
Chapter 9

Dynamics of the �rst-order
transition in Gd5(SixGe1−x)4:
cycling and avalanches

9.1 Introduction
In this chapter, we study the dynamics of the �rst-order magnetostructural transi-
tion in Gd5(SixGe1−x)4 alloys. Firstly, we study the effect on the entropy change,
∆S , of inducing the transition either byT or H. Secondly, we present a systematic
study of the effect of cycling a sample through the �rst-order transition. We show
the evolution of ∆S with the number of cycles and we also analyse the avalanches
between metastable states of the system during the transition. All the forego-
ing allows to unveil the actual mechanism that drives the �rst-order transition in
Gd5(SixGe1−x)4 alloys.

9.2 Comparison of the entropy change induced by
temperature and by �eld

As already explained in Chapter 4, DSC are usually designed to continuously
sweep temperature while �Q(t) is measured. The T sweep induces thermally the
�rst-order transition in the sample, while heat is released or absorbed. In the par-
ticular case of �eld-induced transitions, the temperatureTt of the peak of the tran-
sition in the calorimetric curve is tuned by the magnetic �eld, and consequently
the �eld dependence of ∆S can be obtained. Besides, our DSC also works sweep-
ing H. By �xing a temperature aboveTt(H = 0) and increasing the magnetic �eld,
the �rst-order transition can also be induced.
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Figure 9.1: Calorimetric curves recorded sweeping the �eld (increasing and de-
creasing H) in a Gd5(Si0.1Ge0.9)4 sample (#1, as-cast) at some �xed temperatures
and for two different �eld rates. Inset shows the absolute value of the entropy
change as a function of temperature for the different rates on increasing and de-
creasing H.
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In order to compare the values of ∆S obtained from both processes, DSC
calorimetric curves were measured sweeping the temperature and the �eld. DSC
cuves sweeping the temperature at constant �eld -from now on we will call them
DSCH(T )-, measured for all compositions, are decribed in section 5.3. DSC
data sweeping the �eld at constant temperature -from now on we will call them
DSCT (H)- were measured in the following samples: x=0.05 (#1 T4+Q), x=0.1
(#1 as-cast), x=0.3 (#2 T4+Q) and x=0.45 (#7 T4). Calorimetric curves for
DSCT (H) were recorded on increasing �elds up to 5 T and decreasing �elds down
to zero. Field rates, �H, of 1 and 0.1 T/min were applied. The results for x=0.05
and x=0.1 are displayed in Figs. 4.8 and 9.1, respectively. We note that∆S does
not depend on �H. Unfortunately, results for x=0.3 and x=0.45 cannot be used to
obtain ∆S : the broadness of the transition region when the �eld is sweeped is too
large as compared to the �eld range 0-5 T available in our cryostat (�rst-order
peak cannot be integrated properly).

The values of the entropy change obtained by DSCH(T ) (∆S H) and DSCT (H)
(∆S T ) differ in ∼5 J/(kgK) for x=0.05 and ∼7 J/(kgK) for x=0.1 (see Fig. 9.2).
These differences are systematic in the whole temperature range in which∆S T is
measured, and they are too high to be a consequence of the experimental error
(which lies within 5-10 %).

The H − T phase diagram for x=0.05 is displayed in Fig. 9.3 in order to show
an example of the thermal- and �eld-induced processes in which∆S H and ∆S T
are measured. Ht and Tt values are evaluated from both DSC measurements, as
well as the beginning and the ending of the transitions.

This difference can be justi�ed using general thermodynamics [1]. The First
Principle in differential form for a magnetic system is

dU = dQ + HdM = TdS + HdM , (9.1)
where dU is the differential internal energy, dQ is the differential transfered heat
and HdM is the differential external work needed to magnetise the magnetic sys-
tem. The Second Principle for a reversible process,TdS = dQ, has been used. It
is useful to work with the entalphy as the thermodynamic potential rather than the
internal energy. The enthalpy, E, is de�ned as

E = U − HM , (9.2)
which in differential form becomes

dE = dQ − MdH = TdS − MdH . (9.3)
At constant �eld, the change in temperature from the beginning to the end of the
transition leads to

∆EH =

∫
TdS = Q ≡ L , (9.4)
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Figure 9.2: Entropy change in Gd5(SixGe1−x)4, for x=0.05 and x=0.1, calculated
by using: DSCH(T ) on heating (open triangles); DSCT (H) on decreasing H (open
and solid circles); the Clausius-Clapeyron equation evaluated fromM(H) on de-
creasing H (solid squares); and the Maxwell relation integrating from different
values of Hmax (labeled for each curve) to zero, and evaluated only within the
transition region (solid lines). For x=0.05, the entropy change calculated by using
the Clausius-Clapeyron equation obtained from M(T ) on heating (open squares)
is also displayed.
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Figure 9.3: H − T phase diagram for x=0.05, obtained from DSC measurements.
Ht(T ) on increasing H (solid squares) and the corresponding starting and �nish-
ing �elds of the transition (dashed lines) are obtained from DSCT (H). Tt(H) on
cooling (open squares) and the corresponding starting and �nishing temperatures
of the transition (solid lines) are obtained from DSCH(T ). Examples of the pro-
cesses in which the entropy change is evaluated, are labeled with arrows.
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∆S H =

∫ dQ
T =

∫ dEH

T , (9.5)

i.e., at constant �eld, the enthalpy change of the transition is equal to the latent
heat, L, and the entropy change of the transition is calculated by integrating the
differential heat divided by the temperature (Eqs. 9.4 and 9.5 are exactly the same
equations as Eq. 3.10). On the other hand, if the temperature remains constant
and the magnetic �eld varies from the beginning to the end of the transition, the
enthalpy change is written as

∆ET = Q −
∫

MdH = T∆S −
∫

MdH , (9.6)

and therefore the latent heat and the entropy change, which are the values mea-
sured by DSC, have the following expressions:

Q ≡ L = ∆ET +

∫
MdH , (9.7)

∆S T =
Q
T =

∆ET

T +
1
T

∫
MdH . (9.8)

In this case, the latent heat has an additional contribution to the enthalpy change
due to the work of the magnetic �eld over the system. Since at constant temper-
ature, the entropy change is the latent heat divided by the �xed temperature,∆S T
has also this additional contribution.

We note that DSC measures the heat absorbed or released by the sample and
therefore the entropy change is also obtained experimentally. It is straightforward
to see from Eqs. 9.4 and 9.8 that ∆S obtained from DSCH(T ) and DSCT (H) must
be different. For example, when a �eld is applied isothermally (at T=T ′) in a
system, changing from low to high magnetisation, it shows a negative∆S T . Since
(1/T )

∫
MdH is positive, the absolute value of∆S T will be larger than that of∆S H

associated with a process at constant �eld which induces the transition on cooling
at the temperature Tt=T ′ 1, provided that ∆ET/T ≈

∫
dEH/T 2. The same con-

clusion is valid for decreasing �eld and heating processes. For an ideal transition,
which occurs at constant �eld and temperature, (1/T )

∫
MdH vanishes and both

values of the entropy change are the same. We note that differences between the
absolute values of ∆S T and ∆S H are observed in our samples. Moreover, an eval-
uation of (1/T )

∫
MdH using M(H) curves at the temperatures in which we have

measured both ∆S H and ∆S T values, for x=0.05 and x=0.1, yields ∼6.5 and ∼8
J/(kgK), respectively. These values are in good agreement with∆S H − ∆S T (∼5

1Figure 9.3 provides an schematic view of these two processes.
2This consideration is assumed a priori.
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Figure 9.4: Entropy change in Gd5(SixGe1−x)4, for x=0, calculated by using:
DSCH(T ) on heating (open triangles); the Clausius-Clapeyron equation evaluated
from M(H) on decreasing H (solid squares); the Clausius-Clapeyron equation
evaluated from M(T ) on heating (open squares); and the Maxwell relation inte-
grating from different values of Hmax (labeled for each curve) to zero, evaluated
only within the transition region (solid lines).

J/(kgK) for x=0.05 and ∼7 J/(kgK) for x=0.1), proving that these two processes
are essentially different due to the work needed to magnetise the system during
the transition and the validity of the approximation∆ET/T ≈

∫
dEH/T .

An indirect evaluation of the entropy change can be gained by using the Clau-
sius-Clapeyron equation. In fact, we demonstrated in Chapter 5 that the Clausius-
Clapeyron equation yields the correct value of the entropy change at a �rst-order
transition, and for this purpose we used M(H). Therefore, the entropy change
actually evaluated from the Clausius-Clapeyron equation is∆S T . This is the rea-
son why calorimetric measurements presented in Chapters 5 and 6 [obtained by
DSCH(T )] yielded larger values (it measure ∆S H, which have been the DSC val-
ues discussed in Chapters 3-8) than those obtained with the Clausius-Clapeyron
equation in some samples (see Fig. 5.9). Surprisingly, this difference decreases
with increasing x. For exampe, for x=0.45 there is no difference between both
values (see Fig. 5.8). This is due to the fact that(1/T )

∫
MdH strongly decreases

with temperature (both M and 1/T decrease with T ), being ∆S H−∆S T∼1 J/(kgK)
for x=0.45, in agreement with the observed behaviour.

We also note that ∆S T obtained from the Clausius-Clapeyron equation match
the values measured by DSCT (H) (Fig. 9.2), as expected from an equivalent pro-
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cess. The entropy change calculated from the Maxwell relation by integrating
M(H) within the transition region (see section 5.4.2), is in agreement with∆S T
values obtained from DSCT (H) calorimetric curves as well (Fig. 9.2 for x=0.05
and x=0.1), since this evaluation arises from a �eld-induced isothermal process.
Finally, it should also be expected that the application of the Clausius-Clapeyron
equation in experimental M(T ) curves, i.e., measurements of M at constant �elds
and sweeping the temperature, should yield ∆S H. Hence, M(T ) curves for x=0
and x=0.05 presented in Fig. 8.5 are used to calculate indirectly ∆S H. These
values are displayed in Fig. 9.2 for x=0.05 and Fig. 9.4 for x=0. We observe
that ∆S H evaluated from M(T ) is larger than ∆S T evaluated from M(H), and ∆S H
values matching reasonably well with those obtained from DSCH(T ).

We have shown that the entropy change when the �rst-order magnetostructural
transition is �eld-induced is different than when it is thermally-induced. This rele-
vant result is a consequence of the non-ideal behaviour of the �rst-order transition,
since the initial and �nal states in the H − T phase diagram (see Fig. 9.3) are dif-
ferent in the isothermal and the iso�eld processes.

9.3 Cycling through the �rst-order transition
Another relevant effect of the non-equilibrium dynamics of the �rst-order magne-
tostructural transition is the fact that some properties vary when the transition is
repeatedly induced. In particular, changes in the resistance [2, 3] and thermopower
[4] are reported for Gd5(SixGe1−x)4 alloys when they are thermally cycled through
the transition.

In order to study the effect in the entropy change of cycling the transition
in Gd5(SixGe1−x)4 alloys, we used three different samples (v1, v2 and v3) with
x=0.05, taken from the same sample (#1 T4+Q), which were not previously used
for other measurements (virgin samples). All samples are cut in the shape of
a rod, v2 and v3 being longer than v1. We measured DSC sweeping the �eld3
at a constant temperature (T=55 K) following a large number of cycles and for
different �eld rates (within 0.01 and 1 T/min), which are summarised in Table 9.1.
The �rst 5 cycles for sample v1, on increasing H, were measured at different �H
(0.01, 0.05, 0.1 and 1 T/min). Calorimetric curves scale once they are divided
by �H, as shown in Fig. 9.5. A low �H induces a low signal in the DSC sensors,
which is normalised after the signal is divided by the �eld rate. However, the
lowest �H=0.01 T/min appears to yield too a low signal, close to the intrinsic noise
level of the measuring apparatus (see Fig. 9.5). Rates of 0.05 and 0.1 T/min
yield similar shapes and almost perfectly collapse once they are normalised to �H,

3In contrast to the previous cycling studies [2, 3, 4], which used thermal cycles.
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�H (T/min)
Sample cycle # incr. H decr. H

v1 1 0.01 1
2 0.05 1

3,4,7,17,
21,32,43,54,

63,76,87 0.1 1
v2 1,3,4,5,

7,10,21,31 0.1 1
v3 1-12 0.1 0.1

Table 9.1: Field rates, �H, used for the study of the cycling through the �rst-order
transition in the three virgin samples taken from the original x=0.05 (#1 T4+Q)
sample. A given number (#) of cycle includes both an increasing and a decreasing
H branch. Cycles not described in the table have a �eld rate of 1 T/min.
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Figure 9.6: DSCT (H) curves recorded on increasing H at 0.1 T/min for different
cycles in sample v2. Inset: Detail of the peak in DSCT (H) curves on decreasing
H at 1 T/min following succesive cycles for sample v2.

showing an avalanche-type structure of the transition (we understand an avalanche
as an irreversible jump tath makes one part of the system to undergo the transition
from one phase to the other), which are completely reproducible from cycle to
cycle. The fastest rate ( �H=1 T/min) does not show avalanches, since not enough
points are recorded during the phase transition to observe them.

The shape of the �rst DSC measurement (increasingH) for all samples is dif-
ferent from subsequent cycles. Even at �rst glance it is obvious that the �rst mea-
surement enclose a lower area than the following measurements (see Fig. 9.5 for
sample v1 and Fig. 9.6 for sample v2). Further measurements continue increasing
in area, fact which is not directly observed in the low-rate (0.1 T/min) DSC curves,
but which is appreciable in the fast-rate curves (1 T/min), as shown in the inset in
Fig. 9.6. The �rst cycle in sample v2 (Fig. 9.6) shows small peaks of a similar
size. Some of them grow, while others diminish in subsequent cycles, reaching a
reproducible distribution, which is charateristic of athermal transitions (see sec-
tion 9.4). The entropy change ∆S T obtained as a function of the cycle number
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is displayed for all samples in Fig. 9.7. The slight difference between the values
corresponding to each sample lies within the experimental error (5-10%), which
arises from the fact that part of the heat released or absorbed by the sample is not
detected by the sensor. The amount of the heat losses depends on the shape of the
sample. Three features observed for all samples are to be noted. Firstly,∆S T value
increases strongly between the �rst and the fourth cycles, then the slope is reduced
and it �nally saturates before the tenth cycle. Secondly, the∆S T values do not de-
pend on the �eld rate, even when �H increases by a factor of 10. Third, values
obtained from the curves on increasing H are systematically larger (in absolute
value) than those obtained on decreasing H. The �rst result can be understood
by considering that both initial and �nal states change from cycle to cycle due to
the evolution of the disorder (for example, microcracks associated with the strain
due to the continuous expansion/contraction of the crystallographic cell through
the transition). When the path of the system through the �rst-order transition be-
comes reproducible, as occurs in our samples (as for example in Fig. 9.6, where
the curves tend towards a reproducible pattern), then the entropy change associ-
ated with the transition reaches a constant value. In this evolution, the low-�eld
phase disorders (the entropy increases) and/or the high-�eld phase orders (the en-
tropy decreases). The non-dependence of the entropy change on �H indicates that
the experimental procedure is not affected by the �eld rate used, and that the same
initial and �nal states are reached at any �eld rate. Finally, differences between
the results corresponding to increasing and decreasingH appear because of hys-
teresis in the initial and �nal states, and therefore the entropy change between the
two states may show slight differences.

9.4 Avalanches
The analysis of the avalanche events was also performed. Avalanches are associ-
ated with the nucleation and growth of domains of the new phase that take place
during the �rst-order �eld-induced phase transition.

First-order transitions can be thermally activated or can be athermal. In the
former, the relaxation from a metastable state may occur at constant external con-
ditions due to thermal �uctuations, while in athermal transitions it occurs only
under the change of an external parameter (magnetic �eld, stress, temperature,
etc.), which modi�es the difference of the free energy between the two phases
[5, 6].

When a system is externally driven through a �rst-order phase transition, it
jumps from a given con�guration -which is a state corresponding to a local min-
imum of the free energy - towards a different con�guration, once the local sta-
bility limit is reached. The path followed by the system depends on the presence
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of disorder such as dislocations, vacancies or grain boundaries, which controls
the distribution of energy barriers separating the two phases. As the system is
driven, it passes through a sequence of metastable states with discontinuous steps
or avalanches of the order parameter, which re�ect the fact that the system jumps
from one metastable free energy minimum to another one with an associated en-
ergy dissipation, which is responsible for the hysteresis observed in �rst-order
transitions [6]. In the athermal case, the path can be reproduced from cycle to
cycle provided that disorder does not evolve [7].

From DSCT (H) curves obtained on increasing and decreasing H, the trans-
formed fraction of a sample, y, can be evaluated as a function of H as,

y(H) =
1
L

∫ H

Hi

dQ
dH dH , (9.9)

where L =
∫ H f

Hi
(dQ/dH)dH is the latent heat, and Hi and H f are magnetic �elds

above and below the starting and �nishing transition �elds, respectively.y(H) for
increasing and decreasing H enables us to display the hysteresis loops. In order
to quantify the amplitude of the jumps in the �rst-order transition (i.e., structure
peaks) present in x=0.05 samples (see Figs. 4.8, 9.5 and 9.6), we computed the
difference between two consecutive y(H) values from the experimentally mea-
sured dQ/dH curve, which was recorded every 4 s. This difference, ∆y, which is
a measurement of the size of the avalanches, can vary from 0 (no avalanche event
has occurred during the measuring time window) to 1 (the whole system under-
goes the transition in a single avalanche event). Figure 9.8 shows a distribution of
∆y obtained from DSCT (H) measurement at cycle 12 in sample v3.

The distribution of avalanches can be statistically analysed using the following
probability distribution with two free parameters (λ and α) [8, 9]:

p(∆y) =
e−λ∆y(∆y)−α∫ ∆ymax

∆ymin
e−λ∆y(∆y)−αd(∆y)

. (9.10)

For λ=0, the distribution is a power law [p ∝ (∆y)−α, a critical behaviour where
there is not a characteristic size], while it is subcritical forλ>0 (the distribution
decays faster than a power law) and supercritical forλ<0 (the distribution decays
slower than a power law) [10]. ∆ymin=10−4 is a value just above the intrinsic noise
level of the measurements, evaluated by considering∆y values outside the region
where the DSC peak shows structure. ∆ymax=1 is the maximum value.

We have estimated the exponentα and the parameter λ by the maximum like-
lihood method [11]. This method is the most reliable since it does not involve the
computation of histograms, which normally depend on the binning choice. Figure
9.8 shows an example of one of such �ts. The fact that samples v1 and v2 do
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Figure 9.9: Parameter λ obtained from the distribution of avalanches using the
transformed fraction of the sample v3 (x=0.05), as a function of the cycle. Cycle
31 is taken from sample v2 and cycle 89 from sample v1. Inset: Exponentα
obtained from the same distribution of avalanches. Solid lines are a guide to the
eye.
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9.5. Conclusions

not present a completely systematic cycling (�rst measurements where recorded
at different values of �H on increasing H) led us to repeat the cycling with sam-
ple v3, after we observed that �H=0.1 T/min was optimal taking into account the
acquisition rate of the calorimeter, which is 0.25 Hz. This �H enables us to ob-
serve the avalanche structure while the signal of the sensors is large enough to be
recorded above noise. Results for increasingH in sample v3 are displayed in Fig.
9.9. We note that the parameter λ tends to decrease with the number of cycles,
while the exponent α (inset in Fig. 9.9) remains constant (α=0.71±0.05). We
have also added the values �tted for the last cycle of sample v2 (cycle #31) and
sample v1 (cycle #89), since those cycles were done with the same �eld rate as
in sample v3. The latter values are in agreement with the behaviour of the two
parameters for sample v3. λ and α may also be evaluated from DSCT (H) curves
shown in Fig. 4.8 in a sample with x = 0.05 cut from the same original button (#1
T4+Q) that samples v1, v2 and v3. The number of cycles previously undergone
by this sample was not controlled, although it can be estimated as∼15-25. In
this case, α=0.73±0.05 and λ=209±30, in excellent agreement with the previous
results (Fig. 9.9).

The evolution of the parameter λ indicates that our system evolves from a
subcritical distribution towards a power law distribution (where the system does
not have a preferential avalanche size to undergo the transition), although the value
λ=0 is not reached in the 89th cycle. The characteristic exponent for the power
law, α, presents a value (=0.71±0.05) which neither dependends on the evolution
of the system with cycling, nor on the sample. The evolution of the parameters are
consistent with previous observations: when the system has chosen a path which
is optimal to undergo the transition, both the entropy change and the distribution
of avalanches tend towards a constant behaviour.

9.5 Conclusions
The study of dynamics of the �rst-order transition in Gd5(SixGe1−x)4 alloys has
unveiled a very interesting behaviour. Our DSC under �eld has revealed that
the entropy change associated with the transition is different when it is �eld- or
thermally-induced, evidencing that the initial and �nal states are different due to
the fact that the transition is not ideal. Cycling through the transition shows that
the �eld-induced entropy change increases for a few cycles, reaching a stationary
value. This behaviour is related to the avalanche distribution, which also evolves
with cycling. The structure of avalanches becomes repetitive after a few cycles
tending towards a power-law distribution, unveiling the athermal character of the
magnetostructural transition.
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