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1 

SLAM (Simulatenous Localization and Mapping) es quizá el problema más 
importante a solucionar en robótica para construir robots móviles verdaderamente 
autónomos. El SLAM es acerca de cómo un robot móvil opera en un entorno a priori 
desconocido, utilizando únicamente sus sensores de abordo, mientras construye un mapa 
de dicho entorno que al mismo tiempo utiliza para localizarse.  

Los sensores del robot tienen un gran impacto en los algoritmos usados en SLAM. 
Los primeros enfoques se centraron en el uso de sensores de rango como sonares o 
láseres. Sin embargo hay algunas desventajas relacionadas con su utilización: La 
asociación de datos es difícil, son costosos, habitualmente están limitados a mapas 2D y 
tienen alto costo computacional debido al gran número de características (features)  que 
producen. 

Lo anterior ha propiciado que enfoques recientes se estén moviendo hacia el uso 
de cámaras como sensor principal. Estas se han vuelto muy atractivas para los 
investigadores de la robótica, dado que generan mucha información, facilitan la asociación 
de datos,  están bien adaptadas para sistemas embebidos: son ligeras, baratas y  ahorran 
energía. Usando visión, un robot puede localizarse así mismo usando objetos comunes 
como landmarks. 

Sin embargo, a diferencia de los sensores de rango, que proveen información 
angular y de rango, una cámara es un sensor proyectivo que mide el bearing (ángulo) 
respecto a objetos de la imagen. Por lo que la profundidad (range) no puede ser obtenida 
en una sola toma.  Este hecho ha motivado la aparición de una nueva familia de métodos 
de SLAM: Los Bearing-Only SLAM methods, los cuales están basados en técnicas especiales 
para la inicialización de features, permitiendo el uso de sensores de bearing  en SLAM. 

Esta tesis se centra en el estudio de la problemática del Bearing-Only SLAM: da 
una descripción extensa del tema, recapitula los retos actuales a resolver y propone 
nuevos métodos y algoritmos enfocados a tratar diferentes sub problemas concernientes 
esta problemática en general. Estos sub problemas deben de ser tratados, de manera que 
sea posible construir sistemas capaces de operar en entornos diversos y complejos. 

Resumen 



La investigación descrita en esta disertación ha sido dividida en tres partes:  
3DOF Bearing-Only SLAM: El proceso de inicialización de nuevas features es quizá 

el sub problema más importante a tratar en Bearing-Only SLAM. En esta parte de la tesis 
se introduce un nuevo método llamado Delayed Inverse Depth Features Initialization (para 
3DOF y asumiendo odometría). Este método utiliza una parametrización inversa, donde la 
profundidad e  incertidumbre iníciales de cada feature  son dinámicamente estimadas 
previamente a que una feature sea declarada como un nuevo landmark en el mapa 
estocástico. También se presenta un sistema de SLAM basado en sonido, llamado SSLAM 
el cual usa fuentes de sonido como features del mapa. La contribución del SSLAM es 
demostrar la viabilidad de la inclusión del sentido auditivo en SLAM y mostrar que es 
factible utilizar sensores alternativos en Bearing-Only SLAM.  

Métodos de asociación de datos para SLAM basado en visión: El problema de la 
asociación de datos es quizá uno de los problemas más difíciles en robótica y también uno 
de los sub problemas más importantes a tratar en SLAM. Consiste en determinar si las 
mediciones de un sensor tomadas en tiempos diferentes, corresponden al mismo objeto 
físico del mundo. En esta parte de la tesis, se proponen diferentes métodos que tratan el 
problema de la asociación de datos en un contexto de SLAM basado en visión. 

SLAM monocular de 6DOF: El SLAM monocular de 6DOF quizá representa la 
variante más extrema del SLAM, dado que una cámara en mano es utilizada como la única 
entrada sensorial del sistema. En esta parte de la tesis, se extiende el algoritmo de 2DOF 
Bearing-Only SLAM para ser aplicado en un contexto de SLAM monocular. También se 
propone un nuevo esquema llamado SLAM Monocular Distribuido, enfocado en el 
problema de construir y mantener mapas consistentes de grandes entornos en tiempo 
real. La idea es dividir la estimación total del sistema en dos procesos de estimación 
concurrentes. Primero un método actual de SLAM monocular (Virtual Sensor) es 
modificado como un complejo sensor virtual que emula sensores típicos, como el laser 
para medición de rango y encoders para odometría. Después otro método tradicional de 
SLAM (Global SLAM) es acoplado para construir y mantener el mapa final.   

Numerosas referencias bibliográficas,  graficas, comparaciones, simulaciones y  
experimentos con datos reales de sensores, son presentador con el fin de mostrar el 
desempeño de los métodos propuestos. 
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Simultaneous Localization and Mapping (SLAM) is perhaps the most fundamental 
problem to solve in robotics in order to build truly autonomous mobile robots. SLAM is 
about on how can a mobile robot operate in an a priori unknown environment and use 
only onboard sensors to simultaneously build a map of its surroundings and use it to track 
its position. 

The robot’s sensors have a large impact on the algorithm used for SLAM. Early 
SLAM approaches focused on the use of range sensors as sonar rings or lasers. 
Nevertheless there are some disadvantages with the use of range sensors in SLAM:  
Correspondence or data association is difficult. They are expensive.  They are generally 
limited to 2D maps and computational overhead due to large number of features.  

The aforementioned issues have propitiated that recent work is moving towards 
the use of cameras as the primary sensing modality.  Cameras have become more and 
more interesting for the robotic research community, because it yield a lot of information 
allowing reliable data association.  Cameras are well adapted for embedded systems: they 
are light, cheap and power saving. Using vision, a robot can localize itself using common 
objects as landmarks. 

On the other hand, at difference of range sensors (i.e. sonar or laser) which 
provides range and angular information, a camera is a projective sensor which measures 
the bearing of images features. Therefore depth information (range) cannot be obtained 
in a single frame.   This fact has propitiated the emergence of a new family of SLAM 
methods: The Bearing-Only SLAM methods, which mainly relies in especial techniques for 
features system-initialization in order to enable the use of bearing sensors (as cameras) in 
SLAM systems. 

This thesis is focused on the study of the Bearing-Only SLAM problematic: It gives 
an extensive overview of the subject. It point out the principal challenges nowadays. And 
it presents new methods and algorithms which address different sub problems concerning 
to the Bearing-Only SLAM problematic.  These sub problems must be solved, in order to 
build systems capable of operating in extremely diverse and complex environments. 

Abstract  



The research described in this dissertation has been divided into three parts:  
3DOF Bearing-Only SLAM: The initialization process for new features is perhaps 

the most important sub problem for addressing in Bearing-Only SLAM.  In this part of the 
thesis we introduce a novel method called Delayed Inverse Depth Features Initialization 
for a 3DOF odometry-available context. In this method, which uses an inverse depth 
parameterization, initial depth and uncertainty of each feature are dynamically estimated 
priors to add the new landmark in the stochastic map.  We also present a Sound-based 
SLAM system, called SSLAM, which uses “Sound Sources” as map’s features.  The main 
contributions of the SSLAM are demonstrating the viability on the inclusion of the hearing 
sense in SLAM and show that is straightforward to use alternative bearing in SLAM 
systems. 

Data association methods for camera-based SLAM: the data association problem 
is possibly one of the hardest problems in robotic and also one of the most important sub 
problems to solve in SLAM. The correspondence problem is the problem of determining if 
sensor measurements taken at different points in time correspond to the same physical 
object in the world. In this part of the thesis, we propose different methods for addressing 
the data association problem in a context of vision-based SLAM. 

6DOF Monocular SLAM: 6-DOF monocular SLAM possibly represents the harder 
variant of SLAM, since a low cost hand-held camera is used as the only sensory input to 
the system. In this part of the thesis, we extend our 2DOF Bearing-Only SLAM algorithm 
for being used in a monocular SLAM context. Also a novel framework called Distributed 
Monocular SLAM is proposed for addressing the problem of building and maintaining a 
global and consistent map of large environments at real time. The key idea is to divide the 
whole estimation into two concurrent estimation processes. First a state of the art 
monocular SLAM method (Called Virtual Sensor) is modified as a complex virtual sensor 
that emulates typical sensors such as laser for range measurement and encoders for dead 
reckoning. Afterward, a classic SLAM method (called Global SLAM) is plugged in for 
building and maintaining the final map.  

Several references, graphics, comparisons, simulations and experiments with real 
data are presented in order to demonstrate the performance of the methods. 
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appear in the image, are lower than a threshold.  First, random areas free-of-features are detected 
in the image (green rectangle). Then a saliency operator is applied to mentioned areas in order to 
detect new candidate points λi.   ........................................................................................................ 150



  xiii 

Figure 6.9 Schema for the features initialization process.   ................................................................. 152

Figure 6.10 Initial metric reference parameterization.  ...................................................................... 164

Figure 6.11 In this example, a computer monitor (left plot) was used as the only reference for 
recovering the scale of the world. The distance a,b and c between the points have to be known. 3D 
locations (right plot) for r1, r2 and r3 are estimated from its 2D pixel location.   ................................. 165

Figure 6.12 This sequence of plots illustrates the performance of the Delayed Inverse Depth 
monocular SLAM method.  First a video was recorded while the camera was moved inside a living 
room. Later the video was used as the input of a MATLAB implementation of the algorithm. Prior to 
run the algorithm, three point of a sheet of paper (of knowing dimensions) were selected as the 
metric reference for recovering the metric scale of the world. At frame 1 (plot a) the initial metric 
reference is initialized in the map (plot a-right), the camera position is illustrated with a solid-blue 
sphere and its orientation with a blue line. Note that all the plots are shown from an X-Z view (top 
view). At frame 30 (plot b) several candidate points have been detected, note (in the image and 
map) that the camera slightly begins to move. Until frame 125 (plot c) one of the candidate point is 
initialized as a new feature map, in this case with a huge initial uncertainty (illustrated with the red 
ellipse). Note that features tracked with low uncertainty among the images sequence, could be 
mapped to its 3D position with a huge uncertainty. Later the gathered information is used to 
minimize uncertainty. At frame 200 (plot d) several features have been added to the map and the 
movement of the camera begins to be more evident. At frame 300 (plot e) the rotation of the 
camera is also notorious, observe that the estimated camera orientation represent the real 
orientation of the camera.  Also note that, as the camera moves, new candidate points were 
detected in order to initialize new features for covering new unexplored regions. Plot f illustrates the 
final camera pose and map for this experiment.   ............................................................................... 167

Figure 6.13 In this experiment with the delayed method (the same presented in the previous section 
6.2.16), note that the features locations in the map (by the frame 320) are congruent with the 
observed image-locations (E.g. observe the features related to the printer besides the three-point 
initial metric reference). In this figure just remember that the maps are presented from a top-view 
(x-z view).   .......................................................................................................................................... 169

Figure 6.14 Using the un-delayed method, the same drawbacks, observed in a 2D robotic context 
(section 4.3.6), can be observed again for a monocular context.  In this experiment (the same 

scenario presented in section 6.2.16) note that the initial inverse depth ρî = 1/dini has to be tuned in 
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Chapter 1 

1 Introduction 

This thesis has to do with robotics. When I say this, some persons can imagine 
that this work is about of educating a clumsy shiny-gold humanoid, but of course 
nowadays, it is matter of science fiction.   Others can think that this dissertation is about 
programming a robot arm for assembling cars or other goods in a production line. 
Nevertheless this thesis intends to contribute to experimental robotics instead of the well-
understood area of the industrial robotics. Actually in our work, the robot itself as an 
electromechanical device is more or less irrelevant, since it focus in general algorithms 
which can be implemented using different hardware configurations. The problem 
addressed in this work is very significant to the pursuit of building truly autonomous 
mobile robots capable to operate in extremely diverse environments ranging from the 
Martian surface to a living room. Basically the problem is: how does a mobile robot can 
autonomously know where it is? 

Having a machine answer "where am I?" is an engineering problem that has been 
at the heart of mobile robotics research for over two decades, and while a great progress 
has been made, there is a long way in order have mobile robots that operates robustly in 
exotic locations where humans can’t reach or are unwilling to work.  Exploring and 
realizing different tasks in different environments (known or unknowns) implies that the 
robot using their onboard sensors becomes aware of its location at every time.  This is 
analogous to the manner as humans using their senses (mainly vision) moves in their daily 
live. 
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At first glance, one could think that a GPS (global positioning system) mounted in 
a mobile robot will solve fully the problem. However GPS doesn’t work sub-sea, 
underground, in buildings or on Mars. Even for outdoor mobile robots localization, where 
GPS has obvious advantages: position data are directly given in an absolute frame, and the 
required infrastructure is reduced to a sole fixed station in the case of differential systems. 
Yet, the use of this solution raises a number of issues, such as the satellite maskings, or 
the existence of the so-called GPS latency which delays the output of the localization data. 

Another approach could be providing to the robot in advance with a map of the 
environment or information about in how it looks like.  Actually in some scenarios like a 
factory or in an office building, can be viable provide the robot with an a priori map, often 
in the form of artificial landmarks fixed to strategic locations of the environment. The 
problem is that it is not always possible, let alone convenient or cheap, to install this 
infrastructure, and once installed it is inflexible and imposes unnatural constraints on the 
workspace.  Even a small change in a “route” of the robot or the working area can involve 
a huge effort for reengineering the “fixed-map”.   

Now, consider an autonomous vehicle traveling through a priori unknown 
environment. While the vehicle is moving, makes different measurements (using their 
onboard sensors). At the same time it uses these measurements in order to 
(incrementally) learn a map. It could then use this map to answer the “where am I” 
question, to locate itself. This scenario is called the Simultaneous Localization and 
Mapping (SLAM) problem and can be stated as follows: 

"How can a mobile robot operate in an a priori unknown environment and use 
only onboard sensors to simultaneously build a map of its workspace and use it to 
navigate?"  

The tricky part is that this is a chicken and egg problem: to build a map you need 
to know where you (the observer) are but at the same time you need a map to figure out 
where you are. The simplicity of the SLAM problem statement is fascinating. It is after all 
something that we humans, with varying degrees of success, do naturally - for example 
when stepping out of a hotel lobby in a new city. Yet SLAM in particular is a topic that has 
challenged the robotics research community for over a decade.  The SLAM problem is 
generally regarded as one of the most important problems in the pursuit of building truly 
autonomous mobile robots. 

1.1 Motivation 

Nowadays, due to its great potential in a huge range of applications, SLAM is one 
of the most active research fields in robotics. SLAM has had excellent results during the 
last years, but until recently it was mainly restricted to the use of sonar and laser range-
finder sensors.  
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There are some disadvantages with the use of range sensors in SLAM:   
• Correspondence or data association is difficult. 
• They are expensive. 
• Generally limited to 2D maps.  
• Computational overhead due to large number of features.  

 
In this dissertation we explore an alternative to the range sensors: The use of 

Bearing Sensors in SLAM, so called Bearing-Only SLAM. In counterpart to the range-finder 
sensors, which provides range and angular information, bearing sensors only offers 
angular information.  At first glance this fact could represent a disadvantage of the bearing 
sensors respect to the range sensors, but as we will see, there are several compensations 
in the use of a bearing sensor in order to perform SLAM. 

A camera is a projective sensor which measures the bearing of images features. 
Cameras have become more and more interesting for the robotic research community as 
sensors, because they yield a lot of information. It is a sensor from which 3D information 
can be extracted. Even for indoor robots whose pose can be represented in 2D, the ability 
to gather 3D information on the environment is essential. Cameras are well adapted for 
embedded systems: they are light, cheap and power saving. A wide variety of algorithms 
can be obtained from the vision research community in order to extract high level 
primitives from the image, and matching them with primitives stored in the map thus 
allowing reliable data association, which is one the most important problems to solve in 
SLAM. 

Some of the advantages for the use of cameras can be summarized as follows: 
• A wide variety of algorithms can be obtained from the vision research 

community for extract high level primitives from the image. 
• Cameras are well adapted for embedded systems; they are light, cheap 

and power saving. 
• A lot of data available, thus allowing to reliable data association.  
• 3D information can be extracted. 

 
The use of cameras in SLAM involves several challenges but also implies a huge 

potential. As computational power grows, an inexpensive camera can be used to perform 
range and appearance–based sensing simultaneously, by replacing typical sensors as laser 
and sonar rings for range measurement and encoders for dead reckoning. Currently the 
objectives in vision-based SLAM is that emulates (and ultimately surpass) the results in 
large-scale mapping achieved using laser range-finder sensors, aiming to build vision-only 
SLAM systems with the potential of guiding autonomous robots in their exploration and 
operation in large and complex environments.   

For this thesis, it is important to note that, when we are talking about vision-
based SLAM systems, we are specially discussing about monocular-based vision systems. 
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That is, systems where a single camera is the only sensorial input.  This is in counterpart to 
the stereo vision systems which commonly are seen as a sole vision-based sensor that 
provides bearing among depth information. Therefore a stereo vision sensor could be 
seen more like range-finder sensor. The regular SLAM algorithms assume that depth 
information is measured or estimated in the side of the sensor.  On the other hand, 
Bearing-Only SLAM assumes that the sensor, no matter which is, provides only bearing 
information (in terms of spatial information). In Bearing-Only SLAM systems, depth 
information is estimated using two or more measurements of the sensor and this 
estimation process is done as an implicit part of the whole SLAM algorithm. A Monocular 
SLAM system can be viewed as specific case of a general Bearing-Only SLAM system using 
a single camera as the solely sensorial input.    

As was stated early, this dissertation aims to contribute to the robotics field, 
nevertheless the use of cameras in SLAM is not limited to the purely robotics applications. 
In that sense, the family of algorithms analyzed in this work can be straightforward used in 
a wide range of applications. Some examples are: 

• Mobile robot autonomous navigation: 
o Position estimation and map building ( this thesis) 
o Path planning and control. 

• Wearable robotics: 
o Motion estimation for camera equipped devices worn by 

humans. 
• Telepresence:  

o Head motion estimation using an out-world-looking camera. 
• Television: 

o Camera motion estimation for live augmented reality. 
• Walking assistance system: 

o Smart cane for elderly and visually impaired. 
o Obstacle detection and avoidance. 

 
Cameras are by far the most popular bearing sensor.  Nevertheless Bearing-Only 

SLAM is not limited to the use of cameras, in that sense, other sensorial capabilities  
(much less explored), as the auditory sense, can be investigated in the context of Bearing-
Only SLAM. In this case, sound sources (artificial or natural) are used as landmarks for 
being included in the robot’s map in order to localize it along the time.  

This dissertation intent to cover most of the problematic related with the use of 
bearing sensors in SLAM. In that sense, a considerable part of the work focuses on 
monocular SLAM. But we analyze as well the applications of alternative bearing sensors in 
SLAM. For example, a sound sensor mounted on a small mobile robot, capable of 
detecting and tracking a sound source, is also used in experiments in order to perform 
SLAM. 
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1.2 Objectives 

The primary goal of this thesis is the study, analysis, design, implementation and 
experimentation of Bearing-Only SLAM algorithms and methods, focusing in the robotics 
field.   

Sub objectives: 
• To study and analyzing the state of the art simultaneous localization and 

mapping algorithms, in order to determines  general issues that must be 
improved in order to build systems capable of operating in complex 
environments.  

 
• Bearing-only SLAM is a partially observable SLAM problem, in which the 

sensor, used for perceiving the robot´s environment, provides only 
angular information respect to the landmarks, and therefore does not 
give enough information to compute the full state (bearing and depth) 
of a landmark from a single observation. Therefore the initialization of 
new features in Bearing-Only SLAM is a fundamental problem to be 
addressed. A sub objective of this thesis is to propose a new algorithm of 
Bearing-Only SLAM. It should offer improvements respect to similar 
approaches. 

 
• The closing loop problem after long trajectories at real-time operation is 

currently one of the open challenges in SLAM. One of the sub objectives 
of this thesis is to contribute to the goal of make possible in a future that 
a Bearing-Only SLAM algorithm can be applied to large and complex 
environments at real-time.   

 
• Cameras are by far the most popular bearing sensor, among other things 

because provides a huge amount of information useful for addressing 
the data association which is a fundamental problem to solve in order to 
implement SLAM.  A sub objective is to make contributions to the 
problematic of the data association in a SLAM.  

 
• To demonstrate that Bearing-Only SLAM systems, which are commonly 

based on cameras as primary sensors, can be straightforward extended 
for its application based on alternative bearing sensors.  
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1.3 Thesis Statement and Contributions 

The research described in this dissertation has been divided into three parts: (i) 
3-DOF Bearing-Only SLAM with application to Sound Based SLAM in mobile robots, (ii) 
Data association methods for vision-based SLAM (iii) 6-DOF Monocular SLAM and 
Distributed framework:  

 
• In part I of the research, we propose a novel method for initializing new 

features for a general scenario of Bearing-Only SLAM; this method is 
called Delayed-Inverse Depth Features Initialization. The method is 
introduced in a 2D context (3-DOF) and assuming availability of 
odometry. Theoretical and experimental bases which inspired this 
method are given, and several simulations are presented in order to 
demonstrate its performance and feasibility.  A comparison with the Un-
delayed Inverse-Depth Feature Initialization is also presented.   Finally in 
this part of the thesis, based in our general 3-DOF Bearing-Only SLAM 
algorithm, it is presented a Sound-based SLAM system (called SSLAM) 
which uses “Sound Sources” as map’s features.  The main contributions 
of the SSLAM is demonstrating the viability of the inclusion of the 
hearing sense in SLAM and demonstrating that is straightforward modify 
a Bearing-Only method (originally conceived for vision-based systems)  
for its use based in an alternative bearing sensor.   

 
• In part II of the research, we propose different methods for addressing 

the data association problem in a context of vision-based SLAM. First a 
novel image feature descriptor called ICAD is presented. ICAD 
descriptors are based on ICA (Independent Component Analysis). Later, 
a framework for capturing the variability of image features descriptors 
based on statistical methods is presented, in order to make features 
descriptors more robust to changes in illumination of point of view.  It 
seen that some of the techniques currently available in the literature 
have shown to be an excellent option for addressing the data association 
problem, nevertheless their direct use in SLAM applications is often not 
straightforward. Finally a simple but effective framework is proposed in 
order to take advance of the state-of-the-art image features descriptors 
in a SLAM context.   

 
• In part III of the research, a novel approach for monocular SLAM is 

presented. This method, called Delayed Inverse Depth Monocular SLAM 
method, is an extension of our general Bearing-Only SLAM algorithm, 
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described in part I, for be used in monocular SLAM.  In this context, the 
6-DOF monocular camera case (Monocular SLAM) possibly represents 
the harder variant of SLAM, since a low cost hand-held camera is used as 
the only sensory input to the system. One of the major challenges in 
monocular SLAM consist in extend the application of the current 
methods to large and dynamic environments. In this part of the 
research, a novel framework, called Distributed Monocular SLAM is also 
proposed, for addressing the problem of building and maintaining a 
global and consistent map of large environments at real time.    

 
In the appendix A the publications derived from the research presented in this 

dissertation are listed. 

1.4 Outline of the Thesis 

In the following, the content of each chapter is summarized. 
 
In chapter 2, antecedents regarding to the thematic addressed in the thesis are 

presented.  First, a historical overview in localization and mapping problem is given; here 
some earliest approaches and taxonomies are referenced. Later some of the factors that 
make SLAM a challenging problem are listed.  In this chapter is clarified why is convenient 
to solve the localization and mapping problems concurrently. Finally an outline of the 
mathematical basis of Simultaneous Localization and Mapping problem (SLAM) is given; a 
general formulation of the SLAM problem is presented and also the most important 
approaches for solve it, are introduced. This section is relevant since gives an introduction 
to several topics and concepts used along the thesis.  This chapter includes several 
references to relevant work regarding to the research area addressed by the thesis. 

 
Chapter 3 details the most popular solution for the SLAM problem: the Extended 

Kalman Filter (EKF) general solution for SLAM.  The EKF based SLAM is very relevant to this 
work because our proposed methods for Bearing-Only SLAM fits in this family of SLAM 
algorithms.  In this chapter, the basic components of a general SLAM system are exposed. 
In that sense, several equations that will be used recurrently along the thesis are given in 
their simplest form. Several experimental simulations are also presented in order to 
illustrate the behavior and main objectives for SLAM systems. 

 
Chapter 4 is devoted to expose the part I of the research regarding to this thesis. 

In the first part of this chapter, a depth introduction to the Bearing-Only problematic is 
given. It mainly focuses into the initialization of new features, which represent the main 
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challenge in order to implement Bearing-Only SLAM systems. Using simulations, the 
viability of this kind of methods is also reviewed.   Later, related work representative of 
the state of the art, together whit a brief taxonomy and a summary of methods are 
presented. In the second part of this chapter one of the most important contributions of 
this thesis is introduced: the Delayed Inverse-Depth Feature Initialization, which is a novel 
method for adding new features to the map in Bearing-Only SLAM systems.   This method 
is based on the unified inverse depth method [1] which due to its clarity and scalability is a 
good option for monocular SLAM implementations. The experiments with the unified 
inverse depth method show that, when initial reference points are used for establishing a 
metric scale in the map, the initial features depths have to be tuned, otherwise, is likely 
that new features added to the map never converges respect to the metric reference.  In 
the monocular SLAM case, when features are initialized in the first observed frame (un-
delayed initialization), usually the weak long-term image features are added to the map. 
Therefore it is difficult to match them in subsequent frames. When a minimum number of 
active image features want to be maintained, it could happen that unnecessary 
initializations are realized. Our proposed method overcome the aforementioned issues 
treating the initial inverse depth and their associated initial uncertainty before they are 
added to the system state instead of using a fixed initial depth and uncertainty. At the 
same time features can be implicitly tested prior to be added to map in order to prune 
weak long-term features. In chapter 4 our Delayed Inverse-Depth Feature Initialization 
method is introduced assuming a 2D context with availability of odometry.  First the 
theoretical and experimental bases of the method are given, later the method is widely 
outlined and finally several simulations are presented in order to demonstrate its 
performance and feasibility. In this part a comparison with the Un-delayed Inverse-Depth 
Feature Initialization is also presented.  The third and final part of this chapter is dedicated 
to presents a Sound-based SLAM system (called SSLAM) which uses “Sound Sources” as 
map’s features.   The SSLAM system which is based in our Delayed Inverse-Depth Bearing-
Only SLAM method, demonstrates the feasibility of the inclusion of the hearing sense in 
SLAM. Experimental results with real data, obtained from the sensors of a small mobile 
robot, are presented In order to show the performance of the SSLAM method.   

 
Chapter 5 presents the part II of the research regarding to this thesis. In this 

chapter several vision-based techniques, for addressing the data association problem in a 
SLAM context, are described. An additional aim of this chapter is to be a “bridge” between 
the chapter 4, where the Bearing-Only SLAM general problematic is introduced, and the 
chapter 5, where the Monocular SLAM problematic is studied as a sub-class of Bearing-
Only SLAM based on monocular cameras. In the first part of this chapter, a small survive to 
the data association problem based on local image features is given.  Related work and 
methods, representatives the state of the art, are also briefly exposed. Later a method for 
address the data problem based on a novel image feature descriptor is presented. This 
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novel descriptor called ICAD is based on Independent Component Analysis (ICA). Several 
experimental results are presented in order to show the performance of the method. In 
the second part of the chapter a new framework for capturing the variability of image 
features descriptors based on statistical methods is presented. This framework aims to 
improve the robustness of features descriptors to changes in illumination and point of 
view.  Experimental results of the comparison of methods are presented. State of the art 
image descriptors (i.e. SIFT) have shown to be an excellent choice for addressing the data 
association problem. Nevertheless these kinds of descriptors are difficult to apply directly 
into a camera-based SLAM context. In the third part of this chapter, a simple but effective 
framework is presented in order to adapt state of the art image descriptors for their use in 
camera-based SLAM methods.  

 
Chapter 6 describes the part III of the research corresponding to this thesis. In 

the first part of the chapter, an introduction to the monocular SLAM problematic and a 
small survive are presented. In this section the current challenges are pointed out.  The 
particularities and differences of the monocular SLAM in relation to the general bearing-
only SLAM are also explained. In the second part of this chapter, a novel approach for 
monocular SLAM is presented. This approach, called Delayed Inverse Depth Monocular 
SLAM method, is an extension of our general Bearing-Only SLAM algorithm (described in 
chapter 4) for being used in a camera-based SLAM context. Our approach aims to 
contribute to the robustness of Monocular SLAM systems. Several experiments using real 
data, captured with a low cost camera, are presented. A comparison with the Un-delayed 
Inverse-Depth Feature Initialization is also presented in order to demonstrate the 
performance of our proposed method. In the third part of this chapter, a novel 
framework, called Distributed Monocular SLAM, is proposed in order for addressing the 
problem of building and maintaining a global and consistent map of large environments at 
real time.   The general idea is to adapt a monocular SLAM method (as our Delayed Inverse 
Depth Monocular SLAM method) as a complex real-time “Virtual Sensor”. This Virtual 
Sensor provides appearance-based sensing in the form of features descriptors and 
emulates typical sensors as lasers for bearing and range sensing and also emulates 
encoders for odometry estimation. Afterward a classic SLAM method is plugged in 
(decoupled from the camera’s frame rate) taking as its input the output of the Virtual 
Sensor. This process, called Global SLAM, models the drift of the Virtual Sensor 
estimations as independent uncertainty propagation, in order to estimate the global 
camera-robot pose and map. In our implementation, both estimation processes, the 
Virtual Sensor and the Global SLAM, run concurrently in different PCs in a local network, 
communicated with TCP/IP protocol. Experiments with real data are presented in order to 
show the performance of the method. 
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Chapter 7 summarizes the conclusions of this thesis and discusses possible 
avenues of future research. 
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Chapter 2 

2 Antecedents 

Robotic Localization and Mapping has been a highly active research area in 
robotics and AI for at least two decades. Robotic mapping addresses the problem of 
acquiring spatial models of physical environments through mobile robot and localization 
addresses the problem of estimating the position of the mobile robot while it’s moving 
through its environment.  The Localization and mapping problem is generally regarded as 
one of the most important problems in the pursuit of building truly autonomous mobile 
robots. Despite significant progress in this area, it still poses great challenges. At present, 
we have robust methods for mapping environments that are static, structured, and of 
limited size. Mapping unstructured, dynamic, or large-scale environments remains largely 
an open research problem. 

This chapter intends to present a general overview of the problematic addressed 
in this thesis. Several references to relevant work are included. For a serious background 
concerned to this dissertation, the reader is invited to study some of the articles 
referenced in this chapter.  

First in section 2.1, a brief historical overview of the localization and mapping 
problem is given; here some of the earliest algorithms and taxonomies are cited.   

In section 2.2, some of the aspects that make localization and mapping a very 
challenging problem, are introduced.   

Finally in section 2.3, an overview of the Simultaneous Localization and Mapping 
problem (SLAM) is given.  SLAM represents the research field where this thesis intends to 
make its most important contributions. This section is very relevant since gives an 
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introduction to several fundamentals topics addressed along the thesis.  A general 
formulation of the SLAM problem is presented and also the most important approaches 
for the solution of the SLAM problem are introduced.  

2.1 Historical Overview 

Robotic mapping research has a long history. In the 1980s and early 1990s, the 
field of mapping was widely divided into metric and topological approaches. Metric maps 
capture the geometric properties of the environment, whereas topological maps describe 
the connectivity of different places.   

An early representative of the metric approach was Elfes and Moravec’s 
important occupancy grid mapping algorithm [2], [3], [4], which refers to a family of 
computer algorithms in probabilistic robotics for mobile robots which address the 
problem of generating maps from noisy and uncertain sensor measurement data, with the 
assumption that the robot Pose is known. The basic idea of the occupancy grid is to 
represent a map of the environment as an evenly spaced field of binary random variables 
each representing the presence of an obstacle at that location in the environment.  
Occupancy grid algorithms compute approximate posterior estimates for these random 
variables [5]. In others words, represents maps by fine-grained grids that model the 
occupied and free space of the environment. This approach has been used in a great 
number of robotic systems, such as [6], [7], [8], [9], [10], [11].      

An alternative metric mapping algorithm was proposed by Chatila and Laumond 
[12], using sets of polyhedra to describe the geometry of environments. 

Topological maps represent environments as a list of significant places that are 
connected via arcs. Arcs are usually annotated with information on how to navigate from 
one place to another. However, the distinction between metric and topological has always 
been fuzzy, since virtually all working topological approaches rely on geometric 
information. In practice, metric maps are finer grained than topological ones. Higher 
resolution comes at a computational price, but it helps to solve various hard problems, 
such as the correspondence problem discussed further below. Examples of topological are 
[13], [14], [15], [16], [17], [18], [19], [20], [21]. 

Historically, a second taxonomy of mapping algorithms is world-centric versus 
robot-centric. World-centric maps are represented in a global coordinate space. The 
entities in the map do not carry information about the sensor measurements that led to 
their discovery. Robot-centric maps, in contrast, are described in measurement space. 
They describe the sensor measurements a robot would receive at different locations. At 
first glance, robot-centric maps might appear easier to build, since no ‘translation’ of 
robot measurements into world coordinates is needed. However, robot-centric maps 
suffer two disadvantages. First, it is often difficult to extrapolate from individual 
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measurements to measurements at nearby, unexplored places an extrapolation that is 
typically straightforward in world-centric approaches. Put differently, there is usually no 
obvious geometry in measurement space that would allow for such extrapolation. Second, 
if different places look alike, robot-centric approaches often face difficulties to 
disambiguate them, again due to the lack of an obvious geometry in measurement space. 
For these reasons, the dominant approaches to date generate world-centric maps. An 
example of robot-centric approach is presented in [22], in this case the robot-centric 
approach can be useful because the main objective is navigating while the robot avoids 
obstacles in its path. 

Since the 1990s, the field of robot mapping has been dominated by probabilistic 
techniques. A series of seminal papers by Smith, Self, and Cheeseman [23], [24] 
introduced a powerful statistical framework for simultaneously solving the mapping 
problem and the induced problem of localizing the robot relative to its growing map. Since 
then, robotic mapping has commonly been referred to as SLAM or CML, which is short for 
simultaneous localization and mapping [25], [26] and concurrent mapping and localization 
[27], [28] respectively. One family of probabilistic approaches employ Kalman filters to 
estimate the map and the robot location [29], [30], [31], [32], [33], [34]. The resulting 
maps usually describe the location of landmarks, or significant features in the 
environment, although recent extensions exist that represent environments by large 
numbers of raw range measurements [35]. An alternative family of algorithms [36], [19], 
[10], [28] is based on Dempster’s expectation maximization algorithm [37], [38]. These 
approaches specifically address the correspondence problem in mapping, which is the 
problem of determining whether sensor measurement recorded at different points in time 
correspond to the same physical entity in the real world. A third family of probabilistic 
techniques seek to identify objects in the environment, which may correspond to ceilings, 
walls [39], [40]  doors that might be open or closed of furniture and other objects that 
move. Many of this technique have counterparts in the computer vision and 
photogrammetry literature, [41], [42], [43], [44], [45] [46], [47], a connection that is 
currently been exploited. 

2.2 The Robotic Localization and Mapping Problem 

The problem of robotic mapping is that of acquiring a spatial model of a robot’s 
environment. Maps are commonly used for robot navigation (e.g., localization) [48], [49]. 
To acquire a map, robots must possess sensors that enable it to perceive the outside 
world. Sensors commonly brought to bear for this task include cameras, range finders 
using sonar, laser, and infrared technology, radar, tactile sensors, compasses, and GPS. 
However, all these sensors are subject to errors, often referred to as measurement noise. 
More importantly, most robot sensors are subject to strict range limitations. For example, 
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light and sound cannot penetrate walls. These range limitations makes it necessary for a 
robot to navigate through its environment when building a map. The motion commands 
(controls) issued during environment exploration carry important information for building 
maps, since they convey information about the locations at which different sensor 
measurements were taken. Robot motion is also subject to errors, and the controls alone 
are therefore insufficient to determine a robot’s pose (location and orientation) relative to 
its environment. 

 

Figure 2.1 Example of odometry error: Shown here is a robot’s path as obtained by its 
odometry, relative to a given map. Small odometry (or control) errors can have large 
effects on later position estimates. 

 

2.2.1 Measurement Noise 

A key challenge in robotic mapping arises from the nature of the measurement 
noise. Modeling problems, such as robotic mapping, are usually relatively easy to solve if 
the noise in different measurements is statistically independent. If this were the case, a 
robot could simply take more and more measurements to cancel out the effects of the 
noise. Unfortunately, in robotic mapping, the measurement errors are statistically 
dependent. This is because errors in control accumulate over time, and they affect the 
way future sensor measurements are interpreted. This is illustrated in Figure 2.1, which 
shows an example path of a mobile robot in a given map of the environment. As this 
example shows, a small rotational error on one end of a long corridor can lead to many 
meters of error on the other. As a result, whatever a robot infers about its environment is 
plagued by systematic, correlated errors. Accommodating such systematic errors is key to 
building maps successfully, and it is also a key complicating factor in robotic mapping. 
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Many existing mapping algorithms are therefore surprisingly complex, both from a 
mathematical and from an implementation point of view. 

2.2.2 Dimensionality  

The second complicating aspect of the robot mapping problem arises from the 
high dimensionality of the entities that are being mapped. To understand the 
dimensionality of the problem, the reader may consider how many numbers it may take to 
describe an environment like his/her own home. If one confines oneself to the description 
of major topological entities, such as corridors, intersections, rooms and doors, a few 
dozen numbers might suffice. A detailed two-dimensional floor plan, which is an equally 
common representation of robotic maps, often requires thousands of numbers. But a 
detailed 3D visual map of a building (or of an ocean floor) may easily require millions of 
numbers. From a statistical point of view, each such number is a dimension of the 
underlying estimation problem. Thus, the mapping problem can be extremely high 
dimensional. 

2.2.3 Data Association  

A third and possibly the hardest problem in robotic mapping is the 
correspondence problem, also known as the data association problem. The 
correspondence problem is the problem of determining if sensor measurements taken at 
different points in time correspond to the same physical object in the world. An instance 
of this problem is when a robot attempts to map a large cyclic environment. When closing 
the cycle, the robot has to find ou t where it is relative to its previously built map. This 
problem is complicated by the fact that at the time of cycle closing, the robot’s 
accumulated pose error might be unboundedly large. The correspondence problem is 
difficult, since the number of possible hypotheses can grow exponentially over time. Most 
scientific progress on the correspondence problem has emerged in the past years, after a 
long period in which the problem was basically ignored in the robot community. 

2.2.4 Dynamical Environments 

Fourth, environments change over time. Some changes may be relatively slow, 
such as the change of appearance of a tree across different seasons, or the structural 
changes that most office buildings are subjected to over time. Others are faster, such as 
the change of door status or the location of furniture items, such as chairs. Even faster 
may be the change of location of other agents in the environment, such as cars or people. 
The dynamism of robot environments creates a big challenge, since it adds yet another 
way in which seemingly inconsistent sensor measurements can be explained. To see, 
imagine a robot facing a closed door that previously was modeled as open. Such an 
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observation may be explained by two hypotheses, namely that the door status changed, 
or that the robot is not where it believes to be. Unfortunately, there are almost no 
mapping algorithms that can learn meaningful maps of dynamic environments. Instead, 
the predominant paradigm relies on a static world assumption, in which the robot is the 
only time-variant quantity (and everything else that moves is just noise). Consequently, 
most techniques are only applied in relatively short time windows, during which the 
respective environments are static. 

2.2.5 Robotic Exploration 

A fifth and final challenge arises from the fact that robots must choose their way 
during mapping. The task of generating robot motion in the pursuit of building a map is 
commonly referred to as robotic exploration. While optimal robot motion is relatively 
well-understood in fully modeled environments, exploring robots have to cope with 
partial and incomplete models. Hence, any viable exploration strategy has to be able to 
accommodate contingencies and surprises that might arise during map acquisition. For 
this reason, exploration is a challenging planning problem, which is often solved sub-
optimally via simple heuristics. 

When choosing where to move, various quantities have to be traded off: the 
expected gain in map information, the time and energy it takes to gain this information, 
the possible loss of pose information along the way, and so on. Furthermore, the 
underlying map estimation technique must be able to generate maps in real-time, which is 
an important restriction that rules out many existing approaches. 

2.2.6  Localization and Mapping 

As noted above, the literature refers to the mapping problem often in 
conjunction with the localization problem, which is the problem of determining a robot’s 
pose. The reason for suggesting that both problems—the problem of estimating where 
things are in the environment and the problem of determining where a robot is—have to 
be solved in conjunction will become a bit more obvious below, when we state the basic 
statistical estimators that underlie all state-of-the-art techniques. In essence, both the 
robot localization and the map are uncertain, and by focusing just on one the other 
introduces systematic noise. Thus, estimating both at the same time has the pleasing 
property that both the measurement and the control noise are independent with regards 
to the properties that are being estimated (the state). Postponing further detail on this 
issue to further below, we notice that the robot mapping problem is like a chicken and egg 
problem: 

If the robot’s pose was known all along, building a map would be quite simple. 
Conversely, if we already had a map of the environment, there exist computationally 
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elegant and efficient algorithms for determining the robot’s pose at any point in time [48], 
[50]. In combination, however, the problem is much harder. 

Today, Simultaneous localization and mapping is largely considered the most 
difficult perceptual problem in robotics. Progress in robot mapping is bound to impact a 
much broader range of related perceptual problems, such as sensor based manipulation 
and interaction with people. 

2.3 The SLAM Problem 

The on-line robot estimation position from measurements of self-mapped 
features is a class of problem called, in the robotics community, as Simultaneous 
Localization and Mapping (SLAM) problem, which is one of the fundamental problems in 
robotics. SLAM consist in incrementally building a consistent map of the environment and, 
at the same time, localizing the position of the robot while explores its world. In SLAM is 
necessary to consider the uncertainties introduced into the map by potential noise 
sources in the robot motion and measurement process.  The “solution” of the SLAM 
problem has been one of the notable successes of the robotics community over the past 
decade. SLAM has been formulated and solved as a theoretical problem in a number of 
different forms. SLAM has also been implemented in a number of different domains from 
indoor robots to outdoor, underwater, and airborne systems. At a theoretical and 
conceptual level, SLAM can now be considered a solved problem, reaching it a state of 
maturity sufficient to permit practical implementations in challenging environments. 
However, substantial issues remain in practically realizing more general SLAM solutions 
and notably in building and using perceptually rich maps as part of a SLAM algorithm. 

Work by Smith and Cheesman [51] and Durrant-Whyte [52] established a 
statistical basis for describing relationships between landmarks and manipulating 
geometric uncertainty. A key element of this work was to show that there must be a high 
degree of correlation between estimates of the location of different landmarks in a map 
and that, indeed, these correlations would grow with successive observations. 

At the same time Ayache and Faugeras [53] were undertaking early work in visual 
navigation, Crowley [54] and Chatila and Laumond [55] were working in sonar-based 
navigation of mobile robots using Kalman filter-type algorithms. These two strands of 
research had much in common and resulted soon after in the landmark paper by Smith et 
al. [23]. This paper showed that as a mobile robot moves through an unknown 
environment taking relative observations of landmarks, the estimates of these landmarks 
are all necessarily correlated with each other because of the common error in estimated 
vehicle location [56]. The implication of this was profound: A consistent full solution to the 
combined localization and mapping problem would require a joint state composed of the 
vehicle pose and every landmark position, to be updated following each landmark 
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observation. In turn, this would require the estimator to employ a huge state vector (on 
the order of the number of landmarks maintained in the map) with computation scaling as 
the square of the number of landmarks. 

Crucially, this work did not look at the convergence properties of the map or its 
steady-state behavior. Indeed, it was widely assumed at the time that the estimated map 
errors would not converge and would instead exhibit a random-walk behavior with 
unbounded error growth. Thus, given the computational complexity of the mapping 
problem and without knowledge of the convergence behavior of the map, researchers 
instead focused on a series of approximations to the consistent mapping problem, which 
assumed or even forced the correlations between landmarks to be minimized or 
eliminated, so reducing the full filter to a series of decoupled landmark to vehicle filters ( 
[56] and [57] for example). Also for these reasons, theoretical work on the combined 
localization and mapping problem came to a temporary halt, with work often focused on 
either mapping or localization as separate problems. 

The conceptual breakthrough came with the realization that the combined 
mapping and localization problem, once formulated as a single estimation problem, was 
actually convergent. Most importantly, it was recognized that the correlations between 
landmarks, which most researchers had tried to minimize, were actually the critical part of 
the problem and that, on the contrary, the more these correlations grew, the better the 
solution. The structure of the SLAM problem, the convergence result and the coining of 
the acronym 

SLAM was first presented in a mobile robotics survey paper presented at the 
1995 International Symposium on Robotics Research [52]. The essential theory on 
convergence and many of the initial results were developed by Csorba [30], [58]. Several 
groups already working on mapping and localization, notably at the Massachusetts 
Institute of Technology [59], Zaragoza [60], [61], the ACFR at Sydney [62], [34], and others 
[63], [64], [28], [65], [66], [67], [68] began working in earnest on SLAM—also called 
concurrent mapping and localization (CML) at this time in indoor, outdoor, and subsea 
environments. 

2.3.1 Formulation of the SLAM Problem 

SLAM is a process by which a mobile robot can build a map of an environment 
and at the same time use this map to deduce its location. In SLAM, both the trajectory of 
the platform and the location of all landmarks are estimated online without the need for 
any a priori knowledge of location. 

Consider a mobile robot moving through an environment taking relative 
observations of a number of unknown landmarks using a sensor located on the robot as 
shown in Figure 2.2. At a time instant k, the following quantities are defined: 

xk̂: the state vector describing the location and orientation of the vehicle. 
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uk: the control vector, applied at time k-1 to drive the vehicle to a state x ̂k at time 
k. 
mi: a vector describing the location of the i-th landmark whose true location is 
assumed time invariant. 
zik: an observation taken from the vehicle of the location of the i-th landmark at 
time k. When there are multiple landmark observations at any one time or when 
the specific landmark is not relevant to the discussion, the observation will be 
written simply as zk. 
In addition, the following sets are also defined: 

• X̂0:k = { x̂0, x̂1, · · · , x̂k} = { X̂0:k−1, x̂k}: the history of vehicle locations. 
• U0:k = {u1, u2, · · · , uk} = {U0:k−1, uk}: the history of control inputs. 
• M = {m1,m2, · · · ,mn}: the set of all landmarks.  
• Z0:k = {z1, z2, · · · , zk} = {Z0:k−1, zk}: the set of all landmark observation. 

2.3.2 Probabilistic SLAM 

In probabilistic form, the simultaneous localization and map building (SLAM) 
problem requires that the probability distribution 

 𝑃𝑃(x�𝑘𝑘 , M| Z0:k , U0:k, x ̂0 ) (1.1)  

be computed for all times k. This probability distribution describes the joint 
posterior density of the landmark locations and vehicle state (at time k) given the 
recorded observations and control inputs up to and including time k together with the 
initial state of the vehicle. In general, a recursive solution to the SLAM problem is 
desirable. Starting with an estimate for the distribution P(x̂k−1,M | Z0:k−1,U0:k−1) at time 
k−1, the joint posterior, following a control uk and observation zk, is computed using Bayes 
theorem. This computation requires that a state transition model and an observation 
model are defined describing the effect of the control input and observation respectively. 

The observation model describes the probability of making an observation zk 

when the vehicle location and landmark locations are known and is generally described in 
the form 

 𝑃𝑃(zk|x�𝑘𝑘 , M) (1.2)  

It is reasonable to assume that once the vehicle location and map are defined, 
observations are conditionally independent given the map and the current vehicle state. 

The motion model for the vehicle can be described in terms of a probability 
distribution on state transitions in the form 

 𝑃𝑃(x�𝑘𝑘 |x�𝑘𝑘−1, uk) (1.3)  
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That is, the state transition is assumed to be a Markov process in which the next 
state x ̂k depends only on the immediately preceding state xk̂−1and the applied control uk 

and is independent of both the observations and the map. 
 

 

Figure 2.2 The essential SLAM problem. A simultaneous estimate of both robot and 
landmark locations is required. The true locations are never known or measured 
directly. Observations are made between true robot and landmark locations. 

 

The SLAM algorithm is now implemented in a standard two-step recursive 
(sequential) prediction (time-update) correction (measurement-update) form: 

 
Time-update 

 

𝑃𝑃(x�𝑘𝑘 , M| Z0:𝑘𝑘−1 , U0:𝑘𝑘 , x�0)

= � 𝑃𝑃(x�𝑘𝑘 |x�𝑘𝑘−1, uk)

×  𝑃𝑃(x�𝑘𝑘−1, M| Z0:𝑘𝑘−1 , U0:𝑘𝑘−1, x�0)dx�𝑘𝑘−1  
(1.4)  
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Measurement Update 

 𝑃𝑃(x�𝑘𝑘 , M| Z0:𝑘𝑘  , U0:𝑘𝑘 , x�0) = 𝑃𝑃(zk |x�𝑘𝑘 ,M) 𝑃𝑃(x�𝑘𝑘 ,M| Z0:𝑘𝑘−1 ,U0:𝑘𝑘 ,x�0)
𝑃𝑃(zk |Z0:𝑘𝑘−1 ,U0:𝑘𝑘 )

  (1.5)  

Equations (1.4) and (1.5) provide a recursive procedure for calculating the joint 
posterior P(x ̂k,M | Z0:k,U0:k, x0) for the robot state x ̂k and map M at a time k based on all 
observations Z0:k and all control inputs U0:k up to and including time k. The recursion is a 
function of a vehicle model P(x ̂k | x ̂k−1, uk) and an observation model P(zk | x ̂k,M). 

It is worth noting that the map building problem may be formulated as 
computing the conditional density P(M | Xk̂−1, Z0:k, U0:k). This assumes that the location of 
the vehicle x ̂k is known (or at least deterministic) at all times, subject to knowledge of 
initial location. A map M is then constructed by fusing observations from different 
locations. Conversely, the localization problem may be formulated as computing the 
probability distribution P(x̂k | Z0:k, U0:k,M). This assumes that the landmark locations are 
known with certainty, and the objective is to compute an estimate of vehicle location with 
respect to these landmarks. 

2.3.3 Structure of Probabilistic SLAM 

The observation model P(zk|x ̂k,M) makes explicit the dependence of observations 
on both the vehicle and landmark locations. It follows that the joint posterior cannot be 
partitioned in the obvious manner 

 𝑃𝑃(x�𝑘𝑘 , M|zk) ≠ 𝑃𝑃(x�𝑘𝑘 |zk)P(M|zk)  (1.6)  

and indeed it is well known from the early papers on consistent mapping [52], 
[24] that a partition such as this leads to inconsistent estimates. However, the SLAM 
problem has more structure than is immediately obvious from these equations. 

Referring again to Figure 2.2, it can be seen that much of the error between 
estimated and true landmark locations is common between landmarks and is in fact due 
to a single source; errors in knowledge of where the robot is when landmark observations 
are made. In turn, this implies that the errors in landmark location estimates are highly 
correlated. Practically, this means that the relative location between any two landmarks, 
mi −mj, may be known with high accuracy, even when the absolute location of a landmark 
mi is quite uncertain. In probabilistic form, this means that the joint probability density for 
the pair of landmarks P(mi,mj) is highly peaked even when the marginal densities P(mi) 
may be quite dispersed. 

The most important insight in SLAM was to realize that the correlations between 
landmark estimates increase monotonically as more and more observations are made. 
(These results have only been proved for the linear Gaussian case [31]. Formal proof for 
the more general probabilistic case remains an open problem.) Practically, this means that 
knowledge of the relative location of landmarks always improves and never diverges, 
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regardless of robot motion. In probabilistic terms, this means that the joint probability 
density on all landmarks P(M) becomes monotonically more peaked as more observations 
are made. 

This convergence occurs because the observations made by the robot can be 
considered as “nearly independent” measurements of the relative location between 
landmarks. Referring again to Figure 2.2, consider the robot at location x̂k observing the 
two landmarks mi and mj. The relative location of observed landmarks is clearly 
independent of the coordinate frame of the vehicle, and successive observations from this 
fixed location would yield further independent measurements of the relative relationship 
between landmarks. 

 

 

Figure 2.3 Spring network analogy. The landmarks are connected by springs describing 
correlations between landmarks. As the vehicle moves back and forth through the 
environment, spring stiffness or correlations increase (red links become thicker). As 
landmarks are observed and estimated locations are corrected, these changes are 
propagated through the spring network. Note, the robot itself is correlated to the map. 

 
Now, as the robot moves to location x ̂k+1, it again observes landmark mj this 

allows the estimated location of the robot and landmark to be updated relative to the 
previous location xk̂. In turn, this propagates back to update landmark mi —even though 
this landmark is not seen from the new location. This occurs because the two landmarks 
are highly correlated (their relative location is well known) from previous measurements. 
Further, the fact that the same measurement data is used to update these two landmarks 
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makes them more correlated. The term nearly independent measurement is appropriate 
because the observation errors will be correlated through successive vehicle motions. Also 
note that in Figure 2.2 at location x̂k+1, the robot observes two new landmarks relative to 
mj. These new landmarks are thus immediately linked or correlated to the rest of the map. 
Later updates to these landmarks will also update landmark mj and through this landmark 
mi and so on. That is, all landmarks end up forming a network linked by relative location or 
correlations whose precision or value increases whenever an observation is made. 

This process can be visualized (Figure 2.3) as a network of springs connecting all 
landmarks together or as a rubber sheet in which all landmarks are embedded. An 
observation in a neighborhood acts like a displacement to a spring system or rubber sheet 
such that its effect is great in the neighborhood and, dependent on local stiffness 
(correlation) properties, diminishes with distance to other landmarks. As the robot moves 
through this environment and takes observations of the landmarks, the springs become 
increasingly (and monotonically) stiffer. In the limit, a rigid map of landmarks or an 
accurate relative map of the environment is obtained. As the map is built, the location 
accuracy of the robot measured relative to the map is bounded only by the quality of the 
map and relative measurement sensor. In the theoretical limit, robot relative location 
accuracy becomes equal to the localization accuracy achievable with a given map. 

2.3.4 Solutions to the SLAM Problems 

Solutions to the probabilistic SLAM problem involve finding an appropriate 
representation for both the observation model (1.2) and motion model (1.3) that allows 
efficient and consistent computation of the prior and posterior distributions in (1.4) and 
(1.5). By far, the most common representation is in the form of a state-space model with 
additive Gaussian noise, leading to the use of the extended Kalman filter (EKF) to solve the 
SLAM problem. One important alternative representation is to describe the vehicle motion 
model in (1.3) as a set of samples of a more general non-Gaussian probability distribution. 
This leads to the use of the Rao-Blackwellized particle filter, or FastSLAM algorithm, to 
solve the SLAM problem. While EKF-SLAM and FastSLAM are the two most important 
solution methods, newer alternatives, which offer much potential, have been proposed, 
including the use of the information-state form [69]. 
 

2.3.5 Extended Kalman Filter based SLAM 

The Extended Kalman filter (EKF) is an efficient recursive filter which estimates 
the state of dynamic system from a series of loud and incomplete measurements. In that 
sense, the most common probabilistic approach to solving the problem of SLAM is to use 
EKF. It is frequently used to solve the SLAM problem, principally due to its theoretical 
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clarity and its facility of implementation. There are some issues related to EKF based SLAM 
solutions: 

Convergence:  In the EKF-SLAM problem, convergence of the map is manifest in 
the monotonic convergence of the determinant of the map covariance matrix Pmm,k and all 
landmark pair submatrices, toward zero. The individual landmark variances converge 
toward a lower bound determined by initial uncertainties in robot position and 
observations.  

Computational Effort: The observation update step requires that all landmarks 
and the joint covariance matrix be updated every time an observation is made. Naively, 
this means computation grows quadratically with the number of landmarks. There has 
been a great deal of work undertaken in developing efficient variants of the EKF-SLAM 
solution and real-time implementations with many thousands of landmarks have been 
demonstrated [70], [59].  

Data Association: The standard formulation of the EKF-SLAM solution is 
especially fragile to incorrect association of observations to landmarks [71]. The loop-
closure problem, when a robot returns to reobserve landmarks after a large traverse, is 
especially difficult. The association problem is compounded in environments where 
landmarks are not simple points and indeed look different from different viewpoints.  

Nonlinearity: EKF-SLAM employs linearized models of nonlinear motion and 
observation models and so inherits many caveats. Nonlinearity can be a significant 
problem in EKF-SLAM and leads to inevitable and sometimes dramatic, inconsistency in 
solutions [72]. Convergence and consistency can only be guaranteed in the linear case. 

2.3.6 Rao-Blackwellized Filter 

The FastSLAM algorithm, introduced by Montemerlo et al. [73], marked a 
fundamental conceptual shift in the design of recursive probabilistic SLAM. Previous 
efforts focused on improving the performance of EKF-SLAM, while retaining its essential 
linear Gaussian assumptions. FastSLAM, with its basis in recursive Monte Carlo sampling, 
or particle filtering, was the first to directly represent the nonlinear process model and 
non-Gaussian pose distribution. (FastSLAM still linearizes the observation model, but this 
is typically a reasonable approximation for range-bearing measurements when the vehicle 
pose is known.) This approach was influenced by earlier probabilistic mapping 
experiments of Murphy [74] and Thrun [75]. 

The high dimensional state-space of the SLAM problem makes direct application 
of particle filters computationally infeasible. However, it is possible to reduce the 
samplespace by applying Rao-Blackwellization. 

Statistically, FastSLAM algorithm suffers degeneration due to its inability to forget 
the past. Marginalizing the map introduces dependence on the pose and measurement 
history, and so, when resampling depletes this history, statistical accuracy is lost [76]. 
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Nevertheless, empirical results of Fast-SLAM in real outdoor environments [77] show that 
the algorithm is capable of generating an accurate map in practice. 

2.4 Conclusions 

The Localization and mapping problem is generally regarded as ones of the most 
important problems in the pursuit of building truly autonomous mobile robots. The goal of 
this chapter was to survey several concepts, in order to gives to the reader a background 
for the main themes addressed in this thesis.  Several references to most of the relevant 
work on the field of localization and mapping are included.  It is quite remarkable that 
virtually all state-of-the-art algorithms in robotic mapping share the same mathematical 
foundation: They are all probabilistic. Moreover, they are all versions of Bayes filters and 
an underlying generative probabilistic description of robot motion and perception. This 
development parallels a much broader trend in mobile robotics, where probabilistic 
techniques are commonly the method of choice over more ad hoc approaches, such as 
behavior-based techniques.  

Overall, the situation in robot localization and mapping is encouraging. In that 
sense, it was seen that: Measurement Noise, Dimensionality, Data Association, Dynamical 
Environments and Robotics Exploration represent ones of the fundamentals issues for 
taken into account, in order to design robust methods  well suited for complex, large and 
dynamical environments.  If truly autonomous mobile robots wants to be built, the 
localization and mapping problems have to be solved simultaneously, in that sense SLAM 
is largely considered the most difficult and important perceptual problem in robotics. 

In section 2.3, the general SLAM problem was formulated in a probabilistic 
context.  In that sense, particle filters based methods and Kalman filters based methods 
represents both the major families of algorithms in order to solve the SLAM problem.  
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Chapter 3 

3 Kalman Filter based SLAM 

Extended Kalman Filter techniques (EKF) are frequently used to solve the SLAM 
problem, principally due to its theoretical clarity and its facility for implementing it.  On 
the other hand, possibly its main weakness resides in the assumption of representing 
uncertainties with a single Gaussian distribution.  In many real ones situations is not 
possible to model uncertainties in this way, this fact has motivated the use of alternative 
estimations techniques like the Particles Filters, capable of representing uncertainties with 
multivariate distributions. Nevertheless it’s seen that the SLAM schemes based in Particles 
Filters have not finished consolidated, and more over, in the literature, continue to 
emerge new approaches based on the Kalman Filter.   

This chapter aims to expose a considerable amount of the theoretical and 
mathematical basis that contends to this thesis.  In that sense, the basic components of a 
general SLAM system are exposed in a manner like a “SLAM tutorial”. Several equations 
that will be used recurrently along the thesis are given in their simplest form.  

First the basic equations (prediction and update) of the Kalman Filter are 
exposed. Later a simple differential model for a vehicle is introduced in order to illustrate 
the effect of the uncertainty propagation in this kind of systems. At this point, the 
convenience of using external references (landmarks), in order to minimize the drift in the 
estimation of the robot’s location, is analyzed. The convenience of a probabilistic 
framework in SLAM is also pointed out. Later the localization and mapping problem are 
exposed in a separated manner. For the localization case, it is assumed that the robot 
knows perfectly the locations of a group of landmarks but it has uncertainty about its 
location, in that sense it’s seen how the measurement to external environment reference 
improves the estimation of the robot’s location and how when the sensor is “turned off” 
the robot begin to get lost.  Later we assume the opposite in the mapping case, where the 
robot’s location is perfectly know over the time, and the robot must estimate a features 
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map of its environment. In this case it’s seen how the uncertainty in the feature’s location 
is minimized over time while the robot is moving. 

Both, Mapping and Localization problem, where the counterpart are know, (in 
Localization problem we know the map, in Mapping problem we know the localization) 
are simple comparing with the Simultaneous Localization and Mapping problem where 
both, map and robot’s locations have to be estimated simultaneously. In the last section 
we put all the pieces together in order to describe the general EKF-based SLAM algorithm. 

A considerable part of this chapter is based in a series of excellent SLAM tutorial 
like [78], [79] or [33]. All the simulations presented in this chapter are implemented in 
MATLAB, and based in the public code provided by the author of [33].  

3.1 Kalman Filtering 

The Kalman Filter is a general statistical tool for the analysis of time-varying 
physical systems in the presence of noise. A system is modeled by a state vector x which 
has entries for each of the quantities of interest. The passage of time is divided into small 
intervals Δt, and knowledge of the expected evolution of the sate vector is encapsulated in 
the state transition function f. 

The filter permits continuous and efficient estimation of the state as the system 
evolves, incorporating the information provided by any measurements z which is made of 
quantities depending on the sate. The current state estimate is stored in the vector x ̂ and 
the covariance matrix P, which is square and symmetric with dimension of the number of 
elements in x, represents the uncertainty in x̂. If the dependence of both f and the 
measurement function h on x is linear, and the statistical distribution of noise in the state 
transition and measurements is Gaussian, then the solution produced is optimal. 

3.1.1 The Extended Kalman Filter 

The Extended Kalman Filter (EKF) is a simple extension of the Kalman Filter to 
cope with systems whose state transition and measurement functions are non-linear, or 
whose noise distributions are non-Gaussian. This is true of most physical systems to which 
the filter has been applied, and acts only as an approximation in these cases, where the 
downside of its efficiency is oversimplification of the mathematical forms of the functions 
and distributions involved. Usually the results are quite adequate, but in some recent 
vision applications, such as tracking the outlines of rapidly moving objects against 
cluttered backgrounds, the Kalman Filter has been found to fail (in this case due to its 
inability to use multi-modal distributions to represent multiple hypotheses about the 
location of an object)and replacement algorithms have been develop [80]. In our systems, 
the EKF has been found to work well.  
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3.1.2 Prediction 

In a step time during which no measurements are made, our estimate of the 
state of a system changes according to the state transition function f describing the 
dynamics. The covariance matrix changes, reflecting the increase of uncertainty in the 
state, due to noise Q presented in the state transition. (due to random effects or factors 
which are not accounted for in the dynamic model). Both f and Q depend on u, the current 
control vector, for example in a vehicle, specifying demanded velocity and steering angle.  
The label k denotes an incrementing time step.  

 x�(𝑘𝑘 + 1) = 𝑓𝑓(x�(𝑘𝑘), 𝑢𝑢(𝑘𝑘)) (3.1)  

 𝑃𝑃(𝑘𝑘 + 1) =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑃𝑃(𝑘𝑘)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

⊺

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑄𝑄
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

⊺

 (3.2)  

The trick behind the EKF is to linearize the non-linear models around the “best” 
current estimate (best meaning prediction (k+1) or last estimate (k). This is done using a 
Taylor series expansion.  

The term ∂f/∂x is understood to be the Jacobian of f with respect to x evaluated 
at an elsewhere specified point: 
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⎥
⎥
⎥
⎤

 (3.3)  

3.1.3 Update 

When a measurement is made, the state estimate improves with the new 
information and the uncertainty represented by Ρ will reduce. v is the difference between 
the actual measurement z and the prediction h calculated from the current state, and is 
called the innovation. R is the covariance matrix of the noise in the measurement. The 
update equations for state and covariance are: 

 x�(𝑘𝑘) = x�(𝑘𝑘 + 1) + 𝑊𝑊𝑊𝑊(𝑘𝑘) (3.4)  

 𝑃𝑃(𝑘𝑘) = 𝑃𝑃(𝑘𝑘 + 1) − 𝑊𝑊𝑊𝑊𝑊𝑊⊺ (3.5)  

where the innovation is 

 𝑣𝑣(𝑘𝑘) = 𝑧𝑧(𝑘𝑘) − ℎ(𝑥𝑥(𝑘𝑘 + 1)) (3.6)  

W, the Kalman gain, is 
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 𝑊𝑊 = 𝑃𝑃(𝑘𝑘 + 1)
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

⊺

𝑆𝑆−1 (3.7)  

and S, the innovation covariance is 

 𝑆𝑆 =
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

𝑃𝑃(𝑘𝑘 + 1)
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

⊺

+ 𝑅𝑅 (3.8)  

The innovation covariance represents the uncertainty in v, the amount by which a 
true measurement differs from its predicted value.  Where ∂h/∂x is the Jacobian of the 
prediction equation h with respect to the state x: 
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 (3.9)  

3.2 Vehicle Models and Odometry 

A simple differential drive model for a mobile robot is introduced and an analysis 
of the uncertainty propagation with this model is presented.   

3.2.1 Differential Drive Model 

A differential wheeled robot is a mobile robot whose movement is based on two 
separately driven wheels placed on either side of the robot body. It can thus change its 
direction by varying the relative rate of rotation of its wheels and hence does not require 
an additional steering motion. If both the wheels are driven in the same direction and 
speed, the robot will go in a straight line. Otherwise, depending on the speed of rotation 
and its direction, the centre of rotation may fall anywhere in the line joining the two 
wheels. Since the direction of the robot is dependent on the rate and direction of rotation 
of the two driven wheels, these quantities should be sensed and controlled precisely. This 
usually creates some problem. If both wheels are turned with equal speed in opposite 
directions, the robot will rotate about the central point of the axis. 

A differentially steered robot is similar to the differential gears used 
in automobiles in that both the wheels can have different rates of rotations, but unlike the 
differential gearing system; a differentially steered system will have both the wheels 
powered. Differential wheeled robots are used extensively in robotics, since their motion 
is easy to program and can be well controlled. Virtually all consumer robots on the market 
today use differential steering primarily for its low cost and ultra-simplicity. 

http://en.wikipedia.org/wiki/Differential�
http://en.wikipedia.org/wiki/Gears�
http://en.wikipedia.org/wiki/Automobiles�
http://en.wikipedia.org/wiki/Robotics�
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Figure 3.1 Vehicle with differential steering 

In Figure 3.1 (right) is possible to see a schematic model of traction differential 
while turning, and what the parameters are that affect to turn and displacement. We are 
interesting in a model of dead reckoning; in traditional aviation or nautical navigation, the 
term "dead reckon" means to estimate position without external references. Position is 
dead reckoned using knowledge about a vehicle's course and speed over a period of time. 
In robotics, the necessary information is often obtained by measuring wheel revolutions. 
Devices called encoders are coupled to a robot's drive wheels and act like digital 
odometers. Although things can go wrong (as when the robot "spins out" on a slippery 
floor), encoders generally provide a good estimate of displacements δl δr for the left and 
right wheels, respectively. These displacement values can, in turn, be used to determine 
global (x,y,θ) position based on odometry calculations Figure 3.1 (left).   

The equations bellow, taken from [81] estimates the current global vehicle pose 
(x,y,θ) (position and orientation)  as a function of the wheels velocities Vl Vr, the axes 
separation b, the time t, and the initial robot position (x0,y0,θ0).  

 [𝑥𝑥, 𝑦𝑦, 𝜃𝜃] = 𝑓𝑓(Vl, Vr, 𝑡𝑡, 𝑏𝑏, 𝑥𝑥0, 𝑦𝑦0, 𝜃𝜃0) (3.10)  

 𝜃𝜃(𝑡𝑡) =
(Vl − Vr)𝑡𝑡

𝑏𝑏
+ 𝜃𝜃0 (3.11)  

 𝑥𝑥(𝑡𝑡) = 𝑥𝑥0 +
𝑏𝑏(Vl + Vr)
2(Vl − Vr) �sin �

(Vl − Vr )𝑡𝑡
𝑏𝑏 + 𝜃𝜃0� − sin 𝜃𝜃0� (3.12)  

 𝑦𝑦(𝑡𝑡) = 𝑦𝑦0 +
𝑏𝑏(Vl + Vr)
2(Vl − Vr ) �cos �

(Vl − Vr )𝑡𝑡
𝑏𝑏 + 𝜃𝜃0� − cos 𝜃𝜃0� (3.13)  



32  Kalman Filter based SLAM 

Nevertheless many popular authors on robotics as [82], recommend the formulas 
shown in below as a way to avoid the complications of equations (3.11), (3.12) and (3.13). 
The methods in (3.15), (3.16) and (3.17) are especially well suited to small robot 
applications where on-board computing power is limited (and floating-point operations 
might not be available). 

 𝛿𝛿 = (𝛿𝛿𝑙𝑙 + 𝛿𝛿𝑟𝑟 )/2 (3.14)  

 𝜃𝜃 =
𝛿𝛿𝑙𝑙 − 𝛿𝛿𝑟𝑟

𝑏𝑏
+ 𝜃𝜃0 (3.15)  

 𝑥𝑥 = 𝛿𝛿 cos 𝜃𝜃 + 𝑥𝑥0  (3.16)  

 𝑦𝑦 = 𝛿𝛿 sin 𝜃𝜃 + 𝑦𝑦0  (3.17)  

Where the current global vehicle pose (x,y,θ) is in function of the distance 
traveled for each wheel δl, δr and the axes separation b. The formulas above are simple 
and convenient. They work well for algorithms as long it is remember that they are 
approximations. Essentially computes the robot's total rotation and distance traveled, and 
then treats it as if it had completed the full rotation as a pivot the very beginning of the 
maneuver and then traveled in a straight line. Of course, this kind of "point-and-shoot" 
description is an incomplete representation of the reality. But as long as the robot's actual 
path doesn't involve too much of a turn, works fine.  In this thesis, these equations are 
used. 

3.2.2 Evolution of Uncertainty 

We allow the vehicle to move on a 2D surface (a floor) and point in arbitrary 
directions. We parameterize the vehicle pose x ̂v (the joint of position and orientation) as 

 x�𝑣𝑣 = �
𝑥𝑥𝑣𝑣
𝑦𝑦𝑣𝑣
𝜃𝜃𝑣𝑣

� (3.18)  

Then the robot discrete motion prediction model, using the equations of section 
3.2.1, is: 

 x�𝑣𝑣(𝑘𝑘+1) = 𝑓𝑓 �x�𝑣𝑣(𝑘𝑘), 𝑢𝑢(𝑘𝑘)� ; 𝑢𝑢(𝑘𝑘) = �𝛿𝛿𝑙𝑙
𝛿𝛿𝑟𝑟

� (3.19)  

 �
𝑥𝑥𝑣𝑣(𝑘𝑘+1)
𝑦𝑦𝑣𝑣(𝑘𝑘+1)

𝜃𝜃𝑣𝑣(𝑘𝑘+1)

� = �
𝑥𝑥𝑣𝑣(𝑘𝑘) + 𝛿𝛿 cos 𝜃𝜃´

𝑦𝑦𝑣𝑣(𝑘𝑘) + 𝛿𝛿 sin 𝜃𝜃´

𝜃𝜃𝑣𝑣(𝑘𝑘) + 𝜃𝜃´
� (3.20)  
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being δ the distance traveled by the robot’s center and θ’ the turn realized by the 
robot at each instant k: 

 𝛿𝛿 =
𝛿𝛿𝑙𝑙 + 𝛿𝛿𝑟𝑟

2
, 𝜃𝜃´ =

𝛿𝛿𝑙𝑙 − 𝛿𝛿𝑟𝑟

𝑏𝑏
 (3.21)  

and derived from the distance traveled for each robot’s wheels δl, δr and the 
separation b between them. Usually δl, δr are obtained from the robot’s encoders. 

Note that equation (3.20) is a model of a perfect, noiseless vehicle. Clearly this is 
a little unrealistic; therefore we need to model uncertainty. One popular way to do this is 
to insert noise terms into the control signal u such that: 

 𝑢𝑢(𝑘𝑘) = 𝑢𝑢𝑛𝑛 (𝑘𝑘) + 𝑣𝑣(𝑘𝑘) (3.22)  

where un(k) is a nominal (intended) control signal and v(k) is a zero mean 
Gaussian distributed noise vector: 

 𝑣𝑣(𝑘𝑘)~ℵ(0, �
σδl

2 0
0 σδr

2 �) (3.23)  

 𝑢𝑢(𝑘𝑘)~ℵ(𝑢𝑢𝑛𝑛 (𝑘𝑘), �
σδl

2 0
0 σδr

2 �) (3.24)  

This completes a simple probabilistic model of a differential drive vehicle. The 
propagation of this model affects uncertainty in vehicle pose over time. If the robots 
moves when only the control signal u is available then an initial uncertainty in vehicle pose 
increases over time. 

The differential drive model (3.20) is non-linear and so we will have to use the 
non-linear form of the predicted Kalman step. 

Assume at time k we have been given a previous best estimate of the vehicle 
pose x ̂v(k-1|k-1) and an associated covariance Pv(k-1|k-1). Equations (3.1) and (3.2) have 
that: 

 x�𝑣𝑣(𝑘𝑘 + 1) = 𝑓𝑓(x�(𝑘𝑘), 𝑢𝑢(𝑘𝑘)) (3.25)  

 𝑃𝑃(𝑘𝑘 + 1) = ∇𝐹𝐹𝑥𝑥 𝑃𝑃(𝑘𝑘)∇𝐹𝐹𝑥𝑥
⊺ + ∇𝐹𝐹𝑣𝑣𝑄𝑄∇𝐹𝐹𝑣𝑣

⊺ (3.26)  

For clarity, in equation (3.26) the notation for the jacobian has been change from 
∂f/∂x to ∇Fx and ∂f/∂u to ∇Fv, also note that we are considering a constant noise Q 
instead of varying noise Q(k).  In this case: 
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Figure 3.2 Simulation of the uncertainty evolution in a differential drive robot for two 
paths; a simple straight trajectory (Upper graphic) and a sinus trajectory (Lower 
graphic). Robot position 2 σ  uncertainty is illustrated by the ellipses. Note the 
divergence between true and dead-reckoned (odometry) estimations. This is typical of 
all dead reckoning methods; the only thing that can be changed is the rate of 
divergence. 
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 Q = �
σδl

2 0
0 σδr

2 � (3.27)  

The Jacobians of (3.20) with respect to state and control noise at x ̂(k-1|k-1) are:  

 ∇𝐹𝐹𝑥𝑥 = �
1 0 0
0 1 0
0 0 1

� (3.28)  

 ∇𝐹𝐹𝑢𝑢 =

⎣
⎢
⎢
⎢
⎢
⎡2 cos 𝜃𝜃´ −

𝛿𝛿 sin 𝜃𝜃´

𝑏𝑏
2 cos 𝜃𝜃´ +

𝛿𝛿 sin 𝜃𝜃´

𝑏𝑏

2 sin θ´ +
𝛿𝛿 cos 𝜃𝜃´

𝑏𝑏
2 sin θ´ −

𝛿𝛿 cos 𝜃𝜃´

𝑏𝑏
1

𝑏𝑏� −1
𝑏𝑏� ⎦

⎥
⎥
⎥
⎥
⎤

 (3.29)  

 
Figure 3.2 shows the results of iterating equations (3.25) and (3.26). The 

uncertainty injected into the system via the noisy encoders measurement makes the 
estimated covariance of the vehicle grows without bound. In actual real life the real robot 
is integrating the noisy control signal (odometry measurements). The true trajectory will 
therefore always drift away from the trajectory estimated by the algorithms running by 
the robot. Of course it is expected a gross accumulation of error as the time spent moving 
“open loop” increases. All the measurements such as the encoders lectures are measured 
in the vehicle frame and must be integrated, along with the noise on the measurements. 
This always leads to what is called “dead reckoning drift”. The main cause of this 
divergence on land vehicles is wheel slip. Typically robot wheels are fitted with encoders 
that measure the rotation of each wheel. Position is then an integral-function of these 
“wheel counts”. The problem is a wheel or radius r may have turned through θ but due to 
slip/skid the distance travelled over the ground is only (1-n)rθ where n is an unobservable 
slip parameter.  

Some methods for odometry calibration, as the proposed in [83], [84] and [85] 
can considerably reduce the rate in dead reckoning drift, nevertheless, always there is 
going to be some moment where the drift will reach  an unsustainable level. 

3.3 Feature Based Mapping and Localization 

If only internal measurements (odometry) are used in order to estimate the 
global position of the robot then an increasing drift will be present in the estimations 
while the robot moves. In order to minimize the drift, the robot can use others sensors in 
order to incorporate major information to the system. In that sense the more popular 
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approach is to measure (using diverse kind of sensors) the relative position, respect to the 
robot, of static and easy-detectable spatial locations of the environment, this “landmarks” 
are called map features.   In this case if there is a previous knowledge of the features 
global position, then the robot can be localized in the features global frame.  

3.3.1 Map Representation 

A continuous-valued map is one method for exact decomposition of the 
environment. The position of environmental features can be annotated precisely in 
continuous space. Mobile robot implementations to date use continuous maps only in 2D 
representations, higher dimensionality can result in computational explosion. In chapter 2, 
it was seen that one of the first representations of continuous-valued (and metric) maps 
was the occupancy grid algorithm. This kind of representation has some advantages; 
facilitate the planning of navigation paths using the free space on the map. Make easy 
some Bayesian sensory fusion approaches.  When the probability of occupation is 
upgraded along the time, a degree of dynamic adaptation in the map is archived. And is a 
kind of representation easy to understand by humans. On the other hand the maps based 
on grids of occupation suffer from some drawbacks; the size of the map in memory of the 
robot grows to the size of the environment, and when a small cell size is used, this growth 
in requirements is becoming untenable. In that sense, the occupancy grids maps are not 
compatible with the compactness that provides the assumption of a "closed world" 
(closed-world-assumption). 

This means that one assumes that the representation will specify all 
environmental objects in the map, and that any area in the map that is devoid of objects 
has no objects in the corresponding portion of the environment. Thus, the total storage 
needed in the map is proportional to the density of objects in the environment, and a 
sparse environment can be represented by a low-memory map. 

In contrast maps of the occupation have to reserve memory for each cell in the 
grid. In addition, any method of decomposition imposes grid geometry in the world, 
rejecting a priori details of the environment. This may be inappropriate when the 
geometry is the more outstanding feature of the environment as may be the case of less 
structured exterior (outdoor) spaces.  

A common approach is to combine the exactness of a continuous representation 
with the compactness of the closed-world assumption. One example of such a 
representation is a 2D representation in which polygons represent all obstacles in a 
continuous-valued coordinate space. This is similar to the method used by Latombe [86], 
[87] and others to represent environments for mobile robot path-planning techniques. 

In the case of [ [86], [87]] most of the experiments are in fact simulations run 
exclusively within the computer’s memory. Therefore, no real effort would have been 
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expended to attempt to use sets of polygons to describe a real-world environment, such 
as a park or office building. 

In other work in which real environments must be captured by the maps, one 
sees a trend toward selectivity and abstraction. The human map maker tends to capture 
on the map, for localization purposes, only objects that can be detected by the robot’s 
sensors and, furthermore, only a subset of the features of real-world objects. 

It should be immediately apparent that geometric maps can capably represent 
the physical locations of objects without referring to their texture, color, elasticity, or any 
other such secondary features that do not relate directly to position and space. In addition 
to this level of simplification, a mobile robot map can further reduce memory usage by 
capturing only aspects of object geometry that are immediately relevant to localization. 
For example, all objects may be approximated using very simple convex polygons, 
sacrificing map felicity for the sake of computational speed. 

An approach which benefits of an accurate metric map representing the 
environment on a continuous basis along with assuming a closed world (closed-world-
assumption) may be useful for building accurate maps of large structured or less 
structured environments, even in 3D: This is the case of the Sparse Maps which represents 
the most common environment representation nowadays

 

. 

Figure 3.3 The perceptual pipeline: from sensor readings to knowledge models. 

In that sense, sparse statistics called features are used in order to create a model 
that is rich enough to represent the environment and sparse yet to be stored and 
processed efficiently. 

More properly, features are recognizable structures of elements in the 
environment. They usually can be extracted from measurements and mathematically 
described. Good features are always perceivable and easily detectable from the 
environment. We distinguish between low-level features (geometric primitives) like lines, 
circles, or polygons, and high level features (objects) such as edges, doors, tables, or a 

A landmark is a feature of environment with geographic meaning, a landmark in 
mobile robotics is seen as a passive object of the environment that provides a 
considerable degree of precision in the location when the landmark is located within the 
field of view of the robot. 
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trash can. At one extreme, raw sensor data provide a large volume of data, but with low 
distinctiveness of each individual quantum of data. Making use of raw data has the 
potential advantage that every bit of information is fully used, and thus there is a high 
conservation of information. Low-level features are abstractions of raw data, and as such 
provide a lower volume of data while increasing the distinctiveness of each feature. The 
hope, when one incorporates low-level features, is that the features are filtering out poor 
or useless data, but of course it is also likely that some valid information will be lost as a 
result of the feature extraction process. 

High-level features provide maximum abstraction from the raw data, thereby 
reducing the volume of data as much as possible while providing highly distinctive 
resulting features. 

The abstraction process has the risk of filtering away important information, 
potentially lowering data utilization. Figure 3.3 shows the perceptual pipeline from sensor 
readings to knowledge models. 

Although features must have some spatial locality, their geometric extent can 
range widely. For example, a corner feature inhabits a specific coordinate location in the 
geometric world. In contrast, a visual “fingerprint” identifying a specific room in an office 
building applies to the entire room, but has a location that is spatially limited to the one 
particular room. 

In mobile robotics, features play an especially important role in the creation of 
environmental models. They enable more compact and robust descriptions of the 
environment, helping a mobile robot during both map-building and localization. When 
designing a mobile robot, a critical decision revolves around choosing the appropriate 
features for the robot to use.  

3.3.2 Features and Maps 

All the definitions presented in this chapter are formulated in a 2D context, but of 
course, are valid for the full 3D case. In following chapters we will analyze the 3D case. 

We suppose that the world is occupied by a set of discrete landmarks or features 
whose location-orientation and geometry (with respect to a defined coordinate frame) 
can be described by a set of parameters expressed into a feature vector yn̂. 

We call a Map a collections of n features such that M = {ŷ1, ŷ2, ŷ3… ŷn}. We will 
use M to denote the map vector which is simply the concatenation of all the features in 
the vector M: 

 𝑀𝑀 = �

y�1
y�2
⋮

y�𝑛𝑛

� (3.30)  
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We begin considering to using the simplest feature possible: a point feature such 
that for the ith feature: 

 y�𝑖𝑖 = �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖

� (3.31)  

where xi and yi are the Euclidean coordinates of the point in a global frame 
reference. Point features are not uncommon. Points occur at the intersection of lines, 
corners of rectangles, edges of objects, etc. 

3.3.3 Observations 

We define two types of observations, all denoted as z: vehicle relative and 
absolute.  

Absolute:  Absolute observations are made with the help of some external device 
and usually involve a direct measurement of some aspect of the vehicle´s pose. The best 
examples are a GPS and a compass. They depend on external infrastructure and are 
nothing to do with the map. 

Vehicle Relative: This kind of observations involves sensing the relationship 
between the vehicle and its immediate surroundings (especially the map), Figure 3.4. An 
example is the measurement of the angle and distance to a point feature, (with respect to 
the robot´s own frame of reference). Odometry is another example of vehicle-relative 
measurement because it is not a direct measurement of the vehicle´s state. 

3.3.4 Probabilistic Framework 

It is informative to describe the localization and mapping task in terms of 
likehoods (observation Probability distribution Function, pdf) and priors. 

3.3.5 Probabilistic Localization 

For the localization task, we look for a pdf for the vehicle pose given map an 
observations p(xv,M,ZK) in this case: 

 𝑝𝑝(x𝑣𝑣|M, Z𝑘𝑘) =
𝑝𝑝�Zk�x𝑣𝑣 , M�𝑝𝑝(x𝑣𝑣|M)

∫ 𝑝𝑝(Zk|x𝑣𝑣 , M)𝑝𝑝(x𝑣𝑣|M)∞
−∞

 (3.32)  

3.3.6 Probabilistic Mapping 

For the mapping task, we have the vehicle location and sequence of relative 
observations. We wish to find the distribution of M conditioned on ZK and xv, in this case: 
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 𝑝𝑝(M|x𝑣𝑣 , Z𝑘𝑘) =
𝑝𝑝�Zk�x𝑣𝑣 , M�𝑝𝑝(M|x𝑣𝑣)

∫ 𝑝𝑝(Zk|x𝑣𝑣 , M)𝑝𝑝(M|x𝑣𝑣)∞
−∞

 (3.33)  

In both cases, localization and mapping the integrals in the denominators are just 
normalizing constants Equations. The Kalman filter would appear to be an excellent way in 
which to implement these equations. If we parameterize the random vectors xv and M 
with first and second order statistics (mean and variance) then the Kalman Filter will 
calculate the minimum mean square error (MMSE) estimate of the posterior. If it is 
assuming Gaussian distributions, then the Kalman filter is the optimal Bayesian estimator. 
The Kalman filter provides a real time way to perform state estimation.  

 

 

Figure 3.4 Feature based Navigation and Mapping. 

 

3.3.7 Feature Based Localization 

In this case, we are given a map M containing a set of features and a stream of 
observations of measurements between the vehicle and these features. We assume that 
the associations between measurements and observed features are given (Data 
association problem obviated).  For the simulations, we use the differential drive model 
previously explained (Section 3.2) in order to have a sequence of dead-reckoned positions 
as the input into the prediction stage. 

We have already the prediction equations from (3.1) and (3.2): 
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Figure 3.5 Feature Based Localization simulation: The vehicle moves through a field of 
random point features (Upper Graphic). The sensor is turned off for a while at the 
middle of the trajectory. In the innovation and error-covariance plots (Lower graphics) 
note how the position uncertainty grows rapidly when there is not incoming 
measurements, but reduces when a feature is re-observed.  
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 x�𝑣𝑣(𝑘𝑘 + 1) = 𝑓𝑓(x�(𝑘𝑘), 𝑢𝑢(𝑘𝑘)) (3.34)  

 𝑃𝑃(𝑘𝑘 + 1) = ∇𝐹𝐹𝑥𝑥 𝑃𝑃(𝑘𝑘)∇𝐹𝐹𝑥𝑥
⊺ + ∇𝐹𝐹𝑣𝑣𝑄𝑄∇𝐹𝐹𝑣𝑣

⊺ (3.35)  

The observation equation is simply a range ri and bearing θi to the ith feature: 

 z(𝑘𝑘) = h(x�(𝑘𝑘), w(𝑘𝑘)) (3.36)  

 z(𝑘𝑘) = �𝑟𝑟
𝜃𝜃� (3.37)  

 �𝑟𝑟
𝜃𝜃� = �

�(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣(𝑘𝑘))2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣(𝑘𝑘))2

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 �
𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣(𝑘𝑘)
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣(𝑘𝑘)

� − 𝜃𝜃𝑣𝑣
� (3.38)  

We differentiate (3.38) with respect to xv̂ for obtaining the observation model 
Jacobian (3.9): 

 ∇H𝑥𝑥 =
𝜕𝜕h
𝜕𝜕xv

 (3.39)  

 ∇H𝑥𝑥 = �

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣(𝑘𝑘)
𝑟𝑟

𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣(𝑘𝑘)
𝑟𝑟

0

𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣(𝑘𝑘)
𝑟𝑟2 −

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣(𝑘𝑘)
𝑟𝑟2 −1

� (3.40)  

We assume independent errors on range and bearing measurements and use a 
diagonal observation covariance matrix R: 

 R = �
σ𝑟𝑟

2 0
0 σθ

2 � (3.41)  

The equations above are enough for implement the Prediction and Update 
equations in an Extended Kalman Filter (Section 3.3.2). Figure 3.5 shows the trajectory of 
the vehicle as it moves through a field of random point features. In this trajectory it is 
simulated a sensor failure. During this time the vehicle becomes more and more lost. 
When the sensor comes back on line there is a jump in estimated vehicle location back to 
one close to the true position.  

3.3.8 Feature based Mapping 

The Mapping is the dual of Localization. In this case we assume that the vehicle 
knows exactly where it is, but not what is in the environment.  The state vector for this 
problem is larger due to containing the concatenation of all point features.   The 



 Feature Based Mapping and Localization 43 

observation equation is the same as for the localization case only now the feature 
coordinates are the free variables. 

The prediction model for the state is trivial. We assume that features don`t move 
and therefore x ̂(k+1|k)map = x ̂(k|k)map. Initially the map is empty and so a method is needed 
in order to add new discovered features to the map.  

The feature initialization function Y takes as arguments the old state vector and 
an observation to a landmark and returns a new, longer state vector with the new feature 
at its end. 

 x�(𝑘𝑘)𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑦𝑦�x�(𝑘𝑘), z(𝑘𝑘)� (3.42)  

                     = �
x�(𝑘𝑘)

𝑔𝑔(x(𝑘𝑘), z(𝑘𝑘), x�𝑣𝑣(𝑘𝑘))� (3.43)  

For the case of a range bearing measurement: 

 x�(𝑘𝑘)𝑛𝑛𝑛𝑛𝑛𝑛 = �
x�(𝑘𝑘)

𝑥𝑥𝑣𝑣 + 𝑟𝑟 cos(𝜃𝜃 + 𝜃𝜃𝑣𝑣)
𝑦𝑦𝑣𝑣 + 𝑟𝑟 sin(𝜃𝜃 + 𝜃𝜃𝑣𝑣)

� (3.44)  

Where the coordinates of the new feature are given by the function g: 

 y�𝑛𝑛𝑛𝑛𝑛𝑛 = g(x(𝑘𝑘), z(𝑘𝑘), x𝑣𝑣(𝑘𝑘)) (3.45)  

              = �𝑥𝑥𝑣𝑣 + 𝑟𝑟 cos(𝜃𝜃 + 𝜃𝜃𝑣𝑣)
𝑦𝑦𝑣𝑣 + 𝑟𝑟 sin(𝜃𝜃 + 𝜃𝜃𝑣𝑣)� (3.46)  

When a new feature is added to the state, the covariance matrix P should be 
transformed. In this case the jacobian of the transformation is used: 

 P(𝑘𝑘)𝑛𝑛𝑛𝑛𝑛𝑛 = ∇Yx,z �P(𝑘𝑘) 0
0 R

� ∇Yx,z
⊺ (3.47)  

Where 

 ∇Yx,z = �I𝑛𝑛×𝑛𝑛 0𝑛𝑛×𝑛𝑛
∇Gx ∇Gz

� (3.48)  

Being ∇Gx = ∂g/∂x and ∇Gz = ∂g/∂h.  For the purely mapping case where the 
state vector contains only features, the new features not depend on any element of the 
state vector. Therefore ∇Gx=0 and: 

 P(𝑘𝑘)𝑛𝑛𝑛𝑛𝑛𝑛 = �
P(𝑘𝑘) 0

0 ∇GzR∇Gz
⊺� (3.49)  

In the case of point features: 
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Figure 3.6 Mapping Simulations. The vertical axis represents time (k). Covariance 
ellipses for each feature are plotted in the z=K planes. The filter converges to a perfect 
map because no process noise is added in the prediction step. 

 

 ∇Gz = �cos(𝜃𝜃 + 𝜃𝜃𝑣𝑣) −𝑟𝑟 sin(𝜃𝜃 + 𝜃𝜃𝑣𝑣)
sin(𝜃𝜃 + 𝜃𝜃𝑣𝑣) 𝑟𝑟 cos(𝜃𝜃 + 𝜃𝜃𝑣𝑣) � (3.50)  

In the mapping case the observation Jacobian is now “long and thin”. When 
observing feature i it is only non-zero at the “location” (indexes) of the features in the 
state vector: 

 ∇Hx = � ⋯ 0 ⋯���
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

∇Hyi�
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

⋯ 0 ⋯���
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

� (3.51)  

In this case ∇Hyi is the Jacobian of the measurement equation respect to 
observed feature yi  for the measurement equation (3.38) is: 

 ∇H𝑦𝑦𝑖𝑖 =
𝜕𝜕h
𝜕𝜕yi

 (3.52)  
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 ∇H𝑦𝑦𝑖𝑖 = �
−

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣(𝑘𝑘)
𝑟𝑟

−
𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣(𝑘𝑘)

𝑟𝑟

−
𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣(𝑘𝑘)

𝑟𝑟2
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣(𝑘𝑘)

𝑟𝑟2

� (3.53)  

Figure 3.6 shows the evolution of the map over time. Because no process noise is 
ever added to the system the uncertainty in feature locations after initializations is always 
decreasing. In the limit the map will be known perfectly. The vehicle is not changing its 
position estimate as a function of landmark observations. As a consequence all features 
are independent and each observation of them simply adds information reducing their 
uncertainty. This is in contrast to SLAM case where landmark observations will be allowed 
to adjust map the vehicle estimations simultaneously. 

3.4 Simultaneous Localization and Mapping (SLAM) 

 

Figure 3.7 General SLAM scheme: The diagram incorporates Map building and 
maintaining inside the standard localization cycle.  The arcs representing the additional 
information flow required when an imperfect matching between observations and 
predictions occurs. [88]. 
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As was seen in chapter 2, the on-line robot estimation position from 
measurements of self-mapped features is a class of problem called. In the robotics 
community, as Simultaneous Localization and Mapping (SLAM) problem, this is one of the 
fundamental problems in robotics. SLAM consist in incrementally building a consistent 
map of the environment and, at the same time, localizing the position of the robot while 
explores its world. 

In SLAM no use is made of prior maps or external infrastructure such as GPS. A 
SLAM algorithm builds a consistent estimate of both environment and vehicle trajectory 
using only noisy prioceptive (e.g., inertial, odometric) and vehicle-centric (e.g., radar, 
camera and laser) sensors. In this case, even though the observations are made relative to 
the robot frame, they are fused to create a global map. 

Figure 3.7 shows a general SLAM scheme, this diagram includes the data 
association between observations and predictions, in this chapter we have obviated this 
problem, assuming that we have an “oracle” that can tell us exactly the relations between 
the already mapped features and the current measurements. Nevertheless the data 
association problem is fundamental in SLAM and will be discussed in following chapters. 
For now we will continue obviating the data association problem.   

Much of what is necessary for implementing a basic EKF-based SLAM algorithm 
has been described in previous sections. In this section we summarize all the blocs 
necessaries for implementing this basic EKF-based SLAM algorithm.   

3.4.1 SLAM State Vector and its Covariance 

Now the current estimates of the locations of the robot and the Map features are 
stored in the system SLAM state vector x ̂, and the uncertainty of the estimates in the 
covariance matrix P:    

 x� = �

x�𝑣𝑣
y�1
⋮

y�𝑛𝑛

� (3.54)  

 P =

⎣
⎢
⎢
⎡

P𝑥𝑥𝑥𝑥 P𝑥𝑥𝑦𝑦1 … P𝑥𝑥𝑦𝑦𝑛𝑛
P𝑦𝑦1𝑥𝑥 P𝑦𝑦1𝑦𝑦1 … P𝑦𝑦1𝑦𝑦𝑛𝑛

⋮ ⋮ ⋱ ⋮
P𝑦𝑦𝑛𝑛 𝑥𝑥 P𝑦𝑦𝑛𝑛 𝑦𝑦1 … P𝑦𝑦𝑛𝑛 𝑦𝑦𝑛𝑛 ⎦

⎥
⎥
⎤
 (3.55)  

P is symmetric, with dimensions equals to the system state. x ̂ and P will change in 
dimension as features are added or deleted from the map. xv̂ is the robot position 
estimate, and ŷi the estimated location of the ith feature, all in the world frame W. 

For simulations of the current chapter, we defines xv̂  and ŷi as : 
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 x�𝑣𝑣 = �
𝑥𝑥𝑣𝑣
𝑦𝑦𝑣𝑣
𝜃𝜃𝑣𝑣

�    , y�𝑖𝑖 = �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖

�  (3.56)  

3.4.2 Filter Initialization 

Commonly, when the algorithm starts, there is not previous knowledge of the 
vehicle position or any map feature, being the robot coordinates are xv=0, yv =0, θv=0  and 
therefore the world coordinate frame is initially aligned with the robot’s coordinate frame. 
The covariance matrix has all entries equal to zero: 

 x�𝑣𝑣 = �
0
0
0

�      ,      P =  �
0 0 0
0 0 0
0 0 0

�     (3.57)  

3.4.3 Moving and Making Predictions 

A robot motion model (like the presented in section 3.2.1) is used in order to 
propagate the position estimations and their uncertainty, this model is discretised into 
steps of time interval Δt, with an incrementing label k affixed to each. After each step, a 
new state and covariance are produced: 

 x�(𝑘𝑘) =

⎣
⎢
⎢
⎡𝑓𝑓�x�𝑣𝑣(𝑘𝑘), 𝑢𝑢(𝑘𝑘)�

y�1(𝑘𝑘)
⋮

y�𝑛𝑛 (𝑘𝑘) ⎦
⎥
⎥
⎤
 (3.58)  

 𝑃𝑃(𝑘𝑘 + 1) = ∇𝐹𝐹𝑥𝑥 𝑃𝑃(𝑘𝑘)∇𝐹𝐹𝑥𝑥
⊺ + ∇𝐹𝐹𝑢𝑢 𝑄𝑄∇𝐹𝐹𝑢𝑢

⊺ (3.59)  

For the experiments of this chapter fv is defined in equation (3.20), and Q in 
(3.27).  We are assuming a static map where the features remain static; hence note that 
the system state part corresponding to the map does not change in the prediction step.  

The Jacobians ∇Fx and ∇Fv are defined by: 

 ∇𝐹𝐹𝑥𝑥 = �
𝜕𝜕𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 𝑣𝑣

0
0 I𝑛𝑛×𝑛𝑛

�     , ∇𝐹𝐹𝑢𝑢 = �
𝜕𝜕𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

0
0 0𝑛𝑛×𝑛𝑛

�     (3.60)  

Where n is equal to the dimension corresponding to the map features in the 
system state.   

3.4.4 Predicting a Measurement and Searching 

The way to measure a particular feature i is determined by its measurement 
model hi, and the measurement noise R. Analogous to process noise, measurement noise 
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takes account of the things which we do not model in the feature measurement model.   
Whenever we wish to measure a particular feature, the value of the measurement can be 
predicted by substituting current estimates x ̂v and ŷi into the expressions for hi . 

 𝑧𝑧𝑖𝑖 = ℎ𝑖𝑖(x� i , y�𝑖𝑖) (3.61)  

In the SLAM case the Jacobian measurement model ∇H include both parts: the 
derivatives respect to vehicle state ∇Hx and the derivatives respect to the feature state 
∇Hyi. 

 ∇H = � ∇Hx�
𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

⋯ 0 ⋯���
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

∇Hyi�
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

⋯ 0 ⋯���
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

� (3.62)  

For the examples showed in this chapter, we have been obviating the data 
association problem, that consist in establish a unique relationship between an already 
mapped feature and the incoming measurements, nevertheless for real SLAM 
implementations searching techniques can improve the robustness in the data association 
process. In this way, regions of measurability can be defined for each feature, and aid 
robustness by only allowing match attempts from positions where the chances are good 
[89]. 

The innovation covariance Si is how much the actual measurement zi is expected 
to deviate from this prediction: 

 

𝑆𝑆𝑖𝑖 =
𝜕𝜕ℎ𝑖𝑖

𝜕𝜕𝑥𝑥𝑣𝑣
𝑃𝑃𝑥𝑥𝑥𝑥

𝜕𝜕ℎ𝑖𝑖

𝜕𝜕𝑥𝑥𝑣𝑣

⊺

+
𝜕𝜕ℎ𝑖𝑖

𝜕𝜕𝑥𝑥𝑣𝑣
𝑃𝑃𝑥𝑥𝑦𝑦𝑖𝑖

𝜕𝜕ℎ𝑖𝑖

𝜕𝜕𝑦𝑦𝑖𝑖

⊺

+
𝜕𝜕ℎ𝑖𝑖

𝜕𝜕𝑦𝑦𝑖𝑖
𝑃𝑃𝑦𝑦𝑖𝑖𝑥𝑥

𝜕𝜕ℎ𝑖𝑖

𝜕𝜕𝑥𝑥𝑣𝑣

⊺

+
𝜕𝜕ℎ𝑖𝑖

𝜕𝜕𝑦𝑦𝑖𝑖
𝑃𝑃𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖

𝜕𝜕ℎ𝑖𝑖

𝜕𝜕𝑦𝑦𝑖𝑖

⊺

+ 𝑅𝑅 

(3.63)  

Calculating Si before making measurements allows us to form a search region in 
measurement space for each feature at a chosen number of standard deviations. 

3.4.5 Updating the State Vector 

To update the map based on a set of measurements zi, we perform an EKF 
update step.  For measurements hi, the Kalman gain W can be calculated and state 
updated as follows using the system state and covariance matrix estimated in the 
Prediction Step (Section 3.4.3): 

 𝑊𝑊 = 𝑃𝑃(𝑘𝑘 + 1)
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

⊺

𝑆𝑆−1  (3.64)  

  𝑥𝑥� (𝑘𝑘) =  𝑥𝑥�(𝑘𝑘 + 1) + 𝑊𝑊(𝑧𝑧𝑖𝑖 − ℎ𝑖𝑖) (3.65)  
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 𝑃𝑃�(𝑘𝑘) = 𝑃𝑃�(𝑘𝑘 + 1) − 𝑊𝑊𝑊𝑊𝑊𝑊⊺ (3.66)  

If does not exist measurements at the step k then the system state and 
covariance matrix are updated with the prediction step estimations, x ̂(k)=x ̂(k+1) and 
P(k)=P(k+1). 

3.4.6 Adding a new Feature 

When an unknown feature is first observed, a measurement zi is obtained from 
its position relative to the robot along with a measurement noise R. If the measurement 
function hi(x̂v,ŷi) could be converted to yi(x ̂v,y ̂i), then assuming that two features are 
known, this new feature ŷi can be initialized in the state x ̂and its covariance matrix P: 

 x� = �
𝑥𝑥𝑣𝑣
𝑦𝑦1
𝑦𝑦2

�     x�new = �

𝑥𝑥𝑣𝑣
𝑦𝑦1
𝑦𝑦2
yi

� (3.67)  

From equations (3.47) and (3.48) we have that: 

 𝑃𝑃 = �
P𝑥𝑥𝑥𝑥 P𝑥𝑥𝑦𝑦1 P𝑥𝑥𝑦𝑦2
P𝑦𝑦1𝑥𝑥 P𝑦𝑦1𝑦𝑦1 P𝑦𝑦1𝑦𝑦2
P𝑦𝑦2𝑥𝑥 P𝑦𝑦2𝑦𝑦1 P𝑦𝑦2𝑦𝑦2

�  

    𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛  =

⎣
⎢
⎢
⎢
⎡ P𝑥𝑥𝑥𝑥 P𝑥𝑥𝑦𝑦1 P𝑥𝑥𝑦𝑦2 P𝑥𝑥𝑥𝑥 ∇𝐺𝐺𝑥𝑥

⊺

P𝑦𝑦1𝑥𝑥 P𝑦𝑦1𝑦𝑦1 P𝑦𝑦1𝑦𝑦2 P𝑦𝑦1𝑥𝑥 ∇𝐺𝐺𝑥𝑥
⊺

P𝑦𝑦2𝑥𝑥 P𝑦𝑦2𝑦𝑦1 P𝑦𝑦2𝑦𝑦2 P𝑦𝑦2𝑥𝑥 ∇𝐺𝐺𝑥𝑥
⊺

∇𝐺𝐺𝑥𝑥 P𝑥𝑥𝑥𝑥 ∇𝐺𝐺𝑥𝑥 P𝑥𝑥𝑦𝑦1 ∇𝐺𝐺𝑥𝑥 P𝑥𝑥𝑦𝑦2 ∇𝐺𝐺𝑥𝑥 P𝑥𝑥𝑥𝑥 ∇𝐺𝐺𝑥𝑥
⊺ + ∇𝐺𝐺𝑧𝑧 R∇𝐺𝐺𝑧𝑧

⊺⎦
⎥
⎥
⎥
⎤

 (3.68)  

It should be noted that after several initializations, the bias introduced to the 
system could be substantial due to the implicit linearization process. 

3.4.7 Removing a Feature  

In real SLAM implementation, is very common that the old-weak features are 
removed from the system state. Removing features is much easier than adding them. For 
deleting features from state vector and covariance matrix, the rows and columns which 
contain it, have to be removed. An example in a system where the second of three 
features want to be removed is: 

 �

𝑥𝑥𝑣𝑣
𝑦𝑦1
𝑦𝑦2
y3

� → �
𝑥𝑥𝑣𝑣
𝑦𝑦1
y3

�   
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⎣
⎢
⎢
⎢
⎡

P𝑥𝑥𝑥𝑥 P𝑥𝑥𝑦𝑦1 P𝑥𝑥𝑦𝑦2 P𝑥𝑥𝑦𝑦3
P𝑦𝑦1𝑥𝑥 P𝑦𝑦1𝑦𝑦1 P𝑦𝑦1𝑦𝑦2 P𝑦𝑦1𝑦𝑦3
P𝑦𝑦2𝑥𝑥 P𝑦𝑦2𝑦𝑦1 P𝑦𝑦2𝑦𝑦2 P𝑦𝑦2𝑦𝑦3
P𝑦𝑦3𝑥𝑥 P𝑦𝑦3𝑦𝑦1 P𝑦𝑦3𝑦𝑦2 P𝑦𝑦3𝑦𝑦3 ⎦

⎥
⎥
⎥
⎤

→ �
P𝑥𝑥𝑥𝑥 P𝑥𝑥𝑦𝑦1 P𝑥𝑥𝑦𝑦3
P𝑦𝑦1𝑥𝑥 P𝑦𝑦1𝑦𝑦1 P𝑦𝑦1𝑦𝑦3
P𝑦𝑦3𝑥𝑥 P𝑦𝑦3𝑦𝑦1 P𝑦𝑦3𝑦𝑦3

� (3.69)  

3.4.8 The role of Correlations 

The covariance matrix P as a structure that it can be partitioned in vehicle Pvv and 
map Pmm diagonals blocks. 

 P = � P𝑣𝑣𝑣𝑣 P𝑣𝑣𝑣𝑣
P𝑣𝑣𝑣𝑣 P𝑚𝑚𝑚𝑚

� (3.70)  

Where Pvm are the correlations between map and vehicle. It’s pretty clear that 
there should be correlations between map and vehicle as they are so interrelated.  From 
the moment of initialization the feature´s location is a function of vehicle location and so 
errors in vehicle locations will also appear as errors in feature location. Correlations cause 
adjustments in one state to ripple into adjustments in others states.  

Every observations of a feature affect the estimate of every other feature in the 
map. In the same way, the observation of a previously mapped feature can affect the 
estimate of the current vehicle location. This is a very important behavior in SLAM, 
because inevitably, when the vehicle goes far away from its initial position, there always 
will be a drift in the vehicle and map estimations, on the other hand this drift could be 
minimized if the vehicle returns to a previously mapped site and is able of redetect an old 
map feature.  

In the simulations presented in the next section it can be clearly appreciated the 
effect of correlations in covariance matrix. 

3.4.9 Simulations 

  Figure 3.8 shows a SLAM simulation for a differential drive robot (section 3.2.1) 
equipped with a range and bearing sensor (3.38). The robot follows a predefined cycled 
trajectory, emulating the corridors of a building.  

In simulation, ground truth (G.T.) of robot’s trajectory and map are compared 
against their estimates along with ellipses illustrating the uncertainties in estimations.  

At the beginning of the trajectory the robot have no previous knowledge of its 
environment. In graphic (a) the first landmark is detected and is added as a new feature in 
system state and covariance matrix. We have supposed a sensor with 90 degrees of 
working area and a short measurement range, in order to emulate the “in-corridors” 
behavior.  In graphic (b) three features have been added, also note that estimated robot 
location have begun to deviating from the real one. In this case we have supposed a 
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relative pessimistic odometry in the simulation. In graphic (d) the robot is close to finish its 
first lap. Note how the robot’s uncertainty has grown; also note the gradual growth in the 
feature’s uncertainties, due to the feature´s location is a function of vehicle location. At 
graphic (e) the first mapped feature has been redetected.  

In this simulation we have obviated the data association problem; therefore we 
always know when a new measurement corresponds to a previously mapped feature. The 
first mapped feature has a lower uncertainty (respect to the last mapped features) and 
acts like a “strong” landmark, and consequently when it is re-measured; “pull” all the 
others features.  This is an important behavior in SLAM, and is due to the correlations in 
the full covariance matrix.  

Note how the estimated feature’s locations have been closer from their ground 
truth and the estimated robot’s location has been improved close to its real one.  The 
problem of redetect previously mapped sites in order to minimize both map and robot 
drift is major challenge in SLAM and is called “the closing cycle problem”.  Finally, in 
graphic (f) the robot has complete several laps. Note how the map and trajectory 
correspond properly with the real ones, and the uncertainties have been minimized. 

3.5 Conclusions 

In this chapter we presented an introduction to a general EKF-based SLAM 
algorithm. Many mathematical bases, which will be used in following chapters, were 
introduced.  In that sense, an uncomplicated case of SLAM was formulated; assuming 
odometry as the control input, 2D representation of both Map and robot’s location, 
Euclidean parameterization for features points, Data association problem obviated and 
availability of range and bearing measurements. In following chapters, this SLAM 
formulation, will evolve in order to be suitable to more challenging and realistic scenarios.  

In the MATLAB simulations, can be appreciated some common and important 
behaviors in SLAM; Using measurements to external landmarks helps to reduce the “dead 
reckoning drift”, but when the robot moves far away enough to be incapable of measuring 
the first mapped landmarks, always will be a drift in estimates. In that sense, errors in 
vehicle locations will also appear as errors in feature location, and therefore will be a 
divergence between estimates of both map and robot’s location, and the ground truth, as 
the robot moves far away from its initial position. On the other hand, due to the 
correlations in the covariance matrix, if the robot is capable of recognizing previous 
mapped features then both map and robot drift could be minimized. 
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Figure 3.8 SLAM simulation of a Mobile Robot in a cycled trajectory (emulating an indoor 
corridor). 
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Chapter 4 

4 Bearing-Only SLAM 

SLAM is one of the most active research fields in robotics, with excellent results 
obtained during the last years, but until recently it was mainly restricted to the use of 
sonar and laser range-finder sensors. In this chapter we explore the use of bearing sensors 
in SLAM. The SLAM which is mainly bearing sensor based is commonly called Bearing-Only 
SLAM. In counterpart to the range-finder sensors, commonly used in SLAM, which 
provides range and angular information respect to the landmarks, bearing sensors only 
offers angular information respect to the spatial position of the landmark. On the other 
hand, cameras, by far the most popular bearing sensor, can provide, in addition, 
appearance sensing which it is a huge advantage for addressing the data association 
problem. Moreover Bearing-Only SLAM is not limited to the use of cameras as the main 
sensor, in that sense, other sensorial capabilities, as the auditory sense, can be explored in 
the context of Bearing-Only SLAM. 

Due to the bearing sensors provides only angular spatial-information then depth 
information cannot be retrieved directly from a single measurement. The application of 
bearing sensors to the SLAM problem involves the use of special techniques in order to 
initialize the landmarks as new map’s features.  On the other hand, as we shall see later, in 
several scenarios, the SLAM could be benefit from the use of bearing sensors. 

First in Section 4.1 an introduction to the Bearing-Only problematic is given, 
mainly pointing to the Features Initialization problematic which represent the main 
challenge in Bearing-Only SLAM, the viability of this kind of methods is also revised.   In 
section 4.2 the most relevant related work is presented, a brief taxonomy together with a 
summary of methods is also given.  

In Section 4.3 one of the most important contributions of this thesis is presented: 
the Delayed Inverse-Depth Feature Initialization, which is a novel method for adding new 
features to the map in Bearing-Only SLAM systems.  In this chapter the method is 
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introduced assuming a 2D context with availability of odometry.  First the theoretical and 
experimental bases of the method are given, later the method is widely described and 
finally several simulations are presented in order to demonstrate its performance and 
viability. A comparison with the Un-delayed Inverse-Depth Feature Initialization is also 
presented.  

Using our general Bearing-Only SLAM with Delayed Feature Inverse-Depth 
Feature Initialization algorithm, in section 4.4, we present a Sound-based SLAM system 
(called SSLAM) which uses “Sound Sources” as map’s features.  The main contribution of 
the SSLAM is demonstrating the viability on the inclusion of the hearing sense in SLAM.  
Experimental results with real data, obtained from the sensors of a small mobile robot, are 
presented In order to show the performance of the SSLAM method.   

Finally in Section 4.5 the conclusions of this chapter are presented.  

4.1 Introduction 

Bearing-only SLAM is a partially observable SLAM problem, in which the sensor, 
used for perceiving the robot´s environment, provides only-angular information respect to 
the landmarks, and therefore does not give enough information to compute the full state 
of a landmark from a single observation. The counterpart of this problem is the range-only 
SLAM:  [90], [91], [92], [93], [94], common in sonar-based systems. In these kind of 
partially observable SLAM systems, since a single observation is not enough to estimate all 
the parameters of a landmark, multiple observations are taken from multiple locations in 
order to estimate  the state of the landmark.  

4.1.1 Feature Initialization Problematic 

If a measurement function hi(x̂v,y ̂i) is invertible to yi(x ̂v,ŷi), we can initialize the 
feature states as was described in Section 3.4.6. If hi is not invertible, it means that a single 
measurement does not give enough information to pinpoint the feature location (for 
instance, a single measurement of a point feature from a bearing-sensor only defines a ray 
on which it lies). 

Let us consider again the simplest feature possible: a point feature such that for 
the ith feature: 

 y�𝑖𝑖 = �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖

� (4.1)  

And a sensor capable of doing measurements z(k) of range and bearing r and θ: 

 z(𝑘𝑘) = �𝑟𝑟
𝜃𝜃� (4.2)  
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The measurement equation hi is:  

 ℎ𝑖𝑖(𝑥𝑥𝑣𝑣 , 𝑦𝑦𝑖𝑖 ) = �𝑟𝑟
𝜃𝜃� = �

�(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣(𝑘𝑘))2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣(𝑘𝑘))2

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 �
𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣(𝑘𝑘)
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣(𝑘𝑘)

� − 𝜃𝜃𝑣𝑣
� (4.3)  

Then for initializing a new feature ŷi in the map is necessary to invert hi(x̂v,ŷi) to 
yi(x ̂v,y ̂i). From inverting equation (4.3) we obtain: 

 y�𝑖𝑖 = �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖

� = �𝑟𝑟 cos(𝜃𝜃 + 𝜃𝜃𝑣𝑣) + 𝑥𝑥𝑣𝑣
𝑟𝑟 sin(𝜃𝜃 + 𝜃𝜃𝑣𝑣) + 𝑦𝑦𝑣𝑣

� (4.4)  

Being x ̂v the vehicle pose (the joint of position and orientation) defined as: 

 x�𝑣𝑣 = �
𝑥𝑥𝑣𝑣
𝑦𝑦𝑣𝑣
𝜃𝜃𝑣𝑣

� (4.5)  

For the bearing-only case we would have a sensor capable of providing angular 
measurements z(k) such as: 

 z(𝑘𝑘) = [𝜃𝜃] (4.6)  

Being the measurement equation hi: 

 ℎ𝑖𝑖(𝑥𝑥�𝑣𝑣 , 𝑦𝑦�𝑖𝑖) = [𝜃𝜃] = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣(𝑘𝑘) , 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣(𝑘𝑘)) − 𝜃𝜃𝑣𝑣 (4.7)  

For inspection, is clear that we cannot invert equation (4.7) in order to obtain a 
feature state y ̂i = [xi,yi]. In this case we can only define a partially initialized feature y ̂pi, 
with a different geometrical type (e.g. a line feature to represent the ray we know a point 
must lie on). atan2 function is used for obtaining an angle expressed in -2π < θ < 2π.  

The Jacobians of the measurement model are: 

  ∇H𝑥𝑥 = �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣(𝑘𝑘)
𝑟𝑟2 −

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣(𝑘𝑘)
𝑟𝑟2 −1� (4.8)  

 ∇H𝑦𝑦𝑖𝑖 = �−
𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣(𝑘𝑘)

𝑟𝑟2
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣(𝑘𝑘)

𝑟𝑟2
� (4.9)  

For equation (4.7) we can define a unitary vector pointing the direction on which 
the feature lies: 

 𝑦𝑦�𝑝𝑝𝑝𝑝 = [cos(𝜃𝜃 + 𝜃𝜃𝑣𝑣), sin(𝜃𝜃 + 𝜃𝜃𝑣𝑣)  ] (4.10)  

It´s seen that the problem with bearing-only initialization is that a single 
measurement is insufficient to determine the location of the feature, and at least two 
bearing measurements θi and θj, from two different vehicle poses xvi  and xvj are required.  
The location of the feature then is calculated as the intersection of two lines as shown in 
Figure 4.1. 
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 y�𝑖𝑖 = g(x�𝑣𝑣𝑖𝑖 , x�𝑣𝑣𝑗𝑗 , 𝜃𝜃𝑖𝑖 , 𝜃𝜃𝑗𝑗 ) (4.11)  

 y�𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡𝑥𝑥𝑣𝑣𝑖𝑖 𝑠𝑠𝑖𝑖𝑐𝑐𝑗𝑗 − 𝑥𝑥𝑣𝑣𝑗𝑗 𝑠𝑠𝑗𝑗 𝑐𝑐𝑖𝑖 + �𝑦𝑦𝑣𝑣𝑗𝑗 − 𝑦𝑦𝑣𝑣𝑖𝑖 � 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗

𝑠𝑠𝑖𝑖𝑐𝑐𝑗𝑗 − 𝑠𝑠𝑗𝑗 𝑐𝑐𝑖𝑖

𝑦𝑦𝑣𝑣𝑗𝑗 𝑠𝑠𝑖𝑖 𝑐𝑐𝑗𝑗 − 𝑦𝑦𝑣𝑣𝑖𝑖 𝑠𝑠𝑗𝑗 𝑐𝑐𝑖𝑖 + �𝑥𝑥𝑣𝑣𝑖𝑖 − 𝑥𝑥𝑣𝑣𝑗𝑗 � 𝑠𝑠𝑖𝑖 𝑠𝑠𝑗𝑗

𝑠𝑠𝑖𝑖𝑐𝑐𝑗𝑗 − 𝑠𝑠𝑗𝑗 𝑐𝑐𝑖𝑖 ⎦
⎥
⎥
⎥
⎥
⎤

 (4.12)  

Where 

 
𝑠𝑠𝑖𝑖 = sin(𝜃𝜃𝑣𝑣𝑖𝑖 + 𝜃𝜃𝑖𝑖)
𝑐𝑐𝑖𝑖 = cos(𝜃𝜃𝑣𝑣𝑖𝑖 + 𝜃𝜃𝑖𝑖)

 (4.13)  

 

 

Figure 4.1 Feature initialization via the intersection of two bearing measurements. 

If the bearing and pose estimates were perfectly known, the feature location 
would be trivial from Equation (4.12) but, as they are uncertain, the estimated feature 
location may be ill-conditioned depending on several factors: (i) the uncertainty of the 
pose estimates, (ii) the uncertainty of bearing measurements, and (iii) the base-line 
afforded by the two vehicle locations. Furthermore, unless the correlations between the 
two vehicle pose estimates are included in the initialization estimate, the estimated 
location may be inconsistent (i.e., the estimated uncertainty is less than its true 
uncertainty). 

Feature initialization, is a challenging problem in bearing-only SLAM, and attracts 
most of the research attention in this kind of systems.  



 Introduction 57 

 

Figure 4.2 Bearing-Only SLAM simulation.  In this experiment, the feature initialization 
problem has been obviated.   
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4.1.2 Viability of Bearing-Only SLAM 

We have seen that Bearing-Only SLAM is a partially observable SLAM problem, 
and due to this fact, features initialization is a difficult challenge.  But what happen if we 
have solved the features initialization problem, how does affect the partial observability 
when the features have been initialized? 

Figure 4.2 shows a simulation of a differential drive robot equipped with a 
bearing-only sensor, for the same simulated environment used in experiments of Section 
3.4.9.  An important fact, of this simulation, is that feature initialization problem has been 
obviated. When a new feature must be initialized, in the system state and covariance 
matrix, we use a range and bearing sensor as was used in section 3.4.9.  After a feature is 
initialized, we assume that the sensor can only provide bearing information respect to this 
feature. Therefore, in the Kalman update step, the measurement equation (3.11) is used.  

If we compare Figure 3.8 and Figure 4.2, it can be note that propagation of both, 
robot and features uncertainties is bigger in the case of the bearing-only SLAM, this fact 
can be explained due to lower information provided by the bearing-only sensor, respect to 
the information provided by the range and bearing sensor. Nevertheless the bearing-only 
SLAM algorithm was also capable of successfully relocalizing the robot and minimizing 
map’s drift, after a loop was detected.   

Based in this simulation we can conclude that the bearing-only SLAM is a feasible 
case of SLAM if the feature initialization problem is addressed. In [95], a vast analysis in 
observability of Bearing-only SLAM systems can be founded.   

4.2 Related Work 

Most part of the literature related to the Bearing-only SLAM is associated with 
the camera-based SLAM systems, since the cameras are by far the most popular bearing 
sensor.  This fact has led to a huge interaction between the robotics and computer vision 
societies for addressing the Bearing-only SLAM problem. 

4.2.1 Bearing-Only SLAM and SFM methods 

Bearing-only SLAM is similar to what in the computer vision society is referred as 
the structure-from-motion problem (SFM). The major difference is that the SFM methods 
relies on a global optimization process and commonly run off-line and consider time 
consuming batch processing of the entire set of images acquired in the sequence while 
SLAM requires incremental and computationally tractable approaches suitable for on-line 
and real-time processing. Furthermore, the SFM methods do not assume feedback from 
information sources as odometry that are commonly used in SLAM. Nevertheless some of 
recent work in SFM has focused in the real-time operation like [96] that shows real-time 
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results for a small environments using random sample consensus (RANSAC) technique for 
obtaining good starting point for the bundle adjustment estimation. Bundle adjustment is 
a batch technique that is widely used in SFM methods under perspective projection [97]. 
Other approach for real-time SFM is [98] 

Other SFM methods take elements from the SLAM like [99] which focuses on an 
incremental real-time solution to the SFM problem, in this method the initial 3D 
coordinates are obtained by triangulation on local part of the image sequence, which 
limits opportunity of initializing distant points. In [100] Links between these non linear 
minimization algorithms and the EKF used in SLAM are studied and some attempts have 
also been made to recursively compute SFM using Kalman filters [101]  

Another big difference of the SFM methods respect to the SLAM methods is that 
SFM methods do not make an implicit treatment of estimation uncertainties, which is 
fundamental from the robotics point of view.  

4.2.2 Feature Initialization Approaches for Bearing-Only SLAM 

Bearing-Only SLAM has received most attention in the current decade.  Therefore 
many of the related approaches are actually very recent.  In this section we listing (in 
chronologic order) some of the relevant work on Bearing-Only SLAM, focusing on the 
techniques used for address the feature initialization problem.  

In [102] Deans proposes a combination of a global optimization BA, (Bundle 
Adjustment) for feature initialization and Kalman Filter for state estimation. The BA is run 
on a limited number of camera poses and the associated feature observations. The 
complexity of the initialization step is greater than Kalman Filter but theoretically gives 
more accurate results. Providing an appropriate “condition” measure is used to signal 
when to perform feature initialization. The claim of this paper is that good results are 
possible for bearing-only SLAM within the conventional EKF framework. In this method, 
due to the limitation on the baseline on which features can be initialized and depending 
on the camera motion and the landmark location, some features cannot be initialized. 

Strelow proposes in [103] a method similar to [102] but mixing camera and 
inertial sensors measurements in an Iterated Extended Kalman Filter (IEKF), in that sense, 
image measurements can counteract the error accumulated when inertial readings are 
integrated, and can be used to distinguish between the effects of acceleration, gravity and 
bias in accelerometer measurements. Conversely inertial data can resolve the ambiguities 
in motion estimated by a camera that sees a degenerate scene; such as one containing too 
few features, features infinitely far away and also make motion estimation more robust to 
miss-tracked image features.  

In [104] Bailey proposes a variant of constrained initialization for bearing-only 
SLAM, where past vehicle pose estimates are retained in the SLAM state so that feature 
initialization can be deferred until their estimates become well-conditioned.  In that sense 
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the past poses of the robot are stacked in the map, together with associated measures, 
until base-line is sufficient to permit a Gaussian initialization. This method explicitly 
computes the intersection of the 3D lines defined by corner point’s observations, and thus 
the estimation is computed using observations from two robots poses. The criteria used 
for determining if the estimation is well-conditioned (Gaussian) is the Kullback distance. 
The complexity of the sampling method proposed to evaluate this distance is quite high. 
Once initialized, the batch observation is used to refine and correct the whole map. 

Also there has been made effort in using others estimation techniques (apart to 
the EKF) in Bearing-Only SLAM like the Particle Filters (PF) based methods.  

In a series of papers, Kwork employs Particle Filters: In [105] Variations to 
standard PF are proposed to remedy the sample impoverishment problem in bearing-only 
slam. In [106] Initial sate of features are approximated using a sum of Gaussians, which 
defines a set of hypothesis for the position of the landmark, and includes them all inside 
the map from the beginning. On successive observation, sequential radio test (SRT) based 
on likelihoods is used to prune bad hypothesis, and the one with maximum likelihood is 
used to correct the map. The way these hypotheses are initialized is not detailed, and 
convergence and consistency issues are not discussed. 

In [107] Kwork extend the algorithm using a Gaussian Sum Filter, with an 
approach similar to the proposed in [108] for bearing-only tracking. The proposed multi-
hypotheses method in [107] is perhaps the first un-delayed feature initialization method. 
This means that an approximation to the feature depths is used for initializing the feature 
in the map at the first frame that it was seen. The main drawback of this approach is that 
the number of required filters can grow exponentially, and therefore computational load 
grows exponentially with number of landmarks. 

Some of the most notably advances on Bearing-Only SLAM have been presented 
by Davison [109] [110], who shows the feasibility of real-time SLAM with a single camera, 
using the well-established EKF estimation framework, The system takes a top-down- 
Bayesian estimation approach, searching for landmarks in images regions constrained by 
estimate uncertainty instead of performing extensive bottom-up image processing and 
feature matching. In this work a Bayesian partial-initialization scheme for incorporating 
new-landmarks are proposed where a separate Particle Filter is used for estimating the 
feature depth which is not correlated with the rest of the map. In that sense it maintains a 
set of depth hypotheses uniformly distributed along the viewing ray of a new landmark, 
with a particle filter in one dimension. Each new observation is used to update the 
distribution of possible depths, until the range variance is small enough to consider a 
Gaussian estimate, at which point the estimate is added to the map as three-dimensional 
entity. Until this initialization occurs, the ray estimate is maintained in the system`s single 
Extended Kalman Filter. 

The Davison approach derives in an effective real-time implementation which 
gives notable results. Nevertheless a main drawback of this approach is that the initial 
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distribution of particles has to cover all possible depth values for a landmark, this fact 
makes it difficult to use when the number of detected features is large or there are far 
features in the scene. As a result, its application in large environments is not 
straightforward, as it would require a huge number of particles. Figure 4.3 illustrates 
features initialization technique proposed by Davison. 
 

 

Figure 4.3 Davison features initialization. Frame-by-frame evolution of the probability 
density over feature depth represented by a particle set. 100 equally-weighted particles 
are initially spread evenly along the range 0.5m to 5.0m; with each subsequent image 
measurement the distribution becomes more closely Gaussian. (Graphics taken from 
[109]) 

Jensfelt in [111] presented a method where the idea is to let the SLAM estimation 
lag behind N frames and use these N frames to (i) determine which points are good 
landmarks and (ii) find an estimate of their 3D location, This way the landmarks can be 
initialized with an estimate of the depth immediately in the SLAM process. In this case a 
buffer of a constant number of images is maintained and the filter is using output of this 
buffer: here the filter itself is delayed. Feature points are tracked in this buffer and 3D 
point estimates are computed by triangulation. Most of the focus in this work is on the 
management of the features to archive real-time performance in extraction, matching and 
loop detection. A limitation of this method resides on the baseline with which the features 
can be initialized, depending on the camera motion and the landmark location, some 
features cannot be initialized.  

In [112] a framework for vision-based SLAM is presented using a structure-from-
motion (SFM) approach from multiple views. It is mentioned that for cases when the robot 
performs only translational motion along the optical axis, the 3D triangulation is 
significantly uncertain, due to very little or no disparity between matched features, similar 
to [111] the reconstruction is performed using multiple images. 
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In [113] Sola present a method based on Federate Kalman Filtering technique. 
Where initial Probability Distribution Function (PDF) for the features, is defined using a 
geometric sum of Gaussians. The method is an approximation of the Gaussian Sum Filter 
(GSF), which was used in [107], that permits un-delayed initialization with simply an 
additive growth of the problem size; At the first observation, the robot only knows the 
optical ray on which the landmark is located, this ray, with associated covariance, define a 
conic PDF for its position. A minimal representation of this PDF is introduced as a 
geometric series of Gaussians that maintain several depth hypotheses as Gaussian 
volumes for each initialized feature spread in a geometric sum - a development of the 
particle method of [109] but taking advantage to some extent of the inverse depth 
concept- then they are included in one single EKF-SLAM map, as with all approximations, 
As the estimation proceeds the hypotheses are pruned and an approximation to the GSF is 
proposed to keep the computational overhead low. (This representation has the risks of 
inconsistency and divergence) For this task a simple criterion is defined for pruning the 
less likely members of the ray.  A drawback of this approach is that does not cope with 
features at very large depths.  
 

 

Figure 4.4 Sola and Lemaire feature initialization. From left to right: the sum of 
Gaussians is initialized in the robot frame; some Gaussians are pruned based on their 
likelihood after additional observations of the feature; when a single hypotheses 
remains, the feature is projected into the map frame; and finally past observations are 
used to update the feature estimate. (Graphics taken from [114] ). 

Parallel to [113] in [114] Sola and Lemaire presents a method similar to the 
exposed in [113] but feature are initialized with a delayed method; The initial feature 
representation is initialized with an probability density function which is approximated 
with a particular weighted sum of Gaussians.  This initial state is expressed in the robot 
frame, and not in the global map frame, so that it is decorrelated from the stochastic map, 
until it is declared as a landmark and added to the map.  Many features can enter the 
initial estimation process at low computational cost, and the delay can be used to select 
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the best features. The initialization process is similar to [109], but distributes depth 
hypotheses uniformly in inverse depth along the ray. To this distribution corresponds to 
constant density of hypotheses when they are projected into the image. As new 
measurements are made, repeatedly prune unlikely hypotheses until only one remains. A 
new feature is initialized using the survivor hypothesis as starting point.  This method has 
the same drawback than [113] in relation with far features. Figure 4.4 illustrates the 
initialization approach proposed by Sola and Lemaire.  

Recent work as [115] or [1] have shown that the use of an inverse depth 
parameterization for Bearing-Only SLAM can improve the linearity of the measurement 
equation even for small changes in the camera position yielding small changes in the 
parallax angle, this fact allows a Gaussian distribution to cover uncertainty in depth which 
spans a depth range from nearby to infinity.  

In [115] a FastSLAM [73] based approach is proposed by Eade. Here the landmark 
is not immediately added to the map when it is detected for the first time, instead, it 
enters a “partially initialized “state, and is stored using the inverse-depth 
parameterization. The position of each new partially initialized feature added to the map 
is parameterized with three coordinates representing its direction and inverse depth 
relative to the camera pose at the first observation. Estimates of these coordinates are 
refined within a set of Kalman filters for each particle of the map. While in this state, new 
observation of this feature is used to update, its depth estimate, and the current estimate 
of the camera pose using the epipolar constraint. Once the inverse depth estimation has 
collapsed, the feature is converted to a fully initialized standard Euclidean representation. 
An unscented transformation is applied to transform the landmark to the Cartesian 
representation. 

This method is not a pure un-delayed method, but has the advantage that the 
observations are directly used to update the camera pose estimate; While Retain the 
difference partially and fully-initialized features, the method go further and are able to use 
measurements of partially initialized features with unknown depth to improve estimates 
of camera orientation via special epipolar update step. This approach for features 
initialization appears appropriate within a FastSLAM implementation, but lacks for a more 
general framework. 

In [1] Montiel presented an Un-delayed method with inverse depth 
parameterization, within a Standard EKF based SLAM framework. Due to the inverse depth 
parameterization the estimation process benefits from the quasi-linearity of the 
observation function under the condition that the motion of the camera along the depth 
axis is small relatively the depth of the point. In this method transitions from partially to 
fully initialized features need not to be explicitly tackled, making it suitable for direct use 
in EKF framework for sparse mapping. In this approach the features are initialized in the 
first frame observed, (un-delayed initialization) with an initial fixed depth and uncertainty, 
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determined heuristically to cover ranges from nearby to infinity, so distant points can be 
coded.   

Due to the clarity and scalability of this method, the approach presented by 
Montiel in [1] is a good option for monocular-SLAM implementation. These facts motive 
us to utilize this kind of parameterization for our work and consequently [1] is discussed in 
more detail in following sections.  

4.2.3 Summary of Methods  

We propose a simple taxonomy for classifying the Bearing-Only algorithms based 
on the techniques used for address the feature initialization problem and the kind of 
method used for the stochastic estimation of the main SLAM process. Table 4.1 shows a 
summary of relevant Bearing-Only methods: 
 

Approach Delayed / Un-
delayed 

Initial 
representation 

Estimation 

Deans 2000 [102] Delayed Bundle adjustment  EKF 

 Strelow 2003 [103] Delayed Triangulation IEKF 

Bailey 2003 [104] Delayed Triangulation EKF 

Davison 2003 [109] Delayed Multi-Hypotheses EKF 

Kwok 2004 [106] Delayed Multi-Hypotheses PF 

Kwok 2005 [107] Un-delayed Multi-Hypotheses PF 

Sola 2005 [113] Un-delayed Multi-Hypotheses EKF 

Lemaire 2005 [114] Delayed Multi-Hypotheses EKF 

Jensfelt 2006 [111] Delayed Triangulation EKF 

Eade 2006 [115] Delayed Single Hypotheses FastSLAM 

Montiel 2006 [1] Un-delayed Single Hypotheses EKF 

Table 4.1 Summary of methods. 

Delayed & Un-delayed methods: 
For delayed methods, a feature observed at time t is added to the map at 

subsequent time step t + k. This delay allows the parallax between observations of this 
landmark to grow, and the triangulation operation to become well conditioned. 

On the other hand, un-delayed methods take advantage of the feature 
observation to localize the robot at time t. But the update of the stochastic map has to be 
computed carefully. 
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Initial feature representation: 
Global optimization methods are based in batch processing, they are often used 

in SFM algorithms, and look for and optimal solution using all the available measurements. 
For its application to SLAM they have the same drawbacks that the SFM.   

Triangulation methods explicitly compute the intersection of the lines defined by 
the observations, these methods requires defining a condition for considering the 
computation well-conditioned.  

Single hypotheses methods define the initial feature representation with a single 
probability distribution function (PDF). Usually this methods are easy to compute, but 
requires attention respect to the linearity in the measurement equation.  

Multi-hypotheses methods define the initial feature representation with a 
multiple probability distribution function (PDF). Usually these methods are robust respect 
to measurement equation used, nut their complexity is high. 

Estimation techniques: 
These are the techniques used for estimating both the vehicle and landmarks 

location. Most of the algorithms are based on the Extended Kalman Filter (EKF), but 
several are also based on the Particle Filters (PF) methods or variations.  

4.3 2D Delayed Inverse Depth Feature Initialization 

 We have seen that the features initialization problem is fundamental for Bearing-
Only SLAM, due to bearing sensors does not give enough information to compute the full 
state of a landmark from a single observation. On the other hand, if the features 
initialization problem is satisfactory solved then a Bearing-Only sensor is a viable 
alternative for implementing SLAM systems.  Therefore, a considerable amount of the 
research on Bearing-Only SLAM has focused on developing techniques for addressing the 
feature initialization problem.   

In this section a novel method for Bearing-Only SLAM, called Delayed Inverse 
Depth Feature Initialization, is proposed. It is introduced in a 2D context, assuming the 
availability of odometry.   

4.3.1 Parallax Angle 

Parallax, more accurately motion parallax, is the change of angular position of 
two observations of a single object relative to each other as seen by an observer, caused 
by the motion of the observer. By observing parallax, measuring angles and using 
geometry, one can determine the distance to various objects. Distance measurement by 
parallax is a special case of the principle of triangulation, which states that one can solve 
for all the sides and angles in a network of triangles if, in addition to all the angles in the 
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network, the length of a least one side has been measured. Thus the careful measurement 
of the length of one baseline can fix the scale of an entire triangulation network. In 
parallax, the triangle is extremely long and narrow, and by measuring both its shortest 
side (the motion of the observer) and the, small top angles (the other two being close to 
90 degrees) the length of the long sides (in practice considered to be equal) can be 
determined. 

In SLAM a Bearing-Only sensor cannot retrieve depth information in a single 
measurement. To infer the depth of a feature, the sensor must observe it repeatedly as it 
translates though the environment, each time capturing a “ray” from the feature to its 
center. The angle between the captured rays is the feature´s parallax, allowing depth 
estimation.  

4.3.2 Inverse Depth Parameterization 

Recently, the inverse depth parameterization has shown to be good alternative 
for the Bearing-Only SLAM problem, in a scheme of Extended Kalman Filtering for the 
estimation of the stochastic map and vehicle pose. 

 

 

Figure 4.5 Change features parameterization from Euclidean coordinates to Inverse-
Depth Polar coordinates.  

We are using the EKF to estimate the state. The more linear the measurement 
equation is, the better performance is expected from the Kalman filter. In recent works, 
[1] and [115] have shown that the use of an inverse depth parameterization for Bearing-
Only SLAM can improve the linearity of the measurement equation even for small changes 
in sensor position yielding small changes in the parallax angle, this fact allow a Gaussian 
distribution to cover uncertainty in depth which spans a depth range from nearby to 
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infinity. Montiel in [1] presented on of the most promising approaches for Bearing-Only 
SLAM. In this approach based in a simple parameterization, far features can be included in 
the map, (due to the linearity in the measurement equation) in a context of standard EKF 
framework for sparse mapping. This method is clear and scalable; hence we use this 
parameterization for our work. 

So far we have been representing the map features in a Euclidean manner, thus 
for a 2D point: 

 y�𝑖𝑖 = �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖

� (4.14)  

The same yî point can be represented in polar coordinates: 

 y�𝑖𝑖 = �𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟 , 𝜃𝜃, 𝑑𝑑� (4.15)  

Where xref and yref represent a reference point, expressed in the global coordinate 
frame. In our case xref  and yref are represented by the location of the vehicle xvi and yvi. θ 
represents the direction in global coordinates  of  the ray d. (See Figure 4.5). 

The really key of the inverse depth parameterization is representing the point 
depth along the ray d coded in its inverse: 

 𝜌𝜌 =
1
𝑑𝑑

 (4.16)  

Therefore, our new feature representation is defined by: 

 y�𝑖𝑖 = [𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖  , 𝜃𝜃, 𝜌𝜌] (4.17)  

Figure 4.5 shows both, Euclidean and Inverse Depth parameterization or the map 
features.  Note that the new feature parameterization also describes in a more natural 
manner a feature measurement, since the feature is represented using the vehicle 
parameters xvi and yvi. For simplicity note that in equation (4.17) we remove the subscript 
v related to the vehicle location. 

4.3.3 Improving Linearity with Inverse Depth Parameterization 

Some feature initialization methods for Bearing-Only SLAM employ multi-
hypotheses based techniques, like Particle Filters [109] or Sum of Gaussians and variations 
[105], [106], [113], [114].   This, mainly due to the multi-hypotheses techniques are better 
suited for highly non-linear problems, in contrast the EKF, which is based in a first order 
linearization, suffer when uncertainty cannot be represented by Gaussian noise.  

On the other hand, inverse depth parameterization improves the linearity in the 
measurement process.  Figure 3.1 show a simulation for a point reconstruction from noisy 
bearing measurements at different parallax, using both, the Euclidean and the Inverse 
Depth parameterization.  
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Figure 4.6 Simulation of a point reconstruction from observations with different 
parallax.  The location of the vehicle is known. A Gaussian error σθ=1º (degrees) is 
introduced in bearings. Upper graphics show the evolution of the likelihood for depth 
and inverse depth as the parallax in the observation grows: In (a), the estimates of 
depth likelihood converge to a Gaussian-like shape, but the initial estimates are highly 
non-Gaussian, with heavy tails. In contrast, likelihoods of inverse depth (b) (abscissa in 
inverse meters) are nearly Gaussian, even for low parallax.  Middle graphics illustrates 
the estimated location of the point, coded as Cartesian XY (c,e) and ρ,θ (d,f), for two 
different parallax. When parallax is equal to 4º note how reconstruction is Gaussian for 
ρ,θ parameterization (d) and non-Gaussian for the Cartesian XY parameterization (c).     
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In the simulation it can be clearly appreciated how the uncertainty can be 
represented Gaussian using the inverse depth parameterization over whole parallax 
range, whereas the Euclidean representation converges to a Gaussian-like shape only to 
the final estimates. 

For the Euclidean representation, the parallax needed for the likelihood 
converges to a Gaussian-like shape, depends on the sensor noise, and thus noisier is the 
sensor more parallax is needed for convergence.   

Moreover, as the far features do not exhibit parallax, then they cannot be coded 
in Euclidean parameterization.  On the other hand, the inverse depth parameterization 
allows using linear techniques for the estimation process, thus allowing the direct use of 
Kalman Filtering techniques for estimating the features depth, even for far features.    

4.3.4 Measurement Equation 

 

Figure 4.7 Feature parameterization and measurement equation. 

The different locations of the vehicle, along with the location of the already 
mapped features, are used to predict the feature bearing θz

i (angle describing the 
direction of the feature respect to the vehicle, in the vehicle coordinate frame). The 
measurement equation hi(x̂v,y ̂i) is used to predict the feature bearing. 
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In section 4.1.1 we presented a simple measurement equation expressed in 

Euclidean coordinates.  

 ℎ𝑖𝑖(𝑥𝑥�𝑣𝑣 , 𝑦𝑦�𝑖𝑖) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣 , 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣) − 𝜃𝜃𝑣𝑣  (4.18)  

Now considering the change in the features parameterization (Note that we have 
included an index i for θ and ρ): 

 [𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 ] → �𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖  , 𝜃𝜃𝑖𝑖 , 𝜌𝜌𝑖𝑖� (4.19)  

Where the feature 4-dimension state vector (Equation (4.17)) models the 2D 
point located at (Figure 4.7): 

 �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖  

� +
1
𝜌𝜌𝑖𝑖

𝑚𝑚(𝜃𝜃𝑖𝑖) (4.20)  

Being xi and yi the vehicle center coordinates when the feature was observed the 
first time; and θi represent azimuth (respect to the world reference W) for the directional 
vector m(θi). The point depth di is coded by its inverse ρi=1/di. 

We can define a new measurement equation hi(x̂v,y ̂i) for the inverse depth 
parameterization: 

 ℎ𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 �
1
𝜌𝜌

sin 𝜃𝜃𝑖𝑖 + 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣 ,
1
𝜌𝜌

cos 𝜃𝜃𝑖𝑖 + 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣� − 𝜃𝜃𝑣𝑣 (4.21)  

Where xv, yv and θv are taken from the vehicle state vector x ̂ (Equation (4.5). 
The new Jacobians for the observation model hi are: 

 ∇H𝑥𝑥 = �
𝑠𝑠

𝑐𝑐2𝑢𝑢
−1
𝑐𝑐𝑐𝑐

−1� (4.22)  

And : 

 ∇H𝑦𝑦 = � −𝑠𝑠
𝑐𝑐2𝑢𝑢

1
𝑐𝑐𝑐𝑐

cos 𝜃𝜃𝑖𝑖
𝜌𝜌𝜌𝜌 + 𝑠𝑠 sin 𝜃𝜃𝑖𝑖

𝜌𝜌𝑐𝑐2

𝑐𝑐𝑐𝑐

sin 𝜃𝜃𝑖𝑖
𝜌𝜌2𝑐𝑐 + 𝑠𝑠 cos 𝜃𝜃𝑖𝑖

𝜌𝜌2𝑐𝑐2

𝑐𝑐𝑐𝑐
� (4.23)  

Where: 

 

𝑢𝑢 = �1 +
𝑠𝑠2

𝑐𝑐2�         and

𝑐𝑐 =
1
𝜌𝜌

cos 𝜃𝜃𝑖𝑖 + 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑣𝑣  

𝑠𝑠 =
1
𝜌𝜌

sin 𝜃𝜃𝑖𝑖 + 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑣𝑣

 (4.24)  

Note that the Jacobians has become a little more complex due to new 
parameterization.   
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4.3.5 2D Un-delayed Feature Initialization 

In the un-delayed method presented in [1], transition from partially to fully 
initialized features need not to be explicitly tackled; this means that the feature is added 
to the map in its final representation since the first frame that was observed.  Possibly the 
main benefit of this approach is that the feature provides information to the system since 
the beginning. 

The initialization includes both the feature sate initial values and the covariance 
assignment. Despite the initial uncertainty regions covers a huge range depth [dmin, ∞] 
because the low linearization errors, due to the inverse depth parameterization, the 
uncertainty is successfully coded as Gaussian: once initialized, the feature is processed 
with the standard EKF prediction-update loop. 

Using the inverse depth parameterization, while the feature is observed at low 
parallax, the feature will be used mainly to determine the vehicle orientation but the 
feature depth will be kept quite uncertain, including in its uncertainty region the even 
infinity; if the robot translation is able to produce a parallax big enough then the feature 
depth estimation will be improved. 

In [1] the method is defined for a camera 3D context where no odometry 
information is available. In this section we adapt the equations defined in [1] for 
representing our current 2D vehicle context. 

The initial location for the observed feature is defined as: 

 y�𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑥𝑥�𝑖𝑖 , 𝑦𝑦�𝑖𝑖  , 𝜃𝜃�𝑖𝑖 , 𝜌𝜌�𝑖𝑖�
⊺
 (4.25)  

Where: 

 �𝑥𝑥�𝑖𝑖
𝑦𝑦�𝑖𝑖 

� = �
𝑥𝑥𝑣𝑣
𝑦𝑦𝑣𝑣

� (4.26)  

Are taken directly from the current vehicle state xv̂. and 

 𝜃𝜃�𝑖𝑖 = 𝜃𝜃𝑣𝑣 + 𝑧𝑧𝜃𝜃  (4.27)  

Is simply the addition of the current vehicle orientation θv, taken from the vehicle 
state x ̂v, and the initial bearing measurement zθ.  

The covariance for x ̂i, ŷi and θ̂i is derived from the measurement error covariance 
Rj and the state covariance estimate Pk. 

The initial value for ρ ̂o is derived heuristically to cover in its 95% acceptance 
region a working space from infinity to a predefined close distance dmin expressed as 
inverse depth: 
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�

1
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

, 0�     so:

𝜌𝜌�0 =
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

2
       𝜎𝜎𝜌𝜌 =

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

4
    𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 =

1
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 
 (4.28)  

In [1] dmin = 1, ρ̂o = 0.5, σρ = 0.25.  
The new system state x ̂ is conformed simply adding the new feature yî to the 

final of the vector state: 

 x� = �
𝑥𝑥𝑣𝑣
𝑦𝑦1
𝑦𝑦2

�     x�new = �

𝑥𝑥𝑣𝑣
𝑦𝑦1
𝑦𝑦2
y�i

� (4.29)  

The state covariance after feature initialization is defined by: 

 P𝑛𝑛𝑛𝑛𝑛𝑛 = ∇Y �
P𝑘𝑘 0 0
0 R𝑗𝑗 0
0 0 𝜎𝜎𝜌𝜌

2
� ∇Y⊺ (4.30)  

Where 

 R𝑗𝑗 = 𝜎𝜎𝑧𝑧
2 (4.31)  

Is simply the standard deviation of the bearing sensor and: 

 ∇Y = �
I 0

∂𝑦𝑦
∂𝑥𝑥𝑣𝑣

, 0, … ,0,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝑗𝑗

� (4.32)  

For the current vechicle-2D case the derivatives are simply: 

 ∂𝑦𝑦
∂𝑥𝑥𝑣𝑣

= �

1 0 0
0 1 0
0 0 1
0 0 0

�     𝜕𝜕𝜕𝜕
𝜕𝜕ℎ𝑅𝑅𝑗𝑗

= �

0 0
0 0
1 0
0 1

�    (4.33)  

Figure 4.8 shows a simulation for the Un-delayed Inverse Depth Feature 
Initialization. Graphics a,b,c and d illustrates a single initialization: When the feature is 
observed at first time, then it is initialized immediately in the system state, (a)  with a huge 
uncertainty that codes  a depth from the vehicle to the infinity (blue ellipses defines an 
uncertainty of 3σ). Note that the feature location has been initialized very near to the 
center of the vehicle. As the vehicle move to the right (b, c and d) the feature parallax 
increases, and the new incoming bearing measurements improves the feature estimation. 
Note how the estimate feature´s location is getting closer to its ground truth and the 
uncertainty is minimized.  Graphics e,f,g and h illustrates the same vehicle´s trajectory but 
in this case the robot is capable of “seeing” four features.  
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Figure 4.8 Un-delayed Feature Initialization: Initializing a single feature (graphics a,b,c 
and d), Initializing four features (graphics e,f,g and h). 
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At the end of the trajectory (h), note that the uncertainty of the closer feature is 
lower respect to the others. The accuracy of the feature estimation depends on its 
distance to the sensor. Closer features can be estimated better than the far ones.   

4.3.6 Drawbacks for the Un-delayed Initialization  

When the Un-delayed feature initialization is used, it often happens that the 
inverse depth becomes negative after a Kalman update. In this case the next predicted 
observation for this landmark is 180º off the observation and is completely inconsistent. It 
causes the divergence of the Kalman filter. This difficulty is not mentioned in the original 
paper [1].  
 

 

Figure 4.9 Two cases for a single Un-delayed Feature Initialization: Using ρo=0.5,ϭρ=0.25 
as the initial parameters (a,b and c graphics), and using ρo=0.01,ϭρ=0.005 (d,e and f 
graphics). 
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Figure 4.10 Un-delayed initialization for 5 features, (1 distant and 4 close); In the first 
sequence (upper graphics a,b and c) the initial parameter have been set for initializing 
the features at the middle between the vehicle and the feature ground truth 
ρo=0.01,ϭρ=0.005  (a), at the end of the trajectory (c) there are a huge drift in the 
estimations. When the parameters are set for initializing the features near to the vehicle 
ρo=0.5,ϭρ=0.25 (middle graphics c,d and f), the problems of divergence still remains (f). 
On the other hand, when we use different parameters for the distant and nearby 
features (Lower graphics g,h and i), then the filter convergence is improved (i).    
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The origin of the problem is to update the depth of the landmark with an 
observation which does not carry any information on this dimension. Then the 
observation noise predominates in the update of the depth: the landmark can get behind 
of the sensor. 

Figure 4.9 (upper graphics a,b and c) shows a case where the features depth 
become negative after some Kalman update steps (b).  In this case the default values for 
the initial parameters were used. At the end of the trajectory (c) note that neither the 
feature location nor the robot location converged to the real ones, due to the divergence 
of the Kalman Filter. For this simulation the 58% of the times there was a divergence.  

On the other hand, if the initial parameters (ρo and ϭρ) are tuned then percentage 
of divergence decreases, In the lower graphics (d,e and f) the initial depth has been set in 
order to initializing the feature at the middle of the distance between the robot  and the 
landmark (d),   at the end of the trajectory (f), both robot and  landmark location have 
been successfully estimated. Making this change in the initial values for the simulation, 
practically a 100% of effectiveness was archived.    

But what happens, if there are some distant features and others nearby to the 
vehicle; in order to validate if as result of modifying the initial parameters ρo and ϭρ the 
robustness of the filter is increased, we perform another experiment (Figure 4.10).  In this 
case, additional to the single landmark used in the previous experiment, we add some 
nearby features.  

In upper graphics (a,b and c) when the initial parameters (ρo=0.01,ϭρ=0.005)  
were set in order to initialize the features at the middle of the distance between the 
vehicle and the more distant feature,  and thus far respect to the nearby features (a) we 
found in almost every  cases a huge drift in the estimates (c), in this case it can be 
appreciated that initializing the features far to the vehicle in order to avoid negative 
depths fails if there are some closest landmarks. On the other hand if the original values 
(ρo=0.5,ϭρ=0.25 ) are used, (middle graphics d,e and f) then the convergence issue remains 
(approx 50%) (f), due to the influence of the distant feature. In this case if the distant 
feature is removed from the map (Not illustrated) then a percentage of convergence of 
80% is archived.   

In the last series of simulations (lower graphics g,h and i) we combine both initial 
values: ρo=0.01,ϭρ=0.005  for the distant landmark and ρo=0.5,ϭρ=0.25 for the all the 
nearby ones.  In this case an effectiveness of 90% was archived for the algorithm.  

From all the previous experiments is clear that values for the initial parameters ρo 
and ϭρ play an important role in the robustness of the method. In this context, we 
improve the results of the method making a supervised tuning for the initial parameters. 
Nevertheless, it is clear for a real method application that supervised tuning is impractical.  
 

 



 2D Delayed Inverse Depth Feature Initialization 77 

4.3.7 2D-Delayed Feature Initialization 

In last section, it was seen that making a supervised tuning of initial parameters, 
improve the robustness of the Un-delayed Inverse Depth feature initialization. On the 
other hand the supervised tuning violates the principle of autonomy for an SLAM 
algorithm.   

In this context, if the robustness of initialization process wants to be improved, 
then an expected idea is to gather some previous information about the feature depth 
before to be initialized in the map. For a bearing sensor, gather information about feature 
depth, can’t be done in a single measurement, in that sense, delayed approaches obtain 
some depth information about the feature priors its initialization in the map. 
 

 

 

Figure 4.11 Simulation for the decrementing of uncertainty in feature depth σρ respect 
with the increase of the parallax angle. Note that a few degrees parallax is enough to 
reduce the uncertainty in the estimation.  

 
In an Un-delayed approach when a feature is added to the map when it was first 

observed, the feature depth is modeled for a huge uncertainty, in that sense the new 
feature does not provide information in the depth dimension to system, however at this 
stage the feature provides information about the sensor orientation. A benefit of the Un-
delayed approach is that the feature provides information to the system since the 
beginning.  On the other hand in Figure 4.11 it can be observed that a few parallax 
degrees are enough for reducing significantly the depth uncertainty, of course the parallax 
depend on the feature distance and the movement of the vehicle. For nearby indoor 
features, only a few centimeters of movement will be sufficient, distant features may 
require many meters or even kilometers of motion before parallax is observed.   
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Figure 4.12 Delayed Feature Initialization Flow chart. 
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For many applications we think useful to wait until the vehicle movement 
produces some parallax in the features in order to gather depth information for improving 
the robustness of the inverse depth initialization. In this section we describe our proposed 
features initialization for bearing-only SLAM called Delayed Inverse Depth Feature 
Initialization.  

The key idea of the proposed method consist in (i) estimating dynamically an 
initial feature depth ρo close to the real one, and (ii) incorporating directly the uncertainty 
related to the estimation process of  ρo in the system covariance matrix when the feature 
is initialized.  

A general description is: when a feature is first observed, the bearing 
measurement and some part of the system state x ̂ and covariance matrix P are stored, 
later, while the vehicle moves ( producing parallax), the stored information together with  
the current  system state and bearing measurement is used to approximated the parallax 
produced in the feature, this process is made until the parallax is bigger than some 
threshold , if this condition is archived then an estimation of the feature depth and its 
uncertainty is made. Finally the feature is initialized in the map using the estimated depth 
and uncertainty. Figure 4.12 show a flow chat for our proposed Delayed Initialization 
method. Hereinafter will be explained each one of the chart modules.  

In [104], the idea of storing some part of the system state is used, but in this case 
for each new measurement some part of the state are retained, on the other hand, our 
approach only requires to store a minimum number of parameters when the feature is 
first observed. Moreover in [104] due to the non-linearity in the measurement equation, 
(Euclidean parameterization is used) a criteria (Kullback distance) is used for determining 
if the estimation is well-conditioned (Gaussian). The complexity of the sampling method 
proposed to evaluate this distance is quite high making computationally expensive. As was 
seen in Section 4.3.3 the inverse depth parameterization highly improves the linearity in 
the measurement equation, therefore our approach does not need a measure for 
evaluating if the depth estimation is well-conditioned (Gaussian). In that sense our 
approach uses a simple approximation of the parallax in order to consider a new feature 
initialization. 

4.3.8 Candidate Points 

When a feature is detected the first time k, some part of the current state x ̂ and 
covariance matrix P together with the sensor measurement are stored, this data λ is 
conformed by: 

 𝜆𝜆𝑖𝑖 = �𝑥𝑥1, 𝑦𝑦1, 𝜃𝜃1, 𝑧𝑧1, 𝜎𝜎1
𝑥𝑥 , 𝜎𝜎1

𝑦𝑦 , 𝜎𝜎1
𝜃𝜃 � (4.34)  

We call λi as candidate points. The values x1, y1 and θ1 represent the current 
robot position; σ1

x, σ1
y and σ1

θ represent their associated variances taken from the state 
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covariance matrix Pk and z1 is the first bearing measurement to the landmark in the 
vehicle frame R. In subsequent instants k, the feature is tracked until a minimum parallax 
threshold αmin is reached. 

4.3.9 Cases where there is not Parallax 

Some common drawback attached to the delayed methods is that very distant 
features cannot be added to the map, because a condition (used for ensure that some 
depth information has been obtained from the feature) has to be reached in order to 
initialize it, in that sense for features at the “infinity” will be impossible to obtain depth 
information and therefore the condition will be never reached.   In our case a feature at 
the “infinity” will never produce a minimum parallax αmin. A nice attribute of the Un-
delayed initialization [1] is that features at infinity are included and maintained in the map 
with a huge depth uncertainty. Very distant features are useful because provides 
orientation information.    

Some delayed methods can not include very distant features because Euclidean 
parameterization cannot code Gaussian a high uncertainty in the depth dimension. On the 
other hand Due to the inverse depth parameterization it is possible to code Gaussian 
acceptance regions for features from nearby to infinity. Moreover, in the “delayed” period 
it is possible to expect that a feature is very distant, if after a long movement there is not 
parallax in the feature.    

 

 

Figure 4.13 The vehicle movement will not produce parallax in the feature if it points 
toward the direction of the landmark. 

In our approach, if very distant features wants to be included, then if after a 
minimum base-line bmin (de base-line b defines the translation from the location when 
feature was first seen and the current vehicle location) a minimum parallax αmin has not 
been reached, then it is assumed that feature is located distant from the vehicle, in this 
case the feature is initialized in a similar manner that the un-delayed initialization with a 
predefined ρo and ϭρ tuned for initializing the feature far from the vehicle.  
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There is an especial case when a non-distant feature does not produce parallax: If 

the vehicle is moving exactly in the direction of the feature, this feature will never produce 
parallax (Figure 4.13). This case could be a shortcoming for the un-delayed method 
because there are not previous assumptions neither vehicle movement nor feature 
locations when the feature is initialized. In this case the observation noise could 
predominate over the update of the depth, producing negative depths.  In our 
experiments it is assumed that the vehicle movement will produce some parallax for 
initializing the features, nevertheless in our delayed context is possible to comparing the 
direction of the vehicle since the feature was first observed respect to the direction of the 
candidate point λ, in this case if it is determined that the vehicle moves toward the   
landmark then the candidate point λ could not be considered as a new feature map. 

4.3.10 Estimating Parallax  

 

 

Figure 4.14 Delayed feature initialization. 
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To infer the depth of a feature, the robot must observe it as it freely moves 
through its environment, each time estimating the angle (bearing) from the landmark to 
its center. In our approach if a candidate point λi shows a minimum parallax αmin then it 
will initialized as a new feature ŷi.  

At this stage, the uncertainty of the measurements is not considered, and the 
parallax α is approximated using (i) the base line b, (ii)  λi using its associated data (x1, y1, 
θ1,z1), and (iii) the current state and bearing measurement (xv, yv, θv,z). 

For each candidate point λi, every time a new bearing measurement z is available, 
then the parallax angle α can be estimated by (Figure 4.14):    

 𝛼𝛼 = 𝜋𝜋 − (𝛽𝛽 + 𝛾𝛾) (4.35)  

The angle β is determined by the directional unitary vector h1 and the vector b1 
defining the base-line b in the direction of the robot trajectory by: 

 𝛽𝛽 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
ℎ1 ∙ 𝑏𝑏1

‖ℎ1‖‖𝑏𝑏1‖� (4.36)  

Where (h1 ∙ b1) is the dot product between h1 and b1. The directional vector h1, 
expressed in the absolute frame W, points from the robot location to the direction when 
the landmark was observed for the first time, and is computed using the data stored in λi 

denoting the bearing zi: 

 ℎ1 = �cos(𝜃𝜃1 + 𝑧𝑧1)
sin(𝜃𝜃1 + 𝑧𝑧1)� (4.37)  

b1 is the vector representing the robot base-line between the robot center 
position x1, y1 stored in λi where the point was first detected and the current robot center 
xv, yv: 

 𝑏𝑏1 = [(𝑥𝑥𝑣𝑣 − 𝑥𝑥1), (𝑦𝑦𝑣𝑣 − 𝑦𝑦1)] (4.38)  

The angle γ is determined in a similar way as β but using the directional unitary 
vector h2 and the vector b2 defining the base line in the opposite direction of the camera 
trajectory by: 

 𝛾𝛾 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
ℎ2 ∙ 𝑏𝑏2

‖ℎ2‖‖𝑏𝑏2‖� (4.39)  

The directional vector h2 expressed in the absolute frame W, is computed in a 
similar way as equation (4.37) but using the current robot position x̂v and the current 
measurement z. b2 is equal to b1 but pointing to the opposite direction: 

 ℎ2 = �cos(𝜃𝜃𝑣𝑣 + 𝑧𝑧)
sin(𝜃𝜃𝑣𝑣 + 𝑧𝑧)� (4.40)  



 2D Delayed Inverse Depth Feature Initialization 83 

      𝑏𝑏2 = [(𝑥𝑥1 − 𝑥𝑥𝑣𝑣), (𝑦𝑦1 − 𝑦𝑦𝑣𝑣)] (4.41)  

The base-line b is the module of b2 or b1: 

 𝑏𝑏 = ‖𝑏𝑏1‖ = ‖𝑏𝑏2‖ (4.42)  

4.3.11 Feature Initialization in state and covariance matrix 

If α > αmin then λi is initialized as a new feature map ŷi.  The threshold αmin can be 
established depending on the acuity of the bearing sensor. In Figure 4.11 it can be 
appreciated that depth uncertainty is reasonably well minimized when α = 10º.   

The new feature yn̂ew is determined by: 

 y�𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑥𝑥�𝑖𝑖 , 𝑦𝑦�𝑖𝑖  , 𝜃𝜃�𝑖𝑖 , 𝜌𝜌�𝑖𝑖�
⊺
 (4.43)  

Where the three first elements are determined in the same manner than the un-
delayed initialization method:  

 �𝑥𝑥�𝑖𝑖
𝑦𝑦�𝑖𝑖 

� = �
𝑥𝑥𝑣𝑣
𝑦𝑦𝑣𝑣

� (4.44)  

Are taken directly from the current vehicle state x ̂v. and 

 𝜃𝜃�𝑖𝑖 = 𝜃𝜃𝑣𝑣 + 𝑧𝑧 (4.45)  

Is simply the addition of the current vehicle orientation θv, taken from the vehicle 
state x ̂v, and the bearing measurement z.  

In our delayed approach a dynamical estimation of the inverse depth ρ ̂i is made 
prior to be added to the map instead of the initial fixed depth ρ̂o used in the Un-delayed 
method (4.28). ρ̂i is derived from the sine law: 

 𝜌𝜌�𝑖𝑖 =
sin 𝛼𝛼

𝑏𝑏 ∗ sin 𝛽𝛽
 (4.46)  

The new system state x ̂ is conformed simply adding the new feature ŷnew to the 
final of the vector state: 

 x� = �
𝑥𝑥𝑣𝑣
𝑦𝑦1
𝑦𝑦2

�     x�new = �

𝑥𝑥𝑣𝑣
𝑦𝑦1
𝑦𝑦2

y�new

� (4.47)  

The variance σρ for the inverse depth ρ is derived now from the initialization 
process, instead of a variance predefined heuristically as it was made in the un-delayed 
method, therefore the covariance for the new feature ŷnew is derived from the error 
diagonal covariance matrix Rj measurement and the state covariance matrix P. 
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 𝑅𝑅𝑗𝑗 =
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⎢
⎢
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𝜎𝜎1

𝑥𝑥 0 0 0 0
0 𝜎𝜎1

𝑦𝑦 0 0 0
0 0 𝜎𝜎1

𝜃𝜃 0 0
0 0 0 𝜎𝜎𝑧𝑧

2 0
0 0 0 0 𝜎𝜎𝑧𝑧

2⎦
⎥
⎥
⎥
⎥
⎤

  (4.48)  

Note that Rj is now conformed by the error variance of the bearing sensor σz  
(one for each bearing estimation z1 and z) and the variances stored in λi  (σ1

x, σ1
y and σ1

θ). 
The new state covariance matrix, after initialization, is: 

 P𝑛𝑛𝑛𝑛𝑛𝑛 = ∇Y �
P𝑘𝑘 0
0 R𝑗𝑗

� ∇Y⊺ (4.49)  

Note that a difference from the Un-delayed method (4.30), there is not an 
implicit initial uncertainty in depth σρ (4.28). In our method the complete covariance for 
the new feature is estimated by the initialization process. 

4.3.12 Jacobian ∇Y 

The Jacobian ∇Y for the initialization process is:  

 ∇Y = �
I 0

∂𝑦𝑦
∂𝑥𝑥�𝑣𝑣

, 0, … ,0,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝑗𝑗

� (4.50)  

Where I is an identity matrix with the same dimension of Pk, ∂y/ ∂xv are the 
derivatives of the initializations equations with respect to the vehicle state x ̂v and ∂y/ ∂Rj 
the derivatives respect to the parameters of the covariance matrix Rj. 

 
∂𝑦𝑦
∂𝑥𝑥𝑣𝑣

=

⎣
⎢
⎢
⎢
⎡
1 0 0
0 1 0
0 0 1

∂𝜌𝜌
∂𝑥𝑥�𝑣𝑣 ⎦

⎥
⎥
⎥
⎤

 (4.51)  

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝑗𝑗

=

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝑗𝑗 ⎦

⎥
⎥
⎥
⎤

 (4.52)  

Note that derivatives of the initialization ŷnew (4.43) respect to the three first 
parameters (xi, yi and θi) are very simple. On the other hand, the derivatives respect to the 
inverse depth parameter ρ are complex due to the several functions used to estimate it, in 
this case the chain rule is used in order to make simplest the expressions.  
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(4.54)  

Where: 

 
∂𝜌𝜌
∂𝛽𝛽

= −
sin 𝛾𝛾

𝑏𝑏
−

cos2 𝛽𝛽 sin 𝛾𝛾
𝑏𝑏 sin 𝛽𝛽

 (4.55)  

 
∂𝜌𝜌
∂𝛾𝛾

=
cos(𝛽𝛽 + 𝛾𝛾)

𝑏𝑏 sin 𝛽𝛽
 (4.56)  

 
∂𝜌𝜌
∂𝑏𝑏

= −
sin(𝛽𝛽 + 𝛾𝛾)
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And: 
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Being: 
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 𝑠𝑠 = 𝑥𝑥𝑣𝑣
2 − 2𝑥𝑥𝑣𝑣𝑥𝑥1 + 𝑥𝑥1

2 + 𝑦𝑦𝑣𝑣
2 − 2𝑦𝑦𝑣𝑣𝑦𝑦1 + 𝑦𝑦1

2 (4.64)  

 𝑐𝑐 = cos(𝑧𝑧1 + 𝜃𝜃1)2 + sin(𝑧𝑧1 + 𝜃𝜃1)2 (4.65)  

 𝑞𝑞 = cos(𝜃𝜃𝑣𝑣 + 𝑧𝑧)2 + sin(𝜃𝜃𝑣𝑣 + 𝑧𝑧)2 (4.66)  

4.3.13 Simulations Results 

The proposed Delayed Inverse Depth Feature Initialization was tested performing 
several simulations. Figure 4.15 shows the initialization for a single feature; when the 
landmark is first observed (a), a candidate point λi is stored composed of parameters 
taken from the system state and covariance matrix and the current bearing measurement 
z1. While the robot moves making new bearing measurements z, the parallax α is 
estimated repeatedly (b,c and d).  If the parallax α > αmin  (d) then a new feature ŷi  is 
initialized in the system state and covariance matrix (e). In this simulation a αmin = 20º was 
used for visual clarity but lower threshold can be used, in subsequent simulations αmin = 
10º is used.  In (e) note that the feature has been initialized very near respect its ground 
truth position and its 3σ uncertainty covers a smallest area respect to the huge initial 
uncertainty coded by the Un-delayed approach. At the end of the vehicle trajectory (f) the 
estimated feature location has been improved and its uncertainty minimized. 

Figure 4.17 shows three different cases:  In the first sequence (plots a,b and c)  
four near features are initialized.   In the second sequence (plots d,e and f) one landmark 
has been set very far respect to the vehicle trajectory, in this case when the vehicle has 
moved 100 units, the landmark ,due to its remoteness, does not produce enough parallax 
for being initialized as a new feature in the map using the αmin condition (e), therefore the 
feature is initialized with an initial fixed depth ρ̂o and fixed uncertainty σρ when the base-
line is bigger than a bmin = 100 units (f).  

Also note at the end of the trajectory, that the uncertainty of the distant feature 
remains high. In the third sequence (plots h,I and j) the vehicle moves in a s-like trajectory 
through twenty five random-location landmarks, in (j) not all the uncertainties of the 
initialized features has been fully minimized due to the trajectory followed by the vehicle. 
But the estimated map and trajectory are very good. 

Figure 4.18 shows a simulation of a differential drive robot equipped with a 
bearing-only sensor, in the same simulated environment used in experiments of Section 
3.4.9. and Section 4.1.2, but in the current case using the proposed Delayed Inverse  
Depth Feature Initialization.  

The sequence (plots a,b,c,d,e and f)shows the typical SLAM behavior;  In (c) The  
robot location and map estimates shows a drift respect to their ground truth. In (d) the 
vehicle has return near to its initial position re-detecting previous mapped features and 
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thus minimizing the drift in vehicle and map estimates.  Also note in (d) when the robot 
has completed its first lap that some feature`s uncertainties remain high. At the end of the 
simulation (f) the map and vehicle location have been estimated consistently. 
 

 

Figure 4.15 Delayed Inverse Depth Feature Initialization: Note that the feature has been 
near to its real position and its uncertainty (blue ellipses) covers a smallest region 
respect to the huge uncertainty used in the Un-delayed approach. 

4.3.14 Comparing Un-delayed and Delayed Methods 

For comparing the performance of both Un-delayed and Delayed methods, we 
have realized the same experiments showed Section 4.3.6 but now using our proposed 
method. Figure 4.16 illustrates the results of two simulations, in sequence (a,b and c) a 
single landmark has been set relatively far from the initial vehicle location. In section 4.3.6 
it was seen that if initial feature depth was set near to the vehicle location, then could 
happen that the feature depth become negative after some Kalman update steps, causing 
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the filter divergence.  On the other hand, since the Delayed Method realizes depths 
estimations priors to the state and covariance initialization phase, the feature is initialized 
very near to its ground truth with lower associated uncertainty (b).  At the end of the 
simulation (c) the landmark position was estimated correctly. Using the Delayed method, 
and effectiveness of 100% was achieved for this experiment, against the 42% achieved by 
the Un-delayed method (using the default initial parameters). 

For the second sequence (d,e and f) three very near landmarks were added, in 
order to test both initialization methods in a context with very near and very distant 
landmarks. With the Un-delayed method an effectiveness of 50% was achieved using the 
default initial parameters and 90% making a differentiated tuning for the distant and near 
features. On the other hand with the Delayed method a success of 100% was achieved. 
Even if the distant feature is removed from the experiment (not illustrated) an 
effectiveness of 100% is achieved compared with the 80% for the Un-delayed method.  

 

 

Figure 4.16 Similar experiments were performed with Un-delayed and Delayed Inverse 
depth Feature Initialization. The experimental result show that the percentage of 
effectiveness was clearly increased using the Delayed approach. 
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Figure 4.17 Delayed Inverse Depth Feature Initialization. Three cases: (i) Four near 
features (a,b,c). (ii) Three near features and a single very distant feature (d,f,g), in this 
case the distant feature has not produced enough parallax and therefore has been 
initialized using fixed initial inverse depth and uncertainty when the vehicle has reached 
a minimum base-line. (iii) Twenty five random features. 
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Figure 4.18 Bearing Only SLAM with Delayed Inverse Depth Feature Initialization. In a 
simulated corridor.  
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4.4 SSLAM: Sound-based SLAM 

Usually the Bearing-Only SLAM has been associated with Vision-based SLAM 
systems, perhaps because Cameras are by far the most popular bearing sensor used in 
robotics.  On the other hand the use of the hearing sense in localization and mapping has 
been much less explored. In this case, sound sources (artificial or natural) are used as 
landmarks for being included in the robot’s map in order to localize it along the time.  

This section focuses on the inclusion of the hearing sense in SLAM, attempting to 
localize (without a priori information of the sound source location) both, the robot 
position and the sound source, along the time while the robot is moving freely in its 
environment. 

In this context, a real application for Bearing-Only SLAM with Delayed Inverse 
Depth Feature Initialization is described.  A small differential drive robot capable of sense 
bearing information respect to an external sound source with modest angular acuity 
(±10°) is considered.  

4.4.1 Sound-based Localization Approaches 

Most robot sound localization approaches focused on improving the sensor 
capabilities (robustness, acuity, etc.) [116], [117], [118], [119], [120], [121]; in these cases 
the word “localization” refers to the estimation of the sound source respect to the robot 
in a robot coordinate frame in order to perform navigation; in that sense, a typical 
experiment is that a robot autonomously follows a sound source. In our case “localization” 
refers to estimating the position of both, robot and sound source along the time in a world 
coordinate frame.  

 

Figure 4.19 SSLAM: Mobile robot equipped with a Sound Sensor and parameterization 
for the Sound Source. 
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Others methods, [122], combine audio and vision for localizing speakers. In [123], 
there is an attempt to localize a mobile robot using several structured sound sources 
emitting distinctive codes in a similar approach to GPS system, where the position of each 
sound source is known a priori precisely. This is in contrast with a SLAM approach where 
landmarks locations are not know a priori. 

4.4.2 Sound Sensor 

In this work the term “Sound Sensor” refers to a robot sub-system capable of 
providing directional acoustic sensing  (bearing information) independently on the number 
of transducers (2, 3 or a ring of microphones), the acoustic technique (interaural time 
difference (ITD), interaural phase difference (IID), etc) and the kind of sound source 
(natural or artificial).  

A sound sensor has some similarities with others bearing sensor as monocular 
vision since in both cases depth information cannot be directly retrieved. A big distant 
object can appear in an image with the same size of a small close object and a loud distant 
sound source can be heard it similar to a weak close one. In that context some of the 
general principles applied to bearing-SLAM methods can be straightforward applied in 
sound-based SLAM (SSLAM). 

4.4.3  Sound-based SLAM Algorithm 

A differential drive mobile robot with 2-dof equipped with a sound sensor is 
considered.  The cinematic model of the robot is the same that has been used so far 
(introduced in Section 3.2.1). To adapt our proposed Bearing-only SLAM algorithm (with 
Delayed Inverse Depth Feature Initialization) in order to implement a Sound-based SLAM 
system we consider a Sound Source as a feature point. Also it is assumed that the Sound 
Sensor is capable of tracking and measuring (bearing) the Sound Source. Figure 4.19 
illustrates the mobile robot equipped with a sound sensor and the SSLAM 
parameterization (similar to the presented in Section 4.3) 

4.4.4 Simulations 

Figure 4.20 shows the simulation of the algorithm for a circular trajectory, a 
Gaussian noise with variance of 0.01 is added to the odometry (typical in encoders based 
systems). For the Sound Sensor, a variance σ = 5° is considered.  In the simulation it is 
supposed that the sound sensor is able of tracking the sound source over the 360°; in the 
case of having several sound sources it is supposed that the sensor can do a single 
measurement at a time and the separation of sound sources (data association problem) is 
obviated. 
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Figure 4.20 Simulations of the algorithm with initial random Sound Sources positions: 
Upper plot shows an example with a single sound source. Lower plot shows an example 
with three Sound Sources. Blue ellipses represent 2 σ  robot and Sound Source 
uncertainties. Note that with three sources the trajectory and its positions are more 
precisely recovered whereas the uncertainties are lower.  
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In the case of a single sound source the correct location initializations of the 
feature (Sound Source) in the system plays a very important role; if the feature is 
initialized far of its real position the filter could even diverge, if the single feature is 
initialized properly the trajectory can be recovered acceptably. 

In the case of several Sound Sources the robustness of the algorithm increases, 
with lower dependence on initialization location; robot position and Sources positions 
uncertainties are lower due to an increase of available information in the system. 

In both cases note how the estimated trajectory using only robot’s encoders 
(odometry) diverges rapidly from the ground truth,  in contrast with the trajectory 
estimated by the fusion (made in the SLAM algorithm) of both information sources; 
odometry and bearing (respect to the Sound Source).   From these simulations, using our 
proposed Bearing-Only algorithm, we can conclude that if a mobile robot equipped with a 
Sound Sensor is capable of tracking the angular direction of a single or several Sound 
Sources then it is possible to estimate its position over the time reasonably well 
(correcting the odometry error). 

4.4.5 Robot Implementation 

Observing the simulation’s results it is clear that the algorithm works better with 
more than one sound source, nevertheless in a real situation it is obvious that to track and 
to discriminate among several sound sources is a very challenging effort. 
 

 

Figure 4.21 Pictures of the robot used for testing the algorithm; the robot was 
implemented specifically for the experiments of this chapter. Note the ultrasonic 
receivers at the ends of the rotating head. 

On the other hand, observing simulation’s results, it is surprising to note that a 
single sound source is enough for correct the odometry error in an acceptable manner, 
this fact has motivated us to testing the algorithm in a real robot equipped with a sound 
sensor of uncomplicated implementation.  



 SSLAM: Sound-based SLAM 95 

 
Figure 4.21 shows the robot implemented for the experiments; it is equipped 

with optical encoders for odometry, sensors for tracking floor lines, a radio modem in 
order to establish communication with a PC and a 360° rotating head capable of tracking 
the sound direction of a single ultrasonic source. 

For implementing the sound sensor (Figure 4.22), a sound-servo configuration is 
used. In order to avoid the sound source separation issue, a structured ultrasonic source is 
used. This sound source emits eight 40 kHz pulses every 40 milliseconds. Two ultrasonic 
transceivers are mounted at the ends of a 360° rotating head with a separation of 25cm 
between them. The head is driven by a modified servo for continuous rotation.  
 

 

Figure 4.22 Interaural time difference (ITD) is used as feedback signal in a 360° servo 
configuration for implementing the robot’s Sound Sensor. Every time (40ms) that a 
ultrasonic bean is received, a PI controller drives the servo looking for a ITD (||t1-t2||) 
close to zero (right pictures). If the robot remains static and the Sound Source is moving, 
then the rotating head will follow the direction of the Sound Source (left pictures). 

A microcontroller measures the interaural time difference (ITD) in the ultrasonic 
receivers, the ITD is used as a feedback in a PI controller that drives the servo looking for 
an ITD close to zero. 

The rotation head is connected by gears to a continuous rotation potentiometer 
for generating (with a voltage divisor) a voltage proportional to the bearing of sound 
source. The potentiometer has a wedge of 30° where is not possible to obtain 
measurements, therefore the Sound Sensor has a working range of 330°. Finally this 
voltage is converted to a binary value by an ADC (analog to digital converter). The Sound 
Sensor has acuity around ±10°.   
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4.4.6 Experimental Results with Real Data 

For the experiments with real data, when the robot is moving,  each time that the 
control program (running in a PC) requests data, the current encoders' counts (both 
wheels) and the ADC value (representing the bearing to the sound source) are sent by 
radio modem to the PC.  

For every request these three values are stored in a table, when the robot stops 
of moving, the data table is used as the input for a SSLAM MatLab implementation, here it 
is important to say that is straightforward to implement the algorithm in a real time 
version.  

Several experiments were realized in order to test the performance of the SSLAM 
algorithm. Figure 4.23 shows two of the experimental setup used: In one type of 
experiments, the robot tracked floor lines in order to make a good comparison between 
the estimated trajectories and the ground truth. Note the test paths and the location of 
the Sound Source (left picture). In other type of experiments the robot was manually 
driven by a joystick (right picture).  The idea is move the robot from a starting zone to 
another one (observe the blue circles) and then, return the robot near to its initial 
position.  After that a comparison is made between the estimated and the real location of 
the robot. 

Figure 4.24 illustrates a robot’s lap in an eight-shape path. The frames were 
extracted from a video taken of the experiment. Note how the rotating head follows de 
direction of the Sound Source, independently of the robot’s direction.   

Figure 4.25 shows the results obtained with the data captured from the robot’s 
sensors, when the robot followed two predefined paths using its line-tracking sensor: an 
oval path (a) and an eight-shape path (b). In plot (a) note how after 6 laps (around 24m of 
travel) the trajectory is reasonably well recovered with the SSLAM algorithm (red 
trajectory) compared with the estimates using only the odometry (green).  

In (b) a more challenging trajectory is followed by the robot, note how the large 
drift showed by the robot’s odometry is well bounded in the trajectory estimated by the 
SSLAM algorithm. The non-operative wedge of 30º in the robot's head has little effect in 
the estimated trajectories; maybe in plot (a) can be slightly appreciated, but the trajectory 
is rapidly recovered by the algorithm when the head enters in the fully operative area of 
330º. 

Finally in Figure 4.26 the robot was manually driven by a joystick from a starting 
location to a second location and then driven back to the starting location several times. 
Commonly turns are the mainly source of odometry errors. In this experiment, it can be 
clearly appreciated how the trajectory estimated by the odometry differs from the real 
one due to the several (and closed) turns. Nevertheless the robot location is consistently 
estimated with the SSLAM method over the whole trajectory. 
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Figure 4.23 Experimental Setup: Robot tracking a predefined path using its line-tracking 
sensor (left). Robot manually driven by a joystick (right). Note the Sound Source at the 
middle-upper of the pictures. 

 

Figure 4.24 Sequence of frames (taken from a video) illustrating a robot’s lap in an 
eight-shape predefined path. The yellow rays are only for point up the movement of the 
robot’s rotating head following the direction of the Sound Source.  
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Figure 4.25 Plots (a,b) show the estimates for two different predefined trajectories 
followed by the robot: an oval (a) and an eight-shape (b), in both cases note how the 
estimated trajectories with the sound based SLAM (red) are reasonably recovered after 
several laps, on the other hand note the big error propagation in the estimated  
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Figure 4.26 In this experiment, the robot was manually driven by a joystick from the 
location 1 to the location 2 (illustrated by black circles) and then back from the location 
2 to the location 1 several times. Note the huge error in the odometry estimates, 
compared with the consistently SSLAM estimated trajectory.  

4.5 Conclusions 

In this chapter we have analyzed the Bearing-Only SLAM problematic. It has been 
seen that the main challenge is related with the process of initializing new features in the 
map. In Bearing-Only SLAM extra treatment of the features has to be done previous to 
added it to the stochastic map since bearing-sensors doesn’t provides spatial information 
related to features depth.  

Several techniques have been proposed in literature for initializing features in 
Bearing-Only SLAM. Inverse Depth feature Parameterization increases the linearity of the 
measurement equation. In that sense, Un-delayed Inverse Depth parameterization 
method has show to be an excellent option for Bearing-Only SLAM, because a standard 
EKF-SLAM framework can be straightforward applied to address the Bearing-Only SLAM 
problem. Nevertheless this kind of feature initialization methods has some drawbacks:  
Mainly due to the initial features depth and variance are fixed, it often happens, in cases 



100  Bearing-Only SLAM 

where there are near and distant landmarks, that estimated depth cannot converge to the 
real ones causing that map and vehicle location are poorly estimated. It also often 
happens that after some Kalman update steps, the features depths become negatives 
causing even the divergence of the filter. On the other hand, experimentally we found that 
making a manual tuning of the initial parameters then the percentage of success 
increasing significantly. The last fact, motive us to propose a novel feature initialization 
technique called Delayed Inverse Depth Feature Initialization, where initial parameters  
are dynamically estimated priors to add a landmark as a new feature in the stochastic 
map. 

 In this chapter we introduce our Delayed Inverse Depth Feature Initialization 
method for Bearing-Only SLAM for a 3DOF (2D) context and assuming the availability of 
odometry. Several simulations were presented in order to illustrate its performance. 
Simulations results show that our proposed Delayed method is more robust than the Un-
delayed method for different scenarios.  

In order to test our Delayed Inverse Depth Feature Initialization method with real 
data, a novel approach, called SSLAM, has been also presented. This algorithm performs 
sound-based simultaneous localization and mapping. A robot subsystem (called, Sound 
Sensor), capable of providing bearing information respect to one or several sound sources, 
is closely related (from the algorithmic point of view) with others bearing sensors (e.g. 
camera), in that sense a general Bearing-Only SLAM framework (like the proposed in this 
chapter ) can be straightforward  modified for working in a sound-based context. 

The algorithm simulations show that several sound sources improve the 
robustness and effectiveness of the method; nevertheless a real sound sensor capable of 
tracking and separating several sound sources requires a challenging implementation. In 
that sense, a small mobile robot, capable of tracking a single sound source, is 
implemented in order to test SSLAM with real data sensor. 

The experimental results show how the method is able to estimate the sound 
source position without prior knowledge of the environment; this information is 
subsequently used for estimating reasonably well the robot’s trajectory. It can be 
appreciated how the error propagation of the encoders-based odometry is bounded. 

These experimental results are very promising since the method is tested in a 
robot with very limited capabilities. The method could be applied in a robot equipped with 
a more complex sound sensor capable of measuring several natural audio sources.  
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Chapter 5 

5 The Data Association Problem 

So far we have avoided in all the simulations, or at least simplified, in the case of 
the SSLAM, the data association problem. In that sense, we have been assuming that we 
perfectly know which landmark correspond to each measurement. Nevertheless, in 
practice, the data association is a very challenging problem.  On the other hand we have 
seen that Bearing-Only SLAM is a viable alternative for address the SLAM problem if the 
initialization of new map’s features is accounted for.   In this context Cameras are by far 
the most popular bearing sensor, among other things because provides a huge amount of 
information, useful for addressing the data association problem. 

In this chapter several techniques are described for addressing the data 
association problem in a SLAM context. All the approaches presented in this chapter are 
vision-based techniques due to cameras are the more powerful bearing sensor for 
performing SLAM. One aim of this chapter is to be a “bridge” between the chapter 4, 
where the Bearing-Only SLAM general problematic is introduced, and the chapter 5, 
where the Monocular SLAM is presented as a sub-class of Bearing-Only SLAM based on 
monocular cameras.  

First in section 5.1, a small survive on the data association problem based on local 
features appearance is given.  Some of the related work and methods, representing the 
state of the art, are also briefly reviewed. 

In section 5.2 a novel image feature descriptor called ICAD is presented. The ICAD 
descriptors are based on ICA (independent component analysis). Experimental results are 
presented in order to show the performance of the method. 

In a context of camera-based SLAM, a video-stream is available. In Section 5.3 a 
new framework for capturing the variability of image features descriptors based on 
statistical methods is presented, in order to make the features descriptors more robust to 
changes in illumination or point of view.  Experimental results comparing methods and 
descriptors are presented. 
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Some of the techniques available in the literature have shown to be an excellent 
option for addressing the data association problem. Nevertheless their direct use in SLAM 
applications is not straightforward.   In Section 5.4 a simple but effective framework is 
presented for using state of the art image features descriptors in camera-based SLAM 
systems.   

Finally in section 5.5 the conclusions of the chapter are given. 

5.1 Introduction 

Possibly the one of the hardest problem in robotic is the correspondence 
problem, also known as the data association problem [124]. The correspondence problem 
is the problem of determining if sensor measurements taken at different points in time 
correspond to the same physical object in the world. For example two instances of the 
correspondence problem in robot mapping are closing cycles in large cyclic environment 
and the kidnapped problem. When a mobile platform moves through its environment a 
single video camera can be used in order to build a map of its surroundings and to 
determine its position (absolute or relative). Because in computer vision a great amount of 
information is available, this information can be used for solve or at least to reduce the 
challenging correspondence problem.  

For visual recognition (camera-based data association), two major classes of 
techniques can be identified: 

Model-based. These kinds of techniques employ geometric models of the target 
objects for feature extraction or alignment [125]. 

Appearance-based. These kinds of techniques are related to the appearance of 
objects in an image. That is, they are related directly to the pixels of an image. They are 
also called model-free methods since they extract features or extract information from 
images without explicit model shape properties of the target objects. 

In computer vision, sparse image statistics called features are used in order to 
create a model that is rich enough to represent the environment and sparse yet to be 
stored efficiently. This chapter presents some appearance-based feature extraction 
techniques that are relevant to SLAM. Two key requirements must be met for a vision-
based feature extraction technique to have SLAM relevance. First, the method must 
operate in real time. Mobile robots move through their environment, and so the 
processing simply cannot be an off-line operation. Second, the method must be robust to 
the real-world conditions outside a laboratory. This means that carefully controlled 
illumination assumptions and carefully painted objects are unacceptable requirements. 

Through the following descriptions, we keep in mind that vision-based 
interpretation is primarily about the challenge of reducing information. A sonar unit 
produces perhaps fifty bits of information per second. By contrast, a CCD camera can 
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output 240 million bits per second! The sonar produces a tiny amount of information from 
which we hope to draw broader conclusions. But the CCD chip produces too much 
information haphazardly. For example, we may intend to measures the color of a 
landmark. The CCD camera does not simply report its color, but also measures the general 
illumination of the environment, the direction of illumination, the defocusing caused by 
optics, the side effects imposed by nearby objects with different colors, and so on. 
Therefore the problem of visual feature detection is largely one of removing the majority 
of irrelevant information in an image so that the remaining information unambiguously 
describes specific features in the environment. 

We divide vision-based feature detection method into two classes based on their 
spatial extent: 

Spatially localized features. Are those features found in sub-regions of one or 
more images, corresponding to specific locations in the physical world. 

Whole-image features. Are those features that are functions of the entire image 
or set of images, corresponding to a large visually connected area in the physical world. 

In this chapter we focuses on spatially localized features because are congruent 
with a general SLAM scenario:  In the computer vision community many algorithms 
assume that the object of interest occupies only a sub-region of the image, and therefore 
the features being sought are localized spatially within images of the scene. Local image-
processing techniques find features that are local to a subset of pixels, and such local 
features map to specific locations in the physical world. This makes them particularly 
applicable to geometric models of the robot’s environments. 

The data association is fundamental part of the SLAM process, since wrong 
associations will produce incorrect maps. 

5.1.1 Visual Features Representation 

  Features can be the result of a general neighborhood operation (feature 
extractor or feature detector) applied to the image, specific structures in the image itself, 
ranging from simple structures such as points or edges to more complex structures such as 
objects. Other examples of features are related to motion in image sequences, to shapes 
defined in terms of curves or boundaries between different image regions, or to 
properties of such a region. The feature concept is very general and the choice of features 
in a particular computer vision system may be highly dependent on the specific problem 
at hand. The most popular local feature extractor used by the mobile robotics community 
is the edge detector. 

When features are defined in terms of local neighborhood operations applied to 
an image, a procedure commonly referred to as feature extraction, one can distinguish 
between feature detection approaches that produce local decisions whether there is a 
feature of a given type at a given image point or not, and those who produce non-binary 
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data as result. The distinction becomes relevant when the resulting detected features are 
relatively sparse. Although local decisions are made, the output from a feature detection 
step does not need to be a binary image. The result is often represented in terms sets of 
(connected or unconnected) coordinates of the image points where features have been 
detected, sometimes with sub-pixel accuracy. 

When feature extraction is done without local decision making, the result is often 
referred to as a feature image. Consequently, a feature image can be seen as an image in 
the sense that it is a function of the same spatial (or temporal) variables as the original 
image, but where the pixel values hold information about image features instead of 
intensity or color. This means that a feature image can be processed in a similar way as an 
ordinary image generated by an image sensor. Feature images are also often computed as 
integrated step in algorithms for feature detection. 

A specific image feature, defined in terms of a specific structure in the image 
data, can often be represented in different ways. For example, an edge can be 
represented as a Boolean variable in each image point that describes whether an edge is 
present at that point. Alternatively, we can instead use a representation which provides a 
certainty measure instead of a Boolean statement of the edge’s existence and combine 
this with information about the orientation of the edge. Similarly, the color of a specific 
region can either be represented in terms of the average color (three scalars) or a color 
histogram (three functions). 

When a computer vision system or computer vision algorithm is designed, the 
choice of feature representation can be a critical issue. In some cases, a higher level of 
detail in the description of a feature may be necessary for solving the problem, but this 
comes at the cost of having to deal with more data and mote demanding processing.  An 
instance of a feature representation can be referred to as a (feature) descriptor. 

5.1.2 Features Descriptors  

A descriptor can be viewed like a distinctive representation of the feature and its 
variations among the time in a compact way respect the original data without lose of its 
statistical meaning. In this scenario, the correspondence problem is represented for 
matching image features descriptors in a wide base line. We understand “wide base line” 
as a big difference in time and camera point of view, between learning and recognition 
phases. To address the whole problem descriptors can be very helpful because they can 
provide distinctive signatures of different locations in space. Furthermore, descriptors 
have to be as much invariant as possible to changes in scale, rotation, illumination or 
projection (point of view) and algorithms must be efficient and robust to a number of 
environmental variations such as lighting, shades, and occlusions among others. 

Reliable image features are a crucial component of any visual recognition system. 
Despite much progress, research is still needed in this area. Elementary features and 
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descriptors suffice for a few applications, but their lack of robustness and invariance puts 
a heavy burden on the learning method and the training data, ultimately limiting the 
performance that can be achieved. More sophisticated descriptors allow better inter-class 
separation and hence simpler learning methods, potentially enabling generalization from 
just a few examples and avoiding the need for large, carefully engineered training 
databases. The feature and descriptor families that we advocate typically share several 
basic properties: 

5.1.3 Locality and redundancy: 

 For resistance to variable intra-class geometry, occlusions, changes of viewpoint 
and background, and individual feature extraction failures, descriptors should have 
relatively small spatial support and there should be many of them in each image. Schemes 
based on collections of image patches or fragments are more robust and better adapted 
to object-level queries than global whole-image descriptors. A typical scheme thus selects 
an appropriate set of image fragments, calculates robust appearance descriptors over 
each of these, and uses the resulting collection of descriptors as a characterization of the 
image or object (a ``bag-of-features'' approach – see below). 

5.1.4 Photometric and geometric invariance:  

Features and descriptors must be sufficiently invariant to changes of illumination 
and image quantization and to variations of local image geometry induced by changes of 
viewpoint, viewing distance, image sampling and by local intra-class variability. In practice, 
for local features geometric invariance is usually approximated by invariance to Euclidean, 
similarity or affine transforms of the local image. 

5.1.5 Repeatability and salience:  

Fragments are not very useful unless they can be extracted reliably and found 
again in other images. Rather than using dense sets of fragments, we often focus on local 
descriptors based at particularly salient points – ``keypoints'' or ``points of interest''. This 
gives a sparser and thus potentially more efficient representation, and one that can be 
constructed automatically in a preprocessing step. To be useful, such points must be 
accurately relocalizable in other images, with respect to both position and scale. 

5.1.6 Informativeness:  

Notwithstanding the above forms of robustness, descriptors must also be 
informative in the sense that they are rich sources of information about image content 
that can easily be exploited in scene characterization and object recognition tasks. Images 
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contain a lot of variety so high dimensional descriptions are required. The useful 
information should also be manifest, not hidden in fine details or obscure high-order 
correlations. In particular, image formation is essentially a spatial process, so relative 
position information needs to be made explicit, e.g. using local feature or context style 
descriptors rather than global moments or Fourier descriptors. 

Features and descriptors with some or all of these properties have become 
popular choices for visual correspondence and recognition, particularly when large 
changes of viewpoint may occur (wide base-line).  

5.1.7 Data Association Process based on Features Descriptors 

Two steps can be distinguished on the utilization of visual features: The detection 
of interest points (features) and the description of the selected points. The first step 
involves the selection of suitable points in the images that can be used as landmarks. The 
points should be detected at different distances and viewing angles, since they will be 
observed by the robot from different poses. In a second step the features are described by 
a feature vector which is composed using local image information. The descriptor is used 
to solve the data association problem: when the robot observes a landmark in the 
environment, it must decide whether the observation corresponds to a previously seen 
landmark or a new one. 

 

Figure 5.1Typical scheme for data association process based on features descriptors. 

 
A typical descriptor consists on a vector of n elements. Common values for n are 

64, 128 or 256.  Figure 5.1 show a typical scheme for data association process based on 
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features descriptors, from the computer vision point of view.  When a new image is 
obtained from the environment by a vision-based sensor, features (also called Keypoints) 
are extracted.  Is important to note that all vision-based sensors supply image with such a 
significant amount of noise that a first preprocessing step that usually consist of 
“cleaning” the image before launching any feature extraction algorithm. A common 
output for the feature extraction algorithm is a group of pixel centered in a point of 
interest of the image (keypoint).   After that, the Descriptors are obtained from the 
detected features. For know if the current detected feature (related to a spatial location) 
correspond to a spatial location of the environment previously detected then their 
Descriptor is matched against a data-base of previously stored feature descriptors.  The 
data-base of descriptors can be viewed as a space of n dimensions where each Descriptor 
represents a point in such space.   

Then for comparing the Descriptor against the data-base, it is looking for the 
close “point” (or points) in the descriptor-space. Nearest Neighbor techniques are usually 
employed for determined the most closed point (or points) in a space.  If the matching 
process succeeds then it is assumed that the vision-based sensor is “viewing” some 
feature previously mapped and some action is carried out.  If the matching process fails 
the nit is assumed that the Descriptor corresponds to a new feature of the environment 
and it is stored in the data-base as a new Descriptor. 

5.1.8  Related Work 

Interest points detected in the images are not very stable, and the matching 
between different views becomes difficult. In consequence, the problem of selecting a 
suitable interest point detector and descriptor for visual-based SLAM is still open. Some 
examples of interest point detectors are: Harris [126], Harris-Laplace [127], SUSAN [128], 
and Shi-Tomasi [129]. In [130] some interest point detectors are evaluated for their use in 
visual-based SLAM. In this work the Harris corner detector [126]  was found to be the 
most suitable point detector for vision-based SLAM. 

Some common descriptors are: 
Gray level patch: This method describes each feature using the gray level values 

at a sub-region around the interest point. This method has been used in [109] as a 
descriptor of Harris points in visual-based SLAM framework. 

Orientation Histograms: The orientation histograms are computed from the 
gradient image, which represents the gray value variations in the x and y direction. In 
[131] orientation histograms are applied for navigation tasks. 

SIFT: The Scale-Invariant Feature Transform (SIFT) detects distinctive key points in 
images and computes a descriptor for them. The algorithm, developed by Lowe, was 
initially used for object recognition task [132]. SIFT features are located at maxima and 
minima of a difference of Gaussian functions applied in scale space. They are computed by 
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building an image pyramid with re-sampling between each level. Next, the descriptors are 
computed based on orientation histograms at a 4-by-4 sub-region around the interest 
point, resulting in a 128 dimensional vector. SIFT descriptors provides invariance to image 
translation, scaling, rotation and partial invariance to illumination changes and view point 
changes. SIFT features have been used in robotics applications as visual landmarks for 
localization and SLAM task: [133], [134], [135]. 

SURF: Speeded Up Robust Features (SURF) is a scale and rotation invariant 
descriptor presented by Bay et al. [136]. The detection process is based on the Hessian 
matrix. SURF descriptors are based on sums of 2D Haar wavelet responses, calculated in a 
4-by-4 sub-region around each interest point. The standard SURF descriptor has a 
dimension of 64 and the extended version (e-SURF) of 128. The u-SURF version is not 
invariant to rotation and has a dimension of 64. 

Other approaches like [137], [138] or [139] have been presented for address the 
problem of image features representation for tracking, recognition or reconstruction. In 
general, those methods searching of extrema in image scale space for obtain good 
candidates locations for detection. In [140] an approximate version of Kernel Principal 
Component Analysis (KPCA) was used to estimate features descriptors. 

5.2 ICA Descriptors 

If features Descriptors want to be used in robotics applications like SLAM, where 
real time operation is fundamental, then the computational cost of the data association 
process based on feature descriptors becomes critical.  In general SIFT descriptors have 
shown to be the more robust option for reliable data association problem using local 
feature descriptors [141]. Nevertheless the computational cost of the SIFT descriptors are 
quite high and therefore their direct application to several scenarios (including, SLAM) is 
not straightforward.  More recently SURF descriptors also have shown to be an excellent 
option for addressing the data association problem because demonstrates to have a 
similar performance than SIFT but a lower computational cost [142]. Even so, for 
applications like SLAM, where are required the computation of several tasks apart from 
the data association, SURF descriptors maintain a considerable computational cost.  On 
the other hand Gray level patches are an option very fast to computing but only useful for 
matching features frame to frame (small base-line tracking), where there are small 
changes on illumination or point of view.   

In this section we present an intermediate option for addressing the data 
association problem, called ICA Descriptors (ICAD) which are based on ICA (independent 
component analysis) technique [143].  In general ICA descriptors presents  an 
intermediate performance in, computational cost and robustness, respect to SIFT and 
SURF descriptors on the one hand and the Gray level patches on the other:  ICA 
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descriptors are more robust than Gray level patches but less than SIFT or SURF.  ICA 
descriptors also have a lower computational cost than SIFT or SURF but a little more 
expensive than the Gray level patches.   

5.2.1 PCA and ICA. 

Principal Component Analysis (PCA) [144] is a standard statistical tool used to find 
the orthogonal directions corresponding to the highest variance.  It is equivalent to a 
decorrelation of the data using second-order information. The basic idea in PCA is to find 
the components y1, y2, …, yn, that explain the maximum amount of variance, by n linearly 
transformed components. Then the principal components are given by: 

 𝑦𝑦𝑖𝑖 = 𝑤𝑤𝑖𝑖
𝑇𝑇𝑋𝑋 (5.1)  

Where 

 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 ]𝑇𝑇  (5.2)  

And xi is an observed data vector, and wi is a basis vector (an eigenvector of the 
sample covariance matrix E{XXT}) . It can be written, in matrix form, as: 

 𝑌𝑌 = 𝑊𝑊𝑊𝑊 (5.3)  

Where  

 𝑌𝑌 = [𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑛𝑛 ]𝑇𝑇 (5.4)  

And yi is a principal component vector. (See [144] for more details about PCA). 
The ICA attempts to go one step further than PCA, by finding the orthogonal 

matrix V which transforms the data Y into Z having Z1, Z2, …, Zm statistically independent. 
The ICA is thus more general than PCA in trying not only to decorrelate the data, but also 
to find decomposition, transforming the input into independent components. 

The simplest ICA model, the noise-free linear ICA model, seems to be sufficient 
for most applications. This model is as follows: ICA of observed random data X consist of 
estimating the generative model: 

 𝑋𝑋 = 𝐴𝐴𝐴𝐴 (5.5)  

Where  

 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ]𝑇𝑇 (5.6)  

 𝑆𝑆 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛 ]𝑇𝑇 (5.7)  

And xi is an observed random vector and si is a latent component, and A is the 
constant mixing matrix. The transform we seek is B=VW, then 
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 𝑍𝑍 = 𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐶𝐶𝐶𝐶 (5.8)  

If an orthogonal matrix V that transforms the mixed signals X into Z with 
independent components could be found, and assuming that at least one independent 
source sk is normally distributed, then Z=CS with C being a non-mixing matrix. The ICA 
algorithm attempts to find the matrix B which ensures that Z is independent. 

Many ICA algorithms are available. A computationally efficient ICA algorithm, 
called the FastICA algorithm, is chosen to be used in our work.  See [143] and [145] 
respectively, for more details about ICA and FastICA. 

5.2.2 ICA Applied to window-based Image Features  

The assumption of implicit Gaussian sources in PCA makes it inadequate when 
true sources are non-Gaussian. In particular, it has been empirically observed that many 
natural signals, like natural images are better described as linear combinations of sources 
with long tailed distributions. Ica provides a better probabilistic model of data in an n-
dimensional space. It is sensitive to high-order statistics in the data not only to the 
covariance matrix. ICA can yield either an orthogonal or a non orthogonal basis, changing 
the relative distance between data point, this change in metrics may be useful for 
classification algorithms, like nearest neighbor, for instance that make decisions based on 
relative distances between points.  

 

 

Figure 5.2 a) To apply ICA to an image a matrix is formed where each row is a feature i 
tracked in frame n. b) ICA finds a weight vector w in the directions of statistical 
dependencies among the pixel locations. 

Our goal in this work is to find descriptors to represent image features. If we 
consider a feature as a window of p-by-p pixels in a frame, we can organize each feature 
as a long vector with as many dimensions as number of pixels in the feature. ICA can be 
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applied to this data organizing each vector into a matrix X where each row is the same 
image feature for different frames (Figure 5.2 left). In this approach, image features are 
random variables and pixels are trials (Figure 5.2 right), it makes sense to talk about 
independence of features or functions of features. 

Two features i and j are independents if when moving across pixels, it is not 
possible to predict the value taken by the pixel on feature j based on the values taken by 
the same pixel on feature i. 

5.2.3 Method Description 

In the scenario of mobile robot mapping and localization, we pretend to 
recognize at high speed different features along a sequence of images, based on a two-
phases algorithm: database generation (learning, off-line process) and recognition 
(matching, on-line process). 

In the learning phase, we employ a standard small base-line tracker for detecting 
and tracking candidate features, in this work the Lucas Kanade tracker (KLT) [146], [147] is 
used. But any small base-line tracker can be used. 

When the KLT locates a feature (feature i at frame f), a p-by-p pixels window 
around the feature center is stored as a vector ufi of length p-by-p, with a distinctive label; 
in the following frames the feature tracked and repeating the above process, storing with 
the same label. We can choose, as a parameter, first, the number of frames that the 
features has to persist in the KLT in order to estimate the feature descriptor and second, 
the number of features to treat for each frame. After that, vectors with the same label 
(same feature i) are regrouped in a matrix Ui . 

 𝑈𝑈𝑖𝑖 = [𝑢𝑢1𝑖𝑖 , … , 𝑢𝑢𝑛𝑛𝑛𝑛 ]𝑇𝑇  (5.9)  

Where n is the number of frames where the feature has been tracked. 
Then for each matrix U the FastICA is applied as it were shown in the previous 

section along with dimensional reduction selecting the largest eigenvalue to be retained. 
At the output of the FastICA we obtain a descriptor qi with dimension equal to the feature 
windows size. The descriptors are stored in a database with unique label for each feature. 

In the recognition phase features are detected but not tracked by the KLT for 
each incoming frame. Then for each feature detected a windows is obtained in the same 
way than the learning stage and sorted in a vector vi the FastICA is directly applied to this 
vector without dimensional reduction producing a descriptor ri. A fast approximate k-
nearest neighbor algorithm [148] is applied to the database in order to look for the 2-
nearest neighbor descriptors qi1 and qi2. 

Be  

 𝑘𝑘1 = 𝑑𝑑(𝑟𝑟𝑖𝑖 , 𝑞𝑞𝑖𝑖1)      𝑘𝑘2 = 𝑑𝑑(𝑟𝑟𝑖𝑖 , 𝑞𝑞𝑖𝑖2)       (5.10)  
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(d is the Euclidean distance), k1 ≤ k2, we define α 

 𝛼𝛼 =
𝑘𝑘1

𝑘𝑘2
 (5.11)  

To be a factor used by our algorithm, as a threshold, for considering a good 
match between the candidate descriptor ri and its corresponding nearest descriptor qi1 
and qi2 in the database. When α tends to 0 means a great distance between candidates 
and, empirically, the results are better. 

5.2.4 Experimental Results. 

We have implemented a C++ version of our method that runs on a PC 2GHz 
Pentium IV processor, 512MB RAM. A non-expensive USB Webcam with a maximum 
resolution of 640-by-480 pixels and 30 fps has been used. 

We performed a variety of experiments in order to examine the validity of our 
proposal; In the learning phase, a video sequence of a rigid environment desktop scene 
was recorded moving the camera slowly and continuously in order to obtain a change of 
some degrees in the 3D point of view and rotation of the camera. Later, twenty ICA 
descriptors were created from this video sequence using windows of 12-by-12 pixels and 
stored in a descriptor database as it has been described in the previous section. Figure 5.3 
shows the relationship between the sizes of the window used to create the ICA descriptors 
and the false positive in our experiments. 

Together with these 20 descriptors, the database contains another 1000 
descriptors corresponding to other video sequences. The objective of these experiments 
consists of observing the response of our system when a set of descriptors coming from 
an online video sequence (close to the learning sequence, as it is explained below) will be 
matched with the descriptors database. 

The first experiment has been to observe the response to the change of the p-by-
p windows size used to create the descriptors in images of 320-by-240 pixels. Figure 5.3 
shows percentage of false positive versus different sizes of p. 

A second experiment has been to observe the response of the system in front the 
changes in parameter α in the following four cases (Figure 5.5): 

a) Little change in 3D point of view with respect to the position in the learning 
phase and little change in the illumination (Figure 5.4, upper-left).  

b) Little change in 3D point of view and medium change in illumination (Figure 
5.4 upper-right). 

c) Approximately a change of 20 degrees in the 3D point of view and medium 
change in illumination (Figure 5.4 lower-left). 

d) Approximately a change of 10 degrees in the 3D point of view, 5 degrees in 
rotation and medium change in illumination (Figure 5.4 lower-right). 
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Figure 5.3 Relationship between the sizes of the window used to create the ICA 
descriptors and the false positive, Note the local minimum at p=12. 

 

 

Figure 5.4 Descriptors created in the learning phase (central image). Examples of 
descriptors matched in the recognition phase: (upper-left image) case a: little change in 
3D point of view and little change in illumination; (upper-right image) case b: Little 
change in 3D point of view and medium change in illumination; (lower-left image) case 
c: a change of 20 degrees in the 3D point of view and medium change in illumination; 
(lower-right image) case d:  a change of 10 degrees in 3D point of view, 5 degrees in 
rotation and medium change in illumination. 
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Figure 5.5 Response of the percentage of classification and percentage of false positives 
to the change of the parameter α. 

 
The response of the algorithm is expressed in terms of two measurements: 
Percentage of Classification as the ratio between the number of descriptors 

matched (correctly or incorrectly) and those that potentially can be found, we talk about 
“potentially can be found” because one of the objectives of our methods is running fast; 
to achieve this goal, we consider only a finite number of possible locations in each frame 
to be matches. These possible locations are established feature detecting algorithm of the 
same tracker used in the learning phase. Then it would be possible that some features to 
match actually exist in the fame but algorithm does not detect them making impossible 
the matching process.  The number of regions to consider in each frame can selected, in 
our experiment we chose forty. 

Percentage of false positive as a quality measurement of detection, and it is 
defined as the ratio between false positive and the number of (correctly or incorrectly) 
descriptors matched. 

In Figure 5.5 is relevant to show the trade-off between percentage of 
classification and percentage of false positive when varying α. The lower the threshold, 
the lower is the number of false positive, but consequently the percentage of classification 
is also low. The computational speed in the matching process, among the forty possible 
descriptors in each frame versus one thousand descriptors in the database is about 15 Hz.   
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5.3 Learning Variability of Image Feature Appearance  

Invariance to some changes like point of view or illumination are difficult to 
represent in descriptors created from a single frame since there does not exist a single-
view statistic that is invariant with respect to viewpoint or lighting conditions. In 
applications like vision-based SLAM or robot localization a video stream is available 
making possible to detect and then track the features across the images with small base 
line (frame to frame); several trackers [146], [147] can be used for this. The 
correspondence problem is easy in a small base line. While a robot moves through their 
environment and detect image features with its camera, the appearance of the features 
changes due to natural changes in illumination and changes in the point of view. We can 
take advantage of matching in a small base line for capture the variations in the 
appearance of each feature along the time to make the feature descriptors more robust to 
changes like illumination and point of view. 

In previous section the design of an image feature descriptors called ICAD based 
on ICA (independent component analysis) for matching image features with a wide base-
line from the incoming video at real time with the feature descriptors previously stored in 
a database. Now in this section we propose to use statistical learning methods for capture 
variability of image feature appearance. In the learning phase we use small base line 
tracking methods for capturing the appearance of the image feature along the time, then 
we build their descriptors, assigning a specific label; these labeled descriptors will be the 
input to the statistical learning method. In the recognition phase we use the statistical 
methods to identify the labels of the image features from the incoming video, in real time. 

5.3.1 General Methodology 

We consider the feature matching wide baseline problem under the context of 
simultaneous map building and localization of mobile robots (SLAM). The viewing 
conditions change drastically between the phases of map building (learning) and 
localization (recognition). Such changes affect both the domain of the image 
(deformations of the scene and geometric distortion due to changes of the viewpoint) as 
well as its range (changes in illumination). Such changes are due to both intrinsic 
properties of the scene (shape, reflectance) and to nuisance factors (illumination, 
viewpoint). 

A feature is a statistic of the image that is intended to make easier the matching 
process; ideally one would want a statistic feature invariant to all kind of changes. 
Invariant descriptors to changes like scale or rotation can be created from one single view 
and they are suitable for many applications, nevertheless in the context of mobile robot, 
changes like viewpoint or illumination can be appreciably significant between learning and 
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recognition stages. Unfortunately there exist no single view statistic that is invariant 
respect to the point of view or lighting conditions.  

On the other hand in the context of mobile robots a high frame-rate video is 
available during both building and localization. So multiple adjacent views of the same 
scene are available, as for instance in a video from a moving camera and, at least in 
theory, the point of view could be explicitly accounted for. Additionally, changes in 
viewpoint cause irradiance changes that are due to the interplay of reflectance and 
illumination. In this section we want to find if the performance of a scheme for matching 
image features in a wide base line based in a single feature descriptor is increased, if we 
use multiple descriptors from the same feature taken at different time, for training a 
statistical learning method, and then use this learning method for the matching process. 

So in this work we are interested in the results of a general scheme for matching 
images features in a wide base line, instead of a specific method performance. Next, a 
general and modular scheme is presented to address the problem, the idea is to attempt 
different kind of descriptors and statistical methods of learning and classification, the 
modularity makes possible to interchange different methods and descriptors. 

Therefore, the scheme is divided into two stages: learning (map building) and 
recognition (localization). 

5.3.2 Learning Phase: 

Small base-line tracking: Features are detected and tracked using a conventional 
small base-line tracker, specifically in this work the Lucas-Kanade Tracker (KLT) was used, 
but any efficient tracker could be used. 

Window extraction: For each feature detected a p-by-p pixels window around 
the feature center is extracted, in our work we used a 12-by-12 pixel window. Other 
window sizes have been tested but the results were worse. 

Descriptor creation: A descriptor xi is obtained for each window area. A good 
descriptor has to be as invariant as possible to changes like rotation or scale and 
insensitive to changes like illumination. We used two statistical techniques: principal 
component analysis (PCA) and independent component analysis (ICA), but others 
descriptors like SIFT can be used. 

Storage in database: For each frame, descriptors have to be scaled and stored in 
a data base. Descriptors created from the same feature tracked along the time with small 
base-line are stored with the same label yi. 

Feature class creation: A statistical method is used in order to create and 
represent the descriptors stored in the database with the same label yi like a unique class 
V that represent the feature. This feature class V is created with the purpose of capturing 
the variations in the appearance of the feature along the time. The capacity of V to 
represent these variations depends on the number of descriptors and the changes of 
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scene conditions in which it was created. For this study we used Support Vector Machine 
(SVM) and variations of K-Nearest Neighbor (KNN). 

5.3.3 Recognition Phase: 

Feature Detection: In order to improve the computational performance in the 
recognition phase, the same small base-line tracker in the learning phase is used to detect 
features, but it is not used to track feature candidates to match. 

Descriptors candidates: For each candidate feature a descriptor xj is created in 
the same way that it was created in the learning phase. 

 Recognition: The same statistical method used in the learning phase is used now 
to classify the candidate descriptor xj in the more adequate feature class V. Depending on 
the kind of selected statistical method a quality scheme of correspondence between the 
candidate descriptor and its associated class can be implemented. 
 

5.3.4 Statistical Methods and Descriptors 

In this work we employ two image features descriptors: The ICAD and the PCAD, 
similar to ICAD descriptor, but using PCA (principal component analysis) instead of ICA 
(independent component analysis). We used two statistical learning methods: KNN (k-
nearest neighbor) and SVM (support vector machine).  

The idea is comparing the performance of ICAD and PCAD alone, with their 
performance using them together with KNN and SVM. Consequently in the experiments 
we are comparing six methods: ICAD, PCAD, SVM-ICA, SVM-PCA, KNN-ICA, and KNN-PCA. 
In this section first we explain the theoretical bases for SVM and KNN (PCA and ICA were 
explained in Section 5.2.1), and later, we briefly explain our methods used for this 
approach. 

5.3.5 SVM and KNN 

Support Vector Machine (SVM) is a technique used in data classification. The goal 
of SVM is to produce a model which predicts target value of data instances in the testing 
set which are given only the attributes. 

Given a training set of instance-label pairs (xi,yi),i = 1,…,l where xi ∈ Rn  and y ∈ 
{1,-1}l

 , the SVM [149] require the solution of the following optimization problem: 

 min𝑤𝑤 ,𝑏𝑏 ,𝜉𝜉 �1
2

𝑤𝑤 𝑡𝑡 𝑤𝑤+𝐶𝐶 � 𝜉𝜉𝑖𝑖

𝑙𝑙

𝑖𝑖=1
� , with 𝐶𝐶 > 0 (5.12)  

Subject to 
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 𝑦𝑦𝑖𝑖 (𝑤𝑤𝑡𝑡𝜑𝜑(𝑥𝑥𝑖𝑖 ) + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖   , where 𝜉𝜉𝑖𝑖   ≥ 0 (5.13)  

Here training vectors xi are mapped into a higher (maybe infinite) dimensional 
space by the function φ. Then SVM finds a linear separating hyper-plane with the maximal 
margin in this higher dimensional space. C is the penalty parameter of the error term. 
Furthermore K(xi,xj) = φ(xi)Tφ(xj) is called the kernel function. In this work a radial basis 
function (RBF) was used like kernel function: 

 𝐾𝐾�𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 � = exp �−𝛾𝛾�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗 �2� , 𝛾𝛾 > 0 (5.14)  

The K-nearest neighbor (KNN) is statistical method of classification well known 
and very simple, nevertheless has come to demonstrate to be very effective in a wide 
variety of applications. It works based on minimum distance from the query instance xj to 
the training samples (xi,yi), to determine the K-nearest neighbors. After we gather k 
nearest neighbors, we take simple majority of these K-nearest neighbors to be the 
prediction of the query instance. 

We use a 5-nearest neighbor; we use a parameter α like threshold for considering 
a good match between an xj candidate descriptor and the selected more voted feature 
class V: 

 𝛼𝛼 =
𝐾𝐾 ∑ 𝑑𝑑(𝑥𝑥𝑗𝑗 , 𝑥𝑥)𝑙𝑙

𝑗𝑗 =1

𝑙𝑙2  (5.15)  

Where xj ∈ V, d (xi,x) is the Euclidean distance and l is the number of votes for the 
more voted class V. In this way the average Euclidean distance is used like threshold but is 
penalized according to the number of votes received for V respect to K. 

5.3.6 ICAD and PCAD Methods 

Many ICA and PCA algorithms are available. A computationally efficient ICA 
algorithm, called the FastICA [145] algorithm and the PCA Snapshot Method [150] have 
been chosen for this work. 

When the KLT (small base-line tracker) locates a feature (feature i at frame f), a 
p-by-p pixels window around the feature center is stored as a vector ufii of length p-by-p, 
with a distinctive label; in the following frames the feature is tracked and repeating the 
above process, storing the window with the same label. Immediately vectors with the 
same label (same feature i) are regrouped in a matrix Ui = [u1i, …, uni]T

 where n is the 
number of frames where the feature has been tracked. 

Then for each matrix U the ICA or PCA is applied as it has been shown in the 
section 5.2.2 along with dimensional reduction selecting the largest eigenvalue to be 
retained. 
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At the output of the ICA or PCA we obtain a descriptor qi with a dimension that 
equals to the feature window size. The descriptors are stored in a database with a unique 
label for each feature. 

In the recognition phase features are detected but not tracked by the KLT for 
each incoming frame. Then for each feature detected a window is obtained in the same 
way than the learning stage and sorted in a vector vi, the ICA or PCA is directly applied to 
this vector without dimensional reduction producing a descriptor xj. A fast k-nearest 
neighbor algorithm is applied to the database as was explained in section 5.2.3. 

5.3.7 SVM-ICA and SVM-PCA Methods 

We used the LIBSVM [151] for the implementation of the SVM. The method 
follows exactly the same steps than the feature-class method (section 5.3.1): In step 3 
(descriptor creation) unlike the ICAD and PCAD methods, the ICA or PCA is applied directly 
to the vector ufi obtained from de p-by-p pixels window (step 2) and stored in the 
database (step 4). In the output of the ICA or PCA we obtain a descriptor with the same 
dimension than the pixel window. 

For step 5 (feature-class creation) we employ the descriptors-database for 
training a SVM classifier with a radial basis function (RBF) as a kernel function, equation 4. 

The parameters C = 8 and γ = 1 used in RBF were selected by cross-validation 
and grid search. For the recognition phase the SVM output model is used to predict the 
feature class V of the candidate descriptor xj, as it has been explained in section 5.3.1 
(recognition phase). 

5.3.8 KNN-ICA and KNN-PCA Methods 

For the implementation of KNN we employ a computationally efficient algorithm 
called approximate nearest neighbor (ANN) [148]. The method follows the same steps 
than SVM-ICA and SVM-PCA except that a training model is not generated from the 
descriptor-database. Prior to the recognition phase the whole database is loaded in 
memory by the ANN algorithm. In experiments we used 5-NN. For recognition phase ANN 
is applied as it has been explained above. The threshold α is used to consider a good 
match between a candidate descriptor xj and the more voted selected feature class V 
(5.15). 

5.3.9 Experiments 

We have implemented a C++ version of the methods that runs on a PC 2GHz 
Pentium IV processor, 512MB RAM. A non-expensive USB Webcam with a maximum 
resolution of 640-by-480 pixels and 30 fps has been used. 
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Similar experiments to those that were made in section 5.2.4 with ICAD were 
performed in order to show the performance of the aforementioned methods. For each 
method in the learning phase, a video sequence of a rigid environment desktop scene was 
recorded moving the camera slowly and continuously in order to obtain a change of some 
degrees in the 3D point of view and rotation of the camera. Later, twenty descriptors were 
created from this video sequence as it was described in section 5.3.4. Together with these 
20 descriptors, the database contains another 1000 descriptors corresponding to other 
video sequences. The objective of these experiments consists of observing the response of 
the methods when a set of descriptors coming from an online video sequence (close to 
the learning sequence, as it is explained below) will be matched with the descriptors 
database. The response was observed in four different cases: 

a) Change in 3D viewpoint with respect to the position in the learning phase 
and little change in illumination. 

b) Change in 3D point of view plus change in rotation and little change in 
illumination. 

c) Change in 3D point of view plus change in scale (camera zoom) and little 
change in illumination. 

d) Change in 3D point of view plus great change in illumination. 
The following measurements were used in order to comparing the performance 

of the methods: 
Error of classification: It is the ratio between the percentage of false positive and 

percentage of classification. We define percentage of false positive as the ratio between 
the number of features wrong classified and the total of features classified in the scene 
(correctly or incorrectly). We define percentage of classification as the ratio between the 
total of features classified in the scene (correctly or incorrectly) and the total that 
potentially could be matched (we consider only a finite number of possible locations in 
each frame to be matched, step 1 of recognition phase). For example in the methods 
based in KNN the percentage of false positive for a threshold α =0 .6 could be 16 percent 
but the percentage of classification is 50 percent, consequently we define the error of 
classification as 0.32. On the other hand in SVM is difficult to establish a threshold for 
classification, because SVM is a method of the kind “choose the best candidate”. 
Therefore we consider the percentage of classification for SVM as 100 percent. For 
example a 38 percent of false positive in SVM means 38 percent of classification error. 

Computational cost: We have calculated the time for each frame (or the 
frequency, it is the same) that the different methods take to classify 30 possible features 
with the 1000 descriptors that are in the database. 

The results for the experiments and the measurements are shown in Table 5.1. 
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Case PCAD ICAD SVM-PCA SVM-ICA KNN-
ICA 

KNN-
ICA 

a .40 .35 .33 .21 .26 .21 

b .47 .45 .44 .38 .31 .32 

c .47 .33 .41 .28 .50 .35 

d .48 .47 .43 .42 .37 .32 

CPU 5.34Hz 5.05Hz 2.32Hz 2.20Hz 5.34Hz 3.84Hz 

CPU* 16.30Hz 10.70Hz 3.22Hz 2.94Hz 21.72Hz 7.09Hz 

Table 5.1: Error of classification for each condition case (a,b,c and d) in the recognition 
phase and their computational cost. CPU* does not include the time to detect features 
by KLT tracker. 

In the results of the experiments Table 5.1, we can observe a lower error of 
classification in the methods based in statistical learning (SVM-PCA, SVM-ICA, KNNPCA 
and KNN-ICA) comparing with ICAD and PCAD methods. Therefore the performance of the 
ICAD and PCAD methods was increased using statistical learning approaches. 

On the other hand, as we expected, ICA-based descriptors show lower error of 
classification than PCA-based descriptors but computationally the cost for ICA is greater 
than PCA. We observe a similar computational cost in the case PCAD and ICAD with 
KNNPCA and KNN-ICA. Finally we also observe that KNN shows better performance than 
SVM in error of classification as well as in computational cost. 

5.4 SIFT and SURF for Bearing-Only SLAM 

There are many kinds of sensors to archive SLAM. Vision-based SLAM uses 
cameras as the only sensors. Obviously images themselves cannot be input to any SLAM 
algorithm so extracting good image features is a prerequisite for all vision-based SLAM 
solutions. We should extract enough but not too many features which can be obtained 
efficiently, matched reliably and located accurately for vision-based SLAM applications. 

These criteria come from three important requirements of vision-based SLAM. 
First, SLAM algorithms must run in real time. Second, state updating requires reliable data 
association, which is related directly to reliable feature matching. Third, in Bearing-Only 
SLAM 3D positions of features cannot be obtained from a single image, accurate and well-
conditioned features have to be initialized with an initialization algorithm, which requires 
accurate image feature locations.  

In this section we propose a simple but efficient alternative for addressing the 
data association problem in a context of Bearing-Only SLAM. The method is based on SIFT 
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and SURF descriptors. Usually those descriptors are difficult to include directly in Bearing-
Only SLAM algorithms. On the other hand, making some “tricks”, these descriptors can be 
used for reliable data association in Bearing-Only SLAM algorithms. 

5.4.1 Challenges for using SIFT and SURF  

The approaches presented above (section 5.3) share the idea of using several 
frames for collecting information in order to create the features descriptors. On the other 
hand, there may be some applications where is convenient to match features using only 
two frames: one for the learning phase and other for the recognition phase.  In that sense 
it has been seen that SIFT and SURF descriptors represented the most reliable solution to 
the data association problem when descriptors are created from a single frame [141], 
[142]. 

 

Figure 5.6 In this image 340 SIFT keypoints were detected (left). On the same image, 55 
features were found by the Harris Corner detector. It is easy to tune the Harris corner 
detector for locating strong and spatial-sparse features. 

However the original SIFT and SURF algorithm is no practical for Bearing-Only 
SLAM especially in environments with rich texture. For example, usually from the 
thousands of SIFT features extracted from one image only 10% features can find their 
matches in another image even when the change between the two viewpoints is small.  In 
addition, some of the matches are incorrect. In Figure 5.6 (left) it can be appreciated that 
too many SIFT keypoints were detected in areas with rich texture. In Figure 5.7 shows an 
example of the matches founded using SIFT descriptors over images taken from different 
point of view.  SIFT and SURF descriptors in general gives excellent results but also 
produces some false-positives. Unfortunately Kalman-based SLAM is extremely sensitive 
to the mismatches. Since a SLAM algorithm should run in real time, extracting a large 
number of features which can hardly find their matches does not support the requirement 
of speed. In feature initialization algorithms for Bearing-Only SLAM, all the features 
extracted from an image will be put into the initialization procedures and outliers will be 
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discarded gradually by different methods based on reliable matching. As a result, there is 
no way to run any feature initialization algorithm online if an appropriate number of good 
features cannot be extracted and mismatches cannot be pruned. Consequently, how to 
extract good features for vision-based SLAM is critical. 
 

 

Figure 5.7 Two images were taken with different point of view of some area in a 
laboratory. 46 matches were found using SIFF descriptors, 6 been false positives. In 
general SIFT descriptors gives impressive results; however in Kalman-based SLAM a few 
mismatches can be enough for producing divergence in the filter.  

Been the most robust feature detectors, SIFT and SURF can hardly be used in any 
Bearing-Only SLAM algorithm (especially for un-delayed algorithms). There are two main 
reasons. The first is that too many features are extracted with a low matching ratio, so no 
feature initialization algorithm or particle filter related algorithms can afford the 
calculation cost.  The second is that unless on uses small size images, SIFT or SURF 
algorithm are not fast enough to be used for real time SLAM algorithms.  

In [152] a feature extraction method is proposed for selectively detect SIFT 
features based on analyzing stable matching ratios at different scales, for detecting a 
limited but sufficient number of SIFT features for Bearing-Only SLAM.  Below we present a 
simpler alternative that we guess, gives acceptable results. 

5.4.2 Combining Descriptors and Features Corners  

In [130] it was found that the Harris Corner detector is the most suitable point 
detector for vision-based SLAM, mainly, due to its characteristics of repeatability and 
saliency.  Another attribute of this kind of saliency operators (Harris, Shi-Tomasi, Canny 
etc.) is that they are easy to tune in order to detect sparse features in the images, in 
counterpart to the SIFT and SURF descriptors. Figure 5.6 (right) shows an example of the 
points extracted by the Harris Corner Detector, in this case 55 features were extracted 
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compared with the 340 SIFT key-points.  Moreover corners can be rapidly extracted from 
the images. All those attribute have motivated their use in vision-based SLAM approaches.   

 

 

Figure 5.8 A saliency operator like Harris detector is used to detect points of interest to 
initialize new features yi. When yi is initialized, descriptors are extracted from a p-by-p 
pixels patch centered in yi  and associated to a feature. 

Usually corner-features together with gray level patches and cross-correlation 
techniques are used in vision-based SLAM for matching the features frame to frame 
because the correspondence problem is easy in a small base line. Nevertheless when the 
vehicle travels far away and return to a previously mapped sited the appearance of the 
features can drastically varying due the changes of illumination or view point. In this 
scenario features descriptors like SIFT or SURF have shown to be the most reliable option 
for addressing the data association problem.  However we also have seen that is hard the 
use of this kind of descriptors directly in SLAM.  Mainly due to SIFT and SUFT produces too 
many keypoints and also due to their computational cost. 

The proposed data association approach is very simple but takes advantage of 
the better characteristic of both techniques: Saliency operators and Descriptors: 

In SLAM new features are gradually added to the map, in this case when a new 
feature is initialized (Figure 5.8), the proposed approach is to apply some of the saliency 
operators used in most of the vision-SLAM methods (Shi-Tomasi, Canny, etc) and to 
extract n SURF or SIFT descriptors di from a p-by-p patch centered in the point detected by 
the saliency operator. All extracted descriptors are stored and related to with the ŷi 
feature.  Because usually in SLAM one feature is initialized at once the computational cost 
of extracting descriptors from a patch of a p-by-p pixels ( in experiments we use 40-by-40 
patches) is really minimum compared with computational cost of extracting descriptors 



 SIFT and SURF for Bearing-Only SLAM 125 

from the entire image. Then when a feature is initialized, their related dn descriptors are 
stored in a data base and labeled each one with the corresponding ŷi feature. In Figure 5.8 
it can be appreciated that seven descriptors were detected in the patch related to y ̂i 
feature. In this way, each feature ŷi can have a lot of useful information in order to be 
matched in the future.  
 

 

Figure 5.9 Using the combined features four strongest matches were found.  

Of course, it could be happen that no descriptors are extracted for a related 
feature; in this case the features are only useful for small base-line tracking. On the other 
hand in SLAM a few good matches are enough in order to minimize the drift in the 
estimates. 

When the combined feature-descriptors wants to be matched (with a wide base-
line) and for minimizing the probabilities of mismatch, a matching of an incoming feature 
with an already mapped one is only considered under the following circumstance: at least 
two different descriptors dn from the measured feature must match with two different 
descriptors related with a single feature in the map. A fast approximate k-nearest 
neighbor technique is used for matching descriptors. A positive matching is considered if 
the Euclidean distance to the second dk2 nearest neighbor is shorter than 0.7dk1 to the 
nearest neighbor. 

In Figure 5.9 shows the results of applying the proposed methodology to the 
same images used in the SIFT experiment (Figure 5.7). For comparison purpose we also 
used SIFT descriptors but other descriptors as SURF can be used. In the figure, it can be 
appreciated that four matches (all correct) were found.  The proposed methodology is 
congruent with the vision-based SLAM schemes because a less but sufficient number of 
rich-features could be initialized in the map. This features contain useful information (in 
the form of related descriptors) to be matched in the future. 
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5.5 Conclusions 

The data association problem plays a fundamental role in SLAM. Cameras yields a 
huge amount of information related to the appearance of the landmarks and therefore 
they are an excellent option for addressing the data association problem. In this chapter 
we have presented several approaches for solving the data association problem using 
appearance-based local features descriptors. 

First we have described a method called ICAD for matching image features in a 
wide based line. This method is based on ICA descriptors. In general the method shows 
good results, especially in terms of computational performance. Nevertheless the 
response is still a little sensitive respect to some changes like point of view.  In general ICA 
descriptors represent an intermediate alternative, having an intermediary performance in, 
computational cost and robustness, respect to SIFT and SURF descriptors on the one hand 
and the Gray level patches on the other:  ICA descriptors are more robust than Gray level 
patches but less than SIFT or SURF.  ICA descriptors also have a lower computational cost 
than SIFT or SURF but a little more expensive than the Gray level patches.   

Later, a study of the application of statistical methods (SVM and KNN) for 
capturing the variability of image feature appearance was presented.  The experiments 
were performed over different variations of ICAD descriptors. The results are very 
promising since they show that the proposed methodology increased the robustness of 
the descriptors. One characteristic of the proposed methodology is the modularity, so it 
can be extended for their application with other kind of descriptors and statistical 
methods. 

Finally, it was seen that the application of SIFT or SURF descriptors to SLAM is not 
straightforward. In that sense, a simple but effective framework based on combining 
descriptors and saliency operators, like the Harris corner detector, was presented. The 
experiment show that a lower (but sufficient for SLAM) number, all correct, of matches 
were founded.  In the next chapter, a real SLAM application is presented, based on this 
technique, for matching features with a wide base-line. 
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Chapter 6 

6 Monocular SLAM 

Cameras have become more and more interesting for the robotic research 
community as sensors, because they yield a lot of information. It is a sensor from which 
3D information can be extracted. Even for indoor robots whose pose can be represented 
in 2D, the ability to gather 3D information on the environment is essential. Cameras are 
well adapted for embedded systems: they are light, cheap and power saving. As 
computational power grows, an inexpensive camera can be used to perform range and 
appearance–based sensing simultaneously, by replacing typical sensors as laser and sonar 
rings for range measurement and encoders for dead reckoning. A wide variety of 
algorithms can be obtained from the vision research community in order to extract high 
level primitives from the image, and matching them with primitives stored in the map thus 
allowing reliable data association. This is one the most important problems to solve in 
SLAM. 

In this context, the 6-DOF monocular camera case (Monocular SLAM) possibly 
represents the harder variant of SLAM. Monocular SLAM is closely related to the 
structure-from-motion (SFM) problem of reconstructing scene geometry. SFM techniques 
( [153], [154]) have been used successfully for recovering camera position and scene 
structure. However, the SFM techniques coming from the vision community research have 
been formulated as off-line algorithms and required batch, simultaneous processing of all 
the images acquired in the sequence. In contrast to SFM approaches that rely on global 
nonlinear optimization, recursive estimation methods allow online operation, which is 
highly desirable for a SLAM system. Some hybrid techniques (SFM-Kalman Filtering) as 
quoted in reference [155], which is based on stereo-vision, have also appeared. 
Nevertheless some of the drawbacks (in a purely robotic context) of these methods 
remain due to the global optimization nature of the SFM methods. 

In section 6.1 an introduction to the monocular SLAM topic is presented. In this 
section the main (and current) challenges are pointed out and the particularities and 
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differences of the monocular SLAM in relation to the general Bearing-Only SLAM are 
explained. A small survive in monocular SLAM is also included, presenting the most 
relevant related-work on the matter.  Finally the viability of the monocular SLAM systems 
is reviewed. 

In section 6.2 a novel scheme for monocular SLAM is presented. This approach, 
called Delayed Inverse Depth Monocular SLAM method, is an extension of our general 
Bearing-Only SLAM algorithm, described in chapter 4, for being used in a monocular SLAM 
context. This approach aims to contribute to the robustness of Monocular SLAM systems. 

One of the major challenges in monocular SLAM consist in extend the application 
of the current methods to large and dynamic environments. In section 6.3 a novel 
framework, called Distributed Monocular SLAM is proposed, in order to address the 
problem of building and maintaining a global and consistent map of large environments at 
real time.    

Finally in section 6.4 the conclusions of the chapter are given. 

6.1 Introduction 

Monocular camera is a projective sensor which measures the bearing of images 
features. Therefore depth information cannot be obtained in a single frame. To infer the 
depth of a feature, the camera must observe it repeatedly as it translates though the 
scene, each time capturing a ray of light from the feature to its optical center. In chapter 5 
we present several data association techniques that can be potentially used for detecting, 
tracking and matching visual features in monocular SLAM. The angle between the 
captured rays is the feature’s parallax, allowing depth estimation. Features need an 
especial treatment before to be added to the stochastic map. In chapter 4 we have 
presented techniques for initializing new features in Bearing-only SLAM.  

In this chapter we deal with the hardest variant of Bearing-Only SLAM: the 6-DOF 
monocular camera case (Monocular SLAM).  In this extreme case the only sensory input to 
SLAM is a single low-cost “webcam”, with no odometry, inertial sensing or stereo 
capability for direct depth perception. An example is a camera carried by a walking 
person. 

In chapter 4 the general Bearing-Only problematic was introduced. It was seen 
that one of the hardest challenges is related with the initialization of new features, due to 
bearing sensors does not provides depth information directly.  In monocular SLAM there 
are some additional issues that have to be addressed. In algorithms presented in chapter 
4, it was assumed the robot Odometry as the control input system, but now in monocular 
SLAM, we are considering a single camera as the only available sensor.  This fact leads to a 
second issue: the scale of the map. So far, odometry has also been used in order to 
retrieve the scale of the map, nevertheless the scale of the observed world cannot be 
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obtained using a bearing only sensor.  In spite of these new challenges, as we will see, the 
monocular SLAM problem has a huge potential. 

6.1.1 Unknown Control Input  

So far we have been considering the robot odometry as the control input of the 
system. In this case the Kalman prediction step is a function of discrete motion prediction 
model and the control input u(k): 

 x�𝑣𝑣(𝑘𝑘+1) = 𝑓𝑓 �x�𝑣𝑣(𝑘𝑘), 𝑢𝑢(𝑘𝑘)� ; 𝑢𝑢(𝑘𝑘) = �𝛿𝛿𝑙𝑙
𝛿𝛿𝑟𝑟

� (6.1)  
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being δ the distance traveled by the robot’s center and θ’ the turn realized by the 
robot at each instant k: 

 𝛿𝛿 =
𝛿𝛿𝑙𝑙 + 𝛿𝛿𝑟𝑟
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𝑏𝑏
 (6.3)  

derived from the distance traveled for each robot’s wheels δl, δr and the 
separation b between them. Where δl, δr are obtained from the robot’s encoders. In this 
case the uncertainty is modeled inserting a noise term into the control signal u such that: 

 𝑢𝑢(𝑘𝑘) = 𝑢𝑢𝑛𝑛 (𝑘𝑘) + 𝑣𝑣(𝑘𝑘) (6.4)  

where un(k) is a nominal (intended) control signal and v(k) is a zero mean 
Gaussian distributed noise vector: 

 𝑣𝑣(𝑘𝑘)~ℵ(0, �
σδl

2 0
0 σδr

2 �) (6.5)  
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2 0
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2 �) (6.6)  

In our current monocular SLAM context, we assume that lectures δl, δr obtained 
from the vehicle encoders are not available, and therefore we don’t have such prior 
information about the camera-vehicle movement. However, it is important to remember 
that both cases are just points on the continuum of types of model for representing 
physical systems. Every model must stop at some level of detail and a probabilistic 
assumption is made about the discrepancy between this model and the reality: This is 
what is referred to as process uncertainty (noise). In the case of a wheeled robot, this 
uncertainty term takes account of factors such as potential wheel slippage, surface 
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irregularities, and other predominantly unsystematic effects which have not been 
explicitly modeled. In the case of and camera-robot, it takes account of the unknown 
dynamics and intentions of the human or robot carrier, but these too can be 
probabilistically modeled [156]. 
 

 

Figure 6.1 Gaussian motion simulation (plots a, b and c).  In this simulation the robot 
moves in a simple straight trajectory. Nevertheless, because there is not available 
odometry, then the robot’s movement is modeled as a Gaussian (random) motion. Note 
how the uncertainty increases over the time.  

Because we cannot make a prior assumption about the camera-robot movement 
then the idea is to model it like a Brownian motion (Gaussian Motion).  Brownian motion 
is among the simplest stochastic processes, and it is a limit of both simpler and more 
complicated stochastic processes.  

In this case the simplest model is such that represent the control signal u as an 
uncorrelated Gaussian noise. 

 𝑢𝑢(𝑘𝑘) = 𝑣𝑣(𝑘𝑘) (6.7)  
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This produces a discrete motion prediction model: 
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Figure 6.1 shows a simulation of a Gaussian motion using the model described in 
equation (6.9).  In this case landmarks have not been included in the simulation. In this 
context (without sensorial information) Brownian motion is reasonable manner for 
modeling the (unknown) control signal input.  In the graphics it can be appreciated the 
random movement of the robot.   Of course along with this kind of model of motion, there 
is an increase on the uncertainty, which is represented in the state covariance matrix.  
 

 

Figure 6.2 Bearing-Only SLAM Simulation using Gaussian noise as control input. Note 
that the map and robot trajectory have been reasonably well estimated but with a 
different scale respect to the ground truth.  When the bearing sensor is the only source 
of information available then the scale of the world cannot be retrieved. 
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For the simulation illustrated in Figure 6.2 several landmarks have been included. 
In counterpart to the previous simulation (where the robot is completely blind) in this case 
the robot is capable of measuring the bearing respect to the landmarks.   

When bearing information is available; the random movement of the robot, 
(produced in the prediction step of the Kalman Filter) is bounded for every incoming 
bearing measurement, (in the Kalman update step) making possible that the estimated 
movement direction of the robot converges to the real one. At the same time, if the 
movement of the robot is reasonable well predicted (emulating the availability of 
odometry) then the location of the landmarks can also be estimated.  And moreover, if the 
landmarks locations are well estimated then the estimated robot’s location is improved.  

6.1.2 The Scale of the Map 

In the previous section, it was seen that is possible to replace the odometry input 
for Gaussian noise (emulating a random walk) if bearing information is the solely 
information available in the system.  On the other hand in Figure 6.2 can be clearly 
appreciated a collateral effect in the estimated map and trajectory when odometry is not 
available: The scale of the world cannot be retrieved using only bearing information.  

In Figure 6.2 it can be seen that the trajectory and map where reasonably well 
estimated but in a different scale respect to their ground truth. For some applications the 
indeterminacy of the scale could not be a matter. In [157] a monocular SLAM approach is 
proposed where up-to-scale quantities are estimated using a dimensionless 
parameterization.  

This thesis focuses on the robotics applications of the SLAM, and consequently it 
is important to consider the metric of the world. In this case, when bearing information is 
the barely source of information, a manner of retrieving the scale of the world is to 
provide some degree of initial metric information to the system. 

Therefore, the simplest solution is initializing the system with some known 
features in the map. 

In this case these features, called initial features of reference, with all their 
parameters known, play the role of a metric reference.  Each feature of reference ŷref 

defined by: 

 y�𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 = �𝑥𝑥�𝑖𝑖 , 𝑦𝑦�𝑖𝑖  , 𝜃𝜃�𝑖𝑖 , 𝜌𝜌�𝑖𝑖�
⊺
 (6.10)  

is included in the map, previously to the first Kalman step: 
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Figure 6.3 Simulations using an initial metric reference for recovering the scale of the 
world. 
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Since the parameters of the initial features of reference yr̂ef are perfectly known, 
then their corresponding variances in the state covariance matrix P are set to zero or a 
nearly zero value.   

For example an initial covariance matrix Pini including a single feature of 
reference y ̂ref would be as simple as: 
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Initializing initial features of reference in the state covariance matrix with zero 
allows that, the metric scale of subsequent new features converges to the same metric 
scale established by these initial features of reference.  Moreover, due to the strong 
correlation between map and trajectory estimates, then the estimated trajectory of the 
robot also converges to a metric scale established by the initial features of reference. 

Figure 6.3 (a) illustrates the simulations results for the same experiment showed 
in Figure 6.2, but in this new case, prior to the first Kalman update, two features have 
been manually added to the map (illustrated in the plot as metric reference). It can be 
clearly appreciated how the map and trajectory converges to the ground truth.  

Figure 6.3 illustrates a more complex simulation using 20 random landmarks and 
moving the robot in an undulate trajectory. In this case three landmarks have been chosen 
for being initialized in the map as initial features of reference. For this case the estimated 
map and trajectory also converges to their ground truth.  

So far we have seen that is likely to perform SLAM using a bearing sensor as the 
only input of information of the system. In subsequent sections our 2D-2DOF Bearing-Only 
SLAM algorithm will be extended to a 3D-6DOF monocular SLAM context. 

6.1.3 Current Challenges in Monocular SLAM 

Simultaneous Localization and Mapping (SLAM) and a real-time (30fps) 
monocular implementation was first described by Davison (recently summarized in [156]).  
After that and due to a huge potential, several proposals have emerged (most of them, 
reviewed in chapter 4).  

A long term goal in SLAM shared by many would be to achieve a system with the 
following performance: A single low-cost camera attached to a portable computer would 
be switched on at arbitrary location in an unknown scene, then carried off by a fast-
moving robot (perhaps flying or jumping) or even a running human through an arbitrarily 
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large domain, all the time effortlessly recovering its trajectory in real time and building a 
detailed, persistent map of all it has seen [156]. 

Nevertheless, currently there are two main problems with most existing 
monocular SLAM implementations: 

• Lack of robustness. 
• Limited to room-sized domains. 

 
Lack of robustness: One of the main problems with most existing monocular 

SLAM implementations is a lack of robustness. Typically tracking systems rely on a prior 
over current pose and this prior is used to limit the search for visual feature 
correspondences, yielding very rapid frame-to-frame localization. However rapid camera 
motions, occlusion, and motion blur violate the assumptions in the prior and therefore can 
often cause tracking to fail. While this is inconvenient with any tracking system, tracking 
failure is particularly problematic for SLAM systems: not only is camera pose lost, but the 
estimated map could become corrupted as well.  [158] It presents a monocular SLAM 
system which can recover from the frame-to-frame tracking failures which are inevitable 
in real-world operation. Instead of trying to avoid tracking failure altogether, the system 
automatically detects the failure, halts the SLAM system, and begins relocalizing instead. 
Mapping is only resumed when the camera pose has been redetermined, thus preserving 
map integrity.  Relocalisation is performed by first using a randomized list classifier to 
establish feature correspondences in the image and then RANSAC to determine the pose 
robustly from these correspondences.  

Most of the monocular SLAM algorithms have demonstrated SLAM operation 
when camera motion is smooth and consistent. However real applications will require that 
operation is maintained even when camera motion is discontinuous and erratic; if 
applications are to be usable, then it is critical that SLAM operation recovers quickly and in 
a stable manner following such movement. In several methods, feature detection is 
generally based on correlating with reference templates. This has the drawback that 
detection is not invariant to viewing direction and although local predictive warping can 
alleviate the problem ( [159], [115]), such methods are always likely to be of limited utility. 
Correlating templates is also known to be highly susceptible to detection ambiguity, 
especially in cluttered environments, and this makes reliable detection difficult to achieve, 
particularly when search regions grow due to large uncertainty in camera localization. In 
[160]a variation of SIFT descriptors is proposed for feature detection and tracking. In this 
approach, for overcome the computational cost limitation of the SIFT for real-time 
applications, potential features are located using a fast saliency operators, assisted by 
search regions derived from the covariance within the SLAM filter. And scale invariance is 
achieved by constructing descriptors over multiple resolutions for each feature only when 
it is first detected. 
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Point features are the most common kind of features used in monocular SLAM 
algorithms, which are relatively easy to localize and characterize. However, their 
appearance changes substantively with the camera´s location, and while invariant feature 
descriptors can be used (e.g. SIFT), they can be expensive to compute and with more 
invariance comes less discrimination. One solution, that is possible within a SLAM 
framework, is to augment the map of the world with estimates of the planes upon which 
each feature lies. These can then be used to predict the deformation in the feature, as in 
[159] which give better performance.  On the other hand, alternative kind of features can 
also be used. [161] Present, a real-time monocular EKF SLAM system, which uses straight 
lines as its features. Line features provide a camera tracking system with natural 
illumination and viewpoint invariance, and could provides a more intuitive map, and a 
compact representation. 

 
Limited to room-sized domains: Another main problem with most of the current 

approaches of monocular SLAM is that their operation is limited to room-sized domains.  
For example a major drawback of the system proposed by Davison in [109] relies in the 
particle-filter-based technique used for initializing new features in the map: due the initial 
distribution of particles has to cover all possible depth values for a landmark then its work-
range is around of 5 meters, which is adequate for a desktop domain application. However 
its application to large environments is not straightforward, as it would require a huge 
number of particles. In that sense one of the best contributions to the monocular SLAM 
systems was made by Montiel in [1]. In this work the proposed Unified Inverse Depth 
Parameterization makes possible to code in a simple manner features depths from nearby 
to infinity. This attribute is highly desirable if a monocular SLAM system wants to be 
applied to larger domains because distant features can be included in the map.  

On the other hand, one of the challenges that should be addressed in order to 
extend the application of the current available monocular SLAM systems to larger domains 
is related to number of sparse features that can be maintained in the map for real-time 
operation.  Approaches like the presented by Davison or Montiel have shown good result 
in real-time 6-DOF camera pose and orientation estimation, and building 3D maps of 50-
100 sparse features.  However if larger trajectories wants to be estimated and maps of 
bigger environments wants to be built, then a mayor number of features should  be 
handled in the system, without affecting the real time  operation. 

Some attempts have been made in order to improve the efficiency of monocular 
SLAM algorithms. In [162] for improving efficiency of the inverse depth parametrization 
scheme [1], a transform of features to an XYZ encoding is proposed, as soon as this more 
computational efficient parametrization becomes well-behaved, meaning that a Gaussian 
distribution in these coordinates is a good fit for the uncertainty in the point location. So, 
retaining the inverse depth method for features (initialized with six parameters) is 
important at low parallax, but as the estimation evolves, if the 3 parameters XYZ 
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encoding becomes well-behaved, the feature is transformed from inverse depth to XYZ. 
A test for the transformation is also proposed, relating to the feature parallax and 
estimation accuracy, which is tested individually for each feature at every estimation step. 
It is shown that algorithm performance does not degrade when compared to keeping 
every feature with an inverse depth encoding, but computational efficiency is increased by 
decreasing the state vector size. Using this transformation, the number of features, which 
can be maintained in the map for real-time operation, can be similar to the quantity of 
features maintained by the Davison approach (near to 100).   

Possibly one of the main drawbacks of the Kalman Filters based methods is 
related with poor scalability in terms of computational cost of the Kalman Filter.  In that 
sense, [115] presents a system based on the FastSLAM algorithm [73], which combines 
particle filtering for localization with Kalman filtering for mapping, FastSLAM has the 
advantage that it scales better with the number of features (this method maintains 
around of 250 features in the map), but the absence of an explicit full covariance matrix 
can make loop-closing more difficult.  

 
As we seen in chapter 4, the technique for initialization of features proposed by 

Montiel in [1] has some drawbacks, mainly related with a lack of robustness for some 
circumstances. This fact has motivated us to propose the Delayed Inverse Depth Feature 
Initialization Method (also introduced in chapter 4 for a 2DOF odometry context). This 
method is the core of our general Bearing-Only SLAM algorithm. 

In the current chapter, our general Bearing-Only SLAM algorithm is widely 
extended for working in a fully monocular SLAM context. In that sense, section 6.2 
describes a novel approach for monocular SLAM called “Delayed Inverse Depth Monocular 
SLAM”. This approach intends to contribute to the robustness of Monocular SLAM 
systems, by introducing a versatile and robust new method for initializing features in the 
map. 

As we seen above, one of the current limitations in most of the current methods 
for monocular SLAM is that they are limited to a room-sized working area. In that sense, in 
section 6.3, a Distributed monocular SLAM Framework is presented for addressing the 
problem of building and maintaining a global and consistent map of large environments at 
real time.   This framework intends to contribute to the effort of make possible, in a near 
future, that vision-based SLAM emulates (and ultimately surpass) the results in large-scale 
mapping achieved using laser range-finder sensors, aiming to build vision-only SLAM 
systems with the potential of guiding autonomous robots in their exploration and 
operation in large and complex environments. 
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6.2 Delayed Inverse Depth Monocular SLAM   

In this section, we extend our general Bearing-Only SLAM algorithm, described in 
chapter 4, for being used in a monocular SLAM context. 

6.2.1 Camera Motion Model 

Instead a vehicle model, as the described in Chapter 3.2, a free camera-robot 
moving in any direction in )3(3 SO×ℜ is considered. The camera state x ̂v is defined by: 

 x�𝑣𝑣 = [𝑟𝑟𝑊𝑊𝑊𝑊  𝑞𝑞𝑊𝑊𝑊𝑊  𝑣𝑣𝑊𝑊  𝜔𝜔𝑊𝑊] (6.13)  

where: 

 𝑟𝑟𝑊𝑊𝑊𝑊 = [𝑥𝑥𝑣𝑣  𝑦𝑦𝑣𝑣  𝑧𝑧𝑣𝑣] (6.14)  

represents the camera optical center position, and: 

 𝑞𝑞𝑊𝑊𝑊𝑊 = [𝑞𝑞0 𝑞𝑞1 𝑞𝑞2 𝑞𝑞3] (6.15)  

represents the camera orientation by a quaternion. Unit quaternions provide a 
convenient mathematical notation for representing orientations and rotations of objects 
in three dimensions. Compared to Euler angles they are simpler to compose and avoid the 
problem of gimbal lock. Compared to rotation matrices they are more efficient and more 
numerically stable [163]. 
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Denote linear and angular velocities respectively. At every step it is assumed an 
unknown linear and angular acceleration with zero mean and known covariance Gaussian 
processes, aW and αW, producing an impulse of linear and angular velocity such as: 

 𝑢𝑢 = �
𝑉𝑉𝑊𝑊

ΩW � = �
𝑎𝑎𝑊𝑊 ∆𝑡𝑡
𝛼𝛼𝑊𝑊∆𝑡𝑡

� (6.18)  

An unconstrained constant-velocity camera motion prediction model (proposed 
in [164] and [109]) is used and is defined by the following equation. 

 𝑓𝑓𝑣𝑣 =

⎣
⎢
⎢
⎢
⎡ 𝑟𝑟𝑘𝑘+1

𝑊𝑊𝑊𝑊

𝑞𝑞𝑘𝑘+1
𝑊𝑊𝑊𝑊

𝜈𝜈𝑘𝑘+1
𝑊𝑊

𝜔𝜔𝑘𝑘+1
𝑊𝑊 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡ 𝑟𝑟𝑘𝑘

𝑊𝑊𝑊𝑊 + (𝜈𝜈𝑘𝑘
𝑊𝑊 + 𝑉𝑉𝑘𝑘

𝑊𝑊)∆𝑡𝑡
𝑞𝑞𝑘𝑘

𝑊𝑊𝑊𝑊 × 𝑞𝑞�(𝜔𝜔𝑘𝑘
𝑊𝑊 + ΩW )∆𝑡𝑡�

𝜈𝜈𝑘𝑘
𝑊𝑊 + 𝑉𝑉𝑘𝑘

𝑊𝑊

𝜔𝜔𝑘𝑘
𝑊𝑊 + ΩW ⎦

⎥
⎥
⎥
⎤
 (6.19)  

http://en.wikipedia.org/wiki/Quaternion�
http://en.wikipedia.org/wiki/Orientation�
http://en.wikipedia.org/wiki/Rotation�
http://en.wikipedia.org/wiki/Euler_angles�
http://en.wikipedia.org/wiki/Function_composition�
http://en.wikipedia.org/wiki/Gimbal_lock�
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29�
http://en.wikipedia.org/wiki/Numerically_stable�
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being q((ωW
k+ΩW)∆t) the quaternion defined by the rotation vector (ωW

k+ΩW)∆t. 
The superscripts WC and W denote magnitudes expressed in world reference and camera 
reference respectively. Figure 6.4 illustrates how this models potential deviations from a 
constant velocity trajectory.  

 

 

Figure 6.4 Visualization of the “constant velocity” model for smooth motion. Graphic 
taken from [156]. 

6.2.2 Camera Motion Prediction in the EKF 

The prediction step for the Extended Kalman Filter is defined as follows: 

 x�k+1 =

⎣
⎢
⎢
⎡𝑓𝑓𝑣𝑣�x�𝑣𝑣𝑘𝑘 , 𝑢𝑢𝑘𝑘 �

y�1
⋮

y�𝑛𝑛 ⎦
⎥
⎥
⎤
 (6.20)  

 𝑃𝑃𝑘𝑘+1 = ∇𝐹𝐹𝑥𝑥 𝑃𝑃(𝑘𝑘)∇𝐹𝐹𝑥𝑥
⊺ + ∇𝐹𝐹𝑢𝑢 𝑄𝑄∇𝐹𝐹𝑢𝑢

⊺ (6.21)  

Where, fv is defined in equation (6.19).  We are assuming a static map where the 
features remain static; hence note that the system state part corresponding to the map 
does not change in the prediction step. Features ŷ are defined in section 6.2.4. 

The Jacobians ∇Fx and ∇Fu are defined by: 

 ∇𝐹𝐹𝑥𝑥 = �
𝜕𝜕𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥�𝑣𝑣

0
0 I𝑛𝑛×𝑛𝑛

�     , ∇𝐹𝐹𝑢𝑢 = �
𝜕𝜕𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

0
0 0𝑛𝑛×𝑛𝑛

�     (6.22)  

 Q = �𝑈𝑈 0
0 0𝑛𝑛×𝑛𝑛

�     (6.23)  

where n is equal to the dimension corresponding to the map features in the 
system state, and:   
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 𝑈𝑈 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
(σv∆t)2 0 0 0 0 0

0 (σv∆t)2 0 0 0 0
0 0 (σv∆t)2 0 0 0
0 0 0 (σω ∆t)2 0 0
0 0 0 0 (σω ∆t)2 0
0 0 0 0 0 (σω ∆t)2⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (6.24)  

The values for σv and σω proposed in [156] are 6 ms-2 and 6 rads-2. 

6.2.3 Jacobians for the Camera Motion Model  

The Jacobians for the camera motion model fv (6.19), used in the EKF, can be 
estimated as follows:  

 
𝜕𝜕𝜕𝜕𝑣𝑣

𝜕𝜕𝑥𝑥�𝑣𝑣
=

⎣
⎢
⎢
⎢
⎢
⎡𝐼𝐼3×3 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

0

0
𝜕𝜕𝑞𝑞3

𝜕𝜕𝑞𝑞2
0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

0 0 𝐼𝐼3×3 0
0 0 0 𝐼𝐼3×3⎦

⎥
⎥
⎥
⎥
⎤

 (6.25)  

∂fv/∂x ̂v is a 13-by-13 matrix representing the Jacobian of fv respect to the state 
vector x ̂v.   I3x3 are identities matrix of size 3-by-3. The rest of components of ∂fv/∂x ̂v are 
defined by: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �
∆𝑡𝑡 0 0
0 ∆𝑡𝑡 0
0 0 ∆𝑡𝑡

� (6.26)  

where 

 
𝜕𝜕𝑞𝑞3

𝜕𝜕𝑞𝑞2
= �

𝑞𝑞𝑅𝑅 −𝑞𝑞𝑋𝑋 −𝑞𝑞𝑌𝑌 −𝑞𝑞𝑍𝑍
𝑞𝑞𝑋𝑋 𝑞𝑞𝑅𝑅 𝑞𝑞𝑍𝑍 −𝑞𝑞𝑌𝑌
𝑞𝑞𝑌𝑌 −𝑞𝑞𝑍𝑍 𝑞𝑞𝑅𝑅 𝑞𝑞𝑋𝑋
𝑞𝑞𝑍𝑍 𝑞𝑞𝑌𝑌 −𝑞𝑞𝑋𝑋 𝑞𝑞𝑅𝑅

� (6.27)  

The use of quaternions implies the use of several functions for converting from 
regular vectors to quaternions and the opposite case. For expressing angular velocities ωW 
(expressed in Euler angles) in equations defined by quaternions (as the camera motion 
model fv) the rotational vector ωW is converted to a quaternion q:  

 �

𝑞𝑞𝑅𝑅
𝑞𝑞𝑋𝑋
𝑞𝑞𝑌𝑌
𝑞𝑞𝑍𝑍

� =

⎣
⎢
⎢
⎡ cos(𝜃𝜃/2)
sin(𝜃𝜃/2)𝜇𝜇𝑥𝑥
sin(𝜃𝜃/2)𝜇𝜇𝑦𝑦

sin(𝜃𝜃/2)𝜇𝜇𝑧𝑧 ⎦
⎥
⎥
⎤
 (6.28)  

 𝜃𝜃 = ‖𝜔𝜔𝑊𝑊∆𝑡𝑡‖      𝜇𝜇 = 𝜔𝜔𝑊𝑊 ∆𝑡𝑡
�𝜔𝜔𝑊𝑊 ∆𝑡𝑡�

        (6.29)  
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The last component for ∂fv/∂x ̂v is defined by: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑞𝑞3

𝜕𝜕𝑞𝑞1

𝜕𝜕𝜔𝜔𝑡𝑡

𝜔𝜔
 (6.30)  

Where: 

 
𝜕𝜕𝑞𝑞3

𝜕𝜕𝑞𝑞1
= �

𝑞𝑞0 −𝑞𝑞1 −𝑞𝑞2 −𝑞𝑞3
𝑞𝑞1 𝑞𝑞0 −𝑞𝑞3 𝑞𝑞2
𝑞𝑞2 𝑞𝑞3 𝑞𝑞0 −𝑞𝑞1
𝑞𝑞3 −𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

� (6.31)  

and 

 
𝜕𝜕𝜔𝜔𝑡𝑡

𝜕𝜕𝜕𝜕
=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑞𝑞0

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞1

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞2

𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6.32)  

Being: 

 
𝜕𝜕𝑞𝑞0

𝜕𝜕𝜕𝜕
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

∆𝑡𝑡
2

𝜔𝜔𝑥𝑥

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
sin �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

�

−
∆𝑡𝑡
2

𝜔𝜔𝑦𝑦

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
sin �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

�

−
∆𝑡𝑡
2

𝜔𝜔𝑧𝑧

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
sin �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

�
⎦
⎥
⎥
⎥
⎥
⎥
⎤

⊺

 (6.33)  

 𝜕𝜕𝑞𝑞1

𝜕𝜕𝜕𝜕
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡∆𝑡𝑡

2
𝜔𝜔𝑥𝑥

2

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2 cos �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

� +
1

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
�1 −

𝜔𝜔𝑥𝑥
2

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2� sin �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

�

𝜔𝜔𝑥𝑥 𝜔𝜔𝑦𝑦

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2 �

∆𝑡𝑡
2

cos �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
∆𝑡𝑡
2

� −
1

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
sin �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

��

𝜔𝜔𝑥𝑥 𝜔𝜔𝑧𝑧

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2 �

∆𝑡𝑡
2

cos �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
∆𝑡𝑡
2

� −
1

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
sin �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

��
⎦
⎥
⎥
⎥
⎥
⎥
⎤

⊺

 (6.34)  

 𝜕𝜕𝑞𝑞2

𝜕𝜕𝜕𝜕
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜔𝜔𝑦𝑦 𝜔𝜔𝑥𝑥

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2 �

∆𝑡𝑡
2

cos �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
∆𝑡𝑡
2

� −
1

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
sin �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

��

∆𝑡𝑡
2

𝜔𝜔𝑦𝑦
2

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2 cos �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

� +
1

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
�1 −

𝜔𝜔𝑥𝑥
2

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2� sin �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

�

𝜔𝜔𝑦𝑦 𝜔𝜔𝑧𝑧

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2 �

∆𝑡𝑡
2

cos �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
∆𝑡𝑡
2

� −
1

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
sin �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

��
⎦
⎥
⎥
⎥
⎥
⎥
⎤

⊺

 (6.35)  
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 𝜕𝜕𝑞𝑞3

𝜕𝜕𝜕𝜕
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜔𝜔𝑧𝑧𝜔𝜔𝑥𝑥

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2 �

∆𝑡𝑡
2

cos �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
∆𝑡𝑡
2

� −
1

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
sin �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

��

𝜔𝜔𝑧𝑧𝜔𝜔𝑦𝑦

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2 �

∆𝑡𝑡
2

cos �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
∆𝑡𝑡
2

� −
1

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
sin �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

��

∆𝑡𝑡
2

𝜔𝜔𝑧𝑧
2

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2 cos �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

� +
1

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
�1 −

𝜔𝜔𝑥𝑥
2

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
2� sin �𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

∆𝑡𝑡
2

�
⎦
⎥
⎥
⎥
⎥
⎥
⎤

⊺

 (6.36)  

 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = ‖𝜔𝜔𝑊𝑊‖ (6.37)  

Finally, ∂fv/∂u (of size 13-by6) represents the Jacobian of fv respect to input noise 
Q and can be formed using components defined above for ∂fv/∂x ̂v. 

 
𝜕𝜕𝑓𝑓𝑣𝑣

𝜕𝜕𝜕𝜕
=

⎣
⎢
⎢
⎢
⎢
⎡

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

0

0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐼𝐼3×3 0
0 𝐼𝐼3×3⎦

⎥
⎥
⎥
⎥
⎤

 (6.38)  

6.2.4 Features Definition 

The complete state x ̂ that includes the features y ̂ consists of:  

 x� = �𝑥𝑥𝑣𝑣
⊺, 𝑦𝑦�1

⊺, 𝑦𝑦�2
⊺, … 𝑦𝑦�𝑛𝑛

⊺� (6.39)  

where a feature y ̂i represents a point i in the 3D scene defined by the following 6-
dimension state vector:  

 𝑦𝑦�𝑖𝑖 = [𝑥𝑥𝑖𝑖   𝑦𝑦𝑖𝑖   𝑧𝑧𝑖𝑖   𝜃𝜃𝑖𝑖   𝜙𝜙𝑖𝑖   𝜌𝜌𝑖𝑖] (6.40)  

which models the 3D point located at:  

 �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
 𝑧𝑧𝑖𝑖

� +
1
𝜌𝜌𝑖𝑖

𝑚𝑚( 𝜃𝜃𝑖𝑖 , 𝜙𝜙𝑖𝑖) (6.41)  

where xi,yi,zi are the optical center coordinates of the camera in which the 
feature was firstly observed, and are taken from rWC= [ xv, yv, zv] in x̂v; and θi, Φi represent 
azimuth and elevation (in relation to the world reference) for the directional unitary 
vector m(θi,Φi). The point depth ri along the ray is coded by its inverse (Figure 6.5 
illustrates the camera and features parameterization): 

  𝜌𝜌𝑖𝑖 =
1
𝑟𝑟𝑖𝑖

 (6.42)  

The directional unitary vector m(θi,Φi) can be determined by: 

  𝑚𝑚 = [cos 𝜙𝜙 sin 𝜃𝜃 − sin 𝜙𝜙 cos 𝜙𝜙 cos 𝜃𝜃]⊺ (6.43)  
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Figure 6.5, 6-DOF monocular SLAM camera and features parametrization. 

6.2.5 Measurement Prediction Model. 

The different locations of the camera, along with the location of the already 
mapped features, are used to predict the position of the feature in the image hi.  

The model observation of a point ŷi from a camera location defines a ray 
expressed in the camera frame as: 

 ℎ𝑐𝑐 = �
ℎ𝑥𝑥
ℎ𝑦𝑦
ℎ𝑧𝑧

� = 𝑅𝑅𝐶𝐶𝐶𝐶 ��
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
 𝑧𝑧𝑖𝑖

� +
1
𝜌𝜌𝑖𝑖

𝑚𝑚( 𝜃𝜃𝑖𝑖 , 𝜙𝜙𝑖𝑖) − 𝑟𝑟𝑊𝑊𝑊𝑊 � (6.44)  

hC is observed by the camera through its projection in the image. RCW, is the 
rotation matrix depending on the camera orientation quaternion qWC.  Equation (6.44) can 
also be rewritten as: 

  ℎ𝑐𝑐 = 𝑅𝑅𝐶𝐶𝐶𝐶 �𝜌𝜌𝑖𝑖 ��
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
 𝑧𝑧𝑖𝑖

� − 𝑟𝑟𝑊𝑊𝑊𝑊 � + 𝑚𝑚( 𝜃𝜃𝑖𝑖 , 𝜙𝜙𝑖𝑖)� (6.45)  
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Figure 6.6 Example for the distortion-undistortion model used in this work. The wide-
lens of the camera produces a radial distortion. The distortion is clearly appreciated on 
the picture taken to a board (left plot). The image is rectified (right plot) applying the 
undistortion model to the original image. Note, in the undistorted image, that the lines 
forming the squares, becomes straights. 

 
RCW Can be estimated from the Matrix transform QR which converts from a 

quaternion q to rotation matrix R. 

 𝑅𝑅𝐶𝐶𝐶𝐶 = 𝑄𝑄𝑅𝑅
−1 (6.46)  

 𝑄𝑄𝑅𝑅 = �
(𝑞𝑞0

2 + 𝑞𝑞1
2 − 𝑞𝑞2

2 − 𝑞𝑞3
2) 2(𝑞𝑞1𝑞𝑞2 − 𝑞𝑞0𝑞𝑞3) 2(𝑞𝑞3𝑞𝑞1 + 𝑞𝑞0𝑞𝑞3)

2(𝑞𝑞1𝑞𝑞2 + 𝑞𝑞0𝑞𝑞3) (𝑞𝑞0
2 − 𝑞𝑞1

2 + 𝑞𝑞2
2 − 𝑞𝑞3

2) 2(𝑞𝑞2𝑞𝑞3 − 𝑞𝑞0𝑞𝑞1)
2(𝑞𝑞3𝑞𝑞1 − 𝑞𝑞0𝑞𝑞3) 2(𝑞𝑞2𝑞𝑞3 + 𝑞𝑞0𝑞𝑞1) (𝑞𝑞0

2 − 𝑞𝑞1
2 − 𝑞𝑞2

2 + 𝑞𝑞3
2)

� (6.47)  

The projection is modeled using a full perspective wide angle camera. First the 
projection is modeled in the normalized retina 

 �𝜐𝜐
𝜈𝜈� =

⎣
⎢
⎢
⎢
⎡
ℎ𝑥𝑥

ℎ𝑧𝑧
ℎ𝑦𝑦

ℎ𝑧𝑧 ⎦
⎥
⎥
⎥
⎤
 (6.48)  

The camera calibration model is applied to produce the pixel coordinates for the 
predicted point: 

 ℎ = �
𝑢𝑢𝑢𝑢
𝑣𝑣𝑢𝑢

� =

⎣
⎢
⎢
⎢
⎡𝑢𝑢0 −

𝑓𝑓
𝑑𝑑𝑥𝑥

𝜐𝜐

𝑣𝑣0 −
𝑓𝑓

𝑑𝑑𝑦𝑦
𝜈𝜈

⎦
⎥
⎥
⎥
⎤
 (6.49)  
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where u0,v0 is the camera center in pixels, f is the focal length and dx, and dy the 
pixel size, and uu, vu the undistorted feature coordinates.  

Finally, a radial distortion model is applied [110] for obtaining the distortion pixel 
coordinates ud, vd : 

 ℎ𝑖𝑖 = �
𝑢𝑢𝑑𝑑
𝑣𝑣𝑑𝑑

� =

⎣
⎢
⎢
⎢
⎡

𝑢𝑢𝑢𝑢 − 𝑢𝑢0

�1 + 2𝐾𝐾1𝑟𝑟2
+ 𝑢𝑢0

𝑣𝑣𝑢𝑢 − 𝑣𝑣0

�1 + 2𝐾𝐾1𝑟𝑟2
+ 𝑣𝑣0

⎦
⎥
⎥
⎥
⎤
 (6.50)  

Where K1 is the distortion coefficient and: 

 𝑟𝑟 = �(𝑢𝑢𝑢𝑢 − 𝑢𝑢0)2 + (𝑣𝑣𝑢𝑢 − 𝑣𝑣0)2 (6.51)  

Figure 6.6 illustrates the application of the radial distortion-undistortion model.  

6.2.6 Active Search 

Features search is constrained to regions around the predicted hi. The regions are 
defined by the innovation covariance Si: 

 𝑆𝑆𝑖𝑖 = 𝐻𝐻𝑖𝑖𝑃𝑃𝑘𝑘 𝐻𝐻𝑖𝑖
⊺ + 𝑅𝑅 (6.52)  

where Hi is the Jacobian of the sensor model with respect to the state, Pk is the 
prior state covariance, and measurements z   assumed corrupted by zero mean Gaussian 
noise with covariance R. 

 𝑅𝑅 = �𝜎𝜎𝑢𝑢
2 0

0 𝜎𝜎𝑣𝑣
2� (6.53)  

The values for the variances σu
2 and σv

2 are commonly set to 1 pixel. The 
matching process is described in the section 6.2.8. 

6.2.7 Jacobians for the Feature Measurement Model 

The Jacobian measurement model Hi includes both parts: the derivatives respect 
to vehicle state ∇Hx ̂ and the derivatives respect to the feature state ∇Hy ̂i: 

 Hi = � ∇Hx��
𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

⋯ 0 ⋯���
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

∇Hy�i�
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

⋯ 0 ⋯���
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

� (6.54)  

Note that ∇Hyi it is only non-zero at the “location” (indexes) of the observed 
feature.  

∇Hx ̂ is determined by: 
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 ∇Hx� = �
𝜕𝜕ℎ

𝑟𝑟𝑊𝑊𝑊𝑊
𝜕𝜕ℎ

𝜕𝜕𝑞𝑞𝑊𝑊𝑊𝑊 02×6� (6.55)  

Being: 

 
𝜕𝜕ℎ

𝜕𝜕𝑟𝑟𝑊𝑊𝑊𝑊 =
𝜕𝜕ℎ
𝜕𝜕𝑟𝑟1

𝜕𝜕𝑟𝑟1
𝜕𝜕𝑟𝑟𝑊𝑊𝑊𝑊  (6.56)  

 
𝜕𝜕ℎ
𝜕𝜕𝑟𝑟1

=
𝜕𝜕𝑢𝑢𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟1

 (6.57)  

 
𝜕𝜕ℎ

𝜕𝜕𝑞𝑞𝑊𝑊𝑊𝑊 =
𝜕𝜕ℎ
𝜕𝜕𝑟𝑟1

𝜕𝜕𝑟𝑟1
𝜕𝜕𝑞𝑞𝑊𝑊𝑊𝑊  (6.58)  

 
𝜕𝜕𝑟𝑟1

𝜕𝜕𝑞𝑞𝑊𝑊𝑊𝑊 =
𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑞𝑞𝑡𝑡

𝜕𝜕𝑞𝑞𝑡𝑡

𝜕𝜕𝜕𝜕  (6.59)  

The Jacobian of the distortion model (6.50) ∂ud/∂u  is defined by: 

 
𝜕𝜕𝑢𝑢𝑑𝑑

𝜕𝜕𝜕𝜕 =

⎣
⎢
⎢
⎢
⎡−2(𝑢𝑢𝑢𝑢 − 𝑢𝑢0)2𝐾𝐾1

(1 + 2𝐾𝐾1𝑟𝑟2)
3
2

+
1

�1 + 2𝐾𝐾1𝑟𝑟2

−2(𝑢𝑢𝑢𝑢 − 𝑢𝑢0)(𝑣𝑣𝑢𝑢 − 𝑣𝑣0)𝐾𝐾1

(1 + 2𝐾𝐾1𝑟𝑟2)
3
2

−2(𝑢𝑢𝑢𝑢 − 𝑢𝑢0)(𝑣𝑣𝑢𝑢 − 𝑣𝑣0)𝐾𝐾1

(1 + 2𝐾𝐾1𝑟𝑟2)
3
2

−2(𝑣𝑣𝑢𝑢 − 𝑣𝑣0)2𝐾𝐾1

(1 + 2𝐾𝐾1𝑟𝑟2)
3
2

+
1

�1 + 2𝐾𝐾1𝑟𝑟2⎦
⎥
⎥
⎥
⎤

 (6.60)  

The rest of components are: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟1

=

⎣
⎢
⎢
⎢
⎡

−𝑓𝑓
𝑑𝑑𝑥𝑥 ℎ𝑧𝑧

0
ℎ𝑥𝑥 𝑓𝑓

𝑑𝑑𝑥𝑥 ℎ𝑧𝑧
2

0
−𝑓𝑓

𝑑𝑑𝑦𝑦 ℎ𝑧𝑧

ℎ𝑣𝑣𝑓𝑓
𝑑𝑑𝑣𝑣ℎ𝑧𝑧

2⎦
⎥
⎥
⎥
⎤
 (6.61)  

 
𝜕𝜕𝑟𝑟1

𝜕𝜕𝑟𝑟𝑊𝑊𝑊𝑊 = 𝑄𝑄𝑅𝑅
−1𝜌𝜌𝑖𝑖  (6.62)  

 
𝜕𝜕𝑞𝑞𝑡𝑡

𝜕𝜕𝜕𝜕 = �

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

� (6.63)  

And: 

 
𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑞𝑞𝑡𝑡
= �

𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑞𝑞0

𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑞𝑞1

𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑞𝑞2

𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑞𝑞3
� (6.64)  

The next four equations are estimated using the conjugate of the quaternion qWC: 
q = [q0 q1 q2 q3] = conj(qWC). 



 Delayed Inverse Depth Monocular SLAM 147 

 
𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑞𝑞0
= �

2𝑞𝑞0 −2𝑞𝑞3 −2𝑞𝑞2
2𝑞𝑞3 2𝑞𝑞0 −2𝑞𝑞1

−2𝑞𝑞2 2𝑞𝑞1 2𝑞𝑞0

� 𝐶𝐶 (6.65)  

 
𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑞𝑞1
= �

2𝑞𝑞1 2𝑞𝑞2 2𝑞𝑞3
2𝑞𝑞2 −2𝑞𝑞1 −2𝑞𝑞0
2𝑞𝑞3 2𝑞𝑞0 −2𝑞𝑞1

� 𝐶𝐶 (6.66)  

 
𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑞𝑞2
= �

−2𝑞𝑞2 2𝑞𝑞1 2𝑞𝑞0
2𝑞𝑞1 2𝑞𝑞2 2𝑞𝑞3

−2𝑞𝑞0 2𝑞𝑞3 −2𝑞𝑞2

� 𝐶𝐶 (6.67)  

 
𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑞𝑞3
= �

−2𝑞𝑞3 −2𝑞𝑞0 2𝑞𝑞1
2𝑞𝑞0 −2𝑞𝑞3 2𝑞𝑞2
2𝑞𝑞1 2𝑞𝑞2 2𝑞𝑞3

� 𝐶𝐶 (6.68)  

where 

 𝐶𝐶 = 𝜌𝜌𝑖𝑖 ��
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
 𝑧𝑧𝑖𝑖

� − 𝑟𝑟𝑊𝑊𝑊𝑊� + 𝑚𝑚� 𝜃𝜃𝑖𝑖, 𝜙𝜙𝑖𝑖� (6.69)  

Finally ∇Hy ̂i can be formed using components defined in ∇Hx̂ : 

 ∇Hx =
𝜕𝜕ℎ
𝜕𝜕𝑟𝑟1

𝜕𝜕𝑟𝑟1
𝜕𝜕𝜕𝜕  (6.70)  

and: 

 
𝜕𝜕𝑟𝑟1

𝜕𝜕𝜕𝜕
= �𝑅𝑅𝐶𝐶𝐶𝐶𝜌𝜌𝑖𝑖 𝑅𝑅𝐶𝐶𝐶𝐶 �

𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
0

− 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃
� 𝑅𝑅𝐶𝐶𝐶𝐶 �

− sin 𝜙𝜙 sin 𝜃𝜃
cos 𝜙𝜙

− sin 𝜙𝜙 cos 𝜃𝜃
� 𝑅𝑅𝐶𝐶𝐶𝐶 ��

𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
 𝑧𝑧𝑖𝑖

� − 𝑟𝑟𝑊𝑊𝑊𝑊 �� (6.71)  

6.2.8 Matching and Updating 

When the innovation covariance matrix Si is estimated in (6.52), the feature 
search can be constrained to regions around each predicted feature hi.  

The size of the axis sx,sy of the search region (Illustrated in Figure 6.7) are 
determined as follows: 

 �
𝑠𝑠𝑥𝑥
𝑠𝑠𝑦𝑦

� =

⎣
⎢
⎢
⎡2𝑛𝑛�𝑆𝑆𝑖𝑖(1,1)

2𝑛𝑛�𝑆𝑆𝑖𝑖(2,2)⎦
⎥
⎥
⎤
 (6.72)  

Where n is the number of standard deviations of the desired region search.  
When each feature is initialized in the map (described in subsequent sections) a 

unique image patch of n-by-n pixel is stored and related with the feature. For matching a 
feature in the current image frame, patch cross-correlation techniques (described in 
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Chapter 5), are applied in all the image locations determined by the region search. If the 
score of a pixel location (ud,vd) determined by the best cross-correlation between the 
feature patch and the patches defined by the region of search, are higher than a 
threshold, then this pixel location (ud,vd) is considered as the current feature 
measurement zi.  

 

 

Figure 6.7 Active Search is used for maximize the computational speed and reduce the 
chance of mismatches in the data association process. Features search is constrained to 
regions around the predicted hi. The regions are defined by the innovation covariance 
Si. 

 
If the matching process is successful, the Kalman Filter is updated as follows: 

 x�k = x�k+1 + 𝑊𝑊𝑊𝑊 (6.73)  

 𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑘𝑘+1 − 𝑊𝑊𝑆𝑆𝑖𝑖𝑊𝑊⊺ (6.74)  

where the innovation is 

 𝑔𝑔 = 𝑧𝑧𝑖𝑖 − ℎ𝑖𝑖  (6.75)  

And W, is the Kalman gain: 

 𝑊𝑊 = 𝑃𝑃𝑘𝑘+1𝐻𝐻𝑖𝑖
⊺𝑆𝑆−1 (6.76)  
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6.2.9 Delayed Inverse Depth Feature Initialization 

In Chapter 4 we present a novel approach, called Delayed Inverse Depth Feature 
Initialization, for initializing new features in Bearing-Only SLAM systems. Theoretical and 
practical justification for the method was also presented, along with several experiments 
with simulated and real data (SSLAM) in order to illustrate the performance of the 
method. In this section our method for initializing new features is extended for working in 
a full monocular SLAM context. 

Also it was seen in Chapter 4, that in the unified inverse depth method presented 
by Montiel in [1], transition from partially to fully initialized features need not to be 
explicitly tackled, making it suitable for direct use in EKF-SLAM framework for sparse 
mapping. In this approach the features are initialized in the first frame observed (un-
delayed initialization) with an initial fixed depth and uncertainty, determined heuristically 
to cover ranges from nearby to infinity, so distant points can be coded. Due to the clarity 
and scalability of this method, this approach is a good option for monocular-SLAM 
implementation. 

This work is motivated by the problems of robot map building and localization, 
therefore, if monocular SLAM wants to be applied in this context, retrieving the metric 
scale of the world is very essential. In that sense, the experiments with monocular SLAM 
and un-delayed initialization (presented in section 6.2.16) show that, when initial 
reference points are used for establishing a metric scale in the map, the initial features 
depths have to be tuned, otherwise, is likely that new features added to the map never 
converges respect to the metric reference. Also initializing features distant to the robot 
center can increase the possibility that features depth become negative after a Kalman 
update step.  This behavior may cause divergence in the filter. In experiments the same 
effects observed with the un-delayed initialization method for 2D Bearing-Only SLAM 
systems are also observed in the monocular SLAM case. 

Moreover, initializing features in the first observed frame (un-delayed 
initialization) avoids the use of pre-initialized features in the state and allows the use of all 
the information available in the feature since it is detected. Nevertheless, when features 
are detected in the image with a saliency operator in order to be automatically added to 
the map, usually weak long-term image features are added to the map. Therefore it is 
difficult to match them in subsequent frames. When a minimum number of active image 
features want to be maintained, it could happen that unnecessary initializations are 
realized. Every new feature initialization introduces biases to the system [89]. 

The aforementioned issues can suggest, for the new features, that initial inverse 
depth and its uncertainty could be estimated dynamically before being added to the 
system state, instead of using a fixed initial depth and uncertainty. At the same time 
features can be tested prior to be added to map in order to prune weak long-term 
features.  
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6.2.10 Candidate Points 

In our approach we consider a minimum number of features ŷi to be predicted 
appearing in the image, otherwise new features have to be added to the map. In this 
latter case, new points are detected in the image with a saliency operator. Specifically, we 
use the Harris corner detector, although others detectors can be used. Only areas in the 
image free of previously detected points or features already mapped are considered for 
detecting new points, we call these points in the image, which does not have to be added 
yet to the map, as candidate points, λ. 
 

 

Figure 6.8 New features are tried to be added to the map. If the number of predicted 
features y ̂i to appear in the image, are lower than a threshold.  First, random areas free-
of-features are detected in the image (green rectangle). Then a saliency operator is 
applied to mentioned areas in order to detect new candidate points λi.   

When a point is first detected by the saliency operator in a frame k, the candidate 
point is conformed by: 

 𝜆𝜆𝑖𝑖 = �𝑟𝑟𝜆𝜆, 𝜎𝜎𝑟𝑟𝜆𝜆, 𝑞𝑞𝜆𝜆, 𝜎𝜎𝑞𝑞𝜆𝜆
, 𝑢𝑢𝜆𝜆 , 𝑣𝑣𝜆𝜆� (6.77)  

Where: 

 𝑟𝑟𝜆𝜆 = (𝑥𝑥𝜆𝜆 , 𝑦𝑦𝜆𝜆 , 𝑧𝑧𝜆𝜆 ) (6.78)  

The values xλ, yλ, zλ taken from rWC= [ xv, yv, zv] in x̂v, represents the current 
camera optical center position. 
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 𝜎𝜎𝑟𝑟𝜆𝜆 = �𝜎𝜎𝑥𝑥𝜆𝜆 , 𝜎𝜎𝑦𝑦𝜆𝜆 , 𝜎𝜎𝑧𝑧𝜆𝜆 � (6.79)  

σrλ represents the associated variances of xλ, yλ, zλ taken from the state 
covariance matrix Pk. 

 𝑞𝑞𝜆𝜆 = �𝑞𝑞0𝜆𝜆
, 𝑞𝑞1𝜆𝜆

, 𝑞𝑞2𝜆𝜆
, 𝑞𝑞3 � (6.80)  

Is the quaternion taken from x ̂v, representing the current camera orientation and 
its associated variances σqλ taken from the state covariance matrix Pk, 

 𝜎𝜎𝑞𝑞𝜆𝜆
= �𝜎𝜎𝑞𝑞0𝜆𝜆

, 𝜎𝜎𝑞𝑞1𝜆𝜆
, 𝜎𝜎𝑞𝑞2𝜆𝜆

, 𝜎𝜎𝑞𝑞3𝜆𝜆
� (6.81)  

Finally uλ, vλ is the current pixel coordinates for the point λi. 
In subsequent frames, λi is tracked. But in practice some λi points cannot be 

tracked. This implicit process is used for pruning weakest image features. For tracking 
purposes any method can be used. The tracking for every candidate point λi is realized 
until it is pruned or initialized in the system. In practice for every frame, some new 
candidate points λi could be detected, others candidate points could be pruned and others 
could be considered to be added to the map. In our experiments an average of 5 to 15 
points λi are maintained at every step. 

6.2.11 Conditions for adding features to the state 

As the camera freely moves through the environment, the translation produces 
parallax in features. Parallax is really the key that allows to estimating features depth. In 
the case of indoor sequences, centimeters are enough to produce parallax, on the other 
hand, the more distant the features, the more the camera have to be translated to 
produce parallax. 

In our approach we want dynamically to estimate an initial depth and its 
associated uncertainty for the features added to the map. For near features, a small 
translation is enough to reproduce some parallax. We use a minimum parallax threshold 
αmin for considering a candidate point λi to be added to the map as a feature yî. On the 
other hand, as was mentioned before, distant features will not produce parallax but are 
useful to estimate the camera orientation. Therefore it is advantageous to include some 
distant features in the map (with big depth uncertainty). A minimum base-line camera 
translation |b|min is also considered for adding a candidate point ŷi to the map. In Chapter 4 
(Figure 4.11) a simulation is shown, illustrating the decrementing uncertainty in feature 
depth estimation respect with the increase of parallax angle. It can be observed that a few 
parallax degrees are enough for reducing significantly the depth uncertainty.  

A good attribute of the cameras is its bearing precision.  The camera´s bearing 
precision makes possible to use a lower threshold αmin, compared with the αmin used with 
the less accurate sound sensor (chapter 4).  In experiments we use a threshold αmin= 3º. 
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The minimum base-line bmin was heuristically established to be the base-line 
necessary to produce a parallax α ≈ 6º in the initial reference points. For example if the 
camera initial position is in average one meter away from the initial reference points then 
bmin = 8cm. 

6.2.12 Estimating Parallax  

If a candidate point λi shows a minimum parallax αmin then it will initialized as a 
new feature ŷi. 

 

 

Figure 6.9 Schema for the features initialization process. 
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At this stage, the uncertainty of the measurements is not considered , and the 
parallax α is approximated using (i) the base line b, (ii)  λi using its associated data and (iii) 
the current state and measurement (x ̂v ,zi). 

For each candidate point λi, every frame a new measurement zi is available, then 
the parallax angle α can be estimated by (Figure 6.9):    

 𝛼𝛼 = 𝜋𝜋 − (𝛽𝛽 + 𝛾𝛾) (6.82)  

The angle β is determined by the directional unitary vector h1 and the vector b1 
defining the base-line b in the direction of the camera trajectory by: 

 𝛽𝛽 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
ℎ1 ∙ 𝑏𝑏1

‖ℎ1‖‖𝑏𝑏1‖� (6.83)  

Where the directional projection ray vector h1 = [h1x  h1y h1z] expressed in the 
absolute frame W, is computed from the camera position and the coordinates of the 
observed point when it was first observed, using the data stored in λi. 

 ℎ1 = 𝑅𝑅𝑊𝑊𝑊𝑊 (𝑞𝑞𝜆𝜆 )ℎ1
𝐶𝐶 �

𝑢𝑢𝜆𝜆𝜆𝜆
𝑣𝑣𝜆𝜆𝜆𝜆

� (6.84)  

With RWC(qλ)  being the rotation matrix depending on the stored camera 
orientation quaternion qλ. (Equation (6.80)). RWC can be determined by the Matrix 
transform QR (Equation (6.47)) which converts from a quaternion q to rotation matrix R. 

 𝑅𝑅𝐶𝐶𝐶𝐶 = 𝑄𝑄𝑅𝑅 (6.85)  

The undistorted coordinates pixel uλu and vλu are obtained from uλ,vλ applying the 
radial undistortion model: 

 �
𝑢𝑢𝜆𝜆𝜆𝜆
𝑣𝑣𝜆𝜆𝜆𝜆

� =

⎣
⎢
⎢
⎢
⎡

𝑢𝑢𝜆𝜆 − 𝑢𝑢0

�1 + 2𝐾𝐾1𝑟𝑟𝑑𝑑
2

+ 𝑢𝑢0

𝑣𝑣𝜆𝜆 − 𝑣𝑣0

�1 + 2𝐾𝐾1𝑟𝑟𝑑𝑑
2

+ 𝑣𝑣0
⎦
⎥
⎥
⎥
⎤
 (6.86)  

Where K1 is the distortion coefficient and: 

 𝑟𝑟𝑑𝑑 = �(𝑢𝑢𝜆𝜆 − 𝑢𝑢0)2 + (𝑣𝑣𝜆𝜆 − 𝑣𝑣0)2 (6.87)  

And h1
C(uλu,vλu) = [ h1x

C  h1y
C h1z

C] is the directional vector in the camera frame C, 
when the candidate point λi was first observed, and can be estimated from: 

 ℎ1
𝐶𝐶 = �

(𝑢𝑢0 − 𝑢𝑢𝜆𝜆𝜆𝜆 )𝑑𝑑𝑥𝑥

𝑓𝑓
(𝑣𝑣0 − 𝑣𝑣𝜆𝜆𝜆𝜆 )𝑑𝑑𝑦𝑦

𝑓𝑓
1� (6.88)  

Where u0,v0 is the camera center in pixels, f is the focal length and dx, and dy the 
pixel size.  
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b1 = [ b1x  b1y b1z]   is the vector representing the camera base-line b between the 
camera optical center position xλ, yλ, zλ where the point was first observed and the current 
optical center   rWC= [ xv, yv, zv] taken from the current camera state xv. 

 𝑏𝑏1 = [(𝑥𝑥 − 𝑥𝑥𝜆𝜆 ), (𝑦𝑦 − 𝑦𝑦𝜆𝜆 ), (𝑧𝑧 − 𝑧𝑧𝜆𝜆 )] (6.89)  

The angle γ is determined in a similar way as β but using the directional 
projection ray vector h2 and the vector b2 defining the base-line in the opposite direction 
of the camera trajectory by:  

 𝛾𝛾 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
ℎ2 ∙ 𝑏𝑏2

‖ℎ2‖‖𝑏𝑏2‖� (6.90)  

The directional projection ray vector h2 expressed in the absolute frame W, is 
computed in a similar way as (6.83) but using current camera position xv̂ and current 
undistorted points coordinates uu,vu.  

 ℎ2 = 𝑅𝑅𝑊𝑊𝑊𝑊 (𝑞𝑞𝑊𝑊𝑊𝑊 )ℎ2
𝐶𝐶 �

𝑢𝑢𝑢𝑢
𝑣𝑣𝑢𝑢

� (6.91)  

The undistorted points coordinates uu,vu, are obtained applying again the 
undistorted model to the current (not the stored) pixel coordinates u,v of the candidate 
point λi.: 

 �
𝑢𝑢𝑢𝑢
𝑣𝑣𝑢𝑢

� =

⎣
⎢
⎢
⎢
⎡

𝑢𝑢 − 𝑢𝑢0

�1 + 2𝐾𝐾1𝑟𝑟𝑑𝑑
2

+ 𝑢𝑢0

𝑣𝑣 − 𝑣𝑣0

�1 + 2𝐾𝐾1𝑟𝑟𝑑𝑑
2

+ 𝑣𝑣0
⎦
⎥
⎥
⎥
⎤
 (6.92)  

 𝑟𝑟𝑑𝑑 = �(𝑢𝑢 − 𝑢𝑢0)2 + (𝑣𝑣 − 𝑣𝑣0)2 (6.93)  

And h2
C(uu,vu) = [ h2x

C  h2y
C h2z

C]  is the directional vector in the camera frame C 
from the current camera position, and can be estimated from: 

 ℎ2
𝐶𝐶 = �

(𝑢𝑢0 − 𝑢𝑢𝑢𝑢 )𝑑𝑑𝑥𝑥

𝑓𝑓
(𝑣𝑣0 − 𝑣𝑣𝑢𝑢 )𝑑𝑑𝑦𝑦

𝑓𝑓
1� (6.94)  

b2 = [ b2x  b2y b2z]   is equal to b1 but pointing to the opposite direction: 

 𝑏𝑏2 = [(𝑥𝑥𝜆𝜆 − 𝑥𝑥), (𝑦𝑦𝜆𝜆 − 𝑦𝑦), (𝑧𝑧𝜆𝜆 − 𝑧𝑧)] (6.95)  

The base-line b is the module of b2 or b1: 

 𝑏𝑏 = ‖𝑏𝑏1‖ = ‖𝑏𝑏2‖ (6.96)  
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6.2.13 Feature Initialization in state and covariance matrix 

If α > αmin then λi is initialized as a new feature map ŷi.  In this case the new 
feature yn̂ew is determined by: 

 y�𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑥𝑥�𝑖𝑖   𝑦𝑦�𝑖𝑖   𝑧̂𝑧𝑖𝑖   𝜃𝜃�𝑖𝑖   𝜙𝜙�𝑖𝑖   𝜌𝜌�𝑖𝑖�
⊺
 (6.97)  

The three first elements of y ̂new are obtained directly from the current camera 
optical center position rWC= [ xv, yv, zv] taken from x ̂v. 

 �
𝑥𝑥�𝑖𝑖
𝑦𝑦�𝑖𝑖  
 𝑧̂𝑧𝑖𝑖

� = �
𝑥𝑥𝑣𝑣
𝑦𝑦𝑣𝑣
𝑧𝑧𝑣𝑣

� (6.98)  

The angles can be derived by: 

 � 𝜃𝜃�𝑖𝑖

𝜙𝜙�𝑖𝑖
� = �atan2 �−ℎ2𝑦𝑦 , �ℎ2𝑥𝑥

2 + ℎ2𝑧𝑧
2

�

atan2(ℎ2𝑥𝑥 , ℎ2𝑧𝑧 )
� (6.99)  

where  

 ℎ2 = �
ℎ2𝑥𝑥
ℎ2𝑦𝑦
ℎ2𝑧𝑧

� (6.100)  

is obtained from Equation (6.91). atan2 is a two-argument function that computes 
the arctangent of y/x given y and x, within a range of [-π, π]. 

Finally the inverse depth ρ ̂i is derived from the sine law: 

 𝜌𝜌�𝑖𝑖 =
sin 𝛼𝛼

𝑏𝑏 ∗ sin 𝛽𝛽
 (6.101)  

where α, b and β are estimated as was shown in the  previous  section. 
The new system state x ̂ is conformed simply adding the new feature ŷnew to the 

final of the vector state: 

 x� = �
𝑥𝑥𝑣𝑣
𝑦𝑦1
𝑦𝑦2

�     x�new = �

𝑥𝑥𝑣𝑣
𝑦𝑦1
𝑦𝑦2

y�new

� (6.102)  

The covariance for the new feature ŷnew is derived from the error diagonal 
covariance matrix measurement Rj and the current state covariance matrix P. 
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 𝑅𝑅𝑗𝑗 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝜎𝑢𝑢2

2 0 0 0 0 0 0 0 0 0 0
0 𝜎𝜎𝑣𝑣2

2 0 0 0 0 0 0 0 0 0
0 0 𝜎𝜎𝑢𝑢1

2 0 0 0 0 0 0 0 0
0 0 0 𝜎𝜎𝑣𝑣1

2 0 0 0 0 0 0 0
0 0 0 0 𝜎𝜎𝑥𝑥𝜆𝜆 0 0 0 0 0 0
0 0 0 0 0 𝜎𝜎𝑦𝑦𝜆𝜆 0 0 0 0 0
0 0 0 0 0 0 𝜎𝜎𝑧𝑧𝜆𝜆 0 0 0 0
0 0 0 0 0 0 0 𝜎𝜎𝑞𝑞0𝜆𝜆

0 0 0
0 0 0 0 0 0 0 0 𝜎𝜎𝑞𝑞1𝜆𝜆

0 0
0 0 0 0 0 0 0 0 0 𝜎𝜎𝑞𝑞2𝜆𝜆

0
0 0 0 0 0 0 0 0 0 0 𝜎𝜎𝑞𝑞3𝜆𝜆 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6.103)  

Note that Rj is now conformed by the image measurement error variance σu2, σv2, 
σu1, σv1 and the variances stored in λi related to σrλ and σqλ.  

Depending on the algorithms used for extract features in the image, is possible to 
obtain even sub-pixel precision. Although, in this work, we considering a error variance σu2 
= σv2 =  σu1 =  σv1 = 1 pixel. 

The new state covariance matrix, after initialization, is: 

 P𝑛𝑛𝑛𝑛𝑛𝑛 = ∇Y �
P𝑘𝑘 0
0 R𝑗𝑗

� ∇Y⊺ (6.104)  

6.2.14 Jacobian ∇Y 

The Jacobian ∇Y for the initialization process is:  

 ∇Y = �
I 0

∂𝑦𝑦�
∂𝑥𝑥�𝑣𝑣

, 0, … ,0,
𝜕𝜕𝑦𝑦�
𝜕𝜕𝑅𝑅𝑗𝑗

� (6.105)  

Where I is the identity matrix with the same dimension of Pk, ∂y ̂/∂xv are the 
derivatives of the initializations equations with respect to the camera state x ̂v and ∂y ̂/∂Rj 
the derivatives respect to the parameters of the covariance matrix Rj. 

Most part of the equations needed for estimating the new feature ŷnew are 
related with the estimation of the initial feature´s inverse-depth ρ̂i. For clarity we isolate 
the derivatives related to the first five parameters of ŷ, and the derivatives related to ρ̂. 
Thus ∂y ̂/∂xv and ∂y ̂/∂Rj are defined by: 

 
∂𝑦𝑦�
∂𝑥𝑥�𝑣𝑣

=

⎣
⎢
⎢
⎢
⎡
∂𝑦𝑦�𝑜𝑜

∂𝑥𝑥�𝑣𝑣
∂𝜌𝜌
∂𝑥𝑥�𝑣𝑣⎦

⎥
⎥
⎥
⎤
 (6.106)  

and 
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𝜕𝜕𝑦𝑦�
𝜕𝜕𝑅𝑅𝑗𝑗

=

⎣
⎢
⎢
⎢
⎡
∂𝑦𝑦�𝑜𝑜

∂𝑅𝑅𝑗𝑗
∂𝜌𝜌
∂𝑅𝑅𝑗𝑗 ⎦

⎥
⎥
⎥
⎤
 (6.107)  

First, we start defining ∂y ̂o/∂xv as follows: 

 
∂𝑦𝑦�𝑜𝑜

∂𝑥𝑥�𝑣𝑣
= �

∂𝑦𝑦�𝑜𝑜

∂𝑟𝑟𝑊𝑊𝑊𝑊
∂𝑦𝑦�𝑜𝑜

∂𝑞𝑞𝑊𝑊𝑊𝑊 05x6� (6.108)  

 
∂𝑦𝑦�𝑜𝑜

∂𝑟𝑟𝑊𝑊𝑊𝑊 =

⎣
⎢
⎢
⎢
⎡
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0⎦

⎥
⎥
⎥
⎤
 (6.109)  

 
∂𝑦𝑦�𝑜𝑜

∂𝑞𝑞𝑊𝑊𝑊𝑊 =

⎣
⎢
⎢
⎢
⎢
⎡

03x4
∂𝜃𝜃

∂𝑞𝑞𝑊𝑊𝑊𝑊

∂𝜙𝜙
∂𝑞𝑞𝑊𝑊𝑊𝑊 ⎦

⎥
⎥
⎥
⎥
⎤

 (6.110)  

where: 

 
∂𝜃𝜃

∂𝑞𝑞𝑊𝑊𝑊𝑊 = �
∂𝜃𝜃
𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑞𝑞𝑡𝑡
� (6.111)  

 
∂𝜙𝜙

∂𝑞𝑞𝑊𝑊𝑊𝑊 = �
∂𝜙𝜙
𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑅𝑅𝑞𝑞

𝜕𝜕𝑞𝑞𝑡𝑡
� (6.112)  

 
∂𝜃𝜃
𝜕𝜕𝑅𝑅𝑞𝑞

= �
ℎ2𝑧𝑧

(ℎ2𝑥𝑥 )2 + (ℎ2𝑧𝑧 )2 0
ℎ2𝑥𝑥

(ℎ2𝑥𝑥 )2 + (ℎ2𝑧𝑧 )2� (6.113)  

 ∂𝜙𝜙
𝜕𝜕𝑅𝑅𝑞𝑞

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

(ℎ2𝑥𝑥 )(ℎ2𝑦𝑦 )

�(ℎ2𝑥𝑥 )2 + (ℎ2𝑦𝑦 )2 + (ℎ2𝑧𝑧)2��(ℎ2𝑥𝑥 )2 + (ℎ2𝑧𝑧)2

−�(ℎ2𝑥𝑥 )2 + (ℎ2𝑧𝑧)2

�(ℎ2𝑥𝑥 )2 + (ℎ2𝑦𝑦 )2 + (ℎ2𝑧𝑧)2�
(ℎ2𝑧𝑧)(ℎ2𝑦𝑦 )

�(ℎ2𝑥𝑥 )2 + (ℎ2𝑦𝑦 )2 + (ℎ2𝑧𝑧)2��(ℎ2𝑥𝑥 )2 + (ℎ2𝑧𝑧)2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⊺

 (6.114)  

The component ∂Rq/∂qt is obtained in the same way than equation (6.64) but 
using the current qWC: q = [q0 q1 q2 q3] taken from the camera state x̂v. The vector C, used 
in the estimation of equation (6.64), is equal to the vector h2, estimated in equation (6.91). 

The second component of equation (6.106); ∂ρ/∂xv is formed as follows: 
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∂𝜌𝜌
∂𝑥𝑥�𝑣𝑣

= �
∂𝜌𝜌

∂𝑟𝑟𝑊𝑊𝑊𝑊
∂𝜌𝜌

∂𝑞𝑞𝑊𝑊𝑊𝑊 01x6� (6.115)  

Where ∂ρ/∂rWC is defined by: 

 
∂𝜌𝜌

∂𝑟𝑟𝑊𝑊𝑊𝑊 = �
∂𝜌𝜌𝛾𝛾

∂𝑟𝑟𝑊𝑊𝑊𝑊 +
∂𝜌𝜌𝛽𝛽

∂𝑟𝑟𝑊𝑊𝑊𝑊 +
∂𝜌𝜌𝑏𝑏2

∂𝑟𝑟𝑊𝑊𝑊𝑊 � (6.116)  

Being: 

 
∂𝜌𝜌𝛾𝛾

∂𝑟𝑟𝑊𝑊𝑊𝑊 = �
∂𝜌𝜌𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝑟𝑟𝑊𝑊𝑊𝑊 � (6.117)  

 
∂𝜌𝜌𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾
=

cos(β + γ)
b sin β

 (6.118)  

 
∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾
=

−1
��1 − (𝛾𝛾𝑐𝑐𝑐𝑐𝑐𝑐 )2�

 (6.119)  

 𝛾𝛾𝑐𝑐𝑐𝑐𝑐𝑐 = �
ℎ2 ∙ 𝑏𝑏2

‖ℎ2‖‖𝑏𝑏2‖� (6.120)  

 
∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

ℎ2𝑥𝑥

a�1
2�s�1

2�
−

(g)𝑏𝑏2𝑥𝑥

s�1
2�a�3

2�

ℎ2𝑦𝑦

a�1
2�s�1

2�
−

(g)𝑏𝑏2𝑦𝑦

s�1
2�a�3

2�

ℎ2𝑧𝑧

a�1
2�s�1

2�
−

(g)𝑏𝑏2𝑧𝑧

s�1
2�a�3

2�⎦
⎥
⎥
⎥
⎥
⎥
⎤

⊺

 (6.121)  

 
a = (𝑏𝑏2𝑥𝑥 )2 + �𝑏𝑏2𝑦𝑦 �2 + (𝑏𝑏2𝑧𝑧 )2

s = (ℎ2𝑥𝑥 )2 + �ℎ2𝑦𝑦 �2 + (ℎ2𝑧𝑧 )2

g = (ℎ2𝑥𝑥 )(𝑏𝑏2𝑥𝑥 ) + �ℎ2𝑦𝑦 ��𝑏𝑏2𝑦𝑦 � + (ℎ2𝑧𝑧)(𝑏𝑏2𝑧𝑧)

 (6.122)  

 
∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝑟𝑟𝑊𝑊𝑊𝑊 = �
−1 0 0
0 −1 0
0 0 −1

� (6.123)  

And: 

 
∂𝜌𝜌𝛽𝛽

∂𝑟𝑟𝑊𝑊𝑊𝑊 = �
∂𝜌𝜌𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝑟𝑟𝑊𝑊𝑊𝑊 � (6.124)  
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∂𝜌𝜌𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽
=

cos(β + γ)
b sin β

−
sin(β + γ) cos β

b (sin β)2  (6.125)  

 
∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽
=

−1
��1 − (𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐 )2�

 (6.126)  

 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐 = �
ℎ1 ∙ 𝑏𝑏1

‖ℎ1‖‖𝑏𝑏1‖� (6.127)  

 
∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

ℎ1𝑥𝑥

a�1
2�s�1

2�
−

(g)𝑏𝑏1𝑥𝑥

s�1
2�a�3

2�

ℎ1𝑦𝑦

a�1
2�s�1

2�
−

(g)𝑏𝑏1𝑦𝑦

s�1
2�a�3

2�

ℎ1𝑧𝑧

a�1
2�s�1

2�
−

(g)𝑏𝑏1𝑧𝑧

s�1
2�a�3

2�⎦
⎥
⎥
⎥
⎥
⎥
⎤

⊺

 (6.128)  

 
a = (𝑏𝑏1𝑥𝑥 )2 + �𝑏𝑏1𝑦𝑦 �2 + (𝑏𝑏1𝑧𝑧 )2

s = (ℎ1𝑥𝑥 )2 + �ℎ1𝑦𝑦 �2 + (ℎ1𝑧𝑧)2

g = (ℎ1𝑥𝑥 )(𝑏𝑏1𝑥𝑥 ) + �ℎ1𝑦𝑦 ��𝑏𝑏1𝑦𝑦 � + (ℎ1𝑧𝑧 )(𝑏𝑏1𝑧𝑧 )

 (6.129)  

The next component is an identity matrix and is showed only for clarity: 

 
∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝑟𝑟𝑊𝑊𝑊𝑊 = �
1 0 0
0 1 0
0 0 1

� (6.130)  

And: 

 
∂𝜌𝜌𝑏𝑏2

∂𝑟𝑟𝑊𝑊𝑊𝑊 = �
∂𝜌𝜌𝑏𝑏2

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝑟𝑟𝑊𝑊𝑊𝑊 � (6.131)  

 
∂𝜌𝜌𝑏𝑏2

∂𝜌𝜌𝛽𝛽𝛽𝛽
=

sin(β + γ)
b2 sin β

 (6.132)  

 
∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝑟𝑟𝑊𝑊𝑊𝑊 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑏𝑏2𝑥𝑥

�(𝑏𝑏2𝑥𝑥 )2 + �𝑏𝑏2𝑦𝑦 �2 + (𝑏𝑏2𝑧𝑧)2

−𝑏𝑏2𝑦𝑦

�(𝑏𝑏2𝑥𝑥 )2 + �𝑏𝑏2𝑦𝑦 �2 + (𝑏𝑏2𝑧𝑧)2

−𝑏𝑏2𝑧𝑧

�(𝑏𝑏2𝑥𝑥 )2 + �𝑏𝑏2𝑦𝑦 �2 + (𝑏𝑏2𝑧𝑧)2
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⊺

 (6.133)  
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The last component of equation (6.115); ∂ρ/∂qWC is defined by: 

 
∂𝜌𝜌

∂𝑞𝑞𝑊𝑊𝑊𝑊 = �
∂𝜌𝜌𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌ℎ2

∂𝜌𝜌ℎ2

∂𝑞𝑞𝑊𝑊𝑊𝑊 � (6.134)  

The two first elements of ∂ρ/∂qWC are estimated from equations (6.118) and 
(6.119).  The rest of elements are: 

 
∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌ℎ2

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑏𝑏2𝑥𝑥

a�1
2�s�1

2�
−

(g)ℎ2𝑥𝑥

a�1
2�s�3

2�

𝑏𝑏2𝑦𝑦

a�1
2�s�1

2�
−

(g)ℎ2𝑦𝑦

a�1
2�s�3

2�

𝑏𝑏2𝑧𝑧

a�1
2�s�1

2�
−

(g)ℎ2𝑧𝑧

a�1
2�s�3

2�⎦
⎥
⎥
⎥
⎥
⎥
⎤

⊺

 (6.135)  

 
a = (𝑏𝑏2𝑥𝑥 )2 + �𝑏𝑏2𝑦𝑦 �2 + (𝑏𝑏2𝑧𝑧 )2

s = (ℎ2𝑥𝑥 )2 + �ℎ2𝑦𝑦 �2 + (ℎ2𝑧𝑧 )2

g = (ℎ2𝑥𝑥 )(𝑏𝑏2𝑥𝑥 ) + �ℎ2𝑦𝑦 ��𝑏𝑏2𝑦𝑦 � + (ℎ2𝑧𝑧)(𝑏𝑏2𝑧𝑧)

 (6.136)  

The component ∂ρh2/∂qWC is obtained in the same manner than equation (6.64) 
using the current qWC: q = [q0 q1 q2 q3] taken from the camera state xv̂. The vector C, 
(used in the estimation of equation (6.64)), is the same than the vector h2, (estimated in 
equation (6.91)). 

Now, we continue with the expansion of ∂y ̂/∂Rj which is defined in equation 
(6.107): 

 
∂𝑦𝑦�𝑜𝑜

∂𝑅𝑅𝑗𝑗
= �

03x11
∂𝑦𝑦�𝜃𝜃𝜃𝜃

∂𝑅𝑅𝑗𝑗

� (6.137)  

Being: 

 
∂𝑦𝑦�𝜃𝜃𝜃𝜃

∂𝑅𝑅𝑗𝑗
= �

∂𝑦𝑦�𝜃𝜃𝜃𝜃

∂𝑢𝑢2𝑣𝑣2
02x9� (6.138)  

Where: 

 
∂𝑦𝑦�𝜃𝜃𝜃𝜃

∂𝑢𝑢2𝑣𝑣2
= �

∂𝑦𝑦�𝜃𝜃𝜃𝜃

∂ℎ2

∂ℎ2

∂𝑅𝑅𝑊𝑊𝑊𝑊

∂𝑅𝑅𝑊𝑊𝑊𝑊

∂ℎ𝑢𝑢

∂ℎ𝑢𝑢

∂𝑢𝑢2𝑣𝑣2
� (6.139)  

 
∂𝑦𝑦�𝜃𝜃𝜃𝜃

∂ℎ2
= �

ℎ2𝑧𝑧

(ℎ2𝑥𝑥 )2 + (ℎ2𝑧𝑧)2 0
−ℎ2𝑥𝑥

(ℎ2𝑥𝑥 )2 + (ℎ2𝑧𝑧)2

a s g
� (6.140)  
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a =
ℎ2𝑥𝑥 ℎ2𝑦𝑦

�(ℎ2𝑥𝑥 )2 + (ℎ2𝑦𝑦 )2 + (ℎ2𝑧𝑧)2��(ℎ2𝑥𝑥 )2 + (ℎ2𝑧𝑧 )2

s =
−�(ℎ2𝑥𝑥 )2 + (ℎ2𝑧𝑧 )2

�(ℎ2𝑥𝑥 )2 + (ℎ2𝑦𝑦 )2 + (ℎ2𝑧𝑧)2�

g =
ℎ2𝑧𝑧ℎ2𝑦𝑦

�(ℎ2𝑥𝑥 )2 + (ℎ2𝑦𝑦 )2 + (ℎ2𝑧𝑧)2��(ℎ2𝑥𝑥 )2 + (ℎ2𝑧𝑧 )2

 (6.141)  

 
∂ℎ2

∂𝑅𝑅𝑊𝑊𝑊𝑊
= 𝑅𝑅𝑊𝑊𝑊𝑊 (𝑞𝑞𝑊𝑊𝑊𝑊 ) (6.142)  

With RWC(qWC)  being the rotation matrix depending on the current camera 
orientation quaternion qWC. RWC can be determined by the Matrix transform QR (Equation 
(6.47)) which converts from a quaternion q to rotation matrix R. 

 
∂𝑅𝑅𝑊𝑊𝑊𝑊

∂ℎ𝑢𝑢
= �

−1
𝑓𝑓� 0 0

0 −1
𝑓𝑓� 0

� (6.143)  

Is the jacobian for the pin hole camera model. And: 

 
∂ℎ𝑢𝑢

∂𝑢𝑢2𝑣𝑣2
=

⎣
⎢
⎢
⎢
⎡2(𝑢𝑢 − 𝑢𝑢0)2𝐾𝐾1

(1 + 2𝐾𝐾1𝑟𝑟2)
3
2

+
1

�1 + 2𝐾𝐾1𝑟𝑟2

2(𝑢𝑢 − 𝑢𝑢0)(𝑣𝑣 − 𝑣𝑣0)𝐾𝐾1

(1 + 2𝐾𝐾1𝑟𝑟2)
3
2

2(𝑢𝑢 − 𝑢𝑢0)(𝑣𝑣 − 𝑣𝑣0)𝐾𝐾1

(1 + 2𝐾𝐾1𝑟𝑟2)
3
2

2(𝑣𝑣 − 𝑣𝑣0)2𝐾𝐾1

(1 + 2𝐾𝐾1𝑟𝑟2)
3
2

+
1

�1 + 2𝐾𝐾1𝑟𝑟2⎦
⎥
⎥
⎥
⎤

 (6.144)  

Is the jacobian for the undistorted model (6.92). 
Finally, the expansion of ∂ρ/∂Rj which is defined in equation (6.107), is stated as 

follows: 

 
∂𝜌𝜌
∂𝑅𝑅𝑗𝑗

= �
∂𝜌𝜌

∂𝑢𝑢2𝑣𝑣2

∂𝜌𝜌
∂𝑢𝑢1𝑣𝑣1

∂𝜌𝜌
∂𝑟𝑟𝑊𝑊𝑊𝑊

𝛾𝛾

∂𝜌𝜌
∂𝑞𝑞𝑊𝑊𝑊𝑊

𝛾𝛾
� (6.145)  

Where: 

 
∂𝜌𝜌

∂𝑢𝑢2𝑣𝑣2
= �

∂𝜌𝜌𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌ℎ2

∂ℎ2

∂𝑅𝑅𝑊𝑊𝑊𝑊

∂𝑅𝑅𝑊𝑊𝑊𝑊

∂ℎ𝑢𝑢

∂ℎ𝑢𝑢

∂𝑢𝑢2𝑣𝑣2
� (6.146)  

In the equation above, the components are estimated respectively from (6.118), 
(6.119),  (6.135), (6.142), (6.143) and (6.144). The next component of ∂ρ/∂Rj is: 

 
∂𝜌𝜌

∂𝑢𝑢1𝑣𝑣1
= �

∂𝜌𝜌𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌ℎ1

∂ℎ1

∂𝑅𝑅𝑊𝑊𝑊𝑊

∂𝑅𝑅𝑊𝑊𝑊𝑊

∂ℎ𝑢𝑢

∂ℎ𝑢𝑢

∂𝑢𝑢1𝑣𝑣1
� (6.147)  

Where components are estimated using equations (6.125), (6.126) and:  
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∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌ℎ1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑏𝑏1𝑥𝑥

a�1
2�s�1

2�
−

(g)ℎ1𝑥𝑥

a�1
2�s�3

2�

𝑏𝑏1𝑦𝑦

a�1
2�s�1

2�
−

(g)ℎ1𝑦𝑦

a�1
2�s�3

2�

𝑏𝑏1𝑧𝑧

a�1
2�s�1

2�
−

(g)ℎ1𝑧𝑧

a�1
2�s�3

2�⎦
⎥
⎥
⎥
⎥
⎥
⎤

⊺

 (6.148)  

 
a = (𝑏𝑏1𝑥𝑥 )2 + �𝑏𝑏1𝑦𝑦 �2 + (𝑏𝑏1𝑧𝑧 )2

s = (ℎ1𝑥𝑥 )2 + �ℎ1𝑦𝑦 �2 + (ℎ1𝑧𝑧)2

g = (ℎ1𝑥𝑥 )(𝑏𝑏1𝑥𝑥 ) + �ℎ1𝑦𝑦 ��𝑏𝑏1𝑦𝑦 � + (ℎ1𝑧𝑧 )(𝑏𝑏1𝑧𝑧 )

 (6.149)  

Component ∂h1/∂Rwc is estimated in the same manner than equation (6.142) but 
using the stored camera orientation quaternion qλ which is defined in equation (6.80). 
∂Rwc/∂hu is estimated from (6.143), and ∂hu/∂u1v1 is estimated in the same manner as 
(6.144) but using the stored pixel coordinates uλ, vλ defined in λi instead of the current 
pixel coordinates u, v. 

 
∂𝜌𝜌

∂𝑟𝑟𝑊𝑊𝑊𝑊
𝛾𝛾

= �
∂𝜌𝜌𝛾𝛾

∂𝑟𝑟𝑊𝑊𝑊𝑊
𝛾𝛾

+
∂𝜌𝜌𝛽𝛽

∂𝑟𝑟𝑊𝑊𝑊𝑊
𝛾𝛾

+
∂𝜌𝜌𝑏𝑏2

∂𝑟𝑟𝑊𝑊𝑊𝑊
𝛾𝛾

� (6.150)  

Being: 

 
∂𝜌𝜌𝛾𝛾

∂𝑟𝑟𝑊𝑊𝑊𝑊
𝛾𝛾

= �
∂𝜌𝜌𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝑟𝑟𝑊𝑊𝑊𝑊
𝛾𝛾

� (6.151)  

The above component is estimated in the same manner as equation (6.117). The 
only difference is that the last factor is equal to an identity matrix: 

 
∂𝜌𝜌𝛾𝛾𝛾𝛾

∂𝑟𝑟𝑊𝑊𝑊𝑊
𝛾𝛾

= �
1 0 0
0 1 0
0 0 1

� (6.152)  

 
∂𝜌𝜌𝛽𝛽

∂𝑟𝑟𝑊𝑊𝑊𝑊
𝛾𝛾

= �
∂𝜌𝜌𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝑟𝑟𝑊𝑊𝑊𝑊
𝛾𝛾

� (6.153)  

The above component is estimated in the same manner as equation (6.124). The 
only difference is the last factor: 

 
∂𝜌𝜌𝛽𝛽𝛽𝛽

∂𝑟𝑟𝑊𝑊𝑊𝑊
𝛾𝛾

= �
−1 0 0
0 −1 0
0 0 −1

� (6.154)  

 
∂𝜌𝜌𝑏𝑏2

∂𝑟𝑟𝑊𝑊𝑊𝑊
𝛾𝛾

= �
∂𝜌𝜌𝑏𝑏2
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The above component is estimated in the same manner as equation (6.131). The 
only difference is the last factor: 
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The three first components are estimated in the same manner as equations 
(6.125), (6.126) and (6.148). 

The component ∂ρ/∂qWC
γ is obtained in the same way than equation (6.64) but 

using but using the stored camera orientation quaternion qλ which is defined in equation 
(6.80). The vector C, used in the estimation of equation (6.64), is equal to the vector h1, 
defined in equation (6.84). 

6.2.15 Establishing the Metric Scale 

In monocular SLAM the scale of the observed world cannot be obtained using 
only vision. Therefore, another sensor or the observation of a known dimension reference 
has to be used in order to retrieve the scale of the world. In [156] an A4 sheet of paper is 
proposed to be used as initial metric reference. In this kind of metric initialization four 
points (each corner of the sheet) have to be previously known.  

For our work, an only three point initial metric reference is proposed (Figure 
6.10). The conditions for the initial metric reference are that the points r1,r2 and r3 are 
enough salient in the image to be detected and matched, and the distance a,b and c 
between the points have to be known; several objects can be used for initial metric 
reference.     

Prior to the first Kalman step, the three points are manually selected in the 
image. Therefore, the coordinates image projections of r1, r2 and r3are known. Where: 
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Using equation (6.84) and the projections of r1,r2 and r3  is possible to estimate 
three unitary vectors u1 , u2and u3 pointing to r1,r2 and r3 so:  
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 𝑟𝑟1 = 𝑑𝑑1𝑢𝑢1      𝑟𝑟2 = 𝑑𝑑2𝑢𝑢2     𝑟𝑟3 = 𝑑𝑑3𝑢𝑢3 (6.160)  

Where d1, d2 and d3 are the metric depth of r1,r2 and r3.  The Euclidean distances 
a, b and c are defined by: 

 
𝑎𝑎2 = (𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2 + (𝑧𝑧2 − 𝑧𝑧1)2

𝑏𝑏2 = (𝑥𝑥3 − 𝑥𝑥2)2 + (𝑦𝑦3 − 𝑦𝑦2)2 + (𝑧𝑧3 − 𝑧𝑧2)2

𝑧𝑧2 = (𝑥𝑥3 − 𝑥𝑥1)2 + (𝑦𝑦3 − 𝑦𝑦1)2 + (𝑧𝑧3 − 𝑧𝑧1)2
 (6.161)  

From equations (6.159), (6.160) and (6.161), the next non-linear system is stated: 
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 (6.162)  

The equations system in (6.162) is then solved for d1, d2 and d3 using an 
optimization method.  

 

Figure 6.10 Initial metric reference parameterization.  
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A possible ambiguity in the solution can be avoided for example if one of the 
points r1,r2 and r3 is always chosen to be the closest to the initial camera position, and the 
initial values for d1, d2 and d3 for the optimization method are selected based in this rule.   

The 3D positions of r1, r2 and r3 with respect to the camera are estimated using 
equation (6.160). Finally r1, r2 and r3 are added to the system state and the covariance 
matrix with zero uncertainty as was shown in Section 6.1.2. 

Figure 6.11 illustrates the reconstruction of the 3D positions r1, r2 and r3, from 
three corners of a computer monitor.   
 

 

 

Figure 6.11 In this example, a computer monitor (left plot) was used as the only 
reference for recovering the scale of the world. The distance a,b and c between the 
points have to be known. 3D locations (right plot) for r1, r2 and r3 are estimated from its 
2D pixel location. 

6.2.16 Experimental Results 

Several experiments were realized in order to evaluate the performance of our 
proposed algorithm.  For the entire set of monocular SLAM experiments presented in this 
thesis, an unexpensive monochrome IEEE web-cam was used. For each experiment, image 
sequences of 320 x 240 pixels were taken at 30 frames per second (30 fps). 

The general methodology for the experiments consist on carry the camera on 
hand and move it over a predefined path while a video was reordered. After that, the 
video was used as the input for the proposed algorithms. Finally, the estimated camera 
trajectory was compared by inspection with the predefined path, in order to corroborate 
if the estimations were congruent with the real movement of the camera.   
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Figure 6.12 This sequence of plots illustrates the performance of the Delayed Inverse 
Depth monocular SLAM method.  First a video was recorded while the camera was 
moved inside a living room. Later the video was used as the input of a MATLAB 
implementation of the algorithm. Prior to run the algorithm, three point of a sheet of 
paper (of knowing dimensions) were selected as the metric reference for recovering the 
metric scale of the world. At frame 1 (plot a) the initial metric reference is initialized in 
the map (plot a-right), the camera position is illustrated with a solid-blue sphere and its 
orientation with a blue line. Note that all the plots are shown from an X-Z view (top 
view). At frame 30 (plot b) several candidate points have been detected, note (in the 
image and map) that the camera slightly begins to move. Until frame 125 (plot c) one of 
the candidate point is initialized as a new feature map, in this case with a huge initial 
uncertainty (illustrated with the red ellipse). Note that features tracked with low 
uncertainty among the images sequence, could be mapped to its 3D position with a huge 
uncertainty. Later the gathered information is used to minimize uncertainty. At frame 
200 (plot d) several features have been added to the map and the movement of the 
camera begins to be more evident. At frame 300 (plot e) the rotation of the camera is 
also notorious, observe that the estimated camera orientation represent the real 
orientation of the camera.  Also note that, as the camera moves, new candidate points 
were detected in order to initialize new features for covering new unexplored regions. 
Plot f illustrates the final camera pose and map for this experiment. 
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The features map estimates were also checked by inspected for founding 
congruency with their real 3D location. 

Figure 6.12 illustrates an experiment using the Delayed Inverse Depth Monocular 
SLAM algorithm.  A video was taken moving the camera inside the living room of a house. 
At the end of the sequence it can be observed how the trajectory of the camera and part 
of the structured of the environment are recovered by the algorithm. In the next section, 
our proposed method is compared with the Un-delayed feature initialization method. 

6.2.17 Comparing Delayed and Un-delayed Methods 

In chapter 4 section 4.3.9, our delayed method was tested against the un-delayed 
method, for a 2DOF odometry context. In the current section we evaluate the 
performance of the delayed method compared with un-delayed method in a monocular 
SLAM context.  It is important to note that the un-delayed method, initially proposed in [1] 
was defined as a fully monocular SLAM method. In fact, for experiments presented in 
section 4.3.9, the un-delayed method was modified for working in a 2D robotics context. 
On the other hand, the evaluation between methods presented in this section, was 
realized without modifying the un-delayed method. 

Several image sequences, moving the camera through different trajectories and 
different scenarios, were recorded following a predefined path, in order to compare both 
methods. The trajectories were designed in order that, if a feature is left behind by the 
movement of the camera, this feature will not appear in image again in subsequent 
frames.   

Usually, when an initial metric reference was used in order to recover the scale of 
the world (which is very important for several applications), it was observed a lack of 
robustness in experiments with the un-delayed method. This behavior is congruent with 
results observed with the un-delayed method applied to a 2D robotic context (section 
4.3.6).  

Figure 6.14 illustrates some of the drawbacks of the un-delayed method, as the 
need of tuning for ensures the convergence of estimations; the graphics in left part show 
the un-delayed method with an initial feature depth of 50 cm, in frame 2 (left upper), it is 
possible to observe that reference points are located approximate 80 cm from the initial 
camera position and the first observed points are immediately initialized. However at 
frame 320 (left lower) the mapped features never converge, respect to the metric 
reference. Camera trajectory either converges; note the 4 points corresponding to the 
printer located besides the initial three point reference. On the other hand when we use 
an initial depth equal to 60 cm, (right upper and lower graphics) the map and camera 
trajectory converge reasonably well. 

Figure 6.13 illustrates the results using the delayed approach for the last 
experiment.  In this case, the first feature is added to the map until frame 125 with a huge 



 Delayed Inverse Depth Monocular SLAM 169 

initial uncertainty (upper graphic).  Nevertheless at frame 320 (lower graphic) the map and 
trajectory converges. Note that the first added feature was initialized very near to its final 
position, and its uncertainty was minimized.  

The condition for detecting new points with the Harris Corner detector for both 
methods is applied if the number of actives features in image goes below 30; in this case 
the detector is applied over the free features image regions. 

Figure 6.15 shows the results for three different sequences. Real final camera 
position was manually added to the graphics (in black) in order to make easier the 
comparison. The initial and final frames are showed in the center for each sequence.  

 

 

Figure 6.13 In this experiment with the delayed method (the same presented in the 
previous section 6.2.16), note that the features locations in the map (by the frame 320) 
are congruent with the observed image-locations (E.g. observe the features related to 
the printer besides the three-point initial metric reference). In this figure just remember 
that the maps are presented from a top-view (x-z view). 

 



170  Monocular SLAM 

 

Figure 6.14 Using the un-delayed method, the same drawbacks, observed in a 2D robotic 
context (section 4.3.6), can be observed again for a monocular context.  In this 
experiment (the same scenario presented in section 6.2.16) note that the initial inverse 
depth ρ ̂i = 1/dini has to be tuned in order to make the un-delayed method converge.  
When a dini=50cm is used (left) observe that neither the estimated camera trajectory 
nor the features estimated locations converge to the real ones. For example observe 
that the features related to the printer are estimated too close to the initial camera 
position, comparing with the three-point initial metric reference (In the reality, the 
sheet containing the metric reference and the printer are almost in the same plane). 
Moreover, it can be seen that one feature location was estimated in back to the camera 
(negative depth). On the other hand, when the initial inverse depth are tuned for 
initializing the features a little more close to the three-point initial metric reference, it 
can be note that the un-delayed algorithm converge reasonably well.   
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Figure 6.15 Camera trajectory and map estimates for three different video sequences. 
Un-delayed estimates are showed in left graphics and delayed estimates in right 
graphics.  For each experiment, the first and the last frames of the sequences are 
showed.  The first sequence corresponds to 760 frames of a house living room and it’s 
the same sequence (extended) used in previous experiment. The second sequence 
corresponds to 480 frames taken in a workplace. Note that a PC monitor was used as 
initial metric reference. The third 360-frame sequence was taken following a simple 
linear path, but in a more occluded terrace building environment, with very near and 
very distant features.  It is important to say that for these experiments the un-delayed 
method was tuned in order the ensure convergence.   
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Sequence Method σ ,x,y,z Nf %c Nfc E Nf < 0 

1 
Un-delayed 4 47 42 114 5.7 0 

Delayed 4.1 35 27 110 1.44 0 

2 
Un-delayed 2.1 46 76 36 11.2 0 

Delayed 2.4 28 82 45 9.12 0 

3 
Un-delayed 1.4 34 44 45 17 2 

Delayed 2.5 27 55 58 19 1 

Table 6.1 Results at the end of the three sequences. (σ ,x,y,z): Summed standard 
deviation for the x,y,z position of the camera. (Nf): Total number of features added to 
the system. (%c): Percentage of features that present convergence. (Nfc): The average 
number of frames needed for the convergence of the features. (E): The metric error 
distance in cm from the real to final estimated trajectory. (Nf < 0): Number of negative 
inverse depth estimated at the final of the trajectory. 

Due to the lack of robustness observed for the un-delayed method, when an 
initial metric reference is used, the initial inverse depth parameter was tuned in order to 
ensure convergence. In this manner, it can be appreciated others interesting aspects for 
comparison between both methods. 

Table 6.1 shows the results for each sequence for different aspects. In our 
experiments we consider that a feature converges when its depth uncertainty σ 
represents less than 5% of its depth, in this way we consider a convergence measurement 
proportional to the distance. The depth of a near feature should be estimated in a more 
accurate manner than a distant feature. 

In these experiments the resulting camera trajectory estimate using the delayed 
method was similar to the estimate by the un-delayed method.  In aspects relating with 
features depth convergence the results were similar for both methods.  

As it was previously seen, initializing features in the first observed frame (un-
delayed initialization) avoids the use of pre-initialized features in the state and allows the 
use of all the information available in the feature since it is detected. On the other hand, 
in real dynamics environments, it often happen that, rapid changes in lighting, moving 
objects, or even a PC screen, could produce that the saliency operator (used when 
features are automatically added to the map) detects,  false, very weak  or un-tractable 
features.  In this case because the un-delayed method initialized features at the first frame 
observed, the quality of the detected points cannot be evaluated.  

Weak long-term image features are difficult to match them in subsequent 
frames. Therefore when a minimum number of active image features want to be 
maintained in the map, it could happen that unnecessary initialization are realized. New 
feature initialization introduces biases to the system [89]. Moreover, it could happen that 
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some initialized feature violates the assumption of a rigid scene therefore increasing the 
chance of divergence.    

When the delayed method does the tracking of candidate points implicitly test 
their quality. (e.g. if a bright produce a candidate point is almost sure that tracking process 
will prune this weak image point, avoiding its initialization as a new feature in the map). 
This is an interesting aspect of delayed method, because by nature is more restrictive for 
adding new features.  

Therefore a reduced percentage of new features are added to the map (20-40%) 
respect to the un-delayed method, without losing the quality of the map. This aspect is 
very desirable, because bigger environments can be mapped with the same number of 
features and avoiding initialization of weak long term features can increase robustness. 

On the other hand, it is clear than additional computational cost is added in the 
delayed method, since the candidate points have to be added to the estimation process 
and the Jacobian to estimate the new covariance matrix is more complex respect to the 
one used with the un-delayed method. However is well known that Kalman filter 
computation cost scales poorly with the size of the state, and the saving computational 
cost using 20-40% of the total amount of features should be higher than the 
computational cost added by the delayed method. 
 

6.3 Distributed Monocular SLAM 

In recent years monocular SLAM approaches ( [109], [1], [156]) have shown good 
results in real-time 6-DOF camera pose and orientation estimation, and also building 3D 
maps of 50-100 sparse features. Several important improvements to the robustness of this 
kind of methods have also appeared ( [158], [160], [161]). There are also some recent 
approaches for increasing the amount of features in the map maintaining real time 
operation ( [115], [162]). Nevertheless, two of the main challenges at this moment are 
probably the use of these methods for applications that require more features in the map 
and the closing of loops with big drift in the estimation. 

Davison [156] demonstrates the feasibility of real time operation SLAM with a 
single camera, using (as our approach) an Extended Kalman Filter (EKF) to propagate the 
camera pose and velocity estimates, as well as feature estimates. 

 The EKF maintains a full N x N covariance matrix for N features, requiring O(N2) 
space. This covariance is updated with each measurement at O(N2) computation cost. This 
time and space requirements normally limit the total number of features into the map 
around of 100 (or even less) if real time operation is desired. Davison’s approach 
estimates the features depth using a particle filter; when the estimate collapses, the 
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feature is fully initialized in the map. As it was seen in before, the main drawback of this 
kind of feature initialization is the measurement range depth; if depth want to be 
estimated in a fast manner, a limited number of particles have to be used, reducing the 
depth working range to 5 meters, therefore far features, typically found in outdoor 
environments, cannot be used. 

The Unified Inverse Depth Method (Un-delayed method) presented by Montiel 
[1], overcomes this limitation, because depth parametrization can improve the linearity of 
the measurement equation, even for small changes in the camera position, converted in 
small changes in the parallax angle; this fact allows a Gaussian distribution to cover 
uncertainty in depth which spans a depth range from nearby to infinity, therefore distant 
points can be coded. Hence, far features can be included in the map (Distant features will 
not produce parallax but they are useful to estimate the camera orientation). This method 
can be extended to outdoor environments because far features can be included in the 
map. However, as the others EKF-based methods, it suffers from the limitation in the 
number of features, if real time operation wants to be achieved.  

Possibly the first idea to deal with the size limitation of the maps, in these kind of 
methods, is to increase the computational power; as the power of the computers grows 
then bigger covariance matrix can be updated in real time. However the number of map 
features always will reach some level where the frame rate operation will become 
impractical.  

A huge computational power, required for implementing monocular SLAM 
algorithms, could also reduce the range of applications, moreover in following paragraphs 
we will see that the problem is a little bit more difficult than increasing the computational 
power.  

Another approach for increasing the size of the maps in monocular SLAM could 
be the use an efficient estimation technique that makes constant, or at least reduce, the 
dependence of the computational cost on the number of features included in the map.  

In [115], Eade and Drummond apply the latter idea, adapting a FastSLAM scheme 
[73] for monocular SLAM. The position of each new partially initialized feature added to 
the map is parametrized with three coordinates representing its direction and inverse 
depth relative to the camera pose at the first observation, the estimates of these 
coordinates are refined within a set of Kalman Filters for each particle of the map.  

The total cost of updating landmark estimates and optimizing the proposal over 
M particles given k observations is O(Mk), independently of the number of landmarks N. 
Results show that the processing time per frame is nearly independent of the number of 
landmarks in the map, while 20-30 features observations updates are made every frame. 
This method shows to build maps of 250 features, representing the pose with 50 particles. 
But the absence of an explicit full covariance matrix can make loop-closing more difficult.  
So, why large environments cannot be mapped property with these methods? 
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6.3.1 SLAM Paradox 

Monocular SLAM methods typically use patch cross correlation and active feature 
search in order to match the features in subsequent frames. Patch cross correlation is 
simple and fast, and active search is attractive because it only focuses directly on the area 
of interest, by maximising computational resources and minimising the chance of 
obtaining a mismatch, ( [156], [165]). These techniques are suitable when the incoming 
video has to be processed online at frame rate. Such techniques can be applied if a single 
camera is being used as the only sensorial input for the system.  

In [166], where SIFT descriptors are used for the matching process, a high frame 
rate cannot be addressed due to the computational cost of descriptors. Then the robot's 
odometry is used for reducing the propagation of the uncertainty when the robot moves. 
If any other sensor -apart from a single camera- wants to be used, a high frame rate is 
recommendable because the base-line between subsequent frames is small. Therefore, 
the propagation of uncertainty is also small, constraining the search for matching features 
to reduced regions. Nevertheless when the robot moves far away from its initialization 
point and describing a different path (closing loops problem), patch cross correlation and 
active search are not suitable. 

Consider a typical run of a monocular system, for a sequence of 1750 frames 
taken following a cycled trajectory (illustrated by the rectangle) in a laboratory 
environment (Figure 6.16, upper). In Section 6.3.5 the general setup for this experiment is 
explained in depth. The final map contains about 350 features and therefore it has not 
been built in real time, but it is useful for illustrative purposes. It can be appreciated a 
huge drift at the end of the estimation. Note that the map and trajectory (except for the 
side effects due to the second turn) are tolerably consistent. Consequently, it is important 
to observe that the uncertainty in the camera position is maintained stable over the whole 
sequence (Figure 6.16, lower). Therefore, it doesn't reproduce the real error propagation. 
As a result, when the camera returns near to its initial position, the active search 
technique is neither able to predict the position of the old features nor to find the closing 
loops after long trajectories in order to minimize the drift.  
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P𝑦𝑦2𝑥𝑥 P𝑦𝑦2𝑦𝑦1 P𝑦𝑦2𝑦𝑦2 P𝑦𝑦2𝑥𝑥 ∇𝐺𝐺𝑥𝑥
⊺

∇𝐺𝐺𝑥𝑥 P𝑥𝑥𝑥𝑥 ∇𝐺𝐺𝑥𝑥 P𝑥𝑥𝑦𝑦1 ∇𝐺𝐺𝑥𝑥 P𝑥𝑥𝑦𝑦2 ∇𝐺𝐺𝑥𝑥 P𝑥𝑥𝑥𝑥 ∇𝐺𝐺𝑥𝑥
⊺ + ∇𝐺𝐺𝑧𝑧 R∇𝐺𝐺𝑧𝑧

⊺⎦
⎥
⎥
⎥
⎤

 (6.163)  
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Figure 6.16  Drift in Monocular SLAM estimations. The upper plot illustrates the real and 
estimated camera trajectory for a sequence of 1700 frames. Lower plots show the 
estimation errors of camera position and their corresponding 3σ variance for 1350 
frames. Note that the second turn is the main reason in error propagation. 
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In addition, when new features have to be added to the map and the covariance 
matrix P is updated (6.163), a bias is introduced in the system [89] due to the non-linearity 
in the measurement process. After several initializations, the bias introduced to the map 
could be substantial.  

This bias can also affect the active search.  In Active search techniques (section 
6.2.6) the region search for a landmark is determined by projecting the expected landmark 
location into the image and calculating the innovation covariance Si.  

The innovation covariance Si measures the deviation between the actual 
measurement zi and its prediction. If some bias has been added to the system after 
several features initializations, the projection of the expected landmark location into the 
image and its image search region defined by Si could be biased. The previous effect 
produces that the estimated uncertainty after a long trajectory could not represent truly 
the error propagation in camera pose, and therefore if the camera sees a previously 
mapped site, then the position in the image for old features cannot be predicted property. 

Furthermore, when the camera moves far away from its initialization point and 
describing a different path, it is likely that the difference between the camera pose (when 
the features have been firstly observed) and the current camera pose is substantial, 
inducing huge changes in the image feature appearance due to variations in illumination 
or point of view. If the image feature appearance differs excessively, the patch cross 
correlation technique will be unfeasible to address the data association problem. In this 
context, image feature descriptors ( [136], [167]) are techniques well adapted for 
addressing the data association problem in this latter context. Nevertheless, descriptors 
are difficult to apply directly to Monocular SLAM methods due to their high computational 
cost.  

It is a clear trade-off between the need of a high frame rate operation and the 
data association techniques required for addressing the whole problem. 

6.3.2 Distributed Approach 

In the past, a single estimation process (EKF, particle filter...) has been tried when 
solving the whole problem of single camera SLAM. But it seems that trying to solve the 
whole problem at once is a very hard task. As a possible alternative, a distributed 
approach is proposed in which the whole task is divided into two concurrent estimation 
processes, each one designed to handle in a natural way the previously mentioned trade-
off. 

The general idea is to convert a monocular SLAM method (as the described in the 
previous part of this chapter) into a complex real-time “Virtual Sensor” that provides 
appearance-based sensing in the form of features descriptors and emulating typical 
sensors (laser and odometry), afterward a classic SLAM method is plugged in (decoupled 
from the camera’s frame rate) taking as its input the output of the Virtual Sensor; this 
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process, called Global SLAM, models the drift of the Virtual Sensor estimation as an 
independent uncertainty propagation, for estimating the global camera-robot pose and 
map. In our implementation, both estimation processes, the Virtual Sensor and the Global 
SLAM, run concurrently in different PCs in a local network, communicated with TCP/IP 
protocol. Figure 6.17 shows the diagram for the proposed scheme; note that same 
symbols are used to represent equivalent but not same variables in both Virtual Sensor 
and Global SLAM process. 

From the estimation point of view, it might seem redundant if we used a SLAM 
process for building a global map by using the output of a modified Monocular SLAM 
process (Virtual Sensor) as its input. However, a closer view (as it was seen in previous 
section) reveals that Monocular SLAM is a particular case of the general SLAM problem 
and it is constrained to very specific considerations. In that sense, in following sections, we 
will see that our Distributed Framework handle in a natural manner the SLAM paradox 
described in previous section.  

In a very recent work, [168], a sub-mapping technique for building maps over 
large camera trajectories has been presented. By applying such technique, real-time 
collected sub-maps are processed off-line for refinements and closing loop detection using 
an Iterated Kalman Filter. This method and the presented one in this paper share the idea 
of using an extra estimation process for building the final map. In addition, the 
architecture of the method proposed in this work is different from [168] among other 
aspects, because it looks for a fully concurrent and continuous online estimation of the 
global map.  

An important aim of the system design is the modularity; in this work a basic 
implementation is proposed but not restricted to other methods and techniques; recent 
improvements to monocular SLAM, ( [158], [160], [161]), can be included in the Virtual 
Sensor, different kind of feature descriptors, ( [136], [167]), can be used for data 
association or a more efficient SLAM method can be used for implementing the Global 
SLAM module, [115].  

6.3.3 Virtual Sensor 

In section 6.2, a new kind of features initialization called “Delayed Inverse Depth 
Feature Initialization” is proposed in order to increase the robustness of Monocular SLAM 
methods when a reference is used in order to recover the metric scale of the 
environment. A new method to recover the scale was additionally proposed (section 
6.2.15). In this section we explain how to modify a monocular SLAM method as a virtual 
sensor. This virtual sensor emulates range measurement and 3D odometry for dead 
reckoning and it extracts feature descriptors in order to handle the data association 
problem. 
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Figure 6.17 Diagram for the proposed Distributed Monocular SLAM. 



180  Monocular SLAM 

 
As was stated before, in Monocular SLAM methods, in which the number of 

features in the system is increasing, maintaining real time operation becomes very 
difficult. Therefore the map size is limited typically around 100 features, reducing the 
working area of these methods. On the other hand, it is easy to remove old features from 
the state for maintaining a stable computational cost per frame and therefore a real time 
operation.  

6.3.4 Real Time Operation 

In this work the term “real-time” means that the time elapsed between acquired 
camera frames is large enough to processing a step of the algorithm. Hence for 
maintaining real time operation, the computation time for each EKF cycle should not 
exceed the time available between frames, therefore the number of features in the 
system have to be bounded. Removing features from the system state is much easier than 
adding them. To delete a feature from the state vector and covariance matrix, the rows 
and columns which contain it, have to be removed. An example in a system where the 
second of three features want to be removed is:  

 �

𝑥𝑥𝑣𝑣
𝑦𝑦1
𝑦𝑦2
y3

� → �
𝑥𝑥𝑣𝑣
𝑦𝑦1
y3

�   

 

⎣
⎢
⎢
⎢
⎡

P𝑥𝑥𝑥𝑥 P𝑥𝑥𝑦𝑦1 P𝑥𝑥𝑦𝑦2 P𝑥𝑥𝑦𝑦3
P𝑦𝑦1𝑥𝑥 P𝑦𝑦1𝑦𝑦1 P𝑦𝑦1𝑦𝑦2 P𝑦𝑦1𝑦𝑦3
P𝑦𝑦2𝑥𝑥 P𝑦𝑦2𝑦𝑦1 P𝑦𝑦2𝑦𝑦2 P𝑦𝑦2𝑦𝑦3
P𝑦𝑦3𝑥𝑥 P𝑦𝑦3𝑦𝑦1 P𝑦𝑦3𝑦𝑦2 P𝑦𝑦3𝑦𝑦3 ⎦

⎥
⎥
⎥
⎤

→ �
P𝑥𝑥𝑥𝑥 P𝑥𝑥𝑦𝑦1 P𝑥𝑥𝑦𝑦3
P𝑦𝑦1𝑥𝑥 P𝑦𝑦1𝑦𝑦1 P𝑦𝑦1𝑦𝑦3
P𝑦𝑦3𝑥𝑥 P𝑦𝑦3𝑦𝑦1 P𝑦𝑦3𝑦𝑦3

� (6.164)  

  If the number of features exceeds a specific threshold, then older features that 
were left behind by camera movement are removed in order to maintain a stable amount 
of features.  

6.3.5 Removing Old Features Experiment 

 A new C++ version of our Delayed monocular SLAM algorithm was implemented 
in order to increase speed. In previous experiments using the MATLAB implementation 
the camera was carry on hand and the working area of the experiment (for the camera’s 
movement) was limited to the length of the camera’s cable.  In subsequent experiments, 
using the C++ implementation of the algorithm, the camera was mounted over a laptop, 
as it can be appreciated in Figure 6.18. Using this kind of setup, videos can be taken 
walking over long paths, increasing the working area of experiments.    
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Using the previously described configuration a video containing about 1720 
frames (320 x 240 pixels at 30 frames per second) has been recorded walking over a 
predefined cycled trajectory inside a laboratory environment.  

 

 

Figure 6.18 A real video, recorded in a laboratory environment, has been used in 
experiments. An inexpensive webcam is the only sensor system.   

The path walked was a length of 12 meters (approximately). Here is important to 
note that, currently in the bearing-monocular SLAM community, there is not a formally 
established methodology, in order to test the performance of the methods, in terms of 
the size of the environments that algorithms can map.  For example [168] states that their 
experiments were realized over very long out-door trajectories, around of 100 meters 
length. Nevertheless it can be appreciated that most of the features are located far from 
the camera (comparing with our experiments were the average of features are located at 
less than one meter of depth).  As it know, the camera needs to travel more in order to 
“see parallax” in far features.  From the algorithm point of view the scale is not a matter 
[157]; the estimation process for a camera traveling a distance x while it see a parallax y in 
a feature with depth 1 is the same that the estimation process for a camera traveling a 
distance 10x  while see parallax y  in a feature with depth 10.  For that reason we guess 
that it can be inappropriate to use the size (in meters) of map and trajectory as parameter 
for evaluating the performance of bearing/monocular SLAM algorithms. Instead, we guess 
that the number of features, that the map can include, can give us a better idea of the 
performance of the methods.  

Figure 6.19 (displayed in two pages) illustrates the results of applying the Delayed 
monocular SLAM algorithm, together with the auto-removing process of old features, to 
the image sequence previously described. Each plot shows (representing a single frame) 
the input image (augmented with different information) and the output (map and 
trajectory) of the algorithm.   
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Figure 6.19 (Current and following page) Input and Output for the Delayed Monocular 
SLAM algorithm, removing old features for maintaining real time operation. In this 
experiment a video was taken inside a laboratory following (walking) a predefined 
closed trajectory.  Note that estimated map and trajectory (right) are showed from 
different point of view. 
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Figure 6.20 Estimated map and trajectory without removing features (upper plot). This 
map was not constructed at real time. Estimated map and trajectory removing features 
(lower plot). This map was constructed at real time.  In both cases observe the drift in 
estimations. 

For this C++ implementation the output is rendered using OpenGL, which it is 
useful in order to illustrate the 3D nature of the estimates. For the firsts four plots (left) an 
external picture of the experiments are showed, in order to point up the experimental 
methodology previously described. 

At one of the initial frames (plot a), the three-point metric reference has been 
already initialized. Note that a PC monitor has been used for this purpose. At this early 
point of the sequence the three corners of the monitor (forming the metric reference) are 
the only features belonging to the map. But it can be appreciated that several candidate 
points have been already detected. Also note that the camera is initialized at the origin of 
the coordinate frame.  In plot a, the map is showed from a X-Y view (aligned with the 
initial camera view).   

By the frame 100 (plot b) the displacement of the camera to the right (to the –x 
direction in the map absolute coordinate frame) starts to be notorious. Observe that 
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several candidate points have been initialized as features in map. By the frame 300 (plot c) 
the camera has moved more, leaving behind some features. Moreover, others ones 
cannot be successfully tracked.  These features (illustrated in cyan) are aspirants to be 
removed from the system. Note that uncertainty in features estimation is exemplified by a 
3D line, as the uncertainty decreases the line becomes shorter.  In plot c the map is 
showed from an X-Y-Z view (3D view). By the frame 500 (plot d) it is very clear that 
several features have been removed from the map. In this experiment a feature is 
removed if it cannot be detected and tracked by 20 frames. By the frame 740 (plot e) the 
camera begins its first rotation, and by the frame 900 (plot f) the camera begins its second 
rotation. The frame 1200 is illustrated in plot g, in this plot the map is showed from an X-
Z view (top view).  At this point a discrepancy between the estimate and the real 
trajectory begins to be perceptible. Actually, the real path followed, in order to move the 
camera, is like a long rectangle (the real path is illustrated in Figure 6.20).  By the frame 
1700 (plot h) the camera has returned very near to its initial position (note that the PC 
monitor used as initial metric reference is appearing again).  Observe that the number of 
features in the map has been maintained stabled over the whole sequence and therefore 
it was built at real time. For comparing purpose, in Figure 6.20 (upper plot) it can be 
appreciated the estimated map for the same sequence, if features are not removed from 
the system, in this case the map was not built at real time.  

In Figure 6.20 is very clear that the drift, in the estimated map and trajectory, is 
similar in both experiments; without removing features (upper plot) and removing 
features (lower plot).  Even when the oldest features remain in the map (upper plot), and 
for the reasons explained in section 6.3.1, the loop cannot be detected and thus making 
impossible to minimize the drift in estimates. 

On the other hand, of course, if features are removed from the map, then 
previous mapped areas cannot be recognized in the future and loops cannot be detected. 
Therefore, the implicit drift in the estimations cannot be minimized. However a modified 
Monocular SLAM method to maintain stable computational operation can be viewed as a 
complex real-time “virtual sensor”, which provides appearance-based sensing and 
emulates typical sensors as laser for range measurements and encoders for dead 
reckoning (Visual Odometry).  

6.3.6 Adapting monocular SLAM as Virtual Sensor 

To adapt a monocular SLAM method as Virtual Sensor, first it must be modified in 
order to maintain stable computational cost per frame as was described in the latter 
section. In the subsequent we will refer to the “modified monocular SLAM sub-system” as 
the Virtual Sensor.   
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When a new feature is initialized (Figure 5.8) in the Virtual Sensor, we need to 
gather useful information in order to match it against future measurements.  The followed 
approach is based in the matching technique explained in chapter 5, section 5.4: 

A saliency operators, used in most of the mono-SLAM methods (Shi-Tomasi, 
Canny, etc), is applied  in order to extract n SURF (Speeded Up Robust Features) 
descriptors di from a p-by-p patch centered in the point detected by the saliency operator, 
[136]. All extracted descriptors are stored and related to with the ŷi feature. This way, 
each feature ŷi can have a lot of useful information in order to be matched in the future. 
SURF descriptors are employed because they proof to have a performance which is similar 
to that of the SIFT (Scale-Invariant Feature Transform) [167], but they also have a lower 
computational cost [169]. 

Virtual Sensor and Global SLAM are communicated with the TCP/IP protocol. In 
our implementation, the Virtual Sensor is defined as the server which serves requests 
coming asynchronously from the Global SLAM. When a request is received, camera 
movement and features information (emulating a real range sensor) are sent.  

Figure 6.21 illustrates the camera movement information ovs sent to the Global 
SLAM defined by: 

 𝑜𝑜𝑣𝑣𝑣𝑣 =

⎣
⎢
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⎢
⎡
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⎤
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where ∆xW=xW
k -xW

k-n,  ∆zW=zW
k -zW

k-n and (θWC, φWC) denote the camera 
orientation and they have been obtained from the quaternion qWC. The k subscript 
denotes the current step and the k-n subscript is equal to the last k step at the specific 
moment in which information was sent to the Global SLAM. 

Information about each feature ŷi=[x y z θWC φWC ρ] is only sent if its estimated 
depth converges and the feature is related to a minimum number i of descriptors di. The 
estimated depth r of a feature is considered to be converging if 100(σρ)/ρ < l, (in 
experiments l=5). The feature pose information is sent emulating a 3D range sensor 
(Figure 6.21): 

 𝑠𝑠𝑖𝑖 = �
𝑟𝑟
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𝜙𝜙𝐶𝐶
� = �

1 𝜌𝜌�
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� (6.166)  

where r is the range and (θC, φC ) defines the direction of r in the camera frame 
coordinates. The entire packet sent to the Global SLAM is made of [ovs,s1,s2,…sn] and 
descriptors di. atan2 is a two-argument function that computes the arctangent of y/x given 
y and x, within a range of [-π, π]. 
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Figure 6.21 Parametrization for data sent by the Virtual Sensor. 

 

6.3.7 Global SLAM: Minimizing Drift 

In the context of the global SLAM subsystem, the Virtual Sensor, described in the 
previous section 6.3.3, is considered as a black box that provides appearance-based 
sensing in the form of features descriptors. Furthermore, it emulates typical sensors as 
laser for range measurements and encoders for dead reckoning.  

Due to the main objective is to demonstrate the viability of the Distrubuted 
Framework for monocular SLAM, instead of demonstrate the performance of a particular 
kind of implementation, a very simple scheme of SLAM was used for implementing the 
Global SLAM subsystem, but other methods, such as [73], can be used. In that sense, is 
important to note that Jacobians related to Global SLAM subsystem are obviated. 

For the inter-process communication the Global SLAM is defined as a client 
connected to the Virtual Sensor. In the Global SLAM, an EKF is also used to propagate the 
camera pose and the map. When a Kalman step is completed, a request is sent to the 
Virtual Sensor in order to obtain the latest odometry and range information [ovs,s1,s2,…sn] 
as well as the descriptors. 

As far the Global SLAM is concerned, the camera-robot state is defined by: 

 x�v = [𝑥𝑥 𝑦𝑦 𝑧𝑧 𝜃𝜃 𝜙𝜙]⊺ (6.167)  
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denoting pose and orientation in the world coordinate frame. The prediction 
model fv(x ̂v (k), u(k)) is: 

 𝑓𝑓𝑣𝑣 =
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where u(k) is the control input: 

 𝑢𝑢(𝑘𝑘) = 𝑢𝑢𝑛𝑛(𝑘𝑘) + 𝑣𝑣(𝑘𝑘) (6.169)  

and un(k)=[ ux uy uz uθ uφ]T is taken from the data ovs (6.165) sent by the Virtual 
Sensor, then ux=ox, uy=oy, uz=oz, uθ=oθ, uφ=oφ, being v(k) the noise added to the control 
input u(k) for modeling the uncertainty propagation of the Virtual Sensor odometry 
measurements. Then vk is defined as Gaussian noise with zero mean and known diagonal 
covariance matrix U.  
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In experiments variances are empirically tuned. Furthermore, in Figure 6.16 it can 
be appreciated that the traslational error is lower than the rotational error (a common 
behavior in visual SLAM). If it is assumed that the camera axis x is generally aligned with 
the traslational camera movement (Figure 6.21) (a common assumption in monocular 
SLAM using a wide lens camera), then it can be assumed that σx < σz. 

The complete state that includes the features y ̂ is built as x ̂=[ x̂v
 T, y ̂1T,.. ŷn

T]T 
where a feature y ̂i represents a 3D scene point i defined by yî=[xi,yi,zi], denoting Euclidean 
position in the world reference.  

The observation model h(xk,wk) predicts a measurement zk=[r θ φ]T of a 3D point 
y ̂i as follows:  
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where wk models uncertainty for the Virtual Sensor features measurements, 
assuming Gaussian noise with zero mean and covariance matrix R. 

If a feature measurement zi=[r θ φ]T incoming from the Virtual Sensor 
(represented by si in (6.166)) is not matched against a previous mapped feature, then it is 
initialized as a new feature yî in the map: 
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� (6.172)  

When a feature is initialized its related dn descriptors are stored in a data base 
and labeled with its corresponding ŷi feature. For minimizing the probabilities of 
mismatch, a matching of an incoming feature with an already mapped one is only 
considered under the following circumstance: at least two different descriptors dn from 
the measured feature must match with two different descriptors related with a single 
feature in the map. A fast approximate k-nearest neighbor technique is used for matching 
descriptors. A positive matching is considered if the Euclidean distance to the second dk2 
nearest neighbor is shorter than 0.7dk1 to the nearest neighbor [136].  
 

6.3.8 Experimental results 

Figure 6.22 shows the results for the Distributed Monocular SLAM system. In this 
figure, the plots a, b , c, d, e, f, g and h  illustrate the input, (upper-left) output (lower-left) 
of the Virtual Sensor (VS), and the output of the Global SLAM (GS), corresponding to 
respectively to frames 1, 60, 200, 560, 860, 1168, 1630 and 1700.  

At frame 1 (plot a) the three-point metric reference has been already initialized. 
The three corners of the monitor (forming the metric reference) are the only features 
belonging to the map and the first candidate point has been detected. Note that the 
camera in both maps, VS and GS has been initialized at the origin of the coordinate 
frames.  In plots a, b, c and d the map in both VS and GS graphics are showed from an X-
Y-Z view (3D view). Also note that the screen of a PC monitor has been used as the only 
reference to recover the metric of the world (as others experiments). The grid, of the GS 
plots, measures 0.5x0.5 m. 

At frame 60 (plot b), some features have been initialized in the VS, the GS has not 
yet received information about these features since their depth has not yet converged in 
the VS.  At frame 200 (plot c) the firsts features have been initialized in the GS map. By the 
frame 560 (plot d) several features have been added to the GS map, but note that the VS 
has drop several features from the map for maintaining stable frequency operation. 

Frame 860 (plot e) and frame 1168 (plot f) represents middle steps in the 
progression.   In plots e, f, g and h the map in both VS and GS graphics are showed from an 
X-Z view (Top view). 

At frame 1630 (plot g) there is a huge drift among the trajectory and the map. 
Note the difference between the estimated trajectory and the real one (In both VS and 
GS). In this case, it can be appreciated that rotations are the main cause of the error 
propagation (note the rotation at the second corner).  
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Figure 6.22 (displayed in three pages) Progression for the camera pose and map 
estimates for frames 1, 60, 200, 560, 860, 1168, 1630 and 1700 (plots a, b, c, d, e, g and 
h respectively)  for both Virtual Sensor (VS) and Global SLAM (GS). Each plot illustrates 
the state of both VS and GS at one specific frame; the upper-left graphic is the input 
image for the VS (augmented), the lower-left graphic shows the VS map and trajectory 
estimates, and the right graphic shows the GS map and trajectory estimates.  A video of 
1720 frames (the same used in the experiment of section 6.3.5) has been captured 
following a predefined closed trajectory. Note that the Virtual Sensor (VS) map contains 
a stable number of features along the trajectory. At frame 1630 (plot g), it can be 
appreciated (X-Z view) the drift in the trajectory and the uncertainty propagation 
(represented by the ellipses) in the VS and GS features. At frame 1700, the Global SLAM 
has successfully detected some matches and the map has been correctly rebuilt and the 
camera pose has been set right (plot h). Also note how the features uncertainties have 
been minimized. 
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Figure 6.23 Detecting and closing the loop. In SLAM matching previously mapped 
features is the key in order to minimize drift. After a long travel and when an old feature 
has not been matched yet, the drift can be substantial; observe the drift at frame 1630 
in both views X-Y and X-Z for the GS estimates (upper graphics). Fortunately, the GS 
can represent properly the propagation of uncertainty in both camera and features 
locations. This fact makes possible, when an old features is matched against a new 
measurement that the map and camera pose could be set right (lower graphics).      

 
Also observe the uncertainty propagation for the measured features in the GS. 

(Compare the size of the first mapped features and the size of the last mapped ones). 
At frame 1700 (plot h), the camera has returned nearby to its initial position and 

the GS has detected matches successfully and it closes the loop nicely. It can be observed 
how the map has been correctly built, the features uncertainty has been minimized, and 
the drift in the camera position has been fixed.  

Figure 6.23 shows in two different views (X-Y and X-Z view) the moment when 
the loop is detected and closed.  In section 6.3.1 we seen that for regular monocular SLAM 
methods, it often happen, that the propagation of uncertainty in both camera pose and 
map is not well represented by the estimation process, thus making difficult the loop 
detection-closure process. On the other hand, in the Distributed Scheme, the propagation 
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of uncertainty in the global map (Global SLAM) is well represented due to the Global SLAM 
process is decoupled from the Virtual Sensor process.  

This later fact makes possible to close the loop in the global map when a match is 
found between the old mapped areas and the new measurements. 
 

 

Figure 6.24, 3D view for the final map built by the Global SLAM (GS) sub-system.  

At the end, about 360 features have been initialized in the Virtual Sensor 
(maintaining in the state an average of 20) on the one hand. On the other, 147 features 
have been initialized in the Global SLAM. These latter features contain a lot of useful 
information for data association (in the form of image descriptors). Figure 6.24 shows the 
3D final map built by the Global SLAM subsystem.  

One attribute of the Distributed approach is that it decouples the frequency 
operation of the input (camera) and the output (final camera position and map 
estimation). If only a single camera wants to be used as sensory input, a high frame rate 
operation is desirable. However, when the map grows maintaining the camera frequency 
operations, it becomes very difficult to keep the rate processing. In the distributed 
scheme, the operation frequency of the Global SLAM doesn't depend on the operation 
frequency of the Virtual Sensor. Therefore, if the Global SLAM map grows, it could be 
updated at slower rates in relation to the camera frame rate.  
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Monocular SLAM could profit from the use of different data association 
techniques, such as active search and image feature descriptors. However, there is a 
trade-off between the need of a high frame rate operation and the data association 
techniques required for addressing the whole problem. The proposed scheme handles 
these data association techniques naturally. The Virtual Sensor benefits from the use of 
the active search for matching features frame to frame, at high operation frequency. The 
process of matching features using image descriptors (useful for detecting loops after long 
camera trajectories or when there is a huge drift in the estimation) is not necessarily 
implemented with an active image search approach, because descriptors representing the 
current detected features can be matched with a data base of previously stored feature 
descriptors. This kind of matching approach is coherent with a general SLAM scenario (as 
the Global SLAM), where observations come from an abstract sensor, and the influx of 
observations doesn't depend on the estimation machinery.  

6.4 Conclusions 

In this chapter we address the problematic related to the 6-DOF monocular SLAM 
case, which possibly represents the harder variant of SLAM.  First, it was explained how to 
modified a general Bearing-Only SLAM algorithm in order to be suited for a monocular 
camera context. In that sense the nonexistence of an odometry input and the ambiguity in 
scale are both important aspects to take into account.   

It was seen that for most of the existing monocular SLAM implementations, there 
are two main challenges for addressing, in order to make possible that vision-based SLAM 
methods emulates (and ultimately surpass) the results in large-scale mapping achieved 
using laser range-finder sensors: Lack of robustness and Limited to room-sized domains. 

Regarding to the lack of robustness issue, a novel method for delayed 
initialization of new features based on the inverse depth parametrization, is presented for 
monocular SLAM. The experimental results show that this method can be a good choice 
for implementing monocular SLAM systems. The method seems to be more robust respect 
to the un-delayed method, when initial metric reference points are used for scaling the 
map. In experiments the resulting camera trajectory estimate using the delayed method 
was similar to the estimate by the un-delayed method (when the un-delayed method was 
tuned). In aspects relating with features depth convergence the results were similar for 
both methods. Moreover, since the delayed method is more restrictive for adding new 
features, a reduced percentage of strong new features are added to the map (20-40%) 
respect to the un-delayed method, without losing the quality of the map. 

In monocular SLAM, when the number of features in the system state increases, 
maintaining real time operation becomes very difficult and thus limiting to most of the 
existing of monocular SLAM methods to be applied to small environments. Moreover, it 



196  Monocular SLAM 

has been seen that closing loops (minimizing drift in map and camera pose estimates) in 
real time, when camera’s trajectory requires a vast number of natural landmarks in the 
map, could be a difficult task. In that sense, it is a clear trade-off between the need of a 
high frame rate operation and the data association techniques required for addressing the 
whole problem. In that sense a novel Distributed Framework, which handles in a natural 
manner the mentioned trade-off, is presented for addressing the problem of building and 
maintaining a global and consistent map of large environments at real time.  

Our approach is to use a distributed framework where the key idea is to divide 
the whole task into two concurrent estimation processes. First a state of the art 
monocular SLAM method is modified as a complex virtual sensor that emulates typical 
sensors such as laser for range measurement and encoders for dead reckoning. Afterward, 
a classic SLAM method is plugged in for building and maintaining the final map.  

In the experiments presented, real image sequences have been used. The C++ 
implementation runs at real time. Virtual Sensor and Global SLAM reside at different local 
network PCs communicated with the TCP/IP protocol. The experimental results are 
positive. In the example presented in this chapter, the map and camera trajectory 
estimated by the Virtual Sensor shows a huge drift, but it has been successfully minimized 
by the Global SLAM.  

The modularity of the method allows other techniques for implementing both, 
Virtual Sensor and Global SLAM. The presented framework is also suitable for cooperative 
mapping contexts using more than one Virtual Sensor and a single Global SLAM connected 
by a network. 
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Chapter 7 

7 Concluding Remarks 

7.1 Conclusions 

The importance of solving the Simultaneous Localization and Mapping (SLAM) 
problem in robotics can never be overstated. SLAM has been declared as the most 
fundamental problem that needs to be solved if we want to build truly autonomous 
mobile robots. SLAM is about a robot being able to concurrently track its position and 
construct a map of its surrounding environment. Solving each of the two problems 
independently is easier, i.e., a robot can trivially estimate its position given a complete 
map of its environment and it can also construct a map from sensor data if its position is 
accurately known. Solving both problems at the same time is a chicken and the egg type 
problem. So what makes SLAM so difficult and how are researchers trying to solve it? 

Noisy sensors and actuators make SLAM a difficult problem. Every time the robot 
moves, it relies on its sensors to compute the distance traveled. Since there is no such 
thing as a noise-free sensor, there is always a small error associated with every move. 
These errors add up very quickly and the robot becomes lost. Correcting these errors is 
easy if a good map of the robot’s operating environment is given; the robot can correct its 
estimated position by computing its relative position to landmarks that are present in the 
map and currently visible. 

Statistical methods that have become popular in robotics give us powerful 
frameworks for handling uncertainty in sensor measurements and robot actions. These 
frameworks have allowed researchers to take large steps towards solving SLAM. For 
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example, the Extended Kalman Filter (EKF), which is an extension to the Kalman Filter (KF) 
for non-linear systems (which was used in this work) or the Monte Carlo methods such as 
Particle Filters (PFs).  

The robot’s sensors have a large impact on the algorithm used for SLAM. Early 
SLAM approaches focused on the use of range sensors as sonar rings or lasers. 
Nevertheless there are some disadvantages with the use of range sensors in SLAM:  
correspondence (data association) is difficult, they are expensive, and they are generally 
limited to 2D maps and computational overhead due to large number of features.  

The aforementioned issues have propitiated that recent work is moving towards 
the use of cameras as the primary sensing modality.  A camera is a projective sensor which 
has become more and more interesting for the robotic research community, because it 
yield a lot of information allowing reliable data association.  Cameras are well adapted for 
embedded systems: they are light, cheap and power saving. Using vision, a robot can 
localize itself using common objects as landmarks. 

On the other hand, at difference of range sensors (i.e. sonar or laser) which 
provides range and angular information, a camera is a projective sensor which measures 
the bearing of images features. Therefore depth information (range) cannot be obtained 
in a single frame.   This fact has propitiated the emergence of a new family of SLAM 
methods: The Bearing-Only SLAM methods, which mainly relies in especial techniques for 
features system-initialization in order to enable the use of bearing sensors (i.e. cameras) in 
SLAM systems. 

This thesis was focused on the study of the Bearing-Only SLAM problematic. 
Despite the fact that there has been a considerable progress in this area, currently there 
are two main problems with most existing monocular SLAM implementations: Lack of 
robustness and they are Limited to room-sized statics domains. In this work we present 
different methods and algorithms orient to contribute to the effort of make possible that 
bearing-based SLAM emulates (and ultimately surpass) the results in large-scale mapping 
achieved using laser range-finder sensors, aiming to build Bearing-Only SLAM systems 
with the potential of guiding autonomous robots in their exploration and operation in 
large and complex environments. 

Several techniques have been proposed in literature for initializing features in 
Bearing-Only SLAM. Inverse Depth feature Parameterization increases the linearity of the 
measurement equation.  In that sense, the Un-delayed Inverse Depth parameterization 
method has show to be an excellent option for Bearing-Only SLAM, because a standard 
EKF-SLAM framework can be straightforward applied to address the Bearing-Only SLAM 
problem. Nevertheless doing experiments we found that this kind of feature initialization 
has some drawbacks:  It often happens, in the cases where there are near and distant 
landmarks that the estimated depth cannot converge to the real one, causing that the 
final map and vehicle trajectory are poorly estimated.  It also often happens that some 
Kalman update steps the features depths become negatives causing even the divergence 
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of the filter. On the other hand, experimentally we found that making a manual tuning of 
the initial parameters (initial features depth and variance) the percentage of success 
increasing significantly. The last fact, motive us to propose a novel feature initialization 
technique called Delayed Inverse Depth Feature Initialization, where initial parameters  
are dynamically estimated priors to add a landmark as a new feature in the stochastic 
map. In Chapter 4 we introduce our features initialization method for Bearing-Only SLAM 
in a 2D context and assuming the availability of odometry. 

In this case, we compared Un-delayed method with respect to Delayed method 
and the following contributions have been made: 

 
• The robustness was increased. Making several simulations it was seen 

that the percentage of effectiveness (percentages of times a method 
makes congruent estimates of the map and robot location) was 
considerably increased using the Delayed Method. 

 
• The percentage of features presenting negatives depths was reduced, 

since the Delayed Method realizes depths estimations priors to the state 
and covariance initialization phase and commonly, features are 
initialized very near to its ground truth with lower associated 
uncertainty. 

 
Usually the Bearing-Only SLAM has been associated with the Vision-based SLAM 

systems, perhaps because Cameras are by far the most popular bearing sensor used in 
robotics. On the other hand the use of alternative sensorial capabilities as the hearing 
sense has been much less explored in SLAM. In this case, sound sources (artificial or 
natural) are used as landmarks for being included in the robot’s map in order to localize it 
along the time.  

Chapter 4 also focuses on the inclusion of the hearing sense in SLAM, attempting 
to localize (without a priori information of the sound source location) both, the robot 
position and the sound source, along the time while the robot is moving freely in its 
environment. 

In this context, a real application for Bearing-Only SLAM based in our Delayed 
Initialization method is presented: A small differential drive robot capable of sense bearing 
information respect to an external sound source with modest angular acuity (±10°) is 
considered.  This robot subsystem (called, Sound Sensor), capable of providing bearing 
information respect to one or several sound sources, is closely related (from the 
algorithmic point of view) with others bearing sensors (e.g. camera), in that sense a 
general Bearing-Only SLAM framework like the proposed for us, can be straightforward  
modified for working in a sound-based context. In this case, the following contributions 
have been made: 
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• It has been demonstrated that Bearing-Only SLAM systems, which are 

commonly based on cameras as primary sensors, can be straightforward 
extended for its application based on alternative bearing sensors. 

 
• The algorithm simulations show that several sound sources improve the 

robustness and effectiveness of the method; nevertheless a real sound 
sensor capable of tracking and separating several sound sources requires 
a challenging implementation. In that sense, it has been demonstrated 
that a small mobile robot (with limited capabilities), capable of tracking a 
single sound source, can be used in order to test the SSLAM method 
with real data sensor. 

 
• The experimental results show how the method is able to estimate the 

sound source position without prior knowledge of the environment; this 
information is subsequently used for estimating reasonably well the 
robot’s trajectory. It can be appreciated how the error propagation of 
the encoders-based odometry is bounded. In that sense, these 
experimental results are very promising since the method is tested in a 
robot with very limited capabilities. The method could be applied in a 
robot equipped with a more complex sound sensor capable of 
measuring several natural audio sources.  

 
One of the major motivations, in order to impulse the development of bearing-

only methods, is related with the use of cameras as primary sensors. Cameras among 
other things, provides a huge amount of information useful for addressing the data 
association problem. In that sense, the correspondence problem, also known as the data 
association problem, is possibly the one of the hardest problem in robotic and also one of 
the most important problems to solve in SLAM. The correspondence problem is the 
problem of determining if sensor measurements taken at different points in time 
correspond to the same physical object in the world. 

In chapter 5 several techniques are described for addressing the data association 
problem in a vision-based SLAM context. The followings are the findings and contributions 
stated in this chapter: 

 
• We have described a method called ICAD for matching image features in 

a wide based-line using ICA descriptors. Basically the method shows 
good results, especially in terms of computational performance.  
Nevertheless the response is still a little sensitive respect to some 
changes like point of view.  In essence, ICA descriptors represent an 
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intermediate alternative, having an intermediary performance in 
computational cost and robustness, respect to SIFT and SURF descriptors 
on the one hand and the Gray level patches on the other: ICA descriptors 
are more robust than Gray level patches but less than SIFT or SURF.  ICA 
descriptors also have a lower computational cost than SIFT or SURF but a 
little more expensive than the Gray level patches. 

 
• A study of the application of statistical methods (SVM and KNN) for 

capturing the variability of image feature appearance was presented.  
The experiments were performed over different variations of ICAD 
descriptors. The results are very promising, since they show that the 
proposed methodology increased the robustness of the descriptors. One 
characteristic of the proposed methodology is the modularity, so it can 
be extended for their application with descriptors like SIFT or SURF. 

 
• It was seen that the application of SIFT or SURF descriptors to SLAM is 

not straightforward. In that sense, a simple but effective framework 
based on combining descriptors and saliency operators like the Harris 
corner detector was presented. The experiment show that a lower (but 
sufficient for SLAM) number, all correct, of matches were founded. 

 
As computational power grows, an inexpensive camera can be used to perform 

range and appearance–based sensing simultaneously, by replacing typical sensors as laser 
and sonar rings for range measurement and encoders for dead reckoning. In this context, 
the 6-DOF monocular camera case (Monocular SLAM) possibly represents the harder 
variant of SLAM. Monocular SLAM is closely related to the structure-from-motion (SFM) 
problem of reconstructing scene geometry. SFM techniques have been used successfully 
for recovering camera position and scene structure. However, the SFM techniques coming 
from the vision community research have been formulated as off-line algorithms and 
required batch, simultaneous processing of all the images acquired in the sequence. 

In chapter 6 we extend our general Bearing-Only SLAM algorithm, (introduced in 
chapter 4) for being used in a monocular SLAM context. This approach aims to contribute 
to the robustness of Monocular SLAM systems. In that sense, the experimental results 
show that this method can be a good choice for implementing monocular SLAM. In this 
case, we also compared Un-delayed method with respect to Delayed method and the 
following contributions have been made: 

 
• When initial metric reference points are used for scaling the map, which 

is very important especially in a robotic context, the method seems to be 
more robust respect to the un-delayed method. Making several 
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experiments using a low cost hand-held camera, it was seen that the 
percentage of effectiveness was increased using the Delayed Method. 

 
• In experiments the resulting camera trajectory estimate using the 

delayed method was similar to the estimate by the un-delayed method 
(when the un-delayed method was tuned). In aspects relating with 
features depth convergence the results were similar for both methods 
(Also tuning the un-delayed method). 

 
• Since the delayed method is more restrictive for adding new features, 

lees but strong new features are added to the map (20-40% respect to 
the un-delayed method), without losing the quality of the map. This is a 
desirable aspect, because bigger environments can be mapped with the 
same number of features. 

 
In monocular SLAM, when the number of features in the system state increases, 

maintaining real time operation becomes very difficult and thus limiting to most of the 
existing of monocular SLAM methods to be applied to small environments. Moreover, it 
has been seen that closing loops (minimizing drift in map and camera pose estimates), in 
real time, can be a difficult task, when camera’s trajectory requires a vast number of 
natural landmarks in the map. In that sense, it is a clear trade-off between the need of a 
high frame rate operation and the data association techniques required for addressing the 
whole problem. 

 A novel Distributed Framework, called Distributed Monocular SLAM, which 
handles in a natural manner the mentioned trade-off, is also presented in chapter 6 for 
addressing the problem of building and maintaining a global and consistent map of large 
environments at real time.  

Our approach is to use a distributed scheme, where the key idea is to divide the 
whole task into two concurrent estimation processes. First a state of the art monocular 
SLAM method (Called Virtual Sensor) is modified as a complex virtual sensor that emulates 
typical sensors such as laser for range measurement and encoders for dead reckoning. 
Afterward, a classic SLAM method (called Global SLAM) is plugged in for building and 
maintaining the final map.  

The followings are contributions of this approach: 
 

• In the past, a single estimation process (EKF, particle filter...) has been 
tried when solving the whole problem of single camera SLAM. With our 
distributed approach is proved that two different and concurrent 
processes can be used in order to address the monocular SLAM problem.  
Our C++ system implementation runs at real time and the Virtual Sensor 
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and Global SLAM reside in different local network PCs communicated 
with the TCP/IP protocol. 

 
• A Distributed method is capable of closing loops after long trajectories. 

The experimental results are positive. In the example presented, the 
map and camera trajectory estimated by the Virtual Sensor shows a 
huge drift, but it has been successfully minimized by the Global SLAM. 

 
• The modularity of the method allows other techniques for implementing 

both, Virtual Sensor and Global SLAM. In that sense the presented 
framework could be also suitable for cooperative mapping contexts 
using more than one Virtual Sensor and a single Global SLAM connected 
by a network. 

 

7.2 Future Work and Discussion 

The work covered in this thesis provides a number of areas of interest that may 
be worth further investigation. Among others, it may be interesting to consider the 
following lines for further research: 

 
Bearing-Only SLAM based on alternative sensors. 
As was mentioned before, cameras are by far the most popular bearing sensor 

and due to its underlying attributes have motivated the development of bearing-only 
SLAM methods.  On the other hand the use of alternative bearing sensors has been much 
less explored for a SLAM context. Nevertheless, in this thesis, it has been demonstrated 
the viability of the inclusion of alternative bearing sensors in SLAM. In this case, a small 
mobile robot (with limited capabilities), capable of tracking a single sound source, was 
able to estimate the sound source position without prior knowledge of the environment 
and using this information in order to subsequently estimating reasonably well its 
movements. In that sense, there are a lot of potential for this kind of Bearing-Only 
systems. Two possible lines for further research could be: 

 
• Simulations show that several sound sources improve the robustness 

and effectiveness of the SSLAM method, therefore  instead of a simple 
sound sensor capable of detecting bearing from a single and artificial 
sound source, the method could be applied in a robot equipped with a 
more complex sound sensor capable of measuring and distinguish 
between several natural audio sources.  
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• Including the hearing sense in SLAM systems is a very promising topic for 

further research. On the other hand, approaches as the Delayed Inverse 
Depth SLAM method can be straightforward applied to SLAM systems 
based on other kind of bearing sensors. For example, it could be viable 
to develop a subsystem-sensor capable of detecting and tracking 
infrared light sources.  

 
Data association techniques oriented to vision-based SLAM. 
 Cameras provide a huge amount of information useful for addressing the data 

association problem. Actually, this fact has motivated the raising of research in Bearing-
Only SLAM. In this thesis it has been proposed different approaches of data association 
focusing on SLAM applications. Regarding to this theme a probable line for further 
research could be:  

 
• It has been seen that learning the variability of image features using 

statistical methods can improve the performance of regular image-
features-based data association techniques.  In our experiments we 
apply statistical methods (SVM and KNN) for capturing the variability of 
image feature appearance over different variations of ICAD descriptors. 
On the other hand, one characteristic of the proposed methodology is 
the modularity, so it can be extended for their application with more 
robust state-of-the-art descriptors like SIFT or SURF and others statistical 
learning methods. 

 
 Monocular SLAM based on distributed systems. 
Currently there is a huge amount of work to do in order to make possible that 

camera-based SLAM emulates (and ultimately surpass) the results in large-scale mapping 
achieved using laser range-finder sensors. In that sense the initial results for our 
Distributed SLAM system are very promising. However, is important to point out that since 
it is an early approach, a lot of work has to be done in order to fully justify the 
mathematical basis of the method. In fact, our Distributed SLAM was born as an 
engineering solution to a tradeoff present in monocular systems, more than a theoretical 
solution to the whole problem.   

Actually, it could be said that our Distributed SLAM method is a little bit 
transgressor with some of the current paradigms in SLAM. For example a researcher 
founds our proposed method mathematically unsound due to decoupling of stochastic 
processes that are in reality strongly correlated “the transfer of information between the 
mono SLAM and the global SLAM is done in a way that violates the Kalman filtering 
hypothesis of uncorrelatedness between model and process noise”.  He mentions that the 
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approach discards correlation information that is well known to play a key role in the 
consistency of the filter.  Another researcher for example asks us “why the covariance of 
odometry is empirically tuned instead of obtained from the virtual sensor”.  

In this regard, I agree on the one hand that more theoretical work has to be done 
in order to fully support the mathematics basis of the method; on the other hand we think 
that monocular SLAM is a very particular case of the general SLAM problem and could be 
treated in an alternative manner than traditional approaches. For example, in monocular 
SLAM methods, often happens after long camera trajectories that the uncertainty in the 
camera position (represented by the covariance matrix) is maintained stable over the 
whole sequence. However there always will be an implicit drift in estimations, among 
other things, due to the bias introduced to the system after several initializations of new 
features. Therefore, the covariance matrix does not reproduce the real error propagation, 
making practically impossible to detect and close loops (See section 6.3.1). Among other 
factors, this problem makes us think that monocular SLAM systems could be decoupled 
into different stochastic process. Hence the idea of considering a modified monocular 
method as a black box, capable to emulating typical sensors such as laser for range 
measurement and encoders for dead reckoning. Actually, if our Virtual Sensor were 
viewed as a real sensor, then our method does not violates the Kalman filtering hypothesis 
of uncorrelatedness between model and process noise; since the covariance representing 
the process noise in the virtual sensor is empirically tuned (like many of the real sensors)  
instead of obtained from the Virtual Sensor. A real sensor does not provide directly a 
measure of uncertainty; instead, uncertainty is statistically estimated comparing the 
output of the sensor and its ground truth. 

Of course others researchers have given excellent comments regarding to the 
potential of the Distributed method, making possible for us to publish a couple of related 
papers in known publications.   

Apart from work on the mathematical soundness of the method, two possible 
lines for further research could be: 

 
• Due to the modularity of the method different techniques can be used 

for implementing both Virtual Sensor and Global SLAM. For example, a 
computationally more independent method respect to the number of 
features in the system can be used for implementing the Global SLAM 
subsystem. 

 
• Cooperative monocular SLAM is a line of research very little explored 

yet. The Distributed monocular SLAM framework could be also suitable 
for a cooperative mapping contexts, for example using more than one 
Virtual Sensor and a single Global SLAM connected by a network. 
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Appendix A 

8 Publications 

The first experimental results regarding to the Sound-based SLAM system 
(SSLAM) as an application of the general Delayed Inverse-Depth Bearing-Only SLAM 
method   (3DOF odometry-available context) was presented in: 

  
• Rodrigo Munguia, Antoni Grau. (2008). Single Sound Source SLAM. In 13th Iberoamerican 

Congress on Pattern Recognition CIARP. Published in LECTURE NOTES IN COMPUTER 
SCIENCE, SPRINGER Press

In addition to experiments presented in the paper above, among supplementary 
simulations of the Delayed Inverse-Depth features initialization method, a new set of 
experiments with our small mobile robot and the SSLAM method were presented in: 

 

 5197 ( ): 70-77. ISSN: 0302-9743. 

• Rodrigo Munguia, Antoni Grau,(2008). Delayed Inverse-Depth Feature Initialization for 
Sound-Based SLAM.  Proceedings of the 13th IEEE International Conference on 
Emerging Technologies and Factory Automation ETFA. Hamburg, Germany 2008

Concerning to the Data Association problematic, a novel method for extracting 
features descriptors from images called ICAD (based on Independent Component Analysis, 
ICA) was presented in the next paper: 

 

. 
ISBN: 978-1-4244-1505-2. 
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• Rodrigo Munguia, Antoni Grau, Alberto Sanfeliu (2006).  Matching Images Features in a 
Wide Base Line with ICA Descriptors. Proceedings of the 18th IEEE International 
Conference on Pattern Recognition ICPR. Hong Kong 2006

Later, an early work on the use of statistical methods for capturing the variability 
of images features in order to increases the robustness of the matching process (using 
descriptors) when a video stream is available (i.e. vision-based SLAM) can be found in: 

  

. IEEE Press, p. 159-163. 
ISBN/ISSN: 0-7695-2521-0. 

• Rodrigo Munguía, Antoni Grau. (2006). Comparative Study of Statistical Methods for 
Image Feature Matching in a Wide Base Line. Actes del AVR'06

The previous article was reworked and a new set of experiments were added in 
order to be published in: 

  

. ED. ESAII-IRI-IOC, p. 139-
144. ISBN/ISSN: 84-7653-885-5. 

• Rodrigo Munguia, Antoni Grau. (2006). Learning Variability of Image Feature Appearance 
Using Statistical Methods. In 11th Iberoamerican Congress on Pattern Recognition CIARP. 
Published in LECTURE NOTES IN COMPUTER SCIENCE, SPRINGER Press

Regarding to the monocular SLAM problematic, our first work presenting a novel 
method for initializing new features in monocular SLAM systems (6DOF, no-odometry 
context), “Delayed Inverse-Depth Feature Initialization “ was presented in:  

  

 4225 ( ): 716-
725. ISSN: 0302-9743   

• Rodrigo Munguia, Antoni Grau (2007). Delayed Feature Initialization for Inverse Depth 
Monocular SLAM. Proceedings of the 3rd European Conference on Mobile Robots 
ECMR, Freiburg Germany 2007

The previous paper was reworked in order to be published in: 
 

.  

• Rodrigo Munguia, Antoni Grau (2008) Delayed Inverse Depth Monocular SLAM 17th IFAC 
World Congress. Seul, Corea 2008. ISBN: 978-3-902661-00-5. 

Extra materials, as an extended survive on the subject, additional graphics and 
new set of experiments regarding to the Delayed Inverse-Depth monocular SLAM can be 
found in: 

 
• Rodrigo Munguia, Antoni Grau,(2007). Camera Localization and Mapping using Delayed 

Feature Initialization and Inverse Depth Parametrization. Proceedings of the 12th 
IEEE International Conference on Emerging Technologies and Factory 
Automation ETFA. Patras, Greece 2007. IEEE Press, p. 981-988. ISBN: 1-4244-0826-1.  



  209 

Our approach for adapting a monocular SLAM method as a visual-based 
odometry system by removing old features from the system state was presented in the 
paper below. In this paper our three points based technique, for establishing the scale of 
the map in monocular SLAM systems, was also presented. 

  
• Rodrigo Munguia, Antoni Grau,(2007). Monocular SLAM for Visual 

Odometry. Proceedings of the 4th IEEE International Symposium on Intelligent 
Signal Processing WISP. Alcala de Henares, Spain 2007

A long paper, summarizing all the results (previous four papers) regarding to the 
Delayed Inverse-Depth monocular SLAM method can be found in: 

 

. IEEE Press, p. 443-448. 
ISBN: 1-4244-0829-6.  

• Rodrigo Munguia, Antoni Grau (2007).  3D Visual Odometry based on Feature 
Maps. Proceedings of the 3rd Congreso de Computacion, Informatica, Biomedica 
y Electronica CONCIBE, Guadalajara México 2007

Early experimental results regarding to our Distributed framework for monocular 
SLAM systems, which aims to contribute to the goal of building and maintaining a global 
and consistent map of large environments at real time, was presented in: 

 

. ISBN: 978-970-27-1243-5. 

• Rodrigo Munguia, Antoni Grau (2008) Minimizing Drift in Monocular SLAM Real Time 
Systems IEEE International Symposium on Industrial Electronics ISIE. Cambridge UK. 2008   

Finally, all of the work concerning to the Distributed approach was reworked and 
extended in order to be accepted for its publication in the TIM journal: 

  
• Rodrigo Munguia, Antoni Grau. (2008) Closing Loops with a Virtual Sensor based 

on Monocular SLAM. To appear in the IEEE Journal on Transactions on Instruments and 
Measurements.  
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