
Chapter 5

Entropy change at the �rst-order
magnetostructural transition in
Gd5(SixGe1−x)4

5.1 Introduction
In this chapter we present a detailed analysis of the different contributions to
the entropy change arising from the application of a magnetic �eld at a �rst-
order �eld-induced transition, in order to account for the discrepancies discussed
in section 2.7 [1, 2, 3, 4, 5, 6]. For this purpose, magnetisation isotherms in
Gd5(SixGe1−x)4 for 0 ≤ x ≤ 0.5 (compositional range in which the �rst-order
magnetostructural transition takes place) were measured up to very high �elds
(∼23 T). The values of the entropy change obtained from the Clausius-Clapeyron
equation (Eq. 1.17) and the Maxwell relation (Eq. 1.6) are compared and analysed
within the framework of a simple phenomenological model based on the temper-
ature and �eld dependence of the magnetisation. Calorimetric measurements of
the transition entropy change were also carried out on Gd5(SixGe1−x)4 series of
alloys, by using the high-sensitivity differential scanning calorimeter under mag-
netic �eld described in Chapter 4. Results are compared to those obtained from
indirect approaches through magnetisation measurements.

5.2 Magnetisation measurements
Magnetisation measurements were performed at the Grenoble High Magnetic
Field Laboratory. M(H) curves were recorded up to 23 T, both under increas-
ing and decreasing H, from 4.2 to 310 K with a temperature step of 3 to 5 K. The
following samples were measured: x=0 (#1, as-cast), x=0.05 (#1, T4+Q treat-
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Figure 5.1: Selected magnetisation isotherms of Gd5(SixGe1−x)4 for x=0, 0.05
and 0.1 under increasing and decreasing �eld. Temperatures labeled for each
composition refer to isotherms from top/left to bottom/right.
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Figure 5.2: Selected magnetisation isotherms of Gd5(SixGe1−x)4 for x=0.18 and
0.2 under increasing and decreasing �eld. Temperatures labeled for each compo-
sition refer to isotherms from top/left to bottom/right.
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Figure 5.3: Selected magnetisation isotherms of Gd5(SixGe1−x)4 for x=0.3, 0.365
and 0.45 under increasing and decreasing �eld. Temperatures labeled for each
composition refer to isotherms from top/left to bottom/right.
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Figure 5.4: Magnetisation as a function of temperature under selected applied
�elds (0.5, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 and 22 T) for x=0.1 and x=0.45
compounds, taken from M(H) data for increasing �eld.
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ment), x=0.1 (#1, as-cast), x=0.18 (#1, T4 treatment), x=0.2 (#1, as-cast), x=0.3
(#2, T4+Q treatment), x=0.365 (#3, as-cast) and x=0.45 (#7, T4 treatment).

M(H) isotherms are shown in Fig. 5.1 (x=0, 0.05 and 0.1), Fig. 5.2 (x=0.18
and 0.2) and Fig. 5.3 (x=0.3, 0.365 and 0.45). These curves exhibit a jump∆M at
the magnetostructural transition [1, 2, 7, 8], which spreads over a �eld range∆Ht
(∼2-4 T for 0 ≤ x ≤ 0.2 samples and ∼4-6 T for 0.24 ≤ x ≤ 0.5 compounds).
The hysteresis in the transition reveals its �rst-order nature. The transition �eld,
Ht, for increasing and decreasing applied �eld is de�ned for each isotherm as the
�eld corresponding to the in�ection point within the transition region. We note
that the application of a �eld of 23 T enables the observation of the transition at
temperatures of up to ∼80 K above Tt(H = 0). The variation of Ht with T is
linear for 0.24 ≤ x ≤ 0.5 compounds, while the slope dHt/dTt changes within
two limiting values for 0 ≤ x ≤ 0.2 alloys. The detailed study of Ht(T ) for all
compositions is presented in Chapter 7. The change in the slope of the M(H)
curves observed in Fig. 5.1 for x=0 and 0.05 above∼90 K and ∼12 T corresponds
to a nonreported magnetic transition appearing at very high �elds, which is stud-
ied in Chapter 8. For the compounds from x=0 to x=0.2 (Figs. 5.1 and 5.2), the
�rst-order �eld-induced transition occurs from AFM to FM phases, while for the
rest of compounds (from x=0.3 to x=0.45, see Fig. 5.3) it occurs from PM to FM
phases. This difference is observed in ∆M, which is more abrupt for the AFM-FM
transition. Figure 5.4 shows the magnetisation data (for increasing �eld) displayed
as a function of T at constant magnetic �eld for x=0.1 and x=0.45 compounds,
as paradigmatic examples of Ge-rich and intermediate compostional regions, re-
spectively.

5.3 DSC measurements
DSC data under different magnetic �elds (0 to 5 T) were measured for the follow-
ing samples: x=0 (#1, as-cast), x=0.05 (#1, T4+Q treatment), x=0.1 (#1, as-cast),
x=0.18 (#1, T4 treatment), x=0.2 (#1, as-cast), x=0.25 (#2, as-cast), x=0.3 (#2,
as-cast), x=0.365 (#3, as-cast) and x=0.45 (#7, T4 treatment). Measurements
were carried out by scanning T at constant magnetic �elds, since the availabe
range in temperature is larger than the available range in H. In these measure-
ments, �rst-order transitions give rise to a large peak in thermal curves (dQ/dT ).
Second-order transitions are observed as smallλ-type jumps in the dQ/dT base-
line. The shape of the thermal curves for all compositions with x ≤ 0.2 reveals
the �rst-order nature of the low-temperature AFM-FM transition and the second-
order nature of the high-temperature PM-AFM transition (see Fig. 5.5 forx=0,
0.05 and 0.2, Fig. 5.6 for x=0.18, where the second-order transitions are labeled,
and Fig. 4.7 in Chapter 4 for x=0.1). For the rest of compositions (0.24 ≤ x ≤ 0.5),
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Figure 5.5: DSC data on cooling at selected applied �elds up to 5 T for
Gd5(SixGe1−x)4: (a) x=0, (b) x=0.05 and (c) x=0.2. The second-order transition
is labeled for each composition.
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Figure 5.6: DSC data for x=0.18 on heating and cooling the sample underH. In-
set: Detail of the second-order transition on heating, from 0 (top) to 5 T (bottom).

112



5.3. DSC measurements

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

180 200 220 240 260 280
-1200

-1000

-800

-600

-400

5T
4T

3T

2T
1T

0

heating

 

 

x=0.45

T(K)

200

400

600

800

1000

0

5T

4T
3T

2T
1T

cooling

x=0.365

 

 

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

                                        

-500

-400

-300

-200

-100

0

100

5T

4T3T2T

1T
0

heating

x=0.25

 

 

dQ
/d

T 
(J

/k
g·

K
)

120 140 160 180 200

-200

-100

0

100

200

300

400

1T 2T
3T

4T
5T

0cooling

x=0.3

 

 

T(K)

Figure 5.7: DSC data at selected applied �elds up to 5 T for x=0.25 (heating),
x=0.3 (cooling), x=0.365 (cooling) and x=0.45 (heating).
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only one peak is displayed, corresponding to the �rst-order PM-FM transition
(Fig. 5.7 for x=0.25, 0.3, 0.365 and 0.45). For all samples, a hysteresis of 2-4
K between cooling and heating runs is observed, see for example Figs. 5.6 and
4.7. Tt is estimated as the temperature at the maximum of thedQ/dT peak and
increases with the applied �eld (up to 5 T) in all samples. The detailed study of
H(Tt) for all compositions is presented in Chapter 7. We note that for x=0, the
cooling process at zero �eld does not show any �rst-order peak [hence it is not
displayed in Fig. 5.5 (a)]. This fact can be explained by taking into account that
the FM ground state for x=0 can not be achieved by cooling down to low temper-
ature at zero �eld, since the sample remains AFM, as discussed in section 2.4.1.
The application of a �eld of ∼1 T is needed in order to stabilize the FM phase
through an irreversible transition [9, 10, 11]. Fig. 5.5 shows how the �rst-order
transition gets progressively closer to the second-order transition as Si content,x,
is increased. In particular, Fig. 5.5 (c) shows how the �rst-order peak overlaps the
second-order jump when a �eld of∼3 T (or larger) is applied for x=0.2.

5.4 Evaluation of the entropy change
5.4.1 Magnetic and calorimetric evaluations
The entropy change as a function ofT for each x may be obtained indirectly from
magnetisation data:

(i) On one hand, the entropy change at a �rst-order transition, ∆S , can be
obtained by using the Clausius-Clapeyron equation (Refs. [2, 12] and section
2.7),

∆S = −∆M dHt

dTt
,

where ∆M has been estimated as the difference in the magnetisation at Ht between
the linear extrapolations of M(H) well above and below the transition region,
and dHt/dTt is evaluated from the Ht(T ) curve obtained from the magnetisation
isotherms. This estimation of ∆M does not consider the variation of M due to the
�eld change (since the transition takes place in a �eld range∆Ht), but only due to
the �rst-order phase transition.

(ii) On the other hand, the total entropy change due to the variation of the
magnetisation by the application of a magnetic �eld, ∆S (0 → Hmax), may be
evaluated by using the Maxwell relation (Ref. [13] and section 1.2),

∆S (0→ Hmax) =

∫ Hmax

0

(
∂M
∂T

)

H
dH .

114



5.4. Evaluation of the entropy change

This integration is evaluated numerically from magnetisation isotherms. It is
straightforward to note that the entropy change at the transition,∆S , and the total
entropy change, ∆S (0→ Hmax), do not necessarily yield the same value.

The entropy change can also be obtained by calorimetry. DSC data enables us
to obtain the entropy change (and latent heat) at the �rst-order transition, after a
proper integration of the calorimetric peak (see section 3.2.3 and Chapter 4), as

∆S =

∫ TH

TL

1
T

dQ
dT dT ,

where TH and TL are respectively temperatures above and below the starting and
�nishing transition temperatures.

A comparision among all three methods to evaluate the entropy change is
shown in Fig. 5.8 for x=0.45 (using increasing H and cooling data), as a good
example of the behaviour of the 0.24 ≤ x ≤ 0.5 alloys and in Fig. 5.9 for x=0
and 0.05 (using decreasing H and heating data), as a paradigmatic example of the
0 ≤ x ≤ 0.2 compounds.

For x=0.45, the entropy change obtained from the Maxwell method is dis-
played as dashed lines. Different curves of entropy change as a function ofT are
obtained depending on the maximum applied �eld, Hmax. These curves display
the typical behavior previously reported [1, 2]: �rst, a rapid increase at lowT ,
then a maximum value at about Tt(H = 0), followed by a plateau-like behaviour,
and �nally a sharp decrease at high T . Figure 5.8 also shows the values of the
entropy change at the transition,∆S , obtained from the Clausius-Clapeyron equa-
tion for x=0.45 (present data, solid squares) and x=0.5 (taken from Ref. [2], open
squares), and DSC data (open triangles) for x=0.45. We note that ∆S obtained
from the Clausius-Clapeyron equation and calorimetry yields the same values,
within the experimental error. This suggests that both methods actually evaluate
the entropy change associated with a �rst-order transition. The maximum value
of the entropy change achieved using the Maxwell relation can be above or below
∆S depending on Hmax.

For x=0 and 0.05 (Fig. 5.9), the comparision between methods is very simi-
lar to that in x=0.45. The values obtained using the Clausius-Clapeyron equation
(open squares) agree, within the experimental error, with the calorimetric ones
(open triangles), although DSC data give slightly higher values, as observed in
some other samples (see section 6.3). This small difference may be related to the
fact that the coexistence line in the phase diagram is crossed at different direc-
tions, i.e., sweeping H in magnetisation and sweeping T in DSC (see Chapter 9).
∆S (0 → Hmax) calculated from the Maxwell relation (dashed lines) gives differ-
ent values depending on the maximum applied �eld, being clearly above∆S when
Hmax > ∆Ht.
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Figure 5.8: Entropy change for Gd5Si1.8Ge2.2 (x=0.45) calculated from: (i)
Maxwell relation integrating up to Hmax (dashed lines), (ii) Clausius-Clapeyron
equation (solid squares this work and open squares forx=0.5 from Ref. [2]), (iii)
DSC measurements under �eld (open triangles), and (iv) Maxwell relation inte-
grating within ∆Ht (solid lines). Hmax is labeled beside each dashed line, and also
stands for the solid lines from left to right increasing the �eld.
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Figure 5.9: Entropy change in Gd5(SixGe1−x)4, for (a) x=0.05 and (b) x=0, cal-
culated by using: DSC measurements under �eld (open triangles); the Clausius-
Clapeyron equation (open squares); the Maxwell relation integrating fromHmax
(20, 15, 10, 7, 5 and 2 T, from right to left, respectively) to zero (dashed lines);
and the Maxwell relation integrating only within the transition region (solid line).
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Besides, ∆S (0 → Hmax) obtained from the Maxwell relation for x=0 and
x=0.05 shows a double peak structure, when integrating from very high �elds
(15 and 20 T) to zero, which evidences the existence of two magnetic transitions
in the system. The high-T peak is related to the expected AFM-FM transition,
while the low-T peak is associated with a transition from the AFM phase to a
phase with short-range antiferromagnetic correlations, which appears in the Ge-
rich compounds (see Chapter 8). This effect is also evident in ∆S determined from
the Clausius-Clapeyron equation at highTt, i.e., at very high Ht.

5.4.2 Use of the Maxwell relation within the transition region
The difference between the transition entropy change ∆S obtained from both
DSC and the Clausius-Clapeyron approach and ∆S (0 → Hmax) obtained from
the Maxwell relation, can be understood by taking into account the fact that the
Maxwell method includes the following contributions,

∆S (0→ Hmax) =

∫ Ha

0

(
∂M
∂T

)

H
dH +

∫ Hb

Ha

(
∂M
∂T

)

H
dH +

∫ Hmax

Hb

(
∂M
∂T

)

H
dH , (5.1)

with Ha=Ht − ∆Ht/2 and Hb=Ht + ∆Ht/2, being ∆Ht the transition �eld range.
The �rst and the third integrals yield the entropy change that arises from the �eld
and temperature dependence of the magnetisation in each magnetic phase that
the transition involves. Only the second term accounts for the contribution to the
entropy change of the magnetostructural transition. This is indicated by the fact
that, for x=0.45, the plateau-like behaviour of the solid lines in Fig. 5.8 (computed
using the second integral in Eq. 5.1,

∫ Hb

Ha
(∂M/∂T )HdH) perfectly matches the ∆S

values given by the Clausius-Clapeyron equation and by calorimetry. A transition
�eld region of µ0∆Ht ∼4 T has been used, obtained from the high �eld M(H)
curves. Note also that when Hmax is less than ∆Ht, which is the minimum �eld
needed to complete the transition, the maximum value of∆S (0→Hmax) is lower
than ∆S (see for instance, the curve corresponding toµ0Hmax = 2 T in Fig. 5.8).
Moreover, for Hmax ≥ ∆Ht, the plateau-like region extends over the temperature
range for which Hmax ≥ Hb(T ). Consequently, as Hb(T ) increases with T , the
abrupt decrease from the plateau-like region at higherT is due to the truncation
of the second integral at Hmax.

The same result is plotted as solid lines in Fig. 5.9 for x=0.05 (µ0∆Ht ∼3
T from M(H)) and x=0 (µ0∆Ht ∼4 T) samples, showing that ∆S (Ha→Hb) =∫ Hb

Ha
(∂M/∂T )HdH matches the Clausius-Clapeyron value. This suggests that the

calculation of the entropy change using the Maxwell relation evaluated within
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∆Ht and using the Clausius-Clapeyron equation, are equivalent for the �rst-order
transition in the whole compositional range of Gd5(SixGe1−x)4 alloys.

5.5 Phenomenological models for the entropy change
In order to account for the main features of the entropy change reported in the
last section (5.4), we propose a phenomenological model that takes into account
the basic features of the magnetisation in a system with a �rst-order �eld-induced
phase transition. In a �rst phenomenological approach, only the basic behaviour
of the transition is considered, by assuming that M(T ) is constant outside the
transition region. In the advanced approach, the overall behaviour of the magneti-
sation is also taken into account by assuming thatM(T ) is not constant outside the
transition region.

5.5.1 First phenomenological approach: M(T ) = const.
In this �rst model, the magnetisation curves are considered to be of the form:

M(T,H) = M0 + ∆M F
(
T − Tt(H)

ξ

)
, (5.2)

where M0 and ∆M are assumed to be T and H independent, and F(T ) is a monoto-
nously decreasing function of widthξ such that F → 1 for T � Tt(H) and F → 0
for T � Tt(H). The case ξ → 0 corresponds to the ideal �rst-order transition
(F is then the Heaviside function). Using the Maxwell relation and assuming a
linear �eld dependence of the transition temperature (dTt/dHt ≡ α=constant), the
entropy change is given by

∆S (0→ Hmax) = ∆S
[
F

(
T − Tt(Hmax)

ξ

)
− F

(
T − Tt(H = 0)

ξ

)]
, (5.3)

where ∆S = ∆M/α (the transition entropy change from the Clausius-Clapeyron
equation). It is worth stressing that when the transition temperature is not �eld
dependent, ∆S (0 → Hmax) = 0 irrespective of the value of ∆S . In general,
∆S (0 → Hmax) is a fraction of the transition entropy change (∆S ), which de-
pends on the magnitude of the shift of Tt with the magnetic �eld, and reaches its
maximum value, ∆S , for high enough applied �eld. Results are even valid in the
limit ξ → 0, for which ∆S (0→ Hmax) = ∆S for all Hmax.

A simple analytical picture is provided by assuming that F is a linear func-
tion of temperature which extends within the temperature range∆Tt = α∆Ht = ξ.
Results are shown in Fig. 5.10. The general trends compare very well with re-
sults in Figs. 5.8 and 5.9 obtained by integrating the Maxwell relation within the
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Figure 5.10: Upper panel: temperature dependence of the magnetisation across
the transition region at different �elds, as described for the �rst phenomenological
model. Lower panel: corresponding entropy change∆S (0→Hmax) calculated from
the Maxwell relation. In this �gure, ∆S stands for the entropy change of the
transition, obtained from the Clausius-Clapeyron equation.
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transition range (second integral of Eq. 5.1, ∆S (Ha→Hb) =
∫ Hb

Ha
(∂M/∂T )HdH).

Note that within the scope of the present model, a true plateau is obtained since
∆M has been assumed to be T -independent, in contrast with the experimental
results (Figs. 5.1, 5.2 and 5.3), where ∆M decreases linearly with T . It is also
observed that when Hmax is not high enough to complete the transition (Hmax <
∆Ht), then ∆S (0→Hmax) = (Hmax/∆Ht)∆S is smaller than ∆S . Accordingly,
(Hmax/∆Ht) is the fraction of the sample that has been transformed. ForHmax ≥
∆Ht, ∆S (0→Hmax) reaches its maximum value ∆S (0→Hmax)=∆S , showing the
equivalence of the Clausius-Clapeyron equation and the Maxwell relation, pro-
vided the latter is only evaluated within the transition �eld region.

5.5.2 Advanced phenomenological approach: M(T ) , const.
This model is a generalisation of the previous one. This advanced model includes
both the T and H dependences of the magnetisation outside the transition region
and the decrease of ∆M with T . The upper panel in Fig. 5.11 shows the modelled
M(T ) curves at different H. The transition temperature is assumed to shift linearly
with the transition �eld, dTt/dHt ≡ α=constant. The magnetisation of the low-
temperature phase is assumed to decrease linearly withT as M(T ) = ∆M0(1−βT ),
being zero at the high-temperature phase. The transition between both phases ex-
tends within a temperature range ∆Tt = α∆Ht, which is assumed to be constant
according to the experimental results (see Figs. 5.4 and 5.12 (a)). In this model,
Tt(H) is de�ned for each curve as the temperature at the center of the transition re-
gion. As α is considered to be constant, the model should account for the behavior
of the entropy change for 0.24 ≤ x ≤ 0.5 alloys (see Fig. 5.8 for x=0.45).

The results of the model are compiled in the middle panel in Fig. 5.11. The
behaviour, which depends on the temperature range and the maximum applied
�eld, can be summarised as follows :

(i) For temperatures at which the system is in the low-temperature phase (T ≤
TA, with TA ≡ Tt(H = 0) − ∆Tt/2), the entropy change is independent of T and
increases linearly with the maximum applied �eld as

∆S (0→ Hmax) = −∆M0βHmax . (5.4)

(ii) In the range TA ≤ T ≤ TB (TB ≡ Tt(H = 0) + ∆Tt/2), which is the
temperature spread of the transition at zero �eld (see upper panel in Fig. 5.11),
the entropy change increases linearly up toTt(Hmax)−∆Tt/2 and reaches a plateau,
with a value increasing with Hmax (see H1 in Fig. 5.11). The limiting case of this
behaviour is obtained when the maximum applied �eld is strong enough to induce
the whole transition (i.e., Hmax = ∆Ht). Then Tt(Hmax) − ∆Tt/2 equals TB and the
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Figure 5.11: Upper panel shows the modelled temperature dependence of the
magnetisation across the transition region at different �elds, as described for the
advanced phenomenological model in the text. Middle panel shows the cor-
responding entropy change ∆S (0→Hmax) calculated from the Maxwell relation.
Lower panel: Solid lines stand for the entropy change obtained by integrating the
Maxwell relation only within the transition region. Connected squares stand for
∆S obtained from the Clausius-Clapeyron equation. The difference between those
values is indicated in the Figure.
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5.5. Phenomenological models for the entropy change

value is

∆S (0→ Hmax) = −∆M0[1 − βTt(H = 0)]
α

≡ −∆M[Tt(H = 0)]
α

(5.5)

(see case for H2 in Fig. 5.11). For higher �elds (Hmax ≥ ∆Ht), the transition is
also completed at TB and there is an additional contribution to∆S due to the �eld
and temperature dependences of M of the low-temperature phase (see cases for
H3 and H4 in Fig. 5.11). Therefore,

∆S (0→ Hmax) = −∆M[Tt(H = 0)]
α

− ∆M0β(Hmax − ∆Ht) . (5.6)

(iii) For temperatures at which the system is in the high-T phase at zero �eld
(T ≥ TB) and for low �elds (see H1 and H2 in Fig. 5.11), ∆S decreases linearly to
zero with increasing T , vanishing at Tt(Hmax) + ∆Tt/2, which corresponds to the
minimum temperature at whichHmax is not enough to start inducing the transition.
For �elds where the transition is complete (seeH3 and H4 in Fig. 5.11), ∆S shows
plateau-like behavior with a slope 2∆M0β/α up to Tt(Hmax) − ∆Tt/2. Above this
temperature, the �eld is not enough to complete the transition and∆S decreases
linearly to zero, vanishing at Tt(Hmax) + ∆Tt/2.

The lower panel in Fig. 5.11 shows the entropy change (solid lines) calcu-
lated by integrating the second term of Eq. 5.1 (∆S (Ha → Hb)). The values of
∆S calculated by using the Clausius-Clapeyron equation are also plotted as con-
nected squares. Three main features are to be noted: (i) for temperatures at which
the transition does not occur (T ≤ TA), ∆S (0 → Hmax)=0; (ii) for temperatures
at which the transition can be completely �eld-induced (T ≥ TB), and for Hmax
strong enough to complete it, the plateau-like regions of all curves overlap, yield-
ing a slope ∆M0β/α; and (iii) ∆S values obtained from the Clausius-Clapeyron
equation decrease with the same slope, but lowered by δ = ∆M0β∆Ht/2. The
model accounts for the behaviour of the experimental results shown in Fig. 5.12,
in Fig. 5.8, and in general for all 0.24 ≤ x ≤ 0.5 compounds. We note that in
Fig. 5.12 (c) the values of ∆S calculated from the Clausius-Clapeyron equation at
low T increase with T due to the fact that, just above the zero-�eld transition tem-
perature, a fraction of the sample has not yet been transformed to the PM phase
and still remains FM [8]. We also note that forx ≤ 0.2, although α is not constant,
the model accounts for the main features of the PM-FM transition. An extension
of the present model should consider the dependence ofα on Ht and Tt.

In order to improve the model, a linear H dependence of the low-T magnetisa-
tion outside the transition region is introduced as M(T,H) = ∆M0(1 − βT + γH).
This is a more realistic assumption for the magnetisation curves (Figs. 5.4 and
5.12 (a)). However, the overall behaviour remains unchanged. In this case, Eq.
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Figure 5.12: Upper panel shows the magnetisation as a function of temperature at
different �elds (0.5, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 T) forx=0.3 compound,
taken from M(H) (increasing H) data. Middle panel shows the corresponding en-
tropy change ∆S (0→Hmax) calculated from the Maxwell relation. Lower panel:
Solid lines stand for the entropy change obtained by integrating the Maxwell re-
lation only within the transition region. Connected squares stand for∆S obtained
from the Clausius-Clapeyron equation.
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5.6. Conclusions

5.5 turns into

∆S (0→ Hmax) = −∆M[Tt(H = 0)]
α

− ∆M0γ∆Ht

2α , (5.7)

the slope of the plateau-like region of ∆S values evaluated within the transition
region from the Maxwell relation is now ∆M0β

′/α, with β′ = β − γ/α, and
δ′ = ∆M0β

′∆Ht/2. This shift δ′ between the Clausius-Clapeyron approach and
the Maxwell approach is due to the fact that H heightens Tt, resulting in a reduc-
tion of ∆M. Since ∆Tt is assumed to be constant, ∆M/∆Tt in the transition re-
gion decreases correspondingly. This H-dependence remains included within the
transition region (as ∂M/∂T ) and still gives an extra term to the entropy change
when calculated from the Maxwell relation by integrating the second term of Eq.
5.1, but does not contribute to the Clausius-Clapeyron equation. Nevertheless,
δ′ is small for Gd5(SixGe1−x)4 alloys. For example, for x=0.45 (see Fig. 5.8),
∆M0β

′=0.753 emu/(gK) and ∆Ht ∼4 T, yielding δ′ ∼1.5 J/(kgK), which is within
the experimental error of the entropy change. Forx=0.3, ∆M0β

′=1.163 emu/(gK)
and ∆Ht ∼7 T, resulting in δ′ ∼4.1 J/(kgK), which may account for the slight dif-
ference observed in Fig. 5.12 (c). Generally, δ′ is expected to be small, since it
is proportional to the variation of the magnetization outside the transition region
and this variation is small in a FM phase. This may be extended to any other
�eld-induced transitions that involve a FM phase.

5.6 Conclusions
The magnetocaloric effect arising from a �eld variation 0→Hmax can be properly
evaluated through the entropy change obtained from the Maxwell method, even
when an ideal �rst-order transition occurs. When the Maxwell relation is evalu-
ated over the whole �eld range, theT and H dependences of the magnetisation in
each phase outside the transition region yield an additional entropy change to that
of the actual �rst-order transition. It has also been shown, from both experimen-
tal data and phenomenological models, that the Maxwell relation, the Clausius-
Clapeyron equation and the calorimetric measurements yield the entropy change
of the �rst-order magnetostructural transition, provided (i) the Maxwell relation is
evaluated only within the �eld range over which the transition takes place, and (ii)
the maximum applied �eld is high enough to complete the transition. The transi-
tion temperature must signi�cantly shift with the applied �eld, in order to achieve
a large MCE taking advantage of the entropy change associated to the �rst-order
transition. This is relevant for the understanding of the thermodynamics and MCE
of �rst-order magnetostructural transitions.
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