to other platform FPGAs, and therefore, to validate
hardware designs on different platforms.

= Layer 2 perspective. Ethernet is defined as a two-layer technology with syn-
chronization functions in the lowest layer. This Thesis envisions a legacy
Ethernet with a time synchronization function in the MAC. Therefore, an-
other requirement is to maintain and do not modify the synchronization
mechanisms of the PHY.

5.2 A Low-Cost Platform FPGA

The following subsections present the chosen platform FPGA to implement the
design. We identify some architectural limitations that hamper the similarity
between the conceptual design and the implementation. We will also cover with
detail the core work of this Thesis, the Timestamping Unit (TSU), which is a
specialized hardware core that will help us verify the goal of this Thesis.

5.2.1 Platform Overview

To implement our design, we have chosen the ML403 platform FPGA from Xilinx
[Xilinx, Inc. (2006)]. It is a standard platform that targets different markets and
applications such as industrial, telecommunications, medical, digital video and
embedded computing. A simplified block diagram is shown in Figure 5.1.

PC
USB| 10/100/1000 s RJ45
entlr | <| |Ethernet PHY N
Sync RAM B
CPLD
DDR
FLASH g <D
E
Line Out/
GPIO — Virtex-4 FPGA | | AC97 [« Headphone
bl audio codecl— Mic In/
— programmabie Line In
Diff. in/out| | logic | VGA | | VGA
clocks driver
Dual PS/2 — MACHCEU 1 RS-232 | el
transceiver
100 MHz | |Expansion Inc
XTAL headers EEPROM

Figure 5.1: Block diagram of the ML403 evaluation board.

5.2. A LOW-COST PLATFORM FPGA 63

The overall platform is centered around the FPGA chip, a Virtex” ™-4 FPGA
(XC4VFX12FF668). The FPGA chip embeds a PowerPC 405 (PPC) CPU, an
Ethernet media access controller (MAC) and programmable logic to implement
custom hardware functions. The programmable logic also serves to create the
internal bus logic and wrapper logic to access to the peripherals on-board. The
board has three different types of components: clocks, memories and connectors
and interfaces. The overall FPGA chip is paced by a 100 MHz crystal oscillator
and some other on-board drivers. The platform has different types of memories,
ranging from DDR SDRAM, Flash or Synchronous RAM. As per the Ethernet
connectivity, it mounts a Marvell Alaska 10/100/1000 Mbps (tri-speed) Ethernet
transceiver (PHY) that connects directly to the MAC within the FPGA. The PHY
is individually paced by a 25 MHz crystal oscillator to generate (with internal
frequency synthesizers) the frequencies for the transmission and reception.

Platform FPGAs offer the possibility to interconnect the resources and have
a complete system. However, to ensure the good functionality of the overall
design, to accelerate the design process and save programmable resources, it is
recommendable to choose the components (e.g., memories and connectors and
interfaces) needed for the targeted application. In the next sections, we present
the synchronization platform adapted to our evaluation purposes. A review of
the internals of the FPGA follows.

5.2.2 FPGA Overview

The primary reason for choosing a platform FPGA to implement a design is the
FPGA model. The whole Virtex-4 FX family is featured for embedded platform
applications including hard-IP core blocks, such as the PowerPCT™ processor, tri-
mode Ethernet MACs, 622 Mb/s to 6.5 Gb/s serial transceivers, dedicated DSP
slices, high-speed clock management circuitry (frequency dividers/synthesizers),
and source-synchronous interface blocks.

Knowledge of the overall amount of programmable resources is somehow
needed for some specific functions. For example, the designer should know how
many frequency synthesizers needs for a specific design; however, it may not be
necessary to know how many slices the chip has for the design, as the number
of used slices are controlled by the FPGA software development tools. While
in the early stages of the design some design details can be abstracted, in the
physical design phase they become crucial, especially if the design is hard con-
strained. The development tools usually report errors related to internal timing
and resource limitations, thus the knowledge of the location of the resources and
IP blocks within the FPGA layout is needed to debug error reports at some
stage. Table 5.1 summarizes the number of hard-IP blocks and programmable
logic resources of the Virtex-4 (XC4VFX12).

5.2.3 Limitations and Challenges

The price of generality comes at expenses of some architectural limitations.
Generic platforms aiming at satisfying different needs, applications and require-

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
64 GIGABIT ETHERNET

Table 5.1: Summary of the hard-IP blocks and programmable resources of the
Virtex-4 (XC4VFX12-FF668).

Configurable Logic Blocks (CLBs) Block RAM
Array Logic Dist. DSP | 18 Kb Block PowerPC | Ethernet | I/O | User
Device RowxCol | Cells | Slices | RAM(Kb) | Slices | Blocks | RAM(Kb) | DCMs | Processors | MACs | Banks | I/O
[XCAVFX12 | Gdx24 | 12312 | 5472 | 86 | 32 | 36 | 68 | 4 | 1 | 2 | 9 [320 |

ments often cannot meet constrained requirements, in terms of speed, connectiv-
ity and chip size for implementing the hardware design. At the time to implement
our conceptual design, we encountered the following hurdles:

e MAC inaccessibility. As seen before, today’s FPGAs characterize for
embedding third party intellectual property blocks that perform multiple
different hardware tasks. On the one hand, these blocks are fully tested,
compliant to international standards and easy to integrate within the sys-
tem. On the other hand, access to their source code for reverse engineering
is restricted. Moreover, their use for testing requires the payment of a time-
limited license. We have not been exempted from these limitations in our
platform either and, as per the Ethernet case, we do not have access to the
MAC controller within the FPGA chip.

e Maximum speed. A primary requirement for our design is to provide
timestamps with the maximum resolution possible. To provide clocking to
the FPGA chip and part of the on-board transceivers, the platform use a
100 MHz XTAL oscillator. The FPGA has several frequency synthesizers
(DCMs) that multiply/divide the frequency of the crystal oscillator. The
maximum frequency that the DCMs can generate is limited to 300 MHz, and
thus the maximum timestamping granularity achievable for this platform is
3.33 ns.

e Lack of a high-bandwidth interface. Our platform lacks of a high-
bandwidth interface, such a PCI, for dumping the data from the ML403
board to the PC for, e.g., post-processing purposes. To overcome this lim-
itation, we perform an offfine evaluation, that consists on storing the data
to a massive memory on-board for the duration of a test. Afterwards, the
data within the memory is transferred through the serial port (or JTAG)
to the PC for post-processing.

The limitations exposed above and the internal structure of the FPGA have
lead us to consider some other important modifications on the conceptual design
presented in the previous chapter. Next, we show the changes to be introduced
in the proposed time architecture.

5.3. HARDWARE DESIGN 65

5.3 Hardware Design

The next subsections explain the adaptations of our conceptual model due to
architectural limitations of the FPGA. There is a description of the chosen blocks
tailored to the functionalities of the synchronization platform and their specific
role. There is also described in detail the architecture of our custom hardware
block, the design challenges encountered during the design phase and the solutions
to cope with them.

5.3.1 Architectural Adaptations

The architectural limitations of this commercial platform have forced us to take
several design considerations. The foremost architectural change for this design
is to bypass the MAC inaccessibility. In this Thesis, we envisioned the legacy
Ethernet with a time synchronization functionality in the control plane of the
MAC. Therefore, it might seem plausible to, first, design and implement a stan-
dard compliant MAC and then add our synchronization functionality. However,
the time overhead and effort for designing a MAC from scratch is considerable,
and would slow down the process of evaluation. Here, we want to rapidly work
around this problem and have exploited the actual resources while taking some
architectural decisions. Figures 5.2a to 5.2c show the adaptation of our initial
conceptual model to the actual platform FPGA.

T 1
| Appll:_:i«i_lf?_r‘l | Board
17 | L] i FPGA IC
1]
[V i v
i MAC confrol ; I
1 ./ [MAC
: [data path |
MAC il 12
12 I Gapn]| -
\ capsulation
GMII GMIT
[Py | [P |
i |] !
a) b) ©)

Figure 5.2: Proposed time synchronization extension in the Ethernet architecture
(a)). Reallocation of the synchronization functionality considering the MAC in-
accessibility (b)). Mapping of the synchronization functionality into the physical
components of the platform FPGA (c)).

Figure 5.2a illustrates the initial design prospected in Chapter 4, and Fig-
ure 5.2b the proposed change. Virtually, the synchronization function is located
in the control plane of the MAC, but it is physically between the GMII and the
MAC, and below the flow control functionality. As we have access to the data
and the flow control interfaces of the MAC, we have chosen to disseminate the
time information by transparently changing the flow control information, i.e., the
PAUSE messages. To that end, we will need a specialized unit capable of re-
placing on-the-fly the ingress/egress flow control information. Figure 5.2¢ shows

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
66 GIGABIT ETHERNET

the modification in the FPGA chip. The software client that manages the flow
control hardware function is defined in the MAC control client sublayer of most
of the commercial NICs. The flow control client is de/activated manually by the
user through the NIC Application Program Interface (API). Once the flow con-
trol routine is running, and when the internal reception FIFO of the NIC is close
to overflow, it sends a notification and the flow control routine request the MAC
to transmit a PAUSE. In our case, as we do not have access to the MAC control
sublayer either, we have reallocated the synchronization protocol in the Applica-
tion Layer. Figure 5.2c shows the physical allocation of the software part, which
is implemented with low-level ansi C code and executed by the microprocessor
block.

Considering all these limitations and in an intend to consume the minimum
programmable resources as possible, in the next section we present the overall
view of the synchronization platform and its working principles.

5.3.2 Synchronization Platform

Taking into account the architectural limitations explained before, we have chosen
specific IP blocks within the ML403 platform to fulfill our needs. Figure 5.3 shows
the main components and interconnects of the overall synchronization platform.
The whole architecture is centered around the PPC 405 microprocessor (PPC)
[Xilinx, Inc. (2007a)]. The PowerPC processor is a 32-bit licensable embedded
core implementation of the IBM PowerPCTM RISC processor. It characterizes
to integrate a scalar 5-stage pipeline, separate instruction (iplb) and data paths
(dplb), instruction and data caches, a JTAG port for debugging, multiple timers
and a memory management unit (MMU), with 1.52 DMIPS/MHz performance,
and for being capable to work at a peak frequency of 450 MHz. The PPC is
supported by CoreConnect?™ technology, a high-bandwidth 64-bit architecture
that runs from 100 to 133 MHz. In our platform, the PPC core and bus interface
are running at 300 MHz and 100 MHz, respectively, in order to obtain the maxi-
mum performance for instruction execution and bus transfers. The functionality
of the PPC is to execute different software applications and interact with the
components on-chip.

The PPC accesses high-speed and high-performance system resources through
the PLB bus, which provides separate 32-bit address and 64-bit data buses for
the instruction (iplb) and data (dplb) sides. The processor clock and PLB must
run from an integer ratio of 1:1 to 16:1. In our design, the PLB operate at its
maximum speed, 100 MHz, while the PPC operates at 300 MHz. Although not
shown in the figure for a better clarity, the arbitration of the PLB bus is done by
a PLB arbiter, which receives bus requests from the devices attached to it and
grants the bus to one of them.

67

5.3. HARDWARE DESIGN

(AL o) 0uds osoyd

(89914-CIXAAYIX) DI VDA

B4 oaud
||||| oUAS panad _ SI901
o . R § ano Y38 mwoon 4 o
o> e 5 m siere]l | iR snq g1d R %m
S] Bl
| ZHn st | i ZHN sz . 9
A o oo .” _ <spovm w m % MWQ%?
H - H EA
| ZEIN 00€) ! (zrm o1 =
_.l auva0] o 1no Boi } <spad y g .
asund i qidp e—>! !
= I B avo "N DVILI
T @w@“ x4 ! 3«3@ x4 8 Qwamu X4 8
& 2uiSus X1 " / 9 vﬂ
DIwp x)) DI X]) DIDP X])
AHd i OVINAL OVINAL
H i QdvH q1d £07 9dd
o
g puo (o1eize)
(N $T) g s wvad [Wvad
950 TV.LX 3 <
< _|A p
cur cUl [Ul Jul Ipud
oINIEdO | | AW 4do b waa 914
4do zd1d o
NI”SHoomAI SIND
| | | | zapeer T |INOA
. 0 +2zHN001 ™]
! (ZHIN 00T) s0q 9JO W
sdd auo
(S wony)oudks asoyd ﬁ (proMI €) (ZHW 001)
7 A) P 7 NWVAdAs 080 TVIX
A(H) topeay uoisuedxy]
€0V TN dad

OVLL

Figure 5.3: Embedded platform architecture and TSU allocation.

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
68 GIGABIT ETHERNET

The devices adopt the role of master (noted as a ’<¢)’) or slave (noted as
a ’e’). One particular feature of the PLB is that it is an indeterministic bus,
meaning that the bus latency may vary, depending on whether an operation is
occupying the bus or not. As it is seen in Chapter 6, this represents a problem
for time synchronization applications. Despite of the PLB indeterminancy, it is
the best choice to interconnect those blocks demanding rapid accesses, such as
the case of the memories. The DDR controller (PLB DDR cntlr) serves as an
interface between the PLB bus and the external DDR SDRAM memory (DDR
SDRAM), which hosts all the software application code (instructions and data).
The Block RAM controller (BRAM cntlr) manages the flow of data between the
Block RAM memory (BRAM), inside the FPGA chip, and the PLB. We use
the BRAM memory to store some interruption handler routines that need rapid
access by the PPC. Another block that is connected to the PLB bus is the PLB
to OPB bridge (PLB20PB), which translates 64-bit PLB transactions to 32-bit
OPB transactions.

The OPB bus is the secondary bus and it is tailored for less complex, lower
performance peripherals. The OPB has a shared 32-bit address and 32-bit data
bus, and can run up to 100 MHz, with peak data rate transfers of 3.2 Gbps.
The OPB hosts 5 peripherals in our design: a debug module (OPB MDM), 2
capture/timer blocks (OPB TMR1/2), an interruption controller (OPB INTC)
and our custom block, the Timestamping Unit (TSU). It is specifically allocated
here to replace on-the-fly the ingress/egress control frames (see Section 5.3.3).
As per the rest of the blocks listed, the first one is a controller for debugging
and monitoring purposes. It allows us to access to internal registers of the PPC
during its operation. The timer/capture blocks have a primary function, which
is to trigger an interruption through the output int when receive an external
trigger on capture input or when an internal timeout expires. We have configured
both timers to timeout after an specific interval and for capture detection. The
interruption output (int) of the timers is fed into the interruption controller (OPB
INTC), which is used to expand the number of interrupt inputs of the platform,
prioritize over them and notify to the CPU the interruption request (int_req).

The HARD TEMAC is a standard compliant core provided by Xilinx that
serves as a wrapper for the two MACs on-chip. The HARD TEMAC contains
several configuration registers that can be written at any time to change the
configuration of the silicon MACs. These EMACs may be configured for full or
half-duplex operation and support several media interfaces including MII, GMII,
RGMII, SGMII, and 1000Base-X. The Hard TEMAC also supports MII man-
agement of physical devices, PHY, VLAN frames, jumbo frames, configurable
inter-frame gaps, in-band frame check sequences, FCS, for both transmit and re-
ceive, auto padding on transmit, FCS stripping on receive, flow control through
Pause packets, receive address filtering, and provides raw statistics vector out-
puts. It is important to note that the MAC component (together with the CPU)
consumes no FPGA programmable resources since it is built into the silicon of
the FPGA.

HARD TEMAC can be accessed through the PLB TEMAC, which translates
the PLB bus protocol to the MAC interface specified in the standard. PLB

5.3. HARDWARE DESIGN 69

TEMAC has also been designed incorporating the applicable features described
in IEEE Std. 802.3-2002 [IEEE Std. 802.3 (2002)]. The PLB TEMAC enables
memory mapped access to registers and memory mapped or DMA access to packet
FIFOs, which in turn interface to the client transmit and receive interfaces of the
HARD TEMAC to support transmission and reception of Ethernet frames.

The Digital Clock Manager (DCM) is used as a digital frequency synthesizer
to derive the several frequencies used by all the devices on-chip and the DDR
memory on-board. It generates the frequencies of 100 MHz (for busses, OPB
peripherals and TSU’s OPB interface, and the JTAG), 125 MHz (for the PLB
TEMAC and HARD TEMAC), and 300 MHz (for the TSU’s and CPU’s coun-
ters).

Another key block in the platform for our evaluation purposes is the GLUE
LOGIC block. As explained before, EPON synchronization mechanism calculates
RTDs to infer the propagation time from the sender to the receiver Ethernet
layers. The task of the GLUE LOGIC block is to create a hardware loop to
bound incoming syncPDUs without the intervention of the PPC. The user set
the TSU in prec_rtt mode (see Section 5.4) and, upon the arrival of a non-
errored syncPDU, TSU’s rcved_ sync assertion pulse makes the HARD TEMAC
block to immediately generate another PAUSE frame.

The CPU and the MAC are hardcoded in the silicon of the FPGA, thus they
almost! do not consume logic resources. However, the rest of IP blocks do use
programmable area that depends on the number of functionalities desired for each
of them. In FPGA design, the less IP blocks added, the better the design will
be (in terms of area consumption, speed and correct functionality). Table 5.2
summarizes the programmable resources used to implement the platform of the
Figure 5.3.

Table 5.2: Summary of the programmable resources utilized for TSU implemen-
tation and percentage of the overall amount.

Equivalent
Slices LUTs FFs Gate Count

4956 out of 10944 (45%) | 5262 out of 10944 (48%) [4938 out of 10944 (45%) | 1560072 |

5.3.3 Message Handling

This Thesis follows the concept of having separate paths to split the functionalities
of forwarding and control. This concept was introduced in the legacy Ethernet
with the flow control, which aims at preventing the MAC FIFOs being overflowed
due to transient traffic congestion situations. Rather than the operation mode of
the flow control, we are interested on the flow control message semantics, as we
will re-use them to generate synchronization messages (syncPDU). In the MAC of

TAll hardcored blocks need minimal use of programmable resources for glue logic at the
output interface of the IP block.

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
70 GIGABIT ETHERNET

our platform, we have access to the flow control interface through two dedicated
lines [Xilinx, Inc. (2007b)].

LSB MSB LSB MsSB
b0 b7 #Octets b0 b7 #Octets Function (value)
Destination Address = 6 Destination Address = 6
0x0180c2000001 0x0180c2000001
Source Address 6 Source Address 6
Type = 0x8808 2 Type = 0x8808 2
PAUSE Opcode = 0x0001 2 Syne. opcode = 0x0002 2
GATE, (0x0001)
2 3 2
PAUSE Quanta No. Frame GATE (0x0002)
O] 2 REPORT (0x0003)
REG_REQ (0x0004)
42 Timestamp 4 REGISTER (0x0005)
Zero pad
Compensation 4
Zero Pad 32
FCS 4 FCS 4
a) b)

Figure 5.4: Pause control frame (a)). Synchronization protocol data unit
(syncPDU) (b))

Figure 5.4 depicts the generalized MAC Control frame format of the legacy
Ethernet. All Control frames are exactly 64 bytes in length, not including the
Preamble and Start-of-Frame Delimiter. The frame starts with the reserved Des-
tination Address (DA) that contains the fixed value of 0x0180c2000001. When
the receiving MAC parses the frame and matches this value, it knows that it
must enter into the control mode. The Source Address (SA) is filled with the
MAC address of the flow control requester. The next field contains the unique
Type field that has been reserved for Ethernet MAC Control, 0x8808. Within
the Data field of the frame, the first two bytes identify the MAC Control opcode,
or the control function that is being requested by the frame. Currently, there is
only one control function defined, thus this value is constant in the MAC and is
set to 0x0001. Next to the opcode field, it follows two more bytes to indicate the
Pause quanta value which, in the case of the flow control, it sets the time that
the transmitter must be idle. The remainder of the frame is padded with zeros.

In Figure 5.4b, it is shown the modified PAUSE frame, the syncPDU. Its
length has not been modified and only some of the fields have been replaced.
It starts with the DA field which is kept with the same code 0x0180c2000001
for the receiving TSU to be able to recognize an incoming syncPDU. The SA
field is filled with the MAC address of the flow control requester. The Type
field is not modified either. The modification starts from byte 15 until the end
of the frame, byte 72. The first two bytes explicit the synchronization control
mode, with the value 0x0002 and tag Sync. Opcode. The field #Frame is for

5.3. HARDWARE DESIGN 71

indicating the number of synchronization frame being sent. Operand field is
used to differentiate the synchronization messages during the message exchange
mechanism (see Section 5.5). Timestamp is a 4-byte field that contains the value
of the TSU’s counter that is triggered during the transmission of the 16" byte of
a syncPDU. Compensation field contains the value to subtract to the receiving
timestamp in a bridged Ethernet scenario. The remaining bytes are zero padded
until the FCS field, which contains a new cyclic redundant code (CRC) for the
newly generated syncPDU.

5.3.4 Platform Functionality

Sending and receiving synchronization data is handled cooperatively by the TSU
and some intermediate hardware elements of the platform, such as the timers,
the microprocessor and the MAC, and software routines stored in the BRAM
memory. To better understand the functionality of the platform, Figure 5.5
dissects a transmission and a reception of a syncPDU.

—S.—“.S
PLB2 OPB g
OPB INTC TT"]?]
B/ Ul

[PLB DDR|,” { \
entlr PLB2 OPB \
orPB INTC OPB
2] TMRI
int _capt

N0 L

a)

PLB

[|TEMAC

THARD
TEMAC

[PPC 405 "
/

X

b

\.
FPGA IC (XC4VFXI2-FF668)

b

syncPDU
==

FLB
TEMAC

PAUSE
—

FPGA IC (XC4VFX12-FF668)

L

TIA]
ITEMAC]|

syncPDU
]

b)

Figure 5.5: Steps involved in sending (a)) and receiving (b)) a syncPDU.

Sending a synchronization packet requires the steps shown in Figure 5.5a. In
step 1, the OPB TMRI1 timeout expires and sends an interruption request to the
OPB INTC. The OPB INTC notifies the PPC that some of the OPB peripherals
is requesting an interruption, in step 2. In step 3 of the figure, the PPC asks back
to the OPB INTC which peripheral notified an interruption. In step 4, the OPB
INTC provides an interruption vector to the PPC, which starts the interruption
process. In the interruption process, the PPC executes an interruption handler
which basically writes in those registers of the TSU that will map the NUM and
OPER fields of the TSU (see Section 5.5). The instructions of the routine are
stored in the BRAM memory for faster accesses. In step 5, after the TSU pre-
loading, a PAUSE frame is requested to the PLB TEMAC, which signalls the
HARD TEMAC for generating it. Finally, when the MAC starts sending the
PAUSE, the TSU replaces some of the fields on-the-fly and creates the syncPDU
at the GMIL.

Receiving packets can be seen as the reverse process, i.e., the incoming syncP-
DUs are replaced to PAUSE frames with its pause quanta field zero-padded (to

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
72 GIGABIT ETHERNET

avoid setting the receiving MAC in PAUSE mode). Figure 5.5b depicts the steps
for receiving a syncPDU from the network to the DDR memory. In step 1, the
TSU has transformed the incoming syncPDU into a PAUSE, which is already in
the MAC. Then, when the TSU finishes checking that the incoming syncPDU
has no errors, it generates a pulse through the rcved_ sync output. This output
is fed into the capt input of the OPB TMRI1. In step 2, the timer initiates the
same interruption handshaking process with the CPU as in the transmission. In
step 3, the CPU is already executing the interruption routine for the reception,
which basically consists on dumping in the DDR memory the content of some
of the TSU registers, i.e., those that store the information during the reception
(step 4). In the case that the TSU detects an incoming syncPDU has a CRC
error, the TSU does not assert rcved_ sync output and the overall process does
not start. Besides, it notifies the MAC to discard the PAUSE frame through the
MAC interface.

5.4 Timestamping Unit

This section explains in detail the internal architecture of our Timestamping
Unit, their main functional blocks and the reasoning for some design choices. We
start by collecting and clarifying the objectives and requirements of the TSU,
and a detailed explanation of its internal architecture and main design challenges
follows.

5.4.1 Requirements and Functionalities

Our TSU is a hardware block that was conceived to provide an infrastructure
with which to measure the latency and jitter of Ethernet layers and to assess
the time synchronization accuracy with a link partner. To meet these goals, we
find of importance to design a hardware block capable of meeting the following
requirements and functionalities:

= Control frame generator. To separate the control path from the forwarding
path and create the control frames, we would need to either redesign a new
MAC from scratch or to provide a block in parallel with the actual MAC
to create the control frames. Both approaches lack of simplicity and might
not be the right approach to cope with our objectives rapidly. A better and
simpler option is to reuse the actual control frames and replace on-the-fly
those fields of interest. This requirement lead us to partition functionalities
in the TSU, i.e., the transmission and the reception component. In each
part, we must provide logic to replace the fields of our interest and regener-
ate the FCS field of the newly generated syncPDU. Besides, the reception
part must contain a block to check against CRC errors in the incoming
syncPDU.

= High precision timestamping. The latency and jitter introduced by hard-
ware mechanisms are few orders of magnitude smaller than those introduced

5.4. TIMESTAMPING UNIT 73

by an operating system. To be able to measure them, we need to generate
timestamps with the highest resolution possible. Due to the limitations of
our platform FPGA, we are restricted to timestamps of 3.33 ns resolution.

= High precision propagation time cancellation. As explained in Chapter 4,
if a receiving node is able to cancel the propagation time of a syncPDU, it
will be able to synchronize with its link partner with an accuracy given the
jitter introduced by Ethernet layers. The propagation delay value is com-
municated by the sender to the receiving node using the message exchange
pattern explained in Figure 4.3. In the TSU, we must provide a hardware
mechanism capable of subtracting the propagation delay from the received
timestamp.

= On-the-fly timestamping. An on-the-fly timestamping property requires to
timestamp transparently, i.e., to replace the fields of a frame with min-
imal or no latency. In digital logic design, this requirement poses some
advantages and limitations. First, "no latency” implies avoiding the use
of FIFO-based architectures to store and forward the frame. This simpli-
fies greatly the design of the overall system, but on the other hand, FIFO
avoidance forces to store only the last sent/received information. In com-
munication IP blocks, this translates to read/write more often to, e.g., the
registers of the block, thus posing an increase of utilization in terms of bus
accesses. Another added drawback is on the latency introduced by some
hardware subblocks, e.g., the cyclic redundancy check (CRC) block. In this
case, it will be necessary to implement it using latches instead of flip flops.
The use of latches in digital design is strongly not recommended as it can
harm the reliability of the design. A latch is an asynchronous memory unit
that can suddenly change the stored information due to, e.g., a glitch in its
input.

= Asynchronous system. Digital systems that require to be synchronous, the
electrical clock signal of the receiver must track that of the transmitter.
In our platform, this would represent to re-use the transmission clock to
provide the timestamps too, thus we would loose timestamp resolution and
refinement for our evaluation purposes. If we want maximum timestamp
resolution, we are forced to use multiple and non-related clock sources to
pace different circuit portions: a clock to transmit, a clock to receive and the
clock for obtaining the timestamps?. In digital logic design, this scenario
is also known as clock domain crossing (CDC). Those designs with CDCs
are prone to loose or mislead the digital information due to a phenomenon
called metastability [J. Stephenson (Altera, Corp.) (2009)]. They require
a careful design and mechanisms to protect against information looses and
misinterpretations. With this background, we must provide a mechanism
capable of protecting the information subjected to clock domain crossings,
such as the case of the timestamps.

2The three clocks interact and the different circuits they pace exchange information asyn-
chronously.

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
74 GIGABIT ETHERNET

The next sections explain in detail the architecture components of the TSU, as
well as the design approach followed to fulfill the requirements bulleted above.

5.4.2 Distributed Timestamping

As seen in the previous Chapter, a key parameter that will help us to determine
the level of jitter, and thus the achievable synchronization accuracy at Layer
2, is the latency of a syncPDU to go across the layered stack. The finer the
propagation time calculation is, the finer the measured jitter will be. To infer the
propagation delay, we use the message exchange pattern defined in Chapter 4.
To obtain precise RTDs, we have added a small glue logic that allows the receiver
node to bounce immediately a synchronization frame. However, there is still a
small source of delay error coming from, first, the time that the MAC needs to
generate a new PAUSE, and second, the time that lasts from the first syncPDU
byte to the time for the TSU to take the timestamp snapshot (i.e., the timestamp
to send). To better understand this situation, consider the Figure 5.6a.

—— RTD's crror path MASTER SLAVE
=== RTD's ideal path
8M.-\(,‘io
MASTER SLAVE MAC MAC
= 5=0
[1
T TSU |1 .‘ - _Isu_‘_(_ T TSU | ‘ i TSU
E r 1 2
i L P P |
IR Il R I
: | I J 1 : I_ [_I]
1
1 H ! 1
a) b)
RTD =t RTDld + BMAC L=t

Figure 5.6: syncPDU journey with no inter-layer delay (a)). Platform’s syncPDU
journey, with additional delay to regenerate the syncPDU reply (b)).

The time for a syncPDU to travel from its node to the link partner and bounce
back is not influenced by the internal delay of the layer (§ = 0), i.e., RT D;q =
to—t1. In this situation, we would obtain precise RTD and interlayer propagation
time calculations. However, due to the architectural limitations of our platform,
slave’s reply needs to be regenerated again in the MAC, and therefore adding
an additional error on the calculated RTD given by the latency of the MAC’s
internal circuitry, i.e., RT'D;q + dprac = ta — t1 (see Figure 5.6b).

In order to correct the latency introduced by the MAC in the reply, we have
introduced the concept of distributed timestamping. It consists on capturing dif-
ferent timestamps during the syncPDU journey and use them strategically to
cancel MAC’s latency. Figure 5.7 illustrates our approach. We have chosen sig-
nificative time points like the start of the syncPDU, the time point where the
timestamp is triggered and the timestamp when the last byte is sent. The dis-
tributed timestamps keep a symmetry in their position in both the transmission

5.4. TIMESTAMPING UNIT 75

and reception paths. Table 5.3 summarizes the logical variables assigned to these
timestamps together with the TSU’s associated register.

timestamps in reception

logical
variable e Ip 1Ig
MLA403
- -
CPU MAC TSU PHY
— >
FPGAIC
logical t, tg e 1p
variable

timestamps in transmission

Figure 5.7: Distributed timestamping architecture.

Table 5.3: Description of the distributed timestamps (logical variables) collected
during a syncPDU transmission and reception.

Logical
Mode Variable Description
Transmission ta syncPDU transmission request event
ts first transmitted PAUSE byte
to timestamp to be transmitted,
(taken at the 16*" syncPDU’s byte)
tp last transmitted syncPDU’s byte
Reception te first received syncPDU’s byte
tr syncPDU’s time of arrival
(taken at the 16" syncPDU’s byte)
ta last received syncPDU’s byte

The distributed timestamping architecture is not only conceived for obtain-
ing more precise RTD calculations, but it also gives us a more flexible evaluation
platform for deriving internal timings (such as the MAC and PHY latencies) or
for evaluating the synchronization accuracy between two link partners. Consider
again the Figure 5.7. From timestamps t4 and tg, we can obtain the MAC la-
tency, or, with proper means for looping back outbound frames, the timestamps
pairs (tg,tg), (to,tr) and (tp,tg) can provide information about the PHY la-
tency to send and receive a syncPDU. In the next Chapter, we take advantage
of the distributed timestamping architecture and evaluate different synchroniza-
tion components such as the PHY and MAC latency and the synchronization
accuracy. Next, a description of the main components of the TSU follows.

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
76 GIGABIT ETHERNET

5.4.3 TSU Architecture Description

In Figure 5.9 it is shown the overall architecture of the TSU. It is divided into
four main regions: The transmission engine block (tx engine) (in light yellow),
the reception engine block (rz engine) (in light blue), the clock adjustment unit
(CAU) (in light green), the data register block (data register block and control
register) (in red) and bus interface logic area (bus interface logic) (in red). Next,
a detailed description of each region comes.

Transmission Engine

The main task of the tx engine is to detect the egress PAUSE frames sent by the
MAC and replace on-the-fly some of their fields to create a syncPDU (recall Fig-
ure 5.4). All the blocks within ¢z engine have been designed and interconnected
according the signalling protocol for sending a control frame. Control frames
characterize to be fixed-length frames of 64 bytes, a fact that gives us certain ad-
vantages in the design process. Figure 5.8 shows the timing of a PAUSE frame.
When a control frame is being sent, the TX_EN signal is asserted by the MAC
during the transmission of the 72 bytes. ¢z engine starts the replacement oper-
ation once detects the Start of Frame Delimiter (SFD) code. SFD differentiates
from Preamble field (PRE) in the last nibble, and it is used to notify the PHY
that the payload is starting at the next byte.

)‘7 PRE _,i ;\L DA ‘L S ;‘ L -"PALSIj‘ PAUSE ZEE%}S\D e 4’{

SID B 6B @8) CODE QUANTA
aB) @B) (2B)

@“B)

Figure 5.8: PAUSE frame transmission waveform across MAC interface (adopted
from [Xilinx, Inc. (2007b)]).

tz engine’s part of the Figure 5.9 shows several functional blocks that perform
different, functionalities during the frame transmission. For instance, the block
tagged pattern recognizer is committed to detect and inform whether the DA field
of an incoming frame contains a PAUSE code (01-80-¢2-00-00-01) or not. The
rest of the blocks perform the following tasks: CRC gen creates a new CRC code
for the new generated syncPDU. word to byte are two shift registers that slice
32-bit data (coming from the CAU and data register zone into 8-bit data needed
by the GMIL. MUX 1 and MUX 2 multiplex different output data coming from
the different blocks.

The main component of the tz engine block is the transmission finite state
machine (tz FSM). It is a Moore FSM that starts upcounting upon the rising
edge of TX_EN signal and activates or deactivates the internal blocks accordingly.

5.4. TIMESTAMPING UNIT 7

Its working principle is straightforward: it leverages the fixed length of the frame
to know the position (in bytes) of each field. It starts activating the first block,
pattern recognizer; if this detects that a PAUSE frame is flowing, it asserts the hit
signal to the ¢tz FSM which starts activating/deactivating the next blocks. The
tx FSM also provides triggering to the CAU block for obtaining the distributed
timestamps during the transmission (start tz, timestamp2tzmit and end tz).
The block synchronizer is an output stage for synchronizing the incoming
PAUSE frame to the modified one. It consists of a two-stage 32-bit registers
synchronized to the transmission clock (¢x clk) that provides us a lead gap of 2
GMII clock cycles (16 ns) to perform the replacement operations on-the-fly.

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR

78

GIGABIT ETHERNET

ixelk

Ixen

txer
tx data [7:0]

isd ‘

>[X er
& data [7:0]

X req

[memnter]

>
P d_ﬂvh fword to byte M/l‘;rword to byte
distributed timestamps M

end tx

one pps

ent glk

phase syne

xer

mask_bits
match value
fimestamp

W
0| rx

I~
12

~x_er

cre_err

\

AN

xer

x data [7:0]
b
rxdy,

/ MUX 2

/

rx data | 7:0]
xdv

1 clk

ol

A

Figure 5.9: Internal architecture of the Timestamp Unit.

5.4. TIMESTAMPING UNIT 79

Reception Engine

The role of rz engine is similar to tz engine which is to transform syncPDUs to
PAUSE frames. Here, the blocks are designed to perform the reverse operation,
i.e., to transform incoming syncPDU delivered by the PHY to PAUSE frames for
the MAC (see Figure 5.10). The FSM recognizes that a syncPDU is ingressing
after receiving the notification of the pattern recognizer block, which asserts a
logic 1’ through hit signal. Rz FSM is aware of the syncPDU skeleton and
enables/disables the internal blocks accordingly. In the reception, the incoming
information is transformed from bytes to words through the byte to word 8-bit
shift registers. Both 32-bit words, i.e., the received timestamp (rz timestamp)
and Number and Operand fields (num_ oper) are pre-buffered in their respective
shift registers inside the rz engine block. Once the CRC checker block (CRC
chk) detects that the incoming frame has no CRC errors, it asserts good cre and
the values are transferred into the registers of data register block.

rcore | LU LU TP L U L L

REDV _/ l [

RX_ER ,

rxorrol f55ssfssississ{ssss{ps{onfsofezonfooforfosbeifsbeiodbolissosfoofoafiod ol iolbodiolodofiosodiodied 00, o0 odboliefl
I A - S S i S R AU

p COMPENSATION
ap) an)

Figure 5.10: SyncPDU frame reception waveform across PHY interface (adopted
from [Xilinx, Inc. (2007b)]).

In case of a CRC error, it asserts crc_ err signal for 3 GMII clock cycles to
notify to the MAC that the PAUSE frame that has already been converted is
erroneous. As in the transmission case, a synchronizer is also needed to reconcile
the incoming frequency (rz clk) at the PHY side to the output frequency at the
MAC side. The synchronizer provides a gap of two extra clock cycles to modify
the incoming syncPDU on-the-fly.

As in the transmission block, the ro F'SM triggers the distributed timestamps
at the first byte of the incoming PAUSE (start rz), at the 16!* byte (toa) and at
the end of the reception (end rz).

Clock Adjustment Unit

The Clock Adjustment Unit (CAU) is the centerpiece of the TSU architecture.
It contains a 32-bit counter (localtime) that is summing up clock ticks at the
frequency of 300 MHz and provides a timestamp granularity of 3.33 ns. In our
design, localtime counter keeps track of high resolution time at MAC level.
Some time synchronization protocols use instead the microprocessor’s high-
speed counter (also known as Time Stamp Counter (TSC)) to obtain the times-
tamps [Ridoux & Veitch (2007)], while in other architectures, such as EPON,
the internal counter is physically located in the MAC. The subblock within the

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
80 GIGABIT ETHERNET

Figure 5.4 corresponding to the CAU contains a MUX that multiplex three 32-
bit signals: the output of the subtractor block (¥ — sub), the localtime instan-
taneous value and the timestamp entered by the user (user timestamp). The
subtractor block subtracts the propagation time (in figure tagged as t_prop)
and the syncPDU remainder (SyncPDU’length-toa) from a received timestamp.
SyncPDU’length-toa allows to cancel the time that lasts from the time to trigger
the arrival of the timestamp (foa) to the last received byte (i.e., the CAU waits
for the good_ crc assertion signal). Thus, when the CAU is configured to set the
localtime to the receiving timestamp, the replaced value is free from that latency
(SyncPDU’ length-toa) and the propagation time to the partner link.

Another key block of the CAU is the programmable interval timer (PIT). It
consists of a comparator that raises a 50 ns-wide pulse when localtime instanta-
neous value matches a user pre-set value (match value). mask bits input allows
to stretch out or to narrow the interval of the pulses from ~50 ns to ~14 s.
The output of PIT is connected to phase sync external output. As seen in the
next chapter, this functionality is needed to evaluate the phase synchronization
accuracy.

A crucial component within the CAU block is the block ensemble that consists
of specialized circuits called flancter-flags and the four pool of registers (tz/rz capt
registers). localtime is connected to tz/rz capt registers. When each FSM asserts
the control signals for storing the distributed timestamps, the instantaneous value
of localtime is stored in the respective register. A major problem here is the
interaction of the different frequencies: the localtime clock frequency (ent clk),
which is running at 300 MHz, and the pulses coming from the rz engine and
tz engine, which are synchronized with their respective clock signals (¢z clk and
rz clk) running at 125 MHz. If the control pulses are not aligned with ent clk
frequency, the values transferred from localtime to the tz/rz capt registers will be
likely misinterpreted. To solve this problem, we have introduced the flancter-flags
which reconcile the three clock domains allowing correct transfers from localtime
to tz/rr capt registers. In the next section, we will explain in more detail its
working principle.

Finally, the CAU has a dedicated input for using the 1PPS signal coming from
a GPS receiver for evaluation purposes. As the 1PPS signal is also asynchronous
to the localtime’s frequency, we also re-synchronize it with the help of the flancter-
flags. In Chapter 6, the 1PPS signal is used to derive the oscillator clock drift
and to obtain the real frequency of localtime counter.

Registers Block

The registers block is another key component in the overall architecture of the
TSU as they provide the user interface to interact with the rest of the blocks, the
tz engine, the rx engine and the CAU. The approach followed in the development
of the TSU was to control and monitor their different functionalities and statuses
by writing specific registers. As seen in Figure 5.9, the register block comprises
a pool of 18 individual 32-bit registers (data register block) for storing the last
transmitted and received fields of a syncPDU, as well as other information for

5.4. TIMESTAMPING UNIT 81

evaluation purposes. Data registers are directly wired to the inputs and outputs of
the tz engine, rx engine and CAU blocks. From the OPB side, each register can be
accessed following the data transfer protocol of the OPB bus. The registers zone
also contains one 8-bit control register (control register) for setting the different
TSU operation modes. The bits of control register are directly wired to specific
inputs of the internal blocks, and can be individually written/read from/to the
bus following the OPB data transfer protocol. Table 5.4 summarizes the function
of each data register, as well as their addresses space for read and write accesses.
Table 5.5 summarizes the functionality of each bit within the control register.

Table 5.4: Data register definition within TSU’s register block.

Register Access | Offset Block
Name Type | Address | Association | Location Description
tsu_ctrl RW 0x00 TSU Reg. block | Control of TSU operating modes.
rxed_ts R 0x04 Rx engine Data reg. | Received timestamp.
ext_time RW 0x08 CAU Data reg. | External time.
cau R 0x0C CAU Data reg. | Instantaneous localtime value.
num_oper_tx RW 0x10 Tx engine Data reg. | Transmitted Num and Oper fields.
num_oper_rx R 0x14 Rx engine Data reg. | Received Num and Oper fields.
off_corr_tx RW 0x18 Tx engine Data reg. | Propagation time to communicate.
match_val RW 0x1C CAU Data reg. | Pulse interval period.
match_rng RW 0x20 CAU Data reg. | No. bits to mask for match_val.
tx_req R 0x24 Tx engine CAU SyncPDU transmission request.
st_tx R 0x28 Tx engine CAU First transmitted PAUSE byte.
txed_ts R 0x2C Tx engine CAU Timestamp to be transmitted.
end_tx R 0x30 Tx engine CAU Transmitted syncPDU’s byte.
one_pps R 0x34 - CAU 1PPS event.
st_rx R 0x38 Rx engine CAU First received syncPDU’s byte.
toa R 0x3C Rx engine CAU Received time of arrival of a
syncPDU.
end_rx R 0x40 Rx engine CAU Received syncPDU’s byte.
t_prop RW 0x44 CAU Data reg. | Propagation time for cancellation.

Table 5.5: Control register definition within TSU’s register block.

Access
Bit no. | Type | Association Description

0 RW TSU TSU general reset.

1 RW CAU Set TSU in re-synchronization mode.

2 RW CAU When asserted, localtime.
is loaded with ext_time.

3 RW CAU Reset localtime.

4 RW TSU Disables the CAU block from
inserting timestamps from localtime.
t_prop is inserted in timestamp
field.

5 w Tx engine Enables to bounce incoming syncPDUs
without CPU’s intervention.

6 W TSU Pulse assertion. For debugging purposes.

7 w CAU localtime’s read request.

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
82 GIGABIT ETHERNET

Bus Interface Logic

The four blocks explained so far are considered to be the entire design of the TSU
block and can be reused in other FPGA architectures. However, the IP blocks
within embedded systems are interfaced through busses. For our design, we have
chosen the OPB bus to access to the registers of the TSU for its simple data
transfer protocol. As our synchronization exchange mechanism is not subjected
to intense communication throughputs, we can disregard the use of more complex
bus access techniques and design specific bus access logic for single read/write
transfers of 32-bit. To simplify even more the bus logic interface, we avoid pro-
tection techniques and re-transmission operations, and design the logic to work
as a slave.

Another aspect to consider is the addressing mode of the busses. The OPB
and PLB are addressed on a byte basis, but has a 32-bit wide data bus. Therefore
to access to the 32-bit wide registers of the TSU, we will need to add multiples
of 4 to the peripherals base address. This translates on designing the address
decoding logic to select the upper nibble of the TSU address space (see the third
column of the Table 5.4).

5.4.4 Hardware Design Challenges

This subsection presents one of the contributions of this Thesis which is a hard-
ware circuit called flancter-flag that provides timestamping reliability. The sub-
section finishes with another a design consideration when using FPGAs: the
timing closure.

Clock Domain Crossing (CDC)

One of the major challenges in the design of the TSU is the presence of four
clock domains. Each clock signal paces a logic resource region inside the circuit
and the information transfer from one domain to another can render to subtle,
intermittent and unpredictable corrupt control and data signals. The rationale
for this behavior is on the phenomenon known as metastability [J. Stephenson
(Altera, Corp.) (2009)]. Metastability is a major concern in digital logic design.
It is the second main cause of ASIC chip respins and they only occur in hard-
ware, i.e., when a design is already implemented on-chip. In the case of FPGAs,
metastability appears after the place and route phase.

As shown in the Figure 5.11, the four asynchronous clock sources are: the
frequency of the CAU (300 MHz) (noted with ’--* line), the GMII frequencies
for the transmission (125 MHz) (noted with ’- -’ line) and the reception path
(125 MHz + ¢) (noted with *-’ line) and the OPB bus logic (100 MHz). The
frequencies of the GMII are equal but their phases are different, hence they can
be considered asynchronous too. As shown in the left side of the Figure 5.11, the
logic in the transmission engine block (tx engine) retrieves the timestamps from
the CAU at the speed of 125 MHz but the time in the CAU is summed up faster.
If the edges of the two clocks (CAU clock and tz engine clock) are not aligned,

5.4. TIMESTAMPING UNIT

83

timestamps will be misinterpreted unpredictively. This situation can take place
in any of the two clock regions: CAU-rz engine and CAU-tzx engine.

I |
100 MH: user space 100 MH: user space
" - - -
> »
-»
125 MHz 125 MHz
tx engine tx engine
tx timestamps to user space
tx timestamps read request
cAU cau|
300 MHz

m rx timestamps

125 MHz + ¢

-

rx engine

rx timestamps
read request

a)

Figure 5.11: TSU without timestamping reliability mechanism (a)).

non-errored
timestamps

125 MHz + ¢

rx engine

4
4

b)

timestamping reliability mechanism, with flancter-flags. (b))

SYS CLK

ENABLE

TRIG_IN

D

FLANCTER FLAG

1rigger.

FLANCTER
set flop

SYNC

fag b Q s flag
clr ce

CLE
sys clh]

D>

TRIG_OUT

e
enable trig_out|
FSM

Figure 5.12: Flancter-flag circuit.

TSU with

Figure 5.11b shows the integration of the flancter-flags circuits within the
TSU architecture. The flancter-flags reconciliate the CAU frequency with the
frequencies of the tx engine and rz engine. The flancters detect the rising edges
coming from read requests of the distributed timestamps (tz/rz timestamps read
request). Once the flancters have their internal flags on, they transfer reliably
the value of localtime counter to the tz/rx registers. The flags set by the flancters
are automatically resetted (by their respective control blocks) and the distributed
timestamps can be read through the user space.

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
84 GIGABIT ETHERNET

Timing Closure

Another big design challenge in FPGA-based designs is related to the propagation
delays of digital signals inside the chip. Custom blocks are located in areas of
the FPGA where routing availability can be problematic as a result of congestion
around these blocks. Poor resource placement can result in timing not meeting
all requirements. Conflicts can occur between resource, area, power and timing
requirements in a design. When a design requires more resources, the resources
have to be spread out across the target device, some of them having long inter-
connections. At smaller device geometries, delays are dominated by interconnect
delays rather than logic delays. To have shorter net lengths, the area should be
smaller. Therefore, these two requirements generally conflict.

A noticeable feature in FPGA architectures is their sensitivity to coding styles
and design practices compared to, e.g., ASICs. Some FPGA design practices
consist on creating appropriate hierarchical blocks, registering all block inputs
and outputs, using different blocks along the FPGA die for optimal performance,
adding pipeline stages to break up long data paths in multiple clocks and using
case statements instead of if-then-else to enhance the speed of multiplexing. In
our design, we follow several design rules given by the FPGA manufacturer to
achieve timing [Whatcott, R. (Xilinx, Inc.) (2009)] and have used the minimum
number of IP blocks in order to reduce the number of interconnections, and thus
to reduce the congesion too.

A very challenging requirement in our design is the TSU’s counter frequency,
targeted to be 300 MHz, the maximum frequency achievable with this platform.
At this frequency we can obtain timestamps with a granularity of 3.33 ns, and thus
more precise measurements. Since clock signals are usually high-fanout signals,
they are routed via dedicated routing networks within the FPGA and can be
separately managed. In our work we have respined several times the physical
design process and have put a lot of effort by manually tracing the TSU’s clock
tree. We have also arranged the frequency synthesizer block that delivers 300
MHz clock signal next to the TSU block. To do that, knowledge of the location
of the programmmable resources on-chip is required [Xilinx, Inc. (2008)].

5.4.5 Used resources

The TSU has been developed with Xilinx development tools ISE 9.1 SP3, and
has been integrated within the embedded platform with EDK 9.1 SP2. Both
phases of the design have been verified usign Modelsim 6.2c. Table 5.6 sum-
marizes the hardware resource utilization of the TSU reported by the synthesis
tools. In terms of slices, i.e., summing up combinational and sequential logic,
the whole TSU occupies the 19% of the overall programmable resources of the
FPGA. LUTs, that map the combinational functions of the TSU, occupy the 14%
of the programmable area, while sequential circuitry (Regs.) consumes the 12%
of FPGA resources. 10s correspond to the used number of external TSU outputs
interfacing other components, including embedded system components (e.g., the
OPB bus) and FPGA external pins. As explained before, the TSU uses registers

5.5. SOFTWARE DESIGN 85

for information storage, thus no BRAMs from the FPGA silicon resources are
used.

Table 5.6: Summary of the programmable resource utilization of the TSU (ex-
pressed as used amount and percentage).

‘ Slices ‘ Regs. ‘ LUTs ‘ 10s ‘ BRAM ‘
[1091 (19%) [1357 (12%) | 1609 (14%) [169 [0 (0%) |

5.5 Software Design

Although the big part of the design weight relies on hardware, the software also
plays an important role in FPGA-based designs. The software architecture is
designed as a layered structure as shown in Figure 5.13. The layered architec-
ture accommodates the many use cases of device drivers while at the same time
providing portability across operating systems, toolsets and processors. The lay-
ered architecture provides seamless integration with RTOS (Layer 2), high-level
device drivers that are full-featured and portable across operating systems and
processors (Layer 1), and low-level drivers for simple use cases (Layer 0). Those
designs that require a direct interaction with the hardware, such as the case in
this Thesis, it is recommendable to design the low-level device drivers as they
give to the user an "in-the-box” solution and thus a total hardware controllability
and measurability.

Layer 2, OS adaptation

Layer 1, High level drivers

Layer 0, Low level drivers

Figure 5.13: Software layered architecture.

In the next sections, we describe the key software design decisions, its opera-
tion and its adaptation to the hardware plane.

5.5.1 Requirements

In embedded systems, it is common that platform manufacturers provide imple-
mentation specific support code for a given board through a collection of low
and high level drivers called board support package (BSP). BSPs conform to a
given operating system and the device drivers for all the devices on-board. Our
platform is also provided with a library of Layer 0 and Layer 1 device drivers to
interact with the IP blocks such as the OPB timers, the PPC or the PLB TEMAC
to access to the Xilinx MAC. For custom IP blocks, the software drivers must be
specifically designed taking into account the layout of the registers (see Tables 5.4

86

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
GIGABIT ETHERNET

and 5.5). For the design of the TSU drivers and the application functionality,
we aim at meeting the following objectives and requirements:

Simplicity. We aim at designing a single-threaded environment that pro-
vides basic features like standard input/output and access to processor
hardware features.

No Error handling. In memory-mapping strategies for designing hardware,
the registers of an IP block can be accessed by writing/reading to/from
a memory position in the overall memory map. While Layer 1 software
abstractions often include means to verify the integrity of the association
hardware peripheral-pointer variable, Layer 0 software drivers do not. Error
handling adds an important amount of non-desired latency in the execution
of the instructions. Thus, we disregard the use of such a functionality.

Small Memory footprint. Low-memory-footprint programs are of paramount
to running applications on embedded platforms or Platform FPGAs, where
memory is often constrained to within a few MBs. Here, we want to find
a tradeoff to meet efficiency and a footprint small enough to fit into the
available RAM.

Minimal abstraction. Hardware drivers characterize to have a direct vision
to the hardware block, to match the device registers. On the one hand, this
gives a total controllability of the hardware block. On the other hand, the
APT is less isolated from hardware device changes and has to be updated
with every hardware change.

Small interface. The design of the bus interface logic has been designed for
single read /write transfers of 32 bits. While this might seem to offer a poor
performance, it is rather a good approach for the hardware and software
design as it is free of other intermediate mechanisms to, e.g., buffer handling
packet-based transfers, steering logic for handling diferent transfer sizes,
pointers, and so on.

5.5.2 TSU drivers

The TSU drivers are low-level C functions that permit us to read/write from/to
the pool of registers of the TSU. As seen in Tables 5.4 and 5.5, in our block we
have two types of registers: 18 data registers for storing the last transmitted and
received information, and 1 control register for controlling statuses and setting
different operation modes of the TSU. The read and write accesses to the registers
can be done using specific functions that contain one or more single read and write
transfers of 32-bit from and to the register’s addresses. The readings and writings
are done using specific macros that are included in the standard C libraries and
Xilinx C libraries delivered with the BSP, such as XIo_In32 and XIo_0Out32.
Listings 5.1 and 5.2 show two of the six TSU functions.

5.5. SOFTWARE DESIGN 87

Xuint32 tsu read register(Xuint32 BaseAddr, Xuint32 offset reg)

/% dinstr.#1, save space in PPC stack. No PLB access x/
Xuint32 aux;

/% instr.#2, 1 PLB access to take the wvalue in ’BaseAddr
+ offset _reg */

aux = XIo In32(BaseAddr + offset reg);

/% dinstr.#3, move ’auzr’ to another temporary register.
No PLB access. */

return (aux);

Listing 5.1: Function to read from one of the TSU data and control registers.

void tsu write register(Xuint32 BaseAddr,
Xuint32 offset reg, Xuint32 value)

/% dinstr.#1, 1 PLB access to store ’value’ in ’BaseAddr
+ offset_reg’ (in TSU) x/
XIo Out32(BaseAddr + offset reg, value);

Listing 5.2: Function to write to one of the TSU data and control registers.

The TSU drivers are a key design component as they will set the execution
time of the instructions in the program code. The execution time of the functions
depend on several parameters:

= Number of input/output parameters. In a function call, the input parame-
ters are stored in temporary registers within the PPC with which to perform
the operations. The more number of parameters, the more assembler in-
structions for the PPC to store them in the temporary registers. Similarly,
the more the number of registers to store the result/s of the function, the
more the number of transfers.

= Bitwise operations. Some TSU drivers contain logical bitwise operations
to write to the control register. As the operations are executed by the
microprocessor, the higher the number of single bit operations is, the higher
the latency of a TSU driver execution will be. To lower the latency, we have
configured the microprocessor to run at the maximum speed of 300 MHz.

= Number of accesses to external memory. This is the most critical parame-
ter as the PLB bus is an indeterministic bus and grants peripheral access
requests depending on the occupancy. For our TSU drivers which charac-
terize for having few or no arithmetic C instructions, the gross part of the
execution time will be given by the number of accesses to the PLB.

Some TSU drivers will contain more low-level C instructions depending on
the TSU hardware design. The use of more low-level C instructions and macros
imply more accesses to the external memory to fetch and store variables, and
therefore more accesses to the PLB by the PPC and more indeterminism in the

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
88 GIGABIT ETHERNET

program execution time. For the sake of the discussion, consider the TSU func-
tion tsu_read_ register (Listing 5.1). The first instruction (instr.#1) tells PPC
that has to save 4 bytes in the stack region of memory, and thus to update the
stack pointer accordingly. instr.#1 does not need any parameter that requires
a PLB access. In the second instruction (instr.#2), the PPC has to copy to
one of its temporary registers the value (value) stored in the address memory
BaseAddr + offset_reg. This requires at least one PLB access. The third in-
struction (instr.#3) the variable aux, stored in a temporary register within the
PPC, is transferred to another temporary register as the output argument. It
does not require to access to the PLB.

Table 5.7 summarizes the rest of the TSU software drivers, their purpose,
number of low-level C instructions and the number of PLB accesses. In the next
chapter, we will study the impact of TSU drivers latency on the synchronization
accuracy between the localtime counter within the TSU and the counter within
the PPC.

Table 5.7: Low-level C drivers for read/write access from/to the TSU.

Function No. of C PLB
Name Instructions | accesses Purpose
tsu_ write 1 1 Write TSU register.
tsu_read 3 1 Read TSU register.
assert control reg bit 4 2 Write a logical ’1’ to

one of the control reg
register bit.
deassert__control _reg bit 4 2 Write a logical ’0’ to
one of the control _reg
register bit.

read__cau 5 3 Read TSU’s counter.
load cau 6 4 Write TSU’s counter.

5.5.3 Basic Application Interface

One of the advantages of embedded platforms is that applications can be parti-
tioned in independent modules. The goal of application partitioning is to ensure
that the resources dedicated to a specific task are available and adequate to meet
the timing requirements, while avoiding resource contention. Resource contention
lead to indeterministic temporal behavior in the execution time of applications.
With careful design of application partitioning, resource contention can be greatly
reduced.

To partition the application subtasks, we will follow two well known paradigms
in the area of test and measurement and industrial control, time slicing and arm-
ing [Kopetz (1997)]. The time-slicing paradigm consists on providing a common
time scale to the modules attached to the communication system to start tasks
following a temporal order. On the other hand, arming consists on isolating and
reserving hardware resources so that rapid response to external signals (usually

5.5. SOFTWARE DESIGN 89

called capture triggers) can be achieved. In our platform, these tasks are carried
out by the timers.

synchronization
main code code

int

PPC 405

O |trig.val irgs

'y
1/0 bus

«—> syncpdu
arrival

v ry

1 GMII 1PPS

Figure 5.14: Basic application interface (BAI).

Figure 5.14 shows the basic application interface (BAI), which is a blend of
the OSI layer model and a simplified architecture version of the synchronization
platform seen in Section 5.3.2. BAT illustrates those hardware blocks that directly
interact with the application layer, i.e., TMR1 and TMR2. The timers contain
two logic blocks: a capture block and a timeout block. The first one captures
external events, such as the logic level of a digital signal. The second block
consists on a counter, a trigger value register (¢rig. val) and a comparator. The
application code writes the desired interval time into the trigger value register.
This value is continually compared to the current time of the counter, and when
the two values match, an event signal is generated. This is precisely the task of
the three timers, to trigger interruptions through their int output upon a timeout
or a capture event. The interruptions are centralized and handled in the PPC.
When it detects an interruption, it starts executing a specific software routine.

To associate the hardware event with the software routine, we have considered
the number of possible events of the message exchange pattern (see Chapter 4).
We have two possible capture events, the arrival of a syncPDU and the 1PPS
events coming from the GPS input. As shown in Figure 5.14, these events are

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
90 GIGABIT ETHERNET

wired to the capt input of TMR1 and TMR2, respectively. The other kind of
events that we need to generate depend on the sending of the different syncPDUs
by the node acting as a master (see next subsection). Recalling Figure 4.3 of
Chapter 4, we need to send three different syncPDU types: GATEg;s., GATE
and REGISTER. Thus, we allocate them in TMR1, TMR2 and TMR3, respec-
tively. Table 5.5.3 summarizes the association between the timer events and the
functionality of the program code.

Table 5.8: Association of the software interruption handlers with BAT’s hardware
blocks.

Hardware
resource | Configuration | Interval Purpose
Master | TMRI1 Capture N/A | SyncPDU reception
Timeout TacaTeE | GATE transmission
TMR2 Capture N/A 1PPS event
Timeout Tresyne | GATE csync transmission
TMR3 Timeout Tdise Start of discovery process
Slave TMR1 Capture N/A | SyncPDU reception
TMR2 Capture N/A 1PPS event

5.5.4 Application Functionality

Message Exchange Pattern

The main goal of the application is to measure and to adjust the clock offset
between each pair of clocks of two nodes (master-slave) in order to synchronize
them perfectly. Figure 5.15 shows the timeline of the synchronization message
exchange pattern at different block levels of each node. Compared to the synchro-
nization exchange pattern seen in Figure 4.3.3, this includes the software/logical
variables (stored in the DDR SDRAM) and the internal registers of the TSU. The
inner columns show the instantaneous clock offset between the master and the
slave and viceversa. The mid and outer columns denote which hardware registers
and logical variables are being written during the process. The whole process is
divided into three recursive phases: normal operation, discovery and resynchro-
nize phase. In the normal mode, the master is sending GATE messages which are
replied by the slave under REPORT type messages at intervals given by 7garEg.
The purpose of this phase is to check the clock drift of the slave relative to the
master. If the master detects a specific clock offset due to the clock drift, it
enters into the resynchronization mode to resynchronize the slave. Conversely, if
the accumulated clock offset keeps lower than a maximum threshold value, the
master enters into the discovery mode after a fixed and periodic interval of time
given by 7Tgsc-

The RTD calculation is executed at the discovery phase. The master starts
sending a GAT E4;s. message with its localtime (¢3) and the slave adjusts its lo-

5.5. SOFTWARE DESIGN 91

caltime register with this value. At this timestamp point, the time offset between
the master and the slave is the propagation time, which is the time needed to go
across the two PHYs and the cable (tpr0p=2Xtpgy+tcapie). After the amount
of time given by, twait=tpause gen® +lts tw freeze” the slave replies sending a
REG_REQ type synchronization message with its recently synchronized time
(t4). At this moment the master has the capture register filled with the last
transmitted and received values (see the left-side mid column). After some mi-
croseconds the register values are dumped in the DDR memory and the master
starts the calculation of the RTD applying the equation 5.1. Due to the sym-
metry on the time points along the synchronization path, the second term of
the equation, %4, is equal at both nodes and the master can use its own in-
ternal timing metrics ((tc-tp)-(tp-tc)) to accurately calculate the RTD value
(see Section 5.4.2). The discovery phase ends when the master communicates the
propagation delay, tprop, (RTD>>1) to the slave in a REGISTER type message.
The slave stores tp.o, value in rtt_reg to use it in the next normal operation
phase to accurately synchronize to the master.

RTD

response twait =

t
(tN - tD) - (tpauseigen + ttxitsifreeze)
= (t~v—tp)—(ts—ti) — (tx —)
(tv —tp) — (tc —tg) — (tp — te) (5.1)

Of sum importance is the time interval between the last transmitted GATE,.csync
and the first GATE within the normal operation phase. We denote this interval
as Tops- Tobs Must be selected such that the accumulated offset (due to the fre-
quency drift) during this interval (¢¢-t5) does not affect the clock reading of the
next message, i.e., the GATE send in tg. If 75,5 = tg — t5 is too big, the read
offset will be erroneous. Conversely, if 7,55 value is small enough such that the
accumulated offset does not impair the synchronization accuracy since the last
re-synchronization act. The clock reading in the next GATE message will allow
us to verify whether the Ethernet jitter is bounded or not within the sum of the
jitter of its MAC and PHY layers, i.e., £(epac + €puy)-

3tpause gen corresponds to the time for the MAC to generate a PAUSE frame, which is
equivalent to (t; —t;) in the slave, and (tc — tg) in the master.

e ts freeze corresponds to the time for the TSU to generate the timestamp to transmit,
which lasts from the first PAUSE byte to the 16** syncPDU’s byte. It is equivalent to (tx —t7)
in the slave, or (t{p — ¢¢) in the master.

GIGABIT ETHERNET

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR

92

dozd 3=douady

S oy &y I O,
4y <p—doady

o=doady

o=douady

SIBA M\ S

doad 2
—~doad 12

%37 pus ‘53 pexa

%3738 ba1 x3

x1 pus
‘207 ‘%1 18

o=>doxd 1

801 1S 1,

A.wmmw+u<§

azeay 81 X
(

barx1 dox
1+

7 e, —
4 s s, {1 oM o™ N
Aam_\ﬁrmoab. wﬁwﬁh MJ ,m -1
doxd doad, ¢ L
1- +7
1 ™arvo
o I
{1 1yodTd
dord doxd |
I- H+1
'3 aLvo E
w§.>|_m.-0m,«u—0
W) BO0] swmeoo]
SAR[S 10)SBIN

A A
rﬁw\\\r\\‘*
{1} 1yodTt
3 doady+% e
8 a1vo T,
< Zh paziuoayouss-yui 4
.hOA/ .
Am.—v oimmum—rﬁaimu -
{doady} YHISIOMA B
QT,
- 7

ﬁ>mmw+U<ZmVH

$qo,

azooy SIx),
bor xy, doxd
o

bor ¥y, doxd,
i+

doxd
1

a[qed doxd,
[qE ’n >EA~.NH ']

>Aw.m2uvwvto

doady)—~doxd 3

%1 pus
‘eoy ‘ua 3s

%3 pus ‘57 pex)
%3735 ‘b3 x3

0=>doad 13

'$801 NS,

[<<ary=>doidy

,0« rZ~ LZu

-E”
— R//_};/ S

SIBA M S

NOILLVIHdO
TVINION

suksar,

(G}
HZINOAHONAS
et

)
AJHAOOSIA

AMH<WPV

NOLLVIHdO
TVINION

Figure 5.15: Message exchange pattern.

In the next chapter, we will measure the frequency drift between the master
and slave, and we will accurately select the optimal 7,35 interval. Next, an expla-

nation of the synchronization code functionality follows.

5.5. SOFTWARE DESIGN 93

Master Events

As seen in the message exchange pattern, the master orchestrates the whole
synchronization mechanism with the transmission of syncPDUs. The timer events
that trigger the message transmission are the timeout events (Tgar g, Tresync, Tdisc
and Tops), while the arrivals of syncPDUs and 1PPS events are handled by the
capture modules. Figure 5.16, 5.17 and 5.18 show the software routines executed
by the PPC out upon a timer event. Each routine, except from PPC’s internal
timer, hosts two events, either a timeout or a capture. In Figure 5.16, there are
shown the subtasks of TMR1 routine upon the transmission of a GATE message
and the arrival of a syncPDU. To send a GATE message, the Oper field of the
syncPDU must be loaded with the operand GATE, and then trigger a PAUSE
message. The TSU inserts the Oper field (syncPDU pre-loading) and replaces
the rest of the fields. The distributed timestamps collected when the syncPDU
is being transmitted are also automatically stored in their respective addresses of
the data register block. Under the arrival of a syncPDU, the PPC starts dumping
the data registers into the DDR memory (save TSU registers). Finally, for both
events, the interruption flags are restored.

TMRI1
event

capt/
timeout
event?

capt timeout

syncPDU pre-loading
Oper <= GATE

save TSU registers

Iy Lo I Tps By B 19 <=
tx_req,st_tx,
txed_ts, end_tx,

st_rx,toa, end_rx

trigger PAUSE

Figure 5.16: TMRI1 event handling (Master). GATE message transmission (at
intervals of TgaTg), and syncPDU arrival.

In Figure 5.17 it is shown the software routine of TMR2. The timeout handles
the transmission of a GATE,¢gyn. following a similar process to TMR1. Upon a
1PPS event, the PPC moves the content of one_ pps register to the DDR memory.
The response time of the PPC to read one_ pps register do not affect its value,
as it is stored by the hardware mechanisms within the CAU. The subtasks under
the timeout event are slightly different from the previous figure. Here, the PPC
first stores GATE,¢sync operand in syncPDU’s Oper field and triggers a PAUSE

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
94 GIGABIT ETHERNET

message. Immediately after an interval of 7,5, it issues the transmission of a
GATE message to observe the clock offset.

capt/
timeout
event?

capt timeout

syncPDU pre-loading
Oper <= GATE

save TSU register resync

pps <= one_pps l
‘ trigger PAUSE ‘

l

’ wait Tobs ‘

l

syncPDU pre-loading
Oper <= GATE

l

| trigger PAUSE |

l

‘ restore flag ‘ ‘ restore flag ‘

Figure 5.17: TMR2 event handling (Master). GATE,,,. message transmission
(at intervals of Tesync), and 1PPS events.

The software routine executed in Figure 5.18 is triggered by a PPC’s timeout
event. Its functionality is to start the discovery process with which to calculate the
RTD and the propagation time, and communicating it to the link partner. The
procedure has similar and different subtasks, as in TMR1 and TMR2 subroutines.
Similarities include the syncPDU pre-loading 1 and PAUSE triggering, while the
main difference is on the way the master communicates the propagation time to
the slave (syncPDU pre-loading 2). Here, the TSU is set to offset transmission
mode to inform the slave that the content of Timestamp field is not the master’s
localtime, but the propagation time. Then, before triggering the PAUSE (trigger
PAUSE 2), the Oper and Timestamp fields are pre-loaded with REGISTER
and the propagation time, respectively. The routine also concludes with the
restoration of the interruption flag.

5.5. SOFTWARE DESIGN 95

TMR3
event

timeout

syncPDU pre-loading 1
Oper <= GATE

discovery

trigger PAUSE 1

wait REG_REQ

save TSU registers

Ty oo Iy s By s 1 <=
tx_req,st_tx,
txed ts,end tx,
st_rx,toa, end_rx

RTD, t calculation
prop

1td <= (ty-tp)-(tetp)-(tpte)
tprop <= rtd>>1

syncPDU pre-loading 2

Oper <= REGISTER

off corr_ tx <= tprop

off corr tx mode<=
R

trigger PAUSE 2

Figure 5.18: TMR3 event handling (Master). Start of the discovery process (at
intervals of 7y;sc)-

Slave Events

The role of the slave compared to the master is simpler as their timers have been
configured without the timeout events. Slaves timers detect incoming syncPDUs
and log 1PPS events. In Figure 5.19, it is shown the software routine of TMR1,
which triggers specific instructions depending on the type of received syncPDU.
When the slave detects that the Oper field of the incoming syncPDU contains
either a GATE, csync or & GATE 44, it directly restores the interruption flag and
exits the subroutine. In these two cases, the PPC does not have to interact with
the TSU as the operations are performed automatically by hardware.

When the Oper field contains a GATE operand, the PPC preset the TSU
for a reply using a REPORT message. The PPC first load the Oper field and

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
GIGABIT ETHERNET

96
trigger a PAUSE. Thereafter, it dumps to the external DDR the contents of the
data registers and exits the subroutine after restoring the flag. Lastly, when a
REGISTER is received, the content within the Timestamp field is the propagation
time and it is stored in t_prop register. Finally, the interruption flag is restored

TMR1
event

capt

save TSU register

oper <=oper

)

REGISTER (GATE || GATE

discovery

save TSU register syncPDU pre-loading

t_prop <= tprop oper <= REPORT

trigger PAUSE

save TSU registers

lp: ooy lp By o 1L <5

st_rx,toa,end rx,
txireq, st_tx,
txed ts,end tx

Figure 5.19: TMR1 event handling (Slave).

The subroutine executed by TMR2, in Figure 5.20, is committed to capture
the 1PPS events and store the slave’s localtime value in the DDR memory.

save TSU register

pps <=one_pps

restore flag

Figure 5.20: TMR2 event handling (Slave). Subroutine for storing 1PPS events

5.6. CONCLUSIONS 97

5.5.5 Memory Allocation

The wide range of different memory technologies in today’s FPGAs offers the
possibility to embedded processor designs of optimizing to the limit the execu-
tion speeds of application programs. On the one hand, memory can be located
on the same physical chip as the processor (on-chip) to increase performance. On
the other hand, in order to improve flexibility and accommodate big applications,
designers can opt to attach off-chip memory modules that can vary in size and
speed. Memory situated on the same chip as the processor often has a small ca-
pacity because of limited available chip area. On-chip memories may be sufficient
for small applications, but are rarely large enough to support large applications.

Our FPGA has 64 KByte of BRAM along the die that can be used for storing,
e.g., code portions requiring fast accesses by the microprocessor. The board also
mounts two off-chip kind of memories: 1.152 MByte of ZBT SRAM and 64 MByte
of DDR SDRAM on-board. ZBT SRAM characterizes for supporting 166 to 225
MHz bus operations with zero wait states, i.e., no bus latencies, while the DDR,
SRAM supports bus operations up to 266 MHz with latencies ranging from 1.5
to 3 ns. On top of the memory latency, there is also the latency and jitter added
by the arbitration protocol of the PLB bus, which is variable and depends on
transient occupancy.

For rapid accesses to memory, BRAM memory on-chip is best suited for acco-
modating either the execution instructions within the application program, or the
data that needs to be rapidly accessed. Our FPGA development software tools
reported that the amount of memory needed to host the program application was
60.1 kByte, which is less than the overall BRAM on-chip. Although it may seem
plausible to allocate the program code in the BRAM memory, the FPGA design
tools demand the use of BRAM for logic support in other IP blocks. Therefore,
we are forced to use the external DDR SDRAM to host the program code, data
and temporary data. Under this situation, we face the latency and undetermin-
ism of the PLB bus and the logic devices inside the DDR SDRAM chip. In the
next chapter, we evaluate the effect of these sources of undeterminism on the
synchronization between the TSU’s counter (localtime) and the PPC’s counter.

5.6 Conclusions

In this chapter, we have covered an important part of this Thesis, which is the
implementation of the platform for the evaluation of the time synchronization
accuracy at Layer 2 of Ethernet technology. The approach followed in this Thesis
is to maintain the initial “asynchronicity” of Ethernet, i.e., to keep the low-level
re-synchronization mechanisms of Layer 1 and to accommodate at Layer 2 the
jitter introduced by Layer 1.

To obtain high-precision jitter measurements of Ethernet layers, we have used
a 32-bit digital counter running at 300 MHz, the maximum frequency of this
FPGA model. The timestamps have then a granularity of 3.33 ns. This design
requirement has lead to another design challenge: the presence of circuit por-
tions running at different frequencies and the interaction between them. The

CHAPTER 5. TIME SYNCHRONIZATION IMPLEMENTATION FOR
98 GIGABIT ETHERNET

GMII interface of Gigabit Ethernet interfaces work at 125 MHz, while the CAU’s
localtime frequency is 300 MHz. This frequency mismatch can impact on the
reliability of the timestamps used for the evaluation. The need for a reliable fre-
quency interoperation has lead us to provide another contribution, which is the
introduction of a mechanism that allows to synchronize the three frequencies and
to obtain timestamps reliably.

Another hurdle we have encountered in the design process has been on meeting
the timing requirements. In FPGA design, and in hardware design too, there is a
paradox as far as the timing closure is concerned. On the one hand, less is more,
i.e., the less programmable resources used to implement a function, the less the
routing congestion and the more probability for the FPGA development tools to
successfully map the components and place and route the interconnects. On the
other hand, few used resources can lead to the circuitry to be more dispersed,
long tracks to interconnect them, and thus long transmission delays, less working
frequency and performance. To meet the timing, we have placed and routed
manually those components demanding high frequency, such as the timestamp
counter (localtime).

The last conclusion note regarding to the physical design is on the design
overload. If unnecessary hardware blocks are added, the FPGA tools will likely
not be able to fit them within the programmable resources. Moreover, in the
supposed case that the tools can allocate the design within the programmable
area, it is not sure that the intended functionality of the design is met. For a
successful functionality of the overall platform, a careful study of the application
requirements and the FPGA architecture is needed.

§ 6. E'VALUATION

In this chapter, the architecture presented in Chapter 5 and the synchronization
mechanism proposed in Chapter 4 is evaluated. Since a meaningful evaluation
of a hardware system can only be performed under consideration of the real
platform to be used, a short description of it is presented. Subsequently, the
tests to individually measure the jitter and latency of the MAC and the PHY
will be explained. Special emphasis is put on the time synchronization accuracy
evaluation. The results drawn from this experiment permits us to verify and
meet the main goal in this Thesis. We further evaluate relevant synchronization
components and the conclusions that can be derived thereof. A short summary
of results concludes the chapter.

6.1 Criterias, Methods and Goals

In this Thesis, a pure FPGA-based prototype (synthesis and place and route)
has been chosen as method to evaluate the latency and jitter, and the synchro-
nization achieved at Layer 2. Although designing hardware is a very burdensome
and complex task, pure prototyping is preferrable compared to other evaluation
techniques, e.g. system emulation or pure simulation. A real prototype allows
to recreate the technological limitations surrounding the system incurred in the
real-life devices, especially those related with the physical limitations of the cir-
cuit. For example, the maximum system clock frequency, which influences perfor-
mance by setting a limit on the cycle duration of the program, or the maximum
clock frequency of the TSU counter, which set the granularity of the timestamps.
Physical resource usage is another such case: The exact memory footprint, used
programmable resources, etc, depends on the FPGA used. In order to use the
logic resources efficiently, or even simpler, to fit the hardware functionality into
a specific FPGA, the design has to be synthesized and placed and routed tak-
ing into account the exact architecture and components (FPGA, memory banks,
busses, etc.).

As presented in Section 5, the TSU was designed to fulfill a number of cri-
teria. First and foremost, how close two high-speed remote counters are to each
other after a re-synchronization event. This gives us the level of synchroniza-
tion achieved. To follow this evaluation criteria, the TSU has to provide high
timestamp granularity to be able to measure with enough resolution the jitter
and latency introduced by Ethernet layers. However, the resolution of the times-

99

100 CHAPTER 6. EVALUATION

tamps is limited by the physical resource allocation during the hardware design
process. This fact brings an added uncertainty in the assessment process.

To verify the goal explained in Section 4 at the nanosecond level using low-cost
crystal oscillators, their frequency drift must be taken into account. To under-
stand well the implications of the clock drift on the synchronization evaluation,
consider the nominal drift of a standard crystal oscillator technology which is
known to be around 100 ppm (the worst case possible). Every 1 s, the frequency
deviates 1 us, or in a smaller scale, every 1 ms the frequency deviates 100 ns.
To observe the accumulated error due to clock drift over different intervals, see
Table 6.1. The significance of the error rates impacts on the observations made
on the synchronization accuracy. As we are addressing nanosecond accuracies,
we must provide reliable methods capable to get rid of the influence of the drift.

Table 6.1: Absolute error at different error rates and intervals.

Interval Error rate, PPM
Duration 50 \ 100
1 day 432s | 864 s
1 min 3 ms 6 ms
1ls 50 us 100 ps
1 ms 50 ns 100 ns
0.1 ms 5 ns 10 ns
10 ps 0.5 ns 1 ns
1 ps 0.05 ns | 0.1 ns

We have taken into account all these considerations and, in the next sec-
tions, we propose a set of experiments and methods to correctly assess critical
parameters for time synchronization, such as latency and jitter, with a timestamp
resolution boundary set by the platform technology.

6.2 Evaluation Setup Description

In this section we characterize the overall synchronization platform we have used
for the presented experiments. Before that, we identify key parameters that need
to be addressed and then the measurement results with a proper discussion.

6.2.1 Hardware System

Figure 6.1 illustrates the measurement hardware setup used for the presented
experiments. It consists of two sites equipped with a measurement PC and the
FPGA. Each measurement PC is connected to its respective FPGA through the
JTAG interface and the USB. FPGAs are connected through a 2 meter CAT-5
crossed cable, as well as both PCs (not shown). The station on the left is acting
as a master and the one on the right as a slave. Both FPGAs receive 1 PPS
signal from a GPS receiver [Trimble (2010)] through a 10 meter long cable. Both
TSU’s PIT of each FPGA are connected to one oscilloscope’s channels. Setup and

6.2. EVALUATION SETUP DESCRIPTION 101

measurement recording are controlled from and centralized at the master node.
The station acting as a slave also serves as data repository for the accumulated
data.

GPS
receiver

JTAG L MASTER

TSU
iy E—

1 PPS

I\/
v

Figure 6.1: Synchronization platform setup.

6.2.2 Software System

The software used for evaluating the components consists of:

= FPGA vendor tools, which consist of the software packages to develop appli-
cations with the FPGA embedded platform, both for the hardware portion
(i.e., with HDL language) and the software/application portion (with e.g.,
ANSI C).

= Setup scripts, which are custom instruction executable files centralized and
triggered from the master station. As the FPGA vendor tools run under
Windows operating system, the setup scripts consist on standard batch
scripts. They configure each FPGA with the bitstream configuration, i.e.,
the bitfile for hardware reconfiguration and the executable file that contains
the application for the embedded microprocessor, and setup a text file to
write the stored data of the FPGA memory.

= Statistics and processing scripts, which are custom scripts that process the
ASCII files after each particular evaluation. The ASCII files contain the
time traces of the sync PDUs.

102 CHAPTER 6. EVALUATION

6.3 Synchronization Evaluation Components

This Section is devoted to evaluate different components of synchronization using
the hardware setup. We follow an incremental approach to gradually assess the
components: First, we measure what is the timestamp granularity of both TSUs
and the mutual clock drift between the two boards. Once known, they allow
us to translate the measurements from TSU clock cycles to nanoseconds with
confidence. After that, latency and jitter measurements of the MAC and the
PHY follow. Next, we evaluate the time and phase synchronization accuracy
achieved in a point-to-point configuration and provide reasoning from the results
obtained. We conduct experiments to observe the impact of the latency and
variability of the busses and memory and also compare the robustness of our
timestamping mechanism against reading errors with a system lacking protection
mechanisms.

6.3.1 Clock Frequency and Drift

Knowledge of the frequency of the TSU’s counter is fundamental for many rea-
sons. First, it allows to determine the timestamp granularity in units of seconds,
which is the basic measurement unit to assess the synchronization accuracy, la-
tency and jitter. Second, it permits us to properly setup the software part running
in the microprocessor for the next experiments. To measure each individual fre-
quency, we have used the 1PPS signal of a GPS receiver [Trimble (2010)] and
have wired it directly to the ML403 board headers. Once the GPS receiver is
correctly locked to the satellites, it delivers each second a high stable electrical
signal to the enable input of one_pps event registers of each TSU. one_pps event
register captures the number of clock cycles spanned every second by each TSU.
Table 6.2 the number of clock cycles accumulated by each counter at every second
over an interval of one day. The column on the right shows the number of clock
cycles and the right column the percentage over the whole experiment. The 98%
of the values of the master and the slave accumulate 3x10% clock cycles/s, which
means that they are both running at 300 MHz. The remaining measured percent-
age, <2%, was accumulating 6x 108 clock cycles/s, and thus it is not meaningful.
This small percentage of outliers might be caused by a spurious loss of signal of
the GPS receivers. In such a case, the GPS receiver misses one 1PPS pulse, and
one_pps registers accumulate a number of clock cycles equivalent to 2 seconds.

Table 6.2: Number of clock cycles spanned by one_pps event registers at every
second, and percentage over one day.

No. clock cycles/s | Percentage [%)]

Master 3x108 98.45
6x108 1.55

Slave 3x108 98.17
6x108 1.83

6.3. SYNCHRONIZATION EVALUATION COMPONENTS 103

Another component that strongly impacts on the synchronization accuracy is
the crystal clock drift or the progressive frequency deviation that each counter
suffers from. For us, knowledge of the crystal drift is of most importance as it
will provide a bound of the accumulated frequency offset error in the evaluation
of the time synchronization accuracy. To measure the clock drift, we have used
the same setup for determining the clock frequency and the traces collected at
each station. We have compared and subtracted each 1 PPS event to observe the
mutual drift of the clocks, i.e., slave’s clock drift relative to the master’s. Using
our measurement setup, we do not have means to determine each individual
crystal, but only the mutual clock drift. Figures 6.2a and b show the mutual
clock drift of the master relative to the slave over the period of one day (86400
s) in TSU clock cycles and seconds, respectively. After one day they drift apart
258.8x10% TSU clock cycles. Considering that each clock cycle has a period of
3.33 ns, over the period of 1 day, they drift apart 862 ms, which means a mutual
clock drift of 10 ps/s. The negative slope of the accumulated clock offset reveals
that slave’s oscillator runs faster than master’s. From the Figures 6.2a and b,
we have derived the Table 6.3, which summarizes the accumulated clock offset
due to frequency drift over different time intervals of interest. These values will
allow us to select time intervals in which the accumulated clock offset error is not
significative.

o 10° o
7 258.8 keycles/day 862ms/day =~ 10us/s or 10 ppm
k) —100
& -0.5
5 "= —200
2 E
Q
— o 3
il 27
~ o _
E S —400
15} &
#= —1.5¢ = —500
° £
B 5 —600
= 2
E ~700
3
Q —
2 95 | | | 800 . |

0 5 10 15 20 0 5 10 15 20
a) Real time [hours] b) Real time [hours]

Figure 6.2: Relative clock drift, expressed in TSU clock cycles (a)) and in ms

(b))

104 CHAPTER 6. EVALUATION

Table 6.3: Accumulated clock offset at the rate of 10 ppm.

Interval
Duration | Relative error
1 day 862 ms
1 min 598.6 s
1s 114.4 ps
100 ms 11.4 ps
10 ms 1.14 ps
1 ms 114 ns
100 ps 11.4 ns
10 ps 1.14 ns
5 s 0.57 ns

6.3.2 Timestamping Reliability

As explained in Section 5.4.4, the cross domain clock scenario of the TSU can lead
to erroneous timestamps that can invalidate the evaluation process. To observe
how harmful the metastability phenomenon can be on the timestamps, we have
undergone a very short time synchronization experiment which consist on com-
paring the remote clock offset with and without the flancter-flags'. In absence
of timestamping errors, the remote clock offset should follow a sawtooth shape
bounded in the region between 0 to ~10%* TSU clock cycles (see Section 6.3.4).
In Figure 6.3, it is shown the setup used to evaluate the timestamping reliability.
The pair of distributed timestamps used are tp, at the master, and tg, at the
slave. Although we could use whichever of the pairs of distributed timestamps,
we choose these ones as they correspond to the timestamp carried in the packet
(tp) and time of arrival (¢¢). In this experiment we do not use any background
data to isolate possible sources of additional errors and focus exclusively on the
performance of the protection mechanism.

From the plots in Figure 6.4, we observe that some clock offset values fall
beyond the region close to zero (i.e., the peaks of ’...” blue line). To understand
this situation, consider the timestamp pair number 31, which has a magnitude of
4 x 10° and negative sign. Considering its magnitude and the width of the TSU
counter (32 bits), the erroneous captured bits are within the uppermost nibble
of the counter, i.e., from bit 28 to 31. From the sign, we infer that the wrong
timestamp is tg. Contrarily, non-errored timestamps (in - -’ red line) fall within
the region close to zero.

In this implementation, we were forced to change the architecture of the TSU and the
FPGA design tools reported a TSU counter frequency of less than 300 MHz. However, this
change is not relevant for the evaluation of the timestamping reliability.

6.3. SYNCHRONIZATION EVALUATION COMPONENTS 105

MASTER SLAVE
- - bl Bl < -
cable
uP MAC TSU PHY PHY TSU MAC uP
> > > —p Lo
synchronization
flow
! » »l
I » »|
TSU register txed ts toa TSU register

SW variable ip ‘G SW variable
ti in master t ission timestamps in slave reception

Figure 6.3: Platform setup for testing the timestamping reliability.

-t
x 10° b
1 . : :
o Ot e e
g :
o
2
(5]
a4 —1r
Q9
e
[}
j=)
77
3
& -3t
v
Q
2
@)
—4| = = =non—errored
"""" errored
75 L L L L
0 10 20 30 40 50
Experiments

Figure 6.4: Effect on timestamping reliability with and without flancter-flags.

6.3.3 Internode Jitter

One of the objectives of this Thesis is to measure with the highest precision
as possible the jitter introduced in the synchronization messages by the analog
and digital logic devices within the MAC and the PHY. Actual techniques for
measuring the latency of digital logic imply to have direct access to the pins of
the chip to measure time intervals of interest, e.g., the period of time that lasts
from the rising edge of TX_EN (at the sender) to the rising edge of RX_DV (at the
receiver). These practices require the use of expensive instrumentation, such as
high resolution event counters, and setups valid only in laboratory environments.

In this work, we avoid the use of expensive instrumentation and complex mea-
surement setups. Instead, we use the same platform and the distributed times-
tamp architecture to derive high-precision ingress and egress frame interarrival
times. Next, we explain the conducted experiments to derive the jitter introduced

106 CHAPTER 6. EVALUATION

by each Ethernet layer. Later, we use the results to verify the effectiveness of our
time synchronization mechanism.

MAC latency and jitter measurement

The latency and the jitter introduced by the MAC of the chip is the first com-
ponent to be measured to later verify the synchronization accuracy at Layer 2.
In this experiment, we aim at observing the latency and variability that a MAC
with a time synchronization functionality might need to generate a syncPDU. In
our implementation, the MAC latency corresponds to the time interval needed by
the internal digital logic to generate a PAUSE frame, while its jitter corresponds
to the variation of such time interval. In order to observe the influence of the
internal MAC buffers, we have set different load scenarios and captured the time
series of the different distributed timestamp pairs (see Figure 6.5). Both nodes
are transmitting back-to-back syncPDUs (synchronization flow) with and with-
out background data (data flow). The chosen sizes of the background data are
64 bytes and 1500 bytes. The timestamp pairs that correspond to MAC latency
measurement are (tc,tg), at the master side, and (¢7,t;), at the slave side.

timestamps in master reception timestamps in slave transmission

SW variable 1 t; SW variable
TSU register SLIx tx req TSU register
| MASTER SLAVE
< -]
l - 1
< <
® <+
| -— - -« | (—|
cable
uP MAC TSU PHY PHY TSU MAC uP
—> > > —> >
synchronization
flow
» »|
= »|
I » »
I > »|
data flow
I'SU register tX_req st Ix TSU register
SWvariable ' e SW variable
ti in master ission timestamps in slave reception

Figure 6.5: MAC latency measurement setup.

The experiments consists on sending 200k syncPDUs for each of the three
load scenarios. The statistics of the experiment are summarized in Table 6.4.
From the results, we observe that the latency is well confined over 2 intervals
of 1 TSU clock cycle, or 3.33 ns (the timestamp maximum resolution). The
latency of the MAC to generate a PAUSE control frame is well bounded in the
interval of 38 to 39 TSU clock cycles (126.7 and 130 ns, respectively). From
the Uniform distribution of the intervals, we can deduce that the latency of the
internal mechanisms that generate the control PDU is nearly constant and does
not depend on the load conditions.

6.3. SYNCHRONIZATION EVALUATION COMPONENTS 107

Table 6.4: Latency and jitter measurements of the Xilinx MAC core (expressed
in number of TSU clock cycles, nanoseconds and percentage over 200k samples).

Master (tc-tg) Slave (t.-t;)
latency jitter latency jitter
no load 38,126.67 (50.1%) 1, 3.33 | 38, 126.67 (64.4%) 1, 3.33
39, 130 (49.9%) 39, 130 (35.6%)
w/64B data 38, 126.67 (51.1%) 38, 126.67 (61.7%)
39, 130 (48.9%) 39, 130 (38.3%)
w/1500B data 38, 126.67 (51.9%) 38, 126.67 (62.5%)
39, 130 (48.1%) 39, 130 (37.5%)

PHY latency and jitter measurement

The latency and the jitter introduced by the complex physical layer internal
devices is the last component to be measured. The results from this experi-
ment help us to better granularize and verify the RTD during the time syn-
chronization process (see Section 6.3.4). The ML403 board mounts a Marvell
88E1111 10/100/1000 Mbps tri-speed transceiver that can be configured to work
at whichever of the three speeds. We only conduct the experiments under gigabit
speed.

time trace at reception

SW variable tN
TSU register toa
MASTER / SLAVE
I‘L ™~
I \
\
\
e '
i
RJ-45 i
uP MAC TSU PHY loopback stu> |
i
— i
!
i
7
T -
| syncPDU
SW variable 'Xc[d*‘s
TSU register D

time trace at transmission

Figure 6.6: Platform setup for PHY latency and jitter measurement.

In order to measure the RTD without the influence of the cable delay, we have
manually wired a RJ-45 connector in loopback mode and connected it directly
to the RJ-45 PCB board’s connector (stub). As shown in Figure 6.6, to perform
the RTD measurements we only need one board at a time, the RJ-45 stub and
a special program to trigger back-to-back syncPDUs at periodic intervals. The
stub bounces back the syncPDUs and the synthetic program process the stored
distributed timestamps, i.e., tx and tp at the master (and ¢t and tx at the

108 CHAPTER 6. EVALUATION

slave). Before start sending the syncPDUs, the PHY has to be configured in
“external loopback mode” to avoid its internal logic detecting near end crosstalk
(NEXT) interferences. The program calculates the RTD as the arrival timestamp
minus the sending timestamp, i.e., RT D,4ster = tn — tp in the master, and
RT Dgjgpe = tg — tx in the slave. In this experiment we do not use background
data as it does not influences the PHY processing.

Table 6.5 summarizes the results of the experiment. From the results, we
observe that RTDs are randomly spread over 5 intervals of 1 TSU clock cycle or
3.33 ns. The number of intervals depends on the PHY vendor, model and working
configuration. The round trip jitter (RTJ) added by PHY is 4 TSU clock cycles
or 13.33 ns. The percentages are similar to a Normal distribution, a fact that
induces us to think that the delay and jitter introduced by the internal devices
of the PHY.

Table 6.5: Round trip delay (RTD) and jitter (RTJ) measurements of 88E1111
Marvell’s PHY (expressed in number of TSU clock cycles, nanoseconds and per-
centage over 200k samples).

RTD RTJ
Master Slave Master [Slave
101, 336.67 (0.2%) 101, 336.67 (0.8%) 4,13.33
102, 340 (19.3%) 102, 340 (24%)

103, 343.33 (41.7%) | 103, 343.33 (41.6%)
104, 346.67 (36%) | 104, 346.67 (31.6%)
105, 350 (2.8%) 105, 350 (2.1%)

6.3.4 Phase and Time Synchronization Accuracy

The experiments carried out in this section permit us to verify a major goal of this
Thesis, which is to prove that the optimal time synchronization accuracy at Layer
2 could be within the jitter bounds introduced by Ethernet layers. This objective
is technically viable if an optimal synchronization method is defined. However,
the synchronization accuracy will be likely limited by the physical implementation
of the hardware design.

Before the evaluation of time synchronization, we perform an experiment to
see what is the improvement on the RTD calculation. To evaluate the time
synchronization in a realistic scenario, we will make use of the message exchange
pattern and leverage our distributed timestamp architecture to derive precise
RTD calculations. Moreover, we will conduct a phase synchronization experiment
to further reinforce the benefits of having a time synchronization function in the
MAC. Phase synchronization method characterizes for being independent of the
clock drift.

6.3. SYNCHRONIZATION EVALUATION COMPONENTS 109

Precise Round Trip Delay Calculation

An optimal RTD calculation permits to cancel the fixed term of the propagation
time, and thus to bound the clock offset within the jitter range. As seen in
Section 5.4.2, the processing time for the logic of the receiver to generate a reply
message adds an error to the final RTD value. To cancel this processing time
and to obtain more precise RTD calculations, we have leveraged the distributed
timestamp architecture and have applied Equation 5.1 (see Section 5).

timestamps in master reception timestamps in slave transmission
SW variable o Iv ly Lo L SW variable
TSU register end rx toa strx end (x txed 15 st tx t_req TSU register

MASTER SLAVE

l@
<

f
f
?

cable

uP MAC TSU PHY PHY TSU MAC

uP

synchronization
flow
>

v

Y

v
\\"];--““

TSU register ~ tx_req sttx txed_ts end tx strx toa end_rx TSU register
SW variable 15 e tp o lg SW variable
timestamps in master transmission timestamps in slave reception

Figure 6.7: Platform setup for RTD evaluation.

To observe the refinement on the RTD calculation, we have used the setup of
Figure 6.7 and have configured the master node to send back-to-back GATE 4.
messages. As explained in the previous chapter, GATEy;,. messages are auto-
matically bounced and more precise RTDs can be obtained. The traces with the
distributed timestamps are collected by the master for post-processing. We have
undergone an experiment consisting on a set of 100k samples and evaluated the
Equation 5.1 to observe the improvement on the RTD value. The left column of
Figure 6.8 shows the time series of different parts of Equation 5.1, and on the
right column there are their respective distributions. Subplots a) and b) denote
the RTD calculation without means for compensating the processing time of an
incoming syncPDU (ty —tp). Its mean (p) is 1470.21 ns. Subplots ¢) and d) show
that the error component introduced in the RTD formula, (tc —t5) — (tp — tc),
has a mean of 235.6 ns. Subplots e€) and f) show the achieved improvement on
the RTD calculation when cancelling the error part. From the mean value, we
can well approximate that the latency to go across the stack is ~ % =610
ns. From the “Normal shapes” of the subplots b, d, f, we infer that the jitter
added by digital logic follows a random behavior. The variability obtained here,
3.18 ns< ORrrD,,.. <4.43 ns, is associated with the timestamps triggers, which
is around 1 TSU clock cycle. In other words, the distributed timestamps can be
captured with 1 TSU clock cycle variability.

110 CHAPTER 6. EVALUATION

(tt)
1480 1480
1475 1475]
= 1470 1470
o)
=
& 1465 1465
< -
172
:1470.21 ns
8 ARG GRS O MODNX MO IJ’R coar
1455 1455 Oy 37318
1450 1450
0 5 10 b 0 20 40
2) <10t D)
(g)ty 1)
242 242
240 240 ——
= 238 238
)
5 236 236
5 234 234
g 25 232 .
o~ o o M :235.16 ns
Sprp 3.18 ns
228 228 ar
0 5 10 0 20 40
©) <10t 9
(tyty) () H(t—t)
1240 1240
Z 1230 1230|—
@)
=
& 1220 1220
2
8 ~ u :1221.87 ns
£ 1210 1210 TR
Semn 443 ns
rec
1200 1200
0 5 10 0 20 40
e) Experiments <10t D Percentage [%]

Figure 6.8: RTD calculation. RTD with no internal processing compensation
(a,b)). Internal processing time (RTD error) (c,d)). RTD with internal processing
compensation (e,f)).

Time Synchronization

The method used to evaluate the achieved time synchronization accuracy com-
bines the message exchange pattern defined in EPON (recall Section 4) with
distributed timestamps collected during the message journeys of synchronization
messages. As stated in Section 4.1, our goal is to synchronize with the best ac-
curacy as possible accommodating the jitter introduced by Layers 2 and 1. The
fixed propagation delay value (i.e., the latency) introduced by the intermediate

6.3. SYNCHRONIZATION EVALUATION COMPONENTS 111

layers from the master to the slave is cancelled using the RTD measurements
calculated in the message exchange pattern. The criteria we use to evaluate the
achieved accuracy is to observe how close to zero are the clock offset values of
several distributed timestamp pairs just after the re-sychronization act. To verify
it, we only consider the timestamps of the transmission path, i.e., from tg to tg.
The reason for that is because the reply of the slave after the re-synchronization
is done after some tenths of microseconds, and thus the timestamps from ¢; to
to will have the offset error accumulated during this interval.

timestamps in master reception timestamps in slave transmission
SW variable o Iv oy Lokl L SW variable
TSU register end rx toa strx end 1x wxed s sttx wx_req TSU register

MASTER SLAVE

< -]
= 1
d
.|

f
f
T

cable
uP MAC TSU PHY PHY TSU MAC

uP

synchronization
flow

o
I »

I >

data flow
TSU register ~ t_req sttx tred s end tx strx toa end_rx TSU register
SW variable iy e i 1 e 1 y SW variable
timestamps in master transmission timestamps in slave reception

v

'

v
‘_];_____‘/

]
Ll

Figure 6.9: Setup used for the evaluation of time synchronization.

Figure 6.9 shows the timestamps collected by each TSU during a sync PDU
journey (synchronization flow). The location points of the distributed timestamp
pairs are chosen in the journey trip of a synchronization message in the way that
they keep a symmetry in the ingress and egress paths. The exact triggering
points have been carefully chosen in order to calculate more accurate RTDs. The
variables on the top of Figure 6.9 refer to the software variables assigned by the
software layer that are stored in the SDRAM memory after transmission /recep-
tion. The lower ones map the hardware registers of the TSU.

To observe the clock offset, we substract pairs of symmetric distributed times-

tamps during the normal operation phase of the synchronization messages ex-
change pattern (recall Figure 5.15). In order to correctly assess the achieved
accuracy using the message exchange, we observe the clock offset just after the
re-synchronization act, namely, without the influence of the clock drift. To know
the interval between the re-synchronization and the first message asking to read
the remote counter (7,45), we have used the Table 6.3. According to the table,
the accumulated offset due to the mutual clock drift in an interval of 10 us is
1.14 ns, which is one third of the timestamp granularity. Therefore it is a good
approximation to set 7., = 10 us.
To observe if the control frame generation logic also adds more jitter, we have
executed the message exchange pattern under three different load scenarios (data
flow): no background data (no bg data), with minimum-length data packets
(w/64B pckts) and maximum-length data packets (w/1500B pckts).

112 CHAPTER 6. EVALUATION

t(,‘ - tb'
30
no bg dam_ 64B data 1500B data
_ 20 p,CFJm?bg: —1531ns Mep gapt 7171408 | g (500t ~15.36ms
ﬁ Ot o be' 21.56ns Ocr oap’ 22.5ns Ocp 1500-21-9608
5 10
jdiy
S oL - -
E ~10/—— — —
O f—
20— — —
—30
0 10203040 0 10203040 0O 10 20 30 40
a) ¢
hl
: no bg data 64B data 1500B data
_ 201 MDG no by 728 | | Hpg gap 73908 | [Hpg jsgept 74308
g 0 GDGJmibg:Z .2ns GD(‘LMB: 23.11ns GDGJSOOE: 23.17ns
g f— -
R [- —
S 0 — —
3 —
B —10= — —_—
U 5
—20
-2.5 =30 000 =30
11.3 11.305 1131 0 10 20 0 10203040 O 10203040 O 10 20 30 40
d) e f)
Lot £
0k 30 :‘*“ 000 0 00 0O 30 10 bg data 64B data 1500B data
_) 20 [0 © @ 007 ens 20} Men no by /20MS | | My gupt T7H4NS | Iy g7 75208
2 05 B0 % amABOOH b N O no_bg 23.07ns Opn ga’ 23.62ns Spit_15008° 23.75ns
= 10 10
3 Rkl i e | L - F
&©= I — —
S | 0 0 — —
El ~10 —l0— — —
& 2 TR e R r
=20 Foowa@m Gr bk G —20
® K O* O 230
O K kA0 ORHO
25 =30 -30
113 11.305 11.31 0 10 20 i) 0 10203040 0 10203040 0 10 20 30 40
g) Time [hours] h) Time [hours] Percentage [%0]

Figure 6.10: Evaluation of the synchronization accuracy (24 hour experiments).
a, d, g) Running clock offset (in ~36 s. window). b, e, h) Clock offset series
after the re-synchronization. c, f, i) Distribution of plots b, e, h, for a each load
scenario.

The subplots of the Figure 6.10 provide information about the remote clock
offset in the path from the master to the slave after the re-synchronization act.
The first row refers to the distributed timestamps pair tc and tg, the second row
to tp and tg, and the third row to tg and tg. The first column of subplots shows
the clock offset of the three distributed timestamp pairs over a small interval
window (for better clarity). The sawtooth shape of the clock offset (in the first
column) shows the synchronization process, where each "falling edge” to zero axis
represents a re-synchronization act. Re-synchronization period should exactly be
7.5 s. However, in some cases it is smaller. This can be noted from the “non-
uniformity” of the sawtooth plots. This behavior owes to the fact that, under

6.3. SYNCHRONIZATION EVALUATION COMPONENTS 113

some circumstances, there are multiple timeout event interruptions pending to
be served. The timestamp pairs that cause the falling edges are captured in the
routine executed upon the timeout event of TMR2. As the interruption is not
not immediately served, the handler subroutine starts prematurely in the next
cycle. The sawtooth shape also reveals the clock drift of the slave relative to the
master. Recall the subplot a) of Figure 6.10 and the clock offset values around
11.305 in the x-axis. After 7.5 s, master’s counter is ~22700 TSU clock cycles
behind slave’s, which means 3036 clock cycles per second or 10.2 us/s. This value
perfectly matches with the clock drift obtained in Section 6.3.1.

The second column shows the clock offset of the three timestamps pairs after
the re-synchronization act. The three columns on the right show the distributions
of the second column for each load scenario. Subplots b, e, h show that the
achieved synchronization accuracy for the three load scenarios is confined within
+20 ns region. The histograms of Figures 6.10c, f, i better show the clock offset
distribution in that region. From the “Normal envelope” of the clock offsets, we
deduce that the jitter introduced by the digital logic devices within the PHY and
the MAC is totally random.

For the three load scenarios, the mean (ucr, ppe and prg) and the standard
deviation (o¢r, opg and ogg) of the clock offset is well confined in the interval
from -17.14 ns to -7.14 ns, and 21.56 ns to 23.75 ns, respectively. The precision
attained when using a hardware timestamping scheme is totally independent of
the software load in the time-client node. Of sum importance are the standard
deviations (o’s), as they show that the jitter introduced by the two Ethernet
layers is bounded in the region from 21.56 ns to 23.75 ns. The most relevant
clock offset subplots are 6.10e and f. This timestamp pair (¢p and t¢) represents
the points of the transmitted timestamp at the master node, and the time of
arrival at the slave node, respectively. Their jitter values (6pG no b9, ODG 64B
and opg 15008) utilizing our message exchange pattern are bounded within the
region of 22.2 and 23.17 ns. These values correspond to the sum of the jitter
introduced by the PHY and the MAC of the transmitter and the receiver of a
syncPDU journey plus an unknown amount. Recall Subsection 6.3.3; the jitter
introduced by the MAC was 3.33 ns and the round trip jitter of the physical
layer was 13.33 ns. Those numerical values can be partially used to justify the
jitter of this experiment (i.e., the opg’s). The syncPDUs of re-synchronization
acts follow this path: 1) the MAC of the master (ea snq), 2) the TSU of the
master (e7,sna), 3) the PHY of the master (¢psna), 4) the cable (ecqpie), 5) the
PHY of the slave (¢prcv) and 6) the TSU of the slave (e7,rcv). As the receiving
TSU uses the propagation delay to re-synchronize, we consider that it introduces
the variability of the RTD calculation, and thus er ;.o = 0rTD,,..- Rearranging
these six components and substituting them with numerical values, we obtain
Equation 6.1.

EsyncPDU = EM,snd + €T, snd + EP,snd + Ecable + EP,rcv + ORTDyprec

1333 13.33 (6.1)
=333 +3.33+ = + (~ 0) + —— +4.43 = 2442 ns

114 CHAPTER 6. EVALUATION

The result of Equation 6.1 is nearly the same as the ¢’s in the time synchro-
nization experiment (Figure 6.10), thus confirming the validity of all presented
evaluation methods, time synchronization mechanism and platform architecture.

Phase Synchronization

By definition, the phase synchronization accuracy can be evaluated by comparing
how aligned are the rising (or falling) edges of two electrical signals. To follow
the same principle in our platform, we have purposely introduced in the TSU the
programmable interval timer (PIT). The PIT asserts an electrical pulse of 3.3 volts
once detects that the counter of the T'SU matches a specific value defined by the
user. The timestamp granularity and the width of the TSU’s counter determines
the interval of each pulse, i.e., in our design it is 232x3.33ns=14.316 5. As this
interval is too long for evaluating how close are two pulses, we have introduced
a mask register inside the register block of the TSU (match_rng) to change the
periodicity of the pulses from 14.316 s to 53.33 ns. For this experiment, we have
chosen to generate pulses of a width of 53.33 ns.

MASTER SLAVE

FPGA FPGA

MAC
P

Figure 6.11: Setup the evaluation of time and phase accuracy.

To run the phase synchronization experiment, we have configured our platform
as shown Figure 6.11. For each board, the output of the PIT inside the FPGA is
connected to an external FPGA pin (PHASE SYNC pin), this one to a jumper
of the expansion header on-board (HDR) and each jumper to a channel of the
oscilloscope. The match_wval register is pre-loaded with the pulse interval value
of 0x107AC, needed to generate periodic pulses at the interval of 225 us?. The
synchronization procedure has been slightly changed from the previous section.
In this experiment we want to observe how close the two pulses are to each other
after a re-synchronization event. If the rising edges of the two pulses are aligned,
it means that the master and the slave are perfectly synchronized. To verify
that, we have configured the timeouts of the timers of the platform to perform
RTD calculations less often and re-synchronize more often, i.e., every 1 ms. The
screenshot on the right of the Figure 6.12 shows the aligned pulses coming from
the two boards at us scale. The screenshot on the left of the Figure 6.12 zooms

2 0x107AC clk.cyc. = 67500 clk.cyc.x3.33 ns= 225 us.

6.3. SYNCHRONIZATION EVALUATION COMPONENTS 115

21.56ns< G <23.75n.

B Pl 2
Average
i e i A
H I
H

Averages

O S Tok Tl W T WP OO A
o aisibiREER N i g !
s TR T b I oo
: f e é
i . £ f | ,".“. " interval‘ .
b e Laian ! { Ll '.Eeri()lll
B . ft i 255 4
| MASTER N = Format MASTER i
i |
!

29

SLAVE

00 CHZ 200% M 1000s CH1 /7 120V

2009 T i M gatne
0y S00ms FefB 2.00% 100ns

4 0.00% S00ms RefE 2.00% 100ns

Figure 6.12: Phase error of the synchronized timing signal (right). Re-
synchronization variability (left).

in one of the pair of pulses to observe the accuracy at ns level. From this plot,
it can be seen an overlapping region of ~25 ns (in red). This margin exactly
corresponds to the jitter shown in Figure 6.10e. Those traces that fall out from
this region are the remainings of the oscilloscope after a clock drift interval of 1
ms3. In this experiment we re-synchronize every 1 ms, and thus according to the
table 6.3, the relative clock drift in 1 ms is around 114 ns. Therefore, from that
value we deduce why the screenshot has traces in the region of 100 ns.

6.3.5 Clock Duplicity

Actual synchronization protocols, such as the IEEE 1588 or the upcoming 802.1as,
consist on a software part and a hardware part. The hardware part free the
ingress/egress timestamps from gross latencies and jitter, while the software part
carries out a series of computational complex processes using the timestamps with
which to infer an estimation value to correct the real time. It is precisely on the
transfer of the timestamps from the hardware to the software part where there is a
gross source of variability. Following the same reasoning as the packets travelling
through a network, the timestamps within a node face latencies and jitter of
intermediate elements such as bus arbitration blocks, interruption handler logic,
memory controllers, and so on. When addressing synchronization accuracies of
the order of nanoseconds, these sources of delay and jitter become critical. These
latencies stem from the number of low-level software instructions to perform
register-level transfers, memory transfers and CPU operations.

On this context, the goal of this experiment is to study the impact of software
instructions on the synchronization accuracy between the TSU counter and the
counter within the PPC. We want to know how many TSU clock cycles are
needed to dump the PPC’s counter value to the TSU’s counter (dppc—r1sv),

3To obtain this plot we have set the oscilloscope in “persistence mode”, which superimposes
multiple oscilloscope waveforms on the same view.

116 CHAPTER 6. EVALUATION

and vice versa (drsu—ppc). As explained in Section 5.5, the magnitude of these
latencies is directly related to the number of low-level software instructions needed
to perform read/write operations from/to the TSU’s data register stack (recall
Table 5.7). We can dissect each operation in a series of individual accesses to
the PPC, the DDR memory and the TSU, all them with its associated delay.
Equation 6.2a identifies the delay components in a transfer from the TSU to the
PPC, and Equation 6.2b in the opposite direction. The common terms in the
equations dppr,, and dppr,, correspond to the internal write and read delays
of the DDR chips. Their magnitude is usually at the order of few nanoseconds.
0roAp cav and drpap cau denote the delay of load cau and read_ cau TSU
drivers, respectively. -

drsu—ppc = OREAD CcAU +ODDR,, +ODDR,, +0PPC,, (6.2a)

dppc—T1su = 0ppC,, + ODDR,, +ODDR,y T+ 0LO0AD cAU (6.2b)

We have obtained and annotated the statistics of the timing of the time trans-
fers 100k times using an exerciser loop. In this loop, we are continuously writ-
ing/reading to/from the TSU, depending on which delay we want to measure
(dppc—rsu/drsu—ppc). Once the loop has done all the transfers, we proceed
to average over the 100k samples. In this synthetic program the cache memory of
the processor has been disabled in order to force external DDR SRAM memory
accesses. The obtained metrics are summarized in Table 6.6 and the distribution
functions of both transfers delays are plotted in Figures 6.13a and b. We first
observe that the mean (u) of dppc—rsy is greater than drsy— ppce. This owes
to the fact that the latency of load cau instruction (dpoap cav) is greater than
the latency of read_ cau instruction (0rzap cav) (recall Table 5.7). The delay
and variability introduced by the PPC and the memory is very low compared
to the PLB indeterminism. From the distributions, we observe that the transfer
times are confined within an interval of 20 to 25 TSU clock cycles.

Table 6.6: Number of TSU clock cycles to perform the transfer from CPU’s
counter to TSU’s counter, and vice versa (percentage over 100k samples).

m o | Max. | Min.
dpPC—TSU 1604 | 20 | 1637 | 1534
drsu—pPPC 939 | 25 | 1047 | 892

6.4. SUMMARY OF THE RESULTS 117

60 . T T T T 60
n: 1604 y: 939
c: 20 G: 25
30 Max.: 1637 30 Max.: 1047

Percentage [%]
(5] S
[l <o
Percentage [%]
w -
[l o

[

=
[
(=]

0 : : : : : 0 :
) 1580 1590 1600 1610 1620 1630 1640 850 900 950 1000 1050
a

Latency (SPP s TSU) [TSU clock cycles] b) Latency (3) [TSU clock cycles]

TSU— PPC

Figure 6.13: Distribution of the register transfer delays: PPC to TSU (a)) and
TSU to PPC (b)).

6.4 Summary of the Results

6.4.1 Proposed Methods

In this chapter, we have presented methods to characterize and assess funda-
mental parameters in time sychronization at ns-level. A major problem incurred
when addressing these accuracies is the burden of middleware and architectural
components (e.g., bus arbitration and re-synchronization logic) in terms of the
added latency and jitter, which can smudge completely the evaluation results.
Another added problem is the clock frequency drift. Actual quartz oscillators
suffer from a nominal of drift of a hundred of ppms that can lead to accumulated
error offsets of one thousand of ns per ms, and thus making the evaluation process
useless.

To correctly assess the synchronization parameters without the influence of
these problems, we have described methods based on: 1) distributed timestamp-
ing and 2) programmable internal timer (see Section 6.3.4).

In the first one, we compare pairs of distributed timestamps from one node to
the other. The timestamp pairs are chosen in the journey trip of a synchronization
message in the way that they keep a symmetry in the ingress and egress paths. To
minimize the influence of the accumulated clock offset, we have first characterized
the relative clock drift between the master and the slave (Figure 6.2). Based on
their relative clock drift, we have chosen the interval to read the remote (slave)
clock after the re-synchronization act (7.ps) in such a way that the accumulated
error is not significant (Figure 6.10).

The second method consists on using PITs to completely isolate the clock
drift in the measurement process (Section 6.3.4). Considering an optimal RTD

118 CHAPTER 6. EVALUATION

calculation, after the re-synchronization act, the pulses coming from both nodes
should be perfectly aligned. Using PITs, we can evaluate the phase synchroniza-
tion accuracy visually.

6.4.2 Synchronization Components

We have seen in Section 6.3.2 that the absence of a timestamping protection
mechanism seriously impacts the synchronization between nodes. In a short ex-
periment of 50 s, we obtained ~17 erroneous timestamps, which represents the
34% of the overall data must be discarded. In absence of protection circuitry,
the occurrence of erroneous data is totally random which means that in longer
experiments there would be higher percentages of data that would have to be
discarded. With our protection circuit based on flancters-flags (Section 5.4.4),
we have totally eliminated possible erroneous timestamps.

One of our goals was to design a precise and accurate time synchronization
mechanism with which to synchronize a link optimally. Reusing the message
exchange pattern from EPON and leveraging our distributed timestamp archi-
tecture, we have achieved synchronization accuracies bounded within the jitter
introduced by the hardware logic of Ethernet layers (22.2 ns < opg < 23.17 ns).
These results prove the effectiveness of a simple hardware-based synchronization
method, as well as the precise architecture design.

To verify the jitter results obtained from the synchronization mechanism, we
have conducted experiments to measure the latency and the jitter introduced by
the MAC and the PHY layer individually. The sum of each jitter component
matches with that obtained during the exchange of the messages (Equation 6.1).

§ 7. CONCLUSIONS

The actual trend in synchronization protocols for Ethernet-based networks is to
partition critical functionalities, such as timestamping, and allocate them at hard-
ware layers. Hardware characterizes for its low latency and delay variability, two
parameters that greatly impair synchronization accuracy between nodes. The use
of hardware for timestamping requires to design a specialized node architecture.
As the legacy Ethernet is not standardized with time synchronization, actual
Ethernet solutions that deliver synchronization are propietary approaches that
address specific applications with specific needs in a variety of implementations.
This is especially noticeable in the industrial field and the telecommunications
sector.

On this background, we were motivated to pursue the following goal which is
to prove in a real platform that the achievable sychronization accuracy between
two nodes in a point-to-point, configuration in legacy Ethernet can be bounded
within the delay variability introduced by each Ethernet layer in a timing mes-
sage delivery. As Ethernet is defined to be implemented in the hardware domain,
the jitter introduced by its two layers should be very low and the synchronization
achievable between peers too. Compared to IP-based solutions, time synchro-
nization at Layer 2 only has to accommodate the jitter introduced by its two
hardware layers.

To meet that goal, we have used the time synchronization mechanism used in
EPON [IEEE Std. 802.3 (2005)]. This synchronization mechanism was defined
in Ethernet standard to control the TDMA access of PtMP shared topologies. It
characterizes for its simplicity and its suitability to be implemented in hardware.
Its main functionality is to infer the latency of Ethernet layers from the sender to
the receiver, and use it to cancel the propagation time of synchronization frames
(syncPDU). Ideally, if the propagation time of a syncPDU can be perfectly can-
celled, the synchronization accuracy should be within the jitter limits introduced
by Ethernet layers. For this reason, this Thesis has proposed the concept of a
Layer 2 time synchronization in the Ethernet technology (see Chapter 4).

This Thesis has more contributions. One of them is on the evaluation meth-
ods for ns-level time synchronization evaluation using FPGAs (see Chapter 6).
FPGAs are inherently complex tools that, if not used properly, they may difficult
the process of evaluation. In this work, we have provided a set of alternatives
and guidelines to successfully overcome their limitations and validate correctly
our initial proposal. The procedures and the built knowledge for using these
tools optimally has allowed us to reach another important milestone, which is on

119

120 CHAPTER 7. CONCLUSIONS

the results obtained from evaluation process. To the best of our knowledge, the
synchronization platform implemented in this Thesis is the first one in achieving
synchronization accuracies of few nanoseconds in a point-to-point configuration
using standard FPGAs (see Section 6.3.4). From the results, we have demon-
strated that a time synchronization mechanism fully implemented in the MAC
would greatly benefit those actual and future applications with hard synchroniza-
tion requirements.

An important contribution of this Thesis has been the design of a timestamp
protection mechanism to capture timestamps coming from a high speed counter
(see Section 5.4.4). If the speed at which the counter is summing up ticks is dif-
ferent from the control signal requesting the read of the counter, the timestamp
will be subjected to a potential capture error. Whichever of the 32 bits of the
counter might be misinterpreted as a logic '1’ or ’0’, and vice versa. To prevent
from these errors, we have readopted and modified a circuit called flancter [We-
instein (2000)]. Besides protecting the timestamp against metastability errors,
our proposed protection mechanism characterizes for its reusability with other
architectures and frequencies.

We have provided another important contribution after a detailed study of
the the most prominent standard for time synchronization, the PTP [IEEE Std.
1588 (2008)]. PTP standard recommends the use of hardware for critical protocol
functions, such as the timestamping, and the software for other more complex
functions, e.g., timestamp processing. On this definition there is a limitation that
depends on the internal architecture of computing platforms, which is the latency
that introduces the software. At ns-scale, the software intervention hampers the
synchronization accuracy notably. Timestamps with a resolution of few nanosec-
onds can be completely buried in the noise margin introduced by the software
jitter. Considering this architectural limitation, we have studied the time burden
of software on the synchronization accuracy (see Section 6.3.5).

7.1 Lessons Learned

We have drawn remarkable conclusions and observations along the work and the
results from this Thesis:

= On the jitter. Jitter can be defined differently depending of the context
and the level of abstraction. In digital electronics, it can be defined as the
deviations in a clocks output transition from their ideal positions. In com-
puter systems, the jitter is associated to the operating system interference,
caused primarily due to scheduling of daemon processes and handling of
asynchronous events such as interrupts. In the context of networks, it is de-
fined as the variation in packet transit delay caused by queuing, contention
and serialization effects on the path through the network.

In the context of networks, jitter is better understood if the layered model
is used. It raises from the deviations in the clocks output transition, at
the physical level. To reconcile clock transitions between blocks, resynchro-

7.1

LESSONS LEARNED 121

nization mechanisms are used in the hardware datapaths which add more
variability. As the messages go across the layers, the interaction of the soft-
ware with the hardware becomes bigger, and thus the accumulated jitter
too.

On the state of the art. In the field of telecommunications, packet-based
transportation is the foundation of future networks. The network transi-
tion from TDM-based equipment to packet technologies, such as Ethernet,
started many years ago and is gradually migrating to access and metro net-
works. Todays networks are a hybrid mix of circuit and packet technologies
particularly in the access and metro layers. There is a constant effort of
several silicon manufacturers and standard bodies to provide rules for in-
teroperability and coexistence of technologies in this migration process.

There is a clear consensus among main Tier telecommunication operators
and standard bodies that the preferred solution for delivering time and
frequency synchronization in Ethernet-based networks is the PTP. PTP
has become the the facto standard for delivering synchronization in a wide
variety of applications and geographical distances. Actual PTP applica-
tions range from test and measurement [The LXI Consortium (2010)], in-
dustrial automation [EPSG (2010), Profibus (2010), ODVA, Inc. (2010),
EtherCAT (2010)], residential networks [P802.1as (2008)] and telecommu-
nications [Metro Ethernet Forum (2010)]. Among all these bunch of areas
of application, it is clear that a unique definition of Ethernet is not possible
anymore. PTP has been specifically designed to synchronize a wide range
of distributed applications with an accuracy of less than one microsecond.

On the Layer 2 time synchronization model. Pure Layer 2 imple-
mentations of the prominent PTP protocol have been requested in several
areas, especially in the industrial field. A pure Layer 2 model would enable
easier silicon-based solutions and more efficient switch technology. Time
synchronization at Layer 2 has only to accommodate the jitter introduced
by Ethernet layers, which is much smaller compared to other approaches
based on upper layers, e.g., IP-based solutions. Despite of the advantages of
a pure Layer 2 synchronization approach, there is a clear direction towards
IP-networking. IP networks are easier to manage and do not suffer from
well-known scalability problems of pure Layer 2 networks.

The last version of PTP protocol has included a new normative to deliver
PTP services through IEEE 802.3 data frames [IEEE Std. 1588 (2008)].
This new definition is specifically tailored for small networks targeting ex-
treme accuracies of the level of tenths of nanoseconds. This new definition
opens a niche for those applications leveraging a "Layer 2 PTP” implemen-
tation.

On the hardware design. When designing with hardware, the correct
functionality and the veracity of the measured data strongly depends on the
correct allocation of the hardware components along the programmable die

122

CHAPTER 7. CONCLUSIONS

during the hardware design phase. Physical allocation of hardware blocks
within the chip is a time-consuming process but crucial in FPGA designs.
In the FPGA world, keeping the simplicity is a must and thus Adding
unecessary extra components, may likely lead a system to misfunction. If
not, the implementation time of the FPGA development tools will increase
dramatically. When designing with hardware, less is more.

On the design reliability. Besides the internal platform delays, there
is the added challenge of ensuring that the information is reliable. Digital
systems with more than one clock signal are prone to render errorenous
results due to the interactivity between blocks that run at different fre-
quencies. For a reliable information exchange, the blocks would need to be
synchronous, i.e., to be paced by a single clock signal. Those designs that
are forced to be asynchronous, as it is the case of the work presented in
this Thesis, need to be provided with a synchronization mechanism that
reconciles the disparity of clock frequencies.

On the development tools. FPGAs are provided with a bunch of devel-
opment tools (EDA) that are implemented by software engineers who are
human. Sometimes they make mistakes, or pick sub-optimal data struc-
tures or algorithms which produces correct but inefficient results for a cer-
tain class of circuits. EDA tools have a mixture of innovations in both
algorithms and the development of heuristics. Heuristics frequently give a
fast near-optimal solutions to computationally intractable problems. The
reasoning is “good enough and fast is better than perfect and never”. Place-
ment and routing are areas where complex heuristics have been developed
over the years. However, they are not universally applicable and, in some
designs, they may render poorly conditioned data that often result in slow
execution times and poor results. In the situations where efficiency suffers,
users are required to make tradeoffs. Fortunately, the implementation limi-
tations are generally minimized over the time by the same EDA companies
through post-releases, service packs and new software versions.

On the node architecture for tight clock synchronization. As long
as Moore’s law validity remains, computer architectures will continue evolv-
ing as in the last three decades. PC’s architecture trend is to overprovision
the architecture in terms of speed, storage capacity and parallelization.
While in the general processing model, the primary time constraints are
throughput or execution time, for synchronization applications and time-
based architectures time determinism is a primary concern. To address ns-
level synchronization, the architecture has to be redesigned in such a way
that it can execute operations deterministically. As shown in Chapter 6,
the latency and the variability added by the internal components (inter-
mediate memories, busses, re-synchronization and arbitration circuits, etc)
impair the synchronization accuracy. In [Lee (2005)], there is an interesting
discussion about how computer science has abstracted away the notion of
time, and that a shift towards redesigning computer architectures to deliver

7.2. FUTURE DIRECTIONS 123

precisely timed behaviors would benefit those applications with hard timing
requirements.

7.2 Future Directions

One of the requirements in the design of our hardware block was to provide re-
usability in order to port the design to other platforms. With this intention in
mind, our future research points toward proving the “synchronization scalability”
in a bridged Ethernet environment. In Section 6.3.4, we found that the practical
jitter (op¢) introduced by Ethernet layers could be within 22.2 ns and 23.17 ns.
Considering an optimal time synchronization mechanism for a bridged Ethernet
scenario, we should obtain synchronization accuracies within the bounds given
by the jitter introduced by each bridge port of the synchronization path. How-
ever, this would require to cancel the fixed part of the propagation time in the
destination node, and provide bridges with hardware timestamping and logic to
compensate the residence time of the packets within the same bridge. Figure 7.1
better illustrates this hypothesis.

Node / Bridge / Bridge n Node j

xX be MAC (L2)
C weay [SMAC+ EI\JACJrl e €} JS\{AC+ — Baac* Sy

MAC (L2)
T

d

LA .
Mac %y I

PHY (L) | by

‘PHY(LI‘) ‘PHY(L]) ey ey ‘PHY(LI)‘ ‘PHY(L])‘ oury PHY (L1)
Pl 2| [p1 P2

IT

-T <
rov ™ Lend S i

Figure 7.1: Theoretical synchronization accuracy in a bridged Ethernet scenario.

The synchronization accuracy between two nodes, i and j, separated by n
bridges nodes, should be given by the sum of the jitter introduced by each Eth-
ernet, stack of the bridges, i.e.,

n+1

Etot = Z EmMAC tEpHY (7.1)
k=1

For instance, in a pure Layer 2 wide area network with 10 bridges the syn-
chronization accuracy between two nodes should be ~260 ns, according to Equa-
tion 7.1 and using our measured values. To prove the synchronization scalability
and these hypotheses, we must shift to another platform. Our platform has sev-
eral important limitations that slow down the process of extending Ethernet with
new capabilities. The most restrictive is the MAC inaccessibility that imposes us
to create a shim, i.e. the TSU, closely adhered at its interface. Another limitation
is the number of Ethernet ports which is restricting us to work in a point-to-point
configuration and thus blurring the applicability of our method in multihop net-
works. For these reasons, we are also working on the migration of our synchro-
nization functionalities in the NetFPGA platform [NetFPGA (2009)], which is a

124 CHAPTER 7. CONCLUSIONS

4-port PCI-based card that enables rapid development of HW-accelerated packet
processing applications. An opensource standard compliant MAC for NetFPGA
is going to be released soon. This would facilitate the integration of our extensions
to be tested in a multihop bridged network.

BIBLIOGRAPHY

3GPP2 (2010). 3rd Generation Partnership Project 2. http://www.3gpp2.org/.

802.1as WG (2010). 802.1AS - Timing and Synchronization.
http://www.ieee802.org/1/pages/802.1as.html.

Anceaume, E. & Puaut, I. (1997). A Taxonomy of Clock Synchronization Algo-
rithms. Technical report, IRISA, No. 1103.

Anceaume, E. & Puaut, I. (1998). Performance Evaluation of Clock Synchroniza-
tion Algorithms. Technical report, IRISA, No. 3526.

Arlos, P. & Fiedler, M. (2005). A Comparison of Measurement Accuracy for DAG,
Tcpdump and Windump. Technical report, Blekinge Institute of Technology,
Karlskrona, Sweden.

Arlos, P. & Fiedler, M. (2007). A Method to Estimate the Timestamp Accuracy
of Measurement Hardware and Software Tools. In PAM’07: Proceedings of the
8th International Conference on Passive and Active Network Measurement, pp.
197-206. Springer-Verlag, Berlin, Heidelberg.

Aweya, J., Montuno, D. Y., Ouellette, M., & Felske, K. (2006). Clock Synchro-
nization using a Linear Process Model. Int. Journal Network Management,
16(1):3-28.

Aweya, J., Montuno, D. Y., Ouellette, M., & Felske, K. (2007). Clock Synchro-
nization for Packet Networks using a Weighted Least-Squares Error Filtering
Technique and Enabling Circuit Emulation Service: Research Articles. Int.
Journal Communications Systems, 20(6):669-694.

Bregni, S. (2002). Synchronization of Digital Telecommunications Networks. John
Wiley & Sons, Inc., New York, NY, USA.

Brown, S. & Rose, J. (1996). FPGA and CPLD Architectures: A Tutorial. IEEE
Design Test of Computers, 13(2):42-57.

Chiruvolu, G., Ge, A., Elie-Dit-Cosaque, D.; Ali, M., & Rouyer, J. (2004). Issues

and Approaches on Extending Ethernet Beyond LANs. IEEE Communications
Magazine, 42(3):80-86.

125

126 BIBLIOGRAPHY

Cisco Systems, Inc. (2010). Synchronous FEthernet: Achieving High-
Quality Frequency Distribution in Ethernet NGNs. Available from:
http://www.cisco.com/.

Clouston, B., Systems, C., & Moore, B. (1998). Definitions of Managed Objects
for APPN. Network Working Group Request for Comments: 2455.

Decotignie, J.-D. (2005). Ethernet-Based Real-Time and Industrial Communica-
tions. Proceedings of the IEEE, 93(6):1102-1117.

Dietz, A. M., Ellis, S. C., & Starmer, F. C. (1995). Clock Instability and Its
Effect on Time Intervals in Performance Studies. Technical report, Durham,
NC, USA.

Donnelly, S. (2002). High Precision Timing in Passive Measurements of Data
Networks. Doctoral Thesis, The University of Waikato.

Eidson, J. C. (2006). Measurement, Control, and Communication Using IEEE
1588 (Advances in Industrial Control). Springer-Verlag New York, Inc., Secau-
cus, NJ, USA.

Endace (2009). DAG 4.5G2/G4 2/4 Port Network Monitoring Card.
http://www.endace.com.

EPSG (2010). Ethernet Powerlink. http://www.ethernet-powerlink.com/.

ETH - Microelectronics Design center (2010). ASIC Cost Estimator.
http://www.dz.ee.ethz.ch/?id=1592.

EtherCAT (2010). Ethernet for Control Automation Technology.
http://www.ethercat.org/.

Garner, G. (2007). Ethernet QoS, Timing and Synchronization Require-
ments. Joint ITU-T/IEEE Workshop on Carrier-class Ethernet. Available
from: hitp://www.itu.int/ITU-T /worksem/cce/programme.html.

Holler, R., Horauer, M., Gridling, G., Kerd, N., Schmid, U., & Schossmaier, K.
(2002). SynUTC - High Precision Time Synchronization over Ethernet Net-
works. In Proceedings of the 8th Workshop on Electronics for LHC Experiments.

Hough, H. (1991). A GPS Precise Timing Sampler. GPS World, pp. 33-36.

IEEE Std. 1588 (2002). IEEE Std. 1588 - 2002 IEEE Standard for a Precision
Clock Synchronization Protocol for Networked Measurement and Control Sys-
tems. IEEE Std. 1588-2002, pp. i—144.

IEEE Std. 1588 (2008). IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems. IEEFE Std. 1588-
2008, pp. c1-269.

BIBLIOGRAPHY 127

IEEE Std. 802.3 (1998). IEEE Standard for Information Technology - Telecommu-
nications and Information Exchange Between Systems - Local and Metropoli-
tan Area Networks - Specific Requirements. Part 3: Carrier Sense Multiple
Access With Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications. IEEFE Std. 802.3, 1998 Edition, p. i.

IEEE Std. 802.3 (2002). IEEE Standard for Information Technology—
Telecommunications and Information Exchange Between Systems—Local and
Metropolitan Area Networks—Specific Requirements Part 3: Carrier Sense Mul-
tiple Access with Collision Detection (CSMA /CD) Access Method and Physical
Layer Specifications. IEEE Std. 802.3-2002, pp. 1-790.

IEEE Std. 802.3 (2005). IEEE Standard for Information Technology—
Telecommunications and Information Exchange Between Systems—Local and
Metropolitan Area Networks—Specific Requirements Part 3: Carrier Sense Mul-
tiple Access with Collision Detection (CSMA /CD) Access Method and Physical
Layer Specifications. IEEE Std. 802.3-2005, pp. 1-790.

IETF-TICTOC (2010). Timing over IP Connection and Transfer of Clock (TIC-
TOC). https://datatracker.ietf.org/wg/tictoc/.

Infonetics Research (2009). Infonetics research. http://www.infonetics.com/.
IPerf (2010). Iperf. http://dast.nlanr.net/Projects/Iperf.

ISO 8601:2004 (2004). Data Elements and Interchange Formats-Information
Interchange—Representation of Dates and Times. International Organization
for Standardization, Geneva.

ITU-T G.781 (1999). International Telecommunication Union, Telecommunica-
tion Standardization Sector (ITU-T), 1999. ITU-T. G.781: Transmission Sys-
tems and Media, Digital Systems and Networks.

ITU-T G.810 (1996). International Telecommunication Union, Telecommunica-
tion Standardization Sector (ITU-T), 1996. ITU-T. G.810: Definitions and
Terminology for Synchronization Networks.

ITU-T G.823 (2000). International Telecommunication Union, Telecommuni-
cation Standardization Sector (ITU-T), 2000. ITU-T. G.823: The Control of
Jitter and Wander within Digital Networks which are based on the 2048 kbit/s.

ITU-T G.8261 (2008). International Telecommunication Union, Telecommuni-
cation Standardization Sector (ITU-T), 2008. ITU-T. G.8261: Timing and
Synchronization Aspects in Packet Networks.

ITU-T G.8262 (2007). International Telecommunication Union, Telecommunica-
tion Standardization Sector (ITU-T), 2007. ITU-T. G.8262: Timing Charac-
teristics of Synchronous Ethernet Equipment Slave Clock (EEC).

128 BIBLIOGRAPHY

ITU-T G.8264 (2007). International Telecommunication Union, Telecommuni-
cation Standardization Sector (ITU-T), 2007. ITU-T. G.8264: Distribution of
Timing Information Through Packet Networks.

ITU-T Q13/15 SG (2008). Question 13/15 network synchronization and time dis-
tribution performance. http://www.itu.int/ITU-T /studygroups/com15/sgl5-
q13.html.

ITU-T Y.1731 (2006). International Telecommunication Union, Telecommunica-
tion Standardization Sector (ITU-T), 2006. ITU-T. Y.1731: OAM Functions
and Mechansims for Ethernet based Networks. Blue Book.

J. Stephenson (Altera, Corp.) (2009). Don’t let metastability cause problems in
your fpga-based design. http://www.pldesignline.com/220300400.

Kim, C., Caesar, M., & Rexford, J. (2008). Floodless in Seattle: A Scalable
Ethernet Architecture for Large Enterprises. In SIGCOMM’08: Proceedings
of the ACM SIGCOMM 2008 Conference on Data Communication, pp. 3—14.
ACM, New York, NY, USA.

Kim, C. & Rexford, J. (2007). Revisiting Ethernet: Plug-and-Play Made Scalable
and Efficient. In 15th IEEE Workshop on Local Metropolitan Area Networks,
2007. LANMAN 2007, pp- 163-169.

Kopetz, H. (1997). Real-Time Systems: Design Principles for Distributed Em-
bedded Applications. Kluwer, Boston.

Kopetz, H. & Ochsenreiter, W. (1987). Clock Synchronization in Distributed
Real-Time Systems. IEEE Transactions on Computers, 36(8):933-940.

Kramer, G. & Pesavento, G. (2002). Ethernet Passive Optical Network (EPON):
Building a Next-Generation Optical Access Network. IEEE Communications
Magazine, 40(2):66-73.

Kutschera, C., Veigl, C., Holler, R., Rossler, P., Ker6, N., Weiss, C., Groblinger,
A., Muhr, H., & Cadek, G. (2009). Background IEEE 1588 Clock Synchroniza-
tion over IEEE 802.3/Ethernet. In 3rd International Conference on Testbeds
and Research Infrastructure for the Development of Networks and Communi-
ties, 2008. TridentCom 2008, pp. 1-10.

Lee, E. A. (2005). Absolutely Positively on Time: What Would It Take? Com-
puter, 38(7):85-87.

Liskov, B. (1993). Practical Uses of Synchronized Clocks in Distributed Systems.
Distributed Computing, 6(4):211-219.

Lombardi, M., Heavner, T., & Jefferts, S. (2007). NIST Primary Frequency
Standards and The Realization of The SI Second. Journal of Measurement
Science, 4:74.

BIBLIOGRAPHY 129

Marzullo, K. & Owicki, S. (1983). Maintaining the Time in a Distributed Sys-
tem. In Proceedings of the Second Symposium on Principles of Distributed
Computing, pp. 295-305. ACM SIGPLAN/SIGOPS.

Maxim Integrated Products Inc. (2010). DS3104 — Line Card Timing IC with
Synchronous Ethernet Support . Available from: http://www.maxim-ic.com/.

Merriam-Webster, Inc. (2010). Merriam-Webster Online Dictionary.
http://www.merriam-webster.com /dictionary/.

Messerschmitt, D. G. (1990). Synchronization in Digital System Design. IEEE
Journal on Selected Areas in Communications, 8(8):1404-1419.

Metro Ethernet Forum (2010). Metro Ethernet Forum.
http://metroethernetforum.org,/.

Micheel, J., Donnelly, S., & Graham, I. (2001). Precision timestamping of Net-
work Packets. In IMW ’01: Proceedings of the 1st ACM SIGCOMM Workshop
on Internet Measurement, pp. 273-277.

Microsistemes Timing & Synchronization Solutions (2010). The IRIGB Web Site.
http://irigh.com/.

Mills, D. L. (1991). Internet Time Synchronization: The Network Time Protocol.
IEEFE Transactions on Commmunications, 39(10):1482-1493.

Mills, D. L. (1992a). A Computer-Controller Loran-C Receiver for Precision
Timekeeping. Technical report, Electrical Engineering Department Report,
University of Delaware.

Mills, D. L. (1992b). Network Time Protocol (version 3) Specification and Im-
plementation. Network Working Group Request for Comments: 1305.

Mills, D. L. (1994). Unix Kernel Modifications for Precision Time Synchroniza-
tion. Electrical Engineering Department, University of Delaware. Technical
report.

Mills, D. L. (1995). Improved Algorithms for Synchronizing Computer Network
Clocks. IEEE/ACM Transactions on Networking, (3):245-254.

Mills, D. L. (2006a). Computer Network Time Synchronization: the Network
Time Protocol. CRC Press.

Mills, D. L. (2006b). Network Time Protocol Version 4 Reference and Implemen-
tation Guide.

Miiller, T., Ockert, A., & Weibel, H. (2004). PHYs and Symmetrical Propagation
Delay. In Proceedings of the 2004 IEEE 1588 Conference - NIST Technical
Report NISTIR 7192.

130 BIBLIOGRAPHY

Myers, A., Ng, T. E., & Zhang, H. (2004). Rethinking the Service Model: Scaling
Ethernet to a Million Nodes.

National Institute of Standards and Technology (NIST) (2010). IEEE 1588 Web-
site. http://ieee1588.nist.gov/.

NetFPGA (2009). NetFPGA. http://www.netfpga.org.

Nguyen, T. T. (2007). Evaluating Timestamping Accuracy for ASUS P5LD2-VM
Motherboard with Intel NICs. Technical Report 070228F, Swinburne Univer-
sity of Technology.

Nicolau, C., Sala, D., & Canto, E. (2009). Clock Duplicity for High-Precision
Timestamping in Gigabit Ethernet. In International Conference on Field Pro-
grammable Logic and Applications, 2009. FPL 2009., pp. 379-384.

NTP (2010). NTP: The Network Time Protocol. http://www.ntp.org.

Nylund, S. & Holmeide, O. (2005). IEEE 1588 Ethernet Switch Transparency-No
Need for Boundary Clocks! Unpublished.

ODVA, Inc. (2010). ODVA. http://www.odva.org/.

Oregano Systems - Design & Consulting Ltd. (2009). Synl588 layer 2.
http://www.oregano.at.

P802.1as (2008). IEEE Draft Standard for Local and Metropolitan Area
Networks—Timing and Synchronization for Time-Sensitive Applications in
Bridged Local Area Networks. IEEE Unapproved Draft Std P802.1AS/D2.0
Feb 2008, pp. —

Pasztor, A. & Veitch, D. (2002). PC Based Precision Timing Without GPS. In
SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, pp. 1-10.
ACM, New York, NY, USA.

Paxson, V. (1998). On Calibrating Measurements of Packet Transit Times. SIG-
METRICS Perform. Eval. Rev., 26(1):11-21.

Postel, J. (1981). Internet Control Message Protocol (ICMP). Network Working
Group Request for Comments: 792.

Postel, J. & Harrenstien, K. (1983). Time Protocol. Network Working Group
Request for Comments: 868.

Profibus (2010). Profibus - Profinet. http://www.profibus.com/.

Ramanathan, P.,; Shin, K. G., & Butler, R. W. (1990). Fault-Tolerant Clock
Synchronization in Distributed Systems. Computer, 23(10):33-42.

BIBLIOGRAPHY 131

Reina, M. (2010). Operationalizing A Control Plane Network. Conference on Op-
tical Fiber Communication (OFC), collocated National Fiber Optic Engineers
Conference (OFC/NFOEC), pp. 1-22.

Ridoux, J. & Veitch, D. (2007). A Methodology for Clock Benchmarking. In
3rd International Conference on Testbeds and Research Infrastructure for the
Development of Networks and Communities, 2007. TridentCom 2007, pp. 1-10.

Ridoux, J. & Veitch, D. (2009). Ten Microseconds Over LAN, for Free (Extended).
IEEE Transactions on Instrumentation and Measurement, 58(6):1841-1848.

Schmid, U., Horauer, M., & Kerd, N. (1999). How to Distribute GPS—time over
COTS-based LANs. In Proceedings of the 31th IEEE Precise Time and Time
Interval Systems and Application Meeting (PTTI’99), Dana Point, California.

Schneider, F. B. (1987). Understanding Protocols for Byzantine Clock Synchro-
nization. Technical report, Ithaca, NY, USA.

Sexton, M. & Reid, A. (1997). Broadband Networking: ATM, SDH and SONET.
Artech House.

Spirent Communications (2010). Smartbits. http://www.spirent.com /Solutions-
Directory/Smartbits.aspx.

Symmetricom (2010). Passive Optical Networks.
http://www.symmetricom.com/.

Tepdump (2010). Tepdump/Libpceap. http://www.tcpdump.org)/.

Teener, M. J., Battaglia, J., A., B., Ryu, E. H., & Kim, Y. (March 2005). Resi-
dential Ethernet Tutorial. Available from: http://ieee802.0rg/3/.

The LXI Consortium (2010). LAN extensions for Instrumentation (LXI).
http://www.Ixistandard.org/.

Trimble (2010). Trimble Timing & Synchronization.
http://www.trimble.com /timing/.

Troxel, G. D. (1994). Time Surveying: Clock Synchronization over Packet Net-
works. Doctoral Thesis, Massachusetts Institute of Technology.

U.S. Naval Observatory (1999). USNO NAVSTAR Global Positioning System.
http://tycho.usno.navy.mil /gpsinfo.html.

Wac, K., Arlos, P., Fiedler, M., Chevul, S., Isaksson, L., & Bults, R. (2007). Accu-
racy Evaluation of Application-Level Performance Measurements. In Proceed-
ings of 3rd Conference on Next Generation Internet Networks, 2007. EuroNGI
2007, pp- 1-5.

WAND - Network Research Group (2010). Wand - network research group home-
page. http://www.wand.net.nz/.

132 BIBLIOGRAPHY

Weinstein, R. (2000). "The Flancter". http://www.floobydust.com/flancter/.

Whatcott, R. (Xilinx, Inc.) (2009). Timing Closure 6.1i (WP331). Available from:
http://www.xilinx.com.

WinPcap (2010). WinPcap: The Windows Packet Capture Library.
http://www.winpcap.org/.

Xilinx, Inc. (2006). ML401/ML402/ML403 Evaluation Platform User Guide
(ug080 v2.5).

Xilinx, Inc. (2007a). PowerPC 405 Processor Block Reference Guide. Embedded
Development Kit (ug018 v2.2).

Xilinx, Inc. (2007b). Virtex-4 Embedded Tri-Mode Ethernet MAC User Guide
(ug074 v1.6).

Xilinx, Inc. (2008). Virtex-4 FPGA User Guide (ug070 v2.6).

Zarlink Semiconductor Inc. (2010). Timing & Synchronization — Packet Network
Timing. http://www.zarlink.com /zarlink /hs/timing PacketNetworks.htm.

Zhou, Z., Cong, L., Lu, G., Deng, B., & Li, X. (2010). HATS: High Accuracy
Timestamping System Based on NetFPGA. In Advances in Computer Science
and Information Technology, pp. 183-195. Springer-Verlag, Berlin, Heidelberg.

	Contents
	List of Figures
	List of Tables
	Introduction
	The Need for Synchronization in Ethernet
	Synchronization Provisioning for IEEE 802.3 Ethernet
	Technical Approach
	Summary of Contributions
	Outline of the Thesis

	Timing and Synchronization in Networks
	What is Synchronization?
	Different Meanings, Different Abstractions
	What Is A Clock?
	Why Do We Need Synchronization?
	Time, Phase and Frequency Synchronization
	Timing Between Signals and Systems

	Synchronization in Networks
	Synchronous and Asynchronous Networks
	Actual Synchronization in IEEE 802.3
	Time Synchronization Protocols
	Delay, Jitter and Timestamping
	Synchronization Algorithms

	High-Performance Computing Platforms
	Platform Technologies
	FPGA-based Embedded Platforms
	Hardware/Software Co-design
	The Cost of Hardware Design

	State of the Art of Synchronization in Ethernet-based Networks
	Introduction
	Protocols
	Pure Hardware Approaches
	Pure Software Approaches
	Hybrid Hardware/Software Approaches
	Specific Needs, Specific Applications

	Timestamping in Ethernet-based Networks
	Error Sources
	Methods for Timestamp Accuracy Measurement and Error Prevention

	Conclusions

	Design of an Evaluation Platform
	Delay Components in Timing Message Delivery
	Goals and Approach
	Layer 2 Network Model
	The Control Plane
	Point to Point Layer 2 Architecture
	Synchronization Mechanism
	Protocol Data Units
	Operation of the prototype

	Conclusions

	Time Synchronization Implementation for Gigabit Ethernet
	Objectives and Requirements
	A Low-Cost Platform FPGA
	Platform Overview
	FPGA Overview
	Limitations and Challenges

	Hardware Design
	Architectural Adaptations
	Synchronization Platform
	Message Handling
	Platform Functionality

	Timestamping Unit
	Requirements and Functionalities
	Distributed Timestamping
	TSU Architecture Description
	Hardware Design Challenges
	Used resources

	Software Design
	Requirements
	TSU drivers
	Basic Application Interface
	Application Functionality
	Memory Allocation

	Conclusions

	Evaluation
	Criterias, Methods and Goals
	Evaluation Setup Description
	Hardware System
	Software System

	Synchronization Evaluation Components
	Clock Frequency and Drift
	Timestamping Reliability
	Internode Jitter
	Phase and Time Synchronization Accuracy
	Clock Duplicity

	Summary of the Results
	Proposed Methods
	Synchronization Components

	Conclusions
	Lessons Learned
	Future Directions

	Bibliography

