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Abstract
We study two methods of data analysis which are common tools for the
analysis of neuronal data. In particular, we examine how causal inter-
actions between brain regions can be investigated using time series re-
flecting the neural activity in these regions. Furthermore, we analyze a
method used to study the neural code that evaluates the discrimination
of the responses of single neurons elicited by different stimuli. This dis-
crimination analysis is based on the quantification of the similarity of the
spike trains with time scale parametric spike train distances. In each case
we describe the methods used for the analysis of the neuronal data and we
characterize their specificity using simulated or exemplary experimental
data. Taking into account our results, we comment the previous studies
in which the methods have been applied. In particular, we focus on the
interpretation of the statistical measures in terms of underlying neuronal
causal connectivity and properties of the neural code, respectively.

Resum
Estudiem dos mètodes d’anàlisi de dades que són eines habituals per a
l’anàlisi de dades neuronals. Concretament, examinem la manera en què
les interaccions causals entre regions del cervell poden ser investigades
a partir de sèries temporals que reflecteixen l’activitat neuronal d’aque-
stes regions. A més a més, analitzem un mètode emprat per estudiar el
codi neuronal que avalua la discriminació de les respostes de neurones
individuals provocades per diferents estı́muls. Aquesta anàlisi de la dis-
criminació es basa en la quantificació de la similitud de les seqüències de
potencials d’acció amb distàncies amb un paràmetre d’escala temporal.
Tenint en compte els nostres resultats, comentem els estudis previs en els
quals aquests mètodes han estat aplicats. Concretament, ens centrem en
la interpretació de les mesures estadı́stiques en termes de connectivitat
causal neuronal subjacent i propietats del codi neuronal, respectivament.
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Chapter 1

Introduction

In this thesis we study two different methods of data analysis that are
commonly applied to analyze neural activity. First, we consider the in-
vestigation of causal interactions between brain regions using time series
analysis. Second, we address how the neural code is studied by analyz-
ing the similarity of the responses of single neurons elicited by different
stimuli.

Characterizing causal interactions is a general issue relevant in many
fields apart from neuroscience. Only quite recently the causal connectiv-
ity between brain regions has started to be examined (see Pereda et al.,
2005; Bressler and Seth, 2010, and references therein), so that many of
the methods used have been taken from other fields (see Granger, 1980;
Pearl, 2009). We focus on one approach which was developed in the
field of nonlinear time series analysis (Schiff et al., 1996; Arnhold et al.,
1999). In this thesis we characterize the specificity of the measures pro-
posed in this approach that have been commonly used to quantify the
causal interactions (see Pereda et al., 2005, for a review), and a new mea-
sure we introduced (Chicharro and Andrzejak, 2009) which outperforms
the specificity of the previous measures. We also compare this approach
to Granger causality (Granger, 1963, 1969, 1980), another approach often
applied to study neural signals. Furthermore, we discuss the applicability
of these methods to neural data and the problems that generally prevent
from interpreting the results in terms of underlying neuronal causal inter-
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actions. How the measures should be interpreted is important because the
measures of causality are often appreciated because they allow to examine
the effective connectivity (Friston, 1994), in contrast to other statistical
measures which reflect only the correlations in the data.

In contrast to the generality of causal analysis, the analysis of the sim-
ilarity of the responses of single neurons elicited by different stimuli was
specifically introduced to study the neural code in sensory systems (Vic-
tor and Purpura, 1996). In particular, it was designed to evaluate the rel-
evance of spike timing in the encoding of the stimuli, in contrast to the
simplest rate encoding which was frequently considered. The method
consists in a discrimination analysis that compares the capability of a
neuron to discriminate between different stimuli based on the similar-
ity between the spike trains. The discrimination performance is evalu-
ated in dependence on the spike timing sensitivity, which is varied using
time scale parametric spike train distances to quantify the similarity be-
tween the spike trains. As a result, the discrimination analysis provides
an estimate of the maximal discrimination performance, of the spike tim-
ing precision necessary for this discrimination performance, and of the
improvement in discrimination when considering the spike timing with
respect to a rate code. We here examine the degree to which the quanti-
ties obtained from the discrimination analysis are informative about the
neural code. In particular, it is important to consider if the discriminative
precision can be related to some characteristic time scale of the code, and
what the actual estimated discrimination performance and the improve-
ment when considering spike timing tell us about what and how is being
encoded.

Given the clear distinction of our work into two different parts, we
will introduce each study separately. In Chapter 2 we present our work
related to causal analysis. In Chapter 3, we present the work on the study
of the neural code using spike trains similarity. Finally, in Chapter 4, we
discuss the elements in common of the two studies and we point to present
and future work to continue this research.
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Chapter 2

Studying causality in the brain with time series
analysis

2.1 Criteria and assumptions for assessing causality

2.1.1 Introduction

Causal interactions have been studied in many different fields in the last
century, and different frameworks have been proposed (see Pearl, 2009;
Greenland and Brumback, 2002; Pearl, 2010, for an overview and com-
parison). For example, the framework of counterfactual analysis has been
more studied in the statistician community (Rubin, 1974), while Struc-
tural Equation Modeling (Wright, 1921) has been commonly applied in
econometrics (Haavelmo, 1943) and social sciences (Duncan, 1975). Struc-
tural Equation Modeling has also been applied in neuroscience, in par-
ticular in neuroimaging (McIntosh and Gonzalez-Lima, 1991, 1994). A
similar approach designed specifically to take into account the particu-
larities of neuroimaging data is the framework of Dynamic Causal Mod-
eling (Friston et al., 2003; Daunizeau et al., 2009). A common charac-
teristic of these approaches is that a model is proposed a priori relating
the variables which causal connections are studied. This model reflects
anatomically motivated assumptions about the connectivity. Furthermore,
depending on the complexity of the model, the variables included can di-
rectly correspond to the recorded signals (for example, the blood oxygen
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level-dependent (BOLD) signal), or explicitly account, for example, for
hemodynamic responses introducing hidden variables in the model. In
any case, these methods are hypothesis-driven in the sense that models
are proposed and compared after fitting the parameters with the data.

In contrast to these hypothesis-driven approaches, other methods to
study causal interactions are data-driven in the sense that conclusions
about the existence and strength of the causal interactions are only based
on the analysis of experimental data. In general it is not possible to reli-
ably infer the existence of a causal interaction from observed data without
any intervention on the systems (Pearl, 2009). However, under some con-
ditions, causality can be inferred. For example, for the simple case of
two systems X and Y from which two time series are recorded, consider
that yi+1 corresponds to the future value of Y , and y1:i = {yi, yi−1, ...y1},
x1:i = {xi, xi−1, ...x1} to the past of Y and X , respectively. If temporal
precedence is imposed as a physical requirement for the causal interac-
tions, causality from X to Y can be assessed examining the conditional
independence of yi+1 on x1:i, once conditioned first on y1:i. The use of
conditional independence to identify causal interactions is not restricted
to time series and can be generally used to construct causal graphs where
each node represents a variable (Pearl, 2009). For time series analysis, the
criterion of conditional independence corresponds to the criterion formu-
lated by Granger (1969, 1980), for the study of econometric data. In fact,
the same formulation has been proposed repeatedly in different fields,
comprising ethology (Marko, 1973), information theory (Massey, 1990),
and nonlinear time series analysis (Schreiber, 2000).

The criterion of conditional independence provides a general test for
causality because it involves the comparison of probability distributions.
However, this generality makes the criterion difficult to test in practice,
and further assumptions are usually used to test for causality between
time series. For linear Gaussian stationary stochastic processes, Granger
causality in mean (Granger, 1963) is the most widely applied method.
Instead of examining the conditional independence of the probability dis-
tribution, it restricts itself to considering the conditional independence
of the mean, which can be quantified in terms of the improvement in the
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linear predictability of Y considering the past of X (Wiener, 1956; Lütke-
pohl, 2006). This allows testing for causality by applying linear regres-
sion or fitting autoregressive models (Geweke, 1982). This linear Gaus-
sian Granger causality has been applied also in neuroscience to study the
causal connectivity. A network of brain regions is defined using, for ex-
ample, local field potentials (e. g. Brovelli et al., 2004) or BOLD signals
(e. g. Roebroeck et al., 2005) to identify each node. However, the lin-
earity and Gaussianity assumptions are often not adequate for neuronal
electrophysiological signals. Several extensions have been proposed to
test for causality on nonlinear data (e. g. Hiemstra and Jones, 1994; An-
cona et al., 2004). In particular, the transfer entropy (Schreiber, 2000),
which is the Kullback-Leibler distance (Cover and Thomas, 2006) quanti-
fying directly the conditional independence criterion from the probability
distribution (Barnett et al., 2009; Amblard and Michel, 2010), is increas-
ingly applied to characterize causal interactions (e. g. Vicente et al., 2010;
Besserve et al., 2010). These extensions form part of the variety of mea-
sures that have been proposed in the recent years for a nonlinear analysis
of neurophysiological signals (see Pereda et al., 2005, for a review).

In this thesis we focus on an alternative criterion to study causality,
which also belongs to the group of data-driven approaches. We will refer
to it as the criterion of the mapping of nearest neighbors (MNN criterion).
Measures based on this criterion have been developed in the field of dy-
namical systems (Ott, 2002) and nonlinear time series analysis (Kantz
and Schreiber, 2003). Therefore, they are specially appropriate to study
directional couplings between nonlinear deterministic self-sustained dy-
namical systems, in contrast to Granger causality, which is designed for
stochastic dynamics.

Since the work of Pecora and Carroll (1990), much attention has been
paid to interactions between nonlinear dynamical systems leading to syn-
chronization (see Pikovsky et al., 2001; Boccaletti et al., 2002, Chapter
14 in Kantz and Schreiber, 2003, and Chapter 10 in Ott, 2002). Measures
to detect different types of synchronization, comprising generalized syn-
chronization (Rulkov et al., 1995), or phase synchronization (Rosenblum
et al., 1996) were proposed, and have been applied to study interdepen-
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dencies between electroencephalographic (EEG) and magnetoencephalo-
graphic (MEG) signals (e. g. Stam and van Dijk, 2002; Tass et al., 2003).
However, these measures are not sensitive to the direction of the coupling.
Alternatively, the direction of the coupling can be studied quantifying how
nearest neighbors in the delay coordinates space (Takens, 1981) of the
driven system are mapped to the delay coordinates space of the driving
system, and oppositely. Several measures have been proposed to quantify
the mapping of the neighbors in the delay coordinates space (e. g. Schiff
et al., 1996; Arnhold et al., 1999; Quian Quiroga et al., 2000). These mea-
sures have been applied, for example, to characterize the changes in the
interdependence of electroencephalographic (EEG) signals recorded from
patients suffering from epilepsy (Arnhold et al., 1999) depending on the
epileptic state. The use of a method specific for nonlinear deterministic
dynamics is in this case motivated by the traces of nonlinear determinism
characteristic of the epileptic activity (Andrzejak et al., 2001), associ-
ated with high levels of synchronization during the epileptic seizures (see
Stam, 2005, for a review).

Independently of which criterion is used to test for the existence of
causal interactions, a measure needs to be derived from this criterion
which is sensitive and specific enough to account for the causal interac-
tions. Furthermore, the estimation of the measure has to be characterized
to identify possible biases arising from the finite sampling of the data
in experimental studies. For example, for information theory measures,
like the transfer entropy, there is a rich bibliography of different estima-
tion methods (see Paninski, 2003b; Hlaváčkova-Schindler et al., 2007,
for a review), which includes also estimators based on nearest neighbors
statistics in the delay coordinates space (Kraskov et al., 2004). For these
type of measures there is a clear difference between the definition of the
measure and its estimation, because the entropy (Shannon, 1948) or the
Kullback-Leibler distance (Cover and Thomas, 2006) are well-founded
quantities with a clear interpretation in terms of the amount of informa-
tion of the stochastic variables. By contrast, such a clear difference is
blurred for other measures introduced ad-hoc to specifically implement
one of the criteria of causality. This is the case of the measures derived
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from the criterion of the mapping of nearest neighbors. The proliferation
of different variants of the original MNN measures (Arnhold et al., 1999;
Quian Quiroga et al., 2002; Pereda et al., 2001; Bhattacharya et al., 2003;
Andrzejak et al., 2003; Kantz and Schreiber, 2003) has to be thus under-
stood as the attempt to improve the estimation of directional couplings
using the appropriate normalization of the measure. This normalization is
necessary because it has been shown that the original measures (Arnhold
et al., 1999), can be biased by asymmetries in the statistical properties of
the time series, which are not necessarily directly related to the directional
couplings (Quian Quiroga et al., 2000; Schmitz, 2000). These asymme-
tries can be due to differences in the dynamics, but also to different levels
of measurement noise. The principal result of this part of the thesis is to
identify the various sources of bias and show that most of them can be
avoided by using an appropriate normalization. We furthermore diminish
the remaining bias by introducing a measure based on ranks of distances,
instead of distances.

This part is organized as follows. After this introduction (Section
2.1.1), in Section 2.1.2 the reconstruction of the state-space of the dy-
namics by delay coordinates is justified and used to motivate the crite-
rion of the mapping of nearest neighbor. Furthermore, this criterion is
compared to the Granger causality criterion based on conditional inde-
pendence (Section 2.1.3). In Section 2.2 we present a characterization of
the measures implementing the MNN criterion (Chicharro and Andrze-
jak, 2009). In particular, in Section 2.2.1 we describe the principal MNN
measures proposed to study directional couplings, and a new measure
we introduced (Chicharro and Andrzejak, 2009) that substitutes distances
statistics by rank statistics. In Section 2.2.2 we describe the simulated
models we use to characterize the measures. The results are presented in
Sections 2.2.3 and 2.2.4. In Section 2.3 we discuss how these results con-
tribute to the assessment of causal interactions, the caveats of the criterion
of the mapping of nearest neighbors and more generally the problems and
challenges to study causal effects in the brain.
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2.1.2 Delay coordinates and the mapping of nearest neighbors

Delay coordinates reconstruction of the state-space

The scenario contemplated by the MNN criterion consists in the case
where two time series {xi}, {yi}, i = 1, 2, ..., N are recorded from two
systems X and Y , respectively. These systems are assumed to be sepa-
rate deterministic stationary dynamics which both exhibit an independent
self-sustained motion. It is further assumed that if there is a coupling it
is unidirectional and too weak to induce a synchronized motion. Under
these assumptions, directional couplings can be detected by quantifying
the probability with which close states of the driven dynamics are mapped
to close states of the driving dynamics, and viceversa. Assuming that X
is the driving system and Y the driven system, the dynamics can be gen-
erally represented as:

ẋ(t) = F(x(t)) (2.1a)
ẏ(t) = G(y(t),x(t))., (2.1b)

where x(t), y(t) are multivariate variables representing all the degrees of
freedom of the systems. However, these variables are not observable, and
the dynamics have to studied only from the measured time series. Infor-
mation from the underlying dynamics can be obtained from a measured
signal using a state-space reconstruction of the dynamics with delay co-
ordinates. The possibility of the reconstruction, under some assumptions,
is assured by Takens’s theorem (Takens, 1981; Sauer et al., 1991).

Consider a realization x(t) of the deterministic dynamical system X
evolving in an attractor of dimension DX . From this dynamics we mea-
sure a signal

xi = g(x(ti)) (2.2)

using the measurement function g(·). These measurements result in the
time series {xi}. Delay vectors are built, using an embedding dimension
m and a time delay τ , by constructing:

xi = (xi, ..., xi−(m−1)τ ). (2.3)

8



Hence, a temporal sequence of delay vectors {xi} is obtained for i =
η, ..., N , where η is the embedding window η = (m− 1)τ . Taken’s theo-
rem states that a bijective function between the original dynamics X and
its reconstruction {xi} exists, provided that the embedding dimension m
is higher than 2DX . The assumptions required by Taken’s theorem are:
First, that the underlying dynamics is stationary. Second, that both the
dynamics and the measurement function are generic, in the sense that the
measured signal reflects all the degrees of freedom of X . Finally, that the
measurement function is invertible. Furthermore, the proof of existence
of the bijective function assumes infinitely long noise-free time series,
in which case the reconstruction does not crucially depend on the specific
value chosen for the time delay τ . For the reconstruction from experimen-
tal data, when only a finite noisy sampling is available, this parameter has
to be adjusted to obtain a good reconstruction. The selection of m and τ
is a matter of study by itself, and different methods have been proposed to
find optimal values (e. g. Fraser and Swinney, 1986; Pecora et al., 2007).
However, in practice, the reconstruction is often done for a range of m and
τ , and one has also to consider the variability of the results depending on
the parameters.

We here give an heuristic argument for the existence of a function
between the original dynamics in X and the delay vectors reconstructed
space (Ott, 2002; Chicharro, 2007), but we do not prove the necessity of
m > 2DX for this function to be bijective. This argument is enough to
later motivate the criterion of the mapping of nearest neighbors. Consid-
ering that the dynamics are deterministic, and further assuming they are
reversible, considering Equation 2.1a, each past state of the autonomous
driving system X can uniquely be determined by x(ti), so that

x(ti−kτ ) = Lk(x(ti)) (2.4)

for k = 0, ..., (m − 1), where Lk represents the backward application k
iterative times of the discrete map related to function F in Equation 2.1a,
when using a time step τ . Furthermore, given the measurement function
in Equation 2.2, the delay vector of Equation 2.3 can be determined as
xi = (g(L0(x(ti))), ..., g(L(m−1)(x(ti))), which can be expressed in a

9



compressed way as:
xi = H(x(ti)), (2.5)

where H is bijective if the required conditions are fulfilled.

The criterion of the mapping of nearest neighbors

The argumentation above leading to Equation 2.5 starts from Equation
2.1a, which reflects the autonomy of the driving system. Oppositely, as
noticed in Schiff et al. (1996), for the driven system, an analogous argu-
mentation using Equation 2.1b shows that the delay vector yi does not
reconstruct only the dynamics Y , but contains also information about the
X dynamics. In particular, the delay vector can be expressed as:

yi = (g(L̃0(y(ti),x(ti))), ..., g(L̃m−1(y(ti),x(ti)))), (2.6)

or in a compressed form

yi = H̃(y(ti),x(ti)). (2.7)

In this case, the degree to which yi provides a good reconstruction of the
joint dynamics X × Y depends on the strength of the coupling (Stark
et al., 1997). For the case of a weak coupling the condition of genericity
is not fulfilled and the degrees of freedom of X are hardly reflected in a
short time series {yi}. However, a weak coupling is already enough to
break the bijective projection between the delay vectors and the underly-
ing dynamics of Y .

The asymmetry between Equations 2.5 and 2.7 is the fundament of
the MNN criterion, together with the asymmetry between Equations 2.1a
and 2.1b. Below we provide arguments for the validity of this criterion.
They do not constitute a rigorous proof, but they are an extended and more
detailed explanation of the justification provided by Schiff et al. (1996).
Consider the delay vector yi and its neighbor yj , such that ||yi−yj|| < εy,
where we take εy → 0 and || · || represents a distance in the space of delay
vectors. According to Equation 2.6 in order to get ||yi − yj|| < εy it is
necessary that:

||g(L̃k(y(ti),x(ti)))− g(L̃k(y(tj),x(tj)))|| < εy,k (2.8)
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holds for each component of the delay vectors, k = 0, ..., m − 1, with
εy,k → 0. Equation 2.8 does not imply that ||y(ti) − y(tj)|| < ε̃y, and
||x(ti) − x(tj)|| < ε̃x, where ε̃x,y → 0. However, the fulfillment of
these two conditions is sufficient for Equation 2.8 to hold. By contrast,
other possible ways to fulfill Equation 2.8 depend on the concrete form
of L̃k and the concrete combination of the terms in it involving y(ti),
x(ti), and y(tj), x(tj), respectively, so that they may fulfill it for some
particular ti, but not in all the attractor of the dynamics. Given that, it
is expected that the fulfillment of Equation 2.8 increases the probability
that ||x(ti) − x(tj)|| < ε̃x holds, with respect to alternatively choosing a
random tj . Assuming that ||x(ti) − x(tj)|| < ε̃x holds, given Equation
2.5, for a bijective function H,

||x(ti)− x(tj)|| < ε̃x ⇔ ||xi − xj|| < εx, (2.9)

where εx → 0. Equation 2.9 relies on the geometrical structure of the
attractor of the dynamical systems, which ensures that for either ε̃x → 0
or εx → 0 it is possible to find neighbors close enough to be projected to
the corresponding neighbors by either H or its inverse. In Appendix A
we show how the number of close neighbors is related to the dimension
of the system’s attractor. Accordingly, we obtain that

||yi − yj|| < εy ⇒ ||xi − xj|| < εx. (2.10)

Oppositely, this line of arguments cannot be applied in the opposite direc-
tion due to the asymmetry between Equations 2.5 and 2.7. In particular
||y(ti) − y(tj)|| < ε̃y < ||yi − yj|| < εy. Furthermore, y(ti) does not
appear in Equation 2.1a, and the argument involving the equation anal-
ogous to Equation 2.8 in the other direction does not hold neither. In
consequence,

||xi − xj|| < εx ; ||yi − yj|| < εy. (2.11)

Although Equations 2.10 and 2.11 are formulated as implications, in prac-
tice it is better to think about the mapping of the nearest neighbors in
terms of probabilities. Theoretically, this is because Equation 2.8 does
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not imply ||x(ti) − x(tj)|| < ε̃x, but only increases the probability that
this holds. Furthermore, for experimental finite noisy data, the measure-
ment function may be not invertible, the bijectivity between the underly-
ing dynamics space and the delay vectors space is not assured, and nearest
neighbors can be not sufficiently close so that Equation 2.10 holds for all
the points. Furthermore, the use of two different indexes for εx, εy in-
dicates that, for dynamics with different properties, the probabilities of
mapping the nearest neighbors should not be compared directly against
each other for the two directions, but have to be compared first to a refer-
ence specific to each dynamic. Therefore, we can formulate the criterion
of the mapping of nearest neighbors as follows: for a coupling from X
to Y , the increase in the probability of the nearest neighbors in the re-
constructed space of Y to be mapped to nearest neighbors in the recon-
structed space of X is higher than the increase in the probability in the
opposite direction,

∆P (||xi − xj|| < εx| ||yi − yj|| < εy) > ∆P (||yi − yj|| < εy|
||xi − xj|| < εx).

(2.12)

The degree to which the increases in the probabilities are different de-
pends on the properties of the dynamics (e. g. their dimensions, their
Lyapunov spectrum), and on the strength of the coupling, the impact of
which depends itself on the properties of the dynamics. Furthermore, the
MNN criterion is expected to hold only for a limited range of coupling
strengths. For uncoupled systems, no increase in the mapping probability
should be observed, and can only result from a bias caused by the differ-
ent properties of the dynamics. For a strong coupling, the systems can
achieve generalized synchronization (Rulkov et al., 1995), involving the
existence of a function

y(t) = φ(x(t)) (2.13)

between the dynamics of the driving system X and the driven system Y .
This functional relationship, together with Equations 2.8 and 2.9, leads to

||xi − xj|| < εx ⇒ ||yi − yj|| < εy. (2.14)
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Hence, considering Equations 2.10 and 2.14, for a coupling strong enough
to produce generalized synchronization, the directionality of the coupling
cannot be assessed using the MNN criterion. In fact, a smoother relation-
ship

yi = φ̃(xi) (2.15)

in the delay vectors space can be attained even when φ is not smooth
(Rulkov and Afraimovich, 2003; He et al., 2003). For finite experimental
data the closeness of the nearest neighbors is limited and therefore the
smoothness of the functionality becomes more relevant (So et al., 2002;
Barreto et al., 2003). Considering this, the effective impact of general-
ized synchronization on the nearest neighbors statistics for a particular
coupling is specific of each pair of dynamics.

The argumentation above is based on the deterministic nature of the
dynamics, which allows the reconstruction of the underlying dynamics
using the delay coordinates. Nonetheless, the state-space reconstruc-
tion by delay coordinates has been extended to noisy dynamics (Casdagli
et al., 1991). In this case the relation between the space of X and the de-
lay vector space does not correspond to a bijective function as in Equation
2.5, but can be represented by a conditional probability distribution. An
effect in the probability of mapping the nearest neighbors is also expected
for stochastic dynamics. Consider a bivariate autoregressive process of
order p:

(
xi

yi

)
=

p∑
j=1

Aj

(
xi−j

yi−j

)
+

(
u

(x)
i

u
(y)
i

)
, (2.16)

where the matrices Aj are lower triangular matrices such that only Y

depends on X , and the innovations u
(x)
i and u

(y)
i are independent Gaussian

white noise terms with zero mean. Each component of the delay vector
of X depends on its own past and on the X innovations:

xi+jτ = L−j(x(i−1), .., xi−p, u
(x)
i , ..., u

(x)
i+jτ ), (2.17)

while each component of Y depends on the past of the two processes and
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the innovations of both processes:

yi+jτ = L̃−j(x(i−1), .., xi−p, y(i−1), .., yi−p, u
(x)
i ,

..., u
(x)
i+(j−1)τ , u

(y)
i , ..., u

(y)
i+jτ ),

(2.18)

Since the innovations are independent white noise terms, for a sufficiently
high embedding window (m − 1)τ , the neighbors in the delay vectors
space mainly result from common past trajectories. Therefore, in prob-
abilistic terms, the same arguments used for the deterministic dynamics
are valid for stochastic dynamics to justify the MNN criterion.

Overall, the principle of the nearest neighbors statistics can be used
to assess the direction of the coupling for a limited range of coupling
strength. Furthermore, given the arguments presented above, it is nec-
essary to assume that the driving system is autonomous, that is, that in
Equation 2.1a only the X dynamics appear, so that Equation 2.9 holds.
For the bivariate case this means that the coupling is unidirectional. A
bidirectional coupling is expected to lead to an increase in the probability
of the mapping of the nearest neighbors in both directions and for which
directions the increase is higher depends on the dynamics and the nature
and strength of the couplings. For multivariate systems, another system
Z can drive Y together with X , but the effect on the nearest neighbors
statistics will then depend on the properties of the three dynamics.

2.1.3 Comparison with Granger causality

Given that the Granger causality criterion of conditional independence is
an alternative general test for causality between time series, it is worth
comparing with it the criterion of the mapping of nearest neighbors. We
start by briefly reviewing Granger causality. Consider a multivariate sta-
tionary stochastic process W which can be divided into the processes X ,
Y , and Z. Causal interactions are studied between X and Y , and Z repre-
sents the rest of the processes. The condition for the existence of causality
from X to Y is:

P (yi+1|y1:i, z1:i, x1:i) 6= P (yi+1|y1:i, z1:i), (2.19)

14



that is, that yi+1 is not independent of the past of X when previously con-
ditioned on the past of all the other processes. The conditional distribu-
tions have to be examined for all the concrete values of the conditioning
variables. This condition is general under two assumptions. First, that
causal interactions follow the arrow of time; second, that W comprises
any process interdependent with X and Y , to assure, for example, that the
effect of an unobserved common driver is not mistaken as a direct causal
dependence from X to Y . The first assumption is, per se, not very restric-
tive, and is motivated by the study of causality from time series. The sec-
ond assumptions is stronger for experimental data, because in general it is
not possible to record all the influencing processes. Given the necessity of
these assumptions, Granger causality corresponds only to a specific sub-
case in the framework proposed by Pearl to study causality (Pearl, 2009).
In Pearl’s formulation it is not assumed that all the variables are observed,
involving that causality cannot be assessed, in general, without interven-
tion in the system.

We now compare the MNN criterion to Granger causality. Granger
causality allows assessing causal interactions for any multivariate system
as long as all the processes are observed, even when bidirectional cou-
plings exist. Oppositely, the criterion of the mapping of nearest neighbors
can only be applied when the couplings are unidirectional or, more gen-
erally, the driving system is autonomous. On the other hand, the MNN
criterion does not require that all the degrees of freedom of the underly-
ing dynamics are observed, only that they are reflected in the recorded
signal. The fact that the whole past of the processes is used for partial-
ization in the probability distributions of Equation 2.19 has been claimed
to play a role equivalent to the delay coordinates reconstruction of the
dynamics (Vicente et al., 2010). However, when X and Y are dynamical
systems, yi+1 may not reflect the degrees of freedom of Y on which the
coupling from X operates. If several steps in the future were considered
to better reflect the influence of X on Y , also indirect causal influences
through Z would be reflected (Lütkepohl, 1993).

Another apparent difference between the two approaches is that, while
in Equation 2.12 the delay vectors are contemporaneous, in Equation
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2.19, an asymmetry exists between the driving and driven processes, since
only the future of the driven system is examined. In fact, the MNN cri-
terion can be formulated also considering the future step. Given that the
embedding obtained with the delay coordinates reconstruction is smooth,
the counterpart of equation 2.1a in the space of the delay vectors can be
obtained using the bijective function of Equation 2.5 and its inverse:

xi+1 = H ◦ L−1 ◦H−1xi. (2.20)

This means that, considering only the first component of xi+1, Equation
2.10 can be extended to:

||yi − yj|| < εy ⇒ ||xi+1 − xj+1|| < ε′x. (2.21)

Oppositely, a map analogous to the one of Equation 2.20 cannot be ob-
tained to express yi+1 in terms only of yi, which further supports together
with Equation 2.11 that:

||xi − xj|| < εx ; ||yi+1 − yj+1|| < ε′y. (2.22)

This predictive formulation of the MNN criterion was used in Schiff
et al. (1996) and Le Van Quyen et al. (1999). While Schiff et al. (1996)
took the inequality of Equation 2.12 in the same direction, Le Van Quyen
et al. (1999) used the inverse inequality, following the argumentation valid
for the regime of generalized synchronization where Equation 2.15 holds
(see Arnhold et al., 1999, for a discussion on the correct direction of the
inequality in Equation 2.12). To better compare the MNN criterion with
Granger causality, we can assume that conditioning on the past of the
processes or on a delay vector which accounts only for a limited past of
the time series are equivalent. In practice, also in Equation 2.19 the past
considered is limited due to finite sampling. Given that, the criterion of
the mapping of nearest neighbors can be related to the following condition
on the probability distributions:

D(P (xi+1|y1:i), P (xi+1)) > D(P (yi+1|x1:i), P (yi+1)), (2.23)
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where D(·, ·) is an appropriate measure of the difference of the probability
distributions. While the difference between the probabilities in Equation
2.19 can be tested with any arbitrary statistics on the probabilities, here
the direction of the inequality, inherited from Equation 2.12, is only valid
if D is chosen to reflect the local dispersion of the neighbors. There-
fore, considering the distinction made in Section 2.1.1 between criteria,
measures, and estimation strategies, we see that the Granger causality
criterion is more robust in the sense that it is clearly defined, indepen-
dently of the statistics used to test it. In fact, the use of nearest neighbors
statistics to characterize the probabilities is not exclusive of the MNN cri-
terion and has been used in some extensions to nonlinear dynamics of the
formulation of Granger causality for linear Gaussian processes in terms
of predictability improvement (Chen et al., 2004; Feldmann and Bhat-
tacharya, 2004). In these extensions the predictability is examined locally
using local linear maps or a zero-order predictor.

Equation 2.23 is not a condition of conditional independence like
Equation 2.19. Causality from X to Y cannot be assessed by examin-
ing the conditional independence

P (yi+1|x1:i) 6= P (yi+1), (2.24)

that is, without conditioning yi+1 on its own past. This is so because, for a
causal influence in the opposite direction, x1:i is dependent on y1:i, which
makes yi+1 dependent on x1:i if the process has memory, leading already
to the inequality of Equation 2.24. Accordingly, the condition of causal-
ity of Equation 2.23 has to compare the degree of conditional dependence
in the two directions. The argumentation in Section 2.1.2 justifies this
condition for dynamical systems reconstructed via delay coordinates for
a given range of coupling strengths. In particular, the existence of gener-
alized synchronization marks an upper bound for the coupling strengths
for which the direction of the causal interaction can be assessed. For other
type of processes, like the stochastic processes also discussed in Section
2.1.2, we do not have a clear way to know for which range of coupling
strengths the criteria is expected to hold. Nonetheless, this limitation is
not exclusive of the MNN criterion, and affects also the Granger causality
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criterion. For example, the transfer entropy, which directly compares the
two probability distributions of Equation 2.19, is nonmonotonic with the
coupling strength (e. g Kaiser and Schreiber, 2002). This is due to the
necessity to partialize in the own past in Equation 2.19. When X and Y
get synchronized, the past of X does not contain further information than
the past of Y .

2.2 Sensitivity and specificity of the measures imple-
menting the MNN criterion

We here describe the measures that have been proposed to implement the
criterion of the mapping of nearest neighbors and we introduce a new
measure that substitutes distance statistics by rank statistics to attenuate
the biases arising from differences in the statistical properties of the time
series. We describe the simulated dynamics we use to characterize the
measures and discuss the sources of bias. We then analyze the speci-
ficity of the measures in dependence on the coupling strength, the levels
of noise and the embedding parameters used in the delay coordinates re-
construction.

2.2.1 Measures implementing the MNN criterion

We consider the case of a bivariate system such that the dynamics X and
Y are assumed to be separate deterministic stationary dynamics which
both exhibit an independent self-sustained motion. It is further assumed
that if there is a coupling it is unidirectional and too weak to induce a
synchronized motion. From the dynamics X and Y scalar time series
xi and yi (i = 1, . . . N ) are simultaneously measured. The dynamics
are reconstructed using delay coordinates xi = (xi, . . . xi−(m−1)τ ), yi =
(yi, . . . yi−(m−1)τ ) with embedding dimension m and delay τ (i = 1, . . . N∗ =
N−(m−1)τ ) (Kantz and Schreiber, 2003). When using nearest neighbors
statistics to examine the direction of the coupling there are two different
possibilities, the fixed mass (Arnhold et al., 1999) or the fixed distance
approach (Cenys et al., 1991). We here follow the fixed mass approach,
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which means that we select a fixed number of nearest neighbors k in-
stead of all the neighbors closer than a fixed distance. By vi,j and wi,j

(j = 1, . . . k) we denote the time indices of the k nearest neighbors of
xi and yi, respectively. These k neighbors are chosen excluding temporal
neighbors within |vi,j−i| ≤ W and |wi,j−i| ≤ W , where W is the Theiler
window (Theiler, 1986). This window is necessary because, due to the au-
tocorrelation in each system, the nearest neighbors on the same trajectory
have a higher probability to be mapped to nearest neighbors in the other
system even if they are uncoupled. For each xi, the k-mean squared Eu-
clidean distance to its k nearest neighbors is Rk

i (X) = 1
k

∑k
j=1 |xi−xvi,j

|2,
and the conditional k-mean distance is Rk

i (X|Y ) = 1
k

∑k
j=1 |xi − xwi,j

|2.
The mean distance to all other points is Ri(X) = 1

N∗−1

∑N∗
j=1,j 6=i |xi−xj|2.

1 Based on these distances one can define:

S(X|Y ) =
1

N∗

N∗∑
i=1

Rk
i (X)

Rk
i (X|Y )

(2.25)

H(X|Y ) =
1

N∗

N∗∑
i=1

log
Ri(X)

Rk
i (X|Y )

(2.26)

N(X|Y ) =
1

N∗

N∗∑
i=1

Ri(X)−Rk
i (X|Y )

Ri(X)
(2.27)

M(X|Y ) =
1

N∗

N∗∑
i=1

Ri(X)−Rk
i (X|Y )

Ri(X)−Rk
i (X)

(2.28)

Equations 2.25, 2.26 were defined in Arnhold et al. (1999). Equation 2.27
was proposed as a normalized measure in Quian Quiroga et al. (2002),
however it attains values of one only for synchronized periodic dynam-
ics. Therefore, Equation 2.28 was derived from Equation 2.27 in Andrze-
jak et al. (2003). Moreover, Equation 2.28 was introduced independently

1Due to the exclusion of the vectors in the Theiler window W , N∗ has to be adjusted,
and cases i < W , N∗−i < W need to be further distinguished. To simplify the notation
we write all formulas for W = 0.
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from Andrzejak et al. (2003) in Kantz and Schreiber (2003). Both ap-
proaches lead to very similar results, and we therefore do not consider
Equation 2.27 but use Equation 2.28 instead. These measures have in
common the quantification of conditional dispersion by Rk

i (X|Y ), related
to the criterion of the mapping of the nearest neighbors. The other terms
provide a reference specific to each system to see the impact of the con-
ditioning. The measure S compares Rk

i (X|Y ) to the k-mean distance to
the true nearest neighbors Rk

i (X), which is the minimum value attain-
able, so that S values close to one are expected for a strong coupling.
For uncoupled dynamics, E[Rk

i (X|Y )] = E[Ri(X)], where E[·] denotes
the expected value across independent realizations of the dynamics. This
determines the value of S, small but higher than zero for uncoupled dy-
namics. By contrast, the mean distance Ri(X) is used in H as a reference,
which is the expected value of the conditional k-mean distance for uncou-
pled dynamics. Accordingly, given the logarithm, H is supposed to be
zero for uncoupled dynamics and increase to an upper bound determined
by Ri(X)/Rk

i (X). Both references are used in M , so that a value of zero
is expected for uncoupled dynamics and a value of one for strong cou-
plings. The degree to which these expected values hold will be examine
below.

In Chicharro and Andrzejak (2009) we proposed the following rank-
based statistics: For each xi, let gi,j denote the rank that the distance be-
tween xi and xj takes in a sorted ascending list of distances between xi and
all xj 6=i. The conditional k-mean rank is then Gk

i (X|Y ) = 1
k

∑k
j=1 gi,wi,j

,
and we define

L(X|Y ) =
1

N∗

N∗∑
i=1

Gi(X)−Gk
i (X|Y )

Gi(X)−Gk
i (X)

. (2.29)

where Gi(X) = N∗
2

and Gk
i (X) = k+1

2
denote the mean and mini-

mal k-mean rank, respectively. This measure L has the same normal-
ization as M but the distance-based statistics is substituted by rank-based
statistics. For the opposite direction S(Y |X), H(Y |X), M(Y |X), and
L(Y |X) are defined by exchanging the role of X and Y in the above
definitions. Furthermore, we use the notation A to refer to the group of
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Table 2.1: Expected dependence of the MNN measures on the distances
for a coupling from X to Y

Measure Uncoupled dynamics Synchronized dynamics
S(X|Y ) Rk

i (X)/Ri(X) 1
H(X|Y ) 0 Ri(X)/Rk

i (X)
M(X|Y ) 0 1
L(X|Y ) 0 1

all measures S, H,M,L 2. Since Equation 2.12 involves the comparison
of the mapping in both directions, A(X|Y ) by itself is not specific and
∆A = A(X|Y ) − A(Y |X) is needed. The aim of the analysis is to ex-
amine to what extent ∆A > 0 is a sensitive and specific condition for
assessing that a unidirectional coupling from X to Y exists. Notice that
the applicability of the criterion of the mapping of the nearest neighbors
is a necessary but not a sufficient condition for ∆A > 0 being reliable to
assess causality.

2.2.2 Simulated dynamics

We restrict ourselves to the study of simulated systems, so that we can
control the strength of the coupling and generate a sufficient number of re-
alizations of the dynamics to obtain average results. In particular, we an-
alyze uncoupled as well as unidirectionally coupled non-identical Lorenz
dynamics (Lorenz, 1963) superimposed with different types of noise. The
Lorenz dynamics correspond to the following differential equations for
system X:

v̇1 = 10(v2 − v1)
v̇2 = 39v1 − v2 − v1v3

v̇3 = v1v2 − 8
3
v3

(2.30)

2A Matlab code to calculate the measures implementing the MNN criterion is avail-
able at http://pre.aps.org/supplemental/PRE/v80/i2/e026217
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and for system Y :

ẇ1 = 10(w2 − w1) + ε(v1 − w1)
ẇ2 = 35w1 − w2 − w1w3

ẇ3 = w1w2 − 8
3
w3.

(2.31)

A unidirectional diffusive coupling from X to Y exists, with a strength
controlled by ε. The dynamics were integrated using a 4-th order Runge-
Kutta algorithm with fixed step size of 0.005 and a sampling interval of
0.03 time units. We used random initial conditions and applied 106 pre-
iterations to diminish transients. As deterministic time series we use x̃i =
v1(ti) and ỹi = w1(ti) and autoregressive processes as noise time series:
ξX,Y
i+1 = aX,Y ξX,Y

i +ζX,Y
i+1 . Here ζX,Y

i denotes uncorrelated Gaussian noise
with zero mean and unit variance. All examples studied here can then be
written in the general form: xi = dX x̃i + nXξX

i , yi = dY ỹi + nY ξY
i for

i = 1, . . . N = 2048. Throughout all simulations we use fixed values of
k = 5, and W = 50 and set m and τ as specified below.

2.2.3 The influence of the coupling strength and the noise levels

As a first example we use Lorenz dynamics superimposed with Gaus-
sian uncorrelated noise (dX,Y = 1, aX,Y = 0). Apart from uncoupled
dynamics (ε = 0), we study coupled dynamics with ε separated by fac-
tors of 1.05 between 0.05 and 18. Within this set of coupling strengths,
εGS = 9.28 is the lowest value for which generalized synchronization is
attained. This can be determined from the comparison of two replicas of
the driven Y dynamics started at different initial conditions, but driven
by the same realization of X (Kocarev and Parlitz, 1996). According to
Equation 2.13, the two replicas are identically synchronized when they
both depend only on X . Apart from noise-free dynamics we use the noise
amplitudes IX,Y = [0.125 × 1.5n]σX,Y for n = 0, . . . 12, where σX,Y

denote the standard deviation of x̃i and ỹi, respectively. The noise is su-
perimposed either only to the driver: nX ∈ IX , nY = 0; to the driver
and to the response: nX ∈ IX , nY ∈ IY ; or only to the response: nX = 0,
nY ∈ IY .
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Figure 2.1: Dependence of A on ε for coupled Lorenz dynamics (m =
8, τ = 4). For the noise-free case with A(X|Y ) in red and A(Y |X) in
blue. For nX = 0.95σX , nY = 0 with A(X|Y ) in black and A(Y |X) in
green. In panel A the blue curve almost covers the red one. Error bars
depict ± one standard deviation. Vertical lines mark εGS, the coupling
strength for which Generalized synchronization is attained. Reproduced
from Chicharro and Andrzejak (2009).

For the noise-free dynamics the coupling direction is correctly de-
tected by ∆A > 0 to a different degree for H , M , and L (Figure 2.1).
For asymmetric noise levels some biases occur resulting in ∆A < 0, and
thus in the detection of the wrong coupling direction, for some range of
ε. Comparing H , M , and L, the rank-based measure L is least affected
by asymmetric noise. For the measure S, a more complicated picture is
obtained which we will explain in terms of the various sources of biases
in the following.

In Figure 2.1 we show the two directions of the measures so that it
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Figure 2.2: Dependence of ∆A on ε for m = 8, τ = 4 for coupled Lorenz
dynamics superimposed with noise. We used 1000 independent realiza-
tions of x̃i and ỹi for each ε and added independent realizations of ξX

i

and ξY
i for each noise amplitude specified in the text (A, D, G, J: noise

on X; B, E, H, K: noise on X and Y ; C, F, I, L: noise on Y ). From
blue to red colors indicate increasing noise levels. Error bars depict ±
one standard deviation and are shown for nX,Y = 0 only. Black and gray
dots indicate significantly positive and negative ∆A values, respectively
(Wilcoxon signed rank test at p=0.001.). Vertical lines mark εGS. Repro-
duced from Chicharro and Andrzejak (2009).

is visible that both increase for an increasing coupling strength. In Fig-
ure 2.2 we more systematically study the dependence of E[∆A] on the
coupling strength and the noise levels. We simplify the notation E[∆A]
to ∆A and apply the Wilcoxon test to determine whether nonzero values
of ∆A are significant (see black and gray dots in Figure 2.2). From a
first inspection it can be seen that ∆S is the measure that is most biased.
To understand some of the sources of bias we have to take into account
that, as indicated by Arnhold et al. (1999), the effective dimension DX is
reflected in the proportion between the distances appearing in Table 2.1
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as:
E[Rk

i (X)/Ri(X)] ∝ (k/N)2/DX , (2.32)

and analogously for Y . The effective dimension is related to the degrees
of freedom of the dynamics reflected in the reconstructed delay coordi-
nates space but also to the level of measurement noise. For stochastic or
very noisy dynamics, the effective dimension corresponds to the dimen-
sion m of the embedding, and the reconstructed space is filled. However,
for chaotic dynamics the dimension can be fractal, because the trajecto-
ries of the dynamics do not fill all the space (see Chapter 3 Ott, 2002).
Assuming ergodicity, and according to Table 2.1, we have that for zero or
very small couplings, or for high levels of noise, S(X|Y ) ∝ (k/N)2/DX .
Hence, E[∆S] > 0 for DX > DY . Therefore, generally ∆S is nonzero
even for uncoupled noise-free deterministic dynamics with slightly dif-
ferent effective dimensions.

For the Lorenz dynamics used here we have DX > DY at ε = 0
and accordingly get ∆S > 0 (Figures 2.1 A, 2.2 A-C). Upon increas-
ing of ε, for nX,Y = 0, DY at first increases due to the incorporation of
the driver’s degrees of freedom. However, when the coupling strength
increases towards and beyond εGS, DY decreases due to the collapse of
the joint dynamics to the synchronization manifold (Quian Quiroga et al.,
2000). For the given dynamics this local maximum of DY is reflected in
∆S < 0 found for an intermediate range of ε. For the noisy dynamics,
increasing the noise level, the effective dimension converges to the em-
bedding dimension m. Therefore, for asymmetric noise levels of X and
Y the difference in DX and DY and thereby ∆S is dominated by this
asymmetry. Even for symmetric noise levels nX = nY , measured relative
to the respective standard deviation of X and Y , the impact of this noise
can be asymmetric depending on the fine structure of the dynamics.

In contrast to S, the measure H seems better at detecting the existence
of a directional coupling, at least for low levels of noise. For uncoupled
noise-free Lorenz dynamics we get ∆H = 0 (Figures 2.1 B, 2.2 D-F).
With increasing coupling strength the stronger mapping of close states in
Y to close states in X leads to ∆H > 0. However, for asymmetric noise
levels, at zero and low ε we see that ∆H > 0 for nX > nY , and ∆H < 0
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for nX < nY . Here the bias results from the influence of the different ef-
fective dimensions on a bias inherent to the nonlinear dependence on the
conditional distance Rk

i (X|Y ) (Andrzejak et al., 2006a). Since for uncou-
pled or weakly coupled dynamics E[Rk

i (X|Y )] = E[Ri(X)], each term
of the N∗ summands in Equation 2.28 corresponds to γ(δ) = log µ

µ+δ
,

where µ = Ri(X) and δ accounts for the deviation from the mean. Due
to the concavity of the logarithm, γ(δ) + γ(−δ) > 0, and therefore a
positive bias is expected for H . When the dynamics are comparable, like
for the case of symmetric noise, this bias is comparable for H(X|Y ) and
H(Y |X), and it turns out not to be significant for ∆H . However, since the
variance of Rk

i (X|Y ) around its mean Ri(X) depends on the properties
of the dynamics, the biases in opposite directions are not compensated
for asymmetric levels of noise. In particular, for nX > 0, nY = 0, given
that the noise is uncorrelated, this means that the reconstructed space of
X becomes more circularly symmetric, which results in a smaller vari-
ance of Rk

i (X|Y ). Therefore, the bias due to the nonlinearity is smaller
for H(X|Y ) and ∆H < 0 (Figure 2.2 D). For strong couplings and a
moderate level of noise, there is another bias coherent to this one. Since
E[Rk

i (X|Y )] = E[Rk
i (X)] for ε close to εGS , a term proportional to

(k/N)DX/2 contributes to H(X|Y ). In consequence, for DY > DX the
value of ∆H increases, and viceversa.

Characterizing the measures S and H we already have discussed all
the sources of bias that prevent from a correct assessment of the direction
of the coupling. We briefly review them before examining M and L. First,
the relation between the distances and the effective dimension shown in
Equation 2.32 indicates that, according to Table 2.1, the references cho-
sen in measures S and H are not adequate for weak and strong couplings
respectively. The effective dimension does not correspond to the under-
lying dimension of the system, but to the dimension of the reconstructed
state-space, which apart from the dimension of each of the systems, de-
pends on the strength of the coupling, as well as on the noise level and
color, and on the parameters m and τ used for the delay coordinates. Sec-
ond, the nonlinear dependence on Rk

i (X|Y ) also introduces a bias. We
commented this bias for H , because it is the predominant source of bias
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for this measure. However, for S this bias is also present given the nonlin-
earity 1

(·) , which, given its convexity, has an influence opposite to the one
in H . The impact of the bias is determined by the variance of Rk

i (X|Y ).
This variance also depends in a non-trivial way on intrinsic properties
of X and Y , the noise level and color, and the parameters m, τ , and k.
Therefore, the accuracy of the measures depends on a lot of factors and
although taking into account these sources of bias helps to qualitatively
describe Figure 2.2, the actual noise levels or coupling strength for which
we observe a change in the significance of ∆A result from the details of
the dynamics and the particular combination of parameters chosen.

It is important to distinguish these biases, which arise from the esti-
mation of the nearest neighbors statistics and the selection of a particular
value of reference in each measure, from the fundamental limitation in the
criterion caused by generalized synchronization (Section 2.1.2). As dis-
cussed in Section 2.1.3, this problem does not only affect these measures
but is shared by any measure implementing the Granger causality crite-
rion. In Figure 2.1 we see that for M , and L, A(X|Y ) and A(Y |X) con-
verge to 1, when there is no noise. For H , A(X|Y ) and A(Y |X) converge
to each other. For this simulated system, A(X|Y ) remains higher until
they converge, but this is not guaranteed and depends on the smoothness
of the function in Equation 2.15. The difference ∆A is nonmonotonic,
starting to decrease when the coupling strength approaches εGS (Figures
2.2 D-L). In this region and for higher couplings a reliable assessment of
the direction of the coupling is compromised. Therefore, even if ∆A > 0,
one should also keep track of the values in the two separate directions to
know how reliable this nonzero ∆A value is, to infer a coupling from
X to Y . However, for noisy dynamics, A(X|Y ) and A(Y |X) decrease,
hiding the unreliability of the assessment of the coupling direction.

We now continue the analysis of the bias for M and L. For indepen-
dent dynamics the expected values of M(X|Y ), M(Y |X) and thereby
the one of ∆M are all zero (Figures 2.1 C, 2.2 G-I). The measure M
depends linearly on Rk

i (X|Y ), and thus the bias caused by the nonlinear-
ities described above for S and H does not affect M . The bias related to
Equation 2.32 does not affect the mean of M . However, factorizing the
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term Ri(X) in M(X|Y ), we see that the slope of the linear dependence
is determined by the denominator (Ri(X)(a(k/N)2/DX − 1)), where a is
some constant. Therefore, for zero coupling the across realization vari-
ance of ∆M depends on DX and DY , in contrast to its mean. For any
noise level and any type of symmetry, ∆M is zero for small couplings.
For weak coupling strengths, ∆M is positive for low noise levels and, if
the noise is symmetric, becomes nonsignificant when the noise increases.
However, for symmetric noise levels, even if the range of the parameters
in which a wrong direction is indicated is smaller, for intermediate cou-
pling strengths and intermediate levels of noise, ∆M < 0 is still obtained,
as it was for H in this regime. The fact that for asymmetric noise levels
∆M is still positive for higher levels of noise cannot be explained by the
sources of bias here discussed, and result from the particularities of the
dynamics.

The advantages gained by virtue of the appropriate normalization of
M are inherited by L. The remaining dependence on the statistical prop-
erties of the time series for ε close to εGS is diminished since in contrast
to distributions of distances, distributions of ranks of distances are always
uniform. Notice that although this bias is still present, its absolute value
is substantially lower for L than for M (Figure 2.1D). Also the region
where ∆L < 0 for symmetric noise is smaller than for M . Therefore,
although the use of the appropriate normalization is the main advantage
shared by L and M , the use of ranks helps to further attenuate the effect
of the different statistical properties of the time series.

2.2.4 The influence of the embedding parameters

To further study the specificity of ∆A > 0 for the assessment of couplings
from X to Y , we examine the influence of the embedding parameters m
and τ . We now focus on independent dynamics. At first we consider two
examples of uncoupled Lorenz dynamics superimposed with asymmetric
noise levels. While both examples share ε = 0, dX,Y = 1, aY = 0, and
nX = [0, 0.25, 0.5, 1, . . . , 128], we have aX = 0, nY = 4 in the first
and aX = 0.97, nY = 0 in the second example. Here nX,Y are given
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as unitless amplitudes not related to the standard deviation of x̃i and ỹi.
Again nonzero values for ∆H and ∆S are obtained for these indepen-
dent dynamics. Due to the dominance of the bias related to asymmetric
effective dimensions the sign of ∆S is independent of the embedding
parameters (Figure 2.3 A, E), although its magnitude increases with the
embedding window, since DX = m for the noisy dynamics. Oppositely,
for H the only bias for uncoupled dynamics is the nonlinear dependence
on Rk

i (X|Y ). The variance of Rk
i (X|Y ) and thereby the sign of ∆H

depends on the embedding parameters and the asymmetry of the noise
amplitudes (Figures 2.3 B, F). In contrast to the false detection found us-
ing S or H for almost all the noise levels, the mean values of ∆M and ∆L
are never significantly different from zero. Only their standard deviation
are influenced by the relative noise levels and the embedding parameters,
as discussed in Section 2.2.3. In consequence, not a single false positive
is obtained by M and L (Figures 2.3 C, D, G, H).

As a last example we use purely stochastic time series. As discussed
in Section 2.1.2, the criterion of the mapping of nearest neighbors, al-
though thought for deterministic dynamics, is still applicable for stochas-
tic dynamics when formulated in terms of probabilities. Here we ex-
amine the influence of the autocorrelation of each of the stochastic dy-
namics in dependence on the embedding parameters. In particular the
stochastic dynamics are autoregressive processes with asymmetric de-
grees of autocorrelation dX,Y = 0, aY = 0.5, nX,Y = 1, and aX =
[0.99, 0.98, 0.95, 0.9, 0.8, 0.65, 0.5, 0.35, 0.2, 0]. If the embed-
ding window (m− 1)τ is not too big for a given autocorrelation decay, a
stronger autocorrelation is reflected in a lower effective dimension. Also
the variance of Rk

i (X|Y ) for the uncoupled systems depends on the au-
tocorrelation, that determines the shape of the cloud of delay vectors in
the reconstructed space. Therefore both the bias related to Equation 2.32
and to the nonlinearity in the measures are affected by the autocorrela-
tion, so that simple linear properties of the dynamics are enough to distort
the detection of the coupling. Given the exponential dependence of the
autocorrelation on aX,Y , these effects are mainly observed for high values
of aX,Y .
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Figure 2.3: Analogous to Fig. 2.2 but for independent dynamics. Green:
m = 4, τ = 1; blue: m = 6, τ = 4; red: m = 8, τ = 12. (A-D) Un-
coupled Lorenz dynamics superimposed with asymmetric levels of white
noise in dependence on nX . Here vertical lines mark nY . Slight offsets
on the abscissa are used to distinguish different error bars. (E-H) Same
as (A-D) but here for uncoupled Lorenz dynamics with asymmetric lev-
els of Gaussian autocorrelated noise. (I-L) Same as (A-D) but for purely
stochastic time series with asymmetric autocorrelation strengths in depen-
dence on aX . Here vertical lines mark aY . Reproduced from Chicharro
and Andrzejak (2009).

For the measure S, the bias related to Equation 2.32 leads to ∆S < 0
for aX > aY (Figure 2.3 I). Since aY = 0.5 we can consider that DY

∼=
m. Therefore, for aX close to one, the bias is higher for higher values
of m, because the autocorrelation in X reduces DX relatively more with
respect to DY

∼= m. For lower values of aX , if (m − 1)τ is too big, in
particular if τ is high, the components of the delay vector are less corre-
lated, so that the reduction of the effective dimension is lower. Therefore,
in this range the bias is higher for smaller (m − 1)τ . For the measure
H , ∆H > 0 for aX > aY (Figure 2.3 J). For H , the bias is caused by
the nonlinearity, and thus by the variance of Rk

i (X|Y ) around Ri(X).
For high embedding windows and in particular for high τ the impact of
the autocorrelation is reduced and the state space is filled more homoge-
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neously. In consequence, we see that the bias decreases monotonically
with (m− 1)τ , in contrast to the more complicated dependence observed
for S. Finally, like for the two previous examples, ∆M and ∆L exhibit
not a single false positive coupling detection (Figure 2.3 K,L).

2.3 Inferring and quantifying causality in the brain

In this part of the thesis we focused on one specific approach to assess
causal interactions. In Section 2.1.2 we described the criterion of the
mapping of nearest neighbors (MNN), and compared it to the criterion
of Granger causality. We reexpressed the MNN criterion of Equation
2.12 in terms of conditional probability distributions (Equation 2.23) to
be more comparable to the Granger causality criterion of conditional in-
dependence (Equation 2.19). We concluded that, given the assumptions
and the argumentation justifying the MNN criterion, its applicability is
more restrictive than the one of Granger causality. However, regarding
the comparison of the criteria, it remains to be discussed to which degree
the different assumptions are fulfilled in practice. In Section 2.2 we de-
scribed different measures implementing the MNN criterion and analyzed
how they are affected by different sources of bias related to the properties
of the individual time series, including the properties of the underlying
dynamics and of the measurement noise. We now summarize these results
and turn back to the comparison with Granger causality, now addressing
which are the problems to assess causal dependencies from neuronal data.

Regarding the measures implementing the criterion of the mapping of
nearest neighbors (Equation 2.12), both ∆S and ∆H are of weak speci-
ficity. Moreover, ∆S is of poor sensitivity, while the sensitivity of ∆H
is stronger but spoiled by its limited specificity. Oppositely, by virtue
of their common appropriate normalization, the measures ∆M and ∆L
are more sensitive and more specific for directional couplings. Further-
more, the use of rank statistics endows ∆L with a higher noise robust-
ness as compared to ∆M . However, perhaps because S and H were the
measures first introduced in Arnhold et al. (1999), they have been used
almost uniquely when comparing the performance of these type of mea-
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sures with other approaches using simulated data (e. g. Smirnov and An-
drzejak, 2005; Ansari-Asl et al., 2006; Lungarella et al., 2007; Palus and
Vejmelka, 2007; Kreuz et al., 2007a).

The influence of the individual properties of the dynamics of each sys-
tem in the assessment of causal interactions and the effect of asymmetric
levels of noise is not a problem specific of the MNN measures consid-
ered here. This problem has been pointed out for measures relying on
the Granger causality criterion, like the linear Gaussian Granger causality
(Nalatore et al., 2007) and a measure based on phase responses (Smirnov
and Bezruchko, 2003). In Smirnov and Bezruchko (2003) a modification
of a measure proposed by Rosenblum and Pikovsky (2001) for assess-
ing causal relations between phases was introduced to correct a bias re-
lated to the difference in the characteristic frequencies of the dynamics.
Nalatore et al. (2007) used a Kalman filter to explicitly model the asym-
metric measurement noise that bias also Granger causality. Apart from
the modification of the measures, also the use of surrogate time series
(Schreiber and Schmitz, 2000) can help to avoid false detections. Ide-
ally, the surrogate data should maintain the properties of the individual
dynamics, but destroy any interdependence produced by the causal inter-
actions. This corresponds to testing the null hypothesis that the dynamics
are uncoupled. Although different types of surrogates have been pro-
posed (Quian Quiroga et al., 2002; Andrzejak et al., 2003; Thiel et al.,
2006), for nonlinear dynamics it is difficult to generate independent sur-
rogates while maintaining the same nonlinear structure of the individual
dynamics. When causality is studied in an event-related framework, it is
easier to construct surrogates by shuffling randomly the index of the trial
for one of the dynamics (Andrzejak et al., 2006a).

The characterization of the sensitivity and specificity of the measures
implementing a given criterion is necessary to assess causality from a
system X to a system Y . However, it seems a more fundamental issue to
ask wether the assumptions needed to apply the criterion are fulfilled for
a set of experimental data. In neuronal applications, the data generally
consist in multivariate time series reflecting the activity in different areas
of the brain, and multiple areas are expected to interact with each other.
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Therefore, Granger causality seems more useful since it does not assume
the existence of an autonomous driving system. However, the assump-
tion of a well defined set of processes, and that this set comprises all the
processes influencing X and Y , is in fact also a strong assumption. For
EEG recordings, a time series is recorded at each electrode implanted in
the brain, while for BOLD signals each voxel (volumetric pixel) corre-
sponds to a time series. Therefore, the first problem for the application of
any of the criteria is the identification of the systems between which the
causal interactions are studied. The brain is an extended system, and the
electrodes reflect the activity of extended regions. The signals recorded
at close electrodes are correlated, as well as they are close voxels in neu-
roimaging recordings. This problem is not specific for the study of causal
interactions, but it is common to any approach studying functional or ef-
fective connectivity in brain networks (see Bullmore and Sporns, 2009;
Lehnertz et al., 2009; Rubinov and Sporns, 2010, for a review). This is
a problem not only for the identification of the nodes in the network and
the interpretation of the dependencies found between them, but also for
the quantification of these dependencies, since the superposition of differ-
ent sources affects the assessment of causality (e. g. Schmitz, 2000; Nolte
et al., 2006). The identification of the systems is further hindered by other
factors associated with the nature and setup of the recordings. For EEG
data, the use of a common reference for the voltage at each electrode, can
induce spurious dependencies (Guevara et al., 2005; Schiff, 2005), reflect-
ing the activity in the electrode of reference. Alternatively, a bipolar mon-
tage can be used analyzing the time series resulting from the difference in
voltage between adjacent electrodes. However, it is then more difficult to
interpret the causal interactions between the time series. For the BOLD
signals, the activity of the neurons is only indirectly reflected and depends
on the hemodynamic response (Deshpande et al., 2010), affecting also the
reliable assessment and the interpretation of causal dependencies.

The identification problem is by itself enough to indicate that, al-
though being a more general criterion, Granger causality cannot be ap-
plied to neuronal data in a straightforward manner. However, if one obvi-
ates the problems in the interpretation of causal dependence arising from
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the definition of the nodes, Granger causality seems better than the MNN
criterion. The Granger causality criterion (Equation 2.19) is formulated
in a multivariate framework, while the MNN criterion (Equation 2.12)
is restricted to the bivariate case, or to specific cases of a multivariate
framework in which X is autonomous. Furthermore, the fact that Granger
causality can also be formulated in the spectral domain (Geweke, 1982;
Ding et al., 2006) makes it more appealing to study causal interactions in
the brain, since specific brain rhythms are related to brain functions (e.
g. Brovelli et al., 2004). In consequence, Granger causality has gained
more popularity in the recent years, specially for the analysis of LFP’s
and neuroimaging (see Gourevitch et al., 2006; Bressler and Seth, 2010,
for a review). This led to the proposal of measures of Granger causal-
ity accounting to some extent for the effect of exogenous variables (Guo
et al., 2008), or to consider the brain as an extended system (Barrett et al.,
2010).

However, apart from the identification problem, there is a further prac-
tical limitation which prevents from testing reliably the condition in Equa-
tion 2.19. In this equation the Granger causality criterion is general for
multivariate systems because the partialization includes Z, which accounts
for the rest of the set apart from X and Y . This means that it is neces-
sary to sample a high dimensional space that comprises the past of all
the recorded signals. In practice a good sampling of the probability dis-
tributions cannot be achieved. Therefore, in the majority of applications
of Granger causality to neuronal data, the partialization on Z is removed
from Equation 2.19 (e. g. Brovelli et al., 2004; Roebroeck et al., 2005;
Bressler et al., 2007, 2008; Zhou et al., 2009; Kayser and Logothetis,
2009; Besserve et al., 2010; Vicente et al., 2010). The remaining con-
dition is still different from the MNN criterion because it considers the
conditioning on the past of the own process, but strictly can only be ap-
plied to a bivariate system. This approach is often referred to as pairwise
Granger causality (PGC) (Geweke, 1982), in contrast to the more general
conditional Granger causality (CGC) (Geweke, 1984). When applied to
multivariate systems PGC can lead to the false positive detection of causal
interactions due to the unconsidered dependencies (Cadotte et al., 2008).
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Even for the pairwise Granger causality, accounting for the whole past
of the systems is too difficult in general. When nonlinear measures of
Granger causality are used, the past is reduced to one or a few samples at
particular time lags (e. g. Besserve et al., 2010; Vicente et al., 2010). In
general, it is more usual to apply linear Gaussian Granger causality, and
model the data with bivariate autoregressive models (e. g. Brovelli et al.,
2004; Roebroeck et al., 2005; Kayser and Logothetis, 2009).

There is also another aspect of Granger causality which deserves some
discussion. In Section 2.1.3 we concluded that the Granger causality cri-
terion should be preferred because the condition it involves is better de-
fined and more general, since the driving system is not required to be au-
tonomous, which means that bidirectional causality is testable. For brain
networks, considering the existence of structural feedback connections
between different regions, bidirectional causal interactions are expected.
The applicability in presence of bidirectional couplings is possible be-
cause, when testing for causality from X to Y , equation 2.19 compares
two probabilities of yi+1, and when testing causality in the opposite direc-
tions, two probabilities of xi+1 are compared. Oppositely, independently
of which direction of causality is tested, the MNN criterion compares
probabilities of X and Y (Equation 2.23), and the assumption that only
in one direction the causal interaction is nonzero is implicit. This is why
in Sections 2.2.3, 2.2.4 we used ∆A and not the measures A(X|Y ) and
A(Y |X) separately to assess the existence of a causal dependence. But
for the Granger causality criterion the analogous measures AX→Y and
AY→X are associated separately to Equation 2.19 and its analogous for
the opposite direction, testing for causality from X to Y and from Y to
X , respectively. This has induced a frequent mistake that stems already
from the terminology used by Granger, who associated this measures to
the strength of the causal effect (Granger, 1963, 1969). However, as men-
tioned in Section 2.1.3, the partialization on the own past of the system
implies that each measure AX→Y and AY→X separately is expected to be-
have nonmonotonically for strong causal interactions, as it is ∆A in Fig-
ure 2.1. The Granger causality criterion does not consider which is the
change in the probability of yi+1 caused by the past of X , but which is the
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change that cannot already be explained by the own past of Y . Accord-
ingly, it is designed to test for the existence of a nonzero causal interac-
tion, but not to quantify the strength of the causal effect. While the MNN
measure have been used to quantify the degree of interdependence using
the sum A(X|Y ) + A(Y |X) (Quian Quiroga et al., 2002; Kreuz et al.,
2007b; Andrzejak et al., 2011), an analogous measure AX→Y + AY→X

would not be adequate for this purpose.

This difference between assessing the existence of a causal interaction
and quantifying its strength is frequently disregarded. The first problem
is that, when estimating any measure implementing the Granger causality
criterion based on a finite data sampling, a nonzero value will be obtained
which significance has to be evaluated. For the linear Gaussian Granger
causality a significance level can be assigned analytically (Geweke, 1982;
Lütkepohl, 2006). However, in general, some bootstrapping is necessary
to obtain some confidence intervals. Alternatively, for brain networks a
common practice is to select a threshold and to consider only interactions
above this value (Bullmore and Sporns, 2009). Furthermore, the quantifi-
cation of the causal effect is implicit in the comparison of causal depen-
dencies across frequencies (e. g. Brovelli et al., 2004; Ding et al., 2006),
and the comparison of causal effects between the opposite directions or
between different combinations of nodes (e. g. Roebroeck et al., 2005;
Bressler et al., 2008). It is also usual to compare not just which are the
significant causal interactions but also their strength for different tasks or
conditions (e. g. Roebroeck et al., 2005).

Overall, we see that, despite its formal advantages, the measures of
Granger causality are not much more useful than the ones implementing
the MNN criterion to study causality from neuronal data. At this point
it is necessary to ask what information is expected to be obtained from
any measure assessing causality in a data-driven approach. Accepting,
according to Pearl (2009), that causality cannot be detected in general
without intervention, Granger causality measures or the MNN measures
characterized here should be considered as statistical measures of depen-
dence which are sensitive to some particular properties of the dynamics
analyzed. These measure are different from other statistical measures like
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correlation, coherence or mutual information principally because they are
designed to be asymmetric. Adopting this point of view, the main ques-
tion would be which is the advantage of using these measures which are
more elaborated and usually more difficult to estimate instead of sym-
metric measures of dependence. This question is similar to asking why
should nonlinear measure be used instead of the simpler linear ones. The
support to the use of the measures of causality must come from show-
ing that they allow characterizing relevant aspects of the dependence not
reflected in the other measures.

For example, in the field where the MNN measures were developed,
the study of EEG data from epileptic patients, a key objective has been
to find changes in the activity which can be used to predict a seizure (see
Mormann et al., 2007, for a review). If the causal measures, which con-
sider more explicitly the temporal dynamics, would result in a better pre-
dictor, this would justify their use. The use of nonlinear instead of linear
measures was supported in this context by showing, for example, that
they can more reliably localize the focal hemisphere where the epileptic
seizure originates (e. g. Andrzejak et al., 2006b, 2011). By contrast, to
our knowledge, the advantage of using the MNN measures has always
been justified a priori by the causal information they provide, but has not
been supported by the comparison with other simpler measures. In some
studies the MNN measures have been shown to be sensitive to changes
between different states of the brain like, for example, awake and deep
sleep (Pereda et al., 2001), or different conditions, like listening to differ-
ent types of music (Bhattacharya et al., 2001). In these cases, without a
comparison with the changes in more elementary properties like the auto-
correlation of the dynamics or the correlation between the dynamics, it is
difficult to judge the value of the measures.

The same argument is valid for Granger causality measures. The dis-
tinction between functional and effective connectivity (Friston, 1994), im-
plies that while functional connectivity only reflects statistical dependen-
cies, effective connectivity should be informative about real causal inter-
actions. Recognizing some of the limitations of Granger causality, Roe-
broeck et al. (2009) proposed to consider the data-driven Granger causal-
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ity analysis as an exploratory approach, which can provide useful infor-
mation, complementary to the information from structural connectivity,
to construct models. This models should then be tested in a hypothesis-
driven confirmatory analysis. Similarly, in other studies, in particular
when applying the pairwise Granger causality, it is adverted that, despite
the terminology, causal interactions should not be understood as effec-
tive connectivity (Brovelli et al., 2004; Cadotte et al., 2008). However,
it is then not clear what extra information is obtained with respect to the
analysis of, for example, the coherence.

The study of causality in this thesis started with the concrete goal of
improving the specificity of the MNN measures (Andrzejak et al., 2008;
Chicharro et al., 2008; Chicharro and Andrzejak, 2009). This work is
here presented in Section 2.2. This methodological study has continued
by considering more generally the interpretation of causality measures.
The necessity to distinguish between the assessment of the existence of
a causal interaction and the quantification of its strength has led to the
ongoing research (Chicharro and Andrzejak, 2010), here only briefly dis-
cussed. Although focusing on the criterion of the mapping of nearest
neighbors and the measures implementing it, we provided a wider context
justifying the criterion and describing its assumptions, as well as compar-
ing it to the Granger causality criterion (Section 2.1.2). Furthermore, we
discussed the problems of assessing causality from neuronal data. We
showed that principal limitations are related to the assumptions and for-
mulation of the criteria, and further limitations arise from the availability
of finite data sets.
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Chapter 3

Studying the neural code with spike train
distances

3.1 Stimuli discrimination

3.1.1 Introduction

This second part of the thesis focuses on the study of the responses of sen-
sory neurons to external stimuli. In contrast to the case addressed in the
previous part, in this context it is known a priori that the causal interac-
tions are unidirectional, from the stimulus to the neuron. The question is
what properties of the stimulus are exactly encoded and how. In analogy
to a communication channel (Shannon, 1948; Cover and Thomas, 2006),
the mutual information has been used to examine the capacity of the neu-
rons to convey information about the stimulus (see Rieke et al., 1997, and
references therein). Alternatively, one can use some decoding strategy
to see how well the stimuli can be discriminated from the elicited spike
trains (see Quian Quiroga and Panzeri, 2009, for a comparison of infor-
mation theory and decoding approaches). We here study a discrimination
analysis that combines a measure of dissimilarity of the spike trains with
a classifier to assign each spike train to the stimulus which is most likely
to have elicited it. This allows one to calculate a measure of discrimina-
tion performance, like the mutual information between the stimuli and the
predicted stimuli.
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A wide variety of methods have been applied to quantify the similarity
between spike trains (e. g. Mainen and Sejnowski, 1995; Victor and Pur-
pura, 1996; Hunter et al., 1998; van Rossum, 2001; Schreiber et al., 2003;
Kreuz et al., 2007a). A particular class of measures designed to study
the neural code are time scale parametric spike train distances, mainly
represented by the distances proposed by Victor and Purpura (1996) and
van Rossum (2001). These spike train distances have in common that
they depend on some parameter τ that determines the temporal scales in
the spike trains to which the distance is sensitive. For the limit τ → ∞
these distances are only sensitive to the number of spikes in each spike
train, while in the limit τ → 0 they are spikes coincidence detectors.
These limits reflect the assumption of a rate code and a coincidence code,
respectively. When used for the discrimination analysis, the time scale
parametric spike train distances provide a quantification of the discrimi-
native precision, associated with the optimal time scale τ ∗ for which the
maximal mutual information between the stimuli and the predicted stim-
uli is found. This precision is conceptually different from the single spike
precision, that indicates the jitter of each reliable spike from trial to trial.
It is also different from other types of precision proposed to study the
neural code (see Borst and Theunissen, 1999, for a review), like the spike
timing precision obtained with the direct method used to calculate the
mutual information (Strong et al., 1998). In this part of the thesis we will
focus on the calculation of the mutual information and the discriminative
precision from the discrimination analysis, and only in Appendix B we
will compare the interpretation of these types of precisions.

Discrimination analysis has been applied to study experimental data
using different dissimilarity measures. For example, the Victor distance
(see Victor, 2005, for a review) has been applied to study the precision in
the visual system (e. g. Victor and Purpura, 1998; Mechler et al., 1998),
the auditory system (e. g. Machens et al., 2001) or the olfactory system
(e. g. Macleod et al., 1998). The van Rossum distance has recently been
used in a series of studies on the time scale of discrimination of natural
sounds in songbirds (e. g. Narayan et al., 2006; Wang et al., 2007). The
correlation-based reliability measure of Schreiber et al. (2003) has also
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been used to analyze auditory responses (Wang et al., 2007). A common
conclusion of many of these studies is that the optimal time scale found
indicates that the temporal structure of the responses and not only the total
spike counts are relevant for the neural encoding of the stimuli.

Apart from applications to experimental data, the time scale paramet-
ric spike train distances have been previously characterized (Victor and
Purpura, 1997; Kreuz et al., 2007a; Dauwels et al., 2009; Kreuz et al.,
2009; Paiva et al., 2010; Kreuz et al., 2011). Victor and Purpura (1997)
characterized the Victor distance and showed examples of simulated data
for which the discrimination analysis resulted in an optimal time scale
consistent with a priori expectations given the construction of the spike
trains. The main focus of other studies was to compare the sensitivity of
the time scale parametric distances and other measures of spike train sim-
ilarity to discriminate between different stimuli, without addressing the
meaning of the optimal time scale at which the sensitivity was optimized
(e. g. Kreuz et al., 2007a; Paiva et al., 2010). We here follow Victor and
Purpura (1997) considering the time scale parametric spike train distances
integrated in the discrimination analysis. We are interested in examining
how informative they are about the neural code, the mutual information,
and discriminative precision obtained with this analysis. In a first step,
we use simulated Poisson spike trains to characterize the influencing fac-
tors on the estimation of the mutual information and the discriminative
precision. In particular, we consider how the mutual information and dis-
criminative precision depend on the measure, on the classifier used in the
discrimination analysis, and on the number of trials available for each
stimuli. We also study the influence of the length of the recordings used
to calculate the spike train distances. Furthermore, we consider how the
mutual information between the stimuli and the predicted stimuli is re-
lated to the mutual information between stimuli and responses. We also
question what can be concluded from the discriminative precision about
the time scale in which information is contained in the responses.

Apart from the simulated data, we also use exemplary experimental
recordings. This allows us to check if the dependencies observed for sim-
ple Poisson spike trains are consistent with those found for real responses.
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Moreover, we examine the degree to which the complex temporal struc-
ture of the spike trains is well represented in a single quantity, namely the
optimal time scale τ ∗ associated with the discriminative precision. Data
used in this study were delivered via neurodatabase.org, a neuroinformat-
ics resource funded by the Human Brain Project (http://neurodatabase.org)
(Gardner, 2004), and provided by the Laboratory of Auditory Neuroethol-
ogy and Communication of Tim Gentner, at the University of California,
San Diego.

The remainder of the Chapter is organized as follows: We first de-
scribe the discrimination analysis used to calculate the mutual information
and discriminative precision (Section 3.1.2), as well as the measures of
spike train dissimilarity studied (Section 3.1.3). In Section 3.2 we apply
the measures to simulated time-independent Poisson processes (Section
3.2.1), and the discrimination analysis to time-dependent Poisson pro-
cesses (Section 3.2.2). Examples of time-dependent Poisson processes are
presented to study the dependence of the mutual information and the op-
timal time scale on different factors. We examine the dependence on the
measure and classifier used for the discrimination analysis. We simulate
different examples representing possible types of responses to the tran-
sient presentation of a constant stimuli and study the dependence of the
mutual information and the optimal time scale on the length of the after-
transient interval included in the discrimination analysis. Furthermore,
we analyze the influence of the number of trials available for each stim-
ulus. In Section 3.3 we apply the discrimination analysis to spike trains
elicited by transient constant stimuli. We examine the dependence on the
measure and classifier in Section 3.3.1, and the temporal accumulation of
information obtained from increasing the length of the recordings used to
calculate the spike train dissimilarity measures (Section 3.3.2). We also
analyze the temporal distribution of information and the redundancy be-
tween the information contained in different intervals of the recordings
(Section 3.3.3), and examine how this temporal distribution is reflected in
the optimal time scale related to the discriminative precision. In section
3.4 we apply the discrimination analysis to spike trains elicited by time-
dependent stimuli. Finally, in Section 3.5 we discuss our results and how
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to evaluate the quantities obtained from the discrimination analysis. For
the sake of completeness, in Appendix B, we compare the discriminative
precision with the spike timing precision obtained when the direct method
(Strong et al., 1998) is used to calculate the mutual information.

3.1.2 Discrimination analysis

The mutual information I(R, S) (Cover and Thomas, 2006) is used to
characterize the encoding of the stimuli S by the responses R elicited by
them. For the spike trains, the space of R is determined by the times of
the spikes. If the spike trains are binned in Nb bins and ri is the number
of spikes in each bin, R = {r1, r2, ...rNb

} will have a high dimensionality
for small bins. The mutual information is calculated as:

I(R, S) =
∑
R

∑
S

p(R, S) log
p(R, S)

p(R)p(S)
, (3.1)

where p(R, S) and p(R), p(S) are the joint and marginal distributions,
respectively. The reliable estimation of this quantity from experimental
data is hindered by the curse of dimensionality caused by sampling lim-
itations (see for example Borst and Theunissen, 1999; Paninski, 2003b;
Victor, 2006; Panzeri et al., 2007, for a discussion of different estimation
techniques and bias corrections).

One of the alternatives to estimate I(R, S) consists in using a clas-
sifier to predict to which stimulus a response pertains. Given N distinct
stimuli {S} = S1, ..., Si, ..., SN and M trials for each stimulus, a decod-
ing algorithm assigns each spike train to one of the stimuli {S} resulting
in a confusion matrix C(SP

k , Sl) that indicates the number of times a spike
train corresponding to a trial of the stimulus Sl is assigned to the stimulus
SP

k . The confusion matrix is normalized to a probability matrix P (SP
k , Sl)

dividing by the total number of spike trains NM . The decoding perfor-
mance can be quantified by the mutual information I(SP , S) between
the stimuli and the predicted stimuli (Quian Quiroga and Panzeri, 2009),
analogously to Equation 3.1. Since the classification is based only on R,
SP is conditionally independent from S given R, that is S → R → SP
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forms a Markov Chain. In consequence, the data processing inequality
(Cover and Thomas, 2006) assures that I(SP , S) ≤ I(R, S). Therefore,
the mutual information obtained from the classifier is a lower bound for
the total amount of information between the stimuli and the responses.

Different types of classifiers have been proposed depending on the na-
ture and assumptions made about the stimuli and responses (e. g. Bialek
et al., 1991; Rolls et al., 1997). The discrimination analysis proposed by
Victor and Purpura (1996, 1997) is based on a classifier in which the spike
train distances are used to compute the distance from a spike train sl,j′ to
a predicted stimulus SP

k as

d(SP
k , sl,j′ ; τ) = [〈(D(sk,j, sl,j′)[τ ])z〉j]1/z, (3.2)

so that the average of the spike train distances D(sk,j, sl,j′)[τ ] between the
spike train sl,j′ , corresponding to the j′-th trial of the l-th stimulus, and
all the trials j = 1, ...M of the k-th stimulus is calculated (note that trial
j = j′ is excluded if k = l). The classification is carried out by assigning
each spike train to the stimulus that minimizes this average distance. The
classification depends on the parameter τ , leading to a whole range of, in
general, different confusion matrices. The parameter z determines which
geometry is considered for the average. For positive exponents the pre-
eminent contribution comes from the larger distances, while for negative
exponents the closest spike trains have a higher weight. The differences
in the confusion matrices obtained for different exponents can help to
infer the structure of the clusters of trials of the same stimulus and conse-
quently the variability of the spike trains (Victor and Purpura, 1997). The
mutual information between the actual and the assigned stimuli, given the
probability matrix P (SP

k , Sl; τ), is obtained for each time scale:

I(SP , S; τ) =
N∑

k=1

N∑

l=1

P (SP
k , Sl; τ) log

P (SP
k , Sl; τ)

P (SP
k ; τ)P (Sl; τ)

. (3.3)

The time scale τ ∗ for which the maximal mutual information Imax(S
P , S)

is found gives the best discrimination of the stimuli. The percentage re-
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duction of uncertainty is given by:

I∗(SP , S; τ) =
I(SP , S; τ)

H(S)
, (3.4)

where H(S) is the entropy of the stimuli distribution (Cover and Thomas,
2006)

H(S) = −
N∑

l=1

P (Sl) log P (Sl). (3.5)

The measure I∗(SP , S; τ) is normalized in the range [0 1], which fa-
cilitates the comparison among results obtained for different confusion
matrices, and furthermore it better quantifies the goodness of the decod-
ing (Borst and Theunissen, 1999). Since the stimuli distribution P (S) is
well known, H(S) can be calculated exactly, so that I∗(SP , S; τ) is also a
lower bound of I∗(R, S), defined analogously to Equation 3.4. How close
I∗max(S

P , S) is to I∗(R, S) depends on the particular representation of the
stimuli in the R space. This is because, even with an optimal classifier,
I∗max(S

P , S) ≤ I∗(R, S) (Quian Quiroga and Panzeri, 2009). Further-
more, for a suboptimal classification, the difference between I∗max(S

P , S)
and I∗(R, S) will depend on the measure used to calculate the dissimi-
larity and on the exponent z in Equation 3.2. The classifier also depends
on the number of trials M , which affects the distribution of distances be-
tween one particular spike train and the spike trains elicited for all the
trials of a particular stimulus. In the limit of M → ∞, this distribution
of distances will be determined by the distribution of p(R|S) and will
converge. However, this does not mean that Imax(S

P , S) has to increase
monotonically with M . Furthermore, although the estimation of the mu-
tual information with the classifier avoids the bias caused by the estima-
tion of probability distributions in high-dimensional spaces, one has to
correct for the upward bias associated with the baseline level of correct
classifications that would already result from a random assignment of the
trials to a predicted stimulus. This bias is estimated by a random resam-
pling of the spike trains. The trials are shuffled across stimuli and the
average mutual information is calculated across multiple repetitions of
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the random shuffling. This correction is subtracted from the mutual in-
formation calculated for the original set, and the mutual information is
considered different from zero only for positive values.

While I∗max(S
P , S) is simply the maximum of I∗(SP , S; τ), getting

the optimal time scale τ ∗ is more complicated. This is because I∗(SP , S; τ)
can have piecewise constant intervals (e. g. Victor and Purpura, 1996;
Di Lorenzo and Victor, 2003; Roussin et al., 2008; Huetz et al., 2006,
2009). Often experimental studies that apply the discrimination analysis
lack an explicit explanation of how to calculate τ ∗. In Huetz et al. (2006)
and Wohlgemuth and Ronacher (2007), the average of τ is taken when a
plateau is obtained. In Roussin et al. (2008) they comment that the influ-
ence of temporal coding may be underestimated because they consider as
rate coding any case in which I∗max(S

P , S) is obtained for τ = ∞, even
if lower time scales provide the same information. Instead of using the
position of the peak to indicate the discriminative precision, Reich et al.
(2001b) use τcut, the minimal time scale at which half of the maximal
information is retrieved.

We here follow two different criteria, each emphasizing different as-
pects of the shape of I(SP , S; τ) and its estimation. For simulated data,
we can generate K independent realizations of the set of trials for each
stimuli, and consider the average and the variability of the results of the
discrimination analysis across realizations. For each realization we re-
trieve a value of τ ∗ as the mean of all τ values for which I∗max(S

P , S)
is obtained. Accordingly, we report the average of 〈τ ∗〉 across realiza-
tions and we quantify its variability by the range of τ ∗. Alternatively,
we calculate the average of I∗(SP , S; τ) for the different realizations, and
then we calculate τ ∗〈I〉 only once from the average shape. In this case we
additionally report the interval containing values of I∗(SP , S; τ) higher
than a given percentage of the maximum (Wohlgemuth and Ronacher,
2007). Since the maximum and mean operations are not commutative,
〈τ ∗〉 and τ ∗〈I〉 will generally not coincide. Furthermore, while for the first
calculation the range of τ ∗ quantifies the variability of the estimator, in
the second case the interval of high values is related to the flatness of
I∗(SP , S; τ). The same procedure can be applied for experimental data
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carrying out the calculations across K bootstrapping realizations instead
of independently generated data. For each bootstrapping realization the
discrimination analysis is repeated randomly selecting a subset M ′ of the
trials for each stimulus.

Apart from τ ∗, to analyze the contribution of temporal coding it is nec-
essary to compare the maximum mutual information I∗max(S

P , S) with the
information that can be retrieved based only on a rate code, I∗count(S

P , S).
One can calculate an index of temporal coding like the percentage of in-
crease (e. g. Mechler et al., 1998; Di Lorenzo and Victor, 2003; Roussin
et al., 2008)

Θ =
I∗max(S

P , S)− I∗count(S
P , S)

I∗count(S
P , S)

. (3.6)

Alternatively, Reich et al. (2001b) normalized by I∗max(S
P , S) instead of

I∗count(S
P , S). Another possibility is to use the difference with no normal-

ization (e. g. Samonds and Bonds, 2004; Di Lorenzo et al., 2009).

To complete the description of the discrimination analysis we also
briefly mention an alternative classifier that has been used to construct the
confusion matrix (e. g. Machens et al., 2003; Narayan et al., 2006). In
this case, for each stimulus Si the spike train of one of the trials, si,jT

, is
chosen as a template and each spike train si′,j′ is assigned to the stimulus
with the nearest template. This procedure is repeated for KT randomly
chosen templates. As a measure of discrimination performance, the per-
centage of correctly assigned spike trains is used. This procedure does not
introduce any extra parameter and thus avoids the ambiguity arising when
results depend on the exponent z of Equation 3.2. The maximal mutual
information and the percentage of correct classifications are not biunivo-
cally related (Thomson and Kristan, 2005) and quantify different aspects
of the representation of the stimuli in the responses. For the purpose of
our study, we will restrict ourselves to applying the classifier associated
with Equation 3.2.
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3.1.3 Spike train distances

We here describe two spike train distances, proposed by Victor and Pur-
pura (1996), van Rossum (2001), and a dissimilarity measure based on the
correlation-based spike train similarity measure proposed by Schreiber
et al. (2003). We furthermore describe the calculation of a spike train
distance based on binning (Schnupp et al., 2006). We will refer to these
measures as DV, DR, DS, and DB, respectively. These measures quantify
the degree of dissimilarity of two spike trains, with spikes occurring at
times {tx,y

i } = tx,y
1 , tx,y

2 , ..., tx,y
nx,y

, where nx,y denote the total number of
spikes in each train.

Victor distance DV

Victor and Purpura (1996) introduced different families of distances each
motivated by different neurobiological mechanisms. These distances are
all based on the point process nature of spike trains. We use only the
distance denoted Dspike[q], which we denote as DV[τV]. Among the dis-
tances proposed by Victor and Purpura (1996), this one is the most similar
to the other measures considered here. The motivation for DV was to cap-
ture the behavior of neurons as coincidence detectors. It is defined as the
minimal total cost of a sequence of elementary steps that transform one
spike train into another. The allowed operations are insertion, deletion,
and temporal shift of a spike. While the cost of deletion and insertion is
fixed to 1, the cost of a shift by ∆t is q|∆t|, where q is the cost per time
unit. For a shift of length |∆t| = 2

q
the cost of shifting is equal to the one

of deleting the pair of spikes. Therefore, 2
q

is the maximal separation of
the spikes for which the shift operation is preferred. Given that, we here
use a parameter in units of time defined as τV = 2

q
.

Each value of τV identifies one member of the family of distances. At
one extreme, DV[τV = ∞] = |nx − ny| is only sensitive to the differ-
ence in the total number of spikes in each train. Accordingly, it quantifies
the similarity of the spike trains assuming a rate code. The distance DV

monotonically increases for τV decreasing. In the other extreme, assum-
ing that the sampling resolution is high enough so that there are no coin-
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Table 3.1: Limits of the spike train dissimilarity measures

Measure τ = ∞ τ = 0

DV |nx − ny| nx + ny

D∗
V

|nx−ny |
nx+ny

1

DR (nx − ny)
2 nx + ny

DS 0 1
DB (nx − ny)

2 nx + ny

cident spikes, DV[τV = 0] = nx + ny. This magnitude of the distances
for τV → 0 is not normalized, but depends on the total number of spikes
n = nx + ny. A normalized version of the Victor distance, D∗

V = DV

nx+ny
,

was introduced by Kreiman et al. (2000), resulting in the limits indicated
in Table 3.1.

van Rossum distance DR

The second spike train distance studied here was introduced by van Rossum
(2001). This distance operates on continuous signals obtained by convo-
lution of the spike trains with a truncated exponential function:

fx,y(t) =

nx,y∑
i

u(t− tx,y
i )e−(t−tx,y

i )/τR , (3.7)

where u is the Heaviside step function (u(t − ti) = 0 if t < ti and u(t −
ti) = 1 if t ≥ ti). Similarly to τV, the time constant τR determines the
precision to which the distance is sensitive to. The truncated exponential
convolution kernel is motivated by its causality and its correspondence
to the shape of postsynaptic currents. Given two continuous signals the
distance is calculated as the L2 norm

DR[τR] =
1

τR

∫ ∞

0

[fx − fy]
2dt. (3.8)

As the Victor distance, the van Rossum distance avoids a coarse binning
procedure. The time constant of the exponential function τR determines
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the interval for which relevant contributions to the integral last. Note
that this interval generally extends also beyond the end of the spike trains.
This distance might be seen as a rate profile comparison in which a convo-
lution kernel is used to smooth the rate profiles (Dayan and Abbot, 2001).
Any other convolution kernel or another Ln norm could be used. We will
use DR∗ to refer to the van Rossum spike train distance calculated with
a rectangular convolution kernel instead of the usual truncated exponen-
tial kernel. For the rectangular kernel we will take the parameter τR to
be the standard deviation of the kernel, like for the truncated exponential
kernel. The dependence of DR for the two extremes of τR is indepen-
dent of the kernel function used up to a constant factor. At one extreme,
DR[τR → 0] ∼ nx + ny is a coincidence detector. In the opposite limit
DR[τR → ∞] ∼ (nx − ny)

2. In consequence, in contrast to DV, DR is
not monotonic with τR, and the difference between the magnitude of the
values at the two extremes (Table 3.1) is in general higher.

Schreiber dissimilarity DS

The third measure we study is a dissimilarity measure derived from the
correlation-based reliability measure of Schreiber et al. (2003). At first
the spike trains are convolved with a Gaussian convolution kernel to ob-
tain two continuous signals

sx,y(t) =

nx,y∑
i

1√
2πτ 2

S

e−(t−tx,y
i )2/2τ2

S , (3.9)

which become vectors ~sx,y when the convolution is applied for a discrete
number of sampling times. Analogous to the continuous signals con-
structed for DR, the length of ~sx,y is determined not only by the length
of the spike trains but also by the width τS of the convolution kernel. In
contrast to the truncated exponential convolution kernel used for DR, the
symmetric Gaussian convolution kernel is motivated by the idea that the
variability in the spike times is a jitter which can be either positive or
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negative. The similarity measure is defined as the cross correlation

Scorr =
~sx · ~sy

|~sx||~sy| . (3.10)

A dissimilarity measure based on Scorr is implemented as DS = 1 −
Scorr. Here the standard deviation τS of the Gaussian convolution kernel
is the parameter controlling the precision to which DS is sensitive to. The
measure Scorr corresponds to an angle in the space of the spike trains
(Paiva et al., 2009). Therefore, the dependence of Scorr on the width of the
convolution kernel τS differs significantly from the one of DR on τR (Table
3.1). Again, this dependence is independent of the particular convolution
kernel. The limit DS[τS → 0] is consistent with the ones obtained for
DV[τV → 0] and DR[τR → 0], corresponding to the maximal sensitivity
to spike timing. Assuming no exact coincidence of spikes, in this limit
~sx · ~sy = 0 and thus DS = 1. By contrast, for τS → ∞ the convoluted
signals ~sx,y will be both constant with a different value determined by
the respective number of spikes in each train, nx,y. However, due to the
normalized dot product, ~sx

|~sx| ·
~sy

|~sy | will always have the maximum value of
1, so that DS[τS → ∞] = 0. In consequence, DS[τS → ∞] cannot be
associated with a rate code, since it is not sensitive to the difference in the
number of spikes. Clearly, the dependence of DS on τS does not reflect
different degrees of sensitivity to the temporal structure, going from a rate
code to a coincidence code. Accordingly, in contrast to DV, D∗

V, and DR,
DS does not fulfill the requirements to study the discriminative precision
(Victor and Purpura, 1997).

Binning distance DB

The calculation of the mutual information with spike train distances in
combination with a classifier has been motivated to avoid the use of bin-
ning in the estimation of the probabilities p(R, S) (Section 3.1.2). To
check to which degree binning is inconvenient by itself or becomes prob-
lematic only due to the high dimensionality of the R space, we also study
a spike train distance based on binning (Schnupp et al., 2006). For each
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spike train, the spikes are binned in NB bins of width τB. The distance DB

is calculated straightforwardly from the differences between the number
of spikes in each bin for two spike trains. Like for DR, the sum of the
squared differences is here used unless stated otherwise. We will use DB∗

to refer to the bins distance calculated by taking the absolute value of the
difference instead of the squared difference. Accordingly, this distance is
proportional to DR in the two extremes of τB (Table 3.1). For τB → 0 the
bins will contain at maximum one spike, and the full bins will generally
not coincide for each spike train. In consequence, DB[τB = 0] = nx +ny.
Oppositely, if only one bin is used for the whole length L of the spike
trains, we get DB[τB = L] = (nx − ny)

2. The main difference with DV

and DR is that the rate code is not only represented by τ = ∞, but already
by τ = L, the length of the spike trains.

General remarks

We finish the description of the measures with some general remarks. In
first place, as already pointed out by Victor and Purpura (1997), for cer-
tain values of the parameters the spike train distances do not accomplish
the conditions required to be a distance, in the strict sense. In particular,
for DV,R,B[τV,R,B = ∞], zero values are not only obtained for identical
spike trains, but also for spike trains with equal number of spikes. Simi-
larly, for the dissimilarity measure DS[τS →∞], zero values are obtained
for any pair of spike trains, and it is clearly not a distance. Being aware of
these violations we still generally refer to DV,R,B as spike train distances
and consider that identity is redefined in these cases to the classes of spike
trains leading to zero distance. In second place, there is no unique way
to relate the parameter of the distances to a time scale of the spike trains.
For DV we have chosen τV = 2

q
. This selection has been used in several

previous studies (Victor and Purpura, 1996; Reich et al., 2001b; Huetz
et al., 2009), but it is also common to use τV = 1

q
(e. g. Victor and Pur-

pura, 1997; Samonds and Bonds, 2004; Huetz et al., 2006). Notice that,
although for an individual pair of spikes 2/q corresponds to the maximum
time shift allowed, for complete spike trains τV = 2/q does not indicate
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the time scale of the time shifts actually used in the minimal cost transfor-
mation. For DR and DS we take as the time scale parameter the standard
deviation of the convolution kernel. An alternative criteria could be the
decay time of the convolution kernel (Wang et al., 2007). For DB, the
time scale parameter is the width of the bins. This arbitrariness intro-
duces some ambiguity in the alignment of the parameter τ for different
measures and the comparison of the obtained τ ∗. Furthermore, except for
DB, the time scale parameter can take values higher than the length of the
spike trains L without being associated with a rate code.

3.2 Discrimination analysis with Poisson spike trains

3.2.1 Spike train distances for time-independent Poisson spike trains

We first examine the spike train distances for pairs of Poisson spike trains
with distinct time-independent rates λx, λy. We consider as an a priori
condition of consistency that the lowest distance to spike trains generated
with rate λx should be obtained for λy = λx. In Figure 3.1 we show
the results obtained for DV, D∗

V, DR, DS, and DB. We see that DV, DR,
and DB have a similar behavior. From high to low τ the consistency is
gradually lost. This loss can be understood from the lack of normaliza-
tion of these spike train distances. The maximum possible value of the
distances depends on λx and λy, that determine the total number of spikes
n = nx + ny. In particular, for a fixed λx, a lower λy results in a lower
maximum possible value. For example, for DV, when τ approaches the
time scale indicated by 1

λx,y
, the effect of the different maximum possible

values corresponding to different n becomes progressively more relevant,
since insertions and deletions dominate over shifts. In consequence, for
small τ the lowest distances to spike trains generated with a rate λx are
not obtained for λy = λx anymore, but for λy ¿ λx.

The loss of consistency of DV, DR, and DB also results in a worse dis-
crimination between the stimuli whose responses are Poisson spike trains
with different rates. For example, for τ = 10 ms, a classifier using any of
these three metrics assigns all the spike trains to the stimulus eliciting the
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Figure 3.1: Measures of spike train dissimilarity in dependence on the
rates of two time-independent Poisson spike trains. Each column corre-
sponds to a fixed value of the time scale parameter τ (ms). M = 50
realizations of length 3 s were generated for each rate. Values shown are
averages over all the possible pairs of spike trains for two given rates.
Notice that the scale is set independently for each subplot.
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lowest rate. For non-Poissonian spike trains the time scale τ at which the
consistency is lost will depend on their structure and the single spike reli-
ability and precision. The main difference between these three distances
is the dependence of their magnitudes on τ . As discussed in Section 3.1.3,
this is because of the specific functionality on the sum or the difference
of total spikes in the limit of small or high τ , respectively (Table 3.1).

The remaining two distances behave differently. In contrast to DV, in
the limit of small τV, low values of D∗

V occur for high rates. This indicates
that although the absolute transformation cost increases with the rates,
the cost normalized by the maximum possible cost is indeed lower. For
τ = 10 ms we see that the range of values decreases, approaching 1. Since
D∗

V[τV → 0] → 1, towards this limit the distance progressively will loose
all its specificity. However, how this affects the classification will depend
on wether the distances resulting from the same or different stimuli are
still separable. For τV →∞ the consistency condition is fulfilled, but the
distance by construction does not only depend on the difference between
the rates, due to the normalization (Table 3.1).

Regarding DS, values close to zero are obtained regardless of the rate
difference in the limit τS → ∞. In this limit, since the convolution ker-
nel is broad, the number of spikes contributing to the convolution at each
point in time is high enough to give an estimation of the time-independent
rate with low variability. In consequence, for large τS, si

|~s| ' 1
L

indepen-
dently of the value of the rate. Only for distances involving the lowest
rates slightly higher DS values are obtained. This is because for these
lowest rates even for large kernel widths a good estimation of the rate is
generally not obtained at each point in time. In the limit τS → 0, low
values occur for high rates as an effect of the normalization analogous to
D∗

V.
These results confirm that all the measures except DS cover the range

of time scales sensitivity going from a coincidence detector to a rate code
distance. However, each measure has particular magnitudes and depen-
dencies on the rates, and therefore may lead to a different discrimination
of the stimuli associated to the rates. By contrast, DS = 0 independently
of the rates for τS = ∞ and thus DS cannot be used as a measure to study
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the degree of discrimination obtained with a rate code. Therefore, for the
rest of this Chapter we will restrict ourselves to the other measures.

3.2.2 Information and discriminative precision for time-dependent
Poisson spike trains

Dependence on the measure and the classifier

We here examine the dependence of I∗(S, SP ; τ) and τ ∗ on the measure
and classifier. We simulate time-dependent Poisson spike trains in which
the only source of temporal structure is the modulation of the rates. We
compose the spike trains by concatenation of several intervals of length
Li, where i = 1, ..., NL. For each interval time-independent Poisson pro-
cesses are generated. Furthermore, only two stimuli Sx and Sy are con-
sidered, so that the spike trains are fully described by the rates (λx,i, λy,i).

In Figure 3.2 we show the dependence of I∗(SP , S; τ) on the time
scale τ for four examples with different configurations of the time-dependent
rates. For all examples NL = 4. In example A the rates on each interval
for the two stimuli are such that the stimuli can be well discriminated by
the total rates. In example B the total rates still differ but are closer to
each other. In examples C and D the total rates are equal, and only the
local rates in each interval Li differ. These local differences in the rate
are higher for example C. Further details on the generation of the spike
trains are described in the caption of Figure 3.2. We show the results for
four different classifiers corresponding to different values of the exponent
z (Equation 3.2).

We see that I∗max(S
P , S) does not critically depend on the measure.

In particular, the values of I∗max(S
P , S) obtained by DB are not lower

than those obtained by the other measures. This indicates that, for these
examples, this distance based on binning is as valid as the other more
elaborated measures. While I∗max(S

P , S) is almost the same for different
measures, the shape of I∗(SP , S; τ) varies considerably across them. In
the first place, for τB equal the length L of the spike trains, DB already
corresponds to a rate code distance. By contrast, the other measures are
still sensitive to the temporal structure as long as τ < ∞. Therefore, for
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Figure 3.2: Dependence of I∗(SP , S; τ) on the measure and the
classifier. The different columns correspond to examples A-D, with
different combinations of modulated rates, as shown in the first
row. In all the cases the responses to two stimuli Sx, Sy are simu-
lated as Poisson processes with piecewise constant modulated rates.
For all the examples NL = 4 intervals of length 100 ms are sim-
ulated with constant rates [λx,1, λy,1; λx,2, λy,2; λx,3, λy,3; λx,4, λy,4]
(spikes/s). A: 100, 5; 70, 10; 50, 15; 30, 20 spikes/s. B:
60, 15; 40, 15; 30, 20; 20, 20 spikes/s. C: 80, 10; 10, 20; 20, 10; 10, 80
spikes/s. D: 50, 20; 20, 50; 30, 20; 20, 30 spikes/s. We indicate the total
average spike counts 〈nx〉, 〈ny〉. Four classifiers with different exponent
(Equation 3.2) are used: z = −8 (black), z = −2 (red), z = 2 (blue), and
z = 8 (green). Averages across K = 20 independent realizations with
M = 20 trials per stimulus are shown.
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the examples C and D, in which the total rate is the same for the responses
to Sx and Sy and a rate code cannot discriminate between them, the other
measures still result in high values of I∗(SP , S; τ) for time scales higher
than L. On the other limit, for τ → 0, the expected decrease of the mutual
information depends on the loss of consistency as discussed in Section
3.2.1. In general, I∗(SP , S; τ) decreases more slowly for D∗

V than for the
rest of the measures. This is due to the normalization and the effect of
the maximum possible value of the distance on the loss of consistency, as
described in Section 3.2.1.

Since the distances depend on τ smoothly, also I∗(SP , S; τ) is ex-
pected to be smooth if τ is sufficiently sampled. The flatness of the peak
depends on several factors. If high values of I∗(SP , S; τ) are obtained
like in examples A and C, the peak is flatter due to the saturation of the
sensitivity of I∗(SP , S; τ) when its maximum is attained. For these ex-
amples, since the stimuli are very different, they are more likely to be
discriminated better at any time scale. Furthermore, the flatness depends
on the sensitivity of each measure at each time scale. The most obvious
example is that the sensitivity of DV, D∗

V, and DR to temporal structure
for τ > L, will result in a flatter peak towards high time scales τ . In the
opposite limit τ → 0, the initial decrease from I∗max(S

P , S) is slower for
DR. This occurs because for DV and DB the resolution cannot be further
increased when τ is sufficiently small. This saturation of the resolution
for small τ is caused by the binning in DB and by the maximal cost of 2
in DV.

The exponent z of the classifier also results in significant changes in
the shape of I∗(SP , S; τ). Furthermore, z influences I∗max(S

P , S) more
than the measure. To see more in detail the dependence of I∗max(S

P , S)
and τ ∗ on the measures and exponents z, we examine in Figure 3.3 the
values extracted from the shapes of I∗(SP , S; τ) shown in Figure 3.2. We
confirm that I∗max(S

P , S) depends more on z than on the measure. For
example A, negative exponents are preferred, and for example D the pos-
itive ones. For examples B and C small |z| lead to higher I∗max(S

P , S).
The particular dependence on z changes across measures, but is qualita-
tively similar indicating that z is associated with the geometry resulting
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from the distances. The variability of I∗max(S
P , S), quantified by the stan-

dard deviation across trials, does not depend crucially on the measure or
exponent.

The optimal time scale 〈τ ∗〉 is much more variable across measures.
Furthermore, although some trends are observed in dependence on the ex-
ponent, the clarity and shape of this dependence change from measure to
measure much more than for the dependence of I∗max(S

P , S). The broad
error bars indicate the high variability of τ ∗ from realization to realization
of the analysis (Section 3.1.2). The same qualitative conclusions are ob-
tained for τ ∗〈I〉 regarding the high variability. Here the error bars quantify
the flatness of the peak, showing that in general DB leads to a sharper
peak. Comparing across examples, we see that higher values of τ ∗ are
obtained for examples A and B, in which the responses to the two stimuli
have different total rates. For example A, values of τ ∗ = ∞ occur. For
examples C and D, τ ∗ is lower and barely related to the time scale of the
intervals (Li = 100 ms). In all these examples this time scale is kept
fixed, and the changes in τ ∗ result from the local balance of the differ-
ent rates in response to the two stimuli. Furthermore, comparing DR and
DR∗ , notice that τ ∗ does not only depend on the distance used but also
on the kernel. The rectangular convolution kernel, which is symmetric
with respect to the spike time, generally gives the lowest values of τ ∗.
This is because apart from the higher resolution of DR discussed above,
it adds the fact that it is effectively wider than the truncated exponential
convolution kernel.

Apart from determining τ ∗, to assess the relevance of temporal coding
in the discrimination of the stimuli, we need to compare I∗max(S

P , S) and
I∗count(S

P , S). For examples C and D, in which the total rates are equal,
I∗count(S

P , S) ' 0 independently of the measure and exponent. For ex-
amples A and B, I∗count(S

P , S) depends more on z than on the measure.
Accordingly, Θ varies substantially when I∗max(S

P , S) and I∗count(S
P , S)

calculated with the same z are used to calculate it. In particular, for ex-
ample B, while for positive exponents the role of temporal coding is al-
most irrelevant, for negative exponents Θ > 0.5. Considering the vari-
ability observed for τ ∗ and for the difference between I∗max(S

P , S) and
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I∗count(S
P , S), we see that the discriminative precision and the role of

temporal coding are more difficult to evaluate than the mutual information
between stimuli and predicted stimuli.

Dependence on the length of the spike trains for different simulated
codes

In the examples above we have not made any assumption about the cause
of the modulation. In particular the modulation can represent the effect of
short-term adaptation in the transient responses to the onset of a constant
stimulus, or the effect of correlations with a dynamic stimulus. In the
case of the transient responses, the selection of a given length of the spike
trains for the discrimination analysis involves some assumption about the
time during which the constant stimuli are encoded. To further study the
relation of the discriminative precision with the properties of the code, we
examine how it depends on the length of the interval of the spike train for
which the distances are calculated.

For transient responses, latency has been shown to contain a high
amount of information about the stimuli (e. g. Reich et al., 2001b; Panz-
eri et al., 2001). To model this effect we consider two constant stimuli
Sx and Sy that elicit, during a short fixed interval, the same elevation of
the rate with respect to a baseline level, but with different delays with
respect to the onset time. Furthermore, after this transient response, a
constant rate is associated to each stimulus. In a first example (E) these
after-transient rates are equal, while for a second example (F) the rate
is higher for the stimulus with the larger latency. This difference in the
after-transient rates, depending on the length L of the spike trains used for
the discrimination analysis, suffices to produce a rate code discrimination.
Further details of the simulations are given in the caption of Figure 3.4.
Here we only show the results for DV, but the conclusions about the es-
timation and interpretation of the mutual information and discriminative
precision are qualitatively similar for the other measures.

We examine how I∗max(S
P , S) and τ ∗ depend on the latency differ-

ence L2 and on the after-transient interval length L4. In example E the
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Figure 3.4: Dependence of I∗max(S
P , S) and τ ∗ on the latency dif-

ference L2 and the length of the after-transient interval L4, for spike
trains simulating the response to transient constant stimuli. Four in-
tervals with constant rates for each stimulus are generated as shown in
the first row. L1 = 10 ms models the transient response of stimu-
lus Sx. L2 = [0, 10, 25, 50, 100, 200] ms models the latency difference.
L3 = 10 ms corresponds to the time of the transient response of Sy. L4 =
[0, 100, 200, 400, 800, 1600] ms is the after-transient interval. Following
the notation in Figure 3.2, the rates are: E: [200, 0; 20, 0; 20, 200; 20, 20]
spikes/s, F: [200, 0; 20, 0; 20, 200; 20, 40] spikes/s. In the first row the
modulated rates are shown using L2 = 50 ms and L4 = 100 ms for
exemplary purpose. In example E the rates are the same during the after-
transient interval. In the other rows, for each length L4 the results are
shown for all the lengths L2 with the same color, analogously to Figure
3.3. Results are shown for DV with z = −2, K = 20, and M = 20.

62



after-transient rates are equal, leading to I∗count(S
P , S) ' 0 independently

of L2 and L4. Since there is no overlap of the periods of elevated rate
and the increase of the rates is high with respect to the baseline rate, high
values of I∗max(S

P , S) are obtained independently of the latency differ-
ence. In this example, the after-transient interval length L4 does not af-
fect the amount of information. Therefore, Θ is also similar for different
latency differences and after-transient interval length L4, indicating a con-
stant contribution of temporal coding to discrimination. The optimal time
scales 〈τ ∗〉 and τ ∗〈I〉, while almost independent of L4, increase consistently
in dependence on the latency difference L2. Accordingly, the discrimina-
tive precision depends only on L2.

For example F, for which the after-transient rates differ, we get differ-
ent results. For small L4 the dependence on L2 resembles the one found
in example E as expected, since the total number of spikes is still simi-
lar for responses to both stimuli. When L4 increases I∗count(S

P , S) > 0
are obtained indicating that a rate code is enough to discriminate. The
length L4 necessary to obtain I∗count(S

P , S) > 0 depends on the latency
difference L2. This is because during the latency interval the stimulus
with the earlier response has a higher rate that has to be balanced in the
after-transient interval by the higher rate of the other stimulus. On the
other hand, I∗max(S

P , S) increases with the latency difference L2 because
information can be obtained from both the latency and rate difference
if temporal coding is used. Since both I∗count(S

P , S) and I∗max(S
P , S)

change with L2 and L4, so does Θ. In this example there are two dif-
ferent time scales at which the stimuli can be discriminated, and one or
the other is more relevant depending on the balance between the latency
difference and L4. For intermediate values of L4, I∗max(S

P , S) decreases
for small latency differences L2, showing that there is no optimal time
scale at which the two sources of information can be combined. The op-
timal time scale τ ∗ does not mainly depend on the latency difference as
in example E. For sufficiently large L4, both 〈τ ∗〉 and τ ∗〈I〉 increase with
L4 indicating that a rate code is enough for discrimination. For small L4

the dependence on the latency difference L2 is still visible, in particular
for 〈τ ∗〉. Altogether, we see that when different sources of information

63



exist that are not on the same time scale, it is difficult to interpret τ ∗ as
something more than the parameter for which the best discrimination is
obtained.

We also consider another possible encoding of the transient presenta-
tion of constant stimuli. In this case a phasic response is elicited with a
different elevation of the rate for each stimulus Sx, Sy. Furthermore, we
assume that after this increase the rate returns to the same baseline level
independently of the stimulus. A detailed description of this example G
is given in the caption of Figure 3.5. For a fixed interval of the transient
response L1 and fixed values of the rates during the transient response to
each stimulus, we vary the after-transient interval and thereby the length
of the spike trains used for the discrimination analysis L.

We examine the dependence of I∗max(S
P , S) and τ ∗ on L and on the

exponent of the classifier. Like for example E, the after-transient rates do
not add any information about the stimuli. Therefore, we expect that also
here I∗max(S

P , S) is independent of L. However, if we restrict ourselves
to a negative exponent z = −2 as in the Figure 3.4, I∗max(S

P , S) increases
with L. Since there is no extra information in L2, this increase can only
be caused by a change in the ability of the classifier to extract the existent
information in each case. As discussed in Section 3.1.2, I∗max(S

P , S) is
a lower bound of the total information I(R, S). To have a reference of
the total information in the responses, we show an estimate of I(R, S)
according to Equation 3.1. We use only the number of spikes in the first
interval to represent R, since there is no information about the identity
of the stimulus in L2. This estimate is calculated independently using a
larger number of trials per stimulus and checking for its convergence to
avoid any upward bias. If we compare across L2 the maximal I∗max(S

P , S)
across z, we see that this maximum remains almost constant for different
L2. Oppositely, I∗count(S

P , S) decreases with L2 even if the optimal z is
chosen independently from the optimal z for I∗max(S

P , S). This is because
for Poisson processes the variance is equal to the mean, and thus it is
harder to use the different rates in L1 to discriminate when L2 increases
and the number of spikes in this interval differs more. Therefore, Θ is
more sensitive to the selection of L2 than I∗max(S

P , S). This variability
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also affects the discriminative precision. The optimal time scale estimated
as the average across realizations 〈τ ∗〉 results in higher values than τ ∗〈I〉,
calculated from the average shape of I∗(SP , S; τ). The error bars of 〈τ ∗〉
indicate a high variability across single realizations. From τ ∗〈I〉 we see that
the peak is sharper for high L2. Furthermore, for the exponents for which
the maximal I∗max(S

P , S) is obtained, τ ∗ is almost constant independently
of L2 but it does not correspond to the length of L1.

Dependence on the number of trials

It depends not only on the measure and classifier but also on the number
of available trials per stimulus how tight the lower bound I∗(SP , S; τ) of
I(R, S) is. In previous examples the number of trials was fixed. We now
go back to the examples A-D shown in Figures 3.2 and 3.3 to study how
I∗max(S

P , S) and τ ∗ depend on the number of trials M . We use up to M =
50 trials, which is already high compared to the usual number of trials
available in experimental studies in which the discrimination analysis has
been applied. In the limit of M → ∞ we would expect I∗max(S

P , S) to
converge to a constant value, since the trials would reflect the distribution
p(R|S). Furthermore, for a sufficiently good classifier, if p(R|S) is well
reflected in the trials, this will improve the classification. For classifiers
that are worse, improving the estimation of p(R|S) can oppositely further
evidence that the classifier is not optimal. To have a reference of the total
information, we calculate an estimate of I(R, S) (Equation 3.1), using
the number of spikes in each of the four intervals to represent R. We
used a sufficient number of trials so that the values of I(R, S) converge,
avoiding the upward bias. This estimate is also a lower bound of I(R, S)
when calculated with a higher resolution for R.

We see in Figure 3.6 that I∗max(S
P , S) generally increases with M .

However, for example B and z = 8, we see that it decreases. For M = 50,
I∗max(S

P , S) attains values lower than I(R, S) in examples B and D, sug-
gesting that the classifier cannot extract all the information. Oppositely,
in examples A and C, for high M we see that I∗max(S

P , S) is a tight lower
bound of I(R, S). Although a clear convergence to a constant value is
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Figure 3.5: Dependence of I∗max(S
P , S) and τ ∗ on the length of the after-

transient interval and on the classifier for phasic rate responses. Two in-
tervals with constant rates for each stimulus are generated, as shown in the
first row. The first interval L1 = 10 ms models the phasic responses, while
the second, L2 = [0, 10, 50, 100, 250, 500] ms, is the after-transient inter-
val. The rates, following the notation of Figure 3.2, are [500, 100; 20, 20]
spikes/s. The structure of the figure is analogous to Figure 3.3. For each
length L2, results for exponents z = [−8,−4,−2, 2, 4, 8] are shown with
the same color. For the mutual information, we also show the maximal
I∗max(S

P , S) across all the exponents for L2 = 0 (dotted green line), and
the estimate (Equation 3.1) of I∗(R, S) for L2 = 0 (dotted black line).
Results are shown for DV, K = 20, and M = 20.
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Figure 3.6: Dependence of I∗max(S
P , S) and τ ∗ on the number of trials

M . Each column corresponds to the same examples as in Figure 3.2. The
structure of the figure is analogous to Figure 3.3. For each exponent z,
results for different numbers of trials M = [5, 10, 20, 30, 50] are shown
with the same color. We also indicate an estimate of I∗(R, S) (dotted
black line), taking into account separately the rates in each of the four
subintervals of constant rates. Results are shown for DV. K = 20 inde-
pendent realizations were used.

not achieved, the error bars become smaller for increasing M . In contrast
to what is observed for I∗max(S

P , S), we see that I∗count(S
P , S) decreases

with M except when I∗max(S
P , S) ' I∗count(S

P , S). Therefore, the mea-
sure of the relevance of the temporal coding Θ is more sensitive than
I∗max(S

P , S) to the number of trials. Regarding τ ∗, increasing M does
not reduce the variability across realizations or the flatness of the peak,
and we do not see a clear convergence for increasing M . In contrast to
I∗max(S

P , S), the error bars of 〈τ ∗〉 and τ ∗〈I〉 do not decrease with M .
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3.3 Information and discriminative precision for exper-
imental responses to transient constant stimuli

We now study the responses of exemplary rat gustatory cells and one
monkey visual cell available online at neurodatabase.org (Gardner, 2004).
Di Lorenzo and Victor (2003) analyzed the reliability of mean rate re-
sponse across trials in the nucleus of the solitary tract (NTS) of the rat for
four taste quality stimuli: NaCl, sucrose, quinine-HCl, and HCl. The au-
thors applied discrimination analysis with the Victor distance to examine
the potential contribution of temporal coding to the discrimination of the
stimuli. The analysis was carried out for the total length of the recordings,
10 s, as well as for only the interval related to the phasic response, the first
2 s. We here analyzed three single neurons labeled 11, 9, and 4, to which
we will refer as gustatory cells g1, g2, and g3, respectively. For these cells
16, 23, and 19 trials for each stimulus were recorded respectively. In Fig-
ure 3.7 A-C we show the time-dependent rates averaged across trials for
each stimuli. Notice the initial phasic response which lasts for the first
two seconds approximately. Details of the moving window averaging are
available in the caption of Figure 3.7.

Aronov et al. (2003) studied the discriminability of transient presen-
tations of stationary gratings of spatial phases in single neurons from the
primary visual cortex of anesthetized macaque monkeys. The authors ap-
plied the discrimination analysis with the Victor distance to analyze the
encoding of spatial phases. Furthermore, Aronov et al. (2003) proposed
an extension of the distance to compare the activity of a population of
simultaneously recorded neurons depending on the stimuli. It was found
that keeping track of which individual neuron fires and considering the
temporal structure of the responses contributed to the discriminability of
the responses. We here use one exemplary cell labeled 410106t, to which
we will refer as v1. Data comprise the responses to 64 trials for four spa-
tial phases (0, 90, 180, and 270 degrees). Each spike train corresponds
to 236 ms of stimulus presentation plus 710 ms of a uniform field at the
mean luminance. Accordingly, the length of the spike trains is ∼ 1 s,
which is one order of magnitude smaller than for the gustatory cells, as
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Figure 3.7: Time-dependent average rates for each stimulus of the four
exemplary cells responding to transient constant stimuli. For the gustatory
cells g1-g3 the rates were calculated for a moving window of 500 ms with
an step of 250 ms. For the visual cell v1 the moving window had 50 ms
and a step of 25 ms. Different colors correspond to different stimuli.

69



can be appreciated in Figure 3.7 D. The local peaks in the rate reflect the
onset and offset of the stimuli presentation.

3.3.1 Dependence on the measure and the classifier

We proceed in analogy to Section 3.2.2 examining I∗(SP , S; τ) for L
equal to the whole length of the spike trains, and for different exponents
of the classifier and different measures. In Figure 3.8 we see that, for the
gustatory cells g1−3, the shape of I∗(SP , S; τ) varies less for different ex-
ponents than for the visual cell v1. For the different measures we again see
that the normalization for D∗

V can lead to nonzero values for small time
scales τ . The flatness and location of the peak depends on the measure.

In Figure 3.9 we show in more detail the dependence of I∗max(S
P , S)

and τ ∗. Like for the simulations using Poissonian spike trains (Section
3.2.2), I∗max(S

P , S) depends more on the classifier than on the measure.
In particular, DB can discriminate equally well as the measures without
binning. The highest values of I∗max(S

P , S) are generally obtained for
the classifiers using low |z| and negative exponents are preferred. Op-
positely, for I∗count(S

P , S), positive exponents lead to higher values. In
consequence, Θ is more sensitive to the classifier. To minimize this effect
I∗max(S

P , S) and I∗count(S
P , S) should be optimized separately across z

before calculating Θ. In contrast to the simulated examples, we here can-
not generate additional trials to get an unbiased estimation of I∗(R, S)
that takes the temporal structure into account. Therefore, we reduce R
to the total rates to give a reference of the information I∗(R, S) that can
be obtained considering only a rate code (τ → ∞). We use Equation 3.1
to calculate I∗(R, S) and apply the analytical first order correction to the
bias (Treves and Panzeri, 1995). Notice that I∗max(S

P , S) is not a lower
bound for I∗(R, S), as can be seen for those cells in which temporal cod-
ing is relevant. Nonetheless, I∗(R,S) is an upper bound for I∗count(S

P , S)
and thus it can be useful to quantify Θ when, like for cell g1, I∗count(S

P , S)
does not attain I∗(R,S). Regarding τ ∗, we see that the values of 〈τ ∗〉 and
τ ∗〈I〉 for the exponent leading to the optimal I∗max(S

P , S) can differ in an
order of magnitude across measures. In particular lower values are gen-
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erally obtained for DR, specially when the symmetric rectangular convo-
lution kernel is used. Overall these results are consistent with the ones
found for examples A-D of simulated data, indicating that the time scale
related to the discriminative precision together with the assessment of the
importance of temporal coding are more sensitive to the measure and the
classifier than the mutual information.

3.3.2 Temporal accumulation of information

The dependence of the results on the length of the spike trains L used for
the discrimination analysis was studied for the gustatory cells in Di Lorenzo
and Victor (2003). In particular, the results obtained applying the discrim-
ination analysis for the whole 10 s of the recordings were compared with
those obtained for the first 2 s, associated with the phasic response. This
comparison revealed that the temporal coding was more relevant during
the phasic response. Similarly, Victor and Purpura (1998) found that the
discriminability of spatial phases depends on L for V1 visual cells. Since
both the gustatory cells and the visual cell respond to a transient presen-
tation of constant stimuli, we expect that L plays an important role in the
analysis as found for the simulations in Section 3.2.2.

In Figure 3.10 we show the dependence of I∗max(S
P , S) and τ ∗ on L.

For all the cells the mutual information increases with L until it saturates
or slightly decreases again. We compare I∗max(S

P , S) obtained for z =
−2, 2 with I∗count(S

P , S). We observe a different dependence for each
cell. For cell g2 there is almost no difference among the classifiers, but
the difference between I∗max(S

P , S) and I∗count(S
P , S) varies with L. For

L = 500 ms, the information obtained by rate coding is almost maximal.
When L increases, Θ becomes substantial but it decreases for L > 2 s,
leading again to a rate code for L > 8 s. The first 2 s are almost as
informative as the total. For L = 2 s, I∗max(S

P , S) > 0.8 is already close
to the value obtained for L = 10 s. However, 〈τ ∗〉 and τ ∗〈I〉 increases
with L. This resembles example F of Figure 3.4 for which information is
contained on two different time scales, related to the latency code and the
rate code. In such cases a single quantity τ ∗ is not enough to reflect the
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time scale at which information is contained, and intermediate values of
τ ∗ are obtained when none of the sources of information predominates.
For example, for L = 10 s, the information in the first two seconds can
still be obtained with a lower τ , however, using the lower τ would result
in contradictory information for the posterior part of the spike trains. This
indicates that τ ∗ depends in a nontrivial way on the balance between how
the sources of information are distributed across the total length of the
spike train and at which time scale.

We also see in Figure 3.10 that, for cells g1 and g3, τ ∗ is less depen-
dent on L. This suggest that there is no interplay of different time scales.
Furthermore, since the values of I∗count(S

P , S) are close to I∗max(S
P , S),

the results are similar to the ones shown in Figure 3.5. For the visual
cell v1, the pronounced ON and OFF responses are clearly reflected in
I∗max(S

P , S). The information increases abruptly with the ON response
and then again with the OFF response. By contrast, I∗count(S

P , S) in-
creases with the ON response but goes down with the OFF response,
indicating that the total rates are not enough to distinguish the stimuli
without resolving the time of the rate increases. After the OFF response
I∗max(S

P , S) decays slightly, in particular for the positive exponents. This
indicates that only contradictory information is added. Given the depen-
dence of I∗max(S

P , S) and I∗count(S
P , S) on L, Θ is very sensitive to L.

Before the OFF response a rate code accounts for almost all the informa-
tion, while after it Θ is high. However, the optimal time scale τ ∗ increases
for L < 150 ms but then remains constant at a time scale which is neither
related to the presentation period nor to the shorter time scale correspond-
ing to the ON and OFF responses.

3.3.3 Distribution and redundancy of the information along the
spike trains

Given the above results, it is clear that information is not distributed uni-
formly along the duration of the recordings. Furthermore, that the ac-
cumulation of information saturates faster or at a higher level does not
only depend on the temporal distribution of the information but also on
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how redundant it is across different intervals. To complement the study
of the dependence of I∗max(S

P , S) and τ ∗ on L, we here examine these
quantities for segments of different length and location. Due to the ex-
tensiveness of this analysis we restrict ourselves to cells g2 and v1, but
the conclusions are common to all cells. We consider all nonoverlapping
segments with length percentages 100, 80, 40, 20, 10, and 5 of the total
length of the recordings. In Figures 3.11 and 3.12 we show the shape of
I∗(SP , S; τ) for classifiers with z = −2, 2. We also provide an estimate
of I∗(R, S), considering the total rate for each segment length, which
serves as a reference of the total amount of information obtained without
temporal coding.

For cell g2, we see that all the 1 s segments contain similar amounts of
information. However, the shape of I∗(SP , S; τ) depends on the segment
and the classifier. For some segments the same I∗max(S

P , S) is obtained
with both classifiers but they produce different shapes of I∗(SP , S; τ),
and different τ ∗ and Θ. For the first second, both classifiers indicate some
degree of temporal coding, while for the rest the negative exponent gives
higher Θ. In particular, for various of the 1 s segments, after the pha-
sic response elicited in the first 2 s, the positive exponent lead to higher
I∗max(S

P , S) that nearly match the estimated I∗(R, S). This dependence
on the exponent is even higher for I∗count(S

P , S). We found that positive
exponents are preferable for the posterior part of the response for all the
cells. When examining the segments of length 2 s, the first segment is
clearly different from the rest, with temporal coding both indicated by
the peak at low τ and the values of I∗max(S

P , S) higher than I∗(R, S).
Notice that for the rest of the segments the shapes for the two exponents
are almost overlapping, although they differed substantially for the cor-
responding segments of 1 s. Furthermore in these segments I∗max(S

P , S)
matches I∗(R, S). The transition from temporal to rate code is already
visible for the first segment of 4 s where the peak of I∗max(S

P , S) is closer
to I∗(R, S), and this trend is consolidated for the 8 s and 10 s segments.

For cell v1 the temporal distribution of information is completely dif-
ferent. Regarding the segments of length 100 ms, the last five segments
do no contain information at all. These are the segments posterior to the
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Figure 3.12: Analogous to Figure 3.11 but for cell v1.
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OFF response. For the first five segments, the first segment contains the
highest amount of information, the second the lowest, and the other three
a similar amount. Notice that the segmentation has not been done tak-
ing into account where exactly the ON and OFF responses occur, which
means that taking segments located at these specific times could show
that information is higher and more concentrated. However, for our pur-
pose, it suffices to show how information arises nonuniformly. For the
first, third, and, to a lower degree, the fourth segment, temporal coding
retrieves more information. Analogously to cell g2, for segments four and
five the positive exponent substantially increases the information. The
concentration of information during the presentation period is confirmed
when examining the segments of 200 ms. For this length I∗max(S

P , S) is
only slightly higher than I∗(R,S) for the first two segments. By contrast,
when these two segments are merged in the first segment of 400 ms, the
rate code discriminates clearly worse than if temporal coding is used. The
first segment of 400 ms contains more information than the total of 1 s,
in agreement with the decay of the accumulated information observed in
Figure 3.10. For 800 ms and 1 s the negative exponent retrieves more
information, oppositely to what occurs for the shortest segments.

To better appreciate how the local information accumulates, we com-
pare the shape of I∗(SP , S; τ) for a given segment to the shape of the
two subsegments of half length. In Figures 3.13 and 3.14 we furthermore
indicate for each case the redundancy index (Reich et al., 2001a):

RI =
I∗max,1 + I∗max,2 − I∗max,joint

I∗max,1 + I∗max,2 −max(I∗max,1, I
∗
max,2)

, (3.11)

which is 0 if each half segment contributes independent information and
1 if they are completely redundant. RI is higher than 1 for contradictory
information and negative for synergistic information. However, since the
denominator I∗max,1 + I∗max,2−max(I∗max,1, I

∗
max,2) = min(I∗max,1, I

∗
max,2),

this index is specially sensitive when low information is found in one
of the half segments. Here we only use it to qualitatively indicate the
accumulation of information.

In Figure 3.13, for cell g2, RI is about 0.6 or higher for the segments
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Figure 3.13: Redundancy of information along the recordings for cell g2.
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Figure 3.14: Analogous to Figure 3.13 but for cell v1.
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of length 1 s, indicating that there is a substantial redundancy between the
information. Indeed, for the subsegments of length 500 ms, that we did
not show in Figure 3.11, also a significant degree of information is nearly
uniformly distributed across the whole length of the spike trains. For the
first second, which shows a clear peak indicating temporal coding, the
two subsegments are more consistent with a rate code. For the first 2 s,
the lowest value of RI over all time scales is obtained. By contrast, for
the first 4 s information is almost completely redundant. The same occurs
for the segment of 8 s. This is consistent with Figure 3.10 concerning the
saturation of the accumulation of information. The phasic response con-
tains almost all the nonredundant information in the first 2 s. Nonetheless,
this information can also be retrieved from the posterior response where
it is distributed more uniformly and in a less redundant way.

For cell v1, we see in Figure 3.14 that RI is much more variable and
we find negative values and values above 1. For three segments of length
100 ms RI is not well defined because the information is zero in one
of the subsegments. RI shows a high variability when low information
values are obtained. We see that almost all the information is contained in
the segments 50-100 ms, 250-300 ms and 300-350 ms. The first interval
covers the ON response, and the other two cover the OFF response. This
is reflected in low RI values for the second segment of 200 ms and the first
segment of 400 ms. The part of the spike trains after the OFF response
provides only contradictory information as evidenced by the RI of the
800 ms segment.

3.4 Information and discriminative precision for exper-
imental responses to time-dependent stimuli

In the previous analysis, comprising simulations (Section 3.2) and exper-
imental data (Section 3.3), we restricted ourselves to transient constant
stimuli. We now turn to time-dependent stimuli to consider the tempo-
ral structure in the spike trains caused by the correlation with the time-
dependent stimuli. For time-dependent stimuli, one has to distinguish
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between the elements Sj , j = 1, ..., N , of the discrete set of stimuli {S},
considered in Equation 3.1, and what is the actual stimuli determining
the response of each particular cell at each concrete time. Each Sj con-
sists of a sequence Sj(t) of stimuli Sj(ti). A particular stimulus S(ti)
can be repeated at different times within or across the stimuli {S}, fol-
lowing some particular distribution. For neurons with different recep-
tive fields, the same time-dependent stimulus Sj(t) constitutes a different
time-dependent profile Sjk(t) to which the neuron is sensitive, where k
refers to the particular neuron responding to Sj . This is because each
neuron is sensitive to a particular subspace of the stimulus. The time-
dependent profile is a vector which can have components corresponding
not only to the instantaneous time ti but to the past up to ti − ∆t, de-
pending on the temporal extent of the receptive field. Accordingly, the
modulation of the firing rate reflects the interplay of a sequence S(t) with
a particular receptive field and a particular tuning curve. In this context,
the discrete set of stimuli {S}, even if meaningful, for example, consider-
ing the perceptual relevance of the sequences chosen, provides simply the
categories needed to calculate the mutual information with the classifier
(Equation 3.3). Accordingly, the mutual information between the stimuli
and predicted stimuli is not a lower bound of the information contained
in the responses about the stimuli, but simply a measure of discrimination
performance.

We analyze single-unit recordings from the songbird auditory sys-
tem (Brainard and Doupe, 2000; Theunissen and Shaevitz, 2006). De-
tails of the recordings are described in Appendix B and have been facil-
itated by Emily Caporello, from the Laboratory of Auditory Neuroethol-
ogy and Communication of Tim Gentner, at the University of Califor-
nia, San Diego. The data comprise recordings from neurons from Field
L and Caudal Mesopallium (CM) of European Starlings. Field L is the
avian analog to primary auditory cortex in mammals (Fortune and Mar-
goliash, 1992), and contains neurons that respond to complex temporal,
spectral and spectrotemporal acoustical features. Some neurons encode
low-level acoustics like power in a given band, while others are sensitive
to specific vocalizations. CM can be compared to the superficial layers
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of auditory cortex or to secondary mammalian auditory regions, such as
the lateral belt in primates or Wernicke’s area in humans (Jarvis, 2004).
Some neurons in this area are sensitive to higher order acoustic features
of vocalizations. Recordings are from 4 European Starlings summing a
total of 22 well-isolated single neurons. From these cells, 13 are in CM
and 9 in Field L. In the results we do not distinguish between different
areas because we found no systematic differences. The stimuli consist of
N = 9 unfamiliar conspecific songs of 14 s of duration. M = 6 trials are
available for each song.

In Figures 3.15, 3.16 we present the response from some exemplary
cells to show the variability of the responses across cells. The average
firing rate is highly variable, however, events corresponding to a reliable
response for repeated presentations of the same song are appreciable in all
the cells to some degree. This behavior is consistent with the diversity of
receptive fields. While cells encoding low-level acoustic features are sen-
sitive to continuous temporal variations of these features, cells encoding
higher-order features, or with a more selective tuning curve, fire sparsely.

3.4.1 Dependence of the information and the discriminative preci-
sion on the firing rate

We examine the relation between I∗max(S
P , S) and τ ∗, and their depen-

dence on the average firing rate. As in Section 3.3, when analyzing the
responses to transient constant stimuli, we use bootstrapping to obtain av-
erage values. In Figure 3.17 we show 〈I∗〉 and 〈τ ∗〉 obtained by repeating
the discrimination analysis for all the combinations of N ′ = 5 songs. We
use the Spearman rank correlation coefficient to quantify the dependen-
cies. The mutual information and the optimal time scale are negatively
correlated. The coefficient is always significant and has an average value
of 〈ρ〉 = 0.61, when averaged for groups of N ′ = 3 − 7 songs. Fur-
thermore, 〈I∗〉 is highly positively correlated with n̄, the average number
of spikes per song. The coefficient has an average value of 〈ρ〉 = 0.71.
Oppositely, 〈τ ∗〉 is highly negatively correlated to n̄ with an average co-
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Figure 3.15: Responses of two exemplary auditory cells elicited by N =
9 conspecific songs. The spike trains corresponding to M = 6 trials
elicited by the same song are shown together, and colors are alternated to
better differentiate the responses to different songs. The average number
of spikes per song is indicated by n̄.
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Figure 3.16: Analogous to Figure 3.15 but for two cells with higher aver-
age number of spikes per song n̄.
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efficient 〈ρ〉 = −0.78. A similar dependence was found for τ ∗〈I〉.
These results can be explained assuming the correlation between the

rate and the profiles Sjk(t) determined by the sensitivity of the k-th cell.
The cells with higher rates reflect a lower-level acoustic feature, which,
given that the songs are independent, evolves differently at each point in
time for each song, therefore increasing the evidence about the identity
of the song. For more selective cells, the evidence about the identity of
the song is only available occasionally. Therefore, in general, higher rates
improve the discrimination, despite it depends on the reliability of the re-
sponses that the increasing evidence results in an increase of I∗max(S

P , S).

Regarding τ ∗, its decrease for higher average rates reflects that the
modulations caused by the stimuli are local and do not result in signifi-
cant difference in the total number of spikes elicited by each song. For
cells with low rates, the variability of τ ∗ increases. For these cells the
discriminative precision is specially sensitive to the presence of single
events corresponding to a reliable pattern. Since the features that produce
the reliable patterns are different across cells and have a different distri-
bution across songs, τ ∗ has a high variability in this range. Of course,
for longer recordings this dependence on the distribution of the relevant
features would be weaker. This arbitrariness of τ ∗ is an effect of the arbi-
trariness of the selection of a discrete set of stimuli S.

The opposite correlations of the mutual information and the optimal
time scale with the average number of spikes per song is consistent with
their own negative correlation. However, the fact that this correlation is
lower reflects that it results indirectly from the dependence on the average
number of spikes per song.

3.4.2 The time scale characteristic of reliable patterns

We here use the discrimination analysis to examine an alternative quan-
tity τp, related to the time scale of the reliable patterns in the response.
As discussed above, the discrimination performance is influenced by the
interplay of the properties of the cell with the contingent distribution of
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Figure 3.17: Mutual information and optimal time scale in dependence on
the average number of spikes per song. Each dot corresponds to the aver-
age value obtained for an individual cell when the discrimination analysis
is repeated for all combinations of M ′ = 5 trials per song. The Victor
distance is used in the discrimination analysis. I∗max(S

P , S) is maximized
across different classifiers, with the exponent z = −4,−2, 2, 4. ρ indi-
cates the Spearman rank correlation coefficient.
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the relevant features across time and stimuli of {S}. For the k-th cell, the
stimulus Sj can cause a reliable pattern in the response at a given time ti
elicited by the feature Sjk(ti). Therefore, a particular distribution across
time and across stimuli of reliable patterns reflects the arbitrary combina-
tion of stimuli Sj(t), j = 1, ..., N , as well as the sensitivity and reliability
of the cell. A way to partially disentangle the influence of the particular
time-dependencies and of the existence of reliable responses is to gener-
ate surrogate data that preserve the reliable patterns but randomize their
distribution across time. This is done by cutting segments of the spike
trains and randomly reordering them. In particular, for a fixed segment
size Ts, the segments are shuffled, but keeping together the same segment
for all the trials of the same stimulus. Accordingly, any correspondence
across songs, which was already arbitrary for the original spike trains, is
removed. Furthermore, any reliable pattern with a time scale higher then
Ts is destroyed. However, the major part of reliable patterns up to the time
scale of the segments size are preserved. Unavoidably, part of the struc-
ture at lower time scales is also destroyed when a pattern is divided in
two adjacent segments, and the probability that this happens increases for
smaller Ts. Neglecting these discontinuities, and assuming that the spec-
trotemporal features to which the cell is sensitive do not have a temporal
extent higher than Ts, the new spike trains can be thought as responses
to new songs with an alternative distribution of the same features. At
the population level, the mutual information I∗max(S

P , S) should be the
same for the surrogate spike train as long as the reliable patterns are not
destroyed.

In Figure 3.18 we show the decrease of I∗max(S
P , S) for all the cells

in dependence on the segment size Ts. Furthermore, we illustrate how
we define the time scale characteristic of the reliable patterns τp. Given
K = 19 surrogate realizations, we look for which value Ts the average
mutual information 〈I∗〉 extracted from the original spike trains is higher
than all the values obtained for the surrogates. This indicates that the
original spike trains are no longer consistent with the surrogates with a
significance level of α = 0.05. We take τp to be equal to this value Ts.

Given τp, we examine if it is correlated with the mutual information,

89



Ts(ms)

n̄

〈I∗〉

 

 

140070035021017514011291704935147

1.3
1.9
7.5
10

12.7
18.2
18.4
21.8
23.1
30.9
59.2
79.3
86.4
87.6

114.6
122.6
141.6
165.2
166.5
168.2
197.8

406 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 140 280 420 560 700 840 980 1120 1260 1400
0.4

0.5

0.6

0.7

0.8

0.9

1

Ts(ms)

〈I∗〉

n̄ = 122.6

A

B

Figure 3.18: The calculation of the characteristic time scale τp of the
reliable patterns. A. Dependence of the average of 〈I∗〉 across surrogates
on the size Ts of the shuffled segments for all the cells ordered by the
average number of spikes per song. B. Exemplary cell for which we show
〈I∗〉 for the original responses (red) compared with the values obtained for
the surrogate data, the average and standard deviation (green), as well as
the minimum and maximum across K = 19 surrogates (blue). The Victor
distance is used in the discrimination analysis. I∗max(S

P , S) is maximized
across different classifiers, with the exponent z = −4,−2, 2, 4.
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the average firing rate or the discrimination precision. We see in Fig-
ure 3.19 that none of these correlations is significant. In Figures 3.15,
3.16 we already showed that reliable patterns are observable for all the
cells independently of their responsiveness. Comparing τp with τ ∗, we
see that the time scale of the reliable patterns is lower than the time scale
of discrimination. While the optimal time scales τ ∗ takes values in the
range (10− 10000) ms, τp is in the range (5− 180) ms. This means that
the structure of the responses across trials of the same stimuli Sj contain
sufficient information to achieve the same level of discrimination at lower
time scales than the time scale associated to discrimination precision. One
may think that this difference in the time scales is due to the way 〈τ ∗〉 is
defined (Section 3.1.2), as the average of all τ for which I∗max(S

P , S) is
obtained. However, the same results were obtained (results not shown)
when we used an alternative definition, considering the minimum τ in-
stead of the average. For this case, although lower for some cells, 〈τ ∗〉
was still on average orders of magnitude higher than τp across cells.
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Figure 3.19: Correlation of the average mutual information 〈I∗〉, the op-
timal time scale of discrimination 〈τ ∗〉, and the average number of spikes
per song n̄ with the characteristic time scale of the reliable patterns τp.
Each dot corresponds to an individual cell. We indicate the Spearman
rank coefficient and the corresponding p value.
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3.5 The interpretation of discrimination analysis

In this part of the thesis we dealt with the use of time scale parametric
spike train distances to study the information and discriminative precision
of neural responses. For this purpose, we studied several measures com-
monly used to quantify the dissimilarity between spike trains. We started
by comparing these measures using time-independent Poisson spike trains
to characterize the dependence on the time scale parameter τ (Section
3.2.1). This characterization is necessary to understand the dependence
of the mutual information between the stimuli and the predicted stimuli
I∗(SP , S; τ) (Equation 3.4) on the time scale parameter. We then eval-
uated the influence of different factors in the discrimination analysis. In
particular, we considered the dependence of the mutual information and
the discriminative precision on the measure and the selected classifier, as
well as on the length of the spike trains used for the discrimination anal-
ysis, and the number of trials available for each stimulus.

We showed that the mutual information I∗max(S
P , S), obtained from

the maximization across the time scales, is more sensitive to the classi-
fier than to the measure. This result was consistent for simulated time-
dependent Poisson spike trains (Section 3.2.2) and for exemplary exper-
imental data comprising recordings from gustatory and visual neurons
(Section 3.3.1). In particular, a distance based on binning led to similar
results as the more elaborated spike train distances. This suggests that the
preeminent ingredient of the discrimination analysis is the use of a classi-
fier to avoid the estimation of the joint probability distribution of stimuli
and responses p(R, S) (Equation 3.1). Once the high-dimensional prob-
abilities do not have to be estimated, binning is not a problem by itself.
Regarding the discriminative precision, we observed that the time scale
τ ∗ for which the mutual information is maximal results from a nontrivial
interplay of the different sources of temporal structure as well as from the
different time scales at which the information is contained. We showed
that for simulated time-dependent Poisson spike trains, τ ∗ does not de-
pend directly on the time scale of the modulation in the rate. It is deter-
mined by several factors including the local and global balance between
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the rates in response to each stimulus. Furthermore, τ ∗ and the percentage
of information increase Θ (Equation 3.6), which reflect the relevance of
temporal coding, are more sensitive to the measure and classifier than the
mutual information itself.

3.5.1 The dependence on the classifier and the measure

To our knowledge, the dependence of the mutual information on the clas-
sifier, determined by the exponent z in Equation 3.2, has not been ad-
dressed in detail before. Victor and Purpura (1997) showed that, for sim-
ple Gamma processes, the shape of I(SP , S; τ) changes with z. This
affects the determination of the optimal time scale τ ∗ as well as the sig-
nificance of temporal coding quantified by Θ. However, the particular
exponent used is usually not specified in experimental studies (Victor and
Purpura, 1998; Machens et al., 2001; Aronov et al., 2003; Di Lorenzo and
Victor, 2003; Samonds and Bonds, 2004; Di Lorenzo and Victor, 2007;
Roussin et al., 2008; Huetz et al., 2009). When explicitly stated (Mechler
et al., 1998; Macleod et al., 1998; Huetz et al., 2006), it is usually not
motivated. To our knowledge, only Victor and Purpura (1996), presented
the results for z = −2 and mention that similar results were obtained
for z = −8, ... − 1, and Reich et al. (2001b), provided an analysis of
the robustness of the median distance for Equation 3.2 when few spikes
are present in each spike train. In other studies, to avoid this parametric
dependence on the exponent, the discrimination performance was quanti-
fied by the percentage of correct classifications obtained as described in
Section 3.1.2. Machens et al. (2003) indicated that the use of different su-
pervised and unsupervised classifiers did not affect the results. However,
other studies using the percentage of correct classifications to evaluate the
discrimination do not report any comparison with other classifiers (Grewe
et al., 2003; Narayan et al., 2006; Wohlgemuth and Ronacher, 2007; Wang
et al., 2007; Billimoria et al., 2008). Although avoiding the selection of z,
the optimality of the classifier based on the random selection of templates
may differ for different time scales, cells, or conditions. In general, we
showed (Section 3.2.2) that I∗(SP , S; τ) should be maximized not only
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across time scales τ , but across different classifiers, for example for dif-
ferent values of z. For the comparison of I∗max(S

P , S) and I∗count(S
P , S),

both should be maximized separately.
It is also common practice to apply the discrimination analysis for

only one particular measure in application to experimental data (e. g.
Huetz et al., 2006; Roussin et al., 2008). In other cases various measures
are used to verify if the results are independent of the measure (Machens
et al., 2003; Narayan et al., 2006), or to compare their performance (Wang
et al., 2007). In particular, the two different families of spike train dis-
tances based on spikes and intervals (Victor and Purpura, 1996), are usu-
ally considered together to examine the nature of the code (e. g. Victor
and Purpura, 1996; Di Lorenzo and Victor, 2003; Samonds and Bonds,
2004). We here have not studied the interval-based spike train distances
of Victor and Purpura (1997). This is because we were more interested in
showing the effects of the particularities of each measure even in the case
where they all quantify the similarity of spike times.

3.5.2 The dependence on the length of the spike trains for different
codes

In Section 3.2.2, we showed that for pure latency coding of the stimuli,
I∗max(S

P , S) is almost independent of the length of the after-transient in-
terval, and τ ∗ reflects the time scale of the latency difference. However
this direct interpretation does not hold in general. When information is
extracted at different time scales, the discriminative precision arises from
the particular balance between how well for a particular τ the different
sources of information can be extracted. This has been confirmed by the
examination of the accumulation and distribution of information along the
spike trains for the experimental recordings in Sections 3.3.2 and 3.3.3.
Choosing a particular L implies some assumptions about which portion
of the responses is informative, but also determines which is the best τ
to retrieve this information. Different classifiers can be better for differ-
ent L, leading to counterintuitive results like in Figure 3.5, unless results
across several classifiers are scrutinized. This led us to also consider a di-
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rect calculation of I∗(R, S), the normalized mutual information between
the stimuli and the responses, calculated directly from Equation 3.1. The
calculation is straightforward for simulations for which a large number
of data can be generated to avoid estimation biases. Since the mutual
information obtained from the classifier I∗max(S

P , S) is a lower bound
of I∗(R, S), this helps to evaluate the optimality of the classifiers. For
an optimal classifier, the difference between I∗(R, S) and I∗max(S

P , S)
quantifies the extra information in the responses not related to decoding,
but exclusively to the representation and uncertainty of the classification
(Quian Quiroga and Panzeri, 2009).

3.5.3 The dependence on the number of trials

In Section 3.2.2, we studied the convergence of the estimated I∗max(S
P , S)

and τ ∗ with the number of trials M of each stimulus. We found that the
mutual information generally increases with the number of trials, since
the spike trains sample the distribution of responses for each stimulus
better. By contrast, the optimal time scale τ ∗, had a high variability inde-
pendently of the number of trials, and a clear trend was not observed. Fur-
thermore, the maximal information retrieved by a rate code, I∗count(S

P , S),
converged differently than I∗max(S

P , S).

3.5.4 The application of discrimination analysis to experimental
data: transient constant vs. time-dependent stimuli

The measures studied here by construction cannot discriminate between
temporal structure caused by correlations with the stimuli, patterns asso-
ciated to temporal encoding as defined by Theunissen and Miller (1995),
or the effect of refractory periods or short-term adaptation. However, de-
pending on the experimental setting, some of these sources are expected
to be more relevant and should be taken into account to interpret the re-
sults. In general, two main scenarios can be distinguished.

In one case, transient constant stimuli are presented and the responses
are recorded including the period of the stimulus presentation and po-
tentially some period after the stimulus presentation (Victor and Purpura,
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1996, 1998; Reich et al., 2001b; Aronov et al., 2003; Di Lorenzo and Vic-
tor, 2003; Di Lorenzo et al., 2009). In Section 3.2.2 we investigated the
influence of the length of the spike trains L used in the discrimination
analysis for simulations of different types of responses to transient pre-
sentation of constant stimuli. In Section 3.3 we analyzed exemplary cells
responding to this type of stimuli. For this scenario, since the stimulus is
constant, the temporal structure is not determined by correlations with the
stimulus apart from those elicited by the onset and the offset. Therefore,
we used the term temporal coding in the broad sense of any contribution
of time to determine the information in the responses as in Hallock and Di
Lorenzo (2006), in contrast to the more restrictive definition of Theunis-
sen and Miller (1995). The temporal structure is mainly caused by the
phasic response and short-term adaptation (see Hallock and Di Lorenzo,
2006, for an overview of the different sources of temporal coding for the
cells of the gustatory system). The importance of the transient presenta-
tion in the temporal coding was demonstrated by Mechler et al. (1998) for
the coding of contrast by V 1 neurons. After the phasic response the ac-
tivity depends on the influence of recurrent and feedback circuits (Victor
and Purpura, 1998), which contributes to the dependence of the results of
the discrimination analysis on L.

Furthermore, for the constant stimuli, the property of the stimulus
which is assumed to cause the response is implicitly selected in the con-
struction of the set. For example, for the experimental data analyzed in
Section 3.3, the taste quality differentiates the stimuli presented to the
gustatory cells, while the spatial phase changes for the stimuli presented
to the visual cell. Other properties of the stimulus, for example the con-
trast for the visual stimuli, are kept constant or assumed to have no causal
effect in the responses. In this case, the mutual information between the
stimuli and the predicted stimuli is a lower bound of the mutual informa-
tion between the stimuli and the response. Accordingly, the main problem
of interpretation when obtaining a low value for the mutual information
is that with I∗max(S

P , S) one evaluates at the same time the capability of
the neurons to discriminate and the capability of the spike train distances
and the classifier to correctly retrieve any available information. Low
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values can be due to an unappropriate measure or classifier, but also be-
cause the cell is insensitive to the selected property of the stimulus which
distinguish the different stimuli in the set. In a considerable part of the
studies applying the discrimination analysis, low values of I∗max(S

P , S)
have been obtained. For example, an average I∗max(S

P , S) < 0.3 was ex-
tracted in Victor and Purpura (1996), Victor and Purpura (1997), Victor
and Purpura (1998), Mechler et al. (1998), Reich et al. (2001b), Samonds
and Bonds (2004), and Di Lorenzo and Victor (2007). In other cases av-
erage values were higher, for example I∗max(S

P , S) > 0.6 for Di Lorenzo
and Victor (2003), Roussin et al. (2008), and Di Lorenzo et al. (2009), but
still low values were found for some cells. In general a better discrimi-
nation has been found when using time-dependent stimuli (Huetz et al.,
2006, 2009).

For the other scenario time-dependent stimuli are used. Discrimina-
tion analysis has mainly been applied in this context to discriminate be-
tween naturalistic sounds (Machens et al., 2001, 2003; Narayan et al.,
2005, 2006; Huetz et al., 2006; Wohlgemuth and Ronacher, 2007; Huetz
et al., 2009). In Section 3.4 we analyzed exemplary cells from the au-
ditory system of birdsongs responding to conspecific songs. In this con-
text, the time-dependent stimuli are regarded as a discrete set of differ-
ent stimuli rather than simply different realizations from an underlying
common probability distribution. Each song presented to a songbird is
supposed to be behaviorally relevant and to contain subunits formed by
temporal sequences of motifs composed by complex spectrotemporal fea-
tures that are specific for different singers (Gentner, 2008). Neurons with
spectrotemporal receptive fields have been identified in the birds auditory
system (Theunissen et al., 2000; Nagel and Doupe, 2008). Accordingly,
the temporal structure of the spike train reflects mainly the correlation
with the time-dependent stimulus, the particular sequence of spectrotem-
poral features to which the neuron is sensitive. (Narayan et al., 2005;
Billimoria et al., 2008). For neurons with different receptive field the
time-dependent stimulus constitutes a different time-dependent profile of
relevant features. This results in a highly variable mutual information and
discriminative precision across cells (Narayan et al., 2005, 2006; Wang
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et al., 2007; Schneider and Woolley, 2010). Therefore, an analysis of the
influence of the length L of the spike trains in the discrimination accuracy
depends crucially on the specific time-dependent profile resulting for each
song and cell. In Sections 3.2 and 3.3, to restrict the number of influencing
factors on the estimation of the mutual information and the discriminative
precision, we focused on examples reproducing the responses to transient
constant stimuli. Oppositely, in Section 3.4 we used responses to time-
dependent stimuli to exemplify the influence of the responsiveness of the
cells and the statistics of the time-dependent stimuli.

For time-dependent stimuli like the songs in Section 3.4, there is no
clear identification of what is causally influencing the responses. The
stimuli forming the set {S} are not distinguisable by one property, like the
spatial phase, but they are behaviorally relevant complex entities, consist-
ing of a sequence of features resulting in a particular time-dependent pro-
file of relevant features for each cell. In this case the mutual information
between stimuli and predicted stimuli is not a lower bound of the mutual
information between stimuli and responses, and should be consider sim-
ply as a measure of discrimination performance, similar to the percentage
of correct classifications (Machens et al., 2003; Narayan et al., 2006).
The percentage of correct classifications cannot be directly compared to
the normalized mutual information. However, qualitatively, higher levels
of discrimination performance have been reported when analyzing time-
dependent stimuli. This higher levels of performance can be understood
given that in the time-dependent stimuli the evidence of the difference
between the stimuli increases with time, if the cell is sensitive to some
features in the stimuli. For example, percentages higher than 75% were
reported in Machens et al. (2001, 2003); Narayan et al. (2005, 2006). The
discrimination level depends on the influence of the distribution of these
relevant features specific for each cell across time and across stimuli. This
means that the statistics of the stimuli, combined with the properties of re-
ceptive field and the tuning curve of the cell have to be considered together
with the sensitivity of the similarity measures and the appropriateness of
the classifier to interpret the discrimination performance.
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Discrimination analysis for transient constant stimuli

In Section 3.3 we studied exemplary spike trains elicited by transient con-
stant stimuli. In Section 3.3.1 we showed that the dependence on the mea-
sure and classifier used was consistent with the results for the simulated
data discussed in Section 3.2.2. We again observed that it is harder to
estimate and evaluate the discriminative precision and significance of the
temporal coding than the mutual information. We furthermore included in
our analysis a direct estimate of I∗(R, S), the mutual information between
the stimuli and the total rates in the spike trains. With the number of trials
available it was not possible to deal with a space R of high dimensionality,
derived from a finer binning of the spikes. However, calculating I∗(R,S)
helps to verify the relevance of the temporal coding. Since I∗count(S

P , S)
is only a lower bound of I∗(R,S), one should check if I∗(R, S) is higher
than I∗max(S

P , S). To our knowledge, such a control including I∗(R,S)
in the analysis has only been carried out by Huetz et al. (2006).

We studied the influence of the length L of the spike trains used for the
discrimination analysis. We found some similarities between the simple
examples of Section 3.2.2 and the experimental data. In particular, for
cell g2, we showed the effect of the existence of information at different
time scales, as in example B of Section 3.2.2, where both the latency and
the total spike counts were informative. We argued that one quantity, τ ∗,
is not enough to reflect the time scales at which information is contained
in the code. Its value depends in a nontrivial way on the balance between
how the sources of information are distributed in different locations of the
spike trains and on the time scale characteristic of these sources.

The dependence of the discrimination analysis on the length of the
responses has been studied before (Machens et al., 2001, 2003; Narayan
et al., 2005, 2006; Wang et al., 2007; Wohlgemuth and Ronacher, 2007).
However, our analysis differed in several ways. First, in all these stud-
ies time-dependent stimuli were used, so that increasing L also increases
the amount of evidence in the stimuli contributing to their discrimination.
Therefore in these cases how the discrimination improves depends more
on the statistics of the different time-dependent profiles than on the encod-
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ing process. Second, in these studies the dependence on L is shown for
a fixed value of τ , usually corresponding to τ ∗ extracted for a particular
sufficiently large length of the spike trains (for which the mutual informa-
tion is high). Oppositely, in Figure 3.10, the values of I∗max(S

P , S) were
maximized independently for each value of L. As indicated by the vari-
ability of τ ∗ on L, using a fixed τ can led to underestimate the available
information. Narayan et al. (2006) derived an estimate of the time scale
of temporal integration fitting the cumulative curves to an exponential.
They discussed the existence of two distinct time scales in the discrim-
ination, one related to the discriminative precision and the other to the
time of integration. A longer integration time scale can result from the
underestimation of I∗max(S

P , S) when τ is fixed for all L.

To better understand the accumulation of information, we examined
which amount of information can be extracted locally in different parts
of the spike trains and how redundant it is (Section 3.3.3 ). We saw that
in different segments the best classifier differs. In some cases, even if
I∗max(S

P , S) was almost equal, different classifiers indicated different dis-
criminative precision and importance of the temporal coding. It was not
possible to relate the discriminative precision to the way information was
temporally distributed. For cell g2 the information was almost homoge-
neously distributed. For cell v1 it was concentrated at the times of the
onset and offset of the stimulus presentation. The analysis confirmed the
observed accumulation of information, indicating that the first L ' 2 s
for the gustatory cells and the first L ' 400 ms for the visual cell already
contains almost all the nonredundant information. Nonetheless, the infor-
mation contained in the posterior part of the responses varies from cell to
cell. For cell g2, almost the same information could be obtained excluding
the first 2 s. By contrast, for cell v1, almost no information is contained
after the first 400 ms.

For transient constant visual stimuli, Reich et al. (2001b) already car-
ried out the discrimination analysis considering separately different parts
of the responses. They compared the information extracted in the tran-
sient part of the response, on the tonic part, and the off part of the response
-after the stimulus has been removed. Although they did not focus on the
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redundancy of the information in these distinct parts, they already indi-
cated that the information contained in the time of the first spike and all
the other sources of information were redundant, so that the first spike was
even more informative than the full response for some cells. In another
study, Nelken et al. (2005) used other estimators of the mutual informa-
tion to identify a minimal ensemble of properties of the responses that
contains all the available information. It was shown that the total rates
and the mean of the spike times contained together the same information
as the full responses. Examining which parts of the responses contribute
the most to the mutual information provides more information about the
time scales and the nature of the encoding than the discriminative preci-
sion. The way information is distributed and combined in different parts
of the responses and in different time scales can be too complex to be
faithfully reflected by one quantity.

Discrimination analysis for time-dependent stimuli

In Section 3.4 we analyzed the responses of exemplary cells to time-
dependent stimuli. In particular, we examined the responses of auditory
cells of songbirds when listening to conspecific songs. We have exam-
ined the influence of the receptive field and the tuning curve indirectly by
studying the correlation of the mutual information and the optimal time
scale for discrimination with the average number of spikes per song. We
did it in this way due to the difficulty to estimate the spectrotemporal re-
ceptive field of these cells and their tuning curves, in particular with only a
small number of M = 6 repetitions of each song. We considered a prelim-
inary estimation of the receptive fields following the reverse-correlation
technique described in Theunissen et al. (2000) too poor to be used for
further analysis. We attribute this poor estimation to the rich temporal
structure of the responses incompatible with the Poissonian spike gen-
eration necessary for the consistency of spike triggered average estima-
tors (Paninski, 2003a; Schwartz et al., 2006). Furthermore, we found, for
many of the neurons, a low frequency (∼ 0.1 Hz) modulation of the re-
sponses unrelated to the spectrotemporal properties of the songs (see for
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example the second cell in Figure 3.15).
We found a strong positive rank correlation between the mutual infor-

mation and the average number of spikes per song (Section 3.4.1). These
results are consistent with other studies that found the same positive cor-
relation when calculating the mutual information from the discrimination
analysis (Schneider and Woolley, 2010) in the midbrain of zebra finches,
or when calculating the mutual information rate between acoustic stimuli
and responses using the direct method of Strong et al. (1998), like Es-
cabı́ et al. (2005) in the cat inferior colliculus. For the mutual information
rate, this correlation was explained by Escabı́ et al. (2005) using a sim-
ple integrate-and-fire neuron model. In this model, for the same synaptic
drive, the spike threshold determines the firing rate and the selectivity
of the neuron to specific stimuli, so that the information per spike also
increases with the threshold. With an alternative model, Narayan et al.
(2005) showed that the discrimination performance was higher when the
receptive field contains an inhibitory component, which also results in a
higher selectivity of the neuron. However, despite the positive rank cor-
relation, both in Figure 3.17 and in Figure 3 in Schneider and Woolley
(2010), high values of the mutual information are also obtained for some
cells with low rates, indicating that discrimination is highly dependent on
the distribution of the few spikes across time and stimuli. By contrast,
when the information rate between stimuli and responses is calculated
(Figure 4 Escabı́ et al. (2005)), the information rates for the lower rates
are never comparable to the ones of higher rates.

We also found a negative rank correlation between the optimal time
scale and the average number of spikes per song. This correlation is con-
sistent with the fact that the correlation with the time-dependent stimuli
is the main source of temporal structure in the spike trains. When the
cell is not very selective, the rate is higher and the local differences in the
modulation are blurred when considered in longer windows. For highly
selective cells responding reliably and sparsely, the optimal time scale can
be higher, but, above all, is principally more sensitive to the distribution of
the spikes across time and stimuli, as it occurs for the mutual information.

To scrutinize the relation between the existence of reliable spikes or
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firing patterns in the spike trains and the discriminative precision, we
constructed surrogate data preserving the structure across trials but not
across stimuli inside segments of a given length. These surrogates differ
from other surrogates previously used in combination with the discrimina-
tion analysis. Victor and Purpura (1996) proposed two resampling tech-
niques to evaluate if the obtained mutual information can be accounted
by considering that the spike trains result from Poisson processes with
modulated rates. The Poisson hypothesis is tested by creating surrogate
data pooling the trials of the same stimulus and then randomly reassign-
ing each spike to the spike trains. This procedure uses the peristimulus
time histogram (PSTH) as an estimate of the underlying modulated rate.
The discrimination analysis is repeated for independent realizations of
the surrogates to compare with the results from the original spike trains
(e. g. Di Lorenzo and Victor, 2003; Wang et al., 2007). The other type
of resampling proposed by Victor and Purpura (1996), was the exchange
resampling. It was motivated by the observation that the Poisson surro-
gates led to higher values of the mutual information when the variability
of the spike counts across trials was higher than Poissonian. The ex-
change surrogates maintain the number of spikes in each spike train. At
the same time temporal correlations are destroyed by repeatedly randomly
exchanging two spikes of two trials of the same stimulus. These surro-
gates are individually not consistent with the Poisson hypothesis, since it
is unlikely to get the same number of spikes for two spike trains generated
from a Poisson process. By contrast, they represent the null hypothesis
that the time-dependent Poisson process is modulated by a slowly vary-
ing influence unrelated to the stimulus (Victor and Purpura, 1996). The
two resampling techniques maintain the original PSTH for each individ-
ual stimuli, and alter the reliable patterns across trials, just oppositely to
the surrogates we proposed here.

We defined a time scale related to the reliable patterns as an alterna-
tive to the optimal time scale for discrimination. We found that this time
scale does not depend on the average number of spikes per song and is
accordingly also uncorrelated to the mutual information and the discrim-
inative precision. This time scale is not completely independent of the
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arbitrary distribution of relevant features across time and across stimuli,
since the mutual information obtained for the original data is taken as a
reference for the null hypothesis rejection. Therefore, we do not claim
that the specific value of the reliable patterns time scale obtained for each
cell indicates its degree of reliability. To evaluate properly the reliability
it would be necessary to know what the cell is encoding. However, the
lower order of magnitude of this time scale compared to the optimal time
scale for discrimination indicates that the latter does not correspond to the
time scale up to which spike timing is informative.

For transient constant stimuli, the temporal structure is mainly related
to the transient response and to short-term adaptation. In this context,
despite of the problems of interpretation of the discriminative precision
and the importance of temporal coding, it is pertinent to ask wether spike
times are relevant or not. When time-dependent stimuli are used, the
temporal structure is considered to be mainly caused by the correlation
with the time-dependent stimulus. Given that, spike timing necessarily
has to play a role.

To our knowledge, the first applications of the discrimination analy-
sis to complex time-dependent stimuli were presented in Machens et al.
(2001, 2003), examining the responses of auditory receptors in grasshop-
pers to conspecific signals. The main conclusion of these studies was that
sufficient information to distinguish songs is readily available for single
neurons when the spike trains are analyzed on a millisecond time scale.
Machens et al. (2001) showed the discrimination performance of a single
exemplary cell, and Machens et al. (2003) showed the average and the
standard deviation of the performance of an ensemble of cells. Based on
the average discrimination performance, the optimal time scale was ex-
tracted and associated with the time scale of the features of the song that
the neurons encode. From the ensemble statistics of the discrimination
performance it is not possible to judge the variability of the optimal time
scale for each cell. However, our results indicate that this correspondence
between the optimal time scale and a characteristic time scale of the fea-
tures to which the neuron is sensitive to cannot be concluded from the
discrimination analysis.
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In other studies, in which the results are considered separately for each
cell, a high variability of the discrimination performance (Wang et al.,
2007) and the optimal time scale (Narayan et al., 2006) across cells il-
lustrate the difficulty to interpret the results of the discrimination analysis
applied to time-dependent stimuli. We do not mean here that proving that
single neuron responses suffice to discriminate the songs is not an inter-
esting result on itself. However, that one neuron discriminates better than
another or which is the optimal time scale of discrimination should be
interpret with caution. Furthermore, average results across cells are only
meaningful if the cells are sensitive to similar features in the stimuli. For
an heterogeneous group of cells like the one studied here (Section 3.4),
and as generally expected in Field L and CM, an average like the one pre-
sented in Machens et al. (2003) is not very informative. To study which is
the time scale of the features to which the neuron is sensitive, we believe
that characterizing the spectrotemporal receptive field is a better alterna-
tive. However, this is a difficult task when using naturalistic non-Gaussian
stimuli (Sharpee et al., 2004; Schwartz et al., 2006), and when the dimen-
sionality of the stimuli is high, like for the acoustic stimuli. Furthermore,
a more realistic spike generation modeling (e. g. Berry and Meister, 1998;
Paninski et al., 2004; Pillow et al., 2005) is needed when the spike train
differ from the Poissonian statistics.

3.5.5 Spike train distances to study population coding

Extensions for population codes of the Victor distance (Aronov et al.,
2003) and of the van Rossum distance (Houghton and Sen, 2008) have
been proposed, and our conclusions derived for single neurons are appli-
cable to these measures as well. These extensions have been developed
adding a new parameter that quantifies if the interactions between cells
in the population contribute to a better discrimination of the stimuli. In
one extreme of the parameter range, the spike train distances are insen-
sitive to which neuron fires each spike, while in the other the distances
are calculated separately for each cell. To determine the contribution of
interactions to discrimination one has to take as a reference the maxi-
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mal discrimination achievable without considering the interactions. Since
I∗max(S

P , S) is only a lower bound of I∗(R, S), the evaluation of popu-
lation codes with spike train distances is even harder, and the parameter
associated with the population coding more difficult to interpret than τ ∗.

3.6 Conclusions

In this part of the thesis we analyzed the factors influencing a discrimi-
nation analysis that combines a measure of spike train similarity with a
classifier. This analysis provides the mutual information between stimuli
and predicted stimuli, and an optimal time scale of discrimination. We
showed that the mutual information obtained from the classification is
more robust than the discriminative precision, or any measure quantify-
ing the relevance of temporal coding, to the factors and parameters influ-
encing the discrimination analysis. This mutual information is a lower
bound of the mutual information between the stimuli and the responses
when each category of the classifier is associated with a constant stim-
uli. By contrast, it is generally difficult to interpret the meaning of the
discriminative precision related to the optimal time scale which, strictly,
indicates nothing more than the parameter for which the maximal mutual
information is obtained.

Spike train distances are generally useful to quantify the level of sim-
ilarity between neural responses (e. g. Kreiman et al., 2000), or to evalu-
ate the performance of single neuron models to reproduce the spike times
elicited by a stimulus (Jolivet et al., 2008). Furthermore, they have been
often applied to characterize the temporal structure in the spike trains rel-
evant for the neural code (e. g. Victor, 2005, and references therein).
However, we showed that it is difficult to interpret the results obtained
using time scale parametric spike train distances to decipher the neural
code or to identify biologically meaningful time scales. According to our
results, the time scale parametric nature of these measures is mainly an
advantage in the sense that it allows maximizing the mutual information
across a whole set of measures with different sensitivities. This is in con-
trast to the view that the main advantage is the possibility to calculate
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the discriminative precision and examine temporal coding. Therefore, to
find the maximal mutual information, more elaborated classifiers could be
employed. Similarly, for spike trains with a rate profile containing more
than one relevant time scale, like in the presence of bursting, time scale
adaptive spike train distances (Kreuz et al., 2007a, 2009, 2011) could be
more appropriate to obtain the maximal mutual information.
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Chapter 4

Conclusions

In this thesis we studied different techniques used to analyze the depen-
dence between brain signals, or between the stimuli and the neuronal
responses. In Chapter 2 we focused on the assessment of causal inter-
actions, which is usually carried out from continuous signals like local
field potentials (LFP’s), or BOLD signals, reflecting the activity neural re-
gions. In Chapter 3 we focused on the discrimination analysis, designed
to examine how well a cell discriminates the stimuli given the elicited
spike trains, and to study the discriminative precision as well as the role
played by spike timing in the neural encoding. The conclusions specific
to each type of analysis were already discussed in each part. We here
briefly consider what they have in common. We then highlight our main
achievements and point to the work in progress related to the content of
the thesis.

In both cases, we characterized the specificity of the measures used to
study the dependencies or properties of interest. For the causality mea-
sures, we identified various sources of bias related to the properties of the
different dynamics or to the levels of noise. For the quantities derived
from the discrimination analysis, we showed that their depend on multi-
ple factors, including, for example, the length of the spike trains used for
the discrimination analysis, or the statistics of the stimuli. The emphasis
on the interpretation of the measures was a key aspect in our analysis. We
discussed all the obstacles that prevent from assessing causality using the
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measures implementing the criterion of the mapping of nearest neighbors
or Granger causality. Similarly, we showed that the discrimination preci-
sion associated with the optimal time scale for discrimination is a concept
tightly related to the statistical analysis carried out, and difficult to in-
terpret in terms of time scales of the stimulus or biological time scales
relevant for the neural code.

The causal analysis and the discrimination analysis studied here have
in common that they are data-driven approaches. When studying such a
complex system as the brain, it is very difficult to find a statistical quantity
specific to a neuronal mechanism or dependence. This should be taken
into account when studying the effective connectivity and the neural code,
respectively, using these techniques. It might be argued that, although
too unspecific in general, the statistical quantities used for the study of
causality as well as the discrimination performance and the discriminative
precision, provide useful information when calculated for the appropriate
data. We here did not exclude this possibility, and indeed show, for the
case of the discrimination analysis, that it can be useful to examine the
temporal distribution of information about the stimuli. However, based
on our examples and reviewing previous applications of the techniques,
we showed that one has to be cautious when interpreting the statistical
quantities in terms of underlying neuronal properties.

Regarding the analysis of causality, our main achievement was the
systematic analysis of the sources of bias in dependence on the coupling
strength, the levels of noise and the parameters used for the reconstruc-
tion (Sections 2.2.3, 2.2.4). We focused on few examples to explain in
detail the biases in the different regimes, and show that the appropriate
normalization substantially improves the specificity, specially for weak
couplings. We also proposed a new measure using rank statistics that fur-
ther attenuates the remaining biases (Chicharro et al., 2008; Andrzejak
et al., 2008; Chicharro and Andrzejak, 2009). Furthermore, we reviewed
the literature critically, considering the assumptions required by the cri-
teria to test for causality and the limitations due to the estimation of the
measures of causality from finite data sampling (Section 2.3). Although
there are several review articles focusing on the study of causal interac-
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tions in the brain from time series analysis (Gourevitch et al., 2006; Ding
et al., 2006; Bressler and Seth, 2010), they are more focused on the de-
scription of the measures than on their interpretation. In particular, to our
knowledge, the difference between testing for causality and quantifying
the causal effect (Chicharro and Andrzejak, 2010) has not been addressed
in the field. Here we only discussed this difference examining the defini-
tion of the criterion of Granger causality.

For the discrimination analysis, our main purpose was to illustrate all
the influencing factors preventing from a direct interpretation of the mea-
sures in terms of the encoding properties of the cell. We showed that the
discrimination analysis may be more useful to explore the structure of the
responses than to extract a few quantities like the mutual information, the
optimal time scale of discrimination or some measure quantifying the rel-
evance of temporal coding. These quantities reflect the interplay of too
many factors, and are difficult to interpret in general (Chicharro et al.,
2009, 2010a). An exception is the mutual information in the case of a set
of constant stimuli. In this case the mutual information between stimuli
and predicted stimuli is a lower bound of the mutual information between
the stimuli and the responses. We found that, in contrast to the emphasis
put on the spike train distances in the literature, for our simulated data
and exemplary cells, the classifier was the preeminent ingredient to max-
imize the mutual information (Section 3.2). Furthermore, we extended
the usual application of the discrimination analysis in several ways. We
proposed a procedure to generate surrogate data that allows investigat-
ing the time scale of the reliable patterns in the spike trains (Chicharro
et al., 2010b). We also examined the temporal distribution, accumulation
and redundancy of the information contained in the responses elicited by
transient constant stimuli (Section 3.3). We illustrated that, applied in this
way, the analysis can provide more insights into the nature of the encod-
ing (Chicharro et al., 2011).
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Appendix A
The relation between the dimension of an attractor and the number
of neighbors

The Box-counting dimension of an attractor is defined by considering the
number of cubes N(ε) of size ε in an N -dimensional space needed to
cover the attractor (see Chapter 3 in Ott, 2002 for a detail explanation).
However, this dimension is only sensitive to the support of the attractor,
and does not consider how homogeneously the different cubes are occu-
pied. The natural measure µ of an attractor indicates how much time the
trajectories expend in each part of the attractor. Accordingly, generalized
dimensions characterizing the geometrical structure of the attractor were
defined (Grassberger, 1983) as:

Dq =
1

1− q
lim
ε→0

ln
∑N(ε)

i=1 µq
i

ln 1/ε
. (A.1)

In particular, for q = 2, the dimension can be estimated most easily from
experimental data using the correlation sum (Grassberger and Procaccia,
1983):

C(ε) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

u(ε− ||xi − xj||), (A.2)

where u is the Heaviside function such that u(x) = 0 if x ≤ 0 and u(x) =
1 for x > 0, and N is the number of points. The correlation dimension is
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defined as:

D = lim
ε→0

lim
N→∞

∂ ln C(ε,N)

∂ ln ε
(A.3)

This definition is based on the expectation that in the limit of ε → 0 and
N →∞ the correlation sum scales like:

C(ε) ∝ εD. (A.4)

Therefore, the number of neighbors for ε → 0 is related to the dimension
of the dynamics. This means that even for a fractal dimension, there are
an uncountable infinite number of trajectories in a given region of the
attractor, so that it is possible to find a neighbor close enough for Equation
2.9 to hold. This is true for the original and also for a proper reconstructed
delay coordinates space, since it preserves the dimension of the original
space.
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Appendix B
Comparison of the discriminative precision and the spike timing
precision

We here discuss the relation between the discriminative precision, ob-
tained from the discrimination analysis, and the spike timing precision ob-
tained from the direct calculation of the mutual information I(R, S). For
a time-dependent stimulus, the direct method proposed by Strong et al.
(1998) to calculate I(R, S) makes minimal assumptions about the code.
The spike trains are converted in words of length T , and each word con-
tains bins of width dt. The mutual information is calculated as:

I(R, S; T, dt) = H(R; T, dt)−H(R|S; T, dt). (B.1)

To compute the entropy H(R; T, dt), the responses to a single repetition
of a long sequence of the time-dependent stimulus is used, which sam-
ples appropriately the distribution p(S). Notice that this implies assum-
ing the stationarity of the response, based on the time-dependent nature
of the stimulus and the stationarity of the stimulus distribution. Further-
more, assuming this stationarity also requires that the neuron encodes
some property of the stimulus which varies fast enough to avoid short-
term adaptation and transient responses. This could occur for example
for highly selective neurons responding only to particular complex fea-
tures of the stimulus, which appear sparsely in the time-dependent pro-
file. The neural noise entropy H(R|S; T, dt) has to be calculated using
a set of repetitions of the same time-dependent stimulus and it is there-
fore harder to estimate from limited experimental data. I(R, S) is then
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obtained as the extrapolation for T → ∞ and dt → 0. This procedure
allows to estimate the spike timing precision of the neural code (e. g. de
Ruyter van Steveninck et al., 1997; Buracas et al., 1998; Reinagel and
Reid, 2000; Wright et al., 2002). In general, this precision is not equal to
the precision of single spikes across trials of the same stimulus (see Borst
and Theunissen, 1999, for a discussion of the interpretation of the spike
timing precision for linear or nonlinear encoding). When dt is decreased
the mutual information is expected to increase until a plateau is reached,
indicating that at this precision all the information is already obtained.
The data processing inequality guarantees that I(R, S) does not decrease
for dt → 0. By contrast, one has to take into account that in this limit, its
estimate will be increasingly upward biased due to limited data.

For constant stimuli, the direct method cannot be applied. In particu-
lar, the stationarity in time of the response to a constant stimulus cannot
be assumed. In that case both the entropy of the responses and the neural
noise are calculated across trials of each stimulus (Buracas et al., 1998).
The distributions of p(R) and p(R|S) are calculated across trials consid-
ering R time-locked to the presentation of each constant stimulus. The
spike timing precision can also be studied increasing the number of bins
to get R, until a plateau is found for I(R, S). This precision depends on
the set or distribution of stimuli used (Buracas et al., 1998), like they do
the discriminative precision and the mutual information in the discrimi-
nation analysis (Reich et al., 2001b; Samonds and Bonds, 2004; Roussin
et al., 2008). Furthermore, it is conceptually different from discrimina-
tive precision. None of them is directly related to the precision of single
spikes, but while the first is determined by the saturation of I(R, S) for
decreasing dt, the second is related to the peak of I∗(SP , S) found for a
particular range of τ . No information is lost for dt → 0, when the dimen-
sionality of R increases due to a finer resolution examining the responses.
This is assured by the data processing inequality. By contrast, for τ → 0
the optimality of the classifier decreases. If the maximum I∗max(S

P , S) is
found for a given τ ∗, this does not imply that the saturation of I(R, S) is
attained for a dt related to τ ∗.
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Appendix C
Electrophysiology of the songbird’s recordings

This description has been provided by Emily Caporello, from the the Lab-
oratory of Auditory Neuroethology and Communication of Tim Gentner,
at the University of California, San Diego.

One day prior to recording, we anesthetized each bird (n=9) with
isoflurane (1.5-3.0%) and attached a metal pin to the skull with dental
acrylic. We verified full auditory and behavioral recovery in the oper-
ant apparatus prior to recording. On the recording day, we anesthetized
each bird with 20% urethane (7ml/kg; administered in 3 IM injections
over 90 minutes), wrapped in a cloth jacket, then head-fixed to a stereo-
taxic apparatus inside a sound-attenuating recording chamber (Acoustic
Systems). A small craniotomy and durectomy approximately 2400 um
rostral and 1000 um lateral to the bifurcation of the saggital sinus permit-
ted electrode access to the target brain region. We coated a 16-channel
tetrode array (NeuroNexus Technologies, Ann Arbor MI) with fluores-
cent diI crystals (Sigma-Aldrich, St. Louis MO) before lowering the
electrode into the brain. Extracellular waveforms were amplified by a
16-channel AC amplifier (AM systems Inc, Sequim WA), and digitized
and stored (CED, Cambridge UK) for offline analysis. To locate auditory
sites, we pseudo-randomly presented Song+Noise, Song+Silence, and
Noise+Silence stimuli, and segments of unfamiliar conspecific song as
the electrode was slowly advanced. When a putative auditory neuron was
isolated, we played all stimuli to the anesthetized animal. At each record-
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ing site we presented, randomly without replacement, several repetitions
of each stimulus used in the present analysis. Spike2 software (CED) con-
trolled stimulus playback and recorded time aligned extracellular voltage
traces at all electrode sites. Offline, we extracted putative action poten-
tials from the waveform using threshold-triggered template matching, and
clustered putative action potential waveforms with a combination of PCA
and changes in waveform shape over time (Spike2, CED). We confirmed
isolation quality using the ISI distribution of each putative single or multi-
unit. We considered single units to have well-separated waveform clusters
and have less than 2% refractory-period violations.
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